
28th Annual European
Symposium on Algorithms

ESA 2020, September 7–9, 2020, Pisa, Italy (Virtual Conference)

Edited by

Fabrizio Grandoni
Grzegorz Herman
Peter Sanders

LIPIcs – Vo l . 173 – ESA 2020 www.dagstuh l .de/ l ip i c s

Editors

Fabrizio Grandoni
IDSIA, USI-SUPSI, Manno, Switzerland
fabrizio@idsia.ch

Grzegorz Herman
Jagiellonian University, Kraków, Poland
gherman@tcs.uj.edu.pl

Peter Sanders
Karlsruhe Institute of Technology, Germany
sanders@kit.edu

ACM Classification 2012
Applied computing → Transportation; Theory of computation → Facility location and clustering;
Computing methodologies → Agent / discrete models; Computing methodologies → Algebraic algorithms;
Computing methodologies → Combinatorial algorithms; Human-centered computing → Graph drawings;
Mathematics of computing → Approximation algorithms; Mathematics of computing → Combinatorial
algorithms; Mathematics of computing → Graph algorithms; Mathematics of computing → Graph
coloring; Mathematics of computing → Graphs and surfaces; Mathematics of computing → Graph
theory; Mathematics of computing → Hypergraphs; Mathematics of computing → Information theory;
Mathematics of computing → Network flows; Mathematics of computing → Paths and connectivity
problems; Mathematics of computing → Probabilistic algorithms; Mathematics of computing → Random
graphs; Mathematics of computing → Solvers; Mathematics of computing → Trees; Networks → Network
algorithms; Theory of computation → Algorithmic game theory and mechanism design; Theory of
computation → Approximation algorithms analysis; Theory of computation → Computational geometry;
Theory of computation → Data structures design and analysis; Theory of computation → Design and
analysis of algorithms; Theory of computation → Online algorithms; Theory of computation → Distributed
algorithms; Theory of computation → Dynamic graph algorithms; Theory of computation → Facility
location and clustering; Theory of computation → Fixed parameter tractability; Theory of computation
→ Graph algorithms analysis; Theory of computation → Network flows; Theory of computation →
Online algorithms; Theory of computation → Packing and covering problems; Theory of computation →
Parallel algorithms; Theory of computation → Parallel computing models; Theory of computation →
Parameterized complexity and exact algorithms; Theory of computation → Pattern matching; Theory of
computation → Problems, reductions and completeness; Theory of computation → Randomness, geometry
and discrete structures; Theory of computation → Random network models; Theory of computation
→ Routing and network design problems; Theory of computation → Scheduling algorithms; Theory
of computation → Shared memory algorithms; Theory of computation → Shortest paths; Theory of
computation → Sorting and searching; Theory of computation → Stochastic approximation

https://orcid.org/0000-0002-9676-4931
mailto:fabrizio@idsia.ch
https://orcid.org/0000-0001-6855-8316
mailto:gherman@tcs.uj.edu.pl
https://orcid.org/0000-0003-3330-9349
mailto:sanders@kit.edu

0:iii

ISBN 978-3-95977-162-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-162-7.

Publication date
August, 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ESA.2020.0
ISBN 978-3-95977-162-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

ESA 2020

https://www.dagstuhl.de/dagpub/978-3-95977-162-7
https://www.dagstuhl.de/dagpub/978-3-95977-162-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.ESA.2020.0
https://www.dagstuhl.de/dagpub/978-3-95977-162-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iv

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders . 0:xi

Planar Bichromatic Bottleneck Spanning Trees
A. Karim Abu-Affash, Sujoy Bhore, Paz Carmi, and Joseph S. B. Mitchell 1:1–1:16

Parallel Batch-Dynamic Trees via Change Propagation
Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and
Sam Westrick . 2:1–2:22

Reconstructing Biological and Digital Phylogenetic Trees in Parallel
Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda . . . 3:1–3:24

Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem
Reyan Ahmed, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and
Richard Spence . 4:1–4:21

Analysis of the Period Recovery Error Bound
Amihood Amir, Itai Boneh, Michael Itzhaki, and Eitan Kondratovsky 5:1–5:21

Approximation of the Diagonal of a Laplacian’s Pseudoinverse for Complex
Network Analysis

Eugenio Angriman, Maria Predari, Alexander van der Grinten, and
Henning Meyerhenke . 6:1–6:24

Cutting Polygons into Small Pieces with Chords: Laser-Based Localization
Esther M. Arkin, Rathish Das, Jie Gao, Mayank Goswami,
Joseph S. B. Mitchell, Valentin Polishchuk, and Csaba D. Tóth 7:1–7:23

Set Cover with Delay – Clairvoyance Is Not Required
Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou 8:1–8:21

Improved Bounds for Metric Capacitated Covering Problems
Sayan Bandyapadhyay . 9:1–9:17

Minimum Neighboring Degree Realization in Graphs and Trees
Amotz Bar-Noy, Keerti Choudhary, Avi Cohen, David Peleg, and Dror Rawitz . . . 10:1–10:15

Tight Approximation Algorithms for p-Mean Welfare Under
Subadditive Valuations

Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G. Sundaram . 11:1–11:17

Mincut Sensitivity Data Structures for the Insertion of an Edge
Surender Baswana, Shiv Gupta, and Till Knollmann . 12:1–12:14

Linear Time LexDFS on Chordal Graphs
Jesse Beisegel, Ekkehard Köhler, Robert Scheffler, and Martin Strehler 13:1–13:13

Grundy Distinguishes Treewidth from Pathwidth
Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and
Yota Otachi . 14:1–14:19

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

On the Complexity of BWT-Runs Minimization via Alphabet Reordering
Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan 15:1–15:13

Simulating Population Protocols in Sub-Constant Time per Interaction
Petra Berenbrink, David Hammer, Dominik Kaaser, Ulrich Meyer,
Manuel Penschuck, and Hung Tran . 16:1–16:22

An Optimal Decentralized (∆ + 1)-Coloring Algorithm
Daniel Bertschinger, Johannes Lengler, Anders Martinsson, Robert Meier,
Angelika Steger, Miloš Trujić, and Emo Welzl . 17:1–17:12

Noisy, Greedy and Not so Greedy k-Means++
Anup Bhattacharya, Jan Eube, Heiko Röglin, and Melanie Schmidt 18:1–18:21

An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling
Sujoy Bhore, Guangping Li, and Martin Nöllenburg . 19:1–19:24

Lower Bounds and Approximation Algorithms for Search Space Sizes in
Contraction Hierarchies

Johannes Blum and Sabine Storandt . 20:1–20:14

The Minimization of Random Hypergraphs
Thomas Bläsius, Tobias Friedrich, and Martin Schirneck . 21:1–21:15

Acyclic, Star and Injective Colouring: A Complexity Picture for H-Free Graphs
Jan Bok, Nikola Jedlic̆ková, Barnaby Martin, Daniël Paulusma, and Siani Smith . 22:1–22:22

An Algorithmic Weakening of the Erdős-Hajnal Conjecture
Édouard Bonnet, Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant 23:1–23:18

Reconfiguration of Spanning Trees with Many or Few Leaves
Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta,
Paul Ouvrard, Akira Suzuki, and Kunihiro Wasa . 24:1–24:15

When Lipschitz Walks Your Dog: Algorithm Engineering of the Discrete Fréchet
Distance Under Translation

Karl Bringmann, Marvin Künnemann, and André Nusser . 25:1–25:17

Improved Algorithms for Alternating Matrix Space Isometry:
From Theory to Practice

Peter A. Brooksbank, Yinan Li, Youming Qiao, and James B. Wilson 26:1–26:15

Sometimes Reliable Spanners of Almost Linear Size
Kevin Buchin, Sariel Har-Peled, and Dániel Oláh . 27:1–27:15

New Binary Search Tree Bounds via Geometric Inversions
Parinya Chalermsook and Wanchote Po Jiamjitrak . 28:1–28:16

More on Change-Making and Related Problems
Timothy M. Chan and Qizheng He . 29:1–29:14

The Maximum Binary Tree Problem
Karthekeyan Chandrasekaran, Elena Grigorescu, Gabriel Istrate,
Shubhang Kulkarni, Young-San Lin, and Minshen Zhu . 30:1–30:22

Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs
Panagiotis Charalampopoulos and Adam Karczmarz . 31:1–31:23

Contents 0:vii

The Number of Repetitions in 2D-Strings
Panagiotis Charalampopoulos, Jakub Radoszewski, Wojciech Rytter,
Tomasz Waleń, and Wiktor Zuba . 32:1–32:18

New Bounds on Augmenting Steps of Block-Structured Integer Programs
Lin Chen, Martin Koutecký, Lei Xu, and Weidong Shi . 33:1–33:19

Distance Bounds for High Dimensional Consistent Digital Rays
and 2-D Partially-Consistent Digital Rays

Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama 34:1–34:22

Finding Large H-Colorable Subgraphs in Hereditary Graph Classes
Maria Chudnovsky, Jason King, Michał Pilipczuk, Paweł Rzążewski, and
Sophie Spirkl . 35:1–35:17

Compact Oblivious Routing in Weighted Graphs
Philipp Czerner and Harald Räcke . 36:1–36:23

Approximation Algorithms for Clustering with Dynamic Points
Shichuan Deng, Jian Li, and Yuval Rabani . 37:1–37:15

A Sub-Linear Time Framework for Geometric Optimization with Outliers in
High Dimensions

Hu Ding . 38:1–38:21

Practical Performance of Space Efficient Data Structures for
Longest Common Extensions

Patrick Dinklage, Johannes Fischer, Alexander Herlez, Tomasz Kociumaka, and
Florian Kurpicz . 39:1–39:20

First-Order Model-Checking in Random Graphs and Complex Networks
Jan Dreier, Philipp Kuinke, and Peter Rossmanith . 40:1–40:23

Optimally Handling Commitment Issues in Online Throughput Maximization
Franziska Eberle, Nicole Megow, and Kevin Schewior . 41:1–41:15

A Polynomial Kernel for Line Graph Deletion
Eduard Eiben and William Lochet . 42:1–42:15

Approximate CVPp in Time 20.802n

Friedrich Eisenbrand and Moritz Venzin . 43:1–43:15

A (1 − e−1 − ε)-Approximation for the Monotone Submodular Multiple
Knapsack Problem

Yaron Fairstein, Ariel Kulik, Joseph (Seffi) Naor, Danny Raz, and
Hadas Shachnai . 44:1–44:19

Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams
Chenglin Fan and Benjamin Raichel . 45:1–45:18

Polynomial Time Approximation Schemes for Clustering in Low Highway
Dimension Graphs

Andreas Emil Feldmann and David Saulpic . 46:1–46:22

Coresets for the Nearest-Neighbor Rule
Alejandro Flores-Velazco and David M. Mount . 47:1–47:19

Kernelization of Whitney Switches
Fedor V. Fomin and Petr A. Golovach . 48:1–48:19

ESA 2020

0:viii Contents

Subexponential Parameterized Algorithms and Kernelization on
Almost Chordal Graphs

Fedor V. Fomin and Petr A. Golovach . 49:1–49:17

On the Complexity of Recovering Incidence Matrices
Fedor V. Fomin, Petr Golovach, Pranabendu Misra, and M. S. Ramanujan 50:1–50:13

An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL
Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and
Dimitrios M. Thilikos . 51:1–51:17

A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time
Zachary Friggstad and Chaitanya Swamy . 52:1–52:20

On Compact RAC Drawings
Henry Förster and Michael Kaufmann . 53:1–53:21

Fast Preprocessing for Optimal Orthogonal Range Reporting and Range Successor
with Applications to Text Indexing

Younan Gao, Meng He, and Yakov Nekrich . 54:1–54:18

Dual Half-Integrality for Uncrossable Cut Cover and Its Application to Maximum
Half-Integral Flow

Naveen Garg and Nikhil Kumar . 55:1–55:13

An Efficient, Practical Algorithm and Implementation for Computing
Multiplicatively Weighted Voronoi Diagrams

Martin Held and Stefan de Lorenzo . 56:1–56:15

Fully-Dynamic Coresets
Monika Henzinger and Sagar Kale . 57:1–57:21

Dynamic Matching Algorithms in Practice
Monika Henzinger, Shahbaz Khan, Richard Paul, and Christian Schulz 58:1–58:20

Finding All Global Minimum Cuts in Practice
Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash 59:1–59:20

Approximate Turing Kernelization for Problems Parameterized by Treewidth
Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse . 60:1–60:23

The Fine-Grained Complexity of Median and Center String Problems Under
Edit Distance

Gary Hoppenworth, Jason W. Bentley, Daniel Gibney, and
Sharma V. Thankachan . 61:1–61:19

Capacitated Sum-Of-Radii Clustering: An FPT Approximation
Tanmay Inamdar and Kasturi Varadarajan . 62:1–62:17

Optimal Polynomial-Time Compression for Boolean Max CSP
Bart M. P. Jansen and Michał Włodarczyk . 63:1–63:19

A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth
Mamadou Moustapha Kanté, Christophe Paul, and Dimitrios M. Thilikos 64:1–64:16

Exploiting c-Closure in Kernelization Algorithms for Graph Problems
Tomohiro Koana, Christian Komusiewicz, and Frank Sommer . 65:1–65:17

Contents 0:ix

Many Visits TSP Revisited
Łukasz Kowalik, Shaohua Li, Wojciech Nadara, Marcin Smulewicz, and
Magnus Wahlström . 66:1–66:22

Light Euclidean Spanners with Steiner Points
Hung Le and Shay Solomon . 67:1–67:22

Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality
Victor Lecomte and Omri Weinstein . 68:1–68:21

On the Computational Complexity of Linear Discrepancy
Lily Li and Aleksandar Nikolov . 69:1–69:16

Augmenting the Algebraic Connectivity of Graphs
Bogdan-Adrian Manghiuc, Pan Peng, and He Sun . 70:1–70:22

Chordless Cycle Packing Is Fixed-Parameter Tractable
Dániel Marx . 71:1–71:19

Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy
Dániel Marx and R. B. Sandeep . 72:1–72:25

Approximating k-Connected m-Dominating Sets
Zeev Nutov . 73:1–73:14

Full Complexity Classification of the List Homomorphism Problem for
Bounded-Treewidth Graphs

Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski . 74:1–74:24

Generalizing CGAL Periodic Delaunay Triangulations
Georg Osang, Mael Rouxel-Labbé, and Monique Teillaud . 75:1–75:17

Engineering Fast Almost Optimal Algorithms for Bipartite Graph Matching
Ioannis Panagiotas and Bora Uçar . 76:1–76:23

Efficient Computation of 2-Covers of a String
Jakub Radoszewski and Juliusz Straszyński . 77:1–77:17

Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions
Rajiv Raman and Saurabh Ray . 78:1–78:16

Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time
Hanlin Ren . 79:1–79:13

Fine-Grained Complexity of Regular Expression Pattern Matching and
Membership

Philipp Schepper . 80:1–80:20

Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks
Ben Strasser, Dorothea Wagner, and Tim Zeitz . 81:1–81:14

Improved Prophet Inequalities for Combinatorial Welfare Maximization with
(Approximately) Subadditive Agents

Hanrui Zhang . 82:1–82:17

On the Approximation Ratio of the k-Opt and Lin-Kernighan Algorithm for
Metric and Graph TSP

Xianghui Zhong . 83:1–83:13

ESA 2020

Preface

This volume contains the extended abstracts selected for presentation at ESA 2020, the 28th
European Symposium on Algorithms. Due to the COVID-19 pandemia, the symposium was
organized as a virtual meeting during September 7–9 by the University of Pisa, Italy as part
of ALGO 2020. Performing the switch from physical to virtual meeting was accompanied
by many discussions about how to handle this situation. However, eventually, the scientific
quality of the program as well as the process of selecting contributions was surprisingly little
affected. In particular, the number of submissions as well as the acceptance rate was similar
to previous years. The PC-chairs gave an exceptional five-day deadline extension to mitigate
potential difficulties of authors in handling the situation. This proved an effective means of
achieving a high turnout of good submissions.

The scope of ESA includes original, high-quality, theoretical and applied research on
algorithms and data structures. Since 2002, it has had two tracks: the Design and Analysis
Track (Track A), intended for papers on the design and mathematical analysis of algorithms,
and the Engineering and Applications Track (Track B), for submissions that also address real-
world applications, engineering, and experimental analysis of algorithms. Information on past
symposia, including locations and proceedings, is maintained at http://esa-symposium.org.

In response to the call for papers for ESA 2020, 313 papers were submitted, 262 for
Track A and 51 for Track B (these are the counts after the removal of papers with invalid
format and after withdrawals). Paper selection was based on originality, technical quality,
exposition quality, and relevance. Each paper received at least three reviews. The program
committees selected 83 papers for inclusion in the program, 70 from track A and 13 from
track B, yielding an acceptance rate of about 1/4.

The European Association for Theoretical Computer Science (EATCS) sponsored a
best paper award and a best student paper award. A submission was eligible for the best
student paper award if all authors were doctoral, master, or bachelor students at the time
of submission. The best student paper award for track A was given to Hanrui Zhang
for the paper Improved Prophet Inequalities for Combinatorial Welfare Maximization with
(Approximately) Subadditive Agents. The best paper award for track A was given to Moritz
Venzin and Friedrich Eisenbrand for the paper Approximate CV Pp in time 20.802n. The best
paper award for track B was given to Georg Osang, Mael Rouxel-Labbé and Monique Teillaud
for the paper Generalizing CGAL Periodic Delaunay Triangulations. No best student paper
award has been given this year for track B.

We wish to thank all the authors who submitted papers for consideration, the invited
speakers, the members of the program committees for their hard work, and all the external
reviewers who assisted the program committees in the evaluation process. Special thanks go
to the organizing committee, who helped us with the organization of the conference. All of
these people did a great job in keeping ESA a hoard of excellence in a difficult situation.

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://esa-symposium.org
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committees

Track A (Design and Analysis) Program Committee

Amir Abboud, IBM Almaden Research Center
Greg Bodwin, Georgia Tech
Karl Bringmann, Saarland University and Max Planck Institute for Informatics
Deeparnab Chakrabarty, Dartmouth College
Daniel Dadush, Vrije Universiteit Amsterdam
Michael Elkin, Ben-Gurion University of the Negev
Leah Epstein, University of Haifa
Manuela Fischer, ETH Zurich
Fabrizio Frati, Roma Tre University
Fabrizio Grandoni, IDSIA (PC Chair)
Kasper Green Larsen, Aarhus University
Jacob Holm, University of Copenhagen
Michael Kapralov, Ecole Polytechnique Fédérale de Lausanne
Petteri Kaski, Aalto University
Telikepalli Kavitha, Tata Institute of Fundamental Research
Tomasz Kociumaka, Bar-Ilan University
Moshe Lewenstein, Bar-Ilan University
Shi Li, University at Buffalo
Yury Makarychev, Toyota Technological Institute at Chicago
Krzysztof Onak, IBM T.J. Watson Research Center
Seth Pettie, University of Michigan
Marcin Pilipczuk, University of Warsaw
Thomas Rothvoss, University of Washington
Laura Sanità, Eindhoven University of Technology
Saket Saurabh, The Institute of Mathematical Sciences
Chris Schwiegelshohn, TU Dortmund
Vera Traub, University of Bonn
Carmine Ventre, King’s College London
David Wajc, Carnegie Mellon University
Andreas Wiese, Universidad de Chile
David P. Woodruff, Carnegie Mellon University
Meirav Zehavi, Ben-Gurion University of the Negev

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv Program Committees

Track B (Engineering and Applications) Program Committee

Armin Biere, Johannes Kepler University Linz
Maike Buchin, Ruhr Universität Bochum
Markus Chimani, Osnabrück University
Irene Finocchi, LUISS Guido Carli University Rome
Travis Gagie, Dalhousie University Halifax
Rolf Niedermeier, TU Berlin
Kunihiko Sadakane, The University of Tokyo
Peter Sanders, Karlsruhe Institute of Technology (PC Chair)
Yihan Sun, Carnegie Mellon University
Sivan Toledo, Tel-Aviv University
Jesper Träff, Vienna University of Technology
Renato Werneck, Amazon

List of External Reviewers

Anders Aamand
Andreas Abels
Mikkel Abrahamsen
Marek Adamczyk
Peyman Afshani
Akanksha Agrawal
Hugo Akitaya
Carlos Alegría
Josh Alman
Georgios Amanatidis
Daniel Anderson
Haris Angelidakis
Patrizio Angelini
Spyros Angelopoulos
Antonios Antoniadis
Lars Arge
Boris Aronov
Sepehr Assadi
Gennadiy Averkov
Pranjal Awasthi
Kyriakos Axiotis
Michael Axtmann
Yossi Azar
Arturs Backurs
Ainesh Bakshi
Eric Balkanski
Nikhil Bansal
Leonid Barenboim
Michael Barrus
Luca Becchetti
Soheil Behnezhad
Xiaohui Bei
Robert Benkoczi
Matthias Bentert
Kristóf Bérczi
Benjamin Bergougnoux
Giulia Bernardini
Aaron Bernstein
Aditya Bhaskara
Anup Bhattacharya
Sayan Bhattacharya
Sujoy Bhore
Therese Biedl
Armin Biere
Philip Bille

Georgios Birmpas
Thomas Bläsius
Guy Blelloch
Niclas Boehmer
Fritz Bökler
Manuel Borrazzo
Vladimir Braverman
Nick Brettell
Gerth Stølting Brodal
Brian Brubach
Niv Buchbinder
Valentin Buchhold
Kevin Buchin
Maike Buchin
Andrei Bulatov
Sergio Cabello
Tiziana Calamoneri
Pilar Cano
Yixin Cao
Nofar Carmeli
Diptarka Chakraborty
Sankardeep Chakraborty
Parinya Chalermsook
T-H. Hubert Chan
Timothy M. Chan
Hsien-Chih Chang
Panagiotis Charalampopoulos
Abhranil Chatterjee
Shiri Chechik
Ho-Lin Chen
Wei Chen
Victor Chepoi
Markus Chimani
Rajesh Chitnis
Eden Chlamtac
Janka Chlebikova
Philip Chodrow
Davin Choo
Keerti Choudhary
Raphael Clifford
Christian Coester
Ilan Cohen
Sarel Cohen
Vincent Cohen-Addad
Emilio Cruciani

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi List of External Reviewers

Giordano Da Lozzo
Konrad K. Dąbrowski
Ovidiu Daescu
Shantanu Das
Argyrios Deligkas
Holger Dell
Dariusz Dereniowski
Karen Devine
Laxman Dhulipala
Emilio Di Giacomo
Hu Ding
Michael Dinitz
Yann Disser
Anne Driemel
Andre Droschinsky
Ran Duan
Bartłomiej Dudek
Thomas Dybdahl Ahle
Eduard Eiben
Marek Elias
Alina Ene
David Eppstein
Jeff Erickson
Hossein Esfandiari
Yuri Faenza
Piotr Faliszewski
Dan Feldman
Moran Feldman
Zhili Feng
Henning Fernau
Diodato Ferraioli
Yuval Filmus
Arnold Filtser
Irene Finocchi
Johannes Fischer
Noah Fleming
Till Fluschnik
Efi Fogel
Fedor Fomin
Kyle Fox
Daniel Freund
Zachary Friggstad
Hu Fu
Takuro Fukunaga
Radoslav Fulek
Mitsuru Funakoshi
Stefan Funke
Federico Fusco

Travis Gagie
Jakub Gajarský
Arun Ganesh
Robert Ganian
Jie Gao
Naveen Garg
Bernd Gärtner
Cyril Gavoille
Pawel Gawrychowski
Burkay Genc
Michele Gentili
Arijit Ghosh
Prantar Ghosh
Archontia Giannopoulou
Daniel Gibney
Alexander Göke
Petr Golovach
Alexander Golovnev
Adrián Gómez Brandón
Gramoz Goranci
Mayank Goswami
Sander Gribling
Luca Grilli
Martin Grohe
Martin Gronemann
Allan Grønlund
Yan Gu
Luciano Gualà
Joachim Gudmundsson
Siddharth Gupta
Sushmita Gupta
Guru Guruganesh
Michel Habib
Torben Hagerup
Thekla Hamm
Sariel Har-Peled
David Harris
Avinatan Hassidim
Ishay Haviv
Meng He
Qizheng He
Klaus Heeger
Marc Hellmuth
Danny Hermelin
Tobias Heuer
Michael Horton
Chien-Chung Huang
Zhiyi Huang

List of External Reviewers 0:xvii

Sophie Huiberts
Christoph Hunkenschröder
Thore Husfeldt
John Iacono
Sharat Ibrahimpur
Max Bernhard Ilsen
Shunsuke Inenaga
Gabor Ivanyos
Yoichi Iwata
Taisuke Izumi
Samin Jamalabadi
Bart M. P. Jansen
Klaus Jansen
Rajesh Jayaram
Łukasz Jeż
Dawei Jiang
Matthew Johnson
Gwenaël Joret
Praneeth Kacham
Naonori Kakimura
Sagar Kale
John Kallaugher
Naoyuki Kamiyama
Lior Kamma
Frank Kammer
Daniel Kane
Haim Kaplan
Adam Karczmarz
Charles Karney
Andreas Karrenbauer
Matthew Katz
Yasushi Kawase
Leon Kellerhals
Dominik Kempa
Eun Jung Kim
Evangelos Kipouridis
Sándor Kisfaludi-Bak
Aleks Kissinger
Kim-Manuel Klein
Peter Kling
Dušan Knop
Tomohiro Koana
Jochen Koenemann
Alexander Kononov
Christian Konrad
Tsvi Kopelowitz
Dominik Köppl
Evgenios Kornaropoulos

Guy Kortsarz
Dmitry Kosolobov
Martin Koutecky
Ioannis Koutis
Laszlo Kozma
Evangelos Kranakis
Ravishankar Krishnaswamy
Amer Krivosija
Dominik Krupke
Janardhan Kulkarni
Gunjan Kumar
Marvin Künnemann
O-Joung Kwon
Maria Kyropoulou
Arnaud Labourel
Jakub Łącki
Leon Ladewig
Bundit Laekhanukit
Victor Lagerkvist
John Lapinskas
Dolores Lara
Kim S. Larsen
Philip Lazos
Hung Le
Francois Le Gall
Euiwoong Lee
Johannes Lengler
Stefano Leucci
Asaf Levin
Roie Levin
Avivit Levy
Caleb Levy
Moshe Lewenstein
Jason Li
Jian Li
Yingyu Liang
William Lochet
Maarten Löffler
Brendan Lucier
Junjie Luo
Jayakrishnan Madathil
Sepideh Mahabadi
Arvind Mahankali
Konstantin Makarychev
Frederik Mallmann-Trenn
David Manlove
Fredrik Manne
Giovanni Manzini

ESA 2020

0:xviii List of External Reviewers

Alberto Marchetti-Spaccamela
Mathieu Mari
Shaked Matar
Jannik Matuschke
Giancarlo Mauri
Samuel McCauley
Moti Medina
Arianne Meijer
Henk Meijer
Reshef Meir
George Mertzios
David L. Millman
Majid Mirzanezhad
Neeldhara Misra
Pranabendu Misra
Matthias Mnich
Hendrik Molter
Tobias Mömke
Rafaelle Mosca
Benjamin Moseley
Amer Mouawad
Noela Müller
Wolfgang Mulzer
Alexander Munteanu
Christopher Musco
Wojciech Nadara
Viswanath Nagarajan
Yuto Nakashima
Seffi Naor
Jesper Nederlof
Maryam Negahbani
Ofer Neiman
Yakov Nekrich
Alantha Newman
Huy Nguyen
André Nichterlein
Aleksandar Nikolov
Naomi Nishimura
Martin Nöllenburg
Navid Nouri
Alexander Nover
Krzysztof Nowicki
André Nusser
Timm Oertel
Karolina Okrasa
Neil Olver
Shmuel Onn
Joel Ouaknine

Andrea Pacifici
Rasmus Pagh
Dömötör Pálvölgyi
Fahad Panolan
Evanthia Papadopoulou
Irene Parada
Kunsoo Park
Nikos Parotsidis
Merav Parter
Alice Paul
Andrzej Pelc
Richard Peng
Martin Pergel
Jeff Phillips
Michał Pilipczuk
Solon Pissis
Adam Polak
Ely Porat
Julian Portmann
Nicola Prezza
Maximilian Probst Gutenberg
Kirk Pruhs
Manish Purohit
Yuval Rabani
Jakub Radoszewski
Akbar Rafiey
Saladi Rahul
Benjamin Raichel
Cyrus Rashtchian
Nidhi Rathi
R Ravi
Saurabh Ray
Bhaskar Ray Chaudhury
Ilya Razenshteyn
Igor Razgon
Rebecca Reiffenhäuser
Malte Renken
Thomas Robinson
Liam Roditty
Dennis Rohde
Lars Rohwedder
Massimiliano Rossi
Benjamin Rossman
Eva Rotenberg
Alan Roytman
Natan Rubin
Aviad Rubinstein
Paweł Rzążewski

List of External Reviewers 0:xix

Guy Saar
Kunihiko Sadakane
Mohammad Salavatipour
R.B. Sandeep
Peter Sanders
Piotr Sankowski
Ramprasad Saptharishi
Thatchaphol Saranurak
Srinivasa Rao Satti
Ignasi Sau
David Saulpic
Saket Saurabh
Nitin Saxena
Melanie Schmidt
Ulrike Schmidt-Kraepelin
Oded Schwartz
Uwe Schwiegelshohn
Andras Sebo
Saeed Seddighin
Paolo Serafino
Alkmini Sgouritsa
Roohani Sharma
Bruce Shepherd
Abhishek Shetty
Anastasios Sidiropoulos
Sebastian Siebertz
Ana Silva
Francesco Silvestri
Genevieve Simonet
Sahil Singla
Nodari Sitchinava
Benjamin Smith
Marcin Smulewicz
Dina Sokol
Shay Solomon
Frank Sommer
Rishi Sonthalia
Manuel Sorge
Krzysztof Sornat
José A. Soto
Sophie Spirkl
Ramanujan M. Sridharan
Piyush Srivastava
Frank Staals
Tatiana Starikovskaya
Barak Steindl
Teresa Anna Steiner
Noah Stephens-Davidowitz

Ben Strasser
Vijay Subramanya
He Sun
Kevin Sun
Yihan Sun
Subhash Suri
Svend Christian Svendsen
Zoya Svitkina
Alexander Svozil
Prafullkumar Tale
Jakub Tarnawski
Jan Arne Telle
Sharma V. Thankachan
Clayton Thomas
Mikkel Thorup
Daniel Ting
Sivan Toledo
Noam Touitou
Ohad Trabelsi
Jesper Träff
Nicolas Tremblay
Thorben Tröbst
Niklas Troost
Tom Tseng
Marc Uetz
Przemysław Uznański
Ali Vakilian
Greg Van Buskirk
Yann Vaxès
José Verschae
Aravindan Vijayaraghavan
Marc Vinyals
Ellen Vitercik
Magnus Wahlström
Erik Waingarten
Tomasz Walen
Haitao Wang
Hung-Lung Wang
Yipu Wang
Yiqiu Wang
Justin Ward
Karol Węgrzycki
Yuanhao Wei
Oren Weimann
Nicole Wein
Omri Weinstein
Renato Werneck
Chris Whidden

ESA 2020

0:xx List of External Reviewers

Daniel Wiebking
Tilo Wiedera
Sebastian Wiederrecht
Mathijs Wintraecken
Sascha Witt
Michal Wlodarczyk
Prudence Wong
Sampson Wong
Marcin Wrochna
Christian Wulff-Nilsen
Yinzhan Xu
Sheng Yang
Jonathan Yaniv
Taisuke Yasuda
Shangdi Yu
Lydia Zakynthinou

Viktor Zamaraev
Or Zamir
Rico Zenklusen
Ruizhe Zhang
Zhao Zhang
Samson Zhou
Philipp Zschoche
Wiktor Zuba
Mark de Berg
Bart de Keijzer
Erik Jan van Leeuwen
André van Renssen
Rob van Stee
Marieke van der Wegen
Tom van der Zanden

Planar Bichromatic Bottleneck Spanning Trees
A. Karim Abu-Affash
Software Engineering Department, Shamoon College of Engineering, Beer-Sheva, Israel
abuaa1@sce.ac.il

Sujoy Bhore
Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
sujoy.bhore@gmail.com

Paz Carmi
Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
carmip@cs.bgu.ac.il

Joseph S. B. Mitchell
Department of Applied Mathematics and Statistics, Stony Brook University, NY, USA
joseph.mitchell@stonybrook.edu

Abstract
Given a set P of n red and blue points in the plane, a planar bichromatic spanning tree of P is a
geometric spanning tree of P , such that each edge connects between a red and a blue point, and no
two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find
a planar bichromatic spanning tree T , such that the length of the longest edge in T is minimized.
In this paper, we show that this problem is NP-hard for points in general position. Our main
contribution is a polynomial-time (8

√
2)-approximation algorithm, by showing that any bichromatic

spanning tree of bottleneck λ can be converted to a planar bichromatic spanning tree of bottleneck
at most 8

√
2λ.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Design and analysis of algorithms

Keywords and phrases Approximation Algorithms, Bottleneck Spanning Tree, NP-Hardness

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.1

Funding This work was partially supported by Grant 2016116 from the United States – Israel
Binational Science Foundation. Work by J. Mitchell was partially supported by NSF (CCF-1526406,
CCF-2007275).

1 Introduction

Let P be a bi-colored set of red and blue points in the plane and let n = |P |. A bichromatic
spanning tree of P is a spanning tree of P whose edges are straight-line segments connecting
between points of different colors. A spanning tree is planar if its edges do not cross each other.
Borgelt et al. [15] studied the problem of computing a minimum-weight planar bichromatic
spanning tree, and showed that the problem is NP-hard. Moreover, for points in general
position, they gave an O(

√
n)-approximation algorithm, and for points in convex position,

they gave an exact cubic-time algorithm. Biniaz et al. [11] studied the problem of computing a
maximum-weight planar bichromatic spanning tree and gave a (1/4)-approximation algorithm
for the problem.

Algorithmic problems on bichromatic geometric input have appeared in many problems,
including, e.g., trees [1, 12, 15], matchings [13, 18], and partitionings [19]. Often the
bichromatic input is referred to as “red-blue” input, e.g. in red-blue intersection [4, 23],
red-blue separation [9, 14, 17, 20], and red-blue connection problems [5, 10]. For a survey of
many geometric problems on bichromatic (red-blue) points, see Kaneko and Kano [21].

© A. Karim Abu-Affash, Sujoy Bhore, Paz Carmi, and Joseph S. B. Mitchell;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 1; pp. 1:1–1:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abuaa1@sce.ac.il
mailto:sujoy.bhore@gmail.com
mailto:carmip@cs.bgu.ac.il
mailto:joseph.mitchell@stonybrook.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Planar Bichromatic Bottleneck Spanning Trees

Many of the structures studied in computational geometry are planar, including minimum
spanning trees, minimum weight matchings, Delaunay/Voronoi diagrams, etc. Therefore, the
planarity requirement is quite natural, and indeed many researchers have considered geometric
problems dealing with crossing-free configurations in the plane; see, e.g. [2, 3, 6, 7, 8].

In this paper, we study the problem of computing a bottleneck planar bichromatic
spanning tree of P , in which we seek a planar bichromatic spanning tree that minimizes the
bottleneck, i.e., the length of the longest edge. To the best of our knowledge, this problem
has not been considered before.

Our results. In Section 2, we prove that the problem of computing a bottleneck planar
bichromatic spanning tree is NP-hard. Our proof is based on a reduction from the planar
3-SAT problem, and is influenced by the proof of Borgelt et al. [15]. As a corollary we obtain
that the problem does not admit a PTAS. Next, in Section 3, we present a polynomial-time
algorithm for computing a planar bichromatic spanning tree of bottleneck at most 8

√
2 times

the bottleneck OPT of an optimal such planar bichromatic spanning tree. We first compute
a bottleneck bichromatic spanning tree having bottleneck λ that may have crossings (so λ is
a lower bound on OPT). Then, we use the length λ to define a partition of the plane into
convex cells, and to partition P into subsets according to these cells. Next, we construct
planar bichromatic trees for each subset, and we connect these trees to obtain a planar
bichromatic spanning tree of P . We show that this tree has a bottleneck at most 8

√
2λ.

2 Hardness Proof

In this section, we prove the NP-hardness (Theorem 1) of computing a bottleneck planar
bichromatic spanning tree; our proof also shows (Corollary 2, below) that there is no
approximation factor less than

√
2, unless P = NP .

I Theorem 1. Let P be a set of n red and blue points in the plane. Computing a bottleneck
planar bichromatic spanning tree of P is NP-hard.

Proof. We adapt the proof of Borgelt et al. [15], making modifications necessary to address
the bottleneck version. For completeness, we explain the ingredients required for the proof.

The proof is based on a reduction from the planar 3-SAT problem. Given a 3-CNF
formula F with n variables X = {x1, x2, . . . , xn} and m clauses Y = {C1, C2, . . . , Cm}, let
GF = (V,E) be the graph of F , i.e., V = X ∪ Y and E = {(xi, Cj) : xi or x̃i appears in Cj}.
If GF is planar, then F is called a planar 3-CNF formula. The planar 3-SAT problem
is to determine whether a given planar 3-CNF formula F is satisfiable; the problem is
NP-complete [22].

Let F be a planar 3-SAT formula. We construct, in polynomial time, a set P of red
and blue points in the plane, such that F is satisfiable if and only if there exists a planar
bichromatic spanning tree of P of bottleneck 1. Consider the graph GF . It is well known
that GF can be embedded in the plane in polynomial time, using polynomial area, i.e., with
the n+m nodes of GF placed at grid points of a regular square grid of size O(n+m)-by-
O(n+m) [16].

The construction is based on chains of pairs of red and blue points. We call the pairs
in the chain sites. The distance between the two points comprising each site is less than 1,
and the distance between two points of different colors in consecutive (along the chain) sites
is exactly 1; see Figure 1(a). Now, for every two consecutive sites, there are two possible
edges to connect them using edges of length at most 1: we either connect (with an edge

A.K. Abu-Affash, S. Bhore, P. Carmi, and J. S. B. Mitchell 1:3

of length exactly 1) the blue point of the first site with the red point of the second site, or
the other way around. Moreover, the chain is constructed in such a way that if we connect
the blue point in the leftmost site to the red point in the next site, this forces the choice of
connections in one direction along the chain; see Figure 1(b).

(a) (b)

Figure 1 A chain of red-blue sites.

Variables. Each variable xi ∈ X is represented by a circular chain of O(m) sites, a special
red point ri, and a red-blue path; see Figure 2. The addition of the red-blue path to the
variable gadget of [15] is required, since without it the special red point ri can be connected
to both sides of the chain without increasing the bottleneck, which is not the case in the
minimum weight version. The red-blue path forces ri to be connected exactly to one side.

xi = T xi = F

ri ri

Figure 2 The trees corresponding to the true and the false assignments of xi.

The sites on the circular chain are located on two circles, an inner circle and an outer
circle. We locate the points in such a way that the (bichromatic) distances are 1 between
consecutive sites on the circular chain, the distance is 1 between ri and the blue points
of its neighboring sites in the chain, and the distance is 1 between the endpoints of the
red-blue path and the corresponding points of the chain. Moreover, the points are located
such that there are only two possible optimal trees (i.e., planar bichromatic spanning trees
of bottleneck 1) of the points, depending on the connection of ri to the chain. In each of
the two trees, ri is connected to exactly one site of the chain. We associate (arbitrarily)
one possibility with the assignment xi = T , and the other with the assignment xi = F ;
see Figure 2. Thus, the value of xi will determine the tree of these points, and vice virsa.
Moreover, if xi = T (resp., xi = F), then the red points on the right (resp., left) of the inner
circle are free to be connected to points outside the gadget, and the red points on the left
(resp., right) of the inner circle cannot be connected to points outside the gadget without
crossing, and vice versa.

ESA 2020

1:4 Planar Bichromatic Bottleneck Spanning Trees

Clauses. Each clause Cj is represented by a single red point rj and three chains that are
connected to the respective variables of Cj ; see Figure 3(a). The distance between rj and
each chain is 1. In any optimal tree, rj will be connected to at least one of the three chains.
However, it cannot be connected to any chain if all the chains are connected to variables
that are in the wrong state; see Figure 3(b).

rj rj

(a) (b)

Figure 3 The gadget corresponding to the clause Cj .

We connect between the variables and the clauses such that, in any optimal tree, one of
the three chains of the clause has to be connected to a red point on the inner circle of the
corresponding variable. Assume that xi appears unnegated in a clause Cj and negated in a
clause Ck, i.e., Cj = (xi ∨ · ∨ ·) and Ck = (x̃i ∨ · ∨ ·). We connect the chain of Cj that is
respective to xi to a site on the right of the inner circle of the gadget xi, and we connect the
chain of Ck that is respective to xi to a site on the left of the inner circle of the gadget xi;
see Figure 4. This connection ensures that, if xi is assigned T , then the red point on the
right of the inner circle of xi is free to be connected to the chain of Cj , and this connection
can produce a path through the chain that ends at rj . On the other hand, if xi is assigned
T , then the red point on the left of the inner circle of xi cannot be connected to the chain of
Ck, which does not allow a connection between the chain and rk. The same argument holds
when xi is assigned F .

xi = T

Cj = (xi ∨ · ∨ ·)Ck = (x̃i ∨ · ∨ ·)

rjrk

√
2

Figure 4 The connection between the variable xi and the clauses Cj and Ck.

A.K. Abu-Affash, S. Bhore, P. Carmi, and J. S. B. Mitchell 1:5

Finally we need to connect all variables to each other by some fixed part of the tree,
because the whole construction needs to be a tree and not a forest. These connections can
easily be made using red-blue chains having distance at most 1 between every two consecutive
points in the path. Also, we need to make sure that the distance between different parts of
the construction is large enough to avoid shortcuts.

Overall, the reduction is performed in polynomial (in n,m) time, since the planar graph
GF is drawn on a regular O(n+m)-by-O(n+m) grid, and each of our variable gadgets is of
size O(m), resulting in overall polynomial area and a polynomial-size construction that is
computed in polynomial (in n,m) time. J

Notice that in the reduction we proved that if the 3-SAT formula is not satisfiable, then
any planar bichromatic spanning tree of P has an edge of length greater than 1. Actually,
we can push the length of this edge to be closer to

√
2. That is, we can draw the connection

between each clause and its corresponding variables, such that the distance between each
chain of the clause and the corresponding site on the inner circle of the variable is 1, and the
distance between each chain of the clause and the sites on the outer circle of the variable
is at least

√
2− ε, for any 0 < ε <

√
2− 1; see Figure 4. This implies that the bottleneck

planar bichromatic spanning tree problem cannot be approximated within a factor less than√
2, unless P = NP .

I Corollary 2. The bottleneck planar bichromatic spanning tree problem cannot be approxim-
ated within a factor less than

√
2, unless P = NP . In particular, there is no PTAS (unless

P = NP).

3 Approximation Algorithm

Let P be a set of red and blue points in the plane and let n = |P |. Let T be a bichromatic
spanning tree of P of minimum bottleneck (T may have crossings and can be computed in
O(n logn) time [12]). Let λ denote the bottleneck of T , i.e., the length of the longest edge in
T . Notice that λ is the lower bound for any bichromatic spanning tree of P , in particular
for any planar bottleneck bichromatic spanning tree of P . In this section, we show how to
compute a planar bichromatic spanning tree of P , such that its bottleneck is at most 8

√
2λ.

Our algorithm partitions the plane into disjoint cells satisfying the following properties:
1. Each cell is convex and contains points of both colors.
2. In each cell, the distance between any two points is at most 5

√
2λ.

3. The cells are connected, i.e., if we consider the graph with the cells as its vertices and
there is an edge between two cells if they are adjacent (sharing a common boundary),
then this graph is connected.

4. We can construct a planar bichromatic spanning tree of the points in each cell and we
can connect them without crossings.

Assume, w.l.o.g., that λ = 1. Consider an axis-parallel grid, with each (square) cell of
edge length 3 and all points of P in the interior (not on the boundary) of these cells; see
Figure 5. We say that a cell Ci,j is bichromatic if it contains points of both colors and we
say that Ci,j is monochromatic (red or blue) if all of the points in Ci,j have the same color,
otherwise, we say that Ci,j is an empty cell.

Our algorithm consists of two stages. In Stage 1, we modify the grid cells to satisfy
properties (1)-(3), and, in Stage 2, we construct a planar bichromatic spanning tree of the
points in each cell and connect between these trees to obtain a planar bichromatic spanning
tree of P .

ESA 2020

1:6 Planar Bichromatic Bottleneck Spanning Trees

Figure 5 The grid partitioning the points of P .

Stage 1

In this stage, we consider the monochromatic cells and we partition and merge portions of
them in order to obtain a subdivision in which all cells are convex and bichromatic. Let Ci,j

be a 3×3 cell of the grid. Since Ci,j is a 3×3 cell, Ci,j is the union of 9 unit sub-cells, labelled
Ck

i,j , for k = 1, 2, 3, . . . , 9, as shown in Figure 6(a). Notice that, since Ci,j is a monochromatic
cell, the points of Ci,j are of distance at most 1 from the boundary of Ci,j , and therefore, C5

i,j

is empty of points of P . The region Ci,j \ C5
i,j is the union of four trapezoids T l

i,j , T r
i,j , T t

i,j ,
and T b

i,j , such that T l
i,j (resp., T r

i,j , T t
i,j , and T b

i,j) is the trapezoid obtained by connecting
the left (resp., right, top, and bottom) corners of Ci,j by diagonals to the left (resp., right,
top, and bottom) corners of C5

i,j ; see Figure 6(b).

(a) (b)

C1
i,j C2

i,j C3
i,j

C4
i,j C5

i,j C6
i,j

C7
i,j C8

i,j C9
i,j

T t
i,j

T r
i,jT l

i,j

T b
i,j

C5
i,j

Figure 6 (a) The 9 unit sub-cells of cell Ci,j . (b) The trapezoids T l
i,j , T r

i,j , T t
i,j , and T b

i,j .

Stage 1.1

In this stage, we introduce a directed graph G in which the vertices are the monochromatic
cells and the edges are defined as follows. Let Ci,j be a monochromatic cell, and let
N (Ci,j) = {Ci,j−1, Ci,j+1, Ci−1,j , Ci+1,j} be the set of cells that share a grid edge with Ci,j .
Let C ∈ N (Ci,j) be a monochromatic cell and assume, w.l.o.g., that C = Ci,j+1. There is a
directed edge from Ci,j to Ci,j+1 if and only if Ci,j and Ci,j+1 are of different colors and the
trapezoid T r

i,j is not empty of points of P ; see Figure 7.

A.K. Abu-Affash, S. Bhore, P. Carmi, and J. S. B. Mitchell 1:7

Ci+1,j

C5
i,j Ci,j+1Ci,j−1

Ci−1,j

Figure 7 Directed edges between monochromatic cell Ci,j and its monochromatic neighbors
(Ci,j−1, Ci−1,j , Ci,j+1).

Stage 1.2

In this stage, we modify the grid cells by partitioning and merging some of the monochromatic
cells with their neighbors, guided by the directed edges introduced in Stage 1.1. Before
describing how to modify the grid cells, we describe the following cell partition procedure
that we will apply in this stage to the empty and some of the monochromatic cells.

Cell partition procedure. For a monochromatic cell Ci,j , partition Ci,j \C5
i,j into trapezoids

T l
i,j , T r

i,j , T t
i,j , and T b

i,j , and merge them with the cells Ci,j−1 , Ci,j+1, Ci−1,j , and Ci+1,j ,
respectively; see Figure 8(b).

Ci+1,j

(a)

C5
i,j

Ci,j−1 Ci,j+1

Ci−1,j

(b)

Ci+1,j

C5
i,j

Ci,j−1 Ci,j+1

Ci−1,j

Figure 8 (a) din(Ci,j) = 0 and dout(Ci,j) > 0. (b) Partitioning and merging Ci,j with its
neighbors.

Let din(Ci,j) (resp., dout(Ci,j)) denote the in-degree (resp., the out-degree) of the vertex
corresponding to the monochromatic cell Ci,j in the graph G. We apply the following three
steps on the empty and monochromatic cells.
Step 1. We apply this step as long as there exists a cell Ci,j with din(Ci,j) = 0 and

dout(Ci,j) > 0. For each such cell, we apply the cell partition procedure on Ci,j and
remove the out-going edges from Ci,j and from its neighbors Ci,j−1, Ci,j+1, Ci−1,j , and
Ci+1,j ; see Figure 8.

Step 2. We apply this step on the monochromatic cells Ci,j with din(Ci,j) > 0. Consider
the grid as an arbitrary white-black chessboard. For each white cell with din(Ci,j) > 0,
we apply the cell partition procedure on Ci,j .

ESA 2020

1:8 Planar Bichromatic Bottleneck Spanning Trees

Step 3. We apply this step on the empty and the monochromatic cells Ci,j with din(Ci,j) = 0
and dout(Ci,j) = 0 (that are not considered in the previous steps). For each such cell, we
apply the cell partition procedure on Ci,j .

We call a cell Ci,j a partitioned cell if Ci,j has been partitioned (using the cell partition
procedure), and we call it an extended cell otherwise. If we have two adjacent partitioned
cells Ci,j and Ci,j+1, then we call the merged area of the two trapezoids T r

i,j and T l
i,j+1 a

lune; see Figure 9.

Ci+1,j

Ci,j Ci,j+1

Ci−1,j Ci−1,j+1

Ci+1,j+1

C6
i,j C4

i,j+1

Ci,j+1

Ci,j

Ci−1,j

Ci,j−1

Ci−1,j−1 Ci−1,j+1

C2
i,j

C8
i−1,j

(a) (b)

Figure 9 (a) vertical and (b) horizontal lunes.

At the end of this stage, we have three types of non-empty convex cells: original 3× 3
cells, extended cells, and lunes. Clearly, each original cell is bichromatic, otherwise, it would
have been partitioned or extended in Steps 1–3. Observe that each extended cell Ci,j is
bichromatic, since din(Ci,j) > 0. Observe also that each non-empty lune L is monochromatic.
To see this, assume, w.l.o.g., that L was obtained by partitioning the cells Ci,j and Ci,j+1
and merging the trapezoids T r

i,j and T l
i,j+1. Thus, L cannot be bichromatic, since otherwise,

there would be a directed edge from Ci,j to Ci,j+1 and vice versa, which means that one of
the cells Ci,j and Ci,j+1 (the black one in the chessboard) is extended in Step 2.

Stage 1.3

In this stage, we get rid of the lunes, by partitioning each lune into sub-pieces and merging
the sub-pieces with adjacent extended cells as follows. Let L1 be a vertical lune obtained by
merging two adjacent trapezoids T r

i,j and T l
i,j+1; see Figure 9(a). (A horizontal lune will be

treated analogously.) As observed above, L1 is monochromatic (or empty) which means that
the subregion C6

i,j ∪ C4
i,j+1 ⊆ L1 is empty of points of P .

We consider the four triangles obtained by removing C6
i,j from T r

i,j and removing C4
i,j+1

from T l
i,j+1, and we merge them with the cells Ci−1,j , Ci−1,j+1, Ci+1,j , and Ci+1,j+1

according to the following cases. We describe how to merge the top triangles with Ci−1,j

and Ci−1,j+1. (Merging the bottom triangles with Ci+1,j , and Ci+1,j+1 is done analogously.)
Let vt be the top vertex of L1; see Figure 10.

If both Ci−1,j and Ci−1,j+1 are extended cells, then we merge the top-left triangle with
Ci−1,j and the top-right triangle with Ci−1,j+1; see Figure 10(a).
If Ci−1,j is a partitioned cell and Ci−1,j+1 is an extended cell, then we have another
horizontal lune L2 between Ci−1,j and Ci,j ; see Figure 10(b). Notice that the union of
the top-left triangle of L1 and the right-bottom triangle of L2 is exactly the sub-cell C3

i,j .

A.K. Abu-Affash, S. Bhore, P. Carmi, and J. S. B. Mitchell 1:9

Notice also that L2 is monochromatic and has the same color as L1. Thus, the points of
P in C3

i,j are of distance 1 from vt. In this case, we merge the top-right triangle of L1
and the right-top triangle of L2 with Ci−1,j+1. Moreover, we merge the region of C3

i,j

intersecting the disk of radius 1 centered at vt with Ci−1,j+1; see Figure 10(b).
If Ci−1,j is an extended cell and Ci−1,j+1 is a partitioned cell, then this case is symmetric
to the previous case; see Figure 10(c).
If both Ci−1,j and Ci−1,j+1 are partitioned cells, then we have four lunes incident to vt;
see Figure 10(d). Since all of the lunes are monochromatic and have the same color, the
triangles of these lunes that are incident to vt are empty of points of P and, therefore,
we remove these triangles from the division.

(a) (b)

Ci,j Ci,j+1

Ci−1,j Ci−1,j+1

(c) (d)

Ci,j Ci,j+1

Ci−1,j Ci−1,j+1

Ci,j Ci,j+1

Ci−1,j Ci−1,j+1

Ci,j Ci,j+1

Ci−1,j Ci−1,j+1

L1L1

L1L1

L2

L2 L2

L3

L4

vtvt

vt vt

Figure 10 Merging the top triangles of L1 with the cells Ci−1,j and Ci−1,j+1. The gray and the
green regions are part of vertical and horizontal lunes, respectively, and the light blue regions are
empty of points of P .

Moreover, in each partitioned cell Ci,j such that i = 1, i = n, j = 1, or j = n, we treat
the trapezoids adjacent to the boundary of the grid as half-lunes and we merge them with
their adjacent extended cells as in the lunes case.

Notice that, at the end of this stage, we have two types of non-empty cells: original 3× 3
cells and extended cells, and both types are convex and bichromatic cells; see Figure 11.
From now on, we refer to both types of these cells as extended cells and denote them by Ĉ.
That is, Ĉi,j is either an original 3× 3 cell Ci,j or an extended cell obtained by merging Ci,j

with trapezoids from its neighbors.

Stage 2
In this stage, we construct a planar bichromatic spanning tree in each (extended) cell and
connect them to each other to obtain, overall, a planar bichromatic spanning tree of P .
For each cell Ĉi,j , we denote by P̂i,j the set of points of P lying in Ĉi,j . If Ci,j has been
partitioned, then we set P̂i,j = ∅.

ESA 2020

1:10 Planar Bichromatic Bottleneck Spanning Trees

Figure 11 A subdivision obtained at the end of Stage 1. The light blue regions are empty of
points of P .

Stage 2.1

In each cell Ĉi,j , we construct a planar bichromatic spanning tree Ti,j of P̂i,j as follows. We
select an arbitrary red point s ∈ P̂i,j as a center of the tree and connect it to each blue
point in the cell to produce a star. We extend the edges of the star to partition the cell into
convex cones, possibly except one cone; see Figure 12. If we have a non-convex cone, then we
divide it into two convex cones by adding its bisector, as shown in Figure 12(right). Then,
we connect all the red points in each cone to one of the blue points on the lines bounding
the cone.

s s

Figure 12 Constructing a planar bichromatic spanning tree in a cell.

I Lemma 3. Let Ti,j be a tree constructed in Stage 2.1 in cell Ĉi,j. Any (red or blue) point
p in the plane can be connected to a point of opposite color of Ti,j without crossing the edges
of Ti,j.

Proof. Let s be the center of Ti,j and recall that its color is red. Consider the cones produced
by the rays between s and the blue points of Ti,j . Let C be the cone containing p and let
a and b be the two blue points defining C. By the way we constructed Ti,j , all the points
in C are red and connected to exactly one of the points a and b, assume, w.l.o.g., a. We
distinguish between two cases with respect to the color of p.
Case 1: p is a blue point. If the edge (s, p) does not cross the edges of Ti,j , then we connect

p to s. Otherwise, we connect p to the endpoint of the first edge (from p) crossing (s, p);
see Figure 13(a).

Case 2: p is a red point. In this case, we connect p to a; see Figure 13(b). J

A.K. Abu-Affash, S. Bhore, P. Carmi, and J. S. B. Mitchell 1:11

s

p

s

p

a

b

(a) (b)

Figure 13 (a) p and s are of different colors. (b) p and s are of the same color.

Stage 2.2

In this stage, we connect between the trees that are constructed in Stage 2.1 to obtain a
planar bichromatic spanning tree of P . Let Ĉi,j and Ĉk,l be two (extended) cells. We say
that Ĉk,l is a side adjacent (or s-adjacent for short) cell of Ĉi,j , if one of the following holds:

k = i+ 1 and l = j, or
k = i and l = j + 1,

and we say that Ĉk,l is a diagonal adjacent (or d-adjacent for short) cell of Ĉi,j , if one of the
following holds:

k = i− 1, l = j + 1, and Ci−1,j and Ci,j+1 have been partitioned, or
k = i− 1, l = j − 1, and Ci,j−1 and Ci−1,j have been partitioned.

We construct a bichromatic spanning tree T ′ of P by traversing the cells starting from an
arbitrary (non-empty) cell (in breadth first search (BFS) manner). That is, we first initiate
a tree T ′ by an arbitrary tree Ti,j that is constructed in a cell Ĉi,j . Then, we connect T ′ to
all the trees constructed in the cells adjacent to Ĉi,j , and proceed from these trees. More
precisely, in each step, we consider a tree Ti,j , which is already connected to T ′, and we
connect T ′ to all of the trees constructed in the cells adjacent to Ĉi,j via Ti,j (if they are
not connected yet to T ′). In the following, we describe how to connect T ′ to all the trees
constructed in the cells adjacent to Ĉi,j .

Let Ĉ be a cell adjacent to Ĉi,j , such that the tree TC constructed in Ĉ is not connected
yet to T ′. Let vtr, vtl, vbr, and vbl be the top-right, top-left, bottom-right, and bottom-left
vertices of the grid incident to Ci,j , respectively; see Figure 14. We distinguish between
two cases.
Case 1: Ĉ is a d-adjacent cell of Ĉi,j . Assume, w.l.o.g., that Ĉ = Ĉi−1,j+1. Then, the

boundaries of Ĉi,j and Ĉi−1,j+1 share a common (diagonal) edge ab; see Figure 14.
Moreover, the convex hull of Ĉi,j ∪ Ĉi−1,j+1 does not contain any point of P \ (P̂i,j ∪
P̂i−1,j+1) (this can be seen clearly in Figure 11). Let p ∈ P̂i,j be the closest point to the
line passing through ab, such that no edge of T ′ crosses the triangle ∆pab. By Claim 4,
such a point p exists. Then, any edge connecting p to any point of Ti−1,j+1 does not cross
any non-empty cell except Ĉi,j and Ĉi−1,j+1. Therefore, by Lemma 3, we can connect p
to Ti−1,j+1 without crossing any other edge of T ′.

Case 2: Ĉ is an s-adjacent cell of Ĉi,j . Assume, w.l.o.g., that Ĉ = Ĉi,j+1. Let p be the
rightmost point in P̂i,j , such that no edge of T ′ crosses the triangle ∆pvbrvtr; see Figure 15.
By Claim 4, such a point p exists. Let H be the convex hull of P̂i,j+1 ∪ {p}. We consider
two sub-cases.

Case 2.1: H ∩ (P \ (P̂i,j ∪ P̂i,j+1)) = ∅ (i.e., H does not contain any point of P that is not
in P̂i,j ∪ P̂i,j+1); see Figure 15. Therefore, by Lemma 3, we can connect Ti,j+1 to Ti,j via
p, without crossing any other edge of T ′.

ESA 2020

1:12 Planar Bichromatic Bottleneck Spanning Trees

Ci,j Ci,j+1

Ci−1,j
Ci−1,j+1

vtr

a

b
p

vtl

vbl vbr

Figure 14 Illustration of Case 1. We connect Ti−1,j+1 to Ti,j via p.

Ci,j
Ci,j+1

Ci−1,j Ci−1,j+1

vtr

vbr

p

Ci+1,j+1Ci+1,j

Ci,j Ci,j+1

Ci−1,j Ci−1,j+1

vtr

vbr

p

Ci+1,j+1Ci+1,j

Figure 15 The convex hull H of P̂i,j+1 ∪ {p} (consisting of green segments) does not contain any
point of P that is not in P̂i,j ∪ P̂i,j+1. We connect Ti,j+1 to Ti,j via p.

Case 2.2: H∩(P \(P̂i,j∪P̂i,j+1)) 6= ∅ (i.e., H contains a point of P that is not in P̂i,j∪P̂i,j+1).
In this case, H contains a point in P̂i−1,j ∪ P̂i−1,j+1 or in P̂i+1,j ∪ P̂i+1,j+1. Assume,
w.l.o.g., that H contains a point in P̂i−1,j ∪ P̂i−1,j+1; see Figure 16. Notice that exactly
one of the sets P̂i−1,j or P̂i−1,j+1 is an empty set, since, in this case, exactly one of the
cells Ci−1,j or Ci−1,j+1 has been partitioned. We further distinguish between two cases.
1. H ∩ P̂i−1,j 6= ∅; see Figure 16(a). In this case we first connect Ti,j+1 to Ti−1,j as

follows. Let q ∈ P̂i−1,j be the closest point to the line passing through the boundary
edge between Ĉi−1,j and Ĉi,j+1. Then, the convex hull of P̂i,j+1∪{q} does not contain
any point of P that is not in P̂i,j+1 ∪ {q}. Therefore, by Lemma 3, we can connect
Ti,j+1 to Ti−1,j via q, without crossing any other edge of T ′.
Moreover, if Ti−1,j is not connected yet to T ′, then we apply Case 2 on Ĉi−1,j to
connect Ti−1,j to Ti,j .

2. H ∩ P̂i−1,j+1 6= ∅. If Ti−1,j+1 is not connected yet to T ′, then we first connect Ti−1,j+1
to Ti,j as follows. Let q ∈ P̂i,j be the closest point to the line passing through the
boundary edge between Ĉi,j and Ĉi−1,j+1; see Figure 16(b). Then, the convex hull of
P̂i−1,j+1 ∪{q} does not contain any point of P that is not in P̂i−1,j+1 ∪{q}. Therefore,
by Lemma 3, we can connect Ti−1,j+1 to Ti,j via q, without crossing any other edge
of T ′.
Moreover, we connect Ti,j+1 to Ti−1,j+1 as follows. Let a be the bottom-right corner
of Ci−1,j+1. Thus, ∆pvtra ∩ P̂i−1,j+1 6= ∅ and ∆pvtra ∩ (P̂i,j \ {p}) = ∅. Let z be the
bottommost point in ∆pvtra ∩ P̂i−1,j+1, such that no edge of T ′ crosses the triangle

A.K. Abu-Affash, S. Bhore, P. Carmi, and J. S. B. Mitchell 1:13

(a) (b)

Ci,j Ci,j+1

Ci−1,j Ci−1,j+1

vtr a

zp = q

Ci,j
Ci,j+1

Ci−1,j Ci−1,j+1

p

q

Figure 16 (a) H contains points from P̂i−1,j . We connect Ti,j+1 to Ti−1,j via q. (b) H contains
a point z from P̂i−1,j+1. We connect Ti−1,j+1 to Ti,j via q and we connect Ti,j+1 to Ti−1,j+1 via z.

∆zvtra; see Figure 16(b). By Claim 4, such a point z exists. Then, the convex hull of
P̂i,j+1 ∪ {z} does not contain any point of P that is not in P̂i,j+1 ∪ {z}. Therefore, by
Lemma 3, we can connect Ti,j+1 to Ti−1,j+1 via z, without crossing any other edge of
T ′. (Notice that the two edges added in this case do not cross each other.)

Correctness Proof

Recall that T is a bichromatic spanning tree of P of minimum bottleneck λ. In this section,
we prove that T ′ is a planar bichromatic spanning tree of P of bottleneck at most 8

√
2λ.

Notice that every point p ∈ P is contained in a bichromatic cell Ĉi,j and hence, it is connected
to Ti,j , the tree constructed in Stage 2.1 in Ĉi,j . Therefore, to show that T ′ is a bichromatic
spanning tree of P , it is sufficient to show that each tree Ti,j is connected to T ′.

B Claim 4. Let T ′ be the tree constructed at some step during Stage 2.2 and assume that
T ′ is planar. Let Ti,j be a tree constructed in Ĉi,j and assume that Ti,j is already connected
to T ′. Let Ĉ be an adjacent cell of Ĉi,j that shares an edge ab with Ĉi,j and let TC be the
tree constructed in Ĉ, and assume that TC is not connected yet to T ′. Then, there exists a
point p in Ĉi,j , such that no edge of T ′ crosses the triangle ∆pab.

Proof. Assume, w.l.o.g., that Ĉ = Ĉi,j+1, a = vtr, and b = vbr; see Figure 17. The following
procedure shows the existence of such a point p. We sweep leftwards in Ĉi,j with a vertical
line l, starting from vtrvbr until we meet a point, or an edge of T ′. If we first meet a point,
then this point satisfies the claim. Otherwise, we first meet an edge (p′, q′) of T ′; see Figure 17.
This could only be when exactly one of the endpoints p′ or q′ is outside Ĉi,j . Let Cl and Cr

be the two sub-cells obtained by partitioning Ĉi,j with the line that goes through the points
p′ and q′. Let Cr be the sub-cell containing vtr and vbr. We keep sweeping leftwards only
inside Cr. As before, if we first meet a point, then this point satisfies the claim. Otherwise,
we meet an edge (p′′, q′′) of T ′ before we meet a point. Then, one of the endpoints p′′ or q′′
is outside Ĉi,j . Let Crl and Crr be the two sub-cells obtained by partitioning Cr with the
line that goes through the points p′′ and q′′. Let Crr be the sub-cell containing vtr and vbr.
We keep sweeping leftwards only inside Crr, until we meet a point, and this point satisfies
the claim. Notice that, in the last sweep we meet a point before we meet an edge of T ′. This
follows from the planarity of T ′. C

ESA 2020

1:14 Planar Bichromatic Bottleneck Spanning Trees

Ci,j

Ci,j+1

Ci−1,j Ci−1,j+1

vtr

vbr

Ci+1,j+1Ci+1,j

p′

q′

q′′

p′′
p

Cl

Crl

Crr

Figure 17 Illustration of the proof of Claim 4.

I Lemma 5. Let Ti,j be a tree constructed in Ĉi,j in Stage 2.1 and assume that Ti,j is
already connected to T ′. Then, at the end of Stage 2.2, all the trees that are constructed in
the cells adjacent to Ĉi,j are connected to T ′ as well.

Proof. Let Ĉ be an adjacent cell of Ĉi,j . We distinguish between two cases.
Case 1: Ĉ is a d-adjacent cell of Ĉi,j . Assume, w.l.o.g., that Ĉ = Ĉi−1,j+1. Then, in

Stage 2.2, Case 1, we connect between Ti,j and Ti−1,j+1.
Case 2: Ĉ is an s-adjacent cell of Ĉi,j . Assume, w.l.o.g., that Ĉ = Ĉi,j+1. As described in

Stage 2.2, we select a point p ∈ Ĉi,j and compute the convex hull H of {p}∪ P̂i,j+1. Then,
we consider two cases. In Case 2.1, when H does not contain any point of P \(P̂i,j∪P̂i,j+1),
we connect Ti,j directly to Ti,j+1 (via p). And, in Case 2.2, when H contains a point of
P \ (P̂i,j ∪ P̂i,j+1), we connect Ti,j+1 to Ti,j via the tree Ti−1,j+1, in case that H contains
a point of P̂i−1,j+1 (or via the tree Ti+1,j+1, in case that H contains a point of P̂i+1,j+1).
In the case that H contains a point of P̂i−1,j (symmetrically, H contains a point of P̂i+1,j),
we connect Ti,j+1 to Ti,j via the tree Ti−1,j . If Ti−1,j is already connected to Ti,j , then
we are done. Otherwise, since Ĉi−1,j is an s-adjacent cell of Ĉi,j , we will try to connect
Ti−1,j to Ti,j in the next iteration in Stage 2.2 (by applying Case 2 once again). In the
next iteration, either we connect Ti−1,j to Ti,j in one of the cases described above or we
end up by connecting Ti,j−1 to Ti−1,j . In the latter case, if Ti,j−1 is already connected to
Ti,j , then we are done. otherwise, Ti+1,j is already connected to Ti,j . In this case, we
connect Ti,j−1 to Ti,j either directly or via Ti+1,j , and we are done. J

I Lemma 6. Let p and q be two points of P , such that p and q are of different colors,
|pq| ≤ λ and p belongs to T ′. Then, q also belongs to T ′.

Proof. Since |pq| ≤ λ, either p and q are in the same cell or they are in adjacent cells. If
they are in the same cell Ĉi,j , then, after Stage 2.1, they are connected in Ti,j , and the
lemma holds. Otherwise, assume, w.l.o.g., that p ∈ Ĉi,j and q ∈ Ĉ, where Ĉ is adjacent to
Ĉi,j . Then, after Stage 2.1, p belongs to Ti,j and q belongs to TC , the tree constructed in Ĉ.
Since Ti,j is part of T ′ and Ĉ is adjacent to Ĉi,j , by Lemma 5, Ti,j is connected to TC and
therefore q belongs to T ′. J

I Lemma 7. Let Ti,j be a tree constructed in Ĉi,j. Then, Ti,j is connected to T ′.

Proof. Assume by contradiction that Ti,j is not connected to T ′. Let a be a point from T ′

and let b be a point from Ti,j . Since T is a bottleneck bichromatic spanning tree of P , there
is a path Π between a and b in T . Let p be the last point (from a) on Π that belongs to T ′,
i.e., no point of T ′ appears on the sub-path of Π between p and b. Since b does not belong

A.K. Abu-Affash, S. Bhore, P. Carmi, and J. S. B. Mitchell 1:15

to T ′, such a point p exists. Let q be the point between p and b on Π that is connected to
p. By the selection of p, q does not belong to T ′. Since the bottleneck of T is λ, we have
|pq| ≤ λ. Therefore, by Lemma 6, p and q are connected in T ′, which contradicts that q does
not belong to T ′. J

I Lemma 8. T ′ is planar.

Proof. Each Ti,j is planar. We start with T ′ = Ti,j , where Ti,j is an arbitrary tree constructed
in Ĉi,j , and in each step, we extend T ′ by connecting it to the trees corresponding to the
cells adjacent to the current cell. We connect T ′ to a “new” tree Ti,j by picking a point p in
T ′, such that the convex hull H of {p} ∪ P̂i,j is empty of any other points and no edge of
T ′ crosses H. In Claim 4, we showed that such a point p always exists. Thus, connecting p
to any point of Ti,j will not cross any other edge of T ′ nor of any other tree. Moreover, in
Lemma 3, we show that we can always connect p to Ti,j without crossing any of the edges of
Ti,j . Therefore, connecting T ′ to Ti,j does not produce any crossing. J

I Lemma 9. The bottleneck of T ′ is at most 8
√

2λ.

Proof. Consider Figure 11. After Stage 1, each extended cell is contained in a square of size
5λ × 5λ, and hence the bottleneck of each tree constructed in Stage 2.1 is at most 5

√
2λ.

Moreover, every two d-adjacent cells are contained in a square of size 8λ× 8λ and every two
s-adjacent cells are contained in a square of size 8λ× 5λ. Thus, each edge added in Stage 2.2
is of length at most 8

√
2λ. Therefore, each edge in T ′ is of length at most 8

√
2λ. J

The algorithm consists of two main stages, and each one of them can be implemented
in polynomial time. Therefore, the total running time of the algorithm is polynomial. The
following theorem summarizes the result of this section.

I Theorem 10. Let P be a set of n red and blue points in the plane. One can compute in
polynomial time a planar bichromatic spanning tree of P of bottleneck at most 8

√
2 times the

bottleneck of an optimal bichromatic spanning tree of P .

References
1 M. Abellanas, J. Garcia-Lopez, G. Hernández-Peñalver, M. Noy, and P. A. Ramos. Bipartite

embeddings of trees in the plane. Discr. Appl. Math., 93(2-3):141–148, 1999.
2 A. K. Abu-Affash, A. Biniaz, P. Carmi, A. Maheshwari, and M. Smid. Approximating the

bottleneck plane perfect matching of a point set. Comput. Geom., 48(9):718–731, 2015.
3 A. K. Abu-Affash, P. Carmi, M. J. Katz, and Y. Trabelsi. Bottleneck non-crossing matching

in the plane. Comput. Geom., 47(3):447–457, 2014.
4 P. K. Agarwal. Partitioning arrangements of lines II: Applications. Discr. Comput. Geom.,

5(1):533–573, 1990.
5 P. K. Agarwal, H. Edelsbrunner, and O. Schwarzkopf. Euclidean minimum spanning trees and

bichromatic closest pairs. Discr. Comput. Geom., 6(1):407–422, 1991.
6 O. Aichholzer, S. Cabello, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl, C. Huemer,

F. Hurtado, and D. R. Wood. Edge-removal and non-crossing configurations in geometric
graphs. In EuroCG, pages 119–122, 2008.

7 N. Alon, S. Rajagopalan, and S. Suri. Long non-crossing configurations in the plane. In SoCG,
pages 257–263, 1993.

8 G. Aloupis, J. Cardinal, S. Collette, E. D. Demaine, M. L. Demaine, M. Dulieu, R. Fabila-
Monroy, V. Hart, F. Hurtado, S. Langerman, M. Saumell, C. Seara, and P. Taslakian. Matching
points with things. In LATIN, volume 6034 of LNCS, pages 456–467, 2010.

ESA 2020

1:16 Planar Bichromatic Bottleneck Spanning Trees

9 S. Arora and K. L. Chang. Approximation schemes for degree-restricted MST and red–blue
separation problems. Algorithmica, 40(3):189–210, 2004.

10 M. J. Atallah and D. Z. Chen. On connecting red and blue rectilinear polygonal obstacles
with nonintersecting monotone rectilinear paths. Int. J. Comput. Geom. Appl., 11(4):373–400,
2001.

11 A. Biniaz, P. Bose, K. Crosbie, J.-L. De Carufel, D. Eppstein, A. Maheshwari, and M. H. M.
Smid. Maximum plane trees in multipartite geometric graphs. Algorithmica, 81(4):1512–1534,
2019.

12 A. Biniaz, P. Bose, D. Eppstein, A. Maheshwari, P. Morin, and M. H. M. Smid. Spanning
trees in multipartite geometric graphs. Algorithmica, 80(11):3177–3191, 2018.

13 A. Biniaz, A. Maheshwari, and M. Smid. Bottleneck bichromatic plane matching of points. In
CCCG, 2014.

14 J.-D. Boissonnat, J. Czyzowicz, O. Devillers, J. Urrutia, and M. Yvinec. Computing largest
circles separating two sets of segments. Int. J. Comput. Geom. Appl., 10(1):41–53, 2000.

15 M. G. Borgelt, M. Van Kreveld, M. Löffler, J. Luo, D. Merrick, R. I. Silveira, and M. Vahedi.
Planar bichromatic minimum spanning trees. J. Discrete Algorithms, 7(4):469–478, 2009.

16 H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica,
10(1):41–51, 1990. doi:10.1007/BF02122694.

17 E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono, S. Langerman, H. Meijer, M. H. Overmars,
and S. Whitesides. Separating point sets in polygonal environments. Int. J. Comput. Geom.
Appl., 15(4):403–419, 2005.

18 A. Dumitrescu and R. Kaye. Matching colored points in the plane: some new results. Comput.
Geom., 19(1):69–85, 2001.

19 A. Dumitrescu and J. Pach. Partitioning colored point sets into monochromatic parts. Int. J.
Comput. Geom. Appl., 12(05):401–412, 2002.

20 H. Everett, J.-M. Robert, and M. J. van Kreveld. An optimal algorithm for the (<= k)-levels,
with applications to separation and transversal problems. Int. J. Comput. Geom. Appl.,
6(3):247–261, 1996.

21 A. Kaneko and M. Kano. Discrete geometry on red and blue points in the plane – a survey.
Discr. Comput. Geom., 25:551–570, 2003.

22 D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput., 11(2):329–343, 1982.
23 H. G. Mairson and J. Stolfi. Reporting and counting intersections between two sets of line

segments. In Theoretical Foundations of Computer Graphics and CAD, volume 40 of NATO
ASI Series, pages 307–325, 1988.

https://doi.org/10.1007/BF02122694

Parallel Batch-Dynamic Trees via Change
Propagation
Umut A. Acar
Carnegie Mellon University, Pittsburgh, PA, USA
umut@cs.cmu.edu

Daniel Anderson
Carnegie Mellon University, Pittsburgh, PA, USA
dlanders@cs.cmu.edu

Guy E. Blelloch
Carnegie Mellon University, Pittsburgh, PA, USA
guyb@cs.cmu.edu

Laxman Dhulipala
Carnegie Mellon University, Pittsburgh, PA, USA
ldhulipa@cs.cmu.edu

Sam Westrick
Carnegie Mellon University, Pittsburgh, PA, USA
swestric@cs.cmu.edu

Abstract
The dynamic trees problem is to maintain a forest subject to edge insertions and deletions while
facilitating queries such as connectivity, path weights, and subtree weights. Dynamic trees are a
fundamental building block of a large number of graph algorithms. Although traditionally studied
in the single-update setting, dynamic algorithms capable of supporting batches of updates are
increasingly relevant today due to the emergence of rapidly evolving dynamic datasets. Since
processing updates on a single processor is often unrealistic for large batches of updates, designing
parallel batch-dynamic algorithms that achieve provably low span is important for many applications.

In this work, we design the first work-efficient parallel batch-dynamic algorithm for dynamic
trees that is capable of supporting both path queries and subtree queries, as well as a variety of
nonlocal queries. Previous work-efficient dynamic trees of Tseng et al. were only capable of handling
subtree queries [ALENEX’19, (2019), pp. 92–106]. To achieve this, we propose a framework for
algorithmically dynamizing static round-synchronous algorithms to obtain parallel batch-dynamic
algorithms. In our framework, the algorithm designer can apply the technique to any suitably
defined static algorithm. We then obtain theoretical guarantees for algorithms in our framework by
defining the notion of a computation distance between two executions of the underlying algorithm.

Our dynamic trees algorithm is obtained by applying our dynamization framework to the parallel
tree contraction algorithm of Miller and Reif [FOCS’85, (1985), pp. 478–489], and then performing
a novel analysis of the computation distance of this algorithm under batch updates. We show that k

updates can be performed in O(k log(1 + n/k)) work in expectation, which matches the algorithm of
Tseng et al. while providing support for a substantially larger number of queries and applications.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Theory of
computation → Shared memory algorithms

Keywords and phrases Dynamic trees, Graph algorithms, Parallel algorithms, Dynamic algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.2

Related Version A full version is available at [2], https://arxiv.org/abs/2002.05129.

Funding This work was supported by NSF grants CCF-1901381, CCF-1910030 and CCF-1919223.

Acknowledgements The authors would like to thank Ticha Sethapakdi for helping with the figures.

© Umut A. Acar, Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, and Sam Westrick;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 2; pp. 2:1–2:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:umut@cs.cmu.edu
mailto:dlanders@cs.cmu.edu
mailto:guyb@cs.cmu.edu
mailto:ldhulipa@cs.cmu.edu
mailto:swestric@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.2
https://arxiv.org/abs/2002.05129
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:1

1 Introduction

The dynamic trees problem, first posed by Sleator and Tarjan [27] is to maintain a forest of
trees subject to the insertion and deletion of edges, also known as links and cuts. Dynamic
trees are used as a building block in a multitude of applications, including maximum flows [27],
dynamic connectivity and minimum spanning trees [11], and minimum cuts [19], making
them a fruitful line of work with a rich history. There are a number of established sequential
dynamic tree algorithms, including link-cut trees [27], top trees [28], Euler-tour trees [15],
and rake-compress trees [5], all of which achieve O(log(n)) time per operation.

Since they already perform such little work, there is often little to gain by processing
single updates in parallel, hence parallel applications often process batches of updates. We
are therefore concerned with the design of parallel batch-dynamic algorithms. Parallel batch-
dynamic algorithms have been developed for several graph problems including incremental
connectivity [26], Euler-Tour trees [29], and for fully dynamic connectivity [1]. Parallel
batch-dynamic algorithms have also been recently studied in the MPC model [16, 10].

By applying batches it is often possible to obtain significant parallelism while preserving
work efficiency. However, designing and implementing dynamic algorithms is difficult, and
arguably even more so in the parallel setting.

The goals of this paper are twofold. First and foremost, we are interested in designing a
parallel batch-dynamic algorithm for dynamic trees that supports a wide range of applications.
On another level, based on the observation that parallel dynamic algorithms are usually quite
complex and difficult to design, we are also interested in easing the design process of parallel
batch-dynamic algorithms as a whole. To this end, we propose a framework for algorithmically
dynamizing static parallel algorithms to obtain efficient parallel batch-dynamic algorithms.
We then define a cost model that captures the computation distance between two executions
of the static algorithm which allows us to bound the runtime of dynamic updates. There are
several benefits of using algorithmic dynamization, some more theoretical some practical:
1. Proving correctness of a batch dynamized algorithm relies simply on the correctness of

the parallel algorithm, which presumably has already been proven.
2. It is easy to implement different classes of updates. For example, for dynamic trees, in

addition to links and cuts, it is very easy to update edge weights or vertex weights for
supporting queries such as path length, subtree sums, or weighted diameter. One need
only change the values of the weights and propagate.

3. Due to the simplicity of our approach, we believe it is likely to make it easier to program
parallel batch-dynamic algorithms, and also result in practical implementations.

Using our algorithmic dynamization framework, we obtain a parallel batch-dynamic algorithm
for rake-compress trees that generalizes the sequential data structure work efficiently without
loss of generality. Specifically, our main contribution is the following theorem.

I Theorem 1. The following operations can be supported on a bounded-degree dynamic tree
of size n using the CRCW PRAM:

Batch insertions and deletions of k edges in O(k log(1 + n/k)) work in expectation and
O(log(n) log∗(n)) span w.h.p.
Batch connectivity, subtree sum, and path sum queries for batches of size k in O(k log(1 +
n/k)) work in expectation and O(log(n)) span w.h.p.
Independent parallel connectivity, subtree sum, path sum, diameter, lowest common
ancestor, center, and median queries in O(logn) time per query w.h.p.

Arbitrary-degree trees can be handled by transforming them into bounded degree trees using
known techniques. We compare the capabilities of parallel rake-compress trees with other
dynamic tree algorithms in Table 1. In summary, they support more operations than existing

ESA 2020

2:2 Parallel Batch-Dynamic Trees via Change Propagation

Table 1 The known capabilities of various dynamic tree algorithms. Nonlocal queries are
operations such as computing centers and medians. Our work extends rake-compress trees [5], which
were previously only sequential, to also support parallel operations.

Parallel Operations Queries Supported
Updates Queries Path Subtree Nonlocal

Link-cut trees [27]
(Parallel) Euler-tour trees [15, 29]
Top trees [28]
Rake-compress trees [5]
Parallel rake-compress trees (this paper)

parallel data structures, and support the same broad set of operations as existing non-parallel
data structures. Theorem 1 is obtained by dynamizing the parallel tree contraction algorithm
of Miller and Reif [20] and performing a novel analysis of the computation distance.

Standalone algorithms for dynamic parallel tree contraction have previously been proposed,
but are inefficient and not fully general. In particular, Reif and Tate [25] give an algorithm for
parallel dynamic tree contraction that can process a batch of k leaf insertions or deletions in
O(k log(n)) work. Unlike our algorithm, theirs is not work efficient, as it performs Ω(n log(n))
work for batches of size Ω(n), and it can only modify the tree at the leaves.

Lastly, as some evidence of the applicability of algorithmic dynamization, in the full
version of this paper [2], we demonstrate two other applications of the technique. Specifically,
we consider map-reduce based computations, and dynamic sequences with splitting and
joining. To summarize, the main contributions of this paper are:
1. An algorithmic framework for dynamizing round-synchronous parallel algorithms, and a

cost model for analyzing the performance of algorithms resulting from the framework
2. An analysis of the computation distance of Miller and Reif’s tree contraction algorithm

under batch edge insertions and deletions, which shows that it can be efficiently dynamized
3. The first work-efficient parallel algorithm for batch-dynamic trees that supports subtree

queries, path queries, and nonlocal queries such as centers and medians.

Technical overview

A round-synchronous algorithm consists of a sequence of rounds, where a round executes in
parallel across a set of processes, and each process runs a sequencial round computation reading
and writing from shared memory and doing local computation. The round synchronous model
is similar to Valiant’s well-known Bulk Synchronous Parallel (BSP) model [30], except that
communication is done via shared memory. Algorithmic dynamization works by running the
round-synchronous algorithm while tracking all write-read dependences – i.e., a dependence
from a write in one round to a read in a later round. Then, whenever a batch of changes
are made to the input, change propagation propagates the changes through the original
computation, only rerunning round computations if the values they read have changed. We
note that depending on the algorithm, changes to the input could drastically change the
underlying computation, introducing new dependencies, or invalidating old ones. Part of the
novelty of this paper is bounding the work and span of this update process.

The idea of change propagation has been applied in the sequential setting and used to
generate efficient dynamic algorithms [3, 4]. The general idea of parallel change propagation
has also been used in various practical systems [9, 14, 7, 23, 24] but none of them have been
analyzed theoretically.

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:3

To capture the cost of running the change propagation algorithm for a particular parallel
algorithm and class of updates we define a computational distance between two computations,
which corresponds to the total work of the round computations that differ in the two
computations. The input configuration for a computation consists of the input I, stored in
shared memory, and an initial set of processes P . We show the following bounds, where the
work is the sum of the time of all round computations, and span is the sum over rounds of
the maximum time of any round computation in that round.

I Theorem 2. Given a round-synchronous algorithm A that with input configuration (I, P)
does W work in R rounds and S span, then, on the CRCW PRAM,
1. the initial run of the algorithm with tracking takes O(W) work in expectation and

O(S +R logW) time w.h.p.,
2. running change propagation from input configuration (I, P) to configuration (I ′, P ′) takes

O(W∆ + R′) work in expectation and O(S′ + R′ logW ′) time w.h.p., where W∆ is the
computation distance between the two configurations, and S′,R′,W ′ are the maximum
span, rounds and work for the two configurations.

We show that the work can be reduced to O(W∆), and that the logW and logW ′ terms can
be reduced to log∗W when the round-synchronous algorithms have certain restrictions that
are satisfied by all of our example algorithms, including our main result on dynamic trees.
We also present similar results in other parallel models of computation.

With our dynamization framework and cost model, we develop an algorithm for dynamic
trees that support a broad set of queries including subtree sums, path queries, lowest common
ancestors, diameter, center, and median queries. This significantly improves over previous
work on batch-dynamic Euler tour trees [29], which only support subtree sums.

Our dynamic trees algorithm is a parallel version of the sequential rake-compress tree (RC
tree) data structure. Previous work showed that in the sequential setting, one can generate
an RC tree (or forest) as a byproduct of Miller and Reif’s tree contraction process, which
supports the wide collection of queries mentioned above, all in logarithmic time, w.h.p. [5].
Our approach generalizes this sequential algorithm to allow for batches of edge insertions or
deletions, work efficiently in parallel. The challenge is in analyzing the computation distance
incurred by batch updates in the parallel batch-dynamic setting. In Section 4 we do just
that, and obtain the following result:

I Theorem 3. In the round synchronous model, Miller and Reif’s tree contraction algorithm
does O(n) work in expectation and has O(logn) rounds and span w.h.p. Furthermore, given
forests T with n vertices, and T ′ with k modifications to the edge list of T , the computation
distance of the algorithm on the two inputs is O(k log(1 + n/k)) in expectation.

The bounds can then be plugged into Theorem 2 to show that a set of k edges can be inserted
or deleted in a batch in O(k log(1 + n/k)) work in expectation and O(log2 n) span w.h.p.
We show that the span can be improved to O(logn log∗ n) w.h.p. on the CRCW PRAM
model. The last step in obtaining our dynamic trees framework is to plug the dynamized
tree contraction algorithm into the RC trees framework [5] (see Section 5).

2 Preliminaries

2.1 Parallel Models
The parallel random access machine (PRAM) model is a classic parallel model with p

processors that work in lock-step, connected by a parallel shared-memory [17]. In this paper
we primarily consider the Concurrent-Read Concurrent-Write model (CRCW PRAM), where

ESA 2020

2:4 Parallel Batch-Dynamic Trees via Change Propagation

memory locations are allowed to be concurrently read and concurrently written to. If multiple
writers write to the same location concurrently, we assume that an arbitrary writer wins.
We analyze algorithms on the CRCW PRAM in terms of their work and span. The span (or
parallel time) of an algorithm is the minimum running time achievable when arbitrarily many
processors are available. The work is the product of the span and the number of processors.

The threaded random access machine (TRAM) is closely related to the PRAM, but more
closely models current machines and programming paradigms [8]. In the binary forking
TRAM (binary forking model for short), a process can fork another process to run in parallel,
and can join to wait for all forked calls to complete. In the binary forking model, the work
of an algorithm is the total number of instructions it performs, and the span is the longest
chain of sequentially dependent instructions.

2.2 Parallel Primitives
The following parallel procedures are used throughout the paper. Scan takes as input an
array A of length n, an associative binary operator ⊕, and an identity element ⊥ such that
⊥⊕ x = x for any x, and returns the array (⊥,⊥⊕A[0],⊥⊕A[0]⊕A[1], . . . ,⊥⊕n−2

i=0 A[i])
as well as the overall sum, ⊥⊕n−1

i=0 A[i]. Scan takes O(n) work and O(logn) span (assuming
⊕ takes O(1) work) [17] on the CRCW PRAM, and in the binary forking model.

Filter takes an array A and a predicate f and returns a new array containing a ∈ A for
which f(a) is true, in the same order as in A. Filter can be done in O(n) work and O(logn)
span on the CRCW PRAM (assuming f takes O(1) work) [17], and in the binary forking
model. The Approximate Compaction problem is similar to a Filter. It takes an array A and
a predicate f and returns a new array containing a ∈ A for which f(a) is true where some
of the entries in the returned array can have a null value. The total size of the returned
array is at most a constant factor larger than the number of non-null elements. Gil et al. [12]
describe a parallel approximate compaction algorithm that uses linear space and achieves
O(n) work and O(log∗(n)) span w.h.p. on the CRCW PRAM.

A semisort takes an input array of elements, where each element has an associated key
and reorders the elements so that elements with equal keys are contiguous. The purpose is
to collect equal keys together, rather than sort them. Semisorting a sequence of length n can
be performed in O(n) expected work and O(logn) depth w.h.p. on the CRCW PRAM [13]
and in the binary forking model [8], assuming access to a uniformly random hash function
mapping keys to integers in the range [1, nO(1)].

3 Dynamization Framework

3.1 Round-synchronous algorithms
In this framework, we consider dynamizing algorithms that are round synchronous. The
round synchronous framework encompasses a range of classic BSP [30] and PRAM algorithms.
A round-synchronous algorithm consists of M processes, with process IDs bounded by
O(M). The algorithm performs sequential rounds in which each active process executes, in
parallel, a round computation. At the end of a round, any processes can decide to retire,
in which case they will no longer execute in any future round. The algorithm terminates
once there are no remaining active processes – i.e., they have all retired. Given a fixed
input, round-synchronous algorithms must perform deterministically. Note that this does not
preclude us from implementing randomized algorithms (indeed, our dynamic trees algorithm
is randomized), it just requires that we provide the source of randomness as an input to

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:5

the algorithm, so that its behavior is identical if re-executed. An algorithm in the round
synchronous framework is defined in terms of a procedure ComputeRound(r, p), which
performs the computation of process p in round r. The initial run of a round-synchronous
algorithm must specify the set P of initial process IDs.

Memory model

Processes in a round-synchronous algorithm may read and write to local memory that is not
persisted across rounds. They also have access to a shared memory. The input to a round-
synchronous algorithm is the initial contents of the shared memory. Round computations
can read and write to shared memory with the condition that writes do not become visible
until the end of the round. Reads can only access shared locations that have been written to,
and shared locations can only be written to once, hence concurrent writes are not permitted.
The contents of the shared memory at termination is considered to be the algorithm’s output.
Change propagation is driven by tracking all reads and writes to shared memory.

Pseudocode

We describe round-synchronous algorithms using the following primitives:
1. The read instruction reads the given shared memory locations and returns their values,
2. The write instruction writes the given value to the given shared memory location.
3. Processes may retire by invoking the retire process instruction.

Measures

The following measures will help us to analyse the efficiency of round-synchronous algorithms.
For convenience, we define the input configuration of a round-synchronous algorithm as the
pair (I, P), where I is the input to the algorithm (i.e. the initial state of shared memory)
and P is the set of initial process IDs.

I Definition 4 (Initial work, Round complexity, and Span). The initial work of a round-
synchronous algorithm on some input configuration (I, P) is the sum of the work performed
by all of the computations of each processes over all rounds when given that input. Its round
complexity is the number of rounds that it performs, and its span is the sum of the maximum
costs per round of the computations performed by each process.

3.2 Change propagation
Given a round-synchronous algorithm, a dynamic update consists of a change to the input
configuration, i.e. changing the contents of shared memory, and/or adding or deleting
processes. The initial run and change propagation algorithms maintain the following data:
1. Rr,p, the memory locations read by process p in round r
2. Wr,p, the memory locations written by process p in round r
3. Sm, the set of round, process pairs that read memory location m
4. Xr,p, which is true if process p retired in round r
Algorithm 1 depicts the procedure for executing the initial run of a round-synchronous
algorithm before making any dynamic updates.

To help formalize change propagation, we define the notion of an affected computation.
The task of change propagation is to identify the affected computations and rerun them.

ESA 2020

2:6 Parallel Batch-Dynamic Trees via Change Propagation

Algorithm 1 Initial run.

1: procedure Run(P)
2: local r ← 0
3: while P 6= ∅ do
4: for each process p ∈ P do in parallel
5: ComputeRound(r, p)
6: Rr,p ← {memory locations read by p in round r}
7: Wr,p ← {memory locations written to by p in round r}
8: Xr,p ← (true if p retired in round r else false)
9: for each m ∈ ∪p∈P Rr,p do in parallel
10: Sm ← Sm ∪ {(r, p) | m ∈ Rr,p ∧ p ∈ P}
11: P ← P \ {p ∈ P : Xr,p = true}
12: r ← r + 1

I Definition 5 (Affected computation). Given a round-synchronous algorithm A and two
input configurations (I, P) and (I ′, P ′), the affected computations are the round and process
pairs (r, p) such that either:
1. process p runs in round r on one input configuration but not the other
2. process p runs in round r on both input configurations, but reads a variable from shared

memory that has a different value in one configuration than the other
The change propagation algorithm is depicted in Algorithm 2. It works by maintaining the
affected computations as three disjoint sets, P , the set of processes that read a memory
location that was rewritten, L, processes that outlived their previous self, i.e. that retired
the last time they ran, but did not retire when re-executed, and D, processes that retired
earlier than their previous self. First, at each round, the algorithm determines the set of
computations that should become affected because of shared memory locations that were
rewritten in the previous round (Lines 12–14). These are used to determine P , the set of
affected computations to rerun this round (Line 15). To ensure correctness, the algorithm
must then reset the reads that were performed by the computations that are no longer alive,
or that will be reran, since the set of locations that they read may differ from last time
(Lines 18–19). Lines 22–26 perform the re-execution of all processes that read a changed
memory location, or that lived longer (did not retire) than in the previous configuration.
The algorithm then subscribes the reads of these computations to the memory locations that
they read (Lines 28–29). Finally, on Lines 32–36, the algorithm updates the set of changed
memory locations (U), the set of computations that lived longer than their previous self (L)
and the set of computations that retired earlier then their previous self (D).

3.3 Correctness
In this section, we sketch a proof of correctness of the change propagation algorithm
(Algorithm 2). Intuitively, correctness is assured because of the write-once condition on
global shared memory, which ensures that computations can not have their output overwritten,
and hence do not need to be re-executed unless data that they depend on is modified.

I Lemma 6. Given a dynamic update, re-executing only the affected computations for each
round will result in the same output as re-executing all computations on the new input.

Proof. Since by definition they read the same values, computations that are not affected,
if re-executed, would produce the same output as they did the first time. Since all shared
memory locations can only be written to once, values written by processes that are not

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:7

Algorithm 2 Change propagation.

1: // U = sequence of memory locations that have been modified
2: // P + = sequence of new process IDs to create
3: // P− = sequence of process IDs to remove
4: procedure Propagate(U , P +, P−)
5: local D ← P− // Processes that died earlier than before
6: local L← P + // Processes that lived longer than before
7: local A ← ∅ // Affected computations at each round
8: local r ← 0
9: while U 6= ∅ ∨D 6= ∅ ∨ L 6= ∅ ∨ ∃r′ ≥ r : (Ar′ 6= ∅) do
10: // Determine the computations that become affected
11: // due to the newly updated memory locations U

12: local A′ ← ∪m∈U Sm

13: for each r′ ∈ ∪(r′,p)∈A′{r′} do in parallel
14: Ar′ ← Ar′ ∪ {p | (r′, p) ∈ A′}
15: local P ← Ar \D // Processes to rerun
16: // Forget the prior reads of all processes that are
17: // now dead or will be rerun on this round
18: for each m ∈ ∪p∈P∪DRr,p do in parallel
19: Sm ← Sm \ {(r, p) | m ∈ Rr,p ∧ p ∈ P ∪D}
20: local Xprev = {p 7→ Xr,p | p ∈ P}
21: // (Re)run all changed or newly live processes
22: for each process p in P ∪ L do in parallel
23: ComputeRound(r, p)
24: Rr,p ← {memory locations read by p in round r}
25: Wr,p ← {memory locations written to by p in round r}
26: Xr,p ← (true if p retired in round r else false)
27: // Remember the reads performed by processes on this round
28: for each m ∈ ∪p∈P∪LRr,p do in parallel
29: Sm ← Sm ∪ {(r, p) | m ∈ Rr,p ∧ p ∈ P ∪ L}
30: // Update the sets of changed memory locations,
31: // newly live processes, and newly dead processes
32: U ← ∪p∈(P∪L)Wr,p

33: L′ ← {p ∈ P | Xprev
p = true ∧Xr,p = false}

34: L← L ∪ L′ \ {p ∈ L | Xr,p = true}
35: D′ ← {p ∈ P | Xprev

p = false ∧Xr,p = true}
36: D ← D ∪D′ \ {p ∈ D | Xprev

p = true}
37: r ← r + 1

re-executed can not have been overwritten, and hence it is safe to not re-execute them, as
their output is preserved. Therefore re-executing only the affected computations will produce
the same output as re-executing all computations. J

I Theorem 7 (Consistency). Given a dynamic update, change propagation correctly updates
the output of the algorithm.

Proof sketch. Follows from Lemma 6 and the fact that all reads and writes to global shared
memory are tracked in Algorithm 2, and since global shared memory is the only method by
which processes communicate, all affected computations are identified. J

ESA 2020

2:8 Parallel Batch-Dynamic Trees via Change Propagation

3.4 Cost analysis
To analyze the work of change propagation, we need to formalize a notion of computation
distance. Intuitively, the computation distance between two computations is the work
performed by one and not the other. We then show that change propagation can efficiently
re-execute the affected computations in work proportional to the computation distance.

I Definition 8 (Computation distance). Given a round-synchronous algorithm A and two
input configurations, the computation distance W∆ between them is the sum of the work
performed by all of the affected computations with respect to both input configurations.

I Theorem 9. Given a round-synchronous algorithm A with input configuration (I, P) that
does W work in R rounds and S span, then
1. the initial run of the algorithm with tracking takes O(W) work in expectation and

O(S +R · log(W)) span w.h.p.,
2. running change propagation on a dynamic update to the input configuration (I ′, P ′) takes

O(W∆ +R′) work in expectation and O(S′ +R′ log(W ′)) span w.h.p., where S′, R′,W ′
are the maximum span, rounds, and work of the algorithm on the two input configurations,

These bounds hold on the CRCW PRAM and in the binary forking TRAM model.

Proof. We begin by analyzing the initial run. By definition, all executions of the round
computations, ComputeRound, take O(W) work and O(S) span in total, with at most
an additional O(log(M)) = O(log(W)) span to perform the parallel for loop. We will show
that all additional work can be charged to the round computations, and that at most an
additional O(log(W)) span overhead is incurred.

We observe that Rr,p,Wr,p and Xr,p are at most the size of the work performed by the
corresponding computations, hence the cost of Lines 6 – 8 can be charged to the computation.
The reader sets Sm can be implemented as dynamic arrays with lazy deletion (this will be
discussed during change propagation). To append new elements to Sm (Line 10), we can
use a semisort performing linear work in expectation to first bucket the shared memory
locations in ∪p∈PRr,p, whose work can be charged to the corresponding computations that
performed the reads. This adds an additional O(log(W)) span w.h.p. since the number of
reads is no more than W in total. Finally, removing retired computations from P (Line 11)
requires a compaction operation. Since compaction takes linear work, it can be charged to
the execution of the corresponding processes. The span of compaction is at most O(log(W)).

Summing up, we showed that all additional work can be charged to the round computations,
and the algorithm incurs at most O(log(W)) additional span per round w.h.p. Hence the
cost of the initial run is O(W) work in expectation and O(S +R · log(W)) span w.h.p.

We now analyze the change propagation procedure (Algorithm 2). The core of the work
is the re-execution of the affected readers on Line 23, which, by definition takes O(W∆) work,
and O(S′) span, with at most O(log(W ′)) additional span to perform the parallel for loop.
Since some rounds may have no affected computations, the algorithm could perform up to
O(R′) additional work to process these rounds. We will show that all additional work can be
charged to the affected computations, incurring at most an additional O(log(W ′)) span.

Lines 12 – 14 bucket the newly affected computations by round. This can be achieved
with an expected linear work semisort and by maintaining the Ar sets as dynamic arrays. The
work is chargeable to the affected computations and the span is at most O(log(W ′)) w.h.p.
Computing the current set of affected computations (Line 15) requires a filter/compaction
operation, whose work is charged to the affected computations and span is at most O(log(W ′)).

Updating the reader sets Sm (Line 19) can be done as follows. We maintain Sm as
dynamic arrays with lazy deletion, meaning that we delete by marking the corresponding slot
as empty. When more than half of the slots have been marked empty, we perform compaction,

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:9

whose work is charged to the updates and whose span is at most O(log(W ′)). In order to
perform deletions in constant time, we augment the set Rr,p so that it remembers, for each
entry m, the location of (r, p) in Sm. Therefore these updates take constant amortized work
each (using a dynamic array), charged to the corresponding affected computations, and at
most O(log(W ′)) span if a resize/compaction is triggered.

Xprev can be implemented as an array of size |P |, with work charged to the affected
computations in P . As in the initial run, the cost of updating Rr,p,Wr,p and Xr,p can also
be charged to the work performed by the affected computations.

Updating the reader sets Sm (Line 29) is a matter of appending to dynamic arrays, and,
as mentioned earlier, remembering for each m ∈ Rr,p, the location of (r, p) in Sm. The work
can be charged to the affected computations, and the span is at most O(log(W ′)).

Collecting the updated locations U (Line 32) can similarly be charged to the affected
computations, and incurs no more than O(log(W ′)) span. On Lines 33 – 36, the sets L′ and
D′ are computed by a compaction over P , whose work is charged to the affected computations
in P . Updating L and D correspondingly requires a compaction operation, whose work is
charged to the affected computations in L and D respectively. Each of these compactions
costs O(log(W ′)) span.

We can finally conclude that all additional work performed by change propagation
can be charged to the affected computations, and hence to the computation distance W∆,
while incurring at most O(log(W ′)) additional span per round w.h.p. Therefore the total
work performed by change propagation is O(W∆ + R′) in expectation and the span is
O(S′ +R′ · log(W ′)) w.h.p. J

We now show that for a special class of round-synchronous algorithms, the span overhead
can be reduced. Our dynamic trees algorithm falls into this special case.

I Definition 10. A restricted round-synchronous algorithm is a round-synchronous algorithm
such that each round computation performs only a constant number of reads and writes, and
each shared memory location is read only by a constant number of computations, and only in
the round directly after it was written.

I Theorem 11. Given a restricted round-synchronous algorithm A with input configuration
(I, P) that does W work in R rounds and S span, then
1. the initial run of the algorithm with tracking takes O(W) work and O(S + R log∗(W))

span w.h.p. on the CRCW PRAM and O(S +R log(W)) span in the binary forking model,
2. change propagation on a dynamic update to the input configuration (I ′, P ′) takes O(W∆)

work (in expectation on the CRCW PRAM), and O(S′ +R′ log∗(W ′)) span w.h.p. on the
CRCW PRAM and O(S′+R′ log(W ′)) span in the binary forking model, where S′, R′,W ′
are the maximum span, rounds, and work of the algorithm on the two input configurations.

Proof sketch. Rather than recreate the entirety of the proof of Theorem 9, we simply sketch
the differences. In essence, we obtain the result by removing the uses of scans, and semisorts,
which were the main cause of the O(log(W ′)) span overhead and the randomized work.
Instead, we rely only on (possibly approximate) compaction, which is only randomized on
the CRCW PRAM. We also lose the R′ term in the work since computations can only read
from locations written in the previous round, and hence the set of rounds on which there
exists an affected computation must be contiguous.

The main technique that we will make use of is the sparse array plus compaction technique.
In situations where we wish to collect a set of items from each executed process, we would, in
the unrestricted model, require a scan, which costs O(log(W ′)) span on the CRCW PRAM.

ESA 2020

2:10 Parallel Batch-Dynamic Trees via Change Propagation

If each executed process, however, only produces a constant number of these items, we can
allocate an array that is a constant size larger than the number of processes, and each process
can write its set of items to a designated offset. We can then perform (possibly approximate)
compaction on this array to obtain the desired set, with at most a constant factor additional
blank entries. This takes O(log∗(W ′)) span w.h.p. on the CRCW PRAM, and O(log(W ′))
span in the binary forking model.

Maintaining Sm in the initial run and during change propagation is the first bottleneck,
originally requiring a semisort. Since each computation performs a constant number of writes,
we can collect the writes using the sparse array plus compaction technique. Since, in the
restricted model, each modifiable will only be read by a constant number of readers, we can
update Sm in constant time.

To compute the affected computations Ar also originally required a semisort, but in the
restricted model, since all reads happen on the round directly after the write, no semisort is
needed, since they will all have the same value of r. Collecting the affected computations
from the written modifiables can also be achieved using the sparse array and compaction
technique, using the fact that each computation wrote to a constant number of modifiables,
and each modifiable is subsequently read by a constant number of computations. Additionally,
Ar will be empty at the beginning of round r, so computing P requires only a compaction.

Lastly, collecting the updated locations U can also be performed using the sparse array
and compaction technique. In summary, we can replace all originally O(log(W ′)) span
operations with (approximate) compaction in the restricted setting, and hence we obtain
the given span bounds since this takes O(log∗(W ′)) span w.h.p. on the CRCW PRAM, and
O(log(W ′)) span in the binary forking model. J

I Remark 12 (Space usage). We do not formally specify an implementation of the memory
model, but one simple way to achieve good space bounds is to use hashtables to implement
global shared memory. Each write to a particular global shared memory location maps to
an entry in the hashtable. When a round computation is invalidated during a dynamic
update, its writes can be purged from the hashtable to free up space, preventing unbounded
space blow up. Since the algorithm must also track the reads of each global shared memory
location, using this implementation, the space usage is proportional to the number of shared
memory reads and writes. In the restricted round-synchronous model, the number of reads
must be proportional to the number of writes, and hence the space usage is proportional to
the number of writes.

4 Dynamizing Tree Contraction

In this section, we show how to obtain a dynamic tree contraction algorithm by applying our
dynamization technique to the static tree contraction algorithm of Miller and Reif [20]. In
Section 5, we will show how to use this to obtain a parallel batch-dynamic trees framework.

Tree contraction

Tree contraction is the process of shrinking a tree down to a single vertex by repeatedly
performing local contractions. Each local contraction deletes a vertex and merges its adjacent
edges if it had degree two. Tree contraction has a number of useful applications, studied
extensively in [21, 22, 5]. It can be used to perform various computations by associating
data with edges and vertices and defining how data is accumulated during local contractions.

Various versions of tree contraction have been proposed depending on the specifics of
local contractions. We consider an undirected variant of the randomized version proposed
by Miller and Reif [20], which makes use of two operations: rake and compress. The former

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:11

removes all nodes of degree one from the tree, except in the case of a pair of adjacent degree
one vertices, in which case only one of them is removed by tiebreaking on the vertex IDs.
The latter operation, compress, removes an independent set of vertices of degree two that
are not adjacent to any vertex of degree one. Compressions are randomized with coin flips
to break symmetry. Miller and Reif showed that it takes O(logn) rounds w.h.p. to fully
contract a tree of n vertices in this manner.

Input forests

The algorithms described here operate on undirected forests F = (V,E), where V is a set of
vertices, and E is a set of undirected edges. If (u, v) ∈ E, we say that u and v are adjacent,
or that they are neighbors. A vertex with no neighbors is said to be isolated, and a vertex
with one neighbor is called a leaf.

We assume that the forests given as input have bounded degree. That is, there exists
some constant t such that each vertex has at most t neighbors. We will explain how to handle
arbitrary-degree trees momentarily.

The static algorithm

The static tree contraction algorithm (Algorithm 3) works in rounds, each of which takes a
forest from the previous round as input and produces a new forest for the next round. On
each round, some vertices may be deleted, in which case they are removed from the forest
and are not present in all remaining rounds. Let F i = (V i, Ei) be the forest after i rounds
of contraction, and thus F 0 = F is the input forest. We say that a vertex v is alive at round
i if v ∈ V i, and is dead at round i if v 6∈ V i. If v ∈ V i but v 6∈ V i+1 then v was deleted in
round i. There are three ways for a vertex to be deleted: it either finalizes (Line 32), rakes
(Line 21), or compresses (Line 26). Finalization removes isolated vertices. Rake removes all
leaves from the tree, with one special exception. If two leaves are adjacent, then to break
symmetry and ensure that only one of them rakes, the one with the lower identifier rakes into
the other (Line 8). Finally, compression removes an independent set of degree two vertices
that are not adjacent to any degree one vertices, as in Miller and Reif’s algorithm. The choice
of which vertices are deleted in each round is made locally for each vertex based upon its
own degree, the degrees of its neighbors, and coin flips for itself and its neighbors (Line 13).
For coin flips, we assume a function Heads(i, v) which indicates whether or not vertex v
flipped heaps on round i. It is important that Heads(i, v) is a function of both the vertex
and the round number, as coin flips must be repeatable for change propagation to be correct.

The algorithm produces a contraction data structure which serves as a record of the
contraction process. The contraction data structure is a tuple, (A,D), where A[i][u] is a
list of pairs containing the vertices adjacent to u in round i, and the positions of u in the
adjacency lists of the adjacent vertices. D[u] stores the round on which vertex u contracted.
The algorithm also records leaf[i][u], which is true if vertex u is a leaf at round i. An
implementation of the tree contraction algorithm in our framework is shown in Algorithm 3.

Updates

We consider update operations that implement the interface of a batch-dynamic tree data
structure. This requires supporting batches of links and cuts. A link (insertion) connects two
trees in the forest by a newly inserted edge. A cut (deletion) deletes an edge from the forest,
separating a single tree into two trees. We formally specify the interface for batch-dynamic
trees and give a sample implementation of their operations in terms of the tree contraction
data structure in the full version of this paper [2].

ESA 2020

2:12 Parallel Batch-Dynamic Trees via Change Propagation

Algorithm 3 Tree contraction algorithm.

1: procedure ComputeRound(i, u)
2: local ((v1, p1), ..., (vt, pt)), ` ← read(A[i][u], leaf[i][u])
3: if vi =⊥ ∀i then // A vertex with no neighbors finalizes
4: DoFinalize(i, u)
5: else if ` then // A leaf vertex rakes if its neighbor is
6: local (v, p) ← (vi, pi) such that vi 6=⊥ // not a leaf, or if it has the lower ID
7: local `′ ← read(leaf[i][v])
8: if ¬`′ ∨ u < v then DoRake(i, u, (v, p))
9: else DoAlive(i, u, ((v1, p1), ..., (vt, pt)))
10: else // If the vertex has exactly two
11: if ∃(v, p), (v′, p′) : {v1, ..., vt} \ {⊥} = {v, v′} then // neighbors, it will compress
12: local `′, `′′ ← read(leaf[i][v], leaf[i][v′]) // if neither of them are
13: local c ← Heads(i, u) ∧ ¬Heads(i, v) ∧ ¬Heads(i, v′) // leaves and it flips heads
14: if (¬`′ ∧ ¬`′′ ∧ c) then // and they both flip tails
15: DoCompress(i, u, (v, p), (v′, p′))
16: else
17: DoAlive(i, u, ((v1, p1), ..., (vt, pt)))
18: else
19: DoAlive(i, u, ((v1, p1), ..., (vt, pt)))
20:
21: procedure DoRake(i, u, (v, p)) // When a vertex rakes, it replaces itself with
22: write(A[i + 1][v][p], ⊥) // null (⊥) in its neighbor’s adjacency list in
23: write(D[u], i) // in the next round
24: retire process
25:
26: procedure DoCompress(i, u, (v, p), (v′, p′)) // When a vertex compresses, it replaces itself
27: write(A[i + 1][v][p], (v′, p′)) // with its opposite neighbors in each neighbor’s
28: write(A[i + 1][v′][p′], (v, p)) // adjacency list in the next round
29: write(D[u], i)
30: retire process
31:
32: procedure DoFinalize(i, u)
33: write(D[u], i)
34: retire process
35:
36: procedure DoAlive(i, u, ((v1, p1), ..., (vt, pt)))// If a vertex remains alive, it writes itself into
37: local nonleaves ← 0 // its neighbors’ adjacency lists in the next
38: for j ← 1 to t do // round. It must also determine whether it
39: if vj 6=⊥ then // it will be a leaf in the next round
40: write(A[i + 1][vj][pj], (u, j))
41: nonleaves += 1 - read(leaf[i][vj])
42: else
43: write(A[i + 1][u][j], ⊥)
44: write(leaf[i + 1][u], nonleaves = 1)

Handling trees of arbitrary degree

To handle trees of arbitrary degree, we can split each vertex into a path of vertices, one for
each of its neighbors. This technique is standard and has been described in [18], for example.
This results in a tree of degree 3, with at most O(n+m) vertices and O(m) edges for an
initial tree of n vertices and m edges. For edge-weighted trees, the additional edges can be

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:13

given a suitable identity weight to preserve query values. It is simple to maintain such a
transformation dynamically. For a batch insertion, a work-efficient semisort can be used
to group each new neighbor by their endpoints, and then for each vertex, an appropriate
number of new vertices can be added to the path. Batch deletion can be handled similarly.

4.1 Analysis
We now analyse the initial work, round, complexity, span, and computation distance of the
tree contraction algorithm. This section is dedicated to proving the following theorem.

I Theorem 13. Given a forest of n vertices, the initial work of tree contraction is O(n)
in expectation, the round complexity and the span is O(log(n)) w.h.p. and the computation
distance induced by updating k edges is O(k log(1 + n/k)) in expectation.

Let F = (V,E) be the set of initial vertices and edges of the input tree, and denote by
F i = (V i, Ei), the set of remaining (alive) vertices and edges at round i. We use the term at
round i to denote the beginning of round i, and in round i to denote an event that occurs
during round i. For some vertex v at round i, we denote the set of its adjacent vertices by
Ai(v), and its degree with δi(v) =

∣∣Ai(v)
∣∣. A vertex is isolated at round i if δi(v) = 0. When

multiple forests are in play, it will be necessary to disambiguate which is in focus. For this,
we will use subscripts: for example, δiF (v) is the degree of v in the forest F i, and EiF is the
set of edges in the forest F i.

4.1.1 Analysis of construction
We first show that the static tree contraction algorithm is efficient. This argument is similar
to Miller and Reif’s argument in Theorem 2.1 of [21].

I Lemma 14. For any forest (V,E), there exists β ∈ (0, 1) such that E
[∣∣V i∣∣] ≤ βi |V |,

where V i is the set of vertices remaining after i rounds of contraction.

Proof. We begin by considering trees, and then extend the argument to forests. Given a
tree (V,E), consider the set V ′ of vertices after one round of contraction. We would like to
show there exists β ∈ (0, 1) such that E [|V ′|] ≤ β |V |. If |V | = 1, then this is trivial since
the vertex finalizes (it is deleted with probability 1). For |V | ≥ 2, Consider the following
sets, which partition the vertex set:
H = {v : δ(v) ≥ 3}
L = {v : δ(v) = 1}
C = {v : δ(v) = 2 ∧ ∀u ∈ A(v), u /∈ L}
C ′ = {v : δ(v) = 2} \ C

Note that at least half of the vertices in L must be deleted, since all leaves are deleted, except
those that are adjacent to another leaf, in which case exactly one of the two is deleted. Also,
in expectation, 1/8 of the vertices in C are deleted. Vertices in H and C ′ necessarily do not
get deleted. Now, observe that |C ′| ≤ |L|, since each vertex in C ′ is adjacent to a distinct
leaf. Finally, we also have |H| < |L|, which follows from standard arguments about compact
trees. Therefore in expectation,

1
2 |L|+

1
8 |C| ≥

1
4 |L|+

1
8 |H|+

1
8 |C

′|+ 1
8 |C| ≥

1
8 |V |

vertices are deleted, and hence

E [|V ′|] ≤ 7
8 |V | .

ESA 2020

2:14 Parallel Batch-Dynamic Trees via Change Propagation

Equivalently, for β = 7
8 , for every i, we have E

[∣∣V i+1
∣∣ ∣∣ Vi] ≤ β ∣∣V i∣∣, where V i is the set of

vertices after i rounds of contraction. Therefore E
[∣∣V i+1

∣∣] ≤ βE
[∣∣V i∣∣]. Expanding this

recurrence, we have E
[∣∣V i∣∣] ≤ βi |V |. To extend the proof to forests, simply partition the

forest into its constituent trees and apply the same argument to each tree individually. Due
to linearity of expectation, summing over all trees yields the desired bounds. J

I Lemma 15. On a forest of n vertices, after O(logn) rounds of contraction, there are no
vertices remaining w.h.p.

Proof. For any c > 0, consider round r = (c+ 1) · log1/β(n). By Lemma 14 and Markov’s
inequality, we have

P [|V r| ≥ 1] ≤ βrn = n−c. J

Proof of initial work, rounds, and span in Theorem 13

Proof. At each round, the construction algorithm performs O
(∣∣V i∣∣) work, and so the total

work is O
(∑

i E
[∣∣V i∣∣]) in expectation. By Lemma 14, this is O(|V |) = O(n). The round

complexity and the span follow from Lemma 15. J

4.1.2 Analysis of dynamic updates
Intuitively, tree contraction is efficiently dynamizable due to the observation that, when a
vertex locally makes a choice about whether or not to delete, it only needs to know who its
neighbors are, and whether or not its neighbors are leaves. This motivates the definition of
the configuration of a vertex v at round i, denoted κiF (v), defined as

κiF (v) =
{

({(u, `iF (u)) : u ∈ AiF (v)}), if v ∈ V iF
dead, if v 6∈ V iF ,

where `iF (u) indicates whether δiF (u) = 1 (the leaf status of u). Consider some input forest
F = (V,E), and let F ′ = (V, (E \ E−) ∪ E+) be the newly desired input after a batch cut
with edges E− and/or a batch-link with edges E+. We say that a vertex v is affected at
round i if κiF (v) 6= κiF ′(v).

I Lemma 16. The execution in the tree contraction algorithm of process p at round r is an
affected computation if and only if p is an affected vertex at round r.

Proof. The code for ComputeRound for tree contraction reads only the neighbors, and
corresponding leaf statuses, which are precisely the values encoded by the configuration.
Hence if vertex p is alive in both forests the computation p is affected if and only if vertex p
is affected. If instead p is dead in one forest but not the other, vertex p is affected, and the
process p will have retired in one computation but not the other, and hence it will be an
affected computation. Otherwise, if vertex p is dead in both forests, then the process p will
have retired in both computations, and hence be unaffected. J

This means that we can bound the computation distance by bounding the number of affected
vertices. First, we show that vertices that are not affected at round i have nice properties.

I Lemma 17. If v is unaffected at round i, then either v is dead at round i in both F and
F ′, or v is adjacent to the same set of vertices in both.

Proof. Follows directly from κiF (v) = κiF ′(v). J

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:15

I Lemma 18. If v is unaffected at round i, then v is deleted in round i of F if and only if v
is also deleted in round i of F ′, and in the same manner (finalize, rake, or compress).

Proof. Suppose that v is unaffected at round i. Then by definition it has the same neighbors
at round i in both F and F ′. The contraction process depends only on the neighbors of the
vertex, and hence proceeds identically in both cases. J

If a vertex v is not affected at round i but is affected at round i + 1, then we say that v
becomes affected in round i. A vertex can become affected in many ways.

I Lemma 19. If v becomes affected in round i, then at least one of the following holds:
1. v has an affected neighbor u at round i which was deleted in either F i or (F ′)i.
2. v has an affected neighbor u at round i+ 1 where `i+1

F (u) 6= `i+1
F ′ (u).

Proof. First, note that since v becomes affected, we know v does not get deleted, and
furthermore that v has at least one child at round i. If v were to be deleted, then by Lemma
18 it would do so in both forests, leading it to being dead in both forests at the next round
and therefore unaffected. If v were to have no children, then v would rake, but we just argued
that v cannot be deleted.

Suppose that the only neighbors of v which are deleted in round i are unaffected at
round i. Then v’s set of children in round i+ 1 is the same in both forests. If all of these are
unaffected at round i+ 1, then their leaf statuses are also the same in both forests at round
i+ 1, and hence v is unaffected, which is a contradiction. Thus case 2 of the lemma must
hold. In any other scenario, case 1 of the lemma holds. J

I Lemma 20. If v is not deleted in either forest in round i and `i+1
F (v) 6= `i+1

F ′ (v), then v is
affected at round i.

Proof. Suppose v is not affected at round i. If none of v’s neighbors are deleted in this round
in either forest, then `i+1

F (v) = `i+1
F ′ (v), a contradiction. Otherwise, if the only neighbors that

are deleted do so via a compression, since compression preserves the degree of its endpoints,
we will also have `i+1

F (v) = `i+1
F ′ (v) and thus a contradiction. So, we consider the case of one

of v’s children raking. However, since v is unaffected, we know `iF (u) = `iF ′(u) for each child
u of v. Thus if one of them rakes in round i in one forest, it will also do so in the other, and
we will have `i+1

F (v) = `i+1
F ′ (v). Therefore v must be affected at round i. J

Lemmas 19 and 20 give us tools to bound the number of affected vertices for a consecutive
round of contraction: each affected vertex that is deleted affects its neighbors, and each
affected vertex whose leaf status is different in the two forests at the next round affects its
neighbor. This strategy actually overestimates which vertices are affected, since case 1 of
Lemma 19 does not necessarily imply that v is affected at the next round. We wish to show
that the number of affected vertices at each round is not large. Intuitively, we will show
that the number of affected vertices grows only arithmetically in each round, while shrinking
geometrically, which implies that their total number can never grow too large. Let Ai denote
the set of affected vertices at round i. We begin by bounding the size of |A0|.

I Lemma 21. For a batch update of size k, we have |A0| ≤ 3k.

Proof. The computation for a given vertex u at most reads its neighbors, and if it has a
single neighbor, its neighbor’s leaf status. Therefore, the addition/deletion of a single edge
affects at most 3 vertices at round 0. Hence |A0| ≤ 3k. J

ESA 2020

2:16 Parallel Batch-Dynamic Trees via Change Propagation

We say that an affected vertex u spreads to v in round i, if v was unaffected at round i and
v becomes affected in round i in either of the following ways:
1. v is a neighbor of u at round i and u is deleted in round i in either F or F ′, or
2. v is a neighbor of u at round i + 1 and the leaf status of u changes in round i, i.e.,

`i+1
F (v) 6= `i+1

F ′ (v).
Let s = |A0|. For each of F and F ′, we now inductively construct s disjoint sets for each
round i, labeled Ai1, A

i
2, . . . A

i
s. These sets will form a partition of Ai. First, arbitrarily

partition A0 into s singleton sets, and let A0
1, . . . , A

0
s be these singleton sets. In other words,

each affected vertex in A0 is assigned a unique number 1 ≤ j ≤ s, and is then placed in A0
j .

Given sets Ai1, . . . , Ais, we construct sets Ai+1
1 , . . . , Ai+1

s as follows. Consider some
v ∈ Ai+1 \ Ai. By Lemmas 19 and 20, there must exist at least one u ∈ Ai such that u
spreads to v. Since there could be many of these, let Si(v) be the set of vertices which spread
to v in round i. Define

ji(v) =
{
j, if v ∈ Aij
minu∈Si(v)

(
j where u ∈ Aij

)
, otherwise

In other words, ji(v) is v’s set identifier if v is affected at round i, or otherwise the minimum
set identifier j such that a vertex from Aij spread to v in round i. We can then produce the
following for each 1 ≤ j ≤ k:

Ai+1
j = {v ∈ Ai+1 | ji(v) = j}

Informally, each affected vertex from round i which stays affected also stays in the same
place, and each newly affected vertex picks a set to join based on which vertices spread to it.

We say that a vertex v is a frontier at round i if v is affected at round i and at least
one of its neighbors in either F or F ′ is unaffected at round i. It is easy to show that any
frontier at any round is alive in both forests and has the same set of unaffected neighbors in
both at that round, and thus, the set of frontier vertices at any round is the same in both
forests. It is also easy to show that if a vertex v spreads to some other vertex in round i,
then v is a frontier at round i. We show next that the number of frontier vertices within
each Aij is bounded.

I Lemma 22. For any i, j, each of the following statements hold:
1. The subforests induced by Aij in each of F i and (F ′)i are trees.
2. Aij contains at most 2 frontier vertices.
3. |Ai+1

j \Aij | ≤ 2.

Proof. Statement 1 follows from rake and compress preserving connectedness, and the fact
that if u spreads to v then u and v are neighbors in both forests either at round i or round
i + 1. We prove statement 2 by induction on i, and conclude statement 3 in the process.
At round 0, each A0

j contains at most 1 frontier. We now consider some Aij . Suppose there
is a single frontier vertex v in Aij . If v compresses in one of the forests, then v will not
be a frontier in Ai+1

j , but it will spread to at most two newly affected vertices which may
be frontiers at round i + 1. Thus the number of frontiers in Ai+1

j will be at most 2, and
|Ai+1
j \Aij | ≤ 2.
If v rakes in one of the forests, then v must also rake in the other forest (if not, then

v could not be a frontier, since its neighbor would be affected). It spreads to one newly
affected vertex (its neighbor) which may be a frontier at round i+ 1. Thus the number of
frontiers in Ai+1

j will be at most 1, and |Ai+1
j \Aij | ≤ 1.

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:17

Now suppose there are two frontiers u and v in Aij . Due to statement 1 of the Lemma,
each of these must have at least one affected neighbor at round i. Thus if either is deleted,
it will cease to be a frontier and may add at most one newly affected vertex to Ai+1

j , and
this newly affected vertex might be a frontier at round i+ 1. The same can be said if either
u or v spreads to a neighbor due to a leaf status change. Thus the number of frontiers
either remains the same or decreases, and there are at most 2 newly affected vertices. Hence
statements 2 and 3 of the Lemma hold. J

Now define AiF,j = Aij ∩ V iF , that is, the set of vertices from Aij which are alive in F at
round i. We define AiF ′,j similarly for forest F ′.

I Lemma 23. For every i, j, we have

E
[∣∣AiF,j∣∣] ≤ 6

1− β ,

and similarly for AiF ′,j.

Proof. Let F iA,j denote the subforest induced by AiF,j in F i. By Lemma 22, this subforest
is a tree, and has at most 2 frontier vertices. By Lemma 14, if we applied one round of
contraction to F iA,j , the expected number of vertices remaining would be at most β ·E[|AiF,j |].
However, some of the vertices that are deleted in F iA,j may not be deleted in F i. Specifically,
any vertex in AiF,j which is a frontier or is the neighbor that spread to a frontier might not
be deleted. There are at most two frontier vertices and two associated neighbors. By Lemma
22, two newly affected vertices might also be added. We also have |A0

F,j | = 1. Therefore we
conclude the following, which similarly holds for forest F ′:

E
[∣∣∣Ai+1

F,j

∣∣∣] ≤ βE
[∣∣AiF,j∣∣]+ 6 ≤ 6

∞∑
r=0

βr = 6
1− β . J

I Lemma 24. For a batch update of size k, we have for every i,

E
[∣∣Ai∣∣] ≤ 36

1− β k.

Proof. Follows from Lemmas 21 and 23, and the fact that

∣∣Ai∣∣ ≤ s∑
j=1

(∣∣AiF,j∣∣+
∣∣AiF ′,j

∣∣) . J

Proof of computation distance in Theorem 13

Proof. Let F be the given forest and F ′ be the desired forest. Since each process of tree
contraction does constant work each round, Lemma 16 implies that the algorithm does
O
(∣∣Ai∣∣) work at each round i, so W∆ =

∑
i

∣∣Ai∣∣.
Since at least one vertex is either raked or finalized each round, we know that there are

at most n rounds. Consider round r = log1/β(1 + n/k), using the β given in Lemma 14. We
now split the rounds into two groups: those that come before r and those that come after.

For i < r, we bound E
[∣∣Ai∣∣] according to Lemma 24, yielding∑

i<r

E
[∣∣Ai∣∣] = O(rk) = O

(
k log

(
1 + n

k

))

ESA 2020

2:18 Parallel Batch-Dynamic Trees via Change Propagation

work. Now consider r ≤ i < n. For any i we know
∣∣Ai∣∣ ≤ ∣∣V iF ∣∣+ ∣∣V iF ′

∣∣, because each affected
vertex must be alive in at least one of the two forests at that round. We can then apply the
bound given in Lemma 14, and so

∑
r≤i<n

E
[∣∣Ai∣∣] ≤ ∑

r≤i<n

(
E
[∣∣V iF ∣∣]+ E

[∣∣V iF ′

∣∣])
≤
∑
r≤i<n

(
βin+ βin

)
= O(nβr)

= O

(
nk

n+ k

)
= O(k),

and thus

E [W∆] = O
(
k log

(
1 + n

k

))
+O(k) = O

(
k log

(
1 + n

k

))
. J

5 Parallel Rake-compress Trees

Dynamic trees typically provide support for dynamic connectivity queries. Most dynamic
tree data structures also support some form of augmented value query. For example, Link-cut
trees [27] support root-to-vertex path queries, and Euler-tour trees [15] support subtree sum
queries. Top trees [28, 6] support both path and subtree queries, as well as nonlocal queries
such as centers and medians, but no parallelization of them is known. The only existing
parallel batch-dynamic tree data structure is that of Tseng et al. [29], which is based on
Euler-tour trees, and hence only handles subtree queries.

Rake-compress trees [5] (RC trees) are another sequential dynamic trees data structure,
based on tree contraction, and have also been shown to be capable of handling both path
and subtree queries, as well as nonlocal queries, all in O(log(n)) time. In this section, we will
explain how our parallel batch-dynamic algorithm for tree contraction can be used to derive
a parallel batch-dynamic version of RC trees, leading to the first work-efficient algorithm for
batch-dynamic trees that can handle this wide range of queries. We use a slightly different
set of definitions than the original presentation of RC trees in [5], which correct some subtle
corner cases and simplify the exposition, although the resulting data structure is equivalent.
All of the query algorithms for sequential RC trees therefore work on our parallel version.

Contraction and clusters

RC trees are based on the idea that the tree contraction process can be interpreted as a
recursive clustering of the original tree. Formally, a cluster is a connected subset of vertices
and edges of the original tree. Note, importantly, that a cluster may contain an edge without
containing both of its endpoints. The boundary vertices of a cluster C are the vertices v /∈ C
that are adjacent to an edge e ∈ C. The degree of a cluster is the number of boundary
vertices of that cluster. The vertices and edges of the original tree form the base clusters.
Clusters are merged using the following simple rule: Whenever a vertex v is deleted, all of
the clusters that have v as a boundary vertex are merged with the base cluster containing v.
This implies that all clusters formed will have degree at most two. A cluster of degree zero is
called a nullary cluster, a cluster of degree one a unary cluster, and a cluster of degree two a

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:19

binary cluster. All non-base clusters have a unique representative vertex, which corresponds
to the vertex that was deleted to form it. The full version of this paper [2] provides additional
details and some diagrams that explain what each kind of cluster looks like.

5.1 Building and maintaining RC trees
Given a tree and an execution of the tree contraction algorithm, the RC tree consists of
nodes which correspond to the clusters formed by the contraction process. The children of
a node are the nodes corresponding to the clusters that merged together to form it. An
example tree, a clustering, and the corresponding RC tree are depicted in Figure 1. Note
that in the case of a disconnected forest, the RC tree will have multiple roots.

We will sketch here how to maintain an RC tree subject to batch-dynamic updates in
parallel using our algorithm for parallel batch-dynamic tree contraction. This requires just
two simple augmentations to the tree contraction algorithm. Recall that tree contraction
(Algorithm 3) maintains an adjacency list for each vertex at each round. Whenever a neighbor
u of a vertex v rakes into v, the process u writes a null value into the corresponding position in
v’s adjacency list. This process can be augmented to also write, in addition to the null value,
the identity of the vertex that just raked. Second, when storing the data for a neighboring
edge in a vertex’s adjacency list, we additionally write the name of the representative vertex
if that edge corresponds to a compression, or null if the edge is an edge of the original tree.
The RC tree can then be inferred using this augmented data as follows.
1. Given any cluster C with representative v, its unary children can be determined by

looking at the vertices that raked into v. The children are precisely the unary clusters
represented by these vertices. For the final cluster, these are its only children.

2. Given a binary or unary cluster C with representative v, its binary children can be
determined by inspecting v’s adjacency list at the moment it was deleted. The binary
clusters corresponding to the edges adjacent to v at its time of death are the binary
children of the cluster C.

It then suffices to observe that this information about the clusters can be recorded during
the contraction process. By employing change propagation, the RC tree can therefore be
maintained subject to batch-dynamic updates. Since each cluster consists of a constant
amount of information, this can be done in the same work and span bounds as the tree
contraction algorithm. We therefore have the following result.
I Theorem 25. We can maintain a rake-compress tree of a tree on n vertices subject to
batch insertions and batch deletions of size k in O(k log(1 + n/k)) work in expectation and
O(log2(n)) span per update w.h.p. The span can be improved to O(log(n) log∗(n)) w.h.p. on
the CRCW PRAM.

5.2 Applications
Most kinds of queries assume that the vertices and/or edges of the input tree are annotated
with data, such as weights or labels. In order to support queries, each cluster is annotated
with some additional information. The algorithm must then specify how to combine the
data from multiple constituent clusters whenever a set of clusters merge. These annotations
are generated during the tree contraction algorithm, and are therefore available for querying
immediately after performing an update.

Once the clusters are annotated with the necessary data, the queries themselves typically
perform a bottom-up or top-down traversal of the RC tree, or possibly in the case of more
complicated queries, a combination of both. A variety of queries is described in [5].

ESA 2020

2:20 Parallel Batch-Dynamic Trees via Change Propagation

a

c

b d e h i

f

g j

k l

(a) A tree.

a

c

b d e h i

f

g j

k l

(b) A recursive clustering of the tree produced
by tree contraction. Clusters produced in earlier
rounds are depicted in a darker color.

E

e F I B

f i J

h

(e,f)

(e,h)

K

(h,i) j (i,j) k (i,k) L

b

d (b,d) (d,e)

C A

c (b,c) a (a,b)

g (g,h) l (k,l)

G

H D

(c) The corresponding RC tree. (Non-base) unary clusters are shown as circles,
binary clusters as rectangles, and the finalize (nullary) cluster at the root with
two concentric circles. The base clusters (the leaves) are labeled in lowercase, and
the composite clusters are labeled with the uppercase label of their representative
vertex.

Figure 1 A tree, a clustering, and the corresponding RC tree.

Batch queries

We can also implement batch queries, in which we answer k queries simultaneously in
O(k log(1 + n/k)) work in expectation and O(log(n)) span w.h.p. This improves upon the
work bound of O(k log(n)) obtained by simply running independent queries in parallel. The
idea is to detect when multiple traversals would intersect, and to eliminate redundant work
that they would perform. An example in which this technique is applicable is finding a
representative vertex of a connected component. When traversing upwards, if multiple query
paths intersect, then only one proceeds up the tree and subsequently brings the answer back
down for the other ones. The following theorem is the main tool that we can use for analyzing
batch queries. The proof is similar to that of the computation distance in Theorem 13, and
can be found in the full version of this paper [2].

I Theorem 26. Given a tree on n vertices and a corresponding RC tree, k root-to-leaf paths
in the RC tree touch O(k log(1 + n/k)) distinct RC tree nodes in expectation.

In the full version of this paper [2], we will show that batch connectivity, subtree sum, and
path sum queries given batches of size k can be answered in O(k log(1 + n/k)) work in
expectation and O(log(n)) span w.h.p.

6 Conclusion

In this paper we showed that we can obtain work-efficient parallel batch-dynamic algorithms
by applying an algorithmic dynamization technique to corresponding static algorithms. Using
this technique, we obtained the first work-efficient parallel algorithm for batch-dynamic
trees that supports more than just subtree queries. Our framework also demonstrates the

U.A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick 2:21

broad benefits of algorithmic dynamization; much of the complexity of designing parallel
batch-dynamic algorithms by hand is removed, since the static algorithms are usually simpler
than their dynamic counterparts. We note that although the round synchronous model
captures a very broad class of algorithms, the breadth of algorithms suitable for dynamization
is less clear. To be suitable for dynamization, an algorithm additionally needs to have small
computational distance between small input changes. As some evidence of broad applicability,
however, the practical systems mentioned in the technical overview of the introduction have
been applied broadly and successfully – again without any theoretical justification, yet.

References
1 Umut A Acar, Daniel Anderson, Guy E Blelloch, and Laxman Dhulipala. Parallel batch-

dynamic graph connectivity. In ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA), 2019.

2 Umut A Acar, Daniel Anderson, Guy E Blelloch, Laxman Dhulipala, and SamWestrick. Parallel
batch-dynamic trees via change propagation. arXiv preprint, 2020. arXiv:2002.05129.

3 Umut A Acar, Guy E Blelloch, and Robert Harper. Adaptive functional programming. In
ACM Symposium on Principles of Programming Languages (POPL), 2002.

4 Umut A Acar, Guy E Blelloch, Robert Harper, Jorge L Vittes, and Shan Leung Maverick Woo.
Dynamizing static algorithms, with applications to dynamic trees and history independence.
In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2004.

5 Umut A Acar, Guy E Blelloch, and Jorge L Vittes. An experimental analysis of change
propagation in dynamic trees. In Algorithm Engineering and Experiments (ALENEX), 2005.

6 Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining
information in fully dynamic trees with top trees. ACM Transactions on Algorithms (TALG),
1(2):243–264, 2005.

7 Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, and Rafael Pasquini.
Incoop: MapReduce for incremental computations. In ACM Symposium on Cloud Computing
(SoCC), 2011.

8 Guy E Blelloch, Jeremy T Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020.

9 Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy, and Russell
Sears. Mapreduce online. In Symposium on Networked Systems Design and Implementation
(NSDI), 2010.

10 Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh Sawlani, and
Xiaorui Sun. Parallel batch-dynamic graphs: Algorithms and lower bounds. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2020.

11 Greg N Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM Journal on Computing, 14(4):781–798, 1985.

12 Joseph Gil, Yossi Matias, and Uzi Vishkin. Towards a theory of nearly constant time parallel
algorithms. In IEEE Symposium on Foundations of Computer Science (FOCS), 1991.

13 Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. A top-down parallel semisort. In
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2015.

14 Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan Yu, and
Li Zhuang. Nectar: Automatic management of data and computation in data centers. In
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2010.

15 Monika R. Henzinger and Valerie King. Randomized fully dynamic graph algorithms with
polylogarithmic time per operation. Journal of the ACM, 46(4):502–516, 1999.

16 Giuseppe F Italiano, Silvio Lattanzi, Vahab S Mirrokni, and Nikos Parotsidis. Dynamic
algorithms for the massively parallel computation model. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2019.

ESA 2020

http://arxiv.org/abs/2002.05129

2:22 Parallel Batch-Dynamic Trees via Change Propagation

17 Joseph JáJá. An Introduction to Parallel Algorithms, volume 17. Addison-Wesley Reading,
1992.

18 Donald B Johnson and Panagiotis Metaxas. Optimal algorithms for the vertex updating
problem of a minimum spanning tree. In International Parallel Processing Symposium (IPPS),
1992.

19 David R Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–76, 2000.
20 Gary L. Miller and John H. Reif. Parallel tree contraction and its application. In IEEE

Symposium on Foundations of Computer Science (FOCS). IEEE, October 1985.
21 Gary L. Miller and John H. Reif. Parallel tree contraction part 1: Fundamentals. In Randomness

and Computation, pages 47–72. JAI Press, Greenwich, Connecticut, 1989. Vol. 5.
22 Gary L. Miller and John H. Reif. Parallel tree contraction part 2: Further applications. SIAM

Journal on Computing, 20(6):1128–1147, 1991.
23 Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín

Abadi. Naiad: A timely dataflow system. In ACM Symposium on Operating Systems Principles
(SOSP), 2013.

24 Daniel Peng and Frank Dabek. Large-scale incremental processing using distributed trans-
actions and notifications. In Symposium on Operating Systems Design and Implementation
(OSDI), 2010.

25 John H Reif and Stephen R Tate. Dynamic parallel tree contraction. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), 1994.

26 Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Work-efficient
parallel union-find with applications to incremental graph connectivity. In European Conference
on Parallel Processing (Euro-Par), 2016.

27 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983.

28 Robert E Tarjan and Renato F Werneck. Self-adjusting top trees. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2005.

29 Thomas Tseng, Laxman Dhulipala, and Guy Blelloch. Batch-parallel Euler tour trees. In
Algorithm Engineering and Experiments (ALENEX), 2019.

30 Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33:103–111, 1990.

Reconstructing Biological and Digital
Phylogenetic Trees in Parallel
Ramtin Afshar
University of California-Irvine, CA, USA
afsharr@uci.edu

Michael T. Goodrich
University of California-Irvine, CA, USA
goodrich@uci.edu

Pedro Matias
University of California-Irvine, CA, USA
pmatias@uci.edu

Martha C. Osegueda
University of California-Irvine, CA, USA
mosegued@uci.edu

Abstract
In this paper, we study the parallel query complexity of reconstructing biological and digital
phylogenetic trees from simple queries involving their nodes. This is motivated from computational
biology, data protection, and computer security settings, which can be abstracted in terms of two
parties, a responder , Alice, who must correctly answer queries of a given type regarding a degree-d
tree, T , and a querier , Bob, who issues batches of queries, with each query in a batch being
independent of the others, so as to eventually infer the structure of T . We show that a querier
can efficiently reconstruct an n-node degree-d tree, T , with a logarithmic number of rounds and
quasilinear number of queries, with high probability, for various types of queries, including relative-
distance queries and path queries. Our results are all asymptotically optimal and improve the
asymptotic (sequential) query complexity for one of the problems we study. Moreover, through an
experimental analysis using both real-world and synthetic data, we provide empirical evidence that
our algorithms provide significant parallel speedups while also improving the total query complexities
for the problems we study.

2012 ACM Subject Classification Theory of computation → Parallel computing models

Keywords and phrases Tree Reconstruction, Parallel Algorithms, Privacy, Phylogenetic Trees, Data
Structures, Hierarchical Clustering

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.3

Related Version The full version of the paper is available at arXiv [2], https://arxiv.org/abs/
2006.15259.

Supplementary Material The complete source code for our experiments, including the imple-
mentation of our algorithms and the algorithms we compared against, is available at https:
//github.com/UC-Irvine-Theory/ParallelTreeReconstruction.

Funding This article reports on work supported by NSF grant 1815073.

1 Introduction

Phylogenetic trees represent evolutionary relationships among a group of objects. For
instance, each node in a biological phylogenetic tree represents a biological entity, such as a
species, bacteria, or virus, and the branching represents how the entities are believed to have
evolved from common ancestors [29, 8, 34]. (See Figure 1a.) In a digital phylogenetic tree,

© Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 3; pp. 3:1–3:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4740-1234
mailto:afsharr@uci.edu
https://orcid.org/0000-0002-8943-191X
mailto:goodrich@uci.edu
https://orcid.org/0000-0003-0664-9145
mailto:pmatias@uci.edu
https://orcid.org/0000-0002-1077-1074
mailto:mosegued@uci.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.3
https://arxiv.org/abs/2006.15259
https://arxiv.org/abs/2006.15259
https://github.com/UC-Irvine-Theory/ParallelTreeReconstruction
https://github.com/UC-Irvine-Theory/ParallelTreeReconstruction
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Reconstructing Phylogenetic Trees in Parallel

(a) (b)

Figure 1 Two phylogenetic trees. (a) A biological phylogenetic tree of life, showing relationships
between species whose genomes had been sequenced as of 2006; public domain image by Ivica
Letunic, retraced by Mariana Ruiz Villarreal. (b) A digital phylogenetic tree of images, from Dias et
al. [14].

on the other hand, each node represents a data object, such as a computer virus [22, 35],
a source-code file [27], a text file or document [32, 40], or a multimedia object (such as an
image or video) [6, 16, 15, 14] and the branching represents how these objects are believed
to have evolved through edits or data compression/corruption. (See Figure 1b.)

In this paper, we are interested in studying efficient methods for reconstructing phyloge-
netic trees from queries regarding their structure, noting that there are differences in the
types of queries one may perform on the two types of phylogenetic trees. In particular, with
some exceptions,1 in a biological phylogenetic tree we can only perform queries involving
the leaves of the tree, since these typically represent living biological entities and internal
nodes represent ancestors that are likely to be extinct. In digital phylogenetic trees, on the
other hand, we can perform queries involving any of the nodes in the tree, including internal
nodes, since these represent digital artifacts, which are often archived. The former type of
phylogenetic tree has also received attention in the context of hierarchical clustering, where
the goal is to provide a hierarchical grouping structure of items according to their similarity
[18]. To support reconstruction of both biological and digital phylogenetic trees, therefore,
we study both types of querying regimes in this paper.

More specifically, with respect to biological phylogenetic trees, we focus on relative-
distance queries, where one is given three leaf nodes (corresponding to species), x, y, and z,
and the response is a determination of which pair, (x, y), (x, z), or (y, z), is a closest pair,
hence, has the most-recent common ancestor [29]. With respect to digital phylogenetic trees,
we instead focus on path queries, where one is given two nodes, v and w, in the tree and
the response is “true” if and only if v is an ancestor of w.

The motivation for reconstructing phylogenetic trees comes from a desire to better
understand the evolution of the objects represented in a given phylogenetic tree. For
example, understanding how biological species evolved is useful for understanding and

1 One notable exception to this restriction of only being able to ask queries involving leaves in a biological
phylogenetic tree is for phylogenetic trees of biological viruses, for which genetic sequencing may
be known for all instances; hence, ancestor-descendant path queries might also be appropriate for
reconstructing some biological phylogenetic trees.

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:3

categorizing the fossil record and understanding when species are close relatives [29, 18].
Similarly, understanding how digital objects have been edited and transformed can be
useful for data protection, computer security, privacy, copyright disputes, and plariarism
detection [22, 35, 27, 32, 40, 6, 16, 15, 14]. For instance, understanding the evolutionary
process of a computer virus can provide insights into its ancestry, characteristics of the
attacker, and where future attacks might come from and what they might look like [35].

The efficiency of a tree reconstruction algorithm can be characterized in terms of its
query-complexity measure, Q(n), which is the total number of queries of a certain type
needed to reconstruct a given tree. This parameter comes from machine-learning and
complexity theory, e.g., see [1, 9, 17, 42], where it is also known as “decision-tree complexity,”
e.g., see [48, 5]. Previous work on tree reconstruction has focused on sequential methods,
where queries are issued and answered one at a time. For example, in pioneering work for
this research area, Kannan et al. [29] show that an n-node biological phylogenetic tree can
be reconstructed sequentially from O(n logn) three-node relative-distance queries.

Indeed, their reconstruction algorithms are inherently sequential and involve incrementally
inserting leaf nodes into the phylogenetic tree reconstructed for the previously-inserted nodes.

In many tree reconstruction applications, queries are expensive [29, 18, 22, 35, 27, 32, 40,
6, 16, 15, 14], but can be issued in batches. For example, there is nothing preventing the
biological experiments [29] that are represented in three-node relative-distance queries from
being issued in parallel. Thus, in order to speed up tree reconstruction, in this paper we
are interested in parallel tree reconstruction. To this end, we also use a round-complexity
parameter, R(n), which measures the number of rounds of queries needed to reconstruct a
tree such that the queries issued in any round comprise a batch of independent queries. That
is, no query issued in a given round can depend on the outcome of another query issued
in that round, although both can depend on answers to queries issued in previous rounds.
Roughly speaking, R(n) corresponds to the span of a parallel reconstruction algorithm and
Q(n) corresponds to its work. In this paper, we are interested in studying complexities for
R(n) and Q(n) with respect to biological and digital phylogenetic trees with fixed maximum
degree, d.

1.1 Related Work
The general problem of reconstructing graphs from distance queries was studied by Kannan
et al. [30], who provide a randomized algorithm for reconstructing a graph of n vertices using
Õ(n3/2) distance queries.2

Previous parallel work has focused on inferring phylogenetic trees through Bayesian
estimation [4]. However, we are not aware of previous parallel work using a similar query
models to ours. With respect to previous work on sequential tree reconstruction, Culberson
and Rudnicki [13] provide the first sub-quadratic algorithms for reconstructing a weighted
undirected tree with n vertices and bounded degree d from additive queries, where each
query returns the sum of the weights of the edges of the path between a given pair of vertices.
Reyzin and Srivastava [38] show that the Culberson-Rudnicki algorithm uses O(n3/2 ·

√
d)

queries.
Waterman et al. [47] introduce the problem of reconstructing biological phylogenetic trees,

using additive queries, which are more powerful than relative-distance queries. Hein [24]
shows that this problem has a solution that uses O(dn logd n) additive queries, when the

2 The Õ(·) notation hides poly-logarithmic factors.

ESA 2020

3:4 Reconstructing Phylogenetic Trees in Parallel

tree has maximum degree d, which is asymptotically optimal [31]. Kannan et al. [29] show
that an n-node binary phylogenetic tree can be reconstructed from O(n logn) three-node
relative-distance queries. Their method appears inherently sequential, however, as it is based
on an incremental approach that mimics insertion-sort. Similarly, Emamjomeh-Zadeh and
Kempe [18] also give a sequential method using relative-distance queries that has a query
complexity of O(n logn). Their algorithm, however, was designed for a different context,
namely, hierarchical clustering.

Additionally, there exists some work (e.g. [28, 7, 25]) in an alternative perspective of
the problem reconstructing phylogenetic trees, in which the goal is to find the best tree
explaining the similarity and the relationship between a given fixed (or dynamic) set of data
sequences (e.g. of species), using Maximum Parsimony [19, 21, 39] or Maximum Likelihood
[20, 10]. This contrasts with our approach of recovering the “ground truth” tree known only
to an oracle, which is consistent with its answers about the tree.

With respect to digital phylogenetic tree reconstruction, there are a number of sequential
algorithms with O(n2) query complexities, including the use of what we are calling path
queries, where the queries are also individually expensive, e.g., see [22, 35, 27, 32, 40, 6,
16, 15, 14]. Jagadish and Sen [26] consider reconstructing undirected unweighted degree-d
trees, giving a deterministic algorithm that requires O(dn1.5 logn) separator queries, which
answer if a vertex lies on the path between two vertices. They also give a randomized
algorithm using an expected O(d2n log2 n) number of separator queries, and they give an
Ω(dn) lower bound for any deterministic algorithm. Wang and Honorio [46] consider the
problem of reconstructing bounded-degree rooted trees, giving a randomized algorithm that
uses expected O(dn log2 n) path queries. They also prove that any randomized algorithm
requires Ω(n logn) path queries.

Our Contributions. In this paper, we study the parallel phylogenetic tree reconstruction
problem with respect to the two different types of queries mentioned above:

We show that an n-node rooted biological (binary) phylogenetic tree can be reconstructed
from three-node relative-distance queries with R(n) that is O(logn) and Q(n) that
is O(n logn), with high probability (w.h.p.)3. Both bounds are asymptotically optimal.
We show that an n-node fixed-degree digital phylogenetic tree can be reconstructed
from path queries, which ask whether a given node, u, is an ancestor of a given node,
w, with R(n) that is O(logn) and Q(n) that is O(n logn), w.h.p. We also provide an
Ω(dn+ n logn) lower bound for any randomized or deterministic algorithm suggesting
that our algorithm is optimal in terms of query complexity and round complexity. Further,
this asymptotically-optimal Q(n) bound actually improves the sequential complexity for
this problem, as the previous best bound for Q(n), due to Wang and Honorio [46], had a
Q(n) bound of O(n log2 n) for reconstructing fixed-degree rooted trees using path queries.
Of course, our method also applies to biological phylogenetic trees that support path
queries.

A preliminary announcement of some of this paper’s results, restricted to binary trees,
was presented in [3]. Most of our algorithms are quite simple, although their analyses are at
times nontrivial. Moreover, given the many applications of biological and digital phylogenetic
tree reconstruction, we feel that our algorithms have real-world applications. Thus, we

3 We say that an event occurs with high probability if it occurs with probability at least 1− 1/nc, for
some constant c ≥ 1.

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:5

have done an extensive experimental analysis of our algorithms, using both real-world and
synthetic data for biological and digital phylogenetic trees. Our experimental results provide
empirical evidence that our methods achieve significant parallel speedups while also providing
improved query complexities in practice.

2 Preliminaries

In graph theory, an arborescence is a directed graph, T , with a distinguished vertex, r,
called the root, such that, for any vertex v in T that is not the root, there is exactly one
path from r to v, e.g., see Tutte [43]. That is, an arborescence is a graph-theoretic way of
describing a rooted tree, so that all the edges are going away from the root. In this paper,
when we refer to a “rooted tree” it should be understood formally to be an arborescence.

We represent a rooted tree as T = (V,E, r), with a vertex set V , edge set E, and root
r ∈ V . The degree of a vertex in such a tree is the sum of its in-degree and out-degree, and
the degree of a tree, T , is the maximum degree of all vertices in T . So, an arborescence
representing a binary tree would have degree 3. Because of the motivating applications, e.g.,
from computational biology, we assume in this paper that the trees we want to reconstruct
have maximum degree that is bounded by a fixed constant, d.

Let us review a few terms regarding rooted trees.

I Definition 1 (ancestry). Given a rooted tree, T = (V,E, r), we say u is parent of v (and
v is a child of u) if there exists a directed edge (u, v) in E. The ancestor relation is the
transitive closure of the parent relation, and the descendant relation is the transitive closure
of the child relation. We denote the number of descendants of vertex s by D(s). A node
without any children is called a leaf. Given two leaf nodes, u and v in T , their lowest
common ancestor, lca(u, v), is the node, w in T , that is an ancestor of both u and v and
has no child that is also an ancestor of u and v.

We next define the types of queries we consider in this paper for reconstructing a rooted
tree, T = (V,E, r).

I Definition 2. A relative-distance query for T is a function, closer, which takes three
leaf nodes, u, v, and w in T , as input and returns the pair of nodes from the set, {u, v, w},
that has the lower lowest common ancestor. That is, closer(u, v, w) = (u, v) if lca(u, v) is a
descendant of lca(u,w) = lca(v, w). Likewise, we also have that closer(u, v, w) = (u,w) if
lca(u,w) is a descendant of lca(u, v) = lca(v, w), and closer(u, v, w) = (v, w) if lca(v, w) is
a descendant of lca(u, v) = lca(u,w).

Definition 2 assumes T is a binary tree (of degree 3). Note that in this paper we restrict
relative-distance queries to leaves, since these represent, e.g., current species in the application
of reconstructing biological phylogenetic trees.

I Definition 3. A path query for T is a function, path, that takes two nodes, u and v in
T , as input and returns 1 if there is a (directed) path from vertex u to v, and otherwise
returns 0. Also, for u ∈ V and W ⊆ V , we define count(u,W) =

∑
v∈W path(u, v), which is

the number of descendants of u in W .

We next study some preliminaries involving the structure of degree-d rooted trees that
will prove useful for our parallel algorithms.

ESA 2020

3:6 Reconstructing Phylogenetic Trees in Parallel

+

Figure 2 Illustration of a divide-conquer approach for trees. The edge (x, y) is an even-edge-
separator. Note that the root of T ′′ is r, while y becomes root of T ′.

IDefinition 4. Let T = (V,E, r) be a degree-d rooted tree. We say that an edge e = (x, y) ∈ E
is an even-edge-separator if removing e from T partitions it into two rooted trees, T ′ =
(V ′, E′, y) and T ′′ = (V ′′, E′′, r), such that |V |d ≤ |V

′| ≤ |V |(d−1)
d and |V |d ≤ |V

′′| ≤ |V |(d−1)
d .

(See Figure 2.)

I Lemma 5. Every rooted tree of degree-d has an even-edge-separator.

Proof. This follows from a result by Valiant [45, Lemma 2]. J

As we will see, this fact is useful for designing simple parallel divide-and-conquer algo-
rithms. Namely, if we can find an even-edge-separator, then we can cut the tree in two by
removing that edge and recurse on the two remaining subtrees in parallel (see Figure 2).

3 Reconstructing Biological Phylogenetic Trees in Parallel

Relative-distance queries model an experimental approach to constructing a biological
phylogenetic tree, e.g., where DNA sequences are compared to determine which samples are
the most similar [29]. In simple terms, pairs of DNA sequences that are closer to one another
than to a third sequence are assumed to be from two species with a common ancestor that
is more recent than the common ancestor of all three. In this section, for the sake of tree
reconstruction, we assume the responder has knowledge of the absolute structure of a rooted
binary phylogenetic tree; hence, each response to a closer(u, v, w) query is assumed accurate
with respect to an unknown rooted binary tree, T . As in the pioneering work of Kannan
et al. [29], we assume the distance comparisons are accurate and consistent. The novel
dimension here is that we consider parallel algorithms for phylogenetic tree reconstruction.

As mentioned above, we consider relative-distance queries to occur between leaves of
a rooted binary tree, T . That is, in our query model, the querier has no knowledge of
the internal nodes of T and can only perform queries using leaves. Because T is a binary
phylogenetic tree, we may assume it is a proper binary tree, where each internal node in T
has exactly two children.

3.1 Algorithm
At a high level, our parallel reconstruction algorithm (detailed in Algorithm 1) uses a
randomized divide-and-conquer approach, similar to Figure 2. In our case, however, the
division process is random three-way split through a vertex separator, rather than an edge-
separator-based binary split. Initially, all leaves belong to a single partition, L. Then two

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:7

a b

(a,b)

(a)

R

a b

vlca(a, b)

lca(c, d)

lca(a, c)

w lca(e, f)

cc

u
x

(b)

root(Tr)

Figure 3 (a) The subgroups leaves are split into. (b) The linking step attaching Ta, Tb and Tr.

Algorithm 1 Reconstruct a binary tree of a set of leaves, L.

1 Function reconstruct-phylogenetic(L):
2 if |L| ≤ 3 then return the tree formed by querying L
3 Pick two leaves, a, b ∈ L, uniformly at random
4 for each c ∈ L s.t. c 6= a, b do in parallel
5 Perform query closer(a, b, c)
6 Split the leaves in L into R, A, and B based on results
7 parallel do
8 Ta ← reconstruct-phylogenetic(A ∪ {a})
9 Tb ← reconstruct-phylogenetic(B ∪ {b})

10 Tr ← reconstruct-phylogenetic(R)
11 Let v be a new node, labeled “lca(a, b)”
12 Set v’s left child to root(Ta) and the right to root(Tb)
13 if R = ∅ then return tree, Tv, rooted at v
14 else return link(v, Tr)

leaves, a and b, are chosen uniformly at random from L and each remaining leaf, c, is queried
in parallel against them using relative-distance queries. Notice that the lowest common
ancestor of a and b splits the tree into three parts. Given a and b, the other leaves are split
into three subsets (R, A, and B) according to their query result (as shown in Figure 3(a)):

A: leaves close to a, i.e., for which closer(a, b, c) = (a, c)
B: leaves close to b, i.e., for which closer(a, b, c) = (b, c)
R: remaining leaves, i.e., for which closer(a, b, c) = (a, b)

We then recursively construct the trees in parallel: Ta, for A ∪ {a}; Tb, for B ∪ {b}; and
Tr, for R. The remaining challenge, of course, is to merge these trees to reconstruct the
complete tree, T . The subtree of T formed by subset A ∪B is rooted at an internal node,
v = lca(a, b); hence, we can create a new node, v, label it “lca(a, b)” and let Ta and Tb be
v’s children. If R = ∅, then we are done. Otherwise, we need to determine the parent of v
in T ; that is, we need to link v into Tr using function link(v, Tr).

To identify the parent of v, in T , let us assume inductively that each internal node u ∈ Tr
has a label “lca(c, d)”, since we have already recursively labeled each internal node in T .
Recall that v is labeled with “lca(a, b)”. The crucial observation is to note if there exists an
edge (u→ w) in Tr, such that u is labeled “lca(c, d)” and closer(a, c, d) = (a, z) for z ∈ {c, d},
and w is either leaf z or an ancestor of z labeled “lca(e, f)” with closer(a, e, f) = (e, f),
(See Figure 3(b)), then edge (u → w) must be where the parent of v belongs in T , and if

ESA 2020

3:8 Reconstructing Phylogenetic Trees in Parallel

nbot

ntop

β

m

t

root≥ n
α

≥ n
α tR

troot

βR

βL

Figure 4 A left-heavy tree drawing displaying node ntop, node nbot and the relevant partitions.

there is no such edge, the parent of v is the root of T and the sibling of v is the root of
Tr. We can determine the edge (u→ w) in a single parallel round by performing the query,
closer(a, c, d), for each each internal node u ∈ T (where the label of u is “lca(c, d)”). The
full pseudo-code of function link(v, Tr) is provided in the full version of the paper [2]. It is
also worth noting that if the oracle can identify cases where all three leaves share a single
lca, simple modifications to Algorithm 1 would enable it to handle trees of higher degree.

3.2 Analysis
The correctness of our algorithm follows from the way relative-distance queries always return
a label for the lowest common ancestor for the two closest leaves among the three input
nodes. Furthermore, executing the three recursive calls can be done in parallel, because
A ∪ {a}, B ∪ {b}, and R form a partition of the set of leaves, L, and at every stage we only
perform relative-distance queries relevant to the respective partition.

I Theorem 6. Given a set, L, of n leaves in a proper binary tree, T , such as a biological
phylogenetic tree, we can reconstruct T using relative-distance queries with a round complexity,
R(n), that is O(logn) and a query complexity, Q(n), that is O(n logn), with high probability.

Proof. Because the recursive calls we perform in each call to the reconstruct algorithm are
done in parallel on a partition of the leaf nodes in L, we perform Θ(n) work per round.
Thus, showing that the number of rounds, R(n), is O(logn) w.h.p. also implies that Q(n)
is O(n logn) w.h.p. To prove this, we show that each round in Algorithm 1 has a constant
probability of decreasing the problem size by at least a constant factor for each of its recursive
calls. For analysis purposes, we consider the left-heavy representation of each tree, in which
the tree rooted at the left child of any node is always at least as big as the tree rooted at its
right child. (See Figure 4.) Using this view, we can characterize when a partition determines
a “good split” and provide bounds on the sizes of the partitions, as follows.

I Lemma 7. With probability of at least α−5
2α2 , a round of Algorithm 1 decreases the problem

size of any recursive call by at least a factor of α−1
α , for a constant α > 5, thus experiencing

a good split.

Proof. Define the spine to be all nodes on the path from the root to its left-most leaf in a
left-heavy drawing. Let nbot be the bottom-most node on the spine that has at least n/α of
the nodes in its sub-tree. Conversely, let ntop be the parent of the top-most spine node that
has at most (1 − 1/α) · n descendants. (See Figure 4.) Consider the three resulting trees
obtained from separating at the incoming edge to nbot and the outgoing edge from ntop to

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:9

its left child. As shown in Figure 4, let t be the resulting tree retaining the root, β the tree
rooted at nbot and m the tree between ntop and nbot. Within β let βL and βR be the trees
rooted at the left and right child of nbot. Similarly, for t, let tR be the tree rooted at the
right child of ntop. Finally, let troot be the remaining tree when cut at ntop.

Consider the size of tree β, |β|, since this is the first tree rooted in the spine with over
n/α nodes, then βL must have had strictly under n/α nodes. Since the trees are in left-heavy
order, βR can have at most as many nodes as βL so n

α ≤ |β| <
2n
α . Furthermore, we know that

|β|+ |m|+ |tR|+ |troot|+1 = n. Due to the left-heavy order, |tR| ≤ |β|+ |m|. By definition of
ntop, it’s necessary that |troot| < n

α , thus 2(|β|+ |m|)+1 > n− n
α and |β|+ |m| >

(
α−1
2α
)
n− 1

2 .
Using the previous inequality and |t| = n − |β| − |m|, we find |t| <

(
α+1
2α
)
n + 1

2 . Also,
|m| = n− |t| − |β|, so |m| > n− 5n+αn

2α .

n

α
≤ |β| < 2n

α
,

n

α
≤ |t| <

(
α+ 1

2α

)
n+ 1

2 ,
(
α− 5

2α

)
n < |m| ≤

(
α− 2
α

)
n (1)

Picking a leaf from β and another from m guarantees that β ⊆ (A ∪ {a}) and t ⊆ R. Thus,
using Equation (1), each of the three sub-problem sizes, |A∪ {a}|, |B ∪ {b}|, and |R|, will be
at most

(
α−1
α

)
n, when α > 5. Pr[good split] ≥ Pr[leaf in β] ·Pr[leaf in m]. Asymptotically,

Pr[leaf in β] ≈ Pr[node in β], thus Pr[good split] > α−5
2α2 , which established the lemma. J

Returning to the proof of Theorem 6, let p = α−5
2α2 . From Lemma 7, we expect it

will take 1/p rounds to obtain a good split. Every good split will reduce the problem-
size by at least a constant factor, α−1

α . Thus, we are guaranteed to have just a single
node left after we get Nsplits = log α

α−1
(n) good splits. Consider the geometric random

variable, Xi, describing the number of rounds required to obtain the i-th good split, then
X = X1 + . . .+XNsplits describes the total number of rounds required by the algorithm. By
linearity of expectation, E[X] = 2α2

(α−5) ·Nsplits = 2α2

(α−5) · log α
α−1

(n). Therefore, since α > 5
is a constant, this already implies an expected O(logn) rounds for Algorithm 1. Moreover,
by a Chernoff bound for the sum of independent geometric random variables (see [23, 33]),
Pr [X > C · E[X]] ≤ e

−(C−1)·p·Nsplits
5 for any constant C ≥ 3 and constant α > 5. Thus, the

probability that we take over C · E[X] rounds is O(1/nC−1). Therefore, by a union bound
across the n leaves, our algorithm completes in O(logn) rounds w.h.p. J

I Corollary 8. Algorithm 1 is optimal when asking θ(n) queries per round.

The query complexity of Algorithm 1 matches an Ω(n logn) lower bound for Q(n), due
to Kannan et al. [29]. Besides, we need Ω(logn) rounds if we have θ(n) processors; hence,
the round complexity of Algorithm 1 is also optimal.

4 Reconstructing Phylogenetic Trees from Path Queries

Let T = (V,E, r) be a rooted (biological or digital) phylogenetic tree with fixed degree, d.
In this section, we show how a querier can reconstruct T by issuing Q(n) ∈ O(n logn) path
queries in R(n) ∈ O(logn) rounds, w.h.p., where n = |V |. We provide a lower bound to
prove that our algorithm is optimal in terms of query complexity and round complexity. At
the outset, the only thing we assume the querier knows is n and V , that is, the vertex set
for T , and that the names of the nodes in V are unique, i.e., we may assume, w.l.o.g., that
V = {1, 2, . . . , n}. The querier doesn’t know E or r – learning these is his goal.

ESA 2020

3:10 Reconstructing Phylogenetic Trees in Parallel

4.1 Algorithms
We start by learning r, which we show can be done via any maximum-finding algorithm in
Valiant’s parallel model [44], which only counts parallel steps involving comparisons. The
challenge, of course, is that the ancestor relationship in T is, in general, not a total order, as
required by a maximum-finding algorithm. This does not actually pose a problem, however.

I Lemma 9. Let A be a parallel maximum-finding algorithm in Valiant’s model, with O(f(n))
span and O(g(n)) work. We can use A to find the root, r in a rooted tree T = (V,E, r), using
R(n) ∈ O(f(n)) rounds and Q(n) ∈ O(g(n) + n) total queries.

Proof. We pick an arbitrary vertex v ∈ T . In the first round, we perform queries path(u, v)
in parallel for every other vertex u ∈ V to find S, the ancestor set for v. If S = ∅, then v is
the root. Otherwise, we know all the vertices in a path from root to the parent of v, albeit
unsorted. Still, note that for S the ancestor relation is a total order; hence, we can simulate
A with path queries to resolve the comparisons made by A. We have just a single round and
O(n) queries more than what it takes for A to find the maximum. Thus, we can find the
root in O(f(n)) rounds and O(g(n) + n) queries. J

Thus, by well-known maximum-finding algorithms, e.g., see [11, 41, 44]:

I Corollary 10. We can find r of a rooted tree T = (V,E, r) deterministically in O(log logn)
rounds and O(n) queries.

Determining the rest of the structure of T is more challenging, however. At a high level,
our approach to solving this challenge is to use a separator-based divide-and-conquer strategy,
that is, find a “near” edge-separator in T , divide T using this edge, and recurse on the two
remaining subtrees in parallel. The difficulty, of course, is that the querier has no knowledge
of the edges of T ; hence, the very first step, finding a “near” edge-separator, is a bottleneck
computation. Fortunately, as we show in Lemma 11, if v is a randomly-chosen vertex, then,
with probability depending on d, the path from root r to v includes an edge-separator.

I Lemma 11. Let T = (V,E, r) be a rooted tree of degree d and let v be a vertex chosen
uniformly at random from V . Then, with probability at least 1

d , an even-edge-separator is
one of the edges on the path from r to v.

Proof. By Lemma 5, T has an even-edge-separator. Let e = (x, y) be an even-edge-separator
for T = (V,E, r) and let T ′ = (V ′, E′, y) be the subtree rooted at y when we remove e.
Then, every path from r to each v ∈ V ′ must contain e. By Definition 4, T ′ has at least
|V |/d vertices. Therefore, if we choose v uniformly at random from V , then with probability
|V ′|
|V | ≥

1
d , the path from r to v contains e. J

I Definition 12 (splitting-edge). In a degree-d rooted tree, an edge (parent(s), s) is a splitting-
edge if |V |d+2 ≤ D(s) ≤ |V |(d+1)

d+2 , where D(s) is the number of descendants of s.

Note that a degree-d rooted tree T always has a splitting-edge, as every even-edge-
separator is also a splitting-edge and by Lemma 5, it always has an even-edge-separator –
a fact we use in our tree-reconstruction algorithm, which we describe next. This recursive
algorithm (given in pseudo-code in Algorithm 2), assumes the existence of a randomized
method, find-splitting-edge, which returns a splitting-edge in T , with probability Ω(1/d), and
otherwise returns Null. Our reconstruction algorithm is therefore a randomized recursive
algorithm that takes as input a set of vertices, V , with a (known) root vertex r ∈ V , and

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:11

returns the edge set, E, for V . At a high level, our algorithm is to repeatedly call the method,
find-splitting-edge, until it returns a splitting-edge, at which point we divide the set of vertices
using this edge and recurse on the two resulting subtrees.

Algorithm 2 Reconstruct a rooted tree with path queries.

1 Function reconstruct-rooted-tree(V, r):
2 E ← ∅
3 if |V | ≤ g then // g is a chosen constant
4 return edges found by a quadratic brute-force algorithm
5 while true do
6 Pick a vertex v ∈ V uniformly at random
7 for z ∈ V do in parallel
8 Perform query path(z, v)
9 Let Y be the vertex set of the path from r to v

10 splitting-edge ← find-splitting-edge(v, Y, V)
11 if splitting-edge 6= Null then
12 (u,w)← splitting-edge
13 E ← E ∪ {(u,w)}
14 for z ∈ V do in parallel
15 Perform query path(w, z)
16 split V into V1, V2 at (u,w) using query results
17 parallel do
18 E ← E ∪ reconstruct-rooted-tree(V1, w)
19 E ← E ∪ reconstruct-rooted-tree(V2, r)
20 return E

In more detail, during each iteration of a repeating while loop, we choose a vertex
v ∈ V uniformly at random. Then, we find the vertices on the path from r to v and store
them in a set, Y , using the fact that a vertex, z, is on the path from r to v if and only if
path(z, v) = 1. Then, we attempt to find a splitting-edge using the function find-splitting-edge
(shown in pseudo-code in Algorithm 3). If find-splitting-edge is unsuccessful, we give up on
vertex v, and restart the while loop with a new choice for v. Otherwise, find-splitting-edge
succeeded and we cut the tree at the returned splitting-edge, (u,w). All vertices, z ∈ V ,
where path(w, z) = 1 belong to the subtree rooted at w, thus belonging to V1, whereas the
remaining vertices belong to V2 and the partition containing both u and rooted at r. Thus,
after cutting the tree we recursively reconstruct-rooted-tree on V1 and V2.

The main idea for our efficient tree reconstruction algorithm lies in our find-splitting-edge
method (see Algorithm 3), which we describe next. This method takes as input the vertex v,
the vertex set Y , (comprising the vertices on the path from r to v), and the vertex set V .
As we show, with probability depending on d, the output of this method is a splitting-edge;
otherwise, the output is Null. Our algorithm performs a type of “noisy” search in Y to either
locate a likely splitting-edge or return Null as an indication of failure.

Our find-splitting-edge algorithm consists of two phases. We enter Phase 1 if the size
of path Y is too big, i.e., |Y | > |V |/K = |Y |

C2 log |V | , where C2 is a predetermined constant
and K = C2 log |V |. The purpose of this phase is either to pass a shorter path including
an even-edge-separator to the second phase or to find a splitting-edge in this iteration.
The search on the set Y is noisy, because it involves random sampling. In particular, we
take a random sample S of size m = C1

√
|V | from path Y (where C1 is a predetermined

ESA 2020

3:12 Reconstructing Phylogenetic Trees in Parallel

Algorithm 3 Finding a splitting-edge from vertex set, Y , on the path from vertex v to
the root r.

1 Function find-splitting-edge(v, Y, V):
2 splitting-edge ← Null
3 m = C1

√
|V |, K = C2 log |V |

Phase 1:
4 if |Y | > |V |/K then
5 S ← subset of m random elements from Y

6 S ← S ∪ {v, r}
7 for each s ∈ S do in parallel
8 Xs ← subset of K random elements from V

9 Perform queries to find count(s,Xs)
10 if ∀s ∈ S : count(s,Xs) < K

d+1 then return Null
11 if ∀s ∈ S : count(s,Xs) > Kd

d+1 then return Null
12 if ∃s ∈ S : K

d+1 ≤ count(s,Xs) ≤ Kd
d+1 then

return verify-splitting-edge(s, V)
13 for each {a, b} ∈ S do in parallel
14 perform query path(a, b)
15 Find w, z such that they are two consecutive nodes in the sorted order of

S such that count(w,Xw) > Kd
d+1 and count(z,Xz) < K

d+1
16 Y ← nodes from Y in the path from w to z

Phase 2:
17 if |Y | > |V |/K then return Null
18 for each s ∈ Y do in parallel
19 Xs ← subset of K random elements from V

20 Perform queries to find count(s,Xs)
21 if ∃s ∈ Y s.t. K

d+1 ≤ count(s,Xs) ≤ Kd
d+1 then

return verify-splitting-edge(s, V)
22 return Null

constant). We include r and v, the two endpoints of the path Y , to S. Then, we estimate
the number of descendants of s, D(s), for each s ∈ S. To estimate this number for each
s ∈ S, we take a random sample Xs of K elements from V and we perform queries to find
count(s,Xs). Here, we use m ·K ∈ O(

√
|V | log |V |) queries in a single round. Then, if all

the estimates were less than K/(d+ 1), we return Null as an indication of failure (we guess
that all the nodes on the path Y have too few descendants to be a separator). Similarly, if
all the estimates were greater than Kd

d+1 , we return Null (we guess that all the nodes on the
path Y have too many descendants to be a separator). If there exists a node s such that
K
d+1 ≤ count(s,Xs) ≤ Kd

d+1 , we check if s is a splitting-edge by counting its descendants using
a function, verify-splitting-edge. This function takes vertex s and the full vertex set V to
return edge (find-parent(s, V), s) if |V |d+2 ≤ count(s, V) ≤ |V | · d+1

d+2 and return Null otherwise.

If neither of these three cases happens, we perform queries to sort elements of S using
a trivial quadratic work parallel sort which takes O(m2) ∈ O(|V |) queries in a single
round. We know that two consecutive nodes w and z exist on the sorted order of S, where
count(w,Xw) > Kd

d+1 and count(z,Xz) < K
d+1 . We find all the nodes on Y starting at w and

ending at z, and use this as our new path Y .

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:13

Function find-parent(s, V).

1 find Y , ancestor set of s from V using |V | queries in parallel
2 m = C1

√
|V |

3 for i← 1 to 2 & |Y | > m do
4 S ← random subset of Y with m elements
5 sort S as x1 < ... < xm using O(m2) queries in parallel
6 find Y ′ = {u ∈ Y | u ≤ x1} using O(|Y |) queries in parallel, replace Y with Y ′

7 if |Y | ≤ m then
8 sort Y using O(m2) queries in parallel
9 return (minimum of this path)

10 return Null

In Phase 2, we expect a path of size under |Y |/K, we will later prove this is true with
high probability. Otherwise, we just return Null. In this phase, we estimate the number of
descendants much like we did in the previous phase, except the only difference is that we
estimate the number of descendants for all the nodes on our new path Y . If there exists
a node s ∈ Y such that K

d+1 ≤ count(s,Xs) ≤ Kd
d+1 , we verify if it is a splitting-edge, as

described earlier.
Finally, let us describe how we find the parent of a node s in V . We first find, Y , the set

of ancestors of v in V in parallel using |V | queries. Let x � y describe the total order of nodes
in path Y , where for any x, y ∈ Y : x � y if and only if path(x, y) = 1. The parent of s is the
lowest vertex on the path. Then, the key idea is that if |Y | ∈ O(

√
|V |), we can sort them

using O(|V |) queries. If the path is greater than this amount, we instead use S, a sample of
size O(

√
|V |) from the path. Next, we sort the sample to obtain x1 < . . . < xm for S and

then find all of the nodes in Y which are less than the smallest sample x1. Finally, we replace
Y with these descendants of x1 and repeat the whole procedure again. We later prove that
with high probability after two iterations of this sampling, the size of the path is O(

√
|V |),

allowing us to sort all nodes in Y to return the minimum (see Function find-parent).

4.2 Analysis
The correctness of the algorithm follows from the fact that our method first finds the root, r,
of T and then finds the parent of each other node, v in T .

I Theorem 13. Given a set, V , of nodes of a rooted tree, T , such as a biological or digital
phylogenetic tree, with degree bounded by a fixed constant, d, we can construct T using path
queries with round complexity, R(n), that is O(logn) and query complexity, Q(n), that is
O(n logn), with high probability.

Our proof of Theorem 13 begins with Lemma 14.

I Lemma 14. In a rooted tree, T = (V,E, r), let Y be a (directed) path, where |Y | > m =
C1
√
|V |. If we take a sample, S, of m elements from Y , then with probability 1− 1

|V | , every

two consecutive nodes of S in the sorted order of S are within distance O
(
|Y | log |V |√

|V |

)
from

each other in Y .

Proof. Note that some nodes of Y may be picked more than once as we pick S in parallel.
Divide the path Y into

√
|V |

log |V | equal size sections (the difference between the size of any two

sections is at most 1). For each 1 ≤ i ≤
√
|V |

log |V | , let Ai be the subset of S lying in the ith

ESA 2020

3:14 Reconstructing Phylogenetic Trees in Parallel

x x x x x x x xx

Figure 5 Illustration of how scattered sample S is on path Y . The ith blue interval represents
the ith section of Y , the black dots correspond to the nodes on the path Y , and red crossed marks
represent elements of S.

section of Y . (See Figure 5.) It is clear that each node s ∈ S ends up in section i with
probability log |V |√

|V |
, and therefore, for each 1 ≤ i ≤

√
|V |

log |V | , E [|Ai|] = C1 log |V |. Thus, using

standard a Chernoff bound, Pr [|Ai| = 0] < 1
|V |2 for any constant C1 > 6 ln 10. Using a union

bound, all the sections are non-empty with probability at least 1− 1
|V | . Hence, the distance

between any two consecutive nodes of S from each other in Y is at most 2|Y | log |V |√
|V |

. J

Lemma 14 allows us to analyze the find-parent method, as follows.

I Lemma 15. The find-parent(s, V) method outputs the parent of s with probability at least
1− 2/|V |, with Q(n) ∈ O(n) and R(n) ∈ O(1).

Proof. The find-parent method succeeds if, after the for loop, the size of the set of remaining
ancestors of s, Y , is |Y | ≤ m, so it is enough to show that this occurs with probability at least
1− 2/|V |. By Lemma 14, the size of Y at the end of the first iteration is |Y | ∈ O(m log |V |),
with probability at least 1− 1/|V |. Similarly, a second iteration, if required, further reduces
the size of Y into |Y | ∈ o(m), with probability at least 1− 1/|V |. Thus, by a union bound,
the probability of success is at least 1− 2/|V |.

The query complexity can be broken down as follows, where m ∈ O(
√
|V |):

1. O(|V |) queries in 1 round to determine the ancestor set, Y , of s.
2. O(m2) + O(|Y |) ∈ O(|V |) queries in 2 rounds for each of the (at most) 2 iterations

performed in find-parent, whose purpose is to discard non-parent ancestors of s in Y .
3. O(m2) ∈ O(|V |) to find, in 1 round, the minimum among the remaining ancestors of Y

(at most m w.h.p.). If |Y | > m, then no further queries are issued.
In total, the above amounts to Q(n) ∈ O(n) and R(n) ∈ O(1). J

We next analyze the find-splitting-edge method.

I Lemma 16. Any call to find-splitting-edge returns true with probability 1
2d ; hence Algo-

rithm 2 calls find-splitting-edge O(d) times in expectation.

Proof. By Lemma 11, we know that if we pick a vertex v, uniformly at random, then with
probability 1

d , an even-edge-separator lies on the path from r to v. We show that if there is
such an even-edge-separator (Definition 4) on that path, find-splitting-edge(v, Y, V) returns a
splitting-edge (Definition 12) with probability at least 1

2 , and otherwise returns Null. Using
an intricate Chernoff-bound analysis (see full version for details [2]), we can prove that there
exists a constant C2 > 0, as used in line 3 of Algorithm 3 such that the following probability
bounds always hold:Pr

(
count(s,Xs) ≥ K

d+1

)
≥ 1− 1

|V |2 if count(s, V) ≥ |V |d ,

Pr
(
count(s,Xs) ≤ K d

d+1

)
≥ 1− 1

|V |2 if count(s, V) ≤ |V |d−1
d ,

(2)

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:15

Pr
(
count(s,Xs) < K

d+1

)
≥ 1− 1

|V |2 if count(s, V) < |V |
d+2 ,

Pr
(
count(s,Xs) > K d

d+1

)
≥ 1− 1

|V |2 if count(s, V) > |V |d+1
d+2

(3)

It is clear that we either return a splitting-edge or Null when passing through verify-
splitting-edge. We break the probability of returning Null according to the phases. We call
a vertex v ineligible if count(v, V) < |V |

d+2 or count(v, V) > |V |(d+1)
d+2 ((parent(v), v) is not

a splitting-edge). On the other hand, we call vertex v candidate if after estimating the
number of its descendants: K

d+1 ≤ count(v,X) ≤ Kd
d+1 . Let (a, b) be an even-edge-separator

on path Y .

Phase 1:
lines 10,11: By Definition 4, |V |d ≤ count(b, V) ≤ |V |(d−1)

d . We add {r, v} to S in line 6 of
the algorithm (the two endpoints of path Y). Notice that |V |d ≤ count(b, V) ≤ count(r, V)
and that count(v, V) ≤ count(b, V) ≤ |V |(d−1)

d . So, by Equation (2), with probability at
least 1− 2

|V |2 , count(r,Xr) ≥ K
d+1 and count(v,Xv) ≤ Kd

d+1 , and consequently, we don’t
return Null in lines 10,11 of the algorithm.
line 12: Equation (3) shows that an ineligible node is not a candidate with probability
1 − 1

|V |2 . Thus, by a union bound, none of our candidates is ineligible in line 12 with
probability at least 1− |S|

|V |2 . Moreover, if there exists a candidate s in S, the algorithm
outputs a splitting-edge (parent(s), s) with probability at least 1− 2

|V | , by Lemma 15.
lines 15,16: Let us partition S into Sl and Sr (see Figure 6), as follows:

Sl = {s ∈ S | count(s, V) > count(b, V)}, Sr = {s ∈ S | count(s, V) < count(b, V)}

Then, by definition of b:

∀s ∈ Sl : count(s, V) > |V |/d, ∀s ∈ Sr : count(s, V) < |V |(d− 1)/d.

and thus, by Equation (2) and a union bound, we have with probability at least 1− |S|
|V |2 :

∀s ∈ Sl : count(s,Xs) ≥ K/(d+ 1), ∀s ∈ Sr : count(s,Xs) ≤ Kd/(d+ 1).

Finally, since S does not contain any candidate nodes (otherwise we would have picked
them in line 12), the above inequalities imply that:

∀s ∈ Sl : count(s,Xs) > Kd/(d+ 1), ∀s ∈ Sr : count(s,Xs) < K/(d+ 1).

Therefore, w ∈ Sl and z ∈ Sr, which implies that the subpath from w to z in Y

must include vertex b. This means that with probability 1 − O(1
|V |), we either find a

splitting-edge in this phase or pass b to the next phase.

Now, consider Phase 2:
line 17: Here, if |Y | > |V |/K, then we have passed through Phase 1. Using Lemma 14,
we know that since S was a sample of size C1

√
|V | from Y , with probability 1− 1

|V | the
distance between any two consecutive nodes of S in Y was O(|Y | log |V |√

|V |
) ∈ O(

√
|V | log |V |).

Thus, the size of path Y after passing through line 15 is at most O(
√
|V | log |V |). Thus,

the probability of returning Null in line 17 is at most 2
|V | .

ESA 2020

3:16 Reconstructing Phylogenetic Trees in Parallel

x x x x x x xx

Figure 6 Illustration of the path reduction in Phase 1 of find-splitting-edge. At the end of this
phase, the path Y is trimmed down into the subpath consisting of the nodes between w and z, which
contains b w.h.p.

line 21: By Equation (3), with probability at least 1− |Y |
|V |2 , no ineligible node is between

candidate set. Besides, for a candidate node s, the algorithm outputs a splitting-edge
(parent(s), s) with probability at least 1− 2

|V | , by Lemma 15.
line 22: The probability that we return Null here is equal to the probability that our
candidate set in line 21 is empty. By Equation (2), with probability at least 1− 2

|V |2 , b is
between candidates at line 21 and candidate set is non-empty. Thus, the total probability
of failing to return a splitting-edge in this phase is at most O(1

|V |).

Therefore, for |V | greater than the chosen constant g, the probability of returning Null
in the existence of an even-edge-separator is at most O(1

|V |) ≤ 1/2. Thus, the probability of
returning a splitting-edge in any call to find-splitting-edge is at least 1

2d . J

I Lemma 17. The subroutine find-splitting-edge(v, Y, V) has query complexity, Q(n), that is
O(|V |), and round complexity, R(n), that is O(1).

Proof. The queries done by find-splitting-edge(v, Y, V), in the worst case, can be broken
down as follows, where m = O(

√
|V |):

Phase 1: A total of O(|V |) queries in O(1) rounds, consisting of:
O(mK) ∈ O(

√
|V | log |V |) queries in one round for estimating the number of descendants

for the m samples.
O(m2) ∈ O(|V |) queries in one round for sorting the m samples.
O(|Y |) ∈ O(|V |) queries in a round to find the subpath of Y that is the input for Phase 2.
O(|V |) queries in O(1) rounds for determining the parent of s (see Lemma 15).

Phase 2: If we enter this phase, it spends O(|V |) queries in O(1) rounds:
|Y | ·K ∈ O(|V |) queries in one round to evaluate count(s,Xs) for each s ∈ Y .
O(|V |) queries in one round to find the number of descendants of node s.
O(|V |) queries in O(1) rounds to determine the parent of s (see Lemma 15).

Overall, the above break down amounts to Q(n) ∈ O(n) and R(n) ∈ O(1). J

Now, recall Theorem 13: Given a set, V , of nodes of a rooted tree, T , such as a biological
or digital phylogenetic tree, with degree bounded by a fixed constant, d, we can construct T
using path queries with round complexity, R(n), that is O(logn) and query complexity, Q(n),
that is O(n logn), with high probability.

Proof. The expected query complexity Q(n) of Algorithm 2 is dominated by the two recursive
calls

(
Q
(

n
d+2

)
and Q

(
n(d+1)
d+2

))
and the calls to find-splitting-edge. By Lemma 16, we call

find-splitting-edge an expected O(d) times, incurring a cost of O (dn) ∈ O(n) path queries in
O(d) ∈ O(1) rounds (see Lemma 17). Thus, Q(n) and R(n) are:

Q(n) = Q

(
n

d+ 2

)
+Q

(
n(d+ 1)
d+ 2

)
+O (n) ,

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:17

R(n) = max
(
R

(
n

d+ 2

)
, R

(
n(d+ 1)
d+ 2

))
+O(1)

which shows it needs Q(n) ∈ O(n logn) and R(n) ∈ O(logn) in expectation. To prove the
high probability results, note that the main algorithm is a divide-and-conquer algorithm
with two recursive calls per call; hence, it can be modeled with a recursion tree that is a
binary tree, B, with height h = O(log d+2

d+1
n) = O(logn). For any root-to-leaf path in B, the

time taken can modeled as a sum of independent random variables, X = X1 +X2 + · · ·+Xh,
where each Xi is the number of calls to find-splitting-edge (each of which uses O(|V |) queries
in O(1) rounds) required before it returns true, which is a geometric random variable with
parameter p = 1

2d . Thus, by a Chernoff bound for sums of independent geometric random
variables (e.g., see [23, 33]), the probability that X is more than O(d log d+2

d+1
n) is at most

1/nc+1, for any given constant c ≥ 1. The theorem follows, then, by a union bound for the n
root-to-leaf paths in B. J

4.3 Lower Bound
We establish the following simple lower bound, which extends and corrects lower-bound
proofs of Wang and Honorio [46].

I Theorem 18. Reconstructing an n-node, degree-d tree requires Ω(dn+n logn) path queries.
This lower bound holds for the worst case of a deterministic algorithm and for the expected
value of a randomized algorithm.

Proof. Consider an n-node, degree-d tree, T , as shown in Figure 7, which consists of a root,
r, with d children, each of which is the root of a chain, Ti, of at least one node rooted at a
child of r. Since a querier, Bob, can determine the root, r, in O(n) queries anyway, let us
assume for the sake of a lower bound that r is known; hence, no additional information is
gained by path queries involving the root. Let us denote the vertices in chain Ti as Vi. In
order to reconstruct T , Bob must determine the nodes in each Vi and must also determine
their order in Ti. For a given path query, path(u, v), say this query is internal if u, v ∈ Vi,
for some i ∈ [1, d], and this query is external otherwise. Note that even if Bob knows the
full structure of T except for a given node, v, he must perform at least d− 1 external queries
in the worst case, for a deterministic algorithm, or Ω(d) external queries in expectation, for a
randomized algorithm, in order to determine the chain, Ti, to which v belongs. Furthermore,
the result of an (internal or external) query, path(u, v), provides no additional information for
a vertex w distinct from u and v regarding the set, Vi, to which w belongs. Thus, Bob must
perform Ω(d) external queries for each vertex v 6= r, i.e., he must perform Ω(dn) external
queries in total. Moreover, note that the results of external queries involving a vertex, v,

r

V1 V2 V3 V4 V5 V6

Figure 7 Illustration of the Ω(dn + n log n) lower bound for path queries in directed rooted trees
(shown for d = 6).

ESA 2020

3:18 Reconstructing Phylogenetic Trees in Parallel

provide no information regarding the location of v in its chain, Ti. Even if Bob knows
all the vertices that comprise each Vi, he must determine the ordering of these vertices in
the chain, Ti, in order to reconstruct T . That is, Bob must sort the vertices in Vi using
a comparison-based algorithm, where each comparison is an internal query involving two
vertices, u, v ∈ Vi. By well-known sorting lower bounds (which also hold in expectation for
randomized algorithms), e.g., see [23, 12], determining the order of the vertices in each Ti
requires Ω(|Vi| log |Vi|), as one of the chain can be as great as n− d vertices, then he needs
Ω(n logn) internal queries. J

I Corollary 19. Algorithm 2 is optimal for bounded-degree trees when asking θ(n) queries
per round.

The query complexity of Algorithm 2 matches the lower bound provided by Theorem 18
when d is constant. Besides, we need Ω(d+ logn) rounds if we have θ(n) processors; hence,
the round complexity of Algorithm 2 is also optimal.

5 Experiments

Given that both of our algorithms are randomized and perform optimally with high probability,
we carried out experiments to analyze the practicality of our algorithms and compare their
performance with the best known algorithms for reconstructing rooted trees. 4

5.1 Reconstructing Biological Phylogenetic Trees
In order to assess the practical performance of Algorithm 1, we performed experiments using
synthetic phylogenetic trees and real-world biological phylogenetic trees from the phylogenetic
library TreeBase [36], which is a database of biological phylogenetic trees, comprising over
100,000 distinct taxa in total.

4 The complete source code for our experiments, including the implementation of our algorithms and the
algorithms we compared against, is available at github.com/UC-Irvine-Theory/ParallelTreeReconstruction.

Figure 8 A scatter plot showing the number of queries and rounds for each of the three tree
reconstruction algorithms for real trees from TreeBase. Since our algorithm is parallel, we include
round complexity to serve as a comparison for the sequential complexity.

https://github.com/UC-Irvine-Theory/ParallelTreeReconstruction

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:19

Figure 9 A plot showing the average number of queries and rounds for each of the three tree
reconstruction algorithms. Each data point represents the average for 10 randomly generated trees.

We implemented an oracle interface, instantiated it with the relevant trees, and imple-
mented our algorithm along with two other phylogenetic tree reconstruction algorithms that
use relative-distance queries. The first is by Emamjomeh-Zadeh and Kempe [18], which is a
randomized sequential divide-and-conquer algorithm. The second is by Kannan et al. [29],
where they use a sequential deterministic procedure reminiscent of insertion-sort. All three
algorithms achieve the optimal asymptotic query complexity of Θ(n logn) in expectation.

Real Data. We instantiated our oracles with 1,220 biological phylogenetic trees from the
TreeBase collection and used them to run all three algorithms. The results, shown in Figure 8,
suggest that our algorithm outperforms the algorithm by Kannan et al., both in terms
of its round complexity and query complexity. However our algorithm almost matches
Emamjomeh-Zadeh and Kempe’s in terms of total queries and we believe the small difference
is a direct result of the cost incurred while parallelizing the link step of Algorithm 1. It
remains clear that Algorithm 1 outperforms the two other algorithms when considering the
parallel speed-up.

Synthetic Data. We also tested this algorithm using synthetic data and found similar
results, detailed in Figure 9. We detail the method used to generate these random tree
instances in Section 5.2, however, given our algorithm’s strict focus on biological phylogenetic
trees, we use only full binary trees, where each internal node has exactly two children.

5.2 Reconstructing Phylogenetic Trees from Path Queries

To assess the practical performance of our method for reconstructing (biological and digital)
phylogenetic trees from path queries, we performed experiments using both synthetic and
real data to compare our algorithm with the algorithm by Wang and Honorio [46], which
is the best known reconstruction algorithm for phylogenetic trees from path queries. Our
experimental results provide evidence that Algorithm 2 provides significant parallel speedup,
while simultaneously improving the total number of queries.

ESA 2020

3:20 Reconstructing Phylogenetic Trees in Parallel

Figure 10 Comparing Our Algorithm’s number of rounds (left) and total queries (right) with
Wang and Honorio’s [46], for fixed d = 5 and varying n.

Synthetic Data. In order to generate random instances of trees with maximum degree, d,
we synthesized a data set of random degree-d trees of n nodes for different values of n and
d. To generate a random tree, T , for a given n and d, we first generated a random Prüfer
sequence [37] of a labeled tree, which defines a unique sequence associated with that tree,
and converted it to its associated tree. In particular, each n-node tree T = (V,E) has a
unique code sequence s1, s2, . . . , sn−2, where si ∈ V for all 1 ≤ i ≤ n − 2 and every node
vi ∈ V of degree di appears exactly di − 1 times in this sequence. Therefore, in order to
generate random degree-d rooted trees we generate a random Prüfer sequence while imposing
conditions that: (i) all vertices appear at most d− 1 times in the code and (ii) there is at
least one node such that it appears exactly d− 1 times. Converting each such sequence to
its associated tree gave us a random degree-d tree instance that we used in our experiments.

Since our parallel reconstruction algorithm using path queries is parameterized by a
constant, C2, we ran our algorithm using different values for C2. The constant C2 controls
sample size from V used to estimate the number of descendants of a node. Furthermore, to
reduce noise from randomization, each data-point will be averaged for 3 runs on 10 randomly
generated trees. In Figure 10, we compare our algorithm’s rounds and total number of queries
with the one by Wang and Honorio [46], for fixed degree trees d = 5 and varying tree-sizes.
These results provide empirical evidence that our algorithm provides a noticeable speedup in
parallel round complexity while also outperforming the algorithm by Wang and Honorio [46]
in total number of queries.

In Figure 11, we compare Algorithm 2 with the one by Wang and Honorio [46] for fixed
size and varying values of d. Again, this supports our theoretical findings that our algorithm
achieves both a significant parallel speedup and a simultaneous improvement in the number
of total queries.

In Figure 12, we study the behavior of Algorithm 2 under different values of C2, so as
to experimentally find the best value for C2. While our high probability analysis requires
C2 ≈ (d+ 2)4, Figure 12 suggests that we do not need that high probability reassurance in
practice, and we can use smaller sample to reduce the total number of queries.

Real Data. Our experiments on real-world biological phylogenetic trees also confirm the
superiority of our algorithm in terms of performance as compared to the one by Wang and
Honorio [46]. Similar to our experiments using relative-distance queries, we used a dataset
comprised of trees from the phylogenetic library TreeBase [36]. Figure 13 summarizes our
experimental results, where each data point corresponds to an average performance of 3 runs

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:21

Figure 11 Comparing our algorithm’s number of rounds (left) and total queries (right) with
Wang and Honorio’s [46], for n = 50000 and varying values for d.

Figure 12 Change in the total number of rounds (left) and total number of queries (right) when
running our algorithm for varying values of C2 (n = 50000, d = 5).

Figure 13 A scatter plot comparing the number of queries and rounds of our algorithm and with
the one by Wang and Honorio [46] for real-world trees from TreeBase [36]. Since our algorithm is
parallel, we include round complexity to serve as a comparison for the sequential complexity.

ESA 2020

3:22 Reconstructing Phylogenetic Trees in Parallel

on the same tree. Our algorithm is superior in both queries and rounds for all the values of
C2 we tried: C2 ∈ {1, d+ 2, (d+ 2)2}. The best performance corresponds to C2 = d+ 2 = 5,
which is the one illustrated in Figure 13.

References
1 Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr, Kasper Green Larsen,

and Kurt Mehlhorn. The query complexity of finding a hidden permutation. In Andrej
Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-Efficient
Data Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion
of His 66th Birthday, volume 8066 of Lecture Notes in Computer Science, pages 1–11. Springer,
2013. doi:10.1007/978-3-642-40273-9_1.

2 Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osagueda. Reconstructing
biological and digital phylogenetic trees in parallel. ArXiv, 2020. arXiv:2006.15259.

3 Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda. Reconstructing
binary trees in parallel dimension (brief announcement). In The 32nd ACM on Symposium
on Parallelism in Algorithms and Architectures, SPAA 2020, PA, USA, July 14-17, 2020, to
appear.

4 Gautam Altekar, Sandhya Dwarkadas, John P. Huelsenbeck, and Fredrik Ronquist. Parallel
metropolis coupled markov chain monte carlo for bayesian phylogenetic inference. Bioinform.,
20(3):407–415, 2004. doi:10.1093/bioinformatics/btg427.

5 Anna Bernasconi, Carsten Damm, and Igor E. Shparlinski. Circuit and decision tree complexity
of some number theoretic problems. Inf. Comput., 168(2):113–124, 2001. doi:10.1006/inco.
2000.3017.

6 Paolo Bestagini, Marco Tagliasacchi, and Stefano Tubaro. Image phylogeny tree reconstruction
based on region selection. In 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016, pages 2059–2063.
IEEE, 2016. doi:10.1109/ICASSP.2016.7472039.

7 Anupam Bhattacharjee, Kazi Zakia Sultana, and Zalia Shams. Dynamic and parallel approaches
to optimal evolutionary tree construction. In Proceedings of the Canadian Conference on
Electrical and Computer Engineering, CCECE 2006, May 7-10, 2006, Ottawa Congress Centre,
Ottawa, Canada, pages 119–122. IEEE, 2006. doi:10.1109/CCECE.2006.277582.

8 Gerth Stølting Brodal, Rolf Fagerberg, Christian N. S. Pedersen, and Anna Östlin. The complex-
ity of constructing evolutionary trees using experiments. In Fernando Orejas, Paul G. Spirakis,
and Jan van Leeuwen, editors, Automata, Languages and Programming, 28th International
Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture
Notes in Computer Science, pages 140–151. Springer, 2001. doi:10.1007/3-540-48224-5_12.

9 Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding graphs.
Artif. Intell., 174(9-10):551–569, 2010. doi:10.1016/j.artint.2010.02.003.

10 Benny Chor and Tamir Tuller. Maximum likelihood of evolutionary trees: hardness and
approximation. In Proceedings Thirteenth International Conference on Intelligent Systems
for Molecular Biology 2005, Detroit, MI, USA, 25-29 June 2005, pages 97–106, 2005. doi:
10.1093/bioinformatics/bti1027.

11 Richard Cole and Uzi Vishkin. Deterministic coin tossing and accelerating cascades: micro and
macro techniques for designing parallel algorithms. In Juris Hartmanis, editor, Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley,
California, USA, pages 206–219. ACM, 1986. doi:10.1145/12130.12151.

12 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

13 Joseph C. Culberson and Piotr Rudnicki. A fast algorithm for constructing trees from distance
matrices. Inf. Process. Lett., 30(4):215–220, 1989. doi:10.1016/0020-0190(89)90216-0.

https://doi.org/10.1007/978-3-642-40273-9_1
http://arxiv.org/abs/2006.15259
https://doi.org/10.1093/bioinformatics/btg427
https://doi.org/10.1006/inco.2000.3017
https://doi.org/10.1006/inco.2000.3017
https://doi.org/10.1109/ICASSP.2016.7472039
https://doi.org/10.1109/CCECE.2006.277582
https://doi.org/10.1007/3-540-48224-5_12
https://doi.org/10.1016/j.artint.2010.02.003
https://doi.org/10.1093/bioinformatics/bti1027
https://doi.org/10.1093/bioinformatics/bti1027
https://doi.org/10.1145/12130.12151
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1016/0020-0190(89)90216-0

R. Afshar, M.T. Goodrich, P. Matias, and M.C. Osegueda 3:23

14 Zanoni Dias, Siome Goldenstein, and Anderson Rocha. Exploring heuristic and optimum
branching algorithms for image phylogeny. J. Vis. Commun. Image Represent., 24(7):1124–
1134, 2013. doi:10.1016/j.jvcir.2013.07.011.

15 Zanoni Dias, Siome Goldenstein, and Anderson Rocha. Large-scale image phylogeny: Tracing
image ancestral relationships. IEEE Multim., 20(3):58–70, 2013. doi:10.1109/MMUL.2013.17.

16 Zanoni Dias, Anderson Rocha, and Siome Goldenstein. Image phylogeny by minimal spanning
trees. IEEE Trans. Information Forensics and Security, 7(2):774–788, 2012. doi:10.1109/
TIFS.2011.2169959.

17 Shahar Dobzinski and Jan Vondrák. From query complexity to computational complexity.
In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on
Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages
1107–1116. ACM, 2012. doi:10.1145/2213977.2214076.

18 Ehsan Emamjomeh-Zadeh and David Kempe. Adaptive hierarchical clustering using ordinal
queries. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 415–429. SIAM, 2018. doi:10.1137/1.9781611975031.28.

19 James S. Farris. Methods for Computing Wagner Trees. Systematic Biology, 19(1):83–92,
March 1970. doi:10.1093/sysbio/19.1.83.

20 Joseph Felsenstein. Evolutionary trees from dna sequences: a maximum likelihood approach.
Journal of molecular evolution, 17(6):368–376, 1981.

21 Walter M. Fitch. Toward defining the course of evolution: Minimum change for a specific tree
topology. Systematic Zoology, 20(4):406–416, 1971. URL: http://www.jstor.org/stable/
2412116.

22 Leslie Ann Goldberg, Paul W. Goldberg, Cynthia A. Phillips, and Gregory B. Sorkin. Con-
structing computer virus phylogenies. J. Algorithms, 26(1):188–208, 1998. doi:10.1006/jagm.
1997.0897.

23 M. T. Goodrich and R. Tamassia. Algorithm Design and Applications. Wiley, New York, NY,
2011.

24 Jotun J Hein. An optimal algorithm to reconstruct trees from additive distance data. Bulletin
of mathematical biology, 51(5):597–603, 1989.

25 John P Huelsenbeck. Performance of phylogenetic methods in simulation. Systematic biology,
44(1):17–48, 1995.

26 M. Jagadish and Anindya Sen. Learning a bounded-degree tree using separator queries. In
Sanjay Jain, Rémi Munos, Frank Stephan, and Thomas Zeugmann, editors, Algorithmic
Learning Theory - 24th International Conference, ALT 2013, Singapore, October 6-9, 2013.
Proceedings, volume 8139 of Lecture Notes in Computer Science, pages 188–202. Springer,
2013. doi:10.1007/978-3-642-40935-6_14.

27 Jeong-Hoon Ji, Su-Hyun Park, Gyun Woo, and Hwan-Gue Cho. Generating pylogenetic tree of
homogeneous source code in a plagiarism detection system. International Journal of Control,
Automation, and Systems, 6(6):809–817, 2008.

28 Neil C Jones, Pavel A Pevzner, and Pavel Pevzner. An introduction to bioinformatics algorithms.
MIT press, 2004.

29 Sampath Kannan, Eugene L. Lawler, and Tandy J. Warnow. Determining the evolutionary
tree using experiments. J. Algorithms, 21(1):26–50, 1996. doi:10.1006/jagm.1996.0035.

30 Sampath Kannan, Claire Mathieu, and Hang Zhou. Graph reconstruction and verification.
ACM Trans. Algorithms, 14(4):40:1–40:30, 2018. doi:10.1145/3199606.

31 Valerie King, Li Zhang, and Yunhong Zhou. On the complexity of distance-based evolution-
ary tree reconstruction. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 444–453.
ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644179.

ESA 2020

https://doi.org/10.1016/j.jvcir.2013.07.011
https://doi.org/10.1109/MMUL.2013.17
https://doi.org/10.1109/TIFS.2011.2169959
https://doi.org/10.1109/TIFS.2011.2169959
https://doi.org/10.1145/2213977.2214076
https://doi.org/10.1137/1.9781611975031.28
https://doi.org/10.1093/sysbio/19.1.83
http://www.jstor.org/stable/2412116
http://www.jstor.org/stable/2412116
https://doi.org/10.1006/jagm.1997.0897
https://doi.org/10.1006/jagm.1997.0897
https://doi.org/10.1007/978-3-642-40935-6_14
https://doi.org/10.1006/jagm.1996.0035
https://doi.org/10.1145/3199606
http://dl.acm.org/citation.cfm?id=644108.644179

3:24 Reconstructing Phylogenetic Trees in Parallel

32 Guilherme D Marmerola, Marina A Oikawa, Zanoni Dias, Siome Goldenstein, and Anderson
Rocha. On the reconstruction of text phylogeny trees: evaluation and analysis of textual
relationships. PloS one, 11(12):e0167822, 2016.

33 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005. doi:10.1017/CBO9780511813603.

34 Mark Pagel. Inferring the historical patterns of biological evolution. Nature, 401(6756):877–884,
1999.

35 Avi Pfeffer, Catherine Call, John Chamberlain, Lee Kellogg, Jacob Ouellette, Terry Patten,
Greg Zacharias, Arun Lakhotia, Suresh Golconda, John Bay, Robert Hall, and Daniel Scofield.
Malware analysis and attribution using genetic information. In 7th International Conference
on Malicious and Unwanted Software, MALWARE 2012, Fajardo, PR, USA, October 16-18,
2012, pages 39–45. IEEE Computer Society, 2012. doi:10.1109/MALWARE.2012.6461006.

36 WH Piel, L Chan, MJ Dominus, J Ruan, RA Vos, and V Tannen. Treebase v. 2: A database
of phylogenetic knowledge. e-biosphere, 2009.

37 Heinz Prüfer. Neuer beweis eines satzes über permutationen. Arch. Math. Phys, 27(1918):742–
744, 1918.

38 Lev Reyzin and Nikhil Srivastava. On the longest path algorithm for reconstructing trees from
distance matrices. Inf. Process. Lett., 101(3):98–100, 2007. doi:10.1016/j.ipl.2006.08.013.

39 F. James Rohlf. J. felsenstein, inferring phylogenies, sinauer assoc., 2004, pp. xx + 664. J.
Classif., 22(1):139–142, 2005. doi:10.1007/s00357-005-0009-4.

40 Bingyu Shen, Christopher W. Forstall, Anderson de Rezende Rocha, and Walter J. Scheirer.
Practical text phylogeny for real-world settings. IEEE Access, 6:41002–41012, 2018. doi:
10.1109/ACCESS.2018.2856865.

41 Yossi Shiloach and Uzi Vishkin. Finding the maximum, merging and sorting in a parallel
computation model. In Wolfgang Händler, editor, CONPAR 81: Conference on Analysing
Problem Classes and Programming for Parallel Computing, Nürnberg, Germany, June 10-12,
1981, Proceedings, volume 111 of Lecture Notes in Computer Science, pages 314–327. Springer,
1981. doi:10.1007/BFb0105127.

42 Gábor Tardos. Query complexity, or why is it difficult to seperate NP a cap co npa from pa

by random oracles a? Combinatorica, 9(4):385–392, 1989. doi:10.1007/BF02125350.
43 W.T. Tutte. Graph Theory. Cambridge Mathematical Library. Cambridge University Press,

2001. URL: https://books.google.com/books?id=uTGhooU37h4C.
44 Leslie G. Valiant. Parallelism in comparison problems. SIAM J. Comput., 4(3):348–355, 1975.

doi:10.1137/0204030.
45 Leslie G. Valiant. Universality considerations in VLSI circuits. IEEE Trans. Computers,

30(2):135–140, 1981. doi:10.1109/TC.1981.6312176.
46 Zhaosen Wang and Jean Honorio. Reconstructing a bounded-degree directed tree using path

queries. In 57th Annual Allerton Conference on Communication, Control, and Computing,
Allerton 2019, Monticello, IL, USA, September 24-27, 2019, pages 506–513. IEEE, 2019.
doi:10.1109/ALLERTON.2019.8919924.

47 Michael S Waterman, Temple F Smith, Mona Singh, and William A Beyer. Additive evolu-
tionary trees. Journal of theoretical Biology, 64(2):199–213, 1977.

48 Andrew Chi-Chih Yao. Decision tree complexity and betti numbers. In Frank Thomson
Leighton and Michael T. Goodrich, editors, Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages
615–624. ACM, 1994. doi:10.1145/195058.195414.

https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1109/MALWARE.2012.6461006
https://doi.org/10.1016/j.ipl.2006.08.013
https://doi.org/10.1007/s00357-005-0009-4
https://doi.org/10.1109/ACCESS.2018.2856865
https://doi.org/10.1109/ACCESS.2018.2856865
https://doi.org/10.1007/BFb0105127
https://doi.org/10.1007/BF02125350
https://books.google.com/books?id=uTGhooU37h4C
https://doi.org/10.1137/0204030
https://doi.org/10.1109/TC.1981.6312176
https://doi.org/10.1109/ALLERTON.2019.8919924
https://doi.org/10.1145/195058.195414

Kruskal-Based Approximation Algorithm for the
Multi-Level Steiner Tree Problem
Reyan Ahmed
University of Arizona, Tucson, AZ, USA
abureyanahmed@email.arizona.edu

Faryad Darabi Sahneh
University of Arizona, Tucson, AZ, USA
faryad@email.arizona.edu

Keaton Hamm
University of Texas at Arlington, Arlington, TX, USA
keaton.hamm@uta.edu

Stephen Kobourov
University of Arizona, Tucson, AZ, USA
kobourov@cs.arizona.edu

Richard Spence
University of Arizona, Tucson, AZ, USA
rcspence@email.arizona.edu

Abstract
We study the multi-level Steiner tree problem: a generalization of the Steiner tree problem in graphs
where terminals T require varying priority, level, or quality of service. In this problem, we seek to
find a minimum cost tree containing edges of varying rates such that any two terminals u, v with
priorities P (u), P (v) are connected using edges of rate min{P (u), P (v)} or better. The case where
edge costs are proportional to their rate is approximable to within a constant factor of the optimal
solution. For the more general case of non-proportional costs, this problem is hard to approximate
with ratio c log logn, where n is the number of vertices in the graph. A simple greedy algorithm by
Charikar et al., however, provides a min{2(ln |T |+ 1), `ρ}-approximation in this setting, where ρ is
an approximation ratio for a heuristic solver for the Steiner tree problem and ` is the number of
priorities or levels (Byrka et al. give a Steiner tree algorithm with ρ ≈ 1.39, for example).

In this paper, we describe a natural generalization to the multi-level case of the classical (single-
level) Steiner tree approximation algorithm based on Kruskal’s minimum spanning tree algorithm.
We prove that this algorithm achieves an approximation ratio at least as good as Charikar et al., and
experimentally performs better with respect to the optimum solution. We develop an integer linear
programming formulation to compute an exact solution for the multi-level Steiner tree problem with
non-proportional edge costs and use it to evaluate the performance of our algorithm on both random
graphs and multi-level instances derived from SteinLib.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases multi-level, Steiner tree, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.4

Supplementary Material All algorithms, implementations, the ILP solver, experimental data and ana-
lysis are available on Github at https://github.com/abureyanahmed/Kruskal_based_approxima-
tion.

Funding The research for this paper was partially supported by NSF grants CCF-1740858, CCF-
1712119, and DMS-1839274.

© Reyan Ahmed, Faryad Darabi Sahneh, Keaton Hamm, Stephen Kobourov, and Richard Spence;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 4; pp. 4:1–4:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abureyanahmed@email.arizona.edu
mailto:faryad@email.arizona.edu
mailto:keaton.hamm@uta.edu
mailto:kobourov@cs.arizona.edu
mailto:rcspence@email.arizona.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.4
https://github.com/abureyanahmed/Kruskal_based_approximation
https://github.com/abureyanahmed/Kruskal_based_approximation
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

1 Introduction

We study the following generalization of the Steiner tree problem where terminals have
priorities, levels, or quality of service (QoS) requirements. Variants of this problem are
known in the literature under different names including multi-level network design (MLND),
quality-of-service multicast tree (QoSMT) [4], quality-of-service Steiner tree [10, 18], and
Priority Steiner Tree [6]. Motivated by multi-level graph visualization, we refer to this
problem as the multi-level Steiner tree problem.

I Definition 1 (Multi-level Steiner tree (MLST)). Let G = (V,E) be a connected graph, and
T ⊆ V be a subset of terminals. Each terminal t ∈ T has a priority P (t) ∈ {1, 2, . . . , `}. A
multi-level Steiner tree (MLST) is a tree G′ with edge rates y(e) ∈ {1, 2, . . . , `} such that for
any two terminals u, v ∈ T , the u–v path in G′ uses edges of rate greater than or equal to
min{P (u), P (v)}.

We use 1 for the lowest priority and ` for the highest, and assume without loss of generality
that there exists v ∈ V such that P (v) = `. If ` = 1, then Definition 1 reduces to the
definition of Steiner tree.

The cost of an MLST G′ is defined as the sum of the edge costs in G′ at their respective
rates. Specifically, for 1 ≤ i ≤ `, we denote by ci(e) the cost of including edge e with rate i,
in which the cost of an MLST is

∑
e∈E(G′) cy(e)(e). Naturally, an edge with a higher rate

should be more costly, so we assume that c1(e) ≤ c2(e) ≤ . . . ≤ c`(e) for all e ∈ E. The
MLST problem is to compute an MLST with minimum cost.

We note that equivalent formulations [4, 6] include a root (or source) vertex r ∈ V in
which the problem is to compute a tree rooted at r such that the path from r to every
terminal t ∈ T uses edges of rate at least as good as P (t). One can observe that Definition 1
is equivalent to this formulation as we can fix the root to be any terminal r ∈ T such that
P (r) = `. In an optimized MLST, the path from the root to any terminal uses non-increasing
edge rates. Note that this becomes relevant for the discussion of the exact value of the
approximation given by our algorithm and the state-of-the-art algorithm [4]. We use the
phrase “multi-level” since a tree G′ with a root having top priority and edge rates y(·) induces
a sequence of ` nested Steiner trees, where the tree induced by {e ∈ E : y(e) ≥ i} is a Steiner
tree over terminals Ti = {t ∈ T : P (t) ≥ i} for 1 ≤ i ≤ `.

We distinguish the special case with proportional costs, where the cost of an edge is equal
to its rate multiplied by some “base cost” (e.g., c1(e)). This is similar to the rate model
in [4] as well as the setup in [10].

I Definition 2. An instance of the MLST problem has proportional costs if ci(e) = ic1(e)
for all e ∈ E and for all i ∈ {1, 2, . . . , `}. Otherwise, the instance has non-proportional costs.

For u, v ∈ T , we define σ(u, v) to equal the cost of a minimum cost u–v path in G using
edges of rate min{P (u), P (v)}. In other words, σ(u, v) represents the minimum possible cost
of connecting u and v using edges of the appropriate rate. Note that σ is symmetric, but
does not satisfy the triangle inequality, and is not a metric. Lastly, we denote by Hk the kth
harmonic number given by Hk = 1 + 1

2 + . . .+ 1
k .

1.1 Related work
The Steiner tree (ST) problem admits a simple 2

(
1− 1

|T |

)
-approximation (see Section 2.1).

Currently, the best known approximation ratio is ρ = ln 4 + ε ≈ 1.39 by Byrka et al. [3]. It
is NP-hard to approximate the ST problem with ratio better than 96

95 ≈ 1.01 [5].

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:3

In [1], simple top-down and bottom-up approaches are considered for the MLST problem
with proportional costs. In the top-down approach, a Steiner tree is computed over terminals
{v ∈ T : P (v) = `}. For i = `−1, . . . , 1, the Steiner tree over terminals {v ∈ T : P (v) = i+1}
is contracted into a single vertex, and a Steiner tree is computed over terminals with P (v) = i.
In the bottom-up approach, a Steiner tree is computed over all terminals, which induces
a feasible solution by setting the rate of all edges to `. These approaches are (`+1

2)ρ- and
`ρ-approximations, respectively [1] (moreover, these bounds are tight). It is worth noting
that the bottom-up approach can perform arbitrarily poorly in the non-proportional setting.

If edge costs are proportional, Charikar et al. [4] give a simple 4ρ-approximation algorithm
(which we later denote by C1) by rounding the vertex priorities up to the nearest power of 2,
then computing a ρ–approximate Steiner tree for the terminals at each rounded-up priority.
They then give an eρ ≈ 4.213-approximation for the same problem (using ρ ≈ 1.55 [12]).
Karpinski et al. [10] tighten the analysis from [4] to show that this problem admits a 3.802-
approximation with an unbounded number of priorities. Ahmed et al. [1] generalize the above
techniques by considering a composite heuristic which computes Steiner trees over a subset of
the priorities, and show that this achieves a 2.351ρ ≈ 3.268-approximation for ` ≤ 100. They
provide experimental comparisons of the simple top-down, bottom-up, 4ρ-approximation
of Charikar et al. [4], and a generalized composite algorithm. The experiments in [1] show
that the bottom-up approach typically provides the worst performance while the composite
algorithm typically performs the best, and these results match the theoretical guarantees.

For non-proportional costs, which is the more general setting, Charikar et al. [4] give a
min{2(ln |T | + 1), `ρ}-approximation for QoSMT, consisting of taking the better solution
returned by two sub-algorithms (which we denote by C2a and C2b, Section 2.2). On the
other hand, Chuzhoy et al. [6] show that PST cannot be approximated with ratio better than
Ω(log logn) in polynomial time unless NP⊆DTIME(nO(log log log n)). However, the problem
setup for PST [6] is slightly more specific; each edge has a single cost ce and a Quality of
Service (priority) given as input, and a solution consists of a tree such that the path from
the root to each terminal t uses edges of QoS at least as good as P (t).

1.2 Our contributions

In this paper, we propose approximation algorithms for the MLST problem based on Kruskal’s
and Prim’s algorithms for computing a minimum spanning tree (MST). We show that the
Kruskal-based algorithm is a 2 ln |T |-approximation even for non-proportional costs, matching
the state-of-the-art algorithms. An interesting feature of this algorithm is that for the single
level case, it reduces to the standard Kruskal approximation to the Steiner tree problem,
which is not the case of other state-of-the-art algorithms for MLST. We also show that,
somewhat surprisingly, a natural approach based on Prim’s algorithm can perform rather
poorly. We then describe an integer linear program (ILP) to compute exact solutions
to the MLST problem given non-proportional edge costs and evaluate the approximation
ratios of the proposed approximation algorithms experimentally. Specifically, we provide an
experimental comparison between the algorithm of Charikar et al. [4] and our Kruskal-based
algorithm, in which the latter performs better with respect to the optimum a majority of
the time in both proportional and non-proportional settings. Experiments are performed on
random graphs from various generators as well as instances of the MLST problem derived
from the SteinLib library [11] of hard ST instances. Finally, we describe a class of graphs
for which the Kruskal-based algorithm always performs significantly better than that by
Charikar et al. [4].

ESA 2020

4:4 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

2 Preliminaries

In this section, we review some existing approximation algorithms that are pivotal for the
subsequent developments in this paper.

2.1 Kruskal- and Prim-based approximations for the ST problem

A well-known 2
(

1− 1
|T |

)
-approximation algorithm for the ST problem first constructs the

metric closure graph G̃ over T : the complete graph K|T | where each vertex corresponds to a
terminal in T , and each edge has weight equal to the length of the shortest path between
corresponding terminals. An MST over G̃ induces |T | − 1 shortest paths in G; combining
all induced paths and removing cycles yields a feasible Steiner tree whose cost is at most
2
(

1− 1
|T |

)
times the optimum.

For computing an MST over G̃, one can use any known MST algorithm (e.g., Kruskal’s,
Prim’s, or Borůvka’s algorithm). However, one can directly construct a Steiner tree from
scratch based on these MST algorithms without the need to construct G̃; Poggi de Aragão
and Werneck provide details for such implementations [7] (see also [13, 17]).

Specifically, the Prim-based approximation algorithm for the ST problem due to Takahashi
and Matsuyama [13] grows a tree rooted at a fixed terminal. In each iteration, the closest
terminal not yet connected to the tree is connected through its shortest path. The process
continues for |T | − 1 iterations until all terminals are spanned. The resulting Steiner tree
achieves the 2

(
1− 1

|T |

)
approximation guarantee [13]. The Kruskal-based algorithm for the

ST problem due to Wang [14] maintains a forest initially containing |T | singleton trees. In
each iteration, the closest pair of trees is connected via a shortest path between them. The
process continues for |T | − 1 iterations until the resulting forest is a tree. Widmayer showed
that this algorithm achieves the 2

(
1− 1

|T |

)
bound [16].

2.2 Review of the QoSMT algorithm of Charikar et al.

Charikar et al. [4] give a min{2(ln |T |+1), `ρ}-approximation for QoSMT which we denote by
C2, consisting of taking the better of the solutions returned by two sub-algorithms (denoted
C2a and C2b). For this section, we focus primarily on the 2(ln |T | + 1)-approximation,
Algorithm C2a. The `ρ-approximation, Algorithm C2b, simply computes a ρ-approximate
Steiner tree over the terminals of each priority separately, then merges the ` computed trees
and prunes cycles to output a tree; this leads to a better approximation ratio if `� |T |.

The first sub-algorithm (C2a) sorts the terminals T by decreasing priority P (·), starting
with a root node r (here, we may treat the root as any terminal with priority `). Then, for
i = 1, . . . , |T |, the ith terminal ti is connected to the existing tree spanning the previous i− 1
terminals using the minimum cost path with edges of rate at least P (ti), where the cost of
this path is defined as the connection cost of ti.

The authors show that for 1 ≤ m ≤ |T |, the mth most expensive connection cost is at
most 2OPT

m , which implies that the total cost is at most 2OPT
(

1 + 1
2 + 1

3 + . . .+ 1
|T |

)
≤

2(ln |T |+ 1)OPT. While not explicitly mentioned in [4], this approximation ratio is roughly
tight (see Figure 1). Algorithm C2a can be implemented by running Dijkstra’s algorithm
from ti until a vertex already in the tree is encountered. The running time of C2a is roughly
|T | times the running time of Dijkstra’s algorithm, or O(nm+ n2 logn) [4].

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:5

3 Kruskal-based MLST algorithms

We propose Algorithm KruskalMLST for the MLST problem. The main distinction compared
to Algorithm C2a is that the subsequent algorithm connects the “closest” pairs of terminals
first, rather than connecting terminals in order of priority. Algorithm KruskalMLST proceeds
as follows: initializing S = T , while |S| ≥ 1, find terminals u, v ∈ S with P (u) ≥ P (v) which
minimize the cost of connecting them. If P is the u–v path chosen, then the rate of each
edge in P is upgraded to P (v) (if its rate is less). Remove v from S. We will say that v is
connected at the current iteration. At this point, we do not need to worry about v anymore,
and u (the node it is connected to) essentially becomes responsible for v for the rest of the
algorithm. When |S| = 1, if there are no cycles, then the resulting tree is a feasible MLST
rooted at some vertex r with P (r) = `. Otherwise, we can prune one edge from each cycle
with the lowest rate to produce a tree. We note that KruskalMLST takes |T | − 1 iterations
while C2a takes |T | iterations; this follows as the setting for MLST does not specify a root
vertex while QoSMT does. As such, there is a small constant difference in the approximation
ratios, which is not significant.

When finding u, v ∈ S which minimize σ(u, v), Algorithm KruskalMLST takes into
account edges which have already been included at lower rates. In other words, line 6 seeks
a pair of vertices (u, v) which minimizes the cost of “upgrading” the rates of some edges
so that u and v are connected via a path of rate min{P (u), P (v)}. We denote this cost by
σ′(u, v), and observe that σ′(u, v) ≤ σ(u, v).

Algorithm KruskalMLST(graph G, priorities P, costs c).

1: Initialize y(e) = 0 for e ∈ E
2: c′i(e) = ci(e) for i ∈ [`], e ∈ E
3: S = T

4: while |S| > 1 do
5: Compute σ′(·, ·) for all (·, ·) ∈ S × S
6: Find u, v ∈ S with P (u) ≥ P (v) which minimizes σ′(u, v)
7: P = path chosen of cost σ′(u, v)
8: y(e) = max{y(e), P (v)} for e ∈ P
9: c′i(e) = max{0, ci(e)− cy(e)(e)} for e ∈ P and i ∈ {1, . . . , `}

10: S = S \ {v}
11: end while
12: return y

I Theorem 3. Algorithm KruskalMLST is a 2 ln |T |-approximation to the MLST problem.

Proof. Define the connection cost of v to be σ′(u, v) (line 6), and note that the cost of the
returned solution is the sum of the connection costs over all terminals T \ {r}. Now let t1,
t2, . . . , t|T |−1 be the terminals in sorted order by which they were connected, and let OPT
denote the cost of a minimum cost MLST for the instance. We have the following lemma.

I Lemma 4. For 2 ≤ m ≤ |T |, consider the iteration of Algorithm KruskalMLST when
|S| = m. Let ti be the terminal connected during this iteration (where i = |T |+ 1−m). Then
the connection cost of ti is at most 2OPT

m .

ESA 2020

4:6 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

Proof. Note that immediately before ti is connected, we have S = {ti, ti+1, . . . , t|T |−1, r}
of size m. Consider the optimum solution T ∗ for the instance, and let T ′ be the minimal
subtree of T ∗ containing all terminals in S. The total cost of the edges in T ′ is at most
OPT. Perform a depth-first traversal starting from any terminal in T ′ and returning to that
terminal. Since every edge in T ′ is traversed twice, the cost of the traversal is at most 2OPT.

Consider pairs of consecutive terminals tj , tk visited for the first time along the traversal.
The path connecting tj and tk in T ′ necessarily uses edges of rate at least min{P (tj), P (tk)}.
Then, the cost of the edges along this path is at least σ(tj , tk). There are m pairs of
consecutive terminals along the traversal (including the pair containing the first and last
terminals visited), and the sum of the costs of these m paths is at most 2OPT. Hence, some
pair tj , tk of terminals is connected by a path of cost ≤ 2OPT

m in the optimum solution,
implying that for this pair tj , tk, we have σ′(tj , tk) ≤ σ(tj , tk) ≤ 2OPT

m . Since KruskalMLST
selects the pair which minimizes σ′(·, ·), the connection cost of ti is at most 2OPT

m . J

Lemma 4 immediately implies Theorem 3. Indeed, summing from m = 2 to m = |T |, the
total cost is at most 2OPT

(
1
2 + 1

3 + . . .+ 1
|T |

)
= 2OPT(H|T | − 1) ≤ 2 ln |T |OPT. J

An interesting note is that Algorithm KruskalMLST reduces to the Kruskal-based al-
gorithm [14] for computing a Steiner tree, when there are no priorities on the terminals (i.e.,
the single level case when ` = 1). As mentioned earlier, this is a 2(1− 1

|T |)-approximation,
whereas algorithm C2a is still a 2 ln |T | one, and this is an advantage of the proposed
algorithm.

A simple variant of our algorithm, GreedyMLST, yields the same theoretical approxima-
tion ratios and is easier to implement. The difference is that GreedyMLST does not update
the costs σ at each iteration of the while loop.

Algorithm GreedyMLST(graph G, priorities P, costs c).

1: Initialize y(e) = 0 for e ∈ E
2: S = T

3: while |S| > 1 do
4: Find u, v ∈ S with P (u) ≥ P (v) which minimizes σ(u, v)
5: P = path chosen of cost σ(u, v)
6: y(e) = max(y(e), P (v)) for e ∈ P
7: S = S \ {v}
8: end while
9: return y

I Theorem 5. Algorithm GreedyMLST is a 2 ln |T |-approximation to the MLST problem.

The proof follows the same argument as that for Theorem 3; indeed the use of σ′ implies
that KruskalMLST should perform better than GreedyMLST, but is more costly to run.

3.1 Tightness
The approximation ratio for Algorithms C2a [4] and GreedyMLST is tight up to a constant,
even if ` = 1 or if |E| = O(|V |). As a tightness example, we use a graph construction
(Gi)i≥0 given by Imase and Waxman [9] for the inapproximability of the dynamic Steiner
tree problem. Let G0 contain two vertices v0, v1 with an edge of cost 1 connecting them.
We say that v0 and v1 are depth zero vertices. For i ≥ 1, graph Gi is obtained by replacing
each edge uv in Gi−1 with two depth i vertices w1, w2, and adding edges uw1, w1v, uw2,
and w2v.

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:7

Let G = Gk for sufficiently large k, let ` = 1 (i.e., the Steiner tree problem), and let
each edge of Gi have a cost of 1

2i , so that the cost of any shortest v0-v1 path is 1. Let the
terminals T be the vertices of some v0-v1 path (Figure 1, left), so that OPT = 1. Note that
any u-v path contains 2k edges, so |T | = 2k + 1. Algorithm C2a first sorts the terminals
by priority; since all terminals in Gk have the same priority, we consider a worst possible
ordering where T is ordered in increasing depth, with v0 the root. In this case, it is possible
that Algorithm C2a connects v1 to v0 via a shortest path which does not include other
terminals, then connects subsequent terminals via shortest paths which include no other
terminal, as shown in Figure 1. Conversely in the worst case, Algorithm GreedyMLST may
connect depth k, k − 1, k − 2, . . . terminals in order while avoiding previously-used paths,
as Algorithm GreedyMLST does not consider existing edges. In both cases, the cost of the
returned solution is

Cost = 1
2k + 1 = 1

2 log2(|T | − 1) + 1 ≥ 1
2 (log2 |T |+ 1) OPT ≈

(
0.72 ln |T |+ 1

2

)
OPT.

v0

v1

Depth

0

3

2

3

1

3

2

3

0

v0

v1

Figure 1 Left: Example instance where G = G3 using the construction by Imase and Waxman [9],
` = 1, with terminals bolded. All edges have cost 1

8 so that OPT = 1. Right: Example solution T
which could be returned by Algorithms C2a and GreedyMLST, with cost 20

8 . Note that in hindsight,
G may be sparsified so that |E| = O(|V |), by letting E = E(T) ∪ E(T ∗), then contracting each
simple path between two terminals to a single edge with cost equal to the length of the path.

3.2 Running Time
The running time of Algorithm GreedyMLST is similar to that of Algorithm C2a, namely
|T | times the running time of Dijkstra’s algorithm. This can be implemented as follows:
before line 4, for each terminal t ∈ T , run Dijkstra’s algorithm from t using edge weights
cP (t)(·), and only keep track of distances from t to terminals with priority ≥ P (t). Thus,
each terminal t ∈ T keeps a dictionary of distances from t to a subset of T . Then at each
iteration (line 6), find the minimum distance among at most |T | distances. The running time
of KruskalMLST is |T |2 times that of Dijkstra’s algorithm due to the update step (line 9 of
Algorithm KruskalMLST).

ESA 2020

4:8 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

4 Prim-based MLST algorithm

A natural approach based on Prim’s algorithm is as follows. Choose a root terminal r with
P (r) = ` and remove r from T . Then, find a terminal v ∈ T whose connection cost is
minimum, where the connection cost is defined to be the cost of installing or upgrading
edges from r to v using rate P (v) (namely, using edge costs cP (v)(·)). Remove v from T , and
decrement costs. Repeat this process of connecting the existing MLST to the closest terminal
until T is empty. Interestingly, unlike Algorithm GreedyMLST, this approach can return a
solution |T | times the optimum, which is rather poor. We remark that Algorithm C2a [4]
is similar to the Prim-based algorithm, where terminals are connected in order of priority
rather than connecting the closest terminals first.

As an example, suppose G is a cycle containing |V | = `+ 1 vertices v1, v2, v3, . . . , v`,
r in that order (Figure 2, left). Let P (vi) = i, and let P (r) = `. Let ci(rv`) = 1 (edge rv`

has cost 1 regardless of rate), and let ci(rv1) = i(1− ε). Let all other edges have cost zero
(or perhaps a small ε′ � ε), regardless of rate. Then the Prim-based algorithm greedily
connects v1, v2, . . . , v` in that order, incurring a cost of 1− ε at each iteration. Hence the
cost returned is `(1− ε) ≈ |T |, while OPT = 1.

`

1

2

3

` 1
i(1− ε)

`

1

2

3

` 1
i(1− ε)

`

1

2

3

` 1
i(1− ε)

Figure 2 Left: Simple example demonstrating that a Prim-based algorithm can perform poorly.
The priorities P (·) and edge costs ci(·) are shown, and the root r is bolded. Center: Solution found
by the Prim-based algorithm with cost `(1− ε). Right: Optimum solution with cost OPT = 1.

5 Integer linear programming (ILP) formulation

In [1], ILP formulations were given for the MLST problem with proportional costs. We
extend these and give an ILP formulation for non-proportional costs. First, direct the graph
G by replacing each edge e = uv with two directed edges (u, v) and (v, u). Let xi

uv = 1 if
(u, v) appears in the solution with rate greater than or equal to i, and 0 otherwise. Let c′i(u, v)
denote the incremental cost of edge (u, v) with rate i, defined as ci(e)− ci−1(e) where e = uv

and c0(e) = 0. Fix a root r ∈ T with P (r) = `. For i = 1, . . . , `, let Ti = {t ∈ T : P (t) ≥ i}
denote the set of terminals requiring priority at least i. For every edge e = (u, v) we define
two flow variables f i

uv and f i
vu.

Minimize
∑̀
i=1

∑
(u,v)∈E

c′i(u, v)xi
uv subject to (1)

∑
(v,w)∈E

f i
vw −

∑
(u,v)∈E

f i
uv =

|Ti| − 1 if v = r

−1 if v ∈ Ti \ {r}
0 else

∀ v ∈ V ; 1 ≤ i ≤ ` (2)

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:9

xi
uv ≤ xi−1

uv ∀ (u, v) ∈ E; 2 ≤ i ≤ `
(3)

0 ≤ f i
uv ≤ (|Ti| − 1) · xi

uv ∀ (u, v) ∈ E; 1 ≤ i ≤ `
(4)

xi
uv ∈ {0, 1} ∀ (u, v) ∈ E; 1 ≤ i ≤ `

(5)

In the optimal solution, the edges of rate greater than or equal to i form a Steiner tree
over Ti, so the flow constraint ensures that this property holds. The second constraint ensures
that if an edge is selected at rate i or greater, then it must be selected at lower rates. The
third constraint ensures that the indicator variable is set equal to one if and only if the
corresponding edge is in a tree. The last constraint ensures that the xi

uv variables are 0–1.

I Theorem 6. The optimal solution for the ILP induces an MLST with cost OPT.

The proof is deferred to Appendix A. Additionally, it can be seen from the formulation that
the number of variables is O(`|E|) and the number of constraints is O(`(|E|+ |V |)).

6 Experiments

We run two primary kinds of experiments: first, we compare the various MLST approximation
algorithms discussed here on random graphs from different generators; second, to provide
comparison with the Steiner tree literature, we perform experiments on instances generated
using the SteinLib library [11]. In both cases, we consider natural questions about how the
number of priorities, number of vertices, and decay rate of terminals with respect to priorities
affect the running times and (experimental) approximation ratios (cost of returned solution
divided by OPT) of the algorithms explored here. We also record how often the algorithms
proposed here provide better approximation ratios than pre-existing algorithms. Moreover,
we illustrate a class of graphs for which Algorithm KruskalMLST always performs better
than Algorithm C2a.

6.1 Experiment Parameters
We run experiments first to test runtime vs. parameters discussed above, and then to test the
experimental approximation ratio vs. the parameters. Each set of experiments has several
parameters: the graph generator (random generators or SteinLib instances), the maximum
number of priorities `, |V |, how the size of the terminal sets Ti (terminals requiring priority
at least i) decrease as i decreases, and proportional vs. non-proportional edge costs.

In what follows, we use the Erdős–Rényi (ER) [8], Watts–Strogatz (WS) [15], and
Barabási–Albert (BA) [2] models or SteinLib instances [11] to generate the input graph
(more on how SteinLib instances are given priorities later). The number of vertices of the
graphs generated by different models varies from 10 to 100. We consider number of priorities
` ∈ {2, . . . , 7}, and adopt two methods for selecting terminal sets (equivalently priorities):
linear and exponential. A terminal set T` with lowest priority of size n(1− 1

`+1) in the linear
case and n

2 in the exponential case is chosen uniformly at random. For each subsequent
priority, 1

`+1 terminals are deleted at random in the linear case, whereas half the remaining
terminals are deleted in the exponential case. Priorities and terminal sets are related via
Ti = {t ∈ T : P (t) ≥ i}. For the proportional edge weight case, we choose c1(e) uniformly at
random from {1, . . . , 10} for each edge independently and set ci(e) = ic1(e) for i = 1, . . . , `.

ESA 2020

4:10 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

For the non-proportional setting, we select the incremental edge costs c1(e), c2(e)− c1(e),
c3(e)− c2(e), . . . , c`(e)− c`−1(e) uniformly at random from {1, 2, 3, . . . , 10} for each edge
independently.

In the case that the input graph comes from SteinLib, it has a prescribed terminal set
(since SteinLib graphs are instances of ST problem for a single priority). For these inputs,
priorities are generated in two ways: filtered terminals and augmented terminals. To generate
filtered terminals we divide the set of original terminals from the SteinLib into ` sets (with
` ∈ {2, . . . , 6}). We assign the first set as the topmost priority terminals. We assign the
second set to the next priority and so on. For the augmented case, we start with the initial
terminals from the SteinLib instance and add additional terminals uniformly at random from
the remaining vertices. We assign 5 vertices as top priority terminals, double the number of
terminals in the next priority, and so on until the maximum number of terminals is reached
(we assign ` ∈ {2, 3, 4} priorities). Augmentation makes sense given that some of the original
SteinLib instances have very few terminals. We have generated our datasets from two subsets
of SteinLib: I080 and I160; we generate both types of terminals (filtered and augmented)
for each of these datasets. The reason we run our experiment on the two SteinLib datasets
is that the sizes of the graphs are relatively smaller. Our exact algorithm based on the
ILP formulation has an exponential running time, and will not be able to terminate in a
reasonable time for the datasets that contain large instances.

An experimental instance of the MLST problem here is thus characterized by five
parameters: graph generator, number of vertices |V |, number of priorities `, terminal
selection method TSM ∈ {Linear,Exponential}, and proportionality of the edge weights
TE ∈ {Prop,Non-prop}. As there is randomness involved, we generated five instances for
every choice of parameters (e.g., ER, |V | = 70, ` = 4, Linear, Non-prop).

For the following experiments, we implement the KruskalMLST and C1 algorithms in
the proportional case, and the KruskalMLST and C2a algorithms in the non-proportional
case. We note here that Algorithm GreedyMLST achieves much poorer results with respect
to OPT than KruskalMLST in practice despite having similar theoretical guarantees. The
reason for the poor performance is that the algorithm over–counts the edge costs when it
is considered multiple times. On the other hand, KruskalMLST updates the cost of the
edges so that for a particular edge and rate, it pays only once. Hence, in our experiment we
only use KruskalMLST. To compute the approximation ratios, we use the ILP described in
Section 5 using CPLEX 12.6.2 as an ILP solver.

6.2 Results
As one would expect, runtime for both the ILP and all approximation algorithms increased
as |V | or ` increased. Runtime was typically higher for linear terminal selection than for
exponential. See Figures 12–14 in the Appendix for detailed plots. We do note that the
running times of the approximation algorithms are significantly faster than the running time
of the ILP; the latter takes a couple of minutes for whereas the approximation algorithms
take only a couple of seconds for the same instances generated in our experiments.

There was no discernible trend in plots of Ratio (defined as cost/OPT) vs. |V |, `, or
the terminal selection method (linear or exponential). In all cases, for all graph generators,
both the KruskalMLST and C1 (or C2a in the non-proportional case) exhibited similar
statistical behavior independent of the given parameter (see Figures 5–9 in the Appendix for
detailed plots). For a brief illustration, we show the behavior for Erdős–Rényi graphs with
p = (1 + ε) ln n

n in Figure 3, and include the performance of the Composite Algorithm of [1]
(CMP) as it gives the best a priori approximation ratio guarantee. In the non-proportional

http://steinlib.zib.de/showset.php?I080
http://steinlib.zib.de/showset.php?I160

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:11

case, Charikar et al. [4] have used another algorithm C2b beside C2a and returned the best
solution. In the experiment, we only compare with C2a since C2b runs an iteration for each
priority to get the final solution and in this paper, we are primarily interested in techniques
that run in a single iteration similar to the spanning tree algorithms.

Figure 3 Performance of C1 [4], KruskalMLST, and CMP [1] on Erdős–Rényi graphs w.r.t. |V |,
`, and terminal selection method with proportional edge weights.

From Figure 3, we see that on average KruskalMLST outperforms C2a. However, it is
instructive to compare the instance-wise performance of the different algorithms. Tables 1 and
2 show comparisons of the statistical performance of the the two approximation algorithms
for various graph generators in the proportional and non-proportional case, respectively. For
each graph generator, there are a total of 1140 instances consisting of 5 graphs for each set
of parameters (|V |, `, etc.).

Table 1 Statistics of Algorithms C1 [4] and KruskalMLST (abbreviated K) with proportional
edge cost. Best Approx. reports the percentage of instances (out of 1140) that each algorithm
achieved strictly better experimental approximation ratio. Best performance in each category is
bolded. The statistics correspond to the experimental approximation ratio.

Graph Generator ER WS BA SteinLib
Algorithm C1 K C1 K C1 K C1 K

Equal to OPT 73 133 391 679 94 202 4 8
Mean 1.048 1.044 1.016 1.012 1.028 1.021 1.2355 1.1918
Median 1.044 1.037 1.006 1.0 1.019 1.016 1.2072 1.1707
Min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max 1.263 1.202 1.31 1.18 1.212 1.126 1.7488 1.6404

Best Approx. 40.53% 54.29% 24.92% 50.78% 30.62% 69.38% 31.50 59.12%

Table 2 Statistics of Algorithms C2a [4] and KruskalMLST (abbreviated K) with non-proportional
edge cost. Best Approx. reports the percentage of instances (out of 1140) that each algorithm
achieved strictly better experimental approximation ratio. Best performance in each category is
bolded.

Graph Generator ER WS BA
Algorithm C2a K C2a K C2a K

Equal to OPT 16 26 16 30 10 26
Mean 1.123 1.109 1.099 1.081 1.121 1.097
Median 1.109 1.099 1.087 1.067 1.096 1.08
Min 1.0 1.0 1.0 1.0 1.0 1.0
Max 1.667 1.54 1.863 1.601 1.941 1.667

Best Approx. 37.20% 61.22% 34.83% 63.85% 30.62% 68.24%

ESA 2020

4:12 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

We see from these tables that KruskalMLST consistently outperforms the algorithms
of [4] in each of the statistical categories, and also achieves better instance-wise results a
majority of the time, although this behavior depends somewhat on the graph generator.
A full suite of figures is given in the Appendix to further illustrate the performance of
each algorithm for the various generators. The trends are essentially the same and are
as follows. KruskalMLST outperforms C2a on a majority of instances, but has marginally
longer runtime (though the difference is not appreciable); the number of priorities has little
effect on runtime or experimental approximation ratio; the number of vertices increases
the runtime for some generators, but has little effect on the experimental approximation
ratio; experimental approximation ratios are typically better on average for exponentially
decreasing terminal sets (which makes sense given that |T | is smaller and the approximation
guarantees are O(ln |T |)). Finally, we note that the Composite algorithm of [1] can achieve
better approximation in the proportional edge cost setting, but is not known to work for the
non-proportional setting; additionally Composite suffers from exponential growth in runtime
with respect to `, which is a feature not exhibited by KruskalMLST.

6.3 Graphs for which KruskalMLST always outperforms C2a

Here we generate a special class of graphs for which the Kruskal-based algorithm always
provides near-optimal solutions, but Algorithm C2a performs poorly. This class of graphs
consists of cycles with randomly added edges. Begin with a cycle v1, v2, · · · , vn, v1 and set
the weight of edge v1vn be w − ε where length of the path v1, v2, · · · , vn is w. We select v1
and vn as higher-priority terminals, and the remaining vertices as lower-priority terminals.
An algorithm that works in a top-down manner will take the edge v1vn for higher priority
and pay significantly more than the optimal solution [1]. Doing this to every edge (vi, vi+1)
results an MLST instance where a top-down approach performs arbitrarily poorly. On these
graphs, the algorithm provided in Charikar et al. [4] for proportional instances of MLST
performs noticeably worse than our Kruskal-based approach (see Figure 4). We generated
500 graphs of this type (augmented with some additional edges at random). The script
to generate these graphs are available on Github at https://github.com/abureyanahmed/
Kruskal_based_approximation.

Figure 4 A class of graphs for which the Algorithm KruskalMLST significantly outperforms
Algorithm C2a [4]. The x–axis is the instance number and carries no meaning of time; the y–axis is
the approximation ratio.

https://github.com/abureyanahmed/Kruskal_based_approximation
https://github.com/abureyanahmed/Kruskal_based_approximation

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:13

7 Conclusion

We proposed two algorithms for the MLST problem based on Kruskal’s and Prim’s algorithms.
We showed that the Kruskal-based algorithm is a logarithmic approximation, matching the
best approximation guarantee of Charikar et al. [4], while the Prim-based algorithm can
perform arbitrarily poorly. We formulated an ILP for the general MLST problem and
provided an experimental comparison between the algorithm provided by Charikar et al. [4],
Ahmed et al. [1], and the Kruskal-based algorithm, KruskalMLST. We demonstrated that
KruskalMLST compares favorably to other algorithms in terms of experimental approximation
ratio for both the proportional and non-proportional edge costs while incurring a minor
cost in run time. Finally, we generated a special class of graphs for which KruskalMLST
always performs significantly better than that by Charikar et al. [4]. A natural question is
whether the analysis of any of these algorithms GreedyMLST, KruskalMLST, or C2a can
be tightened, improving the approximability gap between O(log logn) and O(logn) for the
MLST problem with non-proportional edge costs.

References
1 Abu Reyan Ahmed, Patrizio Angelini, Faryad Darabi Sahneh, Alon Efrat, David Glickenstein,

Martin Gronemann, Niklas Heinsohn, Stephen Kobourov, Richard Spence, Joseph Watkins, and
Alexander Wolff. Multi-level Steiner trees. In 17th International Symposium on Experimental
Algorithms, (SEA), pages 15:1–15:14, 2018. doi:10.4230/LIPIcs.SEA.2018.15.

2 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science,
286(5439):509–512, 1999.

3 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree
approximation via iterative randomized rounding. J. ACM, 60(1):6:1–6:33, 2013. doi:
10.1145/2432622.2432628.

4 M. Charikar, J. Naor, and B. Schieber. Resource optimization in QoS multicast routing of
real-time multimedia. IEEE/ACM Transactions on Networking, 12(2):340–348, April 2004.
doi:10.1109/TNET.2004.826288.

5 Miroslav Chlebík and Janka Chlebíková. The Steiner tree problem on graphs: Inapproximability
results. Theoret. Comput. Sci., 406(3):207–214, 2008. doi:10.1016/j.tcs.2008.06.046.

6 Julia Chuzhoy, Anupam Gupta, Joseph (Seffi) Naor, and Amitabh Sinha. On the approx-
imability of some network design problems. ACM Trans. Algorithms, 4(2):23:1–23:17, 2008.
doi:10.1145/1361192.1361200.

7 Marcus Poggi de Aragão and Renato F Werneck. On the implementation of mst-based
heuristics for the Steiner problem in graphs. In Workshop on algorithm engineering and
experimentation, pages 1–15. Springer, 2002.

8 Paul Erdös and Alfréd Rényi. On random graphs, i. Publicationes Mathematicae (Debrecen),
6:290–297, 1959.

9 Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem. SIAM Journal on
Discrete Mathematics, 4(3):369–384, 1991. doi:10.1137/0404033.

10 Marek Karpinski, Ion I. Mandoiu, Alexander Olshevsky, and Alexander Zelikovsky. Improved
approximation algorithms for the quality of service multicast tree problem. Algorithmica,
42(2):109–120, 2005. doi:10.1007/s00453-004-1133-y.

11 T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on Steiner tree problems in
graphs. Technical Report ZIB-Report 00-37, Konrad-Zuse-Zentrum für Informationstechnik
Berlin, Takustr. 7, Berlin, 2000. URL: http://elib.zib.de/steinlib.

12 Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph Steiner tree approximation.
SIAM J. Discrete Math., 19(1):122–134, 2005. doi:10.1137/S0895480101393155.

13 H. Takahashi and A. Matsuyama. An approximate solution for Steiner problem in graphs.
Math. Japonica, 24(6):573–577, 1980.

14 SM Wang. A multiple source algorithm for suboptimum Steiner trees in graphs. In Proc.
International Workshop on Graphtheoretic Concepts in Computer Science (H. Noltemeier, ed.),
Trauner, W urzburg, pages 387–396, 1985.

ESA 2020

https://doi.org/10.4230/LIPIcs.SEA.2018.15
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1109/TNET.2004.826288
https://doi.org/10.1016/j.tcs.2008.06.046
https://doi.org/10.1145/1361192.1361200
https://doi.org/10.1137/0404033
https://doi.org/10.1007/s00453-004-1133-y
http://elib.zib.de/steinlib
https://doi.org/10.1137/S0895480101393155

4:14 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

15 Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440, 1998.

16 Peter Widmayer. On approximation algorithms for Steiner’s problem in graphs. In International
Workshop on Graph-Theoretic Concepts in Computer Science, pages 17–28. Springer, 1986.

17 Y.F. Wu, P. Widmayer, and C.K. Wong. A faster approximation algorithm for the Steiner
problem in graphs. Acta Inform., 23(2):223–229, 1986.

18 Guoliang Xue, Guo-Hui Lin, and Ding-Zhu Du. Grade of service Steiner minimum trees in
the Euclidean plane. Algorithmica, 31(4):479–500, 2001. doi:10.1007/s00453-001-0050-6.

A Proof of Theorem 6

Proof. We first show that the flow variables take only integer values from zero to |Ti| − 1
although it is not specifically mentioned in the formulation. Note that for every priority the
ILP generates a connected component in order to fulfill the conditions of the second equation.
The algorithm will compute a tree for every priority, otherwise, there is a cycle at a tree of a
particular priority and removing an edge from the cycle minimizes the objective. According
to the second equation, the flow variable corresponding to an incoming edge connected to
a terminal that is not root is equal to one if the edge is in the tree. Since the difference
between the incoming and outgoing flow is |Ti| − 1 for the root and zero for any intermediate
node, every flow variable must be equal to an integer. Also if we do not have integer flows
(for example the incoming flow is one and there are two outgoing flows with values 1/2),
then because of the conditions in second equation cycles will be generated. Because of this
property, the fourth equation ensures that xi

uv is equal to one iff the corresponding flow
variable has a value greater than or equal to one. In other words, an indicator variable is
equal to one iff the corresponding edge is in the tree. Note that, the formulation has only
one assumption on the edge weights: the cost of an edge for a particular rate is greater than
or equal to the weight of the edge having lower rates. Hence, the formulation computes the
optimal solution for (non-)proportional instances. J

B Additional Experimental Results

In this section, we provide some details of the experiments discussed in Section 6.

B.1 Graph Generator Parameters
Given a number of vertices, n, and probability p, the model ER(n, p) assigns an edge
to any given pair of vertices with probability p. An instance of ER(n, p) with p = (1 +
ε) ln n

n is connected with high probability for ε > 0 [8]. For our experiments we use n ∈
{10, 15, 20, · · · , 100}, and ε = 1.

The Watts–Strogatz model [15] is used to generate graphs that have the small-world
property and high clustering coefficient. The model, denoted by WS(n,K, β), initially creates
a ring lattice of constant degree K, and then rewires each edge with probability 0 ≤ β ≤ 1
while avoiding self-loops or duplicate edges. In our experiments, the values of K and β are
set to 6 and 0.2 respectively.

The Barabási–Albert model generates networks with power-law degree distribution,
i.e., few vertices become hubs with extremely large degree [2]. The model is denoted by
BA(m0,m), and uses a preferential attachment mechanism to generate a growing scale-free
network. The model starts with a graph on m0 vertices. Then, each new vertex connects to
m ≤ m0 existing nodes with probability proportional to its instantaneous degree. This model
is a network growth model. In our experiments, we let the network grow until the desired
network size n is attained. We vary m0 from 10 to 100 in our experiments, and set m = 5.

https://doi.org/10.1007/s00453-001-0050-6

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:15

B.2 Computing Environment
For computing the optimum solution, we implemented the ILP described in Section 5 using
CPLEX 12.6.2 as an ILP solver. The model of the HPC system we used for our experiment
is Lenovo NeXtScale nx360 M5. It is a distributed system; the models of the processors in
this HPC are Xeon Haswell E5-2695 Dual 14-core and Xeon Broadwell E5-2695 Dual 14-core.
The speed of a processor is 2.3 GHz. There are 400 nodes each having 28 cores. Each node
has 192 GB memory. The operating system is CentOS 6.10.

B.3 Experimental Setup
We have considered proportional and non-proportional instances separately. The Kruskal-
based algorithm is the same in both settings, but the algorithms of [4] admit 2 variants: C1 for
proportional edge costs which is a 4ρ–approximation, and C2a for non-proportional edge costs
which is a 2(ln |T |+ 1)–approximation. In figures below, Ratio stands for the approximation
ratio given by the cost of the solution returned by the approximation algorithm divided by
the optimum cost OPT returned by the ILP.

All box plots shown below show the minimum, interquartile range (IQR) and maximum,
aggregated over all instances using the parameter being compared.

B.4 Approximation Ratio vs. Parameters – Proportional edge costs
First, we take a look at how the approximation ratio of the approximation algorithms is
affected by the parameters chosen. Figures 3, 5, and 6 illustrate the change in approximation
for different parameters (|V |, `, and the terminal selection method) in the case of proportional
edge costs. For comparison to [1], we include the performance of the Composite algorithm
(CMP) described therein.

Figure 5 Performance of C1 [4], KruskalMLST, CMP [1] on Watts–Strogatz graphs w.r.t. |V |, `,
and terminal selection method with proportional edge weights.

Figure 6 Performance of C1 [4], KruskalMLST, and CMP [1] on Barabási–Albert graphs w.r.t.
|V |, `, and terminal selection method with proportional edge weights.

ESA 2020

4:16 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

We see that for Erdős–Rényi graphs, the number of vertices marginally increases the
approximation ratio over time, while for the other generators this does not appear to be
the case. Overall, no discernible trend occurs for the number of priorities regardless of the
generator. Interestingly, for randomly generated graphs, there appears to be no relation to
the rate of decrease of terminal sets (i.e., linear vs. exponential) with the statistics of the
approximation ratios.

B.5 Approximation Ratio vs. Parameters – Non-Proportional Edge
Costs

Here we consider the case non-proportional edge cost, in which we compare Algorithms C2a
and KruskalMLST. The Composite algorithm of [1] was not designed for non-proportional
edge costs and so is not included here. Figures 7–9 show the approximation ratios vs.
parameters for each of the random graph generators discussed above.

Figure 7 Performance of C2a [4] and KruskalMLST w.r.t. |V |, `, and terminal selection method
with non-proportional edge weights on Erdős–Rényi graphs.

Figure 8 Performance of C2a [4] and KruskalMLST w.r.t. |V |, `, and terminal selection method
with non-proportional edge weights on Watts–Strogatz graphs.

Figure 9 Performance of C2a [4] and KruskalMLST w.r.t. |V |, ` and terminal selection method
with non-proportional edge weights on Barabási–Albert graphs.

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:17

In the non-proportional case, it is interesting that the approximation ratio appears to be
little affected by any of the parameters, and even appears to decrease with respect to the
number of priorities. It is unclear if this trend would continue for large number of priorities,
but it is an interesting one nonetheless. Of additional note is that KruskalMLST typically
has less variance in its approximation ratio than the algorithms of Charikar et al. [4] in both
the proportional and non-proportional case.

B.6 Approximation Ratio vs. Parameters – SteinLib Instances
For the experiments on the SteinLib graphs [11], we first extended two datasets (I080 and
I160) to have priorities via filtering or augmenting as described in Section 6. We provide
the plots showing the Performance of C1 [4], KruskalMLST, and CMP [1] on I080 and I160
graphs w.r.t. ` with filtered priorities in Figure 10, and for augmented priorities in Figure 11.

Figure 10 Performance of C1 [4], KruskalMLST, and CMP [1] on I080 and I160 graphs w.r.t. `
with filtered priorities.

Figure 11 Performance of C1 [4], KruskalMLST, and CMP [1] on I080 and I160 graphs w.r.t. `
with augmented priorities.

B.7 Runtime vs. Parameters – Proportional Edge Costs
Now we take a look at the affect of the parameters mentioned above on the average runtimes
of the approximation algorithms in the case of proportional edge costs. Figures 12–14 show
the runtime of the algorithms C2a, KruskalMLST, and GreedyMLST versus |V |, `, and the
terminal selection method.

As is to be expected, on all generators, the average runtime increases as |V | increases, as
does the variance in the runtime. Interestingly, average runtime does not appear to be much
affected by the number of priorities, although the variance in runtime does substantially
increase with `. Runtime is lower for exponentially decreasing terminals, which makes sense
given that in this case, the overall size of the terminal sets is smaller than in the linearly
decreasing case.

ESA 2020

http://steinlib.zib.de/showset.php?I080
http://steinlib.zib.de/showset.php?I160
http://steinlib.zib.de/showset.php?I080
http://steinlib.zib.de/showset.php?I160
http://steinlib.zib.de/showset.php?I080
http://steinlib.zib.de/showset.php?I160
http://steinlib.zib.de/showset.php?I080
http://steinlib.zib.de/showset.php?I160

4:18 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

Figure 12 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with proportional edge weights on Erdős–Rényi graphs.

Figure 13 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with proportional edge weights on Watts–Strogatz graphs.

Figure 14 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with proportional edge weights on Barabási–Albert graphs.

B.8 Runtime vs. Parameters – Non-Proportional Edge Costs
Now we take a look at the affect of the parameters mentioned above on the average runtimes
of the approximation algorithm in the non-proportional case. Figures 15–17 show the runtime
of the algorithms C2a, KruskalMLST, and GreedyMLST versus |V |, `, and the terminal
selection method.

Figure 15 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with non-proportional edge weights on Erdős–Rényi graphs.

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:19

Figure 16 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with non-proportional edge weights on Watts–Strogatz graphs.

Figure 17 Experimental running times for computing approximation algorithm solutions w.r.t.
|V |, `, and terminal selection method with non-proportional edge weights on Barabási–Albert graphs.

The trends are essentially the same as in the case of proportional edge costs; however, we
note that the overall runtimes are almost two orders of magnitude smaller on average in the
non-proportional trials run here.

C ILP Solver

Without doubt, the most time consuming part of the experiments above was calculating the
exact solutions of all MLST instances. For illustration, we show the runtime trends for the
ILP solver with respect to |V |, `, and the terminal selection method for proportional edge
costs in Figures 18–20 and for non-proportional edge costs in Figures 21–23 for all of the
random graph generators.

Figure 18 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with proportional edge weights on Erdős–Rényi graphs.

As expected, the running time of the ILP gets worse as |V | and ` increase. The running
time of the ILP is worse for the linear terminal selection method, again likely because of the
overall larger terminal set T . Note that the running time of the approximation algorithms are
significantly faster than the running time of the exact algorithm. The exact algorithm takes
a couple of minutes whereas the approximation algorithms take only a couple of seconds.

ESA 2020

4:20 Kruskal-Based Approximation Algorithm for the Multi-Level Steiner Tree Problem

Figure 19 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with proportional edge weights on Watts–Strogatz graphs.

Figure 20 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with proportional edge weights on Barabási–Albert graphs.

Figure 21 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with non-proportional edge weights on Erdős–Rényi graphs.

Figure 22 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with non-proportional edge weights on Watts–Strogatz graphs.

R. Ahmed, F. D. Sahneh, K. Hamm, S. Kobourov, and R. Spence 4:21

Figure 23 Experimental running times for computing exact solutions w.r.t. |V |, `, and terminal
selection method with non-proportional edge weights on Barabási–Albert graphs.

ESA 2020

Analysis of the Period Recovery Error Bound
Amihood Amir
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
https://u.cs.biu.ac.il/~amir
amir@esc.biu.ac.il

Itai Boneh
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
barbunyaboy2@gmail.com

Michael Itzhaki
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
michaelitzhaki@gmail.com

Eitan Kondratovsky
Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
https://u.cs.biu.ac.il/~kondrae
kondrae@cs.biu.ac.il

Abstract
The recovery problem is the problem whose input is a corrupted text T that was originally periodic,
and where one wishes to recover its original period. The algorithm’s input is T without any
information about either the period’s length or the period itself. An algorithm that solves this
problem is called a recovery algorithm. In order to make recovery possible, there must be some
assumption that not “too many” errors corrupted the initial periodic string. This is called the error
bound. In previous recovery algorithms, it was shown that a given error bound of n

(2+ε)p can lead to
O(log1+ε n) period candidates, that are guaranteed to include the original period, where p is the
length of the original period (unknown by the algorithm) and ε > 0 is an arbitrary constant.

This paper provides the first analysis of the relationship between the error bound and the number
of candidates, as well as identification of the error parameters that still guarantee recovery. We
improve the previously known upper error bound on the number of corruptions, n

(2+ε)p , that outputs
O(log1+ε n) period candidates. We show how to (1) remove ε from the bound, (2) relax the error
bound to allow more errors while keeping the candidates set of size O(logn). It turns out that this
relaxation on the previously known upper bound is quite challenging.

To achieve this result we provide what, to our knowledge, is the first known non-trivial lower
bound on the Hamming distance between two periodic strings. This proof leads to an error bound,
that produces a family of period candidates of size 2 log3 n. We show that this result is tight and
further provide a compact representation of the period candidates. We call this representation the
canonic period seed.

In addition to providing less restrictive error bounds that guarantee a smaller candidate set, we
also provide a hierarchy of more restrictive upper error bounds that asymptotically reduces the size
of the potential period candidate set.

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of compu-
tation → Sorting and searching

Keywords and phrases Period Recovery, Period Recovery Hierarchy, Hamming Distance

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.5

Funding Amihood Amir : Partly supported by ISF grant 1475/18 and BSF grant 2018141.

© Amihood Amir, Itai Boneh, Michael Itzhaki, and Eitan Kondratovsky;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://u.cs.biu.ac.il/~amir
mailto:amir@esc.biu.ac.il
mailto:barbunyaboy2@gmail.com
mailto:michaelitzhaki@gmail.com
https://u.cs.biu.ac.il/~kondrae
mailto:kondrae@cs.biu.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2020.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Analysis of the Period Recovery Error Bound

1 Introduction

Deterministic algorithms live in a “sterile” world: The problem is combinatorially clean, the
environment is exact and unchanging, and thus the result is well defined. Reality is seldom
so accommodating. Therefore, when applying algorithms to real world problems, one is
generally required to approximate a solution.

Such approximations are derived from two sources: (1) Problems that can’t be solved
efficiently, due to their inherent complexity, and (2) input that has been corrupted by various
error-inducing sources. Theoretical Computer Science, in the field of Algorithms Development
and Analysis, solves the above first problem by optimization algorithms (see e.g. [11–13, 22]).
These are algorithms that come provably close to the optimal solution. The second problem
is generally solved using the assumption that the input incurred the smallest number of
possible corruptions (see e.g. [1, 15–17]). Two examples are the following:

The first solution to the Human Genome Sequencing project [21] used “shotgun sequen-
cing”. Since the genome can not be read in its entirety, we are really presented with a “soup”
of small subsequences of the genome. These subsequences need to be combined to produce
the full sequence. The assumption was that the shortest common superstring [20] is the
solution, i.e. the shortest string that can be cut into the input subsequences. Of course,
there is no absolute guarantee that the original input was, indeed, the shortest. But this is
the assumption that was made. Whenever there is statistical support for an assumption on
the nature of the output, this support strengthens the result, but one can never be 100%
sure that the produced output is indeed the “real” one.

The second example deals with Evolutionary Biology. By 1987, 145 races of humans were
identified. The question was, how did the different races evolved? Cann, Stoneking, and
Wilson [7] wrote their paper on human evolution, based on mitochondrial DNA. The idea
is to fix a gene, and by its differences in the different races, construct a tree depicting the
evolution, with races having smaller differences in the gene being closer to each other in the
tree than races with greater differences. These evolutionary trees are constructed with the
idea of parsimony in mind [8]. Clearly, though, the resulting tree is not the initial one, since
different genes cause different trees, which then need to be reconciled [4, 9, 18,19].

The above two are just examples of our shortcoming in approximating scientific phenomena.
The scientific paradigm for reconstructing a phenomenon, at best can produce a measure of
confidence, but never guarantee that the result of the algorithm indeed recovers the initial
object.

The reconstruction task is the problem in which one has sampled a corrupted text T that
was originally periodic, and wishes to recover its original period phenomenon. The input is T
without any information about either the period’s length nor the period itself. This problem
seems doomed since in most cases, even one error can lead to an ambiguity. However, in
2012, Amir et. al [3] introduced the recovery model. They have achieved some surprising
results. They identified a phenomenon - periodicity - where one can get a corrupted input
and produce a very small set of solutions (logarithmic in the input size), one of which is
guaranteed to be the initial uncorrupted source, provided that the number of errors is
reasonably bounded. This result was succeeded by additional papers, dealing with various
types of error measures [2, 14], and recovering different phenomena [5].

In the recovery model for periodic strings, the output is a set of period candidates that
must include the original period. Algorithms in such a model assume that the number
of errors introduced into the text is limited. The error bound ensures that the recovery
algorithm outputs a set of at most o(n) candidates. However, there has not been a systematic
study of what types of errors are to be bound, or whether the bound is tight. Nor has the
relation between the error bound and the number of potential candidates ever been studied.

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:3

One of the topics that this work investigates is different types of error bounds. An error
bound type is defined by the variables that it limits. We may consider a universal error
bound, i.e. that in the entire string T there do not appear more than a constant number
of errors. We may say that the number of errors is a function of the length of T . Another
possibility is that the number of errors is a function of cycles of the period. In other words,
how many copies of the period have to pass by without corruption. This last is the type of
error considered historically. Some of those variables allow a degree of freedom, some are
known while others might be unknown, and even without the ability to be estimated. For
example, the historic error bound of [3] has a known value n, which is the length of input
T , an unknown value p, the length of the original period (which is not part of the input),
a set degree of freedom ε, and a parameter c determined by the metric. We can say in an
abbreviated manner that previously known error bounds are of (n, p, ε, c)-type.

In this paper, we make the first attempt at a systematic analysis of the required error
bound for recovery of a periodic string under mismatch errors. The only currently known
relations between error bounds and number of candidates are: (1) the trivial bound of |Σ|n/2

candidates for n possible errors, where Σ is the alphabet, since all possible periodic strings
are candidates, and (2) The bound shown in Amir et al. [3]: Let T be an n-length periodic
string with period P of length p. For ε > 0, if we are guaranteed that there are no more than

n
(2+ε)p mismatch errors, then a set of log1+ε n candidates can be constructed in O(n logn)
time, that is guaranteed to include the original period P .

Amir et al. [3] proved their error bound result for pseudo-local metrics. For simplicity,
we consider the Hamming distance as the distance metric, i.e. errors counted as the number
of replacements. All our results can be easily extended to c-pseudo local metrics.

We desire answers to the following questions:
Past upper bounds depended on p. The first question to ask is whether this dependency is
essential. In this paper, we study the case where the upper bound on errors is the number
k. We are departing from the historical (n, p, ε, c)-type upper bounds, and instead consider
k-type bounds, where k is either known or could be estimated. In this case, when one wants
to reproduce the original periodic phenomena, the period length is unknown. On the other
hand, the estimation of the number of corrupt copies of the period, as high as k, is assumed
to be known.

In previous results, there is a “degree of freedom” variable ε. it seems that ε is not a
natural variable to have in the upper bound formula. Its only use was to support the analysis.
Indeed, one might want ε to be as close to zero as possible to relax upper bound on errors.
However, this aim increases the number of candidates. This observation leads to our second
question, whether it is possible to improve such analysis and get rid of ε without having too
many candidates.

The second question leads to a greater task of how significant the upper bound of (n, p, c)-
type can be relaxed while ensuring o(n) candidates. This paper uses algebraic techniques to
improve the upper bound on errors while preserving the property of o(n) candidates. We
give a partial answer, but believe that the question of how can be upper bound be further
relaxed, and yet offer o(n) periodic candidates is difficult and open to future research.

This paper successfully answers the above two questions.
However, on the path toward that goal, our first non-trivial insight is that even a single

error (when k = 1) in text T might result in Θ(n) indistinguishable candidates. That is,
without any additional knowledge on the problem, having a universal upper bound with o(n)
candidates is impossible. We further show that if the original period is repeated in the text
k + 1 times, i.e. there exists a single complete uncorrupted occurrence of the original period,
then it is still possible to construct an example with Θ(n

k(k+1)) = Θ(n) candidates.

ESA 2020

5:4 Analysis of the Period Recovery Error Bound

The novel combinatorial results are that (1) if the number of original period repetitions is
2k + 1 or higher then there is at most one candidate, i.e. the original period can be recovered,
and (2) if the period originally repeated 2k times or higher (k ≥ 2) then there are at most 2
indistinguishable candidates. We conclude that when k is known, the only required additional
knowledge to find a constant number of period candidates is whether p ≤ n

2k+1 or p ≤ n
2k ,

respectively. Analysing the candidate set size when the number of repetitions is in the range
between k + 1 and 2k requires future research.

We highlight a connection between (n, p)-type and k-type upper bounds. Assume the
case when k is unknown, but the above assumption about the repetitions holds. Then we
should look at all possible k values and add their number of candidates. This leads us to the
bounds bn−p2p c and b

n
2pc, respectively. However, there are Θ(n) different values for k, and

we require that the number of candidates must be o(n), therefore we provide a new proof
methodology.

In this paper, we analyze the b n2pc upper bound on errors, and prove that the number
of candidates is 2 log3 n and that this bound is tight by providing a family of examples.
Moreover, we show that these candidates can be represented by a single canonic period seed.

Finally, we show a hierarchy of more restricted upper bounds of (n, p, ε, c)-type that yield
Θ(log(i) n) candidates, where log(i) n is log log · · · logn i times.

In Fig. 1 we show the known bounds and the results of this paper. The formulae on the
horizontal axis are error bounds, we show a hierarchy of candidate set size upper bounds. In
various cases we show examples where this upper bound is indeed tight.

Error Bound

Number of Candidates

Length n string, Length p period
known result
this paper

Σ𝑛/2

∑𝑛
n

log1+𝜀 𝑛

2 log3 𝑛

loglog n

log(i) n

log*n

1
𝑛

(1+𝜀)𝑝
𝑛

2∙(2(𝑖))((log
(𝑖) 𝑝) 1+𝜀)

𝑛

2𝑝1+𝜀
𝑛

2+𝜀 𝑝

𝑛

2𝑝

𝑛−𝑝

𝑝
𝑛

* p ≤ n/3. Two canonic period constructed.

*

Figure 1 The results of this paper.

This paper is organized as follows: In Section 5, we discuss the k-type upper bounds. In
Section 6, we tighten the logarithmic bound on the number of candidates. While in [3] the
log base was dependent on ε of the allowed error bound, we show that for all ε the bound

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:5

is 2 log3 n. In this section, we introduce a new algebraic method to analyze the distance
between periodic strings derived by different seeds. This enables us to further tighten the
upper error bounds to b n2pc, and construct a single canonic period seed, where no more than
2 log3 n candidates derived from it, among which the initial period is guaranteed to exist.
Finally, in Section 7, we give a hierarchy of upper bounds that produce decreasing number of
candidates that include the original period. The hierarchy decreases from logn via log logn,
log(i) n, to log∗ n.

2 Preliminaries

Let Σ be an alphabet. A string T over Σ is a finite sequence of letters from Σ. By T [i], for
0 ≤ i ≤ t− 1, we denote the ith letter of T . The empty string is denoted by λ. By T [i..j]
we denote the string T [i] . . . T [j] called a substring of T (if i > j, then the substring is the
empty string). A substring is called a prefix if i = 0 and a suffix if j = t − 1. The prefix
of length j + 1 is denoted by T [..j]. While by T [i..] we denote the suffix which starts from
index i in T . We will follow the convention of using capital letters for string names, and the
same small letter for the length of the string. For example: the length of string T is t. Other
notations we use is T [−i] = T [t− i].

An n-length string T is periodic if T = P kP ′, where k ∈ N, k ≥ 2, and P ′ is a prefix of
P (the prefix might be empty). P k is the concatenation of P to itself k times. It is clear
that P is a substring of T and p ≤ t/2.

If T is periodic, the shortest P , such that T = P kP ′ is called the period of T . There is
a unique such period by the periodicity lemma [10]. The periodicity lemma states that for
two different periods of lengths p and q, where n ≥ p+ q − gcd(p, q), there exists a period
of length gcd(p, q), where gcd(a, b) is the greatest common divisor of a and b. A string P is
primitive if there is no string S such that P = Sk and k > 1.

The recovery problem seeks the original period of a corrupted text T . The corruption
may have caused T to be non periodic. Thus there may be a number of indistinguishable
periods that generate strings of length t. We are seeking an error bound on the distance
between these strings and T that forces only a small set of such periods.

I Example 1. T = abaabaab, then P = aba is the period. In our exposition, for the sake of
brevity, we may denote this string by T = P 2 2

3 . We allow ourselves to use fractions x
y where

x
y × t is an integer. In this example, we could not use 1

4 because 1
4 × 3 is not an integer.

Let T and S be two n-length strings, their Hamming distance, denoted by Ham(T, S),
is the number of mismatches between these strings. The Hamming distance represents the
number of substitutions required to convert one string to the other.

Let P be a primitive string of length p. Let T be a n-length string, P∞ denotes the
periodic string of length `, where the value of ` is clear from the context. For example, in
the expression Ham(T, P∞), both operands T and P∞ should be of equal lengths, ` = n. P
is called a period candidate with bound e if Ham(T, P∞) ≤ e. If ` = n, we denote TP = P∞.
This notation simplifies the expressions when dealing with two different periodic candidates
of T . For example, when observing Ham(TP , TQ), where P and Q are two different periods.

Let P be a periodic candidate of T . The substring ranges of the form [i, i+ p− 1], where
i = 1, p+ 1, 2p+ 1, . . . , (bnp c − 1)p+ 1 denote full occurrences of P in T . A full occurrence
[i, i+p− 1] is called an exact occurrence of P if P = T [i..i+p− 1], otherwise it is a corrupted
occurrence.

ESA 2020

5:6 Analysis of the Period Recovery Error Bound

3 A universal Error Bound Does not Allow Recovery

We begin by proving that a universal error bound, even if it is a single error in the string, does
not suffice for o(n) candidates. We describe an example of Ω(n) indistinguishable candidates
when there is only a single corruption in some periodic text. Then we generalize it to any
number of corruptions k ∈ N.

I Example 2. Let T = a2`ba4`+1, where n = 6` + 2. We show that there are n
6 indistin-

guishable period candidates.
The original periodic source of the text T is one of the following.

C = {a2`b a2`b a2`, a2`ba a2`ba a2`−2, a2`ba2 a2`ba2 a2`−4, . . . , a2`ba` a2`ba`}
= {(a2`b)2+ 2`

2`+1 , (a2`ba)2+ 2`−2
2`+2 , (a2`ba2)2+ 2`−4

2`+3 , . . . , (a2`ba`)2}
Each such possible source text has a different period. And for each such source, the

number of the introduced corruptions is exactly 1. The second b is replaced by an a.
It is clear that |C| = O(n), because of the following reason. Observe that the third

occurrence of the period is not complete, only a suffix of it occurs. It begins with a2` and for
each successive item, the length of the suffix of the third period occurrence decreases by 2,
until it becomes the empty string. Thus, |C| = `+ 1 ≈ n

6 .

It is easy to generalize the example to the case where k corruptions are allowed and
there are k + 1 full occurrences of the period, in other words, we still have one uncorrupted
periodic occurrence. In this case, the constructed example would has Ω(n

k(k+1)) = Ω(n)
indistinguishable period candidates.

I Example 3. T = a`kba`k
2+k−`−1, where n = `k2 + `k + k, k ≥ 2, and ` ≥ k. We show

that there are Ω(n
k(k+1)) indistinguishable period candidates.

The original periodic source of the text T is one of the following.
C = {(a`kb)k a`k, (a`kba)k a`k−k, (a`kba2)k a`k−2k, . . . , (a`kba`)k}
= {(a`kb)k+ `k

`k+1 , (a`kba)k+ `k−k
`k+2 , (a`kba2)k+ `k−2k

`k+3 , . . . , (a`kba`)k}
Thus, |C| = `+ 1 = Θ(n

k(k+1)).

4 Results

Our main contributions are the following.

I Theorem 4. Let k be a fixed integer value. Let P be a period for which Ham(T, TP) ≤ k,
and P has at least 2k + 1 full occurrences in T . Then the number of possible candidates for
P is at most 1.

I Theorem 5. Let k ≥ 2 be a fixed integer value. Let P be a period for which Ham(T, TP) ≤ k,
and P has at least 2k full occurrences in T . Then the number of possible candidates for P is
at most 2.

I Theorem 6. Let P be a period for which Ham(T, TP) ≤ b n2pc, and p ≤ t
3 . Then the

number of possible candidates for P is at most 2 log3(n) = O(logn).

5 k-Type Upper Error Bounds

In this section, we prove Theorems 4 and 5. Doing so requires a few new lemmas. We begin
by examining the case where k = 1. Then we generalize our results to any k ∈ N.

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:7

Let P,Q be two period candidates of T , with lengths p, q, respectively. Without loss of
generality, assume p > q. We recall a useful lemma that was proven when P fully occurs at
least twice.

I Lemma 7 ([3]). For any two periods P and Q, if they both fully occur at least twice, then
Ham(TP , TQ) ≥ 2.

In [3], it is claimed that for the general case Ham(TP , TQ) ≥ n
p . Our Corollary 10 is

exactly this result. However, the previous proof fails to handle properly the case where
⌊
n
p

⌋
is odd. We take care of this missed case.

I Lemma 8. Let T be a text and assume there is at most one corruption error in T . Further
assume that T is a corruption of an original periodic string TP where the period P fully
occurs at least 3 times in T (neither the period nor its length is part of the input) . Then
there is a single period candidate for the original text.

Proof. Let us assume in contradiction that there are P and Q two possible period candidates
for T , P 6= Q. We begin by showing that p 6= q. If p = q, there are three occurrences
of P and Q which are of the same length, but Ham(TP , TQ) ≤ 2. It means that one full
occurrence of P is equal to the corresponding full occurrence of Q, namely, P = Q. As a
consequence, p 6= q. The proof is divided into three cases.
Case 1. When q | p. Let k = p

q .
P is primitive, against each full occurrence of P there are Qk. That is, each full
occurrence of P in TP should cause at least 1 mismatch with TQ, otherwise P is not
primitive, thus Ham(TP , TQ) ≥ 3. However, one error is assumed thus, Ham(TP , TQ) ≤
Ham(T, TP) +Ham(T, TQ) = 2. Thus, we got a contradiction.

Case 2. When q | 2p and q - p.
First, we observe that q must be even. Let Q = QPQS , where QP and QS are exactly the
first and last half of Q of lengths q/2. We observe the prefix of length 3q

2 of the three first
full occurrences of P . It is easy to see that against the first and third occurrence of P in
TP , there are QPQSQP in TQ. On the other hand, against the second full occurrence of
P there are QSQPQS . It is clear that QP 6= QS , otherwise Q is not primitive. Thus, we
must have at least 3 mismatches between TP and TQ, in contradiction.

Case 3. Otherwise, when q - 2p and q - p.
From the alignment lemma, the number of mismatches between TP and TQ is at least 4,
in contradiction. J

I Corollary 9. For any two periods P and Q that fully occur at least three times, then
Ham(TP , TQ) ≥ 3.

I Corollary 10. Let k ≥ 2. For any two periods P and Q that fully occur at least k times,
then Ham(TP , TQ) ≥ k.

Proof. If k is even then use Lemma 7 on all disjoint consecutive pairs of full occurrences of
P against the rotations of Q. If k is odd, use Lemma 7 for all full occurrences of P except
its last three full occurrences. Handle these occurrences by Corollary 9. J

We now have the tools to prove the main theorems. The proofs can be found in the full
version of this paper.

I Theorem 4. Let k be a fixed integer value. Let P be a period for which Ham(T, TP) ≤ k,
and P has at least 2k + 1 full occurrences in T . Then the number of possible candidates for
P is at most 1.

ESA 2020

5:8 Analysis of the Period Recovery Error Bound

I Theorem 5. Let k ≥ 2 be a fixed integer value. Let P be a period for which Ham(T, TP) ≤ k,
and P has at least 2k full occurrences in T . Then the number of possible candidates for P is
at most 2.

6 Tighter Bounds for 2 log3 n Candidates

In this section we relax the constraints of Amir et al. [3] regarding the number of allowed
mismatches, and yet provide a much smaller candidate set. The main tool in achieving this is
a string combinatorics theorem that improves the best known lower bound on the Hamming
distance between two periodic strings.

6.1 Lower bound on the Hamming distance between strings
We start by improving the best known lower bound on the number of errors between two
periodic strings. We provide a new nontrivial expression that tightens the lower bound
and give tight examples. Our formula results from a careful analysis of the Turning Points,
Windows, and Adjacency Strings of the two strings.

I Definition 11. A string P is called Non-trivial if it contains at least two distinct characters.

I Theorem 12. Let P,Q be non-periodic, non-trivial strings of lengths p, q, respectively, s.t.
q < p, q - p, and let p = aq + b, 0 < b < q, then
1. ∀m, 4 ≤ m < q

gcd(p,q) , Ham(Pm, Q∞) ≥ m(a+ 1)− 2 +
⌊
mb
q

⌋
2. ∀m, 2 ≤ m < q

gcd(p,q) , Ham(Pm, Q∞) ≥ m(a+ 1)− 2

In the next subsections, we provide the proof of Theorem 12 in-depth.
For pedagogical reasons and for simplicity and comprehensibility, we will prove the theorem
for strings of co-prime lengths and binary alphabet, Σ = {α, β}, and then show a reduction
from the general case to the simplified cases.

Troughout the proof, we will assume w.l.o.g that p > q and that α appears in Q at least
as many times as β. We will also let a, b satisfy p = aq + b, a, b > 0.

We begin with definitions that will help in understanding the motive and correctness of
the proof and methods.

6.1.1 Groundwork
I Definition 13 (Index mapping function). The index mapping function is defined as follows:

δm : [0, p− 1]→ [0, q − 1], where δm(i) = i+ (m− 1)p mod q

The index mapping function maps the index of the mth occurrence of P [i] in Pm to the
corresponding index in Q∞. Note, that the mapping function is also dependent on the
lengths of P,Q. We refrain from indexing the function with these symbols for simplicity’s
sake.

I Definition 14 (Adjacency string). Let P,Q be strings of co-prime lengths, and p > q. The
adjacency string Q̃p is a string of length q that satisfies ∀i, 0 ≤ i < q, Q̃p[i] = Q[i · p mod q].
The adjacency subset-string P̃q is a multi-string of length q that satisfies

∀i, 0 ≤ i < q, P̃q[i] = {P [j]|j ≡q i · p}

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:9

A subset string is a string where each string-position might contain several characters.
The term was originally defined at [6]. Note that in our case, the same character can recur
multiple times at a single position.
The motivation behind this representation is to encapsulate the index-mapping function. It
holds that ∀m, i, j where j ≡q i · p implies Q̃p[(j + m) mod q] = Q[δm+1(i)]. In words, it
means that a character in P̃ that aligns against Q̃p[i], will align against Q̃p[i+ 1] in its next
recurrence. P̃ was defined for mere convenience; Q[i] = Q̃p[j]→ P [i+ n · q] ∈ P̃q[j], for all
i+ n · q < p 1.
We will often omit the subscript and simply write Q̃, P̃ . Fig. 2 shows an example of an
adjacency string. In this example, one can see that if a character σ in P is aligned with Q̃[i],
the next occurrence of σ will align with Q̃[(i+ 1) mod q].

Figure 2 Example for adjacency string, Definition 14.

During the proof, we refer to the symbol “β” as Black node, and to “α” as White node.

I Definition 15. The m-forward window W f
m(i) is the multi-set of characters in Q that

align against P̃ [i] in the next m repetitions of P , which is {Q̃[i], ..., Q̃[i+m− 1]}
The m-backward window W b

m(i) is the multi-set of characters in P that align against Q̃[i] in
the next m repetitions of P , which is {P̃ [i], ..., P̃ [i−m+ 1]}

In Fig. 3 we see an example for backwards and forwards windows. One can see that W b
3 (2)

contains all the characters that touch Q̃[2] in the next 3 repetitions of P , and that W f (0)
contains all the characters that touch P̃ [0] in the next 3 repetitions. It is also apparent that
W b

3 contains the character ‘0′ twice.

Figure 3 Example for backward and forward windows, Definition 15.

1 The converse is not true for, as the mapping function maps to characters in Q.

ESA 2020

5:10 Analysis of the Period Recovery Error Bound

I Definition 16 (Heavy index). We say that i is a heavy index if it satisfies |P̃ [i]| =
⌈
p
q

⌉
=

a+ 1.

We will call the last b characters of P heavy characters.

I Corollary 17. ∀m, i, the number of characters in W b
m(i) are at least am+

⌊
mb
q

⌋
.

Proof. Considering P̃ has at least a characters at every index, and the number of heavy
indices in any m repetitive recurrences is at least

⌊
mb
q

⌋
, giving the required result. The heavy

indices are distributed equally in P̃ because in P , the if the heavy indices are 0, 1, ..., j − 1,
then on the next recurrence they will align with j, j + 2, ..., 2(j − 1), and so on, and by
abstract algebra the distribution of heavy indices in P̃ is equal, though not probabilistic. J

I Definition 18 (Turning points). Let t1, t2, ..., t` be the indices such that
Q̃p[ti] 6= Q̃p[ti + 1 mod q]. We call these indices Turning points.

This definition will help in counting mismatches; Turning points create mismatches, as a
character that matches a turning point will create a mismatch in the next recurrence of P .

See Fig. 4 for an example of Turning points.

Figure 4 Example for Turning points, Definition 18.

I Corollary 19. ` is even.

Proof. Given that turning points are the only indices that satisfy q[ti] 6= q[ti+1], and therefore
if ` is odd, then it can be expressed as 2`′ + 1, and

q[t1] 6= q[t2]... 6= q[t2`′+1] 6= q[t1]→
q[t1] = q[t3] = ... = q[t2`′+1] 6= q[t1]→
q[t1] 6= q[t1] J

I Corollary 20. ` ≥ 2

Proof. Let us assume that ` = 0. Since there are no turning points, there is no index s.t.
Q̃p[i] 6= Q̃p[i+ 1], and consequently the string Q is trivial, a contradiction.
This means ` ≥ 1, and by using Corollary 19, ` ≥ 2. J

I Corollary 21. Ham(P 2, Q∞) ≥
∑̀
i=1
|P̃ [i]| ≥ a`.

Proof. Let i be a turning point. By the definition of adjacency string, all the characters in
P̃ [i] will align in the next two repetitions against Q̃[i], Q̃[(i+ 1) mod q]. By the definition
of turning point, Q̃[i] 6= Q̃[(i+ 1) mod q] and accordingly each character in P̃ [i] will cause

exactly one mismatch. Hence, the minimal number of mismatches is
∑̀
i=1
|P̃ [i]|. Considering

that ∀i, P̃ [i] contains at least a characters, the expression is at least a`. J

Given the above facts, we can now proceed to the proof of Theorem 12.

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:11

6.1.2 Co-prime proof
In this subsection, we constrain p, q to be co-prime, namely, gcd(p, q) = 1.

Proof. We will divide the proof to 3 cases, and treat each of them separately.

I Case 1 (` ≥ 4.). When m = 2, it holds that

Ham(P 2, Q∞) ≥ 4a = 2(a+ 1)− 2 + 2a > 2(a+ 1)− 2 +
⌊

2b
q

⌋
.

We can,accordingly, assume that m ≥ 3.
Using Corollary 17, at least 4

⌊
mb
q

⌋
indices in the m-backward windows of the turning

points are heavy; So using Corollary 21, every m+ 1 repetitions we get at least that many
mismatches in addition to the already-calculated number. Set em =

⌊
mb
q

⌋
. Given that m ≥ 3,

it holds that either em ≥ 1, or em+2 ≤ 1 2, and thus em+2 ≤ 4em + 1.
Using the above results, we show that Ham(P 2m, Q∞) causes more mismatches than

allowed for Ham(P 2m+1, Q∞).

Ham(P 2m, Q∞) ≥ 4am+ 4e2m−1

≥ 4am+ e2m+1 − 1 ≥ 4am− 1 + e2m+1

≥ (2m+ 1)(a+ 1) + 2am− a− 2m− 2 + e2m+1

≥ (2m+ 1)(a+ 1) + 2(m− 1)(a− 1)− 3 + a+ e2m+1

≥ (2m+ 1)(a+ 1)− 2 + e2m+1 y

In the rest of the cases, there are only two turning points. We denote, for simplicity,
tw, tb as the turning points from white to black and from black to white, respectively.

I Case 2. [` = 2, (tb−tw) mod q = 1] In words, it means that there is only one occurrence
of the character β in Q. Let ib be an index such that Q̃[ib] = β. By the assumptions, this
index is unique.

Let W = W b
m(ib). Let c = |W |, and set cw to be the number of white characters in W .

The number of black characters in the window, denoted by cb satisfies cb = c− cw. Using
Corollary 17, we can claim c ≥ ma+

⌊
mb
q

⌋
.

If cb = 0, then the black character that must exist in P (since it is not trivial), did not
align against the only black character of Q, and thus created m mismatches, so we can
assume w.l.o.g that at least one black character appears in the window, as it reduces the
number of errors by at least 1.

Putting it all together and maximizing cw to be c− 1, leads to

Ham(Pm, Q∞) ≤ cw · 1 + (c− cw) · (m− 1)
≤1 (c− 1) · 1 +m(c− (c− 1))(m− 1)
= m+ c− 2

= m+ am+
⌊
mb

q

⌋
− 2

= m(a+ 1)− 2 +
⌊
mb

q

⌋
(1)

y

2 If 3b
q < 1, then 5b

q < 2

ESA 2020

5:12 Analysis of the Period Recovery Error Bound

I Case 3 (` = 2, (tb − tw) mod q 6= 1). First, define d = (tb − tw) mod q.

I Corollary 22. The number of mismatches caused by each character on index i in the
adjacency string P̃ after m repetitions is the minimum between the number of white nodes
and black nodes in the m-forward windows of i.

Proof. Each character creates a mismatch by either aligning with a white index or a black
index, so the smallest number of mismatches a character can cause is the minimum between
the black and white indices in its next occurrences. J

We consider three cases here; the first is where m ≥ d+ 1. The second is where m ≤ d,
and also m ≥ 4. The last is m ≤ d,m ∈ {2, 3}.

I Case 3.1 (m ≥ d+ 1). Recall that there are at least as many white characters as black.
Mark Ww = W b

m−1(tw), and Wb = W b
2 (tw + 2). Since d ≥ 2 and q ≥ m + 1, there are no

overlaps between the windows, and all the indices in Wb are black.
InWw, all of the characters will align against both tw, tw+1, and hence create a mismatch.

Note that each of the indices {tw − 1, ..., tw − m + 3} will also align against tw − 1 and
tw + 2, hence creating two mismatches. Thus, the total sum of mismatches is at least
a(2 + 2((tw−1)− (tw−m+ 3) + 1)) = 2a(m−2), as each index of P̃ has at least a characters.

Considering that m > d, tw + 1 will align against tb + 1 and tw + 2 will align against
tb + 2, and as a consequence we get at least 2 mismatches for each index, regardless of
m. Therefore the total number of mismatches is at least 2a, which leads to a total sum of
2a(m− 1) mismatches in both windows. Evaluating this value:

2a(m− 1) = 2am− 2a
= am+ am− 2a
= m(a+ 1) + a(m− 2)−m
≥ m(a+ 1)− 2 (by minimizing m to 2)

We now show
⌊
mb
q

⌋
additional mismatches. The number of heavy indices in the m-

backwards window of tw + 1 is at least
⌊
mb
q

⌋
, and all of the characters in the window create

at least one mismatch, leading to
⌊
mb
q

⌋
additional mismatches. y

I Case 3.2 (4 ≤ m, m ≤ d). First, it is trivial (yet crucial) to see that d ≥ 4. Using
the previous method, we consider W b

m−1(tw). Given that m ≤ d, and using Corollary 22,
any character at position tw − i will cause min(i + 1,m − i − 1) mismatches, so we have
1 + 2 + ... +

⌊
m
2
⌋

+ ... + 2 + 1 ≥ a(1 + 2(m − 3) + 1) = 2a(m − 2) mismatches. The same
claim can be made for W b

m−1(tb), summing up to at least 4a(m − 2) mismatches after m
repetitions.

Ham(Pm, Q∞) ≥ 4a(m− 2)
≥ m(a+ 1)−m+ 3am− 8a ≥ m(a+ 1) +m(3a− 1)− 8a
≥ m(a+ 1) + 4(3a− 1)− 8a ≥ m(a+ 1) + 12a− 8a− 4
≥ m(a+ 1) + 4(a− 1) ≥ m(a+ 1)

We now need to find
⌊
mb
q

⌋
−2 additional mismatches. The inequality

⌊
(m−1)b

q

⌋
≥
⌊
mb
q

⌋
−1

holds, and accordingly we have an additional 2
⌊

(m−1)b
q

⌋
≥ 2(

⌊
mb
q

⌋
−1) ≥

⌊
mb
q

⌋
−2 mismatches.

y

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:13

Figure 5 Example for strings decomposition (Definition 25).

I Case 3.3 (m ≤ d, 2 ≤ m ≤ 3). In this case, we only have to show that Ham(Pm, Q∞) ≥
m(a+ 1)− 2.
If m = 2, then we have 2a = m(a+ 1)− 2 mismatches directly from Corollary 21.
If m = 3, then tw, tw − 1, tb, tb − 1 will all create at least one mismatch, which results in 4a
mismatches, and

4a = 3a+ a = 3(a+ 1)− 2 + a− 1 ≥ 3(a+ 1)− 2 = m(a+ 1)− 2 y

J

6.1.3 Non-divisible proof
The case of gcd(p, q) = 1 was proven in Subsection 6.1.2. We now prove that the theorem is
true for the more general version, where q - p. Let gcd(p, q) = g > 1, and let q′ = q

g , p
′ = p

g ,
and p′ = a′q′ + b′.

I Corollary 23.
⌊
mb
q

⌋
=
⌊
mb′

q′

⌋
Proof.⌊
mb

q

⌋
=
⌊
m(p mod q)

q

⌋
=
⌊
m(g(a′q′ + b′) mod gq′)

gq′

⌋
=
⌊
m(gb′ mod gq′)

gq′

⌋
=
⌊
mgb′

gq′

⌋
=
⌊
mb′

q′

⌋
J

I Corollary 24. a′ = a

We will now decompose P and Q to smaller strings of co-prime lengths.

I Definition 25 (Decomposed strings). Given strings P,Q, gcd(p, q) = g, the decomposed
string of P at index i is Pi = P [i]P [i+ g]...P [i+ (p′ − 1)g]. The decomposed strings of Q are
defined respectively.

I Corollary 26. ∃i s.t. Pi is non-trivial.

Proof. If such an index does not exist, for each index i, Pi is trivial, hence ∀i, Pi = cp
′ , and

accordingly P = (P [0]...P [g − 1])p′ , and P is periodic, a contradiction to our assumptions.
The same claim can be made about Q. J

I Definition 27. Let P,Q be strings, and let i, j be the minimal indices such that Pi and Pj
are not trivial. We will say P,Q are aliens if i 6= j, and we will say P,Q are similar if i = j.
If gcd(p, q) = 1, then P,Q are aliens regardless.

The latter definition is rather synthetic, since we only consider the minimal indices.

ESA 2020

5:14 Analysis of the Period Recovery Error Bound

I Case 1 (P,Q are aliens). Let i, j be the minimal indices s.t. Pi, Qj are non-trivial.
In this case, Ham(Pm, Q∞) ≥ Ham(Pmi , c∞i) +Ham(cp

′m
j , Q∞j), where Pi = cp

′

i , Qj = cq
′

j .
Now,

Ham(Pmi , c∞i) = m ·Ham(Pi, cp
′

i) ≥ m (1)

Ham(cp
′m
j , Q∞j) ≥ m ·Ham(cp

′

j , Q

⌊
p′m
q′

⌋
j)

≥
⌊
p′m

q′

⌋
=
⌊
m(a′q′ + b′)

q′

⌋
= ma′ +

⌊
mb′

q′

⌋
= ma+

⌊
mb

q

⌋
(2)

So,

Ham(Pm, Q∞) ≥ Ham(Pmi , c∞i)+Ham(cp
′m
j , Q∞j) ≥ m+am+

⌊
mb

q

⌋
= m(a+1)+

⌊
mb

q

⌋
y

I Corollary 28. If P,Q are alien strings of non co-prime lengths, then Ham(Pm, Q∞) ≥
m(a+ 1) +

⌊
mb
q

⌋
, for all m > 0.

I Case 2 (P,Q are similar). Let i, j be the minimal indices s.t. Pi, Qj are not trivial. It
holds that

Ham(Pm, Q∞) ≥ Ham(Pmi , Q∞i) ≥ m(a′ + 1)− 2 +
⌊
mb′

q′

⌋
= m(a+ 1)− 2 +

⌊
mb

q

⌋
Which is exactly the required expression, with the LCM occurring more often. y

6.2 Candidates for periods
I Definition 29. Let T be a text, and P a string. We say that P is a periodic seed (or seed)
of T , if Ham(T, P∞) = k → t ≥ 2kp and P is non-periodic.

I Lemma 30. Let P,Q be non-trivial strings of co-prime lengths (i.e., gcd(p, q) = 1), then
Ham(P q, Qp) ≥ d(p − 2) + q, where d is the number of occurrences of the less frequent
character in either P or Q.

Proof. Let P,Q be non-trivial strings of co-prime lengths p, q. Let σS be the number of
occurrences of a character σ in a string S.
In the LCM, i.e., when the strings P,Q appear enough times to perfectly align with each
other, each characters of P aligns with each character of Q exactly once (using basic abstract
algebra properties). It means that Ham(P q, Qp) = αPβQ + βPαQ.
Seeing that P,Q are both binary strings implies βP = p− αP , and βQ = q − αQ.
Assume αQ ≥ βQ, and that βQ ≥ d ≥ 1.

Ham(P q, Qp) = αPβQ + βPαQ

= αP (q − αQ) + (p− αP)αQ
≥1 (p− 1)(q − αQ) + 1αQ
= (p− 1)d+ (q − d)
= d(p− 2) + q

(1) is true since aQ ≥ bQ, so be minimizing bP we minimize the expression. J

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:15

I Lemma 31. For alien strings Q,P s.t. q ≤ p
4 , gcd(p, q) = 1 and p = aq + b, 2 ≤ m < q,

Ham(Pnq+m, Q∞) ≥ n(p+ q − 2) +m

⌈
p

q

⌉
− 2 +

⌊
mb

q

⌋
Proof. Using Theorem 12, we only need to show this is true when d ≥ 2,m ≤ d, where d
is (tb − tw) mod q, as defined. Because the case where d = 1 ∨m ≥ 4 ∨m > d is proved
regardless of m, d and when m ≤ 1 the expression can simply evaluate to 0. If q ≤ p

4 , then
either m ≥ 4 or n ≥ 1. One case is already proven, so we can presume n ≥ 1. Naturally,
m ≤ 3, as otherwise the lemma is trivially proven.
By Lemma 30, the distance at the LCM is d(p− 2) + q. Consider the distance at the LCM in
the original expression: p+q−2. The difference between these values is (d−1)(p−2) ≥ p−2.
This means the number of mismatches is increased by at least p− 2 every LCM.

By Theorem 12, Ham(Pm,Q∞)≥m(a+1)−2, and we attempt to show thatHam(Pm,Q∞)
≥ m(a+ 1)− 2 +

⌊
mb
q

⌋
, leaving us to show that the additional p− 2 mismatches are greater

than
⌊
mb
q

⌋
. Evaluate:

p− 2 = aq + b− 2 ≥ b >
⌊
mb

q

⌋
J

I Theorem 32. Let T be a text, and let P be a seed of T such that p ≤ t
4 , then for all

strings Q s.t. q < p, q - p, then Q can not be a seed of T .

Proof. Let P be a seed of T of length p ≤ t
4 , and assume Q is a seed of T , and q < p, q - p.

In this proof, we use the same notations as in Theorem 31.
Set occp =

⌊
t
p

⌋
= nq +m, 0 ≤ m < q, and set p = aq + b, 1 ≤ b < q. nq +m ≥ 4.

Obviously, t < (nq + m + 1)p. Therefore the maximum number of mismatches between
T and P∞, marked as kp is at most

⌊
nq+m

2
⌋
. The number of occurrences of Q in T is

occq =
⌊
t
q

⌋
=
⌊

(nq+m+1)p−1
q

⌋
, and thus the number of mismatches between T and Q∞,

marked as kq accordingly is at most
⌊ occq

2
⌋
.

By the triangle inequality, Ham(Pnq+m, Q∞) ≤ Ham(T, P∞) +Ham(T,Q∞) ≤ kp +kq.
We will show that Ham(Pnq+m, Q∞) > kp + kq, which will lead to a contradiction.

We split the proof into two cases - in the first case P,Q are aliens, and in the second,
P,Q are similar (See Definition 27).

6.2.1 Proof for alien strings
Begin by evaluating the minimal number of errors:

Ham(Pnq+m, Q∞) ≥ n(p+ q − 2) +m(a+ 1)− 2 +
⌊
mb

q

⌋
Since we required p ≤ t

4 , then n ≥ 1 or m ≥ 4. We consider both cases.

I Case 1 (n = 0,m ≥ 4). Begin by re-evaluating the previous expressions by setting n = 0,
which will lead to significantly shorter expressions.

Ham(Pnq+m, Q∞) = n(p+ q − 2) +m(a+ 1)− 2 +
⌊
mb

q

⌋
= m(a+ 1)− 2 +

⌊
mb

q

⌋
(1)

occp = m (2)

occq =

⌊
(m+1)p−1

q

⌋
2 (3)

ESA 2020

5:16 Analysis of the Period Recovery Error Bound

Again split into two cases:
1. b ≥ q

2
2. b < q

2

I Case 1.1 (b ≥ q
2). In this case,

⌊
mb
q

⌋
≥
⌊
mq
2q

⌋
=
⌊
m
2
⌋
. Seeing that the latter is exactly

the value of kp, let’s us subtract
⌊
m
2
⌋
from both sides of the equation, which leads to the

following inequality:

m(a+ 1)− 2 > kq =

⌊

(m+1)p−1
q

⌋
2

Given that we required b ≥ q

2 , we will evaluate
⌊

(m+1)p−1
q

⌋
in worst-case settings in terms of

mismatches, i.e. b = q − 1.⌊
(m+ 1)p− 1

q

⌋
≤
⌊

(m+ 1)((a+ 1)q − 1)− 1
q

⌋
=
⌊
q(m+ 1)(a+ 1)−m− 2

q

⌋
≤ (a+1)(m+1)−1

What left to prove is m(a+ 1)− 2 >
⌊

(a+1)(m+1)−1
2

⌋
.

m(a+ 1)− 2 >
⌊

(a+ 1)(m+ 1)− 1
2

⌋
→ 2m(a+ 1)− 4 > (a+ 1)(m+ 1)− 1

→ 2am+ 2m− 4 > am+ a+m+ 1− 1
→ am+m− a− 4 > 0
→ a(m− 1) +m− 4 > 0
→ 2m− 5 > 0→ m ≥ 3 y

I Case 1.2 (b < q
2). In this case, we suppose that

⌊
mb
q

⌋
= 0, and again evaluate

⌊
(m+1)p−1

q

⌋
in worst-case settings (b = q

2).

(m+ 1)p− 1 ≤ (m+ 1)((a+ 0.5)q − 1)− 1 ≤ (m+ 1)(a+ 0.5)q − 1

Using the above result, the inequality
⌊

(m+1)p−1
q

⌋
≤ (m+ 1)(a+ 0.5)− 1 holds, and thereby

the resulting inequality is

m(a+ 1)− 2 >
⌊

(m+ 1)(a+ 0.5)− 1
2

⌋
+
⌊m

2

⌋
Further evaluation leads to

m(a+ 1)− 2 >
⌊

(m+ 1)(a+ 0.5)− 1
2

⌋
+
⌊m

2

⌋
→ 4m(a+ 1)− 8 > (m+ 1)(2a+ 1)− 2 + 2m
→ 4am+ 4m > 2am+m+ 2a+ 2m+ 1 + 8− 2
→ 2am+m− 2a ≥ 8
→ 2a(m− 1) +m ≥ 8
→ 2 · 3 + 4 ≥ 8 (Setting a = 1,m = 4) y

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:17

I Case 2 (n ≥ 1,m ∈ {0, 1}). This case is rather complicated. Begin by examining the case
m = 0 which is the easier one.

I Case 2.1 (m = 0). Recall that nq+m ≥ 4→ nq ≥ 3→ q ≥ 3∨n ≥ 2. We require nq ≥ 3
and not nq ≥ 4, so we will also be able to use the expression when m = 1.
In this case, the number of occurrences of Q in T is occq ≤ np+ a, so we need to show that
n(p+ q − 2) >

⌊
np+a

2
⌋

+
⌊
nq
2
⌋
. We will multiply it by 2 to obtain

2n(p+ q − 2) > np+ a+ nq

→ n(p+ q − 4) ≥ a+ 1
→ n((a+ 1)q − 3) ≥ a+ 1
→1 n(2q − 3) ≥ 2→ q ≥ 3 ∨ n ≥ 2 y

(1) - Because we are incrementing a increments the left hand-side by qn, and the right
hand-side by only 1 (qn > 1).

I Corollary 33. Ham(Qa+m+1, P 2) ≥ 2m, m < a

Proof. First, define P→i as the string cyclic shift of P i positions to the right.
Consider the hamming distance Ham(Qm+1, Qm+1

→(q−b)). The first string is aligned with the
first repetition of P , the other is aligned with the second repetition of P .
Since there are m full repetitions of Q in both strings, there are at least 2m mismatches.
Using the triangle inequality:

2m ≤ Ham(Qm+1, Qm+1
→(q−b)) ≤ Ham(Qm+1, P)+Ham(P,Qm+1

→(q−b)) ≤ Ham(Qa+m+1, P 2)

J

I Corollary 34. If Q is a seed of a text with tail size t = t− (nq + 1)p s.t. t ≥ 2q − b, then
Q is also the seed of a text with tail size 2q − b− 1.

The proof is trivial: any additional occurrence of Q in T will cause at-least 2 more verified
mismatches. We allow one mismatch for 2 occurrences so it is always possible to reduce the
number of mismatches by 2 and the number of occurrences by 1.

I Lemma 35. If Ham(Qa+1, P 2) = 0, then b ≥ 2

Proof. By definition, q(a + 1) > p. If Ham(Qa+1, P 2) = 0, then P = QaQ[..b], and that
P [..q − b] = Q[b..]→ Q[..q − b] = Q[b..].
Assume b = 1. This means Q[..q − 1] = Q[1..], or

Q[0] = Q[1], Q[1] = Q[2], ...Q[−2] = Q[−1]

Which implies that Q is a trivial periodic string, contradiction. J

I Case 2.2 (m = b = 1). In this case, Q can occur at most a times in the tail without
creating an extra mismatch. Thus, we will suppose it occurs exactly a times in the tail.
n(p+ q − 2) >

⌊
np+a

2
⌋

+
⌊
nq+1

2
⌋

This is almost exactly the same as the case where m = 0, with the difference of kp, which
changed from

⌊
nq
2
⌋
to
⌊
nq+1

2
⌋
. If either n or q are even, it is exactly the same expression as

before, and accordingly we presume q 6= 2→ q ≥ 3→ p ≥ 4.
Evaluating the expression in a similar manner to case 2.1 will lead to the inequality

n(2q − 3) ≥ 3, and by setting q = 3, n = 1, we get 1 · (2 · 3− 3) = 3 ≥ 3. y

ESA 2020

5:18 Analysis of the Period Recovery Error Bound

I Case 2.3 (m = 1, b > 1). This case is trivial. Requiring b ≥ 2 results in p ≥ q + 2, which
in turn causes an additional mismatch on the LCM expression p+ q − 2, but creates only
one additional occurrence for Q, and the problem can be reduced to previous case. y

I Case 3 (n ≥ 1,m ≥ 2). This is the simplest case of the three. We have p > q ≥ 3, as
m < q < p, and m ≥ 2.

Proof. The length of T is at most (nq +m+ 1)p− 1. The string Q occurs in nqp characters
exactly np times. And (m+ 1)p− 1 = (m+ 1)(aq + b)− 1 = maq +mb+ aq + b− 1, which
contains a(m+ 1) +

⌊
b(m+1)−1

q

⌋
instances of Q.

The inequality
⌊
b(m+1)−1

q

⌋
≤
⌊
bm
q

⌋
+ 1 holds, and as a result we claim that the number of

occurrences of Q in T is
⌊
b(m+1)−1

q

⌋
+ 1.

The expression
⌊
bm
q

⌋
also appears inHam(Pm, Q∞), so we can subtract it from both sides,

which will simplify the expression to n(p+ q− 2) +m(a+ 1)− 2 >
⌊
np+a(m+1)+1

2

⌋
+
⌊
nq+m

2
⌋
.

Multiply it by 2, and get the following:

2n(p+ q − 2) + 2m(a+ 1)− 4 > np+ a(m+ 1) + 1 + nq +m

→ n(p+ q − 4) + 2am+ 2m− 4 > am+ a+ 1 +m

→ n((a+ 1)q − 3) + am− a+m ≥ 6
→1 n(2q − 3) + 2m− 1 ≥ 6
→2 3n+ 2m ≥ 7→ 3 · 1 + 2 · 2 ≥ 7

(1) - Setting a to minimum (a = 1)
(2) - Setting q to minimum (q = 3) J

y

6.2.2 Proof for similar strings
We now present the proof of the theorem when gcd(p, q) > 1, and i = j.

We use the definition of Pi, Qi, p′, q′ as usual, and also define Ti as T [i]T [i+ g][T + 2g]....
Because t is not necessarily divisible by g some Ti might be shorter than the others.
Let i be the index such that both Pi, Qi are non-trivial. The inequality ∀j, Tj ≥ 4p′ holds as
t ≥ 4pg.
As kp is the maximal number of full occurrences of P in T , the number of occurrences of Pi
in Ti is at least kp. Proof for kq is the same.

We now have Qi, Pi, Ti, where Pi ≤ |Ti|4 and gcd(Pi, Qi) = 1, and therefore Pi and Qi
cannot both be seeds of Ti, or in other words, Ham(pnq+m

i , q∞i) > kq + kp. In contrast,
we know that Ham(pnm+q, q∞) ≥ Ham(pnq+m

i , q∞i) > kq + kp, and P,Q cannot both be
seeds. J

I Definition 36 (Binary Renaming Function). A binary renaming function is a function
from general alphabet to binary alphabet, δ : Σ→ {a, b}. The generalized renaming function
δ∗ : Σ∗ → {a, b}∗ is defined in the standard way:
1. δ∗(ε) = ε

2. δ∗(P) = δ(P [0])δ∗(P [1..])

I Lemma 37. Let P,Q be non-trivial strings over Σ. W.l.o.g p≥q. ∀δ∗,m, Ham(Pm, Q∞) ≥
Ham(δ∗(P)m, δ∗(Q)∞)

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:19

Proof. Let ei be an indicator on mismatch on index i between Pm and Q∞, and e′i be
defined respectively for δ∗(Pm), δ∗(Q∞). Since ei = 0 indicates a match, then e′i = 0 as well,
which implies e′i ≤ ei. The contrary is not true. The direct implication is our lemma. J

I Corollary 38. Theorem 12 is true for general alphabet.

I Corollary 39. Theorem 43 is true for general alphabet.

Proof. Assume there are P,Q ∈ Σ∗ that contradict 43. This means that Ham(T, P∞) +
Ham(T,Q∞) ≤ kp + kq, but using Lemma 37,

∃δ∗, Ham(T, P∞)+Ham(T,Q∞) ≥ Ham(δ∗(T), δ∗(P)∞)+Ham(δ∗(T), δ∗(Q)∞) >1 kq+kp

And (1) is true directly from Theorem 43. J

6.3 The Number of Candidates
I Lemma 40. Let T be text, and let P,Q be periodic seeds of T , such that p > q, q - p, p ≤ t

3 .
Then, ∃g s.t. p = 3g, q = 2g.

The proof appears in the full version of the paper,

I Corollary 41. Given a text T , there is at most one periodic seed P of length t
4 < p ≤ t

3 .

I Corollary 42. If P,Q are seeds of a text T and p = q then Ham(P,Q) ≤ 1

Proof. Assume Ham(P,Q) ≥ 2, and that ` =
⌊
t
p

⌋
. Using the definition of a seed,

Ham(P `, Q`) ≤ Ham(T, P∞) + Ham(T,Q∞) ≤ `, at the same time Ham(P `, Q`) = 2`,
contradiction. J

I Theorem 43. There are at most 2 log3 n candidates of length ` ≤ t
3

Proof. We begin by proving a useful lemma regarding the number of candidates of divisible
length.

I Lemma 44. If there are two candidates of length g, there is at most one candidate of
length 2g.

The proof appears in the full version of the paper.

I Corollary 45. If all of the periods of length ` ≤ n divide n, then there are at most 2 log3 n

periods of length ≤ n.

The proof appears in the full version of the paper. J

I Corollary 46. There are at most 2 periods that are canonical.

Proof. As we have proved, if there are 3 different periods, then the length of the shortest
period, divides the length of the longer periods, and by simple induction the minimal period’s
length divides the lengths of the rest of the periods, and is canonical to them.
If there are no 3 different periods then we can call all of the periods canonical. J

I Corollary 47 (Generalized gcd-theorem). Let T be a text, and let P,Q be seeds of T that
occur at least 3 full times in T , then T has a seed of length gcd(p, q).

ESA 2020

5:20 Analysis of the Period Recovery Error Bound

7 The Error Upper Bounds Hierarchy

The previously known [3] upper error bound was b n
(2+ε)pc and led to O(log1+ε n) period

candidates. To achieve a hierarchy of upper bounds, we follow similar techniques to those
of [3]. The innovation is the new Hamming distance error bounds that we define. All the
upper bounds in this section are of (n, p, ε)-type. We do not get rid of ε at the moment.
However, we feel that by methods similar to those of Section 6, the ε can be eliminated from
the error bounds.

I Lemma 48. Let T be the input text. For any period P , assume that Ham(T, TP) ≤
n

(2+ε)·(2(i))((log(i) p)1+ε)
. Then there are O(log(i+1) n) candidates for P , for any i ≥ 0. Note

that, for i = 0, the upper bound is Ham(T, TP) ≤ n
(2+ε)·p1+ε

I Lemma 49. Let T be the input text. For any period P , assume that Ham(T, TP) ≤ n
(2+ε)p+1 .

Then there are O(log∗ n) candidates for P

I Lemma 50. Lemmas 48 and 49 have tight examples.

8 Conclusions and Open Problems

We showed that b n2pc is a tight upper error bound and it results in 2 log3 n candidates if P
fully occurs at least 3 times in T . Otherwise, if P fully occurs twice (maybe with a tail) then
we provide an example with Ω(n) candidates.

It is easy to show that our result can be generalized to c-pseudo local metrics [3]. Such a
metric ∆ behaves like Hamming distance in the manner that for every pair of equal length
strings T and S, ∆(T, S) ≤ c ·Ham(T, S). An example of such a metric is swap distance,
where the distance counted by the number of swaps of two consecutive letters (each letter can
only participate in a single swap). It is easy to verify that b n2cpc is a tight upper bound, and
the result of canonic period seed can also be applied to such metrics. By a similar fashion,
replacing (2 + ε) by (2c+ ε) in the hierarchy upper bounds allows the hierarchy generalization
to c-pseudo local metrics.

In this paper, corruptions are of the replacement type. That is, the error count is the
number of changed letters. It is of interest to analyze different types of error distance metrics
besides the Hamming Distance. One example of such a metric, that has been considered in
the recovery algorithms literature, is the Edit Distance [2, 14].

It is of interest to apply the ideas of section 6 to the log(i) hierarchy and eliminate the
dependence on ε.

Finally, can the hierarchy be extended to the other side? Come up with tight error
bounds that lead to a set of nε period candidates, where ε < 1.

References
1 S. Aluru, A. Apostolico, and S. V. Thankachan. Efficient alignment free sequence comparison

with bounded mismatches. In Proc. 19th Research in Computational Molecular Biology
Conference, RECOMB, pages 1–12, 2015.

2 A. Amir, M. Amit, G.M.Landau, and D. Sokol. Period recovery of strings over the hamming
and edit distances. Theortetical Computer Science, 710:2–18, 2018.

3 A. Amir, E. Eisenberg, A. Levy, E. Porat, and N. Shapira. Cycle detection and correction.
ACM Trans. Alg., 9(1):13, 2012.

A. Amir, I. Boneh, M. Itzhaki, and E. Kondratovsky 5:21

4 A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees - metrics
and efficient algorithms. Proc. FOCS 94, pages 758–769, 1994.

5 A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat. Can we recover the cover? In Proc.
28st Annual Symposium on Combinatorial Pattern Matching (CPM), LIPICS, 2017.

6 A. Amir, M. Lewenstein, and E. Porat. Approximate subset matching with “don’t care”s. In
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 305–306, 2001.

7 R.L. Cann, M. Stoneking, and A.C. Wilson. Mitochondrial DNA and human evolution. Nature,
325(6099):31–36, 1987.

8 M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees.
Proc. 25th Annual ACM Symposium on the Theory of Computing, pages 137–145, 1993.

9 M. Farach, T. M. Przytycka, and M. Thorup. Computing the agreement of trees with bounded
degrees. Proc. 3rd European Symposium on Algorithms, pages 381–393, 1995.

10 N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proc. Amer. Math.
Soc., 16:109–114, 1965.

11 S. Har-Peled and S. Mahabadi. Proximity in the age of distraction: Robust approximate
nearest neighbor search. In Proc. 28th ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 1–15, 2017.

12 S. Heydrich and A. Wiese. Faster approximation schemes for the two-dimensional knapsack
problem. In Proc. 28th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 79–98,
2017.

13 C. Kalaitzis. An improved approximation guarantee for the maximum budgeted allocation
problem. In Proc. 27th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1048–
1066, 2016.

14 T. Kociumaka, J. Radoszewski, W. Rytter, J. Straszyński, T. Waleń, and W. Zuba. Faster
recovery of approximate periods over edit distance. In Proc. 25th International Symposium on
String Processing and Information Retrieval (SPIRE), LNCS, pages 233–240. Springer, 2018.

15 L.A.B. Kowada, D. Doerr, S. Dantas, and J. Stoye. New genome similarity measures based
on conserved gene adjacencies. In Proc. 20th Research in Computational Molecular Biology
Conference, RECOMB, pages 204–224, 2016.

16 A. Ojewole, J.D. Jou, V.G. Fowler, and B.R. Donald. Bbk* (branch and bound over k*): A
provable and efficient ensemble-based algorithm to optimize stability and binding affinity over
large sequence spaces. In Proc. 21st Research in Computational Molecular Biology Conference,
RECOMB, pages 157–172, 2017.

17 A. Sobih, A. I. Tomescu, and V. Mäkinen. Metaflow: Metagenomic profiling based on whole-
genome coverage analysis with min-cost flows. In Proc. 20th Research in Computational
Molecular Biology Conference, RECOMB, pages 111–121, 2016.

18 M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum agreement
subtree. Information Processing Letters, 48(2):77–82, 1993.

19 M. A. Steel and D. Penny. Distributions of tree comparison metrics - some new results. Syst.
Biol., 42:126–141, 1993.

20 E. Ukkonen. A linear-time algorithm for finding approximate shortest common superstrings.
Algorithmica, 5:313–323, 1990.

21 J. C. Venter and Celera Genomics Corporation. The sequence of the human genome. Science,
(291):1304–1351, 2001.

22 C. Wulff-Nilsen. Approximate distance oracles for planar graphs with improved query time-
space tradeoff. In Proc. 27th ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
351–362, 2016.

ESA 2020

Approximation of the Diagonal of a Laplacian’s
Pseudoinverse for Complex Network Analysis
Eugenio Angriman
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
angrimae@hu-berlin.de

Maria Predari
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
predarim@hu-berlin.de

Alexander van der Grinten
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
avdgrinten@hu-berlin.de

Henning Meyerhenke
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
meyerhenke@hu-berlin.de

Abstract
The ubiquity of massive graph data sets in numerous applications requires fast algorithms for
extracting knowledge from these data. We are motivated here by three electrical measures for
the analysis of large small-world graphs G = (V,E) – i. e., graphs with diameter in O(log |V |),
which are abundant in complex network analysis. From a computational point of view, the three
measures have in common that their crucial component is the diagonal of the graph Laplacian’s
pseudoinverse, L†. Computing diag(L†) exactly by pseudoinversion, however, is as expensive as dense
matrix multiplication – and the standard tools in practice even require cubic time. Moreover, the
pseudoinverse requires quadratic space – hardly feasible for large graphs. Resorting to approximation
by, e. g., using the Johnson-Lindenstrauss transform, requires the solution of O(log |V |/ε2) Laplacian
linear systems to guarantee a relative error, which is still very expensive for large inputs.

In this paper, we present a novel approximation algorithm that requires the solution of only one
Laplacian linear system. The remaining parts are purely combinatorial – mainly sampling uniform
spanning trees, which we relate to diag(L†) via effective resistances. For small-world networks, our
algorithm obtains a ±ε-approximation with high probability, in a time that is nearly-linear in |E| and
quadratic in 1/ε. Another positive aspect of our algorithm is its parallel nature due to independent
sampling. We thus provide two parallel implementations of our algorithm: one using OpenMP, one
MPI + OpenMP. In our experiments against the state of the art, our algorithm (i) yields more
accurate approximation results for diag(L†), (ii) is much faster and more memory-efficient, and (iii)
obtains good parallel speedups, in particular in the distributed setting.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Graph algorithms analysis; Theory of computation → Parallel algorithms;
Mathematics of computing → Solvers

Keywords and phrases Laplacian pseudoinverse, electrical centrality measures, uniform spanning
tree, effective resistance, parallel sampling

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.6

Related Version https://arxiv.org/abs/2006.13679

Funding This work is partially supported by German Research Foundation (DFG) grant ME
3619/3-2 within Priority Programme 1736 Algorithms for Big Data and by DFG grant ME 3619/4-1
(Accelerating Matrix Computations for Mining Large Dynamic Complex Networks).

Acknowledgements We thank our colleague Fabian Brandt-Tumescheit for his technical support for
the experiments.

© Eugenio Angriman, Maria Predari, Alexander van der Grinten, and Henning Meyerhenke;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 6; pp. 6:1–6:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3160-1509
mailto:angrimae@hu-berlin.de
https://orcid.org/0000-0002-9545-0623
mailto:predarim@hu-berlin.de
https://orcid.org/0000-0002-9709-9478
mailto:avdgrinten@hu-berlin.de
https://orcid.org/0000-0002-7769-726X
mailto:meyerhenke@hu-berlin.de
https://doi.org/10.4230/LIPIcs.ESA.2020.6
https://arxiv.org/abs/2006.13679
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Approximation of diag(L†) for Complex Network Analysis

1 Introduction

Massive graph data sets are abundant these days in numerous applications. Extracting
knowledge from these data thus requires fast algorithms. One common matrix to represent
a graph G = (V,E) with n vertices and m edges in algebraic algorithms is its Laplacian
L = D−A. Here, D is the diagonal degree matrix with D[u, u] being the (possibly weighted)
degree of vertex u ∈ V . The matrix A is the (possibly weighted) adjacency matrix of G. It
is well-known that L does not have full rank and is thus not invertible. Its Moore-Penrose
pseudoinverse [25] L†, in turn, has numerous applications in physics and engineering [60] as
well as applied mathematics [25] and graph (resp. matrix) algorithms [38].

We are motivated by one particular class of applications: electrical centrality measures for
the analysis of small-world networks – i. e., graphs whose diameter is bounded by O(logn).
Many important real-world networks (social, epidemiological, information, biological, etc.)
have the small-world feature [48]. Centrality measures, in turn, belong to the most widely
used network analysis concepts and indicate the importance of a vertex (or edge) in the
network [13]. Numerous measures exist, some based on shortest paths, others consider
paths of arbitrary lengths. Electrical centrality measures fall into the latter category. They
exploit the perspective of graphs as electrical networks (see e. g., [41]). One well-known of
such measures is electrical closeness centrality, a. k. a. current-flow closeness or information
centrality [16], cel(·). It is the reciprocal of the average effective resistance r(u, ·) between u
and all other vertices:

cel(u) := n− 1∑
v∈V \{u} r(u, v) . (1)

In an electrical network corresponding to G, r(u, v) is the potential (voltage) difference across
terminals u and v when a unit current is applied between them [23]. It can be computed
by solving Lx = eu − ev for x, where ez is the canonical unit vector for vertex z. Then,
r(u, v) = x[u]− x[v], also see Section 2.1.

Effective resistance also plays a major role in two other electrical measures we consider
here, normalized random-walk betweenness [47] and Kirchhoff index centrality [39]. Also note
that effective resistance is a graph metric with numerous other applications, well beyond its
usage in electrical centralities (cf. Refs. [2, 23]). A straightforward way to compute electrical
closeness (or the other two measures) would be to compute L†. Without exploiting structure,
this takes O(nω) time, where ω < 2.38 is the exponent for fast matrix multiplication. The
standard tools in practice even require cubic time, cf. [52]. L† is also in general a dense
matrix (also for sparse L). Thus, full (pseudo)inversion is clearly limited to small inputs.

Conceptually similar to inversion would be to solve Θ(n) Laplacian linear systems. In
situations with lower accuracy demands, fewer linear systems suffice: using the Johnson-
Lindenstrauss transform (JLT) in connection with a fast Laplacian solver such as Ref. [19], one
gets a relative approximation guarantee by solving O(logn/ε2) systems [57] in
Õ(m log1/2 n log(1/ε)) time each, where Õ(·) hides a O((log logn)3+δ) factor for δ > 0.

As pointed out previously [15], the (only) relevant part of L† for computing electrical
closeness is its diagonal (we will see that this is true for other measures as well). Numerical
methods for sampling-based approximation of the diagonal of implicitly given matrices do
exist [9]. Yet, for our purpose, they solve O(logn/ε2) Laplacian linear systems as well to
obtain an ε-approximation with high probability, see Section 2.2 for more details.

While this number of Laplacian linear systems can be solved in parallel, their solution can
still be time-consuming in practice, in part due to high constants hidden in the O-notation.

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:3

Contribution and Outline. We propose a new algorithm for approximating diag(L†) of a
Laplacian matrix L that corresponds to weighted undirected graphs (Section 3). Our main
technique is the approximation of effective resistances between a pivot vertex u ∈ V and all
other vertices of G. It is based on sampling uniform (= random) spanning trees (USTs). The
resulting algorithm is highly parallel and (almost) purely combinatorial – it relies on the
connection between Laplacian linear systems, effective resistances, and USTs.

For small-world graphs, our algorithm obtains an absolute ±ε-approximation guarantee
with high probability in (sequential) time O(m log4 n · ε−2). In particular, compared to
using the fastest theoretical Laplacian solvers in connection with JLT, our approach is off by
only a polylogarithmic factor. Probably more importantly, after some algorithm engineering
(Section 4), our algorithm performs much better than the state of the art, already in our
sequential experiments (Section 5): (i) it is much faster and more memory-efficient, (ii) it
yields a maximum absolute error that is one order of magnitude lower, and (iii) results in
a more accurate complete centrality ranking of elements of diag(L†). Due to good parallel
speedups, we can even compute a reasonably accurate diagonal of L† on a small-scale cluster
with 16 compute nodes in less than 8 minutes for a graph with ≈ 13.6M vertices and ≈ 334.6M
edges. Material omitted due to space constraints can be found in the appendix
of the full version of this paper [4].

2 Preliminaries

2.1 Problem Description and Notation
We type vectors and matrices in bold font. As input we consider simple, finite, connected
undirected graphs G = (V,E) with n vertices, m edges, and non-negative edge weights
w ∈ Rm≥0. For the complexity analysis, we usually assume that the diameter of G is O(logn),
but our algorithm would also work correctly without this assumption.

Graphs as electrical networks. We interpret G as an electrical network in which every edge
e ∈ E represents a resistor with resistance 1/w[e]. In this context, it is customary to fix
an arbitrary orientation E± of the edges in E and to define a unit s-t-current flow (also
called electrical flow) in this network as a function of the edges (written as vector) f ∈ R|E

±|
≥0 .

Whenever possible, we use f [u, v] as shorthand notation for f [{u, v}] or f [(u, v)]. Note that
f [e] = −f [−e] for e /∈ E±. This sign change in the s-t current when the flow direction is
changed, is required to adhere to Kirchhoff’s current law on flow conservation:

∑
w∈δ+(v)

f [v, w]−
∑

u∈δ−(v)

f [u, v] =

1 if v = s

−1 if v = t

0 otherwise,
(2)

where δ+(v) [δ−(v)] is the set of edges having v as head [tail] in the orientation we choose
in E±. Such a flow also adheres to Kirchhoff’s voltage law (sum in cycle is zero when
considering flow directions) and Ohm’s law (potential difference = resistance · current),
cf. [14,43]. The effective resistance between two vertices u and v, r(u, v), is defined as the
potential difference between u and v when a unit current is injected into G at u and extracted
at v, comp. [14, Ch. IX]. To compute r(u, v), let ez be the canonical unit vector for vertex z,
i. e., ez(z) = 1 and ev = 0 for all vertices v 6= z. Then,

r(u, v) = (eu − ev)TL†(eu − ev) = L†[u, u]− 2L†[u, v] + L†[v, v] (3)

ESA 2020

6:4 Approximation of diag(L†) for Complex Network Analysis

or, equivalently, r(u, v) = x[u] − x[v], where x is the solution vector of the Laplacian
linear system Lx = eu − ev. The Laplacian pseudoinverse, L†, can be expressed as L† =
(L + 1

nJ)−1 − 1
nJ [60], where J is the n× n-matrix with all entries being 1.

Also note that the effective resistance between the endpoints of an edge e ∈ E equals the
probability that e is an edge in a uniform spanning tree (UST), i. e., a spanning tree selected
uniformly at random among all spanning trees of G, cf. [14, Ch. II].

Electrical Closeness. The combinatorial counterpart of electrical closeness is based on
shortest-path distances dist(u, v) for vertices u and v in G: cc(u) := (n− 1) /f c(u), where
the denominator is the combinatorial farness of u:

f c(u) :=
∑

v∈V \{u}

dist(u, v). (4)

Electrical farness fel(·) is defined analogously to combinatorial farness – shortest-path
distances in Eq. (4) are replaced by effective resistances r(u, v). Closeness centrality (both
combinatorial and electrical) are not defined for disconnected graphs due to infinite distances.
We can get around this, however: a combinatorial generalization for closeness called Lin’s
index (cf. [10]) can be adapted to the electrical case, too. Thus, our assumption of G being
connected is no limitation.

Normalized Random-Walk Betweenness. Classical betweenness, based on shortest paths,
is one of the most popular centrality measures. The betweenness of vertices using random-
walk routing instead of shortest paths is given by the normalized random-walk betweenness
(NRWB) [47]. This measure counts each random walk passing through a vertex only once.
By mapping the random walk problem to current flowing in a network, Ref. [47] obtains
a closed-form expression of NRWB and provides an analysis of its scaling bahavior as a
function of n. Then, the NRWB cb(·) of a vertex v is:

cb(v) = 1
n

+ 1
n− 1

∑
t 6=v

M−1[t, t]−M−1[t, v]
M−1[t, t] + M−1[v, v]− 2M−1[t, v] , (5)

where M := L + P, with P the projection operator onto the zero eigenvector of the
Laplacian L such that P[i, j] = 1/n. We show in Section 3.4 how to simplify this expression.

We also consider the Kirchhoff index and related centrality measures. Their description
can be found in Appendix B.1.

2.2 Related Work
Solving Laplacian Systems. A straightforward approach to compute electrical closeness
and related centralities is to compute L†, by solving a number of Laplacian systems. Bran-
des and Fleischer [16] computed electrical closeness from the solution of n linear systems
using conjugate gradient (CG) in O(mn

√
κ) time, where κ is the condition number of the

appropriately preconditioned Laplacian matrix.1 Later, Spielman and Srivastava proposed an
approximation algorithm for computing effective resistance distances [57]. The main ingredi-
ents of the algorithm are a dimension reduction with Johnson-Lindenstrauss [29] and the use
of a fast Laplacian solver for O(logn/ε2) Laplacian systems. The algorithm approximates

1 Brandes and Fleischer provide a rough estimate of κ as Θ(n), leading to a total time of O(mn1.5).

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:5

effective resistance values for all edges within a factor of (1± ε) in O(I(n,m) logn/ε2) time,
where I(n,m) is the running time of the Laplacian solver, assuming that the solution of the
Laplacian systems is exact. With an approximate Laplacian solution, the algorithm yields
a (1 + ε)2-approximation. Significant progress in the development of fast Laplacian solvers
with theoretical guarantees [19,30,32,33,37] has resulted in the currently best one running
in O(m log1/2 n log(1/ε)) time (up to polylogarithmic factors) [19]. Parallel algorithms for
solving linear systems on the more general SDD matrices also exist in the literature [12, 51].
To date, the fastest algorithms for electrical closeness and spanning edge centrality extend the
idea of Spielman and Srivastava [11,27,45]. (Similar ideas are used for centrality measures
based on the Kirchhoff index, see Appendix B.2). Since theoretical Laplacian solvers rely
on heavy graph-theoretic machinery such as low-stretch spanning trees, one rather uses
multigrid solvers [11,34,40] in practice instead.

Diagonal Estimation. Recall from the introduction that the diagonal (or in case of the
Kirchhoff index even only its sum, the trace – see Appendix B.1) of L† is enough to compute
electrical closeness and related measures, also see Eq. (6) below. Algorithms that approximate
the diagonal (or the trace) of matrices that are only implicitly available often use iterative
methods [56], sparse direct methods [3, 28], Monte Carlo [22] or deterministic probing
techniques [9, 59]. A popular approach is the standard Monte-Carlo method for the trace of
A, due to Hutchinson [22]. The idea is to estimate the trace of A by observing the action
of A (in terms of matrix-vector products) on a sufficiently large sample of random vectors
rk. In our case, this would require to solve a large number of Laplacian linear systems
with vectors rk as right-hand sides. Avron and Toledo [6] proved that the method takes
O(logn/ε2) samples to achieve a maximum error ε with probability at least 1 − δ. The
approach from Hutchinson [22] has been extended by Bekas et al. [9] for estimating the
diagonal of A. Finally, Barthelmé et al. [8] have recently proposed a combinatorial algorithm
to approximate the trace (not the diagonal) of the inverse of a matrix closely related to the
Laplacian. Their algorithm can be seen as a special case of our algorithm in the situation
where a universal vertex exists.

Normalized Random Walk Betweenness. Along with the introduction of the measure,
Ref. [47] provided numerical evaluations of Eq. (5) on various graph models. However, no
algorithm to compute the measure without (pseudo)inverting L has been proposed yet.

3 Approximation Algorithm

3.1 Overview
In order to compute the electrical closeness for all vertices in V (G), the main challenge
is obviously to compute their electrical farness, fel(·). Recall from the introduction that
the diagonal of L† is sufficient to compute fel(·) for all vertices simultaneously (comp.
Ref. [15, Eq. (15)] with a slightly different definition of electrical closeness). This follows
from Eq. (3) and the fact that each row/column in L† sums to 0:

fel(u) :=
∑

v∈V \{u}

r(u, v) = n · L†[u, u] + tr(L†)− 2
∑
v∈V

L†[u, v] = n · L†[u, u] + tr(L†),

(6)

since the trace tr(·) is the sum over the diagonal entries.

ESA 2020

6:6 Approximation of diag(L†) for Complex Network Analysis

We are interested in an approximation of diag(L†), since we do not necessarily need exact
values for our particular applications. To this end, we propose an approximation algorithm
for which we give a rough overview first. Our algorithm works best for small-world networks
– thus, we focus on this important input class. Let G be unweighted for now; we discuss the
extension to weighted graphs in Section 3.4.
1. Select2 a pivot vertex u ∈ V and solve the linear system Lx = eu − 1

n · 1, where
1 = (1, . . . , 1)T . The solution x is L†[:, u], the column of L† corresponding to u [60].

2. Throughout the rest of this paper we denote V ′ := V \ {u}. As a direct consequence
from Eq. (3), the diagonal entries L†[v, v] for all v ∈ V ′ can be computed as:

L†[v, v] = r(u, v)− L†[u, u] + 2L†[v, u]. (7)

3. It remains to approximate these n − 1 effective resistance values r(·, ·). In order to
do so, we employ Kirchhoff’s theorem, which connects electrical flows with spanning
trees [14, Ch. II]. To this end, let N be the total number of spanning trees of G; moreover,
let Ns,t(a, b) be the number of spanning trees in which the unique path from s to t
traverses the edge {a, b} in the direction from a to b.

I Theorem 1 (Kirchhoff, comp. [14]). Let f [a, b] := (Ns,t(a, b)−Ns,t(b, a))/N . Distribute
current flows on the edges of G by sending a current of size f [a, b] from a to b for every
edge {a, b}. Then there is a total current of size 1 from s to t satisfying Kirchhoff’s laws.

As a result of Theorem 1, the effective resistance between s and t is the potential difference
between s and t induced by the current-flow given by f . Vice versa, since the current
flow is induced by potential differences (Ohm’s law), one simply has to add the currents
on a path from s to t to compute r(s, t) (see Eq. (8) in Section 3.2). Actually, as a proxy
for the current flows, we use the (approximate) N(·)-values mentioned in Theorem 1.

4. It is impractical to compute exact values for N (e. g., by Kirchhoff’s matrix-tree theo-
rem [24], which would require the determinant or all eigenvalues of L†) or N(·) for large
graphs. Instead, we obtain approximations of the desired values via sampling: we sample
a set of uniform spanning trees and determine the N(·)-values by aggregation over all
sampled trees. This approach provides a probabilistic absolute approximation guarantee.

The pseudocode of the algorithm, in adjusted order, is shown and discussed as Algorithm 1
in Appendix A.1. Components and properties of Algorithm 1 are explained in the remainder
of Section 3; reading Section 3.2 while/before studying the pseudocode is recommended.

Note that Steps 2-4 of the algorithm are entirely combinatorial. Step 1 may or may not
be combinatorial, depending on the Laplacian solver used. Corresponding implementation
choices are discussed in Section 4.

3.2 Effective Resistance Approximation by UST Sampling
Extending and generalizing work by Hayashi et al. [27] on spanning edge centrality, our main
idea is to compute a sufficiently large sample of USTs and to aggregate the N(·)-values of
the edges in these USTs. Given G and an electrical flow with source u and sink v, recall that
the effective resistance between them is the potential difference x[u]− x[v], where x is the
solution vector in Lx = eu − ev. Since x is a potential and the electrical flow f results from
its difference, r(u, v) can be computed given any path 〈u = v0, v1, . . . , vk−1, vk = v〉 as:

2 As we will see later on, one can improve the empirical running time when u is not arbitrary, but chosen
so as to have low eccentricity, i. e., the length of its longest shortest path. The correctness and the
asymptotic time complexity of the algorithm are not affected by the selection, though.

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:7

r(u, v) =
k−1∑
i=0

f [vi, vi+1]

= 1/N
k−1∑
i=0

(Nu,v(vi, vi+1)−Nu,v(vi+1, vi)) . (8)

Recall that the sign of the current flow changes if we traverse an edge against the flow
direction. This is reflected by the second summand in the sum of Eq. (8). Since we can
choose any path from u to v, for efficiency reasons we use one shortest path P (v) per vertex
v ∈ V ′. We compute these paths with one breadth-first search (BFS) with root u, resulting
in a tree Bu whose edges are considered as implicitly directed from the root to the leaves.
For each vertex v ∈ V ′, we maintain an estimate R[v] of r(u, v), which is initially set to 0 for
all v. After all USTs have been processed, we divide all entries of R by τ , the number of
sampled trees, i. e., τ takes the role of N in Eq. (8).

Sampling USTs. In total, we sample τ USTs, where τ depends on the desired approximation
guarantee and is determined later. The choice of the UST algorithm depends on the input:
for general graphs, the algorithm by Schild [53] with time complexity O(m1+o(1)) is the
fastest. Among others, it uses a sophisticated shortcutting technique using fast Laplacian
solvers to speed up the classical Aldous-Broder [1,17] algorithm. For unweighted small-world
graphs, however, Wilson’s simple algorithm using loop-erased random walks is in O(m logn),
as outlined in Appendix A.2. Thus, for our class of inputs, Wilson’s algorithm is preferred.

Data structures. When computing the contribution of a UST T to N(·), we need to update
for each edge e = (a, b) ∈ E(T) its contribution to Nu,v(a, b) and Nu,v(b, a), respectively –
for exactly every vertex v for which (a, b) [or (b, a)] lies on P (v). Hence, the algorithm that
aggregates the contribution of UST T to R will need to traverse P (v) for each vertex v ∈ V .
To this end, we represent the BFS tree Bu as an array of parent pointers for each vertex
v ∈ V . On the other hand, the tree T can conveniently be represented by storing a child and
a sibling for each vertex v ∈ V . Compared to other representations (such as adjacency lists),
this data structure can be constructed and traversed with low constant overhead.

Tree Aggregation. After constructing a UST T , we process it to update the intermediate
effective resistance values R[·]. Note that we can discard T afterwards and do not have to
store the full sample, which has a positive effect on the memory footprint of our algorithm.
The aggregation algorithm is shown as Algorithm 2 in Appendix A.1. Recall that we need to
determine for each vertex v and each edge (a, b) ∈ P (v), whether (a, b) or (b, a) occurs on the
unique u-v path in T . To simplify this test, we root T at u; hence, it is enough to check if (a, b)
[or (b, a)] appears above v in T . For general graphs, the test still incurs quadratic overhead
in running time (in particular, the number of vertex-edge pairs that need to be considered
is f c(u) =

∑
v∈V ′ |P (v)| = O(n2)). We remark that, perhaps surprisingly, a bottom-up

traversal of T does not improve on this, either; it is similarly difficult to determine all R[v]
that a given (a, b) ∈ E(T) contributes to (those v form an arbitrary subset of descendants of
b in T). However, we can exploit the fact that on small-world networks, the depth of Bu can
be controlled, i. e., f c(u) is sub-quadratic. To accelerate the test, we first compute a DFS
data structure for T , i. e., we determine discovery and finish timestamps for all vertices in
V , respectively. For an arbitrary v ∈ V and (a, b) ∈ V × V , this data structure allows us

ESA 2020

6:8 Approximation of diag(L†) for Complex Network Analysis

to answer in constant time (i) whether either (a, b) or (b, a) is in T and (ii) if (a, b) ∈ E(T),
whether v appears below (a, b) in T . Finally, we loop over all v ∈ V and all e = (a, b) ∈ P (v)
and aggregate the contribution of T to Nu,v(a, b). To do so, we add [subtract] 1 to [from]
R[v] if e has the same [opposite] direction in Bu. If e is not in Bu, R[v] does not change.

3.3 Algorithm Analysis
The choice of the pivot u has an effect on the time complexity of our algorithm. The intuitive
reason is that the BFS tree Bu should be shallow in order to have short paths to the root u,
which is achieved by a u with small eccentricity. The proofs of this subsection can be found
in Appendices A.3 and A.4. Regarding aggregation, we obtain:

I Lemma 2. Tree aggregation (Algorithm 2 in Appendix A.1) has time complexity O(f c(u)),
which can be bounded by O(n · ecc(u)) = O(n · diam(G)).

In high-diameter networks, the farness of u can become quadratic (consider a path graph)
and thus problematic for large inputs. In small-world graphs, however, we obtain O(n logn)
per aggregation. We continue the analysis with the main algorithmic result.

I Theorem 3. Let G be an undirected and unweighted graph with n vertices, m edges,
diameter diam(G) and Laplacian L = L(G). Then, our diagonal approximation algorithm
(Algorithm 1 in Appendix A.1) computes an approximation of diag(L†) with absolute error
±ε with probability 1− δ in time O(m · ecc3(u) · ε−2 · log(m/δ)). For small-world graphs and
with δ := 1/n to get high probability, this yields a time complexity of O(m log4 n · ε−2).

Thus, for small-world networks, we have an approximation algorithm whose running time
is nearly-linear in m (i. e., linear up to a polylogarithmic factor), quadratic in 1/ε, and
logarithmic in 1/δ. By choosing a “good” pivot u, it is often possible to improve the
running time of Algorithm 1 by a constant factor (i. e., without affecting the O-notation).
In particular, there are vertices u with ecc(u) as low as 1

2 diam(G). A discussion on the
algorithm’s parallelization in the work-depth model can be found in Appendix A.1.2.

I Remark 4. If G has constant diameter, Algorithm 1 has time complexity O(m logn · ε−2)
to obtain an absolute ε-approximation guarantee. This is faster than the best JLT-based
approximation (which provides a relative guarantee instead).

3.4 Generalizations
In this section we show how our algorithm can be adapted to work for weighted graphs and
for normalized random-walk betweenness as well. The extensions to Kirchhoff-related indices
are presented in Appendix B.3.

Extension to Weighted graphs. For an extension to weighted graphs, we need a weighted
version of Kirchhoff’s theorem. To this end, the weight of a spanning tree T is defined as the
product of the weights (= conductances) of its edges. Then, let N∗ be the sum of the weights
of all spanning trees of G; also, let N∗s,t(a, b) be the sum of the weights of all spanning trees
in which the unique path from s to t traverses the edge {a, b} in the direction from a to b.

I Theorem 5 (comp. [14], p. 46). There is a distribution of currents satisfying Ohm’s law
and Kirchhoff’s laws in which a current of size 1 enters at s and leaves at t. The value of
the current on edge {a, b} is given by (N∗s,t(a, b)−N∗s,t(b, a))/N∗.

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:9

Consequently, our sampling approach needs to estimate N∗ as well as the N∗(·)-values.
It turns out that no major changes are necessary. Wilson’s algorithm also yields a UST
for weighted graphs (if its random walk takes edge weights for transition probabilities into
account) [62]. Yet, the running time bound for Wilson needs to mention the graph volume,
vol(G), explicitly now: O(ecc(u) · vol(G)). The weight of each sampled spanning tree can be
accumulated during each run of Wilson. It has to be integrated into Algorithm 2 by adding
[subtracting] the tree weight in Line 9 [Line 12] instead of 1. For the division at the end, one
has to replace τ by the total weight of the sampled trees. Finally, the tree Bu remains a BFS
tree. The eccentricity and farness of u then still refer in the analysis to their unweighted
versions, respectively, as far as Bu is concerned.

To conclude, the only important change regarding bounds happens in Theorem 3. In the
time complexity, m is replaced by vol(G).

Normalized Random-Walk Betweenness. Ref. [47] proposes normalized random-walk be-
tweenness as a measure for the influence of a vertex in the network, but the paper does
not provide an algorithm (beyond implicit (pseudo)inversion). We propose to compute
normalized random-walk betweenness with Algorithm 1 and derive (proof in Appendix A.5):

I Lemma 6. Normalized random-walk betweenness cb(v) (Eq. (5)) can be rewritten as:

cb(v) = 1
n

+ tr(L†)
(n− 1)fel(v) . (9)

Hence, since Algorithm 1 approximates the diagonal of L† and both trace and electrical
farness depend only on the diagonal, the following proposition holds:

I Proposition 7. Let G = (V,E) be a small-world graph as in Theorem 3. Then, Algorithm 1
approximates with high probability cb(v) for all v ∈ V with absolute error ±ε in O(m log4 n ·
ε−2) time.

4 Engineering Aspects and Parallelization

Important engineering decisions concern the choice of the UST sampling algorithm, decom-
position of the input graph into biconnected components, selection of the pivot u, and the
linear solver used for the initial linear system. For these aspects, we refer the reader to
Appendix C.1.

Our implementation uses OpenMP for shared memory and MPI+OpenMP for distributed
memory. We assume that the entire graph fits into main memory (even in the distributed
case). Hence, we can parallelize Algorithm 1 to a large extent by sampling and aggregating
multiple USTs in parallel. In particular, we turn the main sampling loop into a parallel for
loop. We also solve the initial Laplacian system using a shared-memory parallel Conjugate
Gradient (CG) solver (see Appendix C.1). Note that we do not employ parallelism in the other
steps of the algorithm. In particular, the BFS to compute Bu is executed sequentially. We
also do not parallelize over the loops in Algorithm 2 to avoid nested parallelism with multiple
invocations of Algorithm 2. We note that, in contrast to the theoretical work-depth model,
solving the initial Laplacian system and performing the BFS are not the main bottlenecks in
practice. Instead, sampling and aggregating USTs together consume the majority of CPU
time (see Figure 5 in Appendix E.1 of the full version [4]). More details regarding shared
and distributed memory, in particular load balancing for the distributed case, are discussed
in Appendix C.2.

ESA 2020

6:10 Approximation of diag(L†) for Complex Network Analysis

5 Experiments

5.1 Settings
We conduct experiments to demonstrate the performance of our approach compared to the
state-of-the-art competitors. Unless stated otherwise, we implemented all algorithms in C++,
using the NetworKit [58] graph APIs. Our own algorithm is labelled UST in the sections
below. All experiments were conducted on a cluster with 16 Linux machines, each equipped
with an Intel Xeon X7460 CPU (2 sockets, 12 cores each), and 192 GB of RAM. To ensure
reproducibility, all experiments were managed by the SimexPal [5] software. We executed our
experiments on the graphs in Tables 2, 3, 4, and 5 (see Appendix D.2 of the full version of
this paper [4] for further details on input graphs). All of them are unweighted and undirected.
They have been downloaded from the public KONECT [35] repository and reduced to their
largest connected component.

Quality Measures and Baseline. To evaluate the diagonal approximation quality, we
measure the maximum absolute error (maxi L†ii− L̃†ii) on each instance, and we take both the
maximum and the arithmetic mean over all the instances. Since for some applications [48,49]
a correct ranking of the entries is more relevant than their scores, in our experimental
analysis we compare complete rankings of the elements of L̃†. Note that the lowest entries
of L† (corresponding to the vertices with highest electrical closeness) are distributed on a
significantly narrow interval. Hence, to achieve an accurate electrical closeness ranking of
the top k vertices, one would need to solve the problem with very high accuracy. For this
reason, all approximation algorithms we consider do not yield a precise top-k ranking, so
that we (mostly) consider the complete ranking.

Using pinv in NumPy or Matlab as a baseline would be too expensive in terms of time
(cubic) and space (quadratic) on large graphs (see Appendix D.2 of the full version [4]).
Thus, as quality baseline we employ the LAMG solver [40] (see also next paragraph) as
implemented within NetworKit [11] in our experiments (with 10−9 tolerance). The results in
Table 6 in Appendix E.4 indicate that the diagonal obtained this way is sufficiently accurate.

Competitors in Practice. In practice, the fastest way to compute electrical closeness so far
is to combine a dimension reduction via the Johnson-Lindenstrauss lemma [29] (JLT) with a
numerical solver. In this context, Algebraic MultiGrid (AMG) solvers exhibit better empirical
running time than fast Laplacian solvers with a worst-case guarantee [45]. For our experiments
we use JLT combined with LAMG [40] (named Lamg-jlt); the latter is an AMG-type solver
for complex networks. We also compare against a Julia implementation of JLT together with
the fast Laplacian solver proposed by Kyng et al. [36], for which a Julia implementation is
already available in the package Laplacians.jl.3 This solver generates a sparse approximate
Cholesky decomposition for Laplacian matrices with provable approximation guarantees in
O(m log3 n log(1/ε)) time; it is based purely on random sampling (and does not make use of
graph-theoretic concepts such as low-stretch spanning trees or sparsifiers). We refer to the
above implementation as Julia-jlt throughout the experiments. For both Lamg-jlt and Julia-jlt,
we try different input error bounds (they correspond to the respective numbers next to the
method names in Figure 1). This is a relative error, since these algorithms use numerical
approaches with a relative error guarantee, instead of an absolute one (see Appendix E of
the full version [4] for results in terms of different quality measures).

3 https://github.com/danspielman/Laplacians.jl

https://github.com/danspielman/Laplacians.jl

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:11

UST 0.9
UST 0.8
UST 0.7
UST 0.5
UST 0.3

Julia-JLT 1.0
Julia-JLT 0.75
Julia-JLT 0.5
Julia-JLT 0.25
Julia-JLT 0.2

Lamg-JLT 1.0
Lamg-JLT 0.75
Lamg-JLT 0.5
Lamg-JLT 0.25
Lamg-JLT 0.2

Bekas 10
Bekas 20
Bekas 50
Bekas 100
Bekas 200

Bekas-h 16
Bekas-h 32
Bekas-h 64
Bekas-h 128
Bekas-h 256

0 5 10 15 20 25 30
Running time relative to UST 0.9

0
1
2
3
4
5

M
ax

 a
bs

ol
ut

e
er

ro
r

(a) Maximum of the maximum
absolute errors.

0 5 10 15 20 25 30
Running time relative to UST 0.9

0
1
2
3
4
5

M
ax

 a
bs

ol
ut

e
er

ro
r

(b) Arithmetic mean of the max-
imum absolute error.

0 10 20
Running time relative to UST 0.9

0

5

10

15

%
 o

f i
nv

er
te

d
pa

irs

(c) Geometric mean of the per-
centage of inverted pairs in the
full ranking of diag(L†).

Figure 1 Quality results over the instances of Table 2 (full version [4]). All runs are sequential.

Finally, we compare against the diagonal estimators due to Bekas et al. [9], one based on
random vectors and one based on Hadamard rows. To solve the resulting Laplacian systems,
we use LAMG in both cases. In our experiments, the algorithms are referred to as Bekas and
Bekas-h, respectively. Excluded competitors are discussed in Appendix D.1 (full version [4]).

5.2 Running Time and Quality
Figure 1a shows that, in terms of maximum absolute error, every configuration of UST
achieves results with higher quality than the competitors. Even when setting ε = 0.9, UST
yields a maximum absolute error of 0.09, and it is 8.3× faster than Bekas with 200 random
vectors, which instead achieves a maximum absolute error of 2.43. Furthermore, the running
time of UST does not increase substantially for lower values of ε, and its quality does not
deteriorate quickly for higher values of ε. Regarding the average of the maximum absolute
error, Figure 1b shows that, among the competitors, Bekas-h with 256 Hadamard rows
achieves the best precision. However, UST yields an average error of 0.07 while also being
25.4× faster than Bekas-h, which yields an average error of 0.62. Note also that the number
next to each method in Figure 1 corresponds to different values of absolute (for UST) or
relative (for Lamg-jlt, Julia-jlt) error bounds, and different numbers of samples (for Bekas,
Bekas-h). For Bekas-h the number of samples needs to be a multiple of four due to the
dimension of Hadamard matrices.

In Figure 1c we report the percentage of inverted pairs in the full ranking of L̃†. Note
that JLT-based approaches are not depicted in this plot, because they yield > 15% of rank
inversions. Among the competitors, Bekas achieves the best time-accuracy trade-off. However,
when using 200 random vectors, it yields 4.3% inversions while also being 8.3× slower than
UST with ε = 0.9, which yields 2.1% inversions only.

For validation purposes, we also measure how well the considered algorithms compute the
set (not the ranking) of top-k vertices, i. e., those with highest electrical closeness centrality,
with k ∈ {10, 100}. For each algorithm we only consider the parameter settings that yields
the highest accuracy. JLT-based approaches appear to be very accurate for this purpose,
as their top-k sets achieve a Jaccard index of 1.0. As expected (due to its absolute error
guarantee), UST performs slightly worse: on average, it obtains 0.95 for k = 10 and 0.98 for
k = 100, which still shows a high overlap with the ground truth.

ESA 2020

6:12 Approximation of diag(L†) for Complex Network Analysis

106 107 108

#of edges

101

102

103

Ti
m

e
(s

)

UST

(a) Running time of UST w. r. t. #of edges.

106 107 108

#of edges

1.5

2.0

2.5

3.0

Ti
m

e
ra

tio

1e 10

UST

(b) Ratio of running time of UST w. r. t. its
theoretical running time (see Theorem 3).

Figure 2 Scalability of UST on random hyperbolic graphs (ε = 0.3, 1× 24 cores).

The memory consumption is shown and discussed in more detail in Appendix E.3 (full
version [4]). In summary, as our algorithm can discard each UST after its aggregation, it is
rather space-efficient and requires less memory than the competitors.

5.3 Parallel Scalability

The log-log plot in Figure 4a (Appendix E.1, full version [4]) shows that on shared-memory
UST achieves a moderate parallel scalability w. r. t. the number of cores; on 24 cores in
particular it is 11.9× faster than on a single core. Even though the number of USTs to
be sampled can be evenly divided among the available cores, we do not see a nearly-linear
scalability: on multiple cores the memory performance of our NUMA system becomes a
bottleneck. Therefore, the time to sample a UST increases and using more cores yields
diminishing returns. Limited memory bandwidth is a known issue affecting algorithms based
on graph traversals in general [7, 42]. Finally, we compare the parallel performance of UST
indirectly with the parallel performance of our competitors. More precisely, assuming a
perfect parallel scalability for our competitors Bekas and Bekas-h on 24 cores, UST would
yield results 4.1 and 12.6 times faster, respectively, even with this strong assumption for the
competition’s benefit.

UST scales better in a distributed setting. In this case, the scalability is affected mainly
by its non-parallel parts and by synchronization latencies. The log-log plot in Figure 4b
shows that on up to 4 compute nodes the scalability is almost linear, while on 16 compute
nodes UST achieves a 15.1× speedup w. r. t. a single compute node.

Figure 5 (Appendix E.1, full version [4]) shows the fraction of time that UST spends on
different tasks depending on the number of cores. We aggregated over “Sequential Init.” the
time spent on memory allocation, pivot selection, solving the linear system, the computation
of the biconnected components, and on computing the tree Bu. In all configurations, UST
spends the majority of the time in sampling, computing the DFS data structures and
aggregating USTs. The total time spent on aggregation corresponds to “UST aggregation”
and “DFS” in Figure 5, indicating that computing the DFS data structures is the most
expensive part of the aggregation. Together, sampling time and total aggregation time
account for 99.4% and 95.3% of the total running time on 1 core and 24 cores, respectively.
On average, sampling takes 66.8% of this time, while total aggregation takes 31.2%. Since
sampling a UST is on average 2.2× more expensive than computing the DFS timestamps
and aggregation, faster sampling techniques would significantly improve the performance of
our algorithm.

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:13

Table 1 Running time of UST on large real-world networks (16× 24 cores).

Network |V | |E| Time (s) Time (s)
ε = 0.3 ε = 0.9

petster-carnivore 601,213 15,661,775 16.8 4.8
soc-pokec-relationships 1,632,803 22,301,964 55.5 9.5
soc-LiveJournal1 4,843,953 42,845,684 277.0 75.5
livejournal-links 5,189,808 48,687,945 458.4 80.6
orkut-links 3,072,441 117,184,899 71.8 19.9
wikipedia_link_en 13,591,759 334,590,793 429.9 88.3

5.4 Scalability to Large Networks
Results on Synthetic Networks. The log-log plots in Figure 2a show the average running
time of UST (1 × 24 cores) on networks generated with the random hyperbolic generator
from von Looz et al. [61].4 For each network size, we take the arithmetic mean of the running
times measured for five different randomly generated networks. Our algorithm requires 184
minutes for the largest inputs (with up to 83.9 million edges). Interestingly, Figure 2b shows
that the algorithm scales slightly better than our theoretical bound predicts. In Figure 6
(Appendix E.2, full version [4]) we present results on an additional graph class, namely
R-MAT graphs. On these instances, the algorithm exhibits a similar running time behavior;
however, the comparison to the theoretical bound is less conclusive.

Results on Large Real-World Networks. In Table 1 we report the performance of UST in
a distributed setting (16× 24 cores) on large real-world networks. With ε = 0.3 and ε = 0.9,
UST always runs in less than 8 minutes and 1.5 minutes, respectively.

6 Conclusions

We have proposed a new parallel algorithm for approximating diag(L†) of Laplacian matrices
L corresponding to small-world networks. Compared to the main competitors, our algorithm
is about one order of magnitude faster, it yields results with higher quality in terms of
absolute error and ranking of diag(L†), and it requires less memory. The gap between the
theoretical bounds and the much better empirical error yielded by our algorithm suggests
that tighter bounds on the number of samples are a promising direction for future work. So
is an improvement of the running time for high-diameter graphs, both in theory and practice.

References
1 David J. Aldous. The random walk construction of uniform spanning trees and uniform

labelled trees. SIAM J. Discret. Math., 3(4):450–465, November 1990. doi:10.1137/0403039.
2 Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph clustering using

effective resistance. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs,
pages 41:1–41:16, Cambridge, Massachusetts, USA, 2018. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.ITCS.2018.41.

4 The random hyperbolic generator generates networks with a heavy-tailed degree distribution. We set
the average degree to 20 and the exponent of the power-law distribution to 3.

ESA 2020

https://doi.org/10.1137/0403039
https://doi.org/10.4230/LIPIcs.ITCS.2018.41

6:14 Approximation of diag(L†) for Complex Network Analysis

3 Patrick Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and François-Henry Rouet. Parallel
computation of entries of a-1. SIAM J. Scientific Computing, 37(2):C268–C284, 2015. doi:
10.1137/120902616.

4 Eugenio Angriman, Maria Predari, Alexander van der Grinten, and Henning Meyerhenke.
Approximation of the diagonal of a laplacian’s pseudoinverse for complex network analysis,
2020. arXiv:2006.13679.

5 Eugenio Angriman, Alexander van der Grinten, Moritz von Looz, Henning Meyerhenke, Martin
Nöllenburg, Maria Predari, and Charilaos Tzovas. Guidelines for experimental algorithmics: A
case study in network analysis. Algorithms, 12(7):127, 2019.

6 Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix. J. ACM, 58(2):8:1–8:34, 2011. doi:10.1145/1944345.
1944349.

7 David A Bader, Guojing Cong, and John Feo. On the architectural requirements for efficient
execution of graph algorithms. In 2005 International Conference on Parallel Processing
(ICPP’05), pages 547–556, Oslo, Norway, 2005. IEEE, IEEE.

8 Simon Barthelmé, Nicolas Tremblay, Alexandre Gaudillière, Luca Avena, and Pierre-Olivier
Amblard. Estimating the inverse trace using random forests on graphs, 2019. arXiv:1905.
02086.

9 C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Appl.
Numer. Math., 57(11-12):1214–1229, November 2007. doi:10.1016/j.apnum.2007.01.003.

10 Elisabetta Bergamini, Michele Borassi, Pierluigi Crescenzi, Andrea Marino, and Henning
Meyerhenke. Computing top-k closeness centrality faster in unweighted graphs. TKDD,
13(5):53:1–53:40, 2019. doi:10.1145/3344719.

11 Elisabetta Bergamini, Michael Wegner, Dimitar Lukarski, and Henning Meyerhenke. Es-
timating current-flow closeness centrality with a multigrid laplacian solver. In Proc. 7th
SIAM Workshop on Combinatorial Scientific Computing, CSC 2016, pages 1–12. SIAM, 2016.
doi:10.1137/1.9781611974690.ch1.

12 Guy E. Blelloch, Anupam Gupta, Ioannis Koutis, Gary L. Miller, Richard Peng, and Kanat
Tangwongsan. Near linear-work parallel sdd solvers, low-diameter decomposition, and low-
stretch subgraphs, 2011. doi:10.1145/1989493.1989496.

13 Paolo Boldi and Sebastiano Vigna. Axioms for centrality. Internet Mathematics, 10(3-4):222–
262, 2014. doi:10.1080/15427951.2013.865686.

14 Béla Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in Mathematics. Springer,
2002. doi:10.1007/978-1-4612-0619-4.

15 Enrico Bozzo and Massimo Franceschet. Resistance distance, closeness, and betweenness.
Social Networks, 35(3):460–469, 2013. doi:10.1016/j.socnet.2013.05.003.

16 Ulrik Brandes and Daniel Fleischer. Centrality measures based on current flow. In Proceedings
of the 22nd Annual Symposium on Theoretical Aspects of Computer Science, STACS 2005,
volume 3404 of LNCS, pages 533–544. Springer, 2005. doi:10.1007/978-3-540-31856-9_44.

17 A. Broder. Generating random spanning trees. In Proceedings of the 30th Annual Symposium
on Foundations of Computer Science, SFCS ’89, page 442–447, USA, 1989. IEEE Computer
Society. doi:10.1109/SFCS.1989.63516.

18 Ashok K Chandra, Prabhakar Raghavan, Walter L Ruzzo, Roman Smolensky, and Prasoon Ti-
wari. The electrical resistance of a graph captures its commute and cover times. Computational
Complexity, 6(4):312–340, 1996.

19 Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng, Anup B.
Rao, and Shen Chen Xu. Solving sdd linear systems in nearly mlog1/2n time. In Proceedings
of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, page 343–352,
New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2591796.
2591833.

https://doi.org/10.1137/120902616
https://doi.org/10.1137/120902616
http://arxiv.org/abs/2006.13679
https://doi.org/10.1145/1944345.1944349
https://doi.org/10.1145/1944345.1944349
http://arxiv.org/abs/1905.02086
http://arxiv.org/abs/1905.02086
https://doi.org/10.1016/j.apnum.2007.01.003
https://doi.org/10.1145/3344719
https://doi.org/10.1137/1.9781611974690.ch1
https://doi.org/10.1145/1989493.1989496
https://doi.org/10.1080/15427951.2013.865686
https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.1016/j.socnet.2013.05.003
https://doi.org/10.1007/978-3-540-31856-9_44
https://doi.org/10.1109/SFCS.1989.63516
https://doi.org/10.1145/2591796.2591833
https://doi.org/10.1145/2591796.2591833

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:15

20 Wendy Ellens, Flora Spieksma, P. Mieghem, A. Jamakovic, and Robert Kooij. Effective
graph resistance. Linear Algebra and its Applications, 435:2491–2506, November 2011. doi:
10.1016/j.laa.2011.02.024.

21 Josh Ericson, Pietro Poggi-Corradini, and Hainan Zhang. Effective resistance on graphs and
the epidemic quasimetric. Involve, a Journal of Mathematics, 7(1):97–124, 2013.

22 Hutchinson M. F. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. J. Commun. Statist. Simula., 19(2):433–450, 1990.

23 Arpita Ghosh, Stephen Boyd, and Amin Saberi. Minimizing effective resistance of a graph.
SIAM Rev., 50(1):37–66, February 2008. doi:10.1137/050645452.

24 Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer Science &
Business Media, 2013.

25 Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins University
Press, 1996.

26 Gaël Guennebaud, Benoît Jacob, et al. Eigen v3, 2010. URL: http://eigen.tuxfamily.org.
27 Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. Efficient algorithms for spanning tree

centrality. In IJCAI, pages 3733–3739. IJCAI, 2016.
28 Mathias Jacquelin, Lin Lin, and Chao Yang. Pselinv – a distributed memory parallel algorithm

for selected inversion: The non-symmetric case. Parallel Computing, 74:84–98, 2018. Parallel
Matrix Algorithms and Applications (PMAA’16). doi:10.1016/j.parco.2017.11.009.

29 William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert
space. Contemporary mathematics, 26(189-206):1, 1984.

30 Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple,
combinatorial algorithm for solving sdd systems in nearly-linear time. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, pages 911–920. ACM, 2013.

31 Douglas Klein and Milan Randic. Resistance distance. Journal of Mathematical Chemistry,
12:81–95, December 1993. doi:10.1007/BF01164627.

32 Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for SDD
linear systems. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 590–598.
IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.85.

33 Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
linear systems. SIAM J. Comput., 43(1):337–354, 2014. doi:10.1137/110845914.

34 Ioannis Koutis, Gary L. Miller, and David Tolliver. Combinatorial preconditioners and
multilevel solvers for problems in computer vision and image processing. Computer Vision
and Image Understanding, 115(12):1638–1646, 2011.

35 Jérôme Kunegis. KONECT: the koblenz network collection. In Leslie Carr, Alberto H. F.
Laender, Bernadette Farias Lóscio, Irwin King, Marcus Fontoura, Denny Vrandecic, Lora
Aroyo, José Palazzo M. de Oliveira, Fernanda Lima, and Erik Wilde, editors, 22nd International
World Wide Web Conference, WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, Companion
Volume, pages 1343–1350. International World Wide Web Conferences Steering Committee /
ACM, 2013. doi:10.1145/2487788.2488173.

36 R. Kyng and S. Sachdeva. Approximate gaussian elimination for laplacians - fast, sparse, and
simple. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pages 573–582. IEEE, October 2016. doi:10.1109/FOCS.2016.68.

37 Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In Proceedings of the
Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, page 842–850, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2897518.2897640.

38 Huan Li, Richard Peng, Liren Shan, Yuhao Yi, and Zhongzhi Zhang. Current flow group
closeness centrality for complex networks? In Ling Liu, Ryen W. White, Amin Mantrach,
Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia, editors, The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019, pages 961–971.
ACM, 2019. doi:10.1145/3308558.3313490.

ESA 2020

https://doi.org/10.1016/j.laa.2011.02.024
https://doi.org/10.1016/j.laa.2011.02.024
https://doi.org/10.1137/050645452
http://eigen.tuxfamily.org
https://doi.org/10.1016/j.parco.2017.11.009
https://doi.org/10.1007/BF01164627
https://doi.org/10.1109/FOCS.2011.85
https://doi.org/10.1137/110845914
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1109/FOCS.2016.68
https://doi.org/10.1145/2897518.2897640
https://doi.org/10.1145/3308558.3313490

6:16 Approximation of diag(L†) for Complex Network Analysis

39 Huan Li and Zhongzhi Zhang. Kirchhoff index as a measure of edge centrality in weighted
networks: Nearly linear time algorithms. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2377–2396. SIAM, SIAM, 2018.

40 Oren E Livne and Achi Brandt. Lean algebraic multigrid (LAMG): Fast graph laplacian linear
solver. SIAM Journal on Scientific Computing, 34(4):B499–B522, 2012.

41 L. Lovász. Random walks on graphs: A survey. In D. Miklós, V. T. Sós, and T. Szőnyi, editors,
Combinatorics, Paul Erdős is Eighty, volume 2, pages 353–398. János Bolyai Mathematical
Society, Budapest, 1996.

42 Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry. Challenges in
parallel graph processing. Parallel Processing Letters, 17(01):5–20, 2007.

43 Russell Lyons and Yuval Peres. Probability on Trees and Networks. Cambridge University
Press, USA, 1st edition, 2017.

44 Clémence Magnien, Matthieu Latapy, and Michel Habib. Fast computation of empirically
tight bounds for the diameter of massive graphs. Journal of Experimental Algorithmics (JEA),
13:1–10, 2009.

45 Charalampos Mavroforakis, Richard Garcia-Lebron, Ioannis Koutis, and Evimaria Terzi.
Spanning Edge Centrality: Large-scale Computation and Applications. In Proceedings of the
24th International Conference on World Wide Web, WWW 2015, pages 732–742. ACM, 2015.

46 Brendan D McKay et al. Practical graph isomorphism. Department of Computer Science,
Vanderbilt University Tennessee, USA, 1981.

47 Onuttom Narayan and Iraj Saniee. Scaling of random walk betweenness in networks. In
Luca Maria Aiello, Chantal Cherifi, Hocine Cherifi, Renaud Lambiotte, Pietro Lió, and Luis M.
Rocha, editors, Complex Networks and Their Applications VII, pages 41–51, Cham, 2019.
Springer International Publishing.

48 Mark Newman. Networks (2nd Ed.). Oxford university press, 2018.
49 Kazuya Okamoto, Wei Chen, and Xiang-Yang Li. Ranking of closeness centrality for large-

scale social networks. In International workshop on frontiers in algorithmics, pages 186–195.
Springer, Springer, 2008.

50 Melissa E. O’Neill. Pcg: A family of simple fast space-efficient statistically good algorithms
for random number generation. Technical Report HMC-CS-2014-0905, Harvey Mudd College,
Claremont, CA, September 2014.

51 Richard Peng and Daniel A. Spielman. An efficient parallel solver for sdd linear systems, 2014.
doi:10.1145/2591796.2591832.

52 Gyan Ranjan, Zhi-Li Zhang, and Daniel Boley. Incremental computation of pseudo-inverse of
laplacian. In Zhao Zhang, Lidong Wu, Wen Xu, and Ding-Zhu Du, editors, Combinatorial
Optimization and Applications, pages 729–749, Cham, 2014. Springer International Publishing.

53 Aaron Schild. An almost-linear time algorithm for uniform random spanning tree generation.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, page 214–227, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3188745.3188852.

54 John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, USA, 2004.

55 Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a
change in one element of a given matrix. Ann. Math. Statist., 21(1):124–127, March 1950.

56 Roger B. Sidje and Yousef Saad. Rational approximation to the fermi-dirac function with
applications in density functional theory. Numerical Algorithms, 56(3):455–479, March 2011.
doi:10.1007/s11075-010-9397-6.

57 Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913–1926, 2011. doi:10.1137/080734029.

58 Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for
large-scale complex network analysis. Network Science, 4(4):508–530, 2016. doi:10.1017/nws.
2016.20.

https://doi.org/10.1145/2591796.2591832
https://doi.org/10.1145/3188745.3188852
https://doi.org/10.1007/s11075-010-9397-6
https://doi.org/10.1137/080734029
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1017/nws.2016.20

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:17

59 Jok M. Tang and Yousef Saad. A probing method for computing the diagonal of a matrix
inverse. Numerical Linear Algebra with Applications, 19(3):485–501, 2012.

60 Piet Van Mieghem, Karel Devriendt, and H Cetinay. Pseudoinverse of the laplacian and best
spreader node in a network. Physical Review E, 96(3):032311, 2017.

61 Moritz von Looz, Mustafa Safa Özdayi, Sören Laue, and Henning Meyerhenke. Generating
massive complex networks with hyperbolic geometry faster in practice. In 2016 IEEE High
Performance Extreme Computing Conference, HPEC 2016, Waltham, MA, USA, September
13-15, 2016, pages 1–6. IEEE, 2016. doi:10.1109/HPEC.2016.7761644.

62 David Bruce Wilson. Generating random spanning trees more quickly than the cover time. In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC
’96, pages 296–303, New York, NY, USA, 1996. ACM. doi:10.1145/237814.237880.

A Algorithmic Details and Omitted Proofs

A.1 Our Approximation Algorithm in More Detail

Overall algorithm. Algorithm 1 already receives the pivot vertex u as input. Lines 4 to 10
approximate the effective resistances. To do so, Lines 4 to 7 perform initializations: first, the
estimate of the effective resistance is set to 0 for all vertices. Then the accuracy η of the
linear solver is computed so as to ensure an absolute ε-approximation for the whole algorithm.
The BFS tree Bu with root u realizes shortest paths between u and all other vertices. The
sample size τ depends on the parameters ε and δ, among others.

The first for-loop does the actual sampling and aggregation (the latter with Algorithm 2).
Afterwards, Lines 11 to 14 fill the u-th column and the diagonal of L† – to the desired
accuracy. Apart from that, the algorithm’s high-level ideas have been provided already in
Section 3.1.

Algorithm 1 Approximation algorithm for diag(L†).
1: function ApproxDiagLpinv(G, u, ε, δ)
2: Input: Undirected small-world graphG = (V,E), pivot u ∈ V , error bound ε > 0, probability

0 < δ < 1
3: Output: diag(L̃†), i. e., an (ε, δ)-approximation of diag(L†)
4: R[v]← 0 ∀v ∈ V . O(n)
5: Pick constant κ ∈ (0, 1) arbitrarily; η ← κε

3
√
mn logn diam(G)

6: Compute BFS tree Bu of G with root u . O(n+m)
7: τ ← ecc(u)2 · dlog(2m/δ)/(2(1− κ)2ε2)e . O(1)
8: for i← 1 to τ do . τ times
9: Sample UST Ti of G with root u . O(m logn)
10: R← Aggregate(Ti, R, Bu) . O(n logn)
11: Solve Lx = eu − 1

n
· 1 for x (accuracy: η) . Õ(m log1/2 n log(1/η))

12: L̃†[u, u]← x[u] . O(1)
13: for v ∈ V ′ do . All iterations: O(n)
14: L̃†[v, v]← R[v]/τ − x[u] + 2x[v]
15: return diag(L̃†)

I Remark 8. Due to the fact that Laplacian linear solvers provide a relative error guarantee
(and not an absolute ±ε guarantee), the (relative) accuracy η for the initial Laplacian linear
system (Lines 5 and 11) depends in a non-trivial way on our guaranteed absolute error ε.
For details, see the proofs in Appendix A.4.

ESA 2020

https://doi.org/10.1109/HPEC.2016.7761644
https://doi.org/10.1145/237814.237880

6:18 Approximation of diag(L†) for Complex Network Analysis

We also remark that the value of the constant κ does not affect the asymptotic running
time (nor the correctness) of the algorithm. However, it does affect the empirical running
time by controlling which fraction of the error budget is invested into solving the initial
linear system vs. UST sampling.

A.1.1 Aggregation algorithm

Algorithm 2 Aggregation of T ’s contribution to R[·].
1: function Aggregate(T,R,Bu)
2: Input: spanning tree T , array of effective resistance estimates R, shortest-path tree Bu
3: Output: R updated with T ’s contribution
4: {α,Ω} ← DFS(T) . α(v), Ω(v): discovery/finish times of v
5: for v ∈ V ′ do
6: for (a, b) ∈ P (v) obtained from Bu do
7: if parent(b) = a then
8: if α(b) < α(v) and Ω(v) < Ω(b) then
9: R[v]← R[v] + 1

10: else if parent(a) = b then
11: if α(a) < α(v) and Ω(v) < Ω(a) then
12: R[v]← R[v]− 1
13: return R

Algorithm 2 depicts the pseudocode of the tree aggregation algorithm that is discussed in
Section 3.2. Here, α(·) and Ω(·) denote our DFS discovery and finish timestamps, respectively.
The test whether (a, b) [or (b, a)] is in T is carried out in Line 7 [or Line 10, respectively].
If that is indeed the case, Line 8 [or Line 11] checks whether v is below (a, b) [or (b, a),
respectively]. If that is the case, the effective resistance estimate is adapted in Line 9 [Line 12].

A.1.2 Parallelism
Algorithm 1 can be parallelized by sampling and aggregating USTs in parallel. This yields
a work-efficient parallelization in the work-depth model. The depth of the algorithm is
dominated by (i) computing the BFS tree Bu, (ii) sampling each UST (Line 9) and (iii) solving
the Laplacian linear system (Line 11). With current algorithms, the latter two procedures
have depth O(m logn) and Õ(m log

1
2 n log(1/η)), respectively (simply by executing them

sequentially). We note that parallelizing the loops of Algorithm 2 results in a depth of O(n)
for Algorithm 2; however, this does not impact the depth of Algorithm 1. We also note that
by using a parallel Laplacian solver, the depth of solving the initial linear system becomes
polylogarithmic [51]. Nevertheless, real-world implementations show a good parallelization
behavior by parallelizing only Algorithm 1 (see Sections 4 and 5); consequently, we do not
focus on parallelizing the sampling itself.

A.2 Wilson’s UST Algorithm
Given a path P , its loop erasure is a simple path created by removing all cycles of P in
chronological order. Wilson’s algorithm grows a sequence of sub-trees of G, in our case
starting with u as root of T . LetM = {v1, . . . , vn−1} be an enumeration of V \{u}. Following
the order in M , a random walk starts from every unvisited vi until it reaches (some vertex
in) T and its loop erasure is added to T .

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:19

I Proposition 9 ([62], comp. [27]). For a connected and unweighted undirected graph
G = (V,E) and a vertex u ∈ V , Wilson’s algorithm samples a uniform spanning tree of G
with root u. The expected running time is the mean hitting time of G,

∑
v∈V ′ πG(v)κG(v, u),

where πG(v) is the probability that a random walk stays at v in its stationary distribution
and where κG(v, u) is the commute time between v and u.

I Lemma 10. Let G be as in Proposition 9. Its mean hitting time can be rewritten as∑
v∈V ′ deg(v) · r(u, v), which is O(ecc(u) ·m). In small-world graphs, this is O(m logn).

Proof of Lemma 10. First, we replace πG(v) by deg(v)
vol(G) in the sum [41]. By using the

well-known relation κG(v, u) = vol(G) · r(v, u) [18], the volumes cancel and we obtain∑
v∈V ′ deg(v) · r(u, v). We can bound this from above by

∑
v∈V ′ deg(v) ·dist(u, v) ≤ vol(G) ·

ecc(u), because effective resistance is never larger than the graph distance [21]. In unweighted
graphs, vol(G) = 2m and in undirected graphs ecc(u) ≤ diam(G) for all u ∈ V , which proves
the claim. J

A.3 Proof of Lemma 2
Proof of Lemma 2. DFS in T takes O(n) time since T is a spanning tree. Furthermore,
Algorithm 2 loops over O(f c(u)) vertex-edge pairs (as |P (v)| = dist(u, v)), with O(1) query
time spent per pair. Since no path to the root in Bu is longer than ecc(u), we obtain
O(n · ecc(u)), which is by definition O(n · diam(G)). J

A.4 Proof of Theorem 3
The proof of our main theorem makes use of Hoeffding’s inequality. In the inequality’s
presentation, we follow Hayashi et al. [27].

I Lemma 11. Let X1, . . . , Xτ be independent random variables in [0, 1] and X =
∑
i∈[τ]Xi.

Then for any 0 < ε < 1, we have

Pr[|X − E[X]| > ετ] ≤ 2 exp(−2ε2τ). (10)

Before we can prove Theorem 3, we need auxiliary results on the equivalence of norms.
For this purpose, let ‖x‖L :=

√
xTLx for any x ∈ Rn. Note that ‖ · ‖L is a norm on the

subspace of Rn with x ⊥ 1. We show that:

I Lemma 12. Let G = (V,E) be a connected undirected graph with n vertices and m edges.
Moreover, let L be its Laplacian matrix and λ2 the second smallest eigenvalue of L. The
volume of G, vol(G), is the sum of all (possibly weighted) vertex degrees.

For any x ∈ Rn with x ⊥ 1 we have:√
λ2 · ‖x‖∞ ≤ ‖x‖L ≤

√
2 vol(G) · ‖x‖∞. (11)

Proof. Since L is positive semidefinite, it can be seen as a Gram matrix and written as KTK
for some real matrix K. The second smallest eigenvalue of K is then

√
λ2 and we can write:√

λ2 · ‖x‖∞ ≤
√
λ2 · ‖x‖2 = ‖

√
λ2 · x‖2 ≤ ‖Kx‖2 = ‖x‖L. (12)

The first, second, and last (in)equality in Eq. (12) follow from basic linear algebra facts,
respectively. The third inequality follows from the Courant-Fischer theorem, since the
eigenvector corresponding to the smallest eigenvalue 0, 1, is excluded from the subspace of x
(comp. for example Ch. 3.1 of Ref. [54].)

ESA 2020

6:20 Approximation of diag(L†) for Complex Network Analysis

Using the quadratic form of the Laplacian matrix, we get:

‖x‖L =

 ∑
{i,j}∈E

w(u, v)(x[i]− x[j])2

1/2

(13)

≤
(

1
2 vol(G) · (2‖x‖∞)2

)1/2
=
√

2 vol(G) · ‖x‖∞ (14)

J

We are now in the position to prove our main result:

Proof of Theorem 3. Solving the initial linear system with the solver by Cohen et al. [19]
takes Õ(m log1/2 n · log(1/η)) time to achieve a relative error bound of ‖x̃− x‖L ≤ η‖x‖L.
Here, x is the true solution, x̃ the estimate, and ‖x‖L =

√
xTLx. To make this error bound

compatible with the absolute error we pursue, we first note that
√
λ2 · ‖x̃‖∞ ≤ ‖x̃‖L ≤√

2 vol(G)· ‖x̃‖∞ (Lemma 12), where λ2 is the second smallest eigenvalue of L. We may use
Lemma 12, as x̃ and x are both perpendicular to 1 (since the image of L is perpendicular
to its kernel, which is 1). It is known that λ2 ≥ 4/(n · diam(G)) [46]. Hence, if we set
η := κε

3·
√
mn logn diam(G)

, we get for small-world graphs:

‖x̃− x‖∞ ≤
1√
λ2
· ‖x̃− x‖L ≤

η√
λ2
· ‖x‖L

≤ η√
4/(n · diam(G))

· ‖x‖L ≤
η
√
n logn
2 · 2

√
m · ‖x‖∞

= κε

3
√
mn logn diam(G)

·
√
mn logn · ‖x‖∞

≤ κε

3 diam(G)‖x‖∞ ≤
κε

3 diam(G) diam(G) ≤ κ

3 ε.

The second last inequality follows from the fact that x expresses potentials scaled by 1/n,
arising from n− 1 (scaled) effective resistance problems fused together. The maximum norm
of x can thus be bounded by (n− 1) 1

nr(u, v) ≤ diam(G), because r(·, ·) is bounded by the
graph distance.

Taking Eq. (7) into account, this means that the maximum error of a diagonal value in
L̃† as a consequence from the linear system can be bounded by κε. The resulting running
time for the solver is then Õ(m log1/2 n log(3

√
mn logn diam(G)

κε)) = Õ(m log1/2 n log(n/ε)).
The main bottleneck is the loop that samples τ USTs and aggregates their contribution

in each iteration. According to Lemma 10, sampling takes O(m logn) time per tree in
small-world graphs. Aggregating a tree’s contribution is less expensive (Lemma 2).

Let us determine next the sample size τ that allows the desired guarantee. To this end, let
ε′ := (1−κ)ε denote the possible absolute error for the effective resistance estimates. Plugging
τ := ecc(u)2 · dlog(2m/δ)/(2(ε′)2)e into Hoeffding’s inequality (Lemma 11), yields for each
single edge e ∈ E and its estimated electrical flow f̃(e): Pr[̃f(e) = f(e)±ε′/ ecc(u)] ≥ 1−δ/m.
Using the union bound, we get that Pr[̃f(e) = f(e) ± ε′/ ecc(u)] for all e ∈ E at the same
time holds with probability ≥ 1 − δ. Since for all v the path length |P (v)| is bounded by
ecc(u), another application of the union bound yields that Pr[R[v] = r(u, v)± ε′] ≥ 1−δ. J

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:21

A.5 Proof of Lemma 6
Proof. Recall that the normalized random-walk betweenness is expressed as follows (Eq. (5)):

cb(v) = 1
n

+ 1
n− 1

∑
t 6=v

M−1[t, t]−M−1[t, v]
M−1[t, t] + M−1[v, v]− 2M−1[t, v]

where M := L + P with L the Laplacian matrix and P the projection operator onto the zero
eigenvector of the Laplacian such that P[i, j] = 1/n. We also have L† := (L + P)−1 −P and
thus we can replace M−1 with L† + P. Then, for the numerator of Eq. (5) we have:∑

t6=v
(M−1[t, t]−M−1[t, v]) =

∑
t6=v

(L†[t, t]−P[t, t]− L†[t, v] + P[t, v]) =

∑
t6=v

(L†[t, t]− L†[t, v]) = tr(L†)− L†[v, v]−
∑
t 6=v

L†[t, v] =

tr(L†). (15)

The second equality holds because
∑
l 6=v

(P[t, v]−P[t, t]) = 0 for all t, v ∈ V . The final equality

holds since
n∑
t 6=v

L†[t, v] = −L†[v, v] for all v ∈ V .

Then, for the denominator we have:

(n− 1)
∑
t6=v

(M−1[t, t] + M−1[v, v]− 2M−1[t, v]) =

(n− 1)
∑
t 6=v

(L†[t, t] + P[t, t] + L†[v, v] + P[v, v]− 2L†[t, v]− 2P[t, v]) =

(n− 1)
∑
t 6=v

(L†[t, t] + L†[v, v]− 2L†[t, v]) =

(n− 1)fel(v). (16)

The second equality holds since
∑
t 6=v

P[t, t] + P[v, v] − 2P[t, v] = 0 for all t, v ∈ V and the

last equality due to Eq. (3) and the definition of electrical farness. The claim follows from
combining Eqs. (15) and (16). J

B Kirchhoff Index and Related Centralities

B.1 Description
The sum of the effective resistance distances over all pairs of vertices is an important
measure for network robustness known as the Kirchhoff index K(G) or (effective) graph
resistance [20, 31]. The Kirchhoff index is often computed via the closed-form expression
K(G) = n tr(L†) [31], where the trace is the sum of the diagonal elements. Li and Zhang [39]
recently adapted the Kirchhoff index to obtain two edge centrality measures for e ∈ E:
(i) Cθ(e) := n tr(L† \θ e), where L \θ e corresponds to a graph in which edge e has been
down-weighted according to a parameter θ and (ii) C∆

θ (e) := Cθ(e)−K(G), which quantifies
the difference of the Kirchhoff indices between the new and the original graph.

ESA 2020

6:22 Approximation of diag(L†) for Complex Network Analysis

B.2 Related Work
To calculate the Kirchhoff edge centralities, Ref. [39] uses techniques such as partial Cholesky
factorization [36], fast Laplacian solvers and the Hutchinson estimator. For C∆

θ (e), which is
the more interesting measure in our context, they propose an ε-approximation algorithm that
approximates C∆

θ (e) for all edges in O(mε−2θ−2 log2.5 n log(1/ε)) time (up to polylogarithmic
factors). The algorithm uses the Sherman-Morrison formula [55], which gives a fractional
expression of (L† \θ e− L†). The numerator is approximated by the Johnson-Lindenstrauss
lemma, and the denominator by effective resistance estimates for all edges.

B.3 Kirchhoff Index and Edge Centralities
It is easy to see that Algorithm 1 can approximate Kirchhoff Index, exploiting the expression
K(G) = n tr(L†) [31]. As a direct consequence, we have:

I Proposition 13. Let G be a small-world graph as in Theorem 3. Then, Algorithm 1
approximates with high probability K(G) with absolute error ±ε in O(m log4 n · ε−2) time.

We also observe that we can use a component of Algorithm 1 to approximate C∆
θ (e).

Recall that C∆
θ (e) = Cθ(e)−K(G) = n(tr(L† \θ e)− tr(L†)). Using the Sherman-Morrison

formula, as done in Ref. [39], we have:

C∆
θ (e) = n(1− θ) w(e) tr(L†beb>e L†)

1− (1− θ)w(e)b>e L†be
, (17)

where be for e = (u, v) is the vector eu − ev.
Ref. [39] approximates C∆

θ (e) with an algorithm that runs in
O(mθ−2 log2.5 n log(1/ε) poly(log logn) · ε−2) time. The algorithm is dominated by the de-
nominator of Eq. (17), which runs in O(mθ−2 log2.5 n poly(log logn) ·ε−2). For the numerator
of Eq. (17), they use the following Lemma:

I Lemma 14 (paraphrasing from Ref. [39]). Let L be a Laplacian matrix and ε a scalar such
that 0 < ε ≤ 1/2. There is an algorithm that achieves an ε-approximation of the numerator
of Eq. (17) with high probability in O(m log1.5 n log(1/ε) · ε−2) time.

The algorithm in Lemma 14 uses the Monte-Carlo estimator with O(ε−2 logn) random
vectors zi to calculate the trace of the implicit matrix y>i beb>e yi, where yi is the approximate
solution of yi := L†zi – derived from solving the corresponding linear system involving L.
For each system, the Laplacian solver runs in O(m log1/2 n log(1/ε)) time.

We notice that a UST-based sampling approach works again for the denominator: The
denominator is just 1 − (1 − θ)w(e)r(e), where e ∈ E (r(e) = b>e L†be). Approximating
r(e) for every e ∈ E then requires sampling USTs and counting for each edge e the number
of USTs it appears in. Moreover, we only need to sample q = d2ε−2 log(2m/δ)e to get an
ε-approximation of the effective resistances for all edges (using Theorem 8 in Ref. [27]).
Since r(e) are approximate, we need to bound their approximation when subtracted from 1.
Following Ref. [39], we use the fact that 0 < θ < 1 and that for each edge w(e)r(e) is between
0 and 1, bounding the denominator. The above algorithm can be used to approximate the
denominator of Eq. (17) with absolute error ±ε in O(m log2 n · ε−2) time. Combining the
above algorithm and Lemma 14, it holds that:

I Proposition 15. Let G = (V,E) be a small-world graph as in Theorem 3. Then, there is
an algorithm (using Lemma 14 and our Wilson-based sampling algorithm) that approximates
with high probability C∆

θ (e) for all e ∈ E with absolute error ±ε in O(m log2 n log(1/ε) · ε−2)
time.

E. Angriman, M. Predari, A. van der Grinten, and H. Meyerhenke 6:23

C Detailed Engineering Aspects

C.1 UST Generation, Pivot Selection, and the Linear System
Wilson’s algorithm [62] using loop-erased random walks is the best choice in practice for UST
generation and also the fastest asymptotically for unweighted small-world graphs. A fast
random number generator is required for this algorithm; our code uses PCG32 [50] for this
purpose. For our implementation we use a variant of Wilson’s algorithm to sample each tree,
proposed by Hayashi et al. [27]: first, one computes the biconnected components of G, then
applies Wilson to each biconnected component, and finally combines the component trees to
a UST of G. In each component, we use a vertex with maximal degree as root for Wilson’s
algorithm. Using this approach, Hayashi et al. [27] experienced an average performance
improvement of around 40% on sparse graphs compared to running Wilson directly.

As a consequence of Theorem 3, the pivot vertex u should be chosen to have low eccentricity.
As finding the vertex with lowest eccentricity with a naive APSP approach would be too
expensive, we compute a lower bound on the eccentricity for all vertices of the graph and
choose u as the vertex with the lowest bound. These bounds are computed using a strategy
analogous to the double sweep lower bound by Magnien et al. [44]: we run a BFS from a
random vertex v, then another BFS from the farthest vertex from v, and so on. At each BFS
we update the bounds of all the visited vertices; an empirical evaluation has shown that 10
iterations yield a reasonably accurate approximation of the vertex with lowest eccentricity.

As a result from preliminary experiments, we use a general-purpose Conjugate Gradient
(CG) solver for the single (sparse) Laplacian linear systems, together with a diagonal
preconditioner. We choose the implementation of the C++ library Eigen [26] for this purpose
and found that the accuracy parameter κ = 0.3 yields a good trade-off between the CG and
UST sampling steps.

C.2 Parallel Implementation
Shared memory. Our implementation uses OpenMP for shared-memory parallelism. We
aggregate R[·] in thread-local vectors and perform a final parallel reduction over all R[·].
We found that on the graphs that we can handle in shared memory, no sophisticated load
balancing strategies are required to achieve reasonable scalability.

Distributed memory. We provide an implementation of our algorithm for replicated graphs
in distributed memory that exploits hybrid parallelism based on MPI + OpenMP. On each
compute node, we take samples and aggregate R[·] as in shared memory. Compared to the
shared-memory implementation, however, our distributed-memory implementation exhibits
two main peculiarities: (i) we still solve the initial Laplacian system on a single compute
node only; we interleave, however, this step with UST sampling on other compute nodes,
and (ii) we employ explicit load balancing. The choice to solve the initial system on a single
compute node only is done to avoid additional communication among nodes. In fact, we only
expect distributed CG solvers to outperform this strategy for inputs that are considerably
larger than the largest graphs that we consider. Furthermore, since we interleave this step of
the algorithm with UST sampling on other compute nodes, our strategy only results in a
bottleneck on input graphs where solving a single Laplacian system is slower than taking all
UST samples – but these inputs are already “easy”.

For load balancing, the naive approach would consist of statically taking dτ/pe UST
samples on each of the p compute nodes. However, in contrast to the shared-memory case,
this does not yield satisfactory scalability. In particular, for large graphs, the running

ESA 2020

6:24 Approximation of diag(L†) for Complex Network Analysis

time of the UST sampling step has a high variance. To alleviate this issue, we use a
simple dynamic load balancing strategy: periodically, we perform an asynchronous reduction
(MPI_Iallreduce) to calculate the total number of UST samples taken so far (over all
compute nodes). Afterwards, each compute node calculates the number of samples that
it takes before the next asynchronous reduction (unless more than τ samples were taken
already, in which case the algorithm stops). We compute this number as dτ/(b · pξ)e for fixed
constants b and ξ. We also overlap the asynchronous reduction with additional sampling to
avoid idle times. Finally, we perform a synchronous reduction (MPI_Reduce) to aggregate
R[·] on a single compute node before outputting the resulting diagonal values. By parameter
tuning [5], we found that choosing b = 25 and ξ = 0.75 yields the best parallel scalability.

Cutting Polygons into Small Pieces with Chords:
Laser-Based Localization
Esther M. Arkin
Stony Brook University, NY, USA
esther.arkin@stonybrook.edu

Rathish Das
Stony Brook University, NY, USA
rathish.das@stonybrook.edu

Jie Gao
Rutgers University, Piscataway, NJ, USA
jg1555@rutgers.edu

Mayank Goswami
Queens College of CUNY, New York, NY, USA
mayank.goswami@qc.cuny.edu

Joseph S. B. Mitchell
Stony Brook University, NY, USA
joseph.mitchell@stonybrook.edu

Valentin Polishchuk
Linköping University, Norrköping, Sweden
valentin.polishchuk@liu.se

Csaba D. Tóth
California State University Northridge,
Los Angeles, CA, USA
Tufts University, Medford, MA, USA
csaba.toth@csun.edu

Abstract
Motivated by indoor localization by tripwire lasers, we study the problem of cutting a polygon into
small-size pieces, using the chords of the polygon. Several versions are considered, depending on the
definition of the “size” of a piece. In particular, we consider the area, the diameter, and the radius of
the largest inscribed circle as a measure of the size of a piece. We also consider different objectives,
either minimizing the maximum size of a piece for a given number of chords, or minimizing the
number of chords that achieve a given size threshold for the pieces. We give hardness results for
polygons with holes and approximation algorithms for multiple variants of the problem.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Packing and covering problems; Mathematics of computing → Combinat-
orial algorithms; Theory of computation → Computational geometry

Keywords and phrases Polygon partition, Arrangements, Visibility, Localization

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.7

Related Version A full version of the paper is available at https://arxiv.org/abs/2006.15089.

Funding This research was partially supported by NSF grants CCF-1439084, CCF-1540890, CCF-
1617618, CCF-1716252, CCF-1725543, CCF-1910873, CCF-2007275, CNS-1618391, CNS-1938709,
CRII-1755791, CSR-1763680, DMS-1737812, DMS-1800734, and OAC-1939459. The authors also
acknowledge partial support from the US-Israel Binational Science Foundation (project 2016116),
the DARPA Lagrange program, the Sandia National Labs and grants by the Swedish Transport
Administration and the Swedish Research Council.

Acknowledgements We thank Peter Brass for technical discussions and for organizing an NSF-funded
workshop where these problems were discussed and this collaboration began.

1 Introduction

Indoor localization is a challenging and important problem. While GPS technology is very
effective outdoors, it generally performs poorly inside buildings, since GPS depends on
line-of-sight to satellites. Thus, other techniques are being considered for indoor settings.
One of the options being investigated for localization and tracking is to use one-dimensional

© Esther M. Arkin, Rathish Das, Jie Gao, Mayank Goswami, Joseph S. B. Mitchell,
Valentin Polishchuk, and Csaba D. Tóth;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 7; pp. 7:1–7:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esther.arkin@stonybrook.edu
mailto:rathish.das@stonybrook.edu
mailto:jg1555@rutgers.edu
mailto:mayank.goswami@qc.cuny.edu
mailto:joseph.mitchell@stonybrook.edu
mailto:valentin.polishchuk@liu.se
mailto:csaba.toth@csun.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.7
https://arxiv.org/abs/2006.15089
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Cutting Polygons into Small Pieces with Chords

tripwire sensors [16] such as laser beams, video cameras with a narrow field of view [31],
and pyroelectric or infrared sensors [12,14]. In these approaches, multiple sensors emitting
directional signal beams are deployed in an environment, with the beams inducing an
arrangement that cuts the domain into cells, allowing one to track the movement of a mobile
target from one cell to another when it crosses the signal beam. Since the accuracy of the
localization depends on the sizes of the cells, it is desirable to cut the polygon into small
pieces. With such beam deployment, one can also ensure that no “large” object can be
“hidden” in the domain, since any such object will necessarily intersect one of the beams.

In the literature there have been studies of target localization and tracking using such
“tripwire” sensors. Zheng, Brady, and Agarwal [32] consider general models of “boundary
sensors” that are triggered when an object crosses them. They assume that the position
of the sensors is already given and consider the signal processing problem of determining
the location and trace of a target by the spatial and temporal sequence of the laser beams
crossed by the target. In this paper, we focus on the problem of optimizing the placement of
signal beam sensors to minimize the ambiguity of target location within each cell.

Problem Formulation and Notation. We study various versions of the laser cutting problem.
The input polygon, denoted by P , is a closed polygonal domain (i.e., a connected compact set
in R2 with piecewise linear boundary) having a total of n vertices, r of which are reflex (having
internal angle greater than π). The terms “cut” and “laser” will be used interchangeably
to denote a chord of P , i.e., a maximal line segment in P whose relative interior lies in the
interior of P . The measure (or size) of a cell in the arrangement will be (a) the cell’s area,
(b) its diameter (defined as the maximum Euclidean distance between two points of the cell),
or (c) the radius of the largest inscribed disk within the cell.

For each measure, we consider two formulations of the optimization problem:
MinMeasure: Given a positive integer k, determine how to place k laser beams in P to
minimize the maximum measure, δ, of a cell in the arrangement of the lasers.
Min-LaserMeasure: Given δ > 0, determine the smallest number of laser beams to cut P
into cells each of measure at most δ.

In Min-LaserMeasure, no generality is lost by taking the cell size bound, δ, to be 1. We
assume that the optimal solution is greater than a constant c; otherwise, the problem can be
solved optimally in O(npoly(c)) time (in the real RAM model of computation, standard for
geometric algorithms) by reducing it to a mathematical program whose variables are the
locations of the lasers endpoints on the boundary of P (the space of the variables would
be split into regions of fixed combinatorial types for all the lasers, and in each region, the
measures for the cells of the partition of P will be explicitly written and optimized – since
each cell has poly(c) = O(1) complexity, the optimization problem will be of constant size).
It may be interesting to investigate also the opposite scenario and obtain efficient algorithms
for minimizing the measures using a small given number of lasers. Further variants of the
problem may be defined. One possible requirement is to use only axis-aligned lasers – in
fact, with this restriction (of primarily theoretical interest) we obtain better approximations
than for the more general case of unrestricted-orientation lasers.

Results. We give hardness results and approximation algorithms for several variants of the
problems, using a variety of techniques. Specifically,

Section 2 proves hardness of our problems in polygons with holes: we show that it is
NP-hard to decide whether one can split the domain into pieces of measure at most δ,
using a given number k of lasers (this holds for any of the measures, which implies that

E.M. Arkin et al. 7:3

both MinMeasure and Min-LaserMeasure are hard for polygons with holes). Our hardness
reductions hold using axis-parallel lasers, as well, which implies that the problem is hard
with or without the restriction to axis-aligned lasers.
Section 3.1 gives an O(log r)-approximation for Min-LaserArea in simple polygons. The
algorithm “unrefines” the ray shooting subdivision by Hershberger and Suri [17], merging
the triangles bottom-up along the decomposition tree; the merging stops whenever the
next merge would create a cell of area greater than δ, implying that the boundaries
between the merged cells can be charged to disjoint parts of P of area more than δ.
The lasers are then put along the cell boundaries of the coarsened subdivision; since
the subdivision is obtained by cutting out O(1) children from parents in a tree on the
original subdivision (where the children were separated from parents by polygonal chains
of O(1) complexity), we can charge these O(1) lasers to the intersection of OPT with
a region of area more than δ. The remaining large pieces in the coarsened subdivision
(e.g., triangles of area more than δ in the initial triangulation) are cut with a suitable
grid of lasers, which is within a constant factor of optimal subdivision for each piece.
The O(logn) approximation factor then follows from the fact that each laser could pass
through O(logn) cells of the original subdivision (the subdivision’s core property). To
bring the approximation factor down to O(log r) we decompose P into convex pieces with
a decomposition whose stabbing number is O(log r) (a result, which may be of independent
interest) and use the same scheme as with the Hershberger–Suri decomposition.
In Section 3.2 we present a bi-criteria approximation to the diameter version for simple
polygons: if k lasers can cut P into pieces of diameter at most δ, we find a cutting
with at most 2k lasers into O(δ)-diameter pieces. In Section 3.3 we use the bi-criteria
algorithm to give a constant-factor approximation to MinDiameter. Both algorithms use
only axis-aligned lasers, yielding the same approximation guarantees for the versions with
general-direction lasers and with axis-aligned lasers.
Section 4 gives a constant-factor approximation to Min-LaserDiameter and Min-LaserArea
in simple polygons under the restriction that the lasers are axis-aligned. The algorithms
are based on “histogram decomposition” with constant stabbing number and solving the
problems in each histogram separately.
In Section 5 we give a bi-criteria approximation to the diameter version in polygons
with holes under the restriction that lasers are axis-parallel. The algorithm is similar
to the one for simple polygons in that they both use a grid; however, everything else
is different: in simple polygons we place lasers along grid lines, while in polygons with
holes the grid lines just subdivide the problem (in fact, we consider the vertical and
the horizontal strips separately). More importantly, even though we place axis-aligned
lasers in both simple and nonsimple polygons, for the former we approximate cutting
with arbitrary-direction lasers, while for the latter only cuttings with axis-aligned lasers
(approximating cuttings with general-direction lasers in polygons with holes is open). We
use the bi-criteria algorithm to give a constant-factor approximation to MinDiameter in
polygons with holes – this part is the same as for simple polygons.
Section 6 gives an O(log OPT)-approximation for Min-LaserCircle in polygons with holes.
The algorithm is based on a reduction to the SetCover problem.

Table 1 summarizes our results. The running times of our algorithms depend on the
output complexity, which may depend on the size (area, perimeter, etc.) of P . Some of our
algorithms can be straightforwardly made to run in strongly-polynomial time, producing a
strongly-polynomial-size representation of the output; for others, such conversion – which in
general is outside our scope – is not easily seen. Many versions of the problem still remain

ESA 2020

7:4 Cutting Polygons into Small Pieces with Chords

open. For simple polygons, despite considerable attempts, we have neither hardness results
nor polynomial-time algorithms to compute an optimal solution; all of our positive results
are approximation algorithms.

Table 1 Approximations for simple polygons. The results marked with asterisks apply also to
polygons with holes (either directly or with a similar/extended algorithm).

Axis-Parallel Lasers Unrestricted-Direction Lasers
Min-LaserMeasure MinMeasure Min-LaserMeasure MinMeasure

Area O(1) § 4 OPEN O(log r) § 3.1 OPEN
Diameter O(1) § 4 O(1)* § 3.3, § 5 bi-critreria § 3.2 O(1) § 3.3

In-circle radius O(logOPT)* § 6 OPEN O(logOPT)* § 6 OPEN

Related Previous Work. Previous results on polygon decomposition [21] use models that do
not support laser cuts or are restricted to convex bodies. For example, Borsuk’s conjecture [5,
18, 19] seeks to partition a convex body of unit diameter in Rd into the minimum number of
pieces of diameter less than one. Conway’s fried potato problem [3, 9] seeks to minimize the
maximum in-radius of a piece after a given number of successive cuts by hyperplanes for a
convex input polyhedron in Rd. Croft et al. [9, Problem C1] raised a variant of the problem
in which a convex body is partitioned by an arrangement of hyperplanes (i.e., our problem
in Rd), but no results have been presented.

Equipartition problems ask to partition convex polygons into convex pieces all having the
same area or the same perimeter (or other measures) [2, 4, 20,22, 27,29]. In these problems,
the partition is not restricted to chords (or hyperplanes). Topological methods are used
for existential results in this area, and very few algorithmic results are known [1]. Another
related problem is the family of so-called cake cutting problems [13, 28], in which an infinite
straight line “knife” is used to cut a convex “cake” into (convex) pieces that represent a “fair”
division into portions. In contrast, we are interested in cutting nonconvex polygons into
connected pieces.

In [6] several variants of Chazelle’s result from [8] were explored, including cutting the
polygon along a chord to get approximately equal areas of the two resulting parts. Yet
another related problem is that of “shattering” with arrangements [11], in which one seeks to
isolate objects in cells of an arrangement of a small number of lines, but without consideration
of the size of the cells (as is important in our problem).

2 Hardness in Polygons with Holes

We show that for all three measures (area, diameter, the radius of the largest inscribed
circle) it is NP-hard to decide whether a given polygon P with holes can be divided into
pieces of small measure using a given number of lasers, both for unrestricted-orientation and
axis-aligned lasers. However, it is currently open whether these problems remain NP-hard
for simple polygons.

We prove hardness by reduction from the 3SAT problem. Our polynomial-time reduction
is similar to previous reductions for line cover problems, which are geometric variants of set
cover [23]. In particular, Megiddo and Tamir [25] proved that the LineCover problem is
NP-complete: Given n points in the plane and an integer k, decide whether the points can
be covered by k lines. Hassin and Megiddo [15] proved hardness for MinimumHittingHo-
rizontalUnitSegments problem: Given n horizontal line segments in the plane, each of

E.M. Arkin et al. 7:5

unit length, and an integer k, decide whether there exists a set of k axis-parallel lines that
intersects all n segments. Our reduction is based on the idea of Hassin and Megiddo, but
requires some adjustments to generate a subdivision of a polygon.

I Theorem 1. In a polygon with holes, both MinArea and Min-LaserArea are NP-hard (with
or without the axis-aligned lasers restriction).

Proof. We reduce from 3-SAT. Let Φ be a boolean formula in 3CNF withm clauses c1, . . . , cm,
and n variables x1, . . . , xn. We construct an orthogonal polygon P with holes and an integer
k such that Φ is satisfiable if and only if P can be subdivided into regions of area at most 2
using k lasers. (The reduction goes through with or without the restriction that all lasers
are axis-parallel).

We construct a polygon P from the rectangle B = [0, 7m + 2] × [0, 3n + 4] by carving
rectangular “rooms” connected by narrow corridors. The rooms are pairwise disjoint and
they each have area of 2. The corridors are axis-parallel, run between opposite sides of the
bounding box B, and their width is 1/(100 max{m,n}). See Fig. 1 for an illustration.

x3

x2

x1

c1 c2

x4

Figure 1 An example for the rooms and corridors for Φ = (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4). The
rooms corresponding to variables are in blue. The rooms corresponding to clauses (five rooms per
clause) are in pink. The corridors are shown in red, some of which are connected to additional rooms
(shown in yellow). The polygon is composed of the union of all the rooms and corridors.

Variable rooms. For each variable xi, i = 1, . . . , n, create one room: [1
2 ,

3
2] × [3(i − 1) +

1
2 , 3i−

1
2]. Note that all rooms are to the left of the line x = 2.

Clause rooms. For each clause cj , j = 1, . . . ,m, create five rooms. All five rooms have size
2×1 and lie between the lines x = 7(j−1)+2 and x = 7j+2. Three out of five rooms are aligned
with the variable rooms. Suppose cj contains the variables xi, xi′ , and xi′′ , where i < i′ < i′′.
If xi is nonnegated, then create the room [7(j − 1) + 1

2 , 7(j − 1) + 5
2]× [3(i− 1) + 1

2 , 3i−
3
2];

ESA 2020

7:6 Cutting Polygons into Small Pieces with Chords

otherwise create the room [7(j−1)+ 1
2 , 7(j−1)+ 5

2]×[3(i−1)+ 3
2 , 3i−

1
2]. We create a room for

xi′ (resp., xi′′) analogously, shifted by a horizontal vector (0, 2) (resp;., (0, 4)). Note that the
x-projections of these rectangles do not overlap. Two additional rooms lie above the variable
rooms: [7(j−1)+ 3

2 , 7(j−1)+ 7
2]×[2n+ 1

2 , 2n+ 3
2] and [7(j−1)+ 7

2 , 7(j−1)+ 11
2]×[2n+ 5

2 , 2n+ 7
2].

Corridors and separator gadgets. Create narrow corridors along the vertical lines x =
0, 2, 3, . . . , 7m and horizontal lines y = 0, 1, 2, . . . , 3n, y = 3n + 2, and y = 3n + 4. Add
rectangular rooms of area 2 at one end of some of the corridors. Specifically, we add rooms
to the corridors at x = 0 and x = 7j + 2 for j = 0, 1, . . . ,m alternately at the top and
bottom endpoints; and similarly for the corridors at y = 3i for i = 0, 1, . . . , n, y = 3n+ 2,
and y = 3n+ 4, alternately at the left and right endpoints. Altogether, m+ n+ 5 corridors
have rooms at their endpoints.

Finally, we set the parameter k = 3m + 2n + 5. This completes the description of an
instance corresponding to the Boolean formula Φ.

Equivalence. Let τ : xi → {true, false} be a satisfying truth assignment for Φ. We show
that P can be subdivided by k lasers into regions of area at most 2. Place lasers at all
horizontal and vertical lines that have additional rooms at their endpoints; this requires
m+ n+ 5 lasers. These lasers subdivide P into subpolygons that each intersect at most one
room. For i = 1, . . . , n, if τ(xi) = true, then place a horizontal laser at y = 3(i − 1) + 1
(along the bottom corridor touching room for xi), otherwise at y = 3(i− 1) + 2 (along the
top corridor touching room for xi). These lasers split each variable room into two rectangles
of area 1

2 and 3
2 . For j = 1, . . . ,m, we place two vertical lasers that subdivide the rooms

associated with clause cj . Since τ is a satisfying truth assignment, the rooms corresponding
to true literals are already split by horizontal lasers. As can easily be checked, the remaining
(at most 4) rooms can be split using two vertical lasers. Now P is subdivided into pieces
that each intersect at most one room, and contains at most 1.5 area of each room. Since
the corridors are narrow, the area of each piece is less than 2, as required. We have used n
horizontal lasers for the variables, and 2m vertical lasers for clauses. Overall, we have used
(m+ n+ 5) + n+ 2m = 3m+ 2n+ 5 lasers.
Suppose now that k = 3m+ 2n+ 5 lasers can subdivide P into polygons of area at most 2.
We show that Φ is satisfiable. The area of each room is about 2, so they each intersect at least
one laser. Each variable room requires at least one laser; and the n variable rooms jointly
require n lasers (as no laser can intersects two variable rooms). Each clause is associated
with two rooms above the line y = 3n; which jointly require two lasers. Overall these rooms
require 2m lasers.

Note that a laser that intersects a clause rooms above y = 3n or a variable room cannot
intersect any room at the end of corridors. We are left with at most k− (n+ 2m) = m+n+ 5
lasers to split these rooms. Since we have precisely m + n + 5 rooms at the end of the
corridors, and no laser can intersect two such rooms, there is a unique laser intersecting each
of these rooms. As argued above, for i = 1, . . . , n, the room associated with xi intersects
only one laser. If this laser intersects the corridor at y = 3(i− 1) + 1, then let τ(xi) = true,
otherwise τ(xi) = false. For j = 1, . . . ,m, there are two lasers that intersect the two rooms
associated with cj above y = 3n. These two lasers cannot intersect all three rooms associated
with cj below y = 3n. Consequently, at least one of these rooms intersects a laser coming
from a variable room. Hence each clause contains a true literal, and Φ is satisfiable. J

The proofs of the following two theorems are presented in the full version of the paper.

E.M. Arkin et al. 7:7

I Theorem 2. In polygons with holes, both MinDiameter and Min-LaserDiameter are NP-hard
(with or without the axis-aligned lasers restriction).

I Theorem 3. In polygons with holes, both MinCircle and Min-LaserCircle are NP-hard (with
or without the axis-aligned lasers restriction).

3 Decomposition Algorithms for Simple Polygons

In this section, we present approximation results for decomposing a simple polygon P by
lasers of arbitrary orientations (recall that n denotes the total number of vertices of P and r
is the number of reflex vertices). We describe an O(log r)-approximation for Min-LaserArea
(Section 3.1), a bi-criteria algorithm for diameter (Section 3.2), and a O(1)-approximation
for MinDiameter (Section 3.3).

3.1 Min-LaserArea
Given a simple polygon P and a threshold δ, we wish to find the minimum number of
lasers that subdivide P into pieces, each of area at most 1. We start with the easy O(1)-
approximation in the special case when P is a convex polygon (Proof in the full version).

I Lemma 4. For every convex polygon P , we can find a set of k = O(
√

area(P)) lasers that
subdivide P into pieces, each of area at most 1, in O(k + n) time. Every decomposition into
pieces of area at most 1 requires Ω(

√
area(P)) lasers.

Overview. We give a brief overview of our approximation algorithm for a simple polygon P .
The basic idea is to decompose P into convex pieces, and use Lemma 4 to further decompose
each convex piece. There are two problems with this naïve approach: (1) a laser in an optimal
solution may intersect several convex pieces (i.e., the sum of lower bounds for the convex
pieces is not a global lower bound); and (2) the lasers used for a convex decomposition are
not accounted for. We modify the basic approach to address both of these problems.

We use the Hershberger–Suri triangulation (as a convex subdivision). For a simple
polygon P with n vertices, Hershberger and Suri [17] construct a Steiner triangulation into
O(n) triangles such that every chord of P intersects O(logn) triangles. We can modify their
construction to produce a Steiner decomposition into a set C of convex cells (rather than
triangles) such that each laser intersects O(log r) convex cells, where r is the number of reflex
vertices of P . Thus, each laser of OPT can help partition O(log r) convex cells; this factor
dominates the approximation ratio of our algorithm.

A convex cell C ∈ C is large if area(C) > 1, otherwise it is small. We decompose each
large convex cell using Lemma 4. We can afford to place O(1) lasers along the boundary
of a large cell. We cannot afford to place lasers on the boundaries of all small cells. If
we do not separate the small cells, however, they could merge into a large (nonconvex)
region, so we need some separation between them. In the algorithm below, we construct
such separators recursively by carefully unrefining the Hershberger–Suri triangulation. The
unrefined subdivision is no longer a triangulation, but we maintain the properties that (i)
each cell is bounded by O(1) lasers within each pseudotriangle (and an arbitrary number of
consecutive edges of P), and (ii) every chord of P intersects O(logn) cells.

Basic properties of the Hershberger–Suri triangulation. Given a simple polygon P with
n vertices, Hershberger and Suri [17] construct a Steiner-triangulation in two phases (see
Fig. 2 for an example): First, they subdivide P into O(n) pseudotriangles (i.e., simple

ESA 2020

7:8 Cutting Polygons into Small Pieces with Chords

s1

s2

s0

s3

s4

s5

s6

s7

s8

s0

s1

s2 s8

s3

s4

s6

s7

s5

TPP s2Ts2

s2

Figure 2 Left: A simple polygon P , decomposed into pseudotriangles, and the dual graph TP .
Right: A pseudotriangle s2 is recursively subdivided into Steiner triangles, with recursion tree Ts2 .

polygons with precisely three convex vertices) using O(n) noncrossing diagonals of P ; and
then subdivide each pseudotriangle into Steiner triangles. The runtime of their algorithm,
as well as the number of Steiner triangles, is O(n). Let S denote the set of pseudotriangles
produced in the first phase; and let TP be the dual tree of the pseudotriangles, in which
each node corresponds to a pseudotriangle, and two nodes are adjacent if and only if the
corresponding pseudotriangles share an edge (a diagonal of P). Note that the degree of TP

is not bounded by a constant (it is bounded by n), as a pseudotriangle may be adjacent
to arbitrarily many other pseudotriangles. We consider TP to be a rooted tree, rooted at
an arbitrary pseudotriangle. Then every nonroot pseudotriangle s in S has a unique edge
incident to the parent of s; we call this edge the parent edge of s.

Hershberger and Suri subdivide each pseudotriangle s ∈ S recursively: In each step, they
use O(1) line segments to subdivide a pseudotriangle into O(1) pseudotriangles, which are
further subdivided recursively until they obtain triangles. Let us denote by Ts the recursion
tree for s. Each vertex v ∈ Ts represents a region Rv ⊂ s: The root of Ts represents s,
and the leaves represent the Steiner triangles in s. The recursive subdivision maintains the
following two properties: (a) Every edge of s is incident to a unique region in each level of Ts,
(b) For each node v ∈ Ts, the boundary between Rv and s \Rv is a polyline with O(1) edges
(that is, Rv is bounded by O(1) line segments inside s, and some sequence of consecutive
edges of s).

Algorithm. We are ready to present an approximation algorithm for Min-LaserArea. Given
a simple polygon Q, we begin by computing the Hershberger–Suri triangulation, the pseudo-
triangles S, the dual tree TP , and a recursion tree Ts for each pseudotriangle s ∈ S. We then
process the pseudotriangles in a bottom-up traversal of TP .

Within each pseudotriangle s ∈ S, we unrefine the Steiner triangulation of s by merging
some of the cells into one cell (the resulting larger cells need not be triangular or convex).
Initially, each node v ∈ Ts corresponds to a region Rv ⊆ s. However, if we do not place lasers
along the edges of s, then Rv may be adjacent to (and merged with) other cells that are
outside the pseudotriangle s, along the boundary of s. Since we have an upper bound on the
total area of each cell in the final decomposition, we need to keep track of the area of the region
on both sides of an edge of the pseudo-triangulation. In the course of unrefinement algorithm
for all s ∈ S, we compute nonnegative weights w(·) for all edges of the pseudotriangulation.
The weights are used for bookkeeping purposes. Specifically, the edges of P have zero weight.
In a bottom-up traversal of TP , when we start processing a pseudotriangle s, the weights w(e)

E.M. Arkin et al. 7:9

have already been computed for all edges of the pseudo-triangle s except the parent edge of
s. The weight w(e) for the parent edge e of s is determined when we have computed the
unrefined subdivision of s; and w(e) will be the area of the unrefined cell in s adjacent to the
parent edge. A node v ∈ Ts initially corresponds to a region Rv within the pseudotriangle
s, but in the final decomposition of P , the node is part of some larger cell R̂v ⊆ P , with
area(R̂v) = area(Rv) +

∑
e w(e), where the summation is over all edges of s on the boundary

of Rv, and w(e) denotes the area of the cell on the opposite side of e.
As the weight of the parent edge is not available yet when we unrefine s, we modify the

recursion tree Ts as follows: We choose the root to be the leaf v0 ∈ Ts adjacent to the parent
edge of s, and reverse the parent-child relation on all edges of Ts along the s-v0 path. We
denote the modified recursion tree T ′s (Fig. 3 (left)). For all nodes v along the s-v0 path
(including s and v0), we redefine the corresponding regions of the nodes in T ′s as follows.
We denote by Rv(Ts) and Rv(T ′s) the regions corresponding to node v in trees Ts and T ′s,
respectively. We set Rv0(T ′s) := s and for all other nodes v along the s-v0 path (including
s), we set Rv(T ′s) := s \ Ru(Ts), where u is the parent of v in T ′s. With a slight abuse of
notation, we set Rv = Rv(T ′s) for all v ∈ T ′s for the remainder of the algorithm. Note that
area(Rv) monotonically decreases with the depth in T ′S .

In a bottom-up traversal of TP , consider every s ∈ S. We proceed with two phases (see
Fig. 3 for an example).

s2

T ′
s2 s2

v0

v0
e0

w(e4)

w(e6)

w(e7)

s2

R

w(e0) = area(R)

R̂v

R̂u

a

c

e

b
dg f

Figure 3 Left: The modified recursion tree T ′
s2 . Middle: pseudotriangle s2 with the initial Steiner

triangulation, edge weights representing the areas of adjacent regions in the descendants of s2, and
the parent edge e0 of s2. Right: The unrefined subdivision of s2 into Ru, Rv, and R; larger cells R̂u

and R̂v (blue and pink), and the weight w(e0) = area(R) of the parent edge of s2 (gray).

Phase 1 of the algorithm is an unrefinement process, that successively merges small cells of
the Hershberger–Suri triangulation (no lasers are involved). We initialize three variables:

R := s, T := T ′s, Us := ∅,

where R ⊆ s is the region yet to be handled, T is a subtree of T ′s corresponding to the region
R, and Us is the set of interior-disjoint faces in s produced by the unrefinement process.
While area(R) > 1, do the following:

Find a lowest node v ∈ T for which area(R̂v) > 1,
Set Us := Us ∪ {R̂v},
Set R := R \Rv,
Delete the subtree rooted at v from T , and
For all ancestors u of v, set R̂u := R̂u \ R̂v.

When the while loop ends, define the weight of the parent edge of s to be area(R).
Phase 2 of the algorithm positions lasers in a pseudotriangle s as follows.
For every region R̂v ∈ Us, do:

ESA 2020

7:10 Cutting Polygons into Small Pieces with Chords

Step 1. Place lasers along all edges of the boundary between R̂v and s \ R̂v, and the
boundaries between Rv and Rv′ for all children v′ of v. For example in Fig. 3 (right),
two lasers are placed along the edges (a, c) and (c, e) that disconnect R̂v from s2. Also, a
laser that is placed along edge (b, d) that separates the children of Rv.
Step 2. If area(Rv) ≥ 1 (which means Rv has not merged with any other region in Phase 1,
i.e., R̂v = Rv hence R̂v is convex), subdivide R̂v by Θ(

√
area(Rv)) lasers according to

Lemma 4.
This completes the description of our algorithm.

I Theorem 5. Let P be a simple polygon with n vertices, and let k∗ be the minimum number
of lasers that subdivide P into pieces of area at most 1. We can find an integer k with
k∗ ≤ k ≤ O(k∗ logn) in O(n) time, and a set of k lasers that subdivide P into pieces of area
at most 1 in output-sensitive O(k + n) time.

Proof. Phase 1 of our algorithm (unrefinement) subdivides each pseudotriangle s ∈ S into
regions such that each region corresponds to a subtree rooted at some node v of the recursion
tree T ′s. Node v corresponds to a region Rv ⊂ s, and a possibly larger region R̂v ⊂ P which
is the union of Rv and adjacent regions in the descendant pseudotriangles of s adjacent to
Rv. Phase 1 of the algorithm ensures that area(R̂v) > 1 (therefore, R̂v must intersect at
least one laser in OPT), but for all children v′ of v in T ′s, we have area(R̂v′) ≤ 1.

In Step 1, the algorithm uses O(1) lasers for each v ∈ Us to separate R̂v from s \ R̂v.
Recall that the recursion tree Ts has bounded degree. Consequently, we use O(1) lasers to
separate R̂v′ from R̂v \ R̂v′ for all children v′ of v. These polylines subdivide R̂v′ into smaller
regions of area at most 1. Overall, we have used O(1) lasers for each of these nodes v ∈ T ′s,
s ∈ S. Note that each region R̂v is the union of triangles from the Hershberger–Suri Steiner
triangulation, and so each laser in OPT intersects O(logn) such regions. Consequently, we
use O(k∗ logn) lasers in Step 1.

Finally, consider the lasers used in Step 2 for subdividing the triangles t ∈ T with
area(t) > 1. By Lemma 4, each such triangle intersects at least Ω(

√
area(t)) lasers in any

valid solution; and conversely each laser of an optimal solution intersects O(logn) regions in
T . Consequently, the number of lasers uses in Step 2 is

∑
t∈T O(

√
area(t)) ≤ O(k∗ logn).

It remains to show that the algorithm runs in O(n + k) time. The Hershberger-Suri
Steiner triangulation can be computed in O(n) time [17]. It consists of O(n) triangles, hence
the combined size of the dual tree Tp, and the recursion trees Ts, s ∈ S, is also O(n). The
unrefinement algorithm is done in a single traversal of these trees, spending O(1) time at
each node. For each large cell (triangle) of the Hershberger-Suri triangulation, by Lemma 4,
we can compute a minimum bounding box and the number of lasers used by the algorithm
in O(1) time. Computing all k lasers requires O(k) additional time. J

An O(log r) Approximation for Min-LaserArea in Simple Polygons. We can improve the
approximation ratio in Theorem 5 from O(logn) to O(log r), where r is the number of reflex
vertices of P , if we replace the Hershberger–Suri triangulation with a convex decomposition.
(Hershberger and Suri decompose P into triangles to support ray shooting queries, but for
our purposes a decomposition into convex cells suffices.)

Let (v1, . . . , vn) be the n vertices of P ; assume they are in general position. Let R be the
set of reflex vertices of P . For every reflex vertex v ∈ R, the angle bisector of the interior
angle at v hits some edge avbv of P . Let L = {v, av, bv : v ∈ R}, that is, L is the set of
all reflex vertices of P , and both endpoints of the edges hit by the angle bisectors of reflex
angles. Clearly, |L| ≤ 3r.

E.M. Arkin et al. 7:11

I Lemma 6. There is a simple polygon Q ⊂ P whose vertex set is L, and every connected
component of P \Q is a convex polygon. The polygon Q can be computed in O(n logn) time.

Proof. We describe an algorithm that decomposes P along noncrossing diagonals into a
collection P of convex polygons and their complement P \ (

⋃
A∈P A) will be polygon Q.

Initially P = {P} and Q = ∅.
The algorithm has two steps. In the first step, a collection P of convex polygons is created

such that the vertex set of the complement P \ (
⋃

A∈P A) is L. However, P \ (
⋃

A∈P A) is not
necessarily connected. In the second step, the connected components of P \ (

⋃
A∈P A) are

merged into a simple polygon Q (a single connected component) with the same vertex set L.

First step. While there is a nonconvex polygon P ′ ∈ P, we replace P ′ with one or more
smaller polygons in P as follows. Let v be a reflex vertex of P ′. Since P ′ ⊂ P , vertex v is
also a reflex vertex of P . Denote by ~rv the angle bisector of P at v. Note that ~rv enters
the interior of P ′ at v; denote by ab the edge of P ′ where ~rv first exits P ′. Let P (v) be
the geodesic triangle formed by the edge ab and the shortest paths from v to a and to b,
respectively. Update P by replacing P ′ with the polygons in P ′ \ P (v). See Figure 4 for
an example. In the course of the algorithm, every polygon in P is formed by a sequence of
consecutive vertices of the input polygon P .

v
a

b

~rv

P (v)P ′

Figure 4 Replace P ′ by four polygons (in yellow), after taking out the geodesic triangle P (v)
where v is a reflex vertex.

We claim that in each iteration of the algorithm, all vertices of P (v) are in L. Clearly, v
is a reflex vertex in P ′, hence a reflex vertex of P , as well. Similarly, the interior vertices of
the shortest paths from v to a and to b are reflex vertices in P ′, hence in P . It remains to
show that a, b ∈ L. If ab is an edge of P , then a, b ∈ L by the definition of L. Otherwise,
ab is a diagonal of P , and so it is an edge of a geodesic triangle P (v′) of some previous
iteration of the algorithm – by induction, they are in L, as well. At the end of the while
loop, all polygons in P are convex, however, the complement P \ (

⋃
A∈P A) is not necessarily

connected. See Figure 5 for an illustration.

Second step. While there is a (convex) polygon P ′ ∈ P incident to three or more vertices in
L, we replace P ′ with smaller polygons: In particular, let V (P ′) be the vertex set of P ′. If
|V (P ′) ∩ L| ≥ 3, then replace P ′ with the polygons in P ′ \ conv(V (P ′) ∩ L), where conv(.)
stands for the convex hull. In each iteration, all polygons in P remain convex. At the end of
the while loop, every polygon in P is incident to exactly two vertices in L, and P \ (

⋃
A∈P A)

is a simple polygon with vertex set L. J

I Lemma 7. Every simple polygon P on n vertices, r of which are reflex, can be decomposed
into convex faces such that every chord of P intersects O(log r) faces. Such a decomposition
can be computed in O(n logn) time.

ESA 2020

7:12 Cutting Polygons into Small Pieces with Chords

A1

A2

A3
A4

A6

A5

A2

A1

A6

A5

A2

A7

A8
A9

Figure 5 A simple polygon P , the vertices in L are blue (reflex) or red (hit by angle bisector).
Left: The first step produces convex polygons P = {A1, . . . , A6}, but P \

⋃6
i=1 Ai is disconnected.

Right: The second step merges P \
⋃6

i=1 Ai into a simple polygon Q. As |A3∩L| ≥ 3 and |A4∩L| ≥ 3,
the second step creates conv(V (A3)∩L) and conv(V (A4)∩L) (shown in deep yellow) which merges
P \

⋃6
i=1 Ai into a single connected component Q.

Proof. We can compute the set L of up to 3r vertices and a simple polygon Q ⊂ P described
in Lemma 6 in O(n logn) time. We then compute the Hershberger–Suri triangulation for
Q, which is a Steiner triangulation of O(r) triangles such that every chord of Q intersects
O(log r) triangles [17]. This triangulation of Q, together with the convex polygons in P \Q,
form a subdivision of P into convex faces.

We claim that every chord of P intersects at most O(log r) faces: at most O(log r)
triangles in Q and at most two convex sets in P \ Q. If a chord ` of P intersects three
components of P \Q, say C1, C2, C3 in this order, then ` crosses the boundary of C2 twice, so
C2 must have at least two edges on the boundary between C2 and Q. However, by Lemma 6,
every edge of Q is either an edge or a diagonal of P . Therefore the boundary between Q and
a component of P \Q is a single diagonal of P . Thus ` intersects at most two components of
P \Q; moreover ` ∩Q is a chord of Q, so it intersects O(log r) triangles inside Q. J

By performing the algorithm on the convex subdivision in Corollary 7, the approximation
ratio improves to O(log r).

I Theorem 8. Let P be a simple polygon with n vertices, r of which are reflex, and let k∗
be the minimum number of lasers needed to subdivide P into pieces of area at most 1. We
can find an integer k with k∗ ≤ k ≤ O(k∗ log r) in O(n logn) time, and a set of k lasers that
subdivide P into pieces of area at most 1 in output-sensitive O(k + n logn) time.

3.2 Bi-Criteria Approximation for Diameter
For the diameter version in a simple polygon, we describe a bi-criteria approximation
algorithm (Theorem 11). We start from deriving a lower bound for the minimum number of
lasers in a decomposition into pieces of diameter at most δ (for bi-criteria approximation
algorithm we use general δ, instead of δ =1, because we will scroll over δ when using the
algorithm to get an approximation for MinDiameter).

Consider the infinite set of vertical lines, LV , evenly spaced with separation δ; that is,
LV = {x = iδ : i ∈ Z}. The lines in LV decompose P into a set PV of simple polygons,
that we call cells. By construction, the orthogonal projection of each cell to the x-axis is an
interval of length at most δ. (More precisely, we consider the polygon P to be a closed set in
the plane. Subtracting the union of vertical lines LV from P results in a set of connected
components; the closures of these components are the simple polygons in PV). The polygons
in PV are faces in the arrangement of the lines in LV and the edges of P ; the planar dual of
this decomposition is a tree, whose nodes are the faces PV and whose edges are dual to the
vertical lines.

E.M. Arkin et al. 7:13

If the projection of polygon Q ∈ PV onto the x-axis is an interval of length δ (which
means it extends from x = iδ to x = (i+1)δ, for some integer i), we say that Q is a full-width
cell; otherwise the projection of Q onto the x-axis is of length less than δ, and we say that Q
is a narrow cell. (It may be that P itself is a narrow cell if, e.g., P does not intersect any of
the vertical lines LV .)

P

Figure 6 P is subdivided by a grid; the lasers are thick.

The intersection of the lines in LV with P is a set of vertical chords of P . Let CV be
the set of these chords. While there is a chord ` ∈ CV that lies on the boundary of some
narrow cell, remove ` from CV (thereby merging the cells on the two sides of ` into one
cell). As a result, all remaining chords lie on the boundary between full-width cells. Let C ′V
be the resulting set of chords, and let kV = |C ′V | denote their cardinality. Since any two
full-width cells of PV that are in adjacent vertical strips remain separated by a chord in C ′V ,
the x-extent of each face in the new decomposition of P is at most 3δ. We summarize this
below.

I Proposition 9. The remaining kV chords C ′V , kV ≥ 0, subdivide P into a set Q of kV + 1
polygons, each of which intersects at most two lines in LV , consequently its projection to the
x-axis is an interval of length less than 3δ. Further, the dual graph of this decomposition is a
tree (with kV edges and kV + 1 nodes).

If kV = 0, then there is just one cell, Q = {P}. If kV ≥ 1, then each Q ∈ Q includes at
least one full-width cell, since the only lasers remaining are those separating one full-width
cell from an adjacent full-width cell sharing the laser.

Thus, the boundary of each Q ∈ Q includes at least two distinct (simple) paths connecting
a point on one line of LV to a point on an adjacent line of LV . Each of these paths has
length at least δ. The endpoints of such a path are at distance at least δ away from each
other. In any laser cutting of P into pieces of diameter at most δ, each such path contains a
laser endpoint in its interior or at both endpoints (if the path is a horizontal line segment).
In any case, each of these paths contains a laser endpoint in its interior or at its left endpoint.
Thus overall, there must be at least 2|Q| = 2(kV + 1) endpoints of lasers. This implies that
k∗ ≥ kV + 1, where k∗ is the minimum number of lasers in order to achieve pieces of diameter
at most δ. Therefore we conclude,

I Lemma 10. If kV ≥ 1, then k∗ ≥ kV + 1.

Now, we consider the set of horizontal lines, LH = {y = jδ : j ∈ Z}, and apply the above
process to polygon P , yielding horizontal chords CH , and then a subset C ′H ⊆ CH of chords
after merging cells (removing lasers that separate a full-height cell from an adjacent short

ESA 2020

7:14 Cutting Polygons into Small Pieces with Chords

cell). The result is a decomposition of P into kH +1 = |C ′H |+1 pieces, each having projection
onto the y-axis of length less than 3δ. Analogously to Lemma 10, we get k∗ ≥ kH + 1 if
kH ≥ 1.

If we now overlay the vertical chords C ′V and the horizontal chords C ′H , the resulting
arrangement decomposes P into pieces each of which is a simple polygon having projections
onto both the x- and the y-axis of lengths less than 3δ; thus, the resulting pieces each have
diameter less than 3δ

√
2. The total number of lasers is kV + kH ≤ 2(k∗ − 1).

I Theorem 11. Let P be a simple polygon with n vertices, and let k∗ be the minimum
number of lasers that decompose P into pieces each of diameter at most δ for a fixed δ > 0.
One can compute a set of at most 2(k∗ − 1) axis-aligned lasers that decompose P into pieces
each of diameter at most 3

√
2δ in time polynomial in n and diam(P)/δ.

3.3 O(1)-Approximation for MinDiameter in Simple Polygons
In this section we consider the problem of minimizing the maximum diameter of a cell in the
arrangement of k lasers, for a given number k. Our O(1)-approximation algorithm repeatedly
decreases the x- and y- separation in the bi-criteria solution from Theorem 11 until the
number of placed lasers is about to jump over 2k; then, the number of lasers is halved while
increasing the diameter by a constant factor.

Specifically, let `(δ) denote the number of lasers used in the end of the bi-criteria algorithm
with the x- and y-separation between consecutive vertical and horizontal lines being δ. Our
algorithm to approximate the diameter achievable with k lasers is as follows:

Initialize δ = diam(P), and ε > 0.
While `(δ) ≤ 2k, set δ = δ/(1 + ε) and recompute `(δ).
Let δ0 be such that `(δ0) ≤ 2k but `(δ0/(1 + ε)) > 2k.
Let CV and CH be the `(δ0) ≤ 2k vertical and horizontal lasers, resp., found by the
bi-criteria algorithm.
Partition CV into lasers along x = iδ0 for even i and the rest (odd i); let C ′V be a smallest
part. Similarly, let CH be a smaller part when we partition CH into two subsets of lines
where y = iδ0 is an even or odd multiple of δ0.
Return the lasers in C ′V ∪ C ′H .

I Theorem 12. Let P be a simple polygon with n vertices, and let δ∗ be the optimal diameter
achievable with k lasers. For every ε > 0, one can compute a set of at most k lasers that
partition P into pieces each of diameter at most 4

√
2(1 + ε)δ∗ in time polynomial in n,

diam(P)/δ∗, and ε.

The proof of Theorem 12 is presented in the full version of this paper.

4 Axis-Parallel Lasers

In this section we study Min-LaserDiameter and Min-LaserArea under the constraint that all
lasers must be axis-parallel (the edges of P may have arbitrary orientations). The algorithms
for both problems start with a “window partitioning” P into “(pseudo-)histograms” of
stabbing number at most three, and are then tuned to the specific measures to partition the
histograms. We use a simple sweepline algorithm for the diameter, and a dynamic program
for the area. The main result is:

I Theorem 13. Let P be a simple polygon with n vertices and let k∗ be the minimum number
of axis-parallel lasers needed to subdivide P into pieces of area (diameter) at most 1. There
is an algorithm that finds O(k∗) axis-parallel lasers that subdivide P into pieces of area
(diameter) at most 1 in time polynomial in n and area(P) (diam(P)).

E.M. Arkin et al. 7:15

4.1 Reduction to Histograms
A histogram is a simple polygon bounded by an axis-parallel line segment, the base, and an
x- or y-monotone polygonal chain between the endpoints of the base.

The window partition of a simple polygon was originally used for the design of data
structures that support link distance queries [24, 30]. In this section, we use the axis-parallel
version, which partitions a simple polygon P into histograms such that every axis-parallel
chord of P intersects at most 3 histograms. Window partitions for orthogonal polygons can
be computed by a standard recursion [24,30]; we use a modified version where we recurse
until the remaining subpolygons are below the size threshold 1. This modification guarantees
termination on all simple polygons (not only orthogonal polygons).

b

H
Q

Q1 b1

b2
Q2

b3

Q3

b4
Q4

Figure 7 Window partition of a polygon Q with a horizontal base b into a maximal histogram H

(colored gold) and four polygons Q1, Q2, Q3, and Q4 (in white). If the sizes (areas/diameters) of
Q1, Q2, Q3, and Q4 are each at most 1, then Q is a pseudo-histogram.

Window Partition Algorithm. Given a simple polygon P , let b be an axis-parallel chord
of P that subdivides P into two simple polygons P1 and P2 with a common base b. Let
S = {(P1, b), (P2, b)} be a set of tuples where each tuple has a polygon and its axis-parallel
base, and let H = ∅ be the set of histograms. While S contains a pair (Q, b), where the size
(e.g., the diameter) of Q is more than 1, do the following:
1. compute the maximal histogram1 H of base b in Q, and add (H, b) to H; see Figure 7;
2. update S by replacing (Q, b) with the pairs (Qi, bi), where the polygons Qi are the

connected components of Q \H, and bi is the boundary between Qi and H.
Return H and S.

Pseudo-histograms. Let T1 and T2 be the recursion trees of the algorithm, rooted at P1
and P2, respectively. Let T = T1 ∪ T2. Each node v ∈ T corresponds to a polygon Qv ⊂ P .
Every nonleaf node v ∈ T also corresponds to a histogram Hv ⊂ Qv; it is possible that
size(Hv) ≤ 1 but size(Qv) > 1 (the size is area or diam based on the problem). For a leaf
v ∈ T , we have either size(Qv) ≤ 1, or Hv = Qv and size(Hv) > 1. The polygons Qv at leaf
nodes and the histograms Hv at nonleaf nodes jointly form a subdivision of P .

Every node v ∈ T in the recursion tree corresponds to a polygon-base pair (Qv, bv).
For any subset U ⊂ V (T), where V (T) is the set of vertices of T , the bases {bu : u ∈ U}
decompose P into simply connected cells. For every u ∈ U , there is a cell Pu in the
decomposition such that Hu ⊂ Pu ⊂ Qu. Since every axis-parallel chord of P crosses at most
2 bases, it can intersect at most 3 polygons in such a decomposition.

1 Without loss of generality, assume b is horizontal. H can be obtained by taking all points of Q reachable
through a vertical line from points on b.

ESA 2020

7:16 Cutting Polygons into Small Pieces with Chords

In a bottom-up traversal of T , we can find a subset U ⊂ V (T) such that {bu : u ∈ U}
decomposes P into polygons Pu, u ∈ U , such that size(Pu) > 1 but the size of every
component of Pu \Hu is at most 1. Each polygon Pu consists of a histogram Hu with base
bu, and subpolygons (pockets) of size at most 1 attached to some edges of Hu orthogonal to
bu. We call each such polygon Pu a pseudo-histogram. See Figure 7.

4.2 O(1)-Approximation for Min-LaserDiameter in Histograms
We start with an O(1)-approximation for histograms, and then extend our algorithm to
pseudo-histograms and simple polygons. Without loss of generality, we assume that the base
is horizontal.

Figure 8 Left: A histogram polygon with a horizontal base. Right: lasers introduced in Phase 1
are shown in black. Horizontal (vertical) lasers introduced in Phase 2 are shown in blue (red).

I Theorem 14. There is an algorithm that, given a histogram P with n vertices, computes
an O(1)-approximation for the axis-parallel Min-LaserDiameter problem in time polynomial in
n and diam(P).

Proof. We first describe the algorithm.

Algorithm. We are given a histogram P with a horizontal base ab. If diam(P) ≤ 1, halt.
Otherwise, do the following:
1. Subdivide ab into d2|ab|e intervals which all, except possibly one, have length 1/2 and

place vertical lasers on the boundary between consecutive intervals.
2. Sweep P with a horizontal line L top down, and maintain the set of cells formed by all

lasers in step one and the line L. When the diameter of a cell C above L is precisely 1,
place a horizontal laser pq along the bottom side of C, where p, q ∈ ∂P , and place two
vertical lasers at p and q, respectively.

Analysis. Let OPT denote the set of lasers in an optimal solution, and let k∗ = |OPT|.
Denote by ALG the set of lasers computed by the algorithm; let ALG1 be the number of
vertical lasers computed in Phase 1, and let ALG2

h and ALG2
v be the set of horizontal and

vertical lasers computed in Phase 2. Clearly, |ALG2
v| ≤ 2|ALG2

h|. Therefore it is enough to
prove that |ALG1| = O(k∗) and |ALG2

h| = O(k∗).
First we show that |ALG1| = O(k∗). The vertical lasers in OPT subdivide the base ab

into segments of length at most 1. Therefore, k∗ ≥ b|ab|c. Combined with k∗ ≥ 1, this
readily implies that |ALG1| = d2|ab|e − 1 = O(k∗).

Next we prove that |ALG2
h| ≤ 2k∗ using a charging scheme. Specifically, we charge every

laser in ALG2
h to a laser in OPT such that each laser in OPT is charged at most twice.

Recall for each laser pq ∈ ALG2
h placed by the algorithm, there is a cell C = Cpq such that

diam(Cpq) = 1 and pq contains the bottom edge of Cpq. Since diam(Cpq) = 1, the cell Cpq

E.M. Arkin et al. 7:17

intersects some laser in OPT; we charge pq to one of these lasers. Denote by OPTh(Cpq)
and OPTv(Cpq), resp., the horizontal and vertical lasers in OPT that intersect Cpq. The
charging scheme is described by the following rules:
(a) If OPTh(Cpq) 6= ∅, then charge pq to the lowest laser in OPTh(Cpq);
(b) else, if Cpq intersects ∂P , then charge pq to a laser in OPTv(Cpq) that is closest to

Cpq ∩ ∂P ;
(c) else, if there is no horizontal laser in OPT that lies above pq, then charge pq to an

arbitrary laser in OPTv(Cpq);
(d) else, charge pq to the lowest horizontal laser in OPT that lies above pq.

It remains to prove that each laser in OPT is charged at most once for each the four
rules. Since (a) and (d) charge to horizontal lasers, and (b) and (c) charge to vertical lasers
in OPT, then each laser in OPT is charged by at most two of the rules. In each case, we
argue by contradiction. Assume that a laser ` ∈ OPT is charged twice by one of the rules,
that is, there are two lasers pq, rs ∈ ALG2

h, that are charged to ` by the same rule. The
width of cells Cpq and Crs is at most 1/2, because of the spacing of the vertical lasers in
ALG1. Since diam(Cpq) = diam(Crs) = 1, they each have height at least

√
3/2. Without

loss of generality, we may assume that the algorithm chooses pq before rs.
(a) In this case, ` is the lowest horizontal laser in OPT that intersect Cpq and Crs, respectively.

Since pq is above rs, laser pq intersects the interior of Crs, contradicting the assumption
that Crs is a cell formed by the arrangement of all lasers in ALG.

(b) In this case, ` is a vertical laser that intersects both Cpq and Crs, and also intersect ∂P .
When the algorithm places a horizontal laser at pq, it also places vertical lasers from p

and q to the base of P . These three lasers separate ∂P from the portion of ` below pq.
This contradict the assumption that Crs is a cell formed by the arrangement of all lasers
in ALG.

(c) In this case, both Cpq and Crs intersects a vertical laser ` ∈ OPT, and they both lie
above the highest horizontal laser that crosses `. Consequently, they both intersect the
two highest cells, say Cleft and Cright, on the two sides of ` in the arrangement formed
by OPT. The combined height of Cpq and Crs is at least

√
3. Therefore, the height of

Cleft and Cright is at least
√

3 > 1, contradicting the assumption that diam(Cleft) ≤ 1
and diam(Cright) ≤ 1.

(d) In this case, ` is the lowest horizontal laser in OPT that lies above Cpq and Crs,
respectively. Let Cbelow be the cell of the arrangement of OPT that lies below `. The
combined height of Cpq and Crs is at least

√
3. Therefore, the height of Cbelow is at least√

3 > 1, contradicting the assumption that diam(Cbelow) ≤ 1. J

Adaptation to Pseudo-Histograms. In a laser cutting of P into pieces of diameter at most
1, each pseudo-histogram Pu intersects a laser, since diam(Pu) > 1. An adaptation of the
algorithm in Section 4.2 can find an O(1)-approximation for Min-LaserDiameter in each Pu.
As noted above, each laser intersect at most 3 pseudo-histograms, hence the union of lasers
in the solutions for pseudo-histograms is an O(1)-approximations for P .

The sweepline algorithm in Section 4.2 can easily be adapted to subdivide a pseudo-
histogram Pu. Recall that Pu consists of a histogram Hu and pockets of diameter at most
1. We run steps 1 and 2 of the algorithm for the histogram Hu with two minor changes in
step 2: (1) we compute the critical diameters with respect to Pu (rather than Hu), and (2)
when the diameter of a cell C above a chord pq of Pu is precisely 1, we place up to four
vertical lasers: at intersection points of L with ∂Pu the ∂Hu (the vertical lasers through
pq ∩ ∂Hu cut possible pockets that intersect pq). The analysis of the sweepline algorithm is
analogous to Section 4.2, and yields the following result.

ESA 2020

7:18 Cutting Polygons into Small Pieces with Chords

I Theorem 15. There is an algorithm that, given a simple polygon P with n vertices,computes
an O(1)-approximation for the axis-parallel Min-LaserDiameter problem in time polynomial in
n and diam(P).

4.3 Discretization of the Solution Space in a Histogram Polygon

Consider a histogram polygon P having n vertices. We assume that the vertices are in
general position, in the sense that no three vertices are collinear. We show that there is a
discrete set of candidate orthogonal chords such that lasers chosen from this set yield an
O(1) approximation for minimizing the number of lasers, subject to a target measure bound
1 on the obtained pieces. This is useful for finding an O(1) approximation for Min-LaserArea
by dynamic programming.

We prove the following lemma in the full version, which extends to pseudo-histograms.

I Lemma 16. For a histogram P , let k∗ be the minimum number of axis-parallel lasers that
subdivide P into pieces of area (diameter) at most 1. We can find a set C of O(n+ area(P))
(O(n+ per(P))) chords of P , such that O(k∗) lasers from C can subdivide P into pieces of
area (diameter) at most 1.

4.4 O(1)-Approximation for Min-LaserArea

We now consider the Min-LaserArea with axis-parallel lasers chosen from a discrete set to
achieve pieces of area at most 1. An O(1)-approximation algorithm is based on the window
partition method described earlier, allowing us to reduce to the case of subdividing a pseudo-
histogram, for which we give a dynamic program to choose lasers from the discrete candidate
set. In the full version, we describe the algorithm using area as the measure. With slight
modifications, the algorithm also applies to the measure of diameter, allowing us to solve
Min-LaserDiameter in pseudo-histograms (albeit in a higher polynomial time bound than
stated in Theorem 14).

5 Diameter Measure in Polygons with Holes and Axis-Parallel Lasers

5.1 Bi-Criteria Approximation for Diameter

In this section we give a bi-criteria approximation for the diameter version in a polygon
with holes when lasers are constrained to be axis-parallel. The approach is similar to the
algorithm for simple polygons and lasers of arbitrary orientations (cf. Section 3.2) in that
both use grid lines, but they differ significantly to handle holes in a polygon when the lasers
are axis-parallel. Particularly, in simple polygons we place lasers along grid lines, while in
polygons with holes the grid lines just divide the problem into sub-problems.

Lasers in Vertical Strips. Consider the infinite set of equally spaced vertical lines LV =
{x = iδ : i ∈ Z}, for some δ > 0. The lines subdivide P into a set PV of polygons (possibly
with holes), that we call strips. (Unlike Section 3.2, we do not place lasers along the lines
in LV ; we use the strips for a divide-and-conquer strategy.) The projection of any strip on
the x-axis has length at most δ; we say that a strip is full-width if its projection has length
exactly δ. Let FV ⊂ PV denote the set of full-width strips, and let F ∈ FV be a full-width
strip.

E.M. Arkin et al. 7:19

T

BL R

a

bd
c

e

Figure 9 F is shaded, the holes are white. The L-R separating path γ = abcde (vertices marked
with red disks) alternates between holes and lasers (red) in the interior of P ; aF (γ) = 2 as there
are two links ab and de in path γ whose extensions are fully contained in F . ab and cde are the
maximal rectilinear subpaths of γ through the free space. The minimum-link path γ(F) (darkgreen)
also alternates between holes and free space.

The leftmost (resp., rightmost) points of F lie on a line L = {x = iδ} (resp., a line
R = {x = (i + 1)δ}) for some i ∈ Z (see Fig. 9). Consequently, the outer boundary of F
contains two simple paths between L and R; we denote them by T (top) and B (bottom).

Since the distance between L and R is δ, in any laser cutting of P into cells of diameter
at most δ, there exists a T -B path γ ⊂ F along the boundaries of cells that separates L and
R. Since γ is disjoint from the interior of the cells, it must follow lasers in the interior of P .
We may assume, w.l.o.g., that γ follows any laser at most once; otherwise we could shortcut
γ along the laser. Since the lasers are axis-aligned, γ is an alternating sequence of subpaths
that are either in ∂P or rectilinear paths through the interior of F ; we call any such T -B
path an alternating path.

An axis-aligned segment s, fully contained in F , is associated with F if it remains
fully contained in F after it is maximally extended within P (i.e., if both endpoints of the
supporting chord of P are on the boundary of F). For example, any vertical segment s ⊂ F
is associated with F (because T and B belong to the boundary of F). Let aF (γ) be the
number of associated links of γ (i.e., the number of edges whose supporting chords are fully
contained in F). Let |γ| denote the total number of the (axis-aligned) edges in γ. A key
observation is the following.

I Lemma 17. |γ| ≤ 3 aF (γ).

Proof. Let π be a (maximal) rectilinear subpath of γ through the free space, i.e., a part of γ
whose endpoints lie on the boundary of P . If π is a single horizontal link, then the link is
associated with F (because if any of its two ednpoints is outside F , then γ protrudes through
L or R, not separating them). Otherwise (i.e., if π contains vertical links), the number of
the vertical links is at least 1/3 of the total number of links in π. The lemma follows by
summation over all subpaths of γ. J

Our algorithm computes an alternating path γ(F) with the minimum number of links
and places one laser along every link of γ(F) (the horizontal lasers may extend beyond F).
To find γ(F), we can build the critical graph of F , whose vertices are T , B, and components
of ∂P within the strip F (including holes in the strip), and in which the weight of the edge
between two vertices is the axis-parallel link distance between them. The weight of an edge
between vertices i and j can be found by in polynomial time by standard wave propagation
techniques [10,26], i.e., by successively labeling the areas reachable with k links from i for
increasing k, until j is hit by the wave. After the critical graph is built, γ(F) is found as the
shortest T -B path in the graph.

ESA 2020

7:20 Cutting Polygons into Small Pieces with Chords

By minimality of γ(F), the number links |γ(F)| in it (and hence the number of lasers we
place) is at most |γ(F)|. Let kV =

∑
F∈FV

|γ(F)| be the total number of lasers placed in all
full-width strips in FV , and let k∗ be the minimum number of axis-parallel lasers in a laser
cutting of P into cells of diameter at most δ. An immediate consequence of Lemma 17 is the
following.

I Corollary 18. kV ≤ 3k∗.

Proof. As the links of γ(F) follow lasers, at least aF (γ) lasers are fully contained in F . J

The kV lasers placed in full-width strips subdivide P into polygonal pieces; let Q be one
such piece.

I Lemma 19. The length of the x-projection of Q on the x-axis is at most 2δ.

Proof. We prove that Q intersects at most one line in LV . Suppose, to the contrary, that
Q intersects two consecutive lines `1 : x = iδ and `2 = x = (i + 1)δ. Let λ be a shortest
path in Q between points in Q ∩ `1 and Q ∩ `2, respectively. By minimality, λ lies in the
strip between `1 and `2. Consequently, λ is contained in some full-width strip F ⊂ FV .
However, the path γ(F) intersects every path in F between F ∩ `1 and F ∩ `2; in particular,
it intersects λ. Since we have placed a laser along every segment of γ(F) in the interior of P ,
λ intersects a laser, contradicting the assumption that λ ⊂ Q. J

Lasers in Horizontal Strips. Similarly, we consider the set of horizontal lines LH = {y =
jδ : j ∈ Z} and apply the above process to P , yielding horizontal chords CH that subdivide
the polygon into horizontal strips (polygons, possibly with holes). We again work only with
full-height strips, whose boundary intersect two consecutive lines in LH . In each full-height
strip, we find a minimum-interior-link rectilinear path that separates the boundary points
along the two lines in LH , and place lasers along the links of the path. Let kH be the number
of lasers over all full-height strips.

Putting Everything Together. We overlay the kV lasers in full-width strips with the kH

lasers in full-height strips. The resulting arrangement partitions P into polygonal pieces
(possibly with holes). The x- and y-projection of each piece has length at most 2δ by
Lemma 19; thus, each piece has diameter less than 2δ

√
2. By Corollary 18, the total number

of lasers used in the arrangement is kV + kH ≤ 6k∗. We obtain the following theorem.

I Theorem 20. Let P be a polygon with holes of diameter diam(P) having n vertices, and
let k∗ be the minimum number of laser cuts that partition P into pieces each of diameter at
most δ for a fixed δ > 0. In time polynomial in n and diam(P)/δ, one can compute a set of
at most 6k∗ lasers that subdivide P into pieces each of diameter at most 23/2δ.

5.2 O(1)-Approximation to MinDiameter
Similarly to Section 3.3, we can use the bi-criteria algorithm to derive a constant-factor
approximation for minimizing the maximum diameter of a cell in the arrangement of a given
number k of axis-parallel lasers. Our O(1)-approximation algorithm (Theorem 21, proof in
the full version) repeatedly decreases the x- and y- separation in the bi-criteria solution from
Theorem 20 until the number of placed lasers is about to jump over 6k; then, the number of
lasers is decreased by a factor of 6 while increasing the diameter by a constant factor.

I Theorem 21. Let δ∗ be the minimum diameter achievable with k axis-parallel lasers. For
every ε > 0, one can compute a set of at most k axis-parallel lasers that partition P into
pieces each of diameter at most 12

√
2(1 + ε)δ∗ in time polynomial in n, diam(P)/δ∗, and ε.

E.M. Arkin et al. 7:21

6 O(log OPT)-approximation for Min-LaserCircle

This section considers the radius of the largest inscribed circle as the measure of cell size; in
particular, in Min-LaserCircle the goal is to split the polygon P (which may have holes) into
pieces so that no piece contains a disk of radius 1. We give an O(log OPT)-approximation
algorithm for Min-LaserCircle based on reducing the problem to SetCover. The following
reformulation is crucial for the approximation algorithm:

I Observation 22. A set of lasers splits P into pieces of in-circle radius at most 1 if and
only if every unit disk that lies inside P is hit by a laser.

I Theorem 23. For a polygon P with n vertices (possibly with holes), Min-LaserCircle admits
an O(log OPT)-approximation in time polynomial in n and area(P).

Proof. We lay out a regular square grid of points at spacing of
√

2. The set of grid points
within P is denoted by G. We may assume |G| = O(area(P)) by a suitable (e.g., uniformly
random) shift. Due to the spacing, every unit-radius disk in P contains a point of G (possibly
on its boundary).

Consider an optimal set L∗ of lasers that hit all unit disks that are contained within P .
Replace each laser (chord) c ∈ L∗ with up to four anchored chords of the same homotopy
type as c with respect to the vertices of P and the points G, obtained as follows: Shift the
chord c vertically down (up), while keeping its endpoints on the same pair of edges of P ,
until it becomes incident to a point in G or a vertex of P , then rotate the chord clockwise
(counterclockwise) around this point until it becomes incident to another point in G or a
vertex of P . Since every unit disk within P contains a point of G, any unit disk within P
that is intersected by c is also intersected by one of the shifted and rotated copies of c. This
means that we can construct a candidate set, C, of O((n+ area(P))2) chords that can serve
as lasers in an approximate solution, giving up at most a factor 4 of optimal. Further, in the
arrangement of the segments C within P , any unit disk is intersected by some set of chords
of C, thereby defining a combinatorial type for each unit disk in P . (Two disks are of the
same type if they are intersected by the same subset of chords in C; one way to define the
type is to associate it with a cell in the arrangement of lines drawn parallel to each chord
c ∈ C at distance 2 from c on each side of c. While the center of the disk is in one cell of the
arrangement, the disk intersects the same chords.) Let D be the polynomial-size (O(|C|2))
set of disks, one “pinned” (by two segments, from the set C and the set of edges of P) disk
per combinatorial type. By construction, any set of chords from C that meets all disks of D
must meet all unit disks within P .

We thus formulate a discrete set cover instance in which the “sets” correspond to the
candidate set C of chords, and the “elements” being covered are the disks D. Since there are
constant-size sets of disks that cannot be shattered, the VC dimension of the set system is
constant, and an O(log OPT)-approximate solution for the set cover can be found in time
polynomial in the size of the instance [7]. J

The same algorithm works for the version in which the lasers are restricted to be axis-aligned
(the only change is that the candidate set C consists of axis-aligned chords through points of
the grid G and vertices of P).

References
1 Bogdan Armaselu and Ovidiu Daescu. Algorithms for fair partitioning of convex polygons.

Theoretical Computer Science, 607:351–362, 2015. doi:10.1016/j.tcs.2015.08.003.
2 Imre Bárány, Pavle Blagojević, and András Szűcs. Equipartitioning by a convex 3-fan. Advances

in Mathematics, 223(2):579–593, 2010. doi:10.1016/j.aim.2009.08.016.

ESA 2020

https://doi.org/10.1016/j.tcs.2015.08.003
https://doi.org/10.1016/j.aim.2009.08.016

7:22 Cutting Polygons into Small Pieces with Chords

3 Aandrás Bezdek and Károly Bezdek. A solution of Conway’s fried potato problem. Bulletin
of the London Mathematical Society, 27(5):492–496, 1995. doi:10.1112/blms/27.5.492.

4 Pavle V. M. Blagojević and Günter M. Ziegler. Convex equipartitions via equivariant
obstruction theory. Israel Journal of Mathematics, 200(1):49–77, 2014. doi:10.1007/
s11856-014-1006-6.

5 Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Fundamenta Mathemat-
icae, 20:177–190, 1933. doi:10.4064/fm-20-1-177-190.

6 Prosenjit Bose, Jurek Czyzowicz, Evangelos Kranakis, Danny Krizanc, and Anil Maheshwari.
Polygon cutting: Revisited. In Proc. Japanese Conference on Discrete and Computational
Geometry (JCDCG), volume 1763 of LNCS, pages 81–92. Springer, 1998. doi:10.1007/
978-3-540-46515-7_7.

7 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-dimension.
Discrete and Computational Geometry, 14(4):463–479, 1995. doi:10.1007/BF02570718.

8 Bernard Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd IEEE
Symposium on Foundations of Computer Science (FOCS), pages 339–349, 1982. doi:10.1109/
SFCS.1982.58.

9 Hallard T. Croft, Kenneth J. Falconer, and Richard K. Guy. Unsolved Problems in Geometry.
Springer-Verlag, New York, 1991. doi:10.1007/978-1-4612-0963-8.

10 Gautam Das and Giri Narasimhan. Geometric searching and link distance. In Proc. 2nd
Workshop on Algorithms and Data Structures (WADS), volume 519 of LNCS, pages 261–272.
Springer, 1991. doi:10.1007/BFb0028268.

11 Robert Freimer, Joseph S. B. Mitchell, and Christine Piatko. On the complexity of shattering
using arrangements. Technical report, Cornell University, 1991.

12 Unnikrishnan Gopinathan, David J. Brady, and Nikos Pitsianis. Coded apertures for efficient
pyroelectric motion tracking. Opt. Express, 11(18):2142–2152, 2003. doi:10.1364/OE.11.
002142.

13 Roser Guàrdia and Ferran Hurtado. On the equipartition of plane convex bodies and convex
polygons. Journal of Geometry, 83(1):32–45, 2005. doi:10.1007/s00022-005-0006-0.

14 Steven C. Gustafson. Intensity correlation techniques for passive optical device detection.
In Infrared Technology for Target Detection and Classification, volume 302, pages 66–70.
International Society for Optics and Photonics, SPIE, 1982. doi:10.1117/12.932632.

15 Refael Hassin and Nimrod Megiddo. Approximation algorithms for hitting objects with straight
lines. Discrete Applied Mathematics, 30(1):29–42, 1991. doi:10.1016/0166-218X(91)90011-K.

16 Tian He, Qiuhua Cao, Liqian Luo, Ting Yan, Lin Gu, John Stankovic, and Tarek Abdelzaher.
Electronic tripwires for power-efficient surveillance and target classification. In Proc. 2nd
International Conference on Embedded Networked Sensor Systems (SenSys 2004). ACM Press,
2004. doi:10.1145/1031495.1031558.

17 John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. J. Algorithms, 18(3):403–431, 1995. doi:10.1006/jagm.1995.1017.

18 Thomas Jenrich and Andries E. Brouwer. A 64-dimensional counterexample to Borsuk’s
Conjecture. Electr. J. Comb., 21(4):P4.29, 2014. URL: http://www.combinatorics.org/ojs/
index.php/eljc/article/view/v21i4p29.

19 Jeff Kahn and Gil Kalai. A counterexample to Borsuk’s conjecture. Bull. Amer. Math. Soc.,
29:60–62, 1993. doi:10.1090/S0273-0979-1993-00398-7.

20 Roman Karasev, Alfredo Hubard, and Boris Aronov. Convex equipartitions: the spicy chicken
theorem. Geometriae Dedicata, 170(1):263–279, 2014. doi:10.1007/s10711-013-9879-5.

21 J. Mark Keil. Polygon decomposition. In Jörg-Rüdiger Sack and Jorge Urrutia, editors,
Handbook of Computational Geometry, pages 491–518. North Holland/Elsevier, 2000. doi:
10.1016/b978-044482537-7/50012-7.

22 Irina Kostitsyna. Balanced partitioning of polygonal domains. PhD thesis, Stony Brook
University, Stony Brook, NY, 2015.

https://doi.org/10.1112/blms/27.5.492
https://doi.org/10.1007/s11856-014-1006-6
https://doi.org/10.1007/s11856-014-1006-6
https://doi.org/10.4064/fm-20-1-177-190
https://doi.org/10.1007/978-3-540-46515-7_7
https://doi.org/10.1007/978-3-540-46515-7_7
https://doi.org/10.1007/BF02570718
https://doi.org/10.1109/SFCS.1982.58
https://doi.org/10.1109/SFCS.1982.58
https://doi.org/10.1007/978-1-4612-0963-8
https://doi.org/10.1007/BFb0028268
https://doi.org/10.1364/OE.11.002142
https://doi.org/10.1364/OE.11.002142
https://doi.org/10.1007/s00022-005-0006-0
https://doi.org/10.1117/12.932632
https://doi.org/10.1016/0166-218X(91)90011-K
https://doi.org/10.1145/1031495.1031558
https://doi.org/10.1006/jagm.1995.1017
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i4p29
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i4p29
https://doi.org/10.1090/S0273-0979-1993-00398-7
https://doi.org/10.1007/s10711-013-9879-5
https://doi.org/10.1016/b978-044482537-7/50012-7
https://doi.org/10.1016/b978-044482537-7/50012-7

E.M. Arkin et al. 7:23

23 Stefan Langerman and Pat Morin. Covering things with things. Discrete & Computational
Geometry, 33(4):717–729, 2005. doi:10.1007/s00454-004-1108-4.

24 Anil Maheshwari, Jörg-Rüdiger Sack, and Hristo N. Djidjev. Link distance problems. In Jörg-
Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, chapter 12,
pages 519–558. North-Holland, 2000. doi:10.1016/b978-044482537-7/50013-9.

25 Nimrod Megiddo and Arie Tamir. On the complexity of locating linear facilities in the plane.
Operations Research Letters, 1(5):194–197, 1982. doi:10.1016/0167-6377(82)90039-6.

26 Joseph S.B. Mitchell, Valentin Polishchuk, and Mikko Sysikaski. Minimum-link paths revisited.
Computational Geometry, 47(6):651–667, 2014. doi:10.1016/j.comgeo.2013.12.005.

27 R. Nandakumar and N. Ramana Rao. Fair partitions of polygons: An elementary introduction.
Proceedings-Mathematical Sciences, 122(3):459–467, 2012. doi:10.1007/s12044-012-0076-5.

28 Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. AK
Peters/CRC Press, 1998.

29 Pablo Soberón. Balanced convex partitions of measures in Rd. Mathematika, 58(1):71–76,
2012. doi:10.1112/S0025579311001914.

30 Subhash Suri. On some link distance problems in a simple polygon. IEEE Trans. Robotics
and Automation, 6(1):108–113, 1990. doi:10.1109/70.88124.

31 Samuel Zahnd, Patrick Lichisteiner, and Tobi Delbruck. Integrated vision sensor for detecting
boundary crossings. In 2003 IEEE International Symposium on Circuits and Systems (ISCAS),
volume 2, 2003. doi:10.1109/ISCAS.2003.1205986.

32 Yunhui Zheng, David J. Brady, and Pankaj K. Agarwal. Localization using boundary sensors:
An analysis based on graph theory. ACM Trans. Sen. Netw., 3(4), 2007. doi:10.1145/
1281492.1281496.

ESA 2020

https://doi.org/10.1007/s00454-004-1108-4
https://doi.org/10.1016/b978-044482537-7/50013-9
https://doi.org/10.1016/0167-6377(82)90039-6
https://doi.org/10.1016/j.comgeo.2013.12.005
https://doi.org/10.1007/s12044-012-0076-5
https://doi.org/10.1112/S0025579311001914
https://doi.org/10.1109/70.88124
https://doi.org/10.1109/ISCAS.2003.1205986
https://doi.org/10.1145/1281492.1281496
https://doi.org/10.1145/1281492.1281496

Set Cover with Delay – Clairvoyance Is Not
Required
Yossi Azar
Tel Aviv University, Israel
azar@tau.ac.il

Ashish Chiplunkar
Indian Institute of Technology Delhi, India
ashishc@iitd.ac.in

Shay Kutten
Technion – Israel Institute of Technology, Haifa, Israel
kutten@technion.ac.il

Noam Touitou
Tel Aviv University
noamtouitou@mail.tau.ac.il

Abstract
In most online problems with delay, clairvoyance (i.e. knowing the future delay of a request upon its
arrival) is required for polylogarithmic competitiveness. In this paper, we show that this is not the
case for set cover with delay (SCD) – specifically, we present the first non-clairvoyant algorithm,
which is O(log n log m)-competitive, where n is the number of elements and m is the number of sets.
This matches the best known result for the classic online set cover (a special case of non-clairvoyant
SCD). Moreover, clairvoyance does not allow for significant improvement – we present lower bounds
of Ω(

√
log n) and Ω(

√
log m) for SCD which apply for the clairvoyant case.

In addition, the competitiveness of our algorithm does not depend on the number of requests. Such
a guarantee on the size of the universe alone was not previously known even for the clairvoyant case
– the only previously-known algorithm (due to Carrasco et al.) is clairvoyant, with competitiveness
that grows with the number of requests.

For the special case of vertex cover with delay, we show a simpler, deterministic algorithm which
is 3-competitive (and also non-clairvoyant).

2012 ACM Subject Classification Theory of computation; Theory of computation → Design and
analysis of algorithms; Theory of computation → Online algorithms

Keywords and phrases Set Cover, Delay, Clairvoyant

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.8

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.08543.

Funding Yossi Azar : Supported in part by the Israel Science Foundation (grant No. 1506/16).
Ashish Chiplunkar : Supported by Pankaj Gupta Young Faculty fellowship.
Shay Kutten: Supported by the Ministry of Science and Technology together with the JSPS, as well
as the BSF.

1 Introduction

In problems with delay, requests are released over a timeline. The algorithm must serve these
requests by performing some action, which incurs a cost. While a request is pending (i.e.
has been released but not yet served), the request accumulates delay cost. The goal of the
algorithm is to minimize the sum of costs incurred in serving requests and the delay costs of
requests.

© Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 8; pp. 8:1–8:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:azar@tau.ac.il
mailto:ashishc@iitd.ac.in
mailto:kutten@technion.ac.il
mailto:noamtouitou@mail.tau.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2020.8
https://arxiv.org/abs/1807.08543
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Set Cover with Delay – Clairvoyance Is Not Required

There are two variants of such problems. In the clairvoyant variant, the delay function of
a request (which determines the delay accumulation of that request over time) is revealed to
the algorithm upon the release of the request. In the non-clairvoyant variant, at any point in
time the algorithm is only aware of delay accumulated up to that point.

Most online problems with delay do not admit competitive non-clairvoyant algorithms –
namely, there exist lower bounds for competitiveness which are polynomial in the size of the
input space (e.g. the number of points in the metric space upon which requests are released).
This is the case, for example, in the multilevel aggregation problem [10, 14], the facility
location problem [7] and the service with delay problem [6]. However, these problems do
admit clairvoyant algorithms which are polylog-competitive. An additional such problem is
that of matching with delay (presented in [20]), for which the only known algorithms are for
when all requests have an identical, linear delay function (and are in particular clairvoyant).
Rather surprisingly, we show in this paper that the online set cover with delay problem does
admit a competitive non-clairvoyant algorithm.

In the online set cover with delay problem (SCD), a universe of elements and a family of
sets are known in advance. Requests then arrive over time on the elements, and accumulate
delay cost until served by the algorithm. The algorithm may choose to buy a set at any
time, at a cost specific to that set (and known in advance to the algorithm). Buying a set
serves all pending requests (requests released but not yet served) on elements of that set;
future requests on those elements, that have yet to arrive when the set is bought, must
be served separately at a future point in time. For that reason, a set may be bought an
unbounded number of times over the course of the algorithm. The goal of an algorithm is to
minimize the sum of the total buying cost and the total delay cost. We note that one could
also consider the problem in which sets are bought permanently, and cover future requests;
however, it is easy to see that this problem is equivalent to the classic online set cover, and
is thus of no additional interest. In the full version of this paper, we show that this problem
is a special case of our problem.

As a variant of set cover, the SCD problem is very general, capturing many problems.
Nevertheless, we give two possible motivations for the problem.

Summoning experts. consider a company which occasionally requires the help of experts.
At any time, a problem may arise which requires external assistance in some field, and
negatively impacts the performance of the company while unresolved. At any time, the
company may hire any one of a set of experts to come to the company, solve all standing
problems in that expert’s fields of expertise, and then leave. The company aims to minimize
the total cost of hiring experts, as well as the negative impact of unresolved problems.

Cluster-covering with delay. suppose antennas generate data requests over time, which
must be satisfied by an external server, with a cost to leaving a request pending. To satisfy an
update request by an antenna, the server sends the data to a center antenna which transmits
it at a certain radius, at a certain cost (which depends on the center antenna and the radius).
All requests on antennas inside that radius are served by that transmission. This problem is
a covering problem with delay costs, which can be described in terms of SCD. As an SCD
instance, the elements are the antennas, and the sets are pairs of a center antenna and a
(reasonable) transmission radius (the number of sets is quadratic in the number of antennas).

Carrasco et al. [15] provided a clairvoyant algorithm for the SCD problem, which is
O(logN) competitive (where N is the number of the requests). However, as the number of
requests becomes large, the competitive ratio of this algorithm tends to infinity – even for a

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:3

very small universe of elements and sets. Thus, this algorithm does not provide a guarantee
in terms of the underlying input space, as we would like. In addition, their algorithm has
exponential running time (through making oracle calls which compute optimal solutions for
NP-hard problems).

In this paper, we present the first algorithm for SCD which is polylog-competitive in
the size of the universe, which is also the first algorithm for the problem which runs in
polynomial time. Surprisingly, this algorithm is also non-clairvoyant, showing that the
SCD problem admits non-clairvoyant competitive algorithms. Our randomized algorithm is
O(logn logm)-competitive, where n is the number of elements and m is the number of sets.
In this paper, we show a reduction from the classic online set cover to SCD, which implies
(due to [27]) that our upper bound is tight for a polynomial-time, non-clairvoyant algorithm
for SCD.

While our algorithm is optimal for the non-clairvoyant setting, one could wonder if there
exists a clairvoyant algorithm which performs significantly better – especially considering the
aforementioned problems, in which the gap between the clairvoyant and non-clairvoyant cases
is huge. We answer this in the negative – namely, we show lower bounds of Ω(

√
logn) and

Ω(
√

logm) on the competitiveness of any randomized clairvoyant algorithm, showing that
there is no large gap which clairvoyant algorithms could bridge. Nevertheless, a quartic gap
still exists, e.g. in the case that m = Θ(n). We conjecture that the gap is in fact quadratic,
and leave this as an open problem.

In this paper, we also consider the problem of vertex cover with delay (denoted VCD).
In the VCD problem, vertices of graph are given, with a buying cost associated with each
vertex. Requests on the edges of the graph arrive over time, and accumulate delay until
served by buying a vertex touching the edge (at the cost of that vertex’s price). This problem
corresponds to SCD where every element is in exactly two sets.

1.1 Our Results

We denote as before the number of elements in an SCD instance by n, and the number of
sets by m. We also define k ≤ m to be the maximum number of sets to which a specific
element may belong. We consider arbitrary (nondecreasing) continuous delay functions (not
only linear functions).

In this paper, we present:

1. An O(log k · logn)-competitive, randomized, non-clairvoyant algorithm for SCD, based on
rounding of a newly-designed O(log k)-competitive algorithm for the fractional version of
SCD. The competitive ratio of this algorithm is tight – we show a reduction from (classic)
online set cover to non-clairvoyant SCD.

2. Lower bounds of Ω(
√

log k) and Ω(
√

logn) on competitiveness for clairvoyant SCD,
showing that clairvoyance cannot improve competitiveness beyond a quadratic factor.

3. A simple, deterministic, non-clairvoyant algorithm for vertex cover with delay (VCD)
which is 3-competitive.

Our randomized algorithm for SCD is the first (sub-polynomial competitive) non-
clairvoyant algorithm for this problem. Moreover, this is the first algorithm which is
polylog-competitive in the size of the universe (even among clairvoyant algorithms).

ESA 2020

8:4 Set Cover with Delay – Clairvoyance Is Not Required

In the process of obtaining our Ω(
√

log k) and Ω(
√

logn) lower bounds, we in fact obtain
an Ω(

√
logm) lower bound (which immediately implies Ω(

√
log k) since k ≤ m). The lower

bounds also apply for the unweighted setting. These lower bounds improve over the lower
bound of Ω(log logn) given in [15]1.

For VCD, while our algorithm is 3-competitive, note that there is a lower bound of 2.
The lower bound uses a graph with a single edge which is requested multiple times; this
graph corresponds to the TCP acknowledgment problem, analyzed in [19].

I Remark 1. While our O(log k · logn)-competitive algorithm is presented for the case in
which the sets and elements are known in advance, it can easily be modified for the case in
which each element, as well as which of the sets contain it, becomes known to the algorithm
only after the arrival of a request on that element. Moreover, the algorithm can in fact
operate in the original setting of Carrasco et al. [15], as it does not need to know the family
of sets itself, but rather the family of restrictions of the sets to the elements that have already
arrived. This can be done through standard doubling techniques applied to logn and log k
(i.e. squaring of n and k).

1.2 Our Techniques
In the course of designing a non-clairvoyant algorithm for the SCD problem, we also consider
a fractional version of SCD. In this version, an algorithm may choose to buy a fraction of a
set at any moment. Buying a fraction of a set partially serves requests present on an element
of that set, which causes them to accumulate less future delay. As with the original version,
a request is only served by fractions bought after its arrival. Hence, the sum of fractions
bought for a single set over time is unbounded (i.e. a set may be bought many times).

In the fractional O(log k)-competitive algorithm, each request that can be served by
a set contributes some amount to the buying of that set. This amount depends exponentially
on the delay accumulated by that request, as well as the delay of previous requests. Typically
in algorithms with exponential contributions, these contributions are summed. Interestingly,
our algorithm instead chooses the maximum of the contributions of the requests as the
buying function of the set. The choice of maximum over sum is crucial to the proof (using
sum instead of maximum would lead to a linear competitive ratio).

The analysis of this algorithm is based on dual fitting: we first present a linear program-
ming representation of the fractional SCD problem, then use a feasible solution to the dual
problem to charge the delay of the algorithm to the optimum. This is the reason for using
the maximum in the buying function; each quantity satisfies a different constraint in the
dual, and choosing the maximum satisfies all constraints. We then charge the buying cost of
the algorithm to O(log k) times its delay, which concludes the analysis.

Next, we design a randomized competitive algorithm for the integer version of SCD using
2-level randomized rounding of the fractional algorithm. At the top level, we construct a
randomized O(log k · logN)-competitive algorithm for the integer version, with
N the number of requests. The top-level rounding consists of maintaining for each set a
random threshold, and buying the set when the total buying of that set in the fractional
algorithm exceeds the threshold. In addition, special service of a request is performed in
the probabilistically unlikely event that the request is half-served in the fractional algorithm

1 The lower bound of [15] shows Ω(log N)-competitiveness, but relies on a universe which is exponentially
larger than the number of requests. As they mention in their paper, this therefore translates to an
Ω(log log n) lower bound on competitiveness.

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:5

but is still pending in the rounding. Since in our problem we may buy a set an unbounded
number of times, we require use of multiple subsequent thresholds. To analyze this, we make
use of Wald’s equation for stopping time.

We add the bottom level to improve the O(log k · logN)-competitive algorithm to a
randomized O(log k · logn)-competitive algorithm for the integer version. The
bottom level partitions time into phases for each element separately, and aggregates requests
on that element that are released in the same phase. The competitive ratio of the resulting
algorithm is asymptotically optimal for solving non-clairvoyant SCD in polynomial time, as
shown by the reduction from the classic online set cover to non-clairvoyant SCD given in the
full version of this paper.

Perhaps the most novel techniques in this paper are used for the lower bounds of
Ω(
√

log k) and Ω(
√

logn) for the clairvoyant case. The lower bounds are obtained by a
recursive construction. Given a recursive instance for which any algorithm has a lower bound
on the competitive ratio, we amplify that bound by duplicating every set in the recursive
instance into two sets, one slightly more expensive than the other. Both sets perform the
same function with respect to the recursive instance, but the algorithm also has an incentive
to choose the expensive family of sets, since they serve some additional requests. If the
algorithm chooses to buy a lot of expensive sets, the optimum releases another copy of the
recursive instance, serviceable only by expensive sets. This forces the algorithm to buy the
expensive sets twice; the optimum only buys them once. If, on the other hand, the algorithm
chooses the inexpensive sets, it misses the opportunity to serve the additional requests and
the recursive instance simultaneously, and must serve them separately.

The recursive description of our construction for the lower bounds is significantly more
natural than its iterative description. Few lower bounds in online algorithms have this
property – another such lower bound is found in [8].

The 3-competitive deterministic algorithm for VCD is simple and based on coun-
ters. This algorithm is only k + 1 competitive for general SCD, and is thus significantly
worse than the previous randomized algorithm that we have shown for general SCD.

1.3 Other Related Work
A different problem called online set cover is considered in [3], in which the algorithm
accumulates value for every element that arrives on a bought set, and aims to maximize
total value. This problem appears to be fundamentally different from the online set cover in
which we minimize cost, in both techniques and results.

The problem of set cover in the online setting has seen much additional work, e.g. in
[22, 9, 18, 29, 1]. The set cover problem has also been studied in the streaming model (e.g.
[21, 16]), stochastic model (e.g. [24]), dynamic model (e.g. [23]), and in the context of
universal algorithms (e.g. [25, 22]) and communication complexity (e.g. [28]).

There are known inapproximability results for the (offline) set cover and vertex cover
problems. In [17] it is shown that the offline set cover problem is unlikely to be approximable
in polynomial time to within a factor better than lnn. For the offline vertex cover, it is shown
in [26] that it is NP hard to approximate within a factor better than 2, assuming the Unique
Games Conjecture. These results apply to our SCD and VCD problems, as an instance of
offline set cover (or vertex cover) can be released at time 0. Of course, these inapproximability
results do not constitute lower bounds for the online model, in which unbounded computation
is allowed – unlike the information-theoretic lower bound of Ω(

√
logn) for SCD which is

given in this paper.

ESA 2020

8:6 Set Cover with Delay – Clairvoyance Is Not Required

The field of online problems with delay over time has been of interest recently. This
includes the problems of min-cost perfect matching with delays [20, 5, 2, 12, 11, 4], online
service with delay [6, 13, 7] and multilevel aggregation [10, 14, 7].

Paper Organization
In Section 3, we present and analyze a fractional non-clairvoyant algorithm for SCD. In
Section 4, we show how to round the previous algorithm in a non-clairvoyant manner to
obtain our algorithm for the original (integral) SCD. In Section 5, we show lower bounds for
clairvoyant SCD. In the full version of this paper, we show that the algorithm obtained in
Section 4 is optimal for the non-clairvoyant case. In Section 6, we give a simple, deterministic,
non-clairvoyant algorithm for vertex cover with delay.

2 Preliminaries

We denote the sets by {Si}mi=1, with m the number of sets. We denote by n the number
of elements. We define k to be the minimal number for which every element belongs to at
most k sets. Requests qj arrive on the elements. We denote the arrival time of request qj by
rj , and write (with a slight abuse of notation) qj ∈ Si if the element on which qj has been
released belongs to the set Si.

Each request qj has an arbitrary momentary delay function dj(t), defined for t ≥ rj . The
accumulated delay of the request at time t ≥ rj is defined to be

∫ t
rj
dj(t) dt. At any time in

which a request is pending, its momentary delay is added to the cost of the algorithm; that
is, the algorithm incurs a cost of

∫ τj

rj
dj(t) dt (the accumulated delay of qj at time τj) for

every request qj , where τj is the time in which qj is served. Each set Si has a price c(Si) ≥ 1
which the algorithm must pay when it decides to buy the set. Buying a set serves all pending
requests which belong to the set (but does not affect future requests). The buying cost of an
online algorithm ON is CostpON =

∑
i ni · c(Si), where ni is the number of times Si has been

bought by the algorithm. The delay cost of ON is CostdON =
∑
j

∫ τj

rj
dj(t) dt, where τj is the

time in which qj is served by the algorithm (τj is ∞ if qj is never served by the algorithm)2.
Overall, the cost of ON for the problem is CostON = CostpON + CostdON

3 The Non-Clairvoyant Algorithm for Fractional SCD

We first describe a fractional relaxation of the (integer) set cover with delay problem. In
this fractional relaxation, a set can be bought in parts. A fractional algorithm determines
for each set Si a nonnegative momentary buying function xi(t). The total buying cost a
fractional online algorithm F incurs is CostpF =

∑
i c(Si) ·

∫∞
0 xi(t) dt.

In the fractional version, a request can be partially served. Under a fractional algorithm
F , for any request qj , and any set Si such that qj ∈ Si, the set Si covers qj at a time t ≥ rj
by the amount

∫ t
rj
xi(t′) dt′ (which is obviously nondecreasing as a function of t). The total

amount by which qj is covered at time t is

γj(t) =
∑

i|qj∈Si

∫ t

rj

xi(t′) dt′.

2 We solve the more general problem in which the algorithm doesn’t have to serve all requests (observe
that the adversary can still force the algorithm to serve all requests by adding infinite delay at time
infinity). This allows the problem to capture additional problems (e.g. prize-collecting problems, in
which a penalty could be paid to avoid serving a specific request)

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:7

If at time t we have γj(t) ≥ 1, then qj is considered served, and the algorithm does not incur
delay. However, if γj(t) < 1, the algorithm F incurs delay proportional to the uncovered
fraction of qj . Formally, at time t the request qj incurs dFj (t) delay in F , where

dFj (t) =
{
dj(t) · (1− γj(t)) if γj(t) < 1
0 otherwise

(3.1)

The delay cost of the algorithm is CostdF =
∑
j

∫∞
rj
dFj (t) dt. The total cost of the

fractional algorithm is thus CostF = CostpF + CostdF .

Description of the algorithm. We now describe an online algorithm called ONF for the
fractional problem.

We define a total order � on requests, such that for any two requests qj1 , qj2 if rj1 < rj2

we have qj1 ≺ qj2 (we break ties arbitrarily between requests with equal arrival time).
At any time t, the algorithm does the following.

1. For every request qj , evaluate dONF
j (t) by its definition in Equation 3.1.

2. For every set Si and request qj ∈ Si, define

Dj
i (t) =

∑
j′|qj′∈Si∧qj′�qj

dONF
j′ (t).

3. For every set Si and request qj ∈ Si, define

xji (t) = 1
k
·
(

ln(1 + k)
c(Si)

·Dj
i (t)

)
· e

ln(1+k)
c(Si)

∫ t

rj
Dj

i
(t′) dt′

.

4. Buy every set Si according to xi(t), such that

xi(t) = max
j
xji (t).

This completes the description of the algorithm.
The intuition for the algorithm is that at any time t, the amount

∫ t
rj
Dj
i (t′) dt′ is delay

incurred by the algorithm until time t that the optimum possibly avoided by buying Si at
time rj , and thus the algorithm wishes to minimize this amount. Thus, the request qj places
some “demand” on the algorithm to buy Si. Since this is true for any qj ∈ Si, the algorithm
chooses the maximum of the demands as the buying function of Si.

This demand xji (t) placed on the algorithm by qj to buy Si is related to
∫ t
rj
Dj
i (t′) dt′. If

we wanted to make the total buying proportional to
∫ t
rj
Dj
i (t′) dt′, it would sound reasonable

to set xji (t) to be its derivative, namely Dj
i (t). However, this would only be Ω(k)-competitive,

as demonstrated in Figure 3.1. We thus want the total buying to be proportional to
an expression exponential in

∫ t
rj
Dj
i (t′) dt′, which underlies the definition of xji (t) in our

algorithm.
Denoting Xj

i (t) =
∫ t
rj
xji (t′) dt′, note that

Xj
i (t) = 1

k
·

[
e

ln(1+k)
c(Si)

∫ t

rj
Dj

i
(t′) dt′

− 1
]
. (3.2)

In the rest of this section, we prove the following theorem.

I Theorem 2. The algorithm for fractional SCD described above is O(log k)-competitive.

We now analyze the algorithm for fractional SCD and prove Theorem 2.

ESA 2020

8:8 Set Cover with Delay – Clairvoyance Is Not Required

In this figure, there are k − 1 elements, where each element is contained in k sets of cost 1,
one central set (which contains all elements) and k − 1 peripheral sets (each contains exactly
one element). Consider k − 1 requests, one on each element, all arriving at time 0. Their
delay functions are identical, and go to infinity as time progresses.
Consider an algorithm which buys sets linearly to the delay - that is,
xi(t) = maxj Dj

i (t) =
∑
j|qj∈Si

dONF
j (t). The momentary delay of every request contributes

equally to the buying functions of the k containing sets. Thus, the total fraction bought of
peripheral sets is exactly k − 1 times the total fraction bought of the central set. Consider
the point in time in which all requests are half-covered (through symmetry, this happens for
all requests at the same time, and must happen since the requests gather infinite delay). We
have that the central set was bought for a fraction of exactly 1

4 (which can again be seen
through symmetry of the requests and their delay). Thus, the peripheral sets were bought
for a fraction of k−1

4 , for a total of k4 . Consider that the optimal solution costs 1, as the
optimum buys the central set at time 0.

Figure 3.1 Linear Buying Ω(k) Example.

3.1 Charging Buying Cost to Delay
In this subsection we prove the following lemma.

I Lemma 3. CostpONF ≤ 2 ln(1 + k) · CostdONF.

Proof. The proof is by charging the momentary buying cost at any time t to the 2 ln(1 + k)
times the momentary delay incurred by ONF at t. Let qj be some request released by time t.
For every i such that qj ∈ Si, we charge some amount zji (t) to dONF

j (t). Denote by ji the
request in Si such that

xi(t) = xji

i (t).

If qj � qji , we choose

zji (t) = ln(1 + k)
k

· dONF
j (t) · e

ln(1+k)
c(Si)

∫ t

rji

D
ji
i

(t′) dt′
.

Otherwise, we choose zji (t) = 0. Note that for every set Si we have
∑
j|qj∈Si

zji (t) =
c(Si) · xi(t), and thus the entire buying cost is charged.

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:9

The total buying cost charged to a request qj at time t is
∑
i|qj∈Si

zji (t). We show that
for any j we have∑

i|qj∈Si

zji (t) ≤ 2 ln(1 + k) · dONF
j (t).

Summing the previous equation over requests qj and integrating over time yields the
lemma.

If dONF
j (t) = 0 we have zji (t) = 0 for every i, as required. From now on, we assume that

dONF
j (t) > 0.
Denote by Tj = {i|qj ∈ Si and zji > 0}. We have∑
i|qj∈Si

zji (t) =
∑
i∈Tj

zji (t)

= ln(1 + k) · dONF
j (t) ·

∑
i∈Tj

1
k
· e

ln(1+k)
c(Si)

∫ t

rji

D
ji
i

(t′) dt′
.

Now note that

1
k
· e

ln(1+k)
c(Si)

∫ t

rji

D
ji
i

(t′) dt′
= 1
k

+Xji

i (t)

≤ 1
k

+
∫ t

rji

xi(t′) dt′

≤ 1
k

+
∫ t

rj

xi(t′) dt′

where the equality is due to equation 3.2, the first inequality is due to the definition of Xji

i (t)
and since xi(t) ≥ xji

i (t), and the last inequality is due to qj � qji
.

Thus∑
i|qj∈Si

zji (t) ≤ ln(1 + k) · dONF
j (t) ·

∑
i∈Tj

(
1
k

+
∫ t

rj

xi(t′) dt′
)
≤ 2 ln(1 + k) · dONF

j (t)

where the last inequality follows from |Tj | ≤ k, and from
∑
i|qj∈Si

∫ t
rj
xi(t′) dt′ ≤ 1 (due

to the assumption that dONF
j (t) > 0). J

3.2 Charging Delay to Optimum
In this subsection, we charge the delay of the algorithm to the optimum via dual fitting.

3.2.1 Linear Programming Formulation
We formulate a linear programming instance for the fractional problem, and observe its dual
instance.

Primal. In the primal instance, the variables are:
xi(t) for a set Si and time t, which is the fraction by which the algorithm buys Si at time
t.
pj(t) for a request qj and time t ≥ rj , which is the fraction of qj not covered by bought
sets at time t.

ESA 2020

8:10 Set Cover with Delay – Clairvoyance Is Not Required

The LP instance is therefore:
Minimize:∑
i

∫ ∞
0

c(Si) · xi(t) dt+
∑
j

∫ ∞
rj

pj(t) · dj(t) dt

under the constraints:

∀j, t ≥ rj : pj(t) +
∑

i|qj∈Si

∫ t

rj

xi(t′) dt′ ≥ 1

pj(t) ≥ 0 , xi(t) ≥ 0.

Dual. Maximize:∑
j

∫ ∞
rj

yj(t) dt

under the constraints:

∀i, t :
∑

j|qj∈Si∧rj≤t

∫ ∞
t

yj(t′) dt′ ≤ c(Si) (C1)

∀j, t ≥ rj : yj(t) ≤ dj(t) (C2)

yj(t) ≥ 0.

I Remark 4. As we chose to consider time as continuous, the linear program described here
has an infinite number of variables and constraints. This is merely a choice of presentation,
as discretizing time would yield a standard, finite LP. Nevertheless, weak duality for this
infinite LP (the only duality property used in this paper) holds (see e.g. [30]).

3.2.2 Charging Delay to Optimum via Dual Fitting
We now charge the delay of the fractional algorithm to the cost of the optimum.

I Lemma 5. CostdONF ≤ CostOPT .

Proof. The proof is by finding a solution to the dual problem, such that the goal function
value of the solution is equal to the delay of the algorithm.

For every request qj and time t, we assign yj(t) = dONF
j (t). This assignment satisfies that

the goal function is the total delay incurred by the algorithm.
Note that the C2 constraints trivially hold, since dONF

j (t) ≤ dj(t) for any j, t. Now
observe the C1 constraints. For any time t and a set Si, the resulting C1 constraint is implied
by the C1 constraint of time rj and the set Si, with qj being the last request released by
time t. We thus restrict ourselves to C1 constraints of time rj for some j.

For a request qj and a set Si, we need to show:

∑
j′|qj′∈Si∧qj′�qj

∫ ∞
rj

dONF
j′ (t′) dt′ ≤ c(Si).

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:11

Using the definition of Dj
i (t), we need to show:∫ ∞

rj

Dj
i (t) dt ≤ c(Si).

Define t0 to be the minimal time (possibly ∞) such that for all t ≥ t0 we have Dj
i (t) = 0.

We must have that
∫ t0
rj
xi(t) dt ≤ 1; otherwise, all requests qj′ ∈ Si such that qj′ � qj will be

completed before t0, in contradiction to t0’s minimality. Thus we have

1 ≥
∫ t0

rj

xi(t) dt ≥
∫ t0

rj

xji (t) dt

= 1
k

[
e

ln(1+k)
c(Si)

∫ t0
rj
Dj

i
(t) dt

− 1
]

where the second inequality is due to the definition of xi(t), and the equality is due to
equation 3.2. This yields

(1 + k)
1

c(Si)

∫ t0
rj
Dj

i
(t) dt

≤ 1 + k

and thus∫ ∞
rj

Dj
i (t) dt =

∫ t0

rj

Dj
i (t) dt ≤ c(Si)

as required. J

We can now prove the main theorem.

Proof of Theorem 2. Using Lemmas 3 and 5, we have

CostONF = CostpONF + CostdONF

≤ (2 ln(1 + k) + 1) · CostdONF

≤ (2 ln(1 + k) + 1) · CostOPT

as required. J

I Remark 6. For the more difficult delay model in which a partially served request qj incurs
delay dONF

j (t) = dj(t) instead of dONF
j (t) = dj(t) · (1− γj(t)) in ONF, this algorithm is still

O(log k) competitive against the fractional optimum in the easier delay model. The proof is
identical.

4 Randomized Algorithm for SCD by Rounding

In this section, we describe a non-clairvoyant, polynomial-time randomized algorithm which
is O(log k · logn)-competitive for integral SCD. Our randomized algorithm uses randomized
rounding of the fractional algorithm of Section 3. We describe the rounding in two steps.
First, we show a somewhat simpler algorithm which is O(log k · logN)-competitive. We then
modify this algorithm to obtain a O(log k · logn)-competitive algorithm.

The rounding of the fractional algorithm of section 3 costs the randomized integral
algorithm of this section a multiplicative factor of logn over that fractional algorithm.

ESA 2020

8:12 Set Cover with Delay – Clairvoyance Is Not Required

Denote by xi(t) the fractional buying function in the algorithm ONF of Section 3.
For a request qj , we denote by Sij the least expensive set containing qj ; that is, ij =
arg mini|qj∈Si

c(Si).
For every request qj , we denote the total covering of qj at time t in ONF by γj(t), where

γj(t) =
∑

i|qj∈Si

∫ t

rj

xi(t′) dt′.

We denote by tj the first time in which γj(t) = 1
2 .

O(log k · logN)-Competitive Rounding
We now describe a randomized integral algorithm, called ONR, which is O(log k · logN)
competitive with respect to the fractional optimum, with N the total number of requests.
We assume a-priori knowledge of N for the algorithm.

The randomized integral algorithm runs the fractional algorithm of Section 3 in the
background, and thus has knowledge of the function xi(t) for every i. The algorithm does
the following.

1. At time 0:
a. For every set Si, choose Λi from the range [0, 1

2 lnN] uniformly and independently,
and set τi = 0.

2. At time t:
a. For every i, if

∫ t
τi
xi(t′) dt′ ≥ Λi then:

i. Buy Si.
ii. Assign to Λi a new value drawn independently and uniformly from [0, 1

2 lnN].
iii. Assign τi = t.

b. If there exists a pending request qj such that t ≥ tj , buy Sij .

We refer to the buying of sets at Step 2a as “type a”, and to the buying of sets at Step
2b as “type b”.

The intuition for the randomized rounding scheme is that we would like the probability
of buying a set in a certain interval of time to be proportional to the fraction of that set
bought by the fractional algorithm in that interval, independently of the other sets. This is
achieved by the “type a” buying. However, using “type a” alone is problematic. Consider,
for example, a request on an element in k sets, such that the fractional algorithm buys 1

k of
each of the sets to cover the request. Since the probability of buying a set is independent
of other sets, there exists a probability that the randomized algorithm would not buy any
of the k sets, leaving the request unserved. This bears possibly infinite delay cost for the
rounding algorithm, which is not incurred by the underlying fractional algorithm.

The “type b” buying solves this problem, by serving a pending request deterministically
when it is covered in the underlying fractional algorithm, through buying the cheapest set
containing that request. This special service for the request might be expensive, but its
probability is low, yielding low expected cost. This is ensured by the 2 logN “speedup” given
to the “type a” buying, through choosing the thresholds Λi from [0, 1

2 lnN] (rather than [0, 1]).

I Theorem 7. The randomized algorithm for SCD described above is O(log k · logN)-
competitive.

The proof of Theorem 7 is given in the full version of this paper.

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:13

Improved O(log k · logn)-Competitive Rounding
By modifying the O(log k · logN)-competitive randomized rounding, we prove the following
theorem.

I Theorem 8. There exists a non-clairvoyant, randomized O(log k · logn)-competitive algo-
rithm for SCD.

The modified rounding algorithm and its analysis appear in the full version of this paper.

5 Lower Bounds for Clairvoyant SCD

In this section, we show Ω(
√

log k) and Ω(
√

logn) lower bounds on competitiveness for any
randomized, clairvoyant algorithm for SCD or fractional SCD. While the lower bounds use
instances in which different sets can have different costs, these instances can be modified to
obtain instances with identical set costs. This implies that the lower bounds also apply to
the unweighted setting. This modification is shown in Subsection 5.2.

This section shows the following theorem.

I Theorem 9. Any randomized algorithm for SCD or fractional SCD is both Ω(
√

log k)-
competitive and Ω(

√
logn)-competitive.

In proving Theorem 9, we show a lower bound on competitiveness of a deterministic
fractional algorithm against an integral optimum. Showing this is enough to prove the
theorem, since any randomized online algorithm (fractional or integral) can be converted to
a deterministic fractional online algorithm with identical (or lesser) cost. This follows from
setting the momentary buying function of a set at a given time to be the expectation of that
value in the randomized algorithm. Since the optimum is integral, the bound also holds for
integral SCD, as the theorem states. Therefore, we only consider deterministic fractional
online algorithms henceforth.

We show our lower bounds by constructing a set of SCD instances, {Ii}∞i=0. For each
i ≥ 0, the SCD instance Ii contains 2i sets and 3i elements. We show that any algorithm
must be Ω(

√
i)-competitive for Ii, which is both Ω(

√
logm) and Ω(

√
logn). Noting that

k ≤ m, we also have Ω(
√

log k) as required.
The instance Ii exists within the time interval [0, 3i). That is, no request of Ii is released

before time 0, and at time 3i the optimum has served all requests in Ii, and the algorithm
has incurred a high enough cost.

We define the sequence (ci)∞i=0, which is used in the construction of Ii. The sequence is
defined recursively, such that c0 = 1 and for any i ≥ 1, we have that

ci = ci−1 + 1
12ci−1

.

We now describe the recursive construction of the instance Ii. We first describe the
universe of Ii, which consists of its sets and elements. We then describe the requests of Ii.

Universe of Ii
For the base instance I0, the universe consists of a single element e and a single set S = {e}.
We have that c(S) = 1.

For i ≥ 1, the recursive construction of Ii using Ii−1 is as follows. Denote by Ei−1 the
elements in the universe of Ii−1, and by Hi−1 the family of sets in the universe of Ii−1. For
the construction of Ii, consider three disjoint copies of Ei−1 and Hi−1. For l ∈ {1, 2, 3}, we

ESA 2020

8:14 Set Cover with Delay – Clairvoyance Is Not Required

This figure shows the universes of I0, I1 and I2. In the figure, each element is a point and the
sets are the bodies containing them, where each set has a distinct color. The costs of the sets
are also shown in the figure. The figure shows how three copies of the set of elements Ei−1
(of the instance Ii−1) appear in Ii – the copy E1

i−1 appears at the top of Ii’s visualization,
the copy E2

i−1 appears at the bottom-left, and the copy E3
i−1 appears at the bottom-right.

c(S) = 1

c(S) = 1

c(S) = 1 + α1

c(S) = 1 c(S) = (1 + α1) · (1 + α2)

c(S) = 1 + α1 c(S) = 1 + α2

I0 I1 I2

Figure 5.1 The Universes of I0, I1 and I2.

denote by Eli−1 and H l
i−1 the l’th copy of Ei−1 and Hi−1, respectively. We denote by Sl

the copy of the set S ∈ Hi−1 in H l
i−1. Similarly, we denote by el the copy of an element

e ∈ Ei−1 in Eli−1.
The universe of Ii consists of:
The elements Ei = E1

i−1 ∪ E2
i−1 ∪ E3

i−1.
The family of sets Hi = T1 ∪ T2, where T1 and T2 are defined below.

We define:
The family of sets T1 = {S1 ∪ S2|S ∈ Hi−1}. A set T ∈ T1 formed from S ∈ Hi−1 has
cost c(T) = c(S).
The family of sets T2 = {S1 ∪ S3|S ∈ Hi−1}. A set T ∈ T2 formed from S ∈ Hi−1 has
cost c(T) = (1 + αi) · c(S), with αi = 1

2ci−1
.

Requests of Ii
We first describe a type of request used in our construction. Let S be a set such that there
exists an element e ∈ S such that e is in no other set besides S (we call e unique to S). For
times a, b such that a < b, we define a request qba(S) that can be released at any time r ≤ a
on an element unique to S, and satisfies:
1.
∫ a
r
dj(t) dt = 0

2.
∫ b
r
dj(t) dt ≥ c(S).

I Remark 10. For the degenerate case of set cover with deadlines, when observing a request
with deadline at time b, it can be said to accumulate 0 delay until any time before b, and
infinite delay until time b. Therefore, deadline requests can function as qba(S) requests. Since
all requests used in our construction are qba(S) requests for some a, b, S, our lower bound
applies for set cover with deadlines as well.

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:15

To use those qba(S) requests, we require the following proposition, which states that a
qba(S) request can be released on every S.

I Proposition 11. For every set T ∈ Hi, there exists an element e ∈ Ei unique to T .

Proof. By induction on i. For the base case, this holds since there is only a single set with
a single element. Assuming the proposition holds for Ii−1, we show that it holds for Ii by
observing that there exists S ∈ Hi−1 such that T = S1 ∪ Sl for l ∈ {2, 3}. Via induction,
there exists an element e ∈ Ei−1 such that e ∈ S and e /∈ S′ for every S′ ∈ Hi−1 such that
S′ 6= S. Choosing the element el yields the proposition. J

Base case of I0 – at time 0, the request q1
0(S) is released on the single element e.

Recursive construction of Ii using Ii−1 – we define C(Ii) to be
∑
S∈Hi

c(S). We
now define the instance Ii:

1. At time 0:
a. Release q3i

2·3i−1(T) for every T ∈ T2.
b. Release Ii−1 on the elements E1

i−1 (see Remark (a)).
2. At time 3i−1:

a. If the algorithm has bought sets of T2 at a total cost of at least 1
2 · (1 + αi) ·C(Ii−1),

release (1 + αi)Ii−1 on the elements E3
i−1 (see Remark (c)).

b. Otherwise, release Ii−1 on the elements of E2
i−1 (see Remark (b)).

The construction of Ii includes releasing copies of Ii−1 on the elements Eli−1, for l ∈
{1, 2, 3}. The following remarks make this well-defined.

I Remark (a). The Ii−1 on E1
i−1: every set S ∈ Hi−1 forms two sets in Hi, which are

T1 = S1 ∪ S2 ∈ T1 and T2 = S1 ∪ S3 ∈ T2. The Ii−1 construction on E1
i−1 treats buying

either of these sets as buying the set S. That is, it treats the sum of the momentary buying
of T1 and of T2 as the momentary buying of S.

I Remark (b). The Ii−1 on E2
i−1: in this instance, for every set S ∈ Hi−1, the Ii−1

construction treats buying T1 = S1 ∪ S2 ∈ T1 as buying S.

I Remark (c). The scaled (1 +αi)Ii−1 on E3
i−1: similarly to Remark 5, in this instance,

for every set S ∈ Hi−1, the Ii−1 construction treats buying T2 = S1 ∪ S3 ∈ T2 as buying S.
In addition, since the sets of T2 are (1 + αi)-times more expensive than the original sets of
Hi−1, the delays of the jobs in Ii−1 are also scaled by 1 + αi in order to maintain the Ii−1
instance. We denote this scaled instance by (1 + αi)Ii−1.

5.1 Analysis of Lower Bounds
We show that any online fractional algorithm is at least ci competitive on Ii with respect to
the integral optimum.

I Lemma 12. The optimal integral algorithm can serve Ii by time 3i with no delay cost by
buying every set in Hi exactly once, for a total cost of C(Ii).

Proof. Via induction on i. For the base case of i = 0, the optimal algorithm buys the single
set S at time 0 and pays c(S) = C(I0). Now, for i ≥ 1, suppose the optimum can serve the
instance Ii−1 according to the lemma. We observe the optimum in Ii according to the cases
in the release of Ii:

ESA 2020

8:16 Set Cover with Delay – Clairvoyance Is Not Required

Case 2a: In this case, the optimum could have served Ii−1 on E1
i−1 by time 3i−1 by buying

each set of T1 exactly once, with no delay cost. It could then serve (1 + αi)Ii−1 on E3
i−1

by time 2 · 3i−1 by buying each set of T2 exactly once, with no delay cost. Since the
optimum has bought all of T2, the requests released on step 1a have also been served
before incurring delay. The lemma thus holds for this case.

Case 2b: In this case, the optimum could have served Ii−1 on E1
i−1 by time 3i−1 by buying

each set of T2 exactly once, with no delay cost. It could then serve Ii−1 on E2
i−1 by time

2 · 3i−1 by buying each set of T1 exactly once, with no delay cost. Since the optimum has
bought all of T2, the requests released on step 1a have again been served before incurring
delay. The lemma thus holds for this case as well. J

We now analyze the cost of the algorithm.

I Lemma 13. Any online algorithm has a cost of at least ci · C(Ii) on Ii by time 3i.

Proof. By induction on i.
For i = 0, observe the algorithm at time 1. Denoting by ΓS the total buying of the single

set S by the algorithm by time 1, the algorithm has a cost of at least

c(S) · ΓS + (1− ΓS) ·
∫ 1

0
dq1

0(S)(t) dt ≥ c(S) = C(I0)

where the inequality is due to the definition of q1
0(S). This finishes the base case of the

induction.
For the case that i ≥ 1, assume that the lemma holds for i− 1. We show that it holds

for i.
Fix any algorithm for Ii. We denote by Γ the total buying cost of the algorithm in the

time interval [0, 3i−1) for sets of T2. We again split into cases according to the chosen branch
in the construction of Ii.
Case 2a: In this case we have Γ ≥ 1

2 · (1 + αi) · C(Ii−1). From the definition of the first
Ii−1 released, the adversary is oblivious to whether a copy of S ∈ Hi−1 came from T1
or T2. Using the induction hypothesis, any online algorithm for this instance incurs a
cost of at least ci−1 · C(Ii−1) by time 3i−1, including the algorithm in which buying sets
from T2 are replaced with buying the equivalent sets from T1. Such a modified online
algorithm would cost αi

1+αi
Γ less than the current algorithm, which is at least αi

2 ·C(Ii−1).
Therefore, the algorithm pays at least (ci−1 + αi

2) · C(Ii−1) in the interval [0, 3i−1).
As for the second instance (1+αi)Ii−1, the algorithm must pay at least (1+αi)·ci−1·C(Ii−1)
by time 2 · 3i−1 via induction.
Overall, the algorithm pays by time 3i at least((

ci−1 + αi
2

)
· C(Ii−1)

)
+ ((1 + αi) · ci−1 · C(Ii−1))

=
(

(2 + αi)ci−1 + αi
2

)
· C(Ii−1)

= ci−1 · C(Ii) + αi
2 · C(Ii−1)

≥
(
ci−1 + αi

6

)
· C(Ii)

=
(
ci−1 + 1

12ci−1

)
· C(Ii)

where the inequality is due to C(Ii) = (2 + αi)C(Ii−1) ≤ 3C(Ii−1).

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:17

Case 2b: In this case we have Γ < 1
2 · (1 + αi) · C(Ii−1). For the first Ii−1 instance, the

algorithm pays at least ci−1 ·C(Ii−1) + Γ · αi

1+αi
by time 3i−1, similar to the previous case.

For the second Ii−1 instance, released on E2
i−1, the algorithm must pay via induction

at least ci−1 · C(Ii−1) by time 2 · 3i−1. Since sets of T2 do not satisfy requests in this
instance, this cost is either in buying sets of T1 or in delay of requests from that Ii−1
instance.
In addition to the two Ii−1 instances, due to the q3i

2·3i−1(S) requests released in step 1a,
the algorithm has a cost of at least

(∑
T∈T2

c(T)
)
− Γ = (1 + αi)C(Ii−1)− Γ during the

interval [1, 3) in either buying sets of T2 in order to finish these requests, or in delay by
those requests (using a similar argument to that in the base case). Overall, the algorithm
has a cost of at least(

ci−1 · C(Ii−1) + Γ · αi
1 + αi

)
+ (ci−1 · C(Ii−1)) + ((1 + αi)C(Ii−1)− Γ)

= (2ci−1 + 1 + αi) · C(Ii−1)− 1
1 + αi

Γ

≥ (2ci−1 + 1 + αi) · C(Ii−1)− 1
2C(Ii−1)

=
(

2ci−1 + 1
2 + αi

)
· C(Ii−1)

=
(

(2 + αi)ci−1 + 1
2 + (1− ci−1)αi

)
· C(Ii−1)

= ci−1 · C(Ii) +
(

1
2 + 1

2ci−1
− 1

2

)
· C(Ii−1)

≥
(
ci−1 + 1

6ci−1

)
· C(Ii) ≥ ci · C(Ii)

where the fourth equality and the second inequality are due to C(Ii) = (2 +αi)C(Ii−1) ≤
3C(Ii−1), and the fourth equality uses the definition of αi. J

Proof of Theorem 9. Lemmas 12 and 13 immediately imply that any deterministic fractional
algorithm is at least ci-competitive on Ii with respect to the integral optimum. Solving
the recurrence in the definition of ci, we have that ci = Ω(

√
i). To observe this, note that

for every i, the first index i′ ≥ i such that ci′ ≥ ci + 1 is at most O(ci) larger than i.
Since k ≤ m = 2i and n = 3i, this provides lower bounds of Ω(

√
log k) and Ω(

√
logn) for

deterministic algorithms for fractional SCD. As stated before, this implies the same lower
bound for randomized algorithms for both SCD and fractional SCD. J

5.2 Reduction to Unweighted
The lower bound above uses weighted instances, in which sets may have different costs. In
this subsection, we describe how to convert a weighted instance to an unweighted instance,
in which all set costs are equal. This conversion maintains both the Ω(

√
log k) and Ω(

√
logn)

lower bounds on competitiveness. The conversion consists of creating multiple copies of each
element, and converting each original set to multiple sets of cost 1. The cost of the original
set affects the cardinality of the new sets, such that a set with higher cost turns into smaller
sets of cost 1.

We suppose that the costs of all sets are integer powers of 2. This can easily be achieved
by rounding the costs to powers of 2 (losing a factor of 2 in the lower bound), and then
scaling the instance (both delays and buying costs) by the inverse of the lowest cost.

ESA 2020

8:18 Set Cover with Delay – Clairvoyance Is Not Required

Denote by C = 2M the largest cost in the instance. The universe of the unweighted
instance is the following:

For each element e in the original instance, we have C elements in the unweighted instance,
denoted by e0, ..., eC−1.
For each set S, we have c(S) sets in the unweighted instance, labeled S0, ..., Sc(S)−1.
We have that ei ∈ Sj if and only if both e ∈ S and i ≡ j mod c(S).

Whenever a request qj arrives in the original instance on an element e with delay function
dj(t), C requests qj,0, ..., qj,C−1 arrive in the unweighted instance on the elements e0, ..., eC−1

respectively. For each 0 ≤ l ≤ C − 1, the request qj,l has the delay function dj,l(t) = dj(t)
C .

For the instance Ii described above, we consider its unweighted conversion, denoted by
I ′i. Any fractional online algorithm for I ′i can be converted to a fractional online algorithm
for Ii with a cost which is at most that of the original algorithm. This is done by setting the
buying function of a set S in Ii to the average of the buying functions of S0, ..., Sc(S)−1.

In addition, the integral optimum described in the analysis of Ii can be modified to an
integral optimum for I ′i with identical cost. This is by converting each buying of the set S in
Ii to buying the sets S0, ..., Sc(S)−1 in I ′i.

The aforementioned facts imply that any fractional algorithm is Ω(
√
i) competitive on I ′i.

Note that the parameter k is the same for Ii and I ′i, implying Ω(
√

log k)-competitiveness
on I ′i. In addition, denoting by n′ the number of elements in I ′i, we have that n′ = C · n.
Observing the construction of Ii, we have that n = 3i and C ≤ 2i (Using the fact that
(1 + αj) ≤ 2 for any j). Therefore, logn′ ≤ log(6i), yielding that i = Ω(logn′), and a
Ω(
√

logn′) lower bound on competitiveness for I ′i.

6 Vertex Cover with Delay

In this section, we show a 3-competitive deterministic algorithm for VCD. Recall that VCD
is a special case of SCD with k = 2, where k is the maximum number of sets to which
an element can belong. In fact, we show a (k + 1)-competitive deterministic algorithm for
SCD, which is therefore 3-competitive for VCD. Recall that since the TCP acknowledgment
problem is a special case of VCD with a single edge, the lower bound of 2-competitiveness
for any deterministic algorithm on the TCP acknowledgment problem (shown in [19]) applies
to VCD as well.

The (k + 1)-competitive algorithm for SCD, ON, is as follows.
1. For every set S, maintain a counter z(S) of the total delay incurred by ON over requests

on elements in S (all z(S) are initialized to 0).
2. If for any S, we have that z(S) = c(S):

a. Buy S.
b. Zero the counter z(S).

We denote by z(S, t) the value of z(S) at time t. We prove the following theorem.

I Theorem 14. The algorithm ON for SCD has a competitive ratio of k + 1. In particular,
ON is 3-competitive for VCD.

I Lemma 15. The cost of the algorithm is at most k + 1 times its delay cost.

Proof. It is sufficient to bound the buying cost in terms of the delay cost. For each purchase
of a set S, z(S) must increase from 0 to c(S). A delay for a request contributes to the
increase of at most k counters. Thus, the buying cost is at most k times the delay cost. J

We are left to bound the delay cost of the algorithm by the adversary’s cost.

I Lemma 16. For any set S, let T be a subset of the requests on elements of S such that
all requests of T are unserved at time t. Then we have

∑
j|qj∈T

∫∞
t
dON
j (t′) dt′ ≤ c(S).

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:19

Proof. Denote by t̂ the first time in which all requests in T are served. We have that

∑
j|qj∈T

∫ ∞
t

dON
j (t′) dt′ =

∑
j|qj∈T

∫ t̂

t

dON
j (t′) dt′.

At time t, we have z(S, t) ≥ 0. Observe that the algorithm never bought S in the time
interval [t, t̂). Thus, at any time t′′ ∈ [t, t̂) we have that

z(S, t′′) = z(S) +
∑
j|qj∈T

∫ t′′

t

dON
j (t′) dt′.

Observe that z(S, t′′) < c(S), otherwise the algorithm would have bought S at t′, serving all
requests in T , in contradiction to the definition of t̂. Therefore

∑
j|qj∈T

∫ t′′
t
dON
j (t′) dt′ < c(S).

The claim follows as t′′ approaches t̂. J

I Lemma 17. The delay cost of the algorithm is at most the adversary’s cost.

Proof. We construct a solution to the dual LP from section 3, with a goal function which is
the delay cost of the algorithm. This charges the delay cost of the algorithm to the fractional
optimum, and thus to the integer optimum as well.

Specifically, we set yj(t) = dON
j (t) for every j, t. Obviously, the C2 constraints hold. In

order to show that the C1 constraint for a set Si and a time t holds, observe that any request
qj ∈ Si served in ON before time t has dON

j (t′) = 0 for all t′ ≥ t. Using Lemma 16 for the
requests unserved at t concludes the proof. J

Proof of theorem 14. The proof of the theorem results directly from lemmas 16 and 17. J

Note that this algorithm’s competitive ratio is indeed as bad as k+ 1. Consider, for example,
a single request in k sets with unit costs, which the optimum solves with cost 1 and the
algorithm has cost k + 1.

References
1 Sebastian Abshoff, Christine Markarian, and Friedhelm Meyer auf der Heide. Randomized

online algorithms for set cover leasing problems. In 8th COCOA, pages 25–34, 2014.
2 Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul M.

Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching with
delays. In Proceedings of the APPROX/RANDOM, pages 1:1–1:20, 2017. doi:10.4230/
LIPIcs.APPROX-RANDOM.2017.1.

3 Baruch Awerbuch, Yossi Azar, Amos Fiat, and Frank Thomson Leighton. Making commitments
in the face of uncertainty: How to pick a winner almost every time. In Proceedings of the
Twenty-Eighth STOC, pages 519–530, 1996. doi:10.1145/237814.238000.

4 Y. Azar and A. Jacob-Fanani. Deterministic Min-Cost Matching with Delays. ArXiv e-prints,
June 2018. arXiv:1806.03708.

5 Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the compet-
itiveness of min-cost perfect matching with delays. In 28th SODA, pages 1051–1061, 2017.
doi:10.1137/1.9781611974782.67.

6 Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In
49th STOC, pages 551–563, 2017. doi:10.1145/3055399.3055475.

7 Yossi Azar and Noam Touitou. General framework for metric optimization problems with
delay or with deadlines. In Proceedings of the 60th IEEE FOCS, pages 60–71, 2019. doi:
10.1109/FOCS.2019.00013.

ESA 2020

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.1
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.1
https://doi.org/10.1145/237814.238000
http://arxiv.org/abs/1806.03708
https://doi.org/10.1137/1.9781611974782.67
https://doi.org/10.1145/3055399.3055475
https://doi.org/10.1109/FOCS.2019.00013
https://doi.org/10.1109/FOCS.2019.00013

8:20 Set Cover with Delay – Clairvoyance Is Not Required

8 Nikhil Bansal and Ho-Leung Chan. Weighted flow time does not admit o(1)-competitive
algorithms. In Proceedings of the Twentieth SODA, pages 1238–1244, 2009. URL: http:
//dl.acm.org/citation.cfm?id=1496770.1496904.

9 Kshipra Bhawalkar, Sreenivas Gollapudi, and Debmalya Panigrahi. Online set cover with set
requests. In Proceedings of the APPROX/RANDOM, pages 64–79, 2014.

10 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jiri Sgall, Nguyen Kim Thang, and Pavel Veselý. Online algorithms
for multi-level aggregation. In Proceedings of the 24th ESA, pages 12:1–12:17, 2016. doi:
10.4230/LIPIcs.ESA.2016.12.

11 Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawel Schmidt. A primal-dual
online deterministic algorithm for matching with delays. CoRR, abs/1804.08097, 2018. arXiv:
1804.08097.

12 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. A match in time saves nine:
Deterministic online matching with delays. In 15th WAOA, pages 132–146, 2017. doi:
10.1007/978-3-319-89441-6_11.

13 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line. In
24th SIROCCO, 2018.

14 Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon. O(depth)-competitive
algorithm for online multi-level aggregation. In Twenty-Eighth SODA, pages 1235–1244, 2017.
doi:10.1137/1.9781611974782.80.

15 Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José Verschae. The online set ag-
gregation problem. In Proceedings of the LATIN 2018:, pages 245–259, 2018. doi:
10.1007/978-3-319-77404-6_19.

16 Amit Chakrabarti and Anthony Wirth. Incidence geometries and the pass complexity of
semi-streaming set cover. In Proceedings of the Twenty-Seventh SODA, pages 1365–1373, 2016.
doi:10.1137/1.9781611974331.ch94.

17 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In David B. Shmoys,
editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 624–633. ACM, 2014. doi:10.1145/2591796.2591884.

18 Stefan Dobrev, Jeff Edmonds, Dennis Komm, Rastislav Královic, Richard Královic, Sacha
Krug, and Tobias Mömke. Improved analysis of the online set cover problem with advice.
Theor. Comput. Sci., 689:96–107, 2017.

19 Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. TCP dynamic acknowledgment
delay: Theory and practice. In Proceedings of the Thirtieth STOC, pages 389–398, 1998.
doi:10.1145/276698.276792.

20 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In
Proceedings of the 48th STOC, pages 333–344, 2016. doi:10.1145/2897518.2897557.

21 Yuval Emek and Adi Rosén. Semi-streaming set cover - (extended abstract). In Proceedings
of the 41st ICALP, pages 453–464, 2014. doi:10.1007/978-3-662-43948-7_38.

22 Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr Sankowski, and
Mohit Singh. Set covering with our eyes closed. SIAM J. Comput., 42(3):808–830, 2013.

23 Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Panigrahi. Online
and dynamic algorithms for set cover. In Proceedings of the 49th STOC, pages 537–550, 2017.
doi:10.1145/3055399.3055493.

24 Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan. Minimum latency submodular
cover. ACM Trans. Algorithms, 13(1):13:1–13:28, 2016. doi:10.1145/2987751.

25 Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Universal
approximations for tsp, steiner tree, and set cover. In 37th STOC, pages 386–395, 2005.
doi:10.1145/1060590.1060649.

26 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/j.jcss.2007.06.019.

http://dl.acm.org/citation.cfm?id=1496770.1496904
http://dl.acm.org/citation.cfm?id=1496770.1496904
https://doi.org/10.4230/LIPIcs.ESA.2016.12
https://doi.org/10.4230/LIPIcs.ESA.2016.12
http://arxiv.org/abs/1804.08097
http://arxiv.org/abs/1804.08097
https://doi.org/10.1007/978-3-319-89441-6_11
https://doi.org/10.1007/978-3-319-89441-6_11
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1007/978-3-319-77404-6_19
https://doi.org/10.1007/978-3-319-77404-6_19
https://doi.org/10.1137/1.9781611974331.ch94
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/276698.276792
https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1007/978-3-662-43948-7_38
https://doi.org/10.1145/3055399.3055493
https://doi.org/10.1145/2987751
https://doi.org/10.1145/1060590.1060649
https://doi.org/10.1016/j.jcss.2007.06.019

Y. Azar, A. Chiplunkar, S. Kutten, and N. Touitou 8:21

27 Simon Korman. On the use of randomization in the online set cover problem. Master’s thesis,
Weizmann Institute of Science, 2005.

28 Noam Nisan. The communication complexity of approximate set packing and covering. In
Proceedings of the ICALP, pages 868–875, 2002. doi:10.1007/3-540-45465-9_74.

29 Ashwin Pananjady, Vivek Kumar Bagaria, and Rahul Vaze. The online disjoint set cover
problem and its applications. In 2015 IEEE INFOCOM, pages 1221–1229, 2015.

30 Thomas W. Reiland. Optimality conditions and duality in continuous programming ii. the
linear problem revisited. Journal of Mathematical Analysis and Applications, 1980.

ESA 2020

https://doi.org/10.1007/3-540-45465-9_74

Improved Bounds for Metric Capacitated Covering
Problems
Sayan Bandyapadhyay
Department of Informatics, University of Bergen, Norway
sayan.bandyapadhyay@gmail.com

Abstract
In the Metric Capacitated Covering (MCC) problem, given a set of balls B in a metric space P with
metric d and a capacity parameter U , the goal is to find a minimum sized subset B′ ⊆ B and an
assignment of the points in P to the balls in B′ such that each point is assigned to a ball that contains
it and each ball is assigned with at most U points. MCC achieves an O(log |P |)-approximation using
a greedy algorithm. On the other hand, it is hard to approximate within a factor of o(log |P |) even
with β < 3 factor expansion of the balls. Bandyapadhyay et al. [SoCG 2018, DCG 2019] showed
that one can obtain an O(1)-approximation for the problem with 6.47 factor expansion of the balls.
An open question left by their work is to reduce the gap between the lower bound 3 and the upper
bound 6.47. In this current work, we show that it is possible to obtain an O(1)-approximation
with only 4.24 factor expansion of the balls. We also show a similar upper bound of 5 for a more
generalized version of MCC for which the best previously known bound was 9.

2012 ACM Subject Classification Theory of computation→ Computational geometry; Mathematics
of computing → Approximation algorithms

Keywords and phrases Capacitated covering, approximation algorithms, bicriteria approximation,
LP rounding

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.9

Funding This work is partly supported by the Research Council of Norway via the project “MUL-
TIVAL”.

Acknowledgements I am indebted to Tanmay Inamdar for giving invaluable feedback on this work.
I also thank the anonymous reviewers whose suggestions have helped to further improve the quality
of the paper.

1 Introduction

In any metric space P with metric d, a ball B(c, r) with center c ∈ P and radius r is defined
as the set of points at a distance at most r from c, i.e., B(c, r) = {p ∈ P | d(c, p) ≤ r}. In
the Metric Capacitated Covering (MCC) problem, we are given a set of balls B in the metric
space P with metric d. We are also given a capacity parameter U ∈ N for the balls. The
goal is to find a minimum sized subset B′ ⊆ B and an assignment φ : P → B′ such that for
any point p ∈ P , the ball φ(p) contains p and the number of points assigned to a ball B ∈ B′
via φ is at most U , i.e., |φ−1(B)| ≤ U . For Bi ∈ B, we denote its center and radius by ci
and ri, respectively.

The greedy algorithm of [28] yields an O(log |P |)-approximation for MCC. Indeed, this
approximation factor is tight, which can be proved using the following simple reduction
from set cover. For each element, add a point. For each set, add a ball of radius 1. If an
element is in a set, then the distance between the center of the corresponding ball and the
corresponding point is set to 1. Consider the metric space induced by the centers and the
points. The capacity of each ball is set to the total number of elements, say n. Now, if there
is a set cover of size k, then all the points can be covered by k balls without violating the

© Sayan Bandyapadhyay;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8875-0102
mailto:sayan.bandyapadhyay@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Improved Bounds for Metric Capacitated Covering Problems

capacities. The converse is also true. As set cover is hard to approximate within a factor of
o(logn) under standard complexity theoretic assumptions [16], it is not possible to find an
approximation for MCC which is asymptotically better than O(logn).

As it is not possible to obtain a o(logn)-approximation for MCC, researchers have focused
on obtaining bicriteria approximation. An (α, β) bicriteria approximation for MCC is a
solution where the balls can be expanded by a factor of β (i.e., for a ball Bi ∈ B and a
point pj assigned to Bi, d(ci, pj) ≤ β · ri) and the size of the solution is at most α times the
optimum solution size (that does not expand the balls). From the above reduction, it follows
that no (o(logn), β) bicriteria approximation is possible for MCC under standard complexity
theoretic assumptions for any β < 3. This is true, as in the construction for a ball Bi that
does not contain a point pj , the distance between ci and pj is at least 3. Thus, with less
than 3 factor expansion, Bi cannot contain any more points than before.

On the positive side, Bandyapadhyay et al. [4] obtained an (O(1), 6.47) bicriteria approx-
imation for the problem, i.e., with only a 6.47 factor expansion of the balls it is possible
to obtain a constant approximation. Their algorithm is based on rounding of the natural
LP relaxation of MCC. One problem that was left open by the work of [4] is to reduce the
gap between the lower bound 3 and the upper bound 6.47. Thus, for what possible value
of 3 ≤ β < 6.47 can one obtain an (O(1), β) bicriteria approximation for MCC? They also
consider a generalization of MCC – Metric Monotonic Capacitated Covering (MMCC). This
problem is similar to MCC except each ball Bi has its individual capacity Ui ∈ N which must
be satisfied if it is chosen in the solution and the capacities are monotonic – for any two balls
Bi and Bj if the radius of Bi is at least the radius of Bj , then Ui ≥ Uj . At first glance, this
assumption might seem artificial. However, this model has applications in wireless network.
In a wireless network, coverage areas of antennas can be modelled using balls. Moreover, it
might be economical to invest in capacity of an antenna to serve more clients, if its coverage
area is larger. Bandyapadhyay et al. [4] gave an (O(1), 9) bicriteria approximation for MMCC
using the same approach.

1.1 Our Results and Techniques
In this paper, we obtain improved results both for MCC and MMCC.

For MCC, we obtain an (O(1), 4.24) bicriteria approximation, i.e., it is possible to obtain
an O(1)-approximation with only 4.24 factor expansion of the balls when the capacities
are uniform.
For MMCC, we obtain an (O(1), 5) bicriteria approximation, i.e., it is possible to obtain
an O(1)-approximation with only 5 factor expansion of the balls when the capacities are
monotonic.

Similar to [4] our results are also based on LP rounding. Indeed, our starting point is
their rounding algorithm. For the purpose of giving an overview of our technique, let us focus
on MMCC. The algorithm in [4] consists of three steps – Preprocessing, Cluster Formation
and Selection of Balls. Each of Preprocessing and Selection of Balls incurs an overhead of
a factor 3 expansion of the balls, resulting in the 9 factor expansion. In our algorithm we
judiciously avoid the preprocessing step to save the factor 3 expansion. At first glance, it is
not entirely clear how to do the rounding without preprocessing, as the preprocessed solution
has several “nice” properties. Nevertheless, we partition the set of points into two subsets
and construct two auxilliary LPs. Using the initial fractional LP solution, we construct two
feasible fractional solutions to these two LPs. We round these two solutions independently
to obtain two integral solutions corresponding to the two subsets of points. For rounding the

S. Bandyapadhyay 9:3

first LP, we use an algorithm similar to the one in [4], but without preprocessing. We show
that the constructed fractional LP solution has equally nice properties so that the algorithm
in [4] can be extended in this case. For rounding the second LP, we use a rather simple
algorithm.

The sets of balls involved in two LPs are not necessarily disjoint, and thus a ball can be
selected in both of the solutions. But, taking multiple copies of a ball is not allowed. To
resolve this issue, we first identify a subset of balls and allow only these balls to be involved
in both solutions. Moreover, we scale down the capacities of these balls by a suitable factor.
This ensures that even if a ball is selected in both solutions, the total capacity used by the
copies does not exceed the original capacity. Note that the scaling of capacities leads to a new
issue that the capacities no longer satisfy the monotonicity property in general. However, we
show that it is possible to overcome this issue by considering two classes of balls separately –
one whose capacities remain unchanged and the other whose capacities are scaled down.

1.2 Related Work
Considering the hardness of MCC, researchers have studied the Euclidean version of the
problem with the goal of obtaining better approximation. The dimension d of the space is
assumed to be a constant. One interesting case is when the set B contains all possible unit
balls, which appeared in the Sloan Digital Sky Survey project [25]. Ghasemi and Razzazi
[18] have obtained a PTAS for this case. In the general Euclidean case the best known
approximation factor is still O(logn). Bandyapadhyay et al. [4] showed that in this special
case of MCC only 1 + ε expansion of the balls is sufficient to obtain a constant approximation.

MCC is a special version of Capacitated Set Cover (CSC). CSC is similar to set cover
except each set Si has a capacity Ui. Moreover, we want to find an assignment of the points
to the chosen subfamily of sets such that each element is assigned to a set it is in and at most
Ui elements are assigned to each set Si. CSC is a well-studied problem. Wolsey [28] designed
a greedy algorithm for CSC that achieves a tight O(logn)-approximation. Capacitated vertex
cover is another special case of CSC, where each element is contained in exactly two sets. A
3-approximation for this problem was given by Chuzhoy and Naor [12]. The approximation
factor was subsequently improved to 2 by Gandhi et al. [17]. The generalization where each
element belongs to at most a bounded number of sets is also well-studied [20, 29].

The uncapacitated version of MCC (Metric Uncapacitated Covering (MUC)), where each
set can be assigned with any number of points is another extensively studied problem. Note
that the same bicriteria hardness of MCC mentioned above holds even for MUC. But, using a
simple LP rounding scheme one can obtain a (1, 3) bicriteria approximation for this problem.
The MUC problem in the fixed-dimensional Euclidean space also has received huge attention
from the researchers. Brönnimann and Goodrich [7] have designed an O(1)-approximation
for this problem in the plane. In a celebrated work, Mustafa and Ray [26] improved this
result by obtaining a PTAS for the problem. In dimension more than 2, the problem is
notoriously hard and the best known approximation is O(logn). Considering this situation
Har-Peled and Lee [19] gave a (1 + ε, 1 + ε) bicriteria approximation.

Capacitated clustering and facility location problems are another set of interesting
and well-studied problems. One such interesting problem is capacitated k-center. O(1)-
approximations are known both for the uniform [6, 21] and non-uniform [2, 14] version of
this problem. Another popular clustering problem is capacitated k-median for which no
O(1)-approximation is known so far. Seemingly the existing techniques are not capable
of handling the combination of the global constraint on the number of centers and the
capacity constraint. Indeed, if either of these constraints is allowed to be violated by an

ESA 2020

9:4 Improved Bounds for Metric Capacitated Covering Problems

O(1) factor, O(1)-approximations are known in those cases [9, 8, 10, 13, 15, 23, 24]. For
capacitated facility location O(1)-approximations are known based on local search paradigm
[1, 5, 11, 22, 27] and rounding of LP [3].

1.3 Paper Outline
In Section 2 we describe the natural LP for MMCC and have some definitions, which will be
useful throughout the paper. In Section 3 we give an overview of the algorithm of [4]. Our
LP rounding algorithm for MMCC and the analysis appear in Section 4. In Section 5 we
show how to modify our algorithm for MMCC in the uniform case to obtain the improved
bound. Finally, in Section 6 we conclude with some open problems.

2 Preliminaries

Recall that in MMCC we are given a set of points P and a set of balls B. The capacity of
each ball Bi ∈ B is Ui. Also, these capacities satisfy monotonicity, i.e., for any two balls Bi
and Bj , if ri ≥ rj , Ui ≥ Uj .

The relaxation of the natural LP for MMCC is shown in the following. In the LP for
MMCC, we have a variable yi for each ball Bi ∈ B that indicates whether Bi is in the solution
(yi = 1) or not (yi = 0). For each ball Bi and each point pj ∈ P , there is a variable xij that
indicates whether pj is assigned to Bi (xij = 1) or not (xij = 0). Constraint 1 ensures that if
a point is assigned to a ball, the ball must be selected in the solution. Constraint 2 ensures
that the total number of points assigned to Bi is at most Ui. Constraint 3 ensures that each
point is assigned to exactly one ball. Constraint 4 ensures that if a point pj is assigned to a
ball Bi, pj must be contained in Bi. The remaining constraints are relaxed in MMCC-LP,
which define the domains of the variables. We note that the LP relaxation for MCC is same
as MMCC-LP except there all the Ui are equal.

minimize
∑
Bi∈B

yi (MMCC-LP)

s.t. xij ≤ yi ∀pj ∈ P, ∀Bi ∈ B (1)∑
pj∈P

xij ≤ yi · Ui ∀Bi ∈ B (2)

∑
Bi∈B

xij = 1 ∀pj ∈ P (3)

xij = 0 ∀pj ∈ P, ∀Bi ∈ B such that pj 6∈ Bi (4)
xij ≥ 0 ∀pj ∈ P, ∀Bi ∈ B (5)

0 ≤ yi ≤ 1 ∀Bi ∈ B (6)

We denote any solution to MMCC-LP by (x, y). To distinguish between two different
solutions, we use different annotations with x and y. The cost of (x, y) is defined as,
cost(x, y) =

∑
Bi∈B yi. For an integral solution, the cost is exactly the number of balls in

the solution. Consider any solution (x, y) to MMCC-LP. For a ball Bi and a point pj , if
xij > 0, we say Bi serves pj and pj receives xij amount of flow from Bi. The flow out of
Bi is the total amount of flow

∑
pj∈P xij that Bi gives to all the points. Next, we define an

operation that we call “reroute”. For a point pj and two balls Bi and B`, rerouting of f
amount of flow for pj from Bi to B` means we increase x`j by f and decrease xij by f . For
two balls Bi and B`, rerouting of flow from Bi to B` means for each point pj served by Bi,

S. Bandyapadhyay 9:5

we reroute xij amount of flow for pj from Bi to B`. Thus, the flow out of Bi becomes 0 after
this operation. For a point pj , a set of balls S and a ball B` /∈ S, rerouting of f amount of
flow from the balls in S to B` means we increase x`j by f and decrease xij by fi ≥ 0 for
each Bi ∈ S such that

∑
Bi∈S fi = f .

3 Overview of the Algorithm of [4]

Our algorithm is based on the algorithm of [4]. In this section we give an overview of the
algorithm of [4]. Let (x, y) be a feasible solution to MMCC-LP. The LP rounding algorithm
of [4] rounds the solution so that y values of all the balls become integral. We note that it is
sufficient to obtain such a solution. Indeed, as all the capacities are integral, it is possible to
find another solution with the same y values where all the x values are also integral [12]. The
algorithm has three major steps. The first step is the preprocessing step. Fix a 0 < α ≤ 3/8.
A ball Bi is called heavy if yi = 1 and light if 0 ≤ yi ≤ α. Let H and L be the respective set
of heavy and light balls. We note that the sets of heavy and light balls are always defined
w.r.t. an LP solution. But, for simplicity we do not explicitly mention that in the notations
H and L. The implicit solution w.r.t. which H and L are defined can be easily derived from
the context. Now, it might not be true that for all pj ∈ P , the sum of the y values of the
balls in L that serve pj is at most α. In the preprocessing step, the algorithm of [4] modifies
the computed LP solution to obtain another LP solution such that the above mentioned
property is satisfied. In particular, they prove the following lemma.

I Lemma 1 (Lemma 3.1 of [4]). Given a feasible LP solution σ = (x, y), and a parameter
0 < α ≤ 3

8 , there exists a polynomial time algorithm to obtain another LP solution σ =
(x, y) that satisfies all the constraints of MMCC-LP (Constraints 1-6), except Constraint 4.
Additionally, σ satisfies the following properties.
1. Any ball Bi ∈ B with non-zero yi is either heavy (yi = 1) or light (0 < yi ≤ α).
2. For each point pj ∈ P , we have that∑

Bi∈L:xij>0

yi ≤ α, (7)

where L is the set of light balls with respect to σ.
3. For any heavy ball Bi, and any point pj ∈ P served by Bi, d(ci, pj) ≤ 3ri.
4. For any light ball Bi, and any point pj ∈ P served by Bi, d(ci, pj) ≤ ri.
5. cost(σ) ≤ 1

αcost(σ).

Note that a point pj can be fractionally assigned by the algorithm in Lemma 1 to a heavy
ball Bi even if pi /∈ Bi, but, in this case d(ci, pj) must be at most 3ri. Hence, a factor 3
expansion of the ball is sufficient for it to serve the point. In summary, the preprocessing
step implicitly incurs an expansion factor of 3 for the heavy balls with respect to the new LP
solution σ. We also note that the preprocessing algorithm uses the fact that the capacities
are monotonic.

The second step of the algorithm is the key step and is called Cluster Formation. In
the following, we give an overview of this step. The algorithm maintains an LP solution
σ = (x, y) which is initially the output of the preprocessing step. This solution is essentially
altered throughout the step and when the step finishes yi ∈ {0, 1} for all Bi ∈ B. Each heavy
ball Bi forms a cluster which initially consists of itself ({Bi}). For any light ball Bt, either
Bt is opened fully in the solution or it joins a cluster of a heavy ball by rerouting its flow to
the heavy ball. The algorithm runs for several iterations until the fate of all these light balls
are decided.

ESA 2020

9:6 Improved Bounds for Metric Capacitated Covering Problems

In each iteration, every heavy ball uses its available capacity to reroute the flow of as
many intersecting light balls as possible to itself. Each such light ball joins the cluster of
the heavy ball. From the remaining light balls whose fate are not yet decided, a ball is
selected greedily to be included in the solution. Also, for points inside the selected ball, an
appropriate amount of flow is rerouted from other balls to this ball to utilize its capacity.
We skip the details of this flow rerouting in this overview. This completes the overview of
the step.

Note that the flow rerouting from heavy balls to a light ball when the light ball is opened
fully, is an essential component of the analysis for obtaining the constant factor guarantee on
the size of the solution. Consider a light ball Bt which is selected for opening fully and assume
that it serves kt ≤ Ut points. Then, we can set the xtj value for each of these kt points to 1,
i.e., we fully assign pj to Bt. Note that preprocessing ensures that

∑
Bi∈L:xij>0 yi ≤ α or∑

Bi∈H:xij>0 yi ≥ 1− α. Thus, when these points are fully assigned to Bt, at least (1− α)kt
amount of flow is rerouted from the heavy balls to Bt which they can now use to reroute
flow from other light balls. This argument is essential in the analysis. Now, we have an
observation which follows due to the way light balls are added to a cluster.

IObservation 2. Consider a cluster of a heavy ball Bh that contains the light balls B1, . . . , B`.
Then, when the Cluster Formation finishes,
1. For each 1 ≤ i ≤ `, there is a point pj such that pj ∈ Bh ∩Bi.
2.

∑`
i=1

∑
j∈P xij ≤ Uh −

∑
j∈P xhj, i.e., the total amount of flow out of the balls in the

cluster of Bh is at most Uh.

The third step is called Selection of Balls. In this step, from each cluster a ball is carefully
selected and expanded so that it can serve all the points served by the balls in the cluster.
For a cluster of a heavy ball Bh, if it is the largest ball in the cluster then Bh is selected
and with three factor expansion it can serve all the points served by the cluster. As during
preprocessing the heavy ball might have been expanded by a factor of 3, its total expansion
factor is 9. If Bh is not the largest ball, the largest ball B` is a light ball of the cluster. Then,
we select this light ball and expand by a factor of 5 so that it can serve all the points served
by the cluster. The light ball can serve the total flow assigned to the cluster, as U` ≥ Uh due
to monotonicity. This is another place where the monotonicity assumption on the capacities
is necessary.

The following lemma that states the guarantee achieved by the above algorithm follows
due to the analysis of [4].

I Lemma 3. There is a (6 + 5α)/α-approximation for MMCC that expands the balls by at
most a factor of 9.

4 The Modified Algorithm for MMCC

In this section, we describe our algorithm. Note that among the 9 factor expansion needed in
the algorithm of [4] 3 factor is contributed by the preprocessing step. Our algorithm avoids
this preprocessing step to save this factor 3 expansion.

Fix 0 < α ≤ 1/60. We first compute a fractional LP solution σ∗ = (x∗, y∗) to MMCC-LP.
Set yi = 1 if y∗i > α, otherwise yi = y∗i . Also, set x = x∗. Note that σ = (x, y) is a feasible
solution to MMCC-LP such that cost(σ) ≤ cost(σ∗)/α. We define the sets H and L of heavy
and light balls w.r.t. σ in the same way, i.e., H = {Bi | yi = 1} and L = {Bi | 0 < yi ≤ α}.
Note that in σ, any ball that gives some flow to a point is either a heavy or a light ball. We
take one copy of the set of heavy balls and two copies of the set of light balls. Let these sets
be H1, L1 and L2, respectively.

S. Bandyapadhyay 9:7

Next, we partition the point set into two subsets. Let P1 be the subset of points such
that pj ∈ P1 if

∑
Bi∈L xij ≤ 4α, i.e., pj gets a flow of at most 4α from the balls in L. Let

P2 = P \ P1. Based on these sets P1, P2, we are going to construct two LP solutions to two
auxilliary LPs and round them independently. Finally, we combine these two solutions to
find a solution to MMCC-LP where for each Bi ∈ B, yi ∈ {0, 1}. Intuitively, we satisfy the
demands of these two sets of points independently. The light balls are involved in both of
the solutions and they might get opened fully in both of the solutions. However, we are not
allowed to open multiple copies of a ball. To avoid this situation we reduce the capacity of
the light balls by appropriate factor in the auxilliary LP.

Let the new capacity U ′i = Ui/10 for each light ball Bi. The new capacity of each heavy
ball Bi remains same as before, i.e., U ′i = Ui. At this point the reader might wonder about
the value of the scaling factor. We note that it is carefully chosen through back calculation to
ensure that the analysis goes through. The first auxilliary LP that we consider is as follows.

minimize
∑

Bi∈L1∪H1

yi (AUX-LP1)

s.t. xij ≤ yi ∀pj ∈ P1, ∀Bi ∈ L1 ∪H1 (8)∑
pj∈P1

xij ≤ yi · U ′i ∀Bi ∈ L1 ∪H1 (9)

∑
Bi∈L1∪H1

xij = 1 ∀pj ∈ P1 (10)

xij = 0 ∀pj ∈ P1, ∀Bi ∈ L1 ∪H1 such that pj 6∈ Bi (11)
xij ≥ 0 ∀pj ∈ P1, ∀Bi ∈ L1 ∪H1 (12)

0 ≤ yi ≤ 1 ∀Bi ∈ L1 ∪H1 (13)

Note that the above LP has a variable yi for each ball Bi in L1 ∪ H1, and a variable
xij for each ball Bi in L1 ∪H1 and each point pj ∈ P1. We are not going to solve this LP.
Instead, we construct a solution to this LP using σ and round it using an algorithm similar
to the one in [4]. This LP is used to compare the cost of the rounded solution and the cost
of σ∗ in the end.

We construct an LP solution σ = (x, y) from σ in the following manner. For Bi ∈ H1,
yi = yi. For Bi ∈ L1, yi = 10 · yi ≤ 10α < 1 (α ≤ 1/60). For pj ∈ P1, Bi ∈ L1 ∪ H1,
xij = xij .

I Lemma 4. σ = (x, y) is a feasible solution to AUX-LP1 with cost at most cost(σ∗)/α.

Proof. First note that,

cost(σ) =
∑

Bi∈H1

yi + 10
∑
Bi∈L1

yi ≤ (1/α)
∑

Bi∈H1

y∗i + 10
∑
Bi∈L1

y∗i ≤ cost(σ∗)/α.

For pj ∈ P1, Bi ∈ L1 ∪H1, xij = xij ≤ yi ≤ yi. Thus, Constraint 8 is satisfied.
For Bi ∈ H1,

∑
pj∈P1

xij =
∑
pj∈P1

xij ≤ yi · Ui = yi · U ′i . For Bi ∈ L1,
∑
pj∈P1

xij =∑
pj∈P1

xij ≤ yi · Ui = (10 · yi) · (Ui/10) = yi · U ′i . Thus, Constraint 9 is satisfied.
For pj ∈ P1,

∑
Bi∈L1∪H1

xij =
∑
Bi∈L1∪H1

xij = 1. Thus, Constraint 10 is satisfied. Also,
it is trivial to verify that Constraints 11-13 are also satisfied. Hence, the lemma follows. J

Next, we describe our second auxilliary LP. Let us again consider the solution σ = (x, y)
to MMCC-LP and the set of light balls L w.r.t. σ. Also, consider the second copy L2 of the
set of light balls. For each point pj in P2, define the demand dj =

∑
Bi∈L2

xij .

ESA 2020

9:8 Improved Bounds for Metric Capacitated Covering Problems

minimize
∑
Bi∈L2

yi (AUX-LP2)

s.t. xij ≤ yi ∀pj ∈ P2, ∀Bi ∈ L2 (14)∑
pj∈P2

xij ≤ yi · U ′i ∀Bi ∈ L2 (15)

∑
Bi∈L2

xij ≥ dj ∀pj ∈ P2 (16)

xij = 0 ∀pj ∈ P2, ∀Bi ∈ L2 such that pj 6∈ Bi (17)
xij ≥ 0 ∀pj ∈ P2, ∀Bi ∈ L2 (18)

0 ≤ yi ≤ 1 ∀Bi ∈ L2 (19)

Note that the above LP has a variable yi for each ball Bi in L2 and a variable xij for
each ball Bi in L2 and each point pj ∈ P2. Again we are not going to solve this LP. Instead,
we construct a solution to this LP using σ and round it. This LP is used to compare the
cost of the rounded solution and the cost of σ∗ in the end.

We construct an LP solution σ̂ = (x̂, ŷ) from σ in the following manner. For Bi ∈ L2,
ŷi = 10 · yi ≤ 10α < 1. For pj ∈ P2, Bi ∈ L2, x̂ij = xij .

I Lemma 5. σ̂ = (x̂, ŷ) is a feasible solution to AUX-LP2 with cost at most 10 · cost(σ∗).

Proof. First note that cost(σ̂) ≤ 10
∑
Bi∈L2

yi = 10
∑
Bi∈L2

y∗i ≤ 10 · cost(σ∗). For pj ∈ P2,
Bi ∈ L2, x̂ij = xij ≤ yi < ŷi. Thus, Constraint 14 is satisfied.

For Bi ∈ L2,
∑
pj∈P2

x̂ij =
∑
pj∈P2

xij ≤ yi · Ui = (10 · yi) · (Ui/10) = ŷi · U ′i . Thus,
Constraint 15 is satisfied.

For pj ∈ P2,
∑
Bi∈L2

x̂ij =
∑
Bi∈L2

xij = dj . Thus, Constraint 16 is satisfied. Also, it is
trivial to verify that Constraints 17-19 are also satisfied. Hence, the lemma follows. J

In the following, we give two algorithms for rounding the two auxilliary LPs. The rounded
solution of the first LP satisfies all the constraints except the coverage constraint. The
rounded solution of the second LP satisfies all the constraints except the coverage and
capacity constraints. Then, we merge these two solutions to obtain a solution for MMCC-LP
that does not violate any capacity constraints.

4.1 Rounding the First Auxilliary LP
Note that we are given a feasible LP solution σ = (x, y) to AUX-LP1 that has the following
properties.
1. For any Bi ∈ H1, yi = 1.
2. For any Bi ∈ L1, yi ≤ 10α.
3. For any pj ∈ P1,

∑
Bi∈H1

xij ≥ 1− 4α.
4. cost(σ) ≤ cost(σ∗)/α.

Note that Property (3) above states that for any point pj ∈ P1, the flow received by pj
from the balls in H1 is at least 1− 4α. We will heavily use this property while performing
the rounding. Indeed, we are going to use an algorithm similar to the one in [4] without the
preprocessing step. In the algorithm of [4], preprocessing ensures that for any point pj , the
sum of the y values of the light balls that give non-zero flow to pj is at most α. Note that
this might not be true in our case for balls in L1. At first glance it is not clear how to do the

S. Bandyapadhyay 9:9

rounding without this assumption. However, as we show, a similar rounding scheme can be
designed using the weaker assumption on the flow mentioned above. Another hurdle to adapt
the algorithm of [4] is the monotonicity assumption, which might not be true in our case
because of scaling of the capacities. However, we note that only light balls’ capacities are
scaled by a uniform constant scaling factor. Due to this fact, we show that their algorithm
can be modified to handle our case. Next, we describe our rounding algorithm.

The first step in our algorithm is Cluster Formation. In this step, for each ball Bi ∈ L1,
either Bi is opened fully (added to a set O) and flow from other balls including the balls
in H1 are rerouted to Bi only for points in Bi. Otherwise, Bi joins a cluster of a ball in
H1 to which its entire flow is rerouted. O is initialized to the empty set. For each ball
Bi ∈ H1, initialize the cluster of Bi, cluster(Bi) to {Bi}. During the course of the algorithm,
let Λ ⊆ L1 be the set of balls which are not yet added to O or to a cluster of a ball in H1.
Throughout the algorithm, we maintain the invariant that for any point pj which is served
by a ball in Λ, pj receives a flow of at least 1− 4α from the balls in H1. Note that in the
beginning of the algorithm this is true, as Λ = L1. At any point, the available capacity of a
ball Bi, AC(Bi) = U ′i −

∑
j∈P1

xij . While the set Λ is non-empty, apply the following steps.

While there is a ball Bi ∈ H1 and Bi′ ∈ Λ such that Bi intersects Bi′ and AC(Bi) is at least
the flow out

∑
j∈P1

xi′j of Bi′ , reroute the flow from Bi′ to Bi. Add Bi′ to cluster(Bi).
If Λ becomes empty at this point, go to the Selection of Balls stage.

For any ball Bj ∈ Λ, let Aj be the set of points currently being served by Bj . Also, let
kj = min{U ′j , |Aj |}. We add a ball Bt ∈ Λ to O such that kt is the maximum over all kj
for Bj ∈ Λ.

Next we assign points up to larger extents to Bt to utilize its capacity. There are three
cases.

1. kt > 2. Note that the flow out of Bt,
∑
j∈P1

xtj ≤ 10αU ′t . Also, as xtj = xtj ≤ yt ≤ α,∑
j∈P1

xtj ≤ α|At| ≤ 10α|At|. Thus, AC(Bt) ≥ (1−10α)kt. In this case, we arbitrarily
select b(1− 10α)ktc points served by Bt and for each of those points p`, we reroute
the maximum (whole) amount of flow possible from all other balls to Bt. Note that p`
is no longer served by a ball in Λ, and thus the invariant is satisfied.

2. 1 ≤ kt ≤ 2. If U ′t ≥ |At|, then |At| = kt. In this case, for each of the kt points
served by Bt, we reroute the maximum amount of flow possible from all other balls
to Bt. In the other case, U ′t < |At|. Now, AC(Bt) ≥ (1 − 10α)U ′t ≥ 1 − 10α. The
last inequality follows, as U ′t ≥ 1. We arbitrarily select a point p` that is being served
by Bt and reroute its flow from Λ to Bt. Let f be the amount of flow that now p`
receives from Bt. Note that f ≤ 4α. Also, p` is no longer served by a ball in Λ. Now,
AC(Bt) ≥ 1− 10α− 4α = 1− 14α. We reroute min{AC(Bt), 1− f} amount of flow
from H1 to Bt for p`. In any case, the points whose flow are routed to Bt in this step
are no longer served by a ball in Λ, and thus the invariant is satisfied.

3. 0 < kt < 1. Note that, as |At| ≥ 1, kt = U ′t < 1. Now, AC(Bt) ≥ (1 − 10α)U ′t .
Consider any arbitrary point p` that is being served by Bt. First, reroute its flow
from Λ to Bt. AC(Bt) ≥ (1 − 10α)U ′t − 4α. Note that after this rerouting, p` is no
longer served by balls in Λ, and thus the invariant is satisfied. Let p` gets a flow of
f1 from the balls in H1. By the invariant we maintain, f1 is at least 1− 4α. Reroute
min{AC(Bt), f1} amount of flow of p` from the balls in H1 to Bt.

When the while loop terminates each ball in L1 is either in O or added to a cluster. For
each Bi ∈ O, we set yi = 1 and cluster(Bi) = {Bi}.

ESA 2020

9:10 Improved Bounds for Metric Capacitated Covering Problems

We note that the third case (0 < kt < 1) mentioned above does not occur in the context
of [4], as in their case for each ball Bj , both Uj and |Aj | are at least 1. This case appears to
be the bottleneck for our algorithm and leads to a larger constant of approximation as we
will describe in the analysis.

The Selection of Balls step is more interesting in our case as the monotonicity property
no longer holds in general. For a cluster of a ball in O, we trivially select this ball. Consider
the cluster of any ball Bh ∈ H1. If Bh is one of the top 10 largest balls in the cluster, then
select all the balls larger than Bh and also Bh. Only Bh is expanded by a factor of 3. The
flow rerouted from any selected ball of L1 to Bh in the Cluster Formation step is assigned to
it. Note that for the remaining balls of L1 which are in the same cluster and not chosen,
are smaller than Bh, and thus can be covered by a factor 3 expansion of Bh. The remaining
flow is assigned to Bh. Otherwise, the top 10 largest balls are selected all of which are in L1.
The flow rerouted from any selected ball to Bh in the Cluster Formation step is assigned
to the ball. Now consider the remaining flow assigned to the cluster. Also consider a point
pj which receives a part of this flow and not in any of the selected balls. Then, by 5 factor
expansion, any selected ball can cover pj . We expand each selected ball by 5 factor and the
remaining flow is assigned arbitrarily to selected balls respecting their capacity.

4.1.1 Analysis
Let I be the number of iterations of the outermost while loop. Also, let Lt be the ball of L1
added to O at iteration 1 ≤ t ≤ I. For a ball Bi ∈ H1, let F (Lt, Bi) be the amount of flow
rerouted from Bi to Lt. Let Ft =

∑
Bi∈H1

F (Lt, Bi). The next lemma states that when Lt
is added to O sufficient amount of flow is rerouted from the balls in H1 to Lt irrespective of
the value of kt.

I Lemma 6. For 1 ≤ i ≤ I, Ft ≥ kt/60 for α ≤ 1/60.

Proof. To compute the flow rerouted from balls in H1 to Bt we refer to the three cases
mentioned in Cluster Formation. In the first case, for b(1 − 10α)ktc points, the flow is
rerouted from H1 to Bt. Note that by the invariant we maintain, for each such point p`, p`
receives at least 1− 4α amount of flow from the balls in H1. It follows that, at least 1− 4α
amount of flow is rerouted for p` and Ft ≥ (1 − 4α)b(1 − 10α)ktc ≥ (14/15)b(5/6)ktc ≥
(14/15)(1/14)kt = kt/15 ≥ kt/60. The second inequality follows as α ≤ 1/60 and the third
inequality follows as kt > 2.

In the second case, using the same argument as above, the amount of flow rerouted from
H1 to Bt is at least 1 − 14α. As kt ≤ 2, Ft is at least (1 − 14α)kt/2 ≥ (23/60)kt ≥ kt/60.
The first inequality is true for α ≤ 1/60.

In the third case, again using the same argument as above, the amount of flow rerouted
from H1 to Bt is at least min{(1−10α)kt−4α, 1−4α}. As kt < 1, 1−4α ≥ (1−4α)kt. Thus,
Ft ≥ (1 − 10α)kt − 4α. As Ut ≥ 1, kt = U ′t ≥ 1/10, and hence Ft ≥ (1 − 10α)/10 − 4α =
1/10− 5α ≥ 1/60. The last inequality follows from the fact that α ≤ 1/60. J

Define the y-credit of a ball Bi ∈ H1 as Y (Lt, Bi) = F (Lt, Bi)/kt. At any moment during
the Cluster Formation stage, define the y-accumulation of Bi as ỹ(Bi) =

∑
Lt∈O Y (Lt, Bi)

−
∑
Bi∈L1∩cluster(Bi) yi. The y-credit Y (Lt, Bi) of Bi can be seen as a normalized load it

transfers to Lt. The y-accumulation ỹ(Bi) is basically the difference between the total
y-credit received by Bi and the sum of normalized flows of the balls absorbed by Bi. The
next lemma gives a lower bound on the available capacities of the balls in H1, which is similar
to Lemma 3.3 of [4].

S. Bandyapadhyay 9:11

I Lemma 7. Consider a ball Bi ∈ H1 and any integer 1 ≤ t ≤ I. Suppose the balls L1, . . . , Lt
have been added to O so far. Then, AC(Bi) ≥ ỹ(Bi)kt.

Proof. For any ball Bi ∈ H1, we prove the claim using induction on iteration number. In
the base case, just after addition of L1, AC(Bi) ≥ F (L1, Bi) = Y (L1, Bi)k1 = ỹ(Bi)k1. Now,
suppose the claim is true for any t− 1. We show that the claim is true for t as well.

Consider the iteration t. Note that AC(Bi) ≥ ỹ(Bi)kt−1. Suppose a subset of balls
have joined cluster of Bi. Let Bp be the first ball joined, which serves k points. To
distinguish between the old and new value of ỹ(Bi), we refer to the new value by ỹ(Bi)′.
After Bp’s joining to cluster of Bi, ỹ(Bi)′ = ỹ(Bi) − yp. Now, the total flow out of Bp is
at most min{ypk, ypU ′p} = yp min{k, U ′p} ≤ ypkt−1. Thus, AC(Bi) ≥ ỹ(Bi)kt−1 − ypkt−1 =
ỹ(Bi)′kt−1. Using the same argument it can be shown that after each subsequent addition of
a ball to cluster of Bi the claim is true.

In the next step, Lt is added to O. Let ỹ(Bi) be the y-accumulation before this. After this
addition, the new y-accumulation ỹ(Bi)′ = ỹ(Bi)+Y (Lt, Bi). If ỹ(Bi) ≤ 0, the new available
capacity A′i ≥ Y (Lt, Bi)kt ≥ ỹ(Bi)′kt. Otherwise, ỹ(Bi) > 0, the new available capacity
by the induction hypothesis is, A′i = AC(Bi) + Y (Lt, Bi)kt ≥ ỹ(Bi)kt−1 + Y (Lt, Bi)kt ≥
(ỹ(Bi) + Y (Lt, Bi))kt = ỹ(Bi)′kt. J

The next lemma shows that for any ball Bi ∈ H1, y-accumulation is bounded, which is
similar to Lemma 3.4 of [4].

I Lemma 8. At any point, for any ball Bi ∈ H1, ỹ(Bi) < 1 + 10α.

Intuitively, if the y-accumulation of Bi exceeds the bound, it must be due to selection of
a ball Lt in L1. However, one can show that Bi had enough available capacity to absorb the
flow from Lt. Hence, the bound follows.

The following lemma gives an upper bound on the number of balls of L1 that are fully
opened.

I Lemma 9. At the end of the Cluster Formation stage, |O| ≤ 60((1+10α)|H1|+
∑
Bi∈L1

yi).

Proof.∑
Bi∈H1

ỹ(Bi) =
∑

Bi∈H1

∑
Lt∈O

Y (Lt, Bi)−
∑

Bi∈H1

∑
Bi∈L1∩cluster(Bi)

yi

≥
∑

Bi∈H1

∑
Lt∈O

F (Lt, Bi)/kt −
∑
Bi∈L1

yi

=
I∑
t=1

Ft/kt −
∑
Bi∈L1

yi

≥ |O|/60−
∑
Bi∈L1

yi (Ft ≥ kt/60 by Lemma 6)

Also, by Lemma 8,
∑
Bi∈H1

ỹ(Bi) ≤ (1 + 10α)|H1|. It follows that, |O| ≤ 60((1 +
10α)|H1|+

∑
Bi∈L1

yi). J

We obtain the following bound on the cost of the rounded solution.

I Lemma 10. When the algorithm terminates the total cost of the solution is at most
10|H1|+ |O| ≤ (70 + 600α)cost(σ∗)/α.

ESA 2020

9:12 Improved Bounds for Metric Capacitated Covering Problems

Proof. We note that from a heavy balls’ cluster at most 10 balls are selected and all the
balls in O are selected. Now, by Lemma 9,

10|H1|+ |O| ≤ 10|H1|+ 60((1 + 10α)|H1|+
∑
Bi∈L1

yi)

≤ (70 + 600α)(|H1|+
∑
Bi∈L1

yi)

≤ (70 + 600α)cost(σ∗)/α J

The following lemma shows that 5 factor expansion is sufficient to serve the points
assigned to each cluster.

I Lemma 11. Using factor 5 expansion of the balls the flow of any cluster can be assigned
to the chosen balls without violating the capacities.

Proof. It is clear from the algorithm that the coverage constraints are satisfied by expanding
the balls by at most a factor of 5. Here we consider the capacity constraints. Note that in the
first case the capacities of the selected light balls are trivially satisfied. Also, the remaining
flow assigned to Bh must have an amount at most Uh due to the way balls are added to a
cluster. Thus, its capacity constraint is satisfied. In the other case, let the total amount of
flow rerouted from the selected 10 light balls to Bh in Cluster Formation step be f . Also,
let B` be the smallest radius ball among these 10 balls. Thus, the available capacity of all
these balls is at least 10U ′` − f . Note that Uh ≤ U`, as B` is larger than Bh. Now, as each
light balls’ capacity is reduced to a factor 10 of the original capacity and the capacity of Bh
remains unchanged, Uh ≤ 10U ′`. Hence, the available capacity of all these 10 balls is at least
Uh − f . As the remaining flow is at most Uh − f , it follows that the capacity constraints of
these balls are satisfied. J

We summarize our findings in the following lemma.

I Lemma 12. The solution (x, y) satisfies all the Constraints of AUX-LP1 except Constraint
11. Moreover,
1. yi = 1 for all Bi ∈ H1 ∪ O and yi = 0 for all other balls.
2. For any pj ∈ P1,

∑
Bi∈H1∪O xij = 1.

3. For any point pj ∈ P1, if xij > 0, d(ci, pj) ≤ 5 · ri.
4. cost((x, y)) ≤ (70 + 600α)cost(σ∗)/α.

4.2 Rounding the Second Auxilliary LP
Note that we are given a feasible LP solution σ̂ = (x̂, ŷ) to AUX-LP2 that has the following
properties.
1. For any Bi ∈ L2, ŷi ≤ 10α.
2. For any pj ∈ P2,

∑
Bi∈L2

x̂ij ≥ 4α.
3. For any pj ∈ P2 and Bi ∈ L2, x̂ij ≤ α.
4. cost(σ̂) ≤ 10 · cost(σ∗).

First, we create a new solution to AUX-LP2 from σ̂ which has cost at most two times
that of σ̂. We denote the new solution as well by σ̂. Thus, for distinction, we denote the
old values by ŷ′i and x̂′ij . For each y variable, its new value is twice the old value. Thus,
ŷi = 2ŷ′i ≤ 20α < 1. The last inequality follows for α ≤ 1/60. And, for each x variable, its
new value is twice the old value. Thus, x̂ij = 2x̂′ij ≤ 2α. Note that, now, some points might
receive flow of more than 1. We adjust the x̂ values of these points so that each such point
receives 1 amount of flow. We obtain the following lemma.

S. Bandyapadhyay 9:13

I Lemma 13. There is a feasible LP solution σ̂ = (x̂, ŷ) to AUX-LP2 that has the following
properties.
1. For any Bi ∈ L2, ŷi ≤ 20α.
2. For any pj ∈ P2,

∑
Bi∈L2

x̂ij ≥ 8α.
3. For any pj ∈ P2 and Bi ∈ L2, x̂ij ≤ 2α.
4. cost(σ̂) ≤ 20 · cost(σ∗).

Proof. First note that cost(σ̂) ≤ 20 · cost(σ∗), as the values of the y variables are doubled.
Next, we show that σ̂ is feasible.

As the y variables are doubled and x̂ij ≤ 2x̂′ij , x̂ij ≤ ŷi. Thus, Constraint 14 is satisfied.
For Bi ∈ L2,

∑
pj∈P2

x̂ij ≤
∑
pj∈P2

2x̂′ij = 2
∑
pj∈P2

x̂′ij ≤ 2ŷ′i · U ′i = ŷi · U ′i . Thus,
Constraint 15 is satisfied.

As we do not decrease the x variables, unless a point gets more than 1 amount of flow,
Constraint 16 is also satisfied. Also, it is trivial to verify that Constraints 17-19 are also
satisfied.

Properties 1, 3, and 4 follows immediately. Also, Property 2 follows from the fact that
previously each point received a flow of at least 4α from the balls in L2. Hence, the lemma
follows. J

We start with the fractional solution σ̂ = (x̂, ŷ) and round it so that ŷ becomes integral.
Throughout our algorithm we modify σ̂ over several steps to finally obtain the desired
solution. Thus whenever we refer to σ̂ we refer to its current value. For any pj ∈ P2, let
δj =

∑
Bi∈L2

x̂ij . Note that δj ≥ 8α. Let S and O′ be two disjoint sets of balls which are
initialized to L2 and ∅, respectively. Throughout we also maintain that

∑
Bi∈S∪O′ x̂ij = δj .

Note that this is true in the beginning. Our algorithm is as follows.

While there is a point pj ∈ P2 such that
∑
Bi∈S x̂ij > α, we do the following.

Let Sj be the set of balls in S that give flow to pj , i.e., Sj={Bi ∈ S : x̂ij > 0}. Note
that as

∑
Bi∈Sj

x̂ij =
∑
Bi∈S x̂ij > α,

∑
Bi∈Sj

ŷi ≥
∑
Bi∈Sj

x̂ij > α. Find T ⊆ Sj such
that α ≤

∑
Bi∈T ŷi ≤ 21α. Such a subset can always be found using a linear scan of Sj , as∑

Bi∈Sj
ŷi > α and ŷi ≤ 20α for all Bi ∈ Sj . Let Bt be the largest ball in T . Set ŷt = 1 and

ŷi = 0 for each Bi ∈ T . Add Bt to O′. Remove all balls in T from S. Reroute the flow from
all balls in T \ {Bt} to Bt.

I Lemma 14. During the course of the above algorithm, the solution σ̂ has cost at most
20 · cost(σ∗)/α and satisfies all the constraints of AUX-LP2 except Constraint 17. Moreover,
for a point pj ∈ P2, if x̂ij > 0, d(ci, pj) ≤ 3 · ri.

Proof. First, we prove the feasibility of σ̂ using induction on the iteration number. In the
beginning, the claim holds. Now, consider a particular iteration. Note that the balls for
which the ŷ values are changed are in T and the points for which the x̂ values are changed
are the set of points P ′ that receive flow from a ball in T . It is sufficient to show that the
constraints concerning these balls and points hold. Constraint 14 is satisfied as for each such
point pj , and the ball Bt, x̂tj ≤ δj ≤ 1 = ŷt and for a ball Bi ∈ T \ {Bt}, x̂ij = 0. Now, we
argue that the capacity constraint of the ball Bt is satisfied. Note that in the beginning of
the iteration, the total flow out of balls in T to all points is at most∑

Bi∈T
ŷi · U ′i ≤ U ′t

∑
Bi∈T

ŷi ≤ U ′t · 21α < U ′t .

The first inequality follows from the fact that Bt is the largest ball in T and all the capacities
of the balls in L1 are scaled by the same factor. The last inequality follows, as α ≤ 1/60.

ESA 2020

9:14 Improved Bounds for Metric Capacitated Covering Problems

Now, as this total flow is served by Bt the claim holds. Constraint 16 is also satisfied for all
the points in P ′, as the flow is only rerouted from a ball to Bt. The other constraints except
17 are trivial to verify.

Note that whenever we set ŷt = 1, we also set ŷi = 0 for each Bi ∈ T \ {Bt}. Thus for
each ball Bt we can charge all the balls in T . As

∑
Bi∈T ŷi ≥ α, the cost blow up is at most

a factor of 1/α. Thus, the cost is at most 20 · cost(σ∗)/α.
Whenever we reassign flow from balls in T \ {Bt} to Bt, for a point pj ∈ P2, it holds that

if x̂tj > 0, d(ct, pj) ≤ 3 · rt. This is true, as Bt is the largest ball in T . As we remove Bt
from S, no flow is ever rerouted again from or to Bt. Hence, the claim continues to hold for
all points. J

Now, note that when the while loop of the above algorithm terminates, it holds that for
any pj ∈ P2,

∑
Bi∈S x̂ij ≤ α. Thus,

∑
Bi∈O′ x̂ij ≥ δj − α ≥ 7α. Using this fact, we compute

a solution (x′, y′) to AUX-LP2 (that violates Constraint 17 and Constraint 15). For any ball
Bi in O′, set y′i = 1. For any pj ∈ P2 and Bi in O′, set x′ij = min{(1/(7α)) · x̂ij , 1}. All the
other x′ and y′ values are set to zero. Note that, now, each point receives a flow of at least 1.
We adjust the x′ values so that each point receives exactly 1 amount of flow. We obtain the
following lemma.

I Lemma 15. The solution (x′, y′) satisfies all the constraints of AUX-LP2 except Constraint
17 and Constraint 15. Moreover,
1. y′i = 1 for all Bi ∈ O′ and y′i = 0 for all Bi /∈ O′.
2. For any pj ∈ P2,

∑
Bi∈O′ x′ij = 1.

3. For any Bi ∈ O′,
∑
pj∈P2

x′ij ≤ (1/(7α)) · U ′i .
4. For any point pj ∈ P2, if x′ij > 0, d(ci, pj) ≤ 3 · ri.
5. cost((x′, y′)) ≤ 20 · cost(σ∗)/α.

4.3 Combining the Two LP solutions

Next, we compose the two rounded solutions obtained in Lemma 12 and 15 to construct
a solution for the original instance. In the new solution (x̃, ỹ) we fully open the balls in
H1 ∪ O ∪ O′. Also we keep all the x values unchanged. Note that a ball Bi of L1(= L2)
can be opened in both solutions. However, as we had changed its capacity before, the
total capacity that it can use is at most U ′i + (1/(7α)) · U ′i ≤ (1 + 1/(7α))Ui/10 < Ui. The
last inequality follows by setting α = 1/60. The total cost of the new solution is at most
(90 + 600α)cost(σ∗)/α ≤ 6000 · cost(σ∗). Hence, we obtain the following lemma.

I Lemma 16. The solution (x̃, ỹ) satisfies all the Constraints of MMCC-LP except Constraint
11. Moreover,
1. For any point pj ∈ P1, if xij > 0, d(ci, pj) ≤ 5 · ri.
2. cost((x̃, ỹ)) ≤ 6000 · cost(σ∗).

We note that by selecting different values of the parameters throughout the algorithm
one can improve the constant in the approximation factor. However, as our main goal is to
show any O(1)-approximation we did not pursue this.

I Theorem 17. There is an O(1)-approximation for MMCC by expanding the balls by a
factor of at most 5.

S. Bandyapadhyay 9:15

5 Uniform Capacitated Case

The algorithm in the uniform case is same except the Selection of Balls step. The next lemma
shows that the Selection of Balls can be performed with only 4.24 factor expansion of the
balls.

I Lemma 18. Using factor 4.24 expansion of the balls the flow of any cluster can be assigned
to the chosen balls without violating the capacities.

Proof. Consider any cluster of a heavy ball Bh ∈ H1. Let c = (1 +
√

5)/2. If Bh is one of
the top 10 largest balls in the cluster, then select all the balls larger than Bh and also Bh.
Only Bh is expanded by a factor of 3. The flow rerouted from any selected ball of L1 to Bh
is assigned to the selected ball. Note that for the remaining balls of L1 which are in the same
cluster and not chosen, are smaller than Bh and thus can be covered by a factor 3 expansion
of Bh. The remaining flow is assigned to Bh. Note that in this case the capacities of the
selected light balls are trivially satisfied. Also, the remaining flow assigned to Bh must have
an amount at most Uh. Thus, the capacity constraint of Bh is satisfied.

Now, suppose Bh is not one of the top 10 largest balls. Let B` be the 10th largest ball of
this cluster. Also, let rh and r` be the radius of Bh and B`, respectively. Now, there can
be two cases (i) rh ≥ r`/c or (ii) rh < r`/c. In the first case, we select the top 9 largest
balls all of which are in L1 and also Bh. The flow rerouted from any selected ball (except
Bh) to Bh is assigned to the selected ball. Now consider the remaining flow assigned to the
cluster. Also consider a point pj which receives a part of this flow and not in any of the balls
selected from L1. Then, by triangle inequality, the distance between pj and the center ch of
Bh is at most rh + 2r` ≤ rh + 2crh ≤ 4.24rh. We expand Bh by the factor 4.24 and assign
the remaining flow to Bh. Selected balls which are in L1 are not expanded. The capacity
constraints are also satisfied due to the same reason mentioned above.

In the second case, the top 10 largest balls are selected all of which are in L1. The flow
rerouted from any selected ball to Bh is assigned to the selected ball. Now consider the
remaining flow assigned to the cluster. Also consider a point pj which receives a part of this
flow and not in any of the selected balls. Let Bt = B(ct, rt) be a selected ball. Then, by
triangle inequality, the distance between pj and ct is at most rt+2rh+2r` ≤ rt+2r`/c+2r` ≤
(3 + 2/c)rt ≤ 4.24rt. The second last inequality follows, as r` is the smallest of the selected
balls. We expand each selected ball by the factor 4.24. The remaining flow is assigned
arbitrarily to selected balls respecting their capacity. Let the total amount of flow rerouted
from the selected 10 light balls to Bh in Cluster Formation step be f . The total available
capacity of all these balls is at least 10U ′`−f , as B` is the smallest radius ball among these 10
balls. Now, as the capacity of each ball of L1 is reduced to a factor 10 of the original capacity
and the capacity of Bh remains unchanged, Uh ≤ 10U ′`. Hence, the available capacity of all
these 10 balls is at least Uh − f . As the remaining flow is at most Uh − f , it follows that the
capacity constraints of these balls are satisfied. J

I Theorem 19. There is an O(1)-approximation for MCC by expanding the balls by a factor
of at most 4.24.

6 Conclusion

In this paper, we improve the expansion factor of the balls for MCC and MMCC to 4.24
and 5, respectively, in the context of obtaining constant approximation. Our approximation
factor is a large constant. But, it is possible to improve this factor by setting different values

ESA 2020

9:16 Improved Bounds for Metric Capacitated Covering Problems

of parameters in the algorithm. Note that the lower bound on the expansion factor is still
3. So, one obvious problem is to reduce the gap further. Another interesting problem is to
design a true constant approximation for the Euclidean version of MCC, which does not
expand the balls. We note that this problem is open even in the plane.

Note that if the capacities are not monotonic, no (O(1), O(1))-approximation is known.
On the other hand, the lower bound on the expansion factor even in this case is 3− ε, similar
to the uniform capacity case. So, a very natural and interesting direction of research is to
study this most general version of the problem.

References
1 Ankit Aggarwal, Anand Louis, Manisha Bansal, Naveen Garg, Neelima Gupta, Shubham

Gupta, and Surabhi Jain. A 3-approximation algorithm for the facility location problem with
uniform capacities. Math. Program., 141(1-2):527–547, 2013.

2 Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek Madan, and
Ola Svensson. Centrality of trees for capacitated k-center. Math. Program., 154(1-2):29–53,
2015. doi:10.1007/s10107-014-0857-y.

3 Hyung-Chan An, Mohit Singh, and Ola Svensson. Lp-based algorithms for capacitated facility
location. SIAM J. Comput., 46(1):272–306, 2017.

4 Sayan Bandyapadhyay, Santanu Bhowmick, Tanmay Inamdar, and Kasturi Varadarajan.
Capacitated covering problems in geometric spaces. Discrete & Computational Geometry,
pages 1–31, 2019.

5 Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-approximation for capacitated facility
location. In Leah Epstein and Paolo Ferragina, editors, Algorithms - ESA 2012 - 20th Annual
European Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings, volume 7501
of Lecture Notes in Computer Science, pages 133–144. Springer, 2012.

6 Judit Bar-Ilan, Guy Kortsarz, and David Peleg. How to allocate network centers. J. Algorithms,
15(3):385–415, 1993. doi:10.1006/jagm.1993.1047.

7 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite vc-dimension.
Discrete & Computational Geometry, 14(4):463–479, 1995.

8 Jaroslaw Byrka, Krzysztof Fleszar, Bartosz Rybicki, and Joachim Spoerhase. Bi-factor
approximation algorithms for hard capacitated k-median problems. In Piotr Indyk, editor,
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 722–736. SIAM, 2015.

9 Jaroslaw Byrka, Bartosz Rybicki, and Sumedha Uniyal. An approximation algorithm for
uniform capacitated k-median problem with 1+\epsilon capacity violation. In Quentin
Louveaux and Martin Skutella, editors, Integer Programming and Combinatorial Optimization
- 18th International Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings,
volume 9682 of Lecture Notes in Computer Science, pages 262–274. Springer, 2016.

10 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149,
2002.

11 Fabián A. Chudak and David P. Williamson. Improved approximation algorithms for capacit-
ated facility location problems. Math. Program., 102(2):207–222, 2005.

12 Julia Chuzhoy and Joseph Naor. Covering problems with hard capacities. SIAM J. Comput.,
36(2):498–515, 2006.

13 Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform capacities. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 952–958. SIAM,
2005.

14 Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding for k-centers
with non-uniform hard capacities. In FOCS, pages 273–282, 2012.

https://doi.org/10.1007/s10107-014-0857-y
https://doi.org/10.1006/jagm.1993.1047

S. Bandyapadhyay 9:17

15 H. Gökalp Demirci and Shi Li. Constant approximation for capacitated k-median with
(1+epsilon)-capacity violation. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 73:1–73:14, 2016.

16 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
17 Rajiv Gandhi, Eran Halperin, Samir Khuller, Guy Kortsarz, and Srinivasan Aravind. An

improved approximation algorithm for vertex cover with hard capacities. J. Comput. Syst.
Sci., 72(1):16–33, 2006.

18 Taha Ghasemi and Mohammadreza Razzazi. A PTAS for the cardinality constrained covering
with unit balls. Theor. Comput. Sci., 527:50–60, 2014.

19 Sariel Har-Peled and Mira Lee. Weighted geometric set cover problems revisited. JoCG,
3(1):65–85, 2012.

20 Mong-Jen Kao. Iterative partial rounding for vertex cover with hard capacities. In SODA,
pages 2638–2653, 2017.

21 Samir Khuller and Yoram J. Sussmann. The capacitated K -center problem. SIAM J. Discrete
Math., 13(3):403–418, 2000.

22 Madhukar R. Korupolu, C. Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local
search heuristic for facility location problems. J. Algorithms, 37(1):146–188, 2000.

23 Shi Li. On uniform capacitated k-median beyond the natural LP relaxation. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 696–707, 2015.

24 Shi Li. On uniform capacitated k-median beyond the natural LP relaxation. ACM Trans.
Algorithms, 13(2):22:1–22:18, 2017.

25 Robert Lupton, F. Miller Maley, and Neal E. Young. Data collection for the sloan digital sky
survey - A network-flow heuristic. J. Algorithms, 27(2):339–356, 1998. doi:10.1006/jagm.
1997.0922.

26 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

27 Martin Pál, Éva Tardos, and Tom Wexler. Facility location with nonuniform hard capacities.
In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA, pages 329–338. IEEE Computer Society, 2001.

28 Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2(4):385–393, 1982.

29 Sam Chiu-wai Wong. Tight algorithms for vertex cover with hard capacities on multigraphs
and hypergraphs. In SODA, pages 2626–2637, 2017.

ESA 2020

https://doi.org/10.1006/jagm.1997.0922
https://doi.org/10.1006/jagm.1997.0922

Minimum Neighboring Degree Realization in
Graphs and Trees
Amotz Bar-Noy
City University of New York (CUNY), NY, USA
amotz@sci.brooklyn.cuny.edu

Keerti Choudhary
Tel Aviv University, Israel
keerti.choudhary@cs.tau.ac.il

Avi Cohen
Weizmann Institute of Science, Rehovot, Israel
avi.cohen@weizmann.ac.il

David Peleg
Weizmann Institute of Science, Rehovot, Israel
david.peleg@weizmann.ac.il

Dror Rawitz
Bar-Ilan University, Ramat-Gan, Israel
dror.rawitz@biu.ac.il

Abstract
We study a graph realization problem that pertains to degrees in vertex neighborhoods. The classical
problem of degree sequence realizability asks whether or not a given sequence of n positive integers
is equal to the degree sequence of some n-vertex undirected simple graph. While the realizability
problem of degree sequences has been well studied for different classes of graphs, there has been
relatively little work concerning the realizability of other types of information profiles, such as the
vertex neighborhood profiles.

In this paper we introduce and explore the minimum degrees in vertex neighborhood profile as
it is one of the most natural extensions of the classical degree profile to vertex neighboring degree
profiles. Given a graph G = (V,E), the min-degree of a vertex v ∈ V , namely MinND(v), is given
by min{deg(w) | w ∈ N [v]}. Our input is a sequence σ = (dn`

` , · · · , dn1
1), where di+1 > di and each

ni is a positive integer. We provide some necessary and sufficient conditions for σ to be realizable.
Furthermore, under the restriction that the realization is acyclic, i.e., a tree or a forest, we provide a
full characterization of realizable sequences, along with a corresponding constructive algorithm.

We believe our results are a crucial step towards understanding extremal neighborhood degree
relations in graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Graph realization, neighborhood profile, graph algorithms, degree sequences

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.10

Funding US-Israel BSF grant 2018043; ARL Network Science CTA W911NF-09-2-0053.

1 Introduction

Background and Motivation. Vertex degrees occur as a central and natural parameter
in many network applications, and provide information on the significance, centrality, con-
nectedness and influence of each vertex in the network, contributing to our understanding
of the network structure and properties. The m degree sequence of an n-vertex graph G

consists of its vertex degrees, Deg(G) = (d1, . . . , dn). It is a straightforwad task to extract
the degree sequence of a given graph G from its adjacency matrix or adjacency lists. A more

© Amotz Bar-Noy, Keerti Choudhary, Avi Cohen, David Peleg, and Dror Rawitz;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amotz@sci.brooklyn.cuny.edu
mailto:keerti.choudhary@cs.tau.ac.il
mailto:avi.cohen@weizmann.ac.il
mailto:david.peleg@weizmann.ac.il
mailto:dror.rawitz@biu.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2020.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Minimum Neighboring Degree Realization in Graphs and Trees

interesting and challenging task, known as the realization problem, concerns the opposite
situation where, given a sequence of non-negative integers D, it is necessary to decide whether
there exists a graph whose degree sequence conforms to D. A sequence that admits such
a realization is called graphic. A necessary and sufficient condition for a given sequence of
integers to be graphic (also implying an O(n) decision algorithm) was presented by Erdös
and Gallai in [10]. Havel and Hakimi [12, 14] described an algorithm that given a sequence
of integers computes in O(m) time an m-edge graph realizing it, or proves that the given
sequence is not graphic. Over the years, a number of extensions of the degree realization
problem were studied as well, e.g., [1, 3, 23].

The current work is motivated by the fact that similar realization questions arise naturally
in a variety of other contexts. Typically, some type of information profile, specifying some
desired vertex property (related to degrees, distances, centrality, connectedness, etc), is given
to us, and we are asked to find a graph conforming to the specified profile. Questions of
this type span a wide research area, which was so far studied only sparsely. The current
paper makes a step towards studying one specific information profile, from the family of
neighborhood degree profiles. Such profiles arise in the context of social networks, where it is
common to look at vertex degrees as representing influence or centrality, and neighboring
degrees as representing proximity to power. Neighborhood degrees were considered before
in [6], but there each vertex i is associated with the list of degrees of all vertices in its
neighborhood. Our profiles are leaner, and provide a single parameter per vertex. In [5],
we studied maximum-neighborhood-degree (MaxND) profiles, in which each vertex i is
associated with the maximum degree of the vertices in its (closed) neighborhood.

A natural problem in this direction concerns the minimum degrees in the vertex neigh-
borhoods. For each vertex i, let di denote the minimum vertex degree in i’s closed neighbor-
hood (i.e., including the vertex i itself). Then MinND(G) = (d1, . . . , dn) is the minimum-
neighborhood-degree profile of G.

The same realizability questions asked above for degree sequences can be posed for
neighborhood degree profiles as well. This brings us to the following central question of our
work:

Minimum Neighborhood Degree Realization
Input: A sequence D = (d1, . . . , dn) of non-negative integers.
Question: Is there a graph G of size n such that the minimum degree in the closed
neighborhood of the i-th vertex in G is exactly equal to di ?

Our Contributions. We now discuss our contributions in detail. For simplicity, we represent
the input vector D alternatively in a more compact format as σ = (dn`

` , · · · , d
n1
1), where

ni’s are positive integers with n(σ) =
∑`
i=1 ni = n; here the specification requires that G

contains exactly ni vertices whose minimum degree in neighborhood is di. We may assume
that d` > d`−1 > · · · > d1 ≥ 1 (noting that vertices with minimum-neighborhood-degree zero
are necessarily singletons and can be handled separately).

Conditions. We show the following necessary and sufficient conditions for σ = (dn`

` , · · · , d
n1
1)

to be MinND realizable. The necessary condition is that

di ≤ n1 + n2 + . . .+ ni − 1 , for i ∈ [1, `], and (NC1)

d` ≤
⌊ n1d1

d1 + 1

⌋
+
⌊ n2d2

d2 + 1

⌋
+ . . .+

⌊ n`d`
d` + 1

⌋
. (NC2)

A. Bar-Noy, K. Choudhary, A. Cohen, D. Peleg, and D. Rawitz 10:3

The sufficient condition is that

di ≤
⌊ n1d1

d1 + 1

⌋
+
⌊ n2d2

d2 + 1

⌋
+ . . .+

⌊ nidi
di + 1

⌋
, for i ∈ [1, `] . (SC)

We remark that these conditions can be computed in polynomial time, and the realizing
graphs, when any exist, can be constructed in polynomial time.

Approximation bound. For any sequence σ = (dn`

` , · · · , d
n1
1) satisfying the first necessary

condition (NC1), the sequence σγ = (ddγn`e
` , . . . , d

dγn1e
1), where γ = (d1 + 1)/d1 satisfies1 the

sufficient condition (SC), thus our necessary and sufficient conditions differ by a factor of at
most 2 in the ni’s.

We leave it as an open question to resolve the problem exactly over general graphs.

I Open Question. Does there exist a closed-form characterization for realizing MinND
profiles for general graphs?

For the special case of ` bounded by 3, we show that σ = (dn`

` , · · · , d
n1
1) is MinND-

realizable if and only if along with (NC1) and (NC2) the following condition is satisfied:

d2 ≤
⌊ n1d1

d1 + 1

⌋
+
⌊ n2d2

d2 + 1

⌋
, or d3 + 1 ≤ n1 + n2 + n3 −

(
1 +

⌈
d2 − n2

d1

⌉)
(NC3)

Acyclic Realization. When the required graph G is acyclic (that is, G is a tree or a forest),
we give tight bounds for realizability (in the form of a constructive algorithm as well as a
matching lower bound). For a sequence σ = (dn`

` , · · · , d
n1
1), let

φ(σ) = d2
` + 1 +

∑̀
i=1

(ni − 1)(di − 1)2 +
`−1∑
i=1

di(di − 1) .

We show that σ is MinND-realizable by a tree if and only if the following conditions are
met:

d1 = 1 and φ(σ) ≤ n(σ) . (NC-Tree)

Recall that n(σ) =
∑`
i=1 ni. Observe that when the profile is (1n), condition (NC-Tree)

is equivalent to claiming that (1n) is realizable for any n ≥ 2. Indeed, the star graph provides
such a realization. Next, note that d1 and n1 do not appear in φ(σ) when ` > 1, because
of the terms di − 1. However, n1 is part of n(σ), and it must be large enough to satisfy
the condition. Therefore, condition (NC-Tree) can be rewritten as φ(σ) −

∑`
i=2 ni ≤ n1,

where the left hand side is effectively independent of d1 and n1. That is, any sub-profile
σ′ = (dn`

` , · · · , d
n2
2) of σ can be realized if it is expanded into a full profile σ = (dn`

` , · · · , d
n1
1)

for which n1 is large enough. Hence in a sense, these n1 vertices, which are leaves or neighbors
of leaves, “control” the realizability of the profile.

1 For further explanation, see the text just before Corollary 10.

ESA 2020

10:4 Minimum Neighboring Degree Realization in Graphs and Trees

The MaxND profile. We remark that in the companion paper [5] we studied the dual
MaxND realization problem, which turns out to exhibit radically different behavior from
the MinND realization problem, and requires different techniques. In the MaxND profile,
di specifies the maximum degree in the neighborhood of the ith vertex in G. [5] gives tight
bounds for realizations by an arbitrary graph and by a connected graph. However, the
question of realizations with trees is left open.

It is interesting to contrast the behavior of the MinND and MaxND profiles. For general
graphs, MinND appears to be more difficult, since it is nonmonotone when edges are added or
deleted, while the MaxND profile is monotone. For trees, on the other hand, the realizability
of the MinND profile depends only on the leaves and their parents, which simplifies the
analysis; no analogous simplifying property was found for the MaxND profile.

Applicability. Realization questions may potentially be applicable in two general settings.
The first involves scientific contexts, where the information profile may consist of measurement
results obtained by observing some natural network of unknown structure and our goal is
to build a model (possibly explaining the measurements). The second involves engineering
contexts, where the profile is derived from a given specification and the goal is to implement
a network abiding by the specification.

One of the concrete uses for degree realization techniques is within the framework of
generating random graphs with specific given properties. In particular, given the ability
to efficiently generate a graph with a given degree sequence, one can design methods for
generating a random graph with a specific degree distribution based on first generating a
random degree sequence from the given distribution. As happened with degree realization,
one may expect that efficient solutions for the problem of realizing certain neighborhood
degree profiles may lead to improved techniques for generating and simulating social networks
with prescribed neighborhood degree profiles.

Finally, a popular sampling technique that takes advantage of the Friendship Paradox [11]
is based on sampling a random neighbor of a random vertex. While the average of the degrees
in the traditional degree profile is the expected degree of a random vertex, the lower and
upper bounds on the expected degree of the random neighbor are the averages of the degrees
in the MinND and MaxND profiles respectively. Providing realizations and characterizing
realizable profiles may be useful in exploring and analyzing the performance of this sampling
technique.

Related Work. Many works have addressed related questions such as finding all the (non-
isomorphic) graphs that realize a given degree sequence, counting all the (non-isomorphic)
realizing graphs of a given degree sequence, sampling a random realization for a given degree
sequence as uniformly as possible, or determining the conditions under which a given degree
sequence defines a unique realizing graph , cf. [8, 10, 12, 13, 14, 15, 18, 19, 21, 20, 22, 24].
Other works such as [7, 9, 16] studied interesting applications in the context of social networks.

To the best of our knowledge, the MinND realization problems have not been explored
so far. There are two other related problems that we are aware of. The first is the shotgun
assembly problem [17], where the characteristic associated with the vertex i is some description
of its neighborhood up to radius r. The second is the neighborhood degree lists problem [6],
where the characteristic associated with the vertex i is the list of degrees of all vertices
in i’s neighborhood. We point out that in contrast to these studies, our MinND problem
applies to a more restricted profile (with a single number characterizing each vertex), and
the techniques involved are totally different from those of [6, 17]. Several other realization
problems are surveyed in [2, 4].

A. Bar-Noy, K. Choudhary, A. Cohen, D. Peleg, and D. Rawitz 10:5

2 Preliminaries

Let H be an undirected graph. We use V (H) and E(H) to respectively denote the vertex set
and the edge set of the graph H. For a vertex x ∈ V (H), let degH(x) denote the degree of x
in H. Let NH [x] = {x} ∪ {y | (x, y) ∈ E(H)} be the (closed) neighborhood of x in H. For a
set W ⊆ V (H), we denote by NH(W), the set of all the vertices lying outside the set W that
are adjacent to some vertex in W , that is, NH(W) = (

⋃
w∈W N [w]) \W . Given a vertex v in

H, the minimum degree in the neighborhood of v, namely MinNDH(v), is defined to be the
minimum over the degrees of all the vertices in the neighborhood of v. Given a set of vertices
A in a graph H, we denote by H[A] the subgraph of H induced by the vertices of A. For a
set A and a vertex x ∈ V (H), we denote by A ∪ x and A \ x, respectively, the sets A ∪ {x}
and A \ {x}. When the graph is clear from context, for simplicity, we omit the subscripts H
in all our notations. Finally, given two integers i ≤ j, we define [i, j] = {i, i+ 1, . . . , j}.

Consider a profile σ = (dn`

` , · · · , d
n1
1) satisfying d` > d`−1 > · · · > d1 > 0. Denote its

size by n(σ) =
∑`
i=1 ni. The profile σ is said to be MinND realizable if there exists an

n(σ)-vertex graph G such that |{v ∈ V (G) : MinND(v) = di}| = ni, namely, G contains
exactly ni vertices whose MinND is di, for every i ∈ [1, `]. Figure 1 depicts a MinND
realization of (23, 12). (The numbers represent vertex degrees.)

32

2

2 1

Figure 1 A MinND realization of (23, 12).

3 Realizations on Acyclic graphs

In this section, we provide a complete characterisation for realizability on acyclic graphs.

3.1 Constructive Algorithm
I Proposition 1. Any sequence σ = (dn`

` , · · · , d
n1
1) satisfying d1 = 1 and φ(σ) ≤ n(σ) is

MinND-realizable over trees.

Proof. Initialize T to be a star with a root r and d` leaves. Let the initial set of d` + 1
vertices be X0. Notice |X0 \ {r}| = d` > `− 1, since d1 = 1.

Partition X0 \ {r} into two sets Z1 and Z2, respectively of size `− 1 and d` − `+ 1. We
label the (i− 1)th vertex in Z1 as vi,1, for i ∈ [2, `]. Observe |Z2| ≥ 1.

Our algorithm (to iteratively build T) proceeds in ` rounds: i = `, . . . , 1. (See Algorithm 1
for a pseudocode).

We will maintain the following invariant in our algorithm.

Invariant. Before the beginning of round i, the vertex vi,1 is a leaf node in the partially
constructed tree T , and its neighbor r (always) has degree at least d` ≥ di.

Description of round i (i > 1). Take the leaf node vi,1 ∈ X0. Add ni − 1 new vertices,
namely vi,2, . . . , vi,ni

and connect each vi,j to vi,j−1, for 2 ≤ j ≤ ni. Let Vi represent the set
{vi,1, vi,2, . . . , vi,ni

}. Notice that Vi forms a simple path. Recall by our invariant that the
neighbor of vi,1 (other than vi,2 in T) had degree already at least di. We will ensure next
the following:

ESA 2020

10:6 Minimum Neighboring Degree Realization in Graphs and Trees

C1: All vertices in Vi have degree di.
C2: All neighbors of vertices in Vi have degree at least di.
To ensure condition C1, we proceed as follows: (i) Since the vertices vi,1, . . . , vi,ni−1 already
have degree 2 in the current Ti, they are connected to di − 2 new vertices, and (ii) the vertex
vi,ni is connected to di − 1 new vertices. In the process we add in total ni(di − 2) + 1 new
vertices. Let these be represented by the set Ai.

To ensure condition C2, we connect each a ∈ Ai to an additional di − 1 new vertices. Let
Bi be the set of new vertices added. Then, |Bi| = |Ai| · (di − 1).

We now compute the size of Vi ∪Ai ∪Bi.

|Vi ∪Ai ∪Bi| = ni +
(
ni(di − 2) + 1

)
+
(
ni(di − 2) + 1

)
· (di − 1)

= ni + di
(
ni(di − 2) + 1

)
= ni

(
di − 1

)2 + di

Description of round 1. Finally, in round i = 1, add a set Y0 of n(σ)− φ(σ) new vertices to
T . Observe that n(σ)− φ(σ) ≥ 0 due to the assumption. Connect the root node r ∈ X0 in
T to each of the vertices in Y0.

We next show that our construction satisfies |V (T)| = n(σ).

|V (T)| = |X0|+
∑̀
i=2

(
|Vi ∪Ai ∪Bi| − 1

)
+ |Y0|

= d` + 1 +
∑̀
i=2

[
ni(di − 1)2 + di − 1

]
+ n(σ)− φ(σ)

= d2
` + 1 +

∑̀
i=2

(ni − 1)(di − 1)2 +
`−1∑
i=2

di(di − 1) + n(σ)− φ(σ)

= n(σ)

Algorithm 1 Computing a tree MinND-realization for a given realizable σ.

Input: A sequence σ = (dn`

` · · · d
n1
1) satisfying d1 = 1 and n(σ) ≥ φ(σ).

1 Initialize T to be a star with a root r and d` leaves.
2 Label the ith leaf in T as vi,1, for i ∈ [2, `].
3 for i = ` to 2 do
4 Add ni − 1 new vertices to T , namely vi,2, . . . , vi,ni .
5 Connect each vi,j to vi,j−1, for 2 ≤ j ≤ ni.
6 Add to T a set Ai of ni(di − 2) + 1 new vertices.
7 Connect each vi,j , for 1 ≤ j ≤ ni − 1, to di − 2 isolated vertices in Ai.
8 Connect vi,ni

to di − 1 isolated vertices in Ai.
9 Add to T a set Bi of |Ai| · (di − 1) new vertices.

10 Connect each a ∈ Ai to di − 1 isolated vertices in Bi.
11 Add n(σ)− φ(σ) new vertices to T as children of the root r.
12 Output T .

A. Bar-Noy, K. Choudhary, A. Cohen, D. Peleg, and D. Rawitz 10:7

Correctness Analysis

Let V1 denote the set V (T) \
⋃`
i=2 Vi. Clearly, |Vi| = ni for i ∈ [2, `], and since |V (T)| = n(σ)

it follows that |V1| = n(σ) −
∑`
i=2 ni = n1. Therefore, if we show that for every u ∈ Vi,

MinND(u) = di, for i ∈ [1, `], then we are done.
Observe that the degrees of vertices in Vi ∪Ai do not alter after round i, so C1 and C2

continue to hold for each Vi, i ∈ [2, `]. This shows that for every u ∈ Vi, MinND(u) = di,
for i ∈ [2, `]. We are left to analyse set V1. We have:

V1 =
(
X0 \ ∪`i=2{vi,1}

)
∪ Y0 ∪

(
∪`i=2 (Ai ∪Bi)

)
= {r} ∪ Z2 ∪ Y0 ∪

(
∪`i=2 (Ai ∪Bi)

)
For 2 ≤ i ≤ `, the set Bi contains only leaves, and each node in Ai must have a neighbor in
Bi. Thus, vertices in ∪`i=2(Ai ∪Bi) have MinND exactly 1.

So it is left to consider the vertices of {r} ∪ Z2 ∪ Y0, of which the vertices in Z2 ∪ Y0
have already degree 1. Now recall Z2 6= ∅, and r is adjacent to degree-1 vertices in Z2, thus
MinND of r is 1 as well.

This completes the correctness analysis. J

3.2 Tightness Criterion
We next show that our construction is tight, i.e., a sequence is MinND-realizable over trees
if and only if it is realizable by the procedure of Proposition 1.

I Proposition 2. For a sequence σ = (dn`

` , · · · , d
n1
1) satisfying d1 = 1, a necessary condition

of MinND-realizability over trees is φ(σ) ≤ n(σ).

Proof. Consider a profile σ = (dn`

` , · · · , d
n1
1), and let T be a MinND tree-realization of σ

on V . Let r ∈ V (T) be a vertex that satisfies MinND(u) = d`. Root T at node r. For
i = 1, . . . , `, let Vi = {v ∈ V (T) | MinND(v) = di}. Observe that for each i < `, there
exists (at least) one edge, denoted (yi, xi) ∈ E(T), where yi is the parent of xi, satisfying
the condition that (i) xi ∈ Vi, and (ii) none of the vertices in the tree-path (r T yi) lie in
Vi. These edges play a crucial role in our tight bound on φ(σ).

Let

A = {xi | MinND(yi) < di, for i < `},
B = {xi | MinND(yi) > di, for i < `}.

For each w ∈ V (T), let Cw and GCw, respectively, be the set consisting of the children
and grand-children of w in T . Also let CA = ∪w∈ACw.

Now we define a function Γ : V 7→ 2V as follows (see example in Figure 2):

Γ(w) =

{r} ∪ Cr ∪ GCr, if w = r,

Cw ∪ (GCw \ CA), if w ∈ A,
GCw \ CA, otherwise.

Figure 3 illustrates the subtree induced over {w} ∪ Cw ∪ GCw, for some node w.

B Claim. Γ(w) ∩ Γ(v) = ∅ for every v, w ∈ V (T) such that v 6= w.

ESA 2020

10:8 Minimum Neighboring Degree Realization in Graphs and Trees

1

1

4

1 1

1 1 1 1 1 1 1 1

1

1 1

1

1 1

11

1

1

2

2

3

𝑟

𝑥2

𝑥1 𝑥3𝑣

Γ(𝑥2)Γ(𝑟) Γ(𝑣) Γ(𝑥3)

Figure 2 Tree MinND-realization of σ = (413122122). The number in each vertex denotes its
MinND. The edges (y1, x1), (y2, x2) and (y3, x3) are colored green, red and blue, respectively.
Further, A = {x3} and B = {x1, x2}.

𝑤

z3z2z1 z4

Figure 3 Illustration of a subtree induced over {w} ∪ Cw ∪GCw, for some node w. Γ(w) is the set
of vertices in the blue dotted line if w = r, in the red if w ∈ A, and in the green otherwise (assuming
z1, z2 ∈ A).

Proof. Let us first consider the case v = r. The result is obviously true if w /∈ Cr, or w /∈ A.
Now if w ∈ Cr, then MinND(r) ≥MinND(w), thereby implying w /∈ A.

Next consider any two vertices v 6= w ∈ V (T) \ {r}. Assume towards contradiction
Γ(v) ∩ Γ(w) contains a node z. Then z must be a child of exactly one of the nodes v or w,
and the corresponding node must lie in A. Assume z ∈ Cw, and w ∈ A. Since z ∈ Cw ⊆ CA,
we have z /∈ GCv \ CA, and also z cannot be a child of v, thereby implying z /∈ Γ(v). Hence,
Γ(v) ∩ Γ(w) must be empty. C

B Claim. For every v ∈ Vi, 1 ≤ i ≤ `, we have

|Γ(v)| ≥
{
di(di − 1), if v ∈ A ∪B,
(di − 1)2, if v /∈ {r} ∪A ∪B.

Proof. Consider a node v ∈ Vi, for some i ≤ `. Observe that each u ∈ Cv must have
degree at least di, and thus satisfy |Cu| ≥ di − 1. Let z0 be v’s parent and z1, . . . , zt be
the nodes in Cv ∩ A. Since z0 is an ancestor of z1, . . . , zt, by definition of A ∪ B, the
MinND of all the vertices z0, z1, . . . , zt must be distinct. Without loss of generality, we
can assume MinND(zt) > · · · > MinND(z1). By definition of A, MinND(z1) > di. Let
∆ = maxtj=0 MinND(zj). Then deg(v) ≥ ∆. Consequently we have ∆ ≥ di + t, since
∆ ≥MinND(zt) > · · · > MinND(z1) > di. So

|Cv \A| = deg(v)− t− 1 ≥ ∆− t− 1 ≥ (di − 1) . (1)

We now consider three cases, according to whether v lies in A, B, or V \ ({r} ∪A ∪B).

1. v ∈ A: By Eq. (1), |GCv \ CA| ≥ (di− 1)2, and also |Cv| ≥ di− 1. Combined, we get that
|Γ(v)| = |GCv \ CA|+ |Cv| ≥ di(di − 1).

A. Bar-Noy, K. Choudhary, A. Cohen, D. Peleg, and D. Rawitz 10:9

2. v ∈ B: By definition of B, MinND(z0) > di. Thus, MinND(zj) > di for j ∈ [0, t]. Also,
MinND of z0, . . . , zt are distinct. Hence, ∆ ≥ di + (t + 1). So |Cv \ A| = deg(v) − t ≥
∆− t ≥ di. This implies |Γ(v)| = |GCv \ CA| ≥ di(di − 1).

3. v /∈ {r} ∪A ∪B: By Eq. (1), |GCv \ CA| ≥ (di − 1)2, implying |Γ(v)| ≥ (di − 1)2.
The claim follows. C

Note that Γ(r) contains at least d2
` + 1 nodes, since the degrees of r and of its children

are at least d`. Now, we are ready to prove the bound over φ(σ). In our calculations we use
x` to denote the node r.

n(σ) = |V (T)| ≥ |Γ(r)|+
∑̀
i=1

∑
v∈Vi\{xi}

|Γ(v)|+
`−1∑
i=1
|Γ(xi)|

≥ d2
` + 1 +

∑̀
i=1

(ni − 1)(di − 1)2 +
`−1∑
i=1

di(di − 1)

= φ(σ) .

This completes our proof of n(σ) ≥ φ(σ). J

I Corollary 3. For a sequence σ = (dn`

` , · · · , d
n1
1) satisfying d1 = 1, a necessary condition of

MinND-realizability over forests is φ(σ) ≤ n(σ).

Proof. Given a sequence σ that is MinND-realizable as a forest, it can be partitioned into
subsequences σ1, . . . , σk corresponding to each of its connected components. By Proposition 2,
n(σi) ≥ φ(σi) for i ∈ [1, k]. Therefore, n(σ) =

∑k
i=1 n(σi) ≥

∑k
i=1 φ(σi) ≥ φ(σ) , where the

last inequality follows immediately from the definition of φ. J

By Proposition 1 and Corollary 3, and the fact that a tree always contains vertices of
degree one (and hence also MinND one), the following is immediate.

I Theorem 4. The sequence σ = (dn`

` , · · · , d
n1
1) is MinND-realizable over acyclic graphs if

and only if d1 = 1, and φ(σ) ≤ n(σ).

4 Realizations in General graphs

We first define the notion of leader and follower crucial to our construction. Let G = (V,E)
be any graph. For any vertex v ∈ V , we define leader(v) to be a vertex in N [v] of minimum
degree, if there is more than one choice we pick the leader arbitrarily (these arbitrarily chosen
leaders do not have to be consistent between neighbors, e.g., it is possible that two vertices u
and v are the leaders of each other). In other words, leader(v) ∈ arg min{deg(w) | w ∈ N [v]}.
Next let σ = (dn`

` , · · · , d
n1
1) be the min-degree sequence of G. We define Vi to be the set

of those vertices in G whose minimum-degree in the closed neighborhood is exactly di, so
|Vi| = ni. Also, let Li be the set of those vertices in G who are leaders of at least one vertex
in Vi, equivalently, Li = {leader(v) | v ∈ Vi}, and denote by L = ∪`i=1Li the set of all the
leaders in G. Observe that the sets V1, . . . , V` form a partition of the vertex-set of G.

A vertex v in G is said to be a follower, if leader(v) 6= v. Let Fi = {v ∈ Vi | v 6= leader(v)}
be the set of all the followers in Vi. Finally we define R = V \ L to be the set of all the
non-leaders, and F = ∪`i=1Fi to be the set of all the followers.

ESA 2020

10:10 Minimum Neighboring Degree Realization in Graphs and Trees

v1 v2 v3

v4

v5

v6

Figure 4 MinND-realization of sequence σ = (332112). Here MinND(v1) = MinND(v2) =
deg(v1) = 1, MinND(v3) = deg(v2) = 2, and MinND(vi) = 3, for i ∈ {4, 5, 6}. Since leader(v2) = v1

and leader(v3) = v2, thus, v2 is a leader as well as a follower.

We point here that there exist realizable sequences σ for which any graph G realizing σ
and any leader function over G, the sets L and F have non-empty intersection. For example,
consider the sequence σ = (332112) in Figure 4. It can be easily checked that σ has only one
realizing graph, and in it, the leader-set and follower-set are non-disjoint.

We classify the sequences that admit disjoint leader and follower sets as follows.

I Definition 5. A sequence σ = (dn`

` , · · · , d
n1
1) is said to admit a Disjoint Leader-Follower

(DLF) MinND-realization if there exists a graph G realizing σ and a leader function under
which the sets L and F are mutually disjoint, that is, L ∩ F = ∅.2

I Theorem 6. For any σ = (dn`

` , · · · , d
n1
1) that is MinND-realizable by a graph, say G, the

following conditions must be satisfied.
(NC1) di ≤

(∑i
j=1 nj

)
− 1, for i ∈ [1, `];

(NC2) d` ≤
∑`
j=1

⌊
njdj

dj+1

⌋
.

Further, for any leader function defined over G, and i < `, if Li ∩ Vi 6= ∅ then
di ≤

∑i
j=1

⌊
njdj

dj+1

⌋
.

Proof. We provide first a lower bound on the size of the leader set Li. We show for each
i ∈ [1, `], we have |Li| ≥

⌈ ni
di + 1

⌉
. Consider a vertex a ∈ Li. Since |N [a]| = di + 1, vertex

a can serve as leader for at most di + 1 vertices. This shows that |Li| ≥ ni

di+1 . The claim
follows from the fact that |Li| is integer.

Proof of (NC1). Let w be any vertex in G such that deg(w) = di. Then w as well as all
the neighbors of w must be contained in ∪ij=1Vj , therefore, we have: di + 1 = |N [w]| ≤
| ∪ij=1 Vj | =

∑i
j=1 nj , thereby proving condition (NC1).

Proof of (NC2). Now suppose w is a vertex in G such that MinND(w) = d`. Then N [w]
cannot contain vertices of degree less than d`, so N [w] ∩ Li = ∅, for each i < `. Therefore,
|N [w]| ≤ n−

∑`−1
i=1 |Li|. Also deg(w) must be at least d`. We thus get,

d` + 1 ≤ |N [w]| ≤ n−
`−1∑
i=1
|Li| = n` +

`−1∑
i=1

(ni − |Li|) ≤ n` +
∑̀
i=1

⌊ nidi
di + 1

⌋
.

Now if n` ≤ d`, then n` − 1 =
⌊
n`d`

d`+1
⌋
, and so d` ≤

∑`
i=1
⌊
nidi

di+1
⌋
. If n` ≥ d` + 1, then

n`d`

d`+1 ≥ d` which implies d` ≤
⌊
n`d`

d`+1
⌋
since d` is integral.

2 In Section 4.1, we show that our construction realizes a DLF MinND-realization whenever one exists.
In other words, the sufficient condition (SC) is also necessary for sequences that admit a DLF MinND-
realization. Nevertheless, there exist MinND-realizable sequences that do not admit a DLF MinND-
realization. These sequences may violate the sufficient condition (SC) despite being MinND-realizable.

A. Bar-Noy, K. Choudhary, A. Cohen, D. Peleg, and D. Rawitz 10:11

Proof of last claim. Let w be any vertex lying in Li ∩ Vi, so MinND(w) = deg(w) = di.
Recall for each j < i, vertices in the set Lj have degree strictly less than di. Since N [w]
cannot contain vertices of degree less than di, thus for each j < i, N [w] ∩ Lj = ∅. Also
vertices in Vi+1 ∪ . . . ∪ V` cannot be adjacent to any vertex in {w} ∪

(
∪i−1
j=1 Lj

)
, therefore,

N [w] as well as ∪i−1
j=1Lj are contained in union ∪ij=1Vj . We thus get,

di + 1 = |N [w]| ≤
∣∣∣ i⋃
j=1

Vj

∣∣∣− ∣∣∣ i−1⋃
j=1

Lj

∣∣∣ = ni +
i−1∑
j=1

(ni − |Lj |) ≤ ni +
i−1∑
j=1

⌊ njdj
dj + 1

⌋
.

If ni ≤ di, then ni − 1 = ni −
⌈

ni

di+1
⌉

=
⌊
nidi

di+1
⌋
, and so di ≤

∑i
j=1

⌊ njdj

dj+1
⌋
. If ni ≥ di + 1,

then the bound trivially holds since nidi

di+1 ≥ di which from the fact that di is integral implies
di ≤

⌊
nidi

di+1
⌋
. J

We next prove the following theorem.

I Theorem 7 (Sufficient condition SC). Any sequence σ = (dn`

` , · · · , d
n1
1) satisfying

di ≤
i∑

j=1

⌊ njdj
dj + 1

⌋
, for i ∈ [1, `] ,

is MinND-realizable. Further, we can always compute a realizing graph, say G, and a leader
function defined over G that satisfies L ∩ F = ∅.

Proof. We begin with the simple case of realizing uniform sequences, and then consider the
scenario of general sequences.

Uniform Sequences. Consider for simplicity first the sequence σ = (dn). We provide a
realization for σ if n ≥ d+ 1. Let q ≥ 1 and r ∈ [0, d] be integers satisfying n = (q)(d+ 1)− r.
Take a set A of q vertices, namely ai (i ∈ [1, q]), and another set B of dq vertices, namely
bij (i ∈ [1, q], j ∈ [1, d]). Connect each ai to the vertices bi1, . . . , bid. So vertices in A have
degree exactly d and vertices in B have in their neighborhood a vertex of degree d. Next if
r > 0, then we merge b1j with b2j , for j ∈ [1, r], thereby reducing r vertices in B. (Notice
that b1j and b2j exists because r > 0 only when q ≥ 2.) Thus |A|+ |B| = n and each vertex
in A still has degree exactly d. So |A| = n+r

d+1 =
⌈

n
d+1
⌉
and |B| = n − |A| =

⌊
nd
d+1
⌋
≥ d.

Finally, we add edges between each pair of vertices in B to make it a clique of size at least
d; this will imply that the vertices in set B have degree at least d. It is easy to check that
MinND(v) for each v ∈ A ∪B in our constructed graph is d. In our construction A forms
the leader set, and B forms the follower set.

In the rest of proof, we use graph(n, d,A,B) to denote a function that returns the edges
of the graph as constructed above (over A and B) whenever provided with four parameters
n, d,A,B satisfying n ≥ d+ 1, |A| =

⌈
n
d+1
⌉
, and |B| =

⌊
nd
d+1
⌋
.

General Sequences. We now consider the case σ = (dn`

` , · · · , d
n1
1). Initialize G to be an

empty graph. Our algorithm proceeds in ` rounds. (See Algorithm 2 for a pseudocode.)
In each round, we first add to G a set Vi of ni new vertices and partition Vi into two sets
Li and Ri of sizes respectively

⌈
ni

di+1
⌉
and

⌊
nidi

di+1
⌋
. Now if ni > di + 1, then we solve this

round independently by adding to G all the edges returned by graph(ni, di, Li, Ri). Notice
that if ni ≤ di + 1, then Li will contain only one vertex, say ai. In such a case, we add
edges between ai and all the vertices in the set Ri. Also, we add edges between ai and
any arbitrarily chosen di + 1 − ni vertices in ∪j<iRj . This is possible since di + 1 − ni =
di −

⌊
nidi

di+1
⌋
≤
∑i−1
j=1

⌊ njdj

dj+1
⌋

=
∑i−1
j=1 |Rj |. Finally, after the ` rounds are completed, we add

edges between each pair of vertices in set R = ∪`i=1Ri to make it a clique.

ESA 2020

10:12 Minimum Neighboring Degree Realization in Graphs and Trees

Let us now show bounds on the degree of vertices in sets Li and Ri.
1. Each vertex in Li has degree exactly di : Recall we add edges to vertices in Li only in

the ith iteration of the for loop. If ni > di + 1, then the degree of each vertex in Li is
exactly di. If |Li| = 1 or, equivalently, ni ≤ di + 1, then |Ri| = ni − |Li| = ni − 1, and so
the degree of the vertex ai ∈ Li is (ni − 1) + (di + 1− ni) = di.

2. Vertices in R have degree at least d` : For any i ∈ [1, `], if ni > di+1, then |Ri| =
⌈
nidi

di+1
⌉
,

and even in the case ni ≤ di + 1, we have |Ri| = ni − |Li| = ni −
⌈

ni

di+1
⌉

=
⌈
nidi

di+1
⌉
. Thus

|R| =
∑`
i=1 |Ri| =

∑`
i=1
⌈
nidi

di+1
⌉
which is bounded below by di. Since |R| ≥ d`, and each

vertex in R is adjacent to at least one vertex in ∪iLi, the degree of vertices in R is at
least d`.

Algorithm 2 Computing a MinND-realization for a given special σ.

Input: A sequence σ = (dn`

` · · · d
n1
1) satisfying di ≤

∑i
j=1b

njdj

dj+1c, for 1 ≤ i ≤ `.

1 Initialize G to be an empty graph.
2 for i = 1 to ` do
3 Add to G a set Vi of ni new vertices.
4 Partition Vi in two sets Li, Ri such that |Li| =

⌈
ni

di+1
⌉
and |Ri| =

⌊
nidi

di+1
⌋
.

5 if (ni > di + 1, or equivalently, |Li| > 1) then
6 Add to G all the edges returned by graph(ni, di, Li, Ri).
7 else if (|Li| = 1) then
8 Let ai be the only vertex in Li.
9 Connect ai to all vertices in Ri, and any arbitrary di + 1− ni vertices in

∪j<iRj .

10 Add edges between each pair of vertices in R = ∪`i=1Ri to make it a clique.
11 Output G.

We next show that for any vertex v ∈ Vi, MinND(v) = di, where i ∈ [1, `]. If v ∈ Li, then
MinND(v) = di, since each vertex in Li has degree di, and is adjacent to only vertices in R
which have degree at least d` ≥ di. If v ∈ Ri, then also MinND(v) = di, since each vertex in
Ri is adjacent to at least one vertex in Li, and N [v] is contained in the set R ∪ (∪j≥iLj),
whose vertices have degree at least di.

The leader function over V is as follows. For each v ∈ ∪`i=1Li, we set leader(v) = v, and
for each v ∈ Ri, we set leader(v) to any arbitrary neighbor of v in Li. Since each vertex in
L = ∪`i=1Li = {leader(v) | v ∈ V } is a leader of itself, the set L of leaders and the set F of
followers must be mutually disjoint. J

As a corollary of the above results, the following is immediate.

I Theorem 8. The sequence σ = (dn2
2 , dn1

1) is MinND-realizable if and only if d1 ≤
⌊
n1d1
d1+1

⌋
and d2 ≤

⌊
n1d1
d1+1

⌋
+
⌊
n2d2
d2+1

⌋
.

Proof. Suppose σ = (dn2
2 , dn1

1) is realizable. Then Theorem 6 implies (i) n1 ≥ d1 + 1 which
implies d1 ≤

⌊
n1d1
d1+1

⌋
, and (ii) d` = d2 ≤

⌊
n1d1
d1+1

⌋
+
⌊
n2d2
d2+1

⌋
. The converse follows from

Theorem 7. J

I Remark 9. In Appendix A, we additionally solve the more involved case of sequences of
length three. That is, we provide a complete characterization of the realizability of sequences
of the form σ = (dn3

3 , dn2
2 , dn1

1) over general graphs.

A. Bar-Noy, K. Choudhary, A. Cohen, D. Peleg, and D. Rawitz 10:13

For a sequence σ = (dn`

` , · · · , d
n1
1), let γ = (d1 + 1)/d1. As bγn1d1

d1+1 c + . . . + bγnidi

di+1 c ≥
n1 + · · ·+ ni ≥ di, we also have the following result providing a γ (≤ 2) approximation.

I Corollary 10. For any sequence σ = (dn`

` , · · · , d
n1
1) satisfying the first necessary condition

(NC1), the sequence σγ = (ddγn`e
` , . . . , d

dγn1e
1) satisfies the sufficient condition (SC).

4.1 Sequences admitting Disjoint-Leader-Follower Sets
Finally, we state our results on sequences admitting disjoint Leader-Follower sets.

I Theorem 11. A sequence σ = (nd`

` . . . dn1
1) is MinND-realizable by a graph G having

disjoint leader-set (L) and follower-set (F) with respect to some leader function, if and only
if, for each i ∈ [1, `], di ≤

∑i
j=1

⌊ njdj

dj+1
⌋
.

Proof. Let us suppose there exists a leader function over G for which L ∩ F = ∅, then
for each i ∈ [1, `], Li ⊆ Vi. This is because if for some i, there exists w ∈ Li \ Vi, then
deg(w) = di 6= MinND(di), which implies that w is a leader as well as a follower. Since
Li ⊆ Vi, by Theorem 6, di ≤

∑i
j=1

⌊ njdj

dj+1
⌋
, for each i ∈ [1, `]. The converse claim follows

from Theorem 7. J

References
1 Martin Aigner and Eberhard Triesch. Realizability and uniqueness in graphs. Discrete

Mathematics, 136:3–20, 1994.
2 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Realizability of graph

specifications: Characterizations and algorithms. In 25th SIROCCO, LNCS, pages 3–13, 2018.
3 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Efficiently realizing interval

sequences. In 30th ISAAC, pages 47:1–47:15, 2019.
4 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Graph profile realizations

and applications to social networks. In 13th WALCOM, LNCS, pages 1–12, 2019.
5 Amotz Bar-Noy, Keerti Choudhary, David Peleg, and Dror Rawitz. Graph realizations:

Maximum degree in vertex neighborhoods. In Proc. SWAT, 2020.
6 Michael D. Barrus and Elizabeth A. Donovan. Neighborhood degree lists of graphs. Discrete

Mathematics, 341(1):175–183, 2018.
7 Joseph K. Blitzstein and Persi Diaconis. A sequential importance sampling algorithm for

generating random graphs with prescribed degrees. Internet Mathematics, 6(4):489–522, 2011.
8 Sheshayya A. Choudum. A simple proof of the Erdös-Gallai theorem on graph sequences.

Bull. Austral. Math. Soc., 33(1):67–70, 1991.
9 Brian Cloteaux. Fast sequential creation of random realizations of degree sequences. Internet

Mathematics, 12(3):205–219, 2016.
10 Paul Erdös and Tibor Gallai. Graphs with prescribed degrees of vertices [hungarian]. Matem-

atikai Lapok, 11:264–274, 1960.
11 S.L. Feld. Why your friends have more friends than you do. Amer. J. Sociology, 96:1464–1477,

1991.
12 S. Louis Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph

– I. SIAM J. Appl. Math., 10(3):496–506, 1962.
13 Peter L. Hammer, Toshihide Ibaraki, and Bruno Simeone. Threshold sequences. SIAM J.

Algebraic Discrete Methods, 2(1):39–49, 1981.
14 V. Havel. A remark on the existence of finite graphs. Casopis Pest. Mat., 80:477–480, 1955.
15 P.J. Kelly. A congruence theorem for trees. Pacific J. Math., 7:961–968, 1957.
16 Milena Mihail and Nisheeth Vishnoi. On generating graphs with prescribed degree sequences

for complex network modeling applications. 3rd ARACNE, 2002.

ESA 2020

10:14 Minimum Neighboring Degree Realization in Graphs and Trees

17 Elchanan Mossel and Nathan Ross. Shotgun assembly of labeled graphs. CoRR, abs/1504.07682,
2015. arXiv:1504.07682.

18 Peter V. O’Neil. Ulam’s conjecture and graph reconstructions. Amer. Math. Monthly, 77:35–43,
1970.

19 Gerard Sierksma and Han Hoogeveen. Seven criteria for integer sequences being graphic. J.
Graph Theory, 15(2):223–231, 1991.

20 Amitabha Tripathi and Himanshu Tyagi. A simple criterion on degree sequences of graphs.
Discrete Applied Mathematics, 156(18):3513–3517, 2008.

21 Regina Tyshkevich. Decomposition of graphical sequences and unigraphs. Discrete Mathematics,
220(1-3):201–238, 2000.

22 S.M. Ulam. A collection of mathematical problems. Wiley, 1960.
23 D.L. Wang and D.J. Kleitman. On the existence of n-connected graphs with prescribed degrees

(n > 2). Networks, 3:225–239, 1973.
24 N.C. Wormald. Models of random regular graphs. Surveys in Combin., 267:239–298, 1999.

A MinND realization of tri-sequences in General Graphs

Here we consider the scenario when a sequence has only three distinct degrees.
We now provide a complete characterization of sequence σ = (dn3

3 , dn2
2 , dn1

1).

I Theorem 12. The necessary and sufficient conditions for MinND-realizability of the
sequence σ = (dn`

` , · · · , d
n1
1) when ` = 3 is

1. d1 + 1 ≤ n1,
2. d2 + 1 ≤ n1 + n2,
3. d3 ≤

⌊
n1d1
d1+1

⌋
+
⌊
n2d2
d2+1

⌋
+
⌊
n3d3
d3+1

⌋
, and

4. either d2 ≤
⌊
n1d1
d1+1

⌋
+
⌊
n2d2
d2+1

⌋
, or d3 + 1 ≤ n1 + n2 + n3 −

(
1 +

⌈
d2−n2
d1

⌉)
.

Proof. Suppose σ = (dn3
3 , dn2

2 , dn1
1) is realizable, then by Theorem 6, it follows that the first

three conditions stated above are necessary.
To prove that all four conditions are necessary, we are left to show that if d2 >

⌊
n1d1
d1+1

⌋
+⌊

n2d2
d2+1

⌋
, then d3 + 1 ≤ n1 + n2 + n3 −

(
1 +

⌈
d2−n2
d1

⌉)
. We consider a graph G that realizes σ.

Let V1, V2, V3 be the partition of V (G) as defined in Section 4. Consider a vertex w ∈ V2.
Observe that leader(w) must lie in V1, because if L2 ∩ V2 is non-empty, then Theorem 6
implies d2 ≤

⌊
n1d1
d1+1

⌋
+
⌊
n2d2
d2+1

⌋
. We first show that |L1| ≥

⌈
d2−n2
d1

⌉
. The set N(w) ∩ V1 has

size at least d2 − n2. Each vertex x ∈ L1 can serve as a leader of at most d1 vertices in
open-neighborhood of w. Indeed, if x ∈ N(w) then it can not count w (lying outside N(w)),
and if x /∈ N(w) then it can not count itself (again lying outside N(w)). Thus to cover the
set N(w) ∩ V1 at least

⌈
d2−n2
d1

⌉
leaders are required, thereby showing |L1| ≥

⌈
d2−n2
d1

⌉
. Now

consider a vertex y ∈ V3, note that N [y] excludes w (as degree of w is d2), as well as L1 (as
vertices in L1 have degree d1). Therefore, we obtain the following relation.

d3 + 1 = | N [y] | ≤ |V1 \ L1|+ |V2 \ w|+ |V3| ≤ n1 + n2 + n3 −
(

1 +
⌈
d2 − n2

d1

⌉)
We now prove the sufficiency claims. If d2 ≤

⌊
n1d1
d1+1

⌋
+
⌊
n2d2
d2+1

⌋
, then the conditions 1-4

are sufficient by Theorem 7. So let us focus on the scenario when d2 >
⌊
n1d1
d1+1

⌋
+
⌊
n2d2
d2+1

⌋
.

Let N = n1 + n2 + n3 −
(
1 +

⌈
d2−n2
d1

⌉)
. The vertex-set of our realized graph G = (V,E)

will be a union of three disjoint sets L1, L2 = {w}, and Z of size respectively
⌈
d2−n2
d1

⌉
, 1,

and N . Initially, the edge-set E is an empty-set. Between vertex pairs in Z, we add edges

http://arxiv.org/abs/1504.07682

A. Bar-Noy, K. Choudhary, A. Cohen, D. Peleg, and D. Rawitz 10:15

so that the induced graph G[Z] is identical to graph(N, d3,
⌈

N
d3+1

⌉
,
⌊
Nd3
d3+1

⌋
). This step

is possible since d3 + 1 ≤ N , and ensures that MinNDG[Z](z) = d3, for z ∈ Z. Let L3
denote the set of those vertices in Z whose degree is equal to d3. We connect w to arbitrary
N−n3 = n2+(n1−|L1∪L2|) vertices in Z\L3, and any arbitrary α := d2−(n1+n2−|L1∪L2|)
vertices in L1. Since degG(w) = d2, this step ensures that MinND of exactly n2 vertices in Z
decreases to d2. Let Y be a subset of arbitrary (n1 − |L1 ∪L2|) neighbors of w in Z. Finally,
we connect each x ∈ L1 ∩N [w] to arbitrary d1 − 1 vertices in Y , and each x′ ∈ L1 \N [w]
to arbitrary d1 vertices in Y , so as to ensure each vertex in Y is adjacent to at least one
leader in L1. Since vertices in L1 have degree d1, this ensures MinNDG(x) = d1, for each
x ∈ {w} ∪ Y ∪ L1. This completes the construction of G. J

ESA 2020

Tight Approximation Algorithms for p-Mean
Welfare Under Subadditive Valuations
Siddharth Barman
Indian Institute of Science, Bangalore, India
barman@iisc.ac.in

Umang Bhaskar
Tata Institute of Fundamental Research, Mumbai, India
umang@tifr.res.in

Anand Krishna
Indian Institute of Science, Bangalore, India
anandkrishna@iisc.ac.in

Ranjani G. Sundaram
Chennai Mathematical Institute, India
ranjanigs@cmi.ac.in

Abstract

We develop polynomial-time algorithms for the fair and efficient allocation of indivisible goods among
n agents that have subadditive valuations over the goods. We first consider the Nash social welfare
as our objective and design a polynomial-time algorithm that, in the value oracle model, finds an
8n-approximation to the Nash optimal allocation. Subadditive valuations include XOS (fractionally
subadditive) and submodular valuations as special cases. Our result, even for the special case of
submodular valuations, improves upon the previously best known O(n log n)-approximation ratio of
Garg et al. (2020).

More generally, we study maximization of p-mean welfare. The p-mean welfare is parameterized
by an exponent term p ∈ (−∞, 1] and encompasses a range of welfare functions, such as social welfare
(p = 1), Nash social welfare (p→ 0), and egalitarian welfare (p→ −∞). We give an algorithm that,
for subadditive valuations and any given p ∈ (−∞, 1], computes (in the value oracle model and in
polynomial time) an allocation with p-mean welfare at least 1/8n times the optimal.

Further, we show that our approximation guarantees are essentially tight for XOS and, hence,
subadditive valuations. We adapt a result of Dobzinski et al. (2010) to show that, under XOS
valuations, an O

(
n1−ε

)
approximation for the p-mean welfare for any p ∈ (−∞, 1] (including the

Nash social welfare) requires exponentially many value queries; here, ε > 0 is any fixed constant.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory

Keywords and phrases Discrete Fair Division, Nash Social Welfare, Subadditive Valuations, Sub-
modular Valuations

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.11

Related Version A full version of the paper is available at https://arxiv.org/abs/2005.07370.

Funding Siddharth Barman: Supported by a Ramanujan Fellowship (SERB – SB/S2/RJN128/2015)
and a Pratiksha Trust Young Investigator Award.
Umang Bhaskar : Supported by the Department of Atomic Energy, Government of India (project
RTI4001), a Ramanujan Fellowship (SERB – SB/S2/RJN-055/2015), and an Early Career Research
Award (SERB – ECR/2018/002766).

© Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G. Sundaram;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 11; pp. 11:1–11:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barman@iisc.ac.in
mailto:umang@tifr.res.in
mailto:anandkrishna@iisc.ac.in
mailto:ranjanigs@cmi.ac.in
https://doi.org/10.4230/LIPIcs.ESA.2020.11
https://arxiv.org/abs/2005.07370
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations

1 Introduction

In discrete fair division, given a set of m goods and n agents, the problem is to integrally
allocate the set of goods to the agents in a fair and (economically) efficient manner [8, 17, 3].
In this thread of work, the Nash social welfare – defined as the geometric mean of the agents’
valuations for their assigned bundles – has emerged as a fundamental and prominent measure
of the quality of an allocation. It provides a balance between two central objectives: the
social welfare (the sum of the agents’ valuations) and the egalitarian welfare (the minimum
valuation across the agents). Note that social welfare is a standard measure of (economic)
efficiency, whereas egalitarian welfare is a fairness objective.

A Nash optimal allocation (i.e., an allocation that maximizes Nash social welfare) satisfies
other fairness and efficiency criteria as well. Such an allocation is clearly Pareto optimal.
Furthermore, if agents have additive valuations, then a Nash optimal allocation is known
to be fair in the sense that it is guaranteed to be envy-free up to one good (EF1) [9] and
proportional up to one good (Prop1) [15].1

As an objective, Nash social welfare is scale invariant: multiplicatively scaling any agent’s
valuation function by a nonnegative factor does not change the Nash optimal allocation.
Furthermore, interesting connections have been established between market models and this
welfare function; see, e.g., [13, 5]. As a practical application, the website spliddit.org
uses the Nash social welfare as the optimization objective when partitioning indivisible
goods [22, 9].

However, computing a Nash optimal allocation is APX-hard, even when the agents have
additive valuations [24]. In terms of approximation algorithms, the problem of maximizing
Nash social welfare has received considerable attention in recent years [14, 13, 2, 6, 1, 5,
19]. In particular, a polynomial-time e1/e-approximation algorithm is known for additive
valuations [5]. This algorithm preserves EF1, up to a factor of (1 + ε), and Pareto optimality.
The approximation guarantee of e1/e ≈ 1.45 also holds for budget-additive valuations [11].
The work of Garg et al. [20] extends this line of work by considering Nash social welfare
maximization under submodular valuations.

Submodular valuations capture the diminishing marginal returns property. They con-
stitute a subclass of subadditive valuations, which, in turn, model complement-freeness.
Formally, a set function v (defined over a set of indivisible goods) is subadditive if it satisfies
v(A ∪B) ≤ v(A) + v(B), for all subsets of goods A and B. Complement-freeness is a very
common assumption on valuation functions. Hence, fair division with subadditive valuations
is an encompassing and important problem.

For Nash social welfare maximization under submodular valuations, Garg et al. [20]
obtain an O(n logn)-approximation algorithm. Prior to their work, the best known approx-
imation ratio for submodular valuations was (m− n+ 1), which also extends to subadditive
valuations [26]; here, m denotes the number of goods and n the number of agents. For a
constant number of agents with submodular valuations, Garg et al. [20] provide an e/(e− 1)-
approximation algorithm and show that, even in this setting, improving upon e/(e− 1) is
NP-hard.

1 An allocation is said to be EF1 if for any pair of agents i and j, there exists a good g in j’s bundle,
such that i prefers her bundle to the one obtained after removing g from j’s bundle. An allocation is
said to be Prop1 if for each agent i there exists a good g with the property that including g into i’s
bundle ensures that i achieves a proportional share, i.e., her valuation ends up being at least 1/n times
her value for all the goods.

S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram 11:3

In the context of allocating indivisible goods, two other well-studied welfare objectives are
the social welfare and the egalitarian welfare. These represent, respectively, for an allocation,
the average valuation of the agents and the minimum valuation of any agent. For the social
welfare objective, a tight approximation factor of e/(e − 1) is known under submodular
valuations [29]. For subadditive valuations, Feige [18] shows that social welfare maximization
admits a polynomial-time 2-approximation, assuming oracle access to demand queries.2

For maximizing egalitarian welfare under additive valuations, Chakrabarty et al. [10]
provide an Õ(nε)-approximation algorithm that runs in time nO(1/ε), for any ε > 0. Under sub-
modular valuations, egalitarian welfare maximization admits an Õ(n1/4m1/2)-approximation
algorithm [21]. Khot and Ponnuswami [23] provide a 2n-approximation algorithm for maxim-
izing egalitarian welfare under subadditive valuations. As a lower bound, with submodular
valuations, egalitarian welfare cannot be approximated within a factor of 2, unless P = NP [7].

In this work we develop a unified treatment of fairness and efficiency objectives, including
the welfare functions mentioned above. In particular, we develop an approximation algorithm
for computing allocations that maximize the generalized mean of the agents’ valuations.
Formally, for exponent parameter p ∈ R, the pth generalized mean of a set of n positive reals
v1, v2, . . . , vn is defined as

(1
n

∑n
i=1 v

p
i

)1/p. For an allocation (partition) A = (A1, . . . , An)
of the indivisible goods among the n agents, we define the p-mean welfare of A as the
generalized mean of the values (vi(Ai))i∈[n]; here vi(Ai) is the value that agent i has for the
bundle Ai assigned to it. Indeed, with different values of p, the p-mean welfare encompasses
a range of objectives: it corresponds to the social welfare (arithmetic mean) for p = 1, the
Nash social welfare (geometric mean) for p → 0, and the egalitarian welfare for p → −∞.
In fact, p-mean welfare functions with p ∈ (−∞, 1] exactly correspond to the collection
of functions characterized by a set of natural axioms, including the Pigou-Dalton transfer
principle [25]. Hence, p-mean welfare functions, with p ∈ (−∞, 1], constitute an important
and axiomatically-supported family of objectives.

Our Contributions. We develop a polynomial-time algorithm that, given a fair division
instance with subadditive valuations and parameter p ∈ (−∞, 1], finds an allocation with
p-mean welfare at least 1/8n times the optimal p-mean welfare (Theorem 9). Our algorithm
uses the standard value oracle model which, when queried with any subset of goods and an
agent i, returns the value that i has for the subset. For different values of p, our algorithm
changes minimally, differing only in the weights of edges for a computed matching. We
thus present a unified analysis for this broad class of welfare functions, suggesting further
connections between these objectives than the previously mentioned axiomatization. Our
result matches the best known O(n)-approximation for egalitarian welfare [23] and improves
upon the O(n logn)-approximation guarantee of Garg et al. [20] for Nash social welfare with
submodular valuations. Arguably, our algorithm (and the analysis) is simpler than the one
developed in [20] and simultaneously more robust, since it obtains an improved approximation
ratio for subadditive valuations and a notably broader class of welfare objectives.

For clarity of exposition, we first present an 8n-approximation algorithm for maximizing
Nash social welfare under subadditive valuations (Theorem 2). We then generalize the
algorithm to the class of p-mean welfare objectives.

2 A demand-query oracle, when queried with prices p1, . . . , pm ∈ R associated with the m goods, returns
maxS⊆[m]

(
v(S)−

∑
j∈S

pj

)
, for an underlying valuation function v. The current paper works with

more basic value oracle, which when queried with a subset of goods returns the value this subset. Any
value query can be simulated via a polynomial number of demand queries. However, the converse is not
true [27].

ESA 2020

11:4 Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations

We complement these algorithmic results by adapting a result of Dobzinski et al. [16]
to show that for XOS valuations, any O(n1−ε)-approximation for p-mean welfare requires
an exponential number of value queries (Section 5). Hence, in the value oracle model, our
approximation guarantee is essentially tight for XOS and, hence, for subadditive valuations.
We note that these are the first polynomial lower bounds on approximating either the Nash
social welfare or the egalitarian welfare.

Nguyen and Rothe [26] obtain an (m− n+ 1)-approximation guarantee for maximizing
Nash social welfare with subadditive valuations. We establish two extensions of this result.
First, we show that, under subadditive valuations, an (m − n + 1)-approximation for the
p-mean welfare can be obtained for all p ≤ 0. However, for 0 < p < 1, we establish that it
is NP-hard to obtain an (m − n + 1)-approximation, even under additive valuations. An
analogous hardness result holds for p = 1 with submodular valuations.

Independent Work. In work independent of ours, Chaudhury et al. [12] also obtain an O(n)-
approximation algorithm for maximizing generalized p-means under subadditive valuations.
Their approach varies significantly from the current paper and, in particular, builds upon
results on finding allocations that are approximately envy-free up to any good (EFX).
Notably their algorithm computes allocations that satisfy additional fairness properties,
including EF1 and either of two approximate versions of EFX.

Section 3 presents our approximation algorithm for maximizing Nash social welfare. Then,
Section 4 shows that we can extend the algorithm for Nash social welfare to obtain the stated
approximation bound for p-mean welfare. The tightness of these results is established in
Section 5. Section 6 presents the results for the (m− n+ 1)-approximation guarantees. All
the missing proofs appear in the full version of this paper [4].

2 Notation and Preliminaries

An instance of a fair division problem is a tuple 〈[m], [n], {vi}ni=1〉, where [m] = {1, 2, . . . ,m}
denotes the set of m ∈ N indivisible goods that have to be allocated (partitioned) among
the set of n ∈ N agents, [n] = {1, 2, . . . , n}. Here, vi : 2[m] 7→ R+ represents the valuation
function of agent i ∈ [n]. Specifically, vi(S) ∈ R+ is the value that agent i has for a subset of
goods S ⊆ [m]. For g ∈ [m] and i ∈ [n], write vi(g) to denote agent i’s value for the good g,
i.e., it denotes vi({g}).

We will assume throughout that the valuation function vi for each agent i ∈ [n] is
(i) nonnegative: vi(S) ≥ 0 for all S ⊆ [m], (ii) normalized: vi(∅) = 0, (iii) monotone:
vi(A) ≤ vi(B) for all A ⊆ B ⊆ [m], and (iv) subadditive: vi(A ∪B) ≤ vi(A) + vi(B) for all
subsets A,B ⊆ [m].

Submodular and XOS (fractionally subadditive) valuations constitute subclasses of sub-
additive valuations. Formally, a set function v : 2[m] 7→ R+ is said to be submodular if it
satisfies the diminishing marginal returns property: v(A ∪ {g})− v(A) ≥ v(B ∪ {g})− v(B),
for all subsets A ⊆ B ([m] and g ∈ [m] \ B. A set function, v : 2[m] 7→ R+, is said to be
XOS if it is obtained by evaluating the maximum over a collection of additive functions
{fr}r∈[L], i.e., v(S) := max1≤j≤L {fr(S)}, for each subset S ⊆ [m].3

We use Πn([m]) to denote the collection of all n partitions of the indivisible goods [m]. An
allocation is an n-partition A = (A1, . . . , An) ∈ Πn([m]) of the m goods. Here, Ai denotes
the subset of goods allocated to agent i ∈ [n] and will be referred to as a bundle.

3 Here, L can be exponentially large in m.

S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram 11:5

Given a fair division instance I = 〈[m], [n], {vi}i〉, the Nash social welfare of allocation
A is defined as the geometric mean of the agents’ valuations under A: NSW(A) :=
(
∏n
i=1 vi(Ai))

1
n .

We will throughout use N ∗ = (N∗1 , . . . , N∗n) to denote an allocation that maximizes the
Nash social welfare for a given fair division instance. We refer to N ∗ as a Nash optimal
allocation. An allocation P = (P1, . . . , Pn) is an α-approximate solution (with α ≥ 1) of the
Nash social welfare maximization problem if NSW(P) ≥ 1

αNSW(N ∗).
Besides the Nash social welfare, we address a family of objectives defined by considering

the generalized means of agents’ valuations. In particular, for parameter p ∈ R, the the pth
generalized (Hölder) mean Mp(·) of n nonnegative numbers x1, . . . , xn ∈ R+ is defined as

Mp (x1, . . . , xn) :=
(

1
n

n∑
i=1

xpi

) 1
p

.

Parameterized by p, this family of functions captures multiple fairness and efficiency
measures. In particular, when p = 1, Mp reduces to the arithmetic mean. In the limit, Mp

is equal to the geometric mean as p tends to zero. In addition, limp→−∞Mp (x1, . . . , xn) =
min{x1, x2, . . . , xn}.

We define the p-mean welfare, Mp(A), of an allocation A = (A1, A2, . . . , An) as

Mp(A) := Mp (v1(A1), . . . , vn(An)) =
(

1
n

n∑
i=1

vi(Ai)p
)1/p

.

With p equal to one, zero, and −∞, the p-mean welfare corresponds to the (average)
social welfare, Nash social welfare, and egalitarian welfare, respectively.

The following proposition implies that for any p ≤ −n logn, if instead of the p-mean
welfare, we maximize the egalitarian welfare, then the resulting allocation loses a negligible
factor in the approximation ratio.

I Proposition 1. For any n nonnegative numbers x1, . . . , xn ∈ R+ and p ≤ −n logn, we
have

M−∞(x1, . . . , xn) ≤ Mp(x1, . . . , xn) ≤ 21/n M−∞(x1, . . . , xn) .

3 An 8n-Approximation for Nash Social Welfare

This section presents an efficient 8n-approximation algorithm for the Nash social welfare
maximization problem, under subadditive valuations. Our algorithm, Algorithm 1 (Alg),
requires access to the valuation functions through basic value queries, i.e., it only requires
an oracle which, when queried with a subset of goods S ⊆ [m] and an agent i ∈ [n], returns
vi(S) ∈ R+.

We first describe the ideas behind our algorithm. Write N ∗ = {N∗1 , . . . , N∗n} denote a
Nash optimal allocation in the given instance and let us, for now, assume that the agents
have additive valuations, i.e., for all agents i ∈ [n] and subset of goods S ⊆ [m], we have
vi(S) =

∑
g∈S vi(g). In the following two cases, we can readily obtain an O(n) approximation.

In the first case, each agent has a few “high-value” goods, i.e., each agent i has a good
g′i ∈ N∗i with the property that vi(g′i) ≥ vi(N∗i)/n. In such a setting, we can construct a
complete bipartite graph with agents [n] on one side and all the goods [m] on the other.
Here, the weight of edge (i, g) ∈ [n]× [m] is set to be log (vi(g)). In this bipartite graph, the
matching (i, g′i)i∈[n] has Nash social welfare at least 1/n times the optimal and, hence, this
also holds for a left-perfect maximum-weight matching in this graph.

ESA 2020

11:6 Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations

Algorithm 1 Alg.
Input: Instance I = 〈[m], [n], {vi}ni=1〉 with value oracle access to the valuation functions
vis.
Output: An allocation B = (B1, B2, . . . , Bn)
1: Initialize iteration count t = 0 and define SATt = ∅ and UNSATt = [n]
2: for i ∈ [n] do
3: Sort the goods in [m] in descending order of value such that vi(g1) ≥ · · · ≥ vi(gm)
4: if vi ([m] \ {g1, . . . , g2n}) = 0 then
5: Set γti = 0
6: else
7: γti = vi([m])
8: end if
9: end for
10: while UNSATt 6= ∅ do
11: Consider the bipartite graph

(
[n] ∪ [m], [n]× [m], {w(i, g)}i∈[n],g∈[m]

)
with weight of

edge (i, g) ∈ [n]× [m] set as w(i, g) = log (vi(g) + γti)
12: Compute a left-perfect maximum-weight matching, πt, in this bipartite graph
13: Set G = [m] \ {πt(i)}i∈[n] and A = [n]
14: while there exists a′ ∈ A and g′ ∈ G such that va′(g′) ≥ 1

2nva′(G) do
15: Set Bta′ = {g′} and update G← G \ {g′} along with A← A \ {a′}
16: end while
17: Set (Bti)i∈A = MovingKnife (G,A, {vi}i∈A)
18: Define SATt+1 = {i ∈ [n] | vi(Bti) ≥ γti} and set γt+1

i = γti for each i ∈ SATt+1
19: Define UNSATt+1 = {i ∈ [n] | vi(Bti) < γti} and set γt+1

i =
(
1− 1

m

)
γti for each i ∈

UNSATt+1
20: Update t← t+ 1
21: end while
22: return allocation

(
Bt−1

1 ∪ {πt−1(1)}, Bt−1
2 ∪ {πt−1(2)}, . . . , Bt−1

n ∪ {πt−1(n)}
)

In the second case, all goods are of “low-value”, i.e., for all i ∈ [n] and g ∈ [m] we
have vi(g) ≤ vi(N∗i)/(2n). Here again an O(n) approximation can be obtained via a simple
round-robin algorithm, wherein the agents (in an arbitrary order) repeatedly pick their
highest valued good from those remaining. At a high level, our algorithm stitches together
these two extreme cases by first matching high-value goods and then allocating the low-value
ones.

We connect the two cases by considering the following quantity for each agent i ∈ [n]

`i := min
S⊆[m]:|S|≤2n

1
2n vi ([m] \ S) . (1)

That is, `i is the value that each agent is guaranteed to achieve in a (near) proportional
allocation, even after the removal of any 2n-size subset of goods. Our algorithm leverages
the following existential guarantee (Lemma 3): there necessarily exists a good ĝi ∈ N∗i with
the property that

vi(ĝi) + `i ≥
1

4nvi(N
∗
i) . (2)

This result ensures that, a single high-value good (in particular, ĝi) coupled with a 2n-
approximation to all the low-value goods (i.e., `i), is sufficient to ensure a 4n-approximation
for each agent. At this point, if we could (i) explicitly compute `i for each agent i and (ii)

S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram 11:7

for any size-n subset of goods S, assign the remaining goods [m] \ S such that each agent
gets a bundle of value at least `i, then we would be done. This follows from the observation
that in the complete bipartite graph ([n] ∪ [m], [n]× [m]) with weight of edge (i, g) set to
log (vi(g) + `i), the weight of the matching (i, ĝi)i is a 4n approximation to the optimal Nash
social welfare by equation (2) and, hence, the same guarantee holds for a maximum-weight
matching in the graph. Condition (ii) ensures that each agent also receives at least `i after
the initial assignment of the n matched goods.

For additive valuations, both conditions (i) and (ii) can be satisfied. This template was
employed in the SMatch algorithm (for additive valuations) of Garg et al. [20]. However, for
submodular (and subadditive) valuations, the quantity `i is hard to approximate within a
sub-linear factor [28].

Therefore, instead of satisfying condition (i) explicitly, we maintain an upper bound
γi ≥ `i for each agent i. Our algorithm first obtains a maximum weight matching in the
bipartite graph between agents and goods with the weight of edge (i, g) ∈ [n]× [m] set to
log(vi(g)+γi). It assigns all the matched goods to the respective agents, removes these goods
from further consideration in this iteration, and then carries out a procedure (described
below) to ensure condition (ii). If, for agent i, the bundle obtained in this procedure (i.e.,
the bundle obtained for i after removing the matched goods) has value less than γi, then we
multiplicatively reduce the (over) estimate γi for i and repeat the algorithm.

The procedure towards satisfying condition (ii) consists of two steps. Let G be the set of
goods that remain once we remove the matched n goods from [m]. In the first step, if there
exists an agent i and a good g ∈ G such that vi(g) ≥ vi(G)/(2n), we assign g to i and remove
both from further consideration. An agent thus removed has value `i from the assigned good;
note that, by definition, `i ≤ vi(G)/(2n). After this step, we observe that vi(g) ≤ vi(G)/(2n)
for each remaining agent i and good g. In the second step, we run a moving knife subroutine
(Algorithm 2) on the goods that are still unassigned. In this subroutine, the goods are
initially ordered in an arbitrary fashion. A hypothetical knife is then moved across the goods
from one side until an agent i (who has yet to receive a bundle) calls out that the goods
covered so far have a collective value of at least vi(G)/(2n) for her. These covered goods
are then allocated to said agent i and both the agent as well as this bundle is removed from
further consideration. We show that this allocation satisfies condition (ii), i.e., the bundle
assigned to each agent in this procedure has value at least `i (but it may be lower than the
overestimate γi).

Since we can guarantee `i for each agent i, irrespective of which goods are removed in
the matching step, γi never goes below `i, for any agent. Hence, at some point, every agent i
receives a bundle of value at least γi in the above two steps. We show that these bundles,
with the goods matched with each agent, provide an 8n approximation to the optimal Nash
social welfare.

It is relevant to note we use `i solely for the purposes of analysis. Our algorithm executes
with the overestimate γi and keeps reducing this value till it is realized (in the two-step
procedure) for all the agents.

As mentioned previously, the SMatch algorithm (developed for additive valuations) of
Garg et al. [20] relies of conditions (i) and (ii). However, for submodular valuations their
work diverges considerably from the current approach. In particular, the RepReMatch
algorithm (developed for submodular valuations) in [20] first finds a set of goods G with
the property that in the bipartite graph between all the agents and G, there is a matching
wherein every agent is matched to a good with value at least as much as her highest valued
good in N∗i . To ensure this property the cardinality of G needs to be n logn. Intuitively,

ESA 2020

11:8 Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations

Algorithm 2 MovingKnife.
Input: Instance J = 〈G,A, {vi}i∈A〉 with value oracle access to the valuation functions vis
Output: An allocation P = (P1, P2, . . . , P|A|)
1: Initialize S = ∅, Ĝ = G, Â = A, and bundle Pi = ∅ for all i ∈ A.
2: while Ĝ 6= ∅ and Â 6= ∅ do
3: Select any arbitrary good g ∈ Ĝ and update S ← S ∪ {g} along with Ĝ← Ĝ \ {g}.
4: if for some agent â ∈ Â we have v

â
(S) ≥ 1

2nvâ(G) then
5: Set P

â
= S and update Â← Â \ {â} along with S ← ∅.

6: end if
7: end while
8: if Ĝ 6= ∅ then
9: P|A| ← P|A| ∪ Ĝ

10: end if
11: return allocation P = (P1, . . . , P|A|).

this requirement leads to a lower bound of Ω(n logn) on the approximation ratio obtained
in [20]. Furthermore, the steps in their algorithm to ensure condition (ii) do not extend to
subadditive valuations either. Specifically, Garg et al. [20] note that their algorithm gives an
approximation ratio of Ω(m) for the case of subadditive valuations. The 2n-approximation
of Khot and Ponnuswami for egalitarian welfare [23] first guesses the optimal egalitarian
welfare b, and uses this to partition the goods into “large” ones (those with value higher than
b/n) and “small” ones, for each agent. It then tries to ensure every agent receives a bundle
with valuation at least b/n. For Nash social welfare, guessing just a single value does not
appear to help, since the Nash social welfare depends on the valuation of each agent.

The following theorem constitutes our main result for Nash social welfare.

I Theorem 2. Let I = 〈[m], [n], {vi}ni=1〉 be a fair division instance in which the valuation
function vi, of each agent i ∈ [n], is nonnegative, monotone, and subadditive. Given value
oracle access to vis, the algorithm Alg computes an 8n approximation to the Nash optimal
allocation in polynomial time.

The following lemma proves inequality (2). We state and prove it for an arbitrary
allocation A∗ = (A∗1, . . . , A∗n), rather than just for the Nash optimal allocation.

I Lemma 3. Let I = 〈[m], [n], {vi}ni=1〉 be a fair division instance with monotone, subadditive
valuations and let A∗ = (A∗1, . . . , A∗n) be any allocation in I. Let ĝi be the most valued (by i)
good in A∗i (i.e., ĝi := arg maxg∈A∗

i
vi(g)) and `i be as defined in (1). Then, for each agent

i ∈ [n]

vi(ĝi) + `i ≥
1

4nvi(A
∗
i).

Proof. Consider any agent i ∈ [n] and note that `i ≥ 0. We will establish the lemma by
considering two complementary cases.

Case 1. There exists a good gi ∈ A∗i with the property that vi(gi) ≥ 1
4nvi(A

∗
i). Since ĝi is

the most valued good in A∗i , we have vi(ĝi) ≥ vi(gi) and the desired inequality follows.

S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram 11:9

Case 2. For all goods g ∈ A∗i , vi(g) < 1
4nvi(A

∗
i). Recall that `i := min

S⊆[m],|S|≤2n
1

2nvi([m]\S).

Let S∗ be the set S that induces `i, i.e., `i = 1
2nvi([m] \ S∗). Monotonicity of vi ensures that

|S∗| = 2n and

`i = 1
2nvi([m] \ S∗) ≥ 1

2nvi(A
∗
i \ S∗) . (3)

Furthermore, given that in the current case vi(g) < 1
4nvi(A

∗
i) for all g ∈ A∗i , we have

vi(A∗i ∩ S∗) ≤
∑

g∈A∗
i
∩S∗

vi(g) <
∑

g∈A∗
i
∩S∗

1
4nvi(A

∗
i) ≤

|S∗|
4n vi(A∗i) = 1

2vi(A
∗
i) . (4)

Here, the first inequality follows from the fact that vi is subadditive and the last since
|S∗| = 2n.

Therefore, we obtain the desired bound in terms of `i:

`i ≥
1

2nvi(A
∗
i \ S∗) (via inequality (3))

≥ 1
2n (vi(A∗i)− vi(A∗i ∩ S∗)) (vi is subadditive)

≥ 1
4nvi(A

∗
i) (via inequality (4))

Thus, the the stated inequality vi(ĝi) + `i ≥ 1
4nvi(A

∗
i) holds even in this case. J

The next lemma establishes the key property of Algorithm 2 (MovingKnife): if all
the goods have low value for every agent, then MovingKnife returns a near-proportional
allocation.

I Lemma 4. Consider a fair division instance 〈G,A, {vi}i∈A〉 wherein the agents have
monotone, subadditive valuations. In addition, suppose for each agent i ∈ A and good g ∈ G
we have vi(g) < 1

2nvi(G), where n ≥ |A|. Then the allocation (P1, . . . , P|A|) returned by
Algorithm 2 (MovingKnife) satisfies vi(Pi) ≥ 1

2nvi(G) for all i ∈ A.

Proof. Given instance 〈G,A, {vi}i∈A〉, the MovingKnife algorithm (Algorithm 2) considers
the goods in an arbitrary order and adds these goods one by one into a bundle S until an
agent â calls out that its value for S is at least 1

2nvâ(G). We assign these goods to agent
â and remove them – along with â – from consideration. The algorithm iterates over the
remaining set of agents and goods. We will show that the while loop in the MovingKnife
algorithm terminates with Â = ∅ and, hence, assigns to each agent a bundle of desired value.

Consider an integer (count) k ∈ N. Let Ĝ and Â denote the set of goods and agents,
respectively, that are left unassigned after k agents are assigned bundles in MovingKnife;
note that |Â| = |A| − k. The arguments below establish that for each remaining agent i ∈ Â,

vi(Ĝ) ≥
(

1− k

n

)
vi(G) (5)

Therefore, for any k < |A| ≤ n, the set of unassigned goods Ĝ is nonempty and even the
last agent (i.e., with k = |A| − 1) receives a bundle of sufficiently high value.

To prove (5), consider any agent i ∈ Â. Indeed, agent i has not received any goods yet,
but the k agents in A \ Â have been assigned bundles. Let S be a bundle assigned to some
agent in A \ Â (i.e., Pj = S for some j ∈ A \ Â) and g′ be the last good included in S.
Step 4 of the algorithm ensures that vi(S \ {g′}) < 1

2nvi(G); otherwise, S \ {g′} would have

ESA 2020

11:10 Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations

been assigned to agent i. Furthermore, the assumption (in the Lemma statement) gives
us vi(g′) ≤ 1

2nvi(G). Hence, using these inequalities and the subadditivity of vi, we get
vi(S) ≤ vi(S \ {g′}) + vi(g′) ≤ 1

nvi(G).
This inequality provides an upper bound on vi(G \ Ĝ) = vi

(
∪
j∈A\Â Pj

)
, the total value

of the set of goods assigned among the k agents in A \ Â. Specifically, by the subadditivity
of vi, vi(G \ Ĝ) ≤ k

nvi(G). Therefore, vi(Ĝ) ≥ vi(G)− vi(G \ Ĝ) ≥
(
1− k

n

)
vi(G).

Overall, every agent i ∈ A is eventually assigned a bundle of value at least 1
2nvi(G) in

the while loop. J

Next we show that in each iteration of the while loop in Alg (Algorithm 1), the value of
the assigned bundle Bti is at least as large as `i.

I Lemma 5. Given a fair division instance I = 〈[m], [n], {vi}ni=1〉 with subadditive valuations,
let Bti be the bundle assigned to agent i ∈ [n] in the tth iteration (for t ∈ N) of the outer
while loop (Step 10) in Alg. Then, for all agents i ∈ [n] and each iteration count t, we have
vi(Bti) ≥ `i.

Proof. During any iteration t of the outer while loop (Step 10) in Alg and for any agent
i ∈ [n], the bundle Bti either consists of a single good of high value (Step 15), or of the set of
goods assigned to agent i obtained after executing the MovingKnife subroutine (Step 17).
We will show that in both cases the stated inequality holds.

Recall that `i := min
S⊆[m]:|S|≤2n

1
2n vi ([m] \ S). Equivalently, `i = min

T⊆[m]:|T |≥m−2n
1

2nvi(T).

Therefore, we have

1
2nvi(T) ≥ `i for any subset T ⊆ [m] of size at least (m− 2n) (6)

The relevant observation here is that, in any iteration t, the set of goods G from which
the bundles Btis are populated satisfies |G| ≥ m− 2n. Specifically, in the tth iteration, we
start with |G| = m− n (Step 13). Subsequently, the inner while loop (Step 14) assigns at
most n goods and, hence, the number of goods passed on to the MovingKnife subroutine
satisfies |G| ≥ m− 2n.

First, we note that the lemma holds for any agent a′ that receive a singleton bundle
Bta′ = {g′} in Step 15: va′(g′) ≥ 1

2nva′(G) ≥ `a′ . Here, the first inequality follows from the
selection criterion applied to g′ and the second inequality from equation (6) and the fact
that |G| ≥ m− 2n.

Finally, we note that the bound also holds for the remaining agents i that receive a
bundle Bti through the MovingKnife subroutine. As mentioned previously, at least m− 2n
goods are passed on as input to the subroutine, i.e., if MovingKnife is executed on instance
J = 〈G,A, {vi}i∈A〉, then we have |G| ≥ m− 2n. Inequality (6) ensures that 1

2nvi(G) ≥ `i
for all i ∈ A. Finally, using Lemma 4, we get that the bundle assigned to agent i ∈ A satisfies
the stated inequality: vi(Bti) = vi(Pi) ≥ 1

2nvi(G) ≥ `i.
Hence, the stated claim follows. J

We now show that the estimates γti s used in Alg also satisfy a lower bound similar to
that in Lemma 5.

I Lemma 6. Given a fair division instance I = 〈[m], [n], {vi}ni=1〉 with subadditive valuations,
let γti ∈ R+ be the estimate associated with agent i ∈ [n] in the tth iteration (for t ∈ N) of
the outer while loop (Step 10) in Alg. Then, for all agents i ∈ [n] and each iteration count
t, we have γti ≥

(
1− 1

m

)
`i.

S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram 11:11

Proof. Note that for any agent i ∈ [n], the quantity `i = 0 iff i has positive value for at most
2n goods. This observation implies that the initial for loop in Alg correctly identifies agents
i that have `i = 0, and sets γ0

i = 0. For such agents γti = 0 for all t. Hence, the lemma holds
for any agent i with `i = 0.

We now consider agents i ∈ [n] with `i > 0. For such an agent i, the algorithm initially
sets γ0

i = vi([m]). Hence, for t = 0 we have γti ≥
(
1− 1

m

)
`i. An inductive argument

shows that this inequality continues to hold as the algorithm progresses. In particular, if in
the tth iteration the algorithm does not decrement the estimate (i.e., if i ∈ SATt+1), then
γt+1
i = γti ≥

(
1− 1

m

)
`i.

Even otherwise, if the algorithm multiplicatively decrements the estimate (in particular,
sets γt+1

i = (1− 1/m) γti), then it must be the case that γti > vi(Bti) (i.e., i ∈ UNSATt+1).
That is, after the decrement we have γt+1

i ≥
(
1− 1

m

)
vi(Bti) ≥

(
1− 1

m

)
`i; the last inequality

follows from Lemma 5. This completes the proof. J

3.1 Proof of Theorem 2
In this section we prove Theorem 2 by showing that Alg runs in polynomial time (Lemma 7)
and the computed allocation achieves the stated approximation ratio of 8n (Lemma 8).

I Lemma 7 (Runtime Analysis). Given any fair division instance I = 〈[m], [n], {vi}ni=1〉 in
which the agents have monotone, subadditive valuations, Alg (Algorithm 1) terminates after
T = O (nm log (nmV)) iterations of its outer while loop (Step 10); here,

V = max
i∈[n]

 max
g∈[m]

vi(g)

min
g∈[m]:vi(g)>0

vi(g)

 .

Proof. By design, Alg iterates as long as UNSATt 6= ∅. We will bound the number of times
(i.e., the distinct values of t for which) any agent i ∈ [n] is contained in UNSATt and, hence,
establish the stated runtime bound.

Recall that for any agent i ∈ [n], the quantity `i = 0 iff i has positive value for at most
2n goods. For such agents Alg sets γ0

i = 0. Therefore, these agents are contained in SATt,
for all iterations t ≥ 1, and do not contribute to the repetitions of the outer while loop.

For the remaining agents, with `i > 0, the algorithm initially sets γ0
i = vi([m]) and we

have

`i ≥
1

2n min
g∈[m]:vi(g)>0

vi(g) . (7)

Using Lemma 6 and the fact that the algorithm decrements γti by a multiplicative factor
of (1− 1/m) whenever i ∈ UNSATt, we get that the number of times agent i can be in the
UNSATt is at most

m log
(
vi([m])
`i

)
≤ m log

(
m maxg∈[m] vi(g)

`i

)
(since vi is subadditive, vi([m]) ≤ mmaxg∈[m] vi(g))

≤ m log

2nm maxg∈[m] vi(g)
min

g∈[m]:vi(g)>0
vi(g)

 (via inequality (7))

≤ m log (2nmV) .

Summing over all agents, we get that the number of times UNSATt 6= ∅ is at most
T = O (nm log (nmV)). Hence, the stated lemma follows. J

ESA 2020

11:12 Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations

We now show that the allocation computed by Alg achieves the required approximation
guarantee.

I Lemma 8 (Approximation Guarantee). For any fair division instance I = 〈[m], [n], {vi}ni=1〉
with subadditive valuations, let B = (B1, . . . , Bn) denote the allocation computed by Alg.
Then, NSW(B) ≥ 1

8nNSW(N ∗); here, N ∗ denotes the Nash optimal allocation in I.

Proof. For the given instance I, say Alg terminates after T + 1 iterations of the outer while
loop. That is, we have UNSATT+1 = ∅ and, for each agent i ∈ [n], the returned bundle
Bi = BTi ∪ {πT (i)}. Here, πT (i) is the good assigned to agent i under the maximum weight
matching πT (considered in the last iteration) and BTi is the bundle populated for i (either
in Step 15 or in Step 17).

The fact that UNSATT+1 = ∅ (i.e., SATT+1 = [n]) gives us

vi(BTi) ≥ γTi for all i ∈ [n] . (8)

Lemma 3 (instantiated with A∗ = N ∗) implies that there exists a matching – σ(i) := ĝi ∈
N∗i , for all i ∈ [n] – with the property that vi(σ(i)) + `i ≥ 1

4nvi(N
∗
i). Using this inequality

and Lemma 6 we get, for all i ∈ [n]:

vi(σ(i)) + γTi ≥
(

1− 1
m

)
1

4nvi(N
∗
i) . (9)

Recall that πT is a maximum weight matching in the bipartite graph (considered in
Step 11 of Alg) with edge weights log

(
vi(g) + γTi

)
. Given that σ(·) is some matching

in the graph and πT is a maximum weight matching, we get
∑n
i=1 log

(
vi(πT (i)) + γTi

)
≥∑n

i=1 log
(
vi(σ(i)) + γTi

)
. That is,(

n∏
i=1

(
vi(πT (i)) + γTi

)) 1
n

≥

(
n∏
i=1

(
vi(σ(i)) + γTi

)) 1
n

≥
(

1− 1
m

)
1

4nNSW(N ∗) . (10)

The last inequality follows from equation (9). Also, as defined previously, the optimal Nash
social welfare NSW(N ∗) = (

∏n
i vi (N∗i))1/n.

The monotonicity of the valuation function vi implies vi{πT (i)} ∪BTi) ≥ 1/2(vi(πT (i)) +
vi(BTi)) for each i ∈ [n]. Using these observations we can lower bound the Nash social welfare
of the computed allocation

(
Bi = {πT (i)} ∪BTi

)
i
as follows(

n∏
i=1

vi(Bi)
) 1
n

≥ 1
2

(
n∏
i=1

(
vi(πT (i)) + vi(BTi)

)) 1
n

≥ 1
2

(
n∏
i=1

(
vi(πT (i)) + γTi

)) 1
n

(via inequality (8))

≥
(

1− 1
m

)
1

8nNSW(N ∗) . (via inequality (10))

This establishes the stated approximation guarantee and completes the proof of the lemma.
J

I Remark. The result of Garg et al. [20] also holds for an asymmetric version of Nash
social welfare maximization, in which each agent i has an associated weight ηi ≥ 0 and the

goal is to find an allocation (A1, . . . , An) that maximizes
(∏

i∈[n] (vi(Ai))ηi
) 1∑

i∈[n]
ηi . Our

S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram 11:13

approximation guarantee extends to this formulation. In particular, in Step 11 of Alg we
can set the edges weights to be ηi log(vi(g) +γi) (instead of log(vi(g) +γi)) and note that the
subsequent arguments follow through to provide an 8n-approximation ratio for maximizing
Nash social welfare with asymmetric agents and subadditive valuations.

Also, one can use Theorem 2, in conjunction with the m/n approximation guarantee
of Nguyen and Rothe [26],4 to obtain an O(

√
m)-approximation algorithm for maximizing

Nash social welfare under subadditive valuations: for instances in which m ≥ n2, the 8n
approximation suffices. Otherwise, if m < n2 (i.e., m/n <

√
m), then we can invoke the

result of Nguyen and Rothe [26].

4 An 8n-Approximation for p-Mean Welfare

This section shows that we can extend Algorithm 1 and obtain an 8n approximation for
maximizing the p-mean welfare as well.

For maximizing p-mean welfare, ALG (Algorithm 1) is modified as follows: In Step 11,
the weight w(i, g) of edge (i, g) ∈ [n]× [m] is set as (vi(g)+γti)p (instead of log (vi(g) + γti)).5
Furthermore,
(i) For p ∈ (0, 1], in Step 12 we compute a left-perfect maximum-weight matching, πt,

otherwise
(ii) For finite p < 0, we compute a left-perfect minimum-weight matching, πt, in Step 12
(iii) For maximizing egalitarian welfare (the p = −∞ case), we set edge weights to be

(vi(g) + γti) and compute a max-min matching6 πt with respect to these weights.

Theorem 9 below establishes that, with these changes in ALG (Algorithm 1), we can
efficiently compute an allocation with p-mean welfare at least 1

8n times the optimal (p-mean
welfare). Note that by Proposition 1, for p ≤ −n logn, we can maximize the egalitarian
welfare, instead of the p-mean welfare, and the allocation thus obtained is an 8n-approximation
to the optimal p-mean welfare allocation.

I Theorem 9. Let I = 〈[m], [n], {vi}ni=1〉 be a fair division instance in which the valuation
function vi, of each agent i ∈ [n], is nonnegative, monotone, and subadditive. Then, given
value oracle access to vis , one can efficiently compute an 8n approximation to the optimal
p-mean welfare for any p ∈ (−∞, 1].

Proof. We first note that Lemmas 3, 4, 5, 6, and 7 hold as is for p-mean welfare. In particular,
using Lemma 7 we get that, even with the above-mentioned changes, the algorithm runs in
polynomial time.

To complete the proof of the theorem, we will next show that the computed allocation B =
(B1, . . . , Bn) satisfies Mp(B) ≥ 1

8nMp(A∗(p)), where A∗(p) is a p-mean welfare maximizing
allocation.

For the given instance I, say the modified algorithm terminates after T + 1 iterations
of the outer while loop. That is, we have UNSATT+1 = ∅ and, for each agent i ∈ [n], the
returned bundle Bi = BTi ∪ {πT (i)}. Here, πT (i) is the good assigned to agent i under the
matching πT (considered in the last iteration) and BTi is the bundle populated for i in the
final iteration.

4 While Theorem 4 in [26] provides the above-mentioned approximation guarantee of (m− n + 1), its
proof can in fact be easily modified to obtain an approximation ratio of m/n.

5 Recall that the p = 0 case corresponds to Nash social welfare. Since we already have the desired
approximation guarantee for this case, it is not explicitly addressed in this section.

6 In particular, via binary search (over edge weights), we find a matching wherein the minimum edge
weight (across agents) is as high as possible.

ESA 2020

11:14 Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations

The fact that UNSATT+1 = ∅ (i.e., SATT+1 = [n]) gives us

vi(BTi) ≥ γTi for all i ∈ [n] (11)

Lemma 3 implies that there exists a matching – σ(i) := ĝi ∈ A∗i (p), for all i ∈ [n] – with
the property that vi(σ(i)) + `i ≥ 1

4nvi(A
∗
i (p)). Using this inequality and Lemma 6 we get,

for all i ∈ [n]:

vi(σ(i)) + γTi ≥
(

1− 1
m

)
1

4nvi(A
∗
i (p)) (12)

Recall that, given p, the modified algorithm computes πT based on the sign of p. Hence,
we split the proof of Theorem 9 into three cases depending on whether p > 0, p < 0, or
p = −∞.

Case (i). p > 0. In this case, πT is a left-perfect maximum-weight matching in the
bipartite graph ([n] ∪ [m], [n] × [m]) with edge weights

(
vi(g) + γTi

)p. Given that σ(·) is
some (left-perfect) matching in the graph and πT is a maximum-weight matching, we get∑n
i=1
(
vi(πT (i)) + γTi

)p ≥ ∑n
i=1
(
vi(σ(i)) + γTi

)p. Therefore, with p > 0, the following
inequality holds(

1
n

n∑
i=1

(
vi(πT (i)) + γTi

)p) 1
p

≥

(
1
n

n∑
i=1

(
vi(σ(i)) + γTi

)p) 1
p

≥
(

1− 1
m

)
1

4nMp(A∗(p)) .

(13)

The last inequality follows from (12).

Case (ii). Finite p < 0. By design, in this case, πT is a left-perfect minimum-weight matching
in the bipartite graph ([n] ∪ [m], [n]× [m]) with edge weights

(
vi(g) + γTi

)p. Given that σ(·)
is some left-perfect matching in the graph and πT is a minimum-weight matching, we get∑n
i=1
(
vi(πT (i)) + γTi

)p ≤∑n
i=1
(
vi(σ(i)) + γTi

)p. The fact that p is negative gives us

(
1
n

n∑
i=1

(
vi(πT (i)) + γTi

)p) 1
p

≥

(
1
n

n∑
i=1

(
vi(σ(i)) + γTi

)p) 1
p

≥
(

1− 1
m

)
1

4nMp(A∗(p))

(14)

The last inequality follows from (12).

Case (iii). p = −∞. In this case, πT is a max-min matching computed with edge
weights

(
vi(πT (i)) + γTi

)
. Given that σ(·) is some matching in the graph and matching

πT maximizes the value of the minimum matched edge, we get mini∈[n](vi(πT (i)) + γTi) ≥
mini∈[n](vi(σT (i)) + γTi). Therefore,

min
i∈[n]

(vi(πT (i)) + γTi) ≥ min
i∈[n]

(vi(σT (i)) + γTi) ≥
(

1− 1
m

)
1

4nMp(A∗(p)) (15)

The last inequality follows from (12).
The monotonicity of the valuation function vi implies vi({πT (i)}∪BTi) ≥ 1/2(vi(πT (i)) +

vi(BTi)) for each i ∈ [n]. Using these observations we can lower bound the p-mean welfare of
the computed allocation

(
Bi = {πT (i)} ∪BTi

)
i
as follows

S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram 11:15

(
n∑
i=1

(vi(Bi))p
) 1
p

≥ 1
2

(
n∑
i=1

(
vi(πT (i)) + vi(BTi)

)p) 1
p

≥ 1
2

(
n∑
i=1

(
vi(πT (i)) + γTi

)p) 1
p

(via inequality (11))

≥
(

1− 1
m

)
1

8nMp(A∗(p)) (via inequality (13), (14), or (15))

This establishes the stated approximation guarantee and completes the proof of the theorem.
J

5 Lower Bound on Approximating p-Mean Welfare

This section shows that, under XOS valuations, maximizing the p-mean welfare for p ∈ (−∞, 1]
within a sub-linear (in n) approximation factor necessarily requires an exponential number
of value queries (Theorem 10). This result directly implies that the approximation ratio
obtained in Theorems 2 and 9 (via polynomially many value queries) is essentially tight. We
note that this query lower bound is unconditional, i.e., it does not depend on any complexity
theoretic assumption.

We establish Theorem 10 by directly adapting a result of Dobzinski et al. [16], which
provides a similar lower bound for social welfare. The impossibility result here holds under
XOS valuations;7 recall that XOS valuations constitute a special class of subadditive functions.

I Theorem 10. For fair division instances I = 〈[m], [n], {vi}ni=1〉 with XOS valuations and
p ∈ (−∞, 1], finding an allocation with p-mean welfare at least 1/n1−ε times the optimal
requires exponentially many value queries; here ε > 0 is any fixed constant.

Here, we briefly explain the salient points of the proof of this lower bound and provide
the details in the full version of the current paper [4]. Dobzinski et al. [16] construct two
(families of) instances, both with n agents, m = n2 goods, and XOS valuations for the agents.
In the first instance, each agent has the same valuation function f : 2[m] 7→ R+ and maximum
average social welfare (1-mean welfare) is n4δ, for a fixed constant δ > 0. In the second
instance, each agent has her own (non-identical) valuation function vi : 2[m] 7→ R+ and there
exists an allocation in which each agent has value n for her bundle. For any p ≤ 1, it follows
that in the first instance the optimal p-mean welfare is at most n4δ (via the generalized mean
inequality), while for the second instance, the optimal p-mean welfare is at least n (since
there exists an allocation where every agent achieves value n). The proof of Dobzinski et
al. [16] goes on to show that it takes an exponential number of value queries to distinguish
between the two instances. However, given an O(n1−ε)-approximation algorithm for the
p-mean welfare, one can readily distinguish between the two instances (by choosing δ < ε/4).
Hence such an algorithm must make an exponential number of value queries.

7 Our results work under the value oracle model and do not require an explicit description of the underlying
additive functions that define the XOS function at hand.

ESA 2020

11:16 Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations

6 (m − n + 1)-Approximation Guarantees

This section provides two extensions of the result of Nguyen and Rothe [26], which shows
the Nash social welfare maximization problem (under subadditive valuations) admits an
(m− n+ 1)-approximation algorithm. First, we show that an (m− n+ 1)-approximation
for the p-mean welfare can be obtained for all p ≤ 0 and with subadditive valuations. Then,
we establish that it is NP-hard to extend this positive result to any p ∈ (0, 1), even under
additive valuations, i.e., it is NP-hard to obtain an (m− n+ 1)-approximation for 0 < p < 1.
The proofs of these two results are delegated to the full version of this paper [4].

I Theorem 11. Let I = 〈[m], [n], {vi}ni=1〉 be a fair division instance in which the valuation
function vi, of each agent i ∈ [n], is nonnegative, monotone, and subadditive. Then, given
value oracle access to vis, one can efficiently compute an (m− n+ 1) approximation to the
p-mean welfare maximization problem for any p ∈ (−∞, 0].

The next theorem asserts that it is unlikely that Theorem 11 extends to p ∈ (0, 1).

I Theorem 12. For fair division instances I = 〈[m], [n], {vi}ni=1〉 with additive valuations
and for any fixed p ∈ (0, 1), computing an allocation with p-mean welfare at least 1/(m−n+1)-
times the optimal (for all m and n) is NP-hard.

Note that this hardness result (in light of Theorem 9) is relevant for instances in which
m < 2n.

References
1 Nima Anari, Shayan Oveis Gharan, Tung Mai, and Vijay V Vazirani. Nash Social Welfare for

Indivisible Items under Separable, Piecewise-Linear Concave Utilities. In Proceedings of the
29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2274–2290, 2018.

2 Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash Social Welfare, Matrix
Permanent, and Stable Polynomials. In Proceedings of the 8th Conference on Innovations in
Theoretical Computer Science (ITCS), 2017.

3 Haris Aziz. Developments in multi-agent fair allocation. In AAAI, pages 13563–13568, 2020.
4 Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G. Sundaram. Tight approx-

imation algorithms for p-mean welfare under subadditive valuations. CoRR, abs/2005.07370,
2020. arXiv:2005.07370.

5 Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient
allocations. In Proceedings of the 2018 ACM Conference on Economics and Computation,
Ithaca, NY, USA, June 18-22, 2018, pages 557–574. ACM, 2018.

6 Xiaohui Bei, Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Earning Limits in Fisher
Markets with Spending-Constraint Utilities. In Proceedings of the International Symposium
on Algorithmic Game Theory (SAGT), pages 67–79, 2017.

7 Ivona Bezáková and Varsha Dani. Allocating indivisible goods. SIGecom Exchanges, 5(3):11–18,
2005.

8 Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D Procaccia. Handbook
of computational social choice. Cambridge University Press, 2016.

9 Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah, and
Junxing Wang. The unreasonable fairness of maximum nash welfare. ACM Trans. Economics
and Comput., 7(3):12:1–12:32, 2019.

10 Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna. On allocating goods to maximize
fairness. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009,
October 25-27, 2009, Atlanta, Georgia, USA, pages 107–116. IEEE Computer Society, 2009.

http://arxiv.org/abs/2005.07370

S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram 11:17

11 Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and
Kurt Mehlhorn. On fair division for indivisible items. In 38th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018,
December 11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 25:1–25:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

12 Bhaskar Ray Chaudhury, Jugal Garg, and Ruta Mehta. Fair and efficient allocations under
subadditive valuations, 2020. arXiv:2005.06511.

13 Richard Cole, Nikhil R. Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V. Vazirani,
and Sadra Yazdanbod. Convex program duality, fisher markets, and nash social welfare. In
Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17, Cambridge,
MA, USA, June 26-30, 2017, pages 459–460. ACM, 2017.

14 Richard Cole and Vasilis Gkatzelis. Approximating the Nash Social Welfare with Indivisible
Items. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing
(STOC), pages 371–380, 2015.

15 Vincent Conitzer, Rupert Freeman, and Nisarg Shah. Fair public decision making. In
Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17, Cambridge,
MA, USA, June 26-30, 2017, pages 629–646. ACM, 2017.

16 Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for combin-
atorial auctions with complement-free bidders. Math. Oper. Res., 35(1):1–13, 2010.

17 Ulle Endriss. Trends in Computational Social Choice. Lulu. com, 2017.
18 Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Comput.,

39(1):122–142, 2009.
19 Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash Social Welfare with

Budget-Additive Valuations. In Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2326–2340, 2018.

20 Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. Approximating nash social welfare under
submodular valuations through (un)matchings. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 2673–2687. SIAM, 2020.

21 Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab S. Mirrokni. Approxim-
ating submodular functions everywhere. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009,
pages 535–544. SIAM, 2009.

22 Jonathan Goldman and Ariel D Procaccia. Spliddit: Unleashing fair division algorithms. ACM
SIGecom Exchanges, 13(2):41–46, 2015.

23 Subhash Khot and Ashok Kumar Ponnuswami. Approximation algorithms for the max-min
allocation problem. In APPROX-RANDOM, 2007.

24 Euiwoong Lee. Apx-hardness of maximizing nash social welfare with indivisible items. Inf.
Process. Lett., 122:17–20, 2017.

25 Hervé Moulin. Fair division and collective welfare. MIT Press, 2003.
26 Trung Thanh Nguyen and Jörg Rothe. Minimizing envy and maximizing average nash social

welfare in the allocation of indivisible goods. Discret. Appl. Math., 179:54–68, 2014.
27 Noam Nisan, T Roughgarden, E Tardos, and Vijay V Vazirani. Algorithmic game theory -

Cambridge University Press, 2007.
28 Zoya Svitkina and Lisa Fleischer. Submodular approximation: Sampling-based algorithms

and lower bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011.
29 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle

model. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages
67–74. ACM, 2008.

ESA 2020

http://arxiv.org/abs/2005.06511

Mincut Sensitivity Data Structures for the
Insertion of an Edge
Surender Baswana
Department of Computer Science & Engineering, IIT Kanpur, India
sbaswana@cse.iitk.ac.in

Shiv Gupta
Department of Computer Science & Engineering, IIT Kanpur, India
shivguptamails@gmail.com

Till Knollmann
Heinz Nixdorf Institute, Paderborn University, Germany
tillk@mail.upb.de

Abstract
Let G = (V,E) be an undirected graph on n vertices with non-negative capacities on its edges. The
mincut sensitivity problem for the insertion of an edge is defined as follows.

Build a compact data structure for G and a given set S ⊆ V of vertices that, on receiving any
edge (x, y) ∈ S × S of positive capacity as query input, can efficiently report the set of all pairs from
S × S whose mincut value increases upon insertion of the edge (x, y) to G.

The only result that exists for this problem is for a single pair of vertices (Picard and Queyranne,
Mathematical Programming Study, 13 (1980), 8-16). We present the following results for the single
source and the all-pairs versions of this problem.
1. Single source: Given any designated source vertex s, there exists a data structure of size O(|S|)1

that can output all those vertices from S whose mincut value to s increases upon insertion of
any given edge. The time taken by the data structure to answer any query is O(|S|).

2. All-pairs: There exists an O(|S|2) size data structure that can output all those pairs of vertices
from S × S whose mincut value gets increased upon insertion of any given edge. The time taken
by the data structure to answer any query is O(k), where k is the number of pairs of vertices
whose mincut increases.

For both these versions, we also address the problem of reporting the values of the mincuts upon
insertion of any given edge. To derive our results, we use interesting insights into the nearest and
the farthest mincuts for a pair of vertices. In addition, a crucial result, that we establish and use in
our data structures, is that there exists a directed acyclic graph of O(n) size that compactly stores
the farthest mincuts from all vertices of V to a designated vertex s in the graph. We believe that
this result is of independent interest, especially, because it also complements a previously existing
result by Hariharan et al. (STOC 2007) that the nearest mincuts from all vertices of V to s is a
laminar family, and hence, can be stored compactly in a tree of O(n) size.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Mathem-
atics of computing → Network flows; Mathematics of computing → Graph algorithms

Keywords and phrases Mincut, Sensitivity, Data Structure

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.12

Related Version A full version including all omitted proofs can be found online here: http://www.
cse.iitk.ac.in/users/sbaswana/Papers-published/esa-2020-fv.pdf.

Funding Surender Baswana: The research work was carried out while the author was at Heinz
Nixdorf Institute, on leave from IIT Kanpur. The research was supported by Alexander von
Humboldt Foundation.

1 Data structure sizes are in words unless specified otherwise, where a word occupies Θ(logn) bits.

© Surender Baswana, Shiv Gupta, and Till Knollmann;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 12; pp. 12:1–12:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8657-7182
mailto:sbaswana@cse.iitk.ac.in
mailto:shivguptamails@gmail.com
https://orcid.org/0000-0003-2014-4696
mailto:tillk@mail.upb.de
https://doi.org/10.4230/LIPIcs.ESA.2020.12
http://www.cse.iitk.ac.in/users/sbaswana/Papers-published/esa-2020-fv.pdf
http://www.cse.iitk.ac.in/users/sbaswana/Papers-published/esa-2020-fv.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Mincut Sensitivity Data Structures for the Insertion of an Edge

Till Knollmann: This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre On-The-Fly Computing (GZ: SFB 901/3) under the
project number 160364472.

Acknowledgements We would like to convey special thanks to Jannik Castenow from the Heinz
Nixdorf Institute and the Paderborn University for many valuable discussions. Additionally, we
would like to thank Rajesh Chitnis and Robert Krauthgamer for promptly answering a few of our
queries related to their paper [4].

1 Introduction

Let G = (V,E) be a graph on n = |V | vertices and m = |E| edges with a non-negative
capacity on each edge. A mincut for a pair of vertices u and v is a set of edges with
least capacity whose removal disconnects v from u. It is a fundamental concept in graph
theory. Moreover, the area of designing algorithms for the mincut and its variants has been
extensively researched ever since the seminal result on the maxflow-mincut duality by Ford
and Fulkerson [5].

It is often the case that one is more interested in the mincuts between vertices belonging
to a relatively small part of the input graph than the mincuts between all vertices. Hence,
consider a subset of vertices S ⊆ V and any subset of pairs of vertices Q ⊆ S × S whose
mincut we are interested in. The objective is to have the knowledge about how sensitive the
mincuts of pairs of vertices from Q are, with respect to any change in the subgraph induced
by S. This change could be a change in the capacity of an existing edge in the subgraph
induced by S or insertion of a new edge between any two vertices in S. This knowledge
of the impact on various mincuts due to any change in the network can make the network
administrators well prepared for such changes when they indeed occur in future.

An important measure of the impact of a change in the capacity of an edge is the number
of pairs of vertices whose mincut value changes. The change in the capacity of an edge could
be either an increase or a decrease. We focus on the case when the capacity of an edge is
allowed to increase only. For this data structure problem, the query input is a new edge with
positive capacity or an existing edge whose capacity is increased. It can easily be observed
that as far as the mincut between any pair of vertices is concerned, increasing the capacity of
an existing edge (x, y) by amount ∆ is equivalent to adding one more edge between x and y
with capacity ∆. So henceforth, we only consider the insertion of an edge. On receiving any
such edge, the objective is to efficiently report the pairs of vertices whose mincut increases.

Based on the discussion above, we now formally define the problem of mincut sensitivity.

I Problem 1. Preprocess G = (V,E), a set S ⊆ V , and a set Q ⊆ S × S to build a compact
data structure that, on receiving any edge (x, y) ∈ S × S of positive capacity as query input,
can efficiently report all those pairs from Q whose mincut value increases upon insertion of
the edge (x, y) to G.

We expect the bounds for the data structure of Problem 1 to depend on only the size of S
instead of V . For simultaneously achieving efficient query time and compact space, the only
previous solution that exists for this problem is for a single pair of vertices only, i.e., when
|Q| = 1. It consists of a data structure that occupies O(|S|) space and achieves O(1) query
time. This solution follows from an observation made by Picard and Queyranne in their
seminal paper [11].

S. Baswana, S. Gupta, and T. Knollmann 12:3

1.1 Our Contribution
We address the single source and the all-pairs versions of Problem 1, along with the problem
of reporting the new value of the mincut between any pair of vertices after the edge insertion.

Single source all destinations: In the single source case, we are interested in the mincuts
between a designated vertex s ∈ S and all other vertices from set S, i.e., the (s, t)-mincut,
for all t ∈ S \ {s}.

I Theorem 2. For an undirected graph and any subset S of vertices with a designated vertex
s ∈ S, there exists an O(|S|) size data structure that can report all those vertices from S

whose mincut value to s increases upon insertion of any given edge from S × S. The time
taken by this data structure to answer any such query is O(|S|).

The O(|S|) space and O(|S|) query time of our data structure for undirected graphs can
be much less than O(|V |) for smaller S. Also, it is in sharp contrast with the following lower
bound result for directed graphs that we also prove.

I Theorem 3. Any data structure for a directed graph to answer a mincut sensitivity query
from a designated source vertex to any designated subset of q vertices must use Ω(q2) bits of
space for at least one directed graph.

The proof of Theorem 3 basically establishes that any such data structure can be used to
store any balanced bipartite graph on 2|S| vertices implicitly. Interestingly, the same proof
also establishes an Ω(|S|2) lower bound for the single source version of two other fundamental
problems for directed graphs, namely, reachability sensitivity as well as distance sensitivity for
the insertion of an edge. These facts add more significance to the result stated in Theorem 2
for the single source mincut sensitivity.

All-pairs: When considering the mincuts between all pairs of vertices in S, i.e., the (u, v)-
mincut, for all u, v ∈ S such that u 6= v, we obtain the following result.

I Theorem 4. For an undirected graph and any subset S of vertices, there exists an O(|S|2)
size data structure that can report all those pairs of vertices from S × S whose mincut value
increases upon insertion of any given edge from S × S. The time taken by the data structure
to answer any such query is O(k), where k is the number of pairs whose mincut increases.

Note that the query time of the data structure in Theorem 4 is optimal. Moreover, if
the objective is to report just the number of all-pairs from the set S × S whose mincut
increases upon insertion of any given edge, our data structure can accomplish this objective
in O(min(k, |S| log |S|)) time, which is O(|S| log |S|) always.

I Remark 5. Our results for mincut sensitivity directly extend to maxflow sensitivity as well
due to the equivalence between maxflow and mincut [5].

To achieve all our results, we use interesting insights into the nearest and the farthest
mincuts for a pair of vertices – two concepts that exist since the seminal work of Ford and
Fulkerson on maximum flow [5]. Additionally, a crucial result about the farthest mincuts
that we establish and use in one of our data structures is the following.

I Theorem 6. For an undirected graph on n vertices and a designated source vertex s, there
exists a directed acyclic graph (DAG) of size O(n) that compactly stores the farthest mincuts
from all vertices v ∈ V \{s} to s. For any v, the set of vertices defining the farthest mincut
from v to s can be reported in time that is of the order of the size of the set.

ESA 2020

12:4 Mincut Sensitivity Data Structures for the Insertion of an Edge

The graph theoretic result of Theorem 6 is of independent interest in addition to its
applications in the mincut sensitivity problem. This is because, not only it adds to our
understanding of mincuts, but it also complements an earlier result of Hariharan et al. [9]
that showed that the nearest mincuts from all vertices to s form a laminar family, and hence,
can be stored in a tree data structure occupying only O(n) space.

1.1.1 On reporting the value of mincut
In addition to reporting the pairs of vertices whose mincut increases upon insertion of a
given edge, it may be important to output the new values of their mincuts. Indeed, if the
edge capacities in the graph are integral and the inserted edge has unit capacity, our data
structures from Theorems 2 and 4 can also report the new values of the affected mincuts upon
insertion of an edge, i.e., the value of the mincut will be increased by one for the reported
pairs of vertices. However, if there is no restriction on the capacity of the inserted edge, we
show that even for the single source case it is not possible to accomplish this objective with
any data structure of subquadratic size.

I Theorem 7. There exists a set G of undirected graphs on n vertices with integer edge
capacities in the range [1, n2+ε] (for any ε > 0) for which the following claim holds true.
Any data structure for an undirected graph that can report the value of the mincut between a
designated source vertex and any other vertex upon insertion of any edge of integer capacity
polynomial in n must require Ω(n2ε logn) bits of space for at least one graph from G.

For the all-pairs case, it turns out that any such data structure also provides a gener-
alization of the flow-tree [6, 8]. That is, the data structure will also be able to report the
mincut value between a vertex u and a pair {x, y} of vertices for any u, x, y ∈ V . Chitnis,
Kamma, and Krauthgamer [4] showed that there will be total O(n2) distinct mincut values
separating any vertex from any pair of vertices in an undirected graph. However, to the best
of our knowledge, designing an O(n2) size data structure that returns the value of any such
mincut in non-trivial query time is still an open problem.

1.2 Overview of our results
We begin with the result of Picard and Queyranne [11] for mincut sensitivity for a source-
destination pair (s, t). For any maximum flow f from s to t, let Gf be the corresponding
residual graph. Notice that there is no path from s to t in Gf . Let R be the set of vertices
which are reachable from s in Gf , and let T be the set of vertices from which t is reachable
in Gf . Picard and Queyranne [11] made the following crucial observation.

I Lemma 8 (Picard and Queyranne [11]). The maxflow from s to t increases upon insertion
of an edge (x, y) if and only if x belongs to R and y belongs to T .

Without loss of generality, we can assume that the vertices of set S are labeled from 1
to |S|. Based on Lemma 8, the data structure for mincut sensitivity for a (s, t)-pair where
s, t ∈ S, stores each of R ∩ S and T ∩ S in Boolean arrays indexed by the vertices of set S.

The subsets R and V \T in Lemma 8 turn out to be the smallest, and the largest subsets
of vertices defining a mincut from s to t, respectively. In the literature on mincuts, R and
V \T are respectively called the nearest and the farthest mincut from s to t; we define these
notions more formally in the next section. Therefore, in order to design a compact and
efficient data structure for the single source and the all-pairs versions of the mincut sensitivity
problem, it is natural to explore if we can have a compact way to store these two types of cuts

S. Baswana, S. Gupta, and T. Knollmann 12:5

for multiple pairs of vertices. We now provide an overview of the compact data structures
for the nearest and the farthest mincuts, and the way these data structures are used to solve
the mincut sensitivity problem.

Compact data structures for the nearest and the farthest mincuts

Interestingly, Hariharan et al. [9] showed that the nearest mincuts from all vertices to a
designated vertex s in an undirected graph form a laminar family – If the subsets of vertices
defining the nearest mincuts from u to s, and v to s intersect, then one of them must be
a subset of the other. As a result, the nearest mincuts from all vertices to s can be stored
compactly in a tree data structure occupying O(n) space only. However, the farthest mincuts
do not constitute a laminar family. Let Fu and Fv be the subsets of vertices that define the
farthest mincuts to s from u and v respectively. It is quite possible that Fu and Fv intersect
each other but none of them is a subset of the other. In other words, two intersecting farthest
mincuts to s may cross each other. Moreover, there may be Θ(n) vertices whose farthest
mincuts to s cross the farthest mincut of a single vertex to s. This poses a challenge for
designing a compact data structure for storing all the farthest mincuts to s. However, we
overcome this challenge using crucial insights into the farthest mincuts.

Using the submodularity of cuts, we first establish the existence of a DAG on O(n) nodes
that stores the farthest mincuts from all vertices to any designated vertex s. However, this
DAG could have O(n2) edges, and establishing the sparsity of the DAG turns out to be the
main hurdle. We overcome this by proving the following interesting property of the farthest
mincuts to s:

For any three vertices, either the intersection of their farthest mincuts to s is empty or
the farthest mincut from at least one of them is a subset of one of the other two.

Using this property, we are able to prune away all the unnecessary edges from the DAG
structure storing farthest mincuts to s. As a result, each node in the DAG turns out to have
at most 2 incoming edges, so the size of the DAG is O(n).

For the objective of solving mincut sensitivity for a subset S ⊆ V , we present data
structures for the nearest mincuts (likewise the farthest mincuts) that consist of vertices of
S only instead of V . Their size is O(|S|). See Theorem 18 and Theorem 6.

Solving the mincut sensitivity problem

For solving the single source mincut sensitivity problem, we use the tree data structure
storing the nearest mincuts and the DAG data structure storing the farthest mincuts, from
all vertices of the set S to s. The size of the data structure is O(|S|). Following Lemma 8, it
takes O(|S|) time using this data structure to determine whether the insertion of a given
edge increases the (s, v)-mincut value for any vertex v ∈ S. This leads to O(|S|2) time to
find all vertices from S whose mincut value from s increases due to the insertion of a given
edge. In order to reduce the query time to O(|S|), we make use of the following insight:

A vertex x ∈ S belongs to the farthest mincut from v to s if and only if x is reachable
from v in the DAG structure storing the farthest mincuts to s.

Solving the all-pairs version of the mincut sensitivity problem with optimal query time
turns out to be more challenging. As the underlying graph is undirected, the subset of vertices
that defines the farthest mincut from u to v is the complement of the subset of the vertices
that defines the nearest mincut from v to u. As a result, keeping the nearest-mincut tree
data structure for each vertex of S suffices to solve this problem. The data structure takes
O(1) time to determine for any pair (u, v), whether insertion of an edge, say (x, y), increases

ESA 2020

12:6 Mincut Sensitivity Data Structures for the Insertion of an Edge

(u, v)-mincut value. This observation implies an O(|S|2) time algorithm for computing all
pairs of vertices from set S whose mincut value increases upon insertion of edge (x, y). But it
is quite wasteful if k, the number of pairs whose mincut value increases, is much smaller than
|S|2. To accomplish O(k) query time, we make use of multiple insights into the structure of
the nearest mincuts. The most crucial insight is the following:

The vertices whose mincut value to s increases upon insertion of an edge (x, y) lie
contiguously on the paths from x and y to their lowest common ancestor in the tree that
stores the nearest mincuts to s.

This insight leads to an O(|S|+ k) query time. To get rid of the additive factor of |S|,
we use another insight that helps finding the right pool of vertices whose nearest-mincut tree
we need to query.

1.3 Related work
Our research is related to the field of dynamic graph algorithms that emphasizes on efficient
data structures to handle changes in a network. For dynamic graph algorithms, the objective
is to maintain the solution of a problem for an online sequence of edge insertions or deletions
with worst case time complexity better than that of the best static algorithm. There do exist
efficient dynamic algorithms for maintaining a global mincut – an incremental algorithm by
Goranci, Henzinger, and Thorup [7], and a fully dynamic algorithm by Thorup [12]. However,
there does not exist any dynamic algorithm for all-pairs mincuts whose worst case time
complexity is better than the best static algorithm. Hartmann and Wagner [10] presented
a fully dynamic algorithm for maintaining an all-pairs mincut tree for undirected graphs.
Although it achieves a significant speedup over the best static algorithm on many real world
graphs, its worst case asymptotic time complexity is not better than the best static algorithm
for an all-pairs mincut tree.

1.4 Organization of the paper
Equipped with notations, definitions, and well known lemmas introduced in Section 2, we
present the compact data structures for nearest and farthest mincuts in Sections 3 and
Section 4, respectively. The data structures for the single source and the all-pairs versions
of the mincut sensitivity problem are presented in Section 5 and 6 respectively. Due to
the space constraint, the proofs of some theorems and lemmas had to be omitted from this
version. So we recommend the reader to refer to the full version of this paper [2].

2 Preliminaries

Our results consider an undirected graph G = (V,E) on n vertices where each edge is assigned
a non-negative capacity through a function c : E → R+.

I Definition 9 ((s, t)-cut). A subset of edges whose removal disconnects t from s is called
an (s, t)-cut. An (s, t)-mincut is an (s, t)-cut of smallest capacity.

I Definition 10 (set defining a cut). A subset A ⊂ V is said to define an (s, t)-cut if s ∈ A
and t /∈ A. The corresponding cut is denoted by cut(A, Ā) or more compactly cut(A).

When there is no scope of confusion, we do not distinguish between a mincut and the set
defining the mincut. We can extend the capacity function c on edges to any subset A ⊂ V in
a natural way as follows: c(A) denotes the sum of the capacities of all those edges which have
exactly one endpoint in A. With this generalization, we now state a well-known property of
cuts, namely, the submodularity of cuts.

S. Baswana, S. Gupta, and T. Knollmann 12:7

I Lemma 11 (Submodularity of cuts). Given an undirected graph G = (V,E) with positive
edge capacities, the following inequality holds true for any two subsets A,B ⊂ V .

c(A) + c(B) ≥ c(A ∪B) + c(A ∩B)

The following lemma states an important property of an (s, t)-mincut.

I Lemma 12. Let A ⊂ V define an (s, t)-mincut with s ∈ A. For any subset A′ ⊂ A with
s /∈ A′, if α is the number of edges incident on A′ from V \A, and β is the number of edges
incident on A′ from A\A′, then α ≤ β.

2.1 The nearest and the farthest mincuts
I Definition 13 (Nearest and farthest mincuts from s to t). The subset A ⊂ V with s ∈ A is
said to define the nearest (likewise the farthest) mincut from s to t if (1) cut(A, Ā) defines
an (s, t)-mincut, and (2) For every other subset A′ ⊂ V that defines an (s, t)-mincut, A ⊂ A′

(likewise A′ ⊂ A). We use sNt and sFt to denote the nearest and the farthest mincut from s

to t, respectively.

One can easily show using Lemma 11 that the nearest and the farthest mincut from s to t
are unique. Additionally, tNs and sFt partition the set of vertices V as stated in the following
lemma.

I Lemma 14. For any pair of vertices s, t ∈ V , (i) sNt ∩ tNs = ∅, and (ii) sFt = V \tNs .

In the light of Lemma 14, we can restate Lemma 8 for undirected graphs as follows.

I Lemma 15 (Picard and Queyranne [11]). The insertion of an edge (x, y) can increase the
mincut between s and t if and only if x ∈ sNt and y ∈ tNs or vice versa.

I Remark 16. In order to explore the relationship among the farthest mincuts from a set of
vertices to a vertex s, we focus only on the connected component of s. This is because for
each vertex outside this component, its farthest mincut to s is obvious. Therefore, without
loss of generality we assume G to be connected in the rest of the paper.

3 A compact data structure for all nearest mincuts to vertex s

The following theorem plays the key role in compactly storing all nearest mincuts to s.

I Theorem 17 (Hariharan et al. [9]). For any two distinct vertices u, v ∈ S, either uNs and
vNs are mutually disjoint or one of them is a subset of the other.

For a given subset S ⊆ V , let N = {xNs ∩ S|x ∈ S\{s}}. Using Theorem 17 we can
arrange the sets of N in a forest of disjoint trees as follows. We refer to a vertex in this
forest as node. For each set present in N , we create a unique node in the forest. We assign
each vertex v ∈ S to the node ν corresponding to vNs ∩ S. The parent of a node ν is defined
as the unique node µ such that the set corresponding to µ is the smallest superset of the set
corresponding to ν, if such a superset exists. If no such superset exists, ν will be the root of
a tree. We create a dummy node and assign it as the parent of the root of every tree in this
forest. Let us denote the resulting rooted tree by T (s). Figure 1 shows an example graph
and the corresponding T (s) for the case S = V .

It can be observed that if a vertex v ∈ S is assigned to node ν, then the subtree rooted
at ν stores the set vNs ∩ S. So it follows that a vertex, say x, belongs to vNs ∩ S if either x
and v are assigned to the same node in T (s) or the node containing v is an ancestor of the

ESA 2020

12:8 Mincut Sensitivity Data Structures for the Insertion of an Edge

s

a

c
b

d

e h

l k

j

i

g

1
1

8 4

8 4

1
1

9
4 2

2
1

4

4

4

(a)

e, h

l

k

c
a b

d

i j

g

(b)

Figure 1 (a) The nearest mincut from a vertex to s is encircled with same color. (b) Tree T (s).

node containing x. This check can be easily done in O(1) time if we augment T (s) to answer
lowest common ancestor (LCA) query for any pair of nodes (see [3]). We can thus state the
following theorem.

I Theorem 18. For an undirected graph G = (V,E), a subset S ⊆ V , and any vertex s ∈ S,
there exists an O(|S|) size data structure T (s) that can report in O(1) time whether x ∈ vNs
for any x, v ∈ S.

4 A compact data structure for all farthest mincuts to vertex s

In this section, we present a novel data structure that compactly stores the farthest mincuts
to vertex s from a subset of vertices. Our main result can be summarized as follows.

I Theorem 19. For an undirected graph G = (V,E), any subset S ⊆ V , and a designated
vertex s ∈ S, there exists a directed acyclic graph D(s) having O(|S|) nodes and O(|S|) edges
that can report vFs ∩ S in time of the order of the size of vFs ∩ S for any v ∈ S\{s}.

Lemma 14(ii) implies that sNv = V \vFs . So we can compute sNv ∩ S in O(|S|) time once
we have vFs ∩ S. Therefore, we can state the following corollary of Theorem 19.

I Corollary 20. For an undirected graph G = (V,E), any subset S ⊆ V , and a designated
vertex s ∈ S, there exists a data structure of O(|S|) size that takes just O(|S|) time to
compute sNv ∩ S for any v ∈ S\{s}.

Next, we show how to compute a DAG storing all farthest mincuts to s in space O(|S|2).
Thereafter, we reduce its space complexity to O(|S|) only.

4.1 A DAG of size O(|S|2)
Our data structure to store all farthest mincuts to a designated vertex s uses the observation
captured in Lemma 21. In its core, it tells us that certain farthest mincuts are related by a
subset relation which can be exploited to store them compactly.

I Lemma 21. Let x and v be any two vertices in G. If x ∈ vFs , then xFs ⊆ vFs .

Proof. We use Lemma 11 on the submodularity of cuts and provide a proof by contradiction.
Let A and B refer to the sets vFs and xFs , respectively. It is given that x ∈ vFs . Assume that
xFs * vFs . This would imply that B\A 6= ∅, hence A must be a proper subset of A ∪B.

Observe that A∩B defines a valid (x, s)-cut since x is present in both A and B, whereas
s /∈ xFs . This observation implies that c(A ∩ B) ≥ c(B) since B defines an (x, s)-mincut.
This inequality and Lemma 11 imply the following inequality.

c(A ∪B) ≤ c(A) (1)

S. Baswana, S. Gupta, and T. Knollmann 12:9

Now observe that A ∪ B defines a valid (v, s)-cut since v belongs to A, whereas s belongs
neither to A nor to B. Since A defines a (v, s)-mincut, so Inequality 1 implies that c(A ∪B)
must be equal to the capacity of an (v, s)-mincut. But A is a proper subset of A ∪ B.
This would imply that the cut defined by A is not the farthest mincut from v to s – a
contradiction. J

Let F = {vFs ∩ S | v ∈ S\{s}}. We now use Lemma 21 to build a directed acyclic graph
D = (V, E) that stores F as follows. We use node to refer to a vertex of this DAG.

For each set present in F , we create a unique node in D. The set of nodes thus created
constitutes V. We denote by F(ν) the set in F corresponding to node ν. The edge set E of
D is defined as follows.

E = {(ν, µ) | F(µ) ⊂ F(ν)}

It can be observed that if X ⊂ Y for any two sets X and Y in F , then |X| < |Y |. Hence D
is acyclic. To efficiently retrieve xFs ∩ S for any given x ∈ S, we can augment D as follows.

We create an array Js indexed by vertices of set S such that for any v ∈ S \ {s}, Js[v]
stores the pointer to node µ that corresponds to vFs ∩ S, that is, F(µ) = vFs ∩ S.
Each node µ of D stores a list L(µ) of all those vertices v ∈ S such that Js[v] = µ.
We introduce a dummy node and add an edge from it to every other node which has no
incoming edge.

Lemma 22 follows immediately from Lemma 21 and the construction of D described above.

I Lemma 22. Let x and u be any two vertices of set S. x is present in uFs ∩ S if and only
if either Js[u] = Js[x] or there is an edge from Js[u] to Js[x] in D.

Lemma 22 implies that for each vertex v ∈ S\{s}, vFs ∩ S is the set of vertices stored in the
list L(Js[v]) and the lists of all the nodes with an incoming edge from Js[v] in D.

The subset relation ⊂ is transitive. So, if there is a path from a node ν to another node
µ in D, then (ν, µ) is also an edge in D. In other words, the transitive closure of D is D
itself. This observation in conjunction with Lemma 22 leads us to the following lemma which
will be crucial for our data structure for the single source mincut sensitivity problem.

I Lemma 23. Let x and u be any two vertices in set S. x is present in uFs ∩ S if and only
if Js[x] is reachable from Js[u] in D.

Notice that D has O(|S|) nodes, but it could have Θ(|S|2) edges. So the total space
occupied by D could be Θ(|S|2). A natural idea to overcome this hurdle is to remove as
many edges as possible from D without affecting the reachability between any pair of its
vertices so that Lemma 23 continues to hold. In other words, we compute another DAG Dτ

which is the transitive reduction of D. Aho, Garey, and Ullman [1] showed that computing
the transitive reduction of a DAG is as easy as computing its transitive closure. While in
general a transitive reduction does not always lead to a reduced number of edges, it does so
in the case of D. In the following subsection we present crucial insights into crossing farthest
mincuts that ensure that each node of Dτ will have at most two incoming edges. The data
structure D(s) in Theorem 19 for storing all farthest mincuts to s is Dτ only.

4.2 Bounding the in-degree of Dτ by 2
A set of vertices I ⊂ V is said to be a set of incomparable vertices with respect to the mincuts
to s if for each u, v ∈ I with u 6= v it holds that u /∈ vFs and v /∈ uFs . The following lemma
highlights an important property for a pair of incomparable vertices.

ESA 2020

12:10 Mincut Sensitivity Data Structures for the Insertion of an Edge

I Lemma 24. For any two incomparable vertices u and v, there does not exist any edge
between the set uFs ∩ vFs and the set V \(uFs ∪ vFs).

We shall now use Lemma 12 and Lemma 24 to derive the following lemma which will play a
crucial role in establishing that Dτ has indegree 2 only.

I Lemma 25. For any three incomparable vertices u, v, w ∈ V , uFs ∩ vFs ∩ wFs = ∅.

Proof. We give a proof by contradiction. Let B,L, and R denote the sets uFs , vFs , and wFs ,
respectively. Figure 2(i) illustrates these sets. For a clear distinction, we have used different
colors for these sets in this figure, and correspondingly assigned the labels B (for blue), L
(for light green), and R (for red) to these sets.

𝐵 = 𝑢𝑠
𝐹 𝐿 = 𝑣𝑠

𝐹

𝑠

𝑢 𝑣

𝑤

𝑅 = 𝑤𝑠
𝐹

𝑢 𝑣

𝛼

𝛽 𝛾

𝑤

𝑟′
𝑟

𝑙

𝑙′𝑏′

𝑏

𝑠

𝐵 = 𝑢𝑠
𝐹 𝐿 = 𝑣𝑠

𝐹

𝑅 = 𝑤𝑠
𝐹

(𝒊) (𝒊𝒊)

𝛼

𝛽 𝛾

𝑅 = 𝑤𝑠
𝐹

𝛾𝑟

𝑙

𝑏′

𝑏

𝛼
𝑟′𝑟

𝑙′𝑏′

𝛽
𝑟′

𝑙

𝑙′

𝑏
𝑢 𝑣

𝑤

𝐵 = 𝑢𝑠
𝐹 𝐿 = 𝑣𝑠

𝐹

(𝒊𝒊𝒊)

(𝒊𝒗)

(𝒗)

Figure 2 Intersection of the farthest mincuts to s.

Suppose the common intersection B ∩ L ∩R of these sets (shown shaded in Figure 2(i))
is not an empty set. By applying Lemma 24 for B ∩ L, L ∩ R, R ∩ B, we can infer that
each vertex in the common intersection will have edges incident only from the sets B ∩ L,
L ∩R, R ∩B. Considering the set B ∩ L ∩R as a single entity, let α, β, γ be the number of
edges incident on it from (B ∩ L)\R, (R ∩B)\L, (L ∩R)\B, respectively. As the graph is
connected (see Remark 16), we have:

α+ β + γ > 0. (2)

Let us consider the set (B ∩ L)\R, that is, the set B ∩ L after removing the common
intersection B ∩ L ∩ R. It follows from Lemma 24 that the edges incident on this set will
be from B\L and L\B only, apart from the edges incident from B ∩ L ∩R. Similar claims
hold for the sets (B ∩R)\L and (R ∩ L)\B as well. Figure 2(ii) shows these sets as shaded
regions along with the edges incident on them. For example, l, b, α are the number of edges
incident on (B ∩ L)\R from B\L, L\B, and B ∩R ∩ L, respectively.

The rest of the proof is as follows. Exploiting the fact that u, v, w are incomparable,
we suitably apply Lemma 12 to arrive at inequalities that eventually leads to contradict
Inequality 2.

B defines an (s, u)-mincut. Since u is incomparable with both v and w, it is not present
in the set B ∩ (R ∪ L) shown shaded in Figure 2(iii). Notice that the number of edges
incident on this set from V \B is b+ b′ + γ whereas the number of edges incident on this set
from the rest of B, that is, the set B\(R ∪L) (enclosed by dotted boundary in Figure 2(iii))
is at most l + r. So we get the following inequality by substituting B and B ∩ (R ∪ L) in
place of A and A′ respectively in Lemma 12:

b+ b′ + γ ≤ l + r (3)

S. Baswana, S. Gupta, and T. Knollmann 12:11

In Figure 2, R defines an (s, w)-mincut and L defines an (s, v)-mincut. Hence, with
similar arguments as above, analyzing the (s, w)-mincut in Figure 2(iv), and analyzing the
(s, v)-mincut in Figure 2(v), we get the following inequalities, respectively:

r + r′ + α ≤ b′ + l′, l + l′ + β ≤ b+ r′

Adding the above inequalities with Inequality 3 and canceling identical terms on either sides
we get α+ β + γ ≤ 0. This contradicts Inequality 2 and completes the proof. J

The following is a simple corollary of Lemma 25.

I Corollary 26. Let A ∈ F . If U, V,W are any three distinct sets from F such that
A ⊂ U, A ⊂ V , and A ⊂W . Then at least one of the sets from {U, V,W} must be a proper
subset of one of the remaining two.

We can use Corollary 26 to establish the following lemma.

I Lemma 27. The indegree of any node in Dτ will be at most 2.

Figure 3 shows farthest mincuts from a sample of vertices to s in our example graph.
Notice that the farthest mincut bFs crosses the farthest mincut dFs . Also, the farthest mincuts
from j and g to s are identical, so j and g are mapped to a single node in Dτ .

s

a

c
b

d

e h

l k

j

i

g

1
1

8 4

8 4

1
1

9
4 2

2
1

4

4

4

(a)

a, c b d

e, h

i k, l

g, j(b)

Figure 3 (a) A dotted boundary defines a farthest mincut to s from a vertex of the same color.
(b) The DAG Dτ .

5 Single source mincut sensitivity for insertion of an edge

We now present an O(|S|) space data structure that can report all those vertices from S

whose mincut value to s increases upon insertion of any given edge (x, y) ∈ S × S. The data
structure will consist of the tree structure T (s) from Theorem 18 and DAG structure D(s)
from Theorem 19.

Let Ax = {v ∈ S|x ∈ sNv } and Ay = {v ∈ S|y ∈ sNv }. It follows from Lemma 15 that
if (s, v)-mincut increases, then v must belong to Ax or Ay. Furthermore, for any v ∈ Ax,
(s, v)-mincut increases if y ∈ vNs . Using Theorem 18, it takes just O(1) time to do this check
for any given v ∈ Ax (likewise Ay). So, in order to report all vertices from S whose mincut
from s increases upon insertion of edge (x, y) in O(|S|) time, all we need is an O(|S|) time
algorithm to compute Ax and Ay. We now provide O(|S|) time algorithm to compute Ax;
we can compute Ay in O(|S|) time in a similar manner.

It follows from Lemma 14(ii) that computing Ax is equivalent to computing the set
Āx = {v ∈ S|x ∈ vFs }. Recall that Js[x] is the node containing x in D(s). It follows from
Lemma 23 that x ∈ vFs if and only if Js[x] is reachable from Js[v] in D(s). Therefore, we can
compute Āx by first reversing the edges of D(s) and then traversing all the nodes reachable

ESA 2020

12:12 Mincut Sensitivity Data Structures for the Insertion of an Edge

from Js[x]. For each node λ reachable from Js[x] in the reversed D(s), x is present in vFs for
each vertex v ∈ L(λ). Since D(s) has O(|S|) edges, it takes O(|S|) time to reverse it and
traverse it to compute Āx. This establishes the proof of Theorem 2 for the single source
mincut sensitivity problem.

6 All-pairs mincut sensitivity data structure for insertion of an edge

Our data structure consists of the nearest-mincut tree T (z) from Theorem 18 for each z ∈ S.
Each of these trees occupies O(|S|) space, so the space occupied by the data structure is
O(|S|2). For the rest of this section, x, y, z are any arbitrary vertices from S. Upon insertion
of edge (x, y), let k be the number of pairs of vertices from S × S whose mincut value
increases. We present an O(k) time algorithm to output all these pairs using four insights
into the nearest-mincut trees. Our first insight is stated in Lemma 28. It implies that for
all vertices belonging to a node µ in T (z), it suffices to determine for any single vertex, say
u ∈ µ, whether the (z, u)-mincut value increases upon insertion of any given edge.

I Lemma 28. Let u, v ∈ S be any two vertices belonging to the same node in T (z). Upon
insertion of any given edge, (u, z)-mincut value increases iff (v, z)-mincut value increases.

Let µ and ν be the nodes in T (z) containing x and y respectively. Our second insight,
stated in the following lemma, specifies the location of vertices in T (z) whose mincut value
to s increases upon insertion of edge (x, y).

I Lemma 29. Let ω = LCA(µ, ν) in T (z). Upon insertion of edge (x, y), the mincut value
from z to only those vertices may increase that belong to the nodes of (1) the path from µ to
ω but excluding ω, and (2) the path from ν to ω but excluding ω.

ω

µ ν

yx

Figure 4 The tree T (z) from the perspective of µ and ν. If v is a vertex whose node in T (z) does
not belong to either of ω-ν and ω-µ paths, then v must be present in one of the subtrees hanging
from these paths (shown in blue). Now consider any node, say γ, lying on the path from ω to the
root of T (z). Both x and y belong to the subtree rooted at γ.

Proof. Let us view T (z) from the perspective of the paths from µ and ν to the root of T (z).
The reader is advised to refer to Figure 4 for a better understanding. If v is a vertex whose
node in T (z) does not belong to these paths, then v must be present in one of the subtrees
(shown in blue in Figure 4) hanging from these paths. Notice that neither x nor y belongs to

S. Baswana, S. Gupta, and T. Knollmann 12:13

the subtree containing v. So it follows from Lemma 15 that the mincut from z to v is not
affected by the insertion of edge (x, y). Now consider any node, say γ, lying on the path from
ω to the root of T (z). Both x and y belong to the subtree rooted at γ. So using Lemma
15 again, the mincut from z to any vertex of γ remains unaffected by the insertion of edge
(x, y). J

Our third and most crucial insight is that the vertices whose mincut value to z increases
upon insertion of edge (x, y) belong to a contiguous sequence of nodes on the paths from the
node containing y and the node containing x to their LCA in T (z). The following lemma
states this insight for the node containing y.

I Lemma 30. Let ω be the LCA of the nodes containing x and y in T (z). Let u and v be
any two vertices lying on the path from the node containing y to ω in T (z) such that the node
containing u is an ancestor of the node containing v. If (z, u)-mincut value increases upon
insertion of edge (x, y), then (z, v)-mincut value also increases upon insertion of (x, y).

Proof. It follows from the construction of T (z) that y ∈ vNz and vNz ⊆ uNz . It is given that
the insertion of edge (x, y) increases (z, u)-mincut value and u is an ancestor of y in T (z).
So Lemma 15 implies:

x ∈ zNu (4)

It follows from Lemma 14(i) that zNu ∩ uNz = ∅. So v /∈ zNu since v ∈ uNz . Applying Lemma
14(ii), we get v ∈ uFz . So it follows from Lemma 21 that vFz ⊆ uFz . Applying Lemma 14(ii)
again, it follows that zNu ⊆ zNv . Using this fact and Equation 4, we can infer that x ∈ zNv .
Since we have already established that y ∈ vNz , so using Lemma 15 we can conclude that
(z, v)-mincut value will also increase upon insertion of edge (x, y). J

It is a simple corollary of Lemma 30 that if (y, z)-mincut value does not increase upon
insertion of edge (x, y), then for any vertex v present in any ancestor of the node containing
y in T (z), (v, z)-mincut value will also not increase. So, to compute all-pairs of vertices
whose mincut increases, we need to explore the nearest-mincut tree of only those vertices z
whose mincut value to y (and likewise to x) increases.

We now describe how to process T (z) for a vertex z given that (y, z)-mincut value increases
upon insertion of (x, y). For each such z, first we enumerate all vertices present in the node,
say ν, to which y belongs. We then begin an upward traversal of T (z) starting from the
parent of ν. For any node, say λ, that we traverse, we pick any arbitrary vertex from it, say
v, and determine whether x ∈ zNv by querying T (v). It takes O(1) time to answer this query
(see Theorem 18). If x ∈ zNv , it follows from Lemma 28 that each vertex present in λ has its
mincut value to z increased. So we enumerate all vertices from λ, and continue processing
the parent of λ in a similar manner. If x /∈ zNv , we stop the traversal. It follows from Lemma
30 that the vertices enumerated in this way are precisely the vertices whose mincut value to
z increases. To efficiently identify each vertex z, such that the (y, z)-mincut value increases
upon insertion of edge (x, y), we exploit the fourth insight into the nearest-mincut trees
which is stated in the following lemma. This lemma can be seen as a corollary of Lemma 15.

I Lemma 31. (y, z)-mincut value increases upon insertion of edge (x, y) iff x ∈ zNy .

It follows from Lemma 31 that the vertices present in the node containing x and its
ancestors in T (y) are precisely the vertices whose mincut value to y increases. We can identify
all these vertices in optimal time by traversing T (y) upward from the node containing x.

ESA 2020

12:14 Mincut Sensitivity Data Structures for the Insertion of an Edge

We have described above the processing of each z such that the (y, z)-mincut value
increases due to the insertion of edge (x, y). A similar processing must be carried out for all
vertices z, such that the (x, z)-mincut value increases due to the insertion of edge (x, y).

It follows from the description given above that we can compute all those pairs of vertices
from S × S whose mincut value increases upon the insertion of any given edge in O(k) time,
where k is the number of these pairs. If our goal is to just report the value of k, we can
accomplish it in O(min(k, |S| log |S|)) time by suitably augmenting the nearest-mincut trees.
We can thus conclude with Theorem 32 which extends Theorem 4.

I Theorem 32. For an undirected graph G = (V,E), and a subset S of vertices, there exists
an O(|S|2) size data structure that can report all pairs of vertices whose mincut increases
upon insertion of a query edge. The guaranteed query time is O(k), where k is the number
of pairs whose mincut increases. We can also report k in O(min(k, |S| log |S|)) time.

References
1 Alfred V. Aho, M. R. Garey, and Jeffrey D. Ullman. The transitive reduction of a directed

graph. SIAM J. Comput., 1(2):131–137, 1972. doi:10.1137/0201008.
2 Surender Baswana, Shiv Gupta, and Till Knollmann. Mincut Sensitivity Data Structures

for the Insertion of an Edge, 2020. URL: http://www.cse.iitk.ac.in/users/sbaswana/
Papers-published/esa-2020-fv.pdf.

3 Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theor.
Comput. Sci., 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.

4 Rajesh Chitnis, Lior Kamma, and Robert Krauthgamer. Tight bounds for gomory-hu-like cut
counting. In Graph-Theoretic Concepts in Computer Science - 42nd International Workshop,
WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, pages 133–144, 2016.
doi:10.1007/978-3-662-53536-3_12.

5 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

6 R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, 9(4):551–570, 1961. URL: http://www.jstor.org/stable/2098881.

7 Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. Incremental exact min-cut in
polylogarithmic amortized update time. ACM Trans. Algorithms, 14(2):17:1–17:21, 2018.
doi:10.1145/3174803.

8 Dan Gusfield. Very simple methods for all pairs network flow analysis. SIAM J. Comput.,
19(1):143–155, February 1990. doi:10.1137/0219009.

9 Ramesh Hariharan, Telikepalli Kavitha, Debmalya Panigrahi, and Anand Bhalgat. An Õ(mn)
gomory-hu tree construction algorithm for unweighted graphs. In Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13,
2007, pages 605–614, 2007. See also the extended version at http://hariharan-ramesh.com/
papers/gohu.pdf. doi:10.1145/1250790.1250879.

10 Tanja Hartmann and Dorothea Wagner. Fast and simple fully-dynamic cut tree construction.
In Algorithms and Computation - 23rd International Symposium, ISAAC 2012, Taipei, Taiwan,
December 19-21, 2012. Proceedings, pages 95–105, 2012. doi:10.1007/978-3-642-35261-4_
13.

11 Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts in a network
and applications. In Rayward-Smith V.J. (eds) Combinatorial Optimization II. Mathematical
Programming Studies, 13(1):8–16, 1980. doi:10.1007/BFb0120902.

12 Mikkel Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007. doi:10.1007/
s00493-007-0045-2.

https://doi.org/10.1137/0201008
http://www.cse.iitk.ac.in/users/sbaswana/Papers-published/esa-2020-fv.pdf
http://www.cse.iitk.ac.in/users/sbaswana/Papers-published/esa-2020-fv.pdf
https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.1007/978-3-662-53536-3_12
https://doi.org/10.4153/CJM-1956-045-5
http://www.jstor.org/stable/2098881
https://doi.org/10.1145/3174803
https://doi.org/10.1137/0219009
http://hariharan-ramesh.com/papers/gohu.pdf
http://hariharan-ramesh.com/papers/gohu.pdf
https://doi.org/10.1145/1250790.1250879
https://doi.org/10.1007/978-3-642-35261-4_13
https://doi.org/10.1007/978-3-642-35261-4_13
https://doi.org/10.1007/BFb0120902
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/s00493-007-0045-2

Linear Time LexDFS on Chordal Graphs
Jesse Beisegel
Brandenburg University of Technology, Cottbus, Germany
jesse.beisegel@b-tu.de

Ekkehard Köhler
Brandenburg University of Technology, Cottbus, Germany
ekkehard.koehler@b-tu.de

Robert Scheffler
Brandenburg University of Technology, Cottbus, Germany
robert.scheffler@b-tu.de

Martin Strehler
Brandenburg University of Technology, Cottbus, Germany
martin.strehler@b-tu.de

Abstract
Lexicographic Depth First Search (LexDFS) is a special variant of a Depth First Search (DFS),
which was introduced by Corneil and Krueger in 2008. While this search has been used in various
applications, in contrast to other graph searches, no general linear time implementation is known to
date. In 2014, Köhler and Mouatadid achieved linear running time to compute some special LexDFS
orderings for cocomparability graphs. In this paper, we present a linear time implementation of
LexDFS for chordal graphs. Our algorithm even implements the extended version LexDFS+ and is,
therefore, able to find any LexDFS ordering for this graph class. To the best of our knowledge this
is the first unrestricted linear time implementation of LexDFS on a non-trivial graph class. In the
algorithm we use a search tree computed by Lexicographic Breadth First Search (LexBFS).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Trees; Theory of computation → Graph algorithms analysis

Keywords and phrases LexDFS, chordal graphs, linear time implementation, search trees, LexBFS

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.13

Acknowledgements The authors would like to thank one of the anonymous referees for his or her
many helpful comments.

1 Introduction

Graph searches are among the most basic algorithms in computer science. Nevertheless,
they are very powerful tools and can be used to compute many important graph properties.
For example, Breadth First Search (BFS) is the standard procedure for testing bipartiteness
or computing shortest paths with respect to the number of edges. Similarly, Depth First
Search (DFS) can be used in algorithms to find strongly connected components in directed
graphs [24] or to test for planarity [14].

In 1976, Rose, Tarjan, and Lueker [21] proposed a modified variant of BFS to compute
perfect vertex elimination orderings of chordal graphs. This search, since named Lexicographic
Breadth First Search (LexBFS), uses the ordering of the already visited vertices and visits
the vertex with lexicographically largest neighborhood next. Rose, Tarjan, and Lueker also
gave a linear time implementation of LexBFS using partition refinement, which, for example,
also provides a linear time greedy algorithm for finding minimum colorings of chordal graphs.

© Jesse Beisegel, Ekkehard Köhler, Robert Scheffler, and Martin Strehler;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jesse.beisegel@b-tu.de
mailto:ekkehard.koehler@b-tu.de
mailto:robert.scheffler@b-tu.de
mailto:martin.strehler@b-tu.de
https://doi.org/10.4230/LIPIcs.ESA.2020.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Linear Time LexDFS on Chordal Graphs

It was only in 2008 that a corresponding lexicographical variant for DFS was introduced
by Corneil and Krueger [8]. Similar to LexBFS, this search computes perfect elimination
orderings on chordal graphs. Therefore, it can be used to find minimum colorings as well
as all minimal separators and all maximal cliques on this graph class [25]. Besides this,
LexDFS was used in the field of data mining to design an efficient hierarchical clustering
algorithm [10]. However, no general linear time implementation of LexDFS is known to date.
An implementation with running time in O(min{n2, n+m logn}) is given in [17]. Spinrad
announced an O(m log logn)-implementation [23] which has not been published as of yet.
In [15], Köhler and Mouatadid present the first linear time algorithm to compute a LexDFS
cocomparability ordering, that is, a special class of LexDFS orderings can be computed in
linear time on cocomparability graphs using modular decomposition. However, there are
LexDFS orderings of cocomparability graphs that cannot be computed by this approach.
Even more restricting, it is not possible to choose an arbitrary start vertex for the search.
Nevertheless, this result can be used to design linear time algorithms which find minimum
path covers [5], maximum matchings [20] as well as maximum independent sets, minimum
clique covers and minimum vertex covers [6] on cocomparability graphs.

Search trees are an important concept in the theory of graph searches. Already in 1972,
Tarjan [24] gave a complete characterization of DFS-trees as so-called palm trees. However,
no algorithm that determines whether a given spanning tree of a graph G is a DFS-tree of G
was specified in that work. Using the concept of palm trees, Hopcroft and Tarjan developed a
linear time algorithm for testing planarity of a graph [14]. In 1985, Hagerup [12] formulated
the problem of checking whether a given spanning tree of G can be obtained by a DFS and
presented a linear time algorithm for this problem. In the same year, Hagerup and Novak [13]
presented a linear time algorithm for the recognition of BFS-trees. Similar results were
obtained by Korach and Ostfeld [16] for DFS-trees and Manber [19] for BFS-trees. Recently,
Beisegel et al. [1, 2] studied the search tree recognition problem for LexBFS, LexDFS and
other searches.

Our Contribution

In this paper, we give the first linear time implementation of LexDFS on chordal graphs. We
show for all graphs that the computation of a LexDFS ordering is linear time equivalent to
the construction of a LexDFS search tree, i.e., there are linear time reductions between both
problems. The combination of this result with some properties of search trees of LexBFS
on chordal graphs yields a linear time implementation of LexDFS+, an extended version of
LexDFS, which uses vertex orderings to break ties during the search. This implementation is
able to compute any LexDFS ordering of a given chordal graph. To the best of our knowledge
this is the first unrestricted linear time implementation of LexDFS on a non-trivial graph
class. Furthermore, we show that testing whether a given ordering is in fact a LexDFS
ordering is linear time equivalent to the recognition of LexDFS search trees.

2 Preliminaries

Throughout this paper, we consider finite, simple, undirected and connected graphsG = (V,E)
with n = |V | vertices and m = |E| edges. An edge between u and v is simply denoted by uv.
For a vertex v ∈ V , the neighborhood of v is denoted by N(v), i.e., N(v) = {u ∈ V | uv ∈ E}.
For a subset S ⊆ V , we define the neighborhood as N(S) = {v ∈ V \ S | ∃u ∈ S : uv ∈ E}.

Given a subset S of vertices in G, the subgraph of G induced by S is denoted by G[S],
where V (G[S]) = S and E(G[S]) = {uv ∈ E(G) | u ∈ S, v ∈ S}. The subgraph induced by
V (G) \ S is denoted by G− S and, in the case where S contains just one element, we simply
write G− v instead of G− {v}.

J. Beisegel, E. Köhler, R. Scheffler, and M. Strehler 13:3

A graph G that contains no induced cycle of length larger than 3 is called chordal. Other
equivalent definitions of chordal graphs can be found in [4]. A tree is an acyclic connected
graph and a spanning tree of a graph G is an acyclic connected subgraph of G which contains
all vertices of G. A tree together with a distinguished root vertex s is said to be rooted. In
such a rooted tree a vertex v is an ancestor of vertex w if v is an element of the unique path
from w to the root s. In particular, if v is adjacent to w, it is called the parent of w. A
vertex w is called a descendant (child) of v if v is an ancestor (the parent) of w.

A (connected) graph search is, in the most general sense, a mechanism for systematically
visiting all vertices of a graph. Starting at a vertex s ∈ V , we expand the set of vertices
S beginning with S = {s} by moving a vertex from N(S) to S, which may also add
new neighbors to N(S) in consequence. The result of this procedure is a search ordering
σ = (v1 = s, v2, . . . , vn) of the vertices of the graph listing the vertices in order of occurrence.
For any linear vertex ordering σ we write u ≺σ v if u appears before v in the ordering and
say that u is to the left of v and that v is to the right of u. Furthermore, σ− denotes the
reverse ordering of σ, that is, σ− = (vn, vn−1, . . . , v1).

There are many graph search protocols which differ in the way in which a vertex from
N(S) is chosen next. The two most common graph searches are Breadth First Search and
Depth First Search which can be simply described as using a queue and a stack to store the
vertices in N(S), respectively. Given a graph search protocol P and a vertex ordering σ, we
say that σ is a P-ordering if there exists a valid P search on G that returns σ.

In [8], Corneil and Krueger present a characterizing four point property of DFS orderings.

I Lemma 1 ([8]). A vertex ordering σ is a DFS ordering of a graph G = (V,E) if and only
if for every triple a ≺σ b ≺σ c where ac ∈ E and ab /∈ E there is a vertex d with a ≺σ d ≺σ b
such that db ∈ E.

In the same paper, the authors introduced Lexicographic Depth First Search (LexDFS,
see Algorithm 1), a variant of DFS which uses labels and their lexicographic order to break
ties during the search.

Algorithm 1 Lexicographic Depth First Search.

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V
Output: Ordering σ of V starting at s

1 begin
2 label(s)← (0);
3 foreach vertex v ∈ V − s do assign to v the empty label;
4 for i← 1 to n do
5 pick an unnumbered vertex v with lexicographically largest label;
6 σ(i)← v;
7 foreach unnumbered vertex w ∈ N(v) do prepend i to label(w);

The idea of using such a lexicographic order of labels originates from an algorithm for
the calculation of perfect elimination orderings of chordal graphs, given by Rose, Lueker,
and Tarjan [21], since named Lexicographic Breadth First Search (LexBFS, see Algorithm 2).

Both LexDFS and LexBFS are special variants of the standard searches and, thus, every
LexDFS ordering is also a DFS ordering and every LexBFS ordering is also a BFS ordering.
In both algorithms, the vertices are labeled by their already visited neighbors (see line 7

ESA 2020

13:4 Linear Time LexDFS on Chordal Graphs

Algorithm 2 Lexicographic Breadth First Search.

Input: Connected graph G = (V,E) and a distinguished vertex s ∈ V
Output: Ordering σ of V starting at s

1 begin
2 label(s)← (n);
3 foreach vertex v ∈ V − s do assign to v the empty label;
4 for i← 1 to n do
5 pick an unnumbered vertex v with lexicographically largest label;
6 σ(i)← v;
7 foreach unnumbered vertex w ∈ N(v) do append (n− i) to label(w);

in Algorithm 1 and 2). While in LexDFS vertices visited later in the search have a larger
significance for the lexicographic order of the label, in LexBFS it is the opposite, i.e., vertices
visited earlier have a larger impact.

Corneil and Krueger [8] also present a four point property of LexDFS orderings.

I Lemma 2 ([8]). A vertex ordering σ is a LexDFS ordering of a graph G = (V,E) if and
only if for every triple a ≺σ b ≺σ c where ac ∈ E and ab /∈ E there is a vertex d with
a ≺σ d ≺σ b such that db ∈ E and dc /∈ E.

A variant of LexDFS and LexBFS is the technique of “multisweeping”. This describes the
multiple application of some graph search, where each run of the search uses the ordering
given by the previous application as a so-called “tie-break” rule, that is, a priority list which
decides which vertex can be visited next in those cases where the given search paradigm allows
several different options. It was first used by Simon [22] in an algorithm for the recognition of
interval graphs which is flawed as was shown by Ma [18]. Nevertheless, “multisweeping” has
proven to be very fruitful in recent years [5, 9]. In the case of LexDFS, this technique implies
a new search scheme known as LexDFS+: Given a ordering ρ of the vertices, LexDFS+(ρ) is
computed by executing a regular LexDFS with the modification that in line 5 of Algorithm 1
the rightmost element with regard to ρ is chosen among all vertices with lexicographically
largest label. The searches DFS+, BFS+ and LexBFS+ are defined analogously. Note that
all these searches yield unique orderings, as there are no more ties to break in the algorithms.

It is not difficult to see that, given the reverse of a search ordering as tie break, such a
procedure yields that same ordering again. For a more general result see Corneil et al. [7].

I Observation 3. Let G = (V,E) be a graph and let σ be a vertex ordering of G. The
ordering σ is a LexDFS ordering of G if and only if LexDFS+(σ−) is equal to σ. This also
holds for LexBFS and LexBFS+(σ−).

Using a technique called partition refinement, LexBFS can be implemented in linear
time [11, 21]. Given a set S, we call Q = (Q1, Q2, . . . , Qk) a partition of S if S =

⋃k
i=1 Qi

with non-empty, pairwise disjoint sets Qi (Qi ∩ Qj = ∅ for i 6= j). Note that a partition
is an ordered list of subsets. We say that a subset S′ ⊆ S refines Q if Qi is replaced by a
subpartition (Ai, Bi) where Ai = Qi∩S′ and Bi = Qi \Ai whenever both sets are non-empty.
In particular, for LexBFS we start with Q = (V) and starting vertex s. Now, we refine Q with
{s} which separates s in a single set. Afterwards, we refine with N(s). In the first iteration,
this yields the partition ({s}, N(s), V \ (N(s) ∪ {s})). The vertex whose neighborhood is
used to refine the partition classes is called a pivot. Choose the next pivot v from N(s) and

J. Beisegel, E. Köhler, R. Scheffler, and M. Strehler 13:5

refine with {v} and then N(v). For Qi = {v}, repeat refining using an element from the
set Qi+1 as the next pivot, maintaining the order of the partition classes created so far. As
shown in [11], this final partition can be computed in linear time and it is actually a LexBFS
ordering. The pivot is just the vertex visited by the search and it pulls its neighbors to the
front of each set. Unfortunately, no linear time implementation of partition refinement for
LexDFS is known to date.

Usually, a graph search is associated with a search tree which is a spanning tree of the
graph. Given a BFS ordering σ = (v1, . . . , vn), a vertex vi is typically connected to the
leftmost neighbor in (v1, . . . , vi−1), i.e., it is connected to the vertex that was current at the
point at which vi was added to N(S). On the contrary, given a DFS ordering σ = (v1, . . . , vn),
a vertex vi is connected to the rightmost neighbor in (v1, . . . , vi−1), i.e., it is connected to
the neighbor which occurred last before vi itself was visited. These two different approaches
of constructing a search tree give rise to the following definition.

I Definition 4 ([2]). Given a search ordering σ = (v1, . . . , vn) of a given search on a
connected graph G = (V,E), the first-in tree (or F-tree) of σ is the tree consisting of the
vertex set V and an edge from each vertex different from v1 to its leftmost neighbor in σ.
The last-in tree (or L-tree) of σ is the tree consisting of the vertex set V and an edge from
each vertex vi different from v1 to its rightmost neighbor vj in σ with j < i. In both cases, v1
is the root of the search tree.

The notation of F -trees and L-trees was introduced in [2], where the recognition problem
of these search trees was studied. In contrast to the original definition, we always assume
that a search tree has a designated root. In particular, two search trees on a graph G are
equal if they use the same edge set and if they have the same root. Given a search protocol
P and a spanning tree T of G rooted in s, we say that T is an L-tree (F-tree) of P on G if
there is a P-ordering of G starting at s with L-tree (F-tree) T .

Although, it would be most natural to consider the F-tree for LexBFS, the L-tree of
LexBFS is a key ingredient in our procedure on chordal graphs.

3 Search Orderings and Trees of LexDFS

Given a search ordering, it is easy to construct the corresponding search tree in linear time
by simply using Definition 4. However, if we are only given a search tree, then it is not
immediately clear how to find a search ordering that results in this tree. In this section,
we present a linear time algorithm that computes a LexDFS ordering for a given L-tree of
LexDFS. Using this result we prove that both recognition and creation of search orderings
and L-trees are linear time equivalent in the case of LexDFS.

The main idea of this algorithm is to use a special tie-break rule in form of a ordering
of the vertices τ such that a simple run of DFS+(τ) on the tree is a LexDFS ordering of G
with tree T . This tie-break rule τ is computed by using a form of partition refinement which
moves from the leaves of the tree towards its root. The pseudo code of this procedure is
given in Algorithm 3.

Before we begin with the analysis of this algorithm we present some general results on
L-trees of DFS. The first is a lemma by Tarjan [24] which characterizes L-trees of DFS.

I Lemma 5 ([24]). Let G = (V,E) be a graph and let T be a spanning tree of G. Then T is
an L-tree of G generated by DFS if and only if for each edge uv ∈ E it holds that either u is
an ancestor of v in T or v is an ancestor of u in T .

ESA 2020

13:6 Linear Time LexDFS on Chordal Graphs

Algorithm 3 Ordering(G, T , s, ρ).

Input: Connected graph G = (V,E), an L-tree T of DFS on G rooted in s ∈ V ,
ordering ρ of V ending with vertex s

Output: ordering σ of V starting at s
1 begin
2 β ← reverse of a BFS ordering of T starting at s;
3 Q ← (V);
4 for i ← 1 to n do
5 v ← β(i);
6 refine Q with {w ∈ N(v) | w ≺β v};
7 order every set in Q with respect to ρ− and move {s} to the leftmost position;
8 τ ← reverse of the final order of vertices in Q;
9 σ ← DFS+(τ) on T ;

10 return σ;

In order to make sure that Algorithm 3 returns a DFS ordering of G with L-tree T , we
prove the following statement.

I Lemma 6. Let T be an L-tree of some DFS on G rooted in s and let σ be a DFS ordering
of T starting at s. Then σ is a DFS ordering of G with L-tree T .

Proof. We show that σ is a DFS ordering of G by proving that it fulfills the characterization
given in Lemma 1. Let a, b and c be three vertices in G with a ≺σ b ≺σ c, ac ∈ E(G) and
ab /∈ E(G). We have to show that there is a vertex d with a ≺σ d ≺σ b such that db ∈ E(G).
Assume that ac ∈ E(T). As σ is a DFS ordering of the tree T , there is a vertex d with
a ≺σ d ≺σ b and db ∈ E(T) ⊆ E(G) due to Lemma 1. Therefore, we can assume that ac
is not contained in E(T). By Lemma 5 this implies that a is an ancestor of c in T . Let
P = (a = w1, . . . , wk = c) be the unique path between a and c in T . As σ is a DFS ordering
of T , it holds that a ≺σ w2 ≺σ . . . ≺σ c. If there is an 1 < i < k such that wi = b, then wi−1
is a vertex between a and b in σ with wi−1b ∈ E(G). Otherwise, there exists an 1 ≤ i < k

with wi ≺σ b ≺σ wi+1 and wiwi+1 ∈ E(T). As in the first case there exists a vertex d with
a �σ wi ≺σ d ≺σ b and db ∈ E(T) ⊆ E(G). By Lemma 1, this proves that σ is a DFS
ordering.

Let T ′ be the L-tree of σ with regard to G and assume for contradiction that there is
an edge uv in T ′ that is not part of T . Due to Lemma 5, we can assume without loss of
generality that u is an ancestor of v in T . Since uv is not part of T , vertex u is not the
parent of v in T . Let w be the parent of v in T . Note that this means that w is a descendant
of u in T . Since σ is a DFS ordering on T , vertex w must be to the left of v and to the
right of u in σ. Since vw ∈ E(G), edge uv cannot be part of T ′, as T ′ is the L-tree of σ; a
contradiction. J

With these results on DFS we can proceed to the analysis of Algorithm 3. First we will
prove correctness.

I Theorem 7. Let T be an L-tree of some DFS on G rooted in s and let ρ be an arbitrary
ordering of V ending in s. Let σ be the ordering produced by Algorithm 3 with input (G,T, s, ρ).
Then T is an L-tree of LexDFS rooted in s if and only if σ is a LexDFS ordering of G.

J. Beisegel, E. Köhler, R. Scheffler, and M. Strehler 13:7

Proof. Assume σ is a LexDFS ordering of G. Due to Lemma 6, the L-tree of σ is T and,
therefore, it is an L-tree of LexDFS.

For the other direction, assume that T is an L-tree of LexDFS. Let σ∗ be a LexDFS
ordering of G such that the L-tree of σ∗ is T and the common prefix of σ and σ∗ is maximal
among all LexDFS orderings with L-tree T . If σ and σ∗ are equal, then we are done.
Otherwise let i ∈ {1, . . . , n} be the first index for which v = σ(i) 6= σ∗(i) = v∗. By Lemma 6,
both σ and σ∗ are DFS orderings with L-tree T and v and v∗ have the same parent p in
T . If v and v∗ have the same neighborhood in the set S = {σ(j) | j < i}, then v could
have been taken by LexDFS instead of v∗ and this choice would not have had an impact
on the L-tree of the ordering, due to Lemma 5. Hence, there must be a vertex w ∈ S with
wv∗ ∈ E(G) and wv /∈ E(G) and for all vertices x with w ≺σ x ≺σ v it holds that both v
and v∗ are adjacent to x or both are not adjacent to x. Note that w is an ancestor of both v
and v∗ in T and therefore, it is to the right of both vertices in β.

However, this means that before the iteration of the for-loop in lines 4–6, where we
consider vertex w, both v and v∗ are in the same set of Q. After this iteration, vertex v∗ is
in a set of Q to the left of the set containing v. Therefore, v∗ is to the right of v in τ , as
τ uses the reverse ordering of Q. Thus, the search DFS+(τ) visits v∗ before v, as both are
children of p; a contradiction to v being to the left of v∗ in σ. J

As seen in the proof, it is not necessary to use the reverse of a BFS ordering for β. Any
ordering will suffice, where for every vertex w all ancestors in T are to the right of w in the
ordering. Having shown that Algorithm 3 returns a correct LexDFS ordering for any L-tree
of LexDFS, we will now evaluate its running time.

I Lemma 8. Algorithm 3 has running time in O(n+m).

Proof. Algorithm 3 begins with an execution of BFS which can be done in linear time. In
the for-loop we iterate through the neighborhood of every vertex exactly once. Thus, the
overall costs are in O(n+m). To sort the sets of Q with respect to ρ− we iterate through
ρ− and move the considered vertex to the end of its set. The final DFS+(τ) can be executed
in linear time by first sorting the neighborhoods of all vertices with respect to τ . J

The last results imply that the construction of an L-tree of LexDFS is linear time
equivalent to the computation of a LexDFS ordering.

I Theorem 9. For a given graph family G and O(M) ⊇ O(n + m) the following two
statements are equivalent:
1. There is an algorithm with running time in O(M) that computes a LexDFS ordering for

any graph in G and any starting vertex s.
2. There is an algorithm with running time in O(M) that creates an L-tree of LexDFS for

any graph in G and any root s.

Proof. It is easy to see that the L-tree of an arbitrary vertex ordering can be constructed
in O(n + m). Therefore, an O(M)-algorithm for the computation of a LexDFS ordering
starting at s directly implies an O(M)-algorithm for the creation of an L-tree of LexDFS
rooted in s.

If, on the other hand, we can compute an L-tree of LexDFS rooted in s in time O(M),
then we can use Algorithm 3 to create a corresponding LexDFS ordering in linear time, due
to Theorem 7 and Lemma 8. J

ESA 2020

13:8 Linear Time LexDFS on Chordal Graphs

This linear time equivalence does not only hold for the computation but also for the
recognition of L-trees and orderings of LexDFS. To prove this we need the following two
technical lemmas.

I Lemma 10. Let T be an L-tree of a DFS on G rooted in s, let ρ be an arbitrary ordering
of V ending with s and let σ be the ordering produced by Algorithm 3 with input (G,T, s, ρ).
Furthermore, let v and w be two vertices in G with v ≺σ w which have the same parent in T
and the same neighborhood in the set Y = {x | x ≺σ v}. Then v is to the right of w in ρ.

Proof. As v is to the left of w in σ by assumption, vertex v was taken before w in DFS+(τ).
Since v and w have the same parent in T , it holds that v is to the right of w in τ . If the
vertex v is pulled by a vertex x in the for-loop of Algorithm 3, then x is adjacent to v and
has a smaller distance to the root s in T . By Lemma 5, vertex x is an ancestor of v in T and
x is to the left of v in σ. As v and w have the same neighborhood in Y , the vertex x is also
adjacent to w and pulls it, too. This implies that v and w are in the same set of Q after the
for-loop. Therefore, v has to be to the right of w in ρ, as it is to the right of w in τ . J

I Lemma 11. Let T be an L-tree of LexDFS on G rooted in s and let σ be a vertex ordering
of a graph G starting at s whose corresponding L-tree is T . Algorithm 3 returns σ for input
(G,T, s, σ−) if and only if σ is a LexDFS ordering of G.

Proof. If Algorithm 3 returns σ for input (G,T, s, σ−), then, by Theorem 7, σ is a LexDFS
ordering of G.

Therefore, we assume that σ is a LexDFS ordering and Algorithm 3 returns the LexDFS
ordering σ∗ for input (G,T, s, σ−) with σ 6= σ∗. Let i ∈ {1, . . . , n} be the first index where
v = σ(i) 6= σ∗(i) = v∗ and let σi be the prefix of the first i− 1 elements of σ (and σ∗). It
follows that v and v∗ have the same neighborhood in σi and, thus, the same parent in T .
Since v is to the right of v∗ in σ− it follows from Lemma 10 that v must be to the left of v∗
in σ∗; a contradiction. J

Now we can prove the linear time equivalence of tree recognition and ordering verification
for LexDFS.

I Theorem 12. For a given graph family G and O(M) ⊇ O(n + m) the following two
statements are equivalent:
1. There is an algorithm with running time in O(M) that checks for any graph G in G and

any vertex s whether a given ordering beginning in s is a LexDFS ordering of G.
2. There is an algorithm with running time in O(M) for any graph G in G and any vertex

s that checks whether a given spanning tree rooted in s is an L-tree of LexDFS on G.

Proof. Assume we have an algorithm A for the recognition of LexDFS orderings with running
time in O(M). For a given spanning tree T of G rooted in s we first decide in linear time
whether T is an L-tree of DFS (see [12, 16]). If not, then it is not an L-tree of LexDFS.
Otherwise, we execute Algorithm 3 with the input (G,T, s, ρ), where ρ is an arbitrary ordering
of the vertices of G, and get the vertex ordering σ as result in linear time. Due to Theorem 7,
T is an L-tree of LexDFS if and only if σ is an LexDFS ordering of G. We use A to decide
this in time O(M).

Now assume we have an algorithm A for the recognition of L-trees of LexDFS with
running time in O(M) and get a vertex ordering σ starting at s. We first create the L-tree
T of σ in linear time and check whether T is an L-tree of LexDFS in time O(M). If not, σ
is not an LexDFS ordering of G. Otherwise, we call Algorithm 3 with input (G,T, s, σ−).
Due to Lemma 11, the resulting vertex ordering is equal to σ if and only if σ is a LexDFS
ordering of G. J

J. Beisegel, E. Köhler, R. Scheffler, and M. Strehler 13:9

Note that this result does not hold for search orderings and their corresponding trees in
general (if P 6= NP). Beisegel et al. [1, 2] show for example that the recognition problem of
F-trees of both LexBFS and LexDFS is NP-complete, whereas it is easy to recognize the
corresponding orderings.

4 LexDFS on Chordal Graphs

We will now use the results of the last section to derive a linear time implementation of
LexDFS for chordal graphs. We first show that LexBFS and LexDFS have the same set of
L-trees on chordal graphs. This fact is also implied by a more general result in [1]. Since this
work has not been published yet and we only need a special case here, we give an alternative
proof for the sake of completeness.

In [3], Berry et al. show that a whole range of different graph search schemes share
the same set of search orderings on chordal graphs. Among these searches are variants of
both LexDFS and LexBFS, called CompLexDFS and CompLexBFS, respectively. For these
algorithms we replace line 5 in both Algorithm 1 and 2 by “choose a component C of the
graph induced by the unnumbered vertices and take a vertex in C with lexicographically
largest label”.

I Lemma 13 ([3]). For any chordal graph G a linear vertex ordering is a CompLexDFS
ordering if and only if it is a CompLexBFS ordering.

We now show that both LexDFS and LexBFS compute the same L-trees as their respective
Comp-variants for any graph.

I Lemma 14. A spanning tree T of a graph G rooted in s is an L-tree of LexDFS (LexBFS)
on G if and only if T is an L-tree of CompLexDFS (CompLexBFS) on G.

Proof. Since every ordering of LexDFS is also an ordering of CompLexDFS, every L-tree of
LexDFS on G is also an L-tree of CompLexDFS.

For the reverse we first introduce some technical definitions. Let τ = (w1, . . . , wn) be
some ordering of the vertices of G. We define Cτ (wi) to be the connected component of
G − {w1, . . . , wi−1} containing wi. Now, consider a CompLexDFS ordering σ of G with
L-tree T . Let σ∗ be the LexDFS+(σ−) ordering of G. We claim that T is the L-tree of σ∗.
To this end, we show that Cσ(v) = Cσ∗(v) for every vertex v ∈ V . Furthermore, we show
that for every vertex w ∈ Cσ(v) = Cσ∗(v) it holds that the label of w at point where v is
chosen in σ is the same as the label of w when v is chosen in σ∗.

Assume for contradiction that v is the leftmost vertex in σ which does not fulfill both
of these properties. Let w be the rightmost vertex in σ with w ≺σ v such that w has a
neighbor in Cσ(v). Due to choice of v, it holds that Cσ(w) = Cσ∗(w) and both components
are labeled the same at the moment w is chosen in the respective search. As the labels cannot
be changed from outside of the component, there must be a vertex in Cσ(v) that is between
w and v in σ∗. Let x be the leftmost vertex in σ∗ with this property. At the point where x is
chosen by σ∗ the labels of both x and v are the same as in σ at the point when v was chosen.
Therefore, the labels of x and v must be the same at the point where x was chosen in σ∗.
However, v is to the right of x in σ− and it has to be chosen before x in σ∗; a contradiction.

Now, let T ∗ be the L-tree of σ∗ and assume that the parent of vertex y in T is p and the
parent of y in T ∗ is p∗ 6= p. Due to the observation above, both p and p∗ must be to the left
of y in both σ and σ∗. Therefore, it holds that p ≺σ∗ p∗ and p∗ ≺σ p. However, this is a
contradiction to the observation above since p would be in Cσ(p∗) but not in Cσ∗(p∗).

Since no special property of LexDFS and CompLexDFS is used in the proof above, the
claim also holds for LexBFS and CompLexBFS. J

ESA 2020

13:10 Linear Time LexDFS on Chordal Graphs

Combining Lemmas 13 and 14 yields the following corollary.

I Corollary 15. Let G = (V,E) be a chordal graph and T be a spanning tree of G rooted in
s ∈ V . The tree T is an L-tree of LexDFS of G if and only if T is an L-tree of LexBFS of G.

Using this corollary, we can compute an L-tree of LexDFS rooted in vertex s for any
chordal graph G by using LexBFS. This tree can then be used as the input for Algorithm 3
to return a LexDFS ordering for G. Furthermore, it is possible to implement LexDFS+ in
linear time for chordal graphs using the same approach (see Algorithm 4).

Algorithm 4 LexDFS+ on chordal graphs.

Input: Chordal graph G = (V,E), vertex s ∈ V , ordering ρ of V ending with s
Output: The LexDFS+(ρ) ordering σ of G

1 begin
2 π ← LexBFS+(ρ) ordering of G;
3 T ← L-tree of π;
4 σ ← Ordering(G, T , s, ρ);
5 return σ;

I Theorem 16. Let G = (V,E) be a chordal graph, s be a vertex in V and ρ be an arbitrary
ordering of V ending in s. Then for input (G, s, ρ) Algorithm 4 produces the LexDFS+(ρ)
ordering of G in time O(n+m).

Proof. Due to Corollary 15, the tree T is an L-tree of LexDFS. By Theorem 7, Ordering(G,
T , s, ρ) produces a LexDFS ordering of G starting at s.

It remains to show that σ is also the LexDFS+(ρ) ordering. Let σ∗ be the LexDFS+(ρ)
ordering of G and assume that σ 6= σ∗. Let i ∈ {1, . . . , n} be the first index where
v = σ(i) 6= σ∗(i) = v∗ and let σi be the prefix of the first i− 1 elements of σ (and σ∗). It
follows that v and v∗ have the same neighborhood in σi and v∗ must be to the right of v in ρ.

Assume that v is to the left of v∗ in the LexBFS+(ρ) ordering π. Since v ≺ρ v∗, vertex v
had a larger label than v∗ at the point where it was chosen in π. This implies that there
is a vertex w with w ≺π v ≺π v∗ such that wv ∈ E(G) but wv∗ /∈ E(G). Due to Lemma 5,
vertex w has to be an ancestor of v in T and, therefore, w is in σi. This is a contradiction as
v and v∗ have the same neighbors in σi.

Therefore, we can assume that v∗ is to the left of v in π. If v and v∗ have the same parent
in T , then vertex v has to be to the right of v∗ in ρ, due to Lemma 10; a contradiction. Thus,
assume that p is the parent of v but not the parent of v∗ in T . However since p is in σi,
vertex v∗ is adjacent to p in G and, therefore, is a descendant of p in T , due to Lemma 5. Let
x be the unique child of p in T , which is an ancestor of v∗. Note that x 6= v since otherwise
v ≺π v∗. Furthermore, it holds that both x ≺π v∗ and v ≺σ x and every neighbor of x
which is to the left of x in π is an element of σi, due to the choice of i. If x has the same
neighborhood in σi as v and v∗, then v∗ ≺ρ x and, due to Lemma 10, it holds that x ≺σ v; a
contradiction. Thus, x has a neighbor in σi which is neither a neighbor of v nor of v∗. Let y
be the rightmost vertex in σi with this property. Since σ is a LexDFS ordering there must be
a vertex z with y ≺σ z ≺σ v such that vz ∈ E(G) and xz /∈ E(G), due to Lemma 2. Since z
is also adjacent to v∗ we can use Lemma 2 again leading to a vertex u with z ≺σ u ≺σ x
that is adjacent to x but not to v∗. Due to the choice of y, vertex u must be to the right of
v in σ. This is contradiction to p being the parent of x in the L-tree T of σ.

Since all three steps can be executed in linear time (see Lemma 8), the algorithm has
linear running time in total. J

J. Beisegel, E. Köhler, R. Scheffler, and M. Strehler 13:11

sa

b

dc

f

hg

ji

e

15

4

23

8

67

1011

9

111

10

23

8

45

67

9

Figure 1 The graph G = (V,E) on the left side is chordal. In the middle, the L-tree of a LexBFS
starting at s is shown. Vertex labels correspond to the index in the search ordering. On the right
side, the same tree is shown, but now the labeling fits to a LexDFS starting at s.

It follows from Observation 3 that Algorithm 4 is able to compute any LexDFS ordering
of a chordal graph G.

I Corollary 17. Algorithm 4 can compute any LexDFS ordering of a chordal graph G.

This result does not hold for efficient implementations of graph searches in general. One
example is Maximal Neighborhood Search (MNS) introduced by Corneil and Krueger in
2008 [8] as a generalization of both LexBFS and LexDFS. This search can be implemented
with linear running time by implementing LexBFS. However, not every MNS ordering is a
LexBFS ordering, so this approach can only compute a subset of the MNS orderings of a
graph. Observation 3 also leads to an easy recognition algorithm of LexDFS orderings.

I Corollary 18. LexDFS orderings can be recognized in linear time on chordal graphs.

Note that this result can also be achieved using Theorem 12 and the fact that L-trees of
LexDFS on chordal graphs can be recognized in linear time (see [1]).

To illustrate the final procedure of Algorithm 4, we give the following example.

I Example 19. Given the chordal graph in Figure 1, start vertex s and ρ = (a, b, . . . , j, s),
we begin by computing a LexBFS+(ρ) ordering using partition refinement. The first pivot is
s with neighborhood N(s) = {d, c, b, a}, which yields the partition (s)(d, c, b, a)(j, i, h, g, f, e).
With d as the next pivot, we obtain (s)(d)(c)(b, a)(h)(j, i, g, f, e). After a few more steps, we
have π = (s, d, c, b, a, h, g, f, e, j, i) which is the LexBFS+(ρ) ordering. Now, we consider the
L-tree T induced by this ordering, which is shown in Figure 1.

By Corollary 15, we see that T is also an L-tree of LexDFS rooted in s. We first compute
the ordering β and, as seen before, we can use any ordering where the children of a vertex
are always to the left of their parent. Thus, we can use β = π−, although it is not a BFS
ordering of T , since T is an L-tree and not a standard F-tree.

Now, we iterate through β and use partition refinement, beginning with Q = β, to
compute a final tie-breaking rule τ (see Algorithm 3). Vertex i has an empty neighborhood
to the left so nothing has to be done. Vertex j as neighbor i to the left in β, so the first
refinement of Q occurs. After processing vertices e and f with empty left neighborhoods, we
refine for g with {e, f, i, j}. This yields the intermediate partition (i)(j, e, f)(g, h, a, b, c, d, s).
Finally, we obtain Q = (i)(j)(e, f)(a)(g)(h)(b)(c)(d)(s).
Q is post-processed to compute τ . Here, we sort (e, f) with respect to ρ−, which is the

only part of Q with more than one vertex. Furthermore, we move s to the leftmost position
and reverse the whole ordering. This yields τ = (d, c, b, h, g, a, e, f, j, i, s). Now, we perform

ESA 2020

13:12 Linear Time LexDFS on Chordal Graphs

a final DFS+(τ) on the tree T . We start in s and follow the unique path to c. Vertex c has
two children in T and τ forces us to take h, since h is to the right of b in τ . Similarly, j is
chosen after g due to τ . The final LexDFS+(ρ) ordering is (s, d, c, h, g, j, i, f, e, b, a). It is
shown on the right side of Figure 1.

5 Conclusion

In this paper, we have presented the first linear time implementation of LexDFS on chordal
graphs. This is already the second important subclass of perfect graphs, the other being
cocomparability graphs, that admits a linear time implementation of LexDFS. In contrast
to the algorithm for cocomparability graphs [15], however, our approach can compute any
LexDFS ordering with arbitrary start vertices. Thus, it also yields the first unrestricted
linear time implementation of LexDFS on interval graphs, which are the intersection of
cocomparability graphs and chordal graphs. It remains an open question whether this result
can be algorithmically exploited to efficiently solve problems on other subclasses of chordal
graphs besides interval graphs in linear time.

In the light of these results, the question of whether LexDFS can be executed in linear
time in general is even more interesting. There are several open questions. Can the search
tree approach be extended? Are there other graph classes where rooted L-trees of LexBFS
and LexDFS coincide or is this a characteristic property of chordal graphs? It is also possible
that there are other graph classes and other modifications of graph searches that produce a
tree equal to an L-tree of LexDFS in linear time on graphs of this particular class.

However, if the answer was “no”, that is, we cannot find a general linear time algorithm
for LexDFS, it is an interesting question whether recognizing LexDFS orderings can be
done faster than actually generating one. In particular, is it possible to check in linear time
whether a given vertex ordering or a search tree belongs to LexDFS?

References
1 Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač, Robert Scheffler,

and Martin Strehler. The recognition problem of graph search trees. Submitted.
2 Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač, Robert Scheffler,

and Martin Strehler. Recognizing graph search trees. In Proceedings of Lagos 2019, the tenth
Latin and American Algorithms, Graphs and Optimization Symposium, volume 346 of ENTCS,
pages 99–110. Elsevier, 2019. doi:10.1016/j.entcs.2019.08.010.

3 Anne Berry, Richard Krueger, and Geneviève Simonet. Maximal label search algorithms to
compute perfect and minimal elimination orderings. SIAM Journal on Discrete Mathematics,
23(1):428–446, 2009. doi:10.1137/070684355.

4 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey. SIAM,
1999. doi:10.1137/1.9780898719796.

5 Derek G. Corneil, Barnaby Dalton, and Michel Habib. LDFS-based certifying algorithm for
the minimum path cover problem on cocomparability graphs. SIAM Journal on Computing,
42(3):792–807, 2013. doi:10.1137/11083856X.

6 Derek G. Corneil, Jérémie Dusart, Michel Habib, and Ekkehard Köhler. On the power of graph
searching for cocomparability graphs. SIAM Journal on Discrete Mathematics, 30(1):569–591,
2016. doi:10.1137/15M1012396.

7 Derek G. Corneil, Jérémie Dusart, Michel Habib, Antoine Mamcarz, and Fabien De Montgolfier.
A tie-break model for graph search. Discrete Applied Mathematics, 199:89–100, 2016. doi:
10.1016/j.dam.2015.06.011.

8 Derek G. Corneil and Richard M. Krueger. A unified view of graph searching. SIAM Journal
on Discrete Mathematics, 22(4):1259–1276, 2008. doi:10.1137/050623498.

https://doi.org/10.1016/j.entcs.2019.08.010
https://doi.org/10.1137/070684355
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1137/11083856X
https://doi.org/10.1137/15M1012396
https://doi.org/10.1016/j.dam.2015.06.011
https://doi.org/10.1016/j.dam.2015.06.011
https://doi.org/10.1137/050623498

J. Beisegel, E. Köhler, R. Scheffler, and M. Strehler 13:13

9 Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The LBFS structure and recognition
of interval graphs. SIAM Journal on Discrete Mathematics, 23(4):1905–1953, 2009. doi:
10.1137/S0895480100373455.

10 Jean Creusefond, Thomas Largillier, and Sylvain Peyronnet. A LexDFS-based approach on
finding compact communities. In Mehmet Kaya, Özcan Erdoǧan, and Jon Rokne, editors,
From Social Data Mining and Analysis to Prediction and Community Detection, pages 141–177.
Springer, Cham, 2017. doi:10.1007/978-3-319-51367-6_7.

11 Michel Habib, Ross McConnell, Christophe Paul, and Laurent Viennot. Lex-BFS and
partition refinement, with applications to transitive orientation, interval graph recogni-
tion and consecutive ones testing. Theoretical Computer Science, 234(1-2):59–84, 2000.
doi:10.1016/S0304-3975(97)00241-7.

12 Torben Hagerup. Biconnected graph assembly and recognition of DFS trees. Technical Report
A 85/03, Universität des Saarlandes, 1985. doi:10.22028/D291-26437.

13 Torben Hagerup and Manfred Nowak. Recognition of spanning trees defined by graph searches.
Technical Report A 85/08, Universität des Saarlandes, 1985.

14 John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM, 21:549–568,
1974. doi:10.1145/321850.321852.

15 Ekkehard Köhler and Lalla Mouatadid. Linear time LexDFS on cocomparability graphs. In
R. Ravi and Inge Li Gørtz, editors, Algorithm Theory – SWAT 2014, volume 8503 of LNCS,
pages 319–330, Cham, 2014. Springer. doi:10.1007/978-3-319-08404-6_28.

16 Ephraim Korach and Zvi Ostfeld. DFS tree construction: Algorithms and characterizations.
In Jan van Leeuwen, editor, Graph-Theoretic Concepts in Computer Science, volume 344 of
LNCS, pages 87–106, Berlin, Heidelberg, 1989. Springer. doi:10.1007/3-540-50728-0_37.

17 Richard M. Krueger. Graph Searching. PhD thesis, University of Toronto, 2005. URL:
http://www.cs.toronto.edu/~krueger/papers/thesis.ps.

18 Tze-Heng Ma. Unpublished manuscript.
19 Udi Manber. Recognizing breadth-first search trees in linear time. Information Processing

Letters, 34(4):167–171, 1990. doi:10.1016/0020-0190(90)90155-Q.
20 George B. Mertzios, André Nichterlein, and Rolf Niedermeier. A linear-time algorithm

for maximum-cardinality matching on cocomparability graphs. SIAM Journal on Discrete
Mathematics, 32(4):2820–2835, 2018. doi:10.1137/17M1120920.

21 Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976. doi:10.1137/
0205021.

22 Klaus Simon. A new simple linear algorithm to recognize interval graphs. In Hanspeter
Bieri and Hartmut Noltemeier, editors, Computational Geometry – Methods, Algorithms
and Applications, volume 553 of LNCS, pages 289–308, Berlin, Heidelberg, 1991. Springer.
doi:10.1007/3-540-54891-2_22.

23 Jeremy P. Spinrad. Efficient implementation of lexicographic depth first search. Submitted.
24 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,

1(2):146–160, 1972. doi:10.1137/0201010.
25 Shou-Jun Xu, Xianyue Li, and Ronghua Liang. Moplex orderings generated by the LexDFS

algorithm. Discrete Applied Mathematics, 161(13-14):2189–2195, 2013. doi:10.1016/j.dam.
2013.02.028.

ESA 2020

https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1007/978-3-319-51367-6_7
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.22028/D291-26437
https://doi.org/10.1145/321850.321852
https://doi.org/10.1007/978-3-319-08404-6_28
https://doi.org/10.1007/3-540-50728-0_37
http://www.cs.toronto.edu/~krueger/papers/thesis.ps
https://doi.org/10.1016/0020-0190(90)90155-Q
https://doi.org/10.1137/17M1120920
https://doi.org/10.1137/0205021
https://doi.org/10.1137/0205021
https://doi.org/10.1007/3-540-54891-2_22
https://doi.org/10.1137/0201010
https://doi.org/10.1016/j.dam.2013.02.028
https://doi.org/10.1016/j.dam.2013.02.028

Grundy Distinguishes Treewidth from Pathwidth
Rémy Belmonte
University of Electro-Communications, Chofu, Tokyo, Japan
https://remybelmonte.wordpress.com/
remybelmonte@gmail.com

Eun Jung Kim
Université Paris-Dauphine, PSL University, CNRS, LAMSADE, Paris, France
https://www.lamsade.dauphine.fr/~kim/
eun-jung.kim@dauphine.fr

Michael Lampis
Université Paris-Dauphine, PSL University, CNRS, LAMSADE, Paris, France
https://www.lamsade.dauphine.fr/~mlampis/
michail.lampis@lamsade.dauphine.fr

Valia Mitsou
Université de Paris, IRIF, CNRS, France
https://www.irif.fr/~vmitsou/
vmitsou@irif.fr

Yota Otachi
Nagoya University, Nagoya, 464-8601, Japan
https://www.math.mi.i.nagoya-u.ac.jp/~otachi/cv.html
otachi@nagoya-u.jp

Abstract
Structural graph parameters, such as treewidth, pathwidth, and clique-width, are a central topic
of study in parameterized complexity. A main aim of research in this area is to understand the
“price of generality” of these widths: as we transition from more restrictive to more general notions,
which are the problems that see their complexity status deteriorate from fixed-parameter tractable
to intractable? This type of question is by now very well-studied, but, somewhat strikingly, the
algorithmic frontier between the two (arguably) most central width notions, treewidth and pathwidth,
is still not understood: currently, no natural graph problem is known to be W-hard for one but FPT
for the other. Indeed, a surprising development of the last few years has been the observation that
for many of the most paradigmatic problems, their complexities for the two parameters actually
coincide exactly, despite the fact that treewidth is a much more general parameter. It would thus
appear that the extra generality of treewidth over pathwidth often comes “for free”.

Our main contribution in this paper is to uncover the first natural example where this generality
comes with a high price. We consider Grundy Coloring, a variation of coloring where one seeks
to calculate the worst possible coloring that could be assigned to a graph by a greedy First-Fit
algorithm. We show that this well-studied problem is FPT parameterized by pathwidth; however, it
becomes significantly harder (W[1]-hard) when parameterized by treewidth. Furthermore, we show
that Grundy Coloring makes a second complexity jump for more general widths, as it becomes
para-NP-hard for clique-width. Hence, Grundy Coloring nicely captures the complexity trade-offs
between the three most well-studied parameters. Completing the picture, we show that Grundy
Coloring is FPT parameterized by modular-width.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Treewidth, Pathwidth, Clique-width, Grundy Coloring

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.14

Related Version https://arxiv.org/abs/2008.07425

© Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://remybelmonte.wordpress.com/
mailto:remybelmonte@gmail.com
https://www.lamsade.dauphine.fr/~kim/
mailto:eun-jung.kim@dauphine.fr
https://orcid.org/0000-0002-5791-0887
https://www.lamsade.dauphine.fr/~mlampis/
mailto:michail.lampis@lamsade.dauphine.fr
https://www.irif.fr/~vmitsou/
mailto:vmitsou@irif.fr
https://orcid.org/0000-0002-0087-853X
https://www.math.mi.i.nagoya-u.ac.jp/~otachi/cv.html
mailto:otachi@nagoya-u.jp
https://doi.org/10.4230/LIPIcs.ESA.2020.14
https://arxiv.org/abs/2008.07425
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Grundy Distinguishes Treewidth from Pathwidth

Funding Supported under the PRCCNRSJSPS 2019-2020 program, project PARAGA (Parameter-
ized Approximation Graph Algorithms).
Rémy Belmonte: The author was partially supported by JSPS KAKENHI Grant Number JP18K11157.
Eun Jung Kim: The author was partially supported by ANR JCJC Grant Number 18-CE40-0025-01
Yota Otachi: The author was partially supported by JSPS KAKENHI Grant Numbers JP18K11168,
JP18K11169, JP18H04091.

1 Introduction

The study of the algorithmic properties of structural graph parameters has been one of the
most vibrant research areas of parameterized complexity in the last few years. In this area
we consider graph complexity measures (“graph width parameters”), such as treewidth, and
attempt to characterize the class of problems which become tractable for each notion of
width. The most important graph widths are often comparable to each other in terms of
their generality. Hence, one of the main goals of this area is to understand which problems
separate two comparable parameters, that is, which problems transition from being FPT for
a more restrictive parameter to W-hard for a more general one1. This endeavor is sometimes
referred to as determining the “price of generality” of the more general parameter.

The two most widely studied graph widths are probably treewidth and pathwidth, which
have an obvious containment relationship to each other. Despite this, to the best of our
knowledge, no natural problem is currently known to delineate their complexity border in the
sense we just described. Our main contribution is exactly to uncover a natural, well-known
problem which fills this gap. Specifically, we show that Grundy Coloring, the problem
of ordering the vertices of a graph to maximize the number of colors used by the First-Fit
coloring algorithm, is FPT parameterized by pathwidth, but W[1]-hard parameterized by
treewidth. We then show that Grundy Coloring makes a further complexity jump if one
considers clique-width, as in this case the problem is para-NP-complete. Hence, Grundy
Coloring turns out to be an interesting specimen, nicely demonstrating the algorithmic
trade-offs involved among the three most central graph widths.

Graph widths and the price of generality. Much of modern parameterized complexity
theory is centered around studying graph widths, especially treewidth and its variants. In
this paper we focus on the parameters summarized in Figure 1, and especially the parameters
that form a linear hierarchy, from vertex cover, to tree-depth, pathwidth, treewidth, and
clique-width. Each of these parameters is a strict generalization of the previous ones in
this list. On the algorithmic level we would expect this relation to manifest itself by the
appearance of more and more problems which become intractable as we move towards the
more general parameters. Indeed, a search through the literature reveals that for each step
in this list of parameters, several natural problems have been discovered which distinguish
the two consecutive parameters (we give more details below). The one glaring exception to
this rule seems to be the relation between treewidth and pathwidth.

Treewidth is a parameter of central importance to parameterized algorithmics, in part
because wide classes of problems (notably all MSO2-expressible problems [18]) are FPT
for this parameter. Treewidth is usually defined in terms of tree decompositions of graphs,
which naturally leads to the equally well-known notion of pathwidth, defined by forcing
the decomposition to be a path. On a graph-theoretic level, the difference between the two

1 We assume the reader is familiar with the basics of parameterized complexity theory, such as the classes
FPT and W[1], as given in standard textbooks [21].

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:3

notions is well-understood and treewidth is known to describe a much richer class of graphs.
In particular, while all graphs of pathwidth k have treewidth at most k, there exist graphs of
constant treewidth (in fact, even trees) of unbounded pathwidth. Naturally, one would expect
this added richness of treewidth to come with some negative algorithmic consequences in
the form of problems which are FPT for pathwidth but W-hard for treewidth. Furthermore,
since treewidth and pathwidth are probably the most studied parameters in our list, one
might expect the problems that distinguish the two to be the first ones to be discovered.

Nevertheless, so far this (surprisingly) does not seem to have been the case: on the one
hand, FPT algorithms for pathwidth are DPs which also extend to treewidth; on the other
hand, we give (in Section 1.1) a semi-exhaustive list of dozens of natural problems which are
W[1]-hard for treewidth and turn out without exception to also be hard for pathwidth. In fact,
even when this is sometimes not explicitly stated in the literature, the same reduction that
establishes W-hardness by treewidth also does so for pathwidth. Intuitively, an explanation
for this phenomenon is that the basic structure of such reductions typically resembles a k×n
(or smaller) grid, which has both treewidth and pathwidth bounded by k.

Our main motivation in this paper is to take a closer look at the algorithmic barrier
between pathwidth and treewidth and try to locate a natural (that is, not artificially contrived)
problem whose complexity transitions from FPT to W-hard at this barrier. Our main result
is the proof that Grundy Coloring is such a problem. This puts in the picture the
last missing piece of the puzzle, as we now have natural problems that distinguish the
parameterized complexity of any two consecutive parameters in our main hierarchy.

Parameter Result Ref
Clique-width para-NP-hard Theorem 25
Treewidth W[1]-hard Theorem 16
Pathwidth FPT Theorem 20
Modular-width FPT Theorem 26

In the figure, clique-width, treewidth, pathwidth, tree-depth,
vertex cover, feedback vertex set, neighborhood diversity, and
modular-width are indicated as cw, tw, pw, td, vc, fvs, nd, and mw
respectively. Arrows indicate more general parameters. Dotted
arrows indicate that the parameter may increase exponentially,
(e.g. graphs of vc k have nd at most 2k + k).

Figure 1 Summary of considered graph parameters and results.

Grundy Coloring. In the Grundy Coloring problem we are given a graph G = (V,E)
and are asked to order V in a way that maximizes the number of colors used by the greedy
(First-Fit) coloring algorithm. The notion of Grundy coloring was first introduced by Grundy
in the 1930s, and later formalized in [17]. Since then, the complexity of Grundy Coloring
has been very well-studied (see [1, 3, 14, 30, 44, 46, 52, 55, 73, 74, 76, 77, 78] and the
references therein). For the natural parameter, namely the number of colors to be used,
Grundy coloring was recently proved to be W[1]-hard in [1]. An XP algorithm for Grundy
Coloring parameterized by treewidth was given in [74], using the fact that the Grundy
number of any graph is at most logn times its treewidth. In [13] Bonnet et al. explicitly
asked whether this can be improved to an FPT algorithm. They also observed that the
problem is FPT parameterized by vertex cover. It appears that the complexity of Grundy
Coloring parameterized by pathwidth was never explicitly posed as a question and it was

ESA 2020

14:4 Grundy Distinguishes Treewidth from Pathwidth

not suspected that it may differ from that for treewidth. We note that, since the problem
(as given in Definition 1) is easily seen to be MSO1 expressible for a fixed Grundy number, it
is FPT for all considered parameters if the Grundy number is also a parameter [19], so we
intuitively want to concentrate on cases where the Grundy number is large.

Our results. Our results illuminate the complexity of Grundy Coloring parameterized
by pathwidth and treewidth, as well as clique-width and modular-width. More specifically:

1. We show that Grundy Coloring is W[1]-hard parameterized by treewidth via a
reduction from k-Multi-Colored Clique. The main building block of our reduction
is the structure of binomial trees, which have treewidth one but unbounded pathwidth,
which explains the complexity jump between the two parameters. As mentioned, an XP
algorithm is known in this case [74], so this result is in a sense tight.

2. We show that Grundy Coloring is FPT parameterized by pathwidth. Our main tool
here is a combinatorial lemma, which draws heavily from known combinatorial bounds on
the performance of First-Fit coloring on intervals graphs [53, 65]. We use this lemma to
show that on any graph the Grundy number is at most a linear function of the pathwidth.

3. We show that Grundy Coloring is para-NP-complete parameterized by clique-width,
that is, NP-complete for graphs of constant clique-width (specifically, clique-width 6).

4. We show that Grundy Coloring is FPT parameterized by neighborhood diversity
(which is defined in [56]) and leverage this result to obtain an FPT algorithm parameterized
by modular-width (which is defined in [38]).

Our main interest is concentrated in the first two results, which achieve our goal of finding
a natural problem distinguishing pathwidth from treewidth. The result for clique-width
nicely fills out the picture by giving an intuitive view of the evolution of the complexity of
the problem and showing that in a case where no non-trivial bound can be shown on the
optimal value, the problem becomes hopelessly hard from the parameterized point of view.

Other related work. Let us now give a brief survey of “price of generality” results involving
our considered parameters, that is, results showing that a problem is efficient for one
parameter but hard for a more general one. In this area, the results of Fomin et al. [35],
introducing the term “price of generality”, have been particularly impactful. This work and
its follow-ups [36, 37], were the first to show that four natural graph problems (Coloring,
Edge Dominating Set, Max Cut, Hamiltonicity) which are FPT for treewidth, become
W[1]-hard for clique-width. In this sense, these problems, as well as problems discovered later
such as counting perfect matchings [20], SAT [68, 23], ∃∀-SAT [59], Orientable Deletion
[45], and d-Regular Induced Subgraph [16], form part of the “price” we have to pay for
considering a more general parameter. This line of research has thus helped to illuminate the
complexity border between the two most important sparse and dense parameters (treewidth
and clique-width), by giving a list of natural problems distinguishing the two. (An artificial
MSO2-expressible such problem was already known much earlier [19, 58]).

Let us now focus in the area below treewidth in Figure 1 by considering problems which
are in XP but W[1]-hard parameterized by treewidth. By now, there is a small number of
problems in this category which are known to be W[1]-hard even for vertex cover: List
Coloring [31] was the first such problem, followed by CSP (for the vertex cover of the
dual graph) [70], and more recently by (k, r)-Center, d-Scattered Set, and Min Power
Steiner Tree [49, 48, 50] on weighted graphs. Intuitively, it is not surprising that problems
W[1]-hard by vertex cover are few and far between, since this is a very restricted parameter.

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:5

Indeed, for most problems in the literature which are W[1]-hard by treewidth, vertex cover is
the only parameter (among the ones considered here) for which the problem becomes FPT.

A second interesting category are problems which are FPT for tree-depth ([66]) but
W[1]-hard for pathwidth. Mixed Chinese Postman Problem was the first discovered
problem of this type [43], followed by Min Bounded-Length Cut [25, 10], ILP [40],
Geodetic Set [51] and unweighted (k, r)-Center and d-Scattered Set [49, 48].

To the best of our knowledge, for all remaining problems which are known to be W[1]-hard
by treewidth, the reductions that exist in the literature also establish W[1]-hardness for
pathwidth. Below we give a (semi-exhaustive) list of problems which are known to be
W[1]-hard by treewidth. After reviewing the relevant works we have verified that all of the
following problems are in fact shown to be W[1]-hard parameterized by pathwidth (and in
many case by feedback vertex set and tree-depth), even if this is not explicitly claimed.

1.1 Known problems which are W-hard for treewidth and for pathwidth
Precoloring Extension and Equitable Coloring are shown to be W[1]-hard for
both tree-depth and feedback vertex set in [31] (though the result is claimed only for
treewidth). This is important, because Equitable Coloring often serves as a starting
point for reductions to other problems. A second hardness proof for this problem was
recently given in [22]. These two problems are FPT by vertex cover [33].
Capacitated Dominating Set and Capacitated Vertex Cover are W[1]-hard
for both tree-depth and feedback vertex set [24] (though again the result is claimed for
treewidth).
Min Maximum Out-degree on weighted graphs is W[1]-hard by tree-depth and feedback
vertex set [72].
General Factors is W[1]-hard by tree-depth and feedback vertex set [71].
Target Set Selection is W[1]-hard by tree-depth and feedback vertex set [9] but FPT
for vertex cover [67].
Bounded Degree Deletion is W[1]-hard by tree-depth and feedback vertex set, but
FPT for vertex cover [11, 39].
Fair Vertex Cover is W[1]-hard by tree-depth and feedback vertex set [54].
Fixing Corrupted Colorings is W[1]-hard by tree-depth and feedback vertex set [12]
(reduction from Precoloring Extension).
Max Node Disjoint Paths is W[1]-hard by tree-depth and feedback vertex set [29, 34].
Defective Coloring is W[1]-hard by tree-depth and feedback vertex set [8].
Power Vertex Cover is W[1]-hard by tree-depth but open for feedback vertex set [2].
Majority CSP is W[1]-hard parameterized by the tree-depth of the incidence graph
[23].
List Hamiltonian Path is W[1]-hard for pathwidth [62].
L(1,1)-Coloring is W[1]-hard for pathwidth, FPT for vertex cover [33].
Counting Linear Extensions of a poset is W[1]-hard (under Turing reductions) for
pathwidth [26].
Equitable Connected Partition is W[1]-hard by pathwidth and feedback vertex set,
FPT by vertex cover [28].
Safe Set is W[1]-hard parameterized by pathwidth, FPT by vertex cover [7].
Matching with Lower Quotas is W[1]-hard parameterized by pathwidth [4].
Subgraph Isomorphism is W[1]-hard parameterized by the pathwidth of G, even when
G,H are connected planar graphs of maximum degree 3 and H is a tree [61].
Metric Dimension is W[1]-hard by pathwidth [15].
Simple Comprehensive Activity Selection is W[1]-hard by pathwidth [27].

ESA 2020

14:6 Grundy Distinguishes Treewidth from Pathwidth

Defensive Stackelberg Game for IGL is W[1]-hard by pathwidth (reduction from
Equitable Coloring) [5].
Directed (p, q)-Edge Dominating Set is W[1]-hard parameterized by pathwidth [6].
Maximum Path Coloring is W[1]-hard for pathwidth [57].
Unweighted k-Sparsest Cut is W[1]-hard parameterized by the three combined parame-
ters tree-depth, feedback vertex set, and k [47].
Graph Modularity is W[1]-hard parameterized by pathwidth plus feedback vertex
set [63].

Let us also mention in passing that the algorithmic differences of pathwidth and treewidth
may also be studied in the context of problems which are hard for constant treewidth.
Such problems also generally remain hard for constant pathwidth (examples are Steiner
Forest [42], Bandwidth [64], Minimum mcut [41]). One could also potentially try to
distinguish between pathwidth and treewidth by considering the parameter dependence of
a problem that is FPT for both. Indeed, for a long time the best-known algorithm for
Dominating Set had complexity 3k for pathwidth, but 4k for treewidth. Nevertheless, the
advent of fast subset convolution techniques [75], together with tight SETH-based lower
bounds [60] has, for most problems, shown that the complexities on the two parameters
coincide exactly.

Finally, let us mention a case where pathwidth and treewidth have been shown to be
quite different in a sense similar to our framework. In [69] Razgon showed that a CNF can be
compiled into an OBDD (Ordered Binary Decision Diagram) of size FPT in the pathwidth
of its incidence graphs, but there exist formulas that always need OBDDs of size XP in the
treewidth. Although this result does separate the two parameters, it is somewhat adjacent
to what we are looking for, as it does not speak about the complexity of a decision problem,
but rather shows that an OBDD-producing algorithm parameterized by treewidth would
need XP time simply because it would have to produce a huge output in some cases.

2 Definitions and Preliminaries

For non-negative integers i, j, we use [i, j] to denote the set {k | i ≤ k ≤ j}. Note that if
j < i, then the set [i, j] is empty. We will also write simply [i] to denote the set [1, i].

We give two equivalent definitions of our main problem.

I Definition 1. A k-Grundy Coloring of a graph G = (V,E) is a partition of V into k

non-empty sets V1, . . . , Vk such that: (i) for each i ∈ [k] the set Vi induces an independent
set; (ii) for each i ∈ [k − 1] the set Vi dominates the set

⋃
i<j≤k Vj.

I Definition 2. A k-Grundy Coloring of a graph G = (V,E) is a proper k-coloring c : V → [k]
that results by applying the First-Fit algorithm on an ordering of V ; the First-Fit algorithm
colors one by one the vertices in the given ordering, assigning to a vertex the minimum color
that is not already assigned to one of its preceding neighbors.

The Grundy number of a graph G, denoted by Γ(G), is the maximum k such that G
admits a k-Grundy Coloring. In a given Grundy Coloring, if u ∈ Vi (equiv. if c(u) = i)
we will say that u was given color i. The Grundy Coloring problem is the problem of
determining the maximum k for which a graph G admits a k-Grundy Coloring. It is not
hard to see that a proper coloring is a Grundy coloring if and only if every vertex assigned
color i has at least one neighbor assigned color j, for each j < i.

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:7

3 W[1]-Hardness for Treewidth

In this section we prove that Grundy Coloring parameterized by treewidth is W[1]-hard
(Theorem 16). Our proof relies on a reduction from k-Multi-Colored Clique and initially
establishes W[1]-hardness for a more general problem where we are given a target color
for a set of vertices (Lemma 8); we then reduce this to Grundy Coloring. Interestingly,
this intermediate problem turns out to be W[1]-hard even for pathwidth (Lemma 12), since
our reduction uses the standard strategy of constructing a grid-like structure of dimensions
k × n. The reason this reduction fails to prove that Grundy Coloring is W[1]-hard by
pathwidth is that we use some gadgets to implement the targets and a support operation
(which “pre-colors” some vertices) and for these gadgets we use trees of unbounded pathwidth.
The results of Section 4 show that this is essential: our reduction needs some part that causes
it to have high pathwidth, otherwise the Grundy number of the constructed graph would be
bounded by the parameter, resulting in an instance that can be solved in FPT time.

Let us now present the different parts of our construction. We will make use of the
structure of binomial trees Ti.

I Definition 3. The binomial tree Ti with root ri is a rooted tree defined recursively in
the following way: T1 consists simply of its root r1; in order to construct Ti for i > 1, we
construct one copy of Tj for all j < i and a special vertex ri, then we connect rj with ri. An
alternative equivalent definition of the binomial tree Ti, i ≥ 2 is that we construct two trees
Ti−1 , T ′i−1, we connect their roots ri−1, r′i−1 and select one of them as the new root ri.

I Proposition 4. Let i ≥ 2, Ti be a binomial tree and 1 ≤ t < i. There exist 2i−t−1 binomial
trees Tt which are vertex-disjoint and non-adjacent subtrees in Ti, where no Tt contains the
root ri of Ti.

I Proposition 5. Γ(Ti) ≤ i. Furthermore, for all j ≤ i there exists a Grundy coloring which
assigns color j to the root of Ti.

The proofs of Propositions 4 and 5 can be found in the full version of this paper.
A Grundy coloring of Ti that assigns color i to ri is called optimal. If ri is assigned color

j < i then we call the Grundy coloring sub-optimal.
We now define a generalization of the Grundy coloring problem with target colors and

show that it is W[1]-hard parameterized by treewidth. We later describe how to reduce this
problem to Grundy Coloring such that the treewidth does not increase by a lot.

I Definition 6 (Grundy Coloring with Targets). We are given a graph G(V,E), an
integer t ∈ IN called the target and a subset S ⊂ V . (For simplicity we will say that vertices
of S have target t.) If G admits a Grundy Coloring which assigns color t to some vertex s ∈ S
we say that, for this coloring, vertex s achieves its target. If there exists a Grundy Coloring
of G which assigns to all vertices of S color t, then we say that G admits a Target-achieving
Grundy Coloring. Grundy Coloring with Targets is the decision problem associated
to the question “given G,S, t as defined above, does G admit a Target-achieving Grundy
Coloring ?”.

We will also make use of the following operation:

I Definition 7 (Tree-support). Given a graph G = (V,E), a vertex u ∈ V and a set N of
positive integers, we define the tree-support operation as follows: (a) for all i ∈ N we add a
copy of Ti in the graph; (b) we connect u to the root ri of each of the Ti. We say that we add
supports N on u. The trees Ti will be called the supporting trees or supports of u. Slightly
abusing notation, we also call supports the numbers i ∈ N .

ESA 2020

14:8 Grundy Distinguishes Treewidth from Pathwidth

(a) Vertex Selection gadget Si,j .

(b) Propagators pi,j and Edge Selection gadget Wj . The
edge selection checkers and the supports of the pi,j and sl

i,j

are not depicted. In the example Bx = 010 and By = 100.

Figure 2 The gadgets. Figure 2a is an enlargment of Figure 2b between pi,j−1 and pi,j .

Intuitively, the tree-support operation ensures that vertex u may have at least one
neighbor of color i for each i ∈ N in a Grundy coloring, and thus increase the color u can
take. Observe that adding supporting trees to a vertex does not increase the treewidth, but
does increase the pathwidth (binomial trees have unbounded pathwidth).

Our reduction is from k-Multi-Colored Clique, proven to be W[1]-hard in [32]: given
a k-multipartite graph G = (V1, V2, . . . , Vk, E), decide if for every i ∈ [k] we can pick ui ∈ Vi

forming a clique, where k is the parameter. We can also assume that ∀i ∈ [k], |Vi| = n, that n
is a power of 2, and that Vi = {vi,0, vi,1, . . . , vi,n−1}. Furthermore, let |E| = m. We construct
an instance of Grundy Coloring with Targets G′ = (V ′, E′) and t = 2 logn+ 4 (where
all logarithms are base two) using the following gadgets:

Vertex selection Si,j . See Figure 2a. This gadget consists of 2 logn vertices S1
i,j ∪ S2

i,j =⋃
l∈[log n]{s

2l−1
i,j } ∪

⋃
l∈[log n]{s2l

i,j}, where for each l ∈ [logn] we connect vertex s2l−1
i,j to

s2l
i,j thus forming a matching. Furthermore, for each l ∈ [2, logn], we add supports [2l− 2]
to vertices s2l−1

i,j and s2l
i,j . Observe that the vertices s2l−1

i,j and s2l
i,j together with their

supports form a binomial tree T2l with either of these vertices as the root. We construct
k(m+ 2) gadgets Si,j , one for each i ∈ [k], j ∈ [0,m+ 1].

The vertex selection gadget Si,1 encodes in binary the vertex that is selected in the clique
from Vi. In particular, for each pair s2l−1

i,1 , s2l
i,1, l ∈ [logn] either of these vertices can take

the maximum color in an optimal grundy coloring of the binomial tree T2l (that is, a
coloring that gives the root of the binomial tree T2l color 2l). A selection corresponds to
bit 0 or 1 for the lth binary position. In order to ensure that for each j ∈ [m] all (middle)
Si,j encode the same vertex, we use propagators.

Propagators pi,j . See Figure 2b. For i ∈ [k] and j ∈ [0,m], a propagator pi,j is a single
vertex connected to all vertices of S2

i,j ∪ S1
i,j+1. To each pi,j , we also add supports

{2 logn+ 1, 2 logn+ 2, 2 logn+ 3}. The propagators have target t = 2 logn+ 4.
Edge selection Wj . See Figure 2b. Let j = (vi,x, vi′,y) ∈ E, where vi,x ∈ Vi and vi′,y ∈ Vi′ .

The gadget Wj consists of four vertices wj,x, wj,y, w
′
j,x, w

′
j,y. We call w′j,x, w

′
j,y the edge

selection checkers. We have the edges (wj,x, wj,y), (w′j,x, wj,x), (w′j,y, wj,y). Let us now
describe the connections of these vertices with the rest of the graph. Let Bx = b1b2 . . . blog n

be the binary representation of x. We connect wj,x to each vertex s2l−bl
ij , l ∈ [logn] (we do

similarly for wj,y, Si′,j , and By). We add to each of wj,x, wj,y supports
⋃

l∈[log n+1]{2l−1}.
We add to each of w′j,x, w

′
j,y supports [2 logn + 3] \ {2 logn + 1} and set the target

t = 2 logn+ 4 for these two vertices. We construct m such gadgets, one for each edge.
We say that Wj is activated if at least one of wj,x, wj,y receives color 2 logn+ 3.

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:9

Edge validators qi,i′ . We construct
(

k
2
)
of them, one for each pair (i, i′), i < i′ ∈ [k]. The

edge validator is a single vertex that is connected to all vertices wj,x for which j is an
edge between Vi and Vi′ . We add supports [2 logn+ 1] and a target of t = 2 logn+ 4.
The edge validator plays the role of an “or” gadget: in order for it to achieve its target,
at least one of its neighboring edge selection gadgets should be activated.

I Lemma 8. G has a clique of size k if and only if G′ has a target-achieving Grundy coloring.

Proof. ⇒) Suppose that G has a clique. We color the vertices of G′ in the following order:
First, we color the vertex selection gadget Si,j . We start from the supports which we color
optimally. We then color the matchings as follows: let vi,x be the vertex that was selected
in the clique from Vi and b1b2 . . . blog n be the binary representation of x; we color vertices
s

2l−(1−bl)
i,j , l ∈ [logn] with color 2l− 1 and vertices s2l−bl

i,j , l ∈ [logn] will receive color 2l. For
the propagators, we color their supports optimally. Propagators have 2 logn+ 3 neighbors
each, all with different colors, so they receive color 2 logn+ 4, thus achieving the targets.

Then, we color the edge validators qi,i′ and the edge selection gadgets Wj that correspond
to edges of the clique (that is, j = (vi,x, vi′,y) ∈ E and vi,x ∈ Vi, vi′,y ∈ Vi′ are selected in
the clique). We first color the supports of qi,i′ , wj,x, wj,y optimally. From the construction,
vertex wj,x is connected with vertices s2l−bl

i,j which have already been colored 2l, l ∈ [logn]
and with supports

⋃
l∈[log n+1]{2l− 1}, thus wj,x will receive color 2 logn+ 2. Similarly wj,y

already has neighbors which are colored [2 logn+ 1], but also wj,x, thus it will receive color
2 logn+ 3. These Wj will be activated. Since both wj,x, wj,y connect to qi,i′ , the latter will
be assigned color 2 logn+ 4, thus achieving its target. As for w′j,x and w′j,y, these vertices
have one neighbor colored c, where c = 2 logn+ 2 or c = 2 logn+ 3. We color their support
Tc sub-optimally so that the root receives color 2 logn+ 1; we color their remaining supports
optimally. This way, vertices w′j,x, w

′
j,y can be assigned color t = 2 logn+ 4, achieving the

target.
Finally, for the remaining Wj , we claim that we can assign to both wj,x, wj,y a color

that is at least as high as 2 logn+ 1. Indeed, we assign to each supporting tree Tr of wj,x

a coloring that gives its root the maximum color that is ≤ r and does not appear in any
neighbor of wj,x in the vertex selection gadget. We claim that in this case wj,x will have
neighbors with all colors in [2 logn], because in every interval [2l − 1, 2l] for l ∈ [logn], wj,x

has a neighbor with a color in that interval and a support tree T2l+1. If wj,x has color
2 logn+ 1 then we color the supports of w′j,x optimally and achieve its target, while if wj,x

has color higher than 2 logn+ 1, we achieve the target of w′j,x as in the previous paragraph.

⇐) Suppose that G′ admits a coloring that achieves the target for all propagators, edge
selection checkers, and edge validators. We will prove the following three claims:

B Claim 9. The coloring of the vertex selection gadgets is consistent throughout. This
corresponds to a selection of k vertices of G.

B Claim 10.
(

k
2
)
edge selection gadgets have been activated. That correspond to

(
k
2
)
edges

of G being selected.

B Claim 11. If an edge selection gadget Wj = {wj,x, wj,y} with j = (vi,x, vi′,y) has been
activated then the coloring of the vertex selection gadgets Si,j and Si′,j corresponds to the
selection of vertices vi,x and vi′,y. In other words, selected vertices and edges form indeed a
clique of size k in G.

ESA 2020

14:10 Grundy Distinguishes Treewidth from Pathwidth

Proof of Claim 9. Suppose that an edge selection checker w′j,x achieved its target. We claim
that this implies that wj,x has color at least 2 logn+ 1. Indeed, w′j,x has degree 2 logn+ 3,
so its neighbors must have all distinct colors in [2 logn+ 3], but among the supports there
are only 2 neighbors which may have colors in [2 logn+ 1, 2 logn+ 3]. Therefore, the missing
color must come from wj,x. We now observe that vertices from the vertex selection gadgets
have color at most 2 logn, because if we exclude from their neighbors the vertices wj,x (which
we argued have color at least 2 logn+ 1) and the propagators (which have target 2 logn+ 4),
these vertices have degree at most 2 logn− 1.

Suppose that a propagator pi,j achieves its target of 2 logn + 4. Since this vertex has
a degree of 2 logn + 3, that means that all of its neighbors should receive all the colors
in [2 logn + 3]. As argued, colors [2 logn + 1, 2 logn + 3] must come from the supports.
Therefore, the colors [2 logn] come from the neighbors of pi,j in the vertex selection gadgets.

We now note that, because of the degrees of vertices in vertex selection gadgets,
only vertices s2 log n

i,j , s2 log n−1
i,j+1 can receive colors 2 logn, 2 logn − 1; from the rest, only

s2 log n−2
i,j , s2 log n−3

i,j+1 can receive colors 2 logn − 2, 2 logn − 3 etc. Thus, for each l ∈ [logn],
if s2l

i,j receives color 2l − 1 then s2l−1
i,j+1 should receive color 2l and vice versa. With similar

reasoning, in all vertex selection gadgets we have that s2l−1
i,j , s2l

i,j received the two colors
{2l − 1, 2l} since they are neighbors. As a result, the colors of s2l−1

i,j+1, s
2l−1
i,j (and thus the

colors of s2l
i,j+1, s2l

i,j) are the same, therefore, the coloring is consistent, for all values of
j ∈ [m]. C

Proof of Claim 10. If an edge validator achieves its target of 2 logn+ 4, then at least one of
its neighbors from an edge selection gadget has received color 2 logn+ 3. We know that each
edge selection gadget only connects to a unique edge validator, so there should be

(
k
2
)
edge

selection gadgets which have been activated in order for all edge validators to achieve the
target. C

Proof of Claim 11. Suppose that an edge validator qi,i′ achieves its target. That means that
there exists an edge selection gadget Wj = {wj,x, wj,y, w

′
j,x, w

′
j,y} for which at least one of

its vertices {wj,x, wj,y}, say vertex wj,x, has received color 2 logn + 3. Let j be an edge
connecting vi,x ∈ Vi to vi′,y ∈ Vi′ . Since the degree of wj,x is 2 logn+ 4 and we have already
assumed that two of its neighbors (qi,i′ and w′j,x) have color 2 logn + 4, in order for it to
receive color 2 logn+ 3 all its other neighbors should receive all colors in [2 logn+ 2]. The
only possible assignment is to give colors 2l, l ∈ [logn] to its neighbors from Si,j and color
2 logn + 2 to wj,y. The latter is, in turn, only possible if the neighbors of wj,y from Si′,j

receive all colors 2l, l ∈ [logn]. The above corresponds to selecting vertex vi,x from Vi and
vi′,y from Vi′ . C

J

I Lemma 12. Let G′′ be the graph that results from G′ if we remove all the tree-supports.
Then G′′ has pathwidth at most

(
k
2
)

+ 2k + 3.

The proof of Lemma 12 can be found in the full version of the paper.
We will now show how to implement the targets using the tree-filling operation below.

I Definition 13 (Tree-filling). Let G = (V,E) be a graph and S = {s1, s2, . . . , sj} ⊂ V a
set of vertices with target t. The tree-filling operation is the following. First, we add in G
a binomial tree Ti, where i = dlog je + t + 1. Observe that, by Proposition 4, there exist
2i−t−1 > j vertex-disjoint and non-adjacent sub-trees Tt in Ti. For each s ∈ S, we find such
a copy of Tt in Ti, identify s with its root rt, and delete all other vertices of the sub-tree Tt.

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:11

The tree-filling operation might in general increase treewidth, but we will do it in a way
that it only increases by a constant factor in regards to the pathwidth of G.

I Lemma 14. Let G = (V,E) be a graph of pathwidth w and S = {s1, . . . , sj} ⊂ V a subset
of vertices having target t. Then there is a way to apply the tree-filling operation such that
the resulting graph H has tw(H) ≤ 4w + 5.

Proof. Construction of H. Let (P,B) be a path-decomposition of G whose largest bag has
size w + 1 and B1, B2, . . . , Bj ∈ B distinct bags where ∀a, sa ∈ Ba (assigning a distinct bag
to each sa is always possible, as we can duplicate bags if necessary). We call those bags
important. We define an ordering o : S → IN of the vertices of S that follows the order of the
important bags from left to right, that is o(sa) < o(sb) if Ba is on the left of Bb in P. For
simplicity, let us assume that o(sa) = a and that Ba is to the left of Bb if a < b.

We describe a recursive way to do the substitution of the trees in the tree-filling operation.
Crucially, when j > 2 we will have to select an appropriate mapping between the vertices of
S and the disjoint subtrees Tt in the added binomial tree Ti, so that we will be able to keep
the treewidth of the new graph bounded.

If j = 1 then i = t+ 1. We add to the graph a copy of Ti, arbitrarily select the root of a
copy of Tt contained in Ti, and perform the tree-filling operation as described.
Suppose that we know how to perform the substitution for sets of size at most dj/2e,
we will describe the substitution process for a set of size j. We have i = dlog je+ t+ 1
and for all j we have dlogdj/2ee = dlog je − 1. Split the set S into two (almost) equal
disjoint sets SL and SR of size at most dj/2e, where for all sa ∈ SL and for all sb ∈ SR,
a < b. We perform the tree-filling on each of these sets by constructing two binomial
trees TL

i−1, T
R
i−1 and doing the substitution; then, we connect their roots and set the root

of the left tree as the root ri of Ti, thus creating the substitution of a tree Ti.

Small treewidth. We now prove that the new graph H that results from applying the
tree-filling operation on G and S as described above has a tree decomposition (T ,B′) of
width 4w + 5; in fact we prove by induction on j a stronger statement: if A,Z ∈ B are the
left-most and right-most bags of P, then there exists a tree decomposition (T ,B′) of H of
width 4w + 5 with the added property that there exists R ∈ B′ such that A ∪ Z ∪ {ri} ⊂ R,
where ri is the root of the tree Ti.

For the base case, if j = 1 we have added to our graph a Ti of which we have selected an
arbitrary sub-tree Tt, and identified the root rt of Tt with the unique vertex of S that has a
target. Take the path decomposition (P,B) of the initial graph and add all vertices of A (its
first bag) and the vertex ri (the root of Ti) to all bags. Take an optimal tree decomposition of
Ti of width 1 and add ri to each bag, obtaining a decomposition of width 2. We add an edge
between the bag of P that contains the unique vertex of S, and a bag of the decomposition
of Ti that contains the selected rt. We now have a tree decomposition of the new graph of
width 2w + 2 < 4w + 5. Observe that the last bag of P now contains all of A,Z and ri.

For the inductive step, suppose we applied the tree-filling operation for a set S of size
j > 1. Furthermore, suppose we know how to construct a tree decomposition with the desired
properties (width 4w + 5, one bag contains the first and last bags of the path decomposition
P and ri), if we apply the tree-filling operation on a target set of size at most j− 1. We show
how to obtain a tree decompostition with the desired properties if the target set has size j.

By construction, we have split the set S into two sets SL, SR and have applied the
tree-filling operation to each set separately. Then, we connected the roots of the two added
trees to obtain a larger binomial tree. Observe that for |S| = j > 1 we have |SL|, |SR| < j.

ESA 2020

14:12 Grundy Distinguishes Treewidth from Pathwidth

Let us first cut P in two parts, in such a way that the important bags of SL are on the
left and the important bags of SR are on the right. We call AL = A and ZL the leftmost
and rightmost bags of the left part and AR, ZR = Z the leftmost and rightmost bags of the
right part. We define as GL (respectively GR) the graph that contains all the vertices of the
left (respectively right) part. Let ri be the root of Ti and ri−1 the root of its subtree Ti−1.
From the inductive hypothesis, we can construct tree decompositions (T L,BL), (T R,BR) of
width 4w + 5 for the graphs HL, HR that occur after applying tree-filling on GL, SL and
GR, SR; furthermore, there exist RL ∈ BL, RR ∈ BR such that RL ⊇ A ∪ ZL ∪ {ri} and
RR ⊇ AR ∪ Z ∪ {ri−1}.

We construct a new bag R′ = A ∪AR ∪ ZL ∪ Z ∪ {ri−1, ri}, and we connect R′ to both
RL and RR, thus combining the two tree-decompositions into one. Last we create a bag
R = A ∪ Z ∪ {ri} and attach it to R′. This completes the construction of (T ,B′).

Observe that (T ,B′) is a valid tree-decomposition for H:
V (H) = V (HL) ∪ V (HR), thus ∀v ∈ V (H), v ∈ BL ∪ BR ⊂ B.
E(H) = E(HL) ∪ E(HR) ∪ {(ri−1, ri)}. We have that ri−1, ri ∈ R′ ∈ B. All other edges
were dealt with in T L, T R.
Each vertex v ∈ V (H) that belongs in exactly one of HL, HR trivially satisfied the
connectivity requirement: bags that contain v are either fully contained in T L or T R.
A vertex v that is in both HL and HR is also in ZL ∩ AR due to the properties of
path-decompositions, hence in R′. Therefore, the sub-trees of bags that contain v in
T L, T R, form a connected sub-tree in T .

The width of T is max{tw(HL), tw(HR), |R′| − 1} = 4w + 5. J

The last thing that remains to do in order to complete the proof is to show the equivalence
between achieving the targets and finding a Grundy coloring.

I Lemma 15. Let G and G′ be two graphs as described in Lemma 8 and let H be constructed
from G′ by using the tree-filling operation. Then G has a clique of size k iff Γ(H) ≥
dlog(k(m+ 1) +

(
k
2
)

+ 2m)e+ 2 logn+ 5. Furthermore, tw(H) ≤ 4
(

k
2
)

+ 8k + 17.

The proof of Lemma 15 can be found in the full version of the paper.

I Theorem 16. Grundy Coloring parameterized by treewidth is W[1]-hard.

4 FPT for pathwidth

In this section, we show that, in contrast to treewidth, Grundy Coloring is FPT parame-
terized by pathwidth. We achieve this by providing an upper bound on the Grundy number
of any graph as a function of its pathwidth. Pipelining this with the algorithm of [74], we
obtain a dependency on pathwidth alone. In order to obtain our bound, we rely on the
following result on the performance ratio of the first-fit coloring algorithm on interval graphs.

I Theorem 17 ([65]). First-Fit is 8-competitive for online coloring interval graphs.

In other words, interval graphs satisfy Γ(G) ≤ 8 · χ(G). Since for any interval graph G
we have χ(G) = pw(G) + 1, we immediately obtain the following:

I Corollary 18. For every interval graph G, Γ(G) ≤ 8 · (pw(G) + 1).

I Lemma 19. For every graph G, Γ(G) ≤ 8 · (pw(G) + 1).

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:13

Proof. For a contradiction, suppose there exists G such that Γ(G) > 8 · (pw(G) + 1), and let
c : V (G)→ {1, . . . ,Γ(G)} be a Grundy coloring using Γ(G) colors. In addition, let G have
the smallest possible number of vertices, i.e., there is no G′ satisfying those conditions with
|V (G′)| < |V (G)|. This implies that, for every optimal path decomposition of G, there is no
bag B and vertices u, v ∈ B such that c(u) = c(v).

Indeed, if such vertices exist, adding the edge uv to G and contracting uv yields a new
graph G′ such that pw(G′) ≤ pw(G) (edge contraction does not increase the pathwidth),
Γ(G′) ≥ Γ(G) (since c when limited to V(G’) is a valid Grundy coloring of G′) and |V (G′)| <
|V (G)|, contradicting the assumption that G is smallest possible.

In addition, for any u, v such that c(u) 6= c(v) and v /∈ N(u), adding edge uv to G
does not decrease the Grundy number of G since c remains a valid Grundy coloring of the
new graph. In particular, since, as previously observed, vertices in any bag of an optimal
path decomposition of G all have pairwise different colors, turning every bag of such a
decomposition into a clique does not decrease the Grundy number of G. More precisely, this
yields a graph G′ such that pw(G′) = pw(G) and Γ(G′) ≥ Γ(G), where G′ is an interval
graph. Applying Corollary 18 we obtain Γ(G) ≤ Γ(G′) ≤ 8 · (pw(G′) + 1), contradiction. J

Combining Lemma 19 with the O∗(2O(tw(G)·Γ(G))) algorithm of [74], we have:

I Theorem 20. Grundy Coloring can be solved in time O∗(2O(pw(G)2)).

Finally, note that there exist interval graphs that satisfy Γ(G) ≥ r · pw(G), for any r < 5
[53], therefore, the constant in Lemma 19 cannot be improved below 5.

5 NP-hardness for Constant Clique-width

In this section we prove that Grundy Coloring is NP-hard even for constant clique-width
via a reduction from 3-SAT. We use a similar idea of adding supports as in Section 3, but
supports now will be cliques instead of binomial trees. The support operation is defined as:

I Definition 21. Given a graph G = (V,E), a vertex u ∈ V and a set of positive integers S,
we define the support operation as follows: for each i ∈ S, we add to G a clique of size i
(using new vertices) and we connect one arbitrary vertex of each such clique to u.

When applying the support operation we will say that we support vertex u with set S and
we will call the vertices introduced supporting vertices. Intuitively, the support operation
ensures that the vertex u may have at least one neighbor with color i for each i ∈ S.

We are now ready to describe our construction. Suppose we are given a 3CNF formula φ
with n variables x1, . . . , xn and m clauses c1, . . . , cm. We assume without loss of generality
that each clause contains exactly three variables. We construct a graph G(φ) as follows:
1. For each i ∈ [n] we construct two vertices xP

i , x
N
i and the edge (xP

i , x
N
i).

2. For each i ∈ [n] we support the vertices xP
i , x

N
i with the set [2i− 2]. (Note that xP

1 , x
N
1

have empty support).
3. For each i ∈ [n], j ∈ [m], if variable xi appears in clause cj then we construct a vertex xi,j .

Furthermore, if xi appears positive in cj , we connect xi,j to xP
i′ for all i′ ∈ [n]; otherwise

we connect xi,j to xN
i′ for all i′ ∈ [n].

4. For each i ∈ [n], j ∈ [m] for which we constructed a vertex xi,j in the previous step, we
support that vertex with the set ({2k | k ∈ [n]} ∪ {2i− 1, 2n+ 1, 2n+ 2}) \ {2i}.

5. For each j ∈ [m] we construct a vertex cj and connect to all (three) vertices xi,j already
constructed. We support the vertex cj with the set [2n].

ESA 2020

14:14 Grundy Distinguishes Treewidth from Pathwidth

6. For each j ∈ [m] we construct a vertex dj and connect it to cj . We support dj with the
set [2n+ 3] ∪ [2n+ 5, 2n+ 3 + j].

7. We construct a vertex u and connect it to dj for all j ∈ [m]. We support u with the set
[2n+ 4] ∪ [2n+ 5 +m, 10n+ 10m].

This completes the construction. Before we proceed, let us give some intuition. Observe
that we have constructed two vertices xP

i , x
N
i for each variable. The support of these vertices

and the fact that they are adjacent, allow us to give them colors {2i− 1, 2i}. The choice of
which gets the higher color encodes an assignment to variable xi. The vertices xi,j are now
supported in such a way that they can “ignore” the values of all variables except xi; for xi,
however, xi,j “prefers” to be connected to a vertex with color 2i (since 2i− 1 appears in the
support of xi,j , but 2i does not). Now, the idea is that cj will be able to get color 2n+ 4 if
and only if one of its literal vertices xi,j was “satisfied” (has a neighbor with color 2i). The
rest of the construction checks if all clause vertices are satisfied in this way.

We now state the lemmata that certify the correctness of our reduction. Their proofs
appear in the full version of the paper.

I Lemma 22. If φ is satisfiable then G(φ) has a Grundy coloring with 10n+ 10m+ 1 colors.

I Lemma 23. If G(φ) has a Grundy coloring with 10n+ 10m+ 1 colors, then φ is satisfiable.

I Lemma 24. The graph G(φ) has constant clique-width.

I Theorem 25. Given graph G = (V,E), k-Grundy Coloring is NP-hard even when the
clique-width of the graph cw(G) is a constant.

6 FPT for modular-width

In this section we show that Grundy Coloring is FPT parameterized by modular-width.
Recall that G = (V,E) has modular-width w if V can be partitioned into at most w modules,
such that each module is a singleton or induces a graph of modular-width w. Neighborhood
diversity is the restricted version of this measure where modules are required to be cliques
or independent sets. We sketch the main ideas of the algorithm (a full proof is in the full
version of the paper).

The first step is to show that Grundy Coloring is FPT parameterized by neighborhood
diversity. Similarly to the standard Coloring algorithm for this parameter [56], we observe
that, without loss of generality, all modules can be assumed to be cliques, and hence any color
class has one of 2w possible types. We would like to use this to reduce the problem to an
ILP with 2w variables, but unlike Coloring, the ordering of color classes matters. We thus
prove that the optimal solution can be assumed to have a “canonical” structure where each
color type only appears in consecutive colors. We then extend the neighborhood diversity
algorithm to modular-width using the idea that we can calculate the Grundy number of each
module separately, and then replace it with an appropriately-sized clique.

I Theorem 26. Let G = (V,E) be a graph of modular-width w. The Grundy number of G
can be computed in time 2O(w2w)nO(1).

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:15

References

1 Pierre Aboulker, Édouard Bonnet, Eun Jung Kim, and Florian Sikora. Grundy coloring
& friends, half-graphs, bicliques. In 37th Symposium on Theoretical Aspects of Computer
Science, STACS 2020, March 10-13, 2020, Montpellier, France, LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2020.

2 Eric Angel, Evripidis Bampis, Bruno Escoffier, and Michael Lampis. Parameterized power
vertex cover. Discrete Mathematics & Theoretical Computer Science, 20(2), 2018. URL:
http://dmtcs.episciences.org/4873.

3 Júlio Araújo and Cláudia Linhares Sales. On the grundy number of graphs with few p4’s.
Discrete Applied Mathematics, 160(18):2514–2522, 2012. doi:10.1016/j.dam.2011.08.016.

4 Ashwin Arulselvan, Ágnes Cseh, Martin Groß, David F. Manlove, and Jannik Matuschke.
Matchings with lower quotas: Algorithms and complexity. Algorithmica, 80(1):185–208, 2018.
doi:10.1007/s00453-016-0252-6.

5 Haris Aziz, Serge Gaspers, Edward J. Lee, and Kamran Najeebullah. Defender stackelberg
game with inverse geodesic length as utility metric. In Elisabeth André, Sven Koenig, Mehdi
Dastani, and Gita Sukthankar, editors, Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15,
2018, pages 694–702. International Foundation for Autonomous Agents and Multiagent Systems
Richland, SC, USA / ACM, 2018. URL: http://dl.acm.org/citation.cfm?id=3237486.

6 Rémy Belmonte, Tesshu Hanaka, Ioannis Katsikarelis, Eun Jung Kim, and Michael Lampis.
New results on directed edge dominating set. In Igor Potapov, Paul G. Spirakis, and James
Worrell, editors, 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2018, August 27-31, 2018, Liverpool, UK, volume 117 of LIPIcs, pages 67:1–
67:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.MFCS.
2018.67.

7 Rémy Belmonte, Tesshu Hanaka, Ioannis Katsikarelis, Michael Lampis, Hirotaka Ono, and
Yota Otachi. Parameterized complexity of safe set. In Pinar Heggernes, editor, Algorithms
and Complexity - 11th International Conference, CIAC 2019, Rome, Italy, May 27-29, 2019,
Proceedings, volume 11485 of Lecture Notes in Computer Science, pages 38–49. Springer, 2019.
doi:10.1007/978-3-030-17402-6_4.

8 Rémy Belmonte, Michael Lampis, and Valia Mitsou. Parameterized (approximate) defective
coloring. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France,
volume 96 of LIPIcs, pages 10:1–10:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018. doi:10.4230/LIPIcs.STACS.2018.10.

9 Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman. Treewidth governs
the complexity of target set selection. Discrete Optimization, 8(1):87–96, 2011. doi:10.1016/
j.disopt.2010.09.007.

10 Matthias Bentert, Klaus Heeger, and Dušan Knop. Length-bounded cuts: Proper interval
graphs and structural parameters, 2019. arXiv:1910.03409.

11 Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-
degree vertex deletion parameterized by treewidth. Discrete Applied Mathematics, 160(1-2):53–
60, 2012. doi:10.1016/j.dam.2011.08.013.

12 Marzio De Biasi and Juho Lauri. On the complexity of restoring corrupted colorings. J. Comb.
Optim., 37(4):1150–1169, 2019. doi:10.1007/s10878-018-0342-2.

13 Édouard Bonnet, Florent Foucaud, Eun Jung Kim, and Florian Sikora. Complexity of
grundy coloring and its variants. Discrete Applied Mathematics, 243:99–114, 2018. doi:
10.1016/j.dam.2017.12.022.

14 Édouard Bonnet, Michael Lampis, and Vangelis Th. Paschos. Time-approximation trade-offs
for inapproximable problems. J. Comput. Syst. Sci., 92:171–180, 2018. doi:10.1016/j.jcss.
2017.09.009.

ESA 2020

http://dmtcs.episciences.org/4873
https://doi.org/10.1016/j.dam.2011.08.016
https://doi.org/10.1007/s00453-016-0252-6
http://dl.acm.org/citation.cfm?id=3237486
https://doi.org/10.4230/LIPIcs.MFCS.2018.67
https://doi.org/10.4230/LIPIcs.MFCS.2018.67
https://doi.org/10.1007/978-3-030-17402-6_4
https://doi.org/10.4230/LIPIcs.STACS.2018.10
https://doi.org/10.1016/j.disopt.2010.09.007
https://doi.org/10.1016/j.disopt.2010.09.007
http://arxiv.org/abs/1910.03409
https://doi.org/10.1016/j.dam.2011.08.013
https://doi.org/10.1007/s10878-018-0342-2
https://doi.org/10.1016/j.dam.2017.12.022
https://doi.org/10.1016/j.dam.2017.12.022
https://doi.org/10.1016/j.jcss.2017.09.009
https://doi.org/10.1016/j.jcss.2017.09.009

14:16 Grundy Distinguishes Treewidth from Pathwidth

15 Édouard Bonnet and Nidhi Purohit. Metric dimension parameterized by treewidth. CoRR,
abs/1907.08093, 2019. arXiv:1907.08093.

16 Hajo Broersma, Petr A. Golovach, and Viresh Patel. Tight complexity bounds for FPT
subgraph problems parameterized by the clique-width. Theor. Comput. Sci., 485:69–84, 2013.
doi:10.1016/j.tcs.2013.03.008.

17 Claude A. Christen and Stanley M. Selkow. Some perfect coloring properties of graphs. J.
Comb. Theory, Ser. B, 27(1):49–59, 1979. doi:10.1016/0095-8956(79)90067-4.

18 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

19 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

20 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669. SIAM,
2016. doi:10.1137/1.9781611974331.ch113.

21 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

22 Guilherme de C. M. Gomes, Carlos V. G. C. Lima, and Vinícius Fernandes dos Santos.
Parameterized complexity of equitable coloring. Discrete Mathematics & Theoretical Computer
Science, 21(1), 2019. URL: http://dmtcs.episciences.org/5464.

23 Holger Dell, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Tobias Mömke. Complexity
and approximability of parameterized max-csps. Algorithmica, 79(1):230–250, 2017. doi:
10.1007/s00453-017-0310-8.

24 Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capacitated domi-
nation and covering: A parameterized perspective. In Martin Grohe and Rolf Niedermeier,
editors, Parameterized and Exact Computation, Third International Workshop, IWPEC 2008,
Victoria, Canada, May 14-16, 2008. Proceedings, volume 5018 of Lecture Notes in Computer
Science, pages 78–90. Springer, 2008. doi:10.1007/978-3-540-79723-4_9.

25 Pavel Dvorák and Dusan Knop. Parameterized complexity of length-bounded cuts and
multicuts. Algorithmica, 80(12):3597–3617, 2018. doi:10.1007/s00453-018-0408-7.

26 Eduard Eiben, Robert Ganian, K. Kangas, and Sebastian Ordyniak. Counting linear
extensions: Parameterizations by treewidth. Algorithmica, 81(4):1657–1683, 2019. doi:
10.1007/s00453-018-0496-4.

27 Eduard Eiben, Robert Ganian, and Sebastian Ordyniak. A structural approach to activity
selection. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages
203–209. ijcai.org, 2018. doi:10.24963/ijcai.2018/28.

28 Rosa Enciso, Michael R. Fellows, Jiong Guo, Iyad A. Kanj, Frances A. Rosamond, and Ondrej
Suchý. What makes equitable connected partition easy. In Jianer Chen and Fedor V. Fomin,
editors, Parameterized and Exact Computation, 4th International Workshop, IWPEC 2009,
Copenhagen, Denmark, September 10-11, 2009, Revised Selected Papers, volume 5917 of Lecture
Notes in Computer Science, pages 122–133. Springer, 2009. doi:10.1007/978-3-642-11269-0_
10.

29 Alina Ene, Matthias Mnich, Marcin Pilipczuk, and Andrej Risteski. On routing disjoint paths
in bounded treewidth graphs. In SWAT, volume 53 of LIPIcs, pages 15:1–15:15. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

30 Paul Erdös, Stephen T. Hedetniemi, Renu C. Laskar, and Geert C. E. Prins. On the equality
of the partial grundy and upper ochromatic numbers of graphs. Discrete Mathematics,
272(1):53–64, 2003. doi:10.1016/S0012-365X(03)00184-5.

http://arxiv.org/abs/1907.08093
https://doi.org/10.1016/j.tcs.2013.03.008
https://doi.org/10.1016/0095-8956(79)90067-4
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/s002249910009
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1007/978-3-319-21275-3
http://dmtcs.episciences.org/5464
https://doi.org/10.1007/s00453-017-0310-8
https://doi.org/10.1007/s00453-017-0310-8
https://doi.org/10.1007/978-3-540-79723-4_9
https://doi.org/10.1007/s00453-018-0408-7
https://doi.org/10.1007/s00453-018-0496-4
https://doi.org/10.1007/s00453-018-0496-4
https://doi.org/10.24963/ijcai.2018/28
https://doi.org/10.1007/978-3-642-11269-0_10
https://doi.org/10.1007/978-3-642-11269-0_10
https://doi.org/10.1016/S0012-365X(03)00184-5

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:17

31 Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond, Saket Saurabh,
Stefan Szeider, and Carsten Thomassen. On the complexity of some colorful problems
parameterized by treewidth. Inf. Comput., 209(2):143–153, 2011. doi:10.1016/j.ic.2010.
11.026.

32 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009.

33 Jirí Fiala, Petr A. Golovach, and Jan Kratochvíl. Parameterized complexity of coloring
problems: Treewidth versus vertex cover. Theor. Comput. Sci., 412(23):2513–2523, 2011.
doi:10.1016/j.tcs.2010.10.043.

34 Krzysztof Fleszar, Matthias Mnich, and Joachim Spoerhase. New algorithms for maximum
disjoint paths based on tree-likeness. In ESA, volume 57 of LIPIcs, pages 42:1–42:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

35 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Algorithmic
lower bounds for problems parameterized with clique-width. In Moses Charikar, editor,
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 493–502. SIAM, 2010. doi:
10.1137/1.9781611973075.42.

36 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM J. Comput., 43(5):1541–1563,
2014. doi:10.1137/130910932.

37 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: hamiltonian cycle and the odd case of graph coloring. ACM Trans. Algorithms,
15(1):9:1–9:27, 2019. doi:10.1145/3280824.

38 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Gregory Z. Gutin and Stefan Szeider, editors, Parameterized and Exact
Computation - 8th International Symposium, IPEC 2013, Sophia Antipolis, France, September
4-6, 2013, Revised Selected Papers, volume 8246 of Lecture Notes in Computer Science, pages
163–176. Springer, 2013. doi:10.1007/978-3-319-03898-8_15.

39 Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations of
the bounded-degree vertex deletion problem. In Rolf Niedermeier and Brigitte Vallée, editors,
35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to
March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 33:1–33:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.33.

40 Robert Ganian and Sebastian Ordyniak. The complexity landscape of decompositional
parameters for ILP. Artif. Intell., 257:61–71, 2018. doi:10.1016/j.artint.2017.12.006.

41 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation
algorithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997. doi:
10.1007/BF02523685.

42 Elisabeth Gassner. The steiner forest problem revisited. J. Discrete Algorithms, 8(2):154–163,
2010. doi:10.1016/j.jda.2009.05.002.

43 Gregory Z. Gutin, Mark Jones, and Magnus Wahlström. The mixed chinese postman problem
parameterized by pathwidth and treedepth. SIAM J. Discrete Math., 30(4):2177–2205, 2016.
doi:10.1137/15M1034337.

44 András Gyárfás and Jenö Lehel. On-line and first fit colorings of graphs. Journal of Graph
Theory, 12(2):217–227, 1988. doi:10.1002/jgt.3190120212.

45 Tesshu Hanaka, Ioannis Katsikarelis, Michael Lampis, Yota Otachi, and Florian Sikora.
Parameterized orientable deletion. In David Eppstein, editor, 16th Scandinavian Symposium
and Workshops on Algorithm Theory, SWAT 2018, June 18-20, 2018, Malmö, Sweden, volume
101 of LIPIcs, pages 24:1–24:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.SWAT.2018.24.

ESA 2020

https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1016/j.tcs.2010.10.043
https://doi.org/10.1137/1.9781611973075.42
https://doi.org/10.1137/1.9781611973075.42
https://doi.org/10.1137/130910932
https://doi.org/10.1145/3280824
https://doi.org/10.1007/978-3-319-03898-8_15
https://doi.org/10.4230/LIPIcs.STACS.2018.33
https://doi.org/10.1016/j.artint.2017.12.006
https://doi.org/10.1007/BF02523685
https://doi.org/10.1007/BF02523685
https://doi.org/10.1016/j.jda.2009.05.002
https://doi.org/10.1137/15M1034337
https://doi.org/10.1002/jgt.3190120212
https://doi.org/10.4230/LIPIcs.SWAT.2018.24

14:18 Grundy Distinguishes Treewidth from Pathwidth

46 Frédéric Havet and Leonardo Sampaio. On the grundy and b-chromatic numbers of a graph.
Algorithmica, 65(4):885–899, 2013. doi:10.1007/s00453-011-9604-4.

47 Ramin Javadi and Amir Nikabadi. On the parameterized complexity of sparsest cut and
small-set expansion problems, 2019. arXiv:1910.12353.

48 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structurally parameterized
d-scattered set. In Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, Graph-
Theoretic Concepts in Computer Science - 44th International Workshop, WG 2018, Cottbus,
Germany, June 27-29, 2018, Proceedings, volume 11159 of Lecture Notes in Computer Science,
pages 292–305. Springer, 2018. doi:10.1007/978-3-030-00256-5_24.

49 Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters, tight
bounds, and approximation for (k, r)-center. Discrete Applied Mathematics, 264:90–117, 2019.
doi:10.1016/j.dam.2018.11.002.

50 Chamanvir Kaur and Neeldhara Misra. On the parameterized complexity of spanning trees
with small vertex covers. In CALDAM, volume 12016 of Lecture Notes in Computer Science,
pages 427–438. Springer, 2020.

51 Leon Kellerhals and Tomohiro Koana. Parameterized complexity of geodetic set, 2020.
arXiv:2001.03098.

52 Hal A. Kierstead and Karin Rebecca Saoub. First-fit coloring of bounded tolerance graphs.
Discrete Applied Mathematics, 159(7):605–611, 2011. doi:10.1016/j.dam.2010.05.002.

53 Hal A. Kierstead, David A. Smith, and William T. Trotter. First-fit coloring on interval graphs
has performance ratio at least 5. Eur. J. Comb., 51:236–254, 2016. doi:10.1016/j.ejc.2015.
05.015.

54 Dusan Knop, Tomás Masarík, and Tomás Toufar. Parameterized complexity of fair vertex
evaluation problems. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen, editors,
44th International Symposium on Mathematical Foundations of Computer Science, MFCS
2019, August 26-30, 2019, Aachen, Germany., volume 138 of LIPIcs, pages 33:1–33:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.33.

55 Guy Kortsarz. A lower bound for approximating grundy numbering. Discrete Mathematics &
Theoretical Computer Science, 9(1), 2007. URL: http://dmtcs.episciences.org/391.

56 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012. doi:10.1007/s00453-011-9554-x.

57 Michael Lampis. Parameterized maximum path coloring. Theor. Comput. Sci., 511:42–53,
2013. doi:10.1016/j.tcs.2013.01.012.

58 Michael Lampis. Model checking lower bounds for simple graphs. Logical Methods in Computer
Science, 10(1), 2014. doi:10.2168/LMCS-10(1:18)2014.

59 Michael Lampis and Valia Mitsou. Treewidth with a quantifier alternation revisited. In Daniel
Lokshtanov and Naomi Nishimura, editors, 12th International Symposium on Parameterized
and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria, volume 89 of
LIPIcs, pages 26:1–26:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.IPEC.2017.26.

60 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

61 Dániel Marx and Michal Pilipczuk. Everything you always wanted to know about the
parameterized complexity of subgraph isomorphism (but were afraid to ask). In Ernst W.
Mayr and Natacha Portier, editors, 31st International Symposium on Theoretical Aspects of
Computer Science (STACS 2014), STACS 2014, March 5-8, 2014, Lyon, France, volume 25
of LIPIcs, pages 542–553. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014. doi:
10.4230/LIPIcs.STACS.2014.542.

62 Kitty Meeks and Alexander Scott. The parameterised complexity of list problems on graphs
of bounded treewidth. Inf. Comput., 251:91–103, 2016. doi:10.1016/j.ic.2016.08.001.

https://doi.org/10.1007/s00453-011-9604-4
http://arxiv.org/abs/1910.12353
https://doi.org/10.1007/978-3-030-00256-5_24
https://doi.org/10.1016/j.dam.2018.11.002
http://arxiv.org/abs/2001.03098
https://doi.org/10.1016/j.dam.2010.05.002
https://doi.org/10.1016/j.ejc.2015.05.015
https://doi.org/10.1016/j.ejc.2015.05.015
https://doi.org/10.4230/LIPIcs.MFCS.2019.33
http://dmtcs.episciences.org/391
https://doi.org/10.1007/s00453-011-9554-x
https://doi.org/10.1016/j.tcs.2013.01.012
https://doi.org/10.2168/LMCS-10(1:18)2014
https://doi.org/10.4230/LIPIcs.IPEC.2017.26
https://doi.org/10.4230/LIPIcs.IPEC.2017.26
https://doi.org/10.1145/3170442
https://doi.org/10.4230/LIPIcs.STACS.2014.542
https://doi.org/10.4230/LIPIcs.STACS.2014.542
https://doi.org/10.1016/j.ic.2016.08.001

R. Belmonte, E. J. Kim, M. Lampis, V. Mitsou, and Y. Otachi 14:19

63 Kitty Meeks and Fiona Skerman. The parameterised complexity of computing the maximum
modularity of a graph. In IPEC, volume 115 of LIPIcs, pages 9:1–9:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018.

64 Burkhard Monien. The bandwidth minimization problem for caterpillars with hair length 3 is
np-complete. SIAM Journal on Algebraic Discrete Methods, 7(4):505–512, 1986.

65 N. S. Narayanaswamy and R. Subhash Babu. A note on first-fit coloring of interval graphs.
Order, 25(1):49–53, 2008. doi:10.1007/s11083-008-9076-6.

66 Jaroslav Nesetril and Patrice Ossona de Mendez. Tree-depth, subgraph coloring and homo-
morphism bounds. Eur. J. Comb., 27(6):1022–1041, 2006. doi:10.1016/j.ejc.2005.01.010.

67 André Nichterlein, Rolf Niedermeier, Johannes Uhlmann, and Mathias Weller. On tractable
cases of target set selection. Social Netw. Analys. Mining, 3(2):233–256, 2013. doi:10.1007/
s13278-012-0067-7.

68 Sebastian Ordyniak, Daniël Paulusma, and Stefan Szeider. Satisfiability of acyclic and almost
acyclic CNF formulas. Theor. Comput. Sci., 481:85–99, 2013. doi:10.1016/j.tcs.2012.12.
039.

69 Igor Razgon. On obdds for cnfs of bounded treewidth. In Chitta Baral, Giuseppe De Giacomo,
and Thomas Eiter, editors, Principles of Knowledge Representation and Reasoning: Proceedings
of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014.
AAAI Press, 2014. URL: http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7982.

70 Marko Samer and Stefan Szeider. Constraint satisfaction with bounded treewidth revisited. J.
Comput. Syst. Sci., 76(2):103–114, 2010. doi:10.1016/j.jcss.2009.04.003.

71 Marko Samer and Stefan Szeider. Tractable cases of the extended global cardinality constraint.
Constraints, 16(1):1–24, 2011. doi:10.1007/s10601-009-9079-y.

72 Stefan Szeider. Not so easy problems for tree decomposable graphs. CoRR, abs/1107.1177,
2011. arXiv:1107.1177.

73 Zixing Tang, Baoyindureng Wu, Lin Hu, and Manouchehr Zaker. More bounds for the grundy
number of graphs. J. Comb. Optim., 33(2):580–589, 2017. doi:10.1007/s10878-015-9981-8.

74 Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems on par-
tial k-trees. SIAM J. Discrete Math., 10(4):529–550, 1997. doi:10.1137/S0895480194275825.

75 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages
566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

76 Manouchehr Zaker. Grundy chromatic number of the complement of bipartite graphs. Aus-
tralasian J. Combinatorics, 31:325–330, 2005. URL: http://ajc.maths.uq.edu.au/pdf/31/
ajc_v31_p325.pdf.

77 Manouchehr Zaker. Results on the grundy chromatic number of graphs. Discrete Mathematics,
306(23):3166–3173, 2006. doi:10.1016/j.disc.2005.06.044.

78 Manouchehr Zaker. Inequalities for the grundy chromatic number of graphs. Discrete Applied
Mathematics, 155(18):2567–2572, 2007. doi:10.1016/j.dam.2007.07.002.

ESA 2020

https://doi.org/10.1007/s11083-008-9076-6
https://doi.org/10.1016/j.ejc.2005.01.010
https://doi.org/10.1007/s13278-012-0067-7
https://doi.org/10.1007/s13278-012-0067-7
https://doi.org/10.1016/j.tcs.2012.12.039
https://doi.org/10.1016/j.tcs.2012.12.039
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7982
https://doi.org/10.1016/j.jcss.2009.04.003
https://doi.org/10.1007/s10601-009-9079-y
http://arxiv.org/abs/1107.1177
https://doi.org/10.1007/s10878-015-9981-8
https://doi.org/10.1137/S0895480194275825
https://doi.org/10.1007/978-3-642-04128-0_51
http://ajc.maths.uq.edu.au/pdf/31/ajc_v31_p325.pdf
http://ajc.maths.uq.edu.au/pdf/31/ajc_v31_p325.pdf
https://doi.org/10.1016/j.disc.2005.06.044
https://doi.org/10.1016/j.dam.2007.07.002

On the Complexity of BWT-Runs Minimization
via Alphabet Reordering
Jason W. Bentley
Department of Mathematics, University of Central Florida, Orlando, FL, USA
jason.bentley@ucf.edu

Daniel Gibney
Department of Computer Science, University of Central Florida, Orlando, FL, USA
https://www.cs.ucf.edu/~dgibney/
daniel.j.gibney@gmail.com

Sharma V. Thankachan
Department of Computer Science, University of Central Florida, Orlando, FL, USA
http://www.cs.ucf.edu/~sharma/
sharma.thankachan@ucf.edu

Abstract

The Burrows-Wheeler Transform (BWT) has been an essential tool in text compression and indexing.
First introduced in 1994, it went on to provide the backbone for the first encoding of the classic
suffix tree data structure in space close to entropy-based lower bound. Within the last decade, it has
seen its role further enhanced with the development of compact suffix trees in space proportional to
“r”, the number of runs in the BWT. While r would superficially appear to be only a measure of
space complexity, it is actually appearing increasingly often in the time complexity of new algorithms
as well. This makes having the smallest value of r of growing importance. Interestingly, unlike other
popular measures of compression, the parameter r is sensitive to the lexicographic ordering given to
the text’s alphabet. Despite several past attempts to exploit this fact, a provably efficient algorithm
for finding, or approximating, an alphabet ordering which minimizes r has been open for years.

We help to explain this lack of progress by presenting the first set of results on the computational
complexity of minimizing BWT-runs via alphabet reordering. We prove that the decision version of
this problem is NP-complete and cannot be solved in time poly(n) · 2o(σ) unless the Exponential
Time Hypothesis fails, where σ is the size of the alphabet and n is the length of the text. Moreover,
we show that the optimization variant is APX-hard. In doing so, we relate two previously disparate
topics: the optimal traveling salesperson path of a graph and the number of runs in the BWT of a
text. In addition, by relating recent results in the field of dictionary compression, we illustrate that
an arbitrary alphabet ordering provides an O(log2 n)-approximation. Lastly, we provide an optimal
linear-time algorithm for a more restricted problem of finding an optimal ordering on a subset of
symbols (occurring only once) under ordering constraints.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases BWT, NP-hardness, APX-hardness

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.15

Related Version A full version of the paper is available at https://arxiv.org/abs/1911.03035.

Funding Supported in part by the U.S. National Science Foundation (NSF) under CCF-1703489.

Acknowledgements We would like to thank the reviewers for their valuable feedback and Chandra
Chekuri for his helpful correspondence.

© Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 15; pp. 15:1–15:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jason.bentley@ucf.edu
https://www.cs.ucf.edu/~dgibney/
mailto:daniel.j.gibney@gmail.com
http://www.cs.ucf.edu/~sharma/
mailto:sharma.thankachan@ucf.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.15
https://arxiv.org/abs/1911.03035
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 On the Complexity of BWT-Runs Minimization via Alphabet Reordering

1 Introduction and Related Work

The Burrows-Wheeler Transform (BWT) is an essential building block in the fields of text
compression and indexing with a myriad of applications in bioinformatics and information
retrieval [24, 25, 26, 30]. Since it first arose in 1994 [6], it has been utilized to provide the
popular compression algorithm bzip2 and has been adapted to provide powerful compressed
text indexing data structures, such as the FM-index [12]. Hence, improvements to the
algorithmic aspects of this transformation and related data structures can have a significant
impact on the research community.

The BWT of a text T [1, n], denoted by BWT (T) is a reversible transformation which
can be defined as follows: sort the circular shifts of T in lexicographical order and place
the sorted circular shifts in a matrix. By reading the last column of this matrix from top
to bottom we obtain BWT (T). To make the transformation invertible a new symbol $
(lexicographically smaller than others) is appended to T prior to sorting the circular shifts.
See Figure 1 for an example. Historically, the BWT was introduced for the purpose of text
compression [6], where its effectiveness is based on symbols with shared preceding context
forming long runs (maximal unary substrings).

mississipp
$mississip
ppi$missis
ssippi$mis
ssissippi$
ississippi
i$mississi
pi$mississ
ippi$missi
issippi$mi
sippi$miss
sissippi$m

i
p
s
s
m
$
p
i
s
s
i
i

$
i
i
i
i
m
p
p
s
s
s
s

F L

Figure 1 Column L shows the BWT of mississippi. The number of runs r = 9.

Recently, the number of runs “r” in the BWT has become of increasing interest. This
can be attributed to the fact that many modern text collections are highly repetitive, which
makes their compression effective via the BWT followed by Run-Length encoding (i.e., in
space proportional to r). This raised an interesting question: can we also index the text
in space propositional to r? Note that the FM-index needs space proportional to n (i.e.,
≈ n log σ bits, where σ is the alphabet size). The data-structure community has made great
strides in answering this question [3, 5, 14, 21, 23, 31]. The first such index was developed
by Mäkinen and Navarro in 2005 [28]. However, it lacked the ability to efficiently locate the
occurrences of a pattern within space Õ(r). After a decade of related research [29, 14], we
now have fully functional suffix trees in space proportional to r, developed by Gagie et al. [15].
Also note that the recent optimal BWT construction algorithm for highly repetitive texts is
parameterized by r [19]. A technique reducing the value of this parameter r would have a
significant impact on a large body of work.

J.W. Bentley, D. Gibney, and S. V. Thankachan 15:3

A natural way to minimize r is to change the lexicographic ordering assigned to symbols
of the alphabet. To demonstrate that this can have an impact on r, consider as an example
the text mississippi with the usual ordering $ < i < m < p < s where r = 9, but with the
ordering $ < s < i < p < m we have r = 8. In fact, there exist string families in which r
differs by a factor of Ω(logn) for different orderings. This problem of reordering the alphabet
is clearly fixed-parameter tractable in alphabet size σ and has a trivial O(σ! n) time solution.
This may be adequate when σ is small as in DNA sequences. However, this is far from
satisfactory from a theoretical point of view, or even from a practical point when the alphabet
is slightly larger, such as in protein sequences, natural language texts, ascii texts, etc.

1.1 Related Work
The work in 2018 on block sorting based transformations by Giancarlo et al. gives a
theoretical treatment of alphabet ordering in the context of the Generalized BWT [16]. It
was shown that for any alphabet ordering, r is at most twice the number of runs in the
original text, a result which then holds for the standard BWT as well. Note however that
this gives no lower bound on r, and thus gives no results on the approximability of the
run minimization problem. There have been multiple previous attempts to develop other
approaches to alphabet ordering. In bioinformatics, the role of ordering on proteins was
considered in [34] with approaches evaluated experimentally. Similar heuristic approaches
evaluated through experiments were done in [1]. Researchers have also considered more
restricted versions of this problem. For example, one can try to order a restricted subset
of the alphabet, or limit wherein the ordering symbols can be placed. On this problem,
heuristics have been utilized. Software tools like BEETL utilize these techniques to handle
collections of billions of reads [8]. Another related work in [7] shows, how to permute a
given set of strings in linear time, such that the number of runs in the BWT of the (long)
string obtained by concatenating the input strings, separated by the same delimiter symbol
is minimized.

Even more recently, a work by Giancarlo et al., considered the case where ordering
is assigned to the nodes of a string’s suffix tree, to minimize the number of runs in the
BWT [17]. Interestingly, this problem can be solved in polynomial time. Although their
technique can potentially minimize the number of runs in the BWT to an even greater extent
than modifying the ordering on the alphabet, it also requires storing the order for each of
these nodes, which can require more space. We leave open the problem of finding a trade-off
between the strategy of ordering the alphabet and ordering the nodes of the suffix tree.

Given the lack of success with attacking the main problem from the upper bound side,
perhaps it is best to approach the problem from the perspective of lower bounds and hardness.
To this end, we show why a provably efficient algorithm has been evasive.

2 Problem Definitions and Our Results

Let Σ denotes the alphabet and σ = |Σ|. A run in a string T is a maximal unary sub-string.
Let ρ(T) be the number of runs in T .

I Problem 1 (Alphabet Ordering (AO)). Given a string T [1, n] and an integer t, decide
whether there exists an ordering of the symbols in its alphabet such that ρ(BWT (T)) ≤ t.

I Theorem 2. The alphabet ordering problem is NP-complete and its corresponding minim-
ization problem is APX-hard.

ESA 2020

15:4 On the Complexity of BWT-Runs Minimization via Alphabet Reordering

The problem can be solved in n · σ! = n · 2O(σ logσ) time naively. However, any significant
improvement seems unlikely as per the Exponential Time Hypothesis (ETH) [27].

I Corollary 3. Under ETH, AO cannot be solved in time poly(n) · 2o(σ).

It is known that ρ(BWT (T)) can be lower bounded by the size of string attractor γ,
a recently proposed compressibility measure [22]. Kempa and Kociumaka showed that
ρ(BWT (T)) can be upper bounded by O(γ log2 n) [20]. However, γ is independent of the
alphabet ordering and the following result is immediate.

I Corollary 4. Any alphabet ordering is an O(log2 n)-approximation for AO.

We also introduce a specialization of AO, one where we impose more constraints on the
ordering given to alphabet symbols.

I Problem 5 (Constrained Alphabet Ordering (CAO)). Given a set of d strings T1, . . . , Td of
total length N , find an ordering π on the symbols $i (1 ≤ i ≤ d) such that $π(1) ≺ $π(2) . . . ≺
$π(d) ≺ 0 . . . ≺ σ − 1 and ρ(BWT (T1$1T2$2 . . . Td$d)) is minimized.

We call $1, $2, . . . , $d special symbols. In Section 5.3, we provide an example where an
optimal ordering of special symbols removes a factor of Ω(logσ d) in the number of runs,
demonstrating that this can be a worthwhile preprocessing step. We refer to [8] for an
immediate use case in bioinformatics, where the input is a large collection of DNA reads.

I Theorem 6. The constrained alphabet ordering problem can be solved in linear time.

In the full version [4] of this paper, we extend these hardness results to the related problem
of ordering source vertex on Wheeler graphs. Wheeler graphs are a recently introduced class
of graphs which allow for BWT based indexing [2, 13, 18].

3 Preliminaries: L-reductions

Our inapproximability results use L-reductions [9]. We will be reducing a problem A, with
some known inapproximability results, to a new problem B. We will use the following
notation:

OPTA(x) denotes the cost of an optimal solution to the instance x of Problem A.
cA(y) denotes the cost of a solution y to an instance x of Problem A (suppressing the x
in the notation cA(x, y)).
Since all problems presented here are minimization problems the approximation ratio can
be written as RA(x, y) = cA(y)

OPTA(x) , which is ≥ 1.
Let fA(x) = x′ be a mapping of an instance x of Problem A to instance x′ of Problem B.
Let y′ be a solution to instance x′ = fA(x) and gB(y′) = y be the mapping of a solution
y′ to a solution y for instance x.

Taking x, y, x′ y′ as above, an L-reduction is defined by the pair of functions (fA, gB),
computable in polynomial time, such that there exist constants α, β > 0, where for all x and
y the following two conditions hold:

OPTB(fA(x)) ≤ αOPTA(x) and cA(gB(y′))−OPTA(x) ≤ β
(
cB(y′)−OPTB(fA(x))

)
.

As a result, RB(x′, y′) = 1 + ε implies RA(x, y) ≤ 1 +αβε = 1 +O(ε). L-reductions preserve
APX-hardness [32].

J.W. Bentley, D. Gibney, and S. V. Thankachan 15:5

4 Hardness of Alphabet Ordering

We will demonstrate a sequence of L-reductions from the (1, 2)-TSP Cycle problem, where
the aim is to find a Hamiltonian cycle of minimum weight through an undirected complete
graph on n vertices where all edges have weights either 1 or 2. The (1, 2)-TSP Cycle problem
is APX-hard, even with only Θ(n) edges of weight 1 [33]. The first reduction is to (1, 2)-TSP
Path, where the goal is to find a Hamiltonian path of minimum weight, rather than a cycle.

I Lemma 7. (1,2)-TSP Path is APX-hard, even with only Θ(n) edges of weight 1.

Proof. We will give an approximation preserving reduction from (1, 2)-TSP to (1, 2)-TSP
Path. By the APX-hardness of (1, 2)-TSP Cycle, we obtain Lemma 7.

Let x be the input graph G for (1, 2)-TSP Cycle and let fA map the graph G to an
identical graph G′. Let gB map the (1, 2)-TSP Path y′ given to G′ to the cycle in G obtained
by connecting the end points of the path with an edge of weight at most 2. Hence the cost
cB(y′) is always at most the cost cA(gB(y′)). At the same time, the weight OPTA(x) of an
optimal cycle in G is bound above by the weight OPTB(fA(x)) of an optimal path in G′
plus 2. Thus, cB(y′) ≤ cA(gB(y′)) and OPTA(x) ≤ OPTB(fA(x)) + 2. Therefore,

OPTB(fA(x))
cB(y′) ≤ 1+ε =⇒ OPTA(x)

cA(gB(y′)) ≤
OPTB(fA(x)) + 2

cB(y′) ≤ 1+ε+ 2
n
≤ 1 +O(ε). J

We proceed to present our reduction which consists of two phases.

4.1 Reduction Phase 1
Given a complete graph on n vertices and m = Θ(n) edges of weight 1 as input to (1,2)-TSP
Path, remove all edges of weight 2. We call the resulting graph G. Construct the incidence
matrix for G (a row for each edge, and a column for each vertex, where the two 1’s in a
row indicate which two vertices are incident to the edge for that row). Then add 2` rows
of all 0’s to bottom of the matrix, where ` = 4m. Next, add two additional columns cs
and ct where cs[i] = 1 if i ∈ {m + 2,m + 4, . . . ,m + 2`} and 0 otherwise, and ct[i] = 1 if
i ∈ {m+ 1,m+ 3, . . . ,m+ 2`− 1} and 0 otherwise (see Figure 2). We call this matrix M .

Figure 2 The modified incidence matrix for the graph G. Each of the first m rows is for an edge.
The bottom 2` = 8m rows are added as are the outer two most columns.

ESA 2020

15:6 On the Complexity of BWT-Runs Minimization via Alphabet Reordering

We now present an intermediate problem that we call Column Ordering (CO), which
is: given a matrix M constructed as above, find an optimal ordering on the columns so as
to minimize the number of runs in its linearization. We will use Mπ to denote the matrix
M with the ordering π applied to its columns and L(Mπ) to denote the string obtained by
concatenating the rows of Mπ from top to bottom. We call L(Mπ) the linearization of Mπ.

Next, we describe the function which maps solutions of our instance of Column Ordering
back to a solution of (1, 2)-TSP Path. Ignoring the added columns cs and ct, the ordering π
induces a collection of disjoint paths in G, which we call P , where two vertices form an edge
if their columns are adjacent and there exists a row with 1’s in both columns. Given P we
create a (1,2)-TSP Path by connecting the paths in P with |P | − 1 edges of weight 2. Note
that this can be done in linear time.

I Lemma 8. If cs and ct are the first and last columns of Mπ respectively, then the cost of
our CO solution is ρ(L(Mπ)) = 2m1 + 4(m−m1) + 2`+ 1 = 4m− 2m1 + 2`+ 1, where m1
is the number of rows whose edges are in the collection of paths P . The corresponding cost
of the solution to (1,2)-TSP Path is m1 + 2(n− 1−m1) = 2(n− 1)−m1.

Proof. Ignoring the first run of L(Mπ) for the moment, every row in Mπ corresponding to
an edge in P contributes two runs to ρ(L(Mπ)) (e.g. 0 . . . 0110 . . . 0). Any row whose edge
is not in P and not in the bottom 2` rows, contributes four (e.g. 0 . . . 010 . . . 010 . . . 0) and
there are m−m1 such (rows) edges. The extra 2` rows in total contribute 2` runs. Adding
the “+1” term for the start of L(Mπ) gives the desired expression. The second statement
follows from the TSP Path having m1 edges of weight 1 and the n− 1 edges in total needed
to form a Hamiltonian path. J

I Lemma 9. If cs and ct are not the first and last columns respectively, then the solution to
CO is sub-optimal.

Proof. If ct is first and cs is last, then one extra run is contributed over cs being first and
ct last, while maintaining the rest of the ordering to be the same. In any configuration
where either cs or ct are not ends of the matrix, the bottom rows will contribute at least
3` runs. Letting m∗1 denote the optimal number of edges of P , then the optimal ρ(L(Mπ∗))
is 4m− 2m∗1 + 2`+ 1 < 4m+ 2` ≤ 3`. Note that the first inequality is strict since we can
always find at least one edge for P . J

It is immediate from Lemmas 8 and 9 that an optimal solution for CO is one which
maximizes m1, and this provides an optimal solution for (1,2)-TSP Path. We now must show
that our reduction is also an L-reduction. Lemmas 10 and 11 consider the two possible cases.

I Lemma 10. If cs and ct are the first and last columns respectively in a solution to CO,
then the L-reduction conditions hold.

Proof. By Lemmas 8 and 9, the optimal cost for the instance of CO can be expressed as
4m− 2m∗1 + 2`+ 1 and the optimal cost for the instance of (1,2)-TSP Path as 2(n− 1)−m∗1.
To prove Condition (i), we need to show there exists an α > 0 such that

4m− 2m∗1 + 2`+ 1 ≤ α(2(n− 1)−m∗1)

Since m = Θ(n) there exists a constant C > 1, such that for n large enough m ≤ Cn. The
left hand side can be bounded above by 4Cn− 2m∗1 + 8Cn+ 1 = 12Cn− 2m∗1 + 1 (recall
` = 4m). Since m∗1 ≤ n− 1 it is easy to find such an α for n ≥ 2. Below is the inequality for
Condition (ii), which is true for β ≥ 1/2.

(2(n− 1)−m1)− (2(n− 1)−m∗1) ≤ β
(

(4m− 2m1 + 2`+ 1)− (4m− 2m∗1 + 2`+ 1)
)
J

J.W. Bentley, D. Gibney, and S. V. Thankachan 15:7

I Lemma 11. If cs and ct are not the first and last columns respectively in a solution to
CO, the L-reduction conditions still hold.

Proof. Condition (i) holds since the optimal solution values to the overall problem have not
changed. For Condition (ii), we consider the two scenarios:

Scenario 1: cs or ct are not at the far ends of Mπ. Then the cost of the solution for
CO, which is at least 3`, exceeds the cost for any solution considered in Lemma 10.
Furthermore, any corresponding solution for (1,2)-TSP Path has already been considered
in Lemma 10, where now the right-hand is larger than it was in Lemma 10.
Scenario 2: ct is the first column of Mπ and cs is the last. Then, again, we have already
considered a solution in Lemma 10 which has solution cost one less for CO and yet had
the same solution cost for (1,2)-TSP Path.

This completes the proof. J

4.2 Reduction Phase 2
Given the matrix M as constructed in Phase 1 from G, we will now construct a string T
as input to the problem AO. It is easier to describe T in terms of its substrings, which are
created by iterating through the matrix M as follows:

For 1 ≤ j ≤ n+ 2, 1 ≤ i ≤ m+ 2`: if Mi,j = 1 output the substring 10i+12Cj
For 1 ≤ j ≤ n+ 2: output the substring 0m+2`+22Cj
Append to each substring created above a unique $i symbol (1 ≤ i ≤ 2m+ 2`+ n+ 2).

The string T is the concatenation of these substrings in any order and |T | = O(n2). The
alphabet set Σ is {0, 1, 2} ∪ {C1, C2, . . . , Cn+2} ∪ {$1, $2, . . . , $2m+2`+n+2} and σ = Θ(n).

Given a solution π to this instance of AO we use the relative ordering given to the Ci
symbols as the ordering for the columns of Mπ. For the analysis of why this works, we define
some properties that we would like BWT (T) and π to have. For any symbol a ∈ Σ we will
call the maximal set of indices where the F column of the sorted circular shift matrix has
only a’s as the a-block. Our goal will be to“simulate” the linearization of L(Mπ) within the
0-block of BWT (T). We let Cs and Ct denote the symbols for columns cs and ct respectively.

The following are the key properties that an optimal solution π∗ will have:
1. For a fixed j, all Cj symbols are placed adjacently in BWT (T);
2. All 2 symbols are placed adjacently in BWT (T);
3. The symbol 2 is adjacent to the symbol 0 in the ordering;
4. The $i symbols are ordered in such a way as to minimize the number of runs of 1 in the

0-block of BWT (T).
5. The symbols Cs and Ct are both positioned at the beginning and end respectively of the

alphabet ordering given to the Ci symbols.
The 0-block of BWT (T) will consist of 0’s, 1’s, and $i symbols. All $i symbols will be
adjacent within the 0-block. This is since the $i symbols succeeded by 0, are all succeeded by
the substring 0m+2`+22 and every occurrence of 0m+2`+22 preceded by a $i symbol (when T
is viewed as a circular string). Let r0 denote the number of runs created in the 0-block of
BWT (T), minus the number of $i symbols in the 0-block of BWT (T).

I Lemma 12. Unless all of the above properties hold, the solution to AO is suboptimal.

Proof. If any of Properties 1–3 are violated, we can exchange our solution with one which
maintains the value r0 but reduces the runs created in other blocks. This is since the alphabet
ordering can be modified to have these properties, while at the same time maintaining the
relative orderings of symbols within the 0-block. In the case of Property 4, given that

ESA 2020

15:8 On the Complexity of BWT-Runs Minimization via Alphabet Reordering

Properties 1–3 hold, modifying the solution so that the property holds can only decrease r0,
while it maintains the number of runs created in other blocks. Assuming properties 1–4 hold,
there are two possibilities, either Cs and Ct are extremal or they are not.

In the case of being extremal, if Cs < Ct, then by Property 4, the 2` = 8m instances of
1’s in the bottom 2` rows of Mπ shall correspond to 4m runs of two consecutive 1’s in
the 0-block of BWT (T). The upper rows of Mπ shall correspond to at most 2m runs
of 1’s in the 0-block of BWT (T). Hence, in the 0-block there are at most 6m+ 1 runs
of 1’s making at most 6m+ 2 runs of zeros to surround them, so that r0 ≤ 12m+ 3. In
the case where Ct < Cs, one additional run of 1’s is created over the same configuration
where the positions of Cs and Ct are swapped.
In the case of them not being extremal, considering only the last 2` rows of Mπ, there
are 8m runs of lonely 1’s in the 0-block of BWT (T), and at least 8m+ 1 runs of 0’s to
surround them, leading to r0 ≥ 16m+ 1.

This completes the proof. J

As mentioned earlier, we aim to have a substring of BWT (T) within the 0-block which is
the same as L(Mπ) except for the lengths of its runs, i.e., the number of runs will be the
same. We will call this substring the simulation of L(Mπ).

I Lemma 13. If all Properties 1–5 hold, then r0 = ρ(L(Mπ))−1 and ρ(BWT (T)) = r0+σ−1.

Proof. We will first show that when Properties 1–5 hold, r0 = ρ(L(Mπ))− 1, i.e., that the
simulation works. Within the 0-block of BWT (T), row i is simulated by the characters
preceding each substring 0i+12. Note that they all appear consecutively in the 0-block.
Within the simulation of the ith row, if the value of the jth column of Mπ is 0, then the
characters preceding substrings of the form 0i+12Cj are all 0. If the value of the jth column
of M is 1, then there exists a single substring of the form 0i+12Cj preceded by a 1, and the
remaining substrings of the form 0i+12Cj are all preceded by 0. Note that all characters
preceding 0i+12Cj are consecutive within the ith row, however, the unique $’s following each
substring allow the characters following each 0i+12Cj to have their orders swapped. Because
of Property 5, in the column ordering of Mπ there will never be a run of more than two
consecutive 1’s in L(Mπ). Hence, when Property 4 is applied, we know that 1’s which would
are adjacent in L(Mπ) are adjacent in the 0-block. Combining all these observations gives us
that L(Mπ) is successfully simulated within the 0-block. The “−1” term in the expression
for r0 arises due to Property 2. This is since the 0 symbol in 0-block of BWT (T) that is
adjacent to the 2-block does not contribute a run. We have shown r0 = L(Mπ)− 1.

Finally, the fact that ρ(BWT (T)) = r0 + σ − 1 follows from Properties 1–3 which cause
every symbol except 1 to contribute exactly one run to ρ(BWT (T)) outside of the simulation
(1’s first appearance is within the simulation). J

I Lemma 14. If all Properties 1–5 hold, the L-reduction conditions are satisfied.

Proof. By Lemma’s 12 and 13 we have the optimal cost for AO being r∗0 + σ − 1 and
optimal cost for CO as r∗0 + 1. For Condition (i) note that σ = Θ(n) and because there
are at most 5 runs created by each row, m + 2` ≤ r∗0 ≤ 5(m + 2`), so that r∗0 = Θ(n).
Hence, we can find an α such that r∗0 + σ − 1 ≤ α(r∗0 + 1). For Condition (ii), we have
(r0 + 1)− (r∗0 + 1) ≤ β((r0 + σ − 1)− (r∗0 + σ − 1)) with β = 1. J

I Lemma 15. If any of Properties 1–5 are violated, the L-reduction conditions are satisfied.

J.W. Bentley, D. Gibney, and S. V. Thankachan 15:9

Proof. Condition (i) is satisfied since optimal values for the overall problem are unchanged.
For Condition (ii), if any of the first four properties are violated, we have already shown in
Lemma 14 that the inequality holds in the harder case where ρ(L(Mπ)) has the same value
but the overall number of runs in BWT (T) is less. If the first four properties hold and the
fifth property does not hold, there are two cases. In the first case, if Ct is ordered first and
Cs last, then swapping Cs and Ct modifies both sides of the inequality for Condition (ii) by
the same amount. In the second case, if either Cs or Ct are not ordered first or last, the left
hand side of the inequality in Condition (ii), that is

(
ρ(L(Mπ))− ρ(L(Mπ∗))

)
, will be large,

as this corresponds to the columns cs and ct not being first or last. However, the right-hand
side

(
(r0 + σ − 1) − (r∗0 + σ − 1)

)
will be large as well, perhaps even larger as there may

exist runs of three of four 1’s in L(Mπ) that cannot be simulated in the 0-block of BWT (T).
In particular, r0 ≥ ρ(L(Mπ))− 1 and ρ(L(Mπ∗)) = r∗0 + 1, so that with β = 1

ρ(L(Mπ))− ρ(L(Mπ∗)) ≤ (r0 + 1)− ρ(L(Mπ∗)) ≤ β
(

(r0 + σ − 1)− (r∗0 + σ − 1)
)
. J

We have shown an L-reduction from (1,2)-TSP Path to AO. This combined with Lemma 7
completes the proof for Theorem 2.

4.3 Proof of Corollary 3
Assuming ETH, there exists no 2o(n) time algorithm for Hamiltonian Path Problem [10].
Our reduction allows us to determine the minimum number of paths in G needed to cover all
the vertices and can hence solve Hamiltonian Path. This can be done by first constructing
an incidence matrix for G and then applying the rest of the reduction as in Section 4. Since
the alphabet size σ is linear in n and |T | = Θ(n2), an |T |O(1) · 2o(σ) time algorithm for AO
would imply an 2o(n) time algorithm for Hamiltonian Path, a contradiction.

5 Constrained Alphabet Ordering

5.1 Reducing to a Simpler Problem
Recall that we wish to find an ordering on the special symbols $1, . . . , $d such that the number
of runs in the BWT of T = T1$1 . . . Td$d is minimized and the $ symbols are lexicographically
before other symbols. We will consider our alphabet to be over integers that are bounded
by NO(1), where N = |T |. Let s be an arbitrary substring of T without $ symbols. The
symbols in T which are followed by s$i will form a contiguous portion of BWT (T). However,
their ordering within that contiguous portion is determined by the relative ordering given
to $i symbols. Hence, we can arrange the symbols within this portion of BWT (T) so that
identical symbols are placed adjacently.

For example, let c1s$1, c2s$2,, cts$t be substrings of T . The symbols c1, c2, ... ct will
be contiguous in BWT (T) in some order. Now, suppose that c2 = c4 = c7. By rearranging
the $2, $4, and $7 to be adjacent within the relative ordering of the $ symbols, we can make
c2, c4, and c7 appear consecutively. Taking this one step further, we can also change the
relative ordering of $2, $4, and $7, so that if the substrings αc2s$2, βc4$4, and αs$7 occur in
T , then the two α’s will be adjacent in the contiguous portion of BWT (T) corresponding to
the substrings c2s$2, c4s$4, and c7s$7.

Hence, the set of symbols Bs = {x | xs$i is a substring of T for some i ∈ [1, d]} can be
modeled as a tuple where each symbol appears only once within the tuple. Along with each
symbol x in Bs, we will maintain a set ∆x

s = {$i | xs$i is a substring of T}. We will arrange

ESA 2020

15:10 On the Complexity of BWT-Runs Minimization via Alphabet Reordering

all non-empty tuples Bs in the lexicographic ordering of s. As such, these tuples can be
constructed by first assigning any ordering to the $ symbols (where they are lexicographically
first in the alphabet) and then using the longest common prefix (LCP) between consecutive
suffixes in lexicographic order. These values are obtained directly from the longest common
prefix array. The suffix array and longest common prefix array can both be constructed in
linear time assuming an integer alphabet of size NO(1) [11]. We will define the problem of
ordering the symbols within these tuples as a new problem.

I Problem 16 (Tuple Ordering (TO)). Given a list of tuples t1, . . . , tq in a fixed order, each
containing a subset of symbols from Σ, order the symbols in each tuple such that the total
number of runs in the string formed by their concatenation t1 · t2 · . . . · tq is minimized (not
considering ‘(’, ‘)’ and commas, of course).

We will show that TO can be solved in linear time. To map solutions of TO back to
solutions of CAO, a tuple for Bs needs to maintain pointers to each tuple Bxs, where x is a
symbol. Then given a solution to TO, we start with the tuple for Bε. The ordering given to
symbols within this tuple provides us with a partial ordering on the $ symbols. The symbols
in ∆x

ε associated with the first symbol x within the tuple are ordered before the symbols ∆y
ε

associated with the second symbol y, etc. Then for a symbol x, the tuple for Bx provides a
refinement of this partial ordering. In particular, it provides a partial ordering on ∆x

ε . To
recover the total ordering on $ symbols, we recursively refine the partial ordering at our
current tuple by examining all of the tuples which the current tuple points to. Note that this
works since for a given tuple for Bs, the sets ∆x

s are disjoint. The time required to recover
this solution is proportional to N .

5.2 Solving the Tuple Ordering Problem in Linear Time
We show how to reduce the TO problem to the single-source shortest path problem on a
DAG G, which is constructed as follows. For each tuple ti, create two sets of vertices Li and
Ri, both of size |ti|, such that for each symbol c ∈ ti, there exists a vertex with label c in Li
as well as in Ri. Between each pair of vertices u ∈ Li and v ∈ Ri, where the label of u is not
equal to the label of v, create a directed edge of weight 1 from u to v. If |ti| = 1, then create
a directed edge of weight 1 from the unique vertex in Li to the unique vertex in Ri. For each
Ri and Li+1 (1 ≤ i ≤ q− 1), and each pair u ∈ Ri and v ∈ Li+1, create a directed edge from
u to v, with weight 1 if they have the same label, and weight 2 otherwise. Finally, create a
start vertex s and directed edges of weight 1 from s to each vertex in L1, and an end vertex e
with directed edges of weight 1 from each vertex in Rq to e. See Figure 3 for an illustration.

Clearly, the shortest path from s to e is the one with the fewest edges of weight 2, and
this path gives us a tuple ordering which minimizes the number of runs created by the tuples.
To obtain this ordering, for a tuple ti, place as the left-most symbol the label of the vertex
used in Li within the shortest path, and the right-most symbol the label of the vertex used
in Ri within the shortest path. The other symbols can be ordered arbitrarily. Because G a
DAG, this shortest path can be found in time proportional to the number of edges, which is
O(σ2q). Next, we show how to solve this in time proportional to the number of vertices of G.

Rather than constructing the edges in G, we can work from left-to-right maintaining the
shortest path from s to the vertices in our current level of G, either Li or Ri. Suppose our
current level is Li and we wish to extend the solution to the level Ri. Assuming |ti| ≥ 2, we
identify the vertices v1 and v2 in Li with the first and second shortest paths (they may have
the same length) from s, respectively. For each vertex u in Ri, if the label of u is not the
same as the label for v1, we make the shortest path to u the path from s to v1, then the edge

J.W. Bentley, D. Gibney, and S. V. Thankachan 15:11

0

1

2

L1

0

1

2

R1

0

1

L2

0

1

R2

2

L3

2

R3

1

2

3

1

2

3

L4 R4

s

e

1

1

2 1

2

1 1

2 1

1

1

(0, 1, 2) (0, 1) (2) (1, 2, 3)

Figure 3 The graph G constructed for the tuple ordering instance (0, 1, 2), (0, 1), (2), (1, 2, 3).

from v1 to u, otherwise we make it the path from s to v2, then the edge from v2 to u. If
|ti| = 1, we make the shortest path from s to u the path from s to the unique vertex v in Li,
then the edge from v to the unique vertex u. To extend a solution from Ri to Li+1, we first
identify the vertex v1 in Ri with the shortest path from s. For each vertex u in Li+1, if a
vertex with matching label vu exists in Ri, we take as the shortest path to u the shorter of
the following two paths: (i) the path from s to v1, then from v1 to u, or (ii) the path from
s to vu, then from vu to u. If no such vertex with matching label exists in Ri, take as the
shortest path from s to u the path from s to v1, then from v1 to u.

5.3 An Example of the Effectiveness of CAO

Lastly, we provide an example where the $ symbol ordering greatly reduces the number
of runs in the BWT. Let d be the number of strings and n the length of the strings. It
is possible for a set of special symbols to be ordered such that the number of runs is
Ω(nd). Let σ = 2 and d = σn. Consider the d distinct binary strings concatenated with
special symbols in lexicographic order. Under the ordering $1 < $2 ... < $d, the string
BWT (T) alternates between the $’s, 0’s, and 1’s, yielding Ω(nd) runs. On the other
hand, for this same case, arranging the $’s in the optimal ordering will give O(d) runs in
total. This is since for any substring s of T , the contiguous section of BWT (T) containing
the characters preceding s$i for i ∈ [1, d] contains at most the start of two runs. For
example, with n = 3, we would have T = 000$1001$2010$3011$4100$5101$6110$7111$8.
The number of runs in BWT (T) under the naive ordering $1 < $2 < . . . < $8, is 32
with BWT (T) = 01010101010101$8$101$2$3010101$4$501$6$7. The number of runs using
an optimal ordering $3 < $5 < $2 < $7 < $4 < $6 < $1 < $8 is 19 with BWT (T) =
00001111110001$8$101$2$3001110$4$501$6$7.

References

1 Jürgen Abel. Post BWT stages of the burrows-wheeler compression algorithm. Softw., Pract.
Exper., 40(9):751–777, 2010. doi:10.1002/spe.982.

2 Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Regular languages
meet prefix sorting. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 911–930, 2020. doi:
10.1137/1.9781611975994.55.

ESA 2020

https://doi.org/10.1002/spe.982
https://doi.org/10.1137/1.9781611975994.55
https://doi.org/10.1137/1.9781611975994.55

15:12 On the Complexity of BWT-Runs Minimization via Alphabet Reordering

3 Hideo Bannai, Travis Gagie, et al. Online lz77 parsing and matching statistics with rlbwts.
In Annual Symposium on Combinatorial Pattern Matching (CPM 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

4 Jason Bentley, Daniel Gibney, and Sharma V. Thankachan. On the complexity of bwt-runs
minimization via alphabet reordering. CoRR, abs/1911.03035, 2019. arXiv:1911.03035.

5 Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini, and Taher
Mun. Prefix-free parsing for building big bwts. Algorithms for Molecular Biology, 14(1):13,
2019.

6 Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.
SRC Research Report, 124, 1994.

7 Bastien Cazaux and Eric Rivals. Linking BWT and XBW via aho-corasick automaton:
Applications to run-length encoding. In Nadia Pisanti and Solon P. Pissis, editors, 30th Annual
Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20, 2019, Pisa, Italy,
volume 128 of LIPIcs, pages 24:1–24:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.CPM.2019.24.

8 Anthony J. Cox, Markus J. Bauer, Tobias Jakobi, and Giovanna Rosone. Large-scale compres-
sion of genomic sequence databases with the Burrows–Wheeler transform. Bioinformatics,
28(11):1415–1419, May 2012. doi:10.1093/bioinformatics/bts173.

9 Pierluigi Crescenzi. A short guide to approximation preserving reductions. In Proceedings of
Computational Complexity. Twelfth Annual IEEE Conference, pages 262–273. IEEE, 1997.

10 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Lower bounds based on the exponential-time
hypothesis. In Parameterized Algorithms, pages 467–521. Springer, 2015.

11 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suffix tree construction. J. ACM, 47(6):987–1011, 2000. doi:10.1145/355541.355547.

12 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In 41st
Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November 2000,
Redondo Beach, California, USA, pages 390–398, 2000. doi:10.1109/SFCS.2000.892127.

13 Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs: A framework for bwt-based
data structures. Theor. Comput. Sci., 698:67–78, 2017. doi:10.1016/j.tcs.2017.06.016.

14 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-time text indexing in bwt-runs
bounded space. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1459–1477, 2018.
doi:10.1137/1.9781611975031.96.

15 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal text
searching in bwt-runs bounded space. J. ACM, 67(1), January 2020. doi:10.1145/3375890.

16 Raffaele Giancarlo, Giovanni Manzini, Antonio Restivo, Giovanna Rosone, and Marinella
Sciortino. Block sorting-based transformations on words: Beyond the magic BWT. In
Developments in Language Theory - 22nd International Conference, DLT 2018, Tokyo, Japan,
September 10-14, 2018, Proceedings, pages 1–17, 2018. doi:10.1007/978-3-319-98654-8_1.

17 Raffaele Giancarlo, Giovanni Manzini, Giovanna Rosone, and Marinella Sciortino. A new class
of searchable and provably highly compressible string transformations. In Nadia Pisanti and
Solon P. Pissis, editors, 30th Annual Symposium on Combinatorial Pattern Matching, CPM
2019, June 18-20, 2019, Pisa, Italy, volume 128 of LIPIcs, pages 12:1–12:12. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CPM.2019.12.

18 Daniel Gibney and Sharma V. Thankachan. On the hardness and inapproximability of
recognizing wheeler graphs. In 27th Annual European Symposium on Algorithms, ESA 2019,
September 9-11, 2019, Munich/Garching, Germany., pages 51:1–51:16, 2019. doi:10.4230/
LIPIcs.ESA.2019.51.

19 Dominik Kempa. Optimal construction of compressed indexes for highly repetitive texts.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1344–1357, 2019. doi:
10.1137/1.9781611975482.82.

http://arxiv.org/abs/1911.03035
https://doi.org/10.4230/LIPIcs.CPM.2019.24
https://doi.org/10.1093/bioinformatics/bts173
https://doi.org/10.1145/355541.355547
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1137/1.9781611975031.96
https://doi.org/10.1145/3375890
https://doi.org/10.1007/978-3-319-98654-8_1
https://doi.org/10.4230/LIPIcs.CPM.2019.12
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://doi.org/10.4230/LIPIcs.ESA.2019.51
https://doi.org/10.1137/1.9781611975482.82
https://doi.org/10.1137/1.9781611975482.82

J.W. Bentley, D. Gibney, and S. V. Thankachan 15:13

20 Dominik Kempa and Tomasz Kociumaka. Resolution of the burrows-wheeler transform
conjecture. CoRR, abs/1910.10631, 2019. arXiv:1910.10631.

21 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 827–840, 2018. doi:10.1145/3188745.
3188814.

22 Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors.
In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 827–840. ACM, 2018. doi:10.1145/3188745.3188814.

23 Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni
Manzini. Efficient construction of a complete index for pan-genomics read alignment. In
Research in Computational Molecular Biology - 23rd Annual International Conference, RE-
COMB 2019, Washington, DC, USA, May 5-8, 2019, Proceedings, pages 158–173, 2019.
doi:10.1007/978-3-030-17083-7_10.

24 Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-
efficient alignment of short dna sequences to the human genome. Genome biology, 10(3):R25,
2009.

25 Heng Li and Richard Durbin. Fast and accurate long-read alignment with burrows–wheeler
transform. Bioinformatics, 26(5):589–595, 2010.

26 Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kristiansen, and
Jun Wang. Soap2: an improved ultrafast tool for short read alignment. Bioinformatics,
25(15):1966–1967, 2009.

27 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential
time hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http://eatcs.org/beatcs/
index.php/beatcs/article/view/92.

28 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding. In
Combinatorial Pattern Matching, 16th Annual Symposium, CPM 2005, Jeju Island, Korea,
June 19-22, 2005, Proceedings, pages 45–56, 2005. doi:10.1007/11496656_5.

29 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of indi-
vidual genomes. In Research in Computational Molecular Biology, 13th Annual International
Conference, RECOMB 2009, Tucson, AZ, USA, May 18-21, 2009. Proceedings, pages 121–137,
2009. doi:10.1007/978-3-642-02008-7_9.

30 Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press,
2016.

31 Tatsuya Ohno, Kensuke Sakai, Yoshimasa Takabatake, I Tomohiro, and Hiroshi Sakamoto. A
faster implementation of online rlbwt and its application to lz77 parsing. Journal of Discrete
Algorithms, 52:18–28, 2018.

32 Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and
complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991. doi:10.1016/0022-0000(91)
90023-X.

33 Christos H. Papadimitriou and Mihalis Yannakakis. The traveling salesman problem with
distances one and two. Math. Oper. Res., 18(1):1–11, 1993. doi:10.1287/moor.18.1.1.

34 Lianping Yang, Guisong Chang, Xiangde Zhang, and Tianming Wang. Use of the burrows–
wheeler similarity distribution to the comparison of the proteins. Amino acids, 39(3):887–898,
2010.

ESA 2020

http://arxiv.org/abs/1910.10631
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1007/978-3-030-17083-7_10
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1007/11496656_5
https://doi.org/10.1007/978-3-642-02008-7_9
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1287/moor.18.1.1

Simulating Population Protocols in Sub-Constant
Time per Interaction
Petra Berenbrink
Universität Hamburg, Germany
petra.berenbrink@uni-hamburg.de

David Hammer
University of Southern Denmark, Odense, Denmark
Goethe University Frankfurt, Germany
hammer@imada.sdu.dk

Dominik Kaaser
Universität Hamburg, Germany
dominik.kaaser@uni-hamburg.de

Ulrich Meyer
Goethe University Frankfurt, Germany
umeyer@ae.cs.uni-frankfurt.de

Manuel Penschuck
Goethe University Frankfurt, Germany
mpenschuck@ae.cs.uni-frankfurt.de

Hung Tran
Goethe University Frankfurt, Germany
hung@ae.cs.uni-frankfurt.de

Abstract
We consider the efficient simulation of population protocols. In the population model, we are given a
system of n agents modeled as identical finite-state machines. In each step, two agents are selected
uniformly at random to interact by updating their states according to a common transition function.
We empirically and analytically analyze two classes of simulators for this model. First, we consider
sequential simulators executing one interaction after the other. Key to the performance of these
simulators is the data structure storing the agents’ states. For our analysis, we consider plain arrays,
binary search trees, and a novel Dynamic Alias Table data structure. Secondly, we consider batch
processing to efficiently update the states of multiple independent agents in one step. For many
protocols considered in literature, our simulator requires amortized sub-constant time per interaction
and is fast in practice: given a fixed time budget, the implementation of our batched simulator is
able to simulate population protocols several orders of magnitude larger compared to the sequential
competitors, and can carry out 250 interactions among the same number of agents in less than 400 s.

2012 ACM Subject Classification Computing methodologies → Agent / discrete models

Keywords and phrases Population Protocols, Simulation, Random Sampling, Dynamic Alias Table

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.16

Related Version A full version [17] of the paper is available at http://arxiv.org/abs/2005.03584.

Supplementary Material Implementations and data: https://ae.cs.uni-frankfurt.de/r/p/pps.

Funding This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) under
grants ME 2088/3-2, ME 2088/4-2, and ME 2088/5-1.

Acknowledgements This project was initiated on a workshop of the DFG FOR 2975/1. We thank
the anonymous reviewers for their insightful comments and pointers, as well as the Center for
Scientific Computing, University of Frankfurt, for making their HPC facilities available.

© Petra Berenbrink, David Hammer, Dominik Kaaser, Ulrich Meyer, Manuel Penschuck, and Hung
Tran;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 16; pp. 16:1–16:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petra.berenbrink@uni-hamburg.de
https://orcid.org/0000-0002-0226-3475
mailto:hammer@imada.sdu.dk
https://orcid.org/0000-0002-2083-7145
mailto:dominik.kaaser@uni-hamburg.de
mailto:umeyer@ae.cs.uni-frankfurt.de
mailto:mpenschuck@ae.cs.uni-frankfurt.de
mailto:hung@ae.cs.uni-frankfurt.de
https://doi.org/10.4230/LIPIcs.ESA.2020.16
http://arxiv.org/abs/2005.03584
https://ae.cs.uni-frankfurt.de/r/p/pps
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Simulating Population Protocols in Sub-Constant Time per Interaction

1 Introduction

We consider the population model, introduced by Angluin et al. [5] to model systems of
resource-limited mobile agents that interact to solve a common task. Agents are modeled as
finite-state machines. The computation of a population protocol is a sequence of pairwise
interactions of agents. In each interaction, the two participating agents observe each other’s
states and update their own state according to a transition function common to all agents.

Typical applications of population protocols are networks of passively mobile sensors [5].
As an example, consider a flock of birds, where each bird is equipped with a simple sensor.
Two sensors communicate whenever their birds are sufficiently close. An application could
be a distributed disease monitoring system raising an alarm if the number of birds with
high temperature rises above some threshold. Further processes which resemble properties
of population protocols include chemical reaction networks [38], programmable chemical
controllers at the level of DNA [22], or biochemical regulatory processes in living cells [21].

While the computational power of population protocols with constantly many states per
agent is well understood by now (see below), less is known about the power of protocols with
state spaces growing with the population size. In this setting, much interest has been on
analyzing the runtime and state space requirements for probabilistic population protocols,
where the two interacting agents are sampled in each time step independently and uniformly
at random from the population. This notion of a probabilistic scheduler allows the definition
of a runtime of a population protocol. The runtime and the number of states are the main
performance measures used in the theoretical analysis of population protocols.

For the theoretical analysis of population protocols, a large toolkit is available in the
literature. Consequently, the remaining gaps between upper and lower bounds for many
quantities of interest have been narrowed down: for many protocols, the required number
of states has become sub-logarithmic, while the runtime approaches more and more the
(trivial) lower bounds for any meaningful protocol. So far, when designing new protocols,
simulations have always proven a versatile tool in getting an intuition for these stochastic
processes. However, once observables are of order log logn and below, naive population
protocol simulators fail to deliver the necessary insights (e.g., log logn ≤ 5 for typical input
sizes of n ≤ 232). Our main contribution in this paper is a new simulation approach allowing
to execute a large number of interactions even if the population size exceeds 240. In the
remainder of this section, we first give a formal model definition in Section 1.1 and then
describe our main contributions and related work in Sections 1.2 and 1.3.

1.1 Formal Model Definition
In the population model, we are given a distributed system of n agents modeled as finite-state
machines. A population protocol is specified by a state space Q =

{
q1, . . . , q|Q|

}
, an output

domain Y , a transition function δ : Q × Q → Q × Q, and an output function γ : Q → Y .
At time t, each agent i has a state si(t) ∈ Q, which is updated during the execution of
the protocol. The current output of agent i in state si(t) is γ(si(t)). The configuration
C(t) = {s1(t), . . . , sn(t)} of the system at time t contains the states of the agents after t
interactions. For the sake of readability, we omit the parameter t in C(t) and si(t) when it is
clear from the context. The initial configuration is denoted C(0) = C0.

The computation of a population protocol runs in a sequence of discrete time steps. In each
time step, a probabilistic scheduler selects an ordered pair of agents (u, v) independently and
uniformly at random to interact. Agent u is called the initiator and agent v is the responder.
During this interaction, both agents u and v observe each other’s state and update their
states according to the transition function δ such that (su(t+1), sv(t+1))← δ(su(t), sv(t)).

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:3

Table 1 Simulating N interactions among n agents in |Q| states. For MultiBatched, we restrict
|Q| = ω(

√
logn). Values indicated by † hold in expectation.

Simulator Section Time Complexity Space Complexity (bits)

Se
qu

en
tia

l SeqArray Section 2 Θ(N) Θ(n log |Q|)
SeqLinear Section 2 O(N |Q|) Θ(|Q| logn)
SeqBST Section 2 Θ(N log |Q|) Θ(|Q| logn)
SeqAlias Section 2 Θ(N) w.h.p. Θ(|Q| logn)

B
at
ch Batched Section 4 O(N(logn+ |Q|2)/

√
n)† Θ(|Q| logn)

MultiBatched Section 5 O(N |Q|
√

logn/
√
n)† Θ(|Q| logn)

A given problem for the population model specifies the agents’ initial states, the output
domain O, and (a set of) desired (output) configurations for a given input. As an example,
consider the Majority problem. Each agent is initially in one of two states qA and qB
corresponding to two opinions A and B. Assuming that A is the initially dominant opinion,
the protocol concludes once all agents u give γ(su) = A as their output. Any configuration
in which all agents output the initially dominant opinion is a desired configuration.

This notion of a desired configuration allows to formally define two notions of a runtime
of a population protocol. The convergence time TC is the number of interactions until the
system enters a desired configuration and never leaves the desired configurations in a given
run. The stabilization time TS is the number of interactions until the system enters a desired
stable configuration for which there does not exist any sequence of interactions due to which
the system leaves the desired configurations. A population protocol is stable, if it always
eventually reaches a desired output configuration.

A number of variants of this model are commonly used. For symmetric protocols, the
order of the interacting agents is irrelevant for the transition. In particular, this means
that if δ(qu, qv) = (q′u, q′v), then δ(qv, qu) = (q′v, q′u). In protocols with probabilistic transition
functions, the outcome of an interaction may be a random variable. In one-way protocols,
only the initiator updates its states such that δ(qu, qv) = (q′u, qv) for any interaction.

Model Assumptions. We assume a meaningful protocol which converges after at most
N = poly(n) interactions, has an O(1) time transition function δ, and uses |Q| <

√
n states

(observe that many relevant protocols only use |Q| = O(polylogn) states; see Section 1.3).

1.2 Our Contributions
In this paper, we present a new approach for simulating population protocols. Our simulator
allows us to efficiently simulate a large number, N , of interactions for large populations of
size n. Our findings are summarized in Table 1.

Sequential Simulators. As a baseline, we directly translate the population model into a
sequential algorithm framework Seq: Seq selects for each interaction two agents uniformly at
random, updates their states, and repeats. We analyze the runtime and memory consumption
of various variants in Section 2.

Batch Processing. To speed up the simulation, we introduce and exploit collision-free
runs, a sequence of interactions where no agent participates more than once. Our algorithms
Batched and MultiBatched coalesce these independent interactions into batches for

ESA 2020

16:4 Simulating Population Protocols in Sub-Constant Time per Interaction

improved efficiency. Batched first samples the length ` of a collision-free run. It then
randomly pairs ` independent agents, adds one more interaction – the collision – reusing one
of the run’s agents, and finally repeats. Batched is presented in Section 4 and extended
into MultiBatched in Section 5. We discuss practical details and heuristics in Section 6.

Dynamic Alias Tables. The simulation of population protocols often needs an urn-like data
structure to efficiently sample random agents (marbles) and update their states (colors).
The alias method [41, 40] enables random sampling from arbitrary discrete distributions in
O(1) time. However, it is static in that the distribution may not change over time. Thus, we
extend it and analyze a Dynamic Alias Table in Section 2. It supports sampling with and
without replacement uniformly at random (u.a.r.) and addition of elements (if the urn is
sufficiently full). Due to its practical performance and simplicity compared to more general
solutions [30, 33], we believe this data structure might be of independent interest and show:

I Theorem 1. Let U be a Dynamic Alias Table that stores an urn of n marbles, where each
marble has one of k possible colors. U requires Θ(k logn) bits of storage. If n ≥ k2, we can

select a marble u.a.r. from U with replacement in expected constant time,
select a marble u.a.r. from U without replacement in expected amortized constant time,
and add a marble of a given color to U in amortized constant time.

1.3 Related Work
Population Protocols. The population model was introduced in [5], assuming a constant
number of states per agent. Together with [6, 9], they show that all semilinear predicates
are stably computable in this model. In the following, we focus on two prominent problems,
Majority and Leader Election. For a broad overview, we refer to surveys [12] and [26].

In [8] a Majority protocol with three states is presented where the agents agree on
the majority after O(n logn) interactions w.h.p. (with high probability 1 − n−Ω(1)), if the
initial numbers of agents holding each opinion differ by at least ω(

√
n logn). In [34, 25],

four-state protocols are analyzed that stabilize in expectation in O
(
n2 logn

)
interactions.

In a recent series of papers [35, 1, 2, 4, 19, 15, 14, 13], bounds for the Majority problem
have been gradually improved. The currently best known protocol [13] solves Majority
w.h.p. in O

(
n log3/2 n

)
interactions using O

(
logn

)
states. Regarding lower bounds, [1] shows

that protocols with less than (log logn)/2 states require in expectation Ω
(
n2/ polylog(n)

)
interactions to stabilize. In [2] it is shown that any Majority protocol that stabilizes in
n2−Ω(1) expected interactions requires Ω(logn) states under some natural assumptions.

The goal for Leader Election protocols is that exactly one agent is in a designated
leader state. Doty and Soloveichik [24] show that any population protocol with a constant
number of states that stably elects a leader requires Ω

(
n2) expected interactions, a bound

matched by a natural two-state protocol. Upper bounds for protocols with a non-constant
number of states per agent were presented in [3, 1, 19, 2, 18, 28, 29, 16]. In [28] a Leader
Election protocol that stabilizes w.h.p. in O

(
n log2 n

)
interactions, using O

(
log logn

)
states

(matching a corresponding lower bound [1]) is presented. The core idea is to synchronize the
agents using a phase-clock. The currently best known protocol for Leader Election is due
to [16], stabilizing in expected O

(
n logn

)
interactions using O

(
log logn

)
states per agent.

As a tool for self-synchronization, so-called phase-clocks have been explored in a wide
range of related areas, see, e.g., the seminal paper [10]. In the population model, the concept
of phase-clocks was first introduced in [7] under the assumption that a leader is present.
These clocks were generalized in [28] to a junta of nε agents. In Section 7 we empirically
analyze a variant of this phase-clock process.

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:5

Simulations have proven a versatile tool to get an intuitive understanding of population
protocols. This is also reflected in the related work: See, e.g., [7, 8, 4, 3] for some examples
of papers that also present empirical data. However, to the best of our knowledge, our paper
is the first systematic analysis of simulators for population protocols.

Sampling from Discrete Distributions. The methods to sample non-uniform variates heav-
ily depend on the modeling and properties of the required probability distributions.

If the distribution is governed by a closed-form density function f(x), “numerical tricks”
can yield efficient algorithms with small memory footprints; this is the case for most well-
known distributions [23, 20]. A standard approach is the inverse sampling technique [23]. It
needs to compute the inverse F−1 of f ’s cumulative density function F (x) =

∫ x
−∞ f(y)dy (cf.

Section 6.1). Another concept is rejection sampling [20, Sec. 5.2.5/6]. It obtains a sample x
from a suitable simpler distribution g. In order to generate the distribution f , the sample
is accepted only with probability proportional to f(x)/g(x). The process repeats until a
sample is obtained (cf. Section 3). A special case is the ratio-of-uniforms method, commonly
used to obtain hypergeometric random variates [39].

Dedicated data structures support sampling from arbitrary discrete distributions. Given
a finite universe U = {1, . . . , u} with probabilities (p1, . . . , pu) with

∑
i pi = 1, Walker’s alias

tables [41] allow sampling in constant expected time, and can be constructed in O(u) time [40];
recently Hübschle-Schneider et al. [31] discussed engineering aspects and parallel construction.

In this paper, we model an urn with n balls with O(
√
n) colors (typically much less) as a

distribution over k colors where pi is proportional to the number of balls with color i. While
alias tables work in the static case, they do neither support removal nor insertion of balls
without rebuilding the data structure.

A suited binary tree can be constructed in O(k) time, and supports updates and sampling
in O(log k) time. Two independent but similar data structures by [30] and [33] support
updates and sampling in expected constant time. They partition the input into groups such
that the probabilities of elements within a group differ by at most a factor of two. This allows
rejection sampling within a group with an acceptance rate of at least 1/2. Since updates to
the distribution can affect the partition sizes, over-provisioning and table doubling involving
garbage collection [33, App. B] is used.

The approaches differ in the way they select a group to sample from. They are however
both recursive in the sense that the group selection is carried out with another instance of
the data structure itself. To achieve constant access times, the recursion is stopped after
constantly many layers, and the remaining very small problem is treated as a special case. As
a result, the data structures are quite complex, and were excluded in preliminary experiments
due to performance considerations. By constraining the supported distributions, simpler
schemes can be obtained [36, 27]. However, in our use case, they incur impractically high
rejection rates, as we cannot give non-trivial bounds on the number of balls per color.

It is note-worthy that Hagerup et al. [30] operate on integer weights (modeled as generalized
distributions lacking the normalization constraint), and require integer arithmetic only.

2 Sequential Simulation

As a baseline, we first consider variants of Seq, a sequential approach defined in Algorithm 1.
It is a direct translation of the machine model discussed in Section 1.1. Seq carries out N
steps in a fully serialized manner. For each interaction, it selects two agents uniformly at
random, computes their new states based on their current ones, and updates the configuration.

ESA 2020

16:6 Simulating Population Protocols in Sub-Constant Time per Interaction

Algorithm 1 Seq: The algorithmic framework for sequential simulation.

input: configuration C, transition function δ, number of steps N
for t← 1 to N do

sample and remove agents i and j without replacement from C

add agents in states δ(si, sj) to C

Under the realistic assumption that the transition function δ can be evaluated in constant
time, Seq’s runtime and memory footprint is dominated by storing, sampling from, and
updating the configuration C. We therefore consider appropriate data structures. In the
population model, agents typically are anonymous, i.e., we cannot distinguish two agents
in the same state. Hence, we can store a configuration C as an unordered multiset Ĉ
and maintain multiplicities rather than individual states. To this end, Seq requires an
urn-like data structure which efficiently supports (i) weighted sampling (with and without
replacement) and (ii) adding of single agents. In the following, we consider various data
structures and their impact on the complexity of the sequential approach.

Array. SeqArray maintains the configuration C in an array A[1 . . . n] where A[i] holds si,
the state of the i-th agent. Sampling with replacement is trivial, as we only draw a uniform
variate X ∈ [n] and return A[X]. Sampling without replacement works analogously: we
overwrite A[i] with A[n] and remove the array’s last element A[n]. Adding new elements is
possible by appending. (Note that we do not grow the memory since we always store at most
n agents in the array.) This leads to an O(N) time algorithm and a memory footprint of
O(n log |Q|) bits, which can be prohibitively large if simulating large populations in parallel.

Linear Search. SeqLinear maintains the multiset Ĉ in an array A such that A[i] holds the
number of agents in state qi. Sampling requires a linear search on A in O(|Q|) per sample.
This results in a worst-case simulation time of Θ(N |Q|). Nevertheless, in practice SeqLinear
is among the fastest sequential variants for small |Q| (see Section 7). Compared to SeqArray,
it has a significantly smaller memory footprint of O(|Q| logn) bits.

Binary Search Tree. SeqBST maintains the multiset Ĉ using a balanced binary search tree.
The i-th leaf (from left to right) encodes Ĉi, the number of agents in state i. Each inner
node v stores the number `v of agents in its left subtree. To randomly sample an agent, we
draw an integer X from {0, . . . , n− 1} uniformly at random and compare it to the root’s
value `r. If X < `r, the sample is in the interval covered by the left sub-tree, and we descend
accordingly. Otherwise, we update X ← X − `r and descend into the right subtree. We
recurse until some leaf i is reached, where we emit an agent of state i.

Each operation on the tree involves a simple path from the root to a leaf of length
Θ(log |Q|). Since the work per level is constant, all operations take Θ(log |Q|) time. Thus,
SeqBST requires Θ(N log |Q|) total time and O(|Q| logn) bits of memory.

SeqAlias combines the linear runtime of SeqArray (w.h.p.) with the small memory footprint
of SeqBST, provided |Q| <

√
n. At the heart of SeqAlias lies a Dynamic Alias Table introduced

in the following section.

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:7

F [i] S[i] A[i]
rejection

probability
q1 q4 7 2 q4 0

q2 q1 5 1 q1 3/9

q1 0 3 q1 6/9

q4 6 0 q1 3/9

q5 q1 4 2 q1 3/9

n
kαnk β nk

Rmin Rmax

reject

Figure 1 Dynamic Alias Table storing Ĉ = (q1 : 13, q2 : 5, q3 : 0, q4 : 8, q5 : 4), i.e., n = 30 and
k = 5. This imbalanced configuration will soon need rebuilding, e.g., after the next decrease of q1 in
row 3, or after adding two more agents in state q1 in row 1.

3 Dynamic Alias Tables

Dynamic Alias Tables. In this section we introduce our Dynamic Alias Table data structure.
Our goal is to model an urn which initially contains n marbles, each of which has one of k
possible colors. We assume that the colors are identified by numbers in {1, . . . , k}. The urn
defines a probability distribution D for the color of a marble drawn uniformly at random:
let pi be the probability that we sample a marble of color i.

Original Alias Method. The alias method [41] uses a table with two columns and k rows, one
row for each element (color) in the distribution D. Each row i has two entries corresponding
to two elements. Each element has a weight in [0, 1], and the two weights sum up to 1 in
each row. The first element of row i is always element i. It has weight F [i]. The second
element of row i is stored in A[i]. It has a weight of 1− F [i]. This means that the original
alias method uses only the two arrays, F and A, to store the distribution p1, . . . , pk.

To sample from D in the original alias method, we first sample a row i uniformly at
random from {1, . . . , k}. Then we draw a random real X ∈ [0, 1). If X < F [i], we return the
left element, i. Otherwise, we return the right element, A[i]. In the following, we modify the
alias method and call the resulting data structure Dynamic Alias Table.

Dynamic Alias Tables. Recall that we assume that our distribution corresponds to an urn
storing n marbles of k different colors. First, we explicitly add a second weight array S[i]
which stores the weight of the alias. Now instead of storing just one real value F [i] for each
row i, we store the exact numbers of marbles as integers for the first and the second entry of
row i in F [i] and S[i], respectively (cf. generalized distributions of [30]). As before, the first
entry of row i corresponds to color i and the second entry of row i corresponds to color A[i].
As illustrated in Figure 1, the rows are constructed in such a way that the total weight of
each row no longer adds up to the real value 1, but to the integer value bn/kc or dn/ke such
that all rows in total add up to n.

I Observation 2. Let U be a Dynamic Alias Table encoding an urn with n marbles and k
colors. The data structure U can be constructed in O(k) time.

Proof. The algorithm by Vose [40] can generate an (original) alias table representation of
such a discrete probability distribution D in O(k) time. It is straightforward to define a
mapping between the weights of the original alias method as computed in [40] and the two
integer values used in our Dynamic Alias Table. It follows that the Dynamic Alias Table
(using integer weights) can be constructed in O(k) time. J

ESA 2020

16:8 Simulating Population Protocols in Sub-Constant Time per Interaction

Updating and Sampling from Dynamic Alias Tables. Our modified data structure now
allows us to sample elements with and without replacement. Let Ri = F [i] + S[i] denote the
weight of row i and define Rmin and Rmax as smallest and largest row weights, respectively.
Observe that in general Rmin 6= Rmax.

In order to sample from U , we first select row i uniformly at random from {1, . . . , k}.
Then we draw a uniform variate X from {0, . . . , Rmax − 1}.1 There are three possible events:
If X < F [i], we emit the first element i. If F [i] ≤ X < Ri, we emit the second element A[i].
Otherwise, we reject the trial and restart the sampling process.

If we sample from U without replacement, we decrement the weight of the element just
sampled. This is always possible, since only elements with strictly positive weights can be
sampled in the first place. If we add a new element with color i to U , we increment the
weight of the first element of row i.

In order to guarantee expected constant sampling time, we ensure that the fraction
between Rmin and Rmax does not exceed a certain value. Let 0 < α < 1 and β > 1 be two
parameters chosen such that β/α = O(1). After each update to U we require

αbn/kc ≤ Rmin ≤ Rmax ≤ βdn/ke. (1)

Otherwise, we rebuild the data structure in O(k) time.

We are now ready to show Theorem 1.

Proof of Theorem 1. We start with the memory complexity. The Dynamic Alias Table
U stores the values of k, n, and Rmax as well as three arrays. Array F [1 . . . k] stores the
weight of the first column, array S[1 . . . k] stores the weight of the second column, and array
A[1 . . . k] stores the alias, i.e., the element of the second column. All entries are integers
from {0, . . . , n} (recall that we assume k ≤

√
n). Thus, the Dynamic Alias Table requires

Θ(k logn) bits of memory.
Let us now consider the sampling procedure. First, we consider the rejection probability.

Recall that we first sample a row i and then draw a uniform variate X from {0, . . . , Rmax − 1}.
As before, we denote the total weight of row i as Ri with Ri = F [i] + S[i]. A sampling trial
in row i is rejected if X ≥ Ri, i.e., with probability Ri/Rmax. Therefore, the probability to
reject a sample from any row is at most Rmin/Rmax. From the conditions in Equation (1) we
get that the rejection probability is at most α/β = O(1) and, conversely, we have at least a
constant success probability of (β − α)/β. The number of trials until we emit an element is
therefore geometrically distributed and has an expected value of at most β/(β − α) = O(1).

It remains to show that we emit an element of color i with probability pi = Ĉi/n, where
Ĉi is the number of marbles of color i in the Dynamic Alias Table U . We consider a
single sampling trial. Observe that in each trial we are given a uniform probability space
Ω = {(i, x) : 1 ≤ i ≤ k and 0 ≤ x < Rmax}. From this probability space we draw the row i

and the value X uniformly at random. Fix a color c and let Sc be the set of all events (i, x)
which lead to emission of an element of color c for this probability space Ω. An event (i, x)
is in Sc if and only if (i) i = c and x < F [i] or (ii) A[i] = c and F [i] ≤ x < F [i] + S[i].

The Dynamic Alias Table U is constructed such that the total weight for each color c
always equals Ĉc. Therefore, counting all elementary events gives us |Sc| = Ĉc. Observe that
Ω is a uniform probability space since the row i and the value X are drawn uniformly. It
has size |Ω| = kRmax. Hence, all events in Sc have equal probability 1/(kRmax), and we get
Pr[Sc] = |Sc|/(kRmax) = Ĉc/(kRmax).

1 Observe that in a practical implementation one can draw a single uniform variate U ′ from
{1, . . . , k ·Rmax − 1}, and derive U and X from it.

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:9

Let R be the event that a trial is rejected. Analogously to before, we enumerate over all
elementary events and obtain |R| =

∑
i(Rmax −Ri) = kRmax − n. For the complementary

event R we get |R| = n, which matches the intuition that the urn contains n marbles. Hence,
we have Pr

[
R
]

= n/(kRmax). Observe that Sc and R are mutually exclusive and hence
Sc ∩R = Sc \ R = Sc.

Rejected trials emit no element, but are repeated. Hence, we condition on R and obtain

pc = Pr
[
Sc
∣∣ R] =

Pr
[
Sc ∩R

]
Pr
[
R
] = Pr[Sc]

Pr
[
R
] = Ĉc

kRmax
· kRmax

n
= Ĉc

n
.

This means that a color c is indeed emitted with the correct probability pc = Ĉc/n.

Finally, we consider the amortized costs of rebuilding the Dynamic Alias Table U ever so
often. Observe that U has to be rebuilt whenever the condition in Equation (1) is violated.
This can happen in two possible ways.

Case 1: Rmin < αbn/kc.
In this case there must exist a row i for which Ri < αbn/kc. Observe that by assumption
of the theorem we have n ≥ k2, and after rebuilding U we have Rmin = bn/kc. In order to
have Ri < αbn/kc, at least bn/kc − αbn/kc ≥ k(1− α) elements must have been deleted
from row i. As 0 < α < 1, this happens only after at least k(1 − α) = Ω(k) sampling
operations. Now according to Observation 2, rebuilding takes time O(k). Together this
implies that rebuilding U takes amortized constant time per update of U .
Case 2: Rmax > βdn/ke.
The second case follows analogously to the first case. If Rmax > βdn/ke, at least
βdn/ke−dn/ke ≥ k(β−1) elements must have been added. This takes at least k(β−1) =
Ω(k) insertions, and hence rebuilding U takes amortized constant time per insertion.

Removal and insertion operations can be arbitrarily mixed and interact only beneficially
towards the amortization arguments. This concludes the proof of the theorem. J

4 Batch Processing

So far, we discussed algorithms to simulate a population protocol step-by-step. These
simulators can output the population’s configuration C(t) for each time step 1 ≤ t ≤ N .
With a time complexity of O(N), the simulators SeqArray and SeqAlias are optimal in this sense.
In practice, however, it often suffices to obtain a configuration snapshot every Θ(n) steps. In
this setting, we can achieve sub-constant work per interaction under mild assumptions.

Recall that SeqBST has a small memory footprint but a sub-optimal time complexity
of Θ(N log |Q|). Observe, however, that the underlying binary search tree can update the
multiplicity of any existing state in time O(log |Q|) independently of the changed quantity.
Here, we introduce the new algorithm Batched (see Algorithm 2) to exploit this observation.
The algorithm uses a binary search tree to store the configuration. It updates Ω(

√
n) agents

in expectation with each access and therefore reduces the time complexity to O(N(logn+
|Q|2)/

√
n) which is o(N) for |Q| = o(n1/4) and N = Θ(poly(n)).

Batching interactions. In order to coalesce individual updates into batches, Batched uses
the notion of collision-free runs as illustrated in Figure 2. We interpret the execution of a
protocol as a sequence i1, i2, . . . where at time t agents i2t−1 and i2t interact.

Let ` be the largest index such that all i1, . . . , i` are distinct. Then, the first b`/2c
interactions are independent of each other and can be rearranged in any order. We refer
to them as a collision-free run of length `. If ` is odd, the first agent of the (b`/2c+ 1)-th

ESA 2020

16:10 Simulating Population Protocols in Sub-Constant Time per Interaction

The original interaction sequence (cf. Section 2):

q3 q2

si1 si2
q1 q2

si3 si4
q1 q1

si5 si6
q2 q1

si7 si8
q3 q3

si9 si10

q1 q2

si11 si12

. . . q1 q1

si2`−1si2`

q2 q?

si2`+1 si6

δ
the updated state of the agent drawn twice is

known only after the δ was evaluated

the ` independent interactions can be rearranged arbitrarily

After sorting state pairs:

special treatment
for collision

q1 q1

si20 si21

q1 q1

si2`−1si2`

q1 q2

si3 si4
q1 q2

si11 si12

q2 q1

si7 si8
. . . q3 q3

si9 si10

q1 q1

si5 si6
q2 q?

si2`+1 si6

δ

After merging interactions with identical state pairs:

q1 q1 q2 q?q1 q1d11 × q1 q2d12 × q1 q3d13 ×

q2 q1d21 × q2 q2d22 × q2 q3d23 ×

q3 q1d31 × q3 q2d32 × q3 q3d33 ×

D =

 δ

Figure 2 Batch processing uses collision-free runs, long sequences of independent interactions,
which can be rearranged and grouped together.

interaction is also considered collision-free. Since we are free to reorder the interactions,
we can group all interactions of states (qi, qj) together, evaluate δ(qi, qj), and update all
accordingly affected states in one step.

Now instead of sampling a sequence of agents and partitioning the sequence into collision-
free runs, we take the opposite direction. We first sample only the length ` of a collision-free
run from the appropriate probability distribution (see below). Then, we randomly match `
agents as discussed below. Finally, we reuse one of the agents from the matching in order to
plant a collision. These steps are repeated until at least N interactions are simulated.

Matching Agents. We simulate sampling ` agents without replacement to construct a
collision-free run of length `. While we cannot afford to draw the agents individually, we only
need to know how many interactions nij of each state pair (qi, qj) we encountered. Thus, a
run can be modeled by a |Q|×|Q| matrix D = (nij) with

∑
ij nij = b`/2c. (If ` is odd, we

remove one agent and treat it individually.)
To obtain D, we first sample the row sums Di =

∑
j nij of the matrix from a multivari-

ate hypergeometric distribution. This simulates sampling b`/2c initiating agents without
replacement. We then sample values within each row analogously to find the matching
responding agents. Sampling D takes O(|Q|2) time in total since each individual sample
from a hypergeometric distribution can be computed in O(1) time [39].

For correctness, note that our sampling approach corresponds to first selecting b`/2c
agents as initiators and then b`/2c agents as responders. That is, we first sample agents
i1, i3, . . . , i2b`/2c−1 and then agents i2, i4, . . . , i2b`/2c (instead of the natural interleaved variant
i1, i2, . . . , i2b`/2c). Since, each draw is taken uniformly at random, the permutation does not
change the distribution (see full version [17] for a formal proof).

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:11

Algorithm 2 Batched: The algorithmic framework for simulation in batches.
input: configuration C, transition function δ, number of steps N
t← 0
while t < N do

`← sample length of a collision-free run
let D = (dij) be a |Q| × |Q| matrix and sample dij as . batch processing
the number of interactions (qi, qj) among ` interactions
let C′ be an empty configuration
foreach (qi, qj) ∈ Q2 do

remove from C: dij agents in states qi, and dij agents in states qj

(q′
i, q

′
j)← δ(qi, qj)

add to C′: dij agents in states q′
i, and dij agents in states q′

j

if ` is even then . plant a collision
sample agent c1 without replacement from C′ . collision at c1
merge C′ into C
sample agent c2 without replacement from C

else
sample agent c1 without replacement from C

sample agent c2 without replacement from C′ . collision at c2
merge C′ into C

add agents δ(c1, c2) to C
t← t+ `+ 1

Length of a Collision-Free Run. In the following, we analyze the length ` of a collision-free
run. Observe that the following analysis is similar to the analysis of a generalized variant of
the birthday problem [32]. We consider a generalization which we also use in Section 5. We
assume that r agents have already interacted and ask how many more collision-free agents
can be added. Formally we define the distribution coll(n, r) as follows.

IDefinition 3. Consider a sequence a1, a2, . . . of agents sampled independently and uniformly
at random. Let A0 be a set of r initially prescribed agents and let Ai = Ai−1 ∪ {ai} be
the set of agents after i draws. We define the random variable ` as the smallest index s.t.
a` ∈ A`−1. We say ` ∼ coll(n, r), where n is the total number of agents and r is the number
of prescribed agents.

In Section 6.1 we discuss how we can sample from this distribution using the inverse
sampling technique [23]. We find that sampling ` takes O(logn) time. In practice, this is
comparable to the time it takes to sample a hypergeometric random variate. In the following,
we show basic properties of coll(n, r) in order to show bounds on the runtime of Batched.

I Lemma 4. Let ` ∼ coll(n, r). Then ` has support {1, . . . , n− r} and distribution
Pr[` = k] = n−(k+1)(n− r)!(r + k)/(n− r − k)!.

Proof. Consider an urn with n marbles. Initially, r marbles are red, while the remaining
n− r marbles are green. We now take out one marble at a time: if it is green, we keep on
going (think of a traffic light) and put a red one back in. If we take a red marble, we stop.
Observe that the number of marbles we take out is exactly ` as above, as the green marbles
represent new unconsidered agents while the red ones represent agents in A`−1.
This directly leads to the acclaimed distribution:

Pr[` = k] =
k−1∏
i=0

(n− r)− i
n︸ ︷︷ ︸

select k out of n− r

· r + k

n︸ ︷︷ ︸
(k+1)-th is red

J

ESA 2020

16:12 Simulating Population Protocols in Sub-Constant Time per Interaction

I Lemma 5. Let ` ∼ coll(n, 0). Then E[`] = Θ(
√
n).

Proof. We first upper bound E[`] = O(
√
n) and then give a matching lower bound E[`] =

Ω(
√
n). In both cases, we write E[`] =

∑n
i=0 Pr[` ≥ i] and split the sum at

√
n. Then we

bound both terms appropriately. Observe that for some fixed value i we have Pr[` ≥ i] =∏i−1
j=0(1− j/n). For the upper bound on E[`] we get

E[`] =
n∑
i=0

Pr[` ≥ i] =
n∑
i=0

i−1∏
j=0

(
1− j

n

)
≤

√
n−1∑
i=0

1 +
∞∑

i=
√
n

(
1−
√
n

n

)i
≤ 2
√
n.

Similarly, we get for the lower bound on E[`] that

E[`] =
n∑
i=0

Pr[` ≥ i] =
n∑
i=0

i−1∏
j=0

(
1− j

n

)
≥

√
n∑

i=0

i−1∏
j=0

(
1−
√
n

n

)
=

√
n∑

i=0

(
1− 1√

n

)i

=
√
n

(
1−

(
1− 1√

n

)√n+1
)
≥
√
n
(
1− e−1).

Therefore we have E[`] = Θ(
√
n). J

Using Lemma 5, we are now ready to bound the runtime and space complexity of Batched.

I Theorem 6. Let n be the number of agents and |Q| the number of states. Batched
simulates N interactions in O(N(|Q|2 + logn)/

√
n) expected time using Θ(|Q| logn) bits.

Proof. According to Lemma 5, each batch simulates Θ(
√
n) interactions in expectation. It

takes O(logn) time to sample the length of a collision-free run ` (see Section 6.1) and O(|Q|2)
time (cf. [39]) to sample the interaction numbers and process the interactions for all pairs of
states. This implies the runtime complexity. The space complexity follows immediately from
the binary search tree used to store the configuration. J

5 Merging Batches

In an empirical evaluation, we found that our implementation of algorithm Batched spends
most time in the batch processing step (to sample and transition the |Q| × |Q| matrix D);
this is especially true for complex protocols with non-trivial state space sizes. As the matrix
sampling cost is independent of the length ` of the underlying collision-free run, we modify
the algorithm to support more than one collision per batch processing step.

Introducing Epochs. An execution of the improved algorithm MultiBatched logically
consists of several epochs. For each epoch, the algorithm samples the lengths `1, `2, . . . ,
`ρ of multiple collision-free runs R1, . . . , Rρ. As no agent may appear twice in the union
of those collision-free sequences, later runs become shorter in expectation (E[`i+1] < E[`i]),
naturally limiting the number ρ of runs per epoch. After each run Ri, we plant one collision,
i.e., an interaction with an agent that was already considered in the current epoch. An epoch
concludes with a single batch processing step, in which matrix D is sampled and processed
analogously to algorithm Batched.

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:13

Tracking Dependencies. While algorithm Batched only reorders and groups together
independent interactions, our improved algorithm MultiBatched delays most interactions
until the end of the epoch. To do so, the algorithm conceptually assigns each agent one of
three types, and updates these labels as it progresses through the epoch:

untouched agents did not interact in the current epoch. Hence, all agents are labeled
untouched at the beginning of an epoch.
updated agents took part in at least one interaction that was already evaluated. Thus,
updated agents are already assigned their most recent state.
delayed agents took part in exactly one interaction that was not yet evaluated. Thus,
delayed agents are still in the same state they had at the beginning of the epoch, but
are scheduled to interact at a later point in time. We additionally require that their
interaction partner is also labeled delayed.

Analogously to algorithm Batched, we maintain two urns C and C ′. Urn C ′ contains
updated agents, while urn C stores untouched and delayed agents (or in other words, all agents
whose state was not updated in the current epoch). At any point in time, an agent is either
in C or C ′ meaning that |C|+ |C ′| = n. Due to symmetry, we do not explicitly differentiate
untouched from delayed agents. We rather maintain only the number T of delayed agents and
lazily select them while planting collisions or during batch processing.

If a delayed agent a is selected while planting a collision, it takes part in a second
interaction and – by definition – cannot be labeled delayed any more. Thus, we randomly
draw a second delayed agent b, evaluate their transition, store the updated state of b in C ′,
and directly evaluate a again in the planted collision. Finally, we decrease T ← T − 2 as
agents a and b changed their labels from delayed to updated. Observe that we might repeat
this step in the (unlikely) case that a planted collision involved two formerly delayed agents.

Length of an Epoch. We now analyze the length of an epoch. We start by extending the
analysis of coll(n, r) to the r = Ω(

√
n) regime (reached after O(1) runs w.h.p.). The following

lemmas establish expected value and concentration.

I Lemma 7. Let ` ∼ coll(n, r) and r = Ω(
√
n). Then E[`] = Θ(n/r).

Proof. The proof follows analogously to Lemma 5. Again, we start with the upper bound.

E[`] =
n−r∑
i=0

Pr[` ≥ i] =
n−r∑
i=0

i−1∏
j=0

(
1− j + r

n

)
≤
∞∑
i=0

(
1− r

n

)i
= n

r
.

For the lower bound we derive a general result for arbitrary r.

E[`] =
n−r∑
i=0

Pr[` ≥ i] =
n−r∑
i=0

i−1∏
j=0

(
1− j + r

n

)
≥

r−1∑
i=0

i−1∏
j=0

(
1− j + r

n

)
≥

r−1∑
i=0

(
1− 2r

n

)i
= n

2r

(
1−

(
1− 2r

n

)r)
≥ n

2r (1− e−2r2/n).

The last inequality holds since e−2r2/n constitutes an upper bound on (1− 2r/n)r as it can
be rewritten as (1− 2r/n)n·r/n and (1− 2r/n)n ≤ e−2r. For r = Ω(

√
n) the second factor

(1− exp(−2r2/n)) is Ω(1) which proves the claim. J

ESA 2020

16:14 Simulating Population Protocols in Sub-Constant Time per Interaction

I Lemma 8. Let ` ∼ coll(n, r) and r = Ω(
√
n). Then ` = Θ(n/r) with probability 1− o(1).

Proof. We prove the claim by showing that Pr[` < t] and Pr[` > t] are o(1) for t = o(n/r)
and t = ω(n/r), respectively. We have

Pr[` < t] = 1− Pr[` ≥ t] = 1−
t−1∏
i=0

(
1− i+ r

n

)
≤ 1−

(
1−

t−1∑
i=0

i+ r

n

)
≤ 2tr + t2

2n ,

where the first inequality follows from the Weierstrass product inequality. Furthermore, with
r = Ω(

√
n) we have n/r = O(

√
n) and thus t = o(n/r) such that t2 = o(n) and tr = o(n).

For the second part, we have

Pr[` > t] =
t∏
i=0

(
1− i+ r

n

)
≤
(

1− r

n

)t
≤ e−rt/n,

and for t = ω(n/r) and thus rt/n = ω(1) the claim follows. J

Intuitively, Lemma 7 shows that for sufficiently many prescribed agents r, the probability
of drawing a colliding agent remains approximately r/n throughout the run. Similar to a
geometric distribution, this results in a concentrated expected length of Θ(n/r). We now
estimate the number of agents sampled after ρ runs.

I Lemma 9. Let Lk =
∑k
i=1 `i be the number of agents drawn in an epoch with k runs. Then,

for |Q| = ω(
√

logn), |Q| = o(
√
n logn) and ρ = O(|Q|2/ logn) we have E[Lρ] = Θ(√ρn).

Proof. The variable Lk equivalently corresponds to the number of marbles B(k, n) that need
to be drawn in the birthday problem s.t. k coincidences occur. The asymptotics of E[B(k, n)]
have first been studied by Kuhn and Struik [32] for the cases that k = o(n1/4). Their results
have since been improved by Arratia et al. [11] where the asymptotic bounds on the moments
of B(k, n) have been calculated for more general conditions on k. By [11, Corollary 12] for k
a function of n, i.e., k = kn where kn →∞ and kn/n→ 0 it holds that

E[B(kn, n)] ∼
√

2nkn as n→∞.

By assumption the conditions are met since ρ = ω(1) and ρ = o(n), thus E[Lρ] =
Θ(|Q|

√
n/ logn) = Θ(√ρn). J

Complexity. In order to analyze MultiBatched’s runtime, we first establish the time
required per epoch, and then bound the total expected runtime and memory requirements.

I Lemma 10. MultiBatched takes time O(ρ logn+ |Q|2) for an epoch of ρ runs.

Proof. Planting a collision is done by drawing the two interacting agents from the appropriate
urns and setting them to be updated which requires O(1) time. Sampling the length of a
single collision-free run takes time O(logn) (see Section 6.1). For the final batch-processing
step MultiBatched takes Θ(|Q|2) time independently of the number of delayed agents. J

I Theorem 11. Let n be the number of agents and |Q| the number of states. MultiBatched
simulates N interactions in O(N |Q|/

√
n/ logn) expected time if |Q| = ω(

√
logn) and |Q| =

o(
√
n logn).

Proof. Combining Lemmas 9 and 10, we find a runtime of O(N(ρ logn+ |Q|2)/√ρn). Setting
ρ = Θ(|Q|2/ logn) balances the cost of sampling runs and planting collisions with the cost of
batch processing, and thus does not increase the asymptotic cost per epoch. Higher values of
ρ only increase the expected time complexity. J

MultiBatched has sub-constant work per interaction for |Q|=o
(√

n
logn

)
and N=Θ(polyn).

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:15

6 Heuristics and Implementation Details

Implementations of all discussed simulators (including scripts to reproduce figures and
numbers included in this paper) are freely available. In the following, we highlight important
aspects necessary to obtain simulators that are both fast in practice and highly customizable.

All simulators are implemented in C++ and use compile-time specializations to implement
specific protocols and experimental setups.

In contrast to pure deterministic functions, non-deterministic transition functions (possibly
with side-effects) have to be informed about every interaction carried out.2 To allow for batch
processing, we cannot use the natural invocation order. Instead, we inform the protocol how
often a state pair will interact within an epoch. It is then expected to assign all participating
agents to the appropriate states. See the full version of this paper [17] for more details and
listings.

6.1 Sampling the Length of a Collision-Free Run
Recall that Batched and MultiBatched repeatedly sample the length ` of a collision-free
run. In the following we discuss how this sampling can be implemented using the inverse
sampling technique (Ist) [23]: let cdf(x) be the cumulative density function of a target
distribution. Then, Ist draws a uniform variate U from [0; 1], solves U = cdf(x) for x, and
returns it as the sample. We denote the CDF of coll(n, k) as Fn,k(t). Lemma 4 yields:

1− Fn,k(t) = Pr[`>t] =
t∏
i

n−k−i
n

= 1
nt

(n− k)!
(n− k − t− 1)!

(x−1)!=Γ(x)= n−t
Γ(n− k + 1)
Γ(n− k − t) .

Since we are not aware of an inverse that can be evaluated fast, we numerically solve
U = Fn,k(t) for t. To avoid numerical instabilities, we rewrite the expression in terms of
log Γ(x), which is available as the C standard function lgamma(x):

U = 1−n−tΓ(n− k + 1)
Γ(n− k − t) ⇔ log(1− U) = log Γ(n− k + 1)− log Γ(n− k − t)− t logn

Lacking a cheap derivative of the RHS, we rely on first-order numerical inversion methods
only. In this context, an ad-hoc combination of binary search and regula-falsi gave most
consistent results. We jump-start the search using a small look-up table containing lower
and upper bounds on t for intervals of U and k.

While the method requires O(logn) evaluations of Fn,k(·), we observe less than ten calls
on average for n = 250. The resulting sampling algorithm has a practical runtime comparable
to the sampling of hypergeometric random variates. Since the latter is sampled much more
frequently, further optimizations will yield limited results to the total runtimes of Batched
and MultiBatched.

6.2 Heuristics
The frequent sampling of hypergeometric random variates, dominates MultiBatched’s
runtime. In the following, we discuss three heuristics to reduce this number.

2 Observe that many protocols with non-deterministic transition functions have been derandomized, see,
e.g., the notion of (biased) synthetic coins in [1, 18]. While this is supported by the simulator, we feel it
is more convenient to offer the most expressive interface possible.

ESA 2020

16:16 Simulating Population Protocols in Sub-Constant Time per Interaction

0 1 2 3
0 0 1 0 0
1 1 1 2 1
2 2 2 2 3
3 0 3 3 3

1 1 2 1

Full matrix Row for qu = 1

Group (q′u = 1) Group (q′u = 2)

Figure 3 Simplified transition matrix ∆′ for a clock with period m=4. The initiator’s phase
(row) is circularly incremented only when matched with a suitable responder (column).

Renaming. In the renaming heuristic we exploit the observation that agents are typically
not uniformly distributed over all states. Instead there are often sparsely populated states
which are seldom hit when sampling an agent.

It can be beneficial to consider these states last. SeqLinear’s linear search, for instance,
stops as soon as the sampled state is found. The same is true when sampling Batched’s and
MultiBatched’s interaction matrices: for row i, we draw Di agents from a multivariate
hypergeometric distribution. This is implemented by obtaining |Q|−1 properly parametrized
hypergeometric variates; the process terminates early once all Di agents have been sampled.

In both examples, we maximize the probability of early stopping by considering highly
populated states first. To this end, we maintain a permutation π : [|Q|]→ [|Q|] that sorts
states decreasingly by their sizes. We then process states in the order indicated by π. If
this permutation is updated once every Ω(|Q| log |Q|) interactions, the sorting step becomes
asymptotically negligible for sequential simulators. For Batched and MultiBatched, π
can be updated once every Ω(log q) batches.

Partitioning. If δ is a deterministic function, we can model it as a matrix ∆ ∈ (Q×Q)|Q|×|Q|.
The matrix of a deterministic one-way protocol can be further simplified to ∆′ ∈ Q|Q|×|Q|
since the states of the responders remain unchanged.

For many meaningful protocols, the entries of ∆′ are not random but exhibit some
structure. As an example, consider the simplified3 phase-clock transition matrix illustrated
in Figure 3. Here, each row contains only two different output states. The partitioning
heuristic uses this observation during the batch steps of Batched and MultiBatched.
When sampling Di responders for initiators in state qi, we group together all entries in the
i-th row of ∆′ that assign the same new state to the initiating agents. It then suffices to
draw one random hypergeometric variate per group.

Note that the heuristic does not reduce the runtime complexity of the algorithm – even
if we precompute the partitioning. This is due the fact that we still need to compute the
population sizes for each group which involves Θ(|Q|) additions per row. For pathological
protocols, the number of hypergeometric random variates required for each row remains
Ω(|Q|). A simple worst-case protocol is the transition function δ(qu, qv) = (qv, qv).

Skipping. Generalizing partitioning heuristic to two-way protocols tends to be ineffective in
practice: since initiator and responder may both update their states, the transition matrix is
often more fragmented. The partitioning overhead then easily exceeds the potential savings.
For such protocols MultiBatched uses a coarser partitioning, and only detects and skips
transitions that preserve the configuration (i.e., δ(qu, qv) = (qu, qv) or δ(qu, qv) = (qv, qu)).

3 Formally the states of the phase-clock are pairs (x, b) where x represents the phase, and b marks an
agent as leader. For the sake of simplicity we assume that all agents are followers.

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:17

215 220 225 230 235 240 245 250

Number n of agents

10 3

10 2

10 1

100

101

102
Ti

m
e

pe
r i

nt
er

ac
tio

n
[n

s]

Uniform Clock: |Q| = 8, 1 thread

215 219 223 227 231 235 239

Number n of agents

10 1

100

101

102

103

Ti
m

e
pe

r i
nt

er
ac

tio
n

[n
s]

Random Two-Way: |Q| = 128, 1 thread

MultiBatched SeqAlias SeqLinear SeqBST SeqArray Seqprefetch
Array

Figure 4 Processing time per interaction as function of the number of agents n. Each series ends
with the largest value n for which the median of the total processing time is below 400 s.

6.3 Dynamic Epoch Lengths
Recall that MultiBatched is split into several epochs that each consist of multiple collision-
free runs. In our implementation, we add runs to an epoch until the number of interactions
exceeds a specified threshold T . The value of T has to be chosen as a trade-off between the
cost of adding another run (i.e., sampling the run length and planting a collision) versus the
diminishing return it yields (as later runs become shorter in expectation). This trade-off
depends on the protocol and its configuration. For instance, the batch processing cost of
a convergent protocol may become smaller compared to the initial costs (e.g., when most
agents are in only a small fraction of the states).

As the trade-off is dynamic, we maximize the throughput using a control loop that
dynamically optimizes the length of an epoch. Given the currently best value known for T ,
it increases (and later decreases) T to 1.1T and 0.9T , respectively. For each of the three
values, we measure the throughput, chose the T which maximizes it and repeat. Since the
throughput response curve is single-peaked, the process will find a nearly optimal T .

7 Experimental Evaluation

In the following, we empirically evaluate the various simulation algorithms. The code is
compiled using g++-8.3 with flags -O3 -march=native and executed on the following system:
2× Intel Xeon Gold 6148 CPU @ 2.4 GHz (40 cores/80 hardware threads in total), 192 GiB
DDR4 RAM @ 2666 MHz. Each data point is the median of at least five measurements
(using different random seeds); error bars indicate their standard deviation.

SeqBST’s search tree is implemented as an array with breath-first-indexing (i.e., the
weight of node i ≥ 1 is stored at A[i]; its left child is at index 2i, its right child at 2i+1).
In order to reduce pipeline stalls, we implement a branch-free traversal similarly to [37].
SeqArray uses an array with 32 bit words to store states. We additionally consider Seqprefetch

Array
which prefetches states for eight4 interactions ahead of time as a latency hiding technique. If
our Dynamic Alias Table implementation detects an imbalance necessitating rebuilding of
the data structure, it will first attempt to quickly solve the problem by swapping the alias
of the affected row with up to five randomly selected partners; only if this fails a rebuild is
issued. This heuristic does not change the asymptotic time complexity of the data structure.

4 This is the optimal value measured for this CPU type and slightly varies between machines.

ESA 2020

16:18 Simulating Population Protocols in Sub-Constant Time per Interaction

The runtime of most simulators has non-trivial dependencies on the input parameters,
protocol, and state distribution. Hence, we simulate a small number N = n of interactions
to prevent measuring artifacts caused by significant changes in the state distributions.
MultiBatched typically simulates slightly more interactions due to the batching granularity.
Since the runtime of all simulators is linear in N , we always report the time per interaction
to ease extrapolation.
Three different protocols are used to highlight certain aspects of the algorithms.

Uniform Clock and Running Clock implement the same deterministic one-way protocol
phase-clock protocol inspired by [28]. In the running variant, all agents start in the first
phase, and

√
n of them are marked. Due to the choice of parameters, we expect only one

out of Θ(
√
n) interactions to change states. Thus, even at the end of the benchmark,

the population is still highly concentrated in the lowest phase. The uniform variant, in
contrast, evenly distributes marked and unmarked agents over all phases. This results in
a constant update probability per interaction.
The Random Two-Way protocol uses a deterministic transition function δ(qi, qj) = dij
where each dij is initially drawn independently and uniformly at random from Q. Initially
agents are evenly distributed over all states.

To ensure the correctness of our implementations, we rely on unit tests (e.g., using a
family of protocols that count the number of interactions of each agent). Additionally, we
cross-reference the results of various algorithms. Since we cannot expect two simulators to
yield the same set of interactions, we compare their simulated dynamics. We, for instance,
monitor the number of interactions required until a Uniform Clock starts running.

Number of Agents. We begin our experimental study by investigating the dependencies on
the problem size n. To this end, we search for the largest number n of agents that a simulator
can simulate within a fixed time budget of 400 s. Figure 4 reports such measurements for
two different settings (see the full version of this paper [17] for the full set).

For the Uniform Clock protocol with |Q| = 8 states, the fastest Seq variant reaches
n = 232 within the time budget. In the same time, MultiBatched simulates N = n = 250

interactions. For Random Two-Way, the ratio between the achievable population sizes is
smaller but still exceeds three orders of magnitude. We attribute the different ratios mainly
to the batching step. MultiBatched requires Θ(|Q|2) hypergeometric variates per batching
step for the latter protocol, since neither the partitioning nor the skipping heuristics (see
Section 6) are effective on a featureless transition matrix with uniformly random states. For
the Uniform Clock protocol, the partitioning heuristic reduces the number of hypergeometric
random variates to less than 2|Q| per batch.

Number of States. As summarized in Table 1, the number |Q| of states crucially affects
the algorithms’ runtimes. To quantify the practical impact, we carry out scaling experiments
for 4 ≤ |Q| ≤ 128 while fixing all remaining parameters. Figure 5 visualizes the results.

MultiBatched performs best in all cases supporting our previous analysis. It shows
almost no scaling behavior for both clock protocols. For Random Two-Way, the algorithm is
almost one order of magnitude faster than its competitors despite a slow-down of 40 between
the smallest and largest state sizes.

Seqprefetch
Array is the second fastest solution in almost all settings. In the Running Clock

campaign, it is however outperformed by SeqLinear. This can be explained by the fact that
initially almost all agents are in state 0 which results in a constant time look-up despite the
usage of a linear search. This behavior motivates the renaming heuristic.

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:19

25 50 75 100 125
Number |Q| of states

0

50

100

150

Ti
m

e
pe

r i
nt

er
ac

tio
n

[n
s]

Uniform Clock

25 50 75 100 125
Number |Q| of states

Running Clock

MultiBatched SeqAlias SeqLinear SeqBST SeqArray Seqprefetch
Array

25 50 75 100 125
Number |Q| of states

Random Two-Way

Figure 5 Processing time per interaction as function of the number of states |Q| with n = 230.

216 218 220 222 224 226 228 230

Number n of agents

101

102

Ti
m

e
pe

r i
nt

er
ac

tio
n

pe
r t

hr
ea

d
[n

s]

Random Two-Way: |Q| = 8, 1 thread

216 218 220 222 224 226 228 230

Number n of agents

100

4 × 10 1

6 × 10 1

2 × 100

3 × 100

4 × 100
Random Two-Way: |Q| = 8, 40 threads

MultiBatched SeqAlias SeqLinear SeqBST SeqArray Seqprefetch
Array

216 218 220 222 224 226 228 230

Number n of agents

100

4 × 10 1

6 × 10 1

2 × 100

3 × 100

4 × 100
Random Two-Way: |Q| = 8, 80 threads

Figure 6 Effect of process parallelism on a machine with 40 CPU cores (plus HyperThreading).

We observe no systematic dependency on |Q| for SeqAlias rendering it a good choice for
very large state spaces. While it is up to a factor of 2.0 slower compared to Seqprefetch

Array , the
algorithm might be preferable in a parallel setting.

Memory Footprint and Parallelism. Due to the stochastic nature of the protocols, we
expect that in almost all applications several runs of the same protocol are required to
derive statistically significant results. On modern machines with many processor cores, one
should be able to maximize the throughput by executing multiple independent simulations
in parallel. As visualized in Figure 6, most simulators scale well with the number of threads
and typically achieve a self-speedup of 40 to 50 times using 40 cores (plus HyperThreading)
at n = 230. A notable exception is Seqprefetch

Array , which reaches only a speedup of 30 as it
saturates the memory controllers of both CPU sockets.

Another aspect of parallel execution is the memory footprint. Since SeqArray requires
constant memory per agent, our implementations of SeqArray and Seqprefetch

Array allocate in excess
of 320 GB main memory to execute 80 processes in parallel. Although, this number can
be reduced by constant factors using a more efficient representation of states, it has to be
contrasted to the competing algorithms with a state space of only a few kilobytes5 for the
same campaign.

5 We report no exact numbers as the system’s process overheads exceed the simulators’ internal states.

ESA 2020

16:20 Simulating Population Protocols in Sub-Constant Time per Interaction

8 Conclusions and Open Problems

We considered the simulation of large population protocols to allow the experimental investi-
gation of slowly scaling observables in such systems. Two algorithm classes are discussed.

Sequential simulators carry out each interaction one after the other. We analyze the vari-
ants SeqArray, SeqLinear, SeqBST, and SeqAlias which differ in the data structures maintaining
the agents’ states, and demonstrate substantial differences in their practical performances. As
a by-product, we describe the Dynamic Alias Table which might be independently applicable.

Batched simulators coalesce interactions to achieve asymptotical speed-ups for protocols
with a limited number of states. Our implementation then simulates more than 250 interactions
in 400 s which is several orders of magnitudes larger than the fastest sequential simulator.

Possible Extensions. In some variants of the population model it is assumed that interac-
tions are limited to some communication network. Since we store the configurations in our
batched simulators as a multiset, it is not clear how to directly adapt our approach. We
believe this might be an interesting extension of our work.

Further variants are concerned with the way how agents interact. It is straightforward to
adapt our simulator software to a setting where, e.g., a random matching of agents interacts
in each time step. Furthermore, our approach could be generalized to a setting where more
than two agents interact. In this case we are in need of good heuristics for partitioning the
transition-tensor, since the work for updating a batch grows exponentially in the number of
interacting agents. In general, sampling the interaction counters is a frequent and costly task.
Therefore, any improved heuristic to sample from the |Q| × |Q| matrix using only o(|Q|2)
variates would yield a measureable benefit for the total runtime of a simulation.

References
1 Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L. Rivest. Time-

space trade-offs in population protocols. In SODA, pages 2560–2579. SIAM, 2017. doi:
10.1137/1.9781611974782.169.

2 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population
protocols. In SODA. SIAM, 2018. doi:10.1137/1.9781611975031.144.

3 Dan Alistarh and Rati Gelashvili. Polylogarithmic-time leader election in population
protocols. In ICALP (2), volume 9135 of LNCS, pages 479–491. Springer, 2015. doi:
10.1007/978-3-662-47666-6_38.

4 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in population
protocols. In PODC, pages 47–56. ACM, 2015. doi:10.1145/2767386.2767429.

5 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation
in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
doi:10.1007/s00446-005-0138-3.

6 Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are
semilinear. In PODC, pages 292–299. ACM, 2006. doi:10.1145/1146381.1146425.

7 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Comput., 21(3):183–199, 2008. doi:10.1007/s00446-008-0067-z.

8 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for
fast robust approximate majority. Distributed Comput., 21(2):87–102, 2008. doi:10.1007/
s00446-008-0059-z.

9 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Comput., 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1007/978-3-662-47666-6_38
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1145/1146381.1146425
https://doi.org/10.1007/s00446-008-0067-z
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2

P. Berenbrink, D. Hammer, D. Kaaser, U. Meyer, M. Penschuck, and H. Tran 16:21

10 Anish Arora, Shlomi Dolev, and Mohamed G. Gouda. Maintaining digital clocks in step.
Parallel Process. Lett., 1:11–18, 1991.

11 Richard Arratia, Skip Garibaldi, and Joe Kilian. Asymptotic distribution for the birthday
problem with multiple coincidences, via an embedding of the collision process. Random Struct.
Algorithms, 48(3):480–502, 2016. doi:10.1002/rsa.20591.

12 James Aspnes and Eric Ruppert. An introduction to population protocols. Bull. EATCS,
93:98–117, 2007.

13 Stav Ben-Nun, Tsvi Kopelowitz, Matan Kraus, and Ely Porat. An O(log3/2 n) parallel time
population protocol for majority with O(logn) states. In PODC, page to appear, 2020.

14 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. Majority & stabilization in population protocols. CoRR, abs/1805.04586, 2018.
arXiv:1805.04586.

15 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. A population protocol for exact majority with o(log5/3 n) stabilization time and
theta(log n) states. In DISC, volume 121 of LIPIcs, pages 10:1–10:18. Schloss Dagstuhl, 2018.
doi:10.4230/LIPIcs.DISC.2018.10.

16 Petra Berenbrink, George Giakkoupis, and Peter Kling. Optimal time and space leader election
in population protocols. In STOC, pages 119–129, 2020.

17 Petra Berenbrink, David Hammer, Dominik Kaaser, Ulrich Meyer, Manuel Penschuck, and
Hung Tran. Simulating population protocols in sub-constant time per interaction. CoRR,
2020. arXiv:2005.03584.

18 Petra Berenbrink, Dominik Kaaser, Peter Kling, and Lena Otterbach. Simple and efficient
leader election. In SOSA@SODA, volume 61 of OASICS, pages 9:1–9:11. Schloss Dagstuhl,
2018. doi:10.4230/OASIcs.SOSA.2018.9.

19 Andreas Bilke, Colin Cooper, Robert Elsässer, and Tomasz Radzik. Brief announcement:
Population protocols for leader election and exact majority with O(log2 n) states and O(log2 n)
convergence time. In PODC. ACM, 2017. doi:10.1145/3087801.3087858.

20 Paul Bratley, Bennett L. Fox, and Linus Schrage. A guide to simulation, 2nd Edition. Springer,
1987.

21 Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes approximate majority.
Scientific reports, 2:656, 2012. doi:10.1038/srep00656.

22 Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
nanotechnology, 8(10):755, 2013. doi:10.1038/nnano.2013.189.

23 Luc Devroye. Non-Uniform Random Variate Generation. Springer, 1986. doi:10.1007/
978-1-4613-8643-8.

24 David Doty and David Soloveichik. Stable leader election in population protocols requires
linear time. In DISC, volume 9363 of LNCS, pages 602–616. Springer, 2015. doi:10.1007/
978-3-662-48653-5_40.

25 Moez Draief and Milan Vojnovic. Convergence speed of binary interval consensus. SIAM J.
Control and Optimization, 50(3):1087–1109, 2012. doi:10.1137/110823018.

26 Robert Elsässer and Tomasz Radzik. Recent results in population protocols for exact majority
and leader election. Bull. EATCS, 126, 2018. URL: http://bulletin.eatcs.org/index.php/
beatcs/article/view/549/546.

27 Bennett L. Fox. Generating markov-chain transitions quickly: I. INFORMS J. Comput.,
2(2):126–135, 1990.

28 Leszek Gasieniec and Grzegorz Stachowiak. Fast space optimal leader election in population
protocols. In SODA. SIAM, 2018. doi:10.1137/1.9781611975031.169.

29 Leszek Gasieniec, Grzegorz Stachowiak, and Przemyslaw Uznanski. Almost logarithmic-time
space optimal leader election in population protocols. In SPAA, pages 93–102. ACM, 2019.
doi:10.1145/3323165.3323178.

ESA 2020

https://doi.org/10.1002/rsa.20591
http://arxiv.org/abs/1805.04586
https://doi.org/10.4230/LIPIcs.DISC.2018.10
http://arxiv.org/abs/2005.03584
https://doi.org/10.4230/OASIcs.SOSA.2018.9
https://doi.org/10.1145/3087801.3087858
https://doi.org/10.1038/srep00656
https://doi.org/10.1038/nnano.2013.189
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/978-3-662-48653-5_40
https://doi.org/10.1007/978-3-662-48653-5_40
https://doi.org/10.1137/110823018
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546
https://doi.org/10.1137/1.9781611975031.169
https://doi.org/10.1145/3323165.3323178

16:22 Simulating Population Protocols in Sub-Constant Time per Interaction

30 Torben Hagerup, Kurt Mehlhorn, and J. Ian Munro. Maintaining discrete probability distri-
butions optimally. In ICALP, volume 700 of LNCS, pages 253–264. Springer, 1993.

31 Lorenz Hübschle-Schneider and Peter Sanders. Parallel weighted random sampling. In ESA,
volume 144 of LIPIcs, pages 59:1–59:24. Schloss Dagstuhl, 2019.

32 Fabian Kuhn and René Struik. Random walks revisited: Extensions of pollard’s rho algorithm
for computing multiple discrete logarithms. In Selected Areas in Cryptography, volume 2259 of
LNCS, pages 212–229. Springer, 2001. doi:10.1007/3-540-45537-X_17.

33 Yossi Matias, Jeffrey Scott Vitter, and Wen-Chun Ni. Dynamic generation of discrete random
variates. In SODA, pages 361–370. ACM/SIAM, 1993.

34 George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos, and Paul G.
Spirakis. Determining majority in networks with local interactions and very small lo-
cal memory. In ICALP (1), volume 8572 of LNCS, pages 871–882. Springer, 2014.
doi:10.1007/978-3-662-43948-7_72.

35 Yves Mocquard, Emmanuelle Anceaume, James Aspnes, Yann Busnel, and Bruno Sericola.
Counting with population protocols. In NCA, pages 35–42. IEEE Computer Society, 2015.
doi:10.1109/NCA.2015.35.

36 Sanguthevar Rajasekaran and Keith W. Ross. Fast algorithms for generating discrete random
variates with changing distributions. ACM Trans. Mod. Comp. Sim., 3(1), 1993.

37 Peter Sanders and Sebastian Winkel. Super scalar sample sort. In ESA, volume 3221 of LNCS,
pages 784–796. Springer, 2004. doi:10.1007/978-3-540-30140-0_69.

38 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Nat. Comput., 7(4):615–633, 2008. doi:10.1007/
s11047-008-9067-y.

39 Ernst Stadlober. Ratio of uniforms as a convenient method for sampling from classical
discrete distributions. In Winter Simulation Conference, pages 484–489. ACM Press, 1989.
doi:10.1145/76738.76801.

40 Michael D. Vose. A linear algorithm for generating random numbers with a given distribution.
IEEE Trans. Software Eng., 17(9):972–975, 1991. doi:10.1109/32.92917.

41 Alastair J. Walker. An efficient method for generating discrete random variables with general
distributions. ACM Math. Soft., 3(3), 1977. doi:10.1145/355744.355749.

https://doi.org/10.1007/3-540-45537-X_17
https://doi.org/10.1007/978-3-662-43948-7_72
https://doi.org/10.1109/NCA.2015.35
https://doi.org/10.1007/978-3-540-30140-0_69
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1145/76738.76801
https://doi.org/10.1109/32.92917
https://doi.org/10.1145/355744.355749

An Optimal Decentralized p∆ ` 1q-Coloring
Algorithm
Daniel Bertschinger
Department of Computer Science,
ETH Zürich, Switzerland
daniel.bertschinger@inf.ethz.ch

Johannes Lengler
Department of Computer Science,
ETH Zürich, Switzerland
johannes.lengler@inf.ethz.ch

Anders Martinsson
Department of Computer Science,
ETH Zürich, Switzerland
anders.martinsson@inf.ethz.ch

Robert Meier
Department of Computer Science,
ETH Zürich, Switzerland
robert.meier@inf.ethz.ch

Angelika Steger
Department of Computer Science,
ETH Zürich, Switzerland
steger@inf.ethz.ch

Miloš Trujić
Department of Computer Science,
ETH Zürich, Switzerland
mtrujic@inf.ethz.ch

Emo Welzl
Department of Computer Science,
ETH Zürich, Switzerland
emo@inf.ethz.ch

Abstract
Consider the following simple coloring algorithm for a graph on n vertices. Each vertex chooses a
color from t1, . . . , ∆pGq ` 1u uniformly at random. While there exists a conflicted vertex choose one
such vertex uniformly at random and recolor it with a randomly chosen color. This algorithm was
introduced by Bhartia et al. [MOBIHOC’16] for channel selection in WIFI-networks. We show that
this algorithm always converges to a proper coloring in expected Opn log ∆q steps, which is optimal
and proves a conjecture of Chakrabarty and de Supinski [SOSA’20].

2012 ACM Subject Classification Theory of computation Ñ Distributed algorithms; Mathematics
of computing Ñ Graph algorithms; Mathematics of computing Ñ Graph coloring; Mathematics of
computing Ñ Probabilistic algorithms

Keywords and phrases Decentralized Algorithm, Distributed Computing, Graph Coloring, Random-
ized Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.17

Funding Miloš Trujić : author was supported by grant no. 200021 169242 of the Swiss National
Science Foundation.

1 Introduction

It is well known that an undirected graph G “ pV,Eq with maximum degree ∆ “ ∆pGq can
be properly colored by using ∆` 1 colors. In fact, a simple greedy algorithm which assigns
the colors successively achieves this bound by just touching each vertex once. Note that the
bound ∆` 1 is tight, as cliques and odd cycles require this number of colors.

In [1] Bhartia et al. introduced the use of a simple decentralized coloring algorithm as an
efficient solution to the channel selection problem in wireless networks. Their algorithm can
be formulated as follows.

© Daniel Bertschinger, Johannes Lengler, Anders Martinsson, Robert Meier, Angelika Steger, Miloš
Trujić, and Emo Welzl;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.bertschinger@inf.ethz.ch
mailto:johannes.lengler@inf.ethz.ch
mailto:anders.martinsson@inf.ethz.ch
mailto:robert.meier@inf.ethz.ch
mailto:steger@inf.ethz.ch
mailto:mtrujic@inf.ethz.ch
mailto:emo@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.ESA.2020.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

Decentralized Graph Coloring

For a graph G “ pV,Eq
1. choose for each vertex v P V a color from t1, . . . ,∆ ` 1u independently and

uniformly at random;
2. choose a vertex v P V uniformly at random among all vertices which have a

neighbor in the same color;
3. recolor v into a color chosen from t1, . . . ,∆` 1u uniformly at random;
4. repeat steps 2 and 3 until a proper coloring of G is found.

They showed that this algorithm finds a proper coloring in Opn∆q rounds in expectation.
Chakrabarty and de Supinski [2] introduced a variant of the coloring algorithm: instead of
recoloring a vertex v once as above, in their “Persistent Decentralized Coloring Algorithm”
such a vertex v persistently (hence the name) gets recolored until it has no neighbor in the
same color. They showed that this modified algorithm only requires Opn log ∆q recolorings
and conjectured that the same bound also holds for the original algorithm. In this paper we
prove their conjecture.

I Theorem 1.1. The decentralized coloring algorithm converges in expectation to a proper
p∆` 1q-coloring in Opn log ∆q recoloring steps.

In fact, our argument shows that the same runtime bound holds true if the initial coloring
is chosen adversarially. This is in contrast with the persistent version of the algorithm
mentioned above, as that one takes Θpn∆q recolorings in expectation when starting with
an adversarial coloring (see [1, Theorem 3]). However, the question raised in [2] of ‘which
algorithm is faster in the random setting’ remains open.

We note that the bound in Theorem 1.1 is best possible, as for the complete graph Kn

the decentralized coloring algorithm essentially performs a Coupon Collector process. Indeed,
once a color (coupon) has been acquired it remains in the graph until the end of the process
and we need to see all colors. The claim thus follows from the well known fact that in
expectation the coupon collector process with n coupons requires nHn “ Θpn lognq rounds,
where Hk “

řk
i“1

1
i is the k-th Harmonic number. Moreover, the result is tight for every

combination of n and ∆. Namely, consider a vertex-disjoint union of n{∆ complete graphs
K∆ and by the same argument the process requires Θpn{∆ ¨∆ log ∆q “ Θpn log ∆q rounds.

Our proof of Theorem 1.1 is short and elegant, and is based on drift analysis [8]. It
is presented in an expository way and provides insight in why our potential function is
appropriate for the analysis. We complement the analyis by tail bounds in Section 3.

Finally, we conclude the paper by a brief discussion of the parallelized version of this
algorithm, where all “conflicted” vertices get recolored simultaneously (instead of Step 3),
and we prove that this variant takes exponential time.

2 Proof of Theorem 1.1

We start with introducing some notation. We use ct to denote the coloring of the graph
after t recoloring steps, that is ct is a function ct : V pGq Ñ t1, . . . ,∆` 1u. With Mt Ď E we
denote the set of monochromatic edges in ct. Observe that ct is a proper coloring of G if and
only if |Mt| “ 0. Our main goal is thus to establish good bounds on (the reduction of) the
size of the sets Mt. In order to do so it is helpful to view the recoloring step(s) (i.e. Step 2
and Step 3) as a (slightly different) three step process:

D. Bertschinger et al. 17:3

Recoloring Step

For every t ě 1,
S1 choose a monochromatic connected component C ĎMt´1 at random proportional

to the number of vertices in C;
S2 choose a vertex v P V pCq uniformly at random;
S3 let ctpvq be a uniformly at random chosen color from t1, . . . ,∆ ` 1u and set

ctpuq “ ct´1puq for all u ‰ v.

As a main tool in bounding the expected number of recoloring steps we use a so-called
drift theorem (see [8, Theorem 2.3.1]).

I Theorem 2.1 (Additive Drift Theorem [6]). Let pXtqtě0 be a sequence of non-negative
random variables with a finite state space S Ă R`0 such that 0 P S. Let T :“ inftt ě 0 | Xt “

0u. If there exists δ ą 0 such that for all s P S r t0u and for all t ą 0,

ErXt ´Xt´1 | Xt “ ss ď ´δ, (1)

then

ErT s ď ErX0s { δ.

By drift we refer to the expectation ErXt ´ Xt´1 | Xt “ ss. (For a more extensive
introduction to drift analyis, we refer the reader to [8].) Our goal is to apply Theorem 2.1 by
assigning to each coloring ct a real value Φptq (which we plug in for Xt) so that Φptq “ 0 if
and only if ct is a proper coloring. The potential function Φp¨q we eventually use to prove
Theorem 1.1 consists of several terms (see equation (3) below) and in order to motivate each
of the terms we introduce them one by one. The simplest and most natural choice is to
consider just the number of monochromatic edges, i.e. Φptq :“ |Mt|. (Mind that this is only
for explanatory purposes and will not be the final definition of Φ.) To apply Theorem 2.1
we need to estimate the drift from a single recoloring step. In the following claim (and in
fact all similar ones in this section), the expectation is always taken with respect to a single
recoloring step. That is, we (implicitly) condition on the coloring ct´1 without stating it
every time. Note that this formulation implies what is required by equation (1).

As it turns out, in the case of Φptq :“ |Mt| we do not need to make use of the fact that the
component C is chosen randomly, we may assume that the component C is given arbitrarily
or even by an adversary.

B Claim 2.2. For all t ě 1 and any connected component C in Mt´1 we have

E
“

|Mt|
ˇ

ˇ C
‰

ď |Mt´1| ´ d̄pCq ` 1´ 1
∆` 1 ,

where d̄pCq denotes the average degree of the graph induced by V pCq.

Proof. The claim follows easily from the following two observations. As v is chosen uniformly
at random within C (as in Step 2), we decrease the number of monochromatic edges within
C by d̄pCq whenever the newly chosen color is different from the current color of C, which
happens with probability ∆{p∆` 1q. All edges incident to v that do not belong to C become
monochromatic with probability 1{p∆` 1q. Thus we have

E
“

|Mt|
ˇ

ˇ C
‰

ď |Mt´1| ´ d̄pCq ¨
∆

∆` 1 `
∆´ d̄pCq

∆` 1 “ |Mt´1| ´ d̄pCq ` 1´ 1
∆` 1 ,

as claimed. C

ESA 2020

17:4 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

As the average degree of every monochromatic component in Mt is at least one, Claim 2.2
implies Er|Mt|s ď |Mt´1| ´ 1{p∆` 1q whenever |Mt´1| ą 0. The following proposition then
easily follows from Theorem 2.1.

I Proposition 2.3. Let D ą 0 be any fixed constant. For every graph G and every coloring
c0 of G such that |M0| ď Dn{∆ the decentralized coloring algorithm reaches a proper
p∆` 1q-coloring in expectation after Opnq recoloring steps.

Unfortunately, a random coloring of a graph G with ∆` 1 colors has in expectation Θpnq
monochromatic edges, so Proposition 2.3 is not immediately applicable. Instead, Claim 2.2
together with Theorem 2.1 only provide us with the bound of Opn∆q (see Bhartia et al. [1]).
In order to go beyond this, observe that Claim 2.2 actually gives a drift of ´1{3 whenever
|V pCq| ě 3, as the average degree of a connected graph on s ě 3 vertices is at least 4{3.
Thus, the only critical case are components C that consist of only one edge. To handle these
we introduce some more notation.

We denote by It ĎMt the set of isolated edges, that is all edges which are monochromatic
components of size two. We also let Pt Ď V stand for the set of all properly colored vertices,
i.e. the vertices that are not incident to any edge in Mt. Akin to Claim 2.2, the next claim
gives a bound on the expected change in the number of isolated edges in one recoloring step.

B Claim 2.4. For all t ě 1 and any connected component C in Mt´1 we have

E
“

|It|
ˇ

ˇ C
‰

ď |It´1| ` d̄pCq ` 1.

For components C that form an isolated edge, we have in addition

E
“

|It|
ˇ

ˇ C “ uw
‰

ď |It´1| ´
∆

∆` 1 `
|Npuq X Pt´1| ` |Npwq X Pt´1|

2p∆` 1q .

Proof. By recoloring a vertex v, the only isolated edges that can be created are edges that
are incident to neighbors of v within C (at most one isolated edge per neighbor of v) and
edges between v and Pt´1 (naturally at most one edge incident to v can be isolated and
monochromatic). This proves the first inequality. For the second assume that C “ uw.
Clearly, after recoloring one of u and w with a different color (which happens with probability
∆{p∆` 1q), the isolated edge C “ uw disappears. Observe, also that a new isolated edge can
only be generated if we choose as a new color for u (or w) a color of a vertex in Npuq X Pt´1
(or Npwq X Pt´1) respectively. This, together with the fact that each of u or w is chosen in
Step 2 with probability 1{2, proves the second inequality. C

We pause for a moment from the proof of Theorem 1.1 to showcase the use of previous
claims for proving a positive result about complete bipartite graphs.

I Proposition 2.5. For complete bipartite graphs G “ Kn,m the decentralized coloring
algorithm reaches a proper p∆ ` 1q-coloring in expectation after Opmintn,muq recoloring
steps.

Proof. Observe that for complete bipartite graphs vertices of Pt´1 XA and Pt´1 XB need
to be colored with different colors (here A and B denote the two parts of the bipartite
graph). Also note that an isolated edge can only be generated if a color appears only
once in Pt´1 X A (and Pt´1 X B). Therefore, for a monochromatic edge uv we have
|Npuq XPt´1| ` |Npwq XPt´1| ď ∆. We can thus replace the bound in the second inequality
of Claim 2.4 by

E
“

|It|
ˇ

ˇ C “ uw
‰

ď |It´1| ´
∆

∆` 1 `
∆

2p∆` 1q ď |It´1| ´
∆

2p∆` 1q . (2)

D. Bertschinger et al. 17:5

Consider now the potential function Φptq :“ |Mt|`
1
10 |It|. In case |V pCq| ě 3, from Claim 2.2

and Claim 2.4, we get (with room to spare)

E
“

Φptq
ˇ

ˇ C, |V pCq| ě 3
‰

ď |Mt´1| ´ d̄pCq ` 1´ 1
∆` 1 `

1
10 |It´1| `

1
10 d̄pCq `

1
10

ď Φpt´ 1q ´ 9
10 d̄pCq `

11
10 ď Φpt´ 1q ´ 1

20 ,

where we used the fact that d̄pCq ě 4{3. On the other hand, if C “ uw then by Claim 2.2
and (2) we have

E
“

Φptq
ˇ

ˇ C “ uw
‰

ď |Mt´1| ´ d̄pCq ` 1´ 1
∆` 1 `

1
10 |It´1| ´

1
10

∆
2p∆` 1q

ď Φpt´ 1q ´ 1
20

´ 20
∆` 1 `

∆
∆` 1

¯

ď Φpt´ 1q ´ 1
20 .

In conclusion,

E
“

Φptq
ˇ

ˇ C
‰

ď Φpt´ 1q ´ 1
20 ,

for every component C. The proposition now follows from Theorem 2.1 together with the
fact that in a random x-coloring an edge is monochromatic with probability 1{x and thus

ErΦp0qs ď Er|M0|s ` Er|I0|s ď 2 ¨ n ¨m

maxtn,mu ` 1 ď 4 mintn,mu,

with room to spare. J

We note that this proof actually shows that the assertion of Proposition 2.5 remains true,
for sufficiently small ε ą 0, if we reduce the number of colors to be used by the algorithm to
p1´ εq∆, that is p1´ εqmaxtn,mu. We do not elaborate further on this.

After this short detour we come back to the proof of Theorem 1.1. What one could
conclude from the two claims above is that if we were to choose a component C in Step 1
which is of size at least three throughout the process, then the drift obtained (Claim 2.2)
would always be less than ´1{3. However, this is far too optimistic to hope for.

Consider an isolated edge uv and assume we recolor v. If the new color chosen does not
belong to its properly-colored neighborhood NpvqXPt´1, then the number of monochromatic
isolated edges decreases by one. This happens with constant probability unless the size of
Npvq X Pt´1 is close to ∆.

Since in Step 1 we choose C randomly, we expect a strong drift “towards the target” as
long as we are in one of the situations from the paragraphs above. In other words, we have a
desired drift unless Mt´1 comprises mostly of isolated edges and most vertices u P V pIt´1q

have almost ∆ neighbors in Npuq X Pt´1.
Let us hence analyze what happens if in such a case we recolor a vertex v belonging

to an isolated edge uv. Suppose we set ctpvq :“ ct´1pxq for some x P Npvq X Pt´1. If the
color ct´1pxq appears multiple times in Npvq X Pt´1, we do not create a new isolated edge.
Otherwise, the edge xv becomes isolated and Pt :“ pPt´1 r txuq Y tuu. However, crucially,
as we assumed that every vertex u P V pIt´1q had roughly ∆ neighbors in Pt´1, we conversely
have that an average vertex in Pt´1 has roughly ∆|V pIt´1q|{|Pt´1| neighbors in V pIt´1q.
Thus, we may expect that Npxq X Pt is smaller than ∆. In other words, we expect that
epV pItq, Ptq is smaller than epV pIt´1q, Pt´1q. Here and throughout we use epX,Y q to denote
the number of edges between two disjoint vertex sets X and Y .

ESA 2020

17:6 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

Previous considerations motivate keeping track of epV pItq, Ptq as well and lead us to
formulate the following potential function:

Φptq :“ |Mt| `
|It|

10 `
epV pItq, Ptq

100∆ . (3)

Note that the value of Φptq is always proportional to the number of monochromatic edges.

B Claim 2.6. For all t ě 1 we have

|Mt| ď Φptq ď 2|Mt|.

Proof. The first inequality is trivial. The second follows, with room to spare, as It ĎMt and
epV pItq, Ptq ď 2|It| ¨∆. C

With Claim 2.6 at hand we deduce from Proposition 2.3 that in order to complete the
proof of Theorem 1.1 it suffices to show that the algorithm reduces the potential Φ to a value
of Dn{∆ in Opn log ∆q steps, for some arbitrarily large but fixed constant D ą 0. This is
what we do in the remainder of this section.

Note also that there is no hope to always get a constant drift, as by Theorem 2.1 this
would then lead to a bound of Opnq recoloring steps, which would contradict the bound of
Ωpn lognq for Kn. Instead we show a multiplicative drift.

B Claim 2.7. For any t ě 1 with Φpt´ 1q ą 0, we have

ErΦptqs ď Φpt´ 1q
´

1´ 1
1000n

¯

.

Proof. By linearity of expectation we can consider each term of Φp¨q in (3) independently.
The first two terms are handled by Claim 2.2 and Claim 2.4, so we first establish some
bounds on the third. Observe that in order for an edge to be counted in epV pItq, Ptq but not
in epV pIt´1q, Pt´1q it must be incident to a vertex in either V pItq r V pIt´1q or Pt r Pt´1.
Let C be a component chosen in Step 1 and v a vertex chosen in Step 2. For any vertex in
tvuY pNpvq XV pCqq, we either get one new isolated edge or one new properly colored vertex
(or neither). In the former, the other endpoint of that edge potentially contributes by ∆ to
epV pItq, Ptq, and in the latter each monochromatic edge with one endpoint in Npvq X V pCq
potentially contribute by ∆ to epV pItq, Ptq for each of its endpoints. Thus we have

ErepV pItq, Ptq | Cs ď epV pIt´1q, Pt´1q ` pd̄pCq ` 1q ¨ 2∆,

where as before d̄pCq denotes the average degree of the component C. Together with Claim 2.2
and Claim 2.4, for all components C on at least three vertices we get

E
“

Φptq
ˇ

ˇ C, |V pCq| ě 3
‰

ď Φpt´ 1q ´
´

1´ 1
10 ´

2
100

¯

d̄pCq ` 1` 1
10 `

2
100

ď Φpt´ 1q ´ 1
25 d̄pCq,

(4)

where the last inequality follows from d̄pCq ě 4{3.
Next we consider the third term of Φp¨q conditioned on choosing a component C Ď It´1,

i.e. C is an isolated edge. We first let dpv,Xq :“ |Npvq XX| for all v P V and sets X Ď V

and denote by

d̄IP :“ 1
|V pIt´1q|

ÿ

uPV pIt´1q

dpu, Pt´1q and d̄PI :“ 1
|Pt´1|

ÿ

uPPt´1

dpu, V pIt´1qq

D. Bertschinger et al. 17:7

the average degree of vertices in V pIt´1q into Pt´1, and the average degree of vertices
in Pt´1 into V pIt´1q, respectively. Note that, of course, we have

ř

uPV pIt´1q
dpu, Pt´1q “

ř

uPPt´1
dpu, V pIt´1qq, and hence d̄IP |V pIt´1q| “ d̄PI |Pt´1|.

Consider an isolated edge wv and assume v gets recolored with a new color. Then,
since w is now properly colored, all dpw,Pt´1q edges incident to w which contributed to
epV pIt´1q, Pt´1q are not counted in epV pItq, Ptq, except possibly one in case v forms a new
isolated edge with a neighbor of w. Moreover, any new edge counted in epV pItq, Ptq must
be incident to either v, w, or a vertex x P Pt´1 for which vx P It. There are at most
∆´ dpv, Pt´1q, ∆´ dpw,Pt´1q, and ∆´ dpx, V pIt´1qq such edges respectively not already
counted in epV pIt´1q, Pt´1q. Combining all this we get

epV pItq, Ptq ď epV pIt´1q, Pt´1q ´ dpw,Pt´1q ` 1`∆´ dpv, Pt´1q

`∆ ´ dpw,Pt´1q `
ÿ

xPPt´1

1vxPIt

`

∆ ´ dpx, V pIt´1q
˘

,

if ctpvq ‰ ct´1pvq, and of course epV pItq, Ptq “ epV pIt´1q, Pt´1q if ctpvq “ ct´1pvq.
We conclude that

E
“

epV pItq, Ptq
ˇ

ˇ C Ď It´1
‰

ď epV pIt´1q, Pt´1q `
∆

∆` 1 p2∆` 1´ 3d̄IP q

`
1

|V pIt´1q|

ÿ

xPPt´1

ÿ

vPV pIt´1qXNpxq

1
∆` 1

`

∆ ´ dpx, V pIt´1qq
˘

,

where the last term can be rewritten as

1
|V pIt´1q|

ÿ

xPPt´1

dpx, V pIt´1qq
`

∆´ dpx, V pIt´1qq
˘

∆` 1 .

We note that the summand above can be written as fpdpx, V pIt´1qq where fpyq :“ yp∆´

yq{p∆ ` 1q is a concave function. Hence, by Jensen’s inequality, we can upper bound the
expression by |Pt´1|fpd̄PIq{|V pIt´1q| “ d̄IP p∆´ d̄PIq{p∆` 1q. Altogether we get

E
“

epV pItq, Ptq
ˇ

ˇ C Ď It´1
‰

ď epV pIt´1q, Pt´1q `
∆p2∆` 1´ 3d̄IP q

∆` 1 `
d̄IP p∆´ d̄PIq

∆` 1

ď epV pIt´1q, Pt´1q `
∆

∆` 1 p2∆` 1´ 2d̄IP ´ d̄IP d̄PI{∆q.

Finally, by combining this with Claim 2.2 and Claim 2.4 (and some tedious calculation) we
deduce

E
“

Φptq
ˇ

ˇ C Ď It´1
‰

ď Φpt´ 1q ´ 1
∆` 1 ´

1
10

∆´ d̄IP
∆` 1 `

1
100

2∆` 1´ 2d̄IP ´ d̄IP d̄PI{∆
∆` 1

ď Φpt´ 1q ´ 2
25

∆´ d̄IP
∆` 1 ´

1
100

d̄IP d̄PI
∆p∆` 1q .

(5)

With all these preparations we are now in a position to bound ErΦptqs. As seen in (4) and
(5), both conditioning on components of size at least three or on vertices in isolated edges
lead to a non-positive contribution to the drift. In order to derive an upper bound on ErΦptqs
we may thus ignore one of the terms for convenience. If we assume |It´1| ď |Mt´1|{2 one
would expect that the larger contribution to the change of Φpt´ 1q comes from components
which are not isolated edges. Indeed, in that case we may ignore the term from (5) and use
(4) only to get

ESA 2020

17:8 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

ErΦptqs
(4)
ď Φpt´ 1q ´

ÿ

C, |V pCq|ě3

|V pCq|

|V pMt´1q|

d̄pCq

25 “ Φpt´ 1q ´ 2|Mt´1 r It´1|

25|V pMt´1q|

ď Φpt´ 1q ´ |Mt´1|

25n ď Φpt´ 1q
´

1´ 1
50n

¯

,

where the last inequality follows from Claim 2.6.
On the other hand, suppose |It´1| ě |Mt´1|{2 and observe that this implies |V pIt´1q| ě

|V pMt´1q|{2. This means that the probability of picking a vertex in V pIt´1q to recolor is at
least 1{2 and one may hope that the larger contribution to the change of Φpt ´ 1q comes
from the isolated edges. Indeed, similarly as above, we now ignore the contribution from
components of size at least three to get:

ErΦptqs
(5)
ď Φpt´1q´ 1

25
∆´ d̄IP
∆` 1 ´

1
200

d̄IP d̄PI
∆p∆` 1q ď Φpt´1q´ 1

50
∆´ d̄IP

∆ ´
1

400
d̄IP d̄PI

∆2 . (6)

If d̄IP ď ∆´∆Φpt´ 1q{p30nq, then the claim follows just from the first term. Otherwise,
by Claim 2.6

Φpt´ 1q ď 2|Mt´1| ď 4|It´1| ď 2n,

which in turn implies d̄IP ě ∆p1 ´ Φpt ´ 1q{p30nqq ě 14∆{15. Recall, d̄PI |Pt´1| “

d̄IP |V pIt´1q|, and note that |V pIt´1q|{|Pt´1| ě 2|It´1|{n ě Φpt´ 1q{p2nq. Therefore,

1
400

d̄IP d̄PI
∆2 “

1
400

|V pIt´1q| ¨ d̄IP d̄IP
|Pt´1|∆2 ě Φpt´ 1q 1

800n ¨
´14

15

¯2

and the second term in (6) is enough to conclude the proof of Claim 2.7. C

As mentioned in the paragraph before Claim 2.7, in order to make use of the assertion of
Claim 2.7, we need a slightly different drift theorem, one for multiplicative drift.

I Theorem 2.8 (Multiplicative Drift Theorem [4]). Let pXtqtě0 be a sequence of non-negative
random variables with a finite state space S Ă R`0 such that 0 P S. Let smin :“ mintS r t0uu,
let s0 P S r t0u, and let T :“ inftt ě 0 | Xt “ 0u. If there exists δ ą 0 such that for all
s P S r t0u and for all t ą 0,the case of

ErXt ´Xt´1 | Xt´1 “ ss ď ´δs,

then

ErT | X0 “ s0s ď
1` lnps0{sminq

δ
.

Now we are ready to put things together to prove Theorem 1.1.

Proof of Theorem 1.1. For every t ě 0, we define

Φ1ptq “
#

Φptq, if Φptq ě n{∆,
0, otherwise.

Note that, as long as Φpt ´ 1q ě n{∆, we have Φ1pt ´ 1q “ Φpt ´ 1q and Φ1ptq ď Φptq, so
the deduced bound on Φptq in Claim 2.7 is also a bound for Φ1ptq. Using Theorem 2.8 with
Claim 2.7 for T 1 :“ inftt ě 0 | Φ1ptq “ 0u “ inftt ě 0 | Φptq ă n{∆u, we get for all s0 ą 0

ErT 1 | Φ1p0q “ s0s ď
1` ln

´

s0
n{∆

¯

p1000nq´1 .

D. Bertschinger et al. 17:9

By Claim 2.6 we have Φ1p0q ď 2|M0| ď n∆, and therefore

ErT 1s ď 1000n
`

1` 2 ln ∆
˘

“ Opn log ∆q.

Finally, as by Claim 2.6 we then have |MT 1 | “ Opn{∆q, we conclude from Proposition 2.3
that the expected number of steps after T 1 to reach a legal coloring is Opnq. Therefore, the
total number of required steps to reach a legal coloring is Opn log ∆q, which finishes the proof
of Theorem 1.1. J

3 Tail Bounds

In this section, we prove that the runtime of the decentralized coloring algorithm is of order
Opn log ∆q not only in expectation, but also with high probability. It turns out that this does
not require much additional work, as the drift theorems are accompanied with suitable tail
bounds. In many situations, concentration bounds require conditions beyond the drift, for
example bounds on the step size. Notably, for multiplicative drift such additional conditions
are not necessary, as the following theorem holds.

I Theorem 3.1 (Multiplicative Drift Tail Bound [3]). Let pXtqtě0 be a sequence of non-negative
random variables with a finite state space S Ă R`0 such that 0 P S. Let smin :“ mintS r t0uu,
let s0 P S r t0u, and let T :“ inftt ě 0 | Xt “ 0u. Suppose that X0 “ s0, and that there
exists δ ą 0 such that for all s P S r t0u and for all t ą 0,

ErXt ´Xt´1 | Xt´1 “ ss ď ´δs.

Then, for all r ě 0

Pr
”

T ą
Q

r`lnps0{sminq
δ

Uı

ă e´r.

The following proposition is a straightforward application of this theorem.

I Proposition 3.2. Suppose ∆ “ Ωpncq for some constant c ą 0. Then, the decentralized
coloring algorithm terminates after Opn log ∆q steps with high probability.

Proof. By Claim 2.6 we know that s0 ď n∆. In the proof of Theorem 1.1 we analyzed the
process with multiplicative drift until the potential Φ hits n{∆. Here, we track this potential
until the end of the algorithm. Note that the smallest nonzero value Φ can attain is at least
1. Thus, under the assumption ∆ “ Ωpncq, we also have lnps0{sminq ď C log ∆ for large
enough n, even if we do not truncate Φ. Here, C ą 0 is a suitable constant, for example
C “ 2p1` 1{cq. Setting r “ log ∆, we can apply Theorem 3.1 to get

Pr
“

T ą rp1` Cq1000n log ∆s
‰

ď e´ log ∆ “ Opn´cq “ op1q,

where we used δ “ p1000nq´1 as before, due to Claim 2.7. J

The proof of Proposition 3.2 fails when logn “ ωplog ∆q. In the proof of Theorem 1.1 we
switched to additive drift to analyze the second phase of the process. We use this approach
again. The following tail bound for additive drift will be useful. It is a rather straightforward
consequence of Azuma’s inequality. Note that there is an additional assumption, namely
that we have bounded step size.

ESA 2020

17:10 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

I Theorem 3.3 (Additive Drift Tail Bound [7]). Let pXtqtě0 be a sequence of non-negative
random variables with a finite state space S Ă R`0 such that 0 P S. Let T :“ inftt ě 0 | Xt “

0u. Suppose there are c, δ ą 0 such that for all s P S r t0u and for all t ą 0, we have both
ErXt ´Xt´1 | Xt “ ss ď ´δ and |Xt`1 ´Xt| ă c. Then, for all r ě 2X0{δ,

PrrT ě rs ď exp
´

´
rδ2

8c2
¯

.

The smaller ∆ is, the less the potential changes at each step. Using this fact, the theorem
above allows us to prove the next proposition. It gives us that the runtime of the algorithm
is Opn log ∆q for smaller ∆.

I Proposition 3.4. If ∆ “ Opn1{4q, the decentralized coloring algorithm terminates after
Opn log ∆q steps with high probability

Proof. We go back to splitting the process in two phases as in the proof of Theorem 1.1.
Let T1 and T2 be the duration of Phase 1 and 2 respectively. We consider Phase 1 first. To
be able to apply Theorem 3.3, we use the potential function Ψptq :“ maxtlogp∆Φptq{nq, 0u.
As we will see, the logarithm converts multiplicative drift into additive drift. Note that
T1 “ inftt ě 0 | Ψptq “ 0u. Using Jensen’s inequality and Claim 2.7, we get for all s P Srt0u
and t ě 0

ErΨpt` 1q ´Ψptq | Ψptq “ ss “ E
„

log
ˆ

∆Φpt` 1q
n

˙

´ log
ˆ

∆Φptq
n

˙
ˇ

ˇ

ˇ

ˇ

Ψptq “ s

“ E
„

log
ˆ

Φpt` 1q
Φptq

˙
ˇ

ˇ

ˇ

ˇ

Ψptq “ s

ď logE
„

Φpt` 1q
Φptq

ˇ

ˇ

ˇ

ˇ

Ψptq “ s

ď log
ˆ

1´ 1
1000n

˙

ď ´
1

1000n.

The last inequality follows as log x ď x´ 1 for all x ą 0. Now that we have determined the
drift, we need to bound the step size. |Mt| and |It| can change by at most ∆ at each step
and epV pIt, Ptq by at most ∆2. Thus, the step size of Φ is bounded by 2∆. As the logarithm
is concave, the largest effect of such a change in Φ on the value of Ψ is when Φ is as small as
possible. In particular, this is the case if Φ goes from 2∆` n{∆ to n{∆. Thus we have

|Ψpt` 1q ´Ψptq| ď
ˇ

ˇ

ˇ

ˇ

log
ˆ2∆` n

∆
n
∆

˙
ˇ

ˇ

ˇ

ˇ

“ log
ˆ

1` 2∆2

n

˙

ă
2∆2

n
.

Therefore, 2∆2{n is a bound on the step size of Ψ. As Φp0q ď n∆ we have Ψp0q ď 2 log ∆.
Hence we can use Theorem 3.3 with r “ 4000np1` log ∆q. We get

PrrT1 ě rs ď exp
˜

´
4000np1` log ∆q ¨

` 1
1000n

˘2

8
` 2∆2

n

˘2

¸

“ exp
ˆ

´
p1` log ∆qn

8000∆4

˙

“ op1q.

We turn our attention to Phase 2. Here, we already have additive drift for |Mt|, so we can
use Theorem 3.3 immediately. Claim 2.2 gives us

E
“

|Mt| ´ |Mt´1|
ˇ

ˇ |Mt´1| “ s
‰

ď ´
1

∆` 1 ď ´
1

2∆ ,

D. Bertschinger et al. 17:11

for all s, t ą 0. We also have
ˇ

ˇ|Mt| ´ |Mt´1|
ˇ

ˇ ď ∆ for all t ą 0. By Claim 2.6 we get
|Mt| ď 2n{∆ at the start of Phase 2. Hence we can apply Theorem 3.3 with r “ p4` log ∆qn.
We get

PrrT2 ě rs ď exp
˜

´
p4` log ∆qn ¨

` 1
2∆

˘2

8∆2

¸

“ exp
ˆ

´
p4` log ∆qn

32∆4

˙

“ op1q.

Using a union bound gives us that the algorithm terminates in Opn log ∆q round with high
probability. J

Proposition 3.2 and 3.4 cover all possible values of ∆. Therefore, the algorithm has runtime
Opn log ∆q with high probability for any ∆.

4 A simultaneous-recoloring variant of the algorithm

A natural question is whether the original algorithm can be parallelized. So what if instead of
choosing one conflicted vertex at a time in Step 2 all conflicted vertices would simultaneously
want to change their color? It turns out that this process does not even have polynomial
runtime on the complete graph Kn.

I Proposition 4.1. The Decentralized Graph Colouring algorithm in which all conflicted
vertices choose a new color uniformly at random needs eΩpnq rounds in expectation to terminate
on a complete graph on n vertices Kn.

Proof. Fix a sufficiently small constant ε ą 0, e.g. ε “ 0.1. For a round t, let Xt be the
number of conflicted vertices, i.e., the number of vertices whose color is not unique. Due to
symmetry, Xt is a Markov process. Let Tε be the first round in which Xt ď εn. We show
that Tε has exponentially large expectation. Consider any round t with Xt “ x ą εn. Then
we show that

PrrXt`1 ď εn | Xt “ xs “ e´Ωpnq, (7)

where the hidden constant is independent of x. We remark that the same argument also
shows that with high probability X1 ą εn, since the initial round is formally equivalent to
the hypothetical case X0 “ n. So the proposition follows if we can show (7).

To show (7), we uncover the new colors in two batches. In the first batch, we uncover the
colors of all but εn vertices. If there are more than εn vertices in conflicts from the first batch,
then there is nothing to show. So in the following we may assume (and implicitly condition) on
the opposite event that uncovering the first batch creates at most εn conflicted vertices. This
implies that the set C1 of colors appearing among the p1´ εqn uncovered vertices, has size at
least |C1| ě p1´ 2εqn. Let C2 Ď C1 be the set of colors in C1 that also appear in the second
batch, i.e., for which a conflict is created by the second batch. The probability that a fixed
color in C1 does not occur in C2 is p1´ 1{nqεn “ e´ε`Op1{nq ď 1´ 7ε{8 for sufficiently large
n, where we use that e´ε ă 1´ 7ε{8 for ε ă 0.2. Hence, Er|C2|s ě 7ε{8 ¨ p1´ 2εqn ě 5ε{8 ¨ n
for ε ď 1{7.

The size of C2 is given by the number of non-empty bins in a Balls-and-Bins problem, and
this number is known to be concentrated around its expectation since the number of empty
bins is negatively associated, and thus the Chernoff bounds are applicable. Since this is a well-
known argument, we refrain from spelling out the details and refer the reader to the standard
exposition [5, Proposition 29 and Section 3.3]. The result is that Prr|C2| ď ε{2 ¨ ns “ e´Ωpnq.

ESA 2020

17:12 An Optimal Decentralized p∆ ` 1q-Coloring Algorithm

It remains to observe that Xt`1 ą 2|C2|, since every color in C2 causes at least two
conflicted vertices (one from the second batch and one from the rest). Hence, PrrXt`1 ď

εns ď Prr|C2| ď ε{2 ¨ ns “ e´Ωpnq, as required. J

References
1 Apurv Bhartia, Deeparnab Chakrabarty, Krishna Chintalapudi, Lili Qiu, Bozidar Radunovic,

and Ramachandran Ramjee. IQ-Hopping: distributed oblivious channel selection for wireless
networks. In Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pages 81–90. ACM, 2016. doi:10.1145/2942358.2942376.

2 Deeparnab Chakrabarty and Paul de Supinski. On a Decentralized (∆ + 1)-Graph Coloring
Algorithm. In Symposium on Simplicity in Algorithms, pages 91–98. SIAM, 2020. doi:
10.1137/1.9781611976014.13.

3 Benjamin Doerr and Leslie Ann Goldberg. Adaptive drift analysis. Algorithmica, 65(1):224–250,
2013. doi:10.1007/s00453-011-9585-3.

4 Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis. Algo-
rithmica, 64(4):673–697, 2012. doi:10.1007/s00453-012-9622-x.

5 Devdatt P Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence.
BRICS Report Series, 3(25), 1996. doi:10.7146/brics.v3i25.20006.

6 Jun He and Xin Yao. A study of drift analysis for estimating computation time of evolutionary
algorithms. Natural Computing, 3(1):21–35, 2004. doi:10.1023/b:naco.0000023417.31393.
c7.

7 Timo Kötzing. Concentration of first hitting times under additive drift. Algorithmica, 75(3):490–
506, 2016. doi:10.1007/s00453-015-0048-0.

8 Johannes Lengler. Drift analysis. In Benjamin Doerr and Frank Neumann, editors, In: Theory
of Evolutionary Computation: Recent Developments in Discrete Optimization, pages 89–131.
Springer International Publishing, Cham, 2020. doi:10.1007/978-3-030-29414-4_2.

https://doi.org/10.1145/2942358.2942376
https://doi.org/10.1137/1.9781611976014.13
https://doi.org/10.1137/1.9781611976014.13
https://doi.org/10.1007/s00453-011-9585-3
https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.7146/brics.v3i25.20006
https://doi.org/10.1023/b:naco.0000023417.31393.c7
https://doi.org/10.1023/b:naco.0000023417.31393.c7
https://doi.org/10.1007/s00453-015-0048-0
https://doi.org/10.1007/978-3-030-29414-4_2

Noisy, Greedy and Not so Greedy k-Means++
Anup Bhattacharya
Indian Statistical Institute, Kolkata, India

Jan Eube
University of Bonn, Germany

Heiko Röglin
University of Bonn, Germany

Melanie Schmidt
University of Cologne, Germany

Abstract
The k-means++ algorithm due to Arthur and Vassilvitskii [4] has become the most popular seeding
method for Lloyd’s algorithm. It samples the first center uniformly at random from the data set
and the other k − 1 centers iteratively according to D2-sampling, i.e., the probability that a data
point becomes the next center is proportional to its squared distance to the closest center chosen so
far. k-means++ is known to achieve an approximation factor of O(log k) in expectation.

Already in the original paper on k-means++, Arthur and Vassilvitskii suggested a variation
called greedy k-means++ algorithm in which in each iteration multiple possible centers are sampled
according to D2-sampling and only the one that decreases the objective the most is chosen as a
center for that iteration. It is stated as an open question whether this also leads to an O(log k)-
approximation (or even better). We show that this is not the case by presenting a family of instances
on which greedy k-means++ yields only an Ω(` · log k)-approximation in expectation where ` is the
number of possible centers that are sampled in each iteration.

Inspired by the negative results, we study a variation of greedy k-means++ which we call noisy k-
means++ algorithm. In this variation only one center is sampled in every iteration but not exactly by
D2-sampling. Instead in each iteration an adversary is allowed to change the probabilities arising from
D2-sampling individually for each point by a factor between 1−ε1 and 1+ε2 for parameters ε1 ∈ [0, 1)
and ε2 ≥ 0. We prove that noisy k-means++ computes an O(log2 k)-approximation in expectation.
We use the analysis of noisy k-means++ to design a moderately greedy k-means++ algorithm.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Facility location and clustering; Theory of computation → Design and
analysis of algorithms

Keywords and phrases k-means++, greedy, adaptive sampling

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.18

Funding Anup Bhattacharya: supported by an NPDF Fellowship, sponsored by the Government of
India.
Heiko Röglin: supported by DFG grant RO 5439/1–1.
Melanie Schmidt: supported by DFG grant SCHM 2765/1–1.

Acknowledgements We thank the reviewers for their detailed comments.

1 Introduction

Clustering is a very important tool in many machine learning applications. The task is
to find structure that is hidden in input data in the form of clusters, and to do this in
an unsupervised way. Since clusters come with very different properties depending on the
application, a variety of clustering algorithms and measures to judge clusterings have arisen
in the last decades. Among those, a hugely popular method is Lloyd’s algorithm [19] (also
called the k-means algorithm), which for example was voted to be one of the ten most
influential data mining algorithms in machine learning at the IEEE International Conference
on Data Mining (ICDM) in 2006 [24].

© Anup Bhattacharya, Jan Eube, Heiko Röglin, and Melanie Schmidt;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ESA.2020.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Noisy, Greedy and Not so Greedy k-Means++

Lloyd’s algorithm is an iterative local search heuristic operating on points from Euclidean
space Rd. The measure that it implicitly strives to optimize is the k-means cost function:
For a point set X ⊂ Rd and a center set C ⊂ Rd, the k-means cost function is defined as

Φ(X,C) =
∑
x∈X

min
c∈C
||x− c||2,

the sum of the squared distances of all points to their respective center. The k-means problem
asks to minimize the k-means cost over all choices of C with |C| = k. In an optimal solution
of the k-means problem, the centers are means of their clusters, and Lloyd’s algorithm iterates
between computing the means of all clusters as the new center set and reassigning all points
to their closest centers to form new clusters. The k-means cost function is also called sum of
squared errors because when the means are viewed as representatives of the clusters, then
the k-means cost is the squared error of this representation.

The k-means problem is NP-hard [3, 20], and it is also hard to approximate to arbitrary
precision [5, 18]. On the positive side, constant-factor approximations are possible, and the
best known factor is 6.357 due to a break-through result by Ahmadian et al. [2, 18]. However,
the constant-factor approximation algorithms for k-means are not very practical. On the
other hand, Lloyd’s method is hugely popular in practice, but can produce solutions that are
arbitrarily bad in the worst case.

A major result in clustering thus was the k-means++ algorithm due to Arthur and
Vassilvitskii [4] in 2007, which enhances Lloyd’s method with a fast and elegant initialization
method that provides an O(log k)-approximation in expectation. The k-means++ algorithm
samples k initial centers by adaptive sampling, where in each step, a point’s probability of
being sampled is proportional to its cost in the current solution (we will refer to this kind of
sampling as D2-sampling in the following). After sampling k centers, the solution is refined
by using Lloyd’s algorithm. Algorithm 1 contains pseudo code for the k-means++ algorithm.

The beauty of the algorithm is that it has a bounded approximation ratio of O(log k)
in expectation, and at the same time computes solutions that are good (much better than
Θ(log k)) on practical tests. By feeding the computed centers into Lloyd’s method, the
solutions are refined to even better quality. Nevertheless, Arthur and Vassilvitskii show
that the approximation ratio of k-means++ is tight in the worst case: They give an (albeit
artificial) example where the expected approximation ratio is Ω(log k), and this has been
extended by now to examples where k-means++ outputs a Ω(log k)-approximate solution
with high probability [8], and even in the plane [7].

Due to its beneficial theoretical and practical properties, k-means++ has by now become
the de-facto standard for solving the k-means problem in practice. What is less known is
that the original paper [4] and the associated PhD thesis [22] actually propose a possible

Algorithm 1 The k-means++ algorithm [4].

1: Sample a point c1 independently and uniformly at random from X.
2: Let C = {c1}.
3: for i = 2 to k do
4: for x ∈ X do
5: p(x) := minc∈C ||x−c||2∑

y∈X
minc∈C ||y−c||2

6: end for
7: Sample a point ci from X, where every x ∈ X has probability p(x).
8: Update C = C ∪ {ci}.
9: end for
10: Run Lloyd’s algorithm initialized with center set C and output the result.

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:3

n

a

1

b

n

c
1 1

Figure 1 A bad example for the deterministic heuristic that always chooses the current cost
minimizer as the next center. An optimal 2-clustering costs less than 1, while a clustering where b is
a center costs Ω(n).

improvement to the k-means++ algorithm: the greedy k-means++ algorithm. Here in
each of the adaptive sampling steps, not only one center but ` possible centers are chosen
(independently according to the same probability distribution), and then among these l
centers, the one that decreases the k-means cost the most is chosen. This is greedy because a
center that reduces the cost in the current step might be a bad center later on (for example if
we choose a center that lies between two optimum clusters, thus preventing us from choosing
good centers for both on the long run). The original paper [4] says:

Also, experiments showed that k-means++ generally performed better if it selected
several new centers during each iteration, and then greedily chose the one that decreased
Φ (the cost function) as much as possible. Unfortunately, our proofs do not carry over
to this scenario. It would be interesting to see a comparable (or better) asymptotic
result proven here.

The intuition is that k-means++ tries to find clusters in the dataset, and with each
sample, it tries to find a new cluster that has not been hit by a previously sampled center.
This has a failure probability, and the super-constant approximation ratio stems from the
probability that some clusters are missed. In this failure event, the algorithm chooses two
centers that are close to each other compared to the optimum cost. Greedy k-means++ tries
to make this failure event less likely by boosting the probability to find a center from a new
cluster that has not been hit previously and greedily choosing the center.

For ` = 1, the greedy k-means++ becomes the k-means++ algorithm, and for very large `
it becomes nearly deterministic, a heuristic that always chooses the current minimizer among
the whole dataset. It is easy to observe that the latter is not a good algorithm: Consider
Figure 1. In the first step, the center that minimizes the overall k-means cost in the next
step is b. But if we choose b, then the second greedy center is either a or c, and we end up
with a clustering of cost Ω(n), while the solution {a, c} has a cost of 1 (and the optimum
solution is even slightly better).

So the crucial question is how to set `, and whether there is an ` for which greedy k-
means++ outperforms k-means++. It has been shown in [1] that for any optimal clustering
of an input data set, k-means++ has in each iteration a constant probability to sample a
point from a ‘new’ optimal cluster, where new means that no point from that cluster has
previously been chosen as a center. This leads to a bicriteria approximation, since after
O(k) centers, the algorithm has discovered all optimal clusters in expectation. Following
the intuition that stems from this analysis, a natural idea would be to set ` = O(log k):
This reduces the probability to pick no point from a new cluster to Ω(1/k), and by union
bound, the failure probability that this event happens in one of the k samples decreases to a
constant. This choice is also advertized by Celebi et al. [9], who feature greedy k-means++
in a study of initialization strategies for Lloyd’s method. They report that it performs better
than k-means++, for a suggested value of ` = log k. The PhD thesis [22] reports experiments
with ` = 2 that outperformed k-means++. It also states that the approximation guarantee
of greedy k-means++ is unknown (pp. 62+63).

ESA 2020

18:4 Noisy, Greedy and Not so Greedy k-Means++

We initiate the analysis of the greedy k-means++ algorithm. Firstly, we prove that
greedy k-means++ is not asymptotically better than k-means++. More precisely, we show
the following statement.

I Theorem 1. For any k ≥ 4 and any `, there exists a point set Xk,` such that the expected
approximation guarantee of greedy k-means++ is Ω(min{`, k/ log k} · log k).

Theorem 1 implies that the worst-case approximation guarantee of greedy k-means++
cannot get better by choosing ` > 1. In particular for ` = log k, the approximation guarantee
worsens to Ω(log2 k).

As indicated in the quote from [4] above, the original proof of k-means++ does not carry
over to greedy k-means++, not even if we aim for a higher approximation guarantee like
O(` log k). Roughly speaking, the main problem in the analysis is that while the probability
to choose a point as a center can only be increased by a factor of ` by the greedy procedure,
there is no multiplicative lower bound on how much individual probabilities can be decreased.
Indeed, if a point x ∈ P is the worst greedy choice, then its probability to be chosen decreases
from some p(x) in the original k-means++ algorithm to (p(x))`, which is much smaller than
p(x). If this happened to good centers, it could hurt the approximation factor badly.

We proceed to study a different variation of k-means++ which we call the noisy k-
means++ algorithm. This algorithm performs k-means++, but does not sample with exact
probabilities. Instead of sampling a point x with probability p(x) as suggested by D2-
sampling, it uses an arbitrary probability p′(x) with (1 − ε1)p(x) ≤ p′(x) ≤ (1 + ε2)p(x),
where ε1 ∈ [0, 1) and ε2 ≥ 0. If we cast greedy k-means++ as a noisy k-means++ algorithm,
we observe that we get a trivial upper bound of ε2 = `− 1, however, no trivial lower bound
on how much the probabilities are skewed.

Noisy k-means++ is also interesting in its own right, since in practice, the probabilities
actually computed are prone to rounding errors. Due to the iterative nature of k-means++,
it is not at all clear how large the effect of a small rounding can be. We show that the
following theorem holds.

I Theorem 2. Let Tk denote the set of centers sampled by noisy k-means++ on dataset X
and assume that k

ln k ≥ max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 }. Then,

E[Φ(X,Tk)] ≤ O
((

1 + ε2
1− ε1

)3
· log2(k) ·OPTk(X)

)
,

where OPTk(X) denotes the k-means costs of an optimal k-clustering of X. If k
ln k ≤

max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 }, then E[Φ(X,Tk)] ≤ O

((
1+ε2
1−ε1

)4
· log2

(
1+ε2
1−ε1

)
·OPTk(X)

)
.

We use Theorem 2 to analyze a moderately greedy variant of k-means++, where the
simple idea is that with probability p, we do a normal k-means++ step, and with probability
1 − p, we do a greedy k-means++ step. The idea is that in this variant, a point is never
completely disregarded, so we do get a lower bound on the probabilities, yet in many steps,
we do still profit from the additional power of greedy k-means++ seen in experiments. For
constant p and `, this variant gives an O(log2 k)-approximation by Theorem 2.

Techniques

Our lower bound example for greedy k-means++ is close to the original Ω(log k) lower bound
example in [4] (we contract each cluster to a single location except for one cluster where
one point is moved away from the location into the center of the instance, see Section 2).

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:5

However, the proof of the lower bound proceeds very differently. Morally, instead of missing
clusters (which becomes less likely due to the multiple samples), the failure event is to choose
a bad point as a center. This alone is responsible for the Ω(` log k) lower bound, while the
original Ω(log k) bound stems from missing clusters.

To analyze noisy k-means++, we build upon an analysis of k-means++ by Dasgupta [12].
Analyzing k-means++ is about ‘hitting’ clusters. For some fixed optimal solution we call a
cluster covered if a point is sampled that provides a good enough center for it. An iteration
of k-means++ is wasted if a point is sampled from an already covered cluster. Dasgupta
uses a potential function which accumulates costs over the wasted iterations. To make the
connection between k-means++ and this potential function, it is crucial that the expected
average cost of the uncovered clusters does not increase over time (in k-means++). For
noisy k-means++, this is not true: The cost can increase. We show that the increase can
be bounded, roughly by a factor of log k. Then the key difficulty is to analyze the resulting
random process which is highly dependent. We analyze an abstract version first and then
show how to apply it to the setting of noisy k-means++.

Additional related work

In his master’s thesis, Pago [21] shows that for ` = log k, the example in Figure 1 can be
extended such that greedy k-means++ gives an Ω(log k)-approximation in expectation.

Bachem et al. [6] suggest to speed up k-means++ by replacing the exact sampling
according to the probabilities p(x) by a fast approximation based on Markov Chain Monte
Carlo sampling. They prove that under certain assumptions on the dataset their algorithm
yields the same approximation guarantee in expectation as k-means++, namely O(log k).
Their algorithm can be viewed as a special case of noisy k-means++. However, their analysis
of the approximation factor is based on making the total variation distance between the
probability distributions p and p′ (in every step) so small that with high probability their
algorithm behaves identically to k-means++. In contrast to this, Theorem 2 also applies to
choices of ε1 and ε2 for which noisy k-means++ behaves differently from k-means++ with
high probability.

Lattanzi and Sohler [17] propose an intermediate improvement step to be executed
between the D2-sampling and Lloyd’s algorithm in order to improve the solution quality to
a constant factor approximation in expectation. Their algorithm starts with a k-means++
solution and then performs O(k log log k) improvement steps: In each such step, a new center
is sampled with D2-sampling, and if swapping it with an existing center improves the solution,
then this swap is performed. While this is a greedy improvement step and thus a bit related
to greedy k-means++, their algorithm is closer in spirit to a known local search algorithm by
Kanungo et al. [16] which uses center swaps (starting on an arbitrary solution) to obtain a
constant-factor approximation, but needs a lot more rounds and is impractical. Very recently,
Choo et. al. [10] improved the result by Lattanzi and Sohler and showed that O(k) swaps
are sufficient to achieve a constant factor approximation.

The bicriteria analysis by Aggarwal et al. [1] mentioned above was improved by Wei [23]
who showed that for any β > 1, sampling βk centers with D2-sampling yields an O(1)-
approximation in expectation (with βk centers). Hsu and Telgarsky [15] show that greedy
k-means++ for ` = Θ(k) leads to a bicriteria O(1)-approximation if Θ(k) centers are chosen.
All above cited works assume that k and d are input parameters; if one of them is a constant,
then there exists a PTAS for the problem [11, 13, 14].

In bicriteria results (which, in a sense, also applies to [17] and [10]), the key is to show
that a cluster that has not been covered by a good center is found with high probability. For
the analysis of greedy k-means++ and noisy k-means++, the main challenge is to bound
the expected cost after only k steps.

ESA 2020

18:6 Noisy, Greedy and Not so Greedy k-Means++

2 Lower Bound for Greedy k-means++

In this section we construct an instance on which greedy k-means++ yields only an Ω(` log k)-
approximation in expectation. More precisely, we analyze Algorithm 2.

Algorithm 2 Greedy k-means++ algorithm [4].

1: Sample1 a point c1 independently and uniformly at random from X.
2: Let C = {c1}.
3: for i = 2 to k do
4: for x ∈ X do
5: p(x) := minc∈C ||x−c||2∑

y∈X
minc∈C ||y−c||2

.

6: end for
7: Sample1 a set S of ` points independently according to this probability distribution.
8: Let ci = arg minu∈S Φ(X,C ∪ {u}).
9: Update C = C ∪ {ci}.

10: end for
11: Run Lloyd’s algorithm initialized with center set C and output the result.

Note that we only draw one sample in the first step. This is due to the fact that in the
first step, k-means++ is guaranteed to discover a new cluster, so there is no reason to draw
multiple samples.

The instance is based on a regular (k − 1)-simplex with side length
√

2. Let the vertices
of this simplex be denoted by v1, . . . , vk. There are k points each at vertices v1, . . . , vk−1,
(k−1) points at vertex vk, and there is one point at the center o of the simplex. Let X denote
the set of all these points. The simplex can be constructed explicitly in Rk by letting vi
be the ith canonical unit vector for each i and o = (1/k, . . . , 1/k). Then it follows that the
distance between the center o and any vertex vi is

√
(k − 1)/k.

An optimal clustering (C?1 , . . . , C?k) of this instance is obtained as follows: The clusters
C?1 , . . . , C

?
k−1 consist of the k points at vertices v1, . . . , vk−1, respectively, and the cluster C?k

consists of the (k − 1) points at vertex vk and the point at the center o. The cost of this
clustering is bounded from above by ||o− vk||2 = k−1

k = O(1).
Consider a k-clustering C obtained by greedy k-means++ that contains the point at o

as one of the k centers. The cost of this clustering is at least (k − 1)2/k = Ω(k) because
there exists at least one i such that C has no center at vi. In the best case this is vk, which
generates the aforementioned cost because the (k − 1) points at vk will be assigned to the
center at o. The approximation guarantee of this clustering is Ω(k). We prove that with
sufficiently large probability, greedy k-means++ places one of the centers at o.

Morally, we proceed as follows. We define a failure event F which captures the case that
one of the points at vk is chosen as a center during the execution of greedy k-means++. If
this event happens, we cannot show a high lower bound on the approximation guarantee. So
we show that F happens at most with constant probability, so with sufficient probability, F
does not occur. Then we analyze the probablity that under the condition that F does not
occur, o is chosen as a center during the execution of k-means++. This probability increases
with every iteration (when the kth center is chosen, there are only o, the points at vk and
the points at one other location vi left as possible choices). We analyze a simplified random
experiment to lower bound the probablity that o is chosen as a center during the iterations
i = 2, . . . , k.

1 In all our algorithms we do sampling with replacement.

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:7

I Theorem 1. For any k ≥ 4 and any `, there exists a point set Xk,` such that the expected
approximation guarantee of greedy k-means++ is Ω(min{`, k/ log k} · log k).

Proof. Notice that for ` = 1 there is nothing to show since a lower bound of Ω(log k) is
known for this case. So in the following, we assume that ` ≥ 2. Furthermore we consider first
only the case that ` ≤ k

20 ln(k−1) and defer the discussion of larger ` to the end of the proof.
We consider the point set X constructed above. Consider a k-clustering C obtained

by greedy k-means++ that contains the point at o as one of the k centers. The cost of
this clustering is at least (k − 1)2/k = Ω(k) because there exists at least one i such that C
has no center at vi. In the best case this is vk, which generates the aforementioned cost
because the (k − 1) points at vk will be assigned to the center at o. The approximation
guarantee of this clustering is Ω(k). We will prove that with sufficiently large probability,
greedy k-means++ places one of the centers at o.

We start the analysis by defining the following events for all i ∈ [k]:

Fi = the center chosen in the ith iteration lies at vk,
Gi = the center chosen in the ith iteration lies at o,
Hi = Fi ∪Gi.

We denote by Φi the potential after i− 1 iterations if in these iterations no point from C?k
has been chosen as a center. Since the probability to choose the same vi more than once
is zero, this means that i − 1 centers from different clusters from C?1 , . . . , C

?
k−1 have been

chosen. In the remaining k − i+ 1 clusters, k points pay a cost of 2, except for the one point
at o which pays 1− 1/k. Thus,

Φi = 2((k − i+ 1)k − 1) + 1− 1
k

and

2((k − i+ 1)k − 1) ≤ Φi ≤ 2k(k − i+ 1).

We define

F = F1 ∪ (F2 ∩H1) ∪ . . . ∪ (Fk−1 ∩H1 ∩ . . . ∩Hk−2)

as the event that in one of the first k − 1 iterations a point at vk is chosen as a center and
that this is the first center chosen from C?k . We exclude the last iteration because Pr(Fk) is
significantly higher than Pr(Fi) for i ≤ k − 1.

We will prove a lower bound for the probability of the event F ∩ (G2∪ . . .∪Gk−1) because
if this event happens then the point at o is one of the centers computed by greedy k-means++,
i.e., the approximation factor is at least Ω(k).

If the event F occurs then we cannot prove a lower bound on the approximation guarantee
of greedy k-means++. Hence, we will prove an upper bound for the probability of F . Observe
that

Pr[F] ≤
k−1∑
i=1

Pr[Fi | H1 ∩ . . .∩Hi−1] ·Pr[H1 ∩ . . .∩Hi−1] ≤
k−1∑
i=1

Pr[Fi | H1 ∩ . . .∩Hi−1]

and

Pr[F1] = k − 1
k2 ≤ 1

k
.

ESA 2020

18:8 Noisy, Greedy and Not so Greedy k-Means++

Consider the situation that 1 ≤ i− 1 ≤ k − 2 iterations have already been performed and
that in these iterations cluster C?k has not been covered. Then each point from an uncovered
cluster C?j with j < k reduces the potential by 2k. Each point at vk reduces the potential
by 2(k − 1) and the point at o reduces the potential by

((k − i+ 1)︸ ︷︷ ︸
≥2

k− 1)(1 + 1/k) + 1− 1/k ≥ (2k− 1)(1 + 1/k) + 1− 1/k = 2(k+ 1− 1/k) > 2k.

Hence, the points at vk have the least potential reduction and thus a point at vk is only
selected as new center in iteration i if all ` sampled candidates are at vk. Hence, we obtain

Pr[Fi | H1 ∩ . . . ∩Hi−1] =
(

2(k − 1)
Φi

)`
.

Altogether this implies

Pr[F] ≤ Pr[F1] +
k−1∑
i=2

Pr[Fi | H1 ∩ . . . ∩Hi−1] ≤ 1
k

+
k−1∑
i=2

(
2(k − 1)

Φi

)`
.

Together with Φi ≥ 2((k − i+ 1)k − 1) this implies

Pr[F] ≤ 1
k

+
k−1∑
i=2

(
2(k − 1)

2((k − i+ 1)k − 1)

)`

= 1
k

+
k−1∑
i=2

(
k − 1

(k − i+ 1)k − 1

)`

≤ 1
k

+
k−1∑
i=2

(
k

(k − i+ 1)k

)`

= 1
k

+
k−1∑
i=2

(
1
i

)`
,

where the inequality in the penultimate line of the calculation follows from a
b < a+1

b+1
for 0 < a < b. Using ` ≥ 2 and k ≥ 4, it follows

Pr[F] ≤ 1
k

+
k−1∑
i=2

(
1
i

)2
≤ 1
k

+
∞∑
i=2

(
1
i

)2
= 1
k

+
(
π2

6 − 1
)
≤ 0.9.

This shows that with constant probability, the failure event F does not occur, i.e., with
constant probability none of the points from vk is chosen as a center in the first k − 1
iterations.

Now let us consider the probability that the point at o is selected as a center. We have
argued above that the potential reduction of the point at o in iteration 2 ≤ i ≤ k − 1 is
larger than 2k if cluster C?k has not been covered in the first i− 1 iterations. We have also
seen that any other point reduces the potential by at most 2k. Hence, in order to select the
point at o as center it suffices already if it belongs to the ` candidates chosen in iteration i.
Denote the event that the jth sample in iteration i is o by Gij . Then for i ∈ {2, . . . , k − 1},

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:9

Pr[Gi | H1 ∩ . . . ∩Hi−1] = Pr[∪`
j=1Gij | H1 ∩ . . . ∩Hi−1]

≥
`∑

j=1

Pr[Gij | H1 ∩ . . . ∩Hi−1]−
∑

1≤j1<j2≤j

Pr[Gij1 ∩Gij2 | H1 ∩ . . . ∩Hi−1]

= `(1− 1/k)
Φi

−

(
`
2

)
(1− 1/k)2

Φ2
i

≥ `(1− 1/k)
Φi

− `2(1− 1/k)2

Φ2
i

,

where the first inequality follows from Bonferroni inequalities.
Since ` ≤ k/(20 ln(k − 1)) ≤ k/2, we obtain

`(1− 1/k)
Φi

≤ `

Φi
≤ `

2((k − i+ 1)k − 1) ≤
`

k
≤ 1

2 .

This is helpful, because for any a ∈ R with 0 ≤ a ≤ 1/2, it holds that a− a2 ≥ a/2. Thus,
the previous two inequalities imply

Pr[Gi | H1 ∩ . . . ∩Hi−1] ≥ `(1− 1/k)
Φi

−
(
`(1− 1/k)

Φi

)2
≥ `(1− 1/k)

2Φi
. (1)

Let us now condition on the event F , which happens with constant probability. Then we
can write the probability of the event we care about as

Pr[F ∩ (G2 ∪ . . . ∪Gk−1)] = Pr[F] ·Pr[G2 ∪ . . . ∪Gk−1 | F] = Pr[F] ·
k−1∑
i=2

Pr[Gi | F]

≥ Pr[F] ·
k−1∑
i=2

Pr[Gi | F1 ∩ . . . ∩ Fi−1],

where we used in the penultimate step that the events Gi are mutually exclusive and in the
last step that F ⊆ F1∩ . . .∩Fi−1. We cannot use (1) directly to bound Pr[Gi | F1∩ . . .∩Fi−1]
because the condition is different (in (1) we condition on the event that no point from C?k
has been chosen as center in the first i− 1 iterations while conditioning on F1 ∩ . . . ∩ Fi−1
only implies that no point at vk has been chosen as a center).

To prove a lower bound on Pr[G2 ∪ . . . ∪ Gk−1 | F], we consider a different random
experiment E. This random experiment consists of k− 2 iterations numbered from 2 to k− 1
and each iteration i is successful with probability Pr[Gi | H1 ∩ . . . ∩Hi−1] independent of
the other iterations. Then Pr[G2 ∪ . . .∪Gk−1 | F] equals the probability that at least one of
the iterations of E is successful. Let E′ denote the same random experiment as E only with
modified success probabilities. In E′ iteration i is successful with probability `(1−1/k)

2Φi
. Due

to (1) and Bonferroni inequalities and using k ≥ 4, we obtain
Pr[G2 ∪ . . . ∪Gk−1 | F] = Pr[at least one success in E]

≥ Pr[at least one success in E′]

≥
k−1∑
i=2

`(1− 1/k)
2Φi

−
∑

2≤i<j≤k−1

`(1− 1/k)
2Φi

· `(1− 1/k)
2Φj

≥
k−1∑
i=2

`(1− 1/k)
4k(k − i+ 1) −

∑
2≤i<j≤k−1

`

4((k − i+ 1)k − 1) ·
`

4((k − j + 1)k − 1)

ESA 2020

18:10 Noisy, Greedy and Not so Greedy k-Means++

≥
k−1∑
i=2

`(1− 1/k)
4k(k − i+ 1) −

∑
2≤i<j≤k−1

`

3k(k − i+ 1) ·
`

3k(k − j + 1)

= `(1− 1/k)
4k

k−1∑
i=2

1
i
− `2

9k2

∑
2≤i<j≤k−1

1
(k − i+ 1)(k − j + 1)

≥ 3`
16k

k−1∑
i=2

1
i
− `2

9k2

(
k−1∑
i=2

1
i

)2

≥ 3`
16k (ln(k − 1)− 1)− `2

9k2 ln2(k − 1).

For k ≥ 4, we have ln(k − 1)− 1 ≥ 0.089 ln(k − 1). Together with the previous calculation
we get

Pr[G2 ∪ . . . ∪Gk−1 | F] ≥ 0.0166 · ` · ln(k − 1)
k

−
(
` · ln(k − 1)

3k

)2

= ` · ln(k − 1)
k

·
(

0.0166− ` · ln(k − 1)
9k

)
≥ 0.01 · ` · ln(k − 1)

k
,

where we used ` ≤ 0.05·k
ln(k−1) for the last inequality.

Overall we obtain

Pr[F ∩ (G2 ∪ . . . ∪Gk−1)] =Pr[F] ·Pr[G2 ∪ . . . ∪Gk−1 | F]

≥0.1 · 0.01 · ` · ln(k − 1)
k

= Ω
(
` · log(k)

k

)
.

If this event happens, then the costs of the clustering are Ω(k). Hence the expected costs of
the clustering computed by greedy k-means++ are Ω(` · log(k)).

Finally let us consider the case ` > k
20 ln(k−1) . We argue that in this case the approximation

guarantee cannot be better than for ` = k
20 ln(k−1) . To see that this is true, one has to have

a closer look at where the upper bound on ` has been used in the argument above. It is
used twice: once for proving an upper bound on the conditional probability of Gi and once
for proving an upper bound on the conditional probability of G2 ∪ . . . ∪Gk−1. Both these
probabilities increase with ` so if ` is larger one could simply replace it by k

20 ln(k−1) , leading
to a lower bound of Ω(k/ log(k) · k) = Ω(k) for the approximation guarantee. J

3 Analysis of Noisy k-means++ Seeding

In this section we analyze a noisy seeding procedure, which we call noisy k-means++ in the
following. This procedure iteratively selects k centers from the data set in a similar fashion
as k-means++. The only difference is that the probability of sampling a point as the next
center is no longer exactly proportional to its squared distance to the closest center chosen
so far. The probabilities are only approximately correct. To be more precise, consider an
iteration of noisy k-means++. For any point x ∈ X, we denote by px the probability that x
is chosen by k-means++ as the next center (i.e., p is the uniform distribution in the first
iteration and the distribution that results from D2-sampling in the following iterations).
In noisy k-means++ an adversary can choose an arbitrary probability distribution q on X

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:11

with qx ∈ [(1− ε1)px, (1 + ε2)px] for all x ∈ X where ε1 ∈ [0, 1) and ε2 ≥ 0 are parameters2.
Then the next center is sampled according to q. This is repeated in every iteration of noisy
k-means++ and in every iteration the adversary can decide arbitrarily how to choose q based
on the current distribution p that results from D2-sampling. We analyze the worst-case
approximation guarantee provided by noisy k-means++.

The difficulty with noisy k-means++ is that a) it has a high probability to differ from
k-means++, and b) the steps are highly dependent on each other, so once the algorithm
has deviated, this propagates in the subsequent steps. It may be surprising that such a
little change to the algorithm has such a huge effect. After some considerations it is even
unclear if noisy k-means++ has any approximation guarantee at all. While we achieve
worse guarantees compared to k-means++, we do at least answer this question affirmatively,
showing that noisy k-means++ achieves an expected approximation guarantee of O(log2 k).
Achieving this requires an intricate analysis of the highly dependent algorithm. We could
not make it work with the original proof, so we use an alternative proof by Dasgupta [12] as
a starting point. Also in this proof, a crucial step breaks down (the expected average cost of
uncovered clusters can now increase, which is not the case for k-means++). This makes the
process difficult to analyze and solving this challenge is the main technical contribution of
this paper.

Let us first introduce some notation. We denote by Φ(X,C) the k-means costs of data
set X with respect to center set C, i.e.,

Φ(X,C) =
∑
x∈X

min
c∈C
||x− c||2.

For c ∈ Rd we also write Φ(X, c) instead of Φ(X, {c}) and similarly for x ∈ Rd we write Φ(x,C)
instead of Φ({x}, C). Let OPTk(X) denote the optimal k-means costs of dataset X. In the
following we assume that a data set X is given and we denote by (C?1 , . . . , C?k) an optimal
k-clustering of X. For a finite set X ⊂ Rd, we denote by µ(X) = 1

|X|
∑
x∈X x its mean. The

following lemma is well-known.

I Lemma 3. For any finite X ⊂ Rd and any z ∈ Rd,

Φ(C, z) = Φ(C, µ(C)) + |C| · ||z − µ(C)||2 = OPT1(C) + |C| · ||z − µ(C)||2.

We call an optimal cluster C?i covered by (noisy) k-means++ if at least one point from C?i
is selected as a center. Arthur and Vassilvitskii [4] observe that covered clusters are well
approximated by k-means++ in expectation. In particular, they show that the expected costs
of an optimal cluster C?i with respect to the center set computed by k-means++ are at most
2 ·OPT1(C?i) and 8 ·OPT1(C?i) if the cluster is covered in the first or any of the following
iterations, respectively. First of all, we carry these observations over to noisy k-means++.
The following two lemmata are straightforward adaptations of Lemma 3.2 and Lemma 3.3
in [4].

I Lemma 4. Let c1 denote the first center chosen by noisy k-means++. For each optimal
cluster C?i ,

E[Φ(C?i , c1) | c1 ∈ C?i] ≤ 2(1 + ε2)
1− ε1

·OPT1(C?i).

2 For better readability, whenever we write q(x) ≤ (1+ε2)px, we implicitly require q(x) ≤ min{1, (1+ε2)px}

ESA 2020

18:12 Noisy, Greedy and Not so Greedy k-Means++

Proof. In k-means++ the first center is chosen uniformly at random, i.e., each point from X

has a probability of 1/|X| of being chosen. In noisy k-means++, all points have a probability
in [(1−ε1)/|X|, (1+ε2)/|X|] of being chosen. Hence, the probability of choosing a point x ∈ C?i
as the first center conditioned on the first center being chosen from C?i is at most 1+ε2

(1−ε1)|C?
i
| .

This implies

E[Φ(C?i , {c1})] ≤
∑
c∈C?

i

1 + ε2
(1− ε1)|C?i |

Φ(C?i , c)

= 1 + ε2
1− ε1

· 1
|C?i |

∑
c∈C?

i

Φ(C?i , c)

= 1 + ε2
1− ε1

· 1
|C?i |

∑
c∈C?

i

(OPT1(C?i) + |C?i | · ||c− µ(C?1)||2) (Lemma 3)

= 2(1 + ε2)
1− ε1

·OPT1(C?i) J

I Lemma 5. Consider an iteration of noisy k-means++ after the first one and let C 6= ∅
denote the current set of centers. We denote by z the center sampled in the considered
iteration. Then for any C 6= ∅ and any optimal cluster C?i ,

E[Φ(C?i , C ∪ {z}) | C, z ∈ C?i] ≤ 8(1 + ε2)
1− ε1

·OPT1(C?i).

Proof. Conditioned on sampling a point from C?i , the probability of choosing point x ∈ C?i
as the next center is at most 1+ε2

1−ε1
· Φ(x,C)

Φ(C?
i
,C) . If x is chosen as the next center, the costs of

any point p ∈ C?i become min{Φ(p, C), ||p− x||2}. This implies

E[Φ(C?i , C ∪ {z}) | C, z ∈ C?i] =
∑
x∈C?

i

Pr[z = x | C] · Φ(C?i , C ∪ {x})

≤ 1 + ε2
1− ε1

·
∑
x∈C?

i

Φ(x,C)
Φ(C?i , C)

∑
p∈C?

i

min{Φ(p, C), ||p− x||2}.

(2)

For any two points x, p ∈ C?i , we can write

Φ(x,C) =
(

min
c∈C
||x− c||

)2
≤
(

min
c∈C

(||x− p||+ ||p− c||)
)2
≤ 2Φ(p, C) + 2||x− p||2.

By summing over all p in C?i , we get

Φ(x,C) ≤ 2
|C?i |

∑
p∈C?

i

Φ(p, C) + 2
|C?i |

∑
p∈C?

i

||x− p||2.

With (2), this implies that E[Φ(C?i , C ∪ {z}) | C, z ∈ C?i] is bounded from above by

1 + ε2
1− ε1

·
∑
x∈C?

i

2
|C?

i
|
∑
p∈C?

i
Φ(p, C) + 2

|C?
i
|
∑
p∈C?

i
||x− p||2

Φ(C?i , C)
∑
p∈C?

i

min{Φ(p, C), ||p− x||2}

= 1 + ε2
1− ε1

·
∑
z∈C?

i

2
|C?

i
|
∑
p∈C?

i
Φ(p, C)∑

p∈C?
i

Φ(p, C)
∑
p∈C?

i

min{Φ(p, C), ||p− z||2}

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:13

+ 1 + ε2
1− ε1

·
∑
z∈C?

i

2
|C?

i
|
∑
p∈C?

i
||p− z||2∑

p∈C?
i

Φ(p, C)
∑
p∈C?

i

min{Φ(p, C), ||p− z||2}

≤ 1 + ε2
1− ε1

·
∑
z∈C?

i

2
|C?i |

∑
p∈C?

i

||p− z||2 + 1 + ε2
1− ε1

·
∑
z∈C?

i

2
|C?i |

∑
p∈C?

i

||p− z||2

= 4(1 + ε2)
1− ε1

·
∑
z∈C?

i

1
|C?i |

∑
p∈C?

i

||p− z||2

= 4(1 + ε2)
1− ε1

·
∑
z∈C?

i

1
|C?i |

(OPT1(C?i) + |C?i | · ||z − µ(C?i)||2) (Lemma 3)

= 8(1 + ε2)
1− ε1

·OPT1(C?i) J

Consider a run of noisy k-means++. For t ∈ [k], let Ht and Ut denote the set of all points
from X that belong after iteration i to covered and uncovered optimal clusters, respectively.
Let ut denote the number of uncovered clusters after iteration t. Furthermore let Tt denote
the set of centers chosen by noisy k-means++ in the first t iterations. We say that iteration t
is wasted if the center chosen in iteration t comes from Ht−1, i.e., if in iteration t no uncovered
cluster becomes covered.

I Corollary 6. For any t ∈ [k],

E [Φ(Ht, Tt)] ≤
8(1 + ε2)

1− ε1
·OPTk(X)

Proof. Using Lemma 4 and Lemma 5 we obtain

E [Φ(Ht, Tt)] =
k∑
i=1

Pr[C?i ⊆ Ht] ·E [Φ(C?i , Tt) | C?i ⊆ Ht]

≤
k∑
i=1

Pr[C?i ⊆ Ht] ·
8(1 + ε2)

1− ε1
·OPT1(C?i)

≤ 8(1 + ε2)
1− ε1

·
k∑
i=1

OPT1(C?i)

= 8(1 + ε2)
1− ε1

·OPTk(X). J

Corollary 6 implies that the covered clusters contribute in expectation at mostO(OPTk(X))
to the costs of the solution computed by noisy k-means++ (assuming ε1 and ε2 to be
constants). The not straightforward part is to prove an upper bound for the costs of the
clusters that are not covered by noisy k-means++. For this, we adapt the analysis of
k-means++ due to Dasgupta [12]. This analysis is based on a potential function that
accumulates costs in every wasted iteration. The potential function has the property that
the expected value of the potential function in the end can be bounded and that the total
costs accumulated are in expectation at least the costs of the uncovered clusters in the end.

Dasgupta crucially uses that the expected average costs of the uncovered clusters do not
increase in k-means++. For noisy k-means++ this is not true anymore in general. Hence,
we have to adapt the potential function and the analysis. We define Wi = 1 if iteration i is
wasted and Wi = 0 otherwise. We define the potential function as

Ψk =
k∑
i=2

Wi ·
Φ(Ui, Ti)

ui
.

ESA 2020

18:14 Noisy, Greedy and Not so Greedy k-Means++

The easier part is to show that the potential can be bounded from above.

I Lemma 7. It holds

E [Ψk] ≤ 8(1 + ε2)2

(1− ε1)2 · (ln(k) + 1) ·OPTk(X).

Proof. Let i ∈ {2, . . . , t}. In the following calculation we sum over all realizations Fi−1 of
the first i − 1 iterations of noisy k-means++. Any realization Fi−1 determines the value
of Φ(Ui−1, Ti−1) and ui−1. We use the notation [. . .]Fi−1 to express that all terms inside the
brackets take the values determined by Fi−1. Then

E
[
Wi ·

Φ(Ui, Ti)
ui

]
=
∑
Fi−1

Pr[Fi−1] ·E
[
Wi ·

Φ(Ui, Ti)
ui

∣∣∣ Fi−1

]

=
∑
Fi−1

Pr[Fi−1] ·Pr[Wi = 1 | Fi−1] ·E
[

Φ(Ui, Ti)
ui

∣∣∣ Fi−1 ∩ (Wi = 1)
]

Since under the condition that iteration i is wasted the average costs of the uncovered
clusters cannot increase, we can upper bound the term above by∑

Fi−1

Pr[Fi−1] ·Pr[Wi = 1 | Fi−1] ·
[

Φ(Ui−1, Ti−1)
ui−1

]
Fi−1

≤
∑
Fi−1

Pr[Fi−1] ·
[

(1 + ε2)Φ(Hi−1, Ti−1)
(1− ε1)Φ(Ui−1, Ti−1) ·

Φ(Ui−1, Ti−1)
ui−1

]
Fi−1

= 1 + ε2
1− ε1

·
∑
Fi−1

Pr[Fi−1] ·
[

Φ(Hi−1, Ti−1)
ui−1

]
Fi−1

≤ 1 + ε2
1− ε1

·
∑
Fi−1

Pr[Fi−1] ·
[

Φ(Hi−1, Ti−1)
k − i+ 1

]
Fi−1

= 1 + ε2
1− ε1

· E [Φ(Hi−1, Ti−1)]
k − i+ 1 .

This implies

E [Ψk] =
k∑
i=2

E
[
Wi ·

Φ(Ui, Ti)
ui

]

≤ 1 + ε2
1− ε1

·
k∑
i=2

E [Φ(Hi−1, Ti−1)]
k − i+ 1 .

With Corollary 6 this yields

E [Ψk] ≤ 8(1 + ε2)2

(1− ε1)2 ·OPTk(X)
k∑
i=2

1
k − i+ 1 ≤

8(1 + ε2)2

(1− ε1)2 · (ln(k) + 1) ·OPTk(X). J

Now our goal is to prove a lower bound on the potential, namely, we want to prove the
following lemma, where we use D(ε1, ε2, ln k) = max{18, 24(ε1+ε2)(1+ε2)

(1−ε1)2 } · ln k.

I Lemma 8. If k ≥ D(ε1, ε2, ln k), then set B(ε1, ε2, ln k) = 4(1+ε2)
1−ε1

· ln(k)+2, and otherwise,
set B(ε1, ε2, ln k) = D(ε1, ε2, ln k). Then

E [Ψk] ≥ E [Φ(Uk, Tk)]
B(ε1, ε2, ln k) .

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:15

The main technical challenge is to bound the increase in the expected average cost of
uncovered clusters, namely, the proof of Lemma 8 heavily depends on the following lemma.
We state the lemma below and prove it later. We use the notation [. . .]Fi

to express that all
terms inside the brackets take the values determined by Fi.

I Lemma 9. Set D(ε1, ε2, ln k) = max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 } · ln k. If k ≥ D(ε1, ε2, ln k), then

set B(ε1, ε2, ln k) = 4(1+ε2)
1−ε1

· ln(k)+2, and otherwise, set B(ε1, ε2, ln k) = D(ε1, ε2, ln k). Then
for any i ∈ [k] and any realization Fi of the first i iterations

E
[

Φ(Uk, Tk)
uk

∣∣∣ Fi] ≤ B(ε1, ε2, ln k) ·
[

Φ(Ui, Ti)
ui

]
Fi

.

We assume Lemma 9 to prove Lemma 8 as follows. Later, we give the proof of Lemma 9.

Proof. For any i ∈ {2, . . . , k}, we obtain using Lemma 9

E
[
Wi ·

Φ(Ui, Ti)
ui

]
=

∑
Fi,[Wi]Fi

=1

Pr[Fi] ·
[

Φ(Ui, Ti)
ui

]
Fi

≥
∑

Fi,[Wi]Fi
=1

Pr[Fi] ·
1

B(ε1, ε2, ln k) ·E
[

Φ(Uk, Tk)
uk

∣∣∣ Fi]

= 1
B(ε1, ε2, ln k) ·

∑
Fi

Pr[Fi] ·E
[
Wi ·

Φ(Uk, Tk)
uk

∣∣∣ Fi]
= 1
B(ε1, ε2, ln k) ·E

[
Wi ·

Φ(Uk, Tk)
uk

]
.

Hence,

E [Ψk] =
k∑
i=2

E
[
Wi ·

Φ(Ui, Ti)
ui

]

≥ 1
B(ε1, ε2, ln k) ·

k∑
i=2

E
[
Wi ·

Φ(Uk, Tk)
uk

]

= 1
B(ε1, ε2, ln k) ·E

[(
k∑
i=2

Wi

)
· Φ(Uk, Tk)

uk

]

= 1
B(ε1, ε2, ln k) ·E

[
uk ·

Φ(Uk, Tk)
uk

]
= E [Φ(Uk, Tk)]
B(ε1, ε2, ln k) J

With Lemma 7, Lemma 8 and Corollary 6, we prove the main theorem.

I Theorem 2. Let Tk denote the set of centers sampled by noisy k-means++ on dataset X
and assume that k

ln k ≥ max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 }. Then,

E[Φ(X,Tk)] ≤ O
((

1 + ε2
1− ε1

)3
· log2(k) ·OPTk(X)

)
,

where OPTk(X) denotes the k-means costs of an optimal k-clustering of X. If k
ln k ≤

max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 }, then E[Φ(X,Tk)] ≤ O

((
1+ε2
1−ε1

)4
· log2

(
1+ε2
1−ε1

)
·OPTk(X)

)
.

ESA 2020

18:16 Noisy, Greedy and Not so Greedy k-Means++

Proof. For k ≥ max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 } · ln k, Lemma 7 and Lemma 8 imply

E [Φ(Uk, Tk)] ≤ B(ε1, ε2, ln k) ·E [Ψk]

≤ B(ε1, ε2, ln k) · 8(1 + ε2)2

(1− ε1)2 · (ln(k) + 1) ·OPTk(X)

= O

(
(1 + ε2)3

(1− ε1)3 · log2(k) ·OPTk(X)
)
.

With Corollary 6 this implies

E [Φ(Hk, Tk) + Φ(Uk, Tk)] ≤ O
(1 + ε2

1− ε1
·OPTk(X)

)
+O

(
(1 + ε2)3

(1− ε1)3 · log2(k) ·OPTk(X)
)

≤ O
(

(1 + ε2)3

(1− ε1)3 · log2(k) ·OPTk(X)
)

For k ≤ max{18, 24(ε1+ε2)(1+ε2)
(1−ε1)2 } · ln k, we get

B(ε1, ε2, ln k) · 8(1 + ε2)2

(1− ε1)2 · (ln(k) + 1) ·OPTk(X)

= O

(
(1 + ε2)4

(1− ε1)4 · log2(k) ·OPTk(X)
)
,

where we use that ε1 < 1, so ε1 + ε2 ≤ 1 + ε2. This implies

E [Φ(Hk, Tk) + Φ(Uk, Tk)] ≤ O
(

(1 + ε2)4

(1− ε1)4 · log2(k) ·OPTk(X)
)

≤ O
(

(1 + ε2)4

(1− ε1)4 · log2
(

(1 + ε2)2

(1− ε1)2

)
·OPTk(X)

)
= O

((
1 + ε2
1− ε1

)4
· log2

(
1 + ε2
1− ε1

)
·OPTk(X)

)
,

where we use for the second inequality that either
√
k ≤ k

ln k ≤ 18 and then ln k ≤ O(1), or

√
k ≤ k

ln k ≤
24(ε1 + ε2)(1 + ε2)

(1− ε1)2 ⇒ ln
√
k ≤ ln

(
24(ε1 + ε2)(1 + ε2)

(1− ε1)2

)
⇒ log k ≤ O

(
log
(

(1 + ε2)2

(1− ε1)2

))
. J

We conclude this section by discussing Lemma 9. It says that the average potential of
uncovered clusters increases by at most a logarithmic multiplicative factor. We first consider
the following abstract random experiment whose connection to noisy k-means++ we discuss
in the actual proof of Lemma 9 below. Let a1, . . . , az ∈ R≥0 denote numbers with average
value 1. Since there are z numbers with the average equal to one, their sum equals z. We
assume that in each step of our experiment with probability ε ∈ [0, 1) an adversary chooses
one of the numbers to be removed and with probability 1 − ε a number is removed by
proportional sampling (i.e., if number ai still exists then it is removed with probability ai/S,
where S denotes the sum of the remaining numbers). Note that in this process the number
ai is sampled with probability at least (1− ε)ai

S . Additionally after each step an adversary
can arbitrarily lower the value of some numbers. This process is run for ` steps and we are
interested in an upper bound for the expected average of the numbers remaining after these
` steps. We denote this average by A`.

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:17

I Lemma 10. Let ε ∈ (0, 1), assume that z
ln z ≥ max{18, 24ε

(1−ε)2 }, and ` ≥ z/2. Then E [A`] ≤
4

1−ε · ln(z) + 2. For z ≤ max{18, 24ε
(1−ε)2 } · ln z, we observe that E [A`] ≤ z ≤ max{18, 24ε

(1−ε)2 } ·
ln z.

Proof. Let Z denote the number of adversarial steps among the first ` steps. Then E [Z] = ε`.
We denote by F1 the event that Z ≥ 1+ε

2 · `. Note that (1 + ε)/2 = ε+ (1− ε)/2 always lies
between ε and 1.

By Chernoff bound we get

Pr[F1] = Pr
[
Z ≥ 1 + ε

2 `
]

= Pr
[
Z ≥ 1 + ε

2ε ε`
]

= Pr
[
Z ≥

(
1 + 1− ε

2ε

)
·E [Z]

]
≤ exp

(
−min{δ, δ2} ·E [Z]

3

)
for δ = 1−ε

2ε . We make a case analysis. For 1−ε
2ε ≥ 1⇔ ε ≤ 1

3 , min{δ, δ2} = δ, so we have

Pr[F1] ≤ exp
(
−δ ·E [Z]

3

)
= exp

(
−

1−ε
2ε · ε`

3

)
= exp

(
− (1− ε)

6 `

)
≤ exp

(
− (1− ε)

12 z

)
,

where the last inequality follows from ` ≥ z/2. We observe that

exp
(
− (1− ε)

12 z

)
≤ 1
z
⇔ z

ln z ≥
12

1− ε ,

and by ε ≤ 1/3 and by our lower bound on z/ ln z, we have z
ln z ≥ 18 ≥ 12

1−ε .
If ε > 1/3, we compute similarly that

Pr[F1] ≤ exp

− (1−ε)2

(2ε)2 · ε`
3

 ≤ exp
(
− (1− ε)2

12ε `

)
≤ exp

(
− (1− ε)2

24ε z

)
≤ 1
z
,

where the last inequality follows from z/(ln z) ≥ 24ε
(1−ε)2 .

If the event F1 does not happen then in at least (1− 1+ε
2)` = 1−ε

2 ` ≥ 1−ε
4 z =: z/c′ steps

proportional sampling is used to remove one of the numbers (we set c′ = 4/(1− ε)). We will
show that with high probability after these steps all remaining numbers are at most 2c′ ln z.
Let F2 denote the event that after z/c′ steps of proportional sampling at least one number
with final value at least 2c′ ln z is remaining. Furthermore, let Ei denote the event that the
ith number ai remains after z/c′ steps of proportional sampling and its final value ãi is at
least 2c′ ln z (remember that the adversary can decrease numbers during the process but not
increase and hence ãi ≤ ai). Then F2 = E1 ∪ . . . ∪ Ez. If Ei occurs then the ith number is in
every step at least ãi ≥ 2c′ ln z. Since the numbers a1, . . . az have average 1, their sum is z.
The sum of the remaining numbers cannot increase during the process. Hence, in every step
the probability of taking the ith number is at least (2c′ ln z)/z. This implies

Pr[Ei] ≤
(

1− 2c′ ln z
z

)z/c′
≤ exp (−2 ln z) = 1

z2 .

We use a union bound to obtain

Pr[F2] = Pr[∃i ∈ [z] : Ei] ≤
1
z
.

ESA 2020

18:18 Noisy, Greedy and Not so Greedy k-Means++

If neither F1 nor F2 occurs then the final value of each remaining number is at most 2c′ ln z.
Hence, in this case, also the average is bounded from above by 2c′ ln z. Otherwise we only
use the trivial upper bound of z for the average of the remaining numbers (observe that
initially each ai is at most z because the average is 1). Altogether we obtain

E [A`] ≤ Pr[¬F1 ∧ ¬F2] · 2c′ ln z + Pr[F1 ∨ F2] · z
≤ 2c′ ln z + (Pr[F1] + Pr[F2]) · z

≤ 2c′ ln z +
(

1
z

+ 1
z

)
· z

= 2c′ ln(z) + 2 = 4/(1− ε) ln z + 2.

For the second inequality stated in the lemma, we only observe that even if we draw all but
one number, the average cannot increase beyond z since the sum of the numbers is z. Thus
E [A`] ≤ z is true for any 1 ≤ ` ≤ z. J

We prove below that if ` < z/2 then E [A`] ≤ 2.

I Lemma 11. Let ` < z/2. Then E [A`] ≤ 2.

Proof. In the worst case all steps are adversarial and the ` smallest numbers are removed.
Then the average of the remaining numbers is at most

z

z − `
<

z

z − z/2 = 2. J

Using Lemma 11, we obtain the following corollary.

I Corollary 12. Let ε ∈ (0, 1) and 1 ≤ ` ≤ z− 1. Then for z ≥ max{18, 24ε
(1−ε)2 } · ln z, we get

E [A`] ≤
4

1− ε · ln z + 2,

and for z ≤ max{18, 24ε
(1−ε)2 } · ln z, we have E [A`] ≤ max{18, 24ε

(1−ε)2 } · ln z.

Proof. Follows from Lemma 10 and Lemma 11. J

Now we are ready to prove Lemma 9.

Proof of Lemma 9. Given realization Fi, after the first i iterations there are z = ui ≤ k

uncovered clusters. Each of them has certain costs with respect to the center set after the
first i iterations. The costs of each cluster do not increase in the following iterations anymore
because only new centers are added. In any iteration the costs of these clusters may decrease
and one uncovered cluster may become covered. If the latter happens, the average costs
of the uncovered clusters can increase (if the costs of the uncovered cluster that becomes
covered are less than the average costs of the uncovered clusters). Hence, only the non-wasted
iterations are of interest.

The costs of the uncovered clusters after the first i iterations correspond to the num-
bers a1, . . . , az in the random experiment above. We scaled the instance such that the sum of
the ai is equal to z. This is without loss of generality. In each iteration of noisy k-means++
either a covered cluster is hit again, which can only reduce the numbers ai, or an uncovered
cluster becomes covered, in which case the corresponding number is removed. Conditioned
on covering an uncovered cluster, the probability pi that ai is removed is at least 1−ε1

1+ε2
· ai

S ,
where S denotes the sum of the costs of the uncovered clusters (i.e., the sum of the re-
maining ai). We can simulate the probability distribution induced by the probabilities pi

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:19

by mixing two distributions: with probability 1−ε1
1+ε2

we do proportional sampling, i.e., we
choose ai with probability ai

S , and with probability 1− 1−ε1
1+ε2

we sample according to some
other distribution to obtain the right probabilities pi. In the abstract random experiment
analyzed above this second distribution is selected by an adversary. For ε = ε1+ε2

1+ε2
∈ (0, 1)

we have

1− ε = 1− ε1 + ε2
1 + ε2

= 1 + ε2 − (ε1 + ε2)
1 + ε2

= 1− ε1
1 + ε2

.

Hence, Corollary 12 applies to noisy k-means++ with ε = ε1+ε2
1+ε2

. Observe that then

24ε
(1− ε)2 = 24(ε1 + ε2)(1 + ε2)2

(1 + ε2)(1− ε1)2 = 24(ε1 + ε2)(1 + ε2)
(1− ε1)2 . J

Bicriteria Approximation

We remark that noisy k-means++ still gives a bicriteria approximation because the probability
that an uncovered cluster is hit can only be decreased by a constant factor, and the probability
to pick a good center is also still comparably high. The theorem mentioned below follows
from [1]. We omit the proof of this theorem in this paper as it easily follows from [1].

I Theorem 13. Let S denote a set of 16(1+ε2
1−ε1

)2(k +
√
k) centers sampled using noisy

k-means++, then Φ(X,S) ≤ 20 OPTk(X) with probability at least 1− exp (−0.0157 · 1−ε1
1+ε2

).

Not so greedy k-means++

Consider the following variant of the greedy k-means++ algorithm (Algorithm 3).

Algorithm 3 Moderately greedy k-means++.

1: Input: Set X ⊆ Rd, integers k, l
2: Output: C ⊆ X, |C| = k

3: C = ∅
4: Sample a point c1 independently and uniformly at random from X.
5: Let C = {c1}.
6: for i = 2 to k do
7: With probability p, sample one point ci with D2-sampling and set C = C ∪ {ci}.
8: With the remaining probability:

Sample a set S of ` points independently with D2-sampling from X wrt C.
Let ci = arg minu∈S Φ(X,C ∪ {u}).
Update C = C ∪ {ci}.

9: end for
10: Return C

Let x ∈ P be any point. Say that pi(x) is the probability to draw x with one D2-sample
from X based on the center set c1, . . . , ci−1. Then the probability qi(x) to sample x in
iteration i of the above algorithm satisfies

p · pi(x) ≤ qi(x) ≤ [(1− p) · `+ p] · pi(x),

since with probability p, we do exactly the same as k-means++, and with probability (1− p),
we sample ` times, which can at most boost the probability by a factor of (1− p) · `. Assume
that p is a constant. Then by Theorem 2, moderately greedy k-means++ has an expected
approximation guarantee of O(`3 · log2 k) (for large k).

ESA 2020

18:20 Noisy, Greedy and Not so Greedy k-Means++

References
1 Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clustering.

In Proceedings of the 12th and 13th APPROX-RANDOM, pages 15–28, 2009.
2 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for

k-means and euclidean k-median by primal-dual algorithms. In Proceedings of the 58th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 61–72, 2017.

3 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine Learning, 75(2):245–248, 2009.

4 David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In
Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1027–
1035, 2007.

5 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of euclidean k-means. In Proceedings of the 31st International
Symposium on Computational Geometry (SoCG), pages 754–767, 2015.

6 Olivier Bachem, Mario Lucic, S. Hamed Hassani, and Andreas Krause. Approximate k-
means++ in sublinear time. In Proceedings of the 30th AAAI Conference on Artificial Intel-
ligence, pages 1459–1467, 2016. URL: http://www.aaai.org/ocs/index.php/AAAI/AAAI16/
paper/view/12147.

7 Anup Bhattacharya, Ragesh Jaiswal, and Nir Ailon. Tight lower bound instances for k-means++
in two dimensions. Theoretical Computer Science, 634:55–66, 2016.

8 Tobias Brunsch and Heiko Röglin. A bad instance for k-means++. Theoretical Computer
Science, 505:19–26, 2013.

9 M. Emre Celebi, Hassan A. Kingravi, and Patricio A. Vela. A comparative study of efficient
initialization methods for the k-means clustering algorithm. Expert Systems with Applications,
40(1):200–210, 2013.

10 Davin Choo, Christoph Grunau, Julian Portmann, and Václav Rozhon. k-means++: few more
steps yield constant approximation. CoRR, abs/2002.07784, 2020. arXiv:2002.07784.

11 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. In Proceedings of the
57th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 353–364,
2016.

12 Sanjoy Dasgupta. Lecture 3 – Algorithms for k-means clustering, 2013. accessed May 8th,
2019. URL: http://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf.

13 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pages
569–578, 2011.

14 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields a
PTAS for k-means in doubling metrics. SIAM Journal on Computing, 48(2):452–480, 2019.

15 Daniel J. Hsu and Matus Telgarsky. Greedy bi-criteria approximations for k-medians and
k-means. CoRR, abs/1607.06203, 2016. arXiv:1607.06203.

16 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silver-
man, and Angela Y. Wu. A local search approximation algorithm for k-means clustering.
Computational Geometry, 28(2-3):89–112, 2004.

17 Silvio Lattanzi and Christian Sohler. A better k-means++ algorithm via local search. In
Proceedings of the 36th International Conference on Machine Learning (ICML), pages 3662–
3671, 2019.

18 Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Information Processing Letters, 120:40–43, 2017.

19 Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137, 1982. originally published as Bell Laboratories Technical Memorandum
in 1957.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12147
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12147
http://arxiv.org/abs/2002.07784
http://cseweb.ucsd.edu/~dasgupta/291-geom/kmeans.pdf
http://arxiv.org/abs/1607.06203

A. Bhattacharya, J. Eube, H. Röglin, and M. Schmidt 18:21

20 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi R. Varadarajan. The Planar k-means
Problem is NP-Hard. In Proceedings of the 3rd Workshop on Algorithms and Computation
(WALCOM), pages 274–285, 2009.

21 Benedikt Pago. Upper and lower bounds for the approximation ratios of incremental and
hierarchical clustering algorithms. Master’s thesis, University of Bonn, 2018.

22 Sergei Vassilvitskii. k-means: Algorithms, Analyses, Experiments. PhD thesis, Stanford
University, 2007.

23 Dennis Wei. A constant-factor bi-criteria approximation guarantee for k-means++. In
Proceedings of the Annual Conference on Neural Information Processing Systems 2016 (NIPS),
pages 604–612, 2016.

24 Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, Hiroshi Motoda,
Geoffrey J. McLachlan, Angus F. M. Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael
Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in data mining. Knowledge
and Information Systems, 14(1):1–37, 2008.

ESA 2020

An Algorithmic Study of Fully Dynamic
Independent Sets for Map Labeling
Sujoy Bhore
Algorithms and Complexity Group, TU Wien, Austria
sujoy@ac.tuwien.ac.at

Guangping Li
Algorithms and Complexity Group, TU Wien, Austria
guangping@ac.tuwien.ac.at

Martin Nöllenburg
Algorithms and Complexity Group, TU Wien, Austria
noellenburg@ac.tuwien.ac.at

Abstract
Map labeling is a classical problem in cartography and geographic information systems (GIS) that
asks to place labels for area, line, and point features, with the goal to select and place the maximum
number of independent, i.e., overlap-free, labels. A practically interesting case is point labeling with
axis-parallel rectangular labels of common size. In a fully dynamic setting, at each time step, either
a new label appears or an existing label disappears. Then, the challenge is to maintain a maximum
cardinality subset of pairwise independent labels with sub-linear update time. Motivated by this, we
study the maximal independent set (MIS) and maximum independent set (Max-IS) problems on
fully dynamic (insertion/deletion model) sets of axis-parallel rectangles of two types – (i) uniform
height and width and (ii) uniform height and arbitrary width; both settings can be modeled as
rectangle intersection graphs.

We present the first deterministic algorithm for maintaining a MIS (and thus a 4-approximate
Max-IS) of a dynamic set of uniform rectangles with amortized sub-logarithmic update time. This
breaks the natural barrier of Ω(∆) update time (where ∆ is the maximum degree in the graph) for
vertex updates presented by Assadi et al. (STOC 2018). We continue by investigating Max-IS and
provide a series of deterministic dynamic approximation schemes. For uniform rectangles, we first
give an algorithm that maintains a 4-approximate Max-IS with O(1) update time. In a subsequent
algorithm, we establish the trade-off between approximation quality 2(1 + 1

k
) and update time

O(k2 log n), for k ∈ N. We conclude with an algorithm that maintains a 2-approximate Max-IS
for dynamic sets of unit-height and arbitrary-width rectangles with O(ω log n) update time, where
ω is the maximum size of an independent set of rectangles stabbed by any horizontal line. We
have implemented our algorithms and report the results of an experimental comparison exploring
the trade-off between solution quality and update time for synthetic and real-world map labeling
instances.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Dynamic graph algorithms

Keywords and phrases Independent Sets, Dynamic Algorithms, Rectangle Intersection Graphs,
Approximation Algorithms, Experimental Evaluation

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.19

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.07611.

Supplementary Material Source code and benchmark data at https://dyna-mis.github.io/
dynaMIS/.

Funding Research supported by the Austrian Science Fund (FWF), grant P 31119.

© Sujoy Bhore, Guangping Li, and Martin Nöllenburg;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 19; pp. 19:1–19:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0104-1659
mailto:sujoy@ac.tuwien.ac.at
https://orcid.org/0000-0002-7966-076X
mailto:guangping@ac.tuwien.ac.at
https://orcid.org/0000-0003-0454-3937
mailto:noellenburg@ac.tuwien.ac.at
https://doi.org/10.4230/LIPIcs.ESA.2020.19
https://arxiv.org/abs/2002.07611
https://dyna-mis.github.io/dynaMIS/
https://dyna-mis.github.io/dynaMIS/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

1 Introduction

Map Labeling is a classical problem in cartography and geographic information systems
(GIS), that has received significant attention in the past few decades and is concerned with
selecting and positioning labels on a map for area, line, and point features. The focus in the
computational geometry community has been on labeling point features [3, 20,39,40]. The
labels are typically modeled as the bounding boxes of short names, which correspond precisely
to unit height, but arbitrary width rectangles; alternatively, labels can be standardized icons
or symbols, which correspond to rectangles of uniform size. In map labeling, a key task is in
fact to select an independent (i.e., overlap-free) set of labels from a given set of candidate
labels. Commonly the optimization goal is related to maximizing the number of labels. Given
a set R of rectangular labels, Map Labeling is essentially equivalent to the problem of
finding a maximum independent set in the intersection graph induced by R.

The independent set problem is a fundamental graph problem with a wide range of
applications. Given a graph G = (V,E), a set of vertices M ⊂ V is independent if no two
vertices in M are adjacent in G. A maximal independent set (MIS) is an independent set that
is not a proper subset of any other independent set. A maximum independent set (Max-IS)
is a maximum cardinality independent set. While Max-IS is one of Karp’s 21 classic NP-
complete problems [31], computing a MIS can easily be done by a simple greedy algorithm in
O(|E|) time. The MIS problem has been studied in the context of several other prominent
problems, e.g., graph coloring [33], maximum matching [30], and vertex cover [36]. On the
other hand, Max-IS serves as a natural model for many real-life optimization problems,
including map labeling [3], computer vision [6], information retrieval [37], and scheduling [38].

Stronger results for independent set problems in geometric intersection graphs are known in
comparison to general graphs. For instance, it is known that Max-IS on general graphs cannot
be approximated better than |V |1−ε in polynomial time for any ε > 0 unless NP=ZPP [27].
In contrast, a randomized polynomial-time algorithm exists that computes for rectangle
intersection graphs an O(log logn)-approximate solution to Max-IS with high probability [12],
as well as QPTASs [2,16]. The Max-IS problem is already NP-Hard on unit square intersection
graphs [21], however, it admits a polynomial-time approximation scheme (PTAS) for unit
square intersection graphs [19] and more generally for pseudo disks [13]. Moreover, for
rectangles with either uniform size or at least uniform height and bounded aspect ratio, the
size of an MIS is not arbitrarily worse than the size of a Max-IS. For instance, any MIS of a
set of uniform rectangles is a 4-approximate solution to the Max-IS problem, since each
rectangle can have at most four independent neighbors.

Past research has mostly considered static label sets in static maps [3, 20, 39, 40] and
in dynamic maps allowing zooming [7] or rotations [25], but not fully dynamic label sets
with insertions and deletions of labels. Recently, Klute et al. [32] proposed a framework
for semi-automatic label placement, where domain experts can interactively insert and
delete labels. In their setting an initially computed large independent set of labels can be
interactively modified by a cartographer, who can easily take context information and soft
criteria such as interactions with the background map or surrounding labels into account.
Standard map labeling algorithms typically do not handle such aspects well. Based on these
modifications (such as deletion, forced selection, translation, or resizing), the solution is
updated by a dynamic algorithm while adhering to the new constraints. Another scenario for
dynamic labels are maps, in which features and labels (dis-)appear over time, e.g., based on
a stream of geotagged, uniform-size photos posted on social media or, more generally, maps
with labels of dynamic spatio-temporal point sets [22]. For instance, a geo-located event

S. Bhore, G. Li, and M. Nöllenburg 19:3

that happens at time t triggers the availability of a new label for a certain period of time,
after which it vanishes again. Examples beyond social media are reports of earth quakes,
forest fires, or disease incidences. Motivated by this, we study the independent set problem
for dynamic rectangles of two types – (i) uniform height and width and (ii) uniform height
and arbitrary width. We consider fully dynamic algorithms for maintaining independent
sets under insertions and deletions of rectangles, i.e., vertex insertions and deletions in the
corresponding dynamic rectangle intersection graph.

Dynamic graphs are subject to discrete changes over time, i.e., insertions or deletions
of vertices or edges [18]. A dynamic graph algorithm solves a computational problem, such
as the independent set problem, on a dynamic graph by updating efficiently the previous
solution as the graph changes over time, rather than recomputing it from scratch. A dynamic
graph algorithm is called fully dynamic if it allows both insertions and deletions, and partially
dynamic if only insertions or only deletions are allowed. While general dynamic independent
set algorithms can obviously also be applied to rectangle intersection graphs, our goal is to
exploit their geometric properties to obtain more efficient algorithms.

Related Work. There has been a lot of work on dynamic graph algorithms in the last
decade and dynamic algorithms still receive considerable attention in theoretical computer
science. We point out some of these works, e.g., on spanners [9], vertex cover [10], set cover [1],
graph coloring [11], and maximal matching [23]. In particular, the maximal independent set
problem on dynamic graphs with edge updates has attracted significant attention in the last
two years [4, 5, 8, 15, 17]. Recently, Henzinger et al. [28] studied the Max-IS problem for
intervals, hypercubes and hyperrectangles in d dimensions, with special assumptions. They
assumed that the objects are axis-parallel and contained in the space [0, N]d; the value of N
is given in advance, and each edge of an input object has length at least 1 and at most N .
Moreover, they have designed dynamic approximation algorithms and lower bounds, where
the update time depends on N and is of high complexity. Gavruskin et al. [24] studied the
Max-IS problem for dynamic proper intervals (intervals cannot contain one another), and
showed how to maintain a Max-IS with polylogarithmic update time.

Results and Organization. We study MIS and Max-IS problems for dynamic sets of O(n)
axis-parallel rectangles of two types: (i) congruent rectangles of uniform height and width
and (ii) rectangles of uniform height and arbitrary width. For both classes of rectangles a
MIS can be maintained in Ω(∆) update time by using the recent algorithm of Assadi et al. [4],
where ∆ is the maximum degree of the intersection graph. A (1+ε)-approximate Max-IS can
be maintained for unit squares in O(n1/ε2) time [19], and a (1 + 1

k)-approximate Max-IS can
be maintained for unit height and arbitrary width rectangles in O(n2k−1) update time [3] for
any integer k ≥ 1. In this paper we design and implement algorithms for dynamic MIS and
Max-IS that demonstrate the trade-off between update time and approximation factor, both
from a theoretical perspective and in an experimental evaluation. In contrast to the recent
dynamic MIS algorithms, which are randomized [4, 5, 8, 15], our algorithms are deterministic.

In Section 3 we present an algorithm that maintains a MIS of a dynamic set of unit
squares in amortized O(log2/3+o(1) n) update time, improving the best known update time
Ω(∆) [4]. A major, but generally unavoidable bottleneck of that algorithm is that the entire
graph is stored explicitly, and thus insertions/deletions of vertices take Ω(∆) time. We use
structural geometric properties of the unit squares along with a dynamic orthogonal range
searching data structure to bypass the explicit intersection graph and break this bottleneck.

ESA 2020

19:4 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

In Section 4, we study the Max-IS problem. For dynamic unit squares, we give an
algorithm that maintains a 4-approximate Max-IS with O(1) update time. We generalize
this algorithm and improve the approximation factor to 2(1 + 1

k), which increases the update
time to O(k2 logn). We conclude with an algorithm that maintains a 2-approximate Max-IS
for a dynamic set of unit-height and arbitrary-width rectangles (in fact, for a dynamic interval
graph, which is of independent interest) with O(ω logn) output-sensitive update time, where
ω is the maximum size of an independent set of rectangles stabbed by any horizontal line.

Finally, Section 5 provides an experimental evaluation of the proposed Max-IS approxi-
mation algorithms on synthetic and real-world map labeling data sets using unit squares.
The experiments explore the trade-off between solution size and update time, as well as the
speed-up of the dynamic algorithms over their static counterparts. See the supplemental
material for source code and benchmark data.
Proofs marked (?) are missing due to space constraints; refer to the full version for all details.

2 Model and Notation

Let R = {r1, . . . , rν} be a set of ν axis-parallel, unit-height rectangles in the plane. If
the rectangles are of uniform height and width, we can use an affine transformation to
map R to a set of unit squares S = {s1, . . . , sν} instead. We use the shorthand notation
[n] = {1, 2, . . . , n}. In our setting we assume that R is dynamically updated by a sequence of
N ∈ N insertions and deletions. We denote the set of rectangles at step i ∈ [N] as Ri. For a
set of unit squares Si = {s1, . . . , sν} at step i ∈ [N] we further define the set Ci = {c1, . . . , cν}
of the corresponding square centers. Let n = max{|Ri| | i ∈ [N]} be the maximum number
of rectangles over all steps. The rectangle intersection graph defined by Ri at time step
i is denoted as Gi = (Ri, Ei), where two rectangles r, r′ ∈ Ri are connected by an edge
{r, r′} ∈ Ei if and only if r ∩ r′ 6= ∅. We use Mi to denote a maximal independent set in
Gi, and OPTi to denote a maximum independent set in Gi. For a graph G = (V,E) and a
vertex v ∈ V , let N(v) denote the set of neighbors of v in G. This notation also extends to
any subset U ⊆ V by defining N(U) =

⋃
v∈U N(v). We use deg(v) to denote the degree of a

vertex v ∈ V . For any vertex v ∈ V , let Nr(v) be the r-neighborhood of v, i.e., the set of
vertices that are within distance at most r from v (excluding v).

3 Dynamic MIS with Sub-Logarithmic Update Time

In this section, we study the MIS problem for dynamic uniform rectangles. As stated before
we can assume w.l.o.g. that the rectangles are unit squares. We design an algorithm that
maintains a MIS for a dynamic set of O(n) unit squares in sub-logarithmic update time.
Assadi et al. [4] presented an algorithm for maintaining a MIS on general dynamic graphs with
Ω(∆) update time, where ∆ is the maximum degree in the graph. In the worst case, however,
that algorithm takes O(n) update time. In fact, it seems unavoidable for an algorithm that
explicitly maintains the (intersection) graph to perform a MIS update in less than Ω(deg(v))
time for an insertion/deletion of a vertex v. In contrast, our proposed algorithm in this
section does not explicitly maintain the intersection graph Gi = (Si, Ei) (for any i ∈ [N]),
but rather only the set of squares Si in a suitable dynamic geometric data structure. For the
ease of explanation, however, we do use graph terms at times.

Let i ∈ [N] be any time point in the sequence of updates. For each square sv ∈ Si, let
sav be a square of side length a concentric with sv. Further, let Mi denote the MIS that we
compute for Gi = (Si, Ei), and let C(Mi) ⊆ Ci be their corresponding square centers. We

S. Bhore, G. Li, and M. Nöllenburg 19:5

s2x

s4x

sx
Px

Px

R1

R2

R3
R4

R5

(a) (b)

Figure 1 Example for the deletion of a square sx. (a) Square sx, its neighborhood with centers
in s2

x, its 2-neighborhood with centers in s4
x, and the polygon Px. (b) Vertical slab partition of Px.

maintain two fully dynamic orthogonal range searching data structures throughout: (i) a
dynamic range tree T (Ci) for the entire point set Ci and (ii) a dynamic range tree T (C(Mi))
for the point set C(Mi) corresponding to the centers of Mi. They can be implemented
with dynamic fractional cascading [34], which yields O(logn log logn) update time and
O(k + logn log logn) query time for reporting k points. The currently best fully dynamic
data structure for orthogonal range reporting requires O(log2/3+o(1) n) amortized update
time and O(k + logn

log logn) amortized query time [14].
We compute the initial MIS M1 for G1 = (S1, E1) by using a simple linear-time greedy

algorithm. First we initialize the range tree T (Ci). Then we iterate through the set S1 as
long as it is not empty, select a square sv for M1 and insert its center into T (C(Mi)), find its
neighbors N(sv) by a range query in T (Ci) with the concentric square s2

v, and delete N(sv)
from S1. It is clear that once this process terminates, M1 is a MIS.

When we move in the next step from Gi = (Si, Ei) to Gi+1 = (Si+1, Ei+1), either a
square is inserted into Si or deleted from Si. Let sx be the square that is inserted or deleted.
Insertion: When we insert a square sx into Si to obtain Si+1, we do the following operations.
First, we obtain T (Ci+1) by inserting the center of sx into T (Ci). Next, we have to detect
whether sx can be included in Mi+1. If there exists a square su from Mi intersecting sx, we
should not include sx; otherwise we will add it to the MIS. To check this, we search with
the range s2

x in T (C(Mi)). By a simple packing argument, we know that no more than four
points (the centers of four independent squares) of C(Mi) can be in the range s2

x. If the
query returns such a point, then sx would intersect with another square in Mi and we set
Mi+1 = Mi. Otherwise, we insert sx into T (C(Mi)) to get T (C(Mi+1)).
Deletion: When we delete a square sx from Si, it is possible that sx ∈Mi. In this case we
may have to add squares from N(sx) into Mi+1 to keep it maximal. Since any square can
have at most four independent neighbors, we can add in this step up to four squares to Mi+1.

First, we check if sx ∈ Mi. If not, then we simply delete sx from T (Ci) to get T (Ci+1)
and set Mi+1 = Mi. Otherwise, we delete again sx from T (Ci) and also from T (C(Mi)). In
order to detect which neighbors of sx can be added to Mi, we use suitable queries in the
data structures T (C(Mi)) and T (Ci). Figure 1a illustrates the next observations. The centers
of all neighbors in N(sx) must be contained in the square s2

x. But some of these neighbors
may intersect other squares in Mi. In fact, these squares would by definition belong to
the 2-neighborhood, i.e., be in the set Qx = N2(sx) ∩Mi. We can obtain Qx by querying

ESA 2020

19:6 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

T (C(Mi)) with the range s4
x. Since sx ∈Mi, we know that Qx ∩ s2

x = ∅ and hence the center
points of the squares in Qx lie in the annulus s4

x − s2
x. A simple packing argument implies

that |Qx| ≤ 12 and therefore querying T (C(Mi)) will return at most 12 points.
Next we define the rectilinear polygon Px = s2

x −
⋃
sy∈Qx

s2
y, which contains all possible

center points of squares that are neighbors of sx but do not intersect any square sy ∈Mi\{sx}.

I Observation 1 (?). The polygon Px has at most 28 corners.

Next we want to query T (Ci) with the range Px, which we do by vertically partitioning
Px into rectangular slabs R1, . . . , Rc for some c ≤ 28 (see Figure 1b). For each slab Rj ,
where 1 ≤ j ≤ c, we perform a range query in T (Ci). If a center p is returned, we can add the
corresponding square sp into Mi+1, and p into T (C(Mi)) to obtain T (C(Mi+1)). Moreover,
we have to update Px ← Px − sp, refine the slab partition and continue querying T (Ci) with
the slabs of Px. We know that the deleted square sx can have at most four independent
neighbors. So after adding at most four new squares to Mi+1 we know that Px = ∅ and we
can stop searching.

I Lemma 2 (?). The set Mi is a maximal independent set of Gi = (Si, Ei) for each step
i ∈ [N].

Both the Insertion and the Deletion operations consist of (i) a constant number of
insertions or deletions in the two fully dynamic orthogonal range searching data structures
and (ii) of a constant number of orthogonal range reporting queries. These queries return
at most 12 points in T (C(Mi−1)). While the query range Px for T (Ci−1) in the Deletion
operation may contain many points, an arbitrary point in Px is sufficient for adding a new
square to the independent set. Thus we do not need to enumerate all contained points,
but just a single witness. In the orthogonal range searching data structure of Chan and
Tsakalidis [14], the amortized update time for an insertion/deletion is O(log2/3+o(1) n); this
dominates the query time and together with Lemma 2 yields:

I Theorem 3. We can maintain a maximal independent set of a dynamic set of unit squares,
deterministically, in amortized O(log2/3+o(1) n) update time.

Proof. The correctness follows from Lemma 2. It remains to show the running time for
the fully dynamic updates. At each step i we perform either an Insertion or a Deletion
operation. Let us first discuss the update time for the insertion of a square. As described
above, an insertion performs one or two insertions of the center of the square into the
range trees and one range query in T (C(Mi−1)), which will return at most four points.
Using dynamic fractional cascading [34], this requires O(logn log logn) time; with the data
structure of Chan and Tsakalidis [14], the amortized update time for inserting a square is
O(log2/3+o(1) n), the time for inserting a new point into their range searching data structure;
this dominates the query time. The deletion of a square triggers either just a single deletion
from the range tree T (Ci−1) or, if it was contained in the MIS Mi−1, two deletions, up to
four insertions, and a sequence of range queries: one query in T (C(Mi−1)), which can return
at most 12 points and a constant number of queries in T (Ci−1) with the constant-complexity
slab partition of Px. Note that while the number of points in Px can be large, for our purpose
it is sufficient to return a single point in each query range if it is not empty. Therefore, the
update time for a deletion is again O(logn log logn) with dynamic fractional cascading [34]
or amortized O(log2/3+o(1) n) [14], depending on the selected data structure. J

For unit square intersection graphs, recall that any square in a MIS can have at most
four mutually independent neighbors. Therefore, maintaining a dynamic MIS immediately
implies maintaining a dynamic 4-approximate Max-IS.

S. Bhore, G. Li, and M. Nöllenburg 19:7

g3,2 g3,4

g1,1 g1,3h1

h2

h3

h4

l1 l2 l3 l4

Figure 2 Example instance with bounding square B partitioned into a 5× 5 grid. Red squares
represent the computed 4-approximate solution, which here is M(O(H)).

I Corollary 4. We can maintain a 4-approximate maximum independent set of a dynamic
set of unit squares, deterministically, in amortized O(log2/3+o(1) n) update time.

4 Approximation Algorithms for Dynamic Maximum Independent Set

In this section, we study the Max-IS problem for dynamic unit squares as well as for
unit-height and arbitrary-width rectangles. In a series of dynamic schemes proposed in this
section, we establish the trade-off between the update time and the solution size, i.e., the
approximation factors. First, we design a 4-approximation algorithm with O(1) update
time for Max-IS on dynamic unit squares (Section 4.1). We improve this to an algorithm
that maintains a 2(1 + 1

k)-approximate Max-IS with O(k2 logn) update time (Section 4.2).
Finally, we conclude with an algorithm that deterministically maintains a 2-approximate
Max-IS with output-sensitive O(ω logn) update time, where ω is the maximum size of an
independent set of the unit-height rectangles stabbed by any horizontal line (Section 4.3).

Let B be a bounding square of the dynamic set of 1 × 1-unit squares
⋃
i∈[N] Si of

side length κ × κ; we can assume that κ = O(n); otherwise we could contract empty
horizontal/vertical strips of B. Let H = {h1, . . . , hκ} and L = {l1, . . . , lκ} be a set of
top-to-bottom and left-to-right ordered equidistant horizontal and vertical lines partitioning
B into a square grid of side-length-1 cells, see Figure 2. Let EH = {hi ∈ H | i = 0 (mod 2)}
and OH = {hi ∈ H | i = 1 (mod 2)} be the set of even and odd horizontal lines, respectively.

4.1 4-Approximation Algorithm with Constant Update Time
We design a 4-approximation algorithm for the Max-IS problem on dynamic unit square
intersection graphs with constant update time. Our algorithm is based on a grid partitioning
approach. Consider the square grid on B induced by the sets H and L of horizontal and
vertical lines. We denote the grid points as gp,q for p, q ∈ [κ], where gp,q is the intersection
point of lines hp and lq. Under a general position assumption (otherwise we slightly perturb
the grid position to handle degenerate cases), each unit square in any set Si, for i ∈ [N]
contains exactly one grid point. For each gp,q, we store a Boolean activity value 1 or 0 based

ESA 2020

19:8 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

on its intersection with Si (for any step i ∈ [N]). If gp,q intersects at least one square of Si,
we say that it is active and set the value to 1; otherwise, we set the value to 0. Observe that
for each grid point gp,q and each time step i at most one square of Si intersecting gp,q can be
chosen in any Max-IS. This holds because all squares that intersect the same grid point form
a clique in Gi, and at most one square from a clique can be chosen in any independent set.

We first initialize an independent set M1 for G1 = (S1, E1) with |M1| ≥ |OPT1|/4. For
each horizontal line hj ∈ H, we compute two independent sets M1

hj
and M2

hj
, where M1

hj

(resp. M2
hj
) contains an arbitrary square intersecting each odd (resp. even) grid point on hj .

Since every other grid point is omitted in these sets, any two selected squares are independent.
Let M(hj) = arg max{|M1

hj
|, |M2

hj
|} be the larger of the two independent sets. We define

p(hj) = |M1
hj
| and q(hj) = |M2

hj
|, as well as c(hj) = |M(hj)| = max{p(hj), q(hj)}.

We construct the independent sets M(EH) =
⋃bκ/2c
j=1 (M(h2j)) for EH and M(OH) =⋃bκ/2c

j=1 (M(h2j−1) for OH . We returnM1 = arg max{|M(EH)|, |M(OH)|} as the independent
set for G1. See Figure 2 for an illustration. The initialization of all O(κ2) variables and the
computation of the first set M1 take O(κ2) time. (Alternatively, a hash table would be more
space efficient, but could not provide the O(1)-update time guarantee.)

I Lemma 5 (?). The set M1 is an independent set of G1 = (S1, E1) with |M1| ≥ |OPT1|/4
and can be computed in O(κ2) time.

In the following step, when we move from Gi to Gi+1, for any i ∈ [N], a square sx is
inserted into Si or deleted from Si. Intuitively, we check the activity value of the grid point
that sx intersects. If the update has no effect on its activity value, we keep Mi+1 = Mi.
Otherwise, we update the activity value, the corresponding cardinality counters, and report
the solution accordingly. All of these operations can be performed in O(1)-time. For a more
detailed description see the full version of this paper.

I Lemma 6 (?). The set Mi is an independent set of Gi = (Si, Ei) for each i ∈ [N] and
|Mi| ≥ |OPTi|/4.

Lemmas 5 and 6 together with the O(1) update time yield:

I Theorem 7 (?). We can maintain a 4-approximate maximum independent set in a dynamic
unit square intersection graph, deterministically, in O(1) update time.

4.2 2(1 + 1
k
)-Approximation Algorithm with O(k) Update Time

Next, we improve the approximation factor from 4 to 2(1 + 1
k), for any k ≥ 1, by combining

the shifting technique [29] with the insights gained from Section 4.1. This comes at the
cost of an increase of the update time to O(k2 logn), which illustrates the trade-off between
solution quality and update time. We reuse the grid partition and some notations from
Section 4.1. We first describe how to obtain a solution M1 for the initial graph G1 that is of
size at least |OPT1|/2(1 + 1

k) and then discuss how to maintain this under dynamic updates.
Let hj ∈ H be a horizontal stabbing line and let S(hj) ⊆ S be the set of squares stabbed

by hj . Since they are all stabbed by hj , the intersection graph of S(hj) is equivalent to the
unit interval intersection graph obtained by projecting each unit square sx ∈ S(hj) to a unit
interval ix on the line hj ; we denote this set of unit intervals as I(hj). First, we sort the
intervals in I(hj) from left to right. Next we define k + 1 groups with respect to hj that are
formed by deleting those squares and their corresponding intervals from S(hj) and I(hj),
respectively, that intersect every k + 1-th grid point on hj , starting from some gj,α with
α ∈ [k+ 1]. Now consider the k consecutive grid points on hj between two deleted grid points

S. Bhore, G. Li, and M. Nöllenburg 19:9

hj gj,4 gj,8
. . .

Figure 3 Illustration of a group on line hj for k = 3 with the two subgroups I3
1 (hj) and I3

5 (hj).

in one such group, say, {gj,`, . . . , gj,`+k−1} for some ` ∈ [κ]. Let Ik` (hj) ⊆ I(hj) be the set of
unit intervals intersecting the k grid points gj,` to gj,`+k−1. We refer to them as subgroups.
See Figure 3 for an illustration. Observe that the maximum size of an independent set of
each subgroup is at most k, since the width of each subgroup is strictly less than k + 1 and
each interval has unit length.

We computeM1 forG1 as follows. For each stabbing line hj ∈ H, we form the k+1 different
groups of I(hj). For each group, a Max-IS is computed optimally and separately inside each
subgroup. Since any two subgroups are horizontally separated and thus independent, we can
then take the union of the independent sets of the subgroups to get an independent set for
the entire group. This is done with the linear-time greedy algorithm to compute maximum
independent sets for interval graphs [26]. Let {M1

hj
, . . . ,Mk+1

hj
} be k+1 maximum independent

sets for the k + 1 different groups and let M(hj) = arg max{|M1
hj
|, |M2

hj
|, . . . , |Mk+1

hj
|} be

one with maximum size. We store its cardinality as c(hj) = max{|M i
hj
| | i ∈ [k + 1]}. Next,

we compute an independent set for EH , denoted by M(EH), by composing it from the
best solutions M(hj) from the even stabbing lines, i.e., M(EH) =

⋃bκ/2c
j=1 M(h2j) and its

cardinality |M(EH)| =
∑bκ/2c
j=1 c(h2j). Similarly, we compute an independent set for OH

as M(OH) =
⋃bκ/2c
j=1 M(h2j−1) and its cardinality |M(OH)| =

∑bκ/2c
j=1 c(h2j−1). Finally, we

return M1 = arg max{|M(EH)|, |M(OH)|} as the solution for G1.

I Lemma 8 (?). The independent setM1 of G1 = (S1, E1) can be computed in O(n logn+kn)
time and |M1| ≥ |OPT1|/2(1 + 1

k).

Next, we describe a pre-processing step, which is required for the dynamic updates.
Pre-Processing: For each horizontal line hj ∈ H, consider a group. For each subgroup
Ik` (hj) (for some ` ∈ [k + 1]), we construct a balanced binary tree T (Ik` (hj)) storing the
intervals of Ik` (hj) in left-to-right order (indexed by their left endpoints) in the leaves. This
process is done for each group of every horizontal line hj ∈ H. We mark those leaves in
T (Ik` (hj)) as selected that correspond to an independent interval in the solution and maintain
a list of pointers to those independent intervals. This tree also lets us quickly identify the
location of an interval that is inserted or deleted. In fact, while we run the greedy algorithm
on Ik` (hj), we can already mark precisely the selected intervals for the independent set.

When we perform the update step from Gi = (Si, Ei) to Gi+1 = (Si+1, Ei+1), either a
square is inserted into Si or deleted from Si. Let sx and ix be this square and its corresponding
interval. Let gu,v (for some u, v ∈ [κ]) be the grid point that intersects sx. We describe here
the Insertion and refer to the full version of this paper for the Deletion.
Insertion: The insertion of ix affects all but one of the groups on line hu. We describe
the procedure for one such group on hu; it is then repeated for the other groups. In each
group, ix appears in exactly one subgroup and the other subgroups remain unaffected. This
subgroup, say Ik` (hu), is determined by the index v of the grid point gu,v intersecting ix.
First, we locate ix in the sorted list of intervals of Ik` (hu), which can be done in O(logn) time
by searching in the associated tree T (Ik` (hu)). If ix is immediately left of a selected interval

ESA 2020

19:10 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

iy, but does not intersect the previous selected interval, then ix becomes a new selected
interval that replaces iy and triggers a sequence of updates of the later selected intervals.
Let us first consider the case that ix is not selected as a new independent interval. Then we
simply insert ix into T (Ik` (hu)) in O(logn) time. Otherwise, we mark ix as selected, remove
the selection mark from its successor interval iy, and replace iy by ix in the maintained
subsolution. Since the right endpoint of ix is left of the right endpoint of iy, this change
possibly triggers a sequence of updates to the subsequent selected intervals.

We thus identify in T (Ik` (hu)) the leftmost interval iz that starts to the right of the right
endpoint of ix. This takes O(logn) time. If this interval iz is not yet marked as selected, we
replace the previous successor of ix in the current list of selected intervals by iz and repeat
the update process for iz. Otherwise, if iz is already selected, we can stop the update of the
subsolution as there would be no further changes.

Since a maximum independent set in each subgroup contains at most k intervals, the
update time is O(k logn) per group and O(k2 logn) for all k affected groups.

While doing the updates, we collect the new selected intervals as the Max-IS for the
subgroup Ik` (hu). For all groups affected by the insertion of ix we update the corresponding
independent sets Mp

hu
for p ∈ [k + 1], whenever some updates of selected intervals were

necessary. Then we select the largest independent set of all k+1 groups asM(hj) and update
its new cardinality in c(hj). Finally, we update the independent setsM(EH) andM(OH) and
their cardinalities and return Mi+1 = arg max{|M(EH)|, |M(OH)|} as the solution for Gi+1.

I Lemma 9 (?). The set Mi is an independent set of Gi = (Si, Ei) for each i ∈ [N] and
|Mi| ≥ |OPTi|/2(1 + 1

k).

With Lemma 9 and the update time discussion in the full version of the paper we obtain:

I Theorem 10 (?). We can maintain a 2(1 + 1
k)-approximate maximum independent set in

a dynamic unit square intersection graph, deterministically, in O(k2 logn) update time.

4.3 2-Approximation Algorithm with O(ω log n) Update Time
We finally design a 2-approximation algorithm for the Max-IS problem on dynamic axis-
aligned unit height, but arbitrary width rectangles. Let B be the bounding box of the
dynamic set of rectangles R̃ =

⋃
i∈[N]Ri. We begin by dividing B into horizontal strips

of height 1 defined by the set H = {h1, . . . , hκ} of κ = O(n) horizontal lines. We assume,
w.l.o.g., that every rectangle in R̃ is stabbed by exactly one line in H. For a set of rectangles
R, we denote the subset stabbed by a line hj as R(hj) ⊆ R.

We first describe how to obtain an independent set M1 for the initial graph G1 = (R1, E1)
such that |M1| ≥ |OPT1|/2 by using the following algorithm of Agarwal et al. [3]. For
each horizontal line hj ∈ H, we compute a maximum independent set for R1(hj). The
set Ri(hj) (for any i ∈ [N] and j ∈ [κ]) can again be seen as an interval graph. For a set
of n intervals, a Max-IS can be computed by a left-to-right greedy algorithm visiting the
intervals in the order of their right endpoints in O(n logn) time. So for each horizontal line
hj ∈ H, let M(hj) be a Max-IS of R1(hj), and let c(hj) = |M(hj)|. Then we construct the
independent set M(EH) =

⋃bκ/2c
j=1 (M(h2j)) for EH . Similarly, we construct the independent

set M(OH) =
⋃bκ/2c
j=1 (M(h2j−1) for OH . We return M1 = arg max{|M(EH)|, |M(OH)|} as

the independent set for G1 = (R1, E1). See Figure 4 for an illustration.

I Lemma 11 (Theorem 2, [3]). The set M1 is an independent set of G1 = (R1, E1) with
|M1| ≥ |OPT1|/2 and can be computed in O(n logn) time.

S. Bhore, G. Li, and M. Nöllenburg 19:11

h2

h3

h4

h1

Figure 4 Example instance with four horizontal lines. Red rectangles represent the computed
2-approximate solution, which here is M(E(H)).

We describe the following pre-processing step to initialize in O(n logn) time the data
structures that are required for the subsequent dynamic updates.
Pre-Processing: Consider a stabbing line hj and the stabbed set of rectangles Ri(hj) for
some i ∈ [N]. We denote the corresponding set of intervals as I(hj). We build a balanced
binary search tree Tl(I(hj)), storing the intervals in I(hj) in left-to-right order based on
their left endpoints. This is called the left tree of I(hj). We augment the left tree such that
each tree node additionally stores a pointer to the interval with leftmost right endpoint in
its subtree. This pointer structure can easily be computed by a bottom-up pass through
Tl(I(hj)). Note that a leaf update in Tl(I(hj)) takes O(logn) time as for standard binary
search trees, but we can in the same O(logn) time propagate the change that potentially
affects the leftmost right endpoints of the tree nodes along the path to the root. Additionally,
we store the set of selected independent intervals for the Max-IS of I(hj) in left-to-right
order in another balanced binary search tree Ts(I(hj)) (the so-called solution tree). Let ωj
be the cardinality of the maximum independent of I(hj) for j ∈ [κ], and let ω = maxj ωj be
the maximum of these cardinalities over all stabbing lines hj .

When we move from Gi to Gi+1 (for some 1 ≤ i < N), either we insert a new rectangle
into Ri or delete one rectangle from Ri. Let rx be the rectangle that is inserted or deleted,
let ix be its corresponding interval, and let hj (for some j ∈ [κ]) be the horizontal line
that intersects rx. In what follows, we describe how to maintain a 2-approximate Max-IS
with O(ωj logn) = O(ω logn) update time. We distinguish Insertion and Deletion.
Insertion: We first determine whether ix should be a new selected interval or not. Because
the greedy algorithm for constructing the Max-IS visits the intervals in left-to-right order
based on the right endpoints, we need to reconstruct the state of the algorithm when it
would visit ix. We query the solution tree Ts(I(hj)) with both endpoints of ix in O(logωj)
time. If and only if both search paths end up between the same two leaves belonging to two
consecutive selected intervals iy and iz (considering their right endpoints), then ix would
have been chosen as the next selected interval after iy and before iz in the greedy algorithm.
This implies that iy and ix are independent, but ix and iz may or may not intersect.

If the two search paths in the solution tree are different, then ix does not become a new
selected interval, and we simply insert it into Tl(I(hj)) in O(logn) time. Else we also insert ix
into Tl(I(hj)), but we also have to perform a sequence of selection update operations, which
are more involved for intervals of arbitrary length compared to the updates in Section 4.2.
Figure 5 shows an example. First we mark ix as selected and insert it into Ts(I(hj)). Now
we need to identify the next selected interval right of ix that would have been found by the
greedy algorithm. We use the left tree Tl(I(hj)) to search in O(logn) time for the interval
i′z with leftmost right endpoint, whose left endpoint is right of the right endpoint p of ix.

ESA 2020

19:12 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

(a)

ix

hj

(b)

hj

iy

i′z

Figure 5 Illustration of the updates triggered by the insertion of an interval; selected independent
intervals are marked by a dotted bounding box and intervals intersected by a selected interval have
the same color as the rightmost such interval. (a) Before insertion of ix, (b) after insertion of ix.

More precisely, we search for p in Tl(I(hj)) and whenever the search path branches into the
left subtree, we compare whether the leftmost right endpoint stored in the root of the right
subtree is left of the right endpoint of the current candidate interval. Once a leaf is reached,
the leftmost found candidate interval is the desired interval i′z. This interval i′z is precisely
the first interval after ix in the order considered by the greedy algorithm that is independent
of ix and thus must be the next selected interval. If iz 6= i′z, we repeat the update process
for i′z as if it would have been the newly inserted interval until we reach the end of I(hj);
otherwise we keep iz as the successor of ix and stop the update process.

For each update of a selected interval, we perform one search in Tl(I(hj)) in O(logn)
time. There are at most ωj updates, so the update time is O(ωj logn). Finally, we need
to delete O(ωj) old selected intervals from and insert O(ωj) new selected intervals into the
solution tree Ts(I(hj)), which takes O(logωj) time for each insertion and deletion. We now
re-evaluate the new Max-IS M(hj) and its cardinality c(hj), which possibly affects M(EH)
or M(OH). We obtain the new independent set Mi+1 = arg max{|M(EH)|, |M(OH)|} for
Gi+1 = (Ri+1, Ei+1).
Deletion: If the interval ix to be deleted is not a selected interval, it is sufficient to delete
it from the left tree Tl(I(hj)) in O(logn) time. Otherwise, if ix is a selected interval, let iy
be the selected interval preceding ix in the solution tree Ts(I(hj)). We first delete ix from
Tl(I(hj)) and Ts(I(hj)). Then we need to select a new interval to replace ix according to the
greedy Max-IS algorithm, which is the interval iz whose right endpoint is leftmost among
all intervals that are completely to the right of iy. We find this interval iz again by a search
in the left tree Tl(I(hj)) with the right endpoint of iy as the query point. We make iz a
new selected interval and use the right endpoint of iz as the query point for finding the next
selected interval in Tl(I(hj)). We repeat this process until we have reached the last interval
of I(hj).

As for the Insertion step, each update of a selected interval requires O(logn) time
due to the query for the next selected interval in Tl(I(hj)). There are O(ωj) such updates.
Further, we need to update the solution tree Ts(I(hj)) by performing O(ωj) insertions and
deletions of seeds, each in O(logωj) time. Once all updates to the selected intervals and
the data structures for I(hj) are done, we re-evaluate the new Max-IS M(hj) and its
cardinality c(hj), which possibly affects M(EH) or M(OH). This yields the new independent
set Mi+1 = arg max{|M(EH)|, |M(OH)|} for Gi+1 = (Ri+1, Ei+1).

I Lemma 12. The set Mi is an independent set of Gi = (Ri, Ei) for each i ∈ [N] and
|Mi| ≥ |OPTi|/2.

Proof. We prove the lemma by induction. From Lemma 11 we know that M1 satisfies the
claim, and in particular each set M(h) for h ∈ H is a Max-IS of the interval set I(h). So let
us consider the set Mi for i ≥ 2 and assume that Mi−1 satisfies the claim by the induction
hypothesis. Let rx and ix be the updated rectangle and its interval, and assume that it

S. Bhore, G. Li, and M. Nöllenburg 19:13

belongs to the stabbing line hj . Then we know that for each hk ∈ H with k 6= j the set
M(hk) is not affected by the update to rx and thus is a Max-IS by the induction hypothesis.
It remains to show that the update operations described above restore a Max-IS M(hj)
for the set I(hj). But in fact the updates are designed in such a way that the resulting set
of selected intervals is identical to the set of intervals that would be found by the greedy
Max-IS algorithm for I(hj). Therefore M(hj) is a Max-IS for I(hj) and by the pigeonhole
principle |Mi| ≥ |OPTi|/2. J

Each update of a rectangle rx (and its interval ix) triggers either an Insertion or a
Deletion operation on the unique stabbing line of rx. As we have argued in the description
of these two update operations, the insertion or deletion of ix requires one O(logn)-time
update in the left tree data structure. If ix is a selected independent interval, the update
further triggers a sequence of at most ωj selection updates, each of which requires O(logn)
time. Hence the update time is bounded by O(ωj logn) = O(ω logn). Recall that ωj and ω
are output-sensitive parameters describing the maximum size of an independent set of I(h)
for a specific stabbing line h = hj or any stabbing line h.

I Theorem 13. We can maintain a 2-approximate maximum independent set in a dynamic
unit-height arbitrary-width rectangle intersection graph, deterministically, in O(ω logn) time,
where ω is the cardinality of a maximum independent set of the rectangles stabbed by the
horizontal stabbing line affected by the dynamic update.

I Remark 14. We note that Gavruskin et al. [24] gave a dynamic algorithm for maintaining
a Max-IS on proper interval graphs. Their algorithm runs in amortized time O(log2 n) for
insertion and deletion, and O(logn) for element-wise decision queries. The complexity to
report a Max-IS J is Θ(|J |). Whether the same result holds for general interval graphs
was posed as an open problem [24]. Our algorithm in fact solves the Max-IS problem on
arbitrary dynamic interval graphs, which is of independent interest. Moreover, it explicitly
maintains a Max-IS at every step.

5 Experiments

We implemented all our Max-IS approximation algorithms presented in Sections 3 and 4 in
order to empirically evaluate their trade-offs in terms of solution quality, i.e., the cardinality
of the computed independent sets, and update time measured on a set of suitable synthetic
and real-world map-labeling benchmark instances with unit squares. The goal is to identify
those algorithms that best balance the two performance criteria. Moreover, for smaller
benchmark instances with up to 2 000 squares, we compute exact Max-IS solutions using
a MaxSAT model by Klute et al. [32] that we solve with MaxHS 3.0 (see www.maxhs.org).
These exact solutions allow us to evaluate the optimality gaps of the different algorithms
in light of their worst-case approximation guarantees. Finally, we investigate the speed-ups
gained by using our dynamic update algorithms compared to the baseline of recomputing
new solutions from scratch with their respective static algorithm after each update.

5.1 Experimental Setup
We have implemented the five algorithms (and their greedy augmentation variants) listed
below in C++. The experiments were run on a server equipped with two Intel Xeon E5-2640
v4 processors (2.4 GHz 10-core) and 160GB RAM. The machine ran the 64-bit version of
Ubuntu Bionic (18.04.2 LTS). The code was compiled with g++ 7.4.0.

ESA 2020

www.maxhs.org

19:14 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

MIS-graph A naive graph-based dynamic MIS algorithm, explicitly maintaining the square
intersection graph and a MIS [4, Sec. 3]. In order to evaluate and compare the performance
of our algorithm MIS-ORS (Section 3) for the MIS problem, we have implemented this
alternative dynamic algorithm. This algorithm, instead of maintaining the current
instance in a dynamic geometric data structure, maintains the rectangle intersection
graph explicitly as a baseline approach. We use standard adjacency lists to represent the
intersection graph, implemented as unordered sets in C++. Now, to obtain a MIS at
the first step, we add an arbitrary (unmarked) vertex v to the solution and mark N(v)
in the corresponding intersection graph. This process is repeated iteratively until there
is no unmarked vertex left in the intersection graph. Clearly, by following this greedy
method, we obtain a MIS. Moreover, for each vertex v, we maintain an augmenting
counter that stores the number of vertices from its neighborhood N(v) that are contained
in the current MIS.
This approach handles the updates in a straightforward manner. When a new vertex is in-
serted, its corresponding rectangle introduces new intersections in the current intersection
graph. Therefore, when adding this vertex, we also determine the edges that are required
to be added to the intersection graph. Notice that, unlike the canonical vertex update
operation defined in the literature, where the adjacencies of the new vertex are part of the
dynamic update, here, we actually need to figure out the neighborhood of a vertex. This
is done by iterating over each vertex and checking whether its corresponding rectangle is
overlapping with the newly inserted rectangle. Thus, it takes O(n) time to obtain the
neighborhood of this vertex. If the newly inserted rectangle has no intersection with
any rectangle from the current solution, then we simply add its vertex to the solution;
otherwise, we ignore it. Finally, we update the counters. If a vertex is deleted, we update
the intersection graph by deleting its corresponding rectangle. If the deleted vertex was
in the solution, then we decrease the counters of its neighbors by 1. Once the counter
of a vertex is updated to 0, we add this vertex into the solution. Both the insertion
(after computing N(v)) and deletion operation for a vertex v take O(deg(v)) time each
to update the intersection graph and the MIS solution.

MIS-ORS The dynamic MIS algorithm based on orthogonal range searching (Section 3);
this algorithm provides a 4-approximation. In the implementation we used the dynamic
orthogonal range searching data structure implemented in CGAL (version 4.11.2), which is
based on a dynamic Delaunay triangulation [35, Chapter 10.6]. Hence, this implementation
does not provide the sub-logarithmic worst-case update time of Theorem 3.

grid The grid-based 4-approximation algorithm (Section 4.1).
grid-k The shifting-based 2(1+ 1

k)-approximation algorithm (Section 4.2). In the experiments
we use k = 2 (i.e., a 3-approximation) and k = 4 (i.e., a 2.5-approximation).

line The stabbing-line based 2-approximation algorithm (Section 4.3).
Since the algorithms grid, grid-k, and line are based on partitioning the set of squares

and considering only sufficiently segregated subsets, they produce a lot of white space in
practice. For instance, they ignore the squares stabbed by either all the even or all the
odd stabbing lines completely in order to create isolated subinstances. In practice, it is
therefore interesting to augment the computed approximate Max-IS by greedily adding
independent, but initially discarded squares. We have also implemented the greedy variants
of these algorithms, which are denoted as g-grid, g-grid-k, and g-line.

We created three types of benchmark instances. The synthetic data sets consist of n
30×30-pixel squares placed inside a bounding rectangle B of size 1 080×720 pixels, which also
creates different densities. The real-world instances use the same square size, but geographic
feature distributions. For the updates we consider three models: insertion-only, deletion-only,
and mixed, where the latter selects insertion or deletion uniformly at random.

S. Bhore, G. Li, and M. Nöllenburg 19:15

Table 1 Specification of the six OSM instances.

post-CH peaks-AT hotels-CH hotels-AT peaks-CH hamlets-CH
features (n) 646 652 1 788 2 209 4 320 4 326
overlaps (m) 5 376 5 418 28 124 68 985 107 372 159 270
density (m/n) 8.32 8.31 15.73 31.23 24.85 36.92

Gaussian In the Gaussian model, we generate n squares randomly in B according to an
overlay of three Gaussian distributions, where 70% of the squares are from the first
distribution, 20% from the second one, and 10% from the third one. The means are
sampled uniformly at random in B and the standard deviation is 100 in both dimensions.

Uniform In the uniform model, we generate n squares in B uniformly at random.
Real-world We created six real-world data sets by extracting point features from Open-

StreetMap (OSM), see Table 1 for their detailed properties.

5.2 Experimental Results
Time-quality trade-offs. For our first set of experiments we compare the five implemented
algorithms, including their greedy variants, in terms of update time and size of the computed
independent sets. Figure 6 shows scatter plots of runtime vs. solution size on uniform and
Gaussian benchmarks, where algorithms with dots in the top-left corner perform well in both
measures.

We first consider the results for the uniform instances with n = 10 000 squares in the top
row of Figure 6. Each algorithm performed N = 400 updates, either insertions (Figure 6a)
or deletions (Figure 6b) and each update is shown as one point in the respective color.
Both plots show that the two MIS algorithms compute the best solutions with almost the
same size and well ahead of the rest. While MIS-ORS is clearly faster than MIS-graph on
insertions, they are comparably fast for deletions, with some slower outliers of MIS-ORS. The
approximation algorithms grid, grid-2, grid-4, and line (without the greedy optimizations)
show their predicted relative behavior: The better the solution quality, the worse the update
times. Algorithms line and g-line show a wide range of update times, spanning almost
two orders of magnitude. Adding the greedy optimization drastically improves the solution
quality in all cases, but typically at the cost of higher runtimes. For g-grid-k the algorithms
get slower by an order of magnitude and increase the solution size by 30–50%. For g-grid,
the additional runtime is not as significant (but deletions are slower than insertions), and
the solution size almost doubles. Finally, g-line is nearly as fast as line, and reaches the best
quality among the approximation algorithms with about 80% of the MIS solutions, but faster
by one or two orders of magnitude.

For the results of the Gaussian instances with n = 10 000 squares and N = 400 updates
plotted in Figures 6c (insertions) and 6d (deletions) we observe the same ranking between the
different algorithms. However, due to the non-uniform distribution of squares, the solution
sizes are more varying, especially for the insertions. For the deletions it is interesting to
see that grid and MIS-graph have more strongly varying runtimes, which is in contrast to
the deletions in the uniform instance, possibly due to the dependence on the vertex degree.
The best solutions are computed by MIS-ORS and MIS-graph, which show similar deletion
times, but the insertion times of MIS-ORS are one order of magnitude faster than MIS-graph.
Algorithm g-line again reaches more than 80% of the quality of the MIS algorithms, with a
speed-up between one and two orders of magnitude.

ESA 2020

19:16 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

10
3

10
2

10
1

10
0

10
1

runtime[ms]

200

250

300

350

400

450

500

550
so

lu
tio

n
si

ze
 |A

|

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(a) Uniform, n = 10 000, 400 insertions.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

200

250

300

350

400

450

500

550

so
lu

tio
n

si
ze

 |A
|

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(b) Uniform, n = 10 000, 400 deletions.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

150

200

250

300

350

400

so
lu

tio
n

si
ze

 |A
|

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(c) Gaussian, n = 10 000, 400 insertions.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

150

200

250

300

350
so

lu
tio

n
si

ze
 |A

|

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(d) Gaussian, n = 10 000, 400 deletions.

Figure 6 Time-quality scatter plots for synthetic benchmark instances. The x-axis (log-scale)
shows runtime, the y-axis shows the solution size.

Optimality gaps. Next, let us look at the results of the real-world instances in Figure 7.
The first four instances in Figure 7a–d, were small enough so that we could compute each
Max-IS exactly with MaxHS and compare the solutions of the approximation algorithms
with the optimum on the y-axis. The largest two instances in Figure 7e and 7f plot the
solution size on the y-axis. First, let us consider Figure 7c as a representative, which is
based on a data set of 1 788 hotels and hostels in Switzerland with mixed updates of 10%
of the squares (N = 179). Generally speaking, the results of the different algorithms are
much more overlapping in terms of quality than for the synthetic instances. The plot shows
that the MIS algorithms reach consistently between 80% and 85% of the optimum, but
are sometimes outperformed by g-grid-4 and g-line. Regarding the runtime, MIS-ORS has
more homogeneous update times ranging between the extrema of MIS-graph, which suffers
from the rather slow insertions. The original approximations are well above their respective
worst-case ratios, but stay between 45% and 65% of the optimum. The greedy extensions

S. Bhore, G. Li, and M. Nöllenburg 19:17

push this towards larger solutions, at the cost of higher runtimes. However, g-line seems
to provide a very good balance between quality and speed. We point out that because the
updates comprise insertions and deletions, the marks for algorithms that are sensitive to the
update type, such as g-grid and MIS-graph form two separate runtime clusters. The same
relative observations of the algorithms’ performance can be made in Figures 7a–d, yet they
show different absolute quality offsets and variance.

Let us next consider the largest OSM instance in Figure 7f. It again reflects the same
findings as obtained from the smaller instances. The instance consists of n = 4 326 hamlets in
Switzerland with 10% mixed updates (N = 433) and is denser by a factor of about 2.3 than
hotels-CH (see Table 1). There is quite some overlap of the different algorithms in terms
of the solution size, yet the algorithms form the same general ranking pattern as observed
before. Interestingly, while the MIS algorithms contribute some of the best solutions, they
also show a variance of ±50 squares. In contrast, g-line, the best of the approximation
algorithms, is competing well and is more stable in terms of solution size and again about an
order of magnitude faster than the MIS algorithms. The update-type dependent behavior of
MIS-graph with its significantly slower insertions is observed once more, making MIS-ORS
the better choice for a mixed update model.

Finally, Figure 8 shows the optimality ratios of the algorithms for small uniform and
Gaussian instances with n = 1 000 squares. They confirm our earlier observations, but also
show that for these small instances, MIS-graph is about as fast as MIS-ORS for insertions
and faster than MIS-ORS for deletions. This is because the graph size and vertex degrees do
not yet influence the running time of MIS-graph strongly. Yet, as the next experiment shows,
this changes drastically, as the instance size grows.

Runtimes. In our last experiment, we explore in more detail the scalability of the algorithms
for larger instances, both relative to each other and in comparison to the re-computation
times of their corresponding static algorithms. We generated one random instance with
n = 1 000k squares for each k ∈ {1, 2, 4, 8, 16, 32} and measured the average update times
over n/10 insertions or deletions. The results for the Gaussian and uniform model are plotted
in Figure 9. Considering the update times for insertions, we confirm the observations from
the scatter plots in terms of the performance ranking. Most algorithms grow only very slowly
in terms of their running time, with the notable exception of MIS-graph, but that was to be
expected. For deletions, MIS-graph is initially faster than MIS-ORS, but again shows the
steepest increase in runtime. Deletions in the Gaussian model also affect the runtime of grid
and g-grid quite noticeably, yet one order of magnitude below MIS-graph.

In the comparison with their non-dynamic versions, i.e., re-computing solutions after each
update, the dynamic algorithms indeed show a significant speed-up in practice, already for
small instance sizes of n = 1 000, and even more so as n grows (notice the different y-offsets).
For some algorithms, including MIS-ORS and g-line, this can be as high as 3–4 orders of
magnitude for n = 32 000. It clearly confirms that the investigation of algorithms for dynamic
MIS and Max-IS problems for rectangles is well justified also from a practical point of view.

5.3 Discussion
Our experimental evaluation provides several interesting insights into the practical perfor-
mance of the different algorithms. First of all, both MIS-based algorithms generally showed
the best solution quality in the field, reaching 85% of the exact Max-IS size, where we could
compare against optimal solutions. This is in strong contrast to their factor-4 worst-case
approximation guarantee of only 25%.

ESA 2020

19:18 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

10
3

10
2

10
1

10
0

10
1

runtime[ms]

0.5

0.6

0.7

0.8

0.9

1.0

qu
al

ity
 ra

tio
 (|

A|
 /

|O
PT

|)

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(a) post-CH, 10% mixed updates.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

qu
al

ity
 ra

tio
 (|

A|
 /

|O
PT

|)

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(b) peaks-AT, 10% mixed updates.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

0.5

0.6

0.7

0.8

0.9

1.0

qu
al

ity
 ra

tio
 (|

A|
 /

|O
PT

|)

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(c) hotels-CH, 10% mixed updates.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

0.5

0.6

0.7

0.8

0.9

1.0

qu
al

ity
 ra

tio
 (|

A|
 /

|O
PT

|)

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(d) hotels-AT, 10% mixed updates.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

120

140

160

180

200

220

240

260

so
lu

tio
n

si
ze

 |A
|

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(e) peaks-CH, 10% mixed updates.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

120

140

160

180

200

220

240

260

so
lu

tio
n

si
ze

 |A
|

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(f) hamlets-CH, 10% mixed updates.

Figure 7 Time-quality scatter plots for the OSM instances. The x-axis (log-scale) shows runtime.
The y-axis shows the quality ratio compared to an optimal Max-IS solution for the smaller instances
(a)–(d), and the solution size for the larger instances (e)–(f).

S. Bhore, G. Li, and M. Nöllenburg 19:19

10
3

10
2

10
1

10
0

10
1

runtime[ms]

0.5

0.6

0.7

0.8

0.9

1.0
qu

al
ity

 ra
tio

 (|
A|

 /
|O

PT
|)

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(a) Uniform, 100 insertions.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

0.5

0.6

0.7

0.8

0.9

1.0

qu
al

ity
 ra

tio
 (|

A|
 /

|O
PT

|)

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(b) Uniform, 100 deletions.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

qu
al

ity
 ra

tio
 (|

A|
 /

|O
PT

|)

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(c) Gaussian, 100 insertions.

10
3

10
2

10
1

10
0

10
1

runtime[ms]

0.4

0.5

0.6

0.7

0.8

0.9

1.0
qu

al
ity

 ra
tio

 (|
A|

 /
|O

PT
|)

line
g-line
grid
g-grid
grid-2
g-grid-2
grid-4
g-grid-4
MIS-ORS
MIS-graph

(d) Gaussian, 100 deletions.

Figure 8 Time-quality scatter plots for uniform and Gaussian instances with n = 1 000 squares.
The x-axis (log-scale) shows runtime. The y-axis shows the quality ratio compared to an optimal
Max-IS solution.

Our algorithm MIS-ORS avoids storing the intersection graph explicitly. Instead, we
only store the relevant geometric information in a dynamic data structure and derive edges
on demand. Therefore it breaks the natural barrier of Ω(∆) (amortized) vertex update in a
dynamic graph, where ∆ is the maximum degree in the graph. However, it has to find the
intersections using the complex range query, which takes O(logn) time. We did not involve
any geometric data structure in the baseline MIS approach MIS-graph. Recall that, the
update of the intersection graph when adding a new rectangle includes the time to figure out
the neighborhood of the newly added vertex. Therefore, the graph-based algorithm showed a
slow insertion update and was quite sensitive to the size of instances in insertion updates.
However, the deletion update only depends on the degree of the involved vertex, not the
size of instances directly. And as expected, the graph-based algorithm was indeed much
faster for small instances, but MIS-ORS was more scalable in our experiment. However, the
intersection graph update for MIS-graph can be improved by using additionally a geometric

ESA 2020

19:20 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

1000 2000 4000 8000 16000 32000
instance size

10
1

10
0

10
1

10
2

10
3

ru
nt

im
e[

m
s]

line g-line grid g-grid grid-2 g-grid-2 grid-4 g-grid-4 MIS-ORS MIS-graph

1000 2000 4000 8000 16000 32000
instance size

10
3

10
2

10
1

10
0

10
1

ru
nt

im
e[

m
s]

(a) Update times for insertions (Gaussian).

1000 2000 4000 8000 16000 32000
instance size

10
3

10
2

10
1

10
0

10
1

ru
nt

im
e[

m
s]

(b) Update times for deletions (Gaussian).

1000 2000 4000 8000 16000 32000
instance size

10
1

10
0

10
1

10
2

10
3

ru
nt

im
e[

m
s]

(c) Re-computation times for insertions (Gaussian).

1000 2000 4000 8000 16000 32000
instance size

10
1

10
0

10
1

10
2

10
3

ru
nt

im
e[

m
s]

(d) Re-computation times for deletions (Gaussian).

1000 2000 4000 8000 16000 32000
instance size

10
3

10
2

10
1

10
0

10
1

ru
nt

im
e[

m
s]

(e) Update times for insertions (uniform).

1000 2000 4000 8000 16000 32000
instance size

10
3

10
2

10
1

10
0

10
1

ru
nt

im
e[

m
s]

(f) Update times for deletions (uniform).

1000 2000 4000 8000 16000 32000
instance size

10
1

10
0

10
1

10
2

10
3

ru
nt

im
e[

m
s]

(g) Re-computation times for insertions (uniform).

1000 2000 4000 8000 16000 32000
instance size

10
1

10
0

10
1

10
2

10
3

ru
nt

im
e[

m
s]

(h) Re-computation times for deletions (uniform).

Figure 9 Log-log runtime plots (notice the different y-offsets) for dynamic updates and re-
computation on Gaussian instances (a)–(d) and uniform instances (e)–(h) of size n = 1 000 to 32 000,
averaged over n/10 updates. Error bars indicate the standard deviation.

S. Bhore, G. Li, and M. Nöllenburg 19:21

data structure to store the rectangle set and detect intersections. We expect that it would
show improvements for insertion updates, but may slow down deletions, since the state-of-the
art data structure provides only an amortized update time guarantee. Therefore, it is an open
question whether the performance of MIS-graph can indeed be improved by using a suitable
dynamic geometric data structure. Note, MIS-ORS too, can sometimes show slower deletions,
due to the necessary complex orthogonal range search in some cases. Recall that, in our
implementation, we used a dynamic range searching data structure from CGAL, which does
not provide the theoretical sub-logarithmic worst-case update time of Chan et al. [14] used in
Theorem 3. Exploring how MIS-ORS can benefit from such a state-of-the-art dynamic data
structure in practice remains to be investigated in future work. Notwithstanding, it remains
to state that even with the suboptimal data structure, MIS-ORS was able to compute its
solutions for up to 32 000 squares in less than 1ms. So if solution quality is the priority, then
the MIS-ORS algorithm is the method of choice. It provides the best solutions (together
with MIS-graph), but is significantly more scalable.

An expected observation is that while consistently exceeding their theoretical guarantees,
the approximation algorithms do not perform too well in practice due to their pigeonhole
choice of too strictly separated subinstances. However, a simple greedy augmentation of
the approximate solutions can boost the solution size significantly, and for some algorithms
even to almost that of the MIS algorithms. Of course, at the same time this increases the
runtime of the algorithms. We want to point out g-line, the greedy-augmented version of
the 2-approximation algorithm line, as it computes very good solutions, even comparable or
better than MIS-ORS and MIS-graph for the real-world instances, and at 80% of the MIS
solutions for the synthetic instances. At the same time, g-line is still significantly faster than
MIS-ORS and MIS-graph and thus turns out to be a well-balanced compromise between
time and quality. It would be our recommended method if MIS-ORS or MIS-graph are too
slow for an application.

6 Conclusions

We investigated the MIS and Max-IS problems on dynamic sets of uniform rectangles
and uniform-height rectangles from an algorithm engineering perspective, providing both
theoretical results for maintaining a MIS or an approximate Max-IS and reporting insights
from an experimental study. Open problems for future work include (i) finding Max-IS
sublinear-update-time approximation algorithms for dynamic unit squares with approxi-
mation ratio better than 2, (ii) studying similar questions for dynamic disk graphs, and
(iii) implementing improvements such as a sub-logarithmic dynamic range searching data
structure to speed-up our algorithm MIS-ORS. Moreover, it would be interesting to design
dynamic approximation schemes for Max-IS that maintain stability in a solution.

References
1 Amir Abboud, Raghavendra Addanki, Fabrizio Grandoni, Debmalya Panigrahi, and Barna

Saha. Dynamic set cover: improved algorithms and lower bounds. In Symposium on Theory
of Computing (STOC’19), pages 114–125. ACM, 2019. doi:10.1145/3313276.3316376.

2 Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight indepen-
dent set of rectangles. In Foundations of Computer Science (FOCS’13), pages 400–409. IEEE,
2013. doi:10.1109/FOCS.2013.50.

3 Pankaj K Agarwal, Marc Van Kreveld, and Subhash Suri. Label placement by maximum
independent set in rectangles. Computational Geometry, 11(3-4):209–218, 1998. doi:10.1016/
S0925-7721(98)00028-5.

ESA 2020

https://doi.org/10.1145/3313276.3316376
https://doi.org/10.1109/FOCS.2013.50
https://doi.org/10.1016/S0925-7721(98)00028-5
https://doi.org/10.1016/S0925-7721(98)00028-5

19:22 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

4 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear update time. In Symposium on Theory of Computing (STOC’18),
pages 815–826, 2018. doi:10.1145/3188745.3188922.

5 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear in n update time. In Symposium on Discrete Algorithms
(SODA’19), pages 1919–1936. SIAM, 2019. doi:10.1137/1.9781611975482.116.

6 Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary graph. SIAM
Journal on Computing, 15(4):1054–1068, 1986. doi:10.1137/0215075.

7 Ken Been, Martin Nöllenburg, Sheung-Hung Poon, and Alexander Wolff. Optimizing active
ranges for consistent dynamic map labeling. Comput. Geom. Theory Appl., 43(3):312–328,
2010. doi:10.1016/j.comgeo.2009.03.006.

8 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff Stein, and Madhu
Sudan. Fully dynamic maximal independent set with polylogarithmic update time. In
Foundations of Computer Science (FOCS’19), pages 382–405. IEEE, 2019. doi:10.1109/FOCS.
2019.00032.

9 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach for
dynamic spanner and dynamic maximal matching. In Symposium on Discrete Algorithms
(SODA’19), pages 1899–1918. SIAM, 2019. doi:10.1137/1.9781611975482.115.

10 Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic fully
dynamic approximate vertex cover and fractional matching in o(1) amortized update time. In
Integer Programming and Combinatorial Optimization (IPCO’17), volume 10328 of LNCS,
pages 86–98. Springer, 2017. doi:10.1007/978-3-319-59250-3_8.

11 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Symposium on Discrete Algorithms (SODA’18),
pages 1–20. SIAM, 2018. doi:10.1137/1.9781611975031.1.

12 Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In
Symposium on Discrete Algorithms (SODA’09), pages 892–901. SIAM, 2009. doi:10.1137/1.
9781611973068.97.

13 Timothy M Chan and Sariel Har-Peled. Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012. doi:10.1007/
s00454-012-9417-5.

14 Timothy M. Chan and Konstantinos Tsakalidis. Dynamic orthogonal range searching on the
RAM, revisited. In Boris Aronov and Matthew J. Katz, editors, Computational Geometry
(SoCG’17), volume 77 of LIPIcs, pages 28:1–28:13. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.SoCG.2017.28.

15 Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in expected poly-log
update time. In Foundations of Computer Science (FOCS’19), pages 370–381. IEEE, 2019.
doi:10.1109/FOCS.2019.00031.

16 Julia Chuzhoy and Alina Ene. On approximating maximum independent set of rectangles.
In Foundations of Computer Science (FOCS’16), pages 820–829. IEEE, 2016. doi:10.1109/
FOCS.2016.92.

17 Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival
streams. In International Colloquium on Automata, Languages, and Programming (ICALP’19),
volume 132 of LIPIcs, pages 45:1–45:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2019. doi:10.4230/LIPIcs.ICALP.2019.45.

18 David Eppstein, Zvi Galil, and Giuseppe F. Italiano. Dynamic graph algorithms. In Mikhail J.
Atallah, editor, Algorithms and Theory of Computation Handbook, chapter 8. CRC Press, 1999.
doi:10.1.1.43.8372.

19 Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.
doi:10.1137/s0097539702402676.

https://doi.org/10.1145/3188745.3188922
https://doi.org/10.1137/1.9781611975482.116
https://doi.org/10.1137/0215075
https://doi.org/10.1016/j.comgeo.2009.03.006
https://doi.org/10.1109/FOCS.2019.00032
https://doi.org/10.1109/FOCS.2019.00032
https://doi.org/10.1137/1.9781611975482.115
https://doi.org/10.1007/978-3-319-59250-3_8
https://doi.org/10.1137/1.9781611975031.1
https://doi.org/10.1137/1.9781611973068.97
https://doi.org/10.1137/1.9781611973068.97
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.4230/LIPIcs.SoCG.2017.28
https://doi.org/10.1109/FOCS.2019.00031
https://doi.org/10.1109/FOCS.2016.92
https://doi.org/10.1109/FOCS.2016.92
https://doi.org/10.4230/LIPIcs.ICALP.2019.45
https://doi.org/10.1.1.43.8372
https://doi.org/10.1137/s0097539702402676

S. Bhore, G. Li, and M. Nöllenburg 19:23

20 Michael Formann and Frank Wagner. A packing problem with applications to lettering of
maps. In Symposium on Computational Geometry (SoCG’91), pages 281–288. ACM, 1991.
doi:10.1145/109648.109680.

21 Robert J. Fowler, Mike Paterson, and Steven L. Tanimoto. Optimal packing and covering in the
plane are NP-complete. Inf. Process. Lett., 12(3):133–137, 1981. doi:10.1016/0020-0190(81)
90111-3.

22 Edith Gabriel. Spatio-temporal point pattern analysis and modeling. In Shashi Shekhar,
Hui Xiong, and Xun Zhou, editors, Encyclopedia of GIS, pages 1–8. Springer, 2015. doi:
10.1007/978-3-319-23519-6_1646-1.

23 Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc.
Online matching with general arrivals. In Foundations of Computer Science (FOCS’19), pages
26–37, 2019. doi:10.1109/FOCS.2019.00011.

24 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
algorithms for monotonic interval scheduling problem. Theoretical Computer Science, 562:227–
242, 2015. doi:10.1016/j.tcs.2014.09.046.

25 Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter. Consistent labeling of rotating maps.
J. Computational Geometry, 7(1):308–331, 2016. doi:10.20382/jocg.v7i1a15.

26 U. I. Gupta, D. T. Lee, and Joseph Y.-T. Leung. Efficient algorithms for interval graphs and
circular-arc graphs. Networks, 12(4):459–467, 1982. doi:10.1002/net.3230120410.

27 Johan Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica, 182(1):105–142,
1999. doi:10.1007/BF02392825.

28 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate maximum
independent set of intervals, hypercubes and hyperrectangles. In Sergio Cabello and Danny Z.
Chen, editors, Symposium on Computational Geometry (SoCG 2020), volume 164 of LIPIcs,
pages 51:1–51:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.SoCG.2020.51.

29 Dorit S. Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. J. ACM, 32(1):130–136, 1985. doi:10.1145/2455.
214106.

30 John E Hopcroft and Richard M Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.

31 Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W. Thatcher,
and J. D. Bohlinger, editors, Complexity of Computer Computations, pages 85–103, 1972.
doi:10.1007/978-1-4684-2001-2_9.

32 Fabian Klute, Guangping Li, Raphael Löffler, Martin Nöllenburg, and Manuela Schmidt.
Exploring semi-automatic map labeling. In Advances in Geographic Information Systems
(SIGSPATIAL’19), pages 13–22. ACM, 2019. doi:10.1145/3347146.3359359.

33 Nathan Linial. Distributive graph algorithms global solutions from local data. In Foundations
of Computer Science (SFCS’87), pages 331–335. IEEE, 1987. doi:10.1109/SFCS.1987.20.

34 Kurt Mehlhorn and Stefan Näher. Dynamic fractional cascading. Algorithmica, 5(1–4):215–241,
1990. doi:10.1007/BF01840386.

35 Kurt Mehlhorn and Stefan Näher. The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, 1999. doi:10.1145/204865.204889.

36 Huy N Nguyen and Krzysztof Onak. Constant-time approximation algorithms via local
improvements. In Foundations of Computer Science (FOCS’08), pages 327–336. IEEE, 2008.
doi:10.1109/FOCS.2008.81.

37 Panos M Pardalos and Jue Xue. The maximum clique problem. Journal of Global Optimization,
4(3):301–328, 1994. doi:10.1007/BF01098364.

38 René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval scheduling
and colorful independent sets. Journal of Scheduling, 18(5):449–469, 2015. doi:10.1007/
s10951-014-0398-5.

ESA 2020

https://doi.org/10.1145/109648.109680
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1007/978-3-319-23519-6_1646-1
https://doi.org/10.1007/978-3-319-23519-6_1646-1
https://doi.org/10.1109/FOCS.2019.00011
https://doi.org/10.1016/j.tcs.2014.09.046
https://doi.org/10.20382/jocg.v7i1a15
https://doi.org/10.1002/net.3230120410
https://doi.org/10.1007/BF02392825
https://doi.org/10.4230/LIPIcs.SoCG.2020.51
https://doi.org/10.4230/LIPIcs.SoCG.2020.51
https://doi.org/10.1145/2455.214106
https://doi.org/10.1145/2455.214106
https://doi.org/10.1137/0202019
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3347146.3359359
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1007/BF01840386
https://doi.org/10.1145/204865.204889
https://doi.org/10.1109/FOCS.2008.81
https://doi.org/10.1007/BF01098364
https://doi.org/10.1007/s10951-014-0398-5
https://doi.org/10.1007/s10951-014-0398-5

19:24 An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling

39 Marc J. van Kreveld, Tycho Strijk, and Alexander Wolff. Point set labeling with sliding labels.
In Ravi Janardan, editor, Proceedings of the Fourteenth Annual Symposium on Computational
Geometry, Minneapolis, Minnesota, USA, June 7-10, 1998, pages 337–346. ACM, 1998.
doi:10.1145/276884.276922.

40 Frank Wagner and Alexander Wolff. A practical map labeling algorithm. Comput. Geom.
Theory Appl., 7:387–404, 1997. doi:10.1016/S0925-7721(96)00007-7.

https://doi.org/10.1145/276884.276922
https://doi.org/10.1016/S0925-7721(96)00007-7

Lower Bounds and Approximation Algorithms for
Search Space Sizes in Contraction Hierarchies
Johannes Blum
University of Konstanz, Germany
blum@inf.uni-konstanz.de

Sabine Storandt
University of Konstanz, Germany
storandt@inf.uni-konstanz.de

Abstract
Contraction hierarchies (CH) is a prominent preprocessing-based technique that accelerates the
computation of shortest paths in road networks by reducing the search space size of a bidirectional
Dijkstra run. To explain the practical success of CH, several theoretical upper bounds for the
maximum search space size were derived in previous work. For example, it was shown that in
minor-closed graph families search space sizes in O(

√
n) can be achieved (with n denoting the

number of nodes in the graph), and search space sizes in O(h logD) in graphs of highway dimension
h and diameter D. In this paper, we primarily focus on lower bounds. We prove that the average
search space size in a so called weak CH is in Ω(bα) for α ≥ 2/3 where bα is the size of a smallest
α-balanced node separator. This discovery allows us to describe the first approximation algorithm
for the average search space size. Our new lower bound also shows that the O(

√
n) bound for

minor-closed graph families is tight. Furthermore, we deeper investigate the relationship of CH
and the highway dimension and skeleton dimension of the graph, and prove new lower bound and
incomparability results. Finally, we discuss how lower bounds for strong CH can be obtained from
solving a HittingSet problem defined on a set of carefully chosen subgraphs of the input network.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases contraction hierarchies, search space size, balanced separator, tree decom-
position

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.20

1 Introduction

The concept of contraction hierarchies (CH) was introduced by Geisberger et al. [15] to
accelerate shortest path planning in road networks. The basic idea is to precompute an
overlay graph in which the search space size of a bidirectional Dijkstra run can be drastically
reduced. For example, on the road network of Western Europe with 18 million nodes, a
bidirectional Dijkstra run in the original graph scans almost 5 million nodes on average,
while in the CH overlay graph only 280 nodes are scanned. This decreases the query time
from over two seconds to about one millisecond [5].

There exist two CH variants, referred to as strong and weak contraction hierarchies. In
a strong CH, the overlay graph construction takes the edge weights directly into account.
In a weak CH, the preprocessing phase is split into a metric-independent overlay graph
construction phase, and a subsequent customization phase in which the edges are augmented
with weights. Weak CH is used in practice to deal with dynamically changing edge weights,
as changes in the metric only require to repeat the customization phase but not the overlay
graph construction [12]. In [7], the first theoretical upper bounds for search space sizes in
weak CH were described, which are valid for strong CH as well. Other lines of research focus
on strong CH directly. Graph parameters such as the highway dimension [1] or the skeleton
dimension [17] were explictly introduced with the purpose of analyzing search space sizes

© Johannes Blum and Sabine Storandt;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 20; pp. 20:1–20:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1102-3649
mailto:blum@inf.uni-konstanz.de
mailto:storandt@inf.uni-konstanz.de
https://doi.org/10.4230/LIPIcs.ESA.2020.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Bounds and Algorithms for CH Search Space Sizes

of preprocessing-based route planning techniques. However, most existing work focuses on
upper bounding the maximum search space. In this paper, we are particularily interested
in constructing tight bounds for the average search space size, as those are more expressive
for judging whether the CH technique is useful for a given graph (family). We provide a
multitude of novel results, including several lower bounding techniques as well as the first
approximation algorithm for the average search space size in a weak CH.

1.1 Related Work

In [2, 1], the highway dimension h was introduced as a novel graph parameter to capture
the shortest path structure of road networks. It was proven that in a strong CH maximum
search space sizes in O(h logD) can be achieved where D denotes the diameter of the graph.
At the same time, the size of the overlay graph is bounded by O(n · h logD) where n is
the number of nodes in the graph. In [7], the first upper bounds for weak CH were proven.
There, nested dissection was used to guide the overlay graph construction; a technique that
relies on recursive decomposition of the graph into smaller subgraphs by removing balanced
node separators. It was shown that in graphs of treewidth tw an upper bound of O(tw logn)
for the maximum search space size Smax can be achieved with an overlay graph size of
O(n · tw logn). For minor-closed graph families that exhibit O(

√
n) balanced separators,

Smax ∈ O(
√
n) and an overlay graph size in O(n logn) was proven. In [14, 8], the bounded

growth model was proposed as a theoretical framework for studying road networks. There,
CH search space sizes in O(

√
n logn) and overlay graph sizes in O(n logD) were shown for

graphs with unit edge costs that adhere to the model.
Concerning lower bounds, White [22] proved that for any h, D and n, there exists a

graph with at least n nodes that has a highway dimension h, a diameter of Θ(D), and in
which the average search space size in a strong CH is in Ω(h logD). Therefore, the upper
bound by Abraham et al. [1] for strong CH search space sizes parametrized by h is tight.
An analogue result was proven for the related route planning technique hub labeling. In [20],
it was shown on the example of a carefully weighted grid graph that there exists graphs
for which the average search space is in Ω(

√
n) for any strong CH (and for hub labeling as

well). In addition, a greedy algorithm was proposed to compute lower bounds for the average
search space size of any strong CH in a given weighted graph. In [7], it was observed that
the maximum search space size in a weak CH coincides with the so called elimination tree
height. As proven by Bodlaender et al. [9], the minimum elimination tree height of a graph
equals the treedepth td, and the following relations to other graph parameters hold

b− 1 ≤ tw ≤ pw ≤ td

where b is the balanced separator number of the graph, tw is the treewidth, and pw the
pathwidth. Accordingly, the balanced separator number, the treewidth, the pathwidth, and
the treedepth are all valid lower bounds for Smax. In [6], it was proven by reduction from
VertexCover that it is NP-hard to find a contraction order for a strong CH that minimizes the
average search space size while adding at most K shortcuts to the graph. Furthermore it was
observed that in a complete graph Savg ∈ Ω(n) holds, and in path graphs Savg ∈ Ω(logn).
For the special case of trees, a linear-time optimal preprocessing algorithm is known that
minimizes Smax [21]. Complementarily, it was shown in [7] that a CH-graph constructed
with a nested dissection contraction order provides a 2-approximation for Savg in trees.

J. Blum and S. Storandt 20:3

1.2 Contribution
We significantly extend the set of known results on (average) search space sizes in weak and
strong contraction hierarchies. Our main findings are listed in the following.

Although the balanced separator number, the treewidth, the pathwidth and the treedepth
are all lower bounds for the maximum search space size Smax in a weak CH, we prove
that in general none of them is a valid lower bound for Savg. However, we prove that the
average search space size Savg in a weak CH is in Ω(bα) for α ≥ 2/3 where bα is the size
of a smallest α-balanced node separator in G.
We establish the first approximation result for Savg in weak CHs which applies to general
graphs. In particular, we prove that a nested dissection CH construction scheme leads
to an average search space size within a factor of 1 + 1.5 log1.5 n of the optimum. This
answers an open question from [7]. We also discuss how to turn the nested dissection
approach into an efficient CH construction algorithm on general graphs.
We furthermore show that for every unweighted graph, one can choose metric edge
weights such that the highway dimension h of the graph equals 1, and hence constitutes a
trivial lower bound for the average search space size in a strong CH. On such graphs, the
algorithms described in [2, 1] with an upper bound on the search space size of O(h logD)
are close-to-optimal. However, we also show that in case the metric is given, there can be
a gap of size Ω(n) between the highway dimension and the maximum search space size.
For a given weighted graph, we prove that lower bounds on the average search space
size in the respective strong CH can be obtained by solving a (hierarchical) HittingSet
problem defined on a set of specific subgraphs of G.

2 Preliminaries

In this section, we describe the concepts of strong and weak CH more formally and provide the
definitions of some separator-related graph parameters that will be relevant in our analysis.

2.1 Strong and Weak Contraction Hierarchies
Given an undirected1, connected graph G(V,E) with edge costs c : E → R+, the preprocessing
phase for strong CH works as follows: First a node permutation is fixed which constitutes the
so called contraction order of the nodes. Note that any contraction order is feasible but that
the overlay graph size as well as the search space sizes crucially depend on that order. Let
r : V → {1, . . . , n} with n = |V | be the respective ranks of the nodes in the contraction order.
Then an overlay graph is constructed with the following property: A shortcut edge {v, w}
is introduced between v and w if and only if there exists a shortest path π between them
that except for v and w only contains nodes u with r(u) < min{r(v), r(w)}. The cost of that
shortcut edge is set to c(π). When constructing a weak CH instead, shortcuts are introduced
between nodes v and w iff there exists any path between them that except for v and w only
contains nodes u with r(u) < min{r(v), r(w)}. In either case, the set of shortcuts E+ is then
added to the original graph G to obtain the CH-graph G+(V,E ∪ E+). For strong CH, this
completes the preprocessing phase. For weak CH, a so called customization phase follows in
which edge weights are first assigned to the original edges, and are then propagated to the
shortcuts. For further details, we refer to [12].

1 With slight modifications, CH also works on directed graphs. To simplify the presentation, we only
consider undirected graphs throughout the paper.

ESA 2020

20:4 Bounds and Algorithms for CH Search Space Sizes

In practical implementations, the node contraction order is not always fixed a priori but
might be determined in a process which interleaves the overlay graph construction and the
node rank assignments. The insertion of shortcut edges is then based on the so called node
contraction operation: Here, a node v and its incident edges are removed from the graph
and new edges are inserted between certain pairs of its former neighbors. In a strong CH, a
shortcut between the neighbors u,w of v is only inserted if the path u, v, w is a shortest path.
In a weak CH, shortcuts are inserted between all pairs of neighbors (as without knowledge
about the metric, any of those paths could become a shortest path later). The preprocessing
then consists of contracting all nodes in the graph one after the other, using e.g. the current
degree of the nodes as guidance which of them to contract next (or more complicated criteria,
see [15]). But independently of the chosen implementation, the formal characterization of
the resulting overlay CH-graph given above always applies.

To compute a shortest path between nodes s, t ∈ V in the CH-graph G+, a bidirectional
Dijkstra run is started from s and t in G+ with the restriction that from any node v incident
edges {v, w} are only relaxed if r(w) > r(v). The set of nodes that can be reached from
a node v ∈ V via paths which go strictly upwards with respect to the contraction order
is called the search space SS(v). By construction of G+ one can show that there always
exists a node p ∈ SS(s) ∩ SS(t) which lies on a shortest path between s and t in G, and
the shortest path distance from s to p as well as the shortest path distance from p to t are
correctly computed in G+. Accordingly, the computed shortest path distance in G+ equals
the shortest path distance in G.

Note that in general there is a difference between the search space size and the query
time. The search space size |SS(v)| of a node v is the number of nodes settled in the
Dijkstra run from v in the CH-graph while the query time also accounts for edge relaxation
and priority queue operations. However, an upper bound U on the search space size also
yields an upper bound of U2 on the query time as there can be at most a quadratic
number of edges between U nodes. The other way around, a lower bound on the search
space size is automatically also a lower bound for the query time. Therefore, we stick
to the notion of search space sizes throughout the paper. We distinguish between the
maximum CH search space size Smax = maxv∈V |SS(v)| and the average CH search space
size Savg = 1

n

∑
v∈V |SS(v)| ≤ Smax.

2.2 Balanced Separators
Existing upper bounds for search space sizes in weak CH were obtained by using nested
dissection based overlay graph construction, which involves the recursive computation of
balanced node separators. We will investigate which separator-related graph parameters can
be used to lower bound the average search space size. The balanced separator number is
defined as the smallest integer b such that for every V ′ ⊆ V , the induced subgraph G[V ′]
admits a balanced separator of size at most b, i.e. after the removal of at most b nodes every
remaining connected component of G[V ′] contains at most d(|V ′| − b)/2e nodes. While b− 1
is known to lower bound the maximum CH search space size in any given graph, we will show
that the same is not true for Savg. However, we will prove a lower bound of α · bα for α ≥ 2/3
which later will be used to get an approximation guarantee for Savg when constructing the
CH with a variant of nested dissection. The parameter bα, for an α ∈ [0, 1], is the size of a
minimum α-balanced node separator of G(V,E), i.e., the smallest number of nodes that have
to be removed from the input graph G(V,E) such that all remaining connected components
have size at most α · |V |. Note that the value of bα is solely determined by considering the
input graph as a whole, while for b all induced subgraphs are relevant as well. By definition,

J. Blum and S. Storandt 20:5

the following hierarchy holds: b2/3 ≤ b1/2 ≤ b.

3 Bounds and Algorithms for Search Space Sizes in Weak CH

In this section, we discuss at the beginning how Savg, Smax, and the balanced separator
number relate to each other in a weak CH. Subsequently, we describe new lower bounding
techniques and present the first approximation algorithm for Savg.

3.1 Maximum versus Average Search Space Size
As discussed above, the smallest possible maximum search space size of a weak CH is equal
to the treedepth of the input graph. However, there can be a large gap between treedepth
and average search space size. In fact, not even the balanced separator number b yields a
lower bound for Savg as the following lemma shows.

I Lemma 1. There exist graphs G(V,E) with Savg ∈ o(b).

Proof. Take a star graph with k leaves and replace one leaf with a clique C of size
√
k. Every

balanced separator of the subgraph induced by C contains Ω(
√
k) vertices, which implies

that b ∈ Ω(
√
k). Consider a contraction order where the central node obtains rank n = |V |.

Then the search space size of the central node is 1, the search space size of every leaf is 2 and
the search space size of a node in the clique is at most

√
k + 1. It follows that the average

search space size is

Savg ≤
1 + (k − 1) · 2 +

√
k · (
√
k + 1)

n
= 3k +

√
k − 1

n
= 3k +

√
k − 1

k +
√
k

< 3 ∈ o(
√
k). J

With b − 1 ≤ tw ≤ pw ≤ td, the lemma implies that none of those parameters is a valid
lower bound for Savg; and that there can be an exponential gap between the average and the
maximum search space size.

3.2 Balanced Separators and Average Search Space Size
In a weak CH, a node w ∈ V of rank R is in the search space SS(v) of another node v ∈ V
with rank r < R if there exists a path from v to w which – except for w – exclusively contains
nodes of rank < R. This fact leads to the following central observation.

I Observation 2. Let G(V,E) be a connected graph. In a weak CH on G, for a node w ∈ V
of rank R to not be in the search space SS(v) of a node v ∈ V of rank r < R, there needs to
be a set of nodes of rank higher than R that separates w from v.

We will now present our first main theorem, which exploits this observation to show a general
relationship between the average serach space size Savg in a weak CH and balanced node
separators in G.

I Theorem 3. For any weak CH and any α ≥ 2
3 , at least αn nodes in G have a search space

of size at least bα.

Proof. Consider some contraction order of the nodes. We identify the smallest integer k such
that the k nodes with highest rank in the given order form an α-balanced node separator
S in G. Hence, if we remove the k − 1 nodes of highest rank, there is still a connected
component C of size > αn. If we now remove the node vk with kth highest rank, we can

ESA 2020

20:6 Bounds and Algorithms for CH Search Space Sizes

split C into two subgraphs of size at most αn each, which are not connected to each other.
We observe that the larger of the two subgraphs C∗ (which is not necessarily connected)
has to contain at least α

2 n nodes. Therefore, there are at most n− α
2 n nodes that are not

contained in C∗, which for any α ≥ 2
3 is at most αn. It follows that the separator nodes

S∗ ⊆ S that are adjacent to C∗ form an α-balanced separator already. By definition of bα,
we have |S∗| ≥ bα. It remains to be shown that between any node v in C \ vk (which has
rank r(v) < n− k) and any separator node s ∈ S∗ (which has rank r(s) ≥ n− k) there exists
a path in G on which all nodes have rank at most r(s). For s = vk this is true, because C is
connected and vk has maximum rank among all nodes of C. If we have s 6= vk, the node s
has a neighbor w contained in C. As C is connected, there is a path from v to w in C and
hence, the maximum rank on this path is at most n− k < r(s). It follows that G contains a
path from v to s of maximum rank r(s). This means that there are αn nodes (recall that C
has size > αn), which have a search space size of at least |S∗| ≥ bα. J

It follows that for any α ≥ 2
3 the sum of the search space sizes of all nodes in G is at least

αn · bα and hence the average search space size is lower bounded by α · bα.

I Corollary 4. In any weak CH graph, Savg ≥ α · bα for α ∈
[2

3 , 1
)
.

The theorem implies that weak CH performs poorly on graph families with no small balanced
separators. For the class of planar graphs, and α = 2

3 , there exist graphs with a smallest
α-balanced separator of size at least 1.55

√
n [13]. Hence, according to Corollary 4, their

induced average CH search spaces are in 2
3 1.55

√
n = 1.03

√
n ∈ Ω(

√
n). This matches the

known upper bounds for Smax in minor-closed graph families with O(
√
n) sized balanced

separators, proving them to be tight.
We prove next that Savg ∈ Ω(b1/2) holds as well which will later be important for

establishing our approximation guarantee. Note that if we just consider balanced separators
in G directly, there could be an arbitrary large gap between b1/2 and b2/3. Hence, we will
consider separators in G and in a selected subgraph of G simultaneously to get a meaningful
bound. We first show a helping lemma which might also be of independent interest.

I Lemma 5. Let G′ be a connected subgraph of G with n′ nodes and let b′α be the size of a
smallest α-balanced separator in G′ for an α ≥ 2

3 , then it follows that Savg ≥ n′

n αb
′
α.

Proof. The proof is the same as the proof of Theorem 3 with the only modification that
we consider the k nodes with highest rank in G′ that form an α-balanced separator in G′
instead of considering G as a whole. J

The lemma improves the lower bound on Savg shown in Theorem 6 in case a subgraph of G
has a larger balanced separator than G as a whole and this subgraph G′ is not too small
compared to the total size of G. And it also allows us to prove a general relationship between
Savg and b1/2 as manifested in the following theorem.

I Theorem 6. The average search space size in a weak CH is lower bounded by 2
9b1/2.

Proof. Let b1/2 and b2/3 be minimum balanced separator sizes in G for the respective α-values.
Obviously, b2/3 ≤ b1/2 holds. Let G∗ be the larger of the two parts that results from removing
the b2/3 nodes in the respective separator from G. The smaller part has to contain less then
1
2n nodes; but G∗ may contain between 1

3n and 2
3n nodes. Now let b′2/3 be the minimum size

of a 2/3-balanced separator in G∗. The largest part of G∗ after the removal of such a separator
has size at most 2

3 ·
2
3n = 4

9n <
1
2n. Accordingly, the union of the nodes in the 2/3-balanced

separator in G and the 2/3-balanced separator in G∗ form a 1/2-balanced separator in G. It

J. Blum and S. Storandt 20:7

follows that b1/2 ≤ b2/3 + b′2/3 ≤ 2 max(b2/3, b
′
2/3). Using Lemma 5 together with the relation

between the separators in G and G∗ leads to the following set of inequalities that lower bound
the average search space size: Savg ≥ max(2

3b2/3,
2
3 ·

2
3b
′
2/3) ≥ 4

9 max(b2/3, b
′
2/3) ≥ 2

9b1/2 J

3.3 An Approximation Algorithm for the Average Search Space Size
The crucial part of CH construction is fixing the contraction order of the nodes. When
using nested dissection, as proposed in [7], the input graph G is partitioned recursively into
smaller subgraphs via a balanced separator decomposition, and for each obtained subgraph
the nodes in the separator are contracted before the other nodes. It was proven that this
contraction order allows to upper bound the resulting maximum search space size SNDmax.
More precisely, an (α, fα)-balanced separator decomposition of G(V,E) for α ∈ (0, 1) is a
rooted tree T whose nodes are disjoint subsets of V and that is recursively defined as follows.
If n = 1, then T consists of a single node X = V . If n > 1, then the root of T is a set
X ⊆ V of size at most fα(n) whose removal separates G into d ≥ 2 subgraphs G1, . . . , Gd
with at most αn vertices, each. Moreover, the children of X are the roots of (α, fα)-balanced
separator decompositions of G1, . . . , Gd. A nested dissection order can then be obtained via
a post-order traversal of such a (α, fα)-balanced decomposition (nodes within one separator
X can be contracted in an arbitrary order). It follows that SNDmax ≤ (1 + log1/α n) ·B where
B is an upper bound on the separator sizes fα in all subgraphs. As every graph has a
(1/2, b)-balanced separator decomposition where b is the balanced separator number of G, it
follows that SNDmax ∈ O(b logn). Combined with SNDmax ≥ S∗max = td > b, where S∗max is the
smallest possible value of Smax, this proves an O(logn) approximation guarantee for the
maximum search space size2.

For trees, a (1/2, 1)-balanced separator decomposition exists. Accordingly, SNDmax ∈ O(logn)
holds for trees. Furthermore, it was proven in [7] that the nested dissection contraction
order for trees also is an approximation algorithm for Savg. In particular, SNDavg ≤ 2 · S∗avg
was shown where S∗avg is the optimal average search space size. It was posed as one of the
main open questions whether there are ways to approximate the average search space size
in general graphs. Note that the approximation guarantee proof given for trees explicitly
leverages the fact that trees are cycle free, and that balanced separators in trees always
consist of a single node. Hence new proof concepts are required for generalizing the result.

Exploiting our novel lower bound shown in Corollary 4, we will now prove that for general
graphs, the contraction order induced by a (α, bα)-balanced decomposition indeed comes
with an approximation guarantee for Savg. Our proof consists of the following three steps:

1. Upper bounding SNDavg (G). We show that SNDavg (G) ≤ 1
n

∑d
i=1 ni · SNDavg (Gi) + bα where bα

is the size of an α-balanced separator B in G, whose removal splits G into the connected
subgraphs G1, . . . , Gd of sizes n1, . . . , nd (cf. Lemma 7).

2. Lower bounding S∗avg(G). We prove that for the optimal average search space size S∗avg it
holds that S∗avg(G) ≥ 1

n

∑d
i=1 ni · S∗avg(Gi) (cf. Lemma 8).

3. Combining upper and lower bounds. Combining the outcomes of steps 1 and 2 as well
as Corollary 4, we show that with every level of the separator decomposition, the ratio
between SNDavg and S∗avg increases at most by 1

α . This results in an overall approximation
factor of 1 + 1

α log1/α for α ∈
[2

3 , 1
)
(cf. Theorem 9).

2 This result does not hold in directed graphs as shown in [11].

ESA 2020

20:8 Bounds and Algorithms for CH Search Space Sizes

I Lemma 7. Given a graph G, it yields SNDavg (G) ≤ 1
n

∑d
i=1 ni · SNDavg (Gi) + bα where bα is

the size of a given α-balanced separator B in G, and G1, . . . , Gd are the connected subgraphs
of G that remain after removing B, with n1, . . . , nd being their respective node set sizes.

Proof. The average search space size Savg is defined as the sum of the individual search
space sizes divided by n. For each node in the separator B, the search space size can be
at most |B| = bα as the nodes in B all have higher rank in the contraction order than
the nodes in V \ B. For i = 1, . . . , d, the ni nodes of Gi have a total search space sizes
of ni · SNDavg (Gi) if we do not count the nodes from B. The search space size of each
individual node increases by at most bα when adding B to the graph. Hence in total we get
n · SNDavg ≤

∑d
i=1 ni · SNDavg (Gi) + n · bα. Dividing both sides by n concludes the proof. J

I Lemma 8. Given a graph G, the optimal average search space size in a weak CH is lower
bounded by S∗avg(G) ≥ 1

n

∑d
i=1 ni · S∗avg(Gi) where Gi are disjoint subgraphs of G.

Proof. Let r∗ be the optimal contraction order for G, leading to an average search space
size of S∗avg(G) = 1

n

∑
v∈V |SS∗(v)|. By r∗i we denote the restriction of r∗ to subgraph

Gi, that is, the nodes in Gi are sorted by their r∗ values and r∗i : V (Gi) → {1, . . . , ni}
then assigns each node v ∈ V (Gi) the rank of v in the obtained order. Let v ∈ V (Gi)
and denote by SS′(v) the search space of v in Gi when using contraction order r∗i . We
show that |SS∗(v) ∩ V (Gi)| ≥ |SS′(v)|, implying that the part of a search space of a node
v that intersects a certain subgraph is as least as large as the search space of v in that
subgraph when using the globally optimal contraction order restricted to that subgraph. For
proving this property, consider a node w ∈ SS′(v). As w is contained in this search space,
there exists a path from v to w in Gi with all nodes on the path having a rank of at most
r∗i (w). This path then also exists in G and as for nodes x, y with r∗(x) > r∗(y), we have
r∗i (x) > r∗i (y) by construction, it follows that w ∈ SS∗(v) ∩ V (Gi) holds as well. Therefore,
SS∗(v) ∩ V (Gi) ⊇ SS′(v) applies. Plugging the resulting size inequality into the definition
of the average search space results in the following lower bound:

n · S∗avg(G) =
∑
v∈V
|SS∗(v)| ≥

d∑
i=1

∑
v∈V (Gi)

|SS∗(v)| ≥
d∑
i=1

∑
v∈V (Gi)

|SS∗(v) ∩ V (Gi)|

≥
d∑
i=1

∑
v∈V (Gi)

|SS′(v)|

As the application of any contraction order to Gi results in summed search space sizes that
are at least as large as ni · S∗avg(Gi) where S∗avg(Gi) is the optimal average search space in
Gi, we get S∗avg(G) ≥ 1

n

∑d
i=1
∑
v∈V (Gi) |SS′(v)| ≥ 1

n

∑d
i=1 ni · S∗avg(Gi). J

I Theorem 9. Given a graph G, nested dissection contraction results in search space sizes
SNDavg ≤ (1 + 1

α log1/α n) · S∗avg for any α ≥ 2
3 , if optimal separators are used.

Proof. Consider the (α, bα)-balanced separator decomposition which induces the nested
dissection order. For every leaf X in the decomposition we have SNDavg (X) = S∗avg(X) as X
contains only one vertex. Consider now some non-leaf node X from the decomposition. Let
H be the subgraph of G induced by X and its descendants in the separator decomposition
and denote the connected components of H \X by H1, . . . ,Hd. Denote the size of Hi by
ni and assume that for the average search spaces of H1, . . . ,Hd we have an approximation

J. Blum and S. Storandt 20:9

factor of γ, i.e. SNDavg (Hi) ≤ γ · S∗avg(Hi). Lemma 7 implies

SNDavg (H) ≤ 1
n

d∑
i=1

ni · SNDavg (Hi) + |X| ≤ γ · 1
n

d∑
i=1

ni · S∗avg(Hi) + |X|

Moreover, X is an optimal α-balanced separator, so Corollary 4 implies that S∗avg(H) ≥ α·|X|,
which can be rearranged to |X| ≤ 1

αS
∗
avg(H). In combination with Lemma 8 we obtain

γ · 1
n

d∑
i=1

ni · S∗avg(Hi) + |X| ≤ γ · S∗avg(H) + 1
α · S

∗
avg(H) ≤ (γ + 1

α) · S∗avg(H)

As for every leafX we have SNDavg (X) = S∗avg(X) and the height of the separator decomposition
is log1/α n, it follows by induction that SNDavg (G) ≤ (1 + 1

α log1/α n) · S∗avg(G). J

I Corollary 10. The average search space size in a weak CH using nested dissection based
on recursive decomposition with b2/3 is at most 1 + 1.5 log1.5 n times the optimal size.

However, as computing optimal balanced separators is NP-hard in general, nested dissection
does not directly yield a polynomial time approximation algorithm. But we can exploit the
existence of a pseudo-approximation for balanced separators. In [18] it was proven that
one can find a 3/4-balanced separator that has size at most O(logn) · b2/3 in polynomial
time3. In general, if we have a γ-approximation for b2/3, Lemma 7 can be modified to
show that SNDavg ≤

∑d
i=1 ni · SNDavg (Gi) + γb2/3 which plugged into Theorem 9 results in an

average search space size of SNDavg ≤ (1 + 1.5γ log1.5 n)S∗avg. Using the pseudo-approximation
result, we have γ = O(logn), and additionally the depth of the recursion increases from
log3/2 n to log4/3 n. We call the nested dissection based contraction algorithm which leverages
the pseudo-approximation algorithm to compute the node separators the pND-algorithm.
Combining the aforementioned observations, we get the following theorem.

I Theorem 11. Given a graph G(V,E), then a weak CH obtained from the pND-algorithm
in polynomial time leads to an average search space size of SpNDavg (G) with SpNDavg (G) ≤
O(log2 n)S∗avg(G), where S∗avg(G) denotes the minimum average search space size.

Note that for some graph classes better approximation algorithms for balanced node separators
exist, which then can be plugged into our analysis to achieve tighter overall results. For
example, for any graph class for which optimal balanced separators can be approximated
by some constant factor c > 0 in polynomial time (as it is the case e.g., for planar graphs
[4]), we achieve an overall approximation ratio of O(logn) for Savg. For the special case of√
n×
√
n rectangular grids, the results from [7] imply that nested dissection leads to search

space sizes of at most 3
√
n. This matches our lower bound of α · bα (translating for grids to

2
3
√
n) up to a factor of 4.5. As the respective separators can be found efficiently in grids,

this implies that nested dissection yields a constant factor approximation algorithm for this
graph class.

Regarding space consumption, it was argued in [7] that a weak CH-graph constructed
by nested dissection contains at most n · Savg shortcut edges. However, this bound is
rather loose on some graphs. For example, it is known for planar graphs that contraction
orders exist such that the CH-graph size is in O(n logn) while e.g., for grids we know by

3 This is called a pseudo-approximation or bicriteria approximation as the approximation factor compares
the output for a relaxed problem version to the optimum of the unrelaxed version.

ESA 2020

20:10 Bounds and Algorithms for CH Search Space Sizes

Corollary 4 that n · Savg amounts to Ω(n
√
n). In [3], it was proven that nested dissection

indeed approximates the number of shortcut edges within a factor of O(
√
d log4 n) where

d is the maximum degree of the input graph. To achieve polynomial running time, the
nested dissection variant described there relies on a pseudo-approximation for 1/2-balanced
separators. As proven in Theorem 6, the average search space size is also lower bounded
by 2/9 · b1/2. This can be plugged in our approximation algorithm analysis to also get an
O(log2 n) overall approximation factor for Savg. For road networks, where the maximum
node degree is a small constant, it therefore yields that a polynomial time variant of nested
dissection approximates the three important aspects of a CH-graph – space consumption
(number of inserted shortcuts), maximum search space size, and average search space size –
all by polylogarithmic factors.

4 Relation to Road Network Dimensions

So far, we considered search space sizes in weak CHs. Now we shift our focus to strong CH.
In particular, we now study the relationship between the average search space size in a strong
CH and the highway dimension h as well as the skeleton dimension k of the graph. Those
two parameters were both previously used to show upper bounds on the search space size of
preprocessing-based route planning techniques.

4.1 Highway Dimension Lower Bound
The highway dimension of a weighted graph G(V,E) is defined as follows [1]: For u ∈ V
and r > 0, the ball Br(u) consists of all nodes at distance at most r from u. Consider now
the set P of all shortest paths longer than r that are contained within the ball B4r(u) and
let Hu

r ⊆ V be a minimum hitting set for P. The highway dimension of G is defined as
h = maxu,r |Hu

r |. For a graph with highway dimension h, Smax ∈ O(h logD) was proven for
strong CH [1]. Furthermore, it was shown in [7] that there exist graphs and edge weights
such that h ∈ Ω(pw/ logn) holds. We now establish a complementary result where the aim
is to find edge weights such that the value of h is as small as possible.

I Lemma 12. For any unweighted graph G there are metric edge weights such that the
highway dimension of G is 1.

Proof. Let V = {1, . . . , n} and choose the weight of an edge {u, v} as 9max{u,v}. To bound
the highway dimension consider some ball B4r(v) and choose the largest j such that 9j ≤ 4r.
If v > j, any edge incident to v has length at least 9v ≥ 9j+1 > 4r. This means that
B4r(v) = {v} and the ball contains no shortest path that needs to be hit. Let now v ≤ j.
Consider some shortest path π that passes only through vertices i < j. The path π is simple
and hence by the choice of the edge weights it contains no three edges of same length. This
means that we can bound the length of π by

∑j−1
i=j/2 2 · 9i < 2 ·

∑j−1
i=0 9i = (9j − 1)/4 ≤ r.

Moreover, any u > j has distance 9u ≥ 9j+1 > 4r from v and hence no shortest path passing
through u is contained in B4r(v). This means that every relevant shortest path contains j
and can be hit by the set {j}. J

The lemma shows that the known upper bound on the maximum search space size of
O(h logD) is almost tight when the metric is chosen appropriately. White [22] showed for a
special family of graphs called Gt,k,q graphs (introduced in [19]) that the average search space
size is in Ω(h logD), which matches the upper bound asymptotically. His proof strongly relies
on the characteristics of that graph family, though, and especially on the graph topology.

J. Blum and S. Storandt 20:11

Our lower bound, however, is independent of the graph structure but just considers the
metric. Our result also generalizes to the hub labeling technique where a matching upper
bound on the maximum number of hubs per node was proven in [1].

4.2 General Incomparability
While we showed above that we can always choose edge weights such that the highway
dimension lower bounds the average search space size, this is not necessarily true if the edge
weights are given. In fact, we will prove that in general, it is not possible to lower bound
the maximum (or average) CH search space size in terms of the highway dimension or the
skeleton dimension. For the skeleton dimension k, no upper bounds for CH are known so far,
but for the related technique of hub labeling [17], upper bounds of O(k logn) were shown.

Intuitively, the skeleton dimension measures how many “important” branches every
shortest path tree contains. For a concise definition we refer to [17]. Our incomparability
result just exploits the fact that the maximum degree is a lower bound for the skeleton
dimension.

I Lemma 13. There are graphs with skeleton dimension k and highway dimension h such
that Smax ∈ o(k) and Smax ∈ o(h).

Proof. Take a star graph, subdivide every edge by inserting one vertex and assume unit
edge weights. The maximum degree ∆ of the graph is linear in the number of nodes n and
as ∆ is a lower bound for the skeleton dimension k, it follows that k ∈ Ω(n). Moreover half
of the edges are incident to a leaf node. All these edges are pairwise disjoint and every such
edge forms a shortest path of length 1 =: 2r > r, which intersects the ball of radius 4r = 2
around the central vertex of the graph. This means that the highway dimension is in Ω(n).

Consider a contraction order where the highest rank is assigned to the central vertex of
the graph and the lowest ranks are assigned to the leaves. Then the maximum search space
size is 3 ∈ o(n), which is assumed in the leaves. J

Accordingly, search space sizes might be significantly smaller than the discussed road
network dimensions. Therefore, the upper bounds derived in dependency of those parameters
might be very loose on some graphs. This motivates further research into finding other graph
parameters where the possible gap between the average/maximum search space size and the
parameter value is in o(n); and to investigate these gaps on real-world networks.

5 Lower Bounds for Strong CH

In this section, we present algorithms to obtain lower bounds for the average search space
size of a strong CH in a given weighted graph, e.g., to judge how large the gaps to the
road network dimensions are, or to investigate whether a contraction order used in practice
produces search space sizes close to the optimum.

5.1 HittingSet Lower Bound
In a strong CH, a node w of rank R is in the search space of a node v with rank r < R, if on
the shortest path between v and w there is no node with a rank higher than R. (Note that
this is a sufficient but not necessary condition.) Accordingly, if we consider the node with
maximum rank in the contraction order, we know that it has to be contained in the search
space of each node in G. This leads us to the definition of the inverse search space of a node
v as ISS(v) := {w ∈ V |v ∈ SS(w)} which can be used as an alternative mean to determine
the average search space Savg = 1

n

∑
v∈V |SS(v)| = 1

n

∑
v∈V |ISS(v)|. For the node vmax

ESA 2020

20:12 Bounds and Algorithms for CH Search Space Sizes

with the highest rank, we know that |ISS(vmax)| = n. Now the goal is to show large inverse
search spaces also for other nodes of sufficiently high rank. Note however, that the inverse
search space sizes are not necessarily proportional to the rank, as nodes of even higher rank
might block many shortest paths. Therefore, we have to take the topology of the graph as
well as the shortest path structure into account.

I Observation 14. Let G′ be the subgraph of G induced by a node set V ′ ⊆ V and let
v′max ∈ V ′ be the node with the highest rank in the contraction order among all nodes in
V ′. Then the number of nodes in V ′ with their shortest path towards v′max being completely
contained in G′ is a lower bound for |ISS(v′max)|.

To get a lower bound which adheres to all possible contraction orders we need to deal with
the fact that we do not know which node in V ′ will become v′max. To make the bound more
general, we can iterate through all nodes v ∈ V ′ and compute the number of nodes in V ′
with the shortest path towards v being completely contained in G′, keeping track of the
minimum. We call this value the minimum shortest path tree size in G′ or misp(G′).

I Theorem 15. For any β ∈ (0, 1], let G be a collection of subgraphs of G with misp(G′) ≥ βn
for all G′ ∈ G. Furthermore, let H be a minimum HittingSet for the set system (V,G). Then
it yields Savg ≥ β|H|.

Proof. We want to count the inverse search space sizes induced by the nodes of highest
rank within each subgraph. To that end, we interpret H as the set of nodes contracted
last. We know by definition of G and minimality of H that for every node h ∈ H, we have
|ISS(h)| ≥ βn. Furthermore, by H being a minimum HittingSet, we conclude that there can’t
be fewer than |H| nodes with that property. Accordingly, we get Savg = 1

n

∑
v∈V |ISS(v)| ≥

1
n

∑
h∈H |ISS(h)| ≥ 1

nβn|H| = β|H| which completes the proof. J

I Example 16. To illustrate the usefulness of the HittingSet lower bound, we consider a
complete graph G with n nodes and metric edge weights, and we choose β = 1

2 . We observe
that any induced subgraph G′ of G of size ≥ n

2 has misp(G′) ≥ n
2 as well. It follows that we

need a HittingSet H of size n
2 + 1 to hit all these subgraphs. According to Theorem 15, we

hence get Savg ≥ n
4 which matches the upper bound on Smax of n− 1 asymptotically.

For practical exploitation in real networks, we remark that for every shortest path π of
length βn in G, we automatically have misp(π) = βn and that for any selected subgraph
the misp-value can be computed in polytime.

5.2 Hierarchical Lower Bound
In general graphs, the question arises how to choose β in practice to get the best bound. For
large β the size of H is expected to be small, while gains in the HittingSet size for small
values β might be diminished by the multiplication with β itself. To get a useful lower bound
nevertheless, we propose a hierarchical scheme based on the following observation.

I Observation 17. Let β1, β2 ∈ (0, 1] be two parameters with β1 > β2 and G1, H1 as
well as G2, H2 the respective subgraph collections and minimum HittingSets. Then we have
Savg ≥ β1|H1|+ β2(|H2| − |H1|).

This observation can be generalized to an arbitrarily fine-grained succession of β-values.

I Corollary 18. Given a weighted graph G(V,E), as well as β1 > β2 > · · · > βk with βi ∈
(0, 1], let Hi be the respective HittingSet sizes for all subgraphs G′ of G with misp(G′) ≥ βin.
Then the average search space size Savg is lower bounded by β1|H1|+

∑k
i=2 βi(|Hi| − |Hi−1|).

J. Blum and S. Storandt 20:13

I Example 19. To illustrate that the hierarchical scheme can be beneficial, we consider a
path graph with n = 2q nodes. For any choice of β, we know that a trivial HittingSet of size
1
β exists. Therefore the bound we get from Theorem 15 only amounts to Savg = β · 1

β = 1. If
we now use Corollary 18 with βi = 2−i for i = 0, . . . , log2 n, we get

Savg ≥ 1 +
q∑
i=1

2−i(2i − 2i−1) = 1 +
q∑
i=1

1
2 = 1

2 log2 n

which matches the known upper bound up to constant factors.

6 Conclusions and Future Work

We described several novel lower bounding techniques for average and maximum search space
sizes in contraction hierarchies. Lower bounds are an important mean to judge the quality
of existing construction schemes and theoretical upper bounds. While for hub labeling (a
preprocessing-based route planning technique closely related to contraction hierarchies),
approximation algorithms for the average number of nodes that have to be scanned in a
query were known for some time [10], we proved the first general approximation result for
the average search space size in weak contraction hierarchies. As the construction of weak
contraction hierarchies is closely related to graph triangulation and to solving systems of
linear equations [3], there might be cross-implications to explore.

Future work could also consider weak contraction hierarchies on directed graphs. As the
graph parameters used in our analysis are classically defined on undirected graphs only, the
established relationships to CH search space sizes do not automatically transfer to directed
graphs. One possibility would be to consider parameter variants, as the directed treewidth
[16], which are explicitly defined on directed graphs and to check whether approximation
results can be obtained in dependency of those parameters.

Another interesting open question is whether there are efficient approximation algorithms
for the average or maximum search space size in strong CHs. While upper bounds for search
space sizes in weak CHs are valid for strong CHs as well, it is the other way around for
lower bounds. Therefore, strong CHs are not covered by our approximation results for weak
CHs. Our lower bounds for average search space sizes in strong CHs rely on HittingSet
computation, though, as do some strong CH construction schemes which come with provable
upper bounds [1]. It hence might be possible to link those results.

Finally, it might be interesting to experimentally investigate the strength of our lower
bounds and the efficiency of the proposed algorithms on real-world (road) networks.

References
1 Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck.

Highway dimension and provably efficient shortest path algorithms. Technical Report MSR-
TR-2013-91, Microsoft Research, September 2013.

2 Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F. Werneck. Highway
dimension, shortest paths, and provably efficient algorithms. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 782–793, 2010.

3 Ajit Agrawal, Philip Klein, and R Ravi. Cutting down on fill using nested dissection: provably
good elimination orderings. In Graph Theory and Sparse Matrix Computation, pages 31–55.
Springer, 1993.

4 Eyal Amir, Robert Krauthgamer, and Satish Rao. Constant factor approximation of vertex-
cuts in planar graphs. In ACM Symposium on Theory of Computing (STOC), pages 90–99,
2003.

ESA 2020

20:14 Bounds and Algorithms for CH Search Space Sizes

5 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in transportation
networks. In Algorithm engineering, pages 19–80. Springer, 2016.

6 Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and Dorothea Wagner.
Preprocessing speed-up techniques is hard. In International Conference on Algorithms and
Complexity (CIAC), pages 359–370. Springer, 2010.

7 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space size in
contraction hierarchies. Theoretical Computer Science, 645:112–127, 2016.

8 Johannes Blum, Stefan Funke, and Sabine Storandt. Sublinear search spaces for shortest path
planning in grid and road networks. In AAAI Conference on Artificial Intelligence, 2018.

9 Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–
255, 1995. doi:10.1006/jagm.1995.1009.

10 Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries
via 2-hop labels. SIAM Journal on Computing, 32(5):1338–1355, 2003.

11 Tobias Columbus. Search space size in contraction hierarchies. Diploma thesis, Karlsruhe
Institute of Technology, 2012.

12 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hierarchies. In
International Symposium on Experimental Algorithms (SEA), pages 271–282, 2014.

13 Hristo Nicolov Djidjev. On the problem of partitioning planar graphs. SIAM Journal on
Algebraic Discrete Methods, 3(2):229–240, 1982.

14 Stefan Funke and Sabine Storandt. Provable efficiency of contraction hierarchies with random-
ized preprocessing. In International Symposium on Algorithms and Computation (ISAAC),
pages 479–490, 2015.

15 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
2012. doi:10.1287/trsc.1110.0401.

16 Thor Johnson, Neil Robertson, Paul D Seymour, and Robin Thomas. Directed tree-width.
Journal of Combinatorial Theory, Series B, 82(1):138–154, 2001.

17 Adrian Kosowski and Laurent Viennot. Beyond highway dimension: Small distance labels using
tree skeletons. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1462–1478,
2017.

18 Tom Leighton and Satish Rao. An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. Technical
report, MASSACHUSETTS INST OF TECH CAMBRIDGE MICROSYSTEMS RESEARCH
CENTER, 1989.

19 Nikola Milosavljević. On optimal preprocessing for contraction hierarchies. In ACM SIG-
SPATIAL International Workshop on Computational Transportation Science (IWCTS), pages
33–38. ACM, 2012.

20 Tobias Rupp and Stefan Funke. A lower bound for the query phase of contraction hierarchies
and hub labels. In Computer Science in Russia (CSR), 2020.

21 Alejandro A Schäffer. Optimal node ranking of trees in linear time. Information Processing
Letters, 33(2):91–96, 1989.

22 Colin White. Lower bounds in the preprocessing and query phases of routing algorithms. In
Annual European Symposium on Algorithms (ESA), pages 1013–1024, 2015.

https://doi.org/10.1006/jagm.1995.1009
https://doi.org/10.1287/trsc.1110.0401

The Minimization of Random Hypergraphs
Thomas Bläsius
Hasso Plattner Institute, University of Potsdam, Germany

Tobias Friedrich
Hasso Plattner Institute, University of Potsdam, Germany

Martin Schirneck1

Hasso Plattner Institute, University of Potsdam, Germany

Abstract
We investigate the maximum-entropy model Bn,m,p for random n-vertex, m-edge multi-hypergraphs
with expected edge size pn. We show that the expected size of the minimization min(Bn,m,p),
i.e., the number of inclusion-wise minimal edges of Bn,m,p, undergoes a phase transition with
respect to m. If m is at most 1/(1 − p)(1−p)n, then E[|min(Bn,m,p)|] is of order Θ(m), while
for m ≥ 1/(1 − p)(1−p+ε)n for any ε > 0, it is Θ(2(H(α)+(1−α) log2 p)n/

√
n). Here, H denotes the

binary entropy function and α = −(log1−pm)/n. The result implies that the maximum expected
number of minimal edges over all m is Θ((1 + p)n/

√
n). Our structural findings have algorithmic

implications for minimizing an input hypergraph. This has applications in the profiling of relational
databases as well as for the Orthogonal Vectors problem studied in fine-grained complexity. We make
several technical contributions that are of independent interest in probability. First, we improve the
Chernoff–Hoeffding theorem on the tail of the binomial distribution. In detail, we show that for a
binomial variable Y ∼ Bin(n, p) and any 0 < x < p, it holds that P[Y ≤ xn] = Θ(2−D(x ‖ p)n/

√
n),

where D is the binary Kullback–Leibler divergence between Bernoulli distributions. We give explicit
upper and lower bounds on the constants hidden in the big-O notation that hold for all n. Secondly,
we establish the fact that the probability of a set of cardinality i being minimal after m i.i.d.
maximum-entropy trials exhibits a sharp threshold behavior at i∗ = n+ log1−pm.

2012 ACM Subject Classification Mathematics of computing → Information theory; Mathematics
of computing → Hypergraphs; Theory of computation → Random network models; Mathematics of
computing → Random graphs

Keywords and phrases Chernoff–Hoeffding theorem, maximum entropy, maximization, minimization,
phase transition, random hypergraphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.21

Related Version A full version of the paper is available at https://arxiv.org/abs/1910.00308.

Acknowledgements The authors thank Benjamin Doerr, Timo Kötzing, and Martin Krejca for the
fruitful discussions on the Chernoff–Hoeffding theorem, including valuable pointers to the literature.

1 Introduction

A plethora of work has been dedicated to the analysis of random graphs. Random hypergraphs,
however, received much less attention. For many types of data, hypergraphs provide a much
more natural model. This is especially true if the data has a hierarchical structure or reflects
interactions between groups of entities. In non-uniform hypergraphs, where edges can have
different numbers of vertices, a phenomenon occurs that is unknown to graphs: an edge may
be contained in another, with multiple edges even forming chains of inclusion. We are often
only interested in the endpoints of those chains, namely, the collections of inclusion-wise
minimal or maximal edges. This is the minimization or maximization of the hypergraph.

1 Corresponding author: martin.schirneck@hpi.de.

© Thomas Bläsius, Tobias Friedrich, and Martin Schirneck;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0076-6308
https://doi.org/10.4230/LIPIcs.ESA.2020.21
https://arxiv.org/abs/1910.00308
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 The Minimization of Random Hypergraphs

We investigate the maximum-entropy model Bn,m,p for random multi-hypergraphs with n
vertices and m edges and expected edge size pn for some constant sampling probability p. In
other words, out of all probability distributions on hypergraphs with expected edge size pn,
Bn,m,p is the one of maximum entropy.2 This is equivalent to sampling m independent edges
by adding any vertex v ∈ [n] independently with probability p (see Section 2 for details). We
are interested in the expected size of the minimization/maximization of Bn,m,p, that is, the
expected number of minimal/maximal edges. Most of our results are phrased in terms of the
minimization, but replacing the probability p with 1− p immediately transfers them to the
maximization. We show that the size of the minimization undergoes a phase transition with
respect to m with the point of transition at m = 1/(1− p)(1−p)n. While the number of edges
is still small, a constant fraction of them is minimal and the minimization grows linearly in
the total sample sizes. For m beyond the transition, we can instead characterize the size of
the minimization in terms of the entropy function of log1−pm, see Theorem 1.2 for a precise
statement. This characterization shows that the minimality ratio goes down dramatically
when m increases. It also allows us to prove that the maximum expected number of minimal
edges over all m is of order Θ((1 + p)n/

√
n). These results draw from another, more hidden,

threshold behavior. The probability of a set to be minimal in the hypergraph Bn,m,p depends
only on its cardinality i and we show that this probability falls sharply from almost 1 to
almost 0 at i∗ = n+ log1−pm.

The main tool in our analysis is the Chernoff–Hoeffding theorem bounding the tail of the
binomial distribution via the Kullback–Leibler divergence from information theory. However,
the existing inequalities are not sharp enough to derive tight statements on the expected size
of the minimization. So far, there is a gap of order

√
n between the best-known upper and

lower estimates. In this work, we improve these bounds such that they match up to constant
factors. We give an explicit interval for the constants involved that holds for all positive
integers n making the result useful also in a non-asymptotic setting.

Our structural findings have algorithmic implications for the computation of the mini-
mization min(H) from an input hypergraph H. We discuss two examples in the context of
fine-grained complexity as well as data profiling. There are reasons to believe that there
exists no minimization algorithm running in time m2−ε·poly(n) for any ε > 0 on m-edge,
n-vertex hypergraphs. The reason is as follows: The Sperner Family problem is to de-
cide whether H comprises two edges such that one is contained in the other, i.e., whether
|min(H)| < |H|. It is equivalent under subquadratic reductions to the more prominent
Orthogonal Vectors problem [14, 25]. Hence, a truly subquadratic algorithm would falsify the
Orthogonal Vectors Conjecture3 and in turn the Strong Exponential Time Hypothesis [52].
Partitioning the edges by the number of vertices and processing them in order of increasing
cardinality gives an algorithm running in O(mn |min(H)|+ mn), which is O(m2n) in the
worst case. However, when looking at the average-case complexity for Bn,m,p, we get a run
time of O(mnE[|min(Bn,m,p)|] +mn). Our main result therefore shows that the algorithm
is subquadratic for all m beyond the phase transition, and even linear for m ≥ 1/(1− p)n.

There is also a connection to the profiling of relational databases. Data scientists
regularly need to compile and output a comprehensive list of metadata, like unique column
combinations, functional dependencies, or, more general, denial constraints, cp. [1]. These
multi-column dependencies can all be described as the minimal hitting sets of certain
hypergraphs created from comparing pairs of rows in the database and recording the sets

2 The notation Bn,m,p is mnemonic of the binomial distribution emerging in the sampling process.
3 Precisely, we mean the Orthogonal Vectors Conjecture for moderate dimensions, see [25].

T. Bläsius, T. Friedrich, and M. Schirneck 21:3

of attributes in which they differ [24, 11, 10, 40]. Computing these difference sets one by
one generates an incoming stream of seemingly random subsets. Filtering the inclusion-wise
minimal ones from this stream does not affect the solution, but reduces the number of sets
to store and the complexity of the resulting hitting set instance. Minimizing the input
is therefore a standard preprocessing technique in data profiling. It has been observed in
practice that the minimal sets make up only a small fraction of the whole input [45]. Usually
there are fewer minimal difference sets than rows in the database, let alone pairs thereof [11].
The upper bounds given in the Theorems 1 and 2 provide a way to explain this phenomenon.
We show that only a few edges can be expected to be minimal, their number may even shrink
as the database grows, provided that the number of rows is large enough compared to the
number of columns. The respective lower bounds can further be seen as the smallest amount
of data any dependency enumeration algorithm needs to hold in memory.

Related Work. Erdős–Rényi graphs Gn,m [23] and Gilbert graphs Gn,p [27] are arguably the
most-discussed random graph models in the literature. We refer the reader to the monograph
by Bollobás [12] for an overview. A majority of the work on these models concentrates on
various phase transitions with respect to the number of edges m or the sample probability p,
respectively. This intensive treatment is fueled by the appealing property that Erdős–Rényi
graphs are “maximally random” in that they do not assume anything but the number of
vertices and edges. More formally, among all probability distributions on graphs with n

vertices and m edges, Gn,m is the unique distribution of maximum entropy. The same holds
for Gn,p under the constraint that the expected number of edges is p

(
n
2
)
, see [2].

The intuition of being maximally random is captured by the Shannon entropy, which
is the central concept in information theory [18, 50]. A discrete stochastic system that
can be described by the probability distribution (pi)i has a (binary) entropy of H((pi)i) =
−
∑
i pi log2 pi. The self-information of a single state with probability p is − log2 p, the

entropy is thus the expected information of the whole system. It is a measure of surprisal or
how “spread out” the distribution is. Originally stemming from thermodynamics [39], the
versatility of this definition is key to the successful application of information theory to fields
as diverse as cryptography [15], machine learning [28], quantum computing [44], and of course
network analysis [43], to name only a few topics close to computer science. The principle of
maximum entropy states that out of an ensemble of probability distributions that all describe
the observed phenomena equally well, the one of maximum entropy is to be preferred in
order to minimize any outside bias. The principle is usually attributed to Jaynes [37, 32, 33].
In the context of random graphs, it is mainly used to define so-called null models [53]. One
fixes certain graph statistics to mimic those of an observed network and then chooses the
maximum-entropy distribution that meets these constraints. By comparing the original
network with a “typical graph” drawn from the null model, one can infer whether other
observed properties are correlated with the constraints. This method was made rigorous
by Park and Newman [46] building on earlier work in general statistics. Prescribing the
exact or expected number of edges leads to the Gn,m or Gn,p distributions, respectively. The
configuration model fixes the whole degree sequence [13], and in the soft configuration model
the degrees hold at least in expectation [8, 26].

Many early attempts to transfer the concept of null models to hypergraphs were only
indirect in that they studied hypergraphs via their clique-expansion [42] or as bipartite
graphs [48]. This is unsatisfactory since these projections alter relevant observables, like node
degrees or the number of triangles. Only recently, Chodrow generalized the configuration
model directly to multi-hypergraphs [16]. There also seems to be not much literature on

ESA 2020

21:4 The Minimization of Random Hypergraphs

hypergraph models that can be cast into the maximum-entropy framework without being
intentionally designed as such. A notable early exception is the work by Schmidt-Pruzan and
Shamir [49]. They fixed the exact/expected edge sequence such that the largest edge has
cardinality O(logn) and showed a “double jump” phase transition in the size of the largest
connected component. Most of the recent literature on random hypergraphs concentrates on
the k-uniform model where every edge has exactly k vertices [34, 5, 6] or, equivalently, on
random binary matrices with k 1s per column [17]. In our model, we do not prescribe the
exact cardinalities of the edges and neither do we bound their maximum size, instead we
only require that the expected edge size is pn.

Probably closest to our work is a string of articles by Demetrovics et al. [20] as well as
Katona [35, 36]. They investigated random databases and connected the Rényi entropy of
order 2 of the logarithmic number of rows with the probability that certain unique column
combinations or functional dependencies hold. In contrast, we connect the Shannon entropy
of the logarithmic number of pairs of rows with the expected number of minimal difference
sets. Unique column combinations and functional dependencies are dual to the difference
sets of record pairs, one are the minimal hitting sets of the other [1, 9]. Also, the Shannon
entropy is the same as the Rényi entropy of order 1 [18]. In this sense, we complement the
result by Demetrovics et al. by showing that the duality also pertains to the order of entropy.

The analysis of random (hyper-)graphs naturally uses tools from combinatorics and
probability theory. Conversely, it has always helped to advance the fields by sharpening those
tools [7, 12, 31]. In this work, we improve the bounds of the Chernoff–Hoeffding theorem [30]
on the tail of the binomial distribution. We use an observation by Klar [38] on the relation
between the distribution function and the probability mass function. There were some refined
inequalities known before. By Cramér’s theorem [19], Chernoff–Hoeffding is asymptotically
tight up to subexponential factors. The gap was subsequently reduced to order O(

√
n),

cp. [3], we close it down to a constant. There also exist some comparatively tight bounds
based on the normal limit of the binomial distribution, contributions by Prokhorov [47] and
Slud [51] founded major lines of research. However, we avoid this approach since the normal
approximation cannot be expressed in terms of elementary functions. Also, it tends to place
unnecessary restrictions on the success probability p when deriving non-asymptotic results.

Outline. Next, we introduce the hypergraph model and state our results in full detail. We
review some notation in Section 3. Section 4 is dedicated to the Chernoff–Hoeffding theorem.
Section 5 adds further technical contributions, including the sharp threshold of minimal sets
at a certain cardinality. The main theorem is proven in Section 6. Section 7 discusses the
phase transition and concludes the work.

2 Model and Main Theorem

Fix a probability p and positive integers n and m. The random multi-hypergraph Bn,m,p is
defined by independently sampling m (not necessarily distinct) subsets of [n]. Each set is
generated by including a vertex v ∈ [n] with probability p independently of all other choices.

We quickly argue that this is indeed the maximum-entropy model. Besides the size of the
universe n and the number of edges m, the only other constraint is the expected edge size pn.
The independence bound on the entropy reads as follows: Let X1 to Xm be random variables
with joint distribution PX1,...,Xm

and marginal distributions PXj
. Then, their entropies

observe the inequality H(PX1,...,Xm) ≤
∑m
j=1 H(PXj), equality holds if and only if the Xj

are independent, see [18]. This suggests that we should choose the edges independently if we

T. Bläsius, T. Friedrich, and M. Schirneck 21:5

0

(1+p)n√
n

2 k 4 k 6 k 8 k
0

20

40

60

80

100

1/(1− p)
n

1+p 1/(1− p)n

m

(a) Our bound as a function of m for n = 10 and
p= 0.6 in the information-theoretic regime. The
vertical line at m = 1/(1− p)

n
1+p indicates the max-

imum (Theorem 2). For m > 1/(1 − p)n, the size
goes to 1. The linear bound for m ≤ 1/(1−p)(1−p)n

is not shown as it is too close to 0.

20.5n

1
0 1

1− p 1
1+p

20.1n
20.2n
20.3n
20.4n

(1+p)n√
n
20.6n

α

(b) Our bound as a function of α for p = 0.6 (the
plot is independent of n). The vertical line at α =
1/(1 + p) indicates the maximum (Theorem 2). For
α ≤ 1 − p, the linear bound holds, for larger α,
we get the information-theoretic bound. They are
continued as dashed lines into the other regime.

Figure 1 Illustration of Theorem 1 showing the expected size of the minimization of a random
hypergraph depending on the number of edges m (a) and on α (b). As α grows logarithmically in
m, (b) shows the same plot as (a) but with both axes being logarithmic.

want to maximize the entropy and the same is true for the vertices inside an edge. Finally,
the fact that setting the sampling probability to be equal for all vertices indeed maximizes
the entropy under a given mean set size was proven by Harremoës [29].

We are interested in the expected number of inclusion-wise minimal sets in Bn,m,p, denoted
by E[|min(Bn,m,p)|]. We describe the asymptotic behavior of this expectation with respect
to n. In more detail, we view m = m(n) as a function of n assuming integer values and bound
the univariate asymptotics of E[|min(Bn,m,p)|] in n for different choices ofm. The probability
p is considered to be a constant throughout. We show that the size of the minimization can
be described precisely in terms of p and the Shannon entropy of the logarithm of m.

We let H(x) = H((x, 1− x)) denote the binary entropy function and define the quantity
α = log 1

(1−p)n
m = −(log1−pm)/n. The quantity α is well-defined for all 0 < p < 1 and

n, m ≥ 1. It is always non-negative and asymptotically of order Θ((logm)/n). If p and n
are fixed, choosing a value for α determines m since we can rewrite m as 1/(1− p)αn.

I Theorem 1. Let p be a probability, and n, m be two positive integers. If p = 0 or p = 1,
then |min(Bn,m,p)| = 1 holds deterministically. For 0 < p < 1, the following statements hold.
1. If m ≤ 1/(1− p)(1−p)n, then E[|min(Bn,m,p)|] = Θ(m).
2. For any two ε, ε′ > 0 and all m such that 1/(1− p)(1−p+ε)n ≤ m ≤ 1/(1− p)(1−ε′)n, i.e.,

all α such that 1− p+ ε ≤ α ≤ 1− ε′, we have

E[|min(Bn,m,p)|] = Θ
(

2(H(α)+(1−α) log2 p)n
/√

n
)

= Θ
((

p1−α

(1− α)1−α αα

)n/√
n

)
;

3. If m = 1/(1− p)n+ω(logn), then 1 ≤ E[|min(Bn,m,p)|] = 1 + o(1).

The bounds in the distinct cases are very different in nature. They are visualized in
Figure 1 showing the expectation both as a function of the number of trials m and of α. To
distinguish the behavior also in writing, we use the term linear regime if m is between 1
and 1/(1− p)(1−p)n, corresponding to 0 ≤ α ≤ 1− p, likewise, we refer to m being between
1/(1− p)(1−p)n and 1/(1− p)n, i.e., 1− p ≤ α ≤ 1, as the information-theoretic regime.

ESA 2020

21:6 The Minimization of Random Hypergraphs

All asymptotic estimates in Theorem 1 are at least tight up to constants, the third
statement is even tight up to lower-order terms. The constants hidden in the big-O-notation
are universal in the sense that they do not depend on m or n, and also not on α describing
the relation between the former two. However, they may depend on the probability p and,
in case of Statement 2, on the particular choices for ε and ε′. We note that the bounds for
the information-theoretic regime have two gaps at m = 1/(1− p)(1−p)n and m = 1/(1− p)n.
These gaps can be made arbitrarily small: Let c = 1/(1 − p), then Statement 2 holds if
m ≤ (c− γ)n for any constant γ > 0 and Statement 3 takes over at m ≥ (c+ δ(n))n, where
δ(n) is a function converging to 0 as n increases.

From the main theorem, we derive bounds on the maximum expectation over all m.

I Theorem 2. If p = 0 or p = 1, then maxm≥1 |min(Bn,m,p)| = 1. For 0 < p < 1, we have
maxm≥1 E[|min(Bn,m,p)|] = Θ((1 + p)n/

√
n), attained at m = 1/(1− p)

n
1+p .

3 Preliminaries and Notation

Multi-Hypergraphs. A hypergraph on [n] = {1, . . . , n} is a set of subsets H⊆P([n]), called
the (hyper-)edges. If H is a multiset instead, we have a multi-hypergraph. We do not allow
multiple copies of the same vertex in one edge. The minimization of a hypergraph H is the
collection of its inclusion-wise minimal edges, min(H) = {E ∈ H | ∀E′ ∈ H : E′ ⊆ E ⇒ E′ =
E}. We extend this notion to multi-hypergraphs by requiring that whenever a minimal edge
has multiple copies, only one of them is included in the minimization. This way min(H) is
always a mere hypergraph (a set). For a multi-hypergraph H, we use |H| to denote the total
number of edges counting multiplicities, and ‖H‖ for the number of distinct edges, i.e., the
cardinality of the support of H. Evidently, we have |min(H)| ≤ ‖H‖ ≤ |H|.

Information Theory. We intend the expressions 0 · loga 0 and 0 · loga(0
0) to all mean 0 for

any positive real base a > 0. Note that this convention also implies 00 = a0 loga 0 = 1 and
(0

0)0 = 1. We use ldx for the binary (base-2) logarithm of x. The (binary) entropy function H
is defined for all probabilities x as H(x) = −x ldx−(1−x) ld(1−x). It describes the Shannon
entropy or, equivalently, the Rényi entropy of order 1, of the Bernoulli distribution with
parameter x. In the notation of the previous sections, H(x) = H((x, 1− x)). Evidently, the
entropy function is symmetric around 1/2 with H(x) = H(1− x). On the open unit interval,
H is positive and differentiable with derivative d

dx H(x) = ld
(1−x

x

)
. This is the negative

(binary) logit function, also dubbed log-odds in statistics. H is strictly concave and has its
maximum at 1/2 with value H(1/2) = 1. The perplexity of x is 2H(x) = 1/(xx (1− x)1−x).
We utilize it to estimate binomial coefficients. The bounds are well-known in the literature [18].

I Lemma 3. Let n be a positive integer and 0 < x < 1 such that xn is an integer, then
2H(x)n/

√
8nx(1− x) ≤

(
n
xn

)
≤ 2H(x)n/

√
πnx(1− x).

Let (pi)i and (qi)i be two distributions on the same state space such that (pi)i is absolutely
continuous with respect to (qi)i, i.e., qi = 0 implies pi = 0 for all i. The (binary) Kullback–
Leibler divergence4 from (qi)i to (pi)i is given by D((pi)i ‖ (qi)i) = −

∑
i pi ld(qi

pi
). It is the

expected information loss when assuming that the distribution is (qi)i while the system
actually follows (pi)i. The divergence is a premetric in that it is non-negative and 0 iff the
distributions are the same. However, it is neither symmetric nor does it observe the triangle

4 The divergence is sometimes also called relative entropy, we avoid this term due to ambiguities, cf. [18].

T. Bläsius, T. Friedrich, and M. Schirneck 21:7

inequality. In this work, we only need the divergence between Bernoulli distributions. For
any two probabilities x, y, the divergence between two Bernoulli distributions with respective
parameters x and y is D(x ‖ y) = D((x, 1−x) ‖ (y, 1−y)) = −x ld

(
y
x

)
−(1−x) ld

(
1−y
1−x

)
. The

function D(x ‖ y) is convex in both x and y, attains its minimum 0 for x = y, and observes
D(x ‖ y) = D(1− x ‖ 1− y). We often use the derived quantity 2−D(x ‖ y) =

(
y
x

)x (1−y
1−x

)1−x
.

Polynomials of Probabilities.

I Lemma 4. Let n be a non-negative integer and x a probability, then it holds that
e−nx

(
1− nx2) ≤ (1− x)n ≤ e−nx.

I Lemma 5 (Lemma 10 in [4]). Let n be a non-negative integer and x a probability, then
nx/(1 + nx) ≤ 1− (1− x)n ≤ nx.

I Lemma 6. Consider a random experiment with outcomes A, B, and C, where P[B] > 0.
In a series of m i.i.d. trials, let Aj denote the event that the outcome of the j-th trial is A,
same with B. Then, we have P[∀j ≤ m : ¬Aj | ∃k ≤ m : Bk] ≤ P[∀j ≤ m : ¬Aj | Bm].

4 The Chernoff–Hoeffding Theorem

In this section, we tighten the Chernoff–Hoeffding theorem bounding the tail of the binomial
distribution. The result will later help us with the random hypergraphs, but more importantly
it provides a powerful tool of general interest in probability theory. Fix a positive integer
n and probabilities x and p. Recall that the Kullback–Leibler divergence between the
respective Bernoulli distributions is D(x ‖ p) = −x ld

(
p
x

)
− (1− x) ld

(
1−p
1−x

)
. The Chernoff–

Hoeffding theorem [30, 22] employs the divergence to bound the probability that a binomially
distributed random variable Y ∼ Bin(n, p) deviates from its expected value E[Y] = pn. If

x ≤ p, then P[Y ≤ xn] ≤ 2−D(x ‖ p)n =
(
p
x

)xn (1−p
1−x

)(1−x)n
. Similarly, if p ≤ x, we have

P[Y ≥xn] ≤ 2−D(x ‖ p)n. Several weaker but more practical inequalities have been inferred
from this, summarized as Chernoff bounds [41, 21]. We sharpen these inequalities by a√
n-factor for all but the extreme values of x. While the upper bound of Chernoff–Hoeffding

holds for all probabilities x, there are some lower bounds known for P[Y ≤ xn] if the product
xn is an integer, c.f. the textbook by Ash [3, Lemma 4.7.2]. We use a proposition by Klar [38]
to improve the upper bound such that it matches the lower one up to constants. We then
extend both bounds to the general case of arbitrary products xn.

I Theorem 7. Let n be a positive integer, x and p two probabilities with 0 < p < 1, and
Y ∼ Bin(n, p) a binomial random variable.

1. If 1/n ≤ x < p, then (1−p)
√
x

2e
√

2 (1−x)
· 2−D(x ‖ p) n

√
n

≤ P[Y ≤ xn] ≤
√

1−x
(p−x)

√
πx
· 2−D(x ‖ p) n

√
n

.

2. If p < x ≤ 1− 1/n, then p
√

1−x
2e
√

2x ·
2−D(x ‖ p) n
√
n

≤ P[Y ≥ xn] ≤
√
x

(x−p)
√
π (1−x)

· 2−D(x ‖ p) n
√
n

.

Proof sketch. The second statement of the theorem is implied by the first one by applying
it to the complementary variable Y ∼ Bin(n, 1− p). Let x ≤ p be a probability. We mainly
confine ourselves here to the case that the product xn is integral and show that then we get

1√
8x(1−x)

· 2−D(x ‖ p) n
√
n

≤ P[Y ≤ xn] ≤ p
√

1−x
(p−x)

√
πx
· 2−D(x ‖ p) n

√
n

.

ESA 2020

21:8 The Minimization of Random Hypergraphs

Lemma 3 provides the following error bounds for the probability mass function of Y :
1/
√

8nx(1− x) ≤ P[Y = xn]/(2H(x)n · pxn(1 − p)(1−x)n) ≤ 1/
√
πnx(1− x). We further

have 2H(x)n · pxn(1 − p)(1−x)n = 2−D(x ‖ p)n. This proves the first part that P[Y ≤ xn] ≥
P[Y = xn] ≥ 2−D(x ‖ p)n/

√
8nx(1− x) holds.

A result by Klar [38, Proposition 1(c)] states that the ratio P[Y ≤ xn]/P[Y = xn] is at
most fn,xn(p) = p (1− xn

n+1)/(p− xn
n+1). The partial discrete derivative of fn,xn with respect

to n, that is, ∆n(fn,xn)(p) = fn+1,x(n+1)(p)− fn,xn(p) can be shown to be positive whenever
x < p. Thus fn,xn(p) converges from below to p(1−x)/(p−x) as n increases. Combined with
the error bounds this is P[Y ≤ xn] ≤ p (1−x)

p−x ·
1√

πnx(1−x)
·2−D(x ‖ p)n = p

√
1−x

(p−x)
√
πx
· 2−D(x ‖ p) n

√
n

.
Transferring the improvements also to non-integral products xn is not straightforward. A

careful analysis of the monotonicity of the entropy function H as well as that of the divergence
D reveals that this transition weakens the upper bound only by a additional factor of 1/p
and the lower bound by x(1− p)/e, independently of n. J

We showed that for all values x strictly between 0 and p, the Chernoff–Hoeffding theorem
can be asymptotically improved to P[Y ≤ xn] = Θ(2−D(x ‖ p)n/

√
n). However, the constants

hidden in the big-O notation diverge at the boundaries. This caveat cannot be healed, there
is no way to extend the improvement also to x = 0 or p. Simply put, the original formulation
of the theorem is tight. First, pn is not only the mean but also the median of the binomial
distribution, whence P[Y ≤ pn] ≥ 1/2 is constant and not of order O(2−D(p ‖ p)n/

√
n) =

O(1/
√
n). Secondly, the initial bound P[Y ≤ 0] = (1− p)n = 2−D(0 ‖ p)n even is exact.

5 Distinct Sets and Minimality

We now return to the main topic of this work, which is determining the expected size
of the minimization min(Bn,m,p) of the maximum-entropy multi-hypergraph Bn,m,p. The
sampling probabilities p = 0 or p = 1 are trivial, we thus assume 0 < p < 1 in this work
unless explicitly stated otherwise. Every subset of [n] then has a non-vanishing chance to
be sampled. Such a set is minimal for Bn,m,p iff it is generated in one of the trials and no
proper subset ever occurs. Both of these aspects influence the chance of minimality, but
their impact varies depending on the cardinality of the set in question. The number of
vertices per edge is heavily concentrated around pn and the more vertices there are in an
edge, the less likely it is minimal. Intuitively, almost no sets with very low cardinalities are
sampled, but if so, they are often included in min(Bn,m,p). There are plenty of edges with a
medium number of vertices and there is a good chance they are minimal. Finally, sets of
very high cardinality rarely occur and usually they are then dominated by smaller ones. This
disparity is exacerbated by a large number of trials. Boosting m increases the probability
that also sets of cardinality a bit further away from pn are sampled, at the same time the
process generates more duplicates of sets that occurred before. More importantly though,
the likelihood of a larger set being minimal is even smaller with many trials. Eventually, the
last effect outweighs all others, creating a situation in which the only minimal edge is empty.

We start making this intuition rigorous by giving preliminary bounds on the number of
minimal edges as a first step towards the proof of Theorem 1. The results are binomial sums
of polynomials of probabilities, depending on which factors we choose, we get an upper or
a lower bound. The estimates are already tight up to constants but are rather unwieldy.
They will serve as the basis for our further analysis. Let Dn,p denote the maximum-entropy
distribution on the power set P([n]) provided that EX∼Dn,p [|X|] = pn, meaning each vertex
is included independently with probability p.

T. Bläsius, T. Friedrich, and M. Schirneck 21:9

I Lemma 8. Let 0 < p < 1 be a probability, n, m positive integers, and let Xj ∼ Dn,p
denote the outcome of the j-th independent trial. For any integer i with 0 ≤ i ≤ n,
define sn,p(i,m) = P[∃j ≤ m : Xj = [i]] and wn,p(i,m) = P[∀j ≤ m : ¬(Xj ([i])] to
be the respective probabilities5 that some trial produces the set [i] and no trial produces a
proper subset of [i]. Then, we have sn,p(i,m) = 1 − (1 − pi(1 − p)n−i)m and wn,p(i,m) =(

1− (1− p)n−i(1− pi)
)m

. Furthermore, the following statements hold.

1. E[|min(Bn,m,p)|] ≥
∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m).

2. E[|min(Bn,m,p)|] ≤
∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m− 1).

3. E[|min(Bn,m,p)|] ≤ 1 + 1
p

∑n
i=0
(
n
i

)
sn,p(i,m) · wn,p(i,m).

Proof sketch. The formula for wn,p(i,m) = P[∀j ≤ m : ¬(Xj ([i])] can be seen as follows.
The random set Xj ∼ Dn,p is a subset of [i] iff it does not contain an element of [n]\[i], which
happens with probability (1− p)n−i. Conditioned on being any subset, Xj is a proper subset
if it is missing at least one element of [i], having conditional probability 1− pi.

Regarding the main statements, a set S ⊆ [n] is in min(Bn,m,p) iff it is sampled in one of
the m trials and no proper subset is sampled. The probability for both events depends only on
the cardinality |S|: E[|min(Bn,m,p)|] =

∑
S⊆[n] P[∃k ≤ m : Xk = S∧∀j ≤ m : ¬(Xj (S)] =∑n

i=0
(
n
i

)
· P[∃k ≤ m : Xk = [i]] · P[∀j ≤ m : ¬(Xj ([i]) | ∃k ≤ m : Xk = [i]]. Generating

any other set than [i] in a single trial has probability 1− pi(1− p)n−i, over the independent
trials we thus get sn,p(i,m) = P[∃j ≤ m : Xj = [i]] = 1− (1− pi(1− p)n−i)m

The last factor P[∀j ≤ m : ¬(Xj ([i]) | ∃k ≤ m : Xk = [i]] in each term describes the
likelihood that the set [i] is minimal, conditioned on it being sampled at all. Conditioning
on at least one trial producing [i] itself only increases the chances of never sampling a proper
subset, which gives Statement 1. To prove Statement 2, we apply Lemma 6. Statement 3
follows from the ratio between wn,p(i,m) and wn,p(i,m − 1) being the probability that a
non-subset of [i] is sampled in a single trial. J

The part that all three bounds of Lemma 8 have in common describes the expected
number of distinct sets in Bn,m,p. Recall that we use ‖H‖ to denote the number of distinct
sets of some multi-hypergraph H. That means, we have E[‖Bn,m,p‖] =

∑n
i=0
(
n
i

)
sn,p(i,m).

We weighted the terms of this sum by wn,p(i,m) or wn,p(i,m−1), respectively. In the
following, we analyze the two parts separately, starting with the weighting factors wn,p. They
are of interest beyond their application to random multi-hypergraphs. Consider m trials
according to the maximum-entropy distribution Dn,p on subsets of [n] with expected set
size pn. The quantity wn,p(i,m) is, by definition, the probability that any fixed subset of
cardinality i survives as minimal after all trials. Equivalently, 1−wn,p(i,m) is the probability
of any proper subset being sampled. We prove next that the weighting factors are in fact
threshold functions falling abruptly from almost 1 to almost 0 as i increases from 0 to n, the
position of the transition depends on n, m, and p. Recall that α abbreviates −(log1−pm)/n.
Lemma 9 below establishes a sharp threshold at i∗ = n+ log1−pm = (1− α)n. Note that
i∗ is always at most n since log1−pm is non-positive. The definition ensures the equality
m = 1/(1− p)n−i∗ = 1/(1− p)αn. For increasing m, the threshold gets smaller relative to n.
Once m grows beyond 1/(1− p)n, i.e., α > 1, the quantity i∗ can no longer be interpreted as
a cardinality as it becomes negative. Later, in Lemma 12, we will see that m being this large
is in fact irrelevant for the minimization.

5 The notation sn,p refers the set being sampled; these probabilities are then weighted by the factors wn,p.

ESA 2020

21:10 The Minimization of Random Hypergraphs

I Lemma 9. Let 0 < p < 1 be a probability, and n, m positive integers, then wn,p(0,m) = 1,
and wn,p(n,m) = pnm. Now let i = i(n) with 0 < i < n be a function taking integer values.
1. We have exp(−m(1− p)n−i) · (1−m(1− p)2(n−i)) ≤ wn,p(i,m) ≤ exp(−m(1− p)n−i+1).
In particular, the following statements hold.6

2. If i = n+ log1−pm+ ω(1), then limn→∞ wn,p(i,m) = 0.
3. If i = n+ log1−pm− ω(1), then limn→∞ wn,p(i,m) = 1.
4. If i = n+ log1−pm±Θ(1), then wn,p(i,m) = Θ(1).

Proof. Suppose 0 < i < n, we estimate wn,p(i,m) using mainly Lemma 4. This yields
wn,p(i,m) = (1−(1−p)n−i(1−pi))m ≤ (1−(1−p)n−i(1−p))m ≤ exp

(
−m(1−p)n−i ·(1−p)

)
.

Since 1− p is constant, the limit behavior is entirely determined by the product m(1− p)n−i.
If i = n+ log1−pm+ ω(1), then m(1− p)n−i = m(1− p)n−n−(log1−p m)−ω(1) = (1− p)−ω(1)

diverges and thus the weighting factor wn,p(i,m) converges to 0. Conversely, from 1− pi ≤ 1
we get that wn,p(i,m) ≥ (1− (1− p)n−i)m ≥ exp

(
−m(1− p)n−i

)
· (1−m(1− p)2(n−i)). If

i = n+ log1−pm−ω(1), both m(1− p)n−i = (1− p)ω(1) and m(1− p)2(n−i) = (1− p)ω(1)/m

tend to 0, implying limn→∞ wn,p(i,m) = 1.
Finally, if the cardinality i is around the threshold i∗ = n+ log1−pm, the limit may not

exist. We show that wn,p(i,m) is still bounded away from 0. Suppose i = n+log1−pm±Θ(1);
in particular, the difference i∗ − i is bounded for all n. If m is constant w.r.t. n, so is
wn,p(i,m) ≥ (1 − (1 − p)n−i)m ≥ pm. Here, we used the assumption i < n. Finally, if m
diverges, then n− i = log1−pm∓Θ(1) = ω(1) diverges with it. Together with the fact that
m(1− p)n−i = (1− p)i∗−i holds by the definition of i∗, we get that wn,p(i,m) is bounded
since wn,p(i,m) ≥ exp

(
− (1− p)i∗−i

)
· (1− (1− p)(i∗−i)+(n−i)) = Ω(1). J

After we have shown the existence of a sharp threshold for the weighting factors, we now
treat the number of distinct sets ‖Bn,m,p‖ in the multi-hypergraph. This is a natural upper
bound for the size of the minimization. In turn, a trivial cap for the number of distinct sets
is the total number of sets |Bn,m,p| = m. When starting the sampling, many different sets
are generated and ‖Bn,m,p‖ is indeed close to m. As the number of trials increases though,
duplicates occur in the sample and the two quantities grow apart.

To discuss this in more detail, we introduce some notation. For a pair of integers `, u
with 0 ≤ ` ≤ u ≤ n, let ‖Bn,m,p(`, u)‖ denote the number of distinct sampled sets whose
cardinality is between ` and u, including. This is also at most as large as the total number
of samples in that range. It thus makes sense to expect an upper bound in terms of the
binomial distribution. We confirm this below and further prove that there is also a lower
bound of the same flavor.

I Lemma 10. Let 0 < p < 1 be a probability, n, m positive integers, and Y ∼ Bin(n, p)
a binomially distributed random variable with parameters n and p. Let `, u be integers
such that 0 ≤ ` ≤ u ≤ n and define p = max`≤i≤u {pi(1 − p)n−i }. Then, p is equal to
p`(1− p)n−` if p ≤ 1/2; otherwise, we have p = pu(1− p)n−u. Further, the expected number
of distinct sets in Bn,m,p with cardinality between ` and u observes m

1+mp · P[` ≤ Y ≤ u] ≤
E[‖Bn,m,p(`, u)‖] ≤ m · P[` ≤ Y ≤ u].

6 We understand ω(1) as the class of all non-negative unbounded functions of n. In particular, the classes
n+ log1−pm+ ω(1) and n+ log1−pm− ω(1) are disjoint.

T. Bläsius, T. Friedrich, and M. Schirneck 21:11

6 Proof of the Main Theorem

We prove the main results on the expected size of the minimization of the hypergraph Bn,m,p
in this section with the help of the tools above. The key observation is that the minimization
is dominated by the sets with cardinalities around the threshold i∗ = n+ log1−pm.

6.1 The Lower Bound
We prove the main results, Theorem 1, with the help of the tools above. The key observation
is that the minimization is dominated by the sets with cardinalities around the threshold
i∗ = n+ log1−pm of the weighting factors. We will see that the distinct edges make up a
constant fraction of Bn,m,p as long asm is at most 1/(1−p)(1−p)n. In turn, a constant fraction
of those distinct edges are indeed minimal. However, the linear growth of E[|min(Bn,m,p)|]
cannot be maintained for a larger sample size. We prove that once m is so large that the
threshold i∗ is below pn, the ratio of minimal edges decreases significantly. The minimization
then enters a regime governed by the entropy of α = −(log1−pm)/n.

The next lemma shows both lower bounds of Theorem 1 together. The information-
theoretic one is slightly more general than what was stated in Theorem 1.2 in that it pertains
to all m between 1/(1− p)(1−p)n and 1/(1− p)(1−ε′)n. Let H denote the entropy function.

I Lemma 11 (Theorem 1.1 and the lower bound of Theorem 1.2). Let 0 < p < 1. If
m ≤ 1/(1 − p)(1−p)n, then E[|min(Bn,m,p)|] = Θ(m). For any ε′ > 0 and m such that
1/(1 − p)(1−p)n ≤ m ≤ 1/(1 − p)(1−ε′)n, corresponding to 1 − p ≤ α ≤ 1 − ε′, we have
E[|min(Bn,m,p)|] = Ω

(
2(H(α)+(1−α) ld p)n /

√
n
)
.

Proof sketch. The sought expectation is at least as large as the number of distinct sets up to
some cardinality i that are minimal after m trials for arbitrary values of i. As an ansatz, we
choose this to be the threshold i∗ = n+log1−pm. Lemmas 8 and 10 together then imply that
E[|min(Bn,m,p)|] ≥ (m/(1 +mp)) · P[Y ≤ i∗] · wn,p(i∗,m). It can be shown via Lemma 10
that the denominator 1 +mp is at most 2 as long as m ≤ 1/(1− p)n. Lemma 9.1 shows that
there exists a universal constant δ > 0 (again for all m ≤ 1/(1− p)n) such that w(i∗,m) ≥ δ.

The bounds in the two regimes differ in the way the product m · P[Y ≤ i∗] is estimated.
If m ≤ 1/(1 − p)(1−p)n, then i∗ ≥ pn is at least as large as the median of Y , whence
m · P[Y ≤ i∗] ≥ m/2. This gives the lower bound in the linear regime. In the information-
theoretic regime, we use the rewrite m = 1/(1− p)αn. Suppose first that there are constants
ε, ε′ > 0 such that 1 − p + ε ≤ α ≤ 1 − ε′ holds. These are exactly the prerequisites of
Theorem 1.2. We apply the improved lower bound of the Chernoff–Hoeffding theorem,
Theorem 7.1. Let D denote the Kullback–Leibler divergence. There exists a positive constant
C > 0–independent of n and m but possibly dependent on p, ε, and ε′–such that

m · P[Y ≤ i∗] = m · P[Y ≤ (1− α)n] ≥ m · C 2−D(1−α ‖ p)n
√
n

= 1
(1− p)αn ·

C√
n

(
p

1− α

)(1−α)n(1− p
α

)αn
= C√

n
·
(

p1−α

(1− α)1−ααα

)n
.

The latter expression equals C ·2(H(α)+(1−α) ld p)n/
√
n. Finally, if m(1−p)(1−p)n converges to

1 from above, i.e., α↘ 1−p, then the result follows from a direct application of Lemma 3. J

ESA 2020

21:12 The Minimization of Random Hypergraphs

6.2 The Upper Bound
The upper bound draws from the same core observations as the lower one: the threshold
position of the weighting factors wn,p and the proportion of distinct sets in the sample.
First, we show that once m is more than a polynomial factor larger than 1/(1 − p)n, the
minimization essentially consists of a single edge, the empty set. Lemma 13 then proves our
claim that the information-theoretic lower bound is tight beyond the phase transition.

I Lemma 12 (Theorem 1.3). If m = 1/(1− p)n+ω(logn), then E[|min(Bn,m,p)|] = 1 + o(1).

I Lemma 13 (Upper bound of Theorem 1.2). Let 0 < p < 1 be a probability, ε, ε′ > 0 positive
reals, and n, m positive integers such that m is between 1/(1−p)(1−p+ε)n and 1/(1−p)(1−ε′)n,
i.e., 1− p+ ε ≤ α ≤ 1− ε′. Then, we have E[|min(Bn,m,p)|] = O

(
2(H(α)+(1−α) ld p)n/

√
n
)
.

Proof sketch. We get E[|min(Bn,m,p)|] ≤
∑n
i=0
(
n
i

)
(1− (1− pi(1− p)n−i)m) ·wn,p(i,m− 1)

from Lemma 8.2. The idea of this proof is to split the sum at the threshold i∗ = (1− α)n
and handle the two parts separately. Let Y ∼ Bin(n, p) be a binomial variable. Lemma 10
shows for the first part that

∑i∗

i=0
(
n
i

)
(1− (1−pi(1−p)n−i)m) ·wn,p(i,m−1) ≤ m ·P[Y ≤ i∗].

The new Chernoff–Hoeffding theorem (Theorem 7.1) gives a constant C ′ = C ′(p, ε, ε′) with

m · P[Y ≤ i∗] = m · P[Y ≤ (1− α)n] ≤ m · C ′ 2
−D(1−α ‖ p)n
√
n

= O
(

2(H(α)+(1−α) ld p)n
√
n

)
.

The lemma follows from the second part of the sum being at most a constant factor larger
than the first one. This is shown using the assumption α ≤ 1− ε′ and the weighting factors
wn,p(i,m) going doubly exponentially to 0 if i crosses the threshold i∗, see Lemma 9.1. J

7 Conclusion

We examined the expected number of minimal edges of the maximum-entropy multi-
hypergraph model with expected edge size pn. We discovered a phase transition with
respect to the total number of edges at m = 1/(1 − p)(1−p)n. Now that we have tight
upper and lower bounds in place, we can discuss the transition in full detail. For small
m, E[|min(Bn,m,p)|] is linear in m. Beyond that point, the minimization instead follows
2(H(α)+(1−α) ld p)n/

√
n with α = −(log1−pm)/n. In the information-theoretic regime the size

of the minimization is decoupled from the number of edges. It continues to grow initially,
but now sublinearly in m and only until m = 1/(1− p)

n
1+p . From there on, the size of the

minimization decays rapidly although the total number of trials increases. Once m exceeds
1/(1− p)n, the minimization collapses under the sheer likelihood of sampling the empty set.

We gain additional insights by contrasting the results in the two regimes (ignoring constant
factors here). The ratio between the two bounds at m = 1/(1− p)αn for any 0 ≤ α ≤ 1 is
((2(H(α) + (1−α) ld p)n)/

√
n)/m = (2−D(1−α ‖ p)n)/

√
n. This is exponentially small in n when

α lies strictly between 0 and 1 − p. Therefore, the information-theoretic lower bound of
Theorem 1.2 also pertains to the linear regime, but is unnecessarily loose there. If the number
of trials m is close to 1/(1− p)(1−p)n, the two bounds coincide, up to a factor of

√
n, since

the divergence vanishes at 1− α = p. This overlap is indicated in Figure 1b by dashed lines.
Finally, for α beyond 1− p the relative share of minimal edges becomes exponentially small.

The Chernoff–Hoeffding theorem played an integral role in verifying these results. We
tightened the tail bounds on the binomial distribution and provided explicit upper and
lower bounds on the constants involved. We are convinced that this sharpened tool can help
researchers in all of probability beyond the scope of this paper.

T. Bläsius, T. Friedrich, and M. Schirneck 21:13

There is more work needed for the upper and lower bounds in the information-theoretic
regime. Currently, α has to be bounded away from from 1 − p and 1 for the bounds to
be tight. For α ↘ 1 − p the lower bound goes to Ω(2(H(1−p)+p ld p)n/

√
n) = Ω(m/

√
n).

Here, we profit from the hidden constant not depending on α. In actuality though, the
minimization at m = 1/(1 − p)(1−p)n has size Θ(m), so the share of minimal edges in the
sample moves from order 1/

√
n to a constant. The speed of this shift depends on how fast

α = 1− p+ o(1) converges. The situation for α↗ 1 is different as in this parameter range
there is a huge disparity between the number of minimal edges |min(Bn,m,p)| and the number
of distinct edges ||Bn,m,p||. Thus, the expected size of the minimization is not completely
captured by the binomial distribution and additional tools are needed for tight estimates.
An immediate extension of our work would therefore be to pinpoint the exact behavior of
the minimization at the two transitions points. Another interesting question in light of the
original motivation of random databases is to allow different sample probabilities per vertex
as well as dependencies between the elements. To fit the maximum-entropy setting, this
would require the model to incorporate additional constraints.

References
1 Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. Data Profiling.

Synthesis Lectures on Data Management. Morgan & Claypool Publishers, San Rafael, CA,
USA, 2018. doi:10.2200/S00878ED1V01Y201810DTM052.

2 Kartik Anand and Ginestra Bianconi. Entropy Measures for Networks: Toward an Information
Theory of Complex Topologies. Physical Review E, 80:045102, 2009. doi:10.1103/PhysRevE.
80.045102.

3 Robert B. Ash. Information Theory. Dover Books on Mathematics. Dover Publications,
Mineola, NY, USA, 1990. Reprint of the Interscience Publishers 1965 edition.

4 Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Black-box Complexity of Parallel
Search with Distributed Populations. In Proceedings of the 2015 Conference on Foundations
of Genetic Algorithms (FOGA), pages 3–15, 2015. doi:10.1145/2725494.2725504.

5 Michael Behrisch, Amin Coja-Oghlan, and Mihyun Kang. The Order of the Giant Component
of Random Hypergraphs. Random Structures and Algorithms, 36:149–184, 2010. doi:10.
1002/rsa.v36:2.

6 Michael Behrisch, Amin Coja-Oghlan, and Mihyun Kang. Local Limit Theorems for the Giant
Component of Random Hypergraphs. Combinatorics, Probability and Computing, 23:331––366,
2014. doi:10.1017/S0963548314000017.

7 Claude Berge. Hypergraphs - Combinatorics of Finite Sets, volume 45 of North-Holland
Mathematical Library. North-Holland, Amsterdam, Netherlands, 1989.

8 Ginestra Bianconi. The Entropy of Randomized Network Ensembles. Europhysics Letters,
81:28005, 2007. doi:10.1209/0295-5075/81/28005.

9 Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. The Parameterized Complexity
of Dependency Detection in Relational Databases. In Proceedings of the 11th International
Symposium on Parameterized and Exact Computation (IPEC), pages 6:1–6:13, 2016. doi:
10.4230/LIPIcs.IPEC.2016.6.

10 Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. Efficient Denial Constraint Discovery
with Hydra. Proceedings of the VLDB Endowment, 11:311–323, 2017. doi:10.14778/3157794.
3157800.

11 Thomas Bläsius, Tobias Friedrich, Julius Lischeid, Kitty Meeks, and Martin Schirneck. Effi-
ciently Enumerating Hitting Sets of Hypergraphs Arising in Data Profiling. In Proceedings of
the 21st Meeting on Algorithm Engineering and Experiments (ALENEX), pages 130–143, 2019.
doi:10.1137/1.9781611975499.11.

12 Béla Bollobás. Random Graphs. Studies in Advanced Mathematics. Cambridge University
Press, Cambridge, UK, 2 edition, 2001. doi:10.1017/CBO9780511814068.

ESA 2020

https://doi.org/10.2200/S00878ED1V01Y201810DTM052
https://doi.org/10.1103/PhysRevE.80.045102
https://doi.org/10.1103/PhysRevE.80.045102
https://doi.org/10.1145/2725494.2725504
https://doi.org/10.1002/rsa.v36:2
https://doi.org/10.1002/rsa.v36:2
https://doi.org/10.1017/S0963548314000017
https://doi.org/10.1209/0295-5075/81/28005
https://doi.org/10.4230/LIPIcs.IPEC.2016.6
https://doi.org/10.4230/LIPIcs.IPEC.2016.6
https://doi.org/10.14778/3157794.3157800
https://doi.org/10.14778/3157794.3157800
https://doi.org/10.1137/1.9781611975499.11
https://doi.org/10.1017/CBO9780511814068

21:14 The Minimization of Random Hypergraphs

13 Béla Bollobás. A Probabilistic Proof of an Asymptotic Formula for the Number of
Labelled Regular Graphs. European Journal of Combinatorics, 1:311–316, 1980. doi:
10.1016/S0195-6698(80)80030-8.

14 Michele Borassi, Pierluigi Crescenzi, and Michel Habib. Into the Square: On the Complexity
of Some Quadratic-time Solvable Problems. Electronic Notes in Theoretical Computer Science,
322:51–67, 2016. doi:10.1016/j.entcs.2016.03.005.

15 Aiden A. Bruen and Mario A. Forcinito. Cryptography, Information Theory, and Error-
Correction: A Handbook for the 21st Century. Wiley-Interscience, New York, NY, USA, 2004.
doi:10.1002/9781118033296.

16 Philip Samuel Chodrow. Configuration Models of Random Hypergraphs. ArXiv e-prints, 2019.
arXiv:1902.09302.

17 Colin Cooper, Alan M. Frieze, and Wesley Pegden. On the Rank of a Random Binary Matrix.
Electronic Journal of Combinatorics, 26:P4.12, 2019. doi:10.37236/8092.

18 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications and Signal Processing. Wiley-Interscience, New York, NY, USA, 2nd
edition, 2006.

19 Harald Cramér. Sur un nouveau théorème-limite de la théorie des probabilités. In Actualités
scientifiques et industrielles, volume 763, pages 5–23, 1938. Colloque consacré à la théorie des
probabilités. (On a New Limit Theorem in Probability.) In French.

20 J. Demetrovics, Gyula O. H. Katona, D. Miklos, O. Seleznjev, and B. Thalheim. Asymptotic
Properties of Keys and Functional Dependencies in Random Databases. Theoretical Computer
Science, 190:151–166, 1998. doi:10.1016/S0304-3975(97)00089-3.

21 Benajmin Doerr. Probabilistic Tools for the Analysis of Randomized Optimization Heuristics. In
Benjamin Doerr and Frank Neumann, editors, Theory of Evolutionary Computation, chapter 1.
Springer International, Basel, Switzerland, 2020. doi:10.1007/978-3-030-29414-4.

22 Devdatt Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, New York, NY, USA, 2009.

23 Paul Erdős and Alfréd Rényi. On Random Graphs I. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

24 Vincent Froese, René van Bevern, Rolf Niedermeier, and Manuel Sorge. Exploiting Hidden
Structure in Selecting Dimensions That Distinguish Vectors. Journal of Computer and System
Sciences, 82:521–535, 2016. doi:10.1016/j.jcss.2015.11.011.

25 Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova, and Ryan Williams. Completeness for
First-Order Properties on Sparse Structures With Algorithmic Applications. Transactions on
Algorithms, 15:23:1–23:35, 2018. doi:10.1145/3196275.

26 Diego Garlaschelli and Maria I. Loffredo. Maximum Likelihood: Extracting Unbiased Informa-
tion from Complex Networks. Physical Review E, 78:015101, 2008. doi:10.1103/PhysRevE.
78.015101.

27 Edgar N. Gilbert. Random Graphs. Annals of Mathematical Statistics, 30:1141–1144, 1959.
doi:10.1214/aoms/1177706098.

28 Yves Grandvalet and Yoshua Bengio. Entropy Regularization. In Olivier Chapelle, Bernhard
Schölkopf, and Alexander Zien, editors, Semi-Supervised Learning, chapter 9. MIT Press,
Cambridge, MA, USA, 2006. doi:10.7551/mitpress/9780262033589.001.0001.

29 Peter Harremoës. Binomial and Poisson Distributions as Maximum Entropy Distributions.
Transactions on Information Theory, 47:2039–2041, 2001. doi:10.1109/18.930936.

30 Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random Variables. Journal
of the American Statistical Association, 58:13–30, 1963.

31 Remco van der Hofstad. Random Graphs and Complex Networks, volume 1 of Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge,
UK, 2016. doi:10.1017/9781316779422.

32 Edwin Thompson Jaynes. Information Theory and Statistical Mechanics. Phyical Review
Series II, 106:620–630, 1957. doi:10.1103/PhysRev.106.620.

33 Edwin Thompson Jaynes. Information Theory and Statistical Mechanics II. Phyical Review
Series II, 108:171–190, 1957. doi:10.1103/PhysRev.108.171.

https://doi.org/10.1016/S0195-6698(80)80030-8
https://doi.org/10.1016/S0195-6698(80)80030-8
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.1002/9781118033296
http://arxiv.org/abs/1902.09302
https://doi.org/10.37236/8092
https://doi.org/10.1016/S0304-3975(97)00089-3
https://doi.org/10.1007/978-3-030-29414-4
https://doi.org/10.1016/j.jcss.2015.11.011
https://doi.org/10.1145/3196275
https://doi.org/10.1103/PhysRevE.78.015101
https://doi.org/10.1103/PhysRevE.78.015101
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.7551/mitpress/9780262033589.001.0001
https://doi.org/10.1109/18.930936
https://doi.org/10.1017/9781316779422
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.108.171

T. Bläsius, T. Friedrich, and M. Schirneck 21:15

34 Michał Karoński and Tomasz Łuczak. The Phase Transition in a Random Hypergraph. Journal
of Computational and Applied Mathematics, 142:125–135, 2002. doi:10.1016/S0377-0427(01)
00464-2.

35 Gyula O. H. Katona. Random Databases with Correlated Data. In Antje Düsterhöft,
Meike Klettke, and Klaus-Dieter Schewe, editors, Conceptual Modelling and Its Theoretical
Foundations: Essays Dedicated to Bernhard Thalheim on the Occasion of His 60th Birthday,
pages 29–35. Springer, Berlin and Heidelberg, Germany, 2012. Festschrift. doi:10.1007/
978-3-642-28279-9_4.

36 Gyula O. H. Katona. Testing Functional Connection Between Two Random Variables. In
Albert N. Shiryaev, S. R. S. Varadhan, and Ernst L. Presman, editors, Prokhorov and
Contemporary Probability Theory, pages 335–348. Springer, Berlin and Heidelberg, Germany,
2013. Festschrift. doi:10.1007/978-3-642-33549-5_20.

37 Hiremagalur Krishnaswamy Kesavan. Jaynes’ Maximum Entropy Principle. In Christodoulos A.
Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization, pages 1779–1782.
Springer, Boston, MA, USA, 2009. doi:10.1007/978-0-387-74759-0_312.

38 Bernhard Klar. Bounds on Tail Probabilities of Discrete Distributions. Probability in the
Engineering and Informational Sciences, 14:161–171, 2000.

39 Elliott H. Lieb and Jakob Yngvason. The Physics and Mathematics of the Second Law of
Thermodynamics. Physics Reports, 310:1–96, 1999. doi:10.1016/S0370-1573(98)00082-9.

40 Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. Approximate Denial
Constraints. CoRR, abs/2005.08540, 2020. Arxiv preprint. To apprear in PVLDB 13. arXiv:
2005.08540.

41 Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge University Press,
New York, NY, USA, 2nd edition, 2017.

42 Mark E. J. Newman. Scientific Collaboration Networks. I. Network Construction and Funda-
mental Results. Physical Review E, 64:016131, 2001. doi:10.1103/PhysRevE.64.016131.

43 Mark E. J. Newman. Networks: An Introduction. Oxford University Press, New York, NY,
USA, 2010. doi:10.1093/acprof:oso/9780199206650.001.0001.

44 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, Cambridge, UK, 2010. doi:10.1017/
CBO9780511976667.

45 Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer Rudolph,
Martin Schönberg, Jakob Zwiener, and Felix Naumann. Functional Dependency Discovery:
An Experimental Evaluation of Seven Algorithms. Proceedings of the VLDB Endowment,
8:1082–1093, 2015. doi:10.14778/2794367.2794377.

46 Juyong Park and Mark E. J. Newman. The Statistical Mechanics of Networks. Physical
Review E, 70:066117, 2004. doi:10.1103/PhysRevE.70.066117.

47 Yuri Vasilyevich Prokhorov. Asymptotic Behavior of the Binomial Distribution. Uspekhi
Matematicheskikh Nauk, 8:135–142, 1953. In Russian.

48 Fabio Saracco, Riccardo Di Clemente, Andrea Gabrielli, and Tiziano Squartini. Randomizing
Bipartite Networks: The Case of the World Trade Web. Scientific Reports, 5:10595, 2015.
doi:10.1038/srep10595.

49 Jeanette Schmidt-Pruzan and Eli Shamir. Component Structure in the Evolution of Random
Hypergraphs. Combinatorica, 5:81–94, 1985. doi:10.1007/BF02579445.

50 Claude Elwood Shannon. A Mathematical Theory of Communication. The Bell System
Technical Journal, 27:379–423, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x.

51 Eric V. Slud. Distribution Inequalities for the Binomial Law. The Annals of Probability,
5:404–412, 1977. URL: https://projecteuclid.org/euclid.aop/1176995801.

52 Ryan Williams. A New Algorithm for Optimal 2-Constraint Satisfaction and Its Implications.
Theoretical Computer Science, 348:357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

53 Katharina Anna Zweig. Network Analysis Literacy: A Practical Approach to the Analysis
of Networks. Lecture Notes in Social Networks. Springer, Vienna, Austria, 2014. doi:
10.1007/978-3-7091-0741-6.

ESA 2020

https://doi.org/10.1016/S0377-0427(01)00464-2
https://doi.org/10.1016/S0377-0427(01)00464-2
https://doi.org/10.1007/978-3-642-28279-9_4
https://doi.org/10.1007/978-3-642-28279-9_4
https://doi.org/10.1007/978-3-642-33549-5_20
https://doi.org/10.1007/978-0-387-74759-0_312
https://doi.org/10.1016/S0370-1573(98)00082-9
http://arxiv.org/abs/2005.08540
http://arxiv.org/abs/2005.08540
https://doi.org/10.1103/PhysRevE.64.016131
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.14778/2794367.2794377
https://doi.org/10.1103/PhysRevE.70.066117
https://doi.org/10.1038/srep10595
https://doi.org/10.1007/BF02579445
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://projecteuclid.org/euclid.aop/1176995801
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.1007/978-3-7091-0741-6
https://doi.org/10.1007/978-3-7091-0741-6

Acyclic, Star and Injective Colouring:
A Complexity Picture for H-Free Graphs
Jan Bok
Computer Science Institute, Charles University, Prague, Czech Republic
bok@iuuk.mff.cuni.cz

Nikola Jedlic̆ková
Department of Applied Mathematics, Charles University, Prague, Czech Republic
jedlickova@kam.mff.cuni.cz

Barnaby Martin
Department of Computer Science, Durham University, UK
barnaby.d.martin@durham.ac.uk

Daniël Paulusma
Department of Computer Science, Durham University, UK
daniel.paulusma@durham.ac.uk

Siani Smith
Department of Computer Science, Durham University, UK
siani.smith@durham.ac.uk

Abstract
A k-colouring c of a graph G is a mapping V (G)→ {1, 2, . . . k} such that c(u) 6= c(v) whenever u

and v are adjacent. The corresponding decision problem is Colouring. A colouring is acyclic, star,
or injective if any two colour classes induce a forest, star forest or disjoint union of vertices and
edges, respectively. Hence, every injective colouring is a star colouring and every star colouring is an
acyclic colouring. The corresponding decision problems are Acyclic Colouring, Star Colouring
and Injective Colouring (the last problem is also known as L(1, 1)-Labelling).

A classical complexity result on Colouring is a well-known dichotomy for H-free graphs, which
was established twenty years ago (in this context, a graph is H-free if and only if it does not contain
H as an induced subgraph). Moreover, this result has led to a large collection of results, which
helped us to better understand the complexity of Colouring. In contrast, there is no systematic
study into the computational complexity of Acyclic Colouring, Star Colouring and Injective
Colouring despite numerous algorithmic and structural results that have appeared over the years.

We initiate such a systematic complexity study, and similar to the study of Colouring we use
the class of H-free graphs as a testbed. We prove the following results:
1. We give almost complete classifications for the computational complexity of Acyclic Colouring,

Star Colouring and Injective Colouring for H-free graphs.
2. If the number of colours k is fixed, that is, not part of the input, we give full complexity

classifications for each of the three problems for H-free graphs.
From our study we conclude that for fixed k the three problems behave in the same way, but this is
no longer true if k is part of the input. To obtain several of our results we prove stronger complexity
results that in particular involve the girth of a graph and the class of line graphs.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases acyclic colouring, star colouring, injective colouring, H-free, dichotomy

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.22

Funding Jan Bok: Supported by GAUK 1580119 and SVV–2020–260578.
Nikola Jedlic̆ková: Supported by GAUK 1198419 and SVV–2020–260578.
Daniël Paulusma: Supported by the Leverhulme Trust (RPG-2016-258).

© Jan Bok, Nikola Jedlic̆ková, Barnaby Martin, Daniël Paulusma, and Siani Smith;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 22; pp. 22:1–22:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7973-1361
mailto:bok@iuuk.mff.cuni.cz
https://orcid.org/0000-0001-9518-6386
mailto:jedlickova@kam.mff.cuni.cz
mailto:barnaby.d.martin@durham.ac.uk
https://orcid.org/0000-0001-5945-9287
mailto:daniel.paulusma@durham.ac.uk
mailto:siani.smith@durham.ac.uk
https://doi.org/10.4230/LIPIcs.ESA.2020.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

1 Introduction

We study the complexity of three classical colouring problems. We do this by focusing on
hereditary graph classes, i.e., classes closed under vertex deletion, or equivalently, classes
characterized by a (possibly infinite) set F of forbidden induced subgraphs. As evidenced by
numerous complexity studies in the literature, even the case where |F| = 1 captures a rich
family of graph classes suitably interesting to develop general methodology. Hence, we usually
first set F = {H} and consider the class of H-free graphs, i.e., graphs that do not contain H
as an induced subgraph. We then investigate how the complexity of a problem restricted to
H-free graphs depends on the choice of H and try to obtain a complexity dichotomy.

To give a well-known and relevant example, the Colouring problem is to decide, given
a graph G and integer k ≥ 1, if G has a k-colouring, i.e., a mapping c : V (G)→ {1, . . . , k}
such that c(u) 6= c(v) for every two adjacent vertices u and v. Král’ et al. [37] proved
that Colouring on H-free graphs is polynomial-time solvable if H is an induced subgraph
of P4 or P1 + P3 and NP-complete otherwise. Here, Pn denotes the n-vertex path and
G1 +G2 = (V (G1)∪ V (G2), E(G1)∪E(G2)) the disjoint union of two vertex-disjoint graphs
G1 and G2. If k is fixed (not part of the input), then we obtain the k-Colouring problem.
No complexity dichotomy is known for k-Colouring if k ≥ 3. In particular, the complexities
of 3-Colouring for Pt-free graphs for t ≥ 8 and k-Colouring for sP4-free graphs for s ≥ 2
and k ≥ 3 are still open. Here, we write sG for the disjoint union of s copies of G. We refer
to the survey of Golovach et al. [27] for further details and to [13, 36] for updated summaries.

For a colouring c of a graph G, a colour class consists of all vertices of G that are mapped
by c to a specific colour i. We consider the following special graph colourings. A colouring of
a graph G is acyclic if the union of any two colour classes induces a forest. The (r+ 1)-vertex
star K1,r is the graph with vertices u, v1, . . . , vr and edges uvi for every i ∈ {1, . . . , r}. An
acyclic colouring is a star colouring if the union of any two colour classes induces a star
forest, that is, a forest in which each connected component is a star. A star colouring is
injective (or an L(1, 1)-labelling) if the union of any two colour classes induces an sP1 + tP2
for some integers s ≥ 0 and t ≥ 0. An alternative definition is to say that all the neighbours
of every vertex of G are uniquely coloured. These definitions lead to the following three
decision problems:

Acyclic Colouring
Instance: A graph G and an integer k ≥ 1
Question: Does G have an acyclic k-colouring?

Star Colouring
Instance: A graph G and an integer k ≥ 1
Question: Does G have a star k-colouring?

Injective Colouring
Instance: A graph G and an integer k ≥ 1
Question: Does G have an injective k-colouring?

If k is fixed, we write Acyclic k-Colouring, Star k-Colouring and Injective k-
Colouring, respectively.

All three problems have been extensively studied. We note that in the literature on
the Injective Colouring problem it is often assumed that two adjacent vertices may be
coloured alike by an injective colouring (see, for example, [29, 30, 33]). However, in our

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:3

paper, we do not allow this; as reflected in their definitions we only consider colourings that
are proper. This enables us to compare the results for the three different kinds of colourings
with each other.

So far, systematic studies mainly focused on structural characterizations, exact values,
lower and upper bounds on the minimum number of colours in an acyclic colouring or
star colouring (i.e., the acyclic and star chromatic number); see, e.g., [2, 9, 19, 20, 21, 34,
35, 50, 51, 53], to name just a few papers, whereas injective colourings (and the injective
chromatic number) were mainly considered in the context of the distance constrained labelling
framework (see the survey [11] and Section 6 therein). The problems have also been studied
from a complexity perspective, but apart from a study on Acyclic Colouring for graphs
of bounded maximum degree [45], known results are scattered and relatively sparse. We
perform a systematic and comparative complexity study by focusing on the following research
question both for k part of the input and for fixed k:
What are the computational complexities of Acyclic Colouring, Star Colouring and
Injective Colouring for H-free graphs?
Before discussing our new results and techniques, we first briefly discuss some known results.

Coleman and Cai [14] proved that for every k ≥ 3, Acyclic k-Colouring is NP-complete
for bipartite graphs. Afterwards, a number of hardness results appeared for other hereditary
graph classes. Alon and Zaks [3] showed that Acyclic 3-Colouring is NP-complete for line
graphs of maximum degree 4. Angelini and Frati [4] showed that Acyclic 3-Colouring
is NP-complete for planar graphs of maximum degree 4. Mondal et al. [45] proved that
Acyclic 4-Colouring is NP-complete for graphs of maximum degree 5 and for planar
graphs of maximum degree 7. Albertson et al. [1] and recently, Lei et al. [38] proved that
Star 3-Colouring is NP-complete for planar bipartite graphs and line graphs, respectively.
Bodlaender et al. [7], Sen and Huson [48] and Lloyd and Ramanathan [41] proved that
Injective Colouring is NP-complete for split graphs, unit disk graphs and planar graphs,
respectively. Mahdian [44] proved that for every k ≥ 4, Injective k-Colouring is NP-
complete for line graphs, whereas Injective 4-Colouring is known to be NP-complete for
cubic graphs (see [11]); observe that Injective 3-Colouring is trivial for general graphs.

On the positive side, Lyons [43] showed that every acyclic colouring of a P4-free graph
is, in fact, a star colouring. Lyons [43] also proved that Acyclic Colouring and Star
Colouring are polynomial-time solvable for P4-free graphs; we note that Injective
Colouring is trivial for P4-free graphs, as every injective colouring must assign each vertex
of a connected P4-free graph a unique colour. The results of Lyons have been extended to
P4-tidy graphs and (q, q− 4)-graphs [40]. Cheng et al. [12] complemented the aforementioned
result of Alon and Zaks [3] by proving that Acyclic Colouring is polynomial-time solvable
for claw-free graphs of maximum degree at most 3. Calamoneri [11] observed that Injective
Colouring is polynomial-time solvable for comparability and co-comparability graphs. Zhou
et al. [52] proved that Injective Colouring is polynomial-time solvable for graphs of
bounded treewidth (which is best possible due to the W[1]-hardness result of Fiala et al. [22]).

Our Complexity Results and Methodology

The girth of a graph G is the length of a shortest cycle of G (if G is a forest, then its girth
is ∞). To answer our research question we focus on two important graph classes, namely
the classes of graphs of high girth and line graphs, which are interesting classes on their
own. If a problem is NP-complete for both classes, then it is NP-complete for H-free graphs
whenever H has a cycle or a claw. It then remains to analyze the case when H is a linear
forest, i.e., a disjoint union of paths; see [8, 10, 25, 37] for examples of this approach, which
we discuss in detail below.

ESA 2020

22:4 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

The construction of graph families of high girth and large chromatic number is well
studied in graph theory (see, e.g. [18]). To prove their complexity dichotomy for Colouring
on H-free graphs, Král’ et al. [37] first showed that for every integer g ≥ 3, 3-Colouring is
NP-complete for the class of graphs of girth at least g. This approach can be readily extended
to any integer k ≥ 3 [17, 42]. The basic idea is to replace edges in a graph by graphs of high
girth and large chromatic number, such that the resulting graph has sufficiently high girth
and is k-colourable if and only if the original graph is so (see also [28, 32]).

By a more intricate use of the above technique we are able to prove that for every g ≥ 3,
Acyclic 3-Colouring is NP-complete for the class of graphs of girth at least g. This
implies that Acyclic 3-Colouring is NP-complete for H-free graphs whenever H has a
cycle. We prove the same result for every k ≥ 4 by combining known results, just as we
use known results to prove that Star k-Colouring (k ≥ 3) and Injective k-Colouring
(k ≥ 4) are NP-complete for H-free graphs if H has a cycle.

A classical result of Holyer [31] is that 3-Colouring is NP-complete for line graphs
(and Leven and Galil [39] proved the same for k ≥ 4). As line graphs are claw-free, Král’ et
al. [37] used Holyer’s result to show that 3-Colouring is NP-complete for H-free graphs
whenever H has an induced claw. For Acyclic 3-Colouring, this follows from Alon and
Zaks’ result [3], which we extend to work for k ≥ 4. For Injective k-Colouring (k ≥ 4)
we can use the aforementioned result on line graphs of Mahdian [44].

The above hardness results leave us to consider the case where H is a linear forest. In
Section 2 we will use a result of Atminas et al. [5] to prove a general result from which it
follows that for fixed k, all three problems are polynomial-time solvable for H-free graphs if
H is a linear forest. Hence, we have full complexity dichotomies for the three problems when
k is fixed. However, these positive results do not extend to the case where k is part of the
input: we prove NP-completeness for graphs that are Pr-free for some small value of r or
have a small independence number, i.e., that are sP1-free for some small integer s.

Our complexity results for H-free graphs are summarized in the following three theorems,
proven in Sections 3–5, respectively; see Table 1 for a comparison. For two graphs F and G,
we write F ⊆i G or G ⊇i F to denote that F is an induced subgraph of G.

I Theorem 1. Let H be a graph. For the class of H-free graphs it holds that:
(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H is

not a forest or H ⊇i 19P1, 3P3 or 2P5;
(ii) For every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H is a linear

forest and NP-complete otherwise.

I Theorem 2. Let H be a graph. For the class of H-free graphs it holds that:
(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete for any

H 6= 2P2.
(ii) For every k ≥ 3, Star k-Colouring is polynomial-time solvable if H is a linear forest

and NP-complete otherwise.

I Theorem 3. Let H be a graph. For the class of H-free graphs it holds that:
(i) Injective Colouring is polynomial-time solvable if H ⊆i P4 or H ⊆i P1 + P3 and

NP-complete if H is not a forest or 2P2 ⊆i H or 6P1 ⊆i H.
(ii) For every k ≥ 4, Injective k-Colouring is polynomial-time solvable if H is a linear

forest and NP-complete otherwise.
In Section 6 we give a number of open problems that resulted from our systematic study; in
particular we will discuss the distance constrained labelling framework in more detail.

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:5

Table 1 The state-of-the-art for the three problems in this paper and the original Colouring
problem; both when k is fixed and when k is part of the input.

polynomial time NP-complete
Colouring [37] H ⊆i P4 or P1 + P3 else
Acyclic Colouring H ⊆i P4 else except for at most 1991 open cases
Star Colouring H ⊆i P4 else except for 1 open case
Injective Colouring H ⊆i P4 or P1 + P3 else except for 10 open cases
k-Colouring (see [13, 27, 36]) depends on k infinitely many open cases for all k ≥ 3
Acyclic k-Colouring (k ≥ 3) H is a linear forest else
Star k-Colouring (k ≥ 3) H is a linear forest else
Injective k-Colouring (k ≥ 4) H is a linear forest else

2 A General Polynomial Result

A biclique or complete bipartite graph is a bipartite graph on vertex set S ∪ T , such that
S and T are independent sets and there is an edge between every vertex of S and every
vertex of T ; if |S| = s and |T | = t, we denote this graph by Ks,t , and if s = t, the biclique is
balanced and of order s. We say that a colouring c of a graph G satisfies the balance biclique
condition (BB-condition) if c uses at least k + 1 colours to colour G, where k is the order of
a largest biclique that is contained in G as a (not necessarily induced) subgraph.

Let π be some colouring property; e.g., π could mean being acyclic, star or injective.
Then π can be expressed in MSO2 (monadic second-order logic with edge sets) if for every
k ≥ 1, the graph property of having a k-colouring with property π can be expressed in MSO2.
The general problem Colouring(π) is to decide, on a graph G and integer k ≥ 1, if G has a
k-colouring with property π. If k is fixed, we write k-Colouring(π). We now prove the
following result.

I Theorem 4. Let H be a linear forest, and let π be a colouring property that can be expressed
in MSO2, such that every colouring with property π satisfies the BB-condition. Then, for
every integer k ≥ 1, k-Colouring(π) is linear-time solvable for H-free graphs.

Proof. Atminas, Lozin and Razgon [5] proved that that for every pair of integers ` and k,
there exists a constant b(`, k) such that every graph of treewidth at least b(`, k) contains an
induced P` or a (not necessarily induced) biclique Kk,k. Let G be an H-free graph, and let `
be the smallest integer such that H ⊆i P`; observe that ` is a constant. Hence, we can use
Bodlaender’s algorithm [6] to test in linear time if G has treewidth at most b(`, k)− 1.

First suppose that the treewidth of G is at most b(`, k)− 1. As π can be expressed in
MSO2, the result of Courcelle [15] allows us to test in linear time whether G has a k-colouring
with property π. Now suppose that the treewidth of G is at least b(`, k). As G is H-free, G is
P`-free. Then, by the result of Atminas, Lozin and Razgon [5], we find that G contains Kk,k

as a subgraph. As π satisfies the BB-condition, G has no k-colouring with property π. J

We now apply Theorem 4 to obtain the polynomial cases for fixed k in Theorem 1–3.

I Corollary 5. Let H be a linear forest. For every k ≥ 1, Acyclic k-Colouring, Star
k-Colouring and Injective k-Colouring are polynomial-time solvable for H-free graphs.

Proof. All three kinds of colourings use at least s colours to colour Ks,s (as the vertices
from one bipartition class of Ks,s must receive unique colours). Hence, every acyclic, star
and injective colouring of every graph satisfies the BB-condition. Moreover, it is readily seen
that the colouring properties of being acyclic, star or injective can all be expressed in MSO2.
Hence, we may apply Theorem 4. J

ESA 2020

22:6 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

3 Acyclic Colouring

In this section, we prove Theorem 1. For a graph G and a colouring c, the pair (G, c) has a
bichromatic cycle C if C is a cycle of G with |c(V (C)| = 2, i.e., the vertices of C are coloured
by two alternating colours (so C is even). A path P in G is an i-j-path if the vertices of P
have alternating colours i and j. We now prove the following result.

I Lemma 6. For every g ≥ 3, Acyclic 3-Colouring is NP-complete for graphs of girth at
least g.

Proof. We reduce from Acyclic 3-Colouring, which is known to be NP-complete [14].
We start by taking a graph F that has a 4-colouring but no 3-colouring and that is of girth
at least g. By a seminal result of Erdős [18], such a graph F exists (and its size is constant,
as it only depends on g which is a fixed integer). We now repeatedly remove edges from F

until we obtain a graph F ′ that is acyclically 3-colourable. Let xy be the last edge that we
removed. As F has no 3-colouring, the edge xy exists. Moreover, by our construction, the
graph F ′ + xy is not acyclically 3-colourable. As edge deletions do not decrease the girth,
F ′ + xy and F ′ have girth at least g.

The basic idea (Case 1) is as follows. Let G be an instance of Acyclic 3-Colouring.
We pick an edge uv ∈ E(G). In G− uv we “glue” F ′ by identifying u with x and y with v;
see also Figure 1. We then prove that G has an acyclic 3-colouring if and only if G′ has an
acyclic 3-colouring. Then, by performing the same operation for each other edge of G as well,
we obtain a graph G′′, such that G has an acyclic 3-colouring if and only if G′′ has so. As
the size of G′′ is polynomial in the size of G and the girth of G′′ is at least g, we have proven
the theorem. The challenge in this technique is that we do not know how the graph F ′ looks.
We can only prove its existence and therefore have to consider several possibilities for the
properties of the acyclic 3-colourings of F ′. Hence, we distinguish between Cases 1–3, 4a,
and 4b.

u = x

v = y

G− uv F ′

Figure 1 The graph G′ from Case 1.

Case 1: Every acyclic 3-colouring of F ′ assigns different colours to x and y.
We construct the graph G′ as described above and in Figure 1. We claim that G is a
yes-instance of Acyclic 3-Colouring if and only if G′ is a yes-instance of Acyclic
3-Colouring.

First suppose that G has an acyclic 3-colouring c. Let c∗ be an acyclic 3-colouring of F ′.
We may assume without loss of generality that c(u) = c∗(x) and c(v) = c∗(y). Hence, we
can define a vertex colouring c′ of G′ with c′(w) = c(w) if w ∈ V (G) and c′(w) = c∗(w) if
w ∈ V (F ′). As c and c∗ are 3-colourings of G and F ′, respectively, c′ is a 3-colouring of G′.
We claim that c′ is acyclic. For contradiction, assume that (G′, c′) has a bichromatic cycle C.
If all edges of C are in G or all edges of C are in F ′, then (G, c) or (F ′, c∗) has a bichromatic

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:7

cycle, which is not possible as c and c∗ are acyclic. Hence, at least one edge of C belongs to
G and at least one edge of C belongs to F ′. This means that C contains both u = x and
v = y. Recall that G contains the edge uv. Consequently, (G, c) has a bichromatic cycle,
namely the cycle induced by V (C) ∩ V (G), a contradiction.

Now suppose that G′ has an acyclic 3-colouring c′. Let c and c∗ be the restrictions of
c′ to V (G) and V (F ′), respectively. Then c and c∗ are acyclic 3-colourings of G− uv and
F ′, respectively. By our assumption and because c∗ is an acyclic 3-colouring of F ′, we find
that c∗(x) 6= c∗(y), or equivalently, c(u) 6= c(v). This means that c is also a 3-colouring of G
and c∗ is also a 3-colouring of F ′ + xy. We claim that c is acyclic on G. For contradiction,
assume that (G, c) has a bichromatic cycle C. As c is an acyclic 3-colouring of G− uv, we
deduce that C must contain the edge uv = xy. As F ′ + xy has no acyclic 3-colouring by
construction and c∗ is a 3-colouring of F ′ + xy, we find that (F ′ + xy, c∗) has a bichromatic
cycle D. As c∗ is an acyclic 3-colouring of F ′, this means that D contains the edge xy = uv.
However, then (G′, c′) has a bichromatic cycle, namely the cycle induced by V (C) ∪ V (D), a
contradiction.

Let F ∗ be the graph obtained from F ′ by adding a new vertex x′ and edges xx′ and x′y. As
F ′ + xy has girth at least g, we find that F ∗ and F ∗ − x′y have girth at least g. As x′ has
degree 1 in F ∗ − x′y and F ′ has an acyclic 3-colouring, F ∗ − x′y has an acyclic 3-colouring.

u = x′

v = y

G− uv F ′

x

Figure 2 The graph G′ from Case 2.

Case 2: All acyclic 3-colourings of F ′ assign the same colour to x and y and F ∗ has no
acyclic 3-colouring.

In this case we let G′ be the graph obtained from G − uv and F ∗ − x′y by identifying u
with x′ and v with y; see also Figure 2. We claim that G is a yes-instance of Acyclic
3-Colouring if and only if G′ is a yes-instance of Acyclic 3-Colouring.

First suppose that G has an acyclic 3-colouring c. Let c∗ be an acyclic 3-colouring
of F ∗ − x′y. Then the restriction of c∗ to F ′ is an acyclic 3-colouring of F ′. By our
assumption, it holds therefore that c∗(x) = c∗(y) and thus c∗(x′) 6= c∗(y). We may assume
without loss of generality that c(u) = c∗(x′) and c(v) = c∗(y). Hence, we can define a vertex
labelling c′ of G′ with c′(w) = c(w) if w ∈ V (G) and c′(w) = c∗(w) if w ∈ V (F ∗). As c and
c∗ are 3-colourings of G and F ∗ − x′y, respectively, c′ is a 3-colouring of G′. We claim that
c′ is acyclic. For contradiction, assume that (G′, c′) has a bichromatic cycle C. If the edges
of C are all in G or all in F ∗ − x′y, then (G, c) or (F ∗ − x′y, c∗) has a bichromatic cycle,
which is not possible as c and c∗ are acyclic. Hence, at least one edge of C belongs to G and
at least one edge of C belongs to F ′. This means that C contains both u = x′ and v = y.
Recall that G contains the edge uv. Consequently, (G, c) has a bichromatic cycle, namely
the cycle induced by V (C) ∩ V (G), a contradiction.

ESA 2020

22:8 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

Now suppose that G′ has an acyclic 3-colouring c′. Let c and c∗ be the restrictions of
c′ to V (G − uv) and V (F ∗ − x′y), respectively. Then c and c∗ are acyclic 3-colourings of
G − uv and F ∗ − x′y, respectively. Moreover, the restriction of c′ to V (F ′) is an acyclic
3-colouring of F ′. By our assumption, this means that c′(x) = c′(y) and thus c∗(x′) 6= c∗(y),
or equivalently, c(u) 6= c(v). Consequently, c is also a 3-colouring of G and c∗ is also a
3-colouring of F ∗. We claim that c is acyclic. For contradiction, assume that (G, c) has a
bichromatic cycle C. As c is an acyclic 3-colouring of G−uv, we deduce that C must contain
the edge uv = x′y. As F ∗ does not have an acyclic 3-colouring by our assumption and c∗
is a 3-colouring of F ∗, we find that (F ∗, c∗) has a bichromatic cycle D. As c∗ is an acyclic
3-colouring of F ∗ − x′y, this means that D must contain the edge x′y = uv. However, then
(G′, c′) has a bichromatic cycle, namely the cycle induced by V (C)∪ V (D), a contradiction.

G− uv

u = x1

y1

v = y2

x2

F ′
2

F ′
1

Figure 3 The graph G′ with the graph F + from Case 3 (before we recursively repeat g times the
operation of placing the graph F + on the y1x2-edge).

Case 3: All acyclic 3-colourings of F ′ assign the same colour to x and y and F ∗ has an
acyclic 3-colouring.

We first construct a new graph F+ as follows. We take the disjoint union of two copies F ′1
and F ′2 of F ′, where we denote the vertices x and y as x1 and y1 in F ′1 and as x2 and y2 in
F ′2. We add edges x1x2, x2y1, and y1y2 to F ′1 + F ′2; see also Figure 3.

We claim that F+ has an acyclic 3-colouring. First, observe that F+ is the union of
two copies of F ∗ sharing exactly one edge, namely y1x2. That is, F ′1 + x1x2, y1x2 and
F ′2 + y1y2, y1x2 are both isomorphic to F ∗. By our assumption on F ∗, graphs F ′1 +x1x2, x2y1
and F ′2 + y1y2, y1x2 have acyclic 3-colourings c1 and c2, respectively. By our assumption on
F ′, the restriction of c1 to F ′1 gives x1, y1 the same colour and the restriction of c2 to F ′2 gives
x2 and y2 the same colour. We may assume without loss of generality that c1 assigns colour 1
to x1 and y1 and colour 2 to x2, and that c2 assigns colour 2 to x2 and y2 and colour 1
to y1. This yields a 3-colouring c+ of F+. We claim that c+ is acyclic. For contradiction,
suppose (F+, c+) has a bichromatic cycle C. As the restrictions of c+ to F ′1 + x1x2, y1x2
and F ′2 + y1y2, y1x2 (the 3-colourings c1 and c2) are acyclic, C must contain the edges x1x2
and y1y2, so C has the chord y1x2. Hence, (F ′1 + x1x2, y1x2, c1) has a bichromatic cycle on
vertex set (V (C) \ V (F2)) ∪ {x2}, a contradiction.

We now essentially reduce to Case 1. Set x = x1, y = y2 and take the graph F+. We
proved above that F+ has an acyclic 3-colouring. As every acyclic 3-colouring c of F+ colours
x1 and y1 alike, c colours x = x1 and y = y2 differently (as y1x2 is an edge). Finally, the
graph F+ +xy = F+ +x1y2 has no acyclic 3-colouring, as for every 3-colouring c of F+ +x1y2,
the 4-vertex cycle x1x2y1y2x1 is bichromatic for (F+ + x1y2, c). The only difference with
Case 1 is that the graph F+ + x1y2 has girth 4 due to the cycle x1x2y1y2x1 whereas we need
the girth to be at least g just as the graph F ′ + xy in Case 1 has girth g. Hence, before
reducing to Case 1, we first recursively repeat g times the operation of placing the graph F+

on the y1x2-edge; note that the size of the resulting graph G′ is still polynomial in the size
of G.

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:9

Case 4: There exist acyclic 3-colourings c1 and c2 of F ′ with c1(x) = c1(y) and c2(x) 6= c2(y).
We first construct a new graph J . We take two disjoint copies F ′1 and F ′2 of F ′ and identify
the two x-vertices with each other and also the two y-vertices with each other. We write
x = x1 = x2 and y = y1 = y2; see also Figure 4 (left).

x

y

F ′
1 F ′

2

J J ′ x = x1

y

F ′
1 F ′

2

x2

Figure 4 The graph J from Case 4 (left) and the graph J ′ from Case 4b (right).

We distinguish between two sub-cases.

Case 4a: J has an acyclic 3-colouring.
Our goal is to reduce either to Case 2 or 3 by using J instead of F ′. We first observe that
J and J + xy have girth at least g. We also note that J + xy has no acyclic 3-colouring,
as otherwise F ′ + xy, being an induced subgraph of J + xy, has an acyclic 3-colouring.
Hence, in order to reduce to Case 2 or 3 it remains to show that every acyclic 3-colouring
of J assigns the same colour to x and y. For contradiction, suppose that J has an acyclic
3-colouring c such that c(x) 6= c(y), say c(x) = 1 and c(y) = 2. Then in at least one of the
two subgraphs F ′1 and F ′2 of J , say F ′1, there exists no 1-2 path from x to y; otherwise (J, c)
has a bichromatic cycle formed by the union of the two 1-2-paths, which is not possible as c
is acyclic. Let c′ be the restriction of c to V (F ′1). Then, as c(x) = 1 and c(y) = 2, we find
that c′ is a 3-colouring of F ′1 + xy. As there is no 1-2 path from x to y in F ′1, we find that c′
is even an acyclic 3-colouring of F ′1 + xy, a contradiction (recall that F ′ + xy has no acyclic
3-colouring by construction).

Case 4b: J has no acyclic 3-colouring.
By assumption, F ′ has an acyclic 3-colouring that gives x and y different colours. We first
prove a claim.1

B Claim 1. For every triple (h, i, j) with {h, i, j} = {1, 2, 3}, every acyclic 3-colouring c of
F ′ with c(x) = c(y) = h yields an h-i path and h-j path from x to y.

We prove Claim 1 as follows. For contradiction, suppose that F ′ has an acyclic 3-colouring c
that colours x and y alike, say c(x) = c(y) = 1, such that F ′ contains no 1-2-path or no
1-3-path, say F ′ contains no 1-2-path from x to y. Then by swapping colours 2 and 3, we
obtain another acyclic 3-colouring c′ of F ′ such that F ′ contains no 1-3-path from x to y. In
J we now colour the vertices of F ′1 by c and the vertices of F ′2 by c′. As c(x) = c(x′) = 1 and
c(y) = c(y′) = 1, this yields a 3-colouring cJ . By assumption, cJ is not acyclic. Hence, (J, cJ)
contains a bichromatic cycle C with colours 1 and i for some i ∈ {2, 3}. As the restrictions
of cJ to F ′1 and F ′2 are acyclic, C must contain at least one vertex of V (F ′1) \ {x, y} and
at least one vertex of V (F ′2) \ {x, y}. Thus C consists of 1-i-paths from x to y in both F ′1
and F ′2. As at least one of these paths is missing in F ′1 or F ′2, this yields a contradiction.

1 Claim 1 only holds for k = 3 and is the reason we cannot generalize Lemma 6 to k ≥ 3.

ESA 2020

22:10 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

We now construct a new graph J ′ as follows. We take two disjoint copies F ′1 and F ′2 of F ′
and still identify y1 and y2 as y, but instead of identifying x1 and x2 we add an edge between
x1 and x2; see also Figure 4 (right).
We now prove some more claims that will enable us to reduce to Case 1.

(i) The graphs J ′ and J ′ + x1y have girth at least g.
This follows directly from the fact that respectively, F ′ and F ′ + xy have girth at least g.

(ii) The graph J ′ + x1y has no acyclic 3-colouring.
This follows directly from the fact that F ′ + xy is an induced subgraph of J ′ + x1y and has
no acyclic 3-colouring by construction.

(iii) The graph J ′ has an acyclic 3-colouring.
This can be seen as follows. By assumption, F ′ has an acyclic 3-colouring c that gives x and
y different colours, say c(x) = 1 and c(y) = 3. By swapping colours 1 and 2 we obtain an
acyclic 3-colouring c′ of F ′ with c′(x) = 2 and c′(y) = 3. As c(y) = c′(y) = 3, this yields a
3-colouring cJ′ of J ′. As the restrictions of cJ′ to F ′1 and F ′2 are acyclic, any bichromatic
cycle of (J ′, cJ′) must pass through x1, x2 and y. However, x1, x2 and y have colours 1, 2, 3,
respectively. Hence, this is not possible.

(iv) Every acyclic 3-colouring of J ′ gives x1 and y different colours.
For contradiction, assume J ′ has an acyclic 3-colouring c that colours x1 and y alike, say
c(x1) = c(y) = 1 and c(x2) = 2. The restriction of c to V (F ′1) is an acyclic 3-colouring of F ′1
that gives x1 and y colour 1. Hence, by Claim 1, F ′1 contains a 1-2 path from x1 to y. The
restriction of c′ to V (F ′2) is an acyclic 3-colouring of F ′2 that gives x2 colour 2 and y colour 1.
Then F ′2 must contain a 1-2 path from x2 to y; otherwise we found an acyclic 3-colouring of
F ′2 + x2y, which is not possible by construction. The two 1-2 paths now form, with the edge
x1x2, a bichromatic cycle of (J ′, c). As c is acyclic, this is not possible.

By (i)-(iv) we may take J ′ with x1 and y instead of F ′ with x and y and reduce to Case 1. J

The line graph of a graph G has vertex set E(G) and an edge between two vertices e and f if
and only if e and f share an end-vertex of G. In Lemma 7 we modify the construction of [3]
for line graphs from k = 3 to k ≥ 3. In Lemma 8 we give a new construction for proving
hardness when k is part of the input.

I Lemma 7. For every k ≥ 3, Acyclic k-Colouring is NP-complete for line graphs.

Proof. For an integer k ≥ 1, a k-edge colouring of a graph G = (V,E) is a mapping
c : E → {1, . . . , k} such that c(e) 6= c(f) whenever the edges e and f share an end-vertex.
A colour class consists of all edges of G that are mapped by c to a specific colour i. The
pair (G, c) has a bichromatic cycle C if C is a cycle of G with its edges coloured by two
alternating colours. The notion of a bichromatic path is defined in a similar manner. We say
that c is acyclic if (G, c) has no bichromatic cycle. For a fixed integer k ≥ 1, the Acyclic
k-Edge Colouring problem is to decide if a given graph has an acyclic k-edge colouring.
Alon and Zaks proved that Acyclic 3-Edge Colouring is NP-complete for multigraphs.
We note that a graph has an acyclic k-edge colouring if and only if its line graph has an
acyclic k-colouring. Hence, it remains to generalize the construction of Alon and Zaks [3]
from k = 3 to k ≥ 3. Our main tool is the gadget graph Fk, depicted in Figure 5, about
which we prove the following two claims.
(i) The edges of Fk can be coloured acyclically using k colours, with no bichromatic path

between v1 and v14.
(ii) Every acyclic k-edge colouring of Fk using k colours assigns e1 and e2 the same colour.

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:11

v1 v2

v3 v5

v4 v6

v7 v8

v9

v10

v11

v12

v13 v14
e1 e2

(k − 2)

(k − 2)

(k − 2)
(k − 2)

(k − 2)

Figure 5 The gadget multigraph Fk. The labels on edges are multiplicities.

We first prove (ii). We assume, without loss of generality, that v1v2 is coloured by 1, v2v4
by 2 and the edges between v2 and v3 by colours 3, . . . , k. The edge v3v5 has to be coloured
by 1, otherwise we have a bichromatic cycle on v2v3v5v4. This necessarily implies that

the edges between v4 and v5 are coloured by 3, . . . , k,
the edge v5v7 is coloured by 2,
the edge v4v6 is coloured by 1,
the edges between v6 and v7 are coloured by 3, . . . , k, and
the edge v7v8 is coloured by 1.

Now assume that the edge v8v9 is coloured by a ∈ {2, . . . , k} and the edges between v8 and
v10 by colours from the set A, where A = {2, . . . , k} \ a. The edge v10v11 is either coloured a
or 1. However, if it is coloured 1, v9v11 is assigned a colour b ∈ A and necessarily we have
either a bichromatic cycle on v8v9v11v13v12v10, coloured by b and a, or a bichromatic cycle
on v10v11v13v12, coloured by a and 1. Thus v10v11 is coloured by a. To prevent a bichromatic
cycle on v8v9v11v10, the edge v9v11 is assigned colour 1. The rest of the colouring is now
determined as v10v12 has to be coloured by 1, the edges between v11 and v13 by A, v12v13 by
a, and v13v14 by 1. We then have a k-colouring with no bichromatic cycles of size at least
3 in Fk for every possible choice of a. This proves that v1v2 and v13v14 are coloured alike
under every acyclic k-edge colouring.

We prove (i) by choosing a different from 2. Then there is no bichromatic path between
v1 and v14.

We now reduce from k-Edge-Colouring to Acyclic k-Edge Colouring as follows.
Given an instance G of k-edge Colouring we construct an instance G′ of Acyclic
k-Edge Colouring by replacing each edge uv in G by a copy of Fk where u is identified
with v1 and v is identified with v14.

If G′ has an acyclic k-edge colouring c′ then we obtain a k-edge colouring c of G by
setting c(uv) = c′(e1) where e1 belongs to the gadget Fk corresponding to the edge uv. If
G has a k-edge colouring c then we obtain an acyclic k-edge colouring c′ of G′ by setting
c′(e1) = c(uv) where e1 belongs to the gadget corresponding to the edge uv. The remainder
of each gadget Fk can then be coloured as described above. J

In our next result, k is part of the input.

I Lemma 8. Acyclic Colouring is NP-complete for (19P1, 3P3, 2P5)-free graphs.

Proof. We reduce from 3-Colouring with maximum degree 4 which is known to be NP-
complete [26]. Let G be an instance of 3-Colouring with |V (G)| = n vertices and maximum
degree 4. We will construct an instance G′ of Acyclic Colouring where k = 4n. Our
vertex gadget is built from two k-cliques, J0 and J1, with a matching between them. We
number the vertices of each of the cliques 0 to k − 1. The matching we insert into the graph

ESA 2020

22:12 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

1 2 3 0

0 1 2 3

1 3 0 2

0 1 2 3

2 3 0 1

0 1 2 3

2 0 3 1

0 1 2 3

3 0 1 2

0 1 2 3

3 2 0 1

0 1 2 3

2 3 0 1

0 1 2 3

3 2 1 0

0 1 2 3

1 0 3 2

0 1 2 3

Figure 6 Acyclic colourings in the proof of Lemma 8 for a vertex representing one of the three
colours (left and middle). Sample failures for an acyclic colouring from other permutations of
(0, 1, 2, 3) together with a failure cycle (right). Note that each row of quadruples is joined in a clique.

is (0, 0), . . . , (k− 1, k− 1). In addition, we place an edge from i in J0 to j in J1 if and only if
bi/4c < bj/4c. Suppose that some assignment of colours is given to J0. By recolouring, we
assume it is the identity colouring of i to i on J0. Then the possible acyclic k-colourings of
vertices (bi/4c+ 0, bi/4c+ 1, bi/4c+ 2, bi/4c+ 3) in J1 are

(bi/4c+ 1, bi/4c+ 2, bi/4c+ 3, bi/4c+ 0),
(bi/4c+ 1, bi/4c+ 3, bi/4c+ 0, bi/4c+ 2),
(bi/4c+ 2, bi/4c+ 3, bi/4c+ 1, bi/4c+ 0),
(bi/4c+ 2, bi/4c+ 0, bi/4c+ 3, bi/4c+ 1),
(bi/4c+ 3, bi/4c+ 0, bi/4c+ 1, bi/4c+ 2),
(bi/4c+ 3, bi/4c+ 2, bi/4c+ 0, bi/4c+ 1).

They are built from the permutations of (0, 1, 2, 3) that do not contain a transposition. We
draw all of them, to demonstrate it is not an acyclic colouring, in Figure 6 (keep in mind
that vertices in a row are joined in a clique).

In our reduction, the first two acyclic k-colourings will represent colour 1, the second
two colour 2 and the third two colour 3 of the sought 3-colouring of G. To force similarly
coloured copies of J0 we add a new k-clique J2 with edges from i in J0 to j in J2 if and only
if i < j. To prevent the existence of bichromatic cycles in our later construction, we add
a k-clique J3 with edges from i in J2 to j in J3 if and only if i < j. This enforces that in
any acyclic k-colouring of G′, the i-th vertices (where i ∈ {0, . . . , k − 1}) in cliques J0, J2, J3
would have the same colour. Therefore, by the way we placed the edges between different
cliques from {J0, J2, J3}, there is no bichromatic path with vertices from more than one
clique in {J0, J2, J3}.

We now construct edge gadgets. We take another two k-cliques to join J2, say J4 and
J5. We will want them coloured exactly like J0, so for i in J2 and j in J4 or J5, where
i < j, we will add an edge ij. Suppose we have an edge in G between p and q for some
p, q ∈ {0, . . . , n− 1}. Then we place an edge from the vertex 4p in J1 to 4q + 1 in J3 and
from 4q in J1 to 4p+ 1 in J3 (recall that p, q ∈ {0, . . . , n− 1} and cliques J1 and J3 are of
size 4n, so these edges are well defined). See Figure 7. Now we place an edge from 4p in J1
to 4q + 2 in J4 and of 4q in J1 to 4p+ 2 in J4. Finally, we place an edge from 4p in J1 to
4q + 3 in J5 and from 4q in J1 to 4p+ 3 in J5. This concludes the construction for the edge
pq in E(G).

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:13

J5 7 3

J4 6 2

J3 5 1

J1 • • • • • • • •

J0 0 1 2 3 4 5 6 7

Figure 7 Edge construction in the proof of Lemma 8 between vertices 0 and 1 of G. Everything
in a row is joined in a clique. Edges are omitted between J0 and J3, J4, J5, though they enforce the
colouring.

Suppose we have an edge rs ∈ E(G) so that {p, q} ∩ {r, s} = ∅. Then we build a gadget
for rs using the same additional three cliques that we used for the edge pq. However, if we
have edges with a common endpoint, e.g. pq, ps ∈ E(G), then by adding the edges from 4p
in J1 to 4q + 1 in J3, from 4q in J1 to 4p+ 1 in J3, from 4p in J1 to 4s+ 1 in J3, and from
4s in J1 to 4p+ 1 in J3 we introduce new 4-cycles, one of them induced by the vertices 4q
and 4p in J1 and 4p+ 1 and 4s+ 1 in J3. To avoid this, we add three additional k-cliques to
build the gadget for ps. By Vizing’s Theorem [49], we obtain in polynomial time a 5-edge
colouring of G (as G has maximum degree 4). Using this 5-edge colouring, we build gadgets
for all the edges with at most 5× 3 = 15 additional k-cliques (we use 3 additional cliques for
each colour class).

The clique structure of G′ is drawn in Figure 8. As G′ consists of at most 18 cliques,
G′ is 19P1-free. Furthermore, any induced linear forest where each connected component
has size at least 3 contains vertices in at most five cliques. Hence G′ is (3P3, 2P5)-free. It
remains to prove that G has a 3-colouring if and only if G′ has an acyclic k-colouring.

First, suppose that G′ has an acyclic k-colouring c′. Then each k-clique of G′ has to use
each colour exactly once. We can permute colours so that vertex i in J0 (where 0 ≤ i ≤ 4n−1)
has colour i. It follows from the connections between cliques that the i-th vertices in cliques
J2, . . . , J17 also have colour i and the vertices 4j, 4j + 1, 4j + 2, 4j + 3, (0 ≤ j ≤ n− 1) in J1
have colours from the set {4j, 4j+ 1, 4j+ 2, 4j+ 3}. For each vertex i in G, set c(i) = 1 if the
colours of (4i, 4i+ 1, 4i+ 2, 4i+ 3) in J1 under c′ correspond to one of the first two possible
colourings (listed above); set c(i) = 2 if it corresponds to one of the second two possible
colourings; set c(i) = 3 if it corresponds to one of the last two colourings. We claim that c is
a 3-colouring of G. Suppose that pq is an edge in G with edge gadget using cliques J3, J4, J5.
Since c′ is acyclic and c′ is identity on J3, we have c′(4p) 6= 4p+ 1 in J1 or c′(4q) 6= 4q + 1 in
J1. Both 4p and 4q are the first vertices of the respective quadruples, so p and q are not
both coloured 1. Similarly, the edges going between cliques J1 and J4 ensure that they are
not both coloured 2 and the edges going between cliques J1 and J5 ensure that they are not
both coloured 3. Hence, c(p) 6= c(q) and c is a 3-colouring of G.

ESA 2020

22:14 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

Now suppose G has a 3-colouring c. We construct a labelling c′ of G′ where we colour
each quadruple in J1 corresponding to a vertex of G by the first of each pair of colourings
listed in the table for each of the three colours, respectively. The labelling c′ in other cliques
of G′ is the identity. By the construction of G′ and particularly by the properties of edge
gadgets in G′, we find that c′ is a k-colouring of G′.

Finally, we need to verify that c′ is acyclic. We will begin with bichromatic cycles between
two cliques. No bichromatic cycle can appear in J0 and J1 forming the vertex gadget. This
is due to the edges from the former to the latter always pointing to a higher number (or
the same but here we chose a 3-colouring to avoid such situation). A similar explanation
works for all the clique pairs (0, 2), (2, 3), . . . , (2, 17) in Figure 8. The last possibility is a
bichromatic cycle formed through J1 from one of the cliques J3 to J17. However, such a cycle
would have to pass through an actual edge gadget (where it is forbidden by the 3-colouring)
or through vertices in different edge gadgets, where it must form a cycle with four colours.
Now we need to consider bichromatic cycles passing through three or more cliques, but they
would have to involve a bichromatic path through J0, J2, J3 which is not possible. This
completes the proof. J

J3

J2 J4

J0 J1
...

J17

Figure 8 Connections between cliques in the construction from the proof of Lemma 8.

We combine the above results with results of Coleman and Cai [14] and Lyons [43] to prove
Theorem 1.

I Theorem 1 (restated). Let H be a graph. For the class of H-free graphs it holds that:
(i) Acyclic Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete if H is

not a forest or H ⊇i 19P1, 3P3, 2P5 or P11;
(ii) For every k ≥ 3, Acyclic k-Colouring is polynomial-time solvable if H is a linear

forest and NP-complete otherwise.

Proof. We first prove (ii). First suppose that H contains an induced cycle Cp. If p = 3,
then we use the result of Coleman and Cai [14], who proved that for every k ≥ 3, Acyclic
k-Colouring is NP-complete for bipartite graphs. Suppose that p ≥ 3. If k = 3, then we
let g = p+ 1 and use Lemma 6. If k ≥ 4, we reduce from Acyclic 3-Colouring for graphs
of girth p+ 1 by adding a dominating clique of size k − 3. Now assume H has no cycle so H
is a forest. If H has a vertex of degree at least 3, then H has an induced K1,3. As every
line graph is K1,3-free, we can use Lemma 7. Otherwise H is a linear forest and we use
Corollary 5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4, then
we use the result of Lyons [43] that states that Acyclic Colouring is polynomial-time
solvable for P4-free graphs. If H ⊇i 19P1, 3P3, 2P5 or P11, then we use Lemma 8. J

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:15

v

u

1

2

3

23

31

1 2

Figure 9 The gadget replacing edges uv (on the left) and its natural star 3-colouring (on the
right) in the proof of Lemma 9.

4 Star Colouring

In this section we prove Theorem 2. We first prove the following lemma.

I Lemma 9. Let H be a graph with an even cycle. Then, for every k ≥ 3, Star k-Colouring
is NP-complete for H-free graphs.

Proof. We reduce from 3-Colouring for graphs of girth at least p+ 1. Given an instance G
of this problem, we construct an instance G′ of Star 3-Colouring as follows. Take three
vertex disjoint copies of P3 and form a triangle using one endpoint of each; see Figure 9.
Replace each edge uv in G by this gadget with u and v identified with the non-adjacent
endpoints of two paths. Then G′ is Cp-free since, aside from triangles, the construction
cannot introduce any cycle shorter than those present in G.

We first show that any star 3-colouring of G′ colours u and v differently. Assume not,
their neighbours must be coloured differently since otherwise any 3-colouring of the remainder
of the gadget will result in a bichromatic P4. Without loss of generality, assume that u and v
are coloured 1, the neighbour u′ of u is coloured 2 and the neighbour v′ of v is coloured 3. Let
x be the neighbour of u′ in the triangle and y the neighbour of v′ in the triangle. Neither x
or y can be coloured 1 since this will result in a bichromatic P4. Therefore x is coloured 3, y
is coloured 2 and the third vertex z of the triangle is coloured 1. This is a contradiction since
we have a bichromatic P4 on the vertices u′, x, y, v′. Therefore, we obtain a 3-colouring c of
G by setting c(v) = c′(v) for some star 3-colouring c′ of G′.

We extend a given 3-colouring of G to a star 3-colouring of G′, by locally star 3-colouring
as in the right hand side of Figure 9 (or automorphically). Hence, G is 3-colourable if and
only if G′ is star 3-colourable.

We obtain NP-completeness for k ≥ 4 by a reduction from Star 3-Colouring for Cp-free
graphs by adding a dominating clique of size k − 3. J

In Lemma 10 we extend the recent result of Lei et al. [38] from k = 3 to k ≥ 3. In Lemma 11
we show a result where k is part of the input. A graph is co-bipartite if it is the complement
of a bipartite graph.

v1 v2 v3 v4 v5 v6 v7 v8

v9 v10

. . .

1

k − 2

1

k − 2

. . .

e1 e2

Figure 10 The gadget Fk in the proof of Lemma 10.

ESA 2020

22:16 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

I Lemma 10. For every k ≥ 3, Star k-Colouring is NP-complete for line graphs.

Proof. Recall that for an integer k ≥ 1, a k-edge colouring of a graph G = (V,E) is a
mapping c : E → {1, . . . , k} such that c(e) 6= c(f) whenever the edges e and f share an
end-vertex. Recall also that the notions of a colour class and bichromatic subgraph for
colourings has its natural analogue for edge colourings. An edge k-colouring c is a star
k-edge colouring if the union of any two colour classes induces a star forest. For a fixed
integer k ≥ 1, the Star k-Edge Colouring problem is to decide if a given graph has an
star k-edge colouring. Lei et al. [38] proved that Star 3-Edge Colouring is NP-complete.
Dvořák et al. [16] observed that a graph has a star k-edge colouring if and only if its line
graph has a star k-colouring. Hence, it suffices to follow the proof of Lei et al.[38] in order to
generalize the case k = 3 to k ≥ 3. As such, we give a reduction from k-Edge Colouring
to Star k-Edge Colouring which makes use of the gadget Fk in Figure 10. First we
consider separately the case where the edges e1 = v4v9 and e2 = v5v10 are coloured alike and
the case where they are coloured differently to show that in any star k-edge colouring of the
gadget Fk shown in Figure 10, v1v2 and v7v8 are assigned the same colour.

Assume c(e1) = c(e2) = 1. We may then assume that the edge v4v5 is assigned colour 2
and the remaining k − 2 colours are used for the multiple edges v3v4 and v5v6. The edge
v2v3, and similarly v6v7, must then be assigned colour 1 to avoid a bichromatic P5 on the
vertices {v2, v3, v4, v5, v6} using any two of the multiple edges in a single colour. The edge
v1v2, and similarly v7v8 must then be assigned colour 2 to avoid a bichromatic P5 on the
vertices {v1, v2, v3, v4, v9}.

Next assume e1 and e2 are coloured differently. Without loss of generality, let c(e1) = 1,
c(e2) = 2 and c(v4v5) = 3. The multiple edges v3v4 must then be assigned colours 2
and 4 . . . k and v5v6 colour 1 and colours 4 . . . k. To avoid a bichromatic P5 on the vertices
{v2, v3, v4, v5, v6}, v2v3 must be coloured 1. Similarly, v6v7 must be assigned colour 2. Finally,
to avoid a bichromatic P5 on the vertices {v1, v2, v3, v4, v9}, v1v2 must be coloured 3. By a
similar argument, v7v8 must also be coloured 3, hence v1v2 and v7v8 must be coloured alike.

We can then replace every edge e in some instance G of k-Edge-Colouring by a
copy of Fk, identifying its endpoints with v1 and v8, to obtain an instance G′ of Star
k-Edge-Colouring. If G is k-edge-colourable we can star k-edge-colour G′ by setting
c′(v1v2) = c′(v7v8) = c(e). If G′ is star k-edge-colourable, we obtain a k-edge-colouring of G
by setting c(e) = c′(v1v2). J

We now let k be part of the input. The complement of a graph G is the graph G with vertex
set V (G) and an edge between two vertices u and v if and only if uv /∈ E(G). A k-colouring
of G can be seen as a partition of V (G) into k independent sets. Hence, a k-colouring of G
corresponds to a clique-covering of G, which is a partition of V (G) = V (G) into k cliques. A
graph is co-bipartite if it is the complement of a bipartite graph.

I Lemma 11. Star Colouring is NP-complete for co-bipartite graphs.

Proof. We show that finding an optimal star colouring of a co-bipartite graph G is equivalent
to finding a maximum balanced biclique in its complement G. An optimal star colouring of
G corresponds to an optimal clique-covering of G such that the graph induced by the vertices
of any two cliques in the covering partition is P4 = P4-free and C4 = 2P2-free. Since G is
triangle-free, the clique-covering number of G is n−M where n is the number of vertices of G
and M is the number of edges in a maximum matching such that no two edges induce either
2P2 or P4. Since G is bipartite, a maximum matching of this form is a maximum balanced
biclique. It is NP-complete to find the maximum size of a balanced biclique in a bipartite
graph [26]. Therefore Star Colouring is NP-complete for co-bipartite graphs. J

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:17

We combine the above results with results of Albertson et al. [1] and Lyons [43] to prove
Theorem 2.

I Theorem 2 (restated). Let H be a graph. For the class of H-free graphs it holds that:
(i) Star Colouring is polynomial-time solvable if H ⊆i P4 and NP-complete for any

H 6= 2P2.
(ii) For every k ≥ 3, Star k-Colouring is polynomial-time solvable if H is a linear forest

and NP-complete otherwise.

Proof. We first prove (ii). First suppose that H contains an induced odd cycle. Then the
class of bipartite graphs is contained in the class of H-free graphs. Lemma 7.1 in Albertson
et al. [1] implies, together with the fact that for every k ≥ 3, k-Colouring is NP-complete,
that for every k ≥ 3, Star k-Colouring is NP-complete for bipartite graphs. If H contains
an induced even cycle, then we use Lemma 9. Now assume H has no cycle, so H is a forest.
If H contains a vertex of degree at least 3, then H contains an induced K1,3. As every line
graph is K1,3-free, we can use Lemma 10. Otherwise H is a linear forest, in which case we
use Corollary 5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4, then
we use the result of Lyons [43] that states that Star Colouring is polynomial-time solvable
for P4-free graphs. If 3P1 ⊆i H, then we use Lemma 11 after observing that co-bipartite
graphs are 3P1-free. Otherwise H = 2P2, but this case was excluded from the statement of
the theorem. J

5 Injective Colouring

In this section we prove Theorem 3. We first show three lemmas.

I Lemma 12. For every k ≥ 4, Injective k-Colouring is NP-complete for C3-free graphs.

Proof. We reduce from Injective k-Colouring. Given an instance G of Injective
k-Colouring, construct an instance G′ of Injective k-Colouring for triangle-free graphs
as follows. For each edge uv of G, remove the edge uv and add two vertices u′v adjacent to
u and v′u adjacent to v. Next, place an independent set of k − 2 vertices adjacent to both
u′v and v′u. Then G′ is triangle-free since the edge gadget described is triangle-free, any two
vertices of G are now at distance at least 4 and no vertex not belonging to an edge gadget
has two adjacent neighbours belonging to edge gadgets. We claim that G′ has an injective
k-colouring if and only if G has an injective k-colouring.

First assume that G has an injective k-colouring c. Colour the vertices of G′ corresponding
to vertices of G as they are coloured by c. We can extend this to an injective k-colouring
c′ of G′ by considering the gadget corresponding to each edge uv of G. Set c′(u′v) = c′(v)
and c′(v′u) = c′(u). We can now assign the remaining k − 2 colours to the vertices of the
independent sets. Clearly c′ creates no bichromatic P3 involving vertices in at most one
edge gadget. Assume there exists a bichromatic P3 involving vertices in more than one edge
gadget, then this path must consist of a vertex u of G together with two gadget vertices u′v
and u′w which are coloured alike. This is a contradiction since it implies the existence of a
bichromatic path v, u, w in G.

Now assume that G′ has an injective k-colouring c′. Let c be the restriction of c′ to those
vertices of G′ which correspond to vertices of G. To see that c is an injective colouring of
G, note that we must have c′(u′v) = c′(v) and c′(v′u) = c′(u) for any edge uv. Therefore,
if c induces a bichromatic P3 on u, v, w, then c′ induces a bichromatic P3 on v′u, v, v′w. We
conclude that c is injective. J

ESA 2020

22:18 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

In our next two results, k is part of the input.

I Lemma 13. Injective Colouring is polynomial-time solvable for P4-free graphs and
(P1 + P3)-free graphs.

Proof. Since connected P4-free graphs have diameter at most 2, no two vertices can be
coloured alike in an injective colouring. Hence the injective chromatic number of a P4-free
graph is equal to the number of its vertices.

We now consider (P1 + P3)-free graphs. First, note that an injective colouring of G is
equivalent to a clique-covering of its complement G such that the graph induced by the
vertices of the union of any two clique classes is (P1 + P2)-free (as P3 = P1 + P2). Since G is
(P1 + P3)-free, G is P1 + P3-free. By a result of Olariu [46], each connected component of
G is either triangle-free or complete multi-partite. Let D1, . . . , Dp be the vertex sets of the
connected components of G for some p ≥ 1. Then in G, every Di is complete to every Dj .
Hence, the injective chromatic number of G is the sum of the injective chromatic numbers
of the subgraphs Gi induced by Di (i ∈ {1, . . . , p}). As such, it remains to determine the
injective chromatic number of each Gi, which we do below.

Let 1 ≤ i ≤ p. If Gi is complete multi-partite, then Gi is a disjoint union of cliques and
its injective chromatic number is equal to the size of its largest connected component. In
the other case, Gi is triangle-free. Then each clique class in a clique-covering has size at
most 2, and any clique class of size 2 must dominate the remaining vertices of Gi to avoid a
bichromatic P1 + P2. Thus, the clique-covering is a matching, each edge of which dominates
Gi, together with the remaining vertices which each form clique classes of size 1. Therefore,
we find an optimal (P1 + P2)-free clique-covering of G by finding a maximum matching in
the graph consisting of dominating edges of Gi. The injective chromatic number of Gi is
then the number of vertices of Gi minus the number of edges in such a matching. J

I Lemma 14. Injective Colouring is NP-complete for 6P1-free graphs.

Proof. We first show that Colouring remains NP-complete given a partition of the instance
G into four cliques. The Clique Covering problem is NP-complete for planar graphs [37].
A 4-colouring of a planar graph G can be found in quadratic time [47] and gives a partition
of G into four cliques. Hence, given a planar instance G of clique-covering, we construct an
instance (G, c) of Colouring where c is a 4-colouring of G such that the chromatic number
of G is equal to the clique-covering number of G.

We now give a reduction from this problem to Injective Colouring for 6P1-free graphs.
Given a graph G and a partition c into four cliques C1 . . . C4, let G′ be the graph obtained
from G by deleting those vertices with no neighbours outside of their own clique Ci. Then
G can be coloured with k colours if and only if G′ can be coloured with k colours and the
maximum size of a clique in the partition c of G is at most k. To see this, note that the
vertices of G \G′ then have degree at most k− 1, hence we can greedily colour these vertices
given a k-colouring of G′.

This instance (G′, c) of Colouring given a partition of G′ into four cliques can then
be transformed in polynomial time to an instance G′′ of Injective Colouring as follows.
Add a fifth clique C0 with one vertex ve for each edge e = xy in G′ which has endpoints in
two different cliques of c. For each such edge, replace e by two edges xve and yve. G′ has
a colouring with k colours if and only if G′′ has an injective colouring with k +m colours
where m is the number of edges in G with endpoints in different cliques. To see this, note
that in any injective colouring of G′′, the set of colours used in C0 is disjoint from the set of
those used in the cliques C1 . . . C4. Therefore if G′′ can be injective coloured with m + k

colours then G′ can be coloured with k colours. On the other hand, colour the vertices of

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:19

C1 . . . C4 as they are coloured in some k colouring of G′ and C0 with m further colours. This
is an injective colouring of G′′ since any induced P3 contains either two vertices of C1 or one
vertex of C0 and two vertices adjacent in G′. In either case the path must be coloured with
three distinct colours. This implies that G′′ has an injective colouring with k +m colours if
and only if G′ has a colouring with k colours. J

We combine the above results with results of Bodlaender et al. [7] and Mahdian [44] to prove
Theorem 3.

I Theorem 3 (restated). Let H be a graph. For the class of H-free graphs it holds that:
(i) Injective Colouring is polynomial-time solvable if H ⊆i P4 or H ⊆i P1 + P3 and

NP-complete if H is not a forest or 2P2 ⊆i H or 6P1 ⊆i H.
(ii) For every k ≥ 4, Injective k-Colouring is polynomial-time solvable if H is a linear

forest and NP-complete otherwise.

Proof. We first prove (ii). If C3 ⊆i H, then we use Lemma 12. Now suppose Cp ⊆i H for
some p ≥ 4. Mahdian [44] proved that for every g ≥ 4 and k ≥ 4, Injective k-Colouring
is NP-complete for line graphs of bipartite graphs of girth at least g. These graphs may not
be C3-free but for g ≥ p+ 1 they are Cp-free. Now assume H has no cycle, so H is a forest.
If H contains a vertex of degree at least 3, then H contains an induced K1,3. As every line
graph is K1,3-free, we can use the aforementioned result of Mahdian [44] again. Otherwise
H is a linear forest, in which case we use Corollary 5.

We now prove (i). Due to (ii), we may assume that H is a linear forest. If H ⊆i P4 or
H ⊆i P1 + P3, then we use Lemma 13. Now suppose that 2P2 ⊆i H. Then the class of
(2P2, C4, C5)-free graphs (split graphs) are contained in the class of H-free graphs. Recall
that Bodlaender et al. [7] proved that Injective Colouring is NP-complete for split graphs.
If 6P1 ⊆i H, then we use Lemma 14. J

6 Conclusions

Our complexity study led to three complete and three almost complete complexity classi-
fications (Theorems 1–3). Due to our systematic approach we were able to identify some
interesting open questions for future research, which we collect below.

I Open Problem 1. For k ≥ 4 and g ≥ 4, determine the complexity of Acyclic k-
Colouring for graphs of girth at least g.

For solving Open Problem 1 it would be helpful to have a better understanding of the
structure of the critical graphs used in the proof of Lemma 6. We also aim to prove analogous
results for the other two problems.

I Open Problem 2. For every g ≥ 4, determine the complexities of Star Colouring and
Injective Colouring for graphs of girth at least g.

Naturally we also aim to settle the remaining open cases for our three problems in Table 1.
In particular, there is one case left for Star Colouring.

I Open Problem 3. Determine the complexity of Star Colouring for 2P2-free graphs.

Recall that the other two problems and also Colouring are all NP-complete for 2P2-free
graphs. However, none of the hardness constructions carry over to Star Colouring. In this
context, the next open problem for split graphs ((2P2, C4, C5)-free graphs) is also interesting.

ESA 2020

22:20 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

I Open Problem 4. Determine the complexity of Star Colouring for split graphs.

We proved that Injective Colouring is NP-complete for triangle-free graphs, but the following
problem is still open.

I Open Problem 5. Determine the complexity of Injective Colouring for bipartite
graphs.

Jin et al. [33] proved that the variant of Injective Colouring where adjacent vertices may
be coloured alike is NP-complete for bipartite graphs. However, their hardness construction
does not carry over to Injective Colouring.

Finally, we recall that Injective Colouring is also known as L(1, 1)-labelling. The general
distance constrained labelling problem L(a1, . . . , ap)-Labelling is to decide if a graph G has
a labelling c : V (G)→ {1, . . . , k} for some integer k ≥ 1 such that for every i ∈ {1, . . . , p},
|c(u)− c(v)| ≥ ai whenever u and v are two vertices of distance i in G. If k is fixed, we write
L(a1, . . . , ap)-k-Labelling instead. By applying Theorem 4 we obtain the following result.

I Theorem 15. For all k ≥ 1, a1 ≥ 1, . . . , ak ≥ 1, the L(a1, . . . , ap)-k-Labelling problem
is polynomial-time solvable for H-free graphs if H is a linear forest.

We leave a more detailed and systematic complexity study of problems in this framework
for future work (see, for example, [11, 23, 24] for some complexity results for both general
graphs and special graph classes).

References
1 Michael O. Albertson, Glenn G. Chappell, Henry A. Kierstead, André Kündgen, and Radhika

Ramamurthi. Coloring with no 2-colored P4’s. Electronic Journal of Combinatorics, 11, 2004.
2 Noga Alon, Colin McDiarmid, and Bruce A. Reed. Acyclic coloring of graphs. Random

Structures and Algorithms, 2:277–288, 1991.
3 Noga Alon and Ayal Zaks. Algorithmic aspects of acyclic edge colorings. Algorithmica,

32:611–614, 2002.
4 Patrizio Angelini and Fabrizio Frati. Acyclically 3-colorable planar graphs. Journal of

Combinatorial Optimization, 24:116–130, 2012.
5 Aistis Atminas, Vadim V. Lozin, and Igor Razgon. Linear time algorithm for computing a

small biclique in graphs without long induced paths. Proceedings of SWAT 2012, LNCS,
7357:142–152, 2012.

6 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25:1305–1317, 1996.

7 Hans L. Bodlaender, Ton Kloks, Richard B. Tan, and Jan van Leeuwen. Approximations for
lambda-colorings of graphs. Computer Journal, 47:193–204, 2004.

8 Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël Paulusma.
Independent feedback vertex set for P5-free graphs. Algorithmica, 81:1342–1369, 2019.

9 Oleg V. Borodin. On acyclic colorings of planar graphs. Discrete Mathematics, 25:211–236,
1979.

10 Hajo Broersma, Petr A. Golovach, Daniël Paulusma, and Jian Song. Updating the complexity
status of coloring graphs without a fixed induced linear forest. Theoretical Computer Science,
414:9–19, 2012.

11 Tiziana Calamoneri. The L(h, k)-labelling problem: An updated survey and annotated
bibliography. Computer Journal, 54:1344–1371, 2011.

12 Christine T. Cheng, Eric McDermid, and Ichiro Suzuki. Planarization and acyclic colorings of
subcubic claw-free graphs. Proc. of WG 2011, LNCS, 6986:107–118, 2011.

J. Bok, N. Jedlic̆ková, B. Martin, D. Paulusma, and S. Smith 22:21

13 Maria Chudnovsky, Shenwei Huang, Sophie Spirkl, and Mingxian Zhong. List-three-coloring
graphs with no induced P6 + rP3. CoRR, abs/1806.11196, 2018. arXiv:1806.11196.

14 Thomas F. Coleman and Jin-Yi Cai. The cyclic coloring problem and estimation of sparse
Hessian matrices. SIAM Journal on Algebraic Discrete Methods, 7:221–235, 1986.

15 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation, 85:12–75, 1990.

16 Zdeněk Dvořák, Bojan Mohar, and Robert Šámal. Star chromatic index. Journal of Graph
Theory, 72(3):313–326, 2013.

17 Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely colourable graphs
and the hardness of colouring graphs of large girth. Combinatorics, Probability and Computing,
7:375–386, 1998.

18 Paul Erdős. Graph theory and probability. Canadian Journal of Mathematics, 11:34–38, 1959.
19 Guillaume Fertin, Emmanuel Godard, and André Raspaud. Minimum feedback vertex set and

acyclic coloring. Information Processing Letters, 84:131–139, 2002.
20 Guillaume Fertin and André Raspaud. Acyclic coloring of graphs of maximum degree five:

Nine colors are enough. Information Processing Letters, 105:65–72, 2008.
21 Guillaume Fertin, André Raspaud, and Bruce A. Reed. Star coloring of graphs. Journal of

Graph Theory, 47(3):163–182, 2004.
22 Jiří Fiala, Petr A. Golovach, and Jan Kratochvíl. Parameterized complexity of coloring

problems: Treewidth versus vertex cover. Theoretical Computer Science, 412:2513–2523, 2011.
23 Jiří Fiala, Petr A. Golovach, Jan Kratochvíl, Bernard Lidický, and Daniël Paulusma. Distance

three labelings of trees. Discrete Applied Mathematics, 160:764–779, 2012.
24 Jiří Fiala, Ton Kloks, and Jan Kratochvíl. Fixed-parameter complexity of lambda-labelings.

Discrete Applied Mathematics, 113:59–72, 2001.
25 Esther Galby, Paloma T. Lima, Daniël Paulusma, and Bernard Ries. Classifying k-edge

colouring for H -free graphs. Information Processing Letters, 146:39–43, 2019.
26 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., USA, 1990.
27 Petr A. Golovach, Matthew Johnson, Daniël Paulusma, and Jian Song. A survey on the

computational complexity of colouring graphs with forbidden subgraphs. Journal of Graph
Theory, 84:331–363, 2017.

28 Petr A. Golovach, Daniël Paulusma, and Jian Song. Coloring graphs without short cycles and
long induced paths. Discrete Applied Mathematics, 167:107–120, 2014.

29 Geňa Hahn, Jan Kratochvíl, Jozef Širáň, and Dominique Sotteau. On the injective chromatic
number of graphs. Discrete Mathematics, 256:179–192, 2002.

30 Pavol Hell, André Raspaud, and Juraj Stacho. On injective colourings of chordal graphs. Proc.
LATIN 2008, LNCS, 4957:520–530, 2008.

31 Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing, 10:718–720,
1981.

32 Shenwei Huang, Matthew Johnson, and Daniël Paulusma. Narrowing the complexity gap for
colouring (Cs, Pt)-free graphs. Computer Journal, 58:3074–3088, 2015.

33 Jing Jin, Baogang Xu, and Xiaoyan Zhang. On the complexity of injective colorings and its
generalizations. Theoretical Computer Science, 491:119–126, 2013.

34 Ross J. Kang and Tobias Müller. Frugal, acyclic and star colourings of graphs. Discret. Appl.
Math., 159:1806–1814, 2011.

35 T. Karthick. Star coloring of certain graph classes. Graphs and Combinatorics, 34:109–128,
2018.

36 Tereza Klimošová, Josef Malík, Tomáš Masařík, Jana Novotná, Daniël Paulusma, and Veronika
Slívová. Colouring (Pr + Ps)-free graphs. Proc. ISAAC 2018, LIPIcs, 123:5:1–5:13, 2018.

37 Daniel Král’, Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Complexity of coloring
graphs without forbidden induced subgraphs. Proc. WG 2001, LNCS, 2204:254–262, 2001.

ESA 2020

http://arxiv.org/abs/1806.11196

22:22 Acyclic Colouring, Star Colouring and Injective Colouring for H-Free Graphs

38 Hui Lei, Yongtang Shi, and Zi-Xia Song. Star chromatic index of subcubic multigraphs.
Journal of Graph Theory, 88:566–576, 2018.

39 Daniel Leven and Zvi Galil. NP-completeness of finding the chromatic index of regular graphs.
Journal of Algorithms, 4:35–44, 1983.

40 Cláudia Linhares-Sales, Ana Karolinna Maia, Nícolas A. Martins, and Rudini Menezes Sampaio.
Restricted coloring problems on graphs with few P4’s. Annals of Operations Research, 217:385–
397, 2014.

41 Errol L. Lloyd and Subramanian Ramanathan. On the complexity of distance-2 coloring. Proc.
ICCI 1992, pages 71–74, 1992.

42 Vadim V. Lozin and Marcin Kamiński. Coloring edges and vertices of graphs without short or
long cycles. Contributions to Discrete Mathematics, 2(1), 2007.

43 Andrew Lyons. Acyclic and star colorings of cographs. Discrete Applied Mathematics, 159:1842–
1850, 2011.

44 Mohammad Mahdian. On the computational complexity of strong edge coloring. Discrete
Applied Mathematics, 118:239–248, 2002.

45 Debajyoti Mondal, Rahnuma Islam Nishat, Md. Saidur Rahman, and Sue Whitesides. Acyclic
coloring with few division vertices. Journal of Discrete Algorithms, 23:42–53, 2013.

46 Stephan Olariu. Paw-free graphs. Information Processing Letters, 28:53–54, 1988.
47 Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas. The four-colour

theorem. Journal of Combinatorial Theory, Series B, 70:2–44, 1997.
48 Arunabha Sen and Mark L. Huson. A new model for scheduling packet radio networks.

Wireless Networks, 3:71–82, 1997.
49 Vadim Georgievich Vizing. On an estimate of the chromatic class of a p-graph. Diskret Analiz,

3:25–30, 1964.
50 David R. Wood. Acyclic, star and oriented colourings of graph subdivisions. Discrete

Mathematics and Theoretical Computer Science, 7:37–50, 2005.
51 Xiao-Dong Zhang and Stanislaw Bylka. Disjoint triangles of a cubic line graph. Graphs and

Combinatorics, 20:275–280, 2004.
52 Xiao Zhou, Yasuaki Kanari, and Takao Nishizeki. Generalized vertex-coloring of partial k-trees.

IEICE Transactions on Fundamentals of Electronics, Communication and Computer Sciences,
E83-A:671–678, 2000.

53 Enqiang Zhu, Zepeng Li, Zehui Shao, and Jin Xu. Acyclically 4-colorable triangulations.
Information Processing Letters, 116:401–408, 2016.

An Algorithmic Weakening of the Erdős-Hajnal
Conjecture
Édouard Bonnet
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Stéphan Thomassé
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Xuan Thang Tran
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Rémi Watrigant
Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1, LIP UMR5668, France

Abstract
We study the approximability of the Maximum Independent Set (MIS) problem in H-free graphs
(that is, graphs which do not admit H as an induced subgraph). As one motivation we investigate
the following conjecture: for every fixed graph H, there exists a constant δ > 0 such that MIS can
be n1−δ-approximated in H-free graphs, where n denotes the number of vertices of the input graph.
We first prove that a constructive version of the celebrated Erdős-Hajnal conjecture implies ours.
We then prove that the set of graphs H satisfying our conjecture is closed under the so-called graph
substitution. This, together with the known polynomial-time algorithms for MIS in H-free graphs
(e.g. P6-free and fork-free graphs), implies that our conjecture holds for many graphs H for which
the Erdős-Hajnal conjecture is still open. We then focus on improving the constant δ for some graph
classes: we prove that the classical Local Search algorithm provides an OPT 1− 1

t -approximation
in Kt,t-free graphs (hence a

√
OPT -approximation in C4-free graphs), and, while there is a simple√

n-approximation in triangle-free graphs, it cannot be improved to n 1
4 −ε for any ε > 0 unless

NP ⊆ BPP . More generally, we show that there is a constant c such that MIS in graphs of girth γ
cannot be n

c
γ -approximated. Up to a constant factor in the exponent, this matches the ratio of a

known approximation algorithm by Monien and Speckenmeyer, and by Murphy. To the best of our
knowledge, this is the first strong (i.e., Ω(nδ) for some δ > 0) inapproximability result for Maximum
Independent Set in a proper hereditary class.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Approximation algorithms analysis

Keywords and phrases Approximation, Maximum Independent Set, H-free Graphs, Erdős-Hajnal
conjecture

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.23

Funding This work was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de
Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX- 0007) operated by the French
National Research Agency (ANR).

1 Introduction

An independent set of a (simple, undirected) graph is a set of pairwise non-adjacent vertices.
Independent sets have been central in various research topics, both in algorithmic and
structural graph theory. In structural graph theory, independent sets (and their complements,
cliques) are at the core of several celebrated results, such as Kőnig’s theorem, Ramsey’s
theorem, or Turan’s theorem [8], to name only a few. Finding an independent set of
maximum cardinality (called the Maximum Independent Set problem, or MIS for short)
is a fundamental intractable optimization problem. Indeed, it is NP-hard to solve [21], but

© Édouard Bonnet, Stéphan Thomassé, Xuan Thang Tran, and Rémi Watrigant;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ESA.2020.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 An Algorithmic Weakening of the Erdős-Hajnal Conjecture

also to approximate within ratio n1−ε for any ε > 0 [27, 35], where n denotes the number of
vertices of the input graph (definitions related to approximation algorithms are given at the
end of the section). On the positive side, MIS becomes tractable when restricted to some
specific graph classes: It is polynomial-time solvable in bipartite graphs and more generally
in perfect graphs [22], admits a PTAS in planar graphs [6] and in more general geometric
graph classes such as pseudo-disk graphs [10], bounded genus or H-minor-free graphs [14].
Notice that all the aforementioned graph classes are closed under taking induced subgraphs.
We call hereditary such a class, and add the qualificative proper if it is not the class of all
graphs. A hereditary class can be defined by a (possibly infinite) set of forbidden induced
subgraphs. A potentially unifying framework is to consider the complexity of MIS in H-free
graphs (i.e., graphs without induced copy of H) and H-free graphs (i.e., graphs without
induced copy of any H ∈ H). However, a classical reduction [2, 3] consisting of subdividing
every edge of a given graph G a fixed even number of times 2c leads to a graph G′ such
that α(G′) = α(G) + c|E(G)| (where α(.) denotes the size of a maximum independent set
of a graph). This reduction, together with the fact that MIS remains APX-hard in graphs
of maximum degree at most 3 [5] (which means in particular that we may assume that
α(G) = Ω(|E(G)|) in the reduction) implies the following:

I Theorem 1 ([2, 3] and [5]). For any fixed connected graph H which is neither a path nor
a subdivision of the claw K1,3, MIS is APX-hard in H-free graphs.

On the positive side, polynomial algorithms are known for P6-free graphs [24] and fork-free
graphs [4]. For paths on at least seven vertices and subdivided claws not contained in the
fork, the computational complexity of MIS remains unsettled.

In this work, we start a systematic investigation of the approximability of MIS in H-free
graphs. The intuition is that forbidding a fixed graph H as an induced subgraph should
imply a drastic change in the structure of independent sets and cliques. This idea is at
the core of the Erdős-Hajnal conjecture: while in random graphs of G(n, 1/2) the expected
maximum of the clique number and the independence number is O(logn) [19], this value
should be significantly larger for an H-free graph. More formally:

I Definition 2. A graph H satisfies the Erdős-Hajnal property if there exists a constant δ > 0
such that every H-free graph G with n vertices contains either a clique or an independent set
of size at least nδ.

I Conjecture 3 ([16]). Every graph H satisfies the Erdős-Hajnal property.

So far, the Erdős-Hajnal conjecture has been verified for only a small number of graphs,
namely: all graphs on at most four vertices, the bull1, the cliques, and every graph that
can be constructed from them using the so-called substitution operation [12] (we describe
this operation in Section 2). Interestingly, for many graphs H satisfying the Erdős-Hajnal
property, MIS is known to be either polynomial or at least to admit an n1−ε-approximation
algorithm for some ε > 0. A typical example of this situation is when H is the clique of
size t > 1. In that case, Ramsey’s theorem can be invoked to get a n

t−2
t−1 -approximation

algorithm. Indeed a Kt-free graph always contains an independent set of size at least n
1
t−1 ,

and the classical proof readily yields a polytime algorithm finding such an independent set.
This leads us to define an approximation weaker version of the Erdős-Hajnal property and
its companion conjecture:

1 The bull is the graph obtained by adding a pending vertex to two different vertices of a triangle.

É. Bonnet, S. Thomassé, X. T. Tran, and R. Watrigant 23:3

I Definition 4. A graph H satisfies the improved approximation property if there exists a
constant ε > 0 such that MIS admits a randomized n1−ε-approximation polynomial algorithm
on every H-free n-vertex graph G.

Here, a randomized ρ-approximation algorithm is an algorithm which, given an input
graph on n vertices, outputs a ρ-approximation of the problem with high probability (w.h.p.
for short), that is with probability at least a function of n tending to 1 when n goes to
infinity.

I Conjecture 5. Every graph H satisfies the improved approximation property.

We refer to Conjecture 5 as the improved approximation conjecture. Informally, it states
that the inapproximability of MIS in general graphs can be beaten in any proper hereditary
class.

Results and organization of the paper

On the one hand, there exist graphs H satisfying the improved approximation property
for which the Erdős-Hajnal conjecture is still open. Indeed, as mentioned previously, MIS
is polynomial-time solvable in P6-free graphs, whereas it is still open whether P5 satisfies
the Erdős-Hajnal property. On the other hand, one may wonder if the satisfiability of the
Erdős-Hajnal property for a graph H can help designing an approximation algorithm in
H-free graphs, and more concretely if Conjecture 3 implies Conjecture 5. In Section 2, we
prove that this is almost the case. More precisely, we prove that every graph H satisfying a
constructive version of the Erdős-Hajnal property also satisfies the improved approximation
property. We also show that the improved approximation property is preserved through the
substitution operation, which is the one graph operation known to preserve the Erdős-Hajnal
property.

We then try and obtain better approximation ratios for the improved approximation
property: for a given H, what is the largest ε > 0 such that MIS admits an O(n1−ε)-
approximation algorithm in H-free graphs? We investigate this question in Sections 3 and 4.
More precisely, in Section 3 we describe some particular properties of graphs H as well as
graph operations preserving the improved approximation property in a better way than
the substitution. We also prove that the classical local search algorithm provides a

√
OPT

approximation ratio in C4-free graphs and, more generally, an O(OPT 1−1/t)-approximation
algorithm inKt,t-free graphs. Finally, we present in Section 4 some negative results concerning
the improved approximation property: while MIS can be easily n1/2-approximated in triangle-
free graphs, we show that this ratio cannot be improved to n1/4−ε for any ε > 0, unless
NP ⊆ BPP . We also provide a generalization of this result when we forbid all cycles of
length 3, . . . , t for a fixed t > 3.

Notations and definitions

For two positive integers i < j, we denote the set of integers at least i and at most j by
[i, j], while [i] is a short-hand for [1, i]. All the graphs we consider are simple; they have no
multiple edges nor loops. For a vertex v in a simple graph G, NG(v), or simply N(v) if the
graph is unambiguous, denotes the set of neighbors of v. The closed neighborhood of v is
defined as N [v] := N(v) ∪ {v}. A universal vertex is a vertex whose closed neighborhood is
the entire set of vertices. The size of a maximum independent set of G is denoted by α(G).
The girth (resp. odd girth) of a graph is the smallest size of an induced cycle (resp. odd
cycle) in the graph. Ks, Ps, Cs respectively denotes the clique, the path, and the cycle on s

ESA 2020

23:4 An Algorithmic Weakening of the Erdős-Hajnal Conjecture

vertices, and Ks,t is the complete bipartite graph with s vertices on one side and t on the
other side (it is also called a biclique). The graph K3 = C3 is also called the triangle. The
claw is the biclique K1,3. The fork is the 5-vertex graph obtained by subdividing one edge of
the claw. For a triple of integers 0 6 i 6 j 6 k, the graph Si,j,k is obtained by subdividing
one edge of a claw i − 1 times, a second edge, j − 1 times, and a third edge k − 1 times
(with the convention that subdividing −1 times means removing the edge and its degree-one
endpoint). Observe that with that definition, the family {Si,j,k}06i6j6k contains the paths.

Given a non-decreasing function ρ : N→ N, a ρ(n)-approximation algorithm for MIS is
a polynomial-time algorithm which takes as input a graph G on n vertices, and output an
independent set S such that α(G) 6 ρ(n)|S|. In this case, we also say that the problem can
be ρ(n)-approximated, or that the output solution is a ρ(n)-approximated solution.

2 Constructive Erdős-Hajnal and the substitution operation

A graph H is said to satisfy the constructive Erdős-Hajnal property if there is a constant
δ > 0 and a polynomial-time algorithm which takes as input an H-free graph G, and outputs
a clique or an independent set of size at least |V (G)|δ. We prove that the constructive
Erdős-Hajnal conjecture implies Conjecture 5. To our knowledge, all the graphs H shown to
satisfy the Erdős-Hajnal property so far, also satisfy its constructive version.

I Theorem 6. Let H be a graph which satisfies the constructive Erdős-Hajnal property with
constant2 0 < δ 6 1/2. Then H satisfies the improved approximation property with constant
δ − δ2 − ε for any fixed ε > 0.

Proof. Let G be anH-free graph with n := |V (G)|. We assume n > 2
1

1−(δ−δ2) , since otherwise
the problem can be solved optimally in constant time. We prove that Algorithm 1 provides
a n1−(δ−δ2)-approximation. In this algorithm, Constructive-Erdős-Hajnal(J) represents
the polynomial-time algorithm which takes a graph J and outputs a set of at least |V (J)|δ
vertices of J which is either an independent set or a clique.

Algorithm 1 Approximation algorithm for MIS in H-free graphs satisfying the constructive
Erdős-Hajnal property.
Input: a graph G
Output: an independent set of G
1: V ′ ← V (G)
2: while |V ′| > n1−δ do
3: X ← Constructive-Erdős-Hajnal(G[V ′])
4: if X is an independent set of G then
5: return X

6: else
7: V ′ ← V ′ \X
8: return {v}, for an arbitrary chosen v ∈ V (G)

Let X be the independent set returned by the algorithm. If X is returned through
line 5, then by the definition of the Constructive-Erdős-Hajnal algorithm and because of
line 2, we have |X| > n(1−δ)δ which is obviously an n1−(δ−δ2)-approximate solution, since
any optimal solution has size at most n.

2 Notice that MIS in H-free graphs is trivial if H has at most 2 vertices, whereas any graph with at least
three vertices cannot satisfy the Erdős-Hajnal property with a constant δ > 1/2. This is the reason why
we assume 0 < δ 6 1/2.

É. Bonnet, S. Thomassé, X. T. Tran, and R. Watrigant 23:5

Otherwise, X is returned through line 8 and is thus of size 1. However, in this case,
observe that V (G) is partitioned into cliques C1, . . . , Cq, and the last set V ′. Observe that
|V ′| < n1−δ, and that |Ci| > nδ−δ

2 for every i ∈ {1, . . . , q}. We thus have q 6 n1−(δ−δ2).
But also observe that in that case:

α(G) 6 q + |V ′|

6 n1−(δ−δ2) + n1−δ

6 2n1−(δ−δ2)

6 n1−(δ−δ2)+ε as we may assume n > 21/ε for any fixed ε > 0. J

It is natural to ask which kind of graph operations preserves the satisfiability of the
improved approximation property. Given the previous result, natural candidates are graph
operations preserving the Erdős-Hajnal property. In the following we prove that this is
indeed the case concerning the substitution operation.

I Definition 7. Let H1, H2 be two vertex-disjoint graphs and v0 ∈ V (H1). We say that a
graph H is obtained from H1 by substituting H2 at v0 if:

V (H) = (V (H1) \ {v0}) ∪ V (H2)
For v, v′ ∈ V (H1) \ {v0}, vv′ is an edge in H if and only if it is an edge in H1.
For v, v′ ∈ V (H2), vv′ is an edge in H if and only if it is an edge in H2.
For v ∈ V (H1) \ {v0}, v′ ∈ V (H2), vv′ is an edge in H if and only if vv0 is an edge in
H1.

More generally, we say that a graph H is obtained from H1 and H2 by substitution if there
exists v0 ∈ V (H1) such that H is obtained from H1 by substituting H2 at v0.

I Theorem 8. Let H1, H2 be two fixed graphs satisfying the improved approximation
property. Then every graph H obtained from H1 and H2 by substitution satisfies the improved
approximation property.

Let us start by sketching the idea of our algorithm. We first check whether the number of
copies of H1 in G is small. If so, then a randomly chosen subset of vertices of appropriate size
will be H1-free w.h.p., and we will be able to run our approximation algorithm for H1-free
graphs. If the number of copies of H1 is large, then we claim that we can find a large subset of
vertices inducing an H2-free graph, and we thus run our approximation algorithm for H2-free
graphs. Each time we run one of our approximation algorithms in an induced subgraph G[X]
which is either H1-free or H2-free, either it outputs a solution of size at least nδ for some
constant δ, in which case we are done, or it means that α(G[X]) is small, in which case we
keep X apart and continue the algorithm on G[V \X] as long as enough vertices survive.
If too many vertices were kept apart along the process, it means that α(G) was very small
at the beginning, so that any singleton {v} is actually an approximated solution. We now
prove formally the result.

Proof. Let approxH1(G) (resp. approxH2(G)) be a polynomial-time algorithm which takes
as input an H1-free graph (resp. H2-free graph) G on n vertices and outputs an n1−ε1 (resp.
n1−ε2)-approximated solution for the MIS problem in G, for some ε1 > 0 (resp. ε2 > 0).
For the sake of readability, we set ε = min{ε1, ε2, 0.99}, so that approxH1 and approxH2 are
n1−ε-approximation algorithms in H1-free graphs and H2-free graphs, respectively3.

3 Our result also holds if approxH1 and approxH2 are exact algorithms (hence with ε1 = ε2 = 1), but, for
technical reasons, we view them as n0.01-approximation algorithms.

ESA 2020

23:6 An Algorithmic Weakening of the Erdős-Hajnal Conjecture

Let H be the graph obtained by substituting H2 at some vertex v0 ∈ V (H1), and let
us consider an H-free graph G. We denote by n, n1 and n2 the number of vertices of G,
H1 and H2, respectively. We say that X ⊆ V (G) is a set of H1-candidates if there exists a
set K ⊆ V (G) of n1 − 1 vertices such that G[K] is isomorphic to H1 − {v0} and, for every
x ∈ X, G[K ∪ {x}] is isomorphic to H1. Since G is H-free, G[X] is H2-free.

Let γ = ε
2n1

, η = min(1 − ε, γ), and δ = εη
2+εη . We prove that Algorithm 2 is an

O(n1−δ)-approximation algorithm for MIS in H-free graphs.

Algorithm 2 Approximation algorithm for MIS in H-free graphs, where H is the substitution of
H1 and H2.
Input: an H-free graph G with n vertices
Output: an independent set of G
1: i = 1, V1 ← V (G)
2: while |Vi| > n1−δ do
3: if G[Vi] contains less than |Vi|n1−ε copies of H1 then
4: pick a set Xi ⊆ Vi of size d|Vi|γe uniformly at random
5: if G[Xi] is H1-free then . This condition is true w.h.p.
6: Wi ← approxH1(G[Xi])
7: if |Wi| > nδ then return Wi

8: else return FAIL
9: else
10: find a set of H1-candidates Xi ⊆ Vi with |Xi| > |Vi|1−ε
11: Wi ← approxH2(G[Xi]) . G[Xi] is H2-free
12: if |Wi| > nδ then return Wi

13: Vi+1 ← Vi \Xi

14: i← i+ 1
15: return {v} for an arbitrary vertex v ∈ V

I Lemma 9. Algorithm 2 runs in polynomial time.

Proof. An important remark is that at every step i, the graph G[Vi] is an induced subgraph
of G, hence is H-free. In line 3 (resp. 5), the algorithm runs through all subsets of n1 vertices
of Vi (resp. Xi), which can be done in O(nn1) time.

Finally, the existence of a set of H1-candidates in line 10 is ensured by the fact that in that
case, G[Vi] contains at least |Vi|n1−ε copies of H1. Hence, by the pigeonhole principle, there
must exist a set VH of n1− 1 vertices with VH ⊆ Vi such that G[VH] induces H1 \ v0 together
with a set Xi ⊆ Vi \ VH of size at least |Vi|1−ε such that for every x ∈ Xi, G[VH ∪ {x}]
induces H1. Finding the set VH can be done in O(|Vi|n1−1) time, while finding the set Xi

can be done in O(|Vi|) time, since it is sufficient to find the vertices in Vi \ VH with the
right neighborhood with respect to VH . By the definition of H1-candidates, G[Xi] is H2-free,
which allows to run approxH2 on G[X] in the next line of the algorithm. J

We now prove that, w.h.p., the solution S returned by our algorithm is an O(n1−δ)-
approximation. To this end, we first prove that w.h.p. it does not return FAIL.

I Lemma 10. If the number of copies of H1 in a graph G on n vertices is less than nn1−ε,
then any subset of vertices of size dnγe picked uniformly at random induces an H1-free graph,
with high probability.

É. Bonnet, S. Thomassé, X. T. Tran, and R. Watrigant 23:7

Proof. Let n be the number of vertices of G, and P be a subset of dnγe vertices picked
uniformly at random. For any set VH ⊆ V inducing H1, the probability that VH is contained
in P is (n−n1

|P |−n1)
(n
|P |)

<
(
|P |
n

)n1
. Hence the probability that P is H1-free is at least

(
1−

(
|P |
n

)n1)nn1−ε

=
(

1− 1
nn1− ε2

)nn1−ε

which tends to 1 when n→ +∞. J

Next, if it returns a solution through lines 7 or 12, then this solution is an independent set
of size at least nδ, by definition. We now deal with the case in which it returns a singleton,
through line 15. The aim is to prove that α(G) is at most O(n1−δ). Let q + 1 be the largest
value of i in the execution of the algorithm (i.e., |Vq+1| < n1−δ). The vertex-set V is thus
partitioned into X1, . . . , Xq, and Vq+1. Hence we have α(G) 6 |Vq+1| +

∑q
i=1 α(G[Xi]).

Since |Vq+1| < n1−δ, we only need to upper bound the second part.

I Lemma 11. With the above definitions,
∑q
i=1 α(G[Xi]) 6 n1−δ.

Proof. Recall that we have Xi ⊆ Vi, where Vi = V \
⋃i−1
j=1 Xj , and, for each i ∈ [q], we have

constructed an independent set Wi ⊆ Xi. All these sets have the following properties:

1. |Vq+1| < n1−δ, by definition of q.
2. |Xi| > |Vi|η > nη(1−δ). Indeed, if Xi is defined in line 4, then it is of size at least |Vi|γ ,

whereas if it is defined in line 10, it is of size at least |Vi|1−ε, and η = min(1− ε, γ).
3. |Wi| < nδ, otherwise we would have returned it.
4. α(G[Xi]) 6 |Wi| · |Xi|1−ε, since Wi is returned by approxH1 or approxH2 , which are

approximation algorithms applied to G[Xi].

Now, we have the following:

q∑
i=1

α(G[Xi]) 6
q∑
i=1
|Wi| · |Xi|1−ε

6 nδ
q∑
i=1
|Xi|1−ε.

We then need the following technical lemma.

I Lemma 11.1. Let (ai)i=1...q be some positive numbers (with q ∈ N) such that
∑q
i=1 ai = N

and ai > k > 0 for all i ∈ {1, . . . , q}. Then
∑q
i=1 a

ζ
i 6 Nkζ−1 for any 0 < ζ < 1.

Proof. We have:

q∑
i=1

aζi 6

(
N

q

)ζ
· q = N ·

(
N

q

)ζ−1
6 Nkζ−1. J

ESA 2020

23:8 An Algorithmic Weakening of the Erdős-Hajnal Conjecture

Using the above lemma together with item 2 of the previous properties in order to lower
bound each |Xi|, we obtain:

q∑
i=1

α(G[Xi]) 6 nδ

(
q∑
i=1
|Xi|

)
nη(1−δ)(1−ε−1)

6 n1−εη(1−δ)+δ since
q∑
i=1
|Xi| 6 n

6 n1−δ because δ = εη

2 + εη
, hence εη(1− δ) = 2δ J

Hence, any solution of size 1 is an O(n1−δ)-approximation in this case, which concludes the
proof. J

3 Better approximation ratios

In this section we improve over the ratio given by Theorem 8 for some graphs H that can
be built by a sequence of substitutions from graphs H ′ such that MIS is polynomial-time
solvable in H ′-free graphs. Furthermore, we present deterministic algorithms.

3.1 Adding a universal vertex
Let H+u be the graph H augmented by a universal vertex, i.e., we add one vertex adjacent
to all the vertices of H.

I Lemma 12. Let 0 6 γ < 1 be a real number and H be a graph such that MIS admits an
OPTγ-approximation A in H-free graphs. Then it also admits an OPT

1
2−γ -approximation

A+u in H+u-free graphs.

Proof. Let G be the input graph, thus OPT := α(G). The base case of the algorithm is
when G does not contain any vertex, and we correctly report the empty set as optimum
solution. Otherwise G has at least one vertex, say v1. We run the approximation A on
G[N(v1)]. G being H+u-free, the subgraph induced by the open neighborhood of any vertex
is indeed H-free. Let S1 be the returned solution. By assumption, |S1| > α(G[N(v1)])1−γ .
For what follows, the knowledge of the value OPT would help. Unfortunately we will
make some recursive calls to A+u, so exhaustively guessing this value would result in an
exponential running time. Instead we will branch but the branching tree will only have at
most n := |V (G)| leaves. More precisely the tree will be a so-called comb, i.e., a path where
all the vertices except one end has an additional private neighbor. We eventually output the
best solution found among all the leaves.

We inductively run A+u on G − N [v1], which produces a tree T with at most n − 1
leaves. And we output the best solution among S and all the solutions at the leaves of
T augmented by the vertex v1. This algorithm returns an independent set since v1 is by
definition non-adjacent to any vertex of G − N [v1]. The running time of our algorithm
satisfies fA+u(n) = fA(n1− 1) + fA+u(n−n1) +O(1) (with n1 = |N(v1)|). Hence fA+u(n) =
O(max{fA(n), n}), and in the likely event that A is not sublinear, A+u has the same running
time as A up to a multiplicative constant factor.

We shall now show that A+u is indeed a OPT
1

2−γ -approximation. We denote by v1, . . . , vp
with p 6 n, the vertices added along the path to the deepest leaf of T . We denote by S1, . . . , Sp
the sets returned by A such that Si is computed in the graph G′i := G[N(vi) \

⋃
j<iN [vj]].

É. Bonnet, S. Thomassé, X. T. Tran, and R. Watrigant 23:9

. . .

Figure 1 The three maximal locally easy graphs H constructed from P6, the fork, and tK1,3,
respectively.

We also define Gi := G[N [vi] \
⋃
j<iN [vj]], and Ri := G −

⋃
j<iN [vj]. Observe that

{V (G1), . . . , V (Gp)} is a partition of V (G), as well as, {V (G1), . . . , V (Gi), V (Ri+1)} for
every i ∈ [p− 1].

Let, if it exists, Sh be the first solution returned by A when called on G′h such that |Sh| >
α(Rh)1− 1

2−γ . We claim that the solution output at this leaf, namely S′h := Sh∪{v1, . . . , vh−1}
is an OPT

1
2−γ -approximation. If such an Sh does not exist, we show the same statement

where Sh = ∅ and h− 1 = p.
We upperbound α(Gi) for every i ∈ [h − 1]. By definition of Sh, it holds that |Si| <

α(Ri)1− 1
2−γ for any i ∈ [h− 1]. Due to the approximation ratio of A, it holds that:

α(Gi)1−γ 6 |Si| < α(Ri)1− 1
2−γ = α(Ri)

1−γ
2−γ ,

hence α(Gi) < α(Ri)
1

2−γ 6 α(G)
1

2−γ . Thus,

OPT = α(G) 6 α(Rh) +
∑

i∈[h−1]

α(Gi) 6 |Sh|α(Rh)
1

2−γ +
∑

i∈[h−1]

α(G)
1

2−γ

6 |Sh|α(G)
1

2−γ +(h−1)α(G)
1

2−γ = (|Sh|+h−1)α(G)
1

2−γ = |S′h|α(G)
1

2−γ = |S′h|OPT
1

2−γ .

Therefore A+u is an OPT
1

2−γ -approximation for MIS in H+u-free graphs. J

3.2 Locally easy graphs
We say that a graph H is locally easy if it has a universal vertex v such that there is a
polynomial-time algorithm for MIS in H − {v}-free graphs. Up to now, the three maximal
graphs H for which we know that MIS is polynomial-time solvable on H-free graphs are P6
[23], the fork [4, 30], and tK1,3 (or tclaw) [9] (see Figure 1 for the corresponding maximal
locally easy graphs).

The following is an immediate consequence of Lemma 12. Therein we recall that the
constant γ may take value 0.

I Theorem 13. For any locally easy H, MIS can be
√
OPT-approximated on H-free graphs.

And in particular, there is a
√
n-approximation for triangle-free graphs. Lemma 12 also

yields the following approximation ratio in Kt+1-free graphs.

I Theorem 14. For any t > 1, MIS can be OPT1− 1
t -approximated on Kt+1-free graphs.

Proof. We show this statement by induction. The base case says that we can exactly solve
in polynomial time MIS in edgeless graphs, which is obviously true. We assume that the
statement is true for a fixed t. As Kt+2 = (Kt+1)+u, Lemma 12 implies that MIS can be
OPT

1
2−(1− 1

t
) -approximated on Kt+2-free graphs. Furthermore, 1

2−(1− 1
t) = 1

1+ 1
t

= t
t+1 =

1− 1
t+1 . Therefore we do obtain an OPT1− 1

t+1 -approximation on Kt+2-free graphs. J

ESA 2020

23:10 An Algorithmic Weakening of the Erdős-Hajnal Conjecture

We say that a graph H is t-locally easy if it has a set U of t universal vertices such that
a polynomial algorithm is known for MIS in H −U -free graphs. Informally, these graphs are
obtained by replacing universal vertices of Figure 1 by a k-clique. The previous result readily
generalizes from Kt+1-free to H-free graphs with H (t+ 1)-locally easy, with the same proof.

I Corollary 15. Let t be a non-negative integer. For any t-locally easy H, MIS can be
OPT1− 1

t+1 -approximated on H-free graphs.

As we will see in Section 4.3 for forbidden graphs H containing a triangle, it is unlikely to
improve the approximation ratio below n1/4. However if H is a star, constant-approximations
are achievable. It is known that MIS is polynomial-time solvable on claw-free graphs [31]
(i.e., K1,3-free graphs) while it is APX-hard on K1,4-free graphs (see for instance [3]). The
greedy algorithm (or actually any sensible algorithm) gives an s-approximation in K1,s-free
graphs. The ratio was improved to arbitrarily close to s−1

2 by Halldórsson.

I Theorem 16 ([25]). For every s > 4 and ε > 0, MIS is s−1
2 + ε-approximable on K1,s-free

graphs.

3.3 Local Search for Kt,t-free graphs
Here we analyze the performance of the t-Local Search algorithm in Kt,t-free graphs.
Usually for the particular case of the biclique, “Kt,t-free” is intended as “no Kt,t as a
subgraph”. Here we still mean “no Kt,t as an induced subgraph”, since our algorithm works
even in this more general setting. For a fixed integer t > 2, t-Local Search takes as input a
graph G, and construct an independent set S from a single vertex. Then, it tries to improve
S in the following way: whenever there exist two sets X ⊆ S (note that X can possibly
be empty) and Y ⊆ V \ S such that 0 6 |X| < |Y | 6 t and (S \X) ∪ Y is an independent
set, it replaces S by (S \X) ∪ Y (if there are several choices, it chooses an arbitrary one).
When S can no longer be improved, it outputs it. Each improvement takes O(n2t) time,
and the number of such improvements is at most n, since the size of S increases by at least
one at each step. Hence, the algorithm takes polynomial time. In the following theorem,
we prove that this simple algorithm provides an O(OPT 1−1/t)-approximation whenever the
input graph is Kt,t-free. In particular, 2-Local Search is an O(

√
OPT)-approximation in

C4-free graphs. It came to our knowledge that the same result was obtained independently
by Dvořák, Feldmann, Rai, and Rzążewski [15].

I Theorem 17. For any fixed t > 2, t-Local Search is an O(OPT 1−1/t)-approximation
in Kt,t-free graphs.

Proof. Let S be the solution returned by the algorithm, and O be a fixed optimal solution.
The objective is to bound |O′| in terms of |S′|, where O′ := O \ S and S′ := S \O. To this
end, let us consider B := G[S′ ∪ O′] the bipartite graph induced by S′ ∪ O′. Let k := |S′|.
We partition O′ into D− and D+, where D− are the vertices of O′ whose degree within S′ is
at most t− 1, and thus D+ are the vertices of O′ whose degree within S′ is at least t. We
now bound the sizes of D− and D+ separately.

Let us partition D− into classes D−1 , . . . , D−q with respect to the equivalence relation
u ∼ v if and only if NS′(u) = NS′(v). By definition of D− we have q 6

∑t−1
i=1
(
k
i

)
.

Then, we claim that for every i ∈ {1, . . . , q}, we have |D−i | 6 t − 1. Indeed, we
must have |D−i | 6 |NS′(D

−
i)|, since otherwise the algorithm would have replaced S by

(S \NS′(D−i)) ∪D−i . This proves |D−| 6 (t− 1)
∑t−1
i=1
(
k
i

)
.

É. Bonnet, S. Thomassé, X. T. Tran, and R. Watrigant 23:11

For a set X ⊆ S′, let IX :=
⋂
x∈X NO′(x). Observe that if |X| = t, then necessarily

IX ⊆ D+, and moreover |IX | 6 t− 1, since otherwise the graph would have an induced
Kt,t. Finally, we have D+ =

⋃
X⊆S′,|X|=t IX , which proves that |D+| 6

(
k
t

)
(t− 1).

Hence we have |O′| 6 |D−|+ |D+| 6 (t− 1)
∑t−1
i=1
(
k
i

)
+
(
k
t

)
(t− 1) = O(kt). J

4 Graphs without short cycles

In this section we show that the strong inapproximability of MIS in general graphs survives,
albeit in a less severe form, on graphs without small cycles. More quantitatively, we show
that for any positive integer γ, there is a constant β = Θ(1/γ) depending only on γ, such
that an nβ-approximation of MIS in graphs with girth γ is unlikely.

4.1 Triangle-free graphs
While Lemma 12 implies an n1/2-approximation of MIS in triangle-free graphs, a natural
question is how much the ratio’s exponent can be decreased. In this section we provide a
lower bound for it.

The following result will be made obsolete twice. Indeed we will then generalize its
statement from triangle-free, that is girth 4, to graphs with any constant girth. Then in
Section 4.3 we will present a stronger inapproximability result of Ω(n1/4−ε). Nevertheless we
choose to keep its proof as it is simpler, easier to follow, and self-contained. Furthermore, it
contains all the ideas necessary to achieve the subsequent results.

I Theorem 18. For any ε > 0, it is NP-hard to distinguish between triangle-free graphs G
on n vertices satisfying

α(G) 6 n5/6−ε, and
α(G) > n1−ε.

So for any ε > 0, MIS cannot be approximated within ratio n1/6−ε in triangle-free graphs
unless NP ⊆ BPP.

Proof. Let ε > 0 be an arbitrarily small real value, and ε := 3ε. We perform a randomized
reduction from an infinite set of graphs H admitting the following gap: Positive instances
have stable sets of size at least |V (H)|1−ε whereas negative instances have no stable set
of size |V (H)|ε. It is known that distinguishing between these two cases is NP-hard for
randomized reductions [27], and even for deterministic ones [35].

Reduction. Given an N -vertex graph H, we construct a triangle-free graph G in the following
way. We transform every vertex v of H into an independent set I(v) of size s := N5. For
every edge uv ∈ E(H), we put a random bipartite graph between I(u) and I(v): for each pair
of vertices x ∈ I(u), y ∈ I(v), we independently add an edge xy to E(G) with probability
p := N−4−η with η := 2ε/3. We denote by G4 the graph thus obtained. A key property is
that G4 contains only few triangles. For each triangle in G4, we remove all three vertices of
it. We call that phase the triangle removal, and we denote by G the triangle-free graph that
arises when that phase comes to an end. We further assume that N is larger than the smallest
integral constant N0 for which for every N > N0, N3η > N2.5η + 10N2η lnN , N−ε > 6N−2η,
217/6Nη/3 < Nε, and N−η < 10−100. In particular the second and third inequalities hold
for sufficiently large N since η < ε = 3ε < 2η. The hardness of approximation [27, 35] still
holds since instances with less than a constant number of vertices can be solved optimally in
constant time.

ESA 2020

23:12 An Algorithmic Weakening of the Erdős-Hajnal Conjecture

I Lemma 19. For every edge uv ∈ E(H), the probability that there exist two sets A ⊂
I(u), B ⊂ I(v) both of size N4+2η without any edge between A and B is at most e−N4+2.5η .
Thus, with high probability, this event does not happen.

Proof. The probability that there is no edge between two fixed sets A and B of size N4+2η

is:

(1− p)|A|·|B| = (1− 1
N4+η)N

2(4+2η)
6 e−N

4+3η
.

By the union bound, the probability that there is at least one such pair of sets is at most:(
N5

N4+2η

)2

e−N
4+3η

6 N10N4+2η
e−N

4+3η
= e−N

4+3η+10N4+2η lnN 6 e−N
4+2.5η

. J

I Lemma 20. The expected number of triangles in G4 is at most N6−3η. Furthermore
|V (G4)| − |V (G)| is at most 3N6−2η with probability at least 1−N−η.

Proof. The expected number of triangles in G4 is:

E(#(4, G4)) 6 (sN)3p3 = (N6)3N−12−3η = N6−3η.

By Markov’s inequality, P(#(4, G4) > N6−2η) 6 N6−3η/N6−2η = N−η. J

Let n be the number of vertices of G (after the triangle removal). By the previous lemma
n := |V (G)| > N6/2, with high probability.

If H is a YES-instance, there is a stable set of size n1−ε in G. We assume that H is
a YES-instance, so there is a stable set S in H such that |S| > N1−ε. By construction,
SG4 :=

⋃
u∈S I(u) is a stable set in G4 of size s|S| > N6−ε. By Lemma 20, SG4 ∩ V (G) is

an independent set in G of size, w.h.p., at least N6−ε − 3N6−2η > N6−ε/2 > n1−ε/6/2 =
n1−ε/2/2 > n1−ε.

If H is a NO-instance, there is no stable set of size n5/6+ε in G. Let SG be an independent
set of G and let S := {v ∈ V (H) such that |I(v) ∩ SG| > N4+2η}. If H is a NO-instance,
then there is no stable set in H of size more than Nε. By a union bound of applications of
Lemma 19 to all pairs of vertices of S, w.h.p. S is an independent set of H, which implies that
|S| < Nε. Thus |SG| < sNε +N4+2η(N −Nε) < N5+ε +N5+2η < 2N5+2η = 2N5(1+2η/5) <

211/6n5/6+η/3 < n5/6+ε. J

4.2 Graphs with higher girth
Monien, Speckenmeyer and Murphy independently found improved approximations when
the girth, actually even the odd girth, is any constant γ.

I Theorem 21 ([32, 33]). MIS admits a polynomial-time n
2

γ−1 -approximation on graphs
with odd girth γ.

In particular, the result implies an n1/2-approximation for triangle-free graphs, an n1/3-
approximation for {C3, C5}-free graphs, an n1/4-approximation for {C3, C5, C7}-free graphs,
etc. On the complexity side, the construction of Theorem 18 where the probability p of
having an edge between I(u) and I(v) with uv ∈ E(H) is now set to N−2(γ−1)−η and the
size s of each I(u) is set to N2γ−1 yields a polynomial gap on Cγ-free graphs, and even on
graphs with girth γ + 1.

É. Bonnet, S. Thomassé, X. T. Tran, and R. Watrigant 23:13

I Theorem 22. For any ε > 0, it is NP-hard to distinguish between graphs G with n vertices
and girth γ + 1 satisfying

α(G) 6 n
2γ−1

2γ −ε, and
α(G) > n1−ε.

Hence, for any ε > 0, MIS cannot be approximated within ratio n
1

2γ−ε in graphs with girth
γ + 1 unless NP ⊆ BPP.

Proof. We do the same reduction as in Theorem 18 with the following modifications. We
now set ε := γε, s := N2γ−1, p := N2(γ−1)−η, and η := γ−1

γ ε. We denote by G◦ the graph
obtained before the removal step. For every cycle of length at most γ, we remove all the
vertices of the cycle from the graph. When this short cycle removal ends, the graph has girth
at least γ + 1. We call G the obtained graph.

I Lemma 22.1. For every edge uv ∈ E(H), the probability that there exist two sets A ⊂
I(u), B ⊂ I(v) both of size N2(γ−1)+2η without any edge between A and B is at most
e−N

2(γ−1)+2.5η . Thus, with high probability, this event does not happen.

Proof. The probability that there is no edge between two fixed sets A and B of size
N2(γ−1)+2η is:

(1− p)|A|·|B| = (1− 1
N2(γ−1)+η)N

2(2(γ−1)+2η)
6 e−N

2(γ−1)+3η
.

By the union bound, the probability that there is at least one such pair of sets is at most:(
N2γ−1

N2(γ−1)+2η

)2

e−N
2(γ−1)+3η

6 N10N2(γ−1)+2η
e−N

2(γ−1)+3η

= e−N
2(γ−1)+3η+10N2(γ−1)+2η lnN 6 e−N

2(γ−1)+2.5η
. J

I Lemma 22.2. The expected number of cycles of length at most γ in G◦ is at most N (2−η)γ .
Furthermore |V (G◦)| − |V (G)| is at most γN2γ−η(γ−1) with probability at least 1−N−η.

Proof. The expected number of cycles of length at most γ in G◦ is:

E(#(C3→γ , G◦)) 6 γ(sN)γpγ = γN2γ2
N (−2(γ−1)−η)γ = γN (2−η)γ .

By Markov’s inequality, P(#(C3→γ , G◦) > γN2γ−η(γ−1)) 6 N (2−η)γ/N2γ−η(γ−1) = N−η.
J

Let n be the number of vertices of G (after the short cycle removal). By the previous
lemma n := |V (G)| > N2γ/2, with high probability.

If H is a YES-instance, there is a stable set of size n1−ε in G. We assume that H is
a YES-instance, so there is a stable set S in H such that |S| > N1−ε. By construction,
SG◦ :=

⋃
u∈S I(u) is a stable set in G◦ of size s|S| > N2γ−ε. By Lemma 22.2, SG◦ ∩ V (G)

is an independent set in G of size, w.h.p., at least N2γ−ε − γN2γ−η(γ−1) > N2γ−ε/2 >

n1−ε/2γ)/2 = n1−ε/2/2 > n1−ε.

If H is a NO-instance, there is no stable set of size n(2γ−1)/(2γ)+ε in G. Let SG be an
independent set of G and let S := {v ∈ V (H) such that |I(v)∩SG| > N2(γ−1)+2η}. If H is a
NO-instance, then there is no stable set inH of size more thanNε. By a union bound of applic-
ations of Lemma 22.1 to all pairs of vertices of S, w.h.p. S is an independent set of H, which
implies that |S| < Nε. Thus |SG| < sNε +N2(γ−1)+2η(N −Nε) < N2γ−1+ε +N2γ−1+2η <

2N2γ−1+2η = 2N (2γ−1)(1+2η/(2γ−1)) < 2(4γ−1)/(2γ)n(2γ−1)/(2γ)+η/γ < n(2γ−1)/(2γ)+ε. J

ESA 2020

23:14 An Algorithmic Weakening of the Erdős-Hajnal Conjecture

Let us note that there is still a 4-fold multiplicative factor in the exponent between the
approximation ratios of Theorem 21, namely n2/γ , and the hardness ratios of n1/(2γ)−o(1) in
Theorem 22. It is an interesting open question to bridge this gap.

An even hole is an induced cycle of even length at least 4. Even-hole-free graphs are
{C4, C6, C8, . . .}-free graphs. The computational complexity of MIS on even-hole-free graphs
is still unknown. An FPT algorithm was established recently [26]. We observe that Local
Search readily gives a PTAS for that problem. We leave the existence of an EPTAS as an
open problem.

I Observation 23. MIS can be (1+ε)-approximated in time nO(1/ε) on even-hole-free graphs.

Proof. The graph induced by the symmetric difference between any two feasible solutions
is bipartite and even-hole-free, hence it is a forest. Let S be a solution obtained by local
search on an input graph G, O be a fixed optimum solution, S′ := S \O, and O′ := O \ S.
It is known that when G[S′ ∪O′] is planar, there is an absolute constant C such that the
C/ε2-Local Search 1 + ε-approximates the problem [34, 11], that is for a maximization
problem, |S′| > (1− ε)|O′|, implying |S| > (1− ε)|O|. This gives a PTAS with running time
nO(1/ε2). When G[S′ ∪O′] is even a forest, then it can be shown, and it is somewhat folklore,
that a C/ε-Local Search is sufficient. J

4.3 Strengthening the inapproximability
There are two directions to improve the hardness-of-approximation results of Sections 4.1
and 4.2. As already mentioned, one can try to match upper and lower bounds in the
approximation ratio, or at least to increase the exponent δ such that an nδ-approximation
would contradict a standard complexity-theoretic assumption. For triangle-free graphs,
for instance, we do not expect a matching n1/6-approximation. And a likely outcome is
that, ignoring logarithmic factors, the

√
n-approximation is best possible. We will actually

show that an n1/4−ε-approximation is unlikely. The other direction is to derandomize our
reductions. That way the inapproximability would be subject to the more (arguably the
most) standard complexity assumption that P is not equal to NP. Derandomizing without
degrading the quality of the gap seems challenging. We now encapsulate the reductions of
Sections 4.1 and 4.2 so that both improving tasks boil down to exhibiting a randomized or
deterministic family of graphs.

We say that an infinite family of graphs C is non-disappearing if there is a constant
K ∈ (0, 1] such that for every positive integer n, there is a graph G ∈ C with at least
Kn and at most n/K vertices. A non-disappearing family is called efficient if there is a
polynomial-time algorithm which given an integer n (encoded in unary), outputs such a
graph G. For example, a family containing at least one graph for every number of vertices is
non-disappearing. We denote by Gγ the set of all graphs with girth at least γ.

I Theorem 24. Let γ > 3 be an integer, δ ∈ (0, 1) be a real (allowed to depend on γ), and C
be an efficient non-disappearing family included in Gγ, such that for every G ∈ C there is
no disjoint pair of sets A,B ⊆ V (G) satisfying both |A| = |B| > |V (G)|δ and E(A,B) = ∅.
Then MIS in Gγ cannot be n 1−δ

2 −ε-approximated, unless P = NP.

Proof. We assume all the preconditions hold and follow the construction of Theorems 18
and 22. We again draw a graph F from graphs of size N and gap N1−ε. We substitute every
vertex v by an independent set I(v) of size between KN

1+δ
1−δ and 1

KN
1+δ
1−δ such that there

is a G ∈ C of the same size as the obtained graph G′, and the sets I(v) are balanced (their
size differs by at most 1). Both graphs have Θ(N

1+δ
1−δ+1) = Θ(N

2
1−δ) vertices, say cN

2
1−δ .

É. Bonnet, S. Thomassé, X. T. Tran, and R. Watrigant 23:15

We arbitrary identify the vertices of G and G′ in a one-to-one mapping. We keep an edge
between two vertices u and v if uv is both an edge in G and G′. Thus we do the “intersection”
of G and G′. We call J the final result.

Since G has girth at least γ, J has also girth at least γ. By assumption on C, if there is
an edge between u and v in F , then for every A ⊂ I(u) and B ⊂ I(v) both of size cδN

2δ
1−δ ,

there is at least one edge in EJ(A,B). We observe that N
2δ

1−δ = N
1+δ
1−δ−1 which is, up to

constant multiplicative factors, the size of an I(w) divided by N . Therefore we have the
same important property as in Theorems 18 and 22. Thus we can finish the proof similarly,
and conclude that distinguishing between instances with independence number at most
N

1+δ
1−δ+ε or at least N

2
1−δ−ε is NP-hard, for an arbitrary small ε > 0. The gap is N1−ε and

n := |V (J)| = Θ(N
2

1−δ), hence a gap of n 1−δ
2 −ε. J

We now give a randomized counterpart of the previous theorem. For any integer γ > 3
and real δ ∈ (0, 1), we say that a distribution of graphs D is (γ, δ)-appropriate if there is a
constant K ∈ (0, 1] and a polynomial-time algorithm, that given an integer n (encoded in
unary), draws a graph G of size at least Kn and at most n/K out of this distribution such
that with high probability, G has girth at least γ and no disjoint pair of sets A,B ⊆ V (G)
satisfies both |A| = |B| > |V (G)|δ and E(A,B) = ∅.

I Theorem 25. Let γ > 3 be an integer, δ ∈ (0, 1) be a real (allowed to depend on γ), and D
be a (γ, δ)-appropriate distribution. Then MIS in Gγ cannot be n 1−δ

2 −ε-approximated, unless
NP ⊆ BPP.

Proof. The proof is the same as Theorem 24, using a graph drawn from the distribution D
instead of a deterministic one from C. Therefore we need the stronger assumption that NP is
not contained in BPP. J

There are many constructions, all randomized, of triangle-free graphs with smallest
possible independence number Õ(

√
n) [17, 29, 18, 28, 7]. These constructions all follow a

simple scheme of starting from the empty graph, ordering the edges of the clique Kn, and
then inserting an edge if it does not create a triangle, either among the inserted edges or
among all the previous edges. The real difficulty is in the analysis of this probabilistic
experiment. The logarithmic or constant factors were improved and the proofs simplified
until Kim obtained a matching bound of O(

√
n logn) [28]. This can be seen as the lower

bound of Ω(n2/ logn) for the off-diagonal Ramsey number R(3, n), matching the upper
bound O(n2/ logn) of Ajtai et al. [1].

To apply Theorem 25, we would need to check that the triangle-free graphs built in the
aforementioned papers do not contain the complement of a large biclique Knδ,nδ . As, for
our purposes, we do not need the optimal bound of Kim, we follow the original proof of
Erdős [17] giving the bound of O(

√
n logn). Going through all the lemmas and replacing

occurrences of Kx, where x = O(
√
n logn), by Kx,x, the desired result can be obtained. In

our language, the process described in the previous paragraph yields a (4, 1/2)-appropriate
distribution. This together with Theorem 25 improves the inapproximability of Theorem 18.

I Corollary 26. MIS in G4 (i.e., triangle-free graphs) cannot be n 1
4−ε-approximated, unless

NP ⊆ BPP.

We are not aware of any explicit deterministic construction of triangle-free graphs whose
complements do not containKn2/3,n2/3 as a subgraph (which would derandomize Theorem 18),
let alone, K√n,√n. Deterministic constructions of graphs with large girth and large chromatic
number, such as Ramanujan graphs with non-constant degree, might give some lower bound

ESA 2020

23:16 An Algorithmic Weakening of the Erdős-Hajnal Conjecture

via Theorem 24, but not as good as Corollary 26. Actually, being based on a tight construction,
the inapproximability of Corollary 26 can only be improved via a totally different route.
One should also not completely rule out that there is an n1/4-approximation for MIS on
triangle-free graphs.

5 Concluding remarks

The Erdős-Hajnal conjecture has proven particularly difficult. For example, the cases of
P5-free or C5-free graphs are both wide open. For the few graphs H for which a proof that
the Erdős-Hajnal property holds, it appears that the proof comes with an efficient algorithm
reporting a sufficiently large independent set or clique. This is what we called the constructive
Erdős-Hajnal property. We proposed a first and more humble step (see Theorem 6) in proving
that a graph H has the constructive Erdős-Hajnal property: show that MIS in H-free graphs
can be approximated within ratio n1−ε for an ε > 0, an unachievable ratio in general graphs.
As mentioned in the introduction, this is strictly simpler than Erdős-Hajnal considering the
case of P5. Yet it does not seem to us that this weaker conjecture is that much simpler
now considering the graph C5. We believe that efforts to settle the improved approximation
conjecture might turn out useful to make progress on the Erdős-Hajnal conjecture. In general,
a cross-fertilization between Approximability Theory and the study of favorable Ramsey
properties may prove fruitful. In particular, obtaining an n0.99-approximation algorithm for
MIS in C5-free seems like a challenging open question.

Of course, classifying the approximability of Maximum Independent Set in H-free
graphs is also an interesting task by its own means. On the one hand, already known
reductions rule out PTASes in most H-free graphs classes, namely for any connected H

different from a path or a subdivision of a claw. On the other hand, a constant-approximation
algorithm can be turned into a PTAS in many H-free classes, by running the approximation
on the input graph elevated to some appropriate power (using for instance the lexicographic
product). This trick, originally used to rule out approximation algorithms for Max Clique
in general graphs [20], works in the setting of H-free classes when H satisfies some properties,
such as being a prime graph (i.e., having no non-trivial module). Hence, although MIS admits
a constant-factor approximation in K1,t-free graphs for any t ∈ N (as mentioned in Section 3),
it is not in APX when the forbidden graph is a simple tree, such as the 1-subdivision of
K1,4. Finally, another interesting consequence of the previous observation concerns Pt-free
graphs: any constant-factor approximation for MIS in Pt-free graphs implies a PTAS (notice
that the current “best” approximation algorithm in Pt-free graphs is a quasi-polynomial
approximation scheme [13]).

References
1 Miklós Ajtai, János Komlós, and Endre Szemerédi. A note on ramsey numbers. J. Comb.

Theory, Ser. A, 29(3):354–360, 1980. doi:10.1016/0097-3165(80)90030-8.
2 S. Alekseev. A note on stable sets and colorings of graphs. Commentationes Mathematicae

Universitatis Carolinae, 15, issue 2:307–309, 1974.
3 V. E. Alekseev. The effect of local constraints on the complexity of determination of the graph

independence number. Combinatorial-algebraic methods in applied mathematics, pages 3–13,
1982.

4 Vladimir E. Alekseev. Polynomial algorithm for finding the largest independent sets in
graphs without forks. Discrete Applied Mathematics, 135(1-3):3–16, 2004. doi:10.1016/
S0166-218X(02)00290-1.

5 Paola Alimonti and Viggo Kann. Some apx-completeness results for cubic graphs. Theoretical
Computer Science, 237(1):123–134, 2000. doi:10.1016/S0304-3975(98)00158-3.

https://doi.org/10.1016/0097-3165(80)90030-8
https://doi.org/10.1016/S0166-218X(02)00290-1
https://doi.org/10.1016/S0166-218X(02)00290-1
https://doi.org/10.1016/S0304-3975(98)00158-3

É. Bonnet, S. Thomassé, X. T. Tran, and R. Watrigant 23:17

6 Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs. J.
ACM, 41(1):153–180, January 1994. doi:10.1145/174644.174650.

7 Béla Bollobás. Random Graphs, Second Edition, volume 73 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2011. doi:10.1017/CBO9780511814068.

8 John Adrian Bondy and Uppaluri S. R. Murty. Graph Theory. Graduate Texts in Mathematics.
Springer, 2008. doi:10.1007/978-1-84628-970-5.

9 Andreas Brandstädt and Raffaele Mosca. Maximum weight independent set for claw-free
graphs in polynomial time. Discrete Applied Mathematics, 237:57–64, 2018. doi:10.1016/j.
dam.2017.11.029.

10 Timothy M. Chan. Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms, 46(2):178–189, 2003. doi:10.1016/S0196-6774(02)00294-8.

11 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012. doi:10.1007/
s00454-012-9417-5.

12 Maria Chudnovsky. The erdös-hajnal conjecture - A survey. Journal of Graph Theory,
75(2):178–190, 2014. doi:10.1002/jgt.21730.

13 Maria Chudnovsky, Marcin Pilipczuk, Michal Pilipczuk, and Stéphan Thomassé. Quasi-
polynomial time approximation schemes for the maximum weight independent set problem in
H -free graphs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2260–2278, 2020. doi:
10.1137/1.9781611975994.139.

14 E. D. Demaine, M. T. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor theory:
Decomposition, approximation, and coloring. In 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’05), pages 637–646, October 2005. doi:10.1109/SFCS.2005.14.

15 Pavel Dvořák, Andreas Emil Feldmann, Ashutosh Rai, and Paweł Rzążewski. Parameterized
inapproximability of independent sets in h-free graphs. In 46th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2020), 2020.

16 P. Erdős and A. Hajnal. Ramsey-type theorems. Discrete Applied Mathematics, 25(1):37–52,
1989. doi:10.1016/0166-218X(89)90045-0.

17 Paul Erdös. Graph theory and probability. ii. Canadian Journal of Mathematics, 13:346–352,
1961.

18 Paul Erdős, Stephen Suen, and Peter Winkler. On the size of a random maximal graph.
Random Struct. Algorithms, 6(2/3):309–318, 1995. doi:10.1002/rsa.3240060217.

19 P. Erdős. Some remarks on the theory of graphs. Bulletin of the American Mathematical
Society, 53(4):292–294, 1947. doi:10.1090/S0002-9904-1947-08785-1.

20 Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Approx-
imating Clique is Almost NP-Complete (Preliminary Version). In 32nd Annual Symposium
on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991, pages 2–12.
IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.185341.

21 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

22 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2 of Algorithms and Combinatorics. Springer, 1988.
doi:10.1007/978-3-642-97881-4.

23 Andrzej Grzesik, Tereza Klimosova, Marcin Pilipczuk, and Michal Pilipczuk. Polynomial-time
algorithm for maximum weight independent set on p_6-free graphs. CoRR, abs/1707.05491,
2017. arXiv:1707.05491.

24 Andrzej Grzesik, Tereza Klimosova, Marcin Pilipczuk, and Michal Pilipczuk. Polynomial-time
algorithm for maximum weight independent set on P6-free graphs. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 1257–1271, 2019. doi:10.1137/1.9781611975482.
77.

ESA 2020

https://doi.org/10.1145/174644.174650
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1007/978-1-84628-970-5
https://doi.org/10.1016/j.dam.2017.11.029
https://doi.org/10.1016/j.dam.2017.11.029
https://doi.org/10.1016/S0196-6774(02)00294-8
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1002/jgt.21730
https://doi.org/10.1137/1.9781611975994.139
https://doi.org/10.1137/1.9781611975994.139
https://doi.org/10.1109/SFCS.2005.14
https://doi.org/10.1016/0166-218X(89)90045-0
https://doi.org/10.1002/rsa.3240060217
https://doi.org/10.1090/S0002-9904-1947-08785-1
https://doi.org/10.1109/SFCS.1991.185341
https://doi.org/10.1007/978-3-642-97881-4
http://arxiv.org/abs/1707.05491
https://doi.org/10.1137/1.9781611975482.77
https://doi.org/10.1137/1.9781611975482.77

23:18 An Algorithmic Weakening of the Erdős-Hajnal Conjecture

25 Magnús M. Halldórsson. Approximating discrete collections via local improvements. In
Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 22-24 January
1995. San Francisco, California, USA., pages 160–169, 1995. URL: http://dl.acm.org/
citation.cfm?id=313651.313687.

26 Edin Husić, Stéphan Thomassé, and Nicolas Trotignon. The independent set problem is FPT
for even-hole-free graphs. to appear in the proceedings of IPEC 2019, 2019.

27 Johan Håstad. Clique is hard to approximate within n1-epsilon. In Acta Mathematica, pages
627–636, 1996.

28 Jeong Han Kim. The ramsey number r (3, t) has order of magnitude t2/log t. Random
Structures & Algorithms, 7(3):173–207, 1995.

29 Michael Krivelevich. Bounding ramsey numbers through large deviation inequalities. Random
Struct. Algorithms, 7(2):145–156, 1995. doi:10.1002/rsa.3240070204.

30 Vadim V. Lozin and Martin Milanic. A polynomial algorithm to find an independent set
of maximum weight in a fork-free graph. J. Discrete Algorithms, 6(4):595–604, 2008. doi:
10.1016/j.jda.2008.04.001.

31 George J. Minty. On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theory, Ser. B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

32 Burkhard Monien and Ewald Speckenmeyer. Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Inf., 22(1):115–123, 1985. doi:10.1007/BF00290149.

33 Owen J Murphy. Computing independent sets in graphs with large girth. Discrete Applied
Mathematics, 35(2):167–170, 1992.

34 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010. doi:10.1007/s00454-010-9285-9.

35 David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing, 3(1):103–128, 2007. doi:10.4086/toc.2007.v003a006.

http://dl.acm.org/citation.cfm?id=313651.313687
http://dl.acm.org/citation.cfm?id=313651.313687
https://doi.org/10.1002/rsa.3240070204
https://doi.org/10.1016/j.jda.2008.04.001
https://doi.org/10.1016/j.jda.2008.04.001
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1007/BF00290149
https://doi.org/10.1007/s00454-010-9285-9
https://doi.org/10.4086/toc.2007.v003a006

Reconfiguration of Spanning Trees with Many or
Few Leaves
Nicolas Bousquet
CNRS, LIRIS, Université de Lyon,
Université Claude Bernard Lyon 1, France
nicolas.bousquet@liris.cnrs.fr

Takehiro Ito
Graduate School of Information Sciences,
Tohoku University, Japan
takehiro@ecei.tohoku.ac.jp

Yusuke Kobayashi
Research Institute for Mathematical Sciences,
Kyoto University, Japan
yusuke@kurims.kyoto-u.ac.jp

Haruka Mizuta
Graduate School of Information Sciences,
Tohoku University, Japan
haruka.mizuta.s4@dc.tohoku.ac.jp

Paul Ouvrard
Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI,
UMR5800, Talence, France
paul.ouvrard@u-bordeaux.fr

Akira Suzuki
Graduate School of Information Sciences,
Tohoku University, Japan
a.suzuki@ecei.tohoku.ac.jp

Kunihiro Wasa
Department of Computer Science and Engineer-
ing, Toyohashi University of Technology, Japan
wasa@cs.tut.ac.jp

Abstract
Let G be a graph and T1, T2 be two spanning trees of G. We say that T1 can be transformed into T2

via an edge flip if there exist two edges e ∈ T1 and f in T2 such that T2 = (T1 \e)∪f . Since spanning
trees form a matroid, one can indeed transform a spanning tree into any other via a sequence of
edge flips, as observed in [11].

We investigate the problem of determining, given two spanning trees T1, T2 with an additional
property Π, if there exists an edge flip transformation from T1 to T2 keeping property Π all along.

First we show that determining if there exists a transformation from T1 to T2 such that all the
trees of the sequence have at most k (for any fixed k ≥ 3) leaves is PSPACE-complete.

We then prove that determining if there exists a transformation from T1 to T2 such that all the
trees of the sequence have at least k leaves (where k is part of the input) is PSPACE-complete even
restricted to split, bipartite or planar graphs. We complete this result by showing that the problem
becomes polynomial for cographs, interval graphs and when k = n− 2.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases combinatorial reconfiguration, spanning trees, PSPACE, polynomial-time
algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.24

Related Version A full version of the paper is available at https://arxiv.org/abs/2006.14309.

Funding Partially supported by JSPS and MEAE-MESRI under the Japan-France Integrated Action
Program (SAKURA).
Nicolas Bousquet: This work was supported by ANR project GrR (ANR-18-CE40-0032).
Takehiro Ito: Partially supported by JSPS KAKENHI Grant Numbers JP18H04091 and JP19K11814,
Japan.
Yusuke Kobayashi: Supported by JSPS KAKENHI Grant Numbers JP17K19960, JP18H05291, and
JP20K11692, Japan.
Haruka Mizuta: Partially supported by JSPS KAKENHI Grant Number JP19J10042, Japan.
Paul Ouvrard: This work was supported by ANR project GrR (ANR-18-CE40-0032).

© Nicolas Bousquet, Takehiro Ito, Yusuke Kobayashi, Haruka Mizuta, Paul Ouvrard, Akira Suzuki,
and Kunihiro Wasa;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0170-0503
mailto:nicolas.bousquet@liris.cnrs.fr
https://orcid.org/0000-0002-9912-6898
mailto:takehiro@ecei.tohoku.ac.jp
https://orcid.org/0000-0001-9478-7307
mailto:yusuke@kurims.kyoto-u.ac.jp
mailto:haruka.mizuta.s4@dc.tohoku.ac.jp
mailto:paul.ouvrard@u-bordeaux.fr
https://orcid.org/0000-0002-5212-0202
mailto:a.suzuki@ecei.tohoku.ac.jp
https://orcid.org/0000-0001-9822-6283
mailto:wasa@cs.tut.ac.jp
https://doi.org/10.4230/LIPIcs.ESA.2020.24
https://arxiv.org/abs/2006.14309
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Spanning Tree Reconfiguration

Akira Suzuki: Partially supported by JSPS KAKENHI Grant Numbers JP18H04091 and JP20K11666,
Japan.
Kunihiro Wasa: Partially supported by JST CREST Grant Numbers JPMJCR18K3 and JP-
MJCR1401, and JSPS KAKENHI Grant Number JP19K20350, Japan.

1 Introduction

Given an instance of some combinatorial search problem and two of its feasible solutions, a
reconfiguration problem asks whether one solution can be transformed into the other in a
step-by-step fashion, such that each intermediate solution is also feasible. Reconfiguration
problems capture dynamic situations, where some solution is in place and we would like to
move to a desired alternative solution without becoming infeasible. A systematic study of the
complexity of reconfiguration problems was initiated in [11]. Recently the topic has gained a
lot of attention in the context of constraint satisfaction problems and graph problems, such
as the independent set problem, the matching problem, and the dominating set problem.
Reconfiguration problems naturally arise for operational research problems but also are
closely related to uniform sampling using Markov chains (see e.g. [5]) or enumeration of
solutions of a problem. Reconfiguration problems received an important attention in the
last few years. For an overview of recent results on reconfiguration problems, the reader is
referred to the surveys of van den Heuvel [14] and Nishimura [13].

In this paper, our reference problem is the spanning tree problem. Let G = (V,E) be a
connected graph on n vertices. A spanning tree of G is a tree (chordless graph) with exactly
n− 1 edges. Given a tree T , a vertex v is a leaf if its degree is one and is an internal node
otherwise. A branching node is a vertex of degree at least three.

In order to define valid step-by-step transformations, an adjacency relation on the set of
feasible solutions is needed. Depending on the problem, there may be different natural choices
of adjacency relations. Let T1 and T2 be two spanning trees of G. We say that T1 and T2
differs by an edge flip if there exist e1 ∈ E(T1) and e2 ∈ E(T2) such that T2 = (T1 \ e1) ∪ e2.
Two trees T1 and T2 are adjacent if one can transform T1 into T2 via an edge flip. A
transformation from Ts to Tt is a sequence of trees 〈T0 := Ts, T1, . . . , Tr := Tt〉 such that
two consecutive trees are adjacent. Ito et al. [11] remarked that any spanning tree can be
transformed into any other via a sequence of edge flips. It easily follows from the exchange
properties for matroid. Unfortunately, the problem becomes much harder when we add some
restriction on the intermediate spanning trees. One can then ask the following question: does
it still exist a transformation when we add some constraints on the spanning tree? If not, is
it possible to decide efficiently if such a transformation exists? This problem was already
studied for vertex modification between Steiner trees [12] for instance.

In this paper, we consider spanning trees with restrictions on the number of leaves. More
precisely, what happens if we ask the number of leaves to be large (or small) all along the
transformation? We formally consider the following problems:

Spanning Tree with Many Leaves
Input: A graph G, an integer k, two trees T1 and T2 with at least k leaves.
Output: yes if and only if there exists a transformation from T1 to T2 such that all the
intermediate trees have at least k leaves.

In the Spanning Tree with At Most k Leaves problem, we instead want to find a
transformation such that all the intermediate trees have at most k leaves (where k is a fixed
constant).

N. Bousquet, T. Ito, Y. Kobayashi, H. Mizuta, P. Ouvrard, A. Suzuki, and K. Wasa 24:3

Our results

We prove that both variants are PSPACE-complete. In other words, we show that Spanning
Tree with Many Leaves and Spanning Tree with At Most k Leaves for every
k ≥ 3 are PSPACE-complete. This constrasts with many existing results on reconfiguration
problems using edge flips which are polynomial such as matching reconfiguration [11], cycle,
tree or clique reconfiguration [8]. As far as we know there does not exist any PSPACE-
hardness proof for any problem via edge flip. We hope that our results will help to design
more.

I Theorem 1. Spanning Tree with Many Leaves is PSPACE-complete restricted to
bipartite graphs, split graphs or planar graphs.

These results are obtained from two different reductions. In both reductions, we need an
arbitrarily large number of leaves in order to make the reduction work. In particular, one
can ask the following question: is Spanning Tree with at least n− k Leaves hard for
some constant k (where n is the size of the instance)? We do not answer this question but
we prove that, for the “dual” problem, the PSPACE-hardness is obtained even for k = 3.

I Theorem 2. Spanning Tree with At Most k Leaves is PSPACE-complete for every
k ≥ 3.

This proof is the most technically involved proof of this article and is based on a reduction
from the decision problem of Vertex Cover to the decision problem of Hamiltonian
Path. Let (G, k) be an instance of Vertex Cover. We first show that, on the graph H
obtained when we apply this reduction, we can associate with any spanning tree T of H a
vertex cover of G. The hard part of the proof consists in showing that (i) if T has at most
three leaves, then the vertex cover associated with T has at most k + 1 vertices; and (ii)
each edge flip consists of a modification of at most one vertex of the associated vertex cover.

One can note that for k = 2, the problem becomes the Hamiltonian Path Reconfig-
uration problem. We were not able to determine the complexity of this problem and we
left it as an open problem.

We complete these results by providing some polynomial-time algorithms:

I Theorem 3. Spanning Tree with Many Leaves can be decided in polynomial time on
interval graphs, on cographs, or if the number of leaves is n− 2.

We show that Spanning Tree with Many Leaves can be decided in polynomial time
if the number of leaves is n− 2. As we already said, we left as an open question to determine
if this result can be extended to any value n− k for some fixed k. If such an algorithm exists,
is it true that the problem is FPT parameterized by k?

We then show that in the case of cographs, the answer is always positive as long as the
number of leaves is at most n− 3. Since there is a polynomial-time algorithm to decide the
problem when k = 2 that completes the picture for cographs.

Since the problem is known to be PSPACE-complete for split graphs by Theorem 1 (and
thus for chordal graphs), the interval graphs result is the best we can hope for in a sense. The
interval graph result is based on a dynamic programming algorithm inspired by [2] where it is
proved that the Independent Set Reconfiguration problem in the token sliding model
is polynomial. Even if dynamic algorithms work quite well to decide combinatorial problems
on interval (and even chordal) graphs, they are much harder to use in the reconfiguration
setting. In particular, many reconfiguration problems become hard on chordal graphs (see
e.g. [1, 9]) since the transformations can go back and forth.

ESA 2020

24:4 Spanning Tree Reconfiguration

Since the problem is hard on planar graphs, it would be interesting to determine its
complexity on outerplanar graphs. We left this question as an open problem.

Related work

In the last few years, many graph reconfiguration problems have been studied through the
lens of edge flips such as matchings [11, 4], paths or cycles [8]. None of these works provide
any PSPACE-hardness results, only a NP-hardness result is obtained for (non Hamiltonian)
path reconfiguration via edge flips in [8]. Even if the reachability problem is known to
be polynomial in many cases, approximating the shortest transformation is often hard,
see e.g. [4]. Flips are also often considered in computational geometry, for instance to
measure the distance between two triangulations. In that setting, a flip of a triangulation
is the modification of a diagonal of a C4 for the other one. Usually, proving the existence
of a transformation is straightforward and the main questions are about the length of a
transformation which is not the problem addressed in this paper.

If, instead of “edge flips”, we consider “vertex flips” the problems become much harder.
For instance, the problem consisting in transforming an (induced) tree into another one
(of the same size) is PSPACE-complete [8] (while the exchange property ensures that it is
polynomial for the edge version). Mizuta et al. [12] also showed that the existence of vertex
exchanges between two Steiner trees is PSPACE-complete. But transforming subsets of
vertices with some properties is known to PSPACE-complete for a long time, for instance for
independent sets or cliques [10].

Definitions

Given two sets S1 and S2, we denote by S14S2 the symmetric difference of the sets S1 and
S2, that is (S1 \ S2) ∪ (S2 \ S1).

For a spanning tree T , every vertex of degree one is a leaf and every vertex of degree at
least two is an internal node. A vertex of degree at least three is called a branching node.
Recall that the number of leaves of any tree T is equal to (

∑
v∈T (max{0, dT (v)− 2})) + 2.

We denote by in(T) the number of internal nodes of T . Note that if T contains n nodes, the
number of leaves is indeed n− in(T).

Let G = (V,E) be a graph. A vertex cover C of G is a subset of vertices such that for
every edge e ∈ E, C contains at least one endpoint of e. C is minimum if its cardinality is
minimum among all vertex covers of G. Note that in particular, C is inclusion-wise minimal
and thus for every vertex u ∈ C, there is an edge e ∈ E which is covered only by u. We
denote by τ(G) the size of a minimum vertex cover of G.

Let X,Y be two vertex covers of G. X and Y are TAR-adjacent1 (resp. TJ-adjacent)
if there exists a vertex x (resp. x and y) such that X = Y ∪ {x} or Y = X ∪ {x} (resp.
X = Y \ {y} ∪ {x}). We will consider the following problem:

Minimum TAR-Vertex Cover Reconfiguration
Input: A graph G, two minimum vertex covers X,Y of size k.
Output: yes if and only if there exists a sequence from X to Y of TAR-adjacent vertex
covers, all of size at most k + 1.

1 TAR stands for “Token Additional Removal”.

N. Bousquet, T. Ito, Y. Kobayashi, H. Mizuta, P. Ouvrard, A. Suzuki, and K. Wasa 24:5

xeu

xev

yeu

yev

re1 re2 re3 re4

re5 re6 re7 re8

Figure 1 edge-gadget. The white vertices are the only ones connected to the outside.

Similarly, one can define the Minimum TJ-Vertex Cover Reconfiguration (MVCR
for short) where we want to determine whether there exists a sequence of TJ-adjacent vertex
covers from X to Y . Note that all the vertex covers must be of size |X| = |Y | = k.

2 Spanning trees with few leaves

I Theorem 4. Spanning Tree with At Most three Leaves is PSPACE-complete. 2

In order to prove Theorem 4, we will provide a reduction from Minimum TAR-Vertex
Cover Reconfiguration to Spanning Tree with At Most three Leaves.

I Theorem 5 (Wrochna [15]). TAR-Vertex Cover Reconfiguration is PSPACE com-
plete even for bounded bandwidth graphs.

The idea of the proof of Theorem 4 consists in adapting a reduction from Vertex cover
to Hamiltonian Path (for the optimization version). Let (G = (V,E), k) be an instance of
Vertex Cover. This reduction creates a graph H(G) which contains a Hamiltonian path if
and only if G admits a vertex cover of size k. The reduction is given in Section 2.1 together
with some properties of the spanning trees with at most three leaves in H(G). In order to
adapt the proof in the reconfiguration setting, we need to prove that the proof is “robust”
with respect to several meanings of the word. First, we need to show that, if we consider a
spanning tree with at most three leaves in H(G) then there is a “canonical” vertex cover of
size at most k + 1 associated with it (it is the most technical part of the proof). Then, for
any edge flip between two spanning trees with at most three leaves, we need to show that
the corresponding vertex covers associated with them are TAR-adjacent . We will indeed
also need to prove the reverse direction.

2.1 The Reduction
The reduction is a classical reduction (see Theorem 3.4 of [6] for a reference) from the
optimization version of Vertex Cover to the optimization version of Hamiltonian Path.
Let G be a graph and k be an integer. Let us construct a graph H(G) (abbreviated into H
when no confusion is possible) as follows:

Construction of H(G). For each edge e = uv of G, we create the following edge-gadget Ge

represented in Figure 1. The edge-gadget Ge has four special vertices denoted by xe
u, x

e
v, y

e
u, y

e
v.

The vertices xe
u and xe

v are called the entering vertices and ye
u and ye

v the exit vertices. The
gadget contains eight additional vertices denoted by re

1, . . . , r
e
8. When e is clear from context,

we will omit the superscript. The graph induced by these twelve vertices is represented in
Figure 1. The vertices re

1, . . . , r
e
8 are local vertices and their neighborhood will be included in

the gadget. The only vertices connected to the rest of the graphs are the special vertices.

2 Note that the reduction can be easily adapted to more leaves.

ESA 2020

24:6 Spanning Tree Reconfiguration

a

b

c

d

(a) Original instance (G, k) of Minimum Vertex Cover with a vertex cover {a, b}.

xab
a yabarab1 rab2 rab3 rab4

z2 z3

xab
b yabbrab5 rab6 rab7 rab8

xad
a yadarad1 rad2 rad3 rad4

xad
d yaddrad5 rad6 rad7 rad8

xbc
b ybcbrbc1 rbc2 rbc3 rbc4

xbc
c ybccrbc5 rbc6 rbc7 rbc8

xcd
c ycdcrcd1 rcd2 rcd3 rcd4

xcd
d ycddrcd5 rcd6 rcd7 rcd8

s1

s2

z1

Gab Gad Gbc Gcd
(b) Graph H(G) obtained from the reduction. The ordering for the vertices of the vertex cover {a, b} of G is the lexicographic
ordering, as well as the ordering of the edges incident to each vertex. The corresponding Hamiltonian path is depicted by
the thick dashed edges.

Figure 2 Illustration of the reduction of Theorem 4.

We add an independent set Z := {z1, . . . , zk+1} of k + 1 new vertices to V (H). And we
finally add to V (H) two more vertices s1, s2 in such a way that z1 (resp. zk+1) is the only
neighbor of s1 (resp. s2) in H(G). Since s1 and s2 have degree one in H(G), s1 and s2 are
leaves in any spanning tree of H(G). In particular, the two endpoints of any Hamiltonian
path of H(G) are necessarily s1 and s2.

Let us now complete the description of H(G) by explaining how the special vertices are
connected to the other vertices of H(G). Let u ∈ V (G). Let E′ = e1, . . . , e` be the set of
edges incident to u in an arbitrary order. We connect xe1

u and ye`
u to all the vertices of Z.

For every 1 ≤ i ≤ `− 1, we connect yei
u to xei+1

u . The edges yei
u x

ei+1
u are called the special

edges of u. The special edges of H(G) are the union of the special edges for every u ∈ V (G)
plus the edges incident to Z but s1z1 and s2zk+1. This completes the construction of H(G)
(see Figure 2 for an example).
I Remark 6. If T is a spanning tree of H(G) with at most ` leaves, then at most `− 2 of
them are in V (H) \ {s1, s2}.

Let T be a spanning tree of H(G). An edge-gadget is irregular if at least one of its twelve
vertices is not of degree two in T . An edge-gadget is regular if it is not irregular. By abuse of
notation we say that e ∈ E(G) is regular (resp. irregular) if the edge-gadget of e is regular
(resp. irregular). A vertex u is regular if every edge incident to u is regular. The vertex u is
irregular otherwise.

Let S be a subset of vertices of H(G). We denote by δT (S) the set of edges with exactly
one endpoint in S. When there is no ambiguity, we omit the subscript T . Moreover, if S
is the singleton {u}, we write δT (u) for δT ({u}). The restriction T (Ge) of a spanning tree
T around an edge-gadget Ge is the set of edges with both endpoints in Ge plus the edges of
δT (Ge) (which are considered as “semi edge” with one endpoint in Ge).

I Lemma 7. Let T be a spanning tree of H and G be a regular edge-gadget. Then the tree
T around the edge-gadget G is one of the two graphs represented in Figure 3. Note that the
graph of Figure 3(b) has to be considered up to symmetry between u and v.

N. Bousquet, T. Ito, Y. Kobayashi, H. Mizuta, P. Ouvrard, A. Suzuki, and K. Wasa 24:7

xeu

xev

yeu

yev

xeu

xev

yeu

yev

(a) (b)

Figure 3 The two possible sub-graphs around a regular edge-gadget G. Bold edges are edges in
the tree. Edges with one endpoint in the gadget are edges of δ(G).

I Lemma 8 (*). Let G be a graph, T be a spanning tree of H(G), and u be a regular vertex
of T . If there exists an edge e ∈ E(G) with endpoint u such that xe

u or ye
u has degree one in

the subgraph of T induced by the vertices of H[Ge], then, for every edge e′ with endpoint u,
xe′

u and ye′

u have degree one in the subgraph of T induced by the vertices of H[Ge′].
In particular, there is an edge of T between Z and the first entering vertex of u and an edge
between Z and the last exit vertex of u.

If, for a regular vertex u and an edge e = uv, xe
u or ye

u have degree one in H[Ge], then
there is a path between two vertices of Z passing through all the special vertices xe′

u and ye′

u

for every e′ incident to u and all the vertices on this path have degree two. Note that the
union of all such vertices forms a vertex cover of G.

2.2 Reconfiguration hardness
Let T be a spanning tree with at most three leaves. By Lemma 7, for every edge-gadget Ge,
if T (Ge) is not one of the two graphs of Figure 3, Ge contains a branching node or a leaf. So
Remark 6 implies:

I Remark 9. There are at most two irregular edge-gadgets. Thus there are at most four
irregular vertices.

Indeed, if T has two leaves, all the edge-gadgets are regular. If T has three leaves, the
third leaf must be in an edge-gadget, creating an irregular edge-gadget. And this leaf might
create a new branching node which might be in another edge-gadget than the one of the
third leaf. So the number of irregular edge-gadget is at most two, and thus the number of
irregular vertices is at most four (if the edges corresponding to these two edge-gadgets have
pairwise distinct endpoints).

Let T be a spanning tree of H(G) with at most three leaves. A vertex v is good if there
exists an edge e = vw for w ∈ V (G) such that xe

v or ye
v has degree one in the subtree of T

induced by the twelve vertices of the edge-gadget of e. In other words, if we simply look at
the edges of T with both endpoints in Ge, xe

v or ye
v has degree one (or said again differently,

xe
v or ye

v are adjacent to exactly one local vertex). Let us denote by S(T) the set of good
vertices. Using the fact that every gadget contains at most one vertex of degree three and
one vertex of degree one by Remark 6, we can show:

I Lemma 10 (*). Let T be a spanning tree with at most three leaves of H(G) and e = uv be
an edge of G. At least one special vertex of the edge-gadget Ge has degree one in the subgraph
of T induced by the vertices of Ge. In particular, S(T) is a vertex cover.

So, for every tree T with at most three leaves, S(T) is a vertex cover. We say that S(T)
is the vertex cover associated with T .

ESA 2020

24:8 Spanning Tree Reconfiguration

The next two technical lemmas ensure that an edge flip transformation provides a
TAR-vertex cover reconfiguration sequence.

I Lemma 11 (*). Every spanning tree T of H(G) with at most three leaves satisfies |S(T)| ≤
k + 1.

Sketch of the proof. Assume by contradiction that |S| ≥ k+ 2. By Remark 9, at least k− 2
vertices of S are regular. By Lemma 8, for each regular vertex w ∈ S, there is an edge of
T between Z and the first entering vertex of w and Z and the last exit vertex of w. So at
least 2k− 4 edges of δT (Z) are incident to regular vertices. Moreover two edges of δT (Z) are
incident to s1 and s2. So, T already has 2k − 2 edges in δT (Z). Since |Z| = k + 1 and T has
at most three leaves, Remark 6 ensures that δT (Z) has size 2k + 1, 2k + 2 or 2k + 3. The
main part of the proof, not included in this extended abstract, consists in proving that the
edges between Z and entering or exit vertices of irregular vertices is too large. J

So the vertex cover S(T) associated with every spanning tree T with at most three leaves
has size at most k + 1. In order to prove that a spanning tree transformation provides a
vertex cover transformation for the TAR setting, we have to prove that, for every edge flip,
then either S is not modified, or one vertex is added to S or one vertex is removed from S.

I Lemma 12 (*). Let T1 and T2 be two adjacent trees with at most three leaves. Then the
symmetric difference between the sets S associated with the two trees is at most one.

Lemmas 11 and 12 immediately implies the following:

I Lemma 13. If there is an edge flip reconfiguration sequence between two spanning trees T1
and T2, then there is a TAR-reconfiguration sequence (with threshold k + 1) between S(T1)
and S(T2).

We refer the reader to the complete version for a proof of the converse direction.

3 Spanning tree with many leaves

Before stating the main results of this section, let us prove the following:

I Lemma 14 (*). Let G be a graph and T1, T2 be two trees. There exists a transformation
from T1 to T2 such that every intermediate tree T satisfies in(T) ⊆ in(T1) ∪ in(T2).
In particular, all the trees with the same set of internal nodes are in the same connected
component of the reconfiguration graph.

3.1 Hardness results
I Theorem 15. Spanning Tree with Many Leaves is PSPACE-complete even restricted
to bipartite graphs or split graphs.

Sketch of the proof. We first briefly explain the proof for bipartite graphs. We provide a
polynomial-time reduction from the TAR-Dominating Set Reconfiguration problem
(abbreviated in TAR-DSR problem). Haddadan et al [7]. showed that the TAR reconfiguration
of dominating sets is PSPACE-complete. More precisely, they proved that given a graph G
and Ds, Dt two dominating sets of G, deciding whether there is a reconfiguration sequence
between Ds and Dt under the TAR(max(|Ds|, |Dt|) + 1) rule is PSPACE-complete.

N. Bousquet, T. Ito, Y. Kobayashi, H. Mizuta, P. Ouvrard, A. Suzuki, and K. Wasa 24:9

v1

v5

v4 v3

v2

(a) Original graph G.

a1

a2

a3

a4

a5

A

b1,0

b1,2

b2,0

b2,1

b3,0

b3,1

b4,0

b4,1

b5,0

b5,1

B

xy

(b) Corresponding bipartite graph G′.

Figure 4 Example for the reduction of Theorem 15: the dominating set D = {v2, v5} of G is
depicted by the black vertices and the spanning tree of G′ associated with D is the tree induced by
the solid edges. For the split case, we add all the possible edges in G′[A] so that G′[A ∪ {x}] is a
clique and G′[B ∪ {y}] an independent set.

Let G = (V,E) be a graph with vertex set V (G) = {v1, v2, . . . , vn} and let Ds, Dt be
two dominating sets of G. Free to add vertices to the set of smallest size, we can assume
without loss of generality that Ds and Dt are both of size k. Let (G, k + 1, Ds, Dt) be
the corresponding instance of Dominating Set Reconfiguration under TAR, where
k + 1 is the threshold that we cannot exceed. We construct the bipartite graph G′ as
follows: we make a first copy A = {a1, a2, . . . , an} of the vertex set of G, and a second copy
B = {b1,0, b1,1, b2,0, b2,1, . . . , bn,0, bn,1} where we double each vertex. We add an edge between
ai ∈ A and bj,k ∈ B for k ∈ {0, 1} if and only if vj ∈ NG[vi]. Note that N(bi,0) = N(bi,1),
for every 1 ≤ i ≤ n. We finally add a vertex x adjacent to all the vertices in A and we attach
it to a degree-one vertex y. Note that G′ is bipartite since A ∪ {y} and B ∪ {x} induce two
independent sets (see Figure 4 for an illustration).

B Claim 16 (*). For every spanning tree T of G′, in(T) ∩A is a dominating set of G.

B Claim 17 (*). For every spanning tree T of G′, there exists a tree TA in the same connected
component of T in the reconfiguration graph such that in(TA) ⊆ in(T) ∩ (A ∪ {x}).

Let D be a dominating set of G of size k. We can associate with D a spanning tree of
G′ with k + 1 internal nodes as follows. We attach every vertex in A ∪ {y} to x. Every
vertex bi ∈ B is a leaf adjacent to a vertex that dominates vi in D. If vi has more than one
neighbor in D, we choose the one with the smallest index. This spanning tree is called the
spanning tree associated with D. Due to space restrictions, the proof that (G, k + 1, Ds, Dt)
is yes-instance of TAR-DSR if and only if (G′, k′, Ts, Tt) is a yes-instance of Spanning Tree
with Many Leaves is not included in this extended abstract.

ESA 2020

24:10 Spanning Tree Reconfiguration

v1

v5

v4
v3

v2

v6

v10

v9 v8

v7

v11

f0

f1 f2

f3

f4

f5

f6

f7

f8

(a) Original labeled planar graph G. (b) Corresponding planar graph G′.

Figure 5 Reduction for Theorem 18. The vertex cover C of G is depicted by the black vertices.
The dual graph is the graph induced by the green edges. The spanning tree obtained from the BFS
is represented by the solid edges. The face-vertices (respectively edge-vertices) of G′ are depicted by
triangles (resp. squares). The spanning tree T of G′ associated with the vertex cover C is the tree
induced by the red edges. The number of leaves of T is 2(|E(G)|+ 1)− |C| = 32.

Let us now quickly explain how to adapt this proof for split graphs. We first add an edge
between any two vertices in A so that G′[A] is a clique. Then, observe that G′[A ∪ {x}] is
a clique, and G′[B ∪ {y}] an independent set. The proof that the resulting instance is a
yes-instance of Spanning Tree with Many Leaves if and only if (G, k + 1, Ds, Dt) is a
yes-instance of TAR-DSR is similar to the one for bipartite graphs (see the full version). J

I Theorem 18. Spanning Tree with Many Leaves is PSPACE-complete even restricted
to planar graphs.

The reduction. First, observe that MVCR is PSPACE-complete, even if the input graph is
planar [10]3. We use a reduction from MVCR, which is a slight adaptation of the reduction
used in [12, Theorem 4]. Let G = (V,E) be a planar graph and let (G,Cs, Ct) be an instance
of MVCR. We can assume that G is given with a planar embedding of G since such an
embedding can be found in polynomial time. Let F (G) be the set of faces of G (including
the outer face). We construct the corresponding instance (G′, k, Ts, Tt) as follows:

We define G′ from G as follows. We start from G and first subdivide every edge uv ∈ E(G)
by adding a new vertex wuv. Then, for every face f ∈ F (G), we add a new vertex wf adjacent
to all the vertices of the face f . Finally, we attach a leaf uf to every vertex wf . Note that G′

is a planar graph and |V (G′)| = |V (G)|+ |E(G)|+ 2 · |F (G)|. The vertices wuv for uv ∈ E
(resp. wf for f ∈ F) are edge-vertices (resp. face-vertices). The vertices uf for every f
are called the leaf-vertices. Note that, for every spanning tree T , all the face-vertices are
internal nodes of T and all the leaf-vertices are leaves of T . The vertices of V (G′) which are
neither edge, face of leaf vertices are called original vertices. Finally, we choose an arbitrarily
ordering of V (G) and F . It will permit us to define later a canonical spanning tree for every
vertex cover (see Figure 5 for an example).

I Lemma 19 (*). Every spanning tree of G′ has at most 2(|E(G)|+ 1)− τ(G) leaves.

3 Actually, Hearn and Demaine [10] showed the PSPACE-completeness for the reconfiguration of maximum
independent sets. Since the complement of a maximum independent set is a minimum vertex cover, we
directly get the PSPACE-completeness of MVCR.

N. Bousquet, T. Ito, Y. Kobayashi, H. Mizuta, P. Ouvrard, A. Suzuki, and K. Wasa 24:11

I Lemma 20 (*). For any minimum vertex cover C of G = (V,E), we can define a canonical
tree with exactly k := 2(|E(G)| + 1) − τ(G) leaves which are all the edge-vertices, all the
leaf-vertices and all the original vertices but the ones in C. Moreover, this spanning can be
computed in polynomial time.

Recall that (G,Cs, Ct) is an instance of Minimum Vertex Cover Reconfiguration.
By Lemma 20, we can compute in polynomial time two spanning trees Ts and Tt from Cs
and Ct with 2(|E(G)|+ 1)− τ(G) leaves. Finally, we set k := 2(|E(G)|+ 1)− τ(G)). Let
(G′, k, Ts, Tt) be the resulting instance of Spanning Tree with Many Leaves. It remains
to prove that (G,Cs, Ct) is a yes-instance if and only (G′, k, Ts, Tt) is a yes-instance. Suppose
first that we have a reconfiguration sequence S between Cs and Ct. By Lemma 20, we
can associate with each vertex cover Ci of S a spanning tree Ti of G′. To show that there
is a reconfiguration sequence S′ between Ts and Tt, we show that we can transform two
consecutive spanning trees of S′ without increasing the number of internal nodes. Note that
we use the fact that each Ci of S is a minimum vertex cover. For the converse direction, we
show that all the edge-vertices of any spanning tree in a reconfiguration sequence S from Ts to
Tt is a leaf. Hence, one can directly deduce a vertex cover Ci of G from a spanning tree Ti ∈ S.
Finally, we show that (i) each vertex cover is of size τ(G) and; (ii) |Ci4Ci+1| ∈ {0, 2} for
any two consecutive vertex covers.

3.2 Two internal nodes and cographs
Recall that, for every tree, the number of leaves is equal to n minus the number of internal
nodes. So, for convenience, our goal would consist in minimizing the number of internal
nodes rather than maximizing the number of leaves.

I Theorem 21. Let G be a graph and Ts or Tt be two spanning trees with at most two
internal nodes. Then we can check in polynomial time if one can transform the other via a
sequence of spanning trees with at most two internal nodes.

Sketch of the proof. If Ts or Tt has one internal node, the problem can be easily decided. So
we restrict to the case |in(Ts)| = |in(Tt)| = 2. Moreover, if in(Ts) = in(Tt), then (G, k, Ts, Tt)
is a yes-instance. So we only consider the case in(Ts) 6= in(Tt).

A vertex u is a pivot vertex of G if deg u ≥ n − 2 in G (deg u being the size of the
neighborhood of u, u not included). A spanning tree T of G is frozen if all the spanning
trees in its connected component of the reconfiguration graph have the same internal nodes.

B Claim 22 (*). Let T be a spanning tree of G. If in(T) does not contain a pivot vertex,
then T is frozen.

B Claim 23 (*). Let u be a pivot vertex. All the trees containing u as internal vertex are in
the same connected component of the reconfiguration graph.

Using these two claims, we can prove that the result follows. J

One can naturally wonder if this can be extended to larger values of k or if it is special
for k = 2. We left this as an open problem. We were only interested in the case k = 2 since
it was of particular interest for cographs. Indeed, if k ≥ 3, one can prove that the answer is
always positive for cographs. Together with Theorem 21, it implies:

I Theorem 24 (*). Spanning Tree with Many Leaves can be decided in polynomial
time on cographs.

ESA 2020

24:12 Spanning Tree Reconfiguration

3.3 Interval graphs
A graph G is an interval graph if G can be represented as an intersection of segments on
the line. More formally, each vertex can be represented with a pair (a, b) (where a ≤ b) and
vertices u = (a, b) and v = (c, d) are adjacent if the intervals (a, b) and (c, d) intersect. Let
u = (a, b) be a vertex; a is the left extremity of u and b the right extremity of u. Given an
interval graph, a representation of this graph as the intersection of intervals in the plane
can be found in O(|V |+ |E|) time (see e.g. [3]). In the rest of the section we assume that a
representation is given.

I Theorem 25. Spanning Tree with Many Leaves can be decided in polynomial time
on interval graphs.

The proof techniques are inspired from [2]. The rest of this section is devoted to prove
Theorem 25. Moreover, if G is a clique, then G is a cograph and then the problem can be
decided in polynomial by Theorem 24. So, from now on, we can assume that G is not a
clique and in particular in(G) ≥ 2.

C-minimum spanning trees. Let k be an integer, G be a graph. We denote by R(G, k) the
edge flip reconfiguration graph of the spanning trees of G with at most k internal nodes.

Let T, T ′ be two spanning trees with the same set of internal nodes. Lemma 14 ensures
that T and T ′ are in the same connected component of R(G, k). So in what follows, we will
often associate a tree T with its set in(T) of internal nodes.

For every interval graph, we can define a spanning tree TC called the canonical tree which
minimizes the number of internal vertices and such that for every i, the right extremity of
the i-th internal node is maximized.

A tree T is C-minimum if no tree T ′ in the connected component of T in R(G, k) contains
fewer internal nodes than T . The goal of this part consists in showing that all the trees that
are not C-minimum are in the connected component of TC in R(G, k). The following lemmas
follow from basic transformation on spanning trees:

I Lemma 26 (*). Let T be a spanning tree of G and k ≥ in(T). If there exist two internal
nodes u, v of T such that the interval of u is included in the interval of v then T is not
C-minimum in R(G, k). Moreover a tree with internal nodes included in in(T) \ {u} in the
component of T can be found in polynomial time, if it exists.

I Lemma 27 (*). Let T be a spanning tree of G. If there exist three pairwise adjacent
internal nodes u, v, w such that N [u] ⊆ N [v] ∪N [w] then T is not C-minimum. Moreover
a tree with internal nodes included in in(T) \ {u} in the connected component of T can be
found in polynomial time.

Note that if u, v, w induce a triangle, then Lemma 26 or 27 holds. So, free to perform
some pre-processing operations, we can assume that the set of internal nodes of a spanning
T of G induces a path. Indeed, if an internal node x is incident to three other internal nodes
u, v, w, then either at least two of them contain the left extremity (or right extremity) of x,
or one interval is strictly included in the interval of x. In the first case there is a triangle
and we can apply Lemma 26 or 27. In the second case, we can apply Lemma 26.

I Lemma 28 (*). Let G be an interval graph and k be an integer. Any spanning tree T of
G satisfying in(T) < k is in the connected component of TC in R(G, k).

Sketch of the proof. The proof consists in showing that we can iteratively increase the
number of internal nodes on which T and TC agree without increasing the number of internal
nodes at the end of the sequence (and increase it by at most one during the sequence). J

N. Bousquet, T. Ito, Y. Kobayashi, H. Mizuta, P. Ouvrard, A. Suzuki, and K. Wasa 24:13

Full access. Let T be a tree such that in(T) induces a path. Recall that the left and right
extremities orderings agree. The leftmost vertex of T is the vertex of in(T) that is minimal
for both l and r. The i-th internal node of T is the internal node with the i-th smallest left
extremity.

Let G be an interval graph and v ∈ V (G). The auxiliary graph Hv of G on v is defined
as follows. The vertex set of Hv is v plus the set W of vertices w which end after v and start
after the beginning of v (i.e. vertices whose interval ends after v but does not contain v) plus
a new vertex x, called the artificial vertex. The set of edges of Hv is the set of edges induced
by G[W ∪ {v}] plus the edge xv.

B Claim 29 (*). Let G be an interval graph and v be a vertex of G. The graph Hv is an
interval graph.

Let v ∈ V (G). Every spanning tree of Hv necessarily contains v in its set of internal
nodes. Indeed, by construction, the graph Hv contains a vertex x of degree one which is only
incident to v. Moreover, v is the leftmost internal node of any spanning tree T of Hv.

Let G be an interval graph, k ∈ N and T be a spanning tree with internal nodes I such
that |I| = k. Let v ∈ V (G). The restriction of a spanning tree T to Hv is any spanning tree
of Hv with internal nodes included in (in(T) ∪ {v}) ∩ V (Hv). We denote by k′

v (or k′ when
no confusion is possible) the value |(in(T) ∪ {v}) ∩ V (Hv)|. Let T ′ be the restriction of T
to Hv as defined above. One can easily check that the number of internal nodes of T ′ is at
most k′.

The vertex v is good if the restriction of T to Hv is not C-minimum in R(Hv, k
′). The

vertex v is normal otherwise. Let v be a normal vertex. Recall that v is the leftmost internal
node of any spanning tree of Hv. Let C be the connected component of the restriction of
T to Hv in R(Hv, k

′). We denote by `′
v(T) the second internal node of a spanning tree of

Hv in C that minimizes its left extremity. Similarly we denote by r′
v(T) the second internal

node of a spanning tree of Hv in C that maximizes its right extremity. When they do not
exist4, we set `′

v(T) = −∞ and r′
v(T) = +∞.

We say that we have full access to T if, for every vertex v ∈ V (G), we have a constant time
oracle saying if v is good or normal. And if v is normal, we moreover have a constant time
access to `′

v(T) and r′
v(T). What remains to be proved is that (i) knowing this information

for two spanning trees T and T ′ is enough to determine if they are in the same connected
component of R(G, k), and that (ii) this information can be computed in polynomial time.

Dynamic programming algorithm. Let us first state the following useful lemma.

I Lemma 30 (*). Let G be an interval graph and k ∈ N. Let T be a spanning tree of G and
v be an internal node of T . Let J := in(T) ∩ V (Hv) and k′ = |J |. If a tree T ′ with internal
nodes J can be transformed into a tree with internal nodes K in R(Hv, k

′) then T can be
transformed into a tree with internal nodes (in(T) \ J) ∪K in R(G, k).

In particular, if T ′ is not C-minimum in R(Hv, k
′) then T is not C-minimum in R(G, k).

Let us now prove that if we have full access to Hv for any v we can determine if T is
C-minimum and, if it is, the rightmost possible right extremity of the first internal node of
the trees in the connected component of T in R(G, k).

4 It is the case if and only if Hv is a clique.

ESA 2020

24:14 Spanning Tree Reconfiguration

I Lemma 31 (*). Let G be an interval graph, k ∈ N, and T be a spanning tree of G with at
most k internal nodes. Assuming full access to T :

We can decide in polynomial time if T is C-minimum in R(G, k) and,
If T is C-minimum, we can compute in polynomial time the rightmost possible right
extremity of the first internal node of a tree in the connected component of T in R(G, k).

Sketch of the proof. Let v be the first internal node of T . Since we have full access to T ,
we can compute w := `′

v(T). Lemma 30 ensures that there exists a spanning tree in the
component of T in R(G, k) with second internal node w. We now determine how far we can
move to the right the vertex v knowing this vertex. J

We say that we have full access to T after v if for every vertex w ∈ V (G) with w > v,
we have access in constant time to a table that permits us to know whether w is good or
normal. And if w is normal, we also have access to `′

w(T) and r′
w(T). Using a proof similar

to the one of Lemma 31, one can prove the following:

I Lemma 32 (*). Let G be an interval graph, k ∈ N, v ∈ V (G) and T be a spanning tree of
G with at most k internal nodes.

We can decide in polynomial time if v is good if we have full access to T after v.
If T is C-minimum, we can moreover compute r′

v(T) and `′
v(T) in polynomial time.

Lemmas 32 ensures that we can, using backward induction on the ordering of the vertices,
decide in polynomial time for all the vertices v of the graph if a vertex is good and if not we
can compute r′

v(T) and `′
v(T). So we have full access to T in polynomial time.

I Lemma 33 (*). Let G be an interval graph and v be a vertex of G. Let T1, T2 be two
spanning trees of G with internal nodes I1 and I2 of Hv such that v is normal for both T1
and T2. Let i1 := r′

v(I1) and i2 := r′
v(I2). The trees T1 and T2 are in the same connected

component of Hv if and only if:
i1 = i2 and,
Any spanning trees with internal nodes (I1 \ {v}) ∪ {i1} and (I2 \ {v}) ∪ {i2} are in the
same connected component of R(Hi1 , k).

We now have all the ingredients to prove Theorem 25.

Proof of Theorem 25. We can determine in polynomial time if the spanning trees are C-
minimum by Lemma 31. If both of them are not, then both of them can be reconfigured
to TC and there exists a transformation from T1 to T2 by Lemma 31. If only one of them
is, say T1, we can replace T1 by TC (since they are in the same connected component in
the reconfiguration graph). So we can assume that T1 and T2 are C-minimum. And the
conclusion follows by Lemma 33. J

References
1 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and Florian

Sikora. Token sliding on split graphs. In 36th International Symposium on Theoretical Aspects
of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, pages 13:1–13:17,
2019. doi:10.4230/LIPIcs.STACS.2019.13.

2 Marthe Bonamy and Nicolas Bousquet. Token sliding on chordal graphs. In Graph-Theoretic
Concepts in Computer Science - 43rd International Workshop, WG 2017, Eindhoven, The
Netherlands, June 21-23, 2017, Revised Selected Papers, pages 127–139, 2017. doi:10.1007/
978-3-319-68705-6_10.

https://doi.org/10.4230/LIPIcs.STACS.2019.13
https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/978-3-319-68705-6_10

N. Bousquet, T. Ito, Y. Kobayashi, H. Mizuta, P. Ouvrard, A. Suzuki, and K. Wasa 24:15

3 Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System
Sciences, 13(3):335–379, 1976. doi:10.1016/S0022-0000(76)80045-1.

4 Nicolas Bousquet, Tatsuhiko Hatanaka, Takehiro Ito, and Moritz Mühlenthaler. Shortest
reconfiguration of matchings. In Graph-Theoretic Concepts in Computer Science - 45th
International Workshop, WG 2019, pages 162–174, 2019. doi:10.1007/978-3-030-30786-8_
13.

5 Alan Frieze and Eric Vigoda. A survey on the use of markov chains to randomly sample
colourings. Oxford Lecture Series in Mathematics and its Applications, 34:53, 2007.

6 M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA, 1979.

7 Arash Haddadan, Takehiro Ito, Amer E. Mouawad, Naomi Nishimura, Hirotaka Ono, Akira
Suzuki, and Youcef Tebbal. The complexity of dominating set reconfiguration. Theor. Comput.
Sci., 651(C):37–49, October 2016. doi:10.1016/j.tcs.2016.08.016.

8 Tesshu Hanaka, Takehiro Ito, Haruka Mizuta, Benjamin Moore, Naomi Nishimura, Vijay
Subramanya, Akira Suzuki, and Krishna Vaidyanathan. Reconfiguring spanning and induced
subgraphs. Theor. Comput. Sci., 806:553–566, 2020. doi:10.1016/j.tcs.2019.09.018.

9 Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. The coloring reconfiguration problem on
specific graph classes. In Combinatorial Optimization and Applications - 11th International
Conference, COCOA 2017, Shanghai, China, December 16-18, 2017, Proceedings, Part I, pages
152–162, 2017. doi:10.1007/978-3-319-71150-8_15.

10 Robert A. Hearn and Erik D. Demaine. Pspace-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computation. Theor.
Comput. Sci., 343(1-2):72–96, October 2005. doi:10.1016/j.tcs.2005.05.008.

11 Takehiro Ito, Erik D. Demaine, Nicholas J.A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

12 Haruka Mizuta, Tatsuhiko Hatanaka, Takehiro Ito, and Xiao Zhou. Reconfiguration of
minimum steiner trees via vertex exchanges. In 44th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany., pages
79:1–79:11, 2019. doi:10.4230/LIPIcs.MFCS.2019.79.

13 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/
a11040052.

14 Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke,
and Mark Wildon, editors, Surveys in Combinatorics, volume 409 of London Mathematical
Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013. doi:10.1017/
CBO9781139506748.005.

15 Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst.
Sci., 93:1–10, 2018. doi:10.1016/j.jcss.2017.11.003.

ESA 2020

https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1007/978-3-030-30786-8_13
https://doi.org/10.1007/978-3-030-30786-8_13
https://doi.org/10.1016/j.tcs.2016.08.016
https://doi.org/10.1016/j.tcs.2019.09.018
https://doi.org/10.1007/978-3-319-71150-8_15
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.4230/LIPIcs.MFCS.2019.79
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1016/j.jcss.2017.11.003

When Lipschitz Walks Your Dog:
Algorithm Engineering of the
Discrete Fréchet Distance Under Translation
Karl Bringmann
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Max Planck Insitute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
kbringma@mpi-inf.mpg.de

Marvin Künnemann
Max Planck Insitute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
marvin@mpi-inf.mpg.de

André Nusser
Saarbrücken Graduate School of Computer Science, Saarland University, Germany
Max Planck Insitute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
anusser@mpi-inf.mpg.de

Abstract
Consider the natural question of how to measure the similarity of curves in the plane by a quantity
that is invariant under translations of the curves. Such a measure is justified whenever we aim
to quantify the similarity of the curves’ shapes rather than their positioning in the plane, e.g.,
to compare the similarity of handwritten characters. Perhaps the most natural such notion is
the (discrete) Fréchet distance under translation. Unfortunately, the algorithmic literature on this
problem yields a very pessimistic view: On polygonal curves with n vertices, the fastest algorithm
runs in time O(n4.667) and cannot be improved below n4−o(1) unless the Strong Exponential Time
Hypothesis fails. Can we still obtain an implementation that is efficient on realistic datasets?

Spurred by the surprising performance of recent implementations for the Fréchet distance, we
perform algorithm engineering for the Fréchet distance under translation. Our solution combines
fast, but inexact tools from continuous optimization (specifically, branch-and-bound algorithms for
global Lipschitz optimization) with exact, but expensive algorithms from computational geometry
(specifically, problem-specific algorithms based on an arrangement construction). We combine these
two ingredients to obtain an exact decision algorithm for the Fréchet distance under translation. For
the related task of computing the distance value up to a desired precision, we engineer and compare
different methods. On a benchmark set involving handwritten characters and route trajectories, our
implementation answers a typical query for either task in the range of a few milliseconds up to a
second on standard desktop hardware.

We believe that our implementation will enable, for the first time, the use of the Fréchet
distance under translation in applications, whereas previous algorithmic approaches would have been
computationally infeasible. Furthermore, we hope that our combination of continuous optimization
and computational geometry will inspire similar approaches for further algorithmic questions.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Fréchet Distance, Computational Geometry, Continuous Optimization,
Algorithm Engineering

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.25

Related Version https://arxiv.org/abs/2008.07510

Supplementary Material https://gitlab.com/anusser/frechet_distance_under_translation

Funding Karl Bringmann: This work is part of the project TIPEA that has received funding from
the European Research Council (ERC) under the European Unions Horizon 2020 research and
innovation programme (grant agreement No. 850979).

Acknowledgements We thank Andreas Karrenbauer for helpful discussions.
© Karl Bringmann, Marvin Künnemann, and André Nusser;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kbringma@mpi-inf.mpg.de
mailto:marvin@mpi-inf.mpg.de
mailto:anusser@mpi-inf.mpg.de
https://doi.org/10.4230/LIPIcs.ESA.2020.25
https://arxiv.org/abs/2008.07510
https://gitlab.com/anusser/frechet_distance_under_translation
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Algorithm Engineering of the Discrete Fréchet Distance Under Translation

1 Introduction

Consider the following natural task: Given two handwritings of (the same or different)
characters, represented as polygonal curves π, σ in the plane, determine how similar they
are. To measure the similarity of two such curves, several distance notions could be used,
where the most popular measure in computational geometry is given by the Fréchet distance
dF (π, σ): Intuitively, we imagine a dog walking on π and its owner walking on σ, and define
dF (π, σ) as the shortest leash length required to connect the dog to its owner while both
walk along their curves (only forward, but at arbitrarily and independently variable speeds).
In this paper, we focus on the discrete version, in which dog and owner do not continuously
walk along the curves, but jump from vertex to vertex.1 As a fundamental curve similarity
notion that takes into account the sequence of the points of the curves (rather than simply
the set of points, as in the simpler notion of the Hausdorff distance), the discrete Fréchet
distance and variants have received considerable attention from the computational geometry
community, see, e.g. [4, 19, 12, 17, 3, 8, 11, 15]. While the fastest known algorithms take
time n2±o(1) on polygonal curves with at most n vertices [4, 19, 3, 11] – which is best possible
under the Strong Exponential Time Hypothesis [8] – a recent line of research [6, 13, 18, 10]
gives fast implementations for practical input curves.

In the setting of handwritten characters, one would expect our notion of similarity to
be invariant under translations of the curves; after all, translating one character in the
plane while fixing the position of the other should not affect their similarity. In this sense,
the original Fréchet distance seems inadequate, as it does not satisfy translation invariance.
However, we may canonically define a translation-invariant adaptation as the minimum
Fréchet distance between π and any translation of σ, yielding the Fréchet distance under
translation. Note that beyond computing the similarity of handwritten characters, this
measure is generally applicable whenever our intuitive notion of similarity is not affected
by translations, such as recognition of movement patterns2. In some settings, we would
expect our notion to additionally be scaling- or rotation-invariant; however, this is beyond
the scope of this paper, as already the Fréchet distance under translation presents previously
unresolved challenges.

Can we compute the Fréchet distance under translation quickly? The existing theoretical
work yields a rather pessimistic outlook: For the discrete Fréchet distance under translation in
the plane, the currently fastest algorithm runs in time O(n4.667), and any algorithm requires
time n4−o(1) under the Strong Exponential Time Hypothesis [9]. These high polynomial
bounds appear prohibitive in practice, and have likely impeded algorithmic uses of this
similarity measure. (For the continuous analogue, the situation appears even worse, as the
fastest algorithm has a significantly higher worst-case bound of O(n8 logn); we thus solely
consider the discrete version in this work.) Given the surprising performance of recent Fréchet
distance implementations on realistic curves [35, 10], can we still hope for faster algorithms
on realistic inputs also for its translation-invariant version?

Our problem. Towards making the Fréchet distance under translation applicable for practi-
cal applications, we engineer a fast implementation and analyze it empirically on realistic
input sets. Perhaps surprisingly, our fastest solution for the problem combines inexact

1 We give a precise definition in Section 2.
2 One may argue that the similarity of movement patterns also depends on the speed/velocity of the

motion. In principle, we can also incorporate such information into any Fréchet-distance-based measure
by introducing an additional dimension.

K. Bringmann, M. Künnemann, and A. Nusser 25:3

continuous optimization techniques with an exact, but expensive problem-specific approach
from computational geometry to obtain an exact decision algorithm. We discuss our approach
in Section 3 and present the details of our decision algorithm in Section 4. We develop our
approach also for the related, but different task to compute the distance value up to a given
precision in Section 5, and evaluate our solutions for both settings in comparison to baseline
approaches in Section 6.

Further related work. Variations of the distance measure studied in this paper arise by
choosing (1) the discrete or continuous Fréchet distance, (2) the dimension d of the ambient
Euclidean space, and (3) a class of transformations, e.g., translations, rotations, scaling,
or arbitrary linear transformations. A detailed treatment of algorithms for this class of
distance measures can be found in [34]. The earliest example of a problem in this class is the
continuous Fréchet distance under translations in dimension d = 2, which was introduced by
Alt et al. [5] together with an O(n8 logn)-time algorithm.

In this paper we focus on the discrete Fréchet distance under translation in the plane.
This problem was first studied by Mosig and Clausen [31], who gave an O(n4) algorithm
for approximating the discrete Fréchet distance under rigid motions. Subsequently, Jiang
et al. [29] presented an O(n6 logn)-time algorithm for the exact Fréchet distance under
translation. Their running time was improved by Ben Avraham et al. to O(n5 logn) [7],
and then by Bringmann et al. to O(n4.667) [9]. A conditional lower bound of n4−o(1) can be
found in [9].

Algorithm engineering efforts for the Fréchet distance were initiated by the SIGSPATIAL
GIS Cup 2017 [35], where the task was to implement a nearest neighbor data structure
for curves under the Fréchet distance; see [6, 13, 18] for the top three submissions. The
currently fastest implementation of the Fréchet distance is due to Bringmann et al. [10].
Further recent directions of Fréchet-related algorithm engineering include k-means clustering
of trajectories [14] and locality sensitive hashing of trajectories [16].

2 Preliminaries

Throughout the paper, we consider the Euclidean plane and denote the Euclidean norm
by ‖·‖. A polygonal curve π is a sequence π = (π1, . . . , πn) of vertices πi ∈ R2. For any
τ ∈ R2, we write π + τ for the translated curve (π1 + τ, . . . , πn + τ).

For any curves π = (π1, . . . , πn), σ = (σ1, . . . , σm), we define their discrete Fréchet distance
as follows. A traversal is a sequence T = ((p1, s1), . . . , (pt, st)) of pairs (pi, si) ∈ [n]×[m] such
that (p1, s1) = (1, 1), (pt, st) = (n,m) and (pi+1, si+1) ∈ {(pi+1, si), (pi, si+1), (pi+1, si+1)}
for all 1 ≤ i < t. The width of a traversal is maxi=1,...,|T | ‖πpi − σsi‖. The discrete Fréchet
distance is then defined as the smallest width over all traversals, i.e.,

dF (π, σ) := min
traversal T

max
i=1,...,|T |

‖πpi
− σsi

‖ .

As we only consider the discrete Fréchet distance in this paper, we drop “discrete” in the
remainder. To avoid confusion, we also refer to it as the fixed-translation Fréchet distance.

As the canonically translation-invariant variant of the discrete Fréchet distance, we define
the discrete Fréchet distance under translation as dtrans-F (π, σ) := minτ∈R2 dF (π, σ + τ).
We typically view the problem as a two-dimensional optimization problem with objective
function f(τ) := dF (π, σ + τ). Specifically, we consider the task to decide minτ∈R2 f(τ) ≤ δ?
(exact decider) or to return a value in the range [(1− ε) minτ∈R2 f(τ), (1 + ε) minτ∈R2 f(τ)]
(approximate value computation, multiplicative version). In fact, for implementation reasons

ESA 2020

25:4 Algorithm Engineering of the Discrete Fréchet Distance Under Translation

(for a discussion, see the full version of the paper), our implementation returns a value in
[minτ∈R2 f(τ)− ε,minτ∈R2 f(τ) + ε] (approximate value computation, additive version) using
a straightforward adaptation of our approach.

Apart from a black-box Fréchet oracle answering decision queries dF (π, σ + τ) ≤ δ?, our
algorithms only exploit the following simple properties:

I Observation 1 (Lipschitz property). The objective function f is 1-Lipschitz, i.e., |f(τ)−
f(τ + τ ′)| ≤ ‖τ ′‖.

Proof. Note that for any πi, σj , τ, τ ′ ∈ R2, we have

|‖πi − (σj + τ + τ ′)‖ − ‖πi − (σj + τ)‖| ≤ ‖τ ′‖

by triangle inequality. Thus, the widths of any traversal T for π, σ + τ and π, σ + τ + τ ′

differ by at most ‖τ ′‖, which immediately yields the observation. J

We obtain a simple 2-approximation of the Fréchet distance under translation as follows.

I Observation 2. Let τstart := π1 − σ1 be the translation of σ that aligns the first points of
π and σ. Then dF (π, σ + τstart) ≤ 2 · dtrans-F (π, σ).

Analogously, for τend := πn − σm, we have dF (π, σ + τend) ≤ 2 · dtrans-F (π, σ).

Proof. Let δ∗ := dtrans-F (π, σ) and let τ∗ be such that dF (π, σ + τ∗) = δ∗, which implies in
particular that ‖π1 − (σ1 + τ∗)‖ ≤ δ∗. Thus, ‖τstart − τ∗‖ = ‖π1 − (σ1 + τ∗)‖ ≤ δ∗. Thus
by Observation 1, we obtain dF (π, σ + τstart) ≤ dF (π, σ + τ∗) + δ∗ = 2δ∗. J

Note that the above observation gives a formal guarantee of a simple heuristic: translate
the curves such that the start points match, and compute the corresponding fixed-translation
Fréchet distance. Unfortunately, this worst-case guarantee is tight3 – a correspondingly large
discrepancy is also observed on our data sets.

3 Our Approach: Lipschitz meets Fréchet

To obtain a fast exact decider, we approach the problem from two different angles: First, we
review previous problem-specific approaches to the Fréchet distance under translation, all
relying on the construction of an arrangement of circles as an essential tool from computational
geometry. Second, we cast the problem into the framework of global Lipschitz optimization
with its rich literature on fast, numerical solutions. In isolation, both approaches are
inadequate to obtain a fast, exact decider (as the arrangement can be prohibitively large
even for realistic data sets, and black-box Lipschitz optimization methods cannot return
an exact optimum). We then describe how to combine both approaches to obtain a fast
implementation of an exact decider for the discrete Fréchet distance under translation in
the plane. We evaluate our approach, including comparisons to (typically computationally
infeasible) baseline approaches, on a data set that we craft from sets of handwritten character
and (synthetic) GPS trajectories used in the ACM SIGSPATIAL GIS Cup 2017 [2, 1]. We
believe that our approach will inspire similar combinations of fast, inexact methods from
continuous optimization with expensive, but exact approaches from computational geometry
also in other contexts.

3 To see this, take any segment in the plane and let π traverse it in one direction, and σ in the other. Then
the heuristic would return as estimate two times the segment length (the distance of the translated end
points), while the optimal translation aligns the segments and achieves the segment length as Fréchet
distance.

K. Bringmann, M. Künnemann, and A. Nusser 25:5

Figure 1 Example curves π, σ (left) together with their arrangement Aδ (right), δ = dtrans-F (π, σ).

3.1 View I: Arrangement-based Algorithms

Previous algorithms for the Fréchet distance under translation in the plane work as follows.
Given two polygonal curves π, σ and a decision distance δ, consider the set of circles

C := {Cδ(πi − σj) | πi ∈ π, σj ∈ σ},

where Cr(p) denotes the circle of radius r ∈ R around p ∈ R2. Define the arrangement Aδ as
the partition of R2 induced by C. The decision of dF (π, σ + τ) ≤ δ is then uniform among
all τ ∈ R in the same face of Aδ (for a detailed explanation, we refer to [7, Section 3] or [9]).
Thus, it suffices to check, for each face f of Aδ, an arbitrarily chosen translation τf ∈ f .
Specifically, the Fréchet distance under translation is bounded by δ if and only if there is
some face f of Aδ such that dF (π, σ + τf) ≤ δ. Since the arrangement Aδ has size O(n4)
and can be constructed in time O(n4) [29], using the standard O(n2)-time algorithm for
the fixed-translation Fréchet distance [19, 4] to decide dF (π, σ + τf) ≤ δ for each face f , we
immediately arrive at an O(n6)-time algorithm.

Subsequent improvements [7, 9] speed up the decision of dF (π, σ + τf) ≤ δ for all faces f
by choosing an appropriate ordering of the translations τf and designing data structures that
avoid recomputing some information for “similar” translations, leading to an O(n4.667)-time
algorithm. Still, these works rely on computing the arrangement Aδ of worst-case size Θ(n4),
and a conditional lower bound indeed rules out O(n4−ε)-time algorithms [9].

Drawback: The arrangement size bottleneck. Despite the worst-case arrangement size
of Θ(n4) and the conditional lower bound in [9], which indeed constructs such large arrange-
ments, one might hope that realistic instances often have much smaller arrangements. If
so, a combination with a practical implementation of the fixed-translation Fréchet distance
could already give an algorithm with reasonable running time. Unfortunately, this is not the
case: our experiments in this paper exhibit typical arrangement sizes between 106 to 108 for
curves of length n ≈ 200, see Figure 5 in Section 6. Also see Figure 1 which illustrates a
large arrangement already on curves with 15 vertices, subsampled from our benchmark sets
of realistic curves.

This renders a purely arrangement-based approach infeasible: As existing implementations
for the Fréchet distance typically answer queries within few microseconds, we would expect
an average decision time between a few seconds and several minutes already for a single
decision query for the Fréchet distance under translation. Thus, a reasonable approximation
of the distance value via binary search would take between a minute and over an hour.

ESA 2020

25:6 Algorithm Engineering of the Discrete Fréchet Distance Under Translation

30

35

40

45

50

F
ré

ch
et

D
is

ta
n

ce

Figure 2 Example curves π, σ (left) together with a plot of the resulting non-convex objective
function f(τ) = dF (π, σ + τ). For a closer look at the area close to the optimal translation (and
highly non-convex small-scale artefacts), we refer to Figure 3.

3.2 View II: A Global Lipschitz Optimization problem
A second view on the Fréchet distance under translation results from a simple observation: For
any polygonal curves π, σ and any translation τ ∈ R2, we have |dF (π, σ+τ)−dF (π, σ)| ≤ ‖τ‖2,
see Section 2. As a consequence, the Fréchet distance under translation is the minimum
of a function f(τ) := dF (π, σ + τ) that is 1-Lipschitz (i.e., |f(x)− f(x+ y)| ≤ ‖y‖2 for all
x, y). This suggests to study the problem also from the viewpoint of the generic algorithms
developed for optimizing Lipschitz functions by the continuous optimization community.

Following the terminology of [25], in an unconstrained bivariate global Lipschitz optimiza-
tion problem, we are given an objective function f : R2 → R that is 1-Lipschitz, and the aim
is to minimize f(x) over x ∈ B := [a1, b1]× [a2, b2]; we can access f only by evaluating it on
(as few as possible) points x ∈ B. Note that in this abstract setting, we cannot optimize f
exactly, so we are additionally given an error parameter ε > 0 and the precise task is to find
a point x ∈ B such that f(x) ≤ minz∈B f(z) + ε.

Global Lipschitz optimization techniques have been studied from an algorithmic perspec-
tive for at least half a century [32]. This suggest to explore the use of the fast algorithms
developed in this context to obtain at least an approximate decider for the discrete Fréchet
distance under translation. Indeed, our problem fits into the above framework, if we take the
following considerations into account:
(1) Finite Box Domain: While we seek to minimize f(τ) = dF (π, σ + τ) over τ ∈ R2, the

above formulation assumes a finite box domain B. To reconcile this difference, observe
that any translation τ achieving a Fréchet distance of at most δ must translate the first
(last) point of σ such that the first (last) point of π is within distance at most δ. Thus,
any feasible translation τ must be contained in the intersection of the two corresponding
disks, and we can use any bounding box of this intersection as our box domain B.

(2) (Approximate) Decision Problem: While we seek to decide “minτ f(τ) ≤ δ”, the
above formulation solves the corresponding minimization problem. Note that approximate
minimization can be used to approximately solve the decision problem, but exactly solving
the decision problem is impossible in the above framework.

(3) Oracle Access to f(τ): Evaluation of f(τ) corresponds to computing the Fréchet
distance of π and σ+τ , for which we can use previous fast implementations [6, 13, 18, 10].
(Actually, these algorithms were designed to answer decision queries of the form “f(τ) ≤
δ?”; we discuss this aspect at the end of this section.)

K. Bringmann, M. Künnemann, and A. Nusser 25:7

28.5

29.0

29.5

30.0

30.5

31.0

F
ré

ch
et

D
is

ta
n

ce

Figure 3 Highly non-convex artefacts of the objective function at a local scale, resulting particu-
larly from the notion of traversals in the discrete Fréchet distance.

In Figure 2, we illustrate our view of the Fréchet distance under translation as Lipschitz
optimization problem. As the figure suggests, on many realistic instances, the problem
appears well-behaved (almost convex) at a global scale; using the Lipschitz property, one
should be able to quickly narrow down the search space to small regions of the search space4.
Particularly for this task, it is very natural to consider branch-and-bound approaches, as
pioneered by Galperin [20, 21, 22, 23] and formalized by Horst and Tuy [26, 27, 28], since
these have been applied very successfully for low-dimensional Global Lipschitz optimization
(and non-convex optimization in general).

On a high level, in this approach we maintain a global upper bound δ̃ and a list of search
boxes B1, . . . , Bb with lower bounds `1, . . . , `b (i.e., minτ∈Bi

f(τ) ≥ `i) obtained via the
Lipschitz condition. We iteratively pick some search box Bi and first try to improve the
global upper bound δ̃ or the local lower bound `i using a small number of queries f(τ) with
τ ∈ Bi (and exploiting the Lipschitz property). If the local lower bound exceeds the global
upper bound, i.e., `i > δ̃, we drop the search box Bi, otherwise, we split Bi into smaller
search boxes. The procedure stops as soon as δ̃ ≤ (1 + ε) mini `i, which proves that δ̃ gives a
(1 + ε)-approximation to the global minimum.

Specifically, we arrive at the following branch-and-bound strategy proposed by Gourdin,
Hansen and Jaumard [24]. We specify it by giving the rules with which it (i) attempts to
update the global upper bound, (ii) selects the next search box from the set of current search
boxes, (iii) splits a search box if it remains active after bounding, and (iv) determines the
local lower bounds.5
(i) Upper Bounding Rule: We evaluate f at the center τi of the current search box Bi.
(ii) Selection Rule: We pick the search box with the smallest lower bound (ties are broken

arbitrarily).
(iii) Branching Rule: We split the current search box along its longest edge into 2

equal-sized subproblems.
(iv) Lower Bounding Rule: We obtain the local lower bound `i as f(τi) − d where

d is the half-diameter of the current box. (Since f is 1-Lipschitz, we indeed have
minτ∈Bi

f(τ) ≥ `i.)

4 For an illustration that highly non-convex behavior may still occur at a local level, we refer to Figure 3.
5 See [25] for a precise formalization of the generic branch-and-bound algorithm that leaves open the
instantiation of these rules. In any case, we give a self-contained description of our algorithms in
Section 4 and 5.

ESA 2020

25:8 Algorithm Engineering of the Discrete Fréchet Distance Under Translation

One may observe that the chosen selection rule (also known as Best-Node First) is a no-regret
strategy in the sense that no other selection rule, even with prior knowledge of the global
optimum, considers fewer search boxes (see, e.g., [36, Section 7.4]).

Drawback: Inexactness. Unfortunately, the above branch-and-bound approach for Lip-
schitz optimization fundamentally cannot return an exact global optimum, and thus yields
only an approximate decider.

In a somewhat similar vein, in the above framework we assume that we can evaluate f(τ)
quickly. Previous implementations for the fixed-translation Fréchet distance focus on the
decision problem “f(τ) ≤ δ?”, not on determining the value f(τ). Both precise computations
(via parametric search) or approximate computations (using a binary search up to a desired
precision) are significantly more costly, raising the question how to make optimal use of the
cheaper decision queries.

4 Contribution I: An Exact Decider by Combining Both Views

Our first main contribution is engineering an exact decider for the discrete Fréchet distance
under translation by combining the two approaches. On a high level, we globally perform the
branch-and-bound strategy described in the Lipschitz optimization view in Section 3.2, but
use as a base case a local version of the arrangement-based algorithms of Section 3.1 once
the arrangement size in a search box is sufficiently small. As each search box is thus resolved
exactly, this yields an exact decider. More precisely, our final algorithm is a result of the
following steps and adaptations:
(1) Fréchet Decision Oracle. We adapt the currently fastest implementation of a decider

for the continuous fixed-translation Fréchet distance [10] to the discrete fixed-translation
Fréchet distance. Furthermore, to handle many queries for the same curve pair under
different translations quickly, we incorporate an implicit translation so that curves do
not need to be explicitly translated for each query translation τ .

(2) Objective Function Evaluation. For our exact decider, the branch-and-bound strat-
egy in Section 3.2 simplifies significantly: We do not maintain a global upper bound and
local lower bounds `i, but for each box only test whether f(τi) ≤ δ (if so, we return YES)
or whether f(τi) > δ + d (this corresponds to updating the local lower bound beyond δ,
i.e., we may drop the box completely). Therefore, we may use an arbitrary selection rule.
Note that we only require decision queries to the fixed-translation Fréchet algorithm.

(3) Base Case. We implement a local arrangement-based algorithm: For a given search
box Bi, we (essentially) construct the arrangement A∩Bi using CGAL [33], and test, for
each face f of A ∩Bi, some translation τ ′ ∈ f for f(τ ′) ≤ δ. This yields the algorithm
that we may use as a base case.

(4) Base Case Criterion. For each search box, we compute an estimate of its arrangement
complexity. If this estimate is smaller than a (tunable) parameter γsize, or the depth of
the branch-and-bound recursion for the current search box exceeds a parameter γdepth,
then we use the localized arrangement-based algorithm.

(5) Benchmark and Choice of Parameters. We choose the size and depth parameters
γsize, γdepth guided by a benchmark set that we create from a set of handwritten characters
and synthetic GPS trajectories.

The pseudocode of the resulting algorithm is shown in Algorithm 1. For a more detailed
description of our Fréchet-under-translation decider, we refer to the full version of this paper.

K. Bringmann, M. Künnemann, and A. Nusser 25:9

Algorithm 1 Algorithm for deciding the Fréchet distance under translation. We use τB to denote
the center of the box B and dB to denote the length of the diagonal of B.
1: procedure Decider(π, σ, δ)
2: decide trivial NO instances with empty initial search box quickly
3: Q← Fifo(initial search box)
4: while Q 6= ∅ do
5: B ← extract front of search box queue Q
6: if FréchetDistance(π, σ + τB) > δ + dB/2 then . Lower Bounding
7: skip B
8: if FréchetDistance(π, σ + τB) ≤ δ then . Upper Bounding
9: return YES
10:
11: u← upper bound on arrangement size inside B
12: if u = 0 then . Arrangement-based Base Case
13: skip B
14: else if u ≤ γsize or layer of B is γdepth then
15: if local arrangement-based algorithm on π, σ, δ, B returns YES then
16: return YES
17: else
18: skip B
19:
20: halve B along longest edge and push resulting child boxes to Q . Branching
21: return NO

5 Contribution II: Computation of the Distance Value

In this section we present our second main contribution: an algorithm for computing the
value of the Fréchet distance under translation. Thus, we now focus on the functional task
of computing the value dtrans-F (π, σ) = minτ∈R2 dF (π, σ + τ), in contrast to the previously
discussed decision problem “dtrans-F (π, σ) ≤ δ?”. In theory, one could use the paradigm
of parametric search [30], see [7, 9] for details for the discrete case. However, it is rarely
used in practice as it is non-trivial to code, and computationally costly. Instead, as in most
conceivable settings an estimate with small multiplicative error (1± ε) with, e.g., ε = 10−7,
suffices, we consider the problem of computing an estimate in (1± ε)dtrans-F (π, σ).

There are several possible approaches to obtain an approximation with multiplicative
error (1± ε) for arbitrarily small ε > 0:
1. ε-approximate Set: A natural approach underlying previous approximation algo-

rithms [5] is to generate a set of f(1/ε) candidate translations T such that the best
translation τ ∈ T gives a (1 + ε)-approximation for the Fréchet distance under translation.
Unfortunately, in the plane such a set is of size Θ(1/ε2), which is prohibitively large for
approximation guarantees such as ε = 10−7.

2. Binary Search via Decision Problem: A further canonical approach is to reduce the
(1 + ε)-approximate computation task to the decision problem using a binary search.

3. Lipschitz-only Optimization: The main drawback of the generic Lipschitz optimiza-
tion algorithms discussed in Section 3.2 was that they cannot be used to derive an exact
answer. This drawback no longer applies for approximate value computation. We can thus
use a pure branch-and-bound algorithm for global Lipschitz optimization. Interestingly,

ESA 2020

25:10 Algorithm Engineering of the Discrete Fréchet Distance Under Translation

Algorithm 2 Algorithm of our Lipschitz-Meets-Fréchet (LMF) algorithm for approximate value
computation. We use τB to denote the center of the box and dB to denote the length of the diagonal.
1: procedure LMF(π, σ)
2: Preprocessing: build data structures for fast arrangement estimation and construction
3: compute initial distance interval [δLB, δUB] containing dtrans-F (π, σ)
4: initialize global upper bound δ̃ ← δUB
5: Q← PriorityQueue(initial search box B1 with local lower bound `B1 ← δLB)
6: while Q 6= ∅ do
7: B ← box with smallest local lower bound `B in Q
8: if δ̃ ≤ `B(1 + ε) then
9: skip B

10: if FréchetDistance(π, σ + τB) ≤ δ̃ then . Upper/Lower Bounding
11: compute value dF (π, σ + τB) with high precision and update δ̃ and `B
12: else
13: if FréchetDistance(π, σ + τB) > δ̃ + dB/2 then
14: skip B
15: compute value dF (π, σ + τB) with coarse precision and update `B
16: if δ̃ ≤ `B(1 + ε) then
17: skip B
18: u← upper bound on arrangement size inside B for δ ∈ [`B , δ̃]
19: if u = 0 then . Arrangement-based Base Case
20: skip B
21: else if u ≤ γsize or layer of B is γdepth then
22: update δ̃ via binary search over arrangement algorithm on B and δ ∈ [`B , δ̃]
23: skip B
24:
25: push child boxes of B to Q with local lower bounds set to `B . Branching
26: return δ̃

experiments reveal that on many natural instances, significant time is spent branching
inside very small regions. This suggests following our combined approach also for the
value computation setting.

4. Our solution, Lipschitz-meets-Fréchet: We follow our approach of combining Lip-
schitz optimization with arrangement-based algorithms (described in Section 3) to compute
a (1 + ε)-approximation of the distance value. As opposed to the decision algorithm, we
indeed maintain a global upper bound δ̃ and local lower bounds `i for each search box Bi.
To update these bounds, we approximately evaluate the objective function f(τ) using
a tuned binary search6 over the fixed-translation Fréchet decider algorithm. We stop
branching in a search box Bi if either the global upper bound δ̃ is at most `i(1 + ε), or a
base case criterion similar to the decision setting applies. As selection strategy, we employ
the no-regret strategy of choosing the box with the smallest lower bound first. The base
case performs a binary search using the local arrangement-based decision algorithm; thus,
our upper bound on the arrangement size must hold for all δ in the search interval. The
pseudocode of our solution is shown in Algorithm 2.

6 We tune the binary search by distinguishing the precision with which we want to evaluate f(τ); intuitively,
it pays off to evaluate f(τ) with high precision if this evaluation yields a better global upper bound,
while for improvements of a local lower bound, a cheaper evaluation with coarser precision suffices.

K. Bringmann, M. Künnemann, and A. Nusser 25:11

For a more detailed description of the algorithm, we refer to the full version of this
paper. As our experiments reveal, our solution generally outperforms the above described
alternatives, see Section 6.

6 Experiments

To engineer and evaluate our approach, we provide a benchmark on the basis of the curve
datasets that were used to evaluate the currently fastest fixed-translation Fréchet decider
implementation in [10]. In particular, this curve set involves a set of handwritten characters
(Characters, [2]) and the data set of the GIS Cup 2017 (Sigspatial, [1]). Table 1 gives
statistics of these datasets.

Table 1 Information about the data sets used in the benchmarks.

Data set Type #Curves Mean #vertices

Sigspatial [1] synthetic GPS-like 20199 247.8

Characters [2] 20 handwritten characters 2858 120.9
(142.9 per character)

The aim of our evaluations is to investigate the following main questions:
1. Is our solution able to decide queries on realistic curve sets in an amount of time that is

practically feasible, even when the size of the arrangement suggests infeasibility?
2. Is our combination of Lipschitz optimization and arrangement-based algorithms for value

computation superior to the alternative approaches described in Section 5?
Furthermore, we aim to provide an understanding of the performance of our novel algorithms.

Decider experiments. For decision queries of the form “dtrans-F (π, σ) ≤ δ?”, we generate
a benchmark query set that distinguishes between how close the test distance is to the
actual distance of the curves: Given a set of curves C, we sample 1000 curve pairs π, σ ∈ C
uniformly at random. Using our implementation, we determine an interval [δLB, δUB] such
that δUB − δLB ≤ 2 · 10−7 and dtrans-F (π, σ) ∈ [δLB, δUB]. For each ` ∈ {−10, . . . ,−1}, we
add “dtrans-F (π, σ) ≤ (1− 4`)δLB?” to the query set CNO

` , which contains only NO instances.
Similarly, for each ` ∈ {−10, . . . , 2} we add “dtrans-F (π, σ) ≤ (1 + 4`)δUB?” to the query set
CYES
` , which contains only YES instances. We depict our timing results in Figure 4 on the

Characters and Sigspatial data sets. Further experiments are given in the full version of
the paper.

To give an insight for the speed-up achieved over the baseline arrangement-based algorithm
that makes a black-box call to the fixed-translation Fréchet decider for each face of the
arrangement Aδ, in Figure 5 we depict both the number of black-box calls to the fixed-
translation Fréchet decider made by our implementation, as well as an estimate7 for the
arrangement size, and thus the number of black-box calls of the baseline approach.

7 We only give an estimate for the arrangement size, since the size of the arrangement is too large to
be evaluated exactly for all our benchmark queries within a day. Specifically, we estimate the number
of vertices of the arrangement which closely corresponds to the number of faces by Euler’s formula.
We give the following estimate: We first determine a search box B for the given decision instance
π = (π1, . . . , πn), σ = (σ1, . . . , σm), δ as described for our algorithm. We then sample S = 100000 tuples
i1, i2 ∈ {1, . . . , n}, j1, j2 ∈ {1, . . . ,m} and count the number I of intersections of the circles of radius
δ around πi1 − σj1 and πi2 − σj2 inside B. The number (I/S) · (nm)2 is the estimated number of
circle-circle intersections in B. Adding the number of circle-box intersections, which we can compute
exactly, yields our estimate.

ESA 2020

25:12 Algorithm Engineering of the Discrete Fréchet Distance Under Translation

1− 4−1 1− 4−3 1− 4−5 1− 4−7 1− 4−9 1 + 4−10 1 + 4−8 1 + 4−6 1 + 4−4 1 + 4−2 1 + 40 1 + 42

distance factor
0

20

40

60

80

100

120

140

160

180
D

ec
is

io
n

ti
m

e
(m

s)
ALL-CHARACTERS:

1− 4−1 1− 4−3 1− 4−5 1− 4−7 1− 4−9 1 + 4−10 1 + 4−8 1 + 4−6 1 + 4−4 1 + 4−2 1 + 40 1 + 42

distance factor
0

50

100

150

200

250

300

350

400

D
ec

is
io

n
ti

m
e

(m
s)

SIGSPATIAL:

Figure 4 Running time for our decider. We plot the mean running times over 1000 NO (or YES)
queries with a test distance of approximately (1− 4−`) (or (1 + 4−`)) times the true Fréchet distance
under translation, as well as the interval between the lower and upper quartile over the queries.

We observe that on the above sets, the average decision time ranges from below 1 ms to
142 ms, deciding our Characters benchmark (involving 23, 000 queries) in 628 seconds.
Our estimation suggests that a naive implementation of the baseline arrangement-based
algorithm would have been worse by more than three orders of magnitude, as for each set,
the average number of black-box calls to the fixed-translation Fréchet decider is smaller by a
factor of at least 1000 than our estimation of the arrangement size.

Approximate value computation experiments. We evaluate our implementation of the
algorithm presented in Section 5 by computing an estimate δ̃ such that |δ̃−dtrans-F (π, σ)| ≤ ε
with a choice of ε = 10−7.8 In particular, we compare the performances of the different
approaches discussed in Section 5:

Binary Search: Binary search using our Fréchet-under-translation decider of Section 4.
Lipschitz-only: Algorithm 2 without the arrangement, i.e., without lines 18 to 23.
Lipschitz-meets-Fréchet (LMF): Our implementation as detailed in Section 5.

Since simple estimates show that the ε-approximate sets are clearly too costly for ε = 10−7, we
drop this approach from all further consideration. We took care to implement all approaches
with a similar effort of low-level optimizations.

8 Here we use additive rather than multiplicative approximation for technical reasons. Since all computed
distances are within [1.6, 120.7], this also yields a multiplicative (1 + ε)-approximation with ε ≤ 10−7.

K. Bringmann, M. Künnemann, and A. Nusser 25:13

1− 4−1 1− 4−3 1− 4−5 1− 4−7 1− 4−9 1 + 4−10 1 + 4−8 1 + 4−6 1 + 4−4 1 + 4−2 1 + 40 1 + 42

distance factor
100

101

102

103

104

105

106

107

108

B
la

ck
-b

ox
ca

lls
ALL-CHARACTERS:

1− 4−1 1− 4−3 1− 4−5 1− 4−7 1− 4−9 1 + 4−10 1 + 4−8 1 + 4−6 1 + 4−4 1 + 4−2 1 + 40 1 + 42

distance factor
100

101

102

103

104

105

106

107

108

109

B
la

ck
-b

ox
ca

lls

SIGSPATIAL:

Figure 5 Number of black-box calls to the fixed-translation Fréchet decider made by our decider
(below, in green), as well as an estimate of the arrangement complexity, i.e., number of calls of a
naive algorithm (above, in black). We plot the mean number of calls and arrangement complexity
over 1000 NO (or YES) queries with a test distance of approximately (1− 4−`) (or (1 + 4−`)) times
the true Fréchet distance under translation, as well as the interval between the lower and upper
quartile over the queries.

For our evaluation, we focus on the Characters data set which allows us to distinguish
the rough shape of the curves: We subdivide the curve set into the subsets Cα for α ∈ Σ
(where Σ is the set of 20 characters occurring in Characters). In particular for each
character pair α, β ∈ Σ, we create a sample of Nsamples curve pairs (π, σ) chosen uniformly
at random from Cα × Cβ . For Nsamples = 5, computing the value (up to ε = 10−7) for all
Nsamples · (

(|Σ|
2

)
+ |Σ|) = 1050 sampled curve pairs gives the statistics shown in Table 2.

Since already for this example the Lipschitz-only approach is dominated by almost a
factor of 30 by LMF (and by a factor of almost 8 by binary search), we perform more detailed
analyses with Nsamples = 100 only for LMF and binary search. The overall performance
is given in Table 3. Also here LMF is more than 3 times faster than binary search. To
give more insights into the relationship of their running times, we give a scatter plot of the
running times of LMF and binary search on the same instances over the complete benchmark
in Figure 6, showing that binary search generally outperforms LMF only on instances which
are comparably easy for LMF as well. The advantage of LMF becomes particularly clear on
hard instances.

We give further experiments in the full version of the paper.

ESA 2020

25:14 Algorithm Engineering of the Discrete Fréchet Distance Under Translation

Table 2 Statistics for approximate value computation for Nsamples = 5. In parentheses we show
the mean values averaged over a total of 1050 instances.

Approach Time Black-Box Calls

LMF 148,032 ms 13,323,232
(141.0 ms per instance) (12,688.8 per instance)

Binary Search 536,853 ms 45,909,628
(511.3 ms per instance) (43,723.5 per instance)

Lipschitz-only 4,204,521 ms 820,468,224
(4,004.3 ms per instance) (781,398.3 per instance)

100 101 102 103 104 105

Binary Search (ms)

100

101

102

103

104

L
M

F
(m

s)

Figure 6 Running times of LMF and binary search on set of randomly sampled Characters
curves.

Table 3 Statistics for approximate value computation for Nsamples = 100. In parentheses, we
give average values over the total of 21,000 curve pairs.

Algorithm Time Black-Box Calls

LMF 2,938,512 ms 260,128,449
(140.0 ms per instance) (12,387.1 per instance)

- Preprocessing 71,728 ms

- Black-box calls (Lipschitz) 400,189 ms

- Arrangement estimation 166,479 ms

- Arrangement algorithm 2,250,493 ms
* Construction 1,537,500 ms
* Black-box calls 545,442 ms

Binary Search 10,555,630 ms 875,424,988
(502.7 ms per instance) (41,686.9 per instance)

K. Bringmann, M. Künnemann, and A. Nusser 25:15

7 Conclusion

We engineer the first practical implementation for the discrete Fréchet distance under
translation in the plane. While previous algorithmic solution for the problem solve it via
expensive discrete methods, we introduce a new method from continuous optimization to
achieve significant speed-ups on realistic inputs. This is analogous to the success of integer
programming solvers which, while optimizing a discrete problem, choose to work over the
reals to gain access to linear programming relaxations, cutting planes methods, and more. A
novelty here is that we successfully apply such methods to obtain drastic speed-ups for a
polynomial-time problem.

We leave as open problems to determine whether there are reasonable analogues of further
ideas from integer programming, such as cutting plane methods or preconditioning, that
could help to get further improved algorithms for our problem. More generally, we believe
that this gives an exciting direction for algorithm engineering in general that should find
wider applications. A particular direction in this vein is the use of our methods to compute
rotation- or scaling-invariant versions of the Fréchet distance. Intuitively, by introducing
additional dimensions in our search space, our methods can in principle also be used to
optimize over such additional degrees of freedom. However, the Lipschitz condition changes
significantly, and it remains subject of future work to determine the applicability of our
methods in these settings.

References
1 ACM SIGSPATIAL GIS Cup 2017 Data Set. https://www.martinwerner.de/datasets/

san-francisco-shortest-path.html. Accessed: 2018-12-03.
2 Character Trajectories Data Set. https://archive.ics.uci.edu/ml/datasets/Character+

Trajectories. Accessed: 2018-12-03.
3 Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. Computing

the discrete Fréchet distance in subquadratic time. SIAM J. Comput., 43(2):429–449, 2014.
doi:10.1137/130920526.

4 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. Internat. J. Comput. Geom. Appl., 5(1–2):78–99, 1995.

5 Helmut Alt, Christian Knauer, and Carola Wenk. Matching polygonal curves with respect to
the Fréchet distance. In Proc. 18th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’01), pages 63–74, 2001.

6 Julian Baldus and Karl Bringmann. A fast implementation of near neighbors queries for
Fréchet distance (GIS Cup). In Proc. of the 25th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (SIGSPATIAL 2017), pages 99:1–99:4. ACM,
2017. doi:10.1145/3139958.3140062.

7 Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. A faster algorithm for the discrete
Fréchet distance under translation. ArXiv preprint, 2015. arXiv:1501.03724.

8 Karl Bringmann. Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails. In Proc. 55th Ann. IEEE Symposium on Foundations
of Computer Science (FOCS’14), pages 661–670, 2014.

9 Karl Bringmann, Marvin Künnemann, and André Nusser. Fréchet distance under translation:
Conditional hardness and an algorithm via offline dynamic grid reachability. In Proc. 30th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pages 2902–2921, 2019.
doi:10.1137/1.9781611975482.180.

10 Karl Bringmann, Marvin Künnemann, and André Nusser. Walking the dog fast in practice:
Algorithm engineering of the Fréchet distance. In Proc. 35th International Symposium on
Computational Geometry (SoCG 2019), pages 17:1–17:21, 2019. doi:10.4230/LIPIcs.SoCG.
2019.17.

ESA 2020

https://www.martinwerner.de/datasets/san-francisco-shortest-path.html
https://www.martinwerner.de/datasets/san-francisco-shortest-path.html
https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
https://archive.ics.uci.edu/ml/datasets/Character+Trajectories
https://doi.org/10.1137/130920526
https://doi.org/10.1145/3139958.3140062
http://arxiv.org/abs/1501.03724
https://doi.org/10.1137/1.9781611975482.180
https://doi.org/10.4230/LIPIcs.SoCG.2019.17
https://doi.org/10.4230/LIPIcs.SoCG.2019.17

25:16 Algorithm Engineering of the Discrete Fréchet Distance Under Translation

11 Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four Soviets walk
the dog: Improved bounds for computing the Fréchet distance. Discrete & Computational
Geometry, 58(1):180–216, 2017. doi:10.1007/s00454-017-9878-7.

12 Kevin Buchin, Maike Buchin, and Yusu Wang. Exact algorithms for partial curve matching via
the Fréchet distance. In Proc. 20th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA’09),
pages 645–654, 2009.

13 Kevin Buchin, Yago Diez, Tom van Diggelen, and Wouter Meulemans. Efficient trajectory
queries under the Fréchet distance (GIS Cup). In Proc. of the 25th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (SIGSPATIAL
2017), pages 101:1–101:4. ACM, 2017. doi:10.1145/3139958.3140064.

14 Kevin Buchin, Anne Driemel, Natasja van de L’Isle, and André Nusser. klcluster: Center-based
clustering of trajectories. In Proc. of the 27th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems (SIGSPATIAL 2019), pages 496–499. ACM,
2019. doi:10.1145/3347146.3359111.

15 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Timothy M. Chan, editor,
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 2887–2901. SIAM, 2019. doi:
10.1137/1.9781611975482.179.

16 Matteo Ceccarello, Anne Driemel, and Francesco Silvestri. FRESH: Fréchet similarity
with hashing. In Proc. of the 16th International Symposium on Algorithms and Data
Structures (WADS 2019), volume 11646 of LNCS, pages 254–268. Springer, 2019. doi:
10.1007/978-3-030-24766-9_19.

17 Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete & Computational Geometry, 48(1):94–127, July
2012. doi:10.1007/s00454-012-9402-z.

18 Fabian Dütsch and Jan Vahrenhold. A filter-and-refinement-algorithm for range queries based
on the Fréchet distance (GIS Cup). In Proc. of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (SIGSPATIAL 2017), pages
100:1–100:4. ACM, 2017. doi:10.1145/3139958.3140063.

19 Thomas Eiter and Heikki Mannila. Computing discrete Fréchet distance. Technical Report
CD-TR 94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

20 Efim A. Galperin. The cubic algorithm. Journal of Mathematical Analysis and Applications,
112(2):635–640, 1985. doi:10.1016/0022-247X(85)90268-9.

21 Efim A. Galperin. Two alternatives for the cubic algorithm. Journal of Mathematical Analysis
and Applications, 126(1):229–237, 1987. doi:10.1016/0022-247X(87)90088-6.

22 Efim A. Galperin. Precision, complexity, and computational schemes of the cubic al-
gorithm. Journal of Optimization Theory and Applications, 57(2):223–238, 1988. doi:
10.1007/BF00938537.

23 Efim A. Galperin. The fast cubic algorithm. Computers & Mathematics with Applications,
25(10):147–160, 1993. doi:10.1016/0898-1221(93)90289-8.

24 E. Gourdin, P. Hansen, and B. Jaumard. Global optimization of multivariate lipschitz functions:
Survey and computational comparison, 1994.

25 Pierre Hansen and Brigitte Jaumard. Lipschitz optimization. In Reiner Horst and Panos M.
Pardalos, editors, Handbook of Global Optimization, pages 407–493. Springer US, Boston, MA,
1995. doi:10.1007/978-1-4615-2025-2_9.

26 Reiner Horst. A general class of branch-and-bound methods in global optimization with some
new approaches for concave minimization. Journal of Optimization Theory and Applications,
51:271–291, 1986. doi:10.1007/BF00939825.

27 Reiner Horst and Hoang Tuy. On the convergence of global methods in multiextremal
optimization. Journal of Optimization Theory and Applications, 54:253–271, 1987. doi:
10.1007/BF00939434.

https://doi.org/10.1007/s00454-017-9878-7
https://doi.org/10.1145/3139958.3140064
https://doi.org/10.1145/3347146.3359111
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1007/978-3-030-24766-9_19
https://doi.org/10.1007/978-3-030-24766-9_19
https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1145/3139958.3140063
https://doi.org/10.1016/0022-247X(85)90268-9
https://doi.org/10.1016/0022-247X(87)90088-6
https://doi.org/10.1007/BF00938537
https://doi.org/10.1007/BF00938537
https://doi.org/10.1016/0898-1221(93)90289-8
https://doi.org/10.1007/978-1-4615-2025-2_9
https://doi.org/10.1007/BF00939825
https://doi.org/10.1007/BF00939434
https://doi.org/10.1007/BF00939434

K. Bringmann, M. Künnemann, and A. Nusser 25:17

28 Reiner Horst and Hoang Tuy. Global Optimization – Deterministic Approaches. Springer
Berlin Heidelberg, 3rd edition, 1996.

29 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure–structure alignment with discrete
Fréchet distance. J. Bioinformatics and Computational Biology, 6(01):51–64, 2008.

30 Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852–865, 1983. doi:10.1145/2157.322410.

31 Axel Mosig and Michael Clausen. Approximately matching polygonal curves with respect to
the fréchet distance. Computational Geometry, 30(2):113–127, 2005. Special Issue on the 19th
European Workshop on Computational Geometry. doi:10.1016/j.comgeo.2004.05.004.

32 S.A. Piyavskii. An algorithm for finding the absolute extremum of a function. USSR
Computational Mathematics and Mathematical Physics, 12(4):57–67, 1972. doi:10.1016/
0041-5553(72)90115-2.

33 Ron Wein, Eric Berberich, Efi Fogel, Dan Halperin, Michael Hemmer, Oren Salzman, and
Baruch Zukerman. 2D arrangements. In CGAL User and Reference Manual. CGAL Editorial
Board, 5.0.2 edition, 2020. URL: https://doc.cgal.org/5.0.2/Manual/packages.html#
PkgArrangementOnSurface2.

34 Carola Wenk. Shape matching in higher dimensions. PhD thesis, Freie Universität Berlin,
2002. PhD Thesis.

35 Martin Werner and Dev Oliver. ACM SIGSPATIAL GIS cup 2017: Range queries under
Fréchet distance. SIGSPATIAL Special, 10(1):24–27, 2018.

36 L.A. Wolsey. Integer Programming. Wiley Series in Discrete Mathematics and Optimization.
Wiley, 1998.

ESA 2020

https://doi.org/10.1145/2157.322410
https://doi.org/10.1016/j.comgeo.2004.05.004
https://doi.org/10.1016/0041-5553(72)90115-2
https://doi.org/10.1016/0041-5553(72)90115-2
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgArrangementOnSurface2
https://doc.cgal.org/5.0.2/Manual/packages.html#PkgArrangementOnSurface2

Improved Algorithms for Alternating Matrix Space
Isometry: From Theory to Practice
Peter A. Brooksbank
Department of Mathematics, Bucknell University, Lewisburg, PA, USA
pbrooksb@bucknell.edu

Yinan Li
CWI and QuSoft, Amsterdam, The Netherlands
liyinan9252@gmail.com

Youming Qiao
Centre for Quantum Software and Information, University of Technology Sydney, Ultimo, Australia
Youming.Qiao@uts.edu.au

James B. Wilson
Department of Mathematics, Colorado State University, Fort Collins, CO, USA
James.Wilson@ColoState.Edu

Abstract
Motivated by testing isomorphism of p-groups, we study the alternating matrix space isometry prob-
lem (AltMatSpIso), which asks to decide whether two m-dimensional subspaces of n× n alternating
(skew-symmetric if the field is not of characteristic 2) matrices are the same up to a change of basis.
Over a finite field Fp with some prime p 6= 2, solving AltMatSpIso in time pO(n+m) is equivalent to
testing isomorphism of p-groups of class 2 and exponent p in time polynomial in the group order.
The latter problem has long been considered a bottleneck case for the group isomorphism problem.

Recently, Li and Qiao presented an average-case algorithm for AltMatSpIso in time pO(n) when
n and m are linearly related (FOCS ’17). In this paper, we present an average-case algorithm for
AltMatSpIso in time pO(n+m). Besides removing the restriction on the relation between n and m,
our algorithm is considerably simpler, and the average-case analysis is stronger. We then implement
our algorithm, with suitable modifications, in Magma. Our experiments indicate that it improves
significantly over default (brute-force) algorithms for this problem.

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms; Computing
methodologies → Combinatorial algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases Alternating Matrix Spaces, Average-case Algorithm, p-groups of Class 2and
Exponent p, Magma

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.26

Related Version The main results of this submission come from [5] (https://arxiv.org/abs/1905.
02518), which will be subdivided into several papers.

Funding The authors would like to acknowledge the financial support by NSF grant DMS-1750319.
Additionally,
Peter A. Brooksbank: Partially supported by NSF grant DMS-1620362.
Yinan Li: Partially supported by ERC Consolidator Grant 615307-QPROGRESS.
Youming Qiao: Partially supported by the Australian Research Council DE150100720 and
DP200100950.
James B. Wilson: Partially supported by NSF grant DMS-1620454.

Acknowledgements The authors would like to acknowledge László Babai and Xiaorui Sun for
discussions, and Joshua A. Grochow for discussions and comments on improving the presentation.
The authors acknowledge the Hausdorff Institute for Mathematics, the University of Auckland, the
Santa Fe Institute, and the TACA workshop at the University of Colorado, Boulder and Colorado
State University, where this research was carried out by (subsets of) the authors.

© Peter A. Brooksbank, Yinan Li, Youming Qiao, and James B. Wilson;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbrooksb@bucknell.edu
mailto:liyinan9252@gmail.com
mailto:Youming.Qiao@uts.edu.au
mailto:James.Wilson@ColoState.Edu
https://doi.org/10.4230/LIPIcs.ESA.2020.26
https://arxiv.org/abs/1905.02518
https://arxiv.org/abs/1905.02518
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Improved Algorithms for Alternating Matrix Space Isometry

1 Introduction

Motivated by testing isomorphism of p-groups, we study the Alternating Matrix Space
Isometry (AltMatSpIso) problem. To state this problem, we set up some notation and
definitions. Let [n] = {1, . . . , n}, and let M(n, q) be the linear space of n× n matrices over
the finite field Fq (q is a prime power). A matrix A ∈ M(n, q) is alternating if for any vector
v ∈ Fnq , vtAv = 0, where vt denote the transpose of v. (When q is odd, A is alternating if and
only if A is skew-symmetric, i.e. At = −A.) Let Λ(n, q) be the linear space of all alternating
matrices in M(n,Fq). Let A,B be subspaces of Λ(n, q). We say that A and B are isometric,
if there exists an invertible matrix T ∈ GL(n, q), such that T tAT := {T tAT : A ∈ A} and
B are the same subspace. The AltMatSpIso problem then asks, given linear bases of two
alternating matrix spaces A and B, decide whether A and B are isometric.

As we will elaborate in detail in Subsection 1.1, the AltMatSpIso problem has been
studied for decades. Indeed, it lies at the heart of the Group Isomorphism (GpI) problem,
and has an intimate relationship with many other isomorphism problems, including Graph
Isomorphism (GI). As a problem in NP ∩ coAM, its worst-case time complexity has barely
been improved over the brute-force algorithm, which enumerates all invertible matrices in
GL(n, q) to search for some T ∈ GL(n, q) satisfying T tAT = B. The brute-force algorithm
takes time qΘ(n2) ·poly(n,m, log q) in the worst case. To obtain an algorithm in time qO(n+m)

would lead to an algorithm testing isomorphism of p-groups of class 2 and exponent p in time
polynomial in the group order, which is a long-standing open problem.

Recently, Li and Qiao developed an average-case algorithm to tackle the AltMatSpIso
problem, when m and n are linearly related [21]. The algorithm takes time qO(n) and tests
isometry between all but at most q−Ω(n) fraction of A in Λ(n, q), and an arbitrary B. Here a
random m-dimensional n× n alternating matrix space A is chosen with probability

[(n
2)
m

]−1

q
,

where
[·
·
]
q
denotes the q-Gaussian binomial coefficient and

[(n
2)
m

]
q
is the total number of

m-dimensional alternating matrix spaces in Λ(n, q). This may be viewed as a linear algebraic
analogue of the Erdős-Rényi model for graphs [10]. A key idea behind their algorithm
is to view the AltMatSpIso problem as a linear algebraic analogue of the GI problem [21],
which leads to adapting the individualisation and refinement technique for random graph
isomorphism as used by Babai, Erdős, and Selkow in [2]. We summarise these algorithms
in Subsection 1.2. For convenience, we shall refer to the algorithm from [21] as the Li-Qiao
algorithm.

In this paper, we present another average-case algorithm for AltMatSpIso.

I Theorem 1. Suppose m > 20. There is an algorithm that, for all but at most q−Ω(nm)

fraction of m-dimensional alternating matrix spaces A in Λ(n, q), tests the isometry of A to
an arbitrary m-dimensional alternating matrix space B, in time qO(n+m).

The algorithm in Theorem 1 significantly improves over the Li-Qiao algorithm:
First, it removes the linear dependence of m on n. The Li-Qiao algorithm inherently
requires this linear dependence. That is, for general m, the Li-Qiao algorithm does not
run in time qO(n+m). Indeed, some of its techniques do not work when m is even Ω(n1+ε)
or O(n1−ε) with some 0 < ε < 1.
Second, even in the case of m = Θ(n), the average-case analysis of our algorithm is better:
it works for all but q−Ω(n2) fraction of A, while the Li-Qiao algorithm works for all but
q−Ω(n) fraction.
Third, our algorithm is considerably simpler than the Li-Qiao algorithm, as the reader
may compare in the descriptions of these algorithms in Subsection 1.2 and Subsection 1.3.

P.A. Brooksbank, Y. Li, Y. Qiao, and J. B. Wilson 26:3

Partly because of the simplicity of our algorithm, we implement our algorithm, with
suitable modifications and some heuristic shortcuts, in Magma [6]. Our experiments indicate
that it improves significantly over default (brute-force) algorithms for this problem.

An immediate open problem is to examine whether our isometry testing algorithm can
be strengthened to a canonical form algorithm for random alternating matrix spaces. For
graph isomorphism, efficient canonical form algorithms for random graphs have long been
known [2, 3]. However, to the best of authors’ knowledge, there have been no canonical form
algorithms for random alternating matrix spaces even in time qo(n2).

1.1 Motivation and related works
Group isomorphism problem. The main motivation for us to study the AltMatSpIso problem
is to understand the complexity of the Group Isomorphism (GpI) problem: Deciding whether
two finite groups of order N are isomorphic. The complexities of GpI depend on how groups
are represented in algorithms. When groups are specified by their multiplication (Cayley)
tables, GpI reduces to the Graph Isomorphism problem (GI); cf. [24, Section 10]. When
groups are represented by generators as permutations, matrices, or black-box groups, GI
reduces to GpI; cf. [14, 23, 24, 13]. In either input model, the state-of-the-art algorithm runs
in time quasi-polynomial in the group order [11, 26].

For our purpose, we shall mostly focus on the Cayley table model, since we do not even
know an No(logN)-time algorithm [29] (log to the base 2), despite that a simple N logN+O(1)-
time algorithm has been known for decades [11, 26]. We note that Rosenbaum presented an
algorithm in time N 1

2 logN+O(1) [27]. Moreover, following Babai’s breakthrough proof that
GI is in quasi-polynomial time [1, 15], GpI in Cayley table model is now a key bottleneck to
put GI in P, as Babai himself pointed out [1, Sec. 13.2 & 13.4 in arXiv version]. The past few
years have witnessed a resurgence of activity on algorithms for this problem with worst-case
analyses in terms of the group order. We refer the reader to [12] which contains a survey of
these algorithms.

A natural approach to tackle GpI is to assume our given groups lie in a certain group class.
For instance, for Abelian groups, one can test their isomorphism in linear time [19]. However,
moving out Abelian a little bit, p-groups of class 2 and exponent p, the next natural group
class beyond Abelian groups, pose great difficulty. Recall that a group is of exponent p if
any nontrivial element has order p, and a group is of class 2 if its commutator subgroup is
contained in its centre. Recent works [20, 9, 7, 21] solved some nontrivial subclasses, and
lead to substantial improvement in practical algorithms. But their methods do not lead to
any improvement for the worst-case time complexity of the general class.

p-groups of class 2 and exponent p, and alternating matrix spaces. Alternating matrix
spaces naturally appear in the study of p-groups of class 2 and exponent p via Baer’s
correspondence [4] for a prime p > 2. In fact, because of this correspondence, most recent
works on this class of groups study alternating matrix spaces or alternating bilinear maps
[20, 9, 7, 21]. We review this correspondence briefly. Given such a p-group, by taking the
commutator map, one obtains an alternating bilinear map. Conversely, given an alternating
bilinear map, one can construct such a p-group using an explicit formula (see e.g. [12, Fact
4.3]). Given an alternating bilinear map Fnp × Fnp → Fmp , one can obtain m n× n alternating
matrices representing it, and take the linear span to get an alternating matrix space. Given
an alternating matrix space, by taking a linear basis, one can obtain an alternating bilinear
map. The above procedures preserve and respect isomorphism types of groups and isometry
types of alternating matrix spaces. Moreover, it is easy to verify that the above procedures

ESA 2020

26:4 Improved Algorithms for Alternating Matrix Space Isometry

are computationally efficient in the Cayley table model 1. Therefore, testing isomorphism of
p-groups of class 2 and exponent p in time polynomial in the group order reduces to solving
AltMatSpIso over Fp in time pO(n+m). Because of the current status of GpI, we see that
solving AltMatSpIso in qO(n+m) is already very difficult. Recently, it has been shown that a
large number of (hard) isomorphism problems can be reduced to AltMatSpIso in polynomial
time; we refer the readers to [13] for more details. As an application, in [18], one can also
build post-quantum cryptography schemes based on AltMatSpIso.

Current status of AltMatSplso. For the AltMatSpIso problem, the brute-force algorithm
takes time qΘ(n2) · poly(n,m, log q). There are two slightly improved worst-case algorithms
within certain range of parameters: the N 1

4 logp N+O(1)-time algorithm for p-group isomorph-
ism by Rosenbaum [27] and Rosenbaum and Wagner [28] translates to a p 1

4 (n+m)2+O(n+m)-
time algorithm for AltMatSpIso over Fp. Li and Qiao [21] adapted Luks’ dynamic programming
technique for GI [25] to obtain a q 1

4 (n2+m2)+O(n+m)-time algorithm for AltMatSpIso. Note
that both algorithms only improve the worst-case time-complexity when m 6 n; in fact, if
m = Ω(n2), then the brute-force algorithm already runs in time qO(n+m).

Another extreme case is when m = O(1), where AltMatSpIso can be solved in poly(n, q)
time for odd q. The algorithm is based on reducing AltMatSpIso to the Alternating Matrix
Tuple Isometry (AltMatTupIso) problem, which asks the following: Given two m-tuples
of alternating matrices A,B ∈ Λ(n, q)m, decide whether there is an invertible matrix
T ∈ GL(n, q) such that T tAT = (T tA1T, . . . , T

tAmT) = (B1, . . . , Bm) = B. Unlike
AltMatSpIso, the AltMatTupIso problem can be solved in time poly(n,m, log q) for odd q [17].
The reduction from AltMatSpIso to AltMatTupIso is by fixing a tuple of alternating matrices
A in A as basis, and enumerate all possible m-tuples of alternating matrices B in Bm. Then
one can invoke the algorithm for AltMatTupIso to test isometry between A and B efficiently.

1.2 Average-case algorithms for GI and AltMatSplso
In this subsection, we review the average-case algorithms for GI [2] and for AltMatSpIso [21].

To obtain average-case algorithms for GI (resp. AltMatSpIso), one needs to identify a
property which is satisfied by almost all graphs (resp. alternating matrix spaces) chosen from
a certain random model. Then for those graphs (resp. AltMatSpIso) satisfying the property,
we test its isomorphism (resp. isometry) with an arbitrary graph (resp. alternating matrix
space). The efficiency of the algorithm is guaranteed by both the efficiency of testing the
property and the efficiency of the isomorphism (resp. isometry) testing.

We clarify the random models. In the graph setting, a natural choice is the celebrated
Erdős-Rényi model [10], in which an n-vertex m-edge graph is endowed with probability((n

2)
m

)−1
. In the alternating matrix space setting, Li and Qiao defined a linear algebraic

analogue of the Erdős-Rényi model, where each m-dimensional alternating matrix space in
Λ(n, q) will be chosen with probability

[(n
2)
m

]−1

q
; see also Definition 2.

Average-case algorithm for GI. We first define a property P for graphs, which is a variant
used in [2]. Let G = ([n], E) be a simple undirected graph. Let r 6 n be a positive integer,
S = [r] and S′ = [n] \ [r]. Let B = (S ∪ S′, F) be the bipartite graph induced by the cut
(S, S′) in G, where F = {{i, j} ∈ E : i ∈ S, j ∈ S′}. We label each j ∈ S′ by its adjacency

1 The procedures are even efficient in matrix groups over finite fields [13, Lemma 7.5].

P.A. Brooksbank, Y. Li, Y. Qiao, and J. B. Wilson 26:5

relations with those vertices in S. That is, assign an r-bit string fj ∈ {0, 1}r to each j ∈ S′
such that fj(i) = 1 if and only if {i, j} ∈ F . We say a graph G satisfies property P if fj ’s are
distinct over j ∈ S′. It is easy to verify that, choosing r = d3 logne, all but at most n−Ω(1)

fraction of graphs in the Erdős-Rényi model satisfy the property P.
Here is an algorithm which tests isomorphism between graph G (satisfying property

P) and H = ([n], E′) (an arbitrary one), based on the well-known individualisation and
refinement procedure. Let StG be the set of r-bit strings obtained from the property P . Note
that |StG| = n− r. In the individualisation step, we enumerate all r-tuples of vertices in H.
For each r-tuple (i1, . . . , ir) ∈ [n]r, we perform the refinement step: assign the remaining
vertices in H r-bit strings according to their adjacency relations with the r-tuple (i1, . . . , ir)
as before, to obtain another set of bit strings StH . If StG 6= StH we neglect this r-tuple;
otherwise we obtained a bijective map from [n] to [n] by mapping j to ij when j ∈ [r] and
the rest according to the labels. The last step is to check whether this bijective map induces
an isomorphism between G and H.

The above algorithm runs in time nO(logn) if G satisfies property P. To recover the
algorithm in [2], one can canonicalise the choice of the r-tuples by choosing the one with
largest r degrees for both G and H, assuming that the largest r degrees are distinct. (This
is another property which is satisfied by most graphs.)

Average-case algorithm for AltMatSplso. Li and Qiao generalised the aforementioned
graph property and the individualisation and refinement procedure to the alternating matrix
space setting. It is helpful to think of alternating matrix spaces as a linear algebraic analogue
of graphs. That is, we view vectors in Fnq as a linear algebraic analogue of vertices. We then
viewing alternating matrices as a linear algebraic analogue of edges. This is because we can
think of edges as binary relations and alternating matrices as alternating bilinear forms on
vectors.

We first define a property Q for alternating matrix spaces, in light of the one defined
for graphs. Let A be an m-dimensional alternating matrix space in Λ(n, q), and let r 6 n

be a positive integer. Let U0 and V0 be the n× r and n× (n− r) matrices over Fq, whose
columns are the first r and last (n− r) standard basis, respectively. Let AU0,V0 = U0

tAV0 =
span{U0

tAV0 : A ∈ A}, which is a subspace of M(r × (n − r), q). The role of AU0,V0 is
similar to the role of the bipartite graph B = (S ∪ S′, F) in the graph setting.2 Recall
that in the graph setting, the hope was to label vertices in S′ uniquely, meaning that they
should have different adjacency relations with vertices in S. An equivalent way of saying
this is that the right automorphism group of this bipartite graph B – those permutations
of the right-hand-side vertices preserving the graph structure – is trivial. Inspired by this,
Li and Qiao define the property Q on A as R := {R ∈ GL(n − r, q) : AU0,V0R = AU0,V0}
has size at most qn, where AU0,V0R = {BR : B ∈ AU0,V0}. Here, R can be thought of as the
corresponding to the right automorphism group in the graph setting. In [21], it is shown
that when m and n are linearly related (m = Θ(n)) and r is a constant (depending on the
ratio m/n), |R| 6 qn for all but at most q−Ω(n) fractions of alternating matrix spaces.

Now we outline the Li-Qiao algorithm for isometry testing. Let B be another m-
dimensional alternating matrix space in Λ(n, q) for testing isometry with A (satisfying the
property Q). In the individualisation step, we enumerate all n× r matrices U ∈ M(n× r, q)
whose columns are linearly independent. Denote the columns space of U by CU . We also need
to enumerate all (n− r)-dimensional subspaces CV such that CU ⊕CV = Fnq . CV is specified

2 Matrix spaces of the form AU0,V0 are studied as a linear algebraic analogue of cuts on graphs in [22].

ESA 2020

26:6 Improved Algorithms for Alternating Matrix Space Isometry

by an n× (n− r) matrix V whose columns span CV . Let BU,V = {U tBV : B ∈ B}, which is
a subspace of M(n× (n− r), q). For each (U, V) with BU,V we perform the refinement step.
That is, we enumerate all R ∈ GL(n− r, q) such that AU0,V0R = BU,V , which can be done
using algorithms from [8, 16]3. If no such R exists we neglect the pair (U, V). Otherwise, we
can recover an invertible T ∈ GL(n, q) from the information of (U, V) and R. Finally, check
whether T is an isometry between A and B.

The above algorithm runs in time qO(n), if A satisfies property Q (recall that n and m are
linearly related and r = O(1)). In particular, the two enumerations in the individualisation
step take time at most qrn+r(n−r) = qO(n). In the refinement step, since A satisfies property
Q, |{R ∈ GL(n − r, q) : AU0,V0R = BU,V }| can be bounded above by qn, as the set
{R ∈ GL(n−r, q) : AU0,V0R = BU,V } is either empty, or a coset of the groupH, whose order is
upper bounded by qn as A satisfies property Q we imposed. Thus the enumeration cost in the
refinement step is at most qn. All the other steps can be carried out in time poly(n,m, log q);
we refer the readers to [21] for more technical details on how to verify whether A satisfies
the property Q and how to enumerate elements in {R ∈ GL(n − r, q) : AU0,V0R = BU,V }
and get the invertible matrix T from R and (U, V).

1.3 A simplified algorithm and its implementation
Although it is a nice linear algebraic analogue of the algorithm in [2], the algorithm in
[21] has several drawbacks. First, the algorithm only works when m and n are linear
related. Second, the algorithm is still somewhat tricky, which makes it difficult to put into
actual implementation. In this subsection, we describe a simpler average-case algorithm
for AltMatSpIso, which works for all m and n (but only for odd q) and achieves the same
performance as the one of Li–Qiao. A detailed description can be found in Subsection 4.1.
This simplified algorithm already captures the essence of the strategy. The main algorithm
for Theorem 1 in Subsection 4.3 further works for any q and achieves better average-case
analysis.

The key idea behind our algorithm. Let A 6 Λ(n, q). The key idea behind our algorithm
is to replace individualising r-dimensional subspaces of Fnq by individualising r-dimensional
subspaces of A. This is inspired by the notion of genus of p-groups of class 2 and exponent p
in [7].

Roughly speaking, genus-r p-groups of class 2 and exponent p correspond to r-dimensional
alternating matrix spaces over Fp. In [7], it is shown that even genus-2 p-groups of class 2
and exponent p demonstrate interesting behaviours. That is to say, constant-genus p-groups
are already non-trivial objects. This leads us to consider individualising constant-dimensional
subspaces of A. In the graph setting, this would correspond to individualising r edges, which
does not differ much from individualising 2r vertices, as each edge connects to two vertices.
In the alternating matrix space setting, it turns out that individualising r-dimensional
subspaces of A could impose severe constraints on the possible isometries, if this subspace
satisfies certain generic conditions. This is not so surprising, as one full-rank alternating
matrix is much more “powerful” than a single edge. Reflecting back, the combination of
individualisation and refinement from graphs and the genus concept from p-groups reveals a
nice interaction between graph-theoretic techniques and group-theoretic notions. We would

3 In fact, the uses of [16, 8] are not necessary, as one can relax the property Q and then only use certain
linear algebra computations; see [21].

P.A. Brooksbank, Y. Li, Y. Qiao, and J. B. Wilson 26:7

also like to add that, the reason for the algorithm in [21] to individualising r-dimensional
subspaces of Fnq is because it was a close analogy of the average-case graph isomorphism
algorithm of Babai, Erdős, and Selkow [2].

Algorithm outline. We first state another property Q′ on a m-dimensional A 6 Λ(n, q). Let
A = (A1, . . . , Am) be a tuple of ordered linear basis of A. For c ∈ N, set Ac = (A1, . . . , Ac).
We say A satisfies the property Q′ if the group Aut(Ac) := {T ∈ GL(n, q) : T tAcT = Ac}
has order at most qn.4 When c is a large enough constant, all but at most q−Ω(n) fraction
of alternating matrix spaces satisfy property Q, as shown in Theorem 5. Furthermore by
algorithms in [9] (cf. Theorem 8), a generating set of Aut(Ac) can be computed in time
poly(n, log q).

Our algorithm can be now stated as follows. Assume we would like to test isometry for
A (satisfying the property Q′) with an arbitrary B, specified as two m-tuples of alternating
matrices A = (A1, . . . , Am) and B = (B1, . . . , Bm) from Λ(n, q)m for sufficiently large m
and odd q. In the individualisation step, enumerate all c-tuples of alternating matrices
Bc = (B1, . . . , Bc) ∈ Bc. For each Bc we perform the refinement step: Test isometry for
alternating matrix tuples Ac and Bc, using the poly(n, c, log q)-time algorithm in [17] (cf.
Theorem 8). If they are not isometric, we neglect Bc. Otherwise, the algorithm from [17]
computes a specific isometry. Because we have computed Aut(Ac), we can enumerate over
all isometry T such that T tAcT = Bc, and check whether T tAT = B.

The correctness lies in the simple fact that every isometry of A and B maps Ac to a
c-tuple Bc in Bc. The running time of the above procedure is qO(n+m) if A satisfies property
Q′. In particular, the enumeration cost in the individualisation step is at most qcm. In the
refinement step, enumerating all invertible matrix T such that T tAcT = Bc can be done in
time qO(n) · poly(n,m, log q) when q is odd, since {T ∈ GL(n, q) : T tAcT = Bc} is a coset
of the group {T ∈ GL(n, q) : T tAcT = Ac}, whose size is upper bounded by qn by property
Q′. This algorithm is clearly simpler than the Li-Qiao algorithm, as it does not need to
compute BU,V etc..

Implementation and Performance. A bonus is our algorithm is more suitable to implement.
We do so in Magma with some key adjustments, as detailed in Subsection 4.2. The
implementation is publicly available on GitHub as part of a comprehensive collection of
tools – developed and maintained by P. A. Brooksbank, J. Maglione, J. B. Wilson and their
collaborators – to compute with groups, algebras, and multilinear functions [6].

The implementation is more convenient to describe using alternating bilinear maps (as
the default algorithms do). A bilinear map α : V × V →W is alternating if for any v ∈ V ,
α(v, v) = 0. Two alternating bilinear maps α, β : V × V → W are pseudo-isometric, if
they are the same up to the natural action of GL(V)×GL(W). Let V ∼= Fnq and W ∼= Fmq .
An alternating bilinear map α can be specified by an m-tuple of alternating matrices from
Λ(n, q). Let α and β be represented by the alternating matrix tuples A and B, respectively
and A and B be the corresponding alternating matrix spaces of A and B, respectively. It is
readily verified that α and β are pseudo-isometric if and only if A and B are isometric.

Absent additional characteristic structure that can be exploited, the traditional (brute
force) approach to deciding pseudo-isometry between alternating bilinear maps α, β : V ×V →
W is as follows. Let α̂, β̂ : V ∧ V → W denote the linear maps induced by α, β (V ∧ V is
the wedge product of a vector space V with itself). Compute the natural (diagonal) action
of GL(V) on V ∧ V , and decide if ker α̂ and ker β̂ – each of codimension dimW in V ∧ V –

4 The alert reader would note that the property defined here depends on the choice of bases of A. This is
not an essential problem due to the discussion in Section 3.

ESA 2020

26:8 Improved Algorithms for Alternating Matrix Space Isometry

belong to the same orbit. An alternative version of brute force is to enumerate GL(W) and
check if one of these transformations lifts to a pseudo-isometry from α to β. Which of these
two brute-force options represents the best choice depends on the dimensions of V and W .

Our implementation is typically an improvement over both options. For example, in
a preliminary experiment, our implementation readily decides pseudo-isometry between
randomly selected alternating bilinear maps F5

3 × F5
3 → F4

3, while both brute-force options
failed to complete. Note that the worst-case for all methods should be when α, β are not
isometric, since in that case one must exhaust the entire enumerated list (or orbit) to confirm
non-equivalence. However, the modifications we made tend to detect non-equivalence rather
easily, since other (easily computed) invariants typically do not align in this case. We were
therefore careful to also run tests with equivalent inputs, so as to ensure a fair comparison
with default methods.

2 Preliminaries

Let [m] = {1, . . . ,m} for m ∈ N. Let
[
n
d

]
q

= (1−qn)·...·(1−qn−d+1)
(1−qd)·...·(1−q) denote the Gaussian

binomial coefficient with parameters n, d and base q. Note that
[
n
d

]
q
counts the number of

d-dimensional subspaces of Fnq . The bound
[
n
d

]
q
6 qnd is useful.

Let M(n× n′,F) (resp. M(n,F)) be the linear space of all n× n′ (resp. n× n) matrices
over F. For a matrix A ∈ M(n× n′,F), At ∈ M(n′ × n,F) denotes the transpose of A. We
use A(i, j) to denotes the (i, j)th entry of the matrix A. The general linear group of degree
n over F is denoted by GL(n,F). When F = Fq for some prime power q, we write simply
M(n, q) and GL(n, q) in place of M(n,Fq) and GL(n,Fq). An n × n matrix A over F is
alternating if for every v ∈ Fn, vtAv = 0. When F is not of characteristic 2, this is equivalent
to the skew-symmetric condition. Let Λ(n,F) be the linear space of all n × n alternating
matrices over F (and Λ(n, q) when F = Fq). We denote A = (A1, . . . , Am) ∈ Λ(n, q)m to be
an alternating matrix tuple and A = span{A1, . . . , Am} 6 Λ(n, q) be an (the corresponding)
alternating matrix space (6 denote the subspace notation).

We say two alternating matrix tuples A,B ∈ Λ(n,F)m are isometric if there exists
T ∈ GL(n,F) such that

T tAT := (T tA1T, . . . , T
tAmT) = (B1, . . . , Bm) = B.

The set of isometries between A and B is denoted as

Isom(A,B) = {T ∈ GL(n,F) : T tAT = B};

the group of autometries (or self-isometries) of A is denoted as Aut(A) = Isom(A,A).
We say two alternating matrix tuples A,B ∈ Λ(n,F)m are pseudo-isometric if there exist
T ∈ GL(n,F) and R ∈ GL(m,F) such that

T tAT = (T tA1T, . . . , T
tAmT) = (

m∑
j=1

R(1, j)Bj , . . . ,
m∑
j=1

R(m, j)Bj) =: BR.

The set of pseudo-isometries between A and B is defined as

ΨIsom(A,B) = {T ∈ GL(n,F) : ∃ R ∈ GL(m, q), T tAT = BR}.

The group of pseudo-autometries (or self-pseudo-isometries) of A is denoted as ΨAut(A) =
ΨIsom(A,A). It is straightforward to see that Isom(A,B) (resp. ΨIsom(A,B)) is a (possibly
empty) coset of Aut(A) (resp. ΨAut(A)).

P.A. Brooksbank, Y. Li, Y. Qiao, and J. B. Wilson 26:9

We say two alternating matrix spaces A,B 6 Λ(n,F) are isometric, if there exists
T ∈ GL(n,F) such that T tAT := {T tAT : A ∈ A} = B. We can define the coset of isometries
from A to B Isom(A,B), and the group of autometries Aut(A), for alternating matrix
spaces. If A and B are the corresponding alternating matrix spaces spanned by A and
B, respectively, then A and B are isometric if and only if A and B are pseudo-isometric,
i.e. Isom(A,B) = ΨIsom(A,B).

For two tuples of alternating matrices A,B ∈ Λ(n,F)m, the the adjoint space from A
to B is defined as Adj(A,B) = {(T, T ′) ∈ M(n,F) ⊕M(n,F) : TA = BT ′}. The adjoint
algebra of A is defined as Adj(A) = {(T, T ′) ∈ M(n,F) ⊕M(n,F) : TA = AT ′}. Clearly,
if T ∈ Aut(A), then (T t, T−1) ∈ Adj(A). Furthermore, if A and B are isometric, then
|Adj(A,B)| = |Adj(A)|.

3 Random models and average-case properties

We now formally define the linear algebraic analogue of the Erdős-Rényi model, which has
been mentioned frequently in Section 1.

I Definition 2 (The linear algebraic analogue of the Erdős-Rényi model). The linear algebraic
analogue of the Erdős-Rényi model, LinER(n,m, q), is the uniform probability distribution
over the set of m-dimensional subspaces of Λ(n, q), that is, each subspace is endowed with
probability

[(n
2)
m

]−1

q
.

We also recall a random model for alternating matrix tuples, introduced in [21].

I Definition 3 (The naive model for alternating matrix tuples). The naive model for alternating
matrix tuples, NaiT(n,m, q), is the probability distribution over the set of all m-tuples of
n× n alternating matrices over Fq, where each tuple is endowed with probability q−(n

2)m.

A useful fact is that if we would like to show a certain property holds with high probability
for alternating matrix spaces in LinER(n,m, q), we can in turn show that a corresponding
property holds with high probability for alternating matrix tuples in NaiT(n,m, q). The
statement can be quantified as follows: Suppose we have P(n,m, q), a property of m-
dimensional alternating matrix spaces in Λ(n, q), and wish to show that P(n,m, q) holds
with high probability in LinER(n,m, q). P(n,m, q) naturally induces P ′(n,m, q), a property
of alternating matrix tuples in Λ(n, q)m that span m-dimensional alternating matrix spaces.
Let Q(n,m, q) be a property of all alternating matrix tuples in Λ(n, q)m, so that Q(n,m, q)
and P ′(n,m, q) coincide when restricting to those alternating tuples spanning m matrix
spaces. The following is proved in [21].

I Proposition 4 ([21, Proposition 13 in arXiv version]). Let P(n,m, q) and Q(n,m, q) be as
above. Suppose in NaiT(n,m, q), Q(n,m, q) happens with probability at least 1− f(n,m, q)
for 0 6 f(n,m, q) < 1. Then in LinER(n,m, q), P(n,m, q) happens with probability at least
1− 4f(n,m, q).

In the rest of this paper, we assume a random alternating matrix space is chosen from the
linear algebraic analogue of the Erdős-Rényi model and a random alternating matrix tuple is
chosen from the naive model. To prove Theorem 1, it is sufficient to work with alternating
matrix tuples and the naive model.

We now present the average-case property, which will be used in our algorithm. Recall
that in Subsection 1.3, the desired property is to show that, for a random alternating matrix
tuple A = (A1, . . . , Am) ∈ Λ(n, q)m and some c = O(1), the tuple Ac = (A1, . . . , Ac) has
autometry group Aut(Ac) of size at most qn with probability 1−q−Ω(n). We prove a stronger
statement.

ESA 2020

26:10 Improved Algorithms for Alternating Matrix Space Isometry

I Theorem 5. Let c = 20. For all but at most q−Ω(n) fraction of Ac = (A1, . . . , Ac) ∈
Λ(n, q)c, we have |Adj(Ac)| 6 qn.

Note that |Aut(Ac)| 6 |Adj(Ac)| for any Ac. To prove Theorem 5, we need the following
from [21]. Given a tuple of matrices A = (A1, . . . , Ar) ∈ M(n, q)r, define the image of
U 6 Fnq under A as A(U) := span{Aiu : i ∈ [r], u ∈ U}.

I Definition 6. We say A = (A1, . . . , Ar) ∈M(n, q)r is stable, if for any nonempty proper
subspace U 6 Fnq , we have dim(A(U)) > dim(U).

I Proposition 7 ([21, Proposition 10 in arXiv version]). If A ∈ M(n, q)r is stable, then
|Adj(A)| 6 qn.

Thus, to prove Theorem 5, we need to upper bound the probability of a random alternating
matrix tuple being not stable. The proof is somewhat similar to the one in [21], with one
interesting observation: We can use some random alternating matrices in Λ(n, q) to “mimick”
a random matrix M(n, q). The detail of the proof can be found, e.g. in [5, Section 6.3].

4 Average-case algorithms for AltMatSplso

4.1 The simplified main algorithm
As we have mentioned in Subsection 1.3, our algorithm invokes the algorithm for testing
isometry for alternating matrix tuples as subroutines, which is formally state it here.

I Theorem 8 ([9, 17]). Let A,B ∈ Λ(n, q)m for some odd q. There exists a poly(n,m, log q)-
time algorithm which takes A and B as inputs and outputs Isom(A,B), specified by (if
nonempty) a generating set of Aut(A) (by the algorithm in [9]) and a coset representative
T ∈ Isom(A,B) (by the algorithm in [17]).

We also need the following observation to enumerate elements in Aut(A), which follows
easily by computing the closure of the given generating set.

I Observation 9. Let C1, . . . , Ct ∈ GL(n, q), and let G be the group generated by Ci’s. Let
s ∈ N. Then there exists an algorithm that either reports that |G| > s, or lists all elements
in G, in time poly(s, n, log q).

Now we formally describe the simplified main algorithm for AltMatSpIso stated in Sub-
section 1.3, that is Algorithm 1. Note that we are given alternating matrix tuples A and B,
which span A and B, respectively. By the discussion in Section 2, we can equivalently decide
the pseudo-isometry between A and B.

I Proposition 10. Algorithm 1 runs in time poly(qcm, s, n).

Proof. If Algorithm 1 outputs |Aut(Ac)| > s, then its running time is determined by The-
orem 8 and Observation 9, which together require poly(s, n, log q).

If |Aut(Ac)| 6 s, we analyse the two For-loops at Step 4 and Step 4c, respectively. The
first loop adds a multiplicative factor of qcm, since enumerating all matrices in B costs
qm. The second loop adds a multiplicative factor of poly(n, s, log q), due to the fact that
| Isom(Ac,Bc)| = |Aut(Ac)| 6 s (as Isom(Ac,Bc) is a coset of Aut(Ac)). Other steps can
be carried out in time poly(n, log q). Therefore the overall running time is upper bounded
by poly(qcm, s, n). J

We prove the correctness of Algorithm 1, if it does not report |Aut(Ac)| > s.

P.A. Brooksbank, Y. Li, Y. Qiao, and J. B. Wilson 26:11

Algorithm 1 The first average-case algorithm for AltMatSpIso.
Input: A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ Λ(n, q)m, c, s ∈ N, and q is odd.
Output: Either (1) “|Aut(Ac)| > s.”, or (2) ΨIsom(A,B) as a set L, which may be empty.
Algorithm procedure:

1. Set L← {}. Set Ac = (A1, . . . , Ac).
2. Use Theorem 8 to compute a generating set for Aut(Ac).
3. Use Observation 9 with input s and the generating set of Aut(Ac). (If |Aut(Ac)| > s,

we terminate the algorithm and report that “|Aut(Ac)| > s.”)
4. Set B = span{B1, . . . , Bm}; for every Bc = (B′1, . . . , B′c) ∈ Bc, do the following.
(a) Use Theorem 8 to decide whether Ac and Bc are isometric.
(b) If not, go to the next Bc. Otherwise, we get the non-empty coset Isom(Ac,Bc).
(c) For every T ∈ Isom(Ac,Bc), do the following.

Test whether the linear spans of T tAT and B are the same. If not, go to the
next T . If so, add T into L.

5. Output L.

I Proposition 11. If Algorithm 1 does not report |Aut(Ac)| > s, then it lists the set of
pseudo-isometries (resp. isometries) between A (resp. A) and B (resp. B). In particular,
| Isom(A,B)| = |ΨIsom(A,B)| 6 qcm · s.

Proof. By Step 4c, every T added to L is a pseudo-isometry. We are left to show that L
contains all the pseudo-isometries. For this, take any pseudo-isometry T . Since T tAT = B,
we know T tAcT is equal to some Bc ∈ Bc. So when enumerating these Bc in Step 4, T will
pass all the tests in the following, and then be added to L. J

It remains to specify the choices of c and s in Algorithm 1. This can be done by Theorem 5.

I Proposition 12. Let c = 20 and s = qn. For all but at most q−Ω(n) fraction of Ac =
(A1, . . . , Ac) ∈ Λ(n, q)c, we have |Aut(Ac)| 6 s.

Proof. This is because, if T ∈ Aut(Ac), then (T t, T−1) ∈ Adj(Ac). So |Aut(Ac)| 6
|Adj(Ac)|. J

Combining Propositions 10 to 12, we have the following theorem.

I Theorem 13. Let m > 20, and let Fq be a finite field of odd size. For all but at most
q−Ω(n) fraction of A = (A1, . . . , Am) ∈ Λ(n, q)m, Algorithm 1 tests the isometry of A with
an arbitrary B ∈ Λ(n, q)m in time qO(n+m).

4.2 Magma implementation of Algorithm 1
To make this algorithm suitable for practical purposes, recall that the algorithm’s running
time is dominated by the two For-loops which give multiplicative factors of qcm and s,
respectively. For the average-case analysis we used c = 20, but having this standing on
the exponent is too expensive. In practice, actually using c = 3 already imposes a severe
restriction on s, the order of Aut(Ac). So we use c = 3 in the implementation which gives a
reasonable performance.

ESA 2020

26:12 Improved Algorithms for Alternating Matrix Space Isometry

But having q3m in the For-loop is still too demanding. Indeed, in practice the tolerable
enumeration is around 510, namely q = 5 and 10 on the exponent. So with c = 3, the range
of m is still severely limited. (Interestingly, the algorithm seems to have a better dependence
on n.) It is most desirable if we could let c = 1, namely simply qm.

To achieve that we use the following heuristic. Note that if A1, . . . , Ac are low-rank
matrices, then we will only need to match them with the low-rank matrices from B. Our
experiement shows that, for a random m-tuple of alternating matrices A over Fq, when q
is a small constant, the number of low-rank (i.e. non-full-rank) matrices in the linear span
of A is expected to be small (i.e. much smaller than qm) and non-zero (i.e. no less than
3) at the same time. Note that the set of all low-rank matrices can be computed in time
qm ·poly(n, log q)-time. We then choose 3 low-rank matrices from the linear span of A. Then
use qm · poly(n, log q)-time to compute the set of low-rank matrices from B, denoted as Bl.
We can then replace enumerating Bc with Bcl , which in general is much smaller.

4.3 The main algorithm and proof of Theorem 1
We now introduce the algorithm (see Algorithm 2) that supports Theorem 1, which differs
from Algorithm 1 in two places.
1. The first and major difference is to replace the uses of Aut(Ac) and Isom(Ac,Bc) with the

adjoint algebra Adj(Ac) and adjoint space Adj(Ac,Bc), thereby avoiding using Theorem 8.
Since Adj(Ac) and Adj(Ac,Bc) are easy to compute over any field, this removes the odd
q issue. On the other hand, although Adj(Ac) and Adj(Ac,Bc) are also easier to analyse,
Adj(Ac) and Adj(Ac,Bc) could be larger than Aut(Ac) and Isom(Ac,Bc), so they are
less useful from the practical viewpoint.

2. The second place is step 2 in Algorithm 2: instead of just using the first c matrices as
in the algorithm presented in Algorithm 1, Algorithm 2 slices the m matrices of A into
bm/cc segments of c-tuples of matrices, and tries each segment until it finds one segment
with a small adjoint algebra. This step helps in improving the average-case analysis, and
can be applied to the algorithm presented in Algorithm 1 as well.

I Proposition 14. Algorithm 2 runs in time poly(qcm, s, n).

Proof. If Algorithm 2 outputs “A does not satisfy the generic condition.”, then it just
executes the For-loop in Step 2, which together runs in time poly(m,n, log q).

Otherwise, there are two For-loops at Step 4 and Step 4c, which add multiplicative factors
qcm and s, respectively. Other steps can be carried out in time poly(n, log q). Therefore the
whole algorithm runs in time poly(qcm, s, n). J

We prove the correctness of Algorithm 2 in the case that it does not report “A does not
satisfy the generic condition.”

I Proposition 15. Suppose that Algorithm 2 does not report “A does not satisfy the generic
condition.” Then the algorithm lists the (possibly empty) set of pseudo-isometries between A
and B. In particular, |ΨIsom(A,B)| 6 qcm · s.

Proof. By Step 4c, every T t added to L is a pseudo-isometry. So we are left to show that L
contains all the pseudo-isometries. For this, take an arbitrary pseudo-isometry T . Then T
sends Ac to some Bc ∈ Bc, i.e., T tAcT = Bc. In particular, (T t, T−1) ∈ Adj(Ac,Bc). So
when enumerating this Bc ∈ Bc, (T t, T−1) will pass all the tests in the following, and T will
be be added to L. J

P.A. Brooksbank, Y. Li, Y. Qiao, and J. B. Wilson 26:13

Algorithm 2 The second average-case algorithm for AltMatSpIso.
Input: A = (A1, . . . , Am),B = (B1, . . . , Bm) ∈ Λ(n, q)m and c, s ∈ N.
Output: Either (1) “A does not satisfy the generic condition.”; or (2) ΨIsom(A,B) as a set

L, which may be empty.
Algorithm procedure:

1. Set L← {}. Set F ← false.
2. For i = 1, . . . , bm/cc, do the following.
(a) Set Ac = (Ac(i−1)+1, . . . , Aci).
(b) Compute a linear basis of Adj(Ac) ⊆ M(n, q)⊕M(n, q).
(c) If |Adj(Ac)| 6 s, set F to be true, and break the For-loop.

3. If F = false, return “A does not satisfy the generic condition.” and terminate.
Otherwise,

4. Set B = span{B1, . . . , Bm}; for every Bc = (B1, . . . , Bc) ∈ Bc, do the following.
(a) Compute a linear basis for Adj(Ac,Bc) ⊆ M(n, q)⊕M(n, q).
(b) If |Adj(Ac,Bc)| > s, go to the next Bc.
(c) For every (T, T ′) ∈ Adj(Ac,Bc), do the following.

If T and T ′ are invertible and (T ′)−1 = T t, test whether the linear spans of
TAT t and B are the same. If not, go to the next (T, T ′). If so, add T t into L.

5. Output L.

Now we specify the choice of c = 20 and s = qn, based on Theorem 5.

I Proposition 16. Let m > c = 20, and let ` = bm/cc ∈ N. For all but at most q−Ω(n·`) =
q−Ω(nm) fraction of A = (A1, . . . , Am) ∈ Λ(n, q)m, there exists some i ∈ [`], such that, letting
Ac,i = (Ac(i−1)+1, . . . , Aci), we have |Adj(Ac,i)| 6 qn.

Proof. We slice A into ` = bm/cc segments, where each segment consists of c random
alternating matrices. Each segment is some Ac,i ∈ Λ(n, q)c, with Pr[|Adj(Ac,i)| > qn] 6
q−Ω(n) by Theorem 5. Since A1, . . . , Am are chosen independently and uniformly at random,
the probability of every Ac,i = (Ac(i−1)+1, . . . , Aci), i ∈ [`], with |Adj(Ac,i)| > qn, is upper
bounded by (q−Ω(n))` = q−Ω(nm). J

Theorem 1 then follows from Propositions 14 to 16.

References
1 László Babai. Graph Isomorphism in Quasipolynomial Time [extended abstract]. In Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages
684–697, 2016. arXiv:1512.03547v2. doi:10.1145/2897518.2897542.

2 László Babai, Paul Erdős, and Stanley M. Selkow. Random Graph Isomorphism. SIAM
Journal on Computing, 9(3):628–635, 1980. doi:10.1137/0209047.

3 László Babai and Ludek Kucera. Canonical Labelling of Graphs in Linear Average Time. In
20th Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 29-31
October 1979, pages 39–46, 1979. doi:10.1109/SFCS.1979.8.

4 Reinhold Baer. Groups with Abelian Central Quotient Group. Transactions of the American
Mathematical Society, 44(3):357–386, 1938. doi:10.2307/1989886.

5 Peter A. Brooksbank, Joshua A. Grochow, Yinan Li, Youming Qiao, and James B. Wilson.
Incorporating Weisfeiler-Leman into Algorithms for Group Isomorphism, 2019. arXiv. arXiv:
1905.02518.

ESA 2020

https://arxiv.org/abs/1512.03547v2
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1137/0209047
https://doi.org/10.1109/SFCS.1979.8
https://doi.org/10.2307/1989886
http://arxiv.org/abs/1905.02518
http://arxiv.org/abs/1905.02518

26:14 Improved Algorithms for Alternating Matrix Space Isometry

6 Peter A. Brooksbank, Joshua Maglione, and James B. Wilson. TheTensor.Space. https:
//github.com/thetensor-space/.

7 Peter A. Brooksbank, Joshua Maglione, and James B. Wilson. A Fast Isomorphism Test
for Groups whose Lie Algebra has Genus 2. Journal of Algebra, 473:545–590, 2017. doi:
10.1016/j.jalgebra.2016.12.007.

8 Peter A. Brooksbank and Eamonn A. O’Brien. Constructing the Group Preserving a System
of Forms. International Journal of Algebra and Computation, 18(02):227–241, 2008. doi:
10.1142/S021819670800441X.

9 Peter A. Brooksbank and James B. Wilson. Computing Isometry Groups of Hermitian
Maps. Transactions of the American Mathematical Society, 364(4):1975–1996, 2012. doi:
10.2307/41524909.

10 Paul Erdős and Alfréd Rényi. On Random Graphs I. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

11 Volkmar Felsch and Joachim Neubüser. On a Programme for the Determination of the
Automorphism Group of a Finite Group. In Computational Problems in Abstract Algebra,
pages 59–60. Pergamon, 1970. doi:10.1016/B978-0-08-012975-4.50011-4.

12 Joshua A. Grochow and Youming Qiao. Algorithms for Group Isomorphism via Group
Extensions and Cohomology. SIAM Journal on Computing, 46(4):1153–1216, 2017. doi:
10.1137/15M1009767.

13 Joshua A. Grochow and Youming Qiao. Isomorphism Problems for Tensors, Groups, and
Cubic Forms: Completeness and Reductions, 2019. arXiv. arXiv:1907.00309.

14 Hermann Heineken and Hans Liebeck. The Occurrence of Finite Groups in the Automorphism
Group of Nilpotent Groups of Class 2. Archiv der Mathematik, 25:8–16, 1974. doi:10.1007/
BF01238631.

15 Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona. Graph Isomorphisms in Quasi-
polynomial Time, 2017. arXiv. arXiv:1710.04574.

16 Gábor Ivanyos, Marek Karpinski, and Nitin Saxena. Deterministic polynomial time algorithms
for matrix completion problems. SIAM Journal on Computing, 39(8):3736–3751, 2010. doi:
10.1137/090781231.

17 Gábor Ivanyos and Youming Qiao. Algorithms Based on ∗-Algebras, and Their Applications
to Isomorphism of Polynomials with One Secret, Group Isomorphism, and Polynomial Identity
Testing. SIAM Journal on Computing, 48(3):926–963, 2019. doi:10.1137/18M1165682.

18 Zhengfeng Ji, Youming Qiao, Fang Song, and Aaram Yun. General Linear Group Action on
Tensors: A Candidate for Post-quantum Cryptography. In Theory of Cryptography, pages
251–281, 2019. doi:10.1007/978-3-030-36030-6_11.

19 Telikepalli Kavitha. Linear Time Algorithms for Abelian Group Isomorphism and Related
Problems. Journal of Computer and System Sciences, 73(6):986–996, 2007. doi:10.1016/j.
jcss.2007.03.013.

20 Mark L. Lewis and James B. Wilson. Isomorphism in Expanding Families of Indistinguishable
Groups. Groups Complexity Cryptology, 4(1):73–110, 2012. doi:10.1515/gcc-2012-0008.

21 Yinan Li and Youming Qiao. Linear Algebraic Analogues of the Graph Isomorphism Problem
and the Erdős-Rényi Model. In 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, pages 463–474, 2017. arXiv:1708.04501v2. doi:10.1109/FOCS.2017.49.

22 Yinan Li and Youming Qiao. Group-theoretic Generalisations of Vertex and Edge Connectiv-
ities, 2019. arXiv. arXiv:1906.07948.

23 Ruvim Lipyanski and Natalia Vanetik. On Borel Complexity of the Isomorphism Problems
for Graph related Classes of Lie Algebras and Finite p-groups. Journal of Algebra and its
Applications, 14(5):1550078, 15, 2015. doi:10.1142/S0219498815500784.

24 Eugene M. Luks. Permutation Groups and Polynomial-time Computation. In Groups and
Computation, volume 11 of DIMACS: Series in Discrete Mathematics and Theoretical Computer
Science, 1993.

https://github.com/thetensor-space/
https://github.com/thetensor-space/
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1016/j.jalgebra.2016.12.007
https://doi.org/10.1142/S021819670800441X
https://doi.org/10.1142/S021819670800441X
https://doi.org/10.2307/41524909
https://doi.org/10.2307/41524909
https://doi.org/10.1016/B978-0-08-012975-4.50011-4
https://doi.org/10.1137/15M1009767
https://doi.org/10.1137/15M1009767
http://arxiv.org/abs/1907.00309
https://doi.org/10.1007/BF01238631
https://doi.org/10.1007/BF01238631
http://arxiv.org/abs/1710.04574
https://doi.org/10.1137/090781231
https://doi.org/10.1137/090781231
https://doi.org/10.1137/18M1165682
https://doi.org/10.1007/978-3-030-36030-6_11
https://doi.org/10.1016/j.jcss.2007.03.013
https://doi.org/10.1016/j.jcss.2007.03.013
https://doi.org/10.1515/gcc-2012-0008
https://arxiv.org/abs/1708.04501v2
https://doi.org/10.1109/FOCS.2017.49
http://arxiv.org/abs/1906.07948
https://doi.org/10.1142/S0219498815500784

P.A. Brooksbank, Y. Li, Y. Qiao, and J. B. Wilson 26:15

25 Eugene M. Luks. Hypergraph Isomorphism and Structural Equivalence of Boolean Functions.
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing STOC,
pages 652–658. ACM, 1999. doi:10.1145/301250.301427.

26 Gary L. Miller. On the n log n Isomorphism Technique (A Preliminary Report). In Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, page 51–58, New
York, NY, USA, 1978. Association for Computing Machinery. doi:10.1145/800133.804331.

27 David J. Rosenbaum. Bidirectional Collision Detection and Faster Deterministic Isomorphism
Testing, 2013. arXiv. arXiv:1304.3935.

28 David J. Rosenbaum and Fabian Wagner. Beating the Generator-enumeration Bound for
p-group Isomorphism. Theoretical Computer Science, 593:16–25, 2015. doi:10.1016/j.tcs.
2015.05.036.

29 James B. Wilson. 2014 conference on Groups, Computation, and Geometry at Colorado State
University, co-organized by P. Brooksbank, A. Hulpke, T. Penttila, J. Wilson, and W. Kantor.
Personal communication, 2014.

ESA 2020

https://doi.org/10.1145/301250.301427
https://doi.org/10.1145/800133.804331
http://arxiv.org/abs/1304.3935
https://doi.org/10.1016/j.tcs.2015.05.036
https://doi.org/10.1016/j.tcs.2015.05.036

Sometimes Reliable Spanners of Almost Linear
Size
Kevin Buchin
Department of Mathematics and Computing Science, TU Eindhoven, The Netherlands
k.a.buchin@tue.nl

Sariel Har-Peled
Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
sariel@illinois.edu

Dániel Oláh
Department of Mathematics and Computing Science, TU Eindhoven, The Netherlands
d.olah@tue.nl

Abstract
Reliable spanners can withstand huge failures, even when a linear number of vertices are deleted from
the network. In case of failures, some of the remaining vertices of a reliable spanner may no longer
admit the spanner property, but this collateral damage is bounded by a fraction of the size of the
attack. It is known that Ω(n logn) edges are needed to achieve this strong property, where n is the
number of vertices in the network, even in one dimension. Constructions of reliable geometric (1 + ε)-
spanners, for n points in Rd, are known, where the resulting graph has O(n logn loglog6n) edges.

Here, we show randomized constructions of smaller size spanners that have the desired reliability
property in expectation or with good probability. The new construction is simple, and potentially
practical – replacing a hierarchical usage of expanders (which renders the previous constructions
impractical) by a simple skip list like construction. This results in a 1-spanner, on the line, that
has linear number of edges. Using this, we present a construction of a reliable spanner in Rd

with O(n loglog2n logloglogn) edges.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric spanners, vertex failures, reliability

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.27

Funding Sariel Har-Peled: Work on this paper was partially supported by a NSF AF awards
CCF-1421231 and CCF-1907400.
Dániel Oláh: Supported by the Netherlands Organisation for Scientific Research (NWO) through
Gravitation-grant NETWORKS-024.002.003.

1 Introduction

Geometric graphs are such that their vertices are points in the d-dimensional Euclidean
space Rd and edges are straight line segments. The quality or efficiency of a geometric graph
is often measured in terms of the ratio of shortest path distances and geometric distances
between its vertices. Let G = (P,E) be a geometric graph, where P ⊂ Rd is a set of n
points and E is the set of edges. The shortest path distance between two points p, q ∈ P in
the graph G is denoted by dG(p, q) (or just d(p, q)). The graph G is a t-spanner for some
constant t ≥ 1, if d(p, q) ≤ t · ‖p− q‖ holds for all pairs of points p, q ∈ P , where ‖p− q‖
stands for the Euclidean distance of p and q. The spanning ratio, stretch factor, or dilation
of a graph G is the minimum number t ≥ 1 for which G is a t-spanner. A path between p
and q is a t-path if its length is at most t · ‖p− q‖.

© Kevin Buchin, Sariel Har-Peled, and Dániel Oláh;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 27; pp. 27:1–27:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.a.buchin@tue.nl
mailto:sariel@illinois.edu
mailto:d.olah@tue.nl
https://doi.org/10.4230/LIPIcs.ESA.2020.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Sometimes Reliable Spanners of Almost Linear Size

Table 1.1 Comparison of the size of constructions of reliable spanners and reliable spanners
in expectation. The reliability parameter is ϑ > 0, and, for dimensions d ≥ 2, the graphs are
(1 + ε)-spanners for ε > 0.

dim # edges constants

Reliable spanners

Buchin et al. [4] d = 1 O(n logn) O
(
ϑ−6)

d ≥ 2 O
(
n logn log log6 n

)
O
(
ε−7dϑ−6 log7 ε−1)

Bose et al. [2] d ≥ 1 O
(
n log2 n log logn

)
?

Reliable spanners in expectation

New results d = 1 O(n) O
(
ϑ−1 log ϑ−1)

d ≥ 2 O(n log log2 n log log logn) O
(
ε−2dϑ−1 log3 ε−1 log ϑ−1)

We focus our attention to construct spanners that can survive massive failures of vertices.
The most studied notion is fault tolerance [5, 7, 8, 9, 10], which provides a properly functioning
residual graph if there are no more failures than a predefined parameter k. It is clear, that a
k-fault tolerant spanner must have Ω(kn) edges to avoid small degree nodes, which can be
isolated by deleting their neighbors. Therefore, fault tolerant spanners must have quadratic
size to be able to survive a failure of a constant fraction of vertices. Another notion is
robustness [3], which gives more flexibility by allowing the loss of some additional nodes by
not guaranteeing t-paths for them. For a function f : N −→ R+ a t-spanner G is f -robust, if
for any set of failed points B there is an extended set B+ with size at most f(|B|) such that
the residual graph G \B has a t-path for any pair of points p, q ∈ P \B+. The function f
controls the robustness of the graph - the slower the function grows the more robust the graph
is. The benefit of robustness is that a near linear number of edges are enough to achieve
it, even for the case when f is linear, there are constructions with nearly O(n logn) edges.
For ϑ ∈ (0, 1), a spanner that is f -robust with f(k) = (1 + ϑ)k is a ϑ-reliable spanner [4].
This is the strongest form of robustness, since the dilation can increase beyond t only for a
tiny additional fraction of points. The fraction is relative to the number of failed vertices
and controlled by the parameter ϑ.

Recently, Buchin et al. [4] showed a construction of reliable 1-spanners of size O(n logn) in
one dimension, and of reliable (1+ε)-spanners of size O

(
n logn loglog6n

)
in higher dimensions

(the constant in the O depends on the dimension, ε, and the reliability parameter). An
alternative construction, with slightly worse bounds, was given by Bose et al. [2].

Limitations of previous constructions. The construction of Buchin et al. [4] (and also
the construction of Bose et al. [2]) relies on using expanders to get a 1-spanner for points
on the line, and then extending it to higher dimensions. The spanner (in one dimension)
has O(n logn) edges. Unfortunately, even in one dimension, such a reliable spanner re-
quires Ω(n logn) edges, as shown by Bose et al. [3]. Furthermore, the constants involved in
these constructions [2, 4] are quite bad, because of the usage of expanders. See Table 1.1 for
a summary of the sizes of different constructions (together with the new results).

The problem. As such, the question is whether one can come up with simple and practical
constructions of spanners that have linear or near linear size, while still possessing some
reliability guarantee – either in expectation or with good probability.

K. Buchin, S. Har-Peled, and D. Oláh 27:3

Some definitions. Given a graph G, an attack B ⊆ V (G) is a set of vertices that are being
removed. The damaged set B+, is the set of all the vertices which are no longer connected to
the rest the graph, or are badly connected to the rest of the graph – that is, these vertices no
longer have the desired spanning property. The loss caused by B, is the quantity |B+ \B|
(where we take the minimal damaged set). The loss rate of B is λ(G,B) = |B+ \B| / |B|. A
graph G is ϑ-reliable if for any attack B, the loss rate λ(G,B) is at most ϑ.

Randomness and obliviousness. As mentioned above, reliable spanners must have size
Ω(n logn). A natural way to get a smaller spanner, is to consider randomized constructions,
and require that the reliability holds in expectation (or with good probability). Randomized
constructions are (usually) still sensitive to adversarial attacks, if the adversary is allowed to
pick the attack set after the construction is completed (and it is allowed to inspect it). A
natural way to deal with this issue is to restrict the attacks to be oblivious – that is, the
attack set is chosen before the graph is constructed (or without any knowledge of the edges).

In such an oblivious model, the loss rate is a random variable (for a fixed attack B). It
is thus natural to construct the graph G randomly, in such a way that E[λ(G,B)] ≤ ϑ, or
alternatively, that the probability P[λ(G,B) ≥ ϑ] is small.

1-spanner. Surprisingly, the one-dimensional problem is the key for building reliable span-
ners. Here, the graph G is constructed over the set of vertices [n] = {1, . . . , n}. An attack
is a subset B ⊆ [n]. Given an attack B, the requirement is that for all i, j ∈ [n] \B+, such
that i < j, there is a monotonically increasing path from i to j in G \B – here, the length of
the path between i and j is exactly j − i. Since there is no distortion in the length of the
path, such graphs are 1-spanners.

Our results. We give a randomized construction of a 1-spanner in one dimension, that is
ϑ-reliable in expectation, and has size O(n). Formally, the construction has the property
that E[λ(G,B)] ≤ ϑ. This construction can also be modified so that λ(G,B) ≤ ϑ holds with
some desired probability. This is the main technical contribution of this work.

Next, following in the footsteps of the construction of reliable spanners, we use the
one-dimensional construction to get (1 + ε)-spanners that are ϑ-reliable either in expectation
or with good probability. The new constructions have size roughly O

(
n loglog2n

)
.

Main idea. We borrow the notion of shadow from the work of Buchin et al. [4]. A point p
is in the α-shadow if there is a neighborhood of p, such that an α-fraction of it belongs to
the attack set. One can think about the maximum α such that p is in the α-shadow of B
as the depth of p (here, the depth is in the range [0, 1]). A point with depth close to one,
are intuitively surrounded by failed points, and have little hope of remaining well connected.
Fortunately, only a few points have depth truly close to one 1. The flip side is that the
attack has little impact on shallow points (i.e., points with depth close to 0). Similar to
people, shallow points are surrounded by shallow points. As such, only a small fraction of
the shallow points needs to be strongly connected to other points in the graph, as paths from
(shallow) points around them can then travel via these hub points.

To this end, similar in spirit to skip lists, we define a random gradation of the points
P = P0 ⊇ P1 ⊇ . . . ⊇ Plogn, where |Pi| = n/2i – this is done via a random tournament tree.
In each level, each point of Pi is connected to all its neighbors within a certain distance (which
increases as i increases). Intuitively, because of the improved connectivity, the probability
that a point is well-connected (after the attack) increases if they belong to higher level of the

ESA 2020

27:4 Sometimes Reliable Spanners of Almost Linear Size

gradation. Thus, the probability of a shallow point to remain well connected is, intuitively,
good. Specifically, we can quantify the probability of a vertex to lose its connectivity as a
function of its depth. Combining this with bounds on the number of points of certain depths,
results in bounds on the expected size of the damaged set.

Reliable skip lists. Our construction can be interpreted as a reliable construction of skip
lists. Here, an attack removes certain cells in the skip list, which are no longer available.
This can happen, for example, if the skip list is stored in a distributed fashion in a network,
and certain nodes of the network are down. Our construction implies that one can withstand
an attack with small expected loss. The previous work on skip graphs [1], or [4], presented
constructions of variants of skip lists with somewhat similar properties, but using O(n logn)
pointers. The current construction requires only O(n) pointers.

Comparison to previous work. While we borrow some components of Buchin et al. [4], the
basic scheme in the one-dimensional case, is new, and significantly different – the previous
construction used expanders in a hierarchical way. The new construction requires different
analysis and ideas. The extension to higher dimension is relatively straightforward and
follows the ideas of Buchin et al. [4], although some modifications and care are necessary.

Paper organization. We review some necessary machinery in Section 2. The one-dimensio-
nal construction is described in Section 3. We describe the extension to higher dimensions in
Section 4.

2 Preliminaries

Let G = (P,E) be a t-spanner for some t ≥ 1. An attack on G is a set of vertices B that
fail, and no longer can be used. An attack is oblivious, if the set B is picked without any
knowledge of E.

I Definition 1 (Reliable spanner). Let G = (P,E) be a t-spanner for some t ≥ 1 constructed
by a (possibly) randomized algorithm. Given an attack B, its damaged set B+ is a smallest
set, such that for any pair of vertices u, v ∈ P \B+, we have

dG\B(u, v) ≤ t · ‖u− v‖ ,

that is, t-paths are preserved for all pairs of points not contained in B+. The quantity |B+ \B|
is the loss of G under the attack B. The loss rate of G is λ(G,B) = |B+ \B| / |B|. For
ϑ ∈ (0, 1), the graph G is ϑ-reliable if λ(G,B) ≤ ϑ holds for any attack B ⊆ P .

Further, we say that the random graph G is ϑ-reliable in expectation if E[λ(G,B)] ≤ ϑ
holds for any oblivious attack B ⊆ P . For ϑ, ρ ∈ (0, 1), we say that the graph G is ϑ-reliable
with probability 1− ρ if P[λ(G,B) ≤ ϑ] ≥ 1− ρ holds for any oblivious attack B ⊆ P .

I Remark 2. We emphasize that in the latter case the graph is random and the expectation
and the probability is taken with respect to the distribution of graphs.

Another remark is that the set B+ is not unique, since one can (possibly) choose the
point to include in B+ for a pair that does not have a t-path in G \B. However, this does
not cause a problem in defining the loss rate.

I Definition 3. Let [n] denote the interval {1, . . . , n}. Similarly, for x and y, let [x . . . y]
denote the interval {x, x+ 1, . . . , y}.

K. Buchin, S. Har-Peled, and D. Oláh 27:5

We use the shadow notion as it was introduced by Buchin et al. [4].

I Definition 4. Consider an arbitrary set B ⊆ [n] and a parameter α ∈ (0, 1). A number i
is in the left α-shadow of B, if and only if there exists an integer j ≥ i, such that∣∣[i . . . j] ∩B∣∣ ≥ α

∣∣[i . . . j]∣∣ . Similarly, i is in the right α-shadow of B, if and only if
there exists an integer h, such that h ≤ i and |[h . . . i] ∩B| ≥ α |[h . . . i]| . The left and right
α-shadow of B is denoted by S→(α,B) and S←(α,B), respectively. The combined shadow is
denoted by S(α,B) = S→(α,B) ∪ S←(α,B).

I Lemma 5 ([4]). For any set B ⊆ [n], and α ∈ (0, 1), we have that |S(α,B)| ≤
(
1 +

2 d1/αe
)
|B|. Further, if α ∈ (2/3, 1), we have that |S(α,B)| ≤ |B| /(2α− 1).

I Definition 6. Given a graph G over [n], a monotone path between i, j ∈ [n], such that
i < j, is a sequence of vertices i = i1 < i2 < · · · < ik = j, such that i`−1i` ∈ E(G), for
` = 2, . . . , k.

A monotone path between i and j has length |j − i|. Throughout the paper we use log x
and ln x to denote the base 2 and natural base logarithm of x, respectively. For any set A ⊆ P ,
let Ac = P \A denote the complement of A. For two integers x, y > 0, let x↑y = dx/ye y.

3 Reliable spanners in one dimension

We show how to build a random graph on [n] that still has monotone paths almost for all
vertices that are not directly attacked. First, in Section 3.2, we show that our construction
is ϑ-reliable in expectation. Then, in Section 3.3, we show how to modify the construction to
obtain a 1-spanner that is ϑ-reliable with probability 1− ρ.

3.1 Construction
The input consists of a parameter ϑ > 0 and the point set P = [n] = {1, . . . , n}. The
backbone of the construction is a random elimination tournament. We assume that n is a
power of 2 as otherwise one can construct the graph for the next power of two, and then
throw away the unneeded vertices.

The tournament is a full binary tree, with the leafs storing the values from 1 to n, say
from left to right. The value of a node is computed randomly and recursively. For a node,
once the values of the nodes were computed for both children, it randomly copies the value
of one of its children, with equal probability to choose either child. Let Pi be the values
stored in the ith bottom level of the tree. As such, P0 = P , and Plogn is a singleton. Each
set Pi can be interpreted as an ordered set (from left to right, or equivalently, by value).

Let

α = 1− ϑ

8 and ε = 8(1− α)
c lnϑ−1 = ϑ

c lnϑ−1 , (3.1)

where c > 1 is a sufficiently large constant. Let M be the smallest integer for which
|PM | ≤ 2M/2/ε holds (i.e., M = d(2/3) log(εn)e). For i = 0, 1, . . . ,M , and for all p ∈ Pi
connect p with the first

`(i) =
⌈

2i/2

ε

⌉
(3.2)

successors (and hence predecessors) of p in Pi. Let Ei be the set of all edges in level i. The
graph G on P is defined as the union of all edges over all levels – that is, E(G) = ∪Mi=0Ei.
Note, that top level of the graph G is a clique.

ESA 2020

27:6 Sometimes Reliable Spanners of Almost Linear Size

I Remark 7. Before dwelling on the correctness of the construction, note that the obliviousness
of the attack is critical. Indeed, it is quite easy to design an attack if the structure of G
is known. To this end, let Bi be the set of `(M) = O(n1/3/ε) values of Pi closest to n/2
– namely, we are taking out the middle-part of the graph, that belongs to the ith level.
Consider the attack B = ∪Bi. It is easy to verify that this attack breaks G into at least two
disconnected graphs, each of size at least n/2−O(n1/3ε−1 logn).

3.2 Analysis
I Lemma 8. The graph G has O

(
nϑ−1 log ϑ−1) edges.

Proof. The number of edges contributed by a point in Pi is at most `(i) at level i, and
|Pi| = n/2i. Thus, we have

|E(G)| ≤
M∑
i=0
|Pi| · `(i) ≤

M∑
i=0

n

2i ·
⌈

2i/2

ε

⌉
≤

M∑
i=0

n

2i ·
2 · 2i/2

ε
≤ n

ε
·
∞∑
i=0

2
2i/2

= O
(n
ε

)
. J

Fix an attack B ⊆ P . The high-level idea is to show that if a point p ∈ P \ B is far
enough from the faulty set, then, with high probability, there exist monotone paths reaching
far from p in both directions. For two points p < q, we show that if both p and q have far
reaching monotone paths, then the path going to the right from p, and the path going to
the left from q must cross each other, which in turn implies, that there is a monotone path
between p and q. Therefore, it is enough to bound the number of points that does not have
far reaching monotone paths.

I Definition 9 (Stairway). Let p ∈ P be an arbitrary point. The path p = p0, p1, . . . , pj is a
right (resp., left) stairway of p to level j, if
(i) p = p0 ≤ p1 ≤ · · · ≤ pj (resp., p ≥ p1 ≥ · · · ≥ pj),
(ii) if pi 6= pi+1, then pipi+1 ∈ Ei, for i = 0, 1, . . . , j − 1,
(iii) pi ∈ Pi, for i = 1, . . . , j.
Furthermore, a stairway is safe if none of its points are in the attack set B. A right (resp.,
left) stairway is usable, if [pj . . . n] ∩ Pj (resp., [1 . . . pj] ∩ Pj) forms a clique in G. Let
T ⊆ P denote the set of points that have a safe and usable stairway to both directions.

Let αk = α/2k, for k = 0, 1, . . . , logn. Let Sk = S(αk, B) be the αk-shadow of B, for
k = 0, 1, . . . , logn. Observe that S0 ⊆ S1 ⊆ · · · ⊆ Slogn, and there is an index j such that
Sj = P , if B 6= ∅. A point is classified according to when it gets “buried” in the shadow. A
point p, for k ≥ 1, is a kth round point, if p ∈ Sk \ Sk−1. Intuitively, a kth round point is
more likely to have a safe stairway the larger the value of k is.

I Definition 10. A point is bad if it belongs to B, or it does not have a right or left stairway
that is safe and usable. Formally, a point p ∈ P is bad, if and only if p ∈ P \ T .

I Lemma 11. For any two points p, q ∈ T that are not bad, there is a monotone path
connecting p and q in the residual graph G \B.

Proof. Suppose we have p < q. Let (p, p1, . . . , pj(p)) be a safe usable right stairway starting
from p and (q, q1, . . . , qj(q)) be a safe usable left stairway from q. These stairways exist, since
p, q ∈ T . Let j = min(j(p), j(q)) and consider the stairways (p, p1, . . . , pj) and (q, q1, . . . , qj).
Notice that both are safe and at least one of them is usable.

K. Buchin, S. Har-Peled, and D. Oláh 27:7

1 n

p p↑2i

2i2i2i

p↑2i + (∆i − 1) · 2iJi

Figure 3.1 The interval Ji =
[
p . . . p↑2i + (∆i − 1) · 2i

]
.

Let i be the first index such that pi ≥ qi, if there is any. We distinguish two cases based on
whether pi < qi−1 holds or not. In case pi < qi−1, the path (p, p1, . . . , pi−1, pi, qi−1, . . . , q1, q)
is a monotone path from p to q, since qiqi−1 ∈ Ei−1 implies piqi−1 ∈ Ei−1. On the other
hand, if we have pi ≥ qi−1, the path (p, p1, . . . , pi−1, qi−1, . . . , q1, q) is a monotone path
between p and q, since pi−1pi ∈ Ei−1 implies pi−1qi−1 ∈ Ei−1.

Finally, if pi < qi holds for all i = 1, . . . , j, then the path (p, p1, . . . , pj , qj , . . . , q1, q) is a
monotone path between p and q. We have pjqj ∈ Ej , since at least one of the stairways is
usable. This concludes the proof that there is a monotone path from p to q. J

I Lemma 12. For a fixed set Q ⊆ [n], we have that P[Q ∩ Pi = ∅] ≤ exp(− |Q| /2i).

Proof. Let Q = {q1, . . . , qr}, and observe that knowing that certain points of Q are not in Pi,
increases the probability of another point to be in Pi. That is, P[qj ∈ Pi | q1, . . . , qj−1 /∈ Pi] ≥
P[qj ∈ Pi] = 1/2i. As such, we have

P
[
Q ∩ Pi = ∅

]
= P

[⋂
j

(qj /∈ Pi)
]

=
r∏
j=1

P[qj /∈ Pi | q1, . . . , qj−1 /∈ Pj]

≤
(
1− 1/2i

)r ≤ exp(−r/2i). J

I Lemma 13. Assume that ϑ ∈ (0, 1/2) and let p ∈ Sk \ Sk−1 be a kth round point for some
k ≥ 1. The probability that p is bad is at most (ϑ/2)k/32.

Proof. For any integer i ≥ 1, let ∆i =
⌊
2(i−1)/2/(2ε)

⌋
and let Ji =

[
p . . . p↑2i + (∆i − 1) · 2i

]
,

see Figure 3.1. Recall that p ∈ [n], so p↑2i =
⌈
p/2i

⌉
2i is the next multiple of 2i. Let ξ be

the largest integer such that Jξ ⊆ P . For i = 0, . . . , ξ, the points of Ji+1 ∩ Pi form a clique
in G, since

|Ji+1 ∩ Pi| ≤
⌈
|Ji+1| /2i

⌉
≤
⌈
2i+1∆i+1/2i

⌉
= 2∆i+1 ≤

⌈
2i/2/ε

⌉
= `(i).

Indeed, any two vertices of Pi with distance at most `(i) are connected by an edge of Ei. As
such, it is enough to prove that there is a right safe stairway from p, that climbs on the levels
to level ξ. Since Jξ+1 ∩ Pξ forms a clique, it follows that such a stairway would be usable.

Let Ei be the event that (Ji \B) ∩ Pi is empty, for i = 1, . . . , ξ. Since p /∈ Sk−1,
we have that |Ji ∩B| < αk−1 |Ji| ≤ 2iαk−1∆i. On the other hand, we have |Ji ∩ Pi| ≥
2i(∆i − 1)/2i = ∆i − 1. As such, if |Ji ∩B| < |Ji ∩ Pi| then P[Ei] = 0. This happens if
2iαk−1∆i ≤ ∆i − 1 ⇐⇒ 2i−k+1α ≤ (∆i − 1)/∆i, which happens if i ≤ k − 2, given that
∆i ≥ 2. Notice that ∆i ≥ 2 holds for all i ≥ 1, if ε ≤ 1

4 .
So assume that i ≥ k − 1. Let q1, . . . , qr be all points of Ji \ B, which are the possible

candidates to be contained in (Ji \B) ∩ Pi. By Eq. (3.1), there are at least

r = |Ji| − |Ji ∩B| ≥ (1− αk−1) |Ji| ≥ (1− αk−1)2i(∆i − 1)

ESA 2020

27:8 Sometimes Reliable Spanners of Almost Linear Size

≥ (1− αk−1)2i
(2(i−1)/2

2ε − 2
)

= c(1− αk−1) lnϑ−1

16(1− α) 23i/2−1/2 − (1− αk−1)2i+1

≥ c23i/2−9/2 lnϑ−1 − 2i+1

such points. Observe, that by the structure of the construction, a point is more likely
to be contained in Pi conditioned on the event there are some other points which are
not contained in Pi. Therefore, by Lemma 12, we have P

[
Ei
]
≤ exp

(
−r/2i

)
≤ τi, for

τi = exp
(
2− c2i/2−9/2 lnϑ−1). The sequence τi has a fast decay in i, since

τi+1

τi
= exp

(
−(
√

2− 1)c2i/2−9/2 lnϑ−1
)
≤ exp

(
−c2−6 ln 2

)
= 2−c2

−6
≤ 1

2 ,

if c ≥ 26 holds. Thus, we have

P
[
∪ξi=1Ei

]
≤

ξ∑
i=1

P
[
Ei
]
≤

ξ∑
i=k−1

τi ≤ 2τk−1 = 2 exp
(

2− c2(k−1)/2−9/2 lnϑ−1
)

≤ 16 exp
(
− c

322k/2 lnϑ−1
)

= 16 · ϑ c
32 ·2

k/2
≤ 24 · ϑ

c
26 ·k

≤ 24 ·
(

1
2

) c
27 ·k

·
(
ϑ

c
27
)k
≤ (ϑ/2)k

64

for c ≥ 211, using the conditions 0 < ϑ ≤ 1
2 , k ≥ 1 and the fact that x ≤ 2x.

Let pi be the leftmost point in (Ji \ B) ∩ Pi, for i ≥ 0. Since Pi ⊆ Pi−1, for all i, it
follows that p = p0 ≤ p1 ≤ · · · ≤ pξ. Furthermore, since Ji+1 ∩ Pi is a clique in level i of G,
and pi, pi+1 ∈ Ji+1 ∩ Pi, it follows that pipi+1 ∈ Ei, if pi 6= pi+1, for all i. We conclude that
p, p1, . . . , pξ is a safe and usable right stairway in G.

The bound now follows by applying the same argument symmetrically for the left stairway.
Indeed, using the union bound, we obtain P[p is bad] ≤ 2(ϑ/2)k/64 = (ϑ/2)k/32. J

I Lemma 14. Let ϑ ∈ (0, 1/2) and B ⊆ P be an oblivious attack. Recall, that T c is the set
of bad points. Then, we have E[|T c|] ≤ (1 + ϑ) |B|.

Proof. We may assume that all the points of S0 are bad. Fortunately, by Lemma 5,
we have |S0| ≤ |B| /(2α − 1) = |B| /(1 − ϑ/4) ≤ (1 + ϑ/2) |B|, since α = 1 − ϑ/8 and
1/(1− x/4) ≤ 1 + x/2 for 0 ≤ x ≤ 2. Again, using Lemma 5, we have

|Sk \ Sk−1| ≤ |Sk| ≤
(
1 + 2

⌈
2k/α

⌉)
|B| ≤

(
3 + 2k+1

α

)
|B| ≤ 2k+3 |B| .

For k ≥ 1, we have, by Lemma 13, that

bk = E[|(Sk \ Sk−1) ∩ T c|] ≤
∑

p∈Sk\Sk−1

P[p is bad] ≤ 2k+3 |B| · (ϑ/2)k

32 ≤ ϑk

4 |B| .

Since, T c = (S0 ∩ T c) ∪
⋃
k≥1
[
(Sk \ Sk−1) ∩ T c

]
, we have, by linearity of expectation, that

E
[
|T c|

]
|B|

≤ 1
|B|

(
|S0|+

∞∑
k=1

bk

)
≤ 1 + ϑ

2 +
∞∑
k=1

ϑk

4 ≤ 1 + ϑ

2 + ϑ

4(1− ϑ) ≤ (1 + ϑ),

since ϑ < 1/2. J

K. Buchin, S. Har-Peled, and D. Oláh 27:9

I Theorem 15. Let ϑ ∈ (0, 1/2) and P = [n] be fixed. The graph G, constructed in
Section 3.1, has O

(
nϑ−1 log ϑ−1) edges, and it is a ϑ-reliable 1-spanner of P in expectation.

Formally, for any oblivious attack B, we have E[λ(G,B)] ≤ ϑ.

Proof. By Lemma 8 the size of the construction is |E(G)| = O
(
nϑ−1 log ϑ−1). Let B ⊆ P

be an oblivious attack and consider the bad set P \ T . By Lemma 11, for any two points
outside the bad set, there is a monotone path connecting them. Further, by Lemma 14, we
have E[|P \ T |] ≤ (1 + ϑ) |B| for any oblivious attack. Therefore, we obtain E[λ(G,B)] ≤
E[|T c \B| / |B|] ≤ ϑ. J

3.3 Probabilistic bound
One can replace the guarantee, in Theorem 15, on the bound of the loss rate (which holds
in expectation), by an upper bound that holds with probability at least 1 − ρ, for some
prespecified ρ > 0. A straightforward application of Markov’s inequality implies that taking
the union of log ρ−1 independent copies (G′) of the construction of Theorem 15 with parameter
ϑ/2, results in a graph with the desired property. Indeed, we have

P[λ(G,B) > ϑ] ≤ P[λ(G′, B) > ϑ]log ρ−1
≤
(
E[λ(G′, B)]

ϑ

)log ρ−1

≤
(

1
2

)log ρ−1

= ρ.

Here we show how one can do better to avoid the multiplicative factor log ρ−1.

Construction. The input consists of two parameters ϑ, ρ > 0 and the set P = [n]. Let G
be the graph constructed in Section 3.1 with parameters

α = 1− ϑ

8 and ε = 8(1− α)
c(lnϑ−1 + ln ρ−1) = ϑ

c(lnϑ−1 + ln ρ−1) ,

where c > 1 is a sufficiently large constant. First, we need a variant of Lemma 13 to bound
the probability of a kth round point being bad, using the new value of ε.

I Lemma 16. Assume that ϑ ∈ (0, 1/2), ρ ∈ (0, 1) and let p ∈ Sk \ Sk−1 be a kth round
point for some k ≥ 1. The probability that p is bad is at most ϑ · ρ/23k+4.

Proof. The proof is the same as the proof of Lemma 13. The only difference is due to the
new value of ε, which results in τi = exp

(
2− c2i/2−9/2(lnϑ−1 + ln ρ−1)

)
, using the same

notation. Therefore, we have

P[p ∈ Sk \ Sk−1 is bad] ≤ 4τk−1 = 4 exp
(

2− c2k/2−5(lnϑ−1 + ln ρ−1)
)

≤ 25 exp
(
− c

26 k(lnϑ−1 + ln ρ−1)
)

= 25 · ϑ
c

26 k · ρ
c

26 k

≤ 25 ·
(

1
2

) c
26 k−1

· ϑ · ρ = 2−
c

26 k+6 · ϑ · ρ ≤ 2−3k−4 · ϑ · ρ,

for c ≥ 210. See Lemma 13 for a complete proof. J

I Lemma 17. Let ϑ ∈ (0, 1/2), ρ ∈ (0, 1) be fixed and B ⊆ P be an oblivious attack. Then,
with probability ≥ 1− ρ, the number of bad points is at most (1 + ϑ) |B|. That is, we have
P[|T c| ≤ (1 + ϑ) |B|] ≥ 1− ρ.

ESA 2020

27:10 Sometimes Reliable Spanners of Almost Linear Size

Proof. The idea is to give bounds on the number of bad kth round points for all k ≥ 1. Let
Ek be the event that |(Sk \ Sk−1) ∩ T c| > ϑ

2k+1 |B| happens, for k ≥ 1. Recall, by the choice
of α, we have |S0 ∩ T c| ≤ |S0| ≤

(
1 + ϑ

2
)
|B|. Notice, that at least one of the events Ek must

happen, for k ≥ 1, in order to have |T c| > (1 + ϑ) |B|, since

|T c| = |S0 ∩ T c|+
∞∑
k=1
|(Sk \ Sk−1) ∩ T c| ≤

(
1 + ϑ

2

)
|B|+

∞∑
k=1

ϑ

2k+1 |B| = (1 + ϑ) |B| .

Using Markov’s inequality and Lemma 16 we get

P[Ek] ≤ E[|(Sk \ Sk−1) ∩ T c|]
ϑ

2k+1 |B|
≤ |Sk| · P[p ∈ Sk \ Sk−1 is bad]

ϑ
2k+1 |B|

≤
2k+3 |B| · ϑ·ρ

23k+4

ϑ
2k+1 |B|

= ρ

2k .

Therefore, we obtain

P[|T c| > (1 + ϑ) |B|] ≤ P[∪k≥1Ek] ≤
∞∑
k=1

P[Ek] ≤
∞∑
k=1

ρ

2k ≤ ρ,

which is equivalent to P[|T c| ≤ (1 + ϑ) |B|] ≥ 1− ρ. J

I Theorem 18. Let ϑ ∈ (0, 1/2), ρ ∈ (0, 1) and P = [n] be fixed. The graph G, con-
structed above, is a ϑ-reliable 1-spanner of P , with probability at least 1 − ρ. Formally,
we have P[λ(G,B) ≤ ϑ] ≥ 1− ρ for any oblivious attack B. Furthermore, the graph G has
O
(
nϑ−1(log ϑ−1 + log ρ−1)

)
edges.

Proof. The bound on the size follows directly from Lemma 8. Let B ⊆ P be an oblivious
attack and consider the bad set P \ T . By Lemma 11, for any two points outside the
bad set, there is a monotone path connecting them. Further, by Lemma 17, we have
P[λ(G,B) ≤ ϑ] ≥ P[|T c| ≤ (1 + ϑ) |B|] ≥ 1− ρ for any oblivious attack. J

4 Reliable spanners in higher dimensions

Now we turn to the higher-dimensional setting, and show that one can construct spanners
with near linear size that are reliable in expectation or with some fixed probability (which
can be provided as part of the input). We use the same technique as Buchin et al. [4],
that is, we use our one-dimensional construction as a black box in combination with a
result of Chan et al. [6]. Let the dimension d > 1 be fixed. In the following we assume
P ⊂ [0, 1)d, which can be achieved by an appropriate scaling and translation of the d-
dimensional Euclidean space Rd. For an ordering σ of [0, 1)d, and two points p, q ∈ [0, 1)d,
such that p ≺ q, let (p, q)σ =

{
z ∈ [0, 1)d

∣∣ p ≺ z ≺ q} be the set of points between p and q
in the order σ.

I Theorem 19 ([6]). For ς ∈ (0, 1), there is a set Π+(ς) of M(ς) = O(ς−d log ς−1) orderings
of [0, 1)d, such that for any two (distinct) points p, q ∈ [0, 1)d, with ` = ‖p− q‖, there is an
ordering σ ∈ Π+, and a point z ∈ [0, 1)d, such that
(i) p ≺σ q,
(ii) (p, z)σ ⊆ ball

(
p, ς`

)
,

(iii) (z, q)σ ⊆ ball
(
q, ς`

)
, and

(iv) z ∈ ball
(
p, ς`

)
or z ∈ ball

(
q, ς`

)
.

Furthermore, given such an ordering σ, and two points p, q, one can compute their ordering,
according to σ, using O(d log ς−1) arithmetic and bitwise-logical operations.

K. Buchin, S. Har-Peled, and D. Oláh 27:11

The above theorem ensures that it is enough to maintain only a “few” linear orderings,
and for any pair of points p, q ∈ P there exists an ordering where all points that lie between
p and q are either very close to p or q. It is natural to build the one-dimensional construction
for each of these orderings with some carefully chosen parameter. Then, since there is a
reliable path in the one-dimensional construction, there is an edge p′q′ along the path between
p and q that connects the locality of p and the locality of q. We fix the edge p′q′ and apply
recursion on the subpaths from p to p′ and q to q′.

4.1 Construction
Let ϑ, ε ∈ (0, 1) be fixed parameters and P ⊆ [0, 1)d be a set of n points. Set ς = ε/16 in
Theorem 19 and let Π+ = Π+(ς) be the set ofM = M(ς) orderings that fulfills the conditions
of the theorem. We define ϑ′ = ϑ

3MN , where N = dloglogne. Now, for each ordering σ ∈ Π+,
we build N independent spanners G1

σ, . . . , G
N
σ , using the construction in Section 3.1 with

parameter ϑ′. The (random) graph G is defined as the union of graphs Giσ for all σ ∈ Π+

and i ∈ [N], that is, E(G) = ∪σ∈Π+,i∈[N]E
(
Giσ
)
.

4.2 Analysis
I Lemma 20. The graph G, constructed above, has O

(
c n loglog2n logloglogn

)
edges, where

the O hides constant that depends on the dimension d, and c = O(ε−2dϑ−1 log3 ε−1 log ϑ−1).

Proof. There are M = O
(
ε−d log ε−1) orderings, and for each ordering there are N copies,

for which we build the one-dimensional construction with parameter ϑ′. The size of the
one-dimensional construction is O

(
n · ϑ′−1 · log ϑ′−1), by Lemma 8. Therefore, G has size

|E(G)| =
∣∣∪σ∈Π+,i∈[N]E

(
Giσ
)∣∣ ≤ ∑

σ∈Π+,i∈[N]

|E(G′σ)| ≤ NM · O
(
n · ϑ′−1 · log ϑ′−1)

= O
(
n ·N2M2ϑ−1 ·

(
log ϑ−1 + logN + logM

))
= O

(
n · loglog2n · ε−2d log2 ε−1 · ϑ−1 · (log ϑ−1+

+ logloglogn+ d log ε−1 + loglog ε−1)
)

= O
(
c n loglog2n logloglogn

)
, where c = O(ε−2dϑ−1 log3 ε−1 log ϑ−1). J

Fix an attack set B ⊆ P . In order to bound λ(G,B) in expectation, we define a sequence
of sets B0 ⊆ B1 ⊆ · · · ⊆ BN as follows. First, we set B0 = B. Then, for i = 1, . . . , N , we
define Bσi for each σ ∈ Π+ to contain all points that do not have a right or left stairway in
Giσ that is safe and usable with respect to Bi−1, that is, Bσi contains the bad points with
respect to Bi−1. We set Bi = ∪σ∈Π+Bσi . Our goal is to show that the expected size of BN
is small, and there is a (1 + ε)-path for all pairs of points outside of BN .

I Lemma 21. Let B be an oblivious attack and let B0 ⊆ B1 ⊆ · · · ⊆ BN be the sequence
defined above. Then, for i = 1, . . . , N , we have E[|Bσi | | Bi−1] ≤ (1 + ϑ′) |Bi−1|, for all
σ ∈ Π+.

Proof. The set Bi−1 has information only about graphs Gjσ for j ≤ i − 1. Thus, the
attack Bi−1 on the graph Giσ is oblivious and we have E[|Bσi | | Bi−1] ≤ (1 + ϑ′) |Bi−1|
by Lemma 14. J

I Lemma 22. Let BN be the set defined above. For any oblivious attack B, the expected size
of BN is at most (1 + ϑ) · |B|.

ESA 2020

27:12 Sometimes Reliable Spanners of Almost Linear Size

Proof. By Lemma 21 we have E[|Bσi | | Bi−1] ≤ (1 + ϑ′) |Bi−1| for all σ ∈ Π+. Therefore,

E[|Bi| | Bi−1] ≤
(
(1 + ϑ′) |Bi−1| − |Bi−1|

)
·M + |Bi−1| =

(
1 + ϑ

3N

)
|Bi−1|

holds, for i = 1, . . . , N , which gives

E[|BN |] ≤ E[E[|BN | | BN−1]] ≤
(

1 + ϑ

3N

)
· E[|BN−1|]

≤
(

1 + ϑ

3N

)N
· E[|B0|] =

(
1 + ϑ

3N

)N
· |B| .

Using 1 + x ≤ ex ≤ 1 + 3x, for x ∈ [0, 1], we obtain

E[|BN |] ≤
(

1 + ϑ

3N

)N
· |B| ≤ exp

(
N

ϑ

3N

)
· |B| = e

ϑ
3 · |B| ≤ (1 + ϑ) · |B| . J

I Lemma 23. Let BN be the set defined above. Then, for any two points p, q ∈ P \ BN ,
there is a (1 + ε)-path in the graph G \B.

Proof. The proof is essentially the same as the proof of Theorem 15 in [4].
Let p, q ∈ P \BN be fixed. According to Theorem 19, there is an ordering σ ∈ Π+, such

that all the points z ∈ (p, q)σ lie in one of the balls of radius ς ‖p− q‖ around p and q. Recall
that the graph G contains GNσ as a subgraph. Since p, q /∈ BN and GNσ is reliable, there is a
path connecting p and q that is monotone with respect to σ and avoids any point in BN−1
by Theorem 15. Therefore, there is a unique edge p′q′ along this path such that p′ is in the
close neighborhood of p and q′ is in the close neighborhood of q. Furthermore, we also have
that p′, q′ ∈ P \BN−1. We fix the edge p′q′ in path π and find subpaths between the pairs
pp′ and qq′ in a recursive manner. The bounds on the distances are

(i) ‖p′ − q′‖ ≤ (1 + 2ς) ‖p− q‖ ,
(ii) ‖p− p′‖ ≤ ς ‖p− q‖ and similarly ‖q − q′‖ ≤ ς ‖p− q‖.

We repeat this process N − 1 times. Let Qi be the set of pairs that needs to be connected in
the ith round, that is, Q0 = {pq}, Q1 = {pp′, qq′} and so on. There are at most 2i pairs in
Qi and for any pair xy ∈ Qi we have x, y ∈ P \ BN−i. For each pair xy ∈ Qi, there is an
ordering σ such that the argument above can be repeated. That is, there is a monotone path
in the graph GN−iσ \BN−i−1 according to σ and there is an edge x′y′ along this path such
that

(i) ‖x′ − y′‖ ≤ (1 + 2ς) ‖x− y‖ ≤ (1 + 2ς)ςi ‖p− q‖ ,
(ii) ‖x− x′‖ ≤ ς ‖x− y‖ ≤ ςi+1 ‖p− q‖ and similarly ‖y − y′‖ ≤ ςi+1 ‖p− q‖.

The edge x′y′ is added to path π and the pairs xx′ and yy′ are added to Qi+1, unless they
are trivial (i.e., x = x′ or y = y′). After N − 1 rounds, QN−1 is the set of active pairs that
still needs to be connected. Notice that x, y ∈ P \B1 holds for any pair xy ∈ QN−1. Again,
for each pair in QN−1, we apply Theorem 19 and Theorem 15 to obtain a monotone path
according to some ordering σ in the graph G1

σ. None of these paths use any points in B. In
order to complete the path π we add the whole paths obtained in the last step. It is not
hard to see that the number of edges of each of the paths added in the last step is at most
2 logn. Indeed, it is clear from the analysis of our one-dimensional construction that a path
using the stairways can have at most two points per level. Since the number of levels in the
construction is fewer than logn, we get the bound 2 logn.

K. Buchin, S. Har-Peled, and D. Oláh 27:13

Now, that we have a path π that connects the points p and q without using any points in
the failed set B, we give an upper bound on the length of π. First, we calculate the total
length added in the last step. There are |QN−1| ≤ 2N−1 pairs in the last step and for each
pair xy ∈ QN−1 we have ‖x− y‖ ≤ ‖p− q‖ ςN−1. Thus, we obtain∑
{x,y}∈QN−1

length(π[x, y]) ≤ 2N−1((1 + 2ς) ‖p− q‖ ςN−1 + 2 logn ‖p− q‖ ςN
)

≤ 2 · 2ς ‖p− q‖+ (2ς)N logn ‖p− q‖ =
(

4ς + (2ς)N logn
)
‖p− q‖

≤
(
ε

4 +
(ε

8

)loglogn
logn

)
‖p− q‖

≤

(
ε

4 + ε

4 ·
(

1
2

)loglogn
logn

)
‖p− q‖ = ε

2 ‖p− q‖ ,

where we simply use 2ς ≤ 1 in the second line and ς = ε/16 and N = dloglogne in the third
line. Second, we bound the total length of the edges that were added to path π in any round
except the last. This contributes at most

N−2∑
i=0

2i · (1 + 2ς)ςi ‖p− q‖ ≤ (1 + 2ς) ‖p− q‖ ·
∞∑
i=0

(2ς)i = (1 + 2ς) ‖p− q‖ · 1
1− 2ς

=
(

1 + 4ς
1− 2ς

)
‖p− q‖ =

(
1 + ε/4

1− ε/8

)
‖p− q‖ ≤

(
1 + ε

2

)
‖p− q‖

to the length of π. Therefore the total length of the path π connecting p and q, without
using any points of B, is at most (1 + ε) ‖p− q‖. J

I Theorem 24. Let ϑ, ε ∈ (0, 1) be fixed parameters and P ⊆ [0, 1)d be a set of n points. The
graph G, constructed in Section 4.1, is a ϑ-reliable (1 + ε)-spanner of P in expectation and
has size O

(
c n loglog2n logloglogn

)
, where O hides constant that depends on the dimension

d, and c = O(ε−2dϑ−1 log3 ε−1 log ϑ−1).

Proof. The size of the construction is proved in Lemma 20. Let BN be the set defined above.
By Lemma 22, the expected size of BN is at most (1 + ϑ) |B|. By Lemma 23, for any two
points p, q ∈ P \BN , there is a (1 + ε)-path between p and q in the graph G \B. Thus, we
have E[λ(G,B)] ≤ ϑ. J

4.3 Probabilistic bound

The same construction, as we used in Section 4.1, can be applied to construct spanners with
near linear edges that are reliable with probability 1− ρ. The idea is to use the probabilistic
version of the one-dimensional construction with parameters ρ′ = ρ

MN and ϑ′ = ϑ
3MN . Then,

similarly to Lemma 22, it is not hard to show that |BN | ≤ (1 + ϑ) |B| holds with probability
1− ρ.

I Lemma 25. Let BN be the set defined in Section 4.2. The probability that the size of BN
is larger than (1 + ϑ) · |B| is at most ρ.

ESA 2020

27:14 Sometimes Reliable Spanners of Almost Linear Size

Proof. By Lemma 17, and since all attacks are oblivious, we have P[|Bσi | > (1 + ϑ′) |Bi−1|] ≤
ρ′ for all σ ∈ Π+ and i ≥ 1. Therefore,

P[|Bi| > (1 +Mϑ′) |Bi−1|] = P[|Bi \Bi−1| > Mϑ′ |Bi−1|]

≤ P[∪σ∈Π+ |Bσi \Bi−1| > ϑ′ |Bi−1|] ≤
∑
σ∈Π+

P[|Bσi \Bi−1| > ϑ′ |Bi−1|]

=
∑
σ∈Π+

P[|Bσi | > (1 + ϑ′) |Bi−1|] ≤Mρ′

holds for i = 1, . . . , N . Since
(
1 + ϑ

3N
)N ≤ (e ϑ

3N

)N
≤ 1 + ϑ, we get

P[|BN | > (1 + ϑ) |B|] ≤ P
[
|BN | >

(
1 + ϑ

3N

)N

|B|
]
≤ P

[
N⋃

i=1

|Bi| >
(

1 + ϑ

3N

)
|Bi−1|

]

≤
N∑

i=1

P
[
|Bi| >

(
1 + ϑ

3N

)
|Bi−1|

]
=

N∑
i=1

P
[
|Bi| >

(
1 +Mϑ′

)
|Bi−1|

]
≤ NMρ′ = ρ. J

Therefore, using the same argument as for Theorem 24, we obtain the following result,
which gives a slight improvement in the constants, compared to the trivial multiplicative
factor O

(
log ρ−1) by simply repeating the construction of Section 4.1.

I Theorem 26. Let ϑ, ε, ρ ∈ (0, 1) be fixed parameters and P ⊆ [0, 1)d be a set of n
points. The graph described above is a ϑ-reliable (1 + ε)-spanner of P with probability
1− ρ. Furthermore, the size of the construction is O

(
c n loglog2n logloglogn

)
, where O hides

constant that depends on the dimension d, and c = O
(
ε−2dϑ−1 log3 ε−1(log ϑ−1 + log ρ−1)

)
.

5 Conclusions

Reliable spanners require Ω(n logn) edges. In this paper, we showed that fewer edges are
sufficient, if the spanner only has to be reliable against oblivious attacks (in expectation or
with a certain probability). Our new construction avoids the use of expanders, and as a result
has much smaller constants than previous constructions, making it potentially practical. The
number of edges in the new spanner is significantly smaller – it is linear in one dimension, and
roughly O(n loglog2n) in higher dimensions. An open problem is whether these loglog-factors
in higher dimensions can be avoided. Furthermore, similar results for reliable spanners for
general metrics would be of interest.

References
1 J. Aspnes and G. Shah. Skip graphs. ACM Transactions on Algorithms, 3(4):37, November

2007.
2 P. Bose, P. Carmi, V. Dujmović, and P. Morin. Near-optimal O(k)-robust geometric spanners.

CoRR, abs/1812.09913, 2018. arXiv:1812.09913.
3 P. Bose, V. Dujmović, P. Morin, and M. Smid. Robust geometric spanners. SIAM Journal on

Computing, 42(4):1720–1736, 2013. doi:10.1137/120874473.
4 K. Buchin, S. Har-Peled, and D. Oláh. A spanner for the day after. In Proc. 35th Int. Annu.

Sympos. Comput. Geom. (SoCG), pages 19:1–19:15, 2019. doi:10.4230/LIPIcs.SoCG.2019.
19.

5 T.-H. H. Chan, M. Li, L. Ning, and S. Solomon. New doubling spanners: Better and simpler.
SIAM Journal on Computing, 44(1):37–53, 2015. doi:10.1137/130930984.

http://arxiv.org/abs/1812.09913
https://doi.org/10.1137/120874473
https://doi.org/10.4230/LIPIcs.SoCG.2019.19
https://doi.org/10.4230/LIPIcs.SoCG.2019.19
https://doi.org/10.1137/130930984

K. Buchin, S. Har-Peled, and D. Oláh 27:15

6 T. M. Chan, S. Har-Peled, and M. Jones. On Locality-Sensitive Orderings and Their Applica-
tions. In Proc. 10th Innovations in Theoretical Computer Science Conference (ITCS 2019),
pages 21:1–21:17, 2018. doi:10.4230/LIPIcs.ITCS.2019.21.

7 C. Levcopoulos, G. Narasimhan, and M. Smid. Efficient algorithms for constructing fault-
tolerant geometric spanners. In Proc. 30th Annu. ACM Sympos. Theory Comput. (STOC),
pages 186–195, 1998. doi:10.1145/276698.276734.

8 C. Levcopoulos, G. Narasimhan, and M. Smid. Improved algorithms for constructing fault-
tolerant spanners. Algorithmica, 32(1):144–156, 2002. doi:10.1007/s00453-001-0075-x.

9 T. Lukovszki. New results of fault tolerant geometric spanners. In Proc. 6th Workshop
Algorithms Data Struct. (WADS), pages 193–204, 1999. doi:10.1007/3-540-48447-7_20.

10 S. Solomon. From hierarchical partitions to hierarchical covers: Optimal fault-tolerant spanners
for doubling metrics. In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of
Computing, STOC ’14, page 363–372, New York, NY, USA, 2014. Association for Computing
Machinery. doi:10.1145/2591796.2591864.

ESA 2020

https://doi.org/10.4230/LIPIcs.ITCS.2019.21
https://doi.org/10.1145/276698.276734
https://doi.org/10.1007/s00453-001-0075-x
https://doi.org/10.1007/3-540-48447-7_20
https://doi.org/10.1145/2591796.2591864

New Binary Search Tree Bounds via Geometric
Inversions
Parinya Chalermsook
Aalto University, Finland
chalermsook@gmail.com

Wanchote Po Jiamjitrak
Aalto University, Finland
wanchotej@gmail.com

Abstract

The long-standing dynamic optimality conjecture postulates the existence of a dynamic binary search
tree (BST) that is Op1q-competitive to all other dynamic BSTs. Despite attempts from many groups
of researchers, we believe the conjecture is still far-fetched. One of the main reasons is the lack of
the “right” potential functions for the problem: existing results that prove various consequences
of dynamic optimality rely on very different potential function techniques, while proving dynamic
optimality requires a single potential function that can be used to derive all these consequences.
In this paper, we propose a new potential function, that we call extended (geometric) inversion.
Inversion is arguably the most natural potential function principle that has been used in competitive
analysis but has never been used in the context of BSTs. We use our potential function to derive
new results, as well as streamlining/strengthening existing results.

First, we show that a broad class of BST algorithms (including Greedy and Splay) are Op1q-
competitive to Move-to-Root algorithm and therefore have simulation embedding property – a new
BST property that was recently introduced and studied by Levy and Tarjan (SODA 2019). This
result, besides substantially expanding the list of BST algorithms having this property, gives the first
potential function proof of the simulation embedding property for BSTs (thus unifying apparently
different kinds of results). Moreover, our analysis is the first where the costs of two dynamic binary
search trees are compared against each other directly and systematically. Secondly, we use our new
potential function to unify and strengthen known BST bounds, e.g., showing that Greedy satisfies
the weighted dynamic finger property within a multiplicative factor of p5` op1qq.

2012 ACM Subject Classification Theory of computation Ñ Data structures design and analysis

Keywords and phrases Binary Search Tree, Potential Function, Inversion, Data Structures, Online
Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.28

Funding Parinya Chalermsook: Part of this work was done while Parinya was visiting the Simons
Institute for the Theory of Computing. It was partially supported by the DIMACS/Simons
Collaboration on Bridging Continuous and Discrete Optimization through NSF grant #CCF-
1740425. This project has received funding from European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 759557).
Parinya is also funded by Academy of Finland Research Fellowship, under grant number 310415.

Acknowledgements We would like to thank Thatchaphol Saranurak for his contributions in the
early stage of this paper and for many insightful discussions. We also thank anonymous reviewers
for many detailed comments and suggestions.

© Parinya Chalermsook and Wanchote Po Jiamjitrak;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 28; pp. 28:1–28:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chalermsook@gmail.com
mailto:wanchotej@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2020.28
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Geometric Inversions in Binary Search Trees

1 Introduction

The dynamic optimality conjecture [23] is among the most fundamental problems in data
structures. The conjecture postulates the existence of an online1 and dynamic2 binary
search tree (BST) that is Op1q-competitive (or simply competitive) to the optimal offline
BST algorithm. So far, the main candidates for being dynamically optimal are Splay and
Greedy[17, 12, 18] (a.k.a. Greedy Future and Greedy ASS) since they possess many desirable
properties that are consequences of dynamic optimality [5, 14, 11, 10, 19], although the
best known competitive ratio of Oplog lognq is given by Tango trees [13]. Despite various
attempts from many groups of researchers, the conjecture remains elusive. There are several
observed reasons that make the conjecture long-standing, and one such reason (that this
work tries to address) is the difficulty of comparing the behavior of two dynamic BSTs (see,
for instance, [16]), which can be attributed to the lack of “generic” and “intuitive” potential
function in this context: The simplest bound, static optimality, was derived via sum-of-
logs [23, 6], and Splay’s dynamic finger (which extends static optimality) uses sophisticated
potential function that in some way extends sum-of-logs [10, 11]; Greedy’s weighted dynamic
finger [14] relies on very different potential function that neither seems related to sum-of-logs
nor Splay’s dynamic finger; the recent simulation embedding properties [16, 21] as well as best
known bound for Splay’s deque property [19, 20] do not even use potential function. Finally,
none of these techniques was used to prove that Greedy or Splay is oplognq-competitive. Given
this state of the art, it is relatively unclear which potential function should be used/extended
for proving dynamic optimality. This paper is inspired by the following question:

Is there a natural, generic potential function technique that allows us to compare the
cost of two dynamic BSTs in a modular way?

1.1 Our Contribution
Our main conceptual contribution is a new potential function that, in our opinion, seems to
be the right way to handle binary search trees. Our idea is inspired by inversions3, which are
arguably the most natural potential function for the purpose of analyzing online algorithms
(see, for instance, [2, 22, 1] in the context of list update and [9] in the context of the k-server
problem). We illustrate the power of our techniques in two directions.

Let us first introduce some notation before stating our results. We consider keys in
rns “ t1, 2, . . . , nu and access sequence X “ px1, x2, . . . , xmq P rns

m. For an online dynamic
BST algorithm A, denoted by costApXq the cost of serving sequence X using algorithm A.
We illustrate the power of our new concept in two ways.

First contribution: MTR-Competitiveness and Simulation Embedding

Recently, Levy and Tarjan [16] (and independently Russo [21]) noted the difficulty of
comparing two dynamic BSTs and proposed an alternative path towards dynamic optimality.
They rephrase dynamic optimality as two intrinsic properties (which they call, simulation

1 A BST is online if an input sequence is revealed one at a time, i.e. the request for xt appears at time t.
2 A binary search tree is dynamic if it is allowed to change its form after each access, paying the cost of

pointer movements.
3 In general, the inversion potential function (or its generalization to “distance potential”) measures the

difference between the algorithm and the optimal, so it is suitable for analyzing the case when the
optimal can change.

P. Chalermsook and W.P. Jiamjitrak 28:3

embeddings and approximately monotone) of an algorithm. Roughly speaking, a BST has
simulation embeddings if it can “simulate”4 any other BST algorithm, and it is approximately
monotone if the cost of running the algorithm on an input sequence X is asymptotically
at least the cost of running it on an arbitrary subsequence of X. An algorithm is Op1q-
competitive if and only if it has both properties. They argue that Splay trees satisfy simulation
embeddings and outlined a plan to prove that Splay trees are approximately monotone.

In this paper, we show that a broad class of algorithms (as defined in [6]) in fact satisfies
simulation embeddings. This result is derived as a corollary to the following theorem.

I Theorem 1. All BST algorithms (including Greedy and Splay) described in [6] are Op1q-
competitive to Move-to-Root.

Move-to-Root (MTR) is a classical BST algorithm that always rotates the requested key
up until it becomes the root of the tree. It is known to be sub-optimal but not subsumed by
any existing BST bounds (such as working set [23], lazy finger [14], pattern avoidance [5], or
multiple fingers [8]). See discussion in the full version. Interestingly, so far no dynamic BSTs
have been shown to be competitive even to this simplest dynamic algorithm.

I Corollary 2. Let A be any BST algorithm according to [6]. Then, A has simulation
embedding property. Therefore, it is dynamically optimal if and only if A is approximately
monotone.

Corollary 2 gives the first potential function proof of simulation property of any BST
algorithm, therefore unifying the classical potential function techniques with the new attempt
by Levy, Tarjan and Russo. The fact that infinitely many BST algorithms (that have simple
description) have simulation embedding property can be interpreted in many ways. For an
optimist, this could give us an access to a large design toolbox for studying the Levy-Tarjan
approach: Instead of focusing on Splay or Greedy, we have the freedom to seek an algorithm
that is approximately monotone by fine-tuning.

Another interesting aspect of MTR-competitiveness is perhaps a conceptual resemblance
between Move-to-Root and the second Wilber bound [24] which is believed to be stronger
than the first Wilber bound but so far no algorithm has ever exploited such bound5. Being
able to charge the cost of an algorithm to Move-to-Root is a very first step towards this
direction. (Informally, the second Wilber bound is equal to crossing Move-to-Root, see [16]
for a more detailed discussion).

Second contribution: Streamlining known bounds

Now, we discuss how to use our potential function to streamline the BST bounds. Our second
main result is an improved bound for the lazy finger property of Greedy. For a sequence
X “ px1, . . . , xmq and a fixed BST R, denoted by LFRpXq “

ř

t dRpxt, xt`1q where dRpa, bq
denotes the number of edges on the unique path in R from a to b. Let LFpXq :“ minR LFRpXq,
we say that an algorithm A has lazy finger property if costApXq ď OpLFpXqq. For any
sequence X, denote by GpXq the cost of Greedy in the geometric view6. Iacono and
Langerman showed that GpXq ď C 1 ¨ pLFpXq `mq where C 1 is around 50 (A quick glance at

4 The definition of simulation is quite technical and we will only discuss this formally later.
5 The best known competitive ratio is due to Tango Trees and its variants [13] which charge the cost to
the first Wilber bound, which is provably insufficient for dynamic optimality [15, 4]

6 Recall that, when turning the Greedy algorithm into a standard BST view, there is a constant factor
blowup in the cost, that is, costGreedypXq (in the tree view) is at most OpGpXqq.

ESA 2020

28:4 Geometric Inversions in Binary Search Trees

their paper would show that the value of C 1 is 24, but there is also another multiplicative
factor hidden in converting the result from “leaf-oriented” tree7 setting to the BST setting).
We show the following.

I Theorem 3. For each access sequence X, GpXq ď 5 ¨ LFpXq `Opm` nq.

In particular, when the input sequence is sufficiently costly, this bound converges to a
multiplicative factor of 5 in front of the lazy finger term. We highlight that the interesting
aspect of this result is not the improvement of constant but rather (1) the fact that our lazy
finger proof directly and intuitively extends the proof of static optimality, and (2) the fact
that we are able to charge the cost directly to the reference BST R instead of a leaf-oriented
tree, in contrast to [14]. We hope that these two points open up natural new paths to adapt
our techniques to handle stronger BST bounds where leaf-oriented settings become unnatural
(e.g. BST rotation is less natural in the leaf-oriented setting).

Conclusion & Open Problems. We introduce a new potential function that allows us to,
for the first time, compare two dynamic BSTs directly in a systematic way. Moreover, to
our knowledge, ours is the first potential function in the BST context that uses a natural
concept of inversions. We show many applications of our potential function. We note that,
once the potential function is formally defined, the proofs of our results do not require any
ground-breaking ideas but rather a careful adaptation of existing proofs [23, 6, 14] to our
potential function.

Though the most intriguing open question is to prove dynamic optimality, we feel that it
is still very far from the current understanding. We list here some open questions that we
believe they are not overly far-fetched.
(i) Can we use our method to analyze weighted dynamic finger (or even just dynamic

finger) for Splay trees?
(ii) Can we show that Greedy satisfies multi-finger properties as defined in [8]? We find

this non-trivial even when there are two fingers.
(iii) The property of being Op

?
lognq-competitive BST can be cast as a “local” BST property,

e.g. see a survey paper [7]. Can we show that Greedy satisfies this property?

Further Related Work. Most prior works in this area focus on proving consequential
properties of dynamic optimality. In particular, dynamic BSTs satisfy various forms of
locality of reference properties that allow efficient access when the input sequence is in
some way “local”. For instance, the dynamic finger bound allows an efficient access when
the access is close to the previous one (on average). It is often not so difficult to prove
that these locality properties are satisfied by an optimal offline BST, so a candidate for
optimal online BST must satisfy them as well. Proving that an online BST algorithm satisfies
such properties has, however, been very challenging (for instance, Cole’s proof [11, 10] of
Splay’s dynamic finger property spans 80 pages in total). Recently, a much stronger locality
of reference bound, called Lazy Finger [3], was proved in a breakthrough result of Iacono
and Langerman [14]. One way to view these locality of reference properties is as a “mildly
dynamic” BST algorithm, i.e. each such property can be described by a restricted way of
using the power of dynamic BST algorithms. Therefore, proving these bounds has naturally
been seen as intermediate steps to study the dynamic optimality conjecture.

7 A leaf-oriented binary search tree is one where all keys in rns are maintained as leafs, and each internal
BST node is auxiliary (corresponding to a subset of leafs in the subtree under it).

P. Chalermsook and W.P. Jiamjitrak 28:5

Figure 1 Examples of good (left) and bad (right) drawing of the same binary search tree.

2 Overview of Techniques

Let us recall the BST search model. The algorithm A maintains a binary search tree T on
keys rns, and when access xt P rns comes at time t, the cost incurred is equal to the depth
of xt in T . Elements on the search path of xt (including xt) are said to be touched by T .
After that, the algorithm may adjust the shape of the tree, paying the cost which is equal to
the number of keys that are involved in the adjustment. The total cost is then equal to the
sum of search cost and adjustment cost. In all algorithms we consider, it suffices to analyze
only the search cost (in particular, for BST algorithms that only change the search path, the
update cost is at most a constant factor of the length of the search path. Therefore, such
cost can be charged to the search cost). We follow this standard practice.

For convenience, we will abuse notation and use A to stand for both the BST algorithm
and the state of BST at certain time.

2.1 Interval geometry for BST & Extended Inversion
Our potential function is defined based on geometry that requires correct drawing of BSTs.
When drawing a BST, one should always use two rules: (1) imagine placing node containing
key z on the plane at point p where p.x “ z (the x-coordinate is z). (2) If u is a parent of v,
always draw u higher than v (See Figure 1)

Let A be a BST. For each key z P rns, let IApzq be the largest open interval in p0, n` 1q
containing only all keys in the subtree of A rooted at z (in Figure 1 we have IAp2q “ p0, 4q).
More formally, IApzq “ pleftApzq, rightApzqq where leftApzq is the nearest left ancestor of z
(0 if not exist) and rightApzq is the nearest right ancestor of z (n ` 1 if not exist). When
drawing the BST correctly, we have that the intervals tIApzquzPrns form a laminar family
(that is, each pair of intervals is either disjoint or nested); see Figure 2.

I Observation 4. If z1 is a left child of z, then IApz
1q “ pleftApz

1q, rightApz
1qq “ pleftApzq, zq.

If z1 is a right child of z, then IApz
1q “ pleftApz

1q, rightApz
1qq “ pz, rightApzqq. Also, for any

keys y, z P rns, we have y P IApzq iff y is in the subtree rooted at z.

Let A be an algorithm we want to analyze and O be an optimal algorithm. In this paper,
we only consider A that changes only search path (this includes Greedy and Splay). Both
A and O store the keys in rns. We want to have a potential function that captures the
“difference” between A and O. The most natural scheme (which does not always work) often
used in the context of online algorithm for this purpose is inversion.

I Definition 5 (Inversion). Let z, α P rns. We say that z forms an inversion with α if
z P IOpαq and α P IApzq.

ESA 2020

28:6 Geometric Inversions in Binary Search Trees

Figure 2 Example of intervals (in grey) for all keys. In this figure, IAp4q “ p0, 9q and IAp5q “
p4, 7q.

Notice that an inversion is an indicator of α being in the subtree of z in one BST, but z
is in the subtree of α in the other. See Figure 3. Unfortunately, we are unable to use this
natural and intuitive scheme to prove any meaningful result. We will use extended inversion
instead.

Figure 3 An example of inversion between the keys 4 and 6. The intervals of A are shown in
dark grey and intervals of O in light grey. The left and right BSTs are A and O respectively.

For each interval in BST O, IOpαq, we define three important points of α in O as
POpαq “ tα, leftOpαq, rightOpαqu.

I Definition 6 (Extended Inversion). Let z, α P rns. We say that z forms an extended
inversion with α if and only if z P IOpαq and Dβ P POpαqpβ P IApzq). See Figure 4.

Unlike inversion, the notion of extended inversion is not symmetric. Clearly, if z forms
an inversion with α, then z also forms an extended inversion with α.

Figure 4 The darker intervals are those intervals IApzq, and the lighter ones are IOpzq. In the
first figure from left, z forms an inversion with α. In the second, z forms an extended inversion
with α but not an inversion. In the 3rd figure, there is no extended inversion, since IApzq does not
contain any point in POpαq. In the 4th figure, there is no extended inversion because z R IOpαq.

P. Chalermsook and W.P. Jiamjitrak 28:7

2.2 Our potential function and its basic properties
All proofs in this paper build upon the following base function.

I Definition 7 (Base Potential function). Define the potential Φ “ ΦA,O at any state of
execution of our algorithm A and optimal O as follows. Let Φpz, αq “ 1 if z forms an extended
inversion with α; otherwise, Φpz, αq “ 0. The potential is defined as ||Φ|| “

ř

z,α Φpz, αq.
This is the total number of extended inversions.

We “visualize” our potential function value as a collection of “coins”. Whenever Φpz, αq “
1, one can imagine there is a coin of label z (or z-coin) placed at node α in O whenever z
forms an extended inversion with α (see Figure 5). By definition, z always forms an extended
inversion with itself, so there is always a z-coin at z. We use Φp‚, αq “

ř

zPrnsΦpz, αq to
denote the total number of coins at α, and Φpz, ‚q “

ř

αPrnsΦpz, αq the total number of
z-coins. The coin interpretation will be used crucially in our analysis.

The main properties we would need are the following:

Figure 5 The left and right BSTs are A and O respectively. The set notation shown at each
node is a collection of coins placed at that node. For instance, there are 5- and 6-coins at node 6.
The path of 3-coins (according to Lemma 8) is a path containing nodes 3 and 2.

I Lemma 8. [Upward path property] For each z P rns, the set of nodes having z-coin (that
is, Qz “ tα : Φpz, αq “ 1u) is a contiguous subpath of the path from z to the root of O.

Proof. Let α1, α2 P Qz. Since z P IOpα1q X IOpα2q, we must have that IOpα1q Ď IOpα2q

(from laminar property). Since z P Qz, we have that Qz is a subset of path from z to the
root. Next, we argue that Qz is connected. Suppose α1 is on the path from z to the root
such that α1 R Qz. See Figure 6. We argue that the parent of α1 (say α, where α1 is the
right child of α) is also not in Qz: From Observation 4, IOpα

1q “ pα, rightApαqq. Recall that
POpαq “ tα, leftApαq, rightApαqu. Since α1 R Qz, we have that IApzq is completely contained
in pα, rightOpαqq. This means that it does not contain any point in POpαq. J

By the above lemma, we view the potential function Φpz, ‚q as the coins on an upward
path in O and Φ as a collection of upward paths.

I Lemma 9. Consider an access to key x P rns. Let z be a key on the search path SApxq

of our algorithm. Then x forms an inversion with LCAOpx, zq. Hence, there is a z-coin at
node LCAOpx, zq.

Proof. Fix z P SApxq. Recall that x P IApzq. Denote by ` “ LCAOpx, zq. Since ` is between
x and z, ` P IApzq. Since ` is an ancestor of z in O, z P IOp`q, and thus an inversion occurs
between z and `. J

ESA 2020

28:8 Geometric Inversions in Binary Search Trees

Figure 6 Illustration of the proof of Lemma 8.

The above lemma is the main advantage of the inversion principle: Each z P SApxq

contributes `1 to the cost of A when accessing x. The lemma shows that such cost can be
“deducted” from the z-coin at LCAOpx, zq.

I Definition 10 (Canonical payment function). Consider algorithm A and optimal O. The
canonical payment function for accessing x is a function CP “ CPA,O,x such that for each
z P SApxq, we have CP pz, LCAOpz, xqq “ 1. The function is 0 everywhere else (Figure 7).

We will simply write CP instead of CPA,O,x when it is clear from the context. Notice
that, for each z P SApxq, CP pz, αq “ 1 only if α is on the search path SOpxq of the optimal.
From Lemma 9, we have that CP pz, αq ď Φpz, αq for all z, α P rns.

I Observation 11. We have
ř

z,α CP pz, αq “ |SApxq|.

Figure 7 An example of coins in the support of CP . In this example, when access 1, we touch
every key in A, but we touch only {1,2,4} in O. Each z P t4, 5, 6, 7u has its coin at node 4 in the
support of CP . Each z in t2, 3u has its coin at node 2. Finally, 1 has a coin at node 1.

2.3 Overview of our proofs
We first recall the basic ideas of potential function proofs.

I Definition 12. We say that potential function Φ proves A ďη O if for any state A and
O of execution, when an access x P rns arrives, we have

p||ΦA,O|| ´ ||ΦA1,O1 ||q ` η|SOpxq| ě |SApxq|

where A1 and O1 are the BSTs after the algorithm and the optimal update their trees.

The following claim follows from a standard potential function analysis. See, for in-
stance, [23] for the formal proof.

I Proposition 13. If potential function Φ proves A ďη O, then for any input X P rnsm, we
have costApXq ď η ¨ costOpXq ` Φmax where Φmax is the maximum value of ||ΦA,O|| over
all possible states of execution of A and O.

P. Chalermsook and W.P. Jiamjitrak 28:9

Finally, since the size of support of CP is exactly |SApxq|, one can rewrite the condition
in Definition 12 as ||ΦA1,O1 || ď ||ΦA,O ´ CP || ` η|SOpxq|. All our proofs follow this high-level
idea: (i) Upper bound ||ΦA1,O|| ´ ||ΦA,O ´ CP ||, and (ii) upper bound ||ΦA1,O1 || ´ ||ΦA1,O||.
The extended inversion potential function allows us to analyze Step (i) of various kinds of
BST bounds in a modular way. The following is a key property.

I Proposition 14. Consider algorithm A that, after access x arrives, updates the trees into
A1, while O does not change. Let pΦ “ ΦA,O ´ CP .
(i) For each z R SApxq and α P rns, we have ΦA1,Opz, αq ď pΦpz, αq.
(ii) For each α R SOpxq and z P rns, we have ΦA1,Opz, αq ď pΦpz, αq.

These imply that the potential change ||ΦA1,O|| ´ ||Φ̂|| is upper bounded by the “change on
search paths”, that is, ||ΦA1,O||´||ΦA,O´CP || ď

ř

zPSApxq

ř

αPSOpxq

´

ΦA1,Opz, αq ´ pΦpz, αq
¯

Proof. First, for each such z R SApxq, the intervals IApzq “ IA1pzq, so the number of
extended inversions for them remains the same. Since CP pz, αq “ 0, ΦA1,Opz, αq ď pΦpz, αq “
ΦA,Opz, αq.

Now we prove the second item. Fix α R SOpxq. Due to the previous observation, only
z P SApxq may create a new inversion. By Lemma 9, ΦA,Opz, LCAOpx, zqq “ 1. Since
LCAOpx, zq is an ancestor of α, by Lemma 8, ΦA,Opz, αq “ 1. This means that there was
already a z-coin at α. Since CP pz, αq “ 0, ΦA1,Opz, αq ď pΦpz, αq “ ΦA,Opz, αq. J

All our proofs rely on this proposition to upper bound the change from A to A1.

2.4 The First Showcase: Splay’s Ziz-zig
We consider the Splay tree currently maintaining a path with n as a root and 1 as a leaf;
and O does not change (that is, O “ O1). Define the potential Ψpz, αq “ 2Φpz, αq for all
z, α P rns (there are 2 coins for each extended inversion). Let us consider the situation when
an access x “ 1 arrives. We will upper bound the change of potential function Ψ as follows:

||ΨA1,O|| ď ||ΨA,O ´ CP || ` 6|SOpxq|

Deducting CP from Ψ can be seen as removing some coins from the search path SOpxq.
Recall that in Ψ´ CP , for each z on the search path of A, we had removed one z-coin at
LCApz, xq. The proof has two steps. In the first step, we move the coins around from “bad”
to “good” keys. Refer to Figure 8 for the shape of A1. For simplicity assume that n is odd.
Except for the root, we pair i with i` 1 for i “ 2, 4, . . . , n´ 1. We say that the even keys are
good and the odd keys are bad. For each i, we turn one pi` 1q-coin at LCApi` 1, xq into an
i-coin at LCApi, xq. Let pΨ be the function after moving the coins, so ||pΨ|| “ ||ΨA,O ´ CP ||.

I Lemma 15. We have ||ΨA1,O|| ´ ||pΨ|| ď Op|SOpxq|q. (In other words, we can add at most
Op|SO|q to achieve the coin level of ΨA1,O.)

The rest of this section is devoted to proving the lemma. Denote ΨA1,O by Ψ1 for conveni-
ence. From Proposition 14, we have ||ΨA1,O||´||pΨ||ď

ř

zPSApxq

ř

αPSOpxq

´

Ψ1pz, αq ´ pΨpz, αq
¯

.
The following claim therefore finishes the proof.

B Claim 16. We have
ř

zPSApxq

ř

αPSOpxq

´

Ψ1pz, αq ´ pΨpz, αq
¯

ď 14|SOpxq|.

Proof. Refer to Figure 8 that illustrate the shape of A1 (Splay) after the access of x. For
z “ 1, we use the crude bound of

ř

αPSOpxq

´

Ψ1p1, αq ´ pΨp1, αq
¯

ď 2|SOpxq|. For z ě 2, we
divide the analysis into two cases:

ESA 2020

28:10 Geometric Inversions in Binary Search Trees

(i) new extended inversions, i.e. Ψ1pz, αq “ 1 and pΨpz, αq “ ΨA,Opz, αq “ 0
(ii) existing extended inversions that pay their coins out, i.e. Ψ1pz, αq “ 1, pΨpz, αq “ 0 and

Ψpz, αq “ 1.
We upper bound the potential increase by the notion of witness intervals. For the first case,
a new extended inversion can appear in Ψ1pz, αq due to the fact that the interval IA1pzq

becomes larger than IApzq. In this case, we define Jpz, αq “ IA1pzqzIApzq as a witness
for the new inversion pz, αq. From Figure 8, these witness intervals (drawn in red) are
non-overlapping. Since there are 3 important points for each α P SOpxq and each point can
be in at most one witness interval, there are at most 3|SOpxq| witness intervals. Each witness
interval requires 2 coins, so we need at most 6|SOpxq| coins in total.

For the second case, this happened due to z being a bad key that pays its coin out of
canonical payment (the good ones received their coins back from the transfer in the first
step). In this case, we say that Jpz, αq “ IA1pzq is a witness for the inversion pz, αq. From
Figure 8, the witness intervals of this type (drawn in blue) are disjoint. Therefore, with the
same argument as in the first case, we need at most 6|SOpxq| coins in total. C

Figure 8 A BST before (left) and after (right) splaying x “ 1. After splaying, intervals of odd
keys (except access key) are disjoint. The red and blue intervals are the witnesses as in Claim 16.

There are two remarks about this proof. First, this proof only gives an analysis of a
zig-zig case in Splay trees. A full Splay trees analysis can be found as a special case of our
Theorem 1 whose proof is deferred to the full version. Second, if O is not a static tree, we
add one more step to the analysis, that is, upper bounding the change due to updating O;
the second step for MTR-competitiveness results is simple, while for lazy finger, the second
step is more involved, relying on a modified concept of extended inversions and on some
ideas from [14].

2.5 Geometric Inversion for Geometric BST Algorithms
In order to use our scheme, all algorithms must be described in terms of intervals. In
the previous section, we already explained how BST algorithms A in the tree view can
be described as intervals IApzq. In this section, we explain how to do the same for BST
algorithms in the geometric view. As discussed in [12], the tree and geometric views are
equivalent up to constant factor in the competitive ratios.

Let rns be the set of keys. An access sequence of binary search trees (BST) is specified as
searching for key xt P rns at time t “ 1, . . . ,m. Given an access sequence X “ px1, . . . , xmq P

rnsm, we view X as points QX “ tpxt, tq : t “ 1, . . . ,mu in the plane where t-th access
appears on row t (starting from bottom). We abuse the notation and simply write QX as X.

P. Chalermsook and W.P. Jiamjitrak 28:11

For p,q P R2, define lp,q as the set of integral points in the minimally closed rectangular
area defined by p and q. Let Z Ď R2, we say that such the rectangle lp,q is empty in Z (or
Z-empty) if Z Xlp,q contains no other point than p or q. Also, the point set Z is arborally
satisfied if for every pair p, q P Z, the rectangle lp,q is not Z-empty.

Geometric BST problem (MinASS)

Let Xďt denote the set of points in X in rows t and below. In the MinASS problem, given
an input X of points, we are interested in computing a superset Y Ě X such that Y is
arborally satisfied, while minimizing |Y |. In the online version, at any time t “ 1, 2, . . . ,m, a
point in X arrives on the t-th row, and the algorithm must produces a feasible solution Yďt
at each time t by adding points on the tth row. Points in Y are said to be touched by the
algorithm A. We denote a set of touched keys at time t by SApxtq (same notation as search
path of xt in the tree view).

I Theorem 17 (Demaine et al. [12]). Let A be an algorithm for the MinASS problem.
Then for each sequence X, there is a BST algorithm A1 whose total cost on X is at most
OpcostApXqq.

Greedy

For each time t and key z P rns, let τpz, tq denote the last touched time of z on or before time
t. At time t, Greedy touches key z P rns if and only if pz, τpz, tqq forms an empty rectangle
with pxt, tq. The final output of Greedy on input X is defined as GpXq; denote the first t
rows of such output by GďtpXq. See Figure 9 for an illustration.

Figure 9 An example of intervals of Greedy. Here, circles represent access keys X and crosses
represent touched points Y zX. Interval of each key is defined by the top point (i.e. the last touched
point) of such key. Intervals of 2,3, and 6 are shown in this figure.

Intervals for Geometric BSTs

Since the intervals of BST algorithms in a tree view depend on sub-trees, for Greedy, we
need an analogue of sub-trees in geometric view. Let z P rns be a key. The interval IGpzq is
defined as pleftGpzq, rightGpzqq where leftGpaq is the maximum key less than z that is touched
at the same time as when a was last touched (0 if it does not exist). Similarly, we define
rightGpzq as the minimum key greater than a “ z, touched at the last touched time of z

ESA 2020

28:12 Geometric Inversions in Binary Search Trees

(n ` 1 if it does not exist). So the interval IGpzq only change whenever z is touched. See
Figure 9. Given an optimal tree O, Lemma 8, Lemma 9 and Proposition 14 still hold for
these geometric intervals. The following observations are important. (See Figure 10a)

I Observation 18. Suppose key xt is accessed. Let tIGpbqubPrns and tI 1GpbqubPrns be the
intervals before and after Greedy updates. Let b1 ă b2 ă . . . ă bk be the touched keys, b0 “ 0
and bk`1 “ n` 1. Then we have that I 1Gpbiq “ pbi´1, bi`1q for all i “ 1, . . . , k.

I Corollary 19. For each point p P R, there are at most two touched keys z for which
p P I 1Gpzq. In other words, the clique size of this interval graph is 2 and therefore, the touched
intervals I 1Gpzq can be decomposed into two disjoint sets of intervals.

2.6 The Second Showcase: Greedy
We show the following static optimality bound for Greedy using our potential.

I Theorem 20. For each X and each static tree O, GpXq ď 4 ¨ costOpXq ´m` n2.

We note that the term n2 is from the number of initial coins. Later, we will show that
these initial coins can be bounded by costOpXq, therefore we have GpXq ď 5 ¨ costOpXq.

The potential function we use is simply the extended inversion Φ. Let O be any tree.
After accessing x, the Greedy intervals change from tIGpzquzPrns to tI 1GpzquzPrns, and the
potential changes from Φ to Φ1. We will prove that ||Φ1|| ď ||Φ´ CP || ` 4|SOpxq| ´ 1.

Summing over all accesses over a sequence X of length m will give us the desired bound.
Denote Φ´ CP by pΦ. Due to Proposition 14, the change of potential function is only due to
the inversions pz, αq where z P SGpxq and α P SOpxq.

I Lemma 21. For each α P SOpxq, we have ||Φ1p‚, αq|| ´ ||pΦp‚, αq|| ď 4. Moreover,
||Φ1p‚, xq|| ´ ||pΦp‚, xq|| ď 3.

Proof. Fix α P SOpxq. Notice that the term Φ1pz, αq ´ pΦpz, αq “ 1 only if z P SGpxq and
Φ1pz, αq “ 1. To have Φ1pz, αq “ 1, the interval I 1Gpzq must contain a point in POpαq “

tl, α, ru (where l “ leftOpαq and r “ rightOpαq) and point z must be inside IOpαq. From the
fact that z is inside IOpαq and the geometry of Greedy (Observation 18), only one interval
can contain l, only one interval can contain r, and at most two intervals can contain α (this
is all illustrated in Figure 10b); moreover, when α “ x, only one interval may contain α

(IGpxq itself). This concludes the proof. J

(a) Intervals of keys that are touched at the same
time in Greedy. Think of all of them as in the
same height, we perturb them in order to show their
intervals clearly.

(b) Intervals in G are represented in black, while
interval in O is represented in grey.

Figure 10

P. Chalermsook and W.P. Jiamjitrak 28:13

To recap, the framework is as follows. Let A be an algorithm and O be an optimal
algorithm. Suppose, after accesssing key x P rns, A changes to A1 and O to O1. We wan
to upper bound |SApxq| ` ||ΦA1,O1 || ´ ||ΦA,O|| ď Op|SOpxq|q. We upper bound this in two
steps:

The change of A to A1 after subtracting the cost: ||ΦA1,O|| ´ ||ΦA,O ´ CP ||
And then the change of O to O1: ||ΦA1,O1 || ´ ||ΦA1,O||

We have shown how to bound the term ||ΦA1,O|| ´ ||ΦA,O ´ CP || for Greedy and (a
special case of) Splay. This is the “systematic” part of our framework that allows us to prove
MTR-competitiveness for a family of BSTs. In the next subsection, we outlined how to upper
bound ||ΦA1,O1 || ´ ||ΦA1,O|| for Splay and Greedy, thus implying their Op1q-competitiveness
to MTR. The proof for weighted dynamic finger is omitted due to the lack of space. Full
details appear in the full version.

2.7 MTR-Competitiveness
In this section, we present the proof that Greedy and Splay have simulation embeddings.
Due limitation of space, we defer the rest of the proofs to the full version.

First, we present necessary preliminaries.

I Definition 22 (Static Optimality). A BST algorithm A is statically optimal if, for all input
X and static (reference) tree R, costApXq ď OpcostRpXqq.

Remark that a more precise definition of static optimality involves “initial tree” (the
initial state of algorithm A). In the context of our potential function, it is not difficult to see
that the initial tree only affects the cost by at most an additive factor of costRpXq. Hence we
omit the reference to initial trees for brevity. Denote the move-to-root algorithm by MTR.

I Definition 23 (MTR-Competiveness). A BST algorithm A is MTR-competitive if, for all
input X, costApXq ď OpcostMTRpXqq.

I Definition 24 (Simulation Embeddings). A BST algorithm A has simulation embeddings if,
for all access sequence X and algorithm O, there exists a supersequence Y Ě X such that
costApY q ď OpcostOpXqq.

Levy and Tarjan [16] show that Splay has simulation embeddings by constructing a
transition graph G4 of Splay. Transition graph Gk is a directed graph where each node
represents an instance of k-node BST. There is an edge pu, vq if a tree instance u can be
changed to a tree instance v using one access. Also, they show that, in order for BST A to
have simulation embeddings, it suffices to show that Gk of A is strongly connected for some
constant k ě 3.

B Claim 25. The transition graph G3 of MTR is strongly connected. Hence, MTR has
simulation embeddings. (See Figure 11)

This implies the following theorem.

I Theorem 26. If a BST algorithm A is Op1q-competitive to MTR, then A has simulation
embeddings.

ESA 2020

28:14 Geometric Inversions in Binary Search Trees

Figure 11 G3 of MTR. The number on each arrow represents the key that MTR has to access in
order to change its tree to the specific structure.

Proof. Suppose A is c-competitive to MTR. Now fix an input sequence X and a BST
algorithm O. From Claim 25, let d be the factor in the simulation embeddings of MTR, so
we know that there exists a super-sequence X 1 such that costMTRpX

1q ď d ¨ costOpXq. Since
algorithm A is c-competitive to MTR, we have

costApX
1q ď c ¨ costMTRpX

1q ď pcdq ¨ costOpXq

This implies that A has simulation embeddings. J

Our potential function is particularly suitable for proving MTR-competitiveness. In fact,
to show that A is Op1q-competitive to MTR, it suffices to only prove static optimality for A
using extended inversions (together with a function that depends only on n.)

I Lemma 27. A BST algorithm that (1) satisfies static optimality via potential function Ψ
that depends linearly on extended inversions (i.e. ||Ψ|| “ c1||Φ|| ` c2n), and (2) moves the
accessed key to the root, must be Op1q-competitive to MTR.

Proof. If A satisfies static optimality via Ψ, we have that:

||ΨA1,O|| ´ ||ΨA,O ´ CP || ď C ¨ |SOpxq|

Now, since the second term of potential is c2n (only depending on n), to upper bound
||ΨA1,O1 || ´ ||ΨA1,O||, it suffices to show that, we have ||ΦA1,O1 || ´ ||ΦA1,O|| ď 0.

For key z “ x, ||ΦA1,O1pz, xq|| “ ||ΦA1,Opz, xq|| “ c1. Now, we consider keys z ‰ x.
Observe that intervals in O1 change as follow:
(i) IO1pxq “ p0, n` 1q.
(ii) IO1pyq “ pleftOpyq, xq for all y such that y ă x and y P SOpxq.
(iii) IO1pyq “ px, rightOpyqq for all y such that y ą x and y P SOpxq.
(iv) IO1pyq “ IOpyq for all y R SOpxq.
In other words, the only new important point in O1 is x. Since A1 also has x as the root, no
I 1Apzq can contain x. Since x is the only new ancestor for z, this means ||ΦA1,O1pz, xq|| “ 0. J

Since Splays and Greedy satisfy static optimality via our potential function, Lemma 27
implies that they are MTR-competitive, and hence have simulation embeddings.

P. Chalermsook and W.P. Jiamjitrak 28:15

References
1 Susanne Albers. Improved randomized on-line algorithms for the list update problem. SIAM

Journal on Computing, 27(3):682–693, 1998.
2 Susanne Albers. Online algorithms: a survey. Mathematical Programming, 97(1-2):3–26, 2003.
3 Presenjit Bose, Karim Douïeb, John Iacono, and Stefan Langerman. The power and limitations

of static binary search trees with lazy finger. In International Symposium on Algorithms and
Computation, pages 181–192. Springer, 2014.

4 Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak. Pinning down the strong
wilber 1 bound for binary search trees. APPROX, 2020.

5 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Pattern-avoiding access in binary search trees. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 410–423. IEEE, 2015.

6 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Self-adjusting binary search trees: What makes them tick? In Algorithms-ESA
2015, pages 300–312. Springer, 2015.

7 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. The landscape of bounds for binary search trees. arXiv preprint, 2016. arXiv:
1603.04892.

8 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Multi-finger binary search trees. In 29th International Symposium on Algorithms
and Computation (ISAAC 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

9 Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on trees.
SIAM J. Comput., 20(1):144–148, 1991. doi:10.1137/0220008.

10 Richard Cole. On the dynamic finger conjecture for splay trees. part ii: The proof. SIAM
Journal on Computing, 30(1):44–85, 2000.

11 Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger
conjecture for splay trees. part i: Splay sorting log n-block sequences. SIAM Journal on
Computing, 30(1):1–43, 2000.

12 Erik D Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Patraşcu. The geometry
of binary search trees. In Proceedings of the twentieth annual ACM-SIAM symposium on
Discrete algorithms, pages 496–505. SIAM, 2009.

13 Erik D Demaine, Dion Harmon, John Iacono, and Mihai Patraşcu. Dynamic optimality—almost.
SIAM Journal on Computing, 37(1):240–251, 2007.

14 John Iacono and Stefan Langerman. Weighted dynamic finger in binary search trees. In
Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages
672–691. SIAM, 2016.

15 Victor Lecomte and Omri Weinstein. Settling the relationship between wilber’s bounds for
dynamic optimality. arXiv preprint, 2019. arXiv:1912.02858.

16 Caleb Levy and Robert Tarjan. A new path from splay to dynamic optimality. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1311–1330.
Society for Industrial and Applied Mathematics, 2019.

17 Joan Marie Lucas. Canonical forms for competitive binary search tree algorithms. Rutgers
University, Department of Computer Science, Laboratory for Computer . . . , 1988.

18 J Ian Munro. On the competitiveness of linear search. In European Symposium on Algorithms,
pages 338–345. Springer, 2000.

19 Seth Pettie. Splay trees, davenport-schinzel sequences, and the deque conjecture. In Proceedings
of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1115–1124.
Society for Industrial and Applied Mathematics, 2008.

20 Seth Pettie. Applications of forbidden 0–1 matrices to search tree and path compression-based
data structures. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
algorithms, pages 1457–1467. SIAM, 2010.

21 Luís MS Russo. A study on splay trees. Theoretical Computer Science, 2018.

ESA 2020

http://arxiv.org/abs/1603.04892
http://arxiv.org/abs/1603.04892
https://doi.org/10.1137/0220008
http://arxiv.org/abs/1912.02858

28:16 Geometric Inversions in Binary Search Trees

22 Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

23 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal
of the ACM (JACM), 32(3):652–686, 1985.

24 Robert Wilber. Lower bounds for accessing binary search trees with rotations. SIAM journal
on Computing, 18(1):56–67, 1989.

More on Change-Making and Related Problems
Timothy M. Chan
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
tmc@illinois.edu

Qizheng He
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
qizheng6@illinois.edu

Abstract
Given a set of n integer-valued coin types and a target value t, the well-known change-making
problem asks for the minimum number of coins that sum to t, assuming an unlimited number of coins
in each type. In the more general all-targets version of the problem, we want the minimum number
of coins summing to j, for every j = 0, . . . , t. For example, the textbook dynamic programming
algorithms can solve the all-targets problem in O(nt) time. Recently, Chan and He (SOSA’20)
described a number of O(tpolylog t)-time algorithms for the original (single-target) version of the
change-making problem, but not the all-targets version.

In this paper, we obtain a number of new results on change-making and related problems:
We present a new algorithm for the all-targets change-making problem with running time Õ(t4/3),
improving a previous Õ(t3/2)-time algorithm.
We present a very simple Õ(u2 + t)-time algorithm for the all-targets change-making problem,
where u denotes the maximum coin value. The analysis of the algorithm uses a theorem of
Erdős and Graham (1972) on the Frobenius problem. This algorithm can be extended to solve
the all-capacities version of the unbounded knapsack problem (for integer item weights bounded
by u).
For the original (single-target) coin changing problem, we describe a simple modification of one
of Chan and He’s algorithms that runs in Õ(u) time (instead of Õ(t)).
For the original (single-capacity) unbounded knapsack problem, we describe a simple algorithm
that runs in Õ(nu) time, improving previous near-u2-time algorithms.
We also observe how one of our ideas implies a new result on the minimum word break problem,
an optimization version of a string problem studied by Bringmann et al. (FOCS’17), generalizing
change-making (which corresponds to the unary special case).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Coin changing, knapsack, dynamic programming, Frobenius problem, fine-
grained complexity

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.29

Funding Timothy M. Chan: Supported in part by NSF Grant CCF-1814026.

Acknowledgements We thank Adam Polak and Chao Xu for discussion and, in particular, for
bringing the minimum word break problem to our attention.

1 Introduction

In the change-making problem (also known as coin changing), a set of n positive-integer-
valued coin types is given, and the cashier wants to use the minimum number of coins to sum
to a target value t exactly, where the number of coins in each type can be used an unlimited
number of times. This is a well-known textbook problem, which is weakly NP-hard [20], and
standard solutions using dynamic programming [27] have O(nt) running time.

© Timothy M. Chan and Qizheng He;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 29; pp. 29:1–29:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8093-0675
mailto:tmc@illinois.edu
mailto:qizheng6@illinois.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.29
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 More on Change-Making and Related Problems

Change-making is closely related to another textbook problem, subset sum (the differences
are that in subset sum, each item may be used at most once and there is no objective function
to minimize). A series of work in the last few years [5, 16, 15, 17] have given improved
algorithms for subset sum, using convolution (FFT). Very recently, at SOSA’20, Chan
and He [8] revisited the change-making problem and described a number of O(tpolylog t)-
time algorithms, using FFT; their fastest deterministic and randomized algorithms have
O(t log t log log t) and O(t log t) running time respectively.

All-targets change-making. In this paper, we consider a more general, all-targets version
of the change-making problem: the aim is to compute, for each target value j = 0, . . . , t, the
minimum number of coins that can be used to sum to j exactly. This version of the problem
is equally natural. For instance, the standard O(nt)-time dynamic programming algorithms
are actually designed to solve this more general version. Some of the newer subset-sum
algorithms [5, 16, 17, 15] also solved the analogous all-targets version of subset sum, but
in contrast, Chan and He’s algorithms for change-making do not work for the all-targets
version.

The best previous result for the all-targets change-making problem that we are aware of
was an Õ(t3/2)-time1 algorithm by Karl Bringmann and Tomasz Kociumaka (2019), cited as
a personal communication (and briefly sketched) in a very recent paper by Lincoln, Polak,
and Vassilevska Williams (ITCS’20) [19]. Lincoln et al.’s paper gave a web of fine-grained
reductions connecting a variety of problems, including a reduction from all-targets change-
making to the “monochromatic convolution” problem, the latter of which is shown to have
near n3/2 time complexity iff 3SUM has near quadratic time complexity. Their work implicitly
hints at the possibility that the all-targets change-making problem might have near t3/2
complexity as well, but the reduction is in the opposite direction.

Our first result is an Õ(t4/3)-time algorithm for the all-targets change-making problem,
interestingly beating t3/2 and placing the problem in a different category than monochromatic
convolution and all its surrounding problems. Our algorithm is conceptually simple, exploiting
an easy lemma on a binary special case of (min,+)-convolution (using FFTs).

All-targets change-making in terms of u. Next, we consider the complexity of the all-
targets change-making problem in terms of some other natural parameters besides n and t:
specifically,

the largest coin value, denoted by u;
the sum of the n given coin values, denoted by σ.

Some prior works have analyzed algorithms in terms of u and σ for the subset sum
problem [22, 16]. A few recent papers have also analyzed algorithms in terms of u for
the 0-1 knapsack and the unbounded knapsack problem [2, 4, 12, 14, 24]. The unbounded
knapsack problem is particularly relevant: given integer weights w1, . . . , wn and profits
p1, . . . , pn and capacity value t, find nonnegative integers m1, . . . ,mn to maximize

∑
imipi

such that
∑
imiwi ≤ t. Change-making is a special case, for example, by setting wi = vi

and pi = Mvi − 1 for a sufficiently large M . Improving some previous algorithms [4, 24],
Axiotis and Tzamos (ICALP’19) [2] and Jansen and Rohwedder (ITCS’19) [14] independently
described algorithms2 for unbounded knapsack running in Õ(u2) time with u := maxi wi (the

1 The Õ notation hides polylogarithmic factors.
2 We found that an Õ(u2) algorithm (basically the same as Axiotis and Tzamos’) appeared earlier in a

commentary on a 2016 programming contest problem by Arthur Nascimento, solved by Yan Soares Couto;
see Problem L of https://www.ime.usp.br/~maratona/assets/seletivas/2016/comentarios.pdf.

https://www.ime.usp.br/~maratona/assets/seletivas/2016/comentarios.pdf

T.M. Chan and Q. He 29:3

time bound can be reduced slightly to O(u2/2Θ(
√

logu)) by using known slightly subquadratic
algorithms for (min,+)-convolution [26]). However, these algorithms do not solve the all-
targets or all-capacities version (computing the optimal profit for every capacity j = 0, . . . , t).3

For the all-targets version of change-making, it is not difficult to obtain an O(u3 + t)-time
algorithm, based on a known observation that when the target is sufficiently large, it is
always advantageous to use the largest coin. We describe a new algorithm that improves the
running time to O(u2 log u+ t). Note that the algorithm is optimal for large t� u2 log u,
since the output size for the all-targets problem is Ω(t).

The new algorithm is remarkably simple – just a slight variation of one of the standard
dynamic programming solutions, with a 3-line pseudocode! (See page 8.) It is easily
implementable and does not require FFT. However, the correctness argument is far from
obvious, and requires a nice application of a number-theoretic theorem by Erdős and
Graham [13] on the Frobenius problem (about the smallest target value that cannot be
represented by a coin system). Arguably, algorithms that are simple but nontrivial to analyze
are the most interesting kinds of algorithms.

All-capacities unbounded knapsack in terms of u. Our algorithm can be easily modified
to solve the unbounded knapsack problem in the all-capacities version, with the same
O(u2 log u+ t) time bound. This also implies an O(u2 log u)-time algorithm for the single-
capacity version, which is a bit simpler than the previous Õ(u2) algorithms [2, 14] (in
addition to extending it to all-capacities). For unbounded knapsack, a nearly matching
conditional lower bound is known [9, 18]: more precisely, if single-capacity unbounded
knapsack could be solved in truly subquadratic time for instances with t, u = Θ(n), then so
could (min,+)-convolution.

In terms of σ. We describe a variant of our algorithm with time bound Õ((tσ)2/3 + t) for
the all-targets change-making or all-capacities unbounded knapsack problem. Note that if
σ � t, this is better than our earlier Õ(t4/3) bound for the all-targets change-making.

Single-target change-making. For the single-target (original) change-making problem,
we also describe how to improve the running time of one of Chan and He’s FFT-based
algorithms [8] from Õ(t) to Õ(u), which is faster than applying the previous Õ(u2)-time
algorithms [2, 14] for single-capacity unbounded knapsack.

Single-capacity unbounded knapsack. For the single-capacity (original) unbounded knap-
sack problem, we also describe a simple algorithm with running time Õ(nu), which (ignoring
no(1) factors) simultaneously improves the standard O(nt)-time dynamic programming algo-
rithm and the previous Õ(u2)-time algorithms [2, 14] (since u ≤ t without loss of generality,
and n ≤ u after pruning unnecessary items). There was a previous O(nu)-time algorithm by
Pisinger [22] for subset sum, but not for unbounded knapsack.

Minimum word break. Finally, we consider a generalization of the problem for strings,
known as the minimum word break problem: Given a string s with length n and a set D of
strings (a “dictionary” of “words”) with total length m, express s as a concatenation of words

3 Cygan et al. [9] refered to the all-capacities version as Unbounded-Knapsack+; Kunnemann et al. [18]
called it the output-intensive version.

ESA 2020

29:4 More on Change-Making and Related Problems

from D, using the smallest number of words, where a word may be used multiple times. It is
easy to see that if the alphabet is unary, then the problem is the same as change-making (the
single-target version, with n and m corresponding to t and σ). A straightforward dynamic
programming algorithm runs in Õ(nd + m) time, where d denotes the number of distinct
lengths among the words in D, by using randomized fingerprints [3] (which can be made
deterministic [28]). Because m ≥ d(d+1)

2 , the bound is Õ(n
√
m+m).

The decision version of the problem – deciding whether a solution exists, without minimiz-
ing the number of words – was considered by Bringmann, Grønlund, and Larsen (FOCS’17) [6],
who gave an Õ(nm1/3 + m)-time algorithm, using FFT (improving a previous algorithm
by Backurs and Indyk [3] with running time Õ(nm1/2−1/18 + m)). Bringmann et al. also
proved a nearly matching conditional lower bound for combinatorial algorithms, assuming
the conjecture that k-clique requires near nk time for combinatorial algorithms. However,
they did not obtain results on the minimum word break problem: part of the difficulty is
that for the optimization problem, the various convolution operations needed change to
(min,+)-convolutions, which appear to be more expensive.

Nevertheless, we note that Bringmann et al.’s algorithm can still be adapted to solve
the minimum word break problem. In fact, the time bound Õ(nm1/3 + m) remains the
same. This shows that surprisingly the optimization problem is not harder but has the
same fine-grained complexity as the decision problem (at least for combinatorial algorithms,
assuming the k-clique conjecture). The only new ingredient in our adaptation of Bringmann
et al.’s algorithm is the same lemma on (min,+)-convolutions that we have used in our
Õ(t4/3) algorithm for change-making.

2 Preliminaries

The all-targets version of the change-making problem can be formally defined as follows:

I Problem 1 (All-Targets Change-Making). Given a set V = {v1, . . . , vn} of n positive
integers (coin values) and an integer t, for each j = 0, . . . , t, find the size of the smallest
multiset S (duplicates allowed) of coin values from V such that S sums to exactly j, i.e., find
the minimum m∗j of

∑n
i=1mi subject to the constraint that

∑n
i=1mivi = j, where mi ∈ N.

Besides n (the number of coin values) and t (the maximum target value), we introduce
two more parameters: let u = maxni=1 vi denote the maximum coin value, and σ =

∑n
i=1 vi

denote the sum of input coin values. Simple observation reveals some inequalities relating the
parameters: we have n = O(

√
σ) (because the distinctness of the vi’s implies σ ≥ n(n+1)

2),
n ≤ u, u ≤ t (without loss of generality), and σ ≤ nu. Note that unlike in the subset sum
problem, t may be smaller or larger than σ.

Boolean convolution. The Boolean convolution A ◦B of two Boolean arrays A[0, . . . , t1]
and B[0, . . . , t2] is a Boolean array with t1 + t2 +1 elements, where (A◦B)[j] =

∨t1
j′=0(A[j′]∧

B[j − j′]) (we assume out-of-range values are 0).
Change-making is closely related with Boolean convolution. For any integer k, let

C
(k)
V [0, . . . , t] denote the Boolean array where

C
(k)
V [j] = 1 iff there exist k coins from V with their sum being j.

Then C(k)
V can be obtained from the first t+ 1 elements of C(k1)

V ◦ C(k2)
V , for any k1, k2 > 0

where k = k1 + k2.
The Boolean convolution of two arrays of size O(t) can be computed in O(t log t) time by

FFT.

T.M. Chan and Q. He 29:5

(min,+)-convolution. The (min,+)-convolution A ? B of two arrays A[0, . . . , t1] and
B[0, . . . , t2] is an array with t1 + t2 +1 elements, where (A?B)[j] = mint1j′=0(A[j′]+B[j− j′])
(we assume out-of-range values are ∞).

Change-making is also related to (min,+)-convolution. For a set V of coin values, let
DV [0, . . . , t] denote the array where

DV [j] = the minimum number of coins from V needed to sum to j

(if no solution exists, DV [j] =∞). Then DV1∪V2 can be obtained from the first t+ 1 elements
of DV1 ? DV2 .

It has been conjectured by some researchers that (min,+)-convolution cannot be solved
in truly subquadratic time (e.g., see [9, 18]). However, the following lemma shows that a
subquadratic algorithm is possible for the special case of (min,+)-convolution where the
second array is “binary”, i.e., all entries of B are in {1,∞}. This “trick” is not new and
is known before, for example, in the context of matrix multiplication (for computing the
(min,+)-product when one of the matrices is binary [25, 11, 7]), with the basic idea tracing
back to Matoušek’s dominance algorithm [21].

I Lemma 1. Given two arrays A[0, . . . , t] and B[0, . . . , t] where all entries of B are in
{1,∞}, we can compute the (min,+)-convolution of A and B in Õ(t3/2) time.

Furthermore, if we just want t′ user-specified entries of the (min,+)-convolution, the time
bound may be reduced to Õ(t

√
t′).

Proof. By sorting and replacing elements by their ranks, we may assume the values of A are
in [t], and are distinct (without loss of generality). Divide the range [t] into

√
t′ subintervals

of length t/
√
t′. For each such subinterval I, define a Boolean array A′I with A′I [j] = 1 iff

A[j] ∈ I, and define a Boolean array B′ with B′[j] = 1 iff B[j] 6=∞; compute the Boolean
convolution between A′I and B′; this requires

√
t′ FFTs and takes Õ(t

√
t′) time. Then for

each index j for which we want to compute the output entry, we can now identify which
subinterval contains the minimum answer (namely, the smallest subinterval I such that
(A′I ◦B′)[j] is true) in O(

√
t′) time, so we can do a brute-force search in O(t/

√
t′) time; the

total time for t′ output entries is O(t′ · (
√
t′ + t/

√
t′)) = O(t

√
t′). J

3 Õ(t4/3) Algorithm

Previous algorithm. Before presenting the new algorithm, we first give a sketch on the
previous Õ(t3/2)-time algorithm by Bringmann and Kociumaka (as mentioned in [19]). Let
`0 be a parameter to be chosen later. Let H = {vi : vi > `0} be the set of all heavy
coin values, and let L = {vi : vi ≤ `0} be the set of all light coin values. Because the
coin values are distinct, |L| ≤ `0. To sum to any value j ≤ t, we can use at most t/`0
heavy coins. We use Boolean convolution to compute the array C(k)

H from C
(k−1)
H for each

k = 1, . . . , bt/`0c. The total time for these bt/`0c convolutions is Õ(t2/`0). We can thus
obtain DH [j] by taking the minimum k ≤ t/`0 such that C(k)

H [j] > 0. To finish, we use
the classical dynamic programming algorithm to add the light coins. Namely, for each
j = 1, . . . , t, we set DV [j] = min{DH [j],minvi∈LDV [j − vi] + 1}. This step takes O(`0t)
time. The overall running time is

Õ

(
t2

`0
+ `0t

)
.

To balance cost, we choose `0 =
√
t and obtain a time bound of Õ(t3/2).

ESA 2020

29:6 More on Change-Making and Related Problems

New algorithm. To improve the running time, we describe a more efficient way to add the
light coins, by using (min,+)-convolution. As before, we first compute DH for the heavy
coins in Õ(t2/`0) time. Initialize S to H.

Now, consider a fixed value ` ≤ `0/2, and consider the subset of light coins L` = {vi : vi ∈
(`, 2`]}. In order to add L` to S, we need to compute DS∪L`

from DS . Naively, one could
perform a single (min,+)-convolution of DS with DL`

, but this is expensive, and DL`
is not

known yet (and is not binary). A better approach is to do multiple (min,+)-convolutions by
dividing the array into smaller blocks of size O(`), as follows:

For each i = 0, . . . , t/`, we computeDS∪L`
[`i, . . . , `(i+1)] by taking a (min,+)-convolution

D′ of DS∪L`
[`(i− 2), . . . , `i] with a binary array B[`, . . . , 2`] using Lemma 1, where B[j] = 1

if j ∈ L`, and B[j] =∞ otherwise. Then DS∪L`
[`i, . . . , `(i+1)] is the entry-wise minimum of

D′[`i, . . . , `(i+ 1)] and DS [`i, . . . , `(i+ 1)]. Each of the above O(t/`) (min,+)-convolutions
is done to arrays of size O(`) (after shifting indices). Thus, the total running time is
Õ((t/`) · `3/2) = Õ(

√
`t).

We repeat the above steps for all `’s that are powers of 2 and smaller than `0, until all
coin values are added to S. This requires O(log `0) rounds, and the total running time forms
a geometric series bounded by Õ(

√
`0t). The overall running time is

Õ

(
t2

`0
+
√
`0t

)
.

To balance cost, we choose `0 ≈ t2/3 and obtain a time bound of Õ(t4/3).

I Theorem 2. The all-targets change-making problem can be solved in Õ(t4/3) time.

I Remark. If we choose `0 = u instead, the heavy coin case can be ignored and we obtain an
Õ(t
√
u)-time algorithm, which is faster for small u. We will give still faster algorithms for

small u in the next section.

4 O(u2 logu+ t) Algorithm

We now explore more algorithms with running time sensitive to u.

Warm-up. We first observe that there is a simple algorithm with O(u3 + t) running time.
We use the following lemma, which is “folklore”:4

I Lemma 3. For any target value j ≥ u2, any optimal solution to the change-making problem
must use the largest coin value u.

Proof. Suppose that an optimal solution X for a target value j does not use the coin value u.
A simple argument shows that j < u3: If X uses a coin value vi at least u times, we can

replace u copies of vi with vi copies of u, and the number of coins in X would decrease: a
contradiction. Thus, each of the at most u coin values is used fewer than u times, and so the
sum of X must be less than u3.

4 Bateni et al. [4, Lemma 7.2] gave a proof for the (more general) unbounded knapsack problem, using
the pigeonhole principle, similar to what we give here (Eisenbrand and Weismantel [12] also proved
a similar statement for higher-dimensional unbounded knapsack). But it was known much earlier:
we personally learned of the pigeonhole proof for coin changing from comments by Bruce Merry
in 2006 on a US Olympiad question (https://contest.usaco.org/TESTDATA/DEC06.fewcoins.htm),
and the same pigeonhole proof for unbounded knapsack from a Chinese web post in 2016 (https:
//www.zhihu.com/question/27547892/answer/133582594).

https://contest.usaco.org/TESTDATA/DEC06.fewcoins.htm
https://www.zhihu.com/question/27547892/answer/133582594
https://www.zhihu.com/question/27547892/answer/133582594

T.M. Chan and Q. He 29:7

We give a better argument showing j < u2 by using the pigeonhole principle: Let
〈x1, . . . , xh〉 be the sequence of coins used in X, with duplicates included, in an arbitrary
order. Define the prefix sum si = x1 + · · ·+ xi. Suppose h ≥ u. By the pigeonhole principle,
there must exist 0 ≤ i < j ≤ h with si ≡ sj (mod u). Then the subsequence xi+1, . . . , xj
sums to a number divisible by u. We can replace this subsequence with some number of
copies of u, and the number of coins in X would decrease (since u is the largest coin value):
a contradiction. Thus h < u, and so the sum of X is less than u2. J

The above lemma ensures that it is sufficient to compute DV [j] for all j < u2; by the
naive dynamic programming algorithm, this step takes O(nu2) ≤ O(u3) time. Afterwards,
for j = u2, . . . , t, we can simply set DV [j] = DV [j − u] + 1; this step takes O(t) time. We
thus get the time bound O(u3 + t).

If in the first part we instead use the Õ(t
√
u)-time algorithm in the remark after Theorem 2

(with t replaced by u2), then the first part takes Õ(u2√u) time. The total time is then
reduced to O(u2.5 polylog u+ t). (This requires FFT, however.)

New algorithm. To improve the running time further, we use number-theoretic results
on the Frobenius problem, which has received much attention from mathematicians: given
k positive integer coin values v1 > · · · > vk with gcd(v1, . . . , vk) = 1, what is the largest
number that cannot be represented? For k = 2, classical results show that the number is
exactly v1v2 − v1 − v2. For k ≥ 3, the problem becomes much more challenging, for which
there are no closed-form formulas. In 1972, Erdős and Graham [13] proved an upper bound
of 2

⌊
v1
k

⌋
v2 − v1, which will be useful in our algorithmic application:

I Lemma 4 (Erdős–Graham). Given integers v1>. . .>vk>0 (k ≥ 2) with gcd(v1, . . . , vk) = 1,
any integer greater than 2

⌊
v1
k

⌋
v2 − v1 can be expressed as a nonnegative integer linear

combination of v1, . . . , vk.

In terms of u = maxi vi, Erdős and Graham’s bound is O(u2/k), which is known to
be tight in the worst case, within a constant factor (see [10] for improvements on the
constant factor). For constant k, the bound remains quadratic, as in the 2-coins case. In our
algorithmic application, we will consider non-constant k – here, the k in the denominator
will prove crucial.

First, let us restate the bound more generally without assuming gcd(v1, . . . , vk) = 1:

I Corollary 5. Given integers v1 > · · · > vk > 0 (k ≥ 2) with gcd(v1, . . . , vk) = d, any integer
that is greater than 2

⌊
v1
dk

⌋
v2 − v1 and is divisible by d can be expressed as a nonnegative

integer linear combination of v1, . . . , vk.

Proof. Apply Lemma 4 to the numbers v1/d, . . . , vk/d. The bound becomes(
2
⌊
v1/d
k

⌋
v2/d− v1/d

)
· d. J

We use Corollary 5 to prove a more refined version of Lemma 3, which takes into account
the k largest coin values instead of just the largest value:

I Lemma 6. Let v1, . . . , vk ≤ u be the k largest input coin values. For any target value
j ≥ 2u2/k, any optimal solution to the change-making problem must use at least one coin
from {v1, . . . , vk}.

Proof. We may assume k ≥ 2 (because of Lemma 3). Let d = gcd(v1, . . . , vk). Suppose that
an optimal solution X for a target value j does not use any coins from {v1, . . . , vk}.

ESA 2020

29:8 More on Change-Making and Related Problems

Consider the sequence of coins used in X, with duplicates included, in an arbitrary order.
Divide the sequence into subsequences X1, . . . , Xh, each of which has sum in (2u2

dk − u,
2u2

dk],
except that the last has sum at most 2u2

dk − u. Suppose h > d. Define si to be the sum of
the concatenation of X1, . . . , Xi. By the pigeonhole principle, there exist 0 ≤ i < j < h

with si ≡ sj (mod d). Then the subsequence formed by concatenating Xi+1, . . . , Xj sums
to a number divisible by d and greater than 2u2

dk − u. By Corollary 5, we can replace this
subsequence with coins from the set {v1, . . . , vk}, and the number of coins in X would
decrease (since v1, . . . , vk have larger values): a contradiction. Thus h ≤ d, and so the sum
of X is less than d · 2u2

dk = 2u2/k. J

Thus, the optimal solution for target value j must use at least one coin value which is
among the

⌈
2u2/j

⌉
largest. This leads to the following extremely simple algorithm, which is

just a small modification to the standard dynamic programming algorithm (no FFT required):

Algorithm 1 All-targets change-making.

1: Sort v1, . . . , vn in decreasing order, and set DV [0] = 0.
2: for j = 1, . . . , t do
3: Set DV [j] = min1≤i≤d2u2/je: vi≤j DV [j − vi] + 1.

The total running time is bounded by a Harmonic series:

O

 t∑
j=1

(
u2

j
+ 1
) = O(u2 log u+ t).

I Theorem 7. The all-targets change-making problem can be solved in O(u2 log u+ t) time.

As a corollary of the above algorithm, we can also obtain an algorithm with running time
sensitive to σ, the total sum of the input coin values: Define the heavy coins H and light
coins L as before, with respect to a parameter `0 to be chosen later. We first compute DL

for the light coins by the above algorithm in Õ(`20 + t) time. Then we add the heavy coins
by dynamic programming: DV [j] = min{DL[j],minvi∈H DV [j − vi] + 1}. Since there are at
most σ/`0 heavy coins, this step takes O(σ/`0 · t) time. The overall running time is

Õ

(
`20 + tσ

`0
+ t

)
.

To balance cost, we choose `0 = (tσ)1/3 and obtain the time bound Õ((tσ)2/3 + t). (Again,
no FFT is required.)

I Corollary 8. The all-targets change-making problem can be solved in Õ((tσ)2/3 + t) time.

I Remark. The O(t) term can be eliminated in Theorem 7 (and thus Corollary 8) if we are
fine with an implicit representation of the output (i.e., a structure that allows us to return
the answer for any given target in constant time), since by Lemma 3, we can first reduce
the target j to below u2 by using some number (i.e., max{

⌈
(j − u2)/u

⌉
, 0}) of copies of the

largest coin value u.

5 All-Capacities Unbounded Knapsack

We note that the algorithm in the preceding section can be extended to solve the all-capacities
version of the unbounded knapsack problem, defined as follows:

T.M. Chan and Q. He 29:9

I Problem 2 (All-Capacities Unbounded Knapsack). Given n items where the i-th
item has a positive integer weight wi and a positive profit pi, and given an integer t, for each
j = 0, . . . , t, find the maximum total profit of a multiset of items such that the total weight is
at most j, i.e., find the maximum of

∑n
i=1mipi subject to the constraint that

∑n
i=1miwi ≤ j,

where mi ∈ N.

Like before, let u = maxni=1 wi and σ =
∑n
i=1 wi. We may assume that the weights are

distinct (since if there are two items with the same weight, we may remove the one with the
smaller profit).

We use the following analog to Lemma 6:

I Lemma 9. Suppose items 1, . . . , k have the k largest profit-to-weight ratios. For any
capacity value j ≥ 3u2/k, any optimal solution to the unbounded knapsack problem must use
at least one item from {1, . . . , k}.

Proof. Similar to the proof of Lemma 6, since replacing a subsequence with items that have
larger profit-to-weight ratios while maintaining the same total weight would increase the
total profit. One difference in the unbounded knapsack problem is that the total weight in
the optimal solution may not be exactly j. But it must be at least j−u (otherwise, we could
add one more item to get a better solution). When j ≥ 3u2/k, we have j − u ≥ 2u2/k. J

The same analysis shows correctness of the following very simple algorithm, which runs
in O(u2 log u+ t) time:

Algorithm 2 All-capacities unbounded knapsack.

1: Sort the items in decreasing order of pi/wi.
2: for j = 0, . . . , t do
3: Set D[j] = max{0, max1≤i≤d3u2/je: wi≤j(D[j − wi] + pi)}.

The Õ((tσ)2/3 + t) algorithm can be extended as well.

I Corollary 10. The all-capacities unbounded knapsack problem can be solved in O(u2 log u+t)
or Õ((tσ)2/3 + t) time.

I Remark. As before, the O(t) term can be eliminated with an implicit representation of the
output (since by an analog to Lemma 3, we can first reduce the capacity to below u2 by using
some number of copies of the item with the largest profit-to-weight ratio). In particular, for
the single-capacity version, we obtain a very simple O(u2 log u)-time algorithm.

The algorithm works even when the profits are reals but the weights are integers. Al-
ternatively, a variant of the algorithm works when the weights are reals but the profits are
integers: the same time bound O(u2 log u) holds but with u = maxni=1 pi. Here, we recast
the problem as minimizing

∑n
i=1miwi subject to the constraint that

∑n
i=1mipi ≥ j, and

modify the algorithm appropriately (applying Erdős–Graham to the profits instead of the
weights). From the implicitly represented output, we can determine the answer for any given
capacity by predecessor search.

6 Õ(u) Algorithm for Single-Target Change-Making

In this section, we present an Õ(u)-time algorithm for the single-target change-making
problem. It is obtained by modifying the third algorithm of Chan and He [8], which originally
ran in O(t log2 t) time. They first solved the decision problem: deciding whether we can sum
to t using at most m coins for a given value m. By adding 0 to the input set of coin values,
“at most m” can be changed to “exactly m”.

ESA 2020

29:10 More on Change-Making and Related Problems

Their decision algorithm relies on the following partition lemma, which shows the multiset
of coins S can be almost evenly partitioned simultaneously in terms of cardinality and the
total value (see [8] for a short self-contained proof for the even case; the odd case is similar):

I Lemma 11 (Partition Lemma). Suppose S is a multiset with |S| = m and σ(S) = t. If m
is odd, then there exists a partition of S into three parts S1, S2 and a singleton {s0}, such
that |S1| = |S2| = m−1

2 and σ(S1), σ(S2) ≤ t
2 .

If m is even, then there exists a partition of S into three parts S1, S2 and two singletons
{s0, s1}, such that |S1| = |S2| = m

2 − 1, and σ(S1), σ(S2) ≤ t
2 .

Notice that since the maximum coin value is u, we also have σ(S1), σ(S2) ≥ t
2 − 2u (as

we take out one or two coins).
The Partition Lemma suggests a simple recursive algorithm to compute C(m)

V [0, . . . , t]:
we just take the first t+ 1 entries of{

C
(m−1

2)
V [0, . . . , t2] ◦ C(m−1

2)
V [0, . . . , t2] ◦ C(1)

V [0, . . . , t] if m is odd,
C

(m
2 −1)

V [0, . . . , t2] ◦ C(m
2 −1)

V [0, . . . , t2] ◦ C(1)
V [0, . . . , t] ◦ C(1)

V [0, . . . , t] if m is even.

That was essentially Chan and He’s previous algorithm.
We describe a more efficient recursive algorithm to compute a smaller subarray C(m)

V [t−
4u, . . . , t]: we just take the relevant entries of

C
(m−1

2)
V [t−4u

2 − 2u, . . . , t2] ◦ C(m−1
2)

V [t−4u
2 − 2u, . . . , t2] ◦ C(1)

V [0, . . . , u]
if m is odd,

C
(m

2 −1)
V [t−4u

2 − 2u, . . . , t2] ◦ C(m
2 −1)

V [t−4u
2 − 2u, . . . , t2] ◦ C(1)

V [0, . . . , u] ◦ C(1)
V [0, . . . , u]

if m is even.

Each of the above Boolean convolutions is done to arrays of size O(u) (after shifting indices),
and thus takes O(u log u) time. The subarrays C(m−1

2)
V [t−4u

2 − 2u, . . . , t2] = C
(m−1

2)
V [t2 −

4u, . . . , t2] and C
(m

2 −1)
V [t−4u

2 − 2u, . . . , t2] = C
(m

2 −1)
V [t2 − 4u, . . . , t2] can be computed by

recursion. Thus, the running time satisfies the recurrence

T (m, t) = T (
⌊
m−1

2
⌋
, t2) +O(u log u),

which solves to T (m, t) = O(u log u log t).
The decision problem can now be solved by inspecting the entry C(m)

V [t]. We can find
the optimal number of coins by binary search with O(log t) calls to the decision algorithm.
By Lemma 3, we can first reduce t to below u2 by repeatedly using the largest coin value.
Therefore, the total running time is O(u log u log2 t) ≤ O(u log3 u).

I Theorem 12. The single-target change-making problem can be solved in O(u log3 u) time.

I Remark. The above algorithm shares some similarity with the Õ(u2) algorithm by Axiotis
and Tzamos [2] for unbounded knapsack, which also involves logarithmically many convo-
lutions on subarrays of size O(u), except that they used (min,+)-convolutions and a more
naive parititioning that approximately halves t, but not m. In contrast, the above Partition
Lemma is crucial to our faster algorithm for change-making.

7 Õ(nu) Algorithm for Single-Capacity Unbounded Knapsack

In this section, we revisit the standard (single-capacity) version of the unbounded knapsack
problem and present a new Õ(nu)-time algorithm (recall that u = maxi wi). This algorithm
is simple (no FFT needed), and is based on the following combinatorial lemma, which is
obtained by another pigeonhole argument:

T.M. Chan and Q. He 29:11

I Lemma 13. For the unbounded knapsack problem for a given capacity j < t0, there exists
an optimal solution that uses at most log t0 different types of items.

In particular, in some optimal solution, there exists an item i that is used at least j
wi log t0

times.

Proof. Consider an optimal solution that uses the minimum number of types of items. Let
S be the set of items used in this solution, excluding multiplicities. If |S| > log t0, by the
pigeonhole principle there must exist two different subsets S1 and S2 of S with the same
total weight, multiplicities included (since there are 2|S| subsets and t0 integers between 0
and t0− 1). We can replace the items in S2 \S1 with S1 \S2, or vice versa (depending which
of the two has smaller total value), and get a new solution that has the same total weight
but has larger or equal total value. And if it has equal total value, the new solution uses a
smaller number of types of items (since S2 \ S1 and S1 \ S2 are nonempty): a contradiction.

Thus, |S| ≤ log t0. This also implies that some item contributes at least j
log t0 to the total

weight. J

Let b := dlog t0e. Let D[j] be the maximum profit for the unbounded knapsack problem
with capacity j. The above lemma implies the following recursive formula for all j < t0:

D[j] = max
{

0, nmax
i=1

(D[j − wixij] + pixij)
}

where xij :=
⌊

j
wib

⌋
.

Note that j − wixij ∈
[
(1− 1

b)j, (1− 1
b)j + u

]
.

The above formula allows us to compute the subarray D[t, . . . , t+ bu] from the subarray
D
[
(1− 1

b)t, . . . , (1− 1
b)(t+ bu) + u

]
= D

[
(1− 1

b)t, . . . , (1− 1
b)t+ bu

]
in O(bu·n) time. The

latter subarray can be computed recursively.
Let T (t) denote the time for computing D[t, . . . , t+ bu]. We thus obtain the following

recurrence:

T (t) = T ((1− 1
b)t) + O(bnu).

For the base case, we have T (0) = O(bnu) by the standard dynamic programming algorithm
(which computes D[0, . . . , j] in O(nj) time). The number of levels of recursion is O(b log t).
So, T (t) = O(b2nu log t) = O(nu log2 t0 log t). We can set t0 = (t + u)O(1). As before, we
can initially reduce the capacity t to below u2 by repeatedly using the item with the largest
profit-to-weight ratio. This yields the following result:

I Theorem 14. The single-capacity unbounded knapsack problem can be solved in O(nu log3 u)
time.

I Remark. There are alternative ways to exploit the above lemma to get Õ(nu) algorithms
(by computing D[j] for a different choice of Õ(bu) indices j), and the polylogarithmic factor
is likely improvable.

8 Minimum Word Break

Bringmann, Grønlund, and Larsen [6] studied the decision version of the word break problem,
and gave an algorithm with Õ(nm1/3 +m) running time (with a matching conditional lower
bound for combinatorial algorithms).

We consider the optimization version of the problem (with unit weight), defined as follows:

I Problem 3 (Minimum Word Break). Given a string s with length n and a dictionary
D with total length m, find the minimum number t∗ such that s can be split into t∗ words in
D (duplicates are allowed).

ESA 2020

29:12 More on Change-Making and Related Problems

The single-target change-making problem can be viewed as a special case of this problem,
by representing each coin with value vi as a string with length vi over a unary alphabet.

In this section, we briefly note that Bringmann et al.’s algorithm can be modified to
solve the minimum word break problem without increasing the running time (ignoring
polylogarithmic factors), by using our Lemma 1.

The modification. Since much of the solution proceeds as in Bringmann et al.’s paper [6],
we will only describe the difference and assume the reader is already familiar with the previous
paper. In particular, we will use the same notation.

Upon close inspection of their paper, we see that most parts of Bringmann et al.’s method
require no (or straightforward) changes. Their “first algorithm” is no longer required, and
the main change lies in their “second algorithm”, specifically, the “query algorithm” in
[6, Section 4.2 (arXiv version)]. Instead of computing S + SB using FFT, we now need
to compute the (min,+)-convolution between S and SB, where SB[i] = 1 if ui is marked,
and SB[i] =∞ otherwise. We are only interested in qB entries in the output array, where∑
B∈B qB = O(q) and |B| ≤ m

q·λq
. (Note that |B| = 0 if λq > m/q.) By using the output-

sensitive bound from Lemma 1, we can perform the (min,+)-convolution in Õ(q√qB) time.
By the Cauchy–Schwarz inequality, the sum of the cost over all B ∈ B is

Õ

(∑
B∈B

q
√
qB

)
= Õ

(
q
√
q|B|

)
= Õ

(
q

√
m

λq

)
.

The other parts of the query algorithm requires Õ(q · λq) time. The total time is

Õ

(
qλq + q

√
m

λq

)
.

To balance cost, we choose λq = m1/3, and as a result, the query time in [6, Lemma 2 (arXiv
version)] becomes Õ(qm1/3), instead of Õ(min{q2,

√
qm}).

The final running time as analyzed in [6, page 10] was

Õ

∑
q=2`

n

q
·min{q2,

√
qm}

 = Õ(nm1/3),

plus Õ(n+m) for preprocessing. With the new query time bound, the sum changes to

Õ

∑
q=2`

n

q
· qm1/3

 = Õ(nm1/3),

which luckily gives the same result.

I Theorem 15. The minimum word break problem can be solved in Õ(nm1/3 +m) time.

I Remark. The algorithm can actually solve an extension of the problem: compute the
minimum number of breaks for every prefix of the input string. In particular, when the
alphabet is unary, this implies an Õ(tσ1/3 + σ)-time algorithm for the all-targets change-
making problem. However, this bound is not as good as those from Theorem 2 and Corollary 8
(Õ(min{t4/3, (tσ)2/3 + t})).

T.M. Chan and Q. He 29:13

9 Concluding Remarks

Our change-making algorithms can be modified to compute not just the minimum number of
coins but also a representation of the minimum multiset of coins for every target value. For
the FFT-based algorithms, we need standard techniques for witness finding [1, 23] (which
only increases the running time by polylogarithmic factors).

Although Erdős and Graham’s Θ(u2/k) bound on the Frobenius problem is asymptotically
tight in the worst case (one bad coin set is {x, 2x, . . . , (k−1)x, (k−1)x−1} with x = d u

k−1e),
the Frobenius number tends to be smaller for “many” k-tuples of coin values (it is usually
subquadratic even for k = 3). This suggests that our Õ(u2 + t)-time algorithm for all-targets
coin changing might be improvable for many input sets of coins. However, obtaining an
improvement in the worst case remains intriguingly open (this might require new results on
the Frobenius problem – the interplay between combinatorial and algorithmic results seems
worthy of further study).

References
1 Noga Alon, Zvi Galil, Oded Margalit, and Moni Naor. Witnesses for Boolean matrix multiplica-

tion and for shortest paths. In Proceedings of the 33rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 417–426, 1992. doi:10.1109/SFCS.1992.267748.

2 Kyriakos Axiotis and Christos Tzamos. Capacitated dynamic programming: Faster knapsack
and graph algorithms. In Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming (ICALP), pages 19:1–19:13, 2019. doi:10.4230/LIPIcs.ICALP.
2019.19.

3 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 457–466, 2016.

4 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Saeed Seddighin, and Cliff Stein.
Fast algorithms for knapsack via convolution and prediction. In Proceedings of the 50th
Annual ACM Symposium on Theory of Computing (STOC), pages 1269–1282, 2018. doi:
10.1145/3188745.3188876.

5 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1073–1084,
2017.

6 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular
expression membership testing. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 307–318, 2017. arXiv:1611.00918.

7 Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM
Journal on Computing, 39(5):2075–2089, 2010.

8 Timothy M. Chan and Qizheng He. On the change-making problem. In Proceedings of the 4th
ACM-SIAM Symposium on Simplicity in Algorithms (SOSA), pages 38–42, 2020.

9 Marek Cygan, Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. On problems
equivalent to (min, +)-convolution. ACM Transactions on Algorithms, 15(1):14:1–14:25, 2019.
doi:10.1145/3293465.

10 Jacques Dixmier. Proof of a conjecture by Erdős and Graham concerning the problem of
Frobenius. Journal of Number Theory, 34(2):198–209, 1990.

11 Ran Duan and Seth Pettie. Fast algorithms for (max,min)-matrix multiplication and bottleneck
shortest paths. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 384–391, 2009.

12 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the Steinitz lemma. ACM Transactions on Algorithms, 16(1):5:1–
5:14, 2020. doi:10.1145/3340322.

ESA 2020

https://doi.org/10.1109/SFCS.1992.267748
https://doi.org/10.4230/LIPIcs.ICALP.2019.19
https://doi.org/10.4230/LIPIcs.ICALP.2019.19
https://doi.org/10.1145/3188745.3188876
https://doi.org/10.1145/3188745.3188876
http://arxiv.org/abs/1611.00918
https://doi.org/10.1145/3293465
https://doi.org/10.1145/3340322

29:14 More on Change-Making and Related Problems

13 Paul Erdős and Ronald L Graham. On a linear diophantine problem of Frobenius. Acta
Arithmetica, 21(1):399–408, 1972.

14 Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In Proceedings
of the 10th Innovations in Theoretical Computer Science Conference (ITCS), pages 43:1–43:17,
2019. doi:10.4230/LIPIcs.ITCS.2019.43.

15 Ce Jin and Hongxun Wu. A simple near-linear pseudopolynomial time randomized algorithm
for subset sum. In Proceedings of the 2nd Symposium on Simplicity in Algorithms (SOSA),
volume 69, pages 17:1–17:6, 2019.

16 Konstantinos Koiliaris and Chao Xu. A faster pseudopolynomial time algorithm for subset sum.
In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1062–1072, 2017.

17 Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for subset sum.
ACM Transactions on Algorithms, 15(3):1–20, 2019.

18 Marvin Künnemann, Ramamohan Paturi, and Stefan Schneider. On the fine-grained complexity
of one-dimensional dynamic programming. In Proceedings of the 44th International Colloquium
on Automata, Languages, and Programming (ICALP), pages 21:1–21:15, 2017.

19 Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic triangles,
intermediate matrix products, and convolutions. In Proceedings of the 11th Innovations in
Theoretical Computer Science Conference (ITCS), pages 53:1–53:18, 2020.

20 George S. Lueker. Two NP-complete problems in nonnegative integer programming. Technical
report, Princeton University. Department of Electrical Engineering, 1975.

21 Jiří Matoušek. Computing dominances in En. Information Processing Letters, 38(5):277–278,
1991. doi:10.1016/0020-0190(91)90071-O.

22 David Pisinger. Linear time algorithms for knapsack problems with bounded weights. Journal
of Algorithms, 33(1):1–14, 1999.

23 Raimund Seidel. On the all-pairs-shortest-path problem. In Proceedings of the 24th Annual
ACM Symposium on Theory of Computing (STOC), pages 745–749, 1992. doi:10.1145/
129712.129784.

24 Arie Tamir. New pseudopolynomial complexity bounds for the bounded and other integer
knapsack related problems. Operations Research Letters, 37(5):303–306, 2009. doi:10.1016/
j.orl.2009.05.003.

25 Virginia Vassilevska, R. Ryan Williams, and Raphael Yuster. All pairs bottleneck paths and
max-min matrix products in truly subcubic time. Theory of Computing, 5(1):173–189, 2009.

26 R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM Journal on
Computing, 47(5):1965–1985, 2018. doi:10.1137/15M1024524.

27 J. W. Wright. The change-making problem. Journal of the ACM, 22(1):125–128, 1975.
28 Chao Xu. Word break with cost. https://chaoxuprime.com/posts/2019-09-19-word-break-

with-cost.html, 2019.

https://doi.org/10.4230/LIPIcs.ITCS.2019.43
https://doi.org/10.1016/0020-0190(91)90071-O
https://doi.org/10.1145/129712.129784
https://doi.org/10.1145/129712.129784
https://doi.org/10.1016/j.orl.2009.05.003
https://doi.org/10.1016/j.orl.2009.05.003
https://doi.org/10.1137/15M1024524
https://chaoxuprime.com/posts/2019-09-19-word-break-with-cost.html
https://chaoxuprime.com/posts/2019-09-19-word-break-with-cost.html

The Maximum Binary Tree Problem
Karthekeyan Chandrasekaran
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
karthe@illinois.edu

Elena Grigorescu
Purdue University, West Lafayette, IN, USA
elena-g@purdue.edu

Gabriel Istrate
West University of Timişoara, Romania
e-Austria Research Institute, Timişoara, Romania
gabrielistrate@acm.org

Shubhang Kulkarni
Purdue University, West Lafayette, IN, USA
kulkar17@purdue.edu

Young-San Lin
Purdue University, West Lafayette, IN, USA
lin532@purdue.edu

Minshen Zhu
Purdue University, West Lafayette, IN, USA
zhu628@purdue.edu

Abstract
We introduce and investigate the approximability of the maximum binary tree problem (MBT) in
directed and undirected graphs. The goal in MBT is to find a maximum-sized binary tree in a given
graph. MBT is a natural variant of the well-studied longest path problem, since both can be viewed
as finding a maximum-sized tree of bounded degree in a given graph.

The connection to longest path motivates the study of MBT in directed acyclic graphs (DAGs),
since the longest path problem is solvable efficiently in DAGs. In contrast, we show that MBT in
DAGs is in fact hard: it has no efficient exp(−O(logn/ log logn))-approximation algorithm under
the exponential time hypothesis, where n is the number of vertices in the input graph. In undirected
graphs, we show that MBT has no efficient exp(−O(log0.63 n))-approximation under the exponential
time hypothesis. Our inapproximability results rely on self-improving reductions and structural
properties of binary trees. We also show constant-factor inapproximability assuming P 6= NP.

In addition to inapproximability results, we present algorithmic results along two different flavors:
(1) We design a randomized algorithm to verify if a given directed graph on n vertices contains a
binary tree of size k in 2kpoly(n) time. (2) Motivated by the longest heapable subsequence problem,
introduced by Byers, Heeringa, Mitzenmacher, and Zervas, ANALCO 2011, which is equivalent to
MBT in permutation DAGs, we design efficient algorithms for MBT in bipartite permutation graphs.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases maximum binary tree, heapability, inapproximability, fixed-parameter tract-
ability

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.30

Related Version https://arxiv.org/abs/1909.07915

Funding Karthekeyan Chandrasekaran: Supported by NSF CCF-1814613 and NSF CCF-1907937.
Elena Grigorescu: Supported by NSF CCF-1910659 and NSF CCF-1910411.
Gabriel Istrate: Supported by a grant of Ministry of Research and Innovation, CNCS - UEFISCDI
project number PN-III-P4-ID-PCE-2016-0842, within PNCDI III.
Young-San Lin: Supported by NSF CCF-1910659 and NSF CCF-1910411.
Minshen Zhu: Supported by NSF CCF-1910659 and NSF CCF-1910411.

© Karthekeyan Chandrasekaran, Elena Grigorescu, Gabriel Istrate, Shubhang Kulkarni, Young-San
Lin, and Minshen Zhu;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 30; pp. 30:1–30:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karthe@illinois.edu
mailto:elena-g@purdue.edu
mailto:gabrielistrate@acm.org
mailto:kulkar17@purdue.edu
mailto:lin532@purdue.edu
mailto:zhu628@purdue.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.30
https://arxiv.org/abs/1909.07915
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 The Maximum Binary Tree Problem

1 Introduction

A general degree-constrained subgraph problem asks for an optimal subgraph of a given
graph with specified properties while also satisfying degree constraints on all vertices. Degree-
constrained subgraph problems have numerous applications in the field of network design
and consequently, have been studied extensively in the algorithms and approximation
literature [1,15–17,29,31,32]. In this work, we introduce and study the maximum binary tree
problem in directed and undirected graphs. In the maximum binary tree problem (MBT), we
are given an input graph G and the goal is to find a binary tree in G with maximum number
of vertices.

Our first motivation for studying MBT arises from the viewpoint that it is a variant of the
longest path problem: In the longest path problem, the goal is to find a maximum-sized tree
in which every vertex has degree at most 2. In MBT, the goal is to find a maximum-sized tree
in which every vertex has degree at most 3. Certainly, one may generalize both these problems
to finding a maximum-sized degree-constrained tree in a given graph. In this work we focus
on binary trees; however, all our results extend to the maximum-sized degree-constrained
tree problem for constant degree bound.

Our second motivation for studying MBT is its connection to the longest heapable
subsequence problem introduced by Byers, Heeringa, Mitzenmacher, and Zervas [10]. Let
σ = (σ1, σ2, . . . , σn) be a permutation on n elements. Byers et al. define a subsequence
(not necessarily contiguous) of σ to be heapable if the elements of the subsequence can be
sequentially inserted to form a binary min-heap data structure. Namely, insertions subsequent
to the first element, which takes the root position, happen below previously placed elements.
The longest heapable subsequence problem asks for a maximum-length heapable subsequence
of a given sequence. This generalizes the well-known longest increasing subsequence problem.
Porfilio [30] showed that the longest heapable subsequence problem is equivalent to MBT in
permutation directed acyclic graphs (abbreviated permutation DAGs): a permutation DAG
associated with the sequence σ is obtained by introducing a vertex ui for every sequence
element σi, and arcs (ui, uj) for every pair (i, j) such that i > j and σi ≥ σj . On the other
hand, for sequences of intervals the maximum binary problem is easily solvable by a greedy
algorithm [6] (see also [21] for further results and open problems on the heapability of partial
orders). These results motivate the study of MBT in restricted graph families.

We now formally define MBT in undirected graphs, which we denote as UndirMax-
BinaryTree. A binary tree of an undirected graph G is a subgraph T of G that is connected
and acyclic with the degree of u in T being at most 3 for every vertex u in T . In Undir-
MaxBinaryTree, the input is an undirected graph G and the goal is to find a binary tree
in G with maximum number of vertices. In the rooted variant of this problem, the input is
an undirected graph G along with a specified root vertex r and the goal is to find a binary
tree containing r in G with maximum number of vertices such that the degree of r in the
tree is at most 2. We focus on the unrooted variant of the problem and mention that it
reduces to the rooted variant. We emphasize that a binary tree T of G is not necessarily
spanning (i.e., may not contain all vertices of the given graph). The problem of verifying
whether a given undirected graph has a spanning binary tree is NP-complete. This follows
by a reduction from the Hamiltonian path problem: Given an undirected graph G = (V,E),
create a pendant vertex v′ adjacent to v for every vertex v ∈ V . The resulting graph has a
spanning binary tree if and only if G has a Hamiltonian path.

Next, we formally define MBT in directed graphs. A tree of a directed graph G is a
subgraph T of G such that T is acyclic and has a unique vertex, termed as the root, with the
property that every vertex v in T has a unique directed path to the root in T . A binary tree

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:3

of a directed graph G is a tree T such that the incoming-degree of every vertex u in T is at
most 2 while the outgoing-degree of every vertex u in T is at most 1. In the rooted variant of
the maximum binary tree problem for directed graphs, the input is a directed graph G along
with a specified root r and the goal is to find an r-rooted binary tree T in G with maximum
number of vertices. The problem of verifying whether a given directed graph has a spanning
binary tree is NP-complete (by a similar reduction as that for undirected graphs).

The connection to the longest path problem as well as the longest heapable subsequence
problem motivates the study of the maximum binary tree problem in directed acyclic graphs
(DAGs). In contrast to directed graphs, the longest path problem in DAGs can be solved
in polynomial-time (e.g., using dynamic programming or LP-based techniques). Moreover,
verifying whether a given DAG contains a spanning binary tree is solvable in polynomial-time
using the following characterization: a given DAG on vertex set V contains a spanning
binary tree if and only if the partition matroid corresponding to the in-degree of every
vertex being at most two and the partition matroid corresponding to the out-degree of every
vertex being at most one have a common independent set of size |V | − 1. These observations
raise the intriguing possibility of solving the maximum binary tree problem in DAGs in
polynomial-time. For this reason, we focus on DAGs within the family of directed graphs in
this work. We denote the maximum binary tree problem in DAGs as DAGMaxBinaryTree.

The rooted and the unrooted variants of the maximum binary tree problem in DAGs are
polynomial-time equivalent by simple transformations. Indeed, the unrooted variant can be
solved by solving the rooted variant for every choice of the root. To see the other direction,
suppose we would like to find a maximum r-rooted binary tree in a given DAG G = (V,E).
Then, we discard from G all outgoing arcs from r and all vertices that cannot reach r (i.e.,
we consider the sub-DAG induced by the descendents of r) and find an unrooted maximum
binary tree in the resulting DAG. If this binary tree is rooted at a vertex r′ 6= r, then it can
be extended to an r-rooted binary tree by including an arbitrary r′ → r path P – since the
graph is a DAG, any such path P will not visit a vertex that is already in the tree (apart
from r′). The equivalence is also approximation preserving. For this reason, we only study
the rooted variant of the problem in DAGs.

We present inapproximability results for MBT in DAGs and undirected graphs. On
the algorithmic side, we show that MBT in directed graphs is fixed-parameter tractable
when parameterized by the solution size. We observe that the equivalence of the longest
heapable subsequence to MBT in permutation DAGs motivates the study of MBT even in
restricted graph families. As a first step towards understanding MBT in permutation DAGs,
we design an algorithm for bipartite permutation graphs. We use a variety of tools including
self-improving and gadget reductions for our inapproximability results, and algebraic and
structural techniques for our algorithmic results.

1.1 Related work
Degree-constrained subgraph problems appeared as early as 1978 in the textbook of Garey
and Johnson [18] and have garnered plenty of attention in the approximation community
[1,15–17,23,29,31,32]. A rich line of works have addressed the minimum degree spanning
tree problem as well as the minimum cost degree-constrained spanning tree problem leading
to powerful rounding techniques and a deep understanding of the spanning tree polytope
[12, 13, 16, 19, 25, 28, 32]. Approximation and bicriteria approximation algorithms for the
counterparts of these problems in directed graphs, namely degree-constrained arborescence
and min-cost degree-constrained arborescence, have also been studied in the literature [7].

ESA 2020

30:4 The Maximum Binary Tree Problem

In the maximum-edge degree-constrained connected subgraph problem, the goal is to
find a connected degree-constrained subgraph of a given graph with maximum number of
edges. This problem does not admit a PTAS [3] and has been studied from the perspective
of fixed-parameter tractability [4]. MBT could be viewed as a maximum-vertex degree-
constrained connected subgraph problem, where the goal is to maximize the number of
vertices as opposed to the number of edges – the degree-constrained connected subgraph
maximizing the number of vertices may be assumed to be acyclic and hence, a tree. It
is believed that the connectivity constraint makes the maximum-edge degree-constrained
connected subgraph problem to become extremely difficult to approximate. Our results
formalize this belief when the objective is to maximize the number of vertices.

Switching the objective with the constraint in the maximum-vertex degree-constrained
connected subgraph problem leads to the minimum-degree k-tree problem: here the goal is
to find a minimum degree subgraph that is a tree with at least k vertices. Minimum degree
k-tree admits a O(

√
(k/∆∗) log k)-approximation, where ∆∗ is the optimal degree and does

not admit a o(logn)-approximation [23]. We note that the hardness reduction here (from set
cover) crucially requires the optimal solution value ∆∗ to grow with the number n of vertices
in the input instance, and hence, does not imply any hardness result for input instances in
which ∆∗ is a constant. Moreover, the approximation result implies that a tree of degree
O(
√
k log k) containing k vertices can be found in polynomial time if the input graph contains

a constant-degree tree with k vertices.
We consider the maximum binary tree problem to be a generalization of the longest

path problem as both can be viewed as asking for a maximum-sized degree-constrained
connected acyclic subgraph. The longest path problem in undirected graphs admits an
Ω
(
(logn/ log logn)2/n

)
-approximation [9], but it is APX-hard and does not admit a

2−O(log1−ε n)-approximation for any constant ε > 0 unless NP ⊆ DTIME
(

2logO(1/ε) n
)
[22].

Our hardness results for the max binary tree problem in undirected graphs bolsters this
connection. The longest path problem in directed graphs is much harder: For every ε > 0
it cannot be approximated to within a factor of 1/n1−ε unless P = NP, and it cannot be
approximated to within a factor of (log2+ε n)/n under the Exponential Time Hypothesis [9].
However, the longest path problem in DAGs is solvable in polynomial time. Our hardness
results for the max binary tree problem in DAGs are in stark contrast to the polynomial-time
solvability of the longest path problem in DAGs.

On the algorithmic side, the color-coding technique introduced by Alon, Yuster, and
Zwick [2] can be used to decide whether an undirected graph G = (V,E) contains a copy
of a bounded treewidth pattern graph H = (VH , EH) where |VH | = O (log |V |), and if so,
then find one in polynomial time. The idea here is to randomly color the vertices of G by
O (log |V |) colors and to find a maximum colorful copy of H using dynamic programming.
We note that the same dynamic programming approach can be modified to find a maximum
colorful binary tree. This algorithm can be derandomized, thus leading to a deterministic
Ω ((1/n) logn)-approximation to UndirMaxBinaryTree.

In parameterized complexity, designing algorithms with running time βkpoly(n) (β > 1
is a constant) for problems like k-Path and k-Tree is a central topic. For k-Path, the
color-coding technique mentioned above already implies a (2e)kpoly(n)-time algorithm.
Koutis [26] noticed that k-Path can be reduced to detecting whether a given polynomial
contains a multilinear term. Using algebraic methods for the latter problem, Koutis obtained
a 21.5kpoly(n) time algorithm for k-Path. This was later improved by Williams [36] to
2kpoly(n). The current state-of-art algorithm is due to Björklund, Husfeldt, Kaski and
Koivisto [8], which is also an algebraic algorithm with running time 1.66kpoly(n). All of

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:5

these algorithms are randomized. Our study of the k-BinaryTree problem, which is the
problem of deciding whether a given graph G contains a binary tree of size at least k, is
inspired by this line of results.

Several NP-hard problems are known to be solvable in specific families of graphs. Bipartite
permutation graphs is one such family which is known to exhibit this behaviour [24, 33–35].
Our polynomial-time solvability result for these families of graphs crucially identifies the
existence of structured optimal solutions to reduce the search space and solves the problem
over this reduced search space.

1.2 Our contributions
1.2.1 Inapproximability results
Directed graphs. We first focus on directed graphs and in particular, on directed acyclic
graphs. It is well-known that the longest path problem in DAGs is solvable in polynomial-
time. In contrast, we show that DAGMaxBinaryTree does not even admit a constant-
factor approximation. Furthermore, if DAGMaxBinaryTree admitted a polynomial-time
exp (−O (logn/ log logn))-approximation algorithm then the Exponential Time Hypothesis
would be violated.

I Theorem 1. We have the following inapproximability results for DAGMaxBinaryTree
on n-vertex input graphs:
1. DAGMaxBinaryTree does not admit a polynomial-time constant-factor approximation

assuming P 6= NP.
2. If DAGMaxBinaryTree admits a polynomial-time exp (−O (logn/ log logn))-approxi-

mation, then NP ⊆ DTIME (exp (O (
√
n))), refuting the Exponential Time Hypothesis.

3. For any ε > 0, if DAGMaxBinaryTree admits a quasi-polynomial time
exp

(
−O

(
log1−ε n

))
-approximation, then NP ⊆ DTIME

(
exp

(
logO(1/ε) n

))
, thus re-

futing the Exponential Time Hypothesis.
Remark. The longest path problem in DAGs can be solved using a linear program (LP)

based on cut constraints. Based on this connection, an integer program (IP) based on
cut constraints can be formulated for DAGMaxBinaryTree. In the full version of this
work [11], we show that the LP-relaxation of this cut-constraints-based-IP has an integrality
gap of Ω(n1/3) in n-vertex DAGs.

Undirected graphs. Next, we turn to undirected graphs. We show that UndirMax-
BinaryTree does not have a constant-factor approximation and does not admit a quasi-
polynomial-time exp(−O(log0.63 n))-approximation under the Exponential Time Hypothesis.

I Theorem 2. We have the following inapproximability results for UndirMaxBinaryTree
on n-vertex input graphs:
1. UndirMaxBinaryTree does not admit a polynomial-time constant-factor approximation

assuming P 6= NP.
2. For c = log3 2 and any ε > 0, if UndirMaxBinaryTree admits a quasi-polynomial

time exp
(
−O

(
logc−ε n

))
-approximation, then NP ⊆ DTIME

(
exp

(
logO(1/ε) n

))
, thus

refuting the Exponential Time Hypothesis.
We summarize our hardness results for MBT on various graph families in Table 1 and

contrast them with the corresponding known hardness results for the longest path problem
on those families.

ESA 2020

30:6 The Maximum Binary Tree Problem

Table 1 Summary of inapproximability results. Here, n refers to the number of vertices in the
input graph and ε is any positive constant. We include the known results for longest path for
comparison. Text in gray refer to known results while text in black refer to our contributions.

Family Assumption Max Binary Tree Longest Path
DAGs P 6= NP No poly-time Ω(1)-apx (Thm 1) Poly-time solvable

ETH No poly-time exp(−O(log n
log log n

))-apx Poly-time solvable
No quasi-poly-time

exp(−O(log1−ε n))-apx (Thm 1)
Directed P 6= NP Same as DAGs No poly-time 1

n1−ε
-apx [9]

ETH Same as DAGs Same as P 6= NP
Undirected P 6= NP No poly-time Ω(1)-apx (Thm 2) No poly-time Ω(1)-apx [22]

ETH No quasi-poly-time No quasi-poly-time
exp(−O(log0.63−ε n))-apx (Thm 2) exp(−O(log1−ε n))-apx [22]

1.2.2 Algorithmic results

Fixed-parameter tractability. We denote the decision variant of MBT as k-BinaryTree–
here the goal is to verify if a given graph contains a binary tree with at least k vertices.
Since k-BinaryTree is NP-hard when k is part of the input, it is desirable to have an
algorithm that runs in time f(k)poly(n) (i.e., a fixed parameter algorithm parameterized by
the solution size). Our first algorithmic result achieves precisely this goal. Our algorithm is
based on algebraic techniques.

I Theorem 3. There exists a randomized algorithm that takes a directed graph G = (V,E),
a positive integer k, and a real value δ ∈ (0, 1) as input, runs in time 2kpoly(|V |) log(1/δ)
and
1. outputs “no” if G does not contain a binary tree of size k;
2. outputs a binary tree of size k with probability 1− δ if G contains one.

Bipartite permutation graphs. Next, motivated by its connection to the max heapable
subsequence problem, we study MBT in bipartite permutation graphs. A bipartite permutation
graph is a permutation graph (undirected) which is also bipartite. We show that bipartite
permutation graphs admit an efficient algorithm for MBT. Our algorithm exploits structural
properties of bipartite permutation graphs. We believe that these structural properties could
be helpful in solving MBT in permutation graphs which, in turn, could provide key insights
towards solving MBT in permutation DAGs.

I Theorem 4. There exists an algorithm to solve UndirMaxBinaryTree in n-vertex
bipartite permutation graphs that runs in time O(n3).

We summarize our algorithmic results for MBT in Table 2 and contrast them with the
corresponding best known bounds for the longest path problem.

Table 2 Summary of algorithmic results. Here, n refers to the number of vertices in the input
graph. We include the known results for longest path for comparison. Text in gray refer to known
results while text in black refer to our contributions.

Problem Max Binary Tree Longest Path
FPT parameterized by solution size (Dir.) 2kpoly(n)-time (Thm 3) 1.66kpoly(n)-time [8]
Bipartite permutation graphs (Undir.) O(n3)-time (Thm 4) O(n)-time [35]

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:7

We remark again that our inapproximability as well as algorithmic results are also
applicable to the maximum degree-constrained tree problem for larger, but constant degree
constraint. We focus on the degree constraint corresponding to binary trees for the sake of
simplicity in exposition.

1.3 Proof techniques
In this section, we outline the techniques underlying our results.

1.3.1 Inapproximability results
At a very high level, our inapproximability results for MBT rely on the proof strategy for
hardness of longest path due to Karger, Motwani, and Ramkumar [22], which has two main
steps: (1) a self-improving reduction whose amplification implies that a constant-factor
approximation immediately leads to a PTAS, and (2) a proof that there is no PTAS. However,
we achieve both these steps in a completely different manner compared to the approach of
Karger, Motwani, and Ramkumar. Both their steps are tailored for the longest path problem,
but fail for the maximum degree-constrained tree problem. Our results for MBT require
several novel ideas, as described next.

Karger, Motwani and Ramkumar’s self-improving reduction for the longest path proceeds
as follows: given an undirected graph G, they obtain a squared graph G2 by replacing each
edge {u, v} of G with a copy of G by adding edges from u and v to all vertices in that edge
copy. Let OPT (G) be the length of the longest path in G. They make the following two
observations: Obs (i) OPT (G2) ≥ OPT (G)2 and Obs (ii) a path in G2 of length at least
αOPT (G2) can be used to recover a path in G of length at least

√
αOPT (G). The first

observation is because we can extend any path P in G into a path of length |E(P)|2 by
traversing each edge copy also along P . The second observation is because for any path P2
in G2 either P2 restricted to some edge copy of G is a path of length at least

√
|E(P2)| or

projecting P2 to G (i.e., replacing each sub-path of P2 in each edge copy by a single edge)
gives a path of length at least

√
|E(P2)|. We note that a similar construction of the squared

graph for directed graphs also has the above mentioned observations: replace each directed
arc (u, v) of G with a copy of G by adding arcs from u to all vertices in that edge copy and
from all vertices in that edge copy to v.

In order to obtain inapproximability results for the maximum binary tree problem, we
first introduce different constructions for the squared graph in the self-improving reduction
compared to the ones by Karger et al. Moreover, our constructions of the squared graph
differ substantially between undirected and directed graphs. Interestingly, our constructions
also generalize naturally to the max degree-constrained tree problem. Secondly, although our
reduction for showing the lack of PTAS in undirected graphs for MBT is also from TSP(1, 2),
it is completely different from that of Karger et al. and, once again, generalizes to the max
degree-constrained tree problem. Thirdly, we show the lack of PTAS in DAGs for MBT by
reducing from the max 3-coloring problem. This reduction is altogether new – the reader
might recall that the longest path problem in DAGs is solvable in polynomial-time, so there
cannot be a counterpart of this step (i.e., lack of PTAS in DAGs) for longest path. We next
present further details underlying our proofs.

Self-improving reduction for directed graphs. We focus on the rooted variant of MBT in
directed graphs. We first assume that the given graph G contains a source (if not, adding
such a source vertex with arcs to all the vertices changes the optimum only by one). In

ESA 2020

30:8 The Maximum Binary Tree Problem

contrast to the squared graph described above (i.e., instead of adding edge copies), we replace
every vertex in G by a copy of G (that we call as a vertex copy) and for every arc (u, v) in G,
we add an arc from the root node of the vertex copy corresponding to u to the source node
of the vertex copy corresponding to v. Finally, we declare the root node of the root vertex
copy to be the root node of G2. Let α ∈ (0, 1] and OPT (G) be the number of vertices in the
maximum binary tree in G. With this construction of the squared graph, we show that (1)
OPT (G2) ≥ OPT (G)2 and (2) an α-approximate rooted binary tree T2 in G2 can be used
to recover a rooted binary tree T1 in G which is a

√
α-approximation. We emphasize that if

G is a DAG, then the graph G2 obtained by this construction is also a DAG.

Inapproximability for DAGs. In order to show the constant-factor inapproximability result
for DAGs, it suffices to show that there is no PTAS (due to the self-improving reduction for
directed graphs described above). We show the lack of a PTAS in DAGs by reducing from
the max 3-coloring problem in 3-colorable graphs. It is known that this problem is APX-hard
– in particular, there is no polynomial-time algorithm to find a coloring that colors at least
32/33-fraction of the edges properly [20]. Our reduction encodes the coloring problem into a
DAGMaxBinaryTree instance in a way that recovers a consistent coloring for the vertices
while also being proper for a large fraction of the edges. Our ETH-based inapproximability
result is also a consequence of this reduction in conjunction with the self-improving reduction.
We again emphasize that there is no counterpart of APX-hardness in DAGs for max binary
tree in the longest path literature.

Self-improving reduction for undirected graphs. For UndirMaxBinaryTree, the self-
improving reduction is more involved. Our above-mentioned reduction for DirMaxBinary-
Tree heavily exploits the directed nature of the graph (e.g., uses source vertices) and hence,
is not applicable for undirected graphs. Moreover, the same choice of squared graph G2 as
Karger et al. [22] fails since Obs (ii) does not hold any more: the tree T2 restricted to each
edge copy may not be a tree (but it will be a forest). However, we observe that T2 restricted
to each edge copy may result in a forest with up to four binary trees in it. This observation
and a more careful projection can be used to recover a tree of size at least

√
|V (T2)|/4 (let

us call this weakened Obs (ii)). Yet, weakened Obs (ii) is insufficient for a self-improving
reduction. One approach to fix this would be to construct a different squared graph G42

that strengthens Obs (i) to guarantee that OPT (G42) ≥ 16OPT (G)2 while still allowing
us to recover a binary tree of size

√
|V (T2)|/4 in G from a binary tree T2 in G42. Such

a strengthened Obs (i) coupled with weakened Obs (ii) would complete the self-improving
reduction. Our reduction is a variant of this approach: we introduce a construction of
the squared-graph that strengthens Obs (i) by a factor of 2 while also weakening Obs (ii)
only by a factor of 2. We prove these two properties of the construction by relying on a
handshake-like property of binary trees which is a relationship between the number of nodes
of each degree and the total number of nodes in the binary tree.

Inapproximability for undirected graphs. In order to show the constant-factor inapproxim-
ability result, it suffices to show that there is no PTAS (due to the self-improving reduction).
We show the lack of a PTAS by reducing from TSP(1, 2). We mention that Karger, Motwani,
and Ramkumar [22] also show the lack of a PTAS for the longest path problem by reducing
from TSP(1, 2). However, our reduction is much different from their reduction. Our reduction
mainly relies on the fact that if we add a pendant node to each vertex of a graph G and obtain
a binary tree T that has a large number of such pendants, then the binary tree restricted to
G cannot have too many nodes of degree three. Our ETH-based inapproximability result is
also a consequence of this reduction in conjunction with the self-improving reduction.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:9

1.3.2 Algorithmic results
A 2kpoly(n) time algorithm for k-BinaryTree. The proof of this result is inspired by the
algebrization technique introduced in [26, 27, 36] for designing randomized algorithms for
k-Path and k-Tree – in k-Path, the goal is to recover a path of length k in the given graph
while k-Tree asks to recover a given tree on k vertices in the given graph. Their idea is to
encode a path (or the given tree) as a multilinear monomial term in a carefully constructed
polynomial, which is efficiently computable using an arithmetic circuit. Then, a result due
to Williams [36] is used to verify if the constructed polynomial contains a multilinear term –
Williams’ result gives an efficient randomized algorithm, which on input a small circuit that
computes the polynomial, outputs “yes” if a multilinear term exists in the sum of products
representation of the input polynomial, and “no” otherwise. The subgraph that is sought may
then be extracted using an additional pass over the graph. Our main technical contribution
is the construction of a polynomial PG whose multilinear terms correspond to binary trees of
size k in G and which is efficiently computable by an arithmetic circuit. We remark that the
polynomial constructions in previous results do not readily generalize for our problem. Our
key contribution is the construction of a suitable polynomial, based on a carefully designed
recursion.

Efficient algorithm for bipartite permutation graphs. Our main structural insight for
bipartite permutation graphs is that there exists a maximum binary tree which is crossing-
free with respect to the so-called strong ordering of the vertices. With this insight, MBT in
bipartite permutation graphs reduces to finding a maximum crossing-free binary tree. We
solve this latter problem by dynamic programming.

Organization. We present the 2kpoly(n) time algorithm for k-BinaryTree in Section 2.
We present our hardness results for DAGs in Section 3. We conclude with a few open
problems in Section 4. Due to page limits, we formulate an IP for DAGs and discuss its
integrality gap, show our hardness results for undirected graphs, and design an efficient
algorithm for bipartite permutation graphs in the full version [11].

1.4 Preliminaries
MBT in directed graphs. Given a directed graph G = (V,E) and a vertex r ∈ V , we say
that a subgraph T where V (T) ⊆ V and E(T) ⊆ E, is an r-rooted tree in G if T is acyclic
and every vertex v in T has a unique directed path (in T) to r. If the in-degree of each vertex
in T is at most 2, then T is an r-rooted binary tree. The problem of interest in directed
graphs is rooted-DirMaxBinaryTree: Given a directed graph G = (V,E) and a root
r ∈ V , the goal is to find an r-rooted binary tree in G with maximum number of vertices.
The problem DAGMaxBinaryTree is a special case of rooted-DirMaxBinaryTree in
which the input directed graph is a DAG. We recall that the rooted and unrooted variants of
the maximum binary tree problem in DAGs are equivalent.

MBT in undirected graphs. Given an undirected graph G = (V,E), we say that a subgraph
T , where V (T) ⊆ V and E(T) ⊆ E, is a binary tree in G if T is connected, acyclic, and
degT (v) ≤ 3 for every vertex v ∈ V (T). We will focus on the unrooted variant, i.e., Undir-
MaxBinaryTree, since the inapproximability results for the rooted variant are implied by
inapproximability results for the unrooted variant. Here, we are given an undirected graph
G and the goal is to find a binary tree in G with maximum number of vertices.

ESA 2020

30:10 The Maximum Binary Tree Problem

2 A 2kpoly(n) time algorithm for k-BinaryTree

In this section, we present a randomized algorithm that solves k-BinaryTree exactly and
runs in time 2kpoly(n) where n is the number of vertices in the input graph. We recall that
k-BinaryTree is the problem of deciding whether a given directed graph contains a binary
tree of size k. Our algorithm is inspired by an algebraic approach for solving the k-Path
problem – the algebraic approach relies on efficient detection of multilinear terms in a given
polynomial.

k-Path, polynomials and multilinear terms. We begin with a recap of the algebraic ap-
proach to solve k-Path– here, the goal is to verify if a given (directed or undirected) graph
G contains a path of length at least k. There has been a rich line of research dedicated to
designing algorithms for k-Path with running time βkpoly(n) where β > 1 is a constant
and n is the number of vertices in G (cf. [2, 8, 26,36]). In particular, the algorithms in [26]
and [36] are based on detecting multilinear terms in a polynomial.

We now recall the problem of detecting multilinear terms in a polynomial. Here, we
are given a polynomial with coefficients in a finite field Fq and the goal is to verify if it
has a multilinear term. We emphasize that the input polynomial is given implicitly by
an arithmetic circuit consisting of additive and multiplicative gates. In other words, the
algorithm is allowed to evaluate the polynomial at any point but does not have direct access
to the sum-of-products expansion of the polynomial. We recall that a multilinear term in
a polynomial p ∈ Fq[x1, x2, · · · , xm] is a monomial in the sum-of-products expansion of p
consisting of only degree-1 variables. For example, in the following polynomial

p(x1, x2, x3) = x2
1x2 + x3 + x1x2x3,

the monomials x3 and x1x2x3 are multilinear terms, whereas x2
1x2 is not a multilinear term

since x1 has degree 2. We will use the algorithm mentioned in the following theorem as a
black box for detecting multilinear terms in a given polynomial.

I Theorem 5 (Theorem 3.1 in [36]). Let P (x1, · · · , xn) be a polynomial of degree at most k,
represented by an arithmetic circuit of size s(n) with additive gates (of unbounded fan-in),
multiplicative gates (of fan-in two), and no scalar multiplications. There is a randomized
algorithm that on input P runs in 2ks(n)·poly(n) log (1/δ) time, outputs “yes” with probability
1− δ if there is a multilinear term in the sum-product expansion of P , and outputs “no” if
there is no multilinear term.

The idea behind solving k-Path with the help of this theorem is to construct a polynomial
pG based on the input graph G so that pG contains a multilinear term if and only if G
contains a simple path of length k. At the same time, pG should be computable by an
arithmetic circuit of size poly(n). Koutis and Williams achieved these properties using the
following polynomial:

pG(x1, · · · , xn) :=
∑

(vi1 ,vi2 ,...,vik): a walk in G

xi1xi2 . . . xik
.

We recall that a walk in G is a sequence of vertices in which neighbouring vertices are adjacent
in G. From the definition, it is easy to observe that there is a one-to-one correspondence
between simple k-paths in G and multilinear terms in pG. Moreover, it can be shown that
there is an arithmetic circuit of size O

(
k2(m+ n)

)
that computes pG, where m is the number

of edges and n is the number of vertices in G. See Chapter 10.4 of [14] for alternative
constructions of this polynomial.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:11

The polynomial construction for k-BinaryTree. Following the above-mentioned approach,
we construct a polynomial PG with the property that PG contains a multilinear term if and
only if G contains a binary tree of size k. Unfortunately, there is no immediate generalization
of walks of length k that characterize binary trees on k vertices. So, instead of defining the
polynomial conceptually, we will define the polynomial recursively by building the arithmetic
circuit that computes PG, and will prove the correspondence between multilinear terms in
PG and binary trees of size k in G. In the definition of our polynomial, we also need to
introduce an auxiliary variable to eliminate low-degree multilinear terms in PG (which is not
an issue in the construction of the polynomial for k-Path).

Let G = (V,E) be the given directed graph. For v ∈ V , let ∆in
v := {u ∈ V : (u, v) ∈ E}.

We begin by defining a polynomial P (k)
v for every v ∈ V and every positive integer k, in

(n+ 1) variables {xv}v∈V ∪ {y}:

P
(k)
v :=

xv if k = 1
xv · yk−1 if k > 1 and ∆in

v = ∅

xv

 ∑
u∈∆in

v

P
(k−1)
u +

k−2∑
`=1

 ∑
u1∈∆in

v

P
(`)
u1

 ∑
u2∈∆in

v

P
(k−1−`)
u2

 if k > 1 and ∆in
v 6= ∅

Next, we define P (k)
G :=

∑
v∈V P

(k)
v . We recall that a polynomial is homogenous if every

monomial has the same degree. By induction on k, the polynomial P (k)
v is a degree-k

homogeneous polynomial and so is P (k)
G . Moreover, by the recursive definition, we see that

P
(k)
v can be represented as an arithmetic circuit of size O(k2n) since there are kn polynomials

in total, and computing each requires O(1) addition gates (with unbounded fan-in) and O(k)
multiplication gates (with fan-in two). We show the following connection between multilinear
terms in P (k)

G and binary trees in G.

I Lemma 6. The graph G has a binary tree of size k rooted at r if and only if there is a
multilinear term of the form

∏
v∈S xv in P (k)

r where |S| = k.

Proof. We first show the forward direction, i.e., if G has a binary tree T of size k rooted at
r, then there is a multilinear term of the form

∏
v∈T xv in P (k)

r . We prove this by induction
on k. The base case k = 1 follows since P (1)

r = xr. Suppose that the forward direction holds
when |T | ≤ k − 1. For |T | = k, we consider two cases.
1. The root r has only one child c. The subtree Tc of T rooted at c has size k − 1. By

induction hypothesis there is a multilinear term
∏

v∈Tc
xv in P (k−1)

c . Since c ∈ ∆in
r , for

some polynomial Q we can write

P (k)
r = xr

(
P (k−1)

c +Q
)
.

Therefore xr ·
∏

v∈Tc
xv is a term in P (k)

r . This term is multilinear and equals to
∏

v∈T xv

since r /∈ Tc.
2. The root r has two children c1, c2. Suppose that the subtree Tc1 rooted at c1 has size `,

thus the subtree Tc2 rooted at c2 has size k− 1− `. The induction hypothesis implies that
P

(`)
c1 has a multilinear term

∏
v∈Tc1

xv, and P (k−1−`)
c2 has a multilinear term

∏
v∈Tc2

xv.
Since c1, c2 ∈ ∆in

r , for some polynomial Q we can write

P (k)
r = xr

(
P (`)

c1
P (k−1−`)

c2
+Q

)
.

Therefore xr

(∏
v∈Tc1

xv

)(∏
v∈Tc2

xv

)
is a term in P (k)

r . This term is multilinear and
equals to

∏
v∈T xv because T is the disjoint union of r, Tc1 and Tc2 .

ESA 2020

30:12 The Maximum Binary Tree Problem

In both cases, the polynomial P (k)
r has a multilinear term

∏
v∈T xv. This completes the

inductive step.
Next, we show that if P (k)

r has a multilinear term of the form
∏

v∈S xv where |S| = k,
then there is a binary tree T rooted at r in G with vertex set S. We prove this also by
induction on k. The base case k = 1 is trivial since P (1)

r = xr and there is a binary tree of
size 1 rooted at r. Suppose that the statement holds for k − 1 or less (k > 1).

Let
∏

v∈S xv be a multilinear term in P (k)
r . We note that r ∈ S since every term in P (k)

r

contains xr. Moreover, we may assume that ∆in
r 6= ∅ since otherwise P (k)

r = xr · yk−1 which
does not contain any term of the form

∏
v∈S xv. According to the definition of P (k)

r , we
could have two cases.
1. The term

∏
v∈S\{r} xv is a multilinear term in P (k−1)

c for some c ∈ ∆in
r . The induction

hypothesis implies that there is a binary tree Tc rooted at c with vertex set S \ {r}. Let
T be the binary tree obtained by adding the edge (c, r) to Tc. Then T is a binary tree
rooted at r with vertex set S.

2. The term
∏

v∈S\{r} xv is a multilinear term in P (`)
c1 P

(k−1−`)
c2 for some c1, c2 ∈ ∆in

r and
some integer 1 ≤ ` ≤ k − 2. In this case, since P (`)

c1 and P
(k−1−`)
c2 are homogeneous

polynomials of degree ` and k − 1− `, we can partition S \ {r} into two sets S1 and S2
with |S1| = ` and |S2| = k − 1− ` such that

∏
v∈S1

xv is a multilinear term in P (`)
c1 , and∏

v∈S2
xv is a multilinear term in P (`)

c2 . Applying the induction hypothesis, we obtain
a binary tree Tc1 (rooted at c1) with vertex set S1 and a binary tree Tc2 (rooted at c2)
with vertex set S2. Let T be the binary tree obtained by adding edges (c1, r) and (c2, r)
to Tc1 ∪ Tc2 . Then T is a binary tree rooted at r with vertex set S1 ∪ S2 ∪ {r} = S.

In both cases, we can find a binary tree T rooted at r with vertex set S. This completes the
inductive step. J

With this choice of P (k)
G , we call the algorithm appearing in Theorem 5 on input polynomial

P̃
(k)
G := y · P (k)

G , and output the result. We note that every multilinear term of the form∏
v∈S xv in P

(k)
G becomes a multilinear term of the form y ·

∏
v∈S xv in P̃

(k)
G , and every

multilinear term of the form y ·
∏

v∈S xv in P (k)
G becomes y2 ·

∏
v∈S xv in P̃ (k)

G , which is no
longer a multilinear term. In light of Lemma 6, the graph G contains a binary tree of size k
if and only if the degree-(k + 1) homogeneous polynomial P̃ (k)

G has a multilinear term. The
running time is 2k+1 ·O(k2n) · poly(n+ 1) log (1/δ) = 2k · poly(n) log (1/δ).

We remark that this algorithm does not immediately tell us the tree T (namely the edges
in T). However, we can find the edges in T with high probability via a reduction from the
search variant to the decision variant. This is formalized in the next lemma.

I Lemma 7. Suppose that there is an algorithm A which takes as input a directed graph
G = (V,E), an integer k and δ′ ∈ (0, 1) runs in time 2kpoly (|V |) log (1/δ′) and

outputs “yes” with probability at least 1− δ′ if G contains a binary tree of size k,
outputs “no” with probability 1 if G does not contain a binary tree of size k.

Then there also exists an algorithm A′ which for every δ ∈ (0, 1) outputs a binary tree
T of size k with probability at least 1 − δ when the answer is “yes”, and runs in time
2kpoly (|V |) log (1/δ).

Proof. The algorithm A′ iterates through all arcs e ∈ E and calls A on (G − e, k) with
δ′ = δ/m where G− e = (V,E \ {e}) and m = |E|. If for some e ∈ E the call to A outputs
“yes”, we remove e from G (i.e., set G ← G − e) and continue the process. We will show
that when the algorithm terminates, the arcs in G constitute a binary tree of size k (if there
exists one) with probability at least 1− δ.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:13

Suppose the order in which A′ processes the arcs is e1, e2, · · · , em, and the graph at
iteration t is denoted by G(t). Let Bt denote the event “G(t−1) − et contains a binary tree of
size k, but the call to A

(
G(t−1) − et, k

)
returns no”. Due to the assumption we made for A,

event Bt happens with probability at most δ′. Since the algorithm A has perfect soundness,
whenever A′ removes an edge we are certain that the remaining graph still contains a binary
tree of size k (otherwise the call to A would never return “yes”). That means if G(0) = G

contains a binary tree of size k then G(t) contains a binary tree of size k for all 0 ≤ t ≤ m.
Therefore if none of the events Bt happens, the final graph G(m) is a binary tree of size k.
The probability of failure is upper bounded by

Pr
[

m⋃
t=1

Bt

]
≤ m · δ′ = m · δ

m
= δ.

Since algorithm A′ makes m calls to algorithm A, the running time of
A′ is m · 2kpoly (|V |) log (1/δ′) = 2kpoly (|V |) log (1/δ). J

Theorem 5 in conjunction with Lemmas 6 and 7 complete the proof of Theorem 3.

3 Hardness results for DAGs

In this section, we show the inapproximability of finding a maximum binary tree in DAGs.
The size of a binary tree denotes the number of vertices in the tree.

3.1 Self-improvability for directed graphs
We show that an algorithm for rooted-DirMaxBinaryTree achieving a constant factor
approximation can be used to design a PTAS in Theorem 11. We emphasize that this result
holds for arbitrary directed graphs and not just DAGs. The idea is to gradually boost up
the approximation ratio by running the constant-factor approximation algorithm on squared
graphs. Our notion of squared graph will be the following.

I Definition 8. Given a directed graph G = (V,E) with root r, the squared graph G2 is the
directed graph obtained by performing the following operations on G:
1. Construct G′ = (V ′, E′) by introducing a source vertex s, i.e., V ′ := V ∪ {s}. We add

arcs from s to every vertex in G, i.e., E′ := E ∪ {(s, v) : v ∈ V }.
2. For each u ∈ V (we note that V does not include the source vertex), we create a copy of

G′ that we denote as a vertex copy G′u. We will denote the root vertex of G′u by ru, and
the source vertex of G′u by su.

3. For each (u, v) ∈ E, we create an arc (ru, sv).
4. We declare the root of G2 to be rr, i.e. the root vertex of the vertex copy G′r.
We define G2k+1 recursively as G2k+1 :=

(
G2k

)2
with the base case G1 := G.

Given a directed graph G with n− 1 vertices, the number of vertices in G2k satisfies the
recurrence relation∣∣∣V (G2k

)∣∣∣ =
∣∣∣V (G2k−1

)∣∣∣ · (∣∣∣V (G2k−1
)∣∣∣+ 1

)
=
∣∣∣V (G2k−1

)∣∣∣2 +
∣∣∣V (G2k−1

)∣∣∣ .
Hence, we have∣∣∣V (G2k

)∣∣∣+1 ≤
(∣∣∣V (G2k−1

)∣∣∣+ 1
)2
≤
(∣∣∣V (G2k−2

)∣∣∣+ 1
)22

≤ · · · ≤
(∣∣∣V (G20

)∣∣∣+ 1
)2k

= n2k

.

ESA 2020

30:14 The Maximum Binary Tree Problem

r

v1 v2

(a) G rooted at the black node.

s0

s1

s2

r

(b) G2 rooted at the black node. Source nodes are
represented by diamonds.

Figure 1 Directed Squared Graph.

We use OPT (G) to denote the size (number of vertices) of a maximum binary tree in
G. The following lemma shows that OPT (G) is super-multiplicative under the squaring
operation.

I Lemma 9. For any fixed root r, OPT (G2) ≥ OPT (G)2.

Proof. Suppose we have an optimal r-rooted binary tree T1 of G, i.e. |V (T1) | = OPT (G).
We construct an rr-rooted binary tree T2 of G2 as follows:
1. For v ∈ V (G), define T ′v = Tv ∪{sv} to be the optimal rv-rooted binary tree in the vertex

copy G′v where Tv is identical to T1 and the source vertex sv is connected to an arbitrary
leaf node in Tv.

2. For every vertex v ∈ T1, add T ′v to T2. This step generates |V (T1) |·(|V (T1) |+ 1) vertices
in T2.

3. Connect the copies selected in step 2 by adding the arc (ru, sv) to T2 for every arc
(u, v) ∈ T1.

Since T1 is an r-rooted binary tree (in G), it follows that T2 is an rr-rooted binary tree (in
G2). Moreover, the size of T2 is

|V (T2) | = |V (T1) | · (|V (T1) |+ 1) ≥ OPT (G)2
,

which cannot exceed OPT
(
G2). J

The following lemma shows that a large binary tree in G2 can be used to obtain a large
binary tree in G.

I Lemma 10. For every α ∈ (0, 1], given an rr-rooted binary tree T2 in G2 with size

|V (T2) | ≥ αOPT
(
G2)− 1,

there is a linear-time (in the size of G2) algorithm that finds an r-rooted binary tree T1 of G
with size

|V (T1) | ≥
√
αOPT (G)− 1.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:15

Proof. Let U :={v : v∈V (G) such that rv∈V (T2)} and A :={(v, w) : v, w∈V (G), (rv, sw)∈
E(T2)}. We note that T ′1 := (U,A) is an r-rooted binary tree in G. This is because the
path from every v ∈ U to the root r is preserved, and the in-degree of every node w ∈ U
is bounded by the in-degree of sw (in T2), which is thus at most 2, and similarly the out-
degree of every node is at most 1. We also remark that T ′1 can be found in linear time. If
|U | ≥

√
αOPT (G) >

√
αOPT (G)−1, then the lemma is already proved. So, we may assume

that |U | <
√
αOPT (G).

We now consider T ′v := (V (T2) ∩ V (G′v) , E (T2) ∩ E (G′v)) for v ∈ U . We can view T ′v as
the restriction of T2 to G′v, hence every node of T ′v has out-degree at most 2. Since T2 is
an rr-rooted binary tree in G2, every vertex in V (T2) ∩ V (G′v) has a unique directed path
(in T2) to rr, which must go through rv, thus every vertex in V (T2) ∩ V (G′v) has a unique
directed path to rv. It follows that T ′v is an rv-rooted binary tree in the vertex copy G′v.

We now show that there exists v ∈ U such that |V (T ′v) | ≥
√
αOPT (G). Suppose not,

which means for every v ∈ U we have |V (T ′v) | <
√
αOPT (G). Then

|V (T2) | =
∑
v∈U

|V (T ′v) | <
∑
v∈U

(√
αOPT (G)

)
<
√
αOPT (G) ·

√
αOPT (G)

= αOPT (G)2 ≤ α ·OPT
(
G2) ,

a contradiction. The last inequality is due to Lemma 9.
In linear time we can find a binary tree T ′v with the desired size |V (T ′v) | ≥

√
αOPT (G).

To complete the proof of the lemma, we let T1 := T ′v \ {sv} which is (isomorphic to) an
r-rooted binary tree in G with size at least

√
αOPT (G)− 1. J

I Theorem 11. If rooted-DirMaxBinaryTree has a polynomial-time algorithm that
achieves a constant-factor approximation, then it has a PTAS.

Proof. Suppose that we have a polynomial-time algorithm A that achieves an α-approxima-
tion for rooted-DirMaxBinaryTree. Given a directed graph G, root r and ε > 0,
let

k := 1 +
⌈

log2
log2 α

log2(1− ε)

⌉
be an integer constant that depends on α and ε. We construct G2k and run algorithm A on
G2k . Then, we get a binary tree in G2k of size at least αOPT

(
G2k

)
− 1. By Lemma 10, we

can obtain an r-rooted binary tree in G of size at least

α2−k

OPT (G)− 1 ≥ α2−k+1
OPT (G) ≥ (1− ε)OPT (G).

The first inequality holds as long as

OPT (G) ≥ 1√
1− ε− (1− ε)

≥ 1
α2−k − α2−k+1 .

We note that if OPT (G) is smaller than 1/
(
α2−k − α2−k+1

)
which is a constant, then we

can solve the problem exactly by brute force in polynomial time. Finally, we also observe
that for fixed ε, the running time of this algorithm is polynomial since there are at most
n2k = nO(1) vertices in the graph G2k . J

ESA 2020

30:16 The Maximum Binary Tree Problem

3.2 APX-hardness for DAGs
Next, we show the inapproximability results for DAGs. We begin by recalling DAGMax-
BinaryTree: We begin by recalling the problem:

DAGMaxBinaryTree

Given: A directed acyclic graph G = (V,E) and a root r ∈ V .

Goal: An r-rooted binary tree in G with the largest number of nodes.

We may assume that the root is the only vertex that has no outgoing arcs as we may discard
all vertices that cannot reach the root. We show that DAGMaxBinaryTree is APX-hard
by reducing from the following problem.

Max-3-Colorable-Subgraph

Given: An undirected graph G that is 3-colorable.

Goal: A 3-coloring of G that maximizes the fraction of properly colored edges.

It is known that finding a 3-coloring that properly colors at least 32/33-fraction of edges
in a given 3-colorable graph is NP-hard [5,20]. In particular, Max-3-Colorable-Subgraph
is APX-hard. We reduce Max-3-Colorable-Subgraph to DAGMaxBinaryTree. Let
G = (V,E) be the input 3-colorable undirected graph with n := |V | and m := |E|. For
ε > 0 to be fixed later, we construct a DAG, denoted D(G, ε), as follows (see Figure 2 for an
illustration):

a

c

vi

r
(1)
i

...

r
(p1)
i

...

g
(1)
i

...

g
(p2)
i

...

b
(1)
i

...

b
(p3)
i

...

vj

r
(1)
j

...

r
(q1)
j

...

g
(1)
j

...

g
(q2)
j

...

b
(1)
j

...

b
(q3)
j

...

.

aR
e

TR
e

aG
e

TG
e

aB
e

TB
e

.

B

Figure 2 DAG D(G, ε) constructed in the reduction from Max-3-Colorable-Subgraph to
DAGMaxBinaryTree.

1. Create a directed binary tree B rooted at node c with n := |V | leaf nodes. We will
identify each leaf node by a unique vertex v ∈ V . Create a super root a and arc c→ a.
This tree and the super root would have 2n nodes, including the super root node a, n
leaf nodes, and n− 1 internal nodes.

2. For every i ∈ V , we introduce three directed paths of length n that will be referred to as
Ri, Gi and Bi. Let Ri be structured as r(1)

i ← r
(2)
i ← · · · ← r

(n)
i , and similarly introduce

g
(k)
i and b(k)

i with the same structure. Also add arcs r(1)
i → vi, g(1)

i → vi and b(1)
i → vi.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:17

3. For every edge e = {i, j} ∈ E, introduce three directed binary trees that will be referred to
as TR

e , T
G
e , and TB

e , each with t =
⌈

2εn(n+1)+4n2

εm

⌉
nodes. Let the roots of the binary trees

TR
e , T

G
e , and TB

e be aR
e , a

G
e , and aB

e respectively. Add arcs aR
e → r

(p1)
i and aR

e → r
(q1)
j

where r(p1)
i and r(q1)

j are two nodes in Ri and Rj with in-degree strictly smaller than 2.
We note that Ri is a path with n nodes so such a node always exists. Similarly connect aG

e

to g(p2)
i and g(q2)

j , and aB
e to b(p3)

i and b(q3)
j in the directed paths Gi and Bi, respectively.

The constructed graph D(G, ε) is a DAG. We fix a to be the root. The number of nodes
N in D(G, ε) is N = 3mt+ 3n · n+ 2n = 3mt+ 3n2 + 2n. We note that every node vi ∈ V
has in-degree exactly 2 in every a-rooted maximal binary tree in D(G, ε). The idea of this
reduction is to encode the color of vi as the unique path among Ri, Gi, Bi that is not in the
subtree under vi. The following two lemmas summarize the main properties of the DAG
constructed above.

I Lemma 12. Let T be a maximal a-rooted binary tree of D(G, ε). If |V (T)| ≥ (1−ε/4)(N−
n2), then at most εm nodes among ∪e∈E{aR

e , a
G
e , a

B
e } are not in T .

Proof. Suppose more than εm such nodes are missing from T . For each node aR
e that is not

in T , the corresponding subtree TR
e is also not in T (same for aG

e and aB
e). Therefore

|V (T)| < N − εmt = 3mt+ 3n2 + 2n− εmt =
(

1− ε

4

)
· 3mt+ 3n2 + 2n− ε

4mt.

The choice of t implies that εmt/4 > εn(n+ 1)/2 + n2. Therefore

|V (T)| <
(

1− ε

4

)
· 3mt+ 3n2 + 2n− εn(n+ 1)

2 − n2

<
(

1− ε

4

)
· 3mt+

(
1− ε

4

) (
2n2 + 2n

)
=
(

1− ε

4

)
(N − n2),

a contradiction. J

I Lemma 13. If G is 3-colorable, then every a-rooted maximum binary tree in D(G, ε) has
size exactly N − n2.

Proof. We first note that every binary subtree of D(G, ε) has size at most N − n2. This is
because there are n vertices with in-degree 3 (namely v1, v2, · · · , vn). For each such vertex
vi, there are 3 vertices r(1)

i , g
(1)
i and b(1)

i whose only outgoing arc is to vi. Moreover, each
vertex r(1)

i (and similarly g(1)
i and b(1)

i) is the end-vertex of an induced path of length n.
Suppose G is 3-colorable. We now construct an a-rooted binary tree T of size N − n2 in

D(G, ε). We focus on the nodes to be discarded so that we may construct a binary spanning
tree with the remaining nodes. Let σ : V → {Red,Green,Blue} be a proper 3-coloring of
G. If σ(vi) = Red, we discard the path Ri. The cases where σ(vi) ∈ {Green,Blue} are
similar. Since there are no monochromatic edges, there do not exist e = {vi, vj} ∈ E and
C ∈ {R,G,B} such that both parents of aC

e are not in T . Therefore every binary tree TC
e is

contained as a subtree in T . J

I Theorem 14. Suppose there is a PTAS for DAGMaxBinaryTree on DAGs, then for
every ε > 0 there is a polynomial-time algorithm which takes as input an undirected 3-colorable
graph G, and outputs a 3-coloring of G that properly colors at least (1− ε)m edges.

ESA 2020

30:18 The Maximum Binary Tree Problem

Proof. Let G = (V,E) be the given undirected 3-colorable graph. We construct D(G, ε) in
polynomial time. We note that the constructed graph D(G, ε) is a directed acyclic graph.
We now run the PTAS for DAGMaxBinaryTree on D(G, ε) and root a to obtain a
(1− ε/4)-approximate maximum binary tree in D(G, ε). By Lemma 13 and the fact that G
is 3-colorable, the PTAS will output an a-rooted binary tree T of size at least(

1− ε

4

)
(N − n2).

We may assume that T is a maximal binary tree in D(G, ε) (if not, then add more vertices to
T until we cannot add any further). Maximality ensures that the nodes vi are in the tree T
and moreover, the in-degree of vi in T is exactly 2. For each vi ∈ V , let ci be the unique node
among

{
r

(1)
i , g

(1)
i , b

(1)
i

}
that is not in T . We define a coloring σ : V → {Red,Green,Blue}

of G as

∀vi ∈ V, σ(vi) =

Red if ci = r

(1)
i

Green if ci = g
(1)
i

Blue if ci = b
(1)
i .

We now argue that the coloring is proper for at least (1− ε)-fraction of the edges of G.
Suppose we have an edge e = {vi, vj} which is monochromatic under σ, and suppose w.l.o.g.
σ(vi) = σ(vj) = Red. This means that neither r(1)

i nor r(1)
j is included in T . Therefore

aR
e /∈ T since neither of the two vertices with incoming arcs from aR

e are in T . By Lemma 12,
we know that at most εm vertices among ∪e∈E{aR

e , a
G
e , a

B
e } can be excluded from T . Hence,

the coloring σ that we obtained can violate at most εm edges in G. J

Finally, we prove Theorem 1 using the self-improving argument (Theorem 11) and the
APX-hardness of DAGMaxBinaryTree (Theorem 14).

Proof of Theorem 1.
1. We observe that the graph G2 constructed in Section 3 for the self-improving reduction

is a DAG if G is a DAG. Therefore, by Theorem 11, a polynomial-time constant-factor
approximation for DAGMaxBinaryTree would imply a PTAS for DAGMaxBinary-
Tree, a contradiction to APX-hardness shown in Theorem 14.

2. Next we show hardness under the Exponential Time Hypothesis. Suppose there is a
polynomial-time algorithm A for DAGMaxBinaryTree that achieves an
exp (−C · log2 n/ log2 log2 n)-approximation for some constant C > 0. Given the input
graph G with n− 1 vertices, let k be an integer that satisfies

2
√

n ≤ n2k

≤ 22
√

n,

and run A on G2k to obtain a binary tree with size at least

exp (−C · log2 N/ log2 log2 N)OPT
(
G2k

)
,

where N = n2k upper bounds the size of G2k . Recursively running the algorithm suggested
in Theorem 11 k times gives us a binary tree in G with size at least

exp
(
−C · log2 N

log2 log2 N · 2k

)
OPT (G)− 1

≥ exp
(
−C · 2

√
n

log2
√
n
· log2 n√

n

)
OPT (G)− 1

≥ exp (−4C)OPT (G)− 1 ≥ 1
2 · exp (−4C)OPT (G).

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:19

The last inequality holds as long as

OPT (G) ≥ 2 · e4C .

We note that if OPT (G) is smaller than 2e4C which is a constant, we can solve the
problem exactly by brute force in polynomial time. Otherwise the above procedure can
be regarded as a constant-factor approximation for DAGMaxBinaryTree. The running
time is polynomial in

N = n2k

= exp
(
O
(√
n
))
,

which is sub-exponential. Moreover, from item 1 we know that it is NP-hard to approxim-
ate DAGMaxBinaryTree within a constant factor, thus NP ⊆ DTIME (exp (O (

√
n))).

3. The proof of this item is almost identical to the previous one except that we choose a
different integer k. Suppose there is an algorithm A′ for DAGMaxBinaryTree that
achieves a exp

(
−C · log1−ε n

)
-approximation for some constant C > 0, and runs in time

exp
(
O
(

logd n
))

for some constant d > 0. We show that there is an algorithm that
achieves a constant-factor approximation for DAGMaxBinaryTree, and runs in time
exp

(
O
(

logd/ε n
))

.
Given a DAG G on n − 1 vertices as input for DAGMaxBinaryTree, let k =⌈(1

ε − 1
)

log2 logn
⌉
be an integer that satisfies(

2k logn
)1−ε ≤ 2k ≤ 2 (logn)

1
ε−1

.

Running A′ on G2k gives us a binary tree with size at least

exp
(
−C · log1−ε N

)
OPT

(
G2k

)
,

where N = n2k upper bounds the size of G2k . Recursively running the algorithm suggested
in Theorem 11 k times gives us a binary tree in G with size at least

exp
(
−C · log1−ε N

2k

)
OPT (G)− 1

≥ exp
(
−C ·

(
2k logn

)1−ε

2k

)
OPT (G)− 1

≥ exp (−C)OPT (G)− 1 ≥ 1
2 · exp (−C)OPT (G).

The last inequality holds as long as

OPT (G) ≥ 2 · eC .

We note that if OPT (G) is smaller than 2eC which is a constant, we can solve the problem
exactly by brute force in polynomial time. Otherwise the above procedure can be regarded
as a constant-factor approximation for DAGMaxBinaryTree. The running time is
quasi-polynomial in N , i.e. for some constant C ′ > 0, the running time is upper-bounded
by

exp
(
C ′
(

logd N
))

= exp
(
C ′
((

2k logn
)d
))
≤ exp

(
C ′
(

logd/ε n
))

. J

ESA 2020

30:20 The Maximum Binary Tree Problem

4 Conclusion and Open Problems

In this work, we introduced the maximum binary tree problem (MBT) and presented
hardness of approximation results for undirected, directed, and directed acyclic graphs, a
fixed-parameter algorithm with the solution as the parameter, and efficient algorithms for
bipartite permutation graphs. Our work raises several open questions that we state below.

Inapproximability of DirMaxBinaryTree. The view that MBT is a variant of the longest
path problem leads to the natural question of whether the inapproximability results for
MBT match that of longest path: Is MBT in directed graphs (or even in DAGs) hard to
approximate within a factor of 1/n1−ε (we recall that longest path is hard to approximate
within a factor of 1/n1−ε [9])? We remark that the self-improving technique is weak to handle
1/n1−ε-approximations since the squaring operation yields no improvement. The reduction
in [9] showing 1/n1−ε-inapproximability of longest paths is from a restricted version of the
vertex-disjoint paths problem and is very specific to paths. Furthermore, directed cycles play
a crucial role in their reduction for a fundamental reason: longest path is polynomial-time
solvable in DAGs. However, it is unclear if directed cycles are the source of hardness for
MBT in digraphs (since MBT is already hard in DAGs).

Bicriteria Approximations. Given our inapproximability results, one natural algorithmic
possibility is that of bicriteria approximations: can we find a tree with at least α·OPT vertices
while violating the degree bound by a factor of at most β? In particular, this motivates
an intriguing direction concerning the longest path problem: Given an undirected/directed
graph G with a path of length k, can we find a c1-degree tree in G with at least k/c2 vertices
for some constants c1 and c2 efficiently?

Maximum Binary Tree in Permutation DAGs. Finally, it would be interesting to resolve
the complexity of MBT in permutation DAGs (and permutation graphs). This would also
resolve the open problem posed by Byers, Heeringa, Mitzenmacher, and Zervas of whether
the maximum heapable subsequence problem is solvable in polynomial time [10].

References
1 Louigi Addario-Berry, Ketan Dalal, and Bruce A Reed. Degree constrained subgraphs.

Electronic Notes in Discrete Mathematics, 19:257–263, 2005.
2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
3 Omid Amini, David Peleg, Stéphane Pérennes, Ignasi Sau, and Saket Saurabh. Degree-

constrained subgraph problems: Hardness and approximation results. In Approximation and
Online Algorithms, pages 29–42, 2009.

4 Omid Amini, Ignasi Sau, and Saket Saurabh. Parameterized complexity of the smallest
degree-constrained subgraph problem. In Parameterized and Exact Computation, pages 13–29,
2008.

5 Per Austrin, Ryan O’Donnell, and John Wright. A new point of NP-hardness for 2-to-1
Label-Cover. In Proceedings of the 15th Annual International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, APPROX ’12, pages 1–12, 2012.

6 János Balogh, Cosmin Bonchiş, Diana Diniş, Gabriel Istrate, and Ioan Todinca. On the
heapability of finite partial orders. Discrete Mathematics and Theoretical Computer Science,
22(1):paper # 17, 2020.

7 Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive guarantees for degree-
bounded directed network design. SIAM J. Comput., 39(4):1413–1431, October 2009.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:21

8 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. Journal of Computer and System Sciences, 87:119–139,
2017.

9 Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approximating longest directed
paths and cycles. In Automata, Languages and Programming, pages 222–233, 2004.

10 John Byers, Brent Heeringa, Michael Mitzenmacher, and Georgios Zervas. Heapable sequences
and subseqeuences. In Proceedings of the Meeting on Analytic Algorithmics and Combinatorics,
ANALCO ’11, pages 33–44, 2011.

11 Karthekeyan Chandrasekaran, Elena Grigorescu, Gabriel Istrate, Shubhang Kulkarni, Young-
San Lin, and Minshen Zhu. The maximum binary tree problem. arXiv preprint, 2019.
arXiv:1909.07915.

12 Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. A push–relabel
approximation algorithm for approximating the minimum-degree mst problem and its general-
ization to matroids. Theoretical Computer Science, 410(44):4489–4503, 2009.

13 Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. What Would
Edmonds Do? Augmenting Paths and Witnesses for Degree-Bounded MSTs. Algorithmica,
55(1):157–189, September 2009.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

15 Paul Erdös, Ralph J Faudree, CC Rousseau, and RH Schelp. Subgraphs of minimal degree k.
Discrete Math, 85(1):53–58, 1990.

16 Martin Fürer and Balaji Raghavachari. Approximating the minimum-degree steiner tree to
within one of optimal. Journal of Algorithms, 17(3):409–423, 1994. doi:10.1006/jagm.1994.
1042.

17 Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of the Fifteenth Annual ACM Symposium on
Theory of Computing, STOC ’83, pages 448–456, 1983.

18 Michael Garey and David Johnson. Computers and Intractability. W. H. Freeman and
Company, 1979.

19 Michel X. Goemans. Minimum bounded degree spanning trees. In Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’06, pages 273–282,
2006.

20 Venkatesan Guruswami and Ali Kemal Sinop. Improved inapproximability results for maximum
k-colorable subgraph. Theory of Computing, 9:413–435, 2013.

21 Gabriel Istrate and Cosmin Bonchiş. Heapability, interactive particle systems, partial orders:
Results and open problems. In Proceedings of DCFS’2016, 18th International Conference on
Descriptional Complexity of Formal Systems, pages 18–28. Springer, 2016.

22 David R. Karger, Rajeev Motwani, and G. D. S. Ramkumar. On approximating the longest
path in a graph. Algorithmica, 18(1):82–98, 1997.

23 Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. On some network design problems with
degree constraints. Journal of Computer and System Sciences, 79(5):725–736, 2013.

24 Ton Kloks, Dieter Kratsch, and Haiko Müller. Bandwidth of chain graphs. Information
Processing Letters, 68(6):313–315, 1998.

25 Jochen Könemann and R. Ravi. A matter of degree: Improved approximation algorithms for
degree-bounded minimum spanning trees. SIAM J. Comput., 31(6):1783–1793, June 2002.

26 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In International
Colloquium on Automata, Languages, and Programming, ICALP ’08, pages 575–586, 2008.

27 Ioannis Koutis and Ryan Williams. Limits and applications of group algebras for parameterized
problems. In International Colloquium on Automata, Languages, and Programming, ICALP
’09, pages 653–664, 2009.

28 Jochen Könemann and R. Ravi. Primal-dual meets local search: Approximating msts with
nonuniform degree bounds. SIAM Journal on Computing, 34(3):763–773, 2005.

ESA 2020

http://arxiv.org/abs/1909.07915
https://doi.org/10.1006/jagm.1994.1042
https://doi.org/10.1006/jagm.1994.1042

30:22 The Maximum Binary Tree Problem

29 Lap Chi Lau, Joseph (Seffi) Naor, Mohammad Salavatipour, and Mohit Singh. Survivable
network design with degree or order constraints. SIAM Journal on Computing, 39(3):1062–1087,
2009.

30 Jaclyn Porfilio. A combinatorial characterization of heapability. Master’s thesis, Williams
College, 2015.

31 R. Ravi, Madhav Marathe, S. S. Ravi, Daniel Rosenkrantz, and Harry B. Hunt III. Approxim-
ation algorithms for degree-constrained minimum-cost network-design problems. Algorithmica,
31(1):58–78, September 2001.

32 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to
within one of optimal. J. ACM, 62(1):1–19, March 2015.

33 Jacqueline Smith. Minimum degree spanning trees on bipartite permutation graphs. Master’s
thesis, University of Alberta, 2011.

34 Jeremy Spinrad, Andreas Brandstädt, and Lorna Stewart. Bipartite permutation graphs.
Discrete Applied Mathematics, 18(3):279–292, 1987.

35 Ryuhei Uehara and Yushi Uno. Efficient algorithms for the longest path problem. In
Proceedings of the 15th International Conference on Algorithms and Computation, ISAAC ’04,
pages 871–883, 2004.

36 Ryan Williams. Finding paths of length k in O∗(2k) time. Information Processing Letters,
109(6):315–318, 2009.

Single-Source Shortest Paths and Strong
Connectivity in Dynamic Planar Graphs

Panagiotis Charalampopoulos
Department of Informatics, King’s College London, UK
Institute of Informatics, University of Warsaw, Poland
panagiotis.charalampopoulos@kcl.ac.uk

Adam Karczmarz
Institute of Informatics, University of Warsaw, Poland
a.karczmarz@mimuw.edu.pl

Abstract

Efficient algorithms for computing and processing additively weighted Voronoi diagrams on planar
graphs have been instrumental in obtaining several recent breakthrough results, most notably the
almost-optimal exact distance oracle for planar graphs [Charalampopoulos et al., STOC’19], and
subquadratic algorithms for planar diameter [Cabello, SODA’17, Gawrychowski et al., SODA’18].
In this paper, we show how Voronoi diagrams can be useful in obtaining dynamic planar graph
algorithms and apply them to classical problems such as dynamic single-source shortest paths and
dynamic strongly connected components.

First, we give a fully dynamic single-source shortest paths data structure for planar weighted
digraphs with Õ(n4/5) worst-case update time and O(log2 n) query time. Here, a single update can
either change the graph by inserting or deleting an edge, or reset the source s of interest. All known
non-trivial planarity-exploiting exact dynamic single-source shortest paths algorithms to date had
polynomial query time. Further, note that a data structure with strongly sublinear update time
capable of answering distance queries between all pairs of vertices in polylogarithmic time would
refute the APSP conjecture [Abboud and Dahlgaard, FOCS’16].

Somewhat surprisingly, the Voronoi diagram based approach we take for single-source shortest
paths can also be used in the fully dynamic strongly connected components problem. In particular,
we obtain a data structure maintaining a planar digraph under edge insertions and deletions, capable
of returning the identifier of the strongly connected component of any query vertex. The worst-case
update and query time bounds are the same as for our single-source distance oracle. To the best of
our knowledge, this is the first fully dynamic strong-connectivity algorithm achieving both sublinear
update time and polylogarithmic query time for an important class of digraphs.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Theory of
computation → Shortest paths

Keywords and phrases dynamic graph algorithms, planar graphs, single-source shortest paths, strong
connectivity

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.31

Funding Panagiotis Charalampopoulos: Partially supported by ERC Starting Grant TOTAL under
the EU’s Horizon 2020 Research and Innovation Programme (agreement no. 677651).
Adam Karczmarz: Supported by ERC Consolidator Grant 772346 TUgbOAT and the Polish National
Science Centre 2018/29/N/ST6/00757 grant.

© Panagiotis Charalampopoulos and Adam Karczmarz;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 31; pp. 31:1–31:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6024-1557
mailto:panagiotis.charalampopoulos@kcl.ac.uk
https://orcid.org/0000-0002-2693-8713
mailto:a.karczmarz@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.ESA.2020.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

1 Introduction

The dynamic shortest paths problem seeks for a data structure maintaining a graph under
updates and supporting shortest path queries.1 Depending on the set of supported updates,
we call such a graph data structure fully dynamic if both edge insertions and deletions are
allowed, incremental if only edge insertions (or edge weight decreases) are supported, or
decremental if only edge deletions (or weight increases) are allowed. In the all-pairs variant
of dynamic shortest paths problem one has to support shortest path queries between any
pair of vertices of the graph. In the single-source variant all shortest paths queries have
to originate in a fixed distinguished vertex and the only parameter of a query is the target
vertex.

For the most general setting where one requires exact answers, Demetrescu and Italiano [31]
gave a fully dynamic algorithm (improved slightly by Thorup [77]) recomputing the all-pairs
shortest paths matrix in nearly optimal Õ(n2) amortized time even if real edge weights are
allowed. Note that recomputing the distance matrix from scratch takes Õ(nm) = Õ(n3)
time [55]. Fully dynamic all-pairs shortest paths data structures with subcubic worst-case
update bounds are also known [5,46,78]. There exist faster algorithms if the input graph is
unweighted and partially dynamic (i.e., incremental or decremental) [6, 7]. However, none of
the known results improves upon a trivial, recompute-from-scratch algorithm with Õ(mn)
update time and O(1) query time if the graph is sparse, i.e., m = Õ(n). For the single-source
variant, all known non-trivial exact dynamic shortest paths algorithms [37] are partially
dynamic and yield no improvement over the respective recompute-from-scratch algorithm in
the sparse case either.

The lack of progress on obtaining an exact fully dynamic single-source shortest paths
algorithms with O(n3−ε) initialization time, O(m1−ε) amortized update time and O(n1−ε)
query time at the same time can be explained by a matching lower bound conditional on the
(static) APSP conjecture [73]. In fact, breaking this barrier even in the partially dynamic
setting for undirected unweighted graphs would be a large breakthrough [43].

As a result, since finding good exact algorithms for general graphs seems hopeless, one
needs to look for either approximate solutions or restrict their attention to more structured
graph classes. Indeed, a large body of research has been devoted to designing approximate
dynamic shortest paths algorithms, especially in partially dynamic settings [9–13,15,26, 29,
43–45, 48–50, 59, 60], which find many applications, e.g., in various maximum flow related
problems [29,67]. Unfortunately, many of the known fastest approximate dynamic shortest
path algorithms (e.g. [9,44,48]) suffer from assuming an oblivious adversary, which significantly
limits their applicability (cf. e.g., [29]).

Similarly, dynamic shortest paths problems have also been studied for important graph
classes like planar graphs [3, 4, 38, 56, 63, 66], or low treewidth-graphs [3, 58]. The primary
reason why faster dynamic shortest paths algorithms in these cases are possible is the
existence of non-trivial distance oracles for these classes. A distance oracle is a compact
representation of the graph’s shortest paths such that the distance (or a distance estimate)
between any pair of vertices can be retrieved efficiently. For general graphs, such non-trivial
distance oracles exist only for undirected graphs and assuming an approximation ratio of at
least 3 [25,79,82]. On the contrary, for planar graphs many non-trivial exact distance oracles

1 We will identify shortest paths queries with distance queries. Almost all known dynamic shortest paths
algorithms (for some exceptions see [74, 80]) can also report the actual path in nearly linear (in the
number of the path’s edges) time after computing a distance estimate.

P. Charalampopoulos and A. Karczmarz 31:3

have been proposed [19,27,33,38,56,63,69]. The first exact oracles with polylogarithmic query
time and subquadratic space have been obtained only recently [23,30,41], following Cabello’s
breakthrough of employing Voronoi diagrams for the planar diameter problem [20]. Also
near-optimal (in terms of query time, construction time, and used space) (1 + ε)-approximate
distance oracles have been known for nearly two decades [62, 76], and a lot of effort has been
put to push the known bounds as close to optimal as possible [22,42,61,84].

Dynamic shortest paths in planar graphs. In this paper our focus is on computing shortest
paths in dynamic planar graphs and applications. Klein and Subramamian were the first
to give a planarity-exploiting dynamic shortest paths algorithm [66] – their data structure
worked for undirected graphs, was fully dynamic, (1+ε)-approximate and had Õ(n2/3) update
and query time bounds. A data structure with the same bounds (up to polylogarithmic
factors), but for exact distances in directed graphs was obtained in the breakthrough work
of Fakcharoenphol and Rao [38] (later extended and slightly improved in [24,40,54,56,63]).
Abraham et al. [4] gave a faster (1 + ε)-approximate dynamic algorithm for undirected graphs
with Õ(n1/2) update and query times. Karczmarz [58] matched this bound for directed
planar graphs, albeit only in the (1 + ε)-approximate decremental setting. Abboud and
Dahlgaard [1] showed that by the APSP conjecture, one should not expect an exact dynamic
all-pairs shortest paths data structure for planar graphs with strongly sublinear product of
update time and query time. However, no exact data structure to date has matched this
product lower bound while retaining strongly sublinear update time.

The single-source scenario is much less studied for dynamic planar graphs. Karczmarz [58]
showed a decremental (1+ε)-approximate single-source shortest paths algorithm for minor-free
(and thus also planar) digraphs with Õ(n1/2) update time and O(1) query time. Although not
explicitly stated in the literature, the all-pairs data structure of [63] can be easily converted
to a fully dynamic exact single-source distance oracle with Õ(n2/3) update time and Õ(n1/3)
query time. However, no fully dynamic single-source shortest paths algorithm for planar
graphs to date has been able to achieve sublinear update time and polylogarithmic query
time, or at least break through the Õ(n) update-query time product barrier, even in the
approximate setting.

Our results. In this paper we show the first exact dynamic single-source shortest paths
algorithm for planar graphs with strongly sublinear update time and polylogarithmic query
time. Our algorithm, summarized by the following theorem and described in Section 3, is
deterministic and can be easily extended to report paths.

I Theorem 1. Let G be a real-weighted planar digraph with a source s ∈ V (G). There exists
an O(n logn)-space data structure maintaining G under edge insertions, edge deletions, and
source changes with O(n4/5 log2 n) worst-case update time that can compute distG(s, v) for
any v ∈ V (G) in O(log2 n) time. The initialization time is O(n log2 n).

To the best of our knowledge, this result constitutes the first known application of
additively weighted Voronoi diagrams machinery (first introduced by Cabello [20]) in dynamic
graph algorithms. More specifically, it is obtained by combining fully dynamic maintenance
of r-divisions [66, 75], the shortest paths algorithm for dense distance graphs [38], the recent
efficient construction of dual Voronoi diagrams [23] via FR-Dijkstra [38], and the efficient
point location data structure for Voronoi diagrams [41].

We now provide a brief overview of the data structure underlying Theorem 1. We maintain
distances in G from the source vertex s to each boundary vertex of each piece of an r-division
of G using FR-Dijkstra. For each piece of the r-division, we maintain an additively weighted

E S A 2 0 2 0

31:4 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

Voronoi diagram augmented with a point location data structure, with weights equal to the
distances from s. Upon a query for distG(s, v), we perform a point location query on the
Voronoi diagram of a piece of the r-division that contains v.

It is worth noting that our data structure (and in fact all data structures obtained in this
paper) works in the most general model of dynamic planar graphs where we only require
that G remains planar after each update. Some fully dynamic planar graph algorithms
assume a weaker plane model (e.g., [32,35,54]) where some plane embedding of G is fixed
and we only allow inserting edges connecting vertices that lie on a common face of (that
embedding of) G.

We also generalize our single-source data structure to the case when, instead of a single
source s, a set of facilities F ⊆ V is given, and our goal is to locate the closest (i.e., minimizing
distG(f, v)) facility f ∈ F for a given query vertex.2 We show that maintaining such a data
structure under edge updates issued to G, or updates to the facilities set F , is possible using
Õ(n3/4 · |F |1/4 + n4/5) worst-case update time. The query time remains O(log2 n). Note
that even though multiple-source shortest paths or maximum flow problems can be typically
easily reduced to the single-source case by adding a super-source, such a reduction does not
preserve planarity and indeed handling multiple sources tends to be challenging in planar
graphs (cf. e.g., [16,17]). Our generalized data structure handles up to O(n1/5) sources as
efficiently as the single-source case. Moreover, the update time remains strongly sublinear
unless the number of facilities is not strongly sublinear.

Surprisingly, we show that the same framework that we use to prove Theorem 1 can
be applied to obtain interesting results not directly related to the shortest paths problem.
Namely, in Section 4 we show a fully dynamic strong-connectivity algorithm for planar graphs,
encapsulated in the following theorem.

I Theorem 2. Let G be a planar digraph. There exists an O(n logn)-space data structure
maintaining G under edge insertions and deletions with O(n4/5 log2 n) worst-case update
time that can compute the identifier of the strongly connected component of any v ∈ V (G) in
O(log2 n) time. The initialization time is O(n log2 n).

We now sketch the main ideas behind our fully dynamic strong-connectivity algorithm. As
in Subramanian’s dynamic all-pairs reachability algorithm [75], the base of our data structure
is a graph X, called a reachability certificate, that sparsifies the reachability information
between boundary vertices ∂R of a fully dynamic r-division R with few holes. Naively
recomputing the strongly connected components of X gives us the restriction of the strongly
connected components of G to the boundary vertices ∂R. The main challenge, of course,
is to compute the identifier of a strongly connected component (SCC) of an arbitrary non-
boundary vertex v of G, internal to some piece P of the r-division R. To this end, we use
the following observation: suppose b1, . . . , bk are some vertices of G lying in distinct strongly
connected components of G. Then, v is strongly connected to some bj if and only if bj is in
the topologically earliest SCC of G reachable from v and bj is in the topologically latest SCC
of G that can reach v. Roughly speaking, this observation applied to the boundary vertices of
P labeled using the topological order of their respective SCCs in the certificate X, allows us
to identify the SCC of v using two point-location queries on the Voronoi diagram of piece P .
Each such point location query, computes, instead of the nearest site of v, the highest (or
lowest) priority site that can reach v (that v can reach, resp.), and can be simulated using a
standard point location query on a Voronoi diagram [41].

2 One can also view F as a set of sites of a graphic Voronoi diagram – then the query locates the cell of
the Voronoi diagram wrt. F that a given vertex v belongs to.

P. Charalampopoulos and A. Karczmarz 31:5

Whereas maintaining strongly connected components is a well-studied problem in partially
dynamic settings [8, 14,47,53], we are not aware of any non-trivial fully dynamic strongly
connected components data structures designed specifically for this problem for any digraph
class – note that one could use a fully dynamic transitive closure data structure for this task:
for example, the dynamic plane transitive closure data structure of [32] which has Õ(n1/2)
update and query time. Such a strongly connected components data structure (i.e., with both
update and query bounds O(n1−ε)) for general graphs is in fact ruled out by a conditional
(on SETH) lower bound [2]. As a result, to the best of our knowledge, we obtain the first
fully dynamic strongly connected components algorithm to achieve sublinear update-query
time product for any important class of digraphs.

The undirected counterpart of the dynamic strongly connected components problem, the
dynamic connectivity problem, is very well-studied. Near-optimal deterministic amortized
update bounds [51,52,83] and randomized worst-case update bounds [57,81] (see also [71]) are
known for fully dynamic general graphs. An almost optimal deterministic worst-case update
bound was very recently achieved in [28]. For fully dynamic planar graphs polylogarithmic
worst-case update bounds are known to be achievable even deterministically [34].

2 Preliminaries

Throughout the paper we consider as input a simple, directed and weighted planar graph G
with n vertices, and no negative weight cycles. We call a planar graph G plane if some
embedding of G is assumed. We use |G| to denote the number of vertices of G. Since simple
planar graphs are sparse, |E(G)| = O(|G|) as well.

We use the terms weight and length for edges and paths interchangeably throughout
the paper. For any two vertices u, v ∈ V (G), we denote by distG(u, v) the length of some
shortest u→ v path in the graph G.

Multiple-source shortest paths. The multiple-source shortest paths (MSSP) data struc-
ture [21,63] represents all shortest path trees rooted at the vertices of a single face f in a
weighted plane digraph using a persistent dynamic tree. It can be constructed in O(n logn)
time, requires O(n logn) space, and can report any distance between a vertex of f and any
other vertex in the graph in O(logn) time. MSSP can be augmented to also return the first
edge of this path (and each of its subsequent edges) in O(log logn) time (cf. [56]).

Separators and recursive decompositions. Miller [68] showed how to compute, in a trian-
gulated plane graph with n vertices, a simple cycle of size 2

√
2
√
n that separates the graph

into two subgraphs, each with at most 2n/3 vertices. Simple cycle separators can be used to
recursively separate a planar graph until pieces have constant size. The authors of [64] show
how to obtain a complete recursive decomposition tree T (G) of a triangulated graph G using
cycle separators in O(n) time. T (G) is a binary tree whose nodes correspond to subgraphs
of G (pieces), with the root being all of G and the leaves being pieces of constant size. We
identify each piece P with the node representing it in T (G). We can thus abuse notation
and write P ∈ T (G). The boundary vertices ∂P of a non-leaf piece P are vertices that P
shares with some other piece Q ∈ T (G) that is not P ’s ancestor. For convenience we extend
the boundary set ∂L of a leaf piece L to its entire vertex set V (L). We assume P to inherit
the embedding of G. The faces of P that are faces of G are called natural, whereas the faces
of P that are not natural are the holes of P . The construction of [64] additionally guarantees
that for each piece H ∈ T (G), (a) H is connected, (b) if H is non-leaf, then each natural

E S A 2 0 2 0

31:6 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

face f of H is a face of a unique child of H, (c) H has O(1) holes containing precisely the
vertices ∂H. Throughout, to avoid confusion, we use nodes when referring to T (G) and
vertices when referring to G or its subgraphs. It is well-known [18,41,53,64] that by suitably
choosing cycle separators one can also guarantee that (1)

∑
H∈T (G) |H| = O(n logn), (2)∑

H∈T (G) |∂H|2 = O(n logn), and (3) |∂H| = O(
√
n/cd), where node H of T (G) has depth d

and c > 1 is some constant.
The recursive decomposition algorithm of [64] works with no changes and maintains all the

properties of T (G) even if the initial graph G has a predefined set of boundary vertices ∂G
of size O(

√
|G|) located on O(1) of G’s faces. These faces are predefined as holes of G and

are the only faces of G that are allowed to be non-triangular.
An r-division [39] R of a planar graph, for r ∈ [1, n], is a decomposition of the graph

into O(n/r) pieces, each of size O(r), such that each piece P has O(
√
r) boundary vertices

(denoted ∂P), i.e., vertices shared with some other piece of R. We denote by ∂R the set⋃
P∈R ∂P . If additionally all pieces are connected, and the boundary vertices of each piece

P of the r-division R are distributed among O(1) faces of P (also called holes3 of P), we
call R an r-division with few holes.

In [64] it was shown that for every r larger than some constant, T (G) admits an r-division
with few holes, i.e., there exists a subset of nodes of T (G) forming an r-division with few
holes of G. Using this property, it is shown in [64] that an r-division with few holes of a
triangulated graph can be computed in linear time. More generally, given a geometrically
decreasing sequence of numbers (rm, rm−1, . . . , r1), where r1 is a sufficiently large constant,
ri+1/ri ≥ b for all i for some b > 1, and rm = n, we can obtain ri-divisions with few holes
for all i in time O(n) in total. For convenience, we define the only piece in the rm-division
to be G itself. These r-divisions satisfy the property that a piece in the ri-division is a – not
necessarily strict – descendant (in T (G)) of a piece in the rj-division for each j > i. We also
call such sequence of ri-divisions obtained from T (G) a recursive (rm, . . . , r1)-division of G.

We assume for simplicity that all holes we ever encounter are simple cycles. Unfortunately,
this is not true in general. However, non-simple holes do not pose a significant obstacle, and
can be avoided by suitably extending the graphs, as discussed numerous times in the past,
see e.g., [23, 53,56,72].

Dense distance graphs and FR-Dijkstra. For a plane digraph H with weights from
R≥0 ∪ {∞} and a distinguished set ∂H ⊆ V (H) of boundary vertices lying on O(1) faces
of H, we denote by DDGH the complete weighted graph on ∂H whose edge weights rep-
resent distances between all pairs of vertices of ∂H in H. DDGH can be computed in
O
(
(|H|+ |∂H|2) logn

)
time using MSSP [63]. In particular, dense distance graphs for all

pieces H ∈ T (G) can be computed in O(n log2 n) time.
WhenH = {H1, . . . ,Hq} is a collection of plane graphs, we set DDG(H) :=

⋃
H∈HDDGH .

I Lemma 3 (FR-Dijkstra [38, 40]). Given all DDGHi
, one can compute a single-source

shortest paths tree from any source s in DDG(H) in O
(∑q

i=1 |∂Hi| log2 n
)

time, where
n = |V (DDG(H))|.4

3 This definition is slightly more general than the definition of a hole of a piece P ∈ T (G). Namely, the
definition of an r-division does not assume a fixed embedding of the entire G; it only assumes some
fixed embeddings of individual pieces.

4 In particular Hi may be single-edge. This way, this lemma captures also the case when we compute
shortest paths in a collection of DDGs with some auxiliary vertices and edges.

P. Charalampopoulos and A. Karczmarz 31:7

We now state some fairly standard definitions and lemmas about representing distances
between some vertices of G of interest using unions of dense distance graphs of a recursive
decomposition’s (or r-division’s) pieces (for instance cf. [24]), adapted to our notation. We
include their proofs for completeness in Appendix A. For example, Lemma 4 captures the
well-known observation of [38] that in order to compute a shortest path between any pair of
vertices of G, it is enough to compute a shortest path in a union of dense distance graphs
from T (G) with only O(

√
n) vertices in total.

Let L be some leaf of T (G). We define the cone of L, denoted coneG(L), to be the
collection of pieces of T (G) containing L, all ancestors of L, and all siblings of (weak) ancestors
of L. For some collection L of leaf pieces of T (G), we define coneG(L) =

⋃
L∈L coneG(L).

I Lemma 4 ([24,38]). Let L be some collection of leaf pieces of T (G). Then:
1. For any u, v ∈ V (DDG(coneG(L))), distG(u, v) = distDDG(coneG(L))(u, v).
2.
∑
H∈coneG(L) |∂H| = O

(√
n|L|

)
.

Let R be an r-division with few holes of G and T (P) be a recursive decomposition of
P ∈ R with the root boundary set to ∂P . For any v ∈ V (G) \ ∂G, let Lv be some leaf
containing v in the unique piece Pv ∈ R containing v. For any X ⊆ V (G) let us define
coneR(X) = R∪

⋃
v∈X\∂R conePv

(Lv).

I Lemma 5 ([24,38]). Let X ⊆ V (G) be non-empty. Then:
1. For any u, v ∈ V (DDG(coneR(X))), distG(u, v) = distDDG(coneR(X))(u, v).
2.
∑
H∈coneR(X) |∂H| = O

(
n/
√
r + min

(√
n · |X|, |X| ·

√
r
))

.

Fully dynamic r-divisions. Many dynamic algorithms for planar graphs maintain r-divisions
and useful auxiliary data structures under dynamic updates. The exact set of supported
updates to G varies; e.g., [38,56,63] support only edge weight changes, [54] assumes embedding-
preserving insertions, whereas [66,75] only assume that the graph G remains planar at all
times. We stick to the last, most general setting. The core of the construction behind the
following theorem is due to Klein and Subramanian [66, 75]; for completeness we give a
complete proof in Appendix A.

I Theorem 6. Let G = (V,E) be a weighted planar graph. Suppose that adding infinite-weight
edges to G does not have effect on any properties of G that we care about. Let r ∈ [1, n].

There is a data structure maintaining an r-division with few holes R of some G+ such
that:
1. G+ is obtained from G by adding infinite-weight edges.
2. Each P has all its faces except its holes triangular and is accompanied with some auxiliary

data structures that can be constructed in T (r) time given P and use S(r) space.

The data structure uses O
(
n+ n

r · S(r)
)

space and can be initialized in O
(
n+ n

r · T (r)
)

time. After each edge deletion and edge insertion (preserving the planarity of G), it can be
updated in O(r + T (r)) worst-case time.

Additively weighted Voronoi diagrams. Let G be a directed planar graph of size n with
real edge-lengths, and no negative-length cycles. Assume that all faces of G are triangles
except, perhaps, a single face f . Let S be the set of vertices that lie on f , called sites, i.e.,
S = V (f). Let us assign to each site s ∈ S a weight ω(s) ∈ R≥0 ∪ {∞}. The additively
weighted distance distωG(s, v) between a site s ∈ S and a vertex v ∈ V (G) is defined as
ω(s) + distG(s, v).

E S A 2 0 2 0

31:8 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

The additively weighted Voronoi diagram of (S, ω) within G, denoted by VD(S, ω), is
a partition of V (G) into pairwise disjoint sets, one set Vor(s) for each site s ∈ S. The set
Vor(s), which is called the Voronoi cell of s, contains all vertices in V (G) that are closer
(wrt. distωG) to s than to any other site in S.

In the following and throughout, whenever we work with Voronoi diagrams we assume
that (1) G is strongly connected, (2) shortest paths in G are unique, and (3) additively
weighted shortest paths in G are unique, i.e., for each v ∈ V (G) there is a unique site s
minimizing distωG(s, v). Note that these assumptions make the Voronoi cells well-defined
and simply connected, and guarantee that they indeed form a partition of V (G). We will
explicitly ensure that these requirements are met for G,S and the weight function whenever
we define a Voronoi diagram on G.

There is a dual representation VD∗(S, ω) of Voronoi diagram VD(S, ω) as a tree of constant
degree with O(|S|) vertices and edges [41]. An efficient FR-Dijkstra based algorithm for
computing VD∗(S, ω) was presented by Charalampopoulos et al. [23].

I Theorem 7 ([23]). Suppose that we have at hand a recursive decomposition T (G) of G,
with the only hole of G being f and S = V (f). Further suppose that we have DDGH computed
for each piece H ∈ T (G). Then, we can compute VD∗(S, ω) in O(

√
n · |S| log2 n) time.

I Remark 8. The algorithm underlying Theorem 7 implicitly assumes that Vor(s) is non-
empty for all s ∈ S. In Appendix B, we discuss why this assumption is not necessary, relying
on [41].

In a point location query for some Voronoi diagram VD(S, ω), we are given a vertex
v ∈ V (G) and are requested to find the site s ∈ S such that v ∈ Vor(s) and also the value of
distωG(s, v). Gawrychowski et al. [41] showed the following result.

I Theorem 9 ([41]). Suppose that we have at hand an MSSP data structure for G with
sources from the face f . Given some dual representation VD∗(S, ω), we can preprocess it in
O(|S|) time, so that point location queries for VD(S, ω) can be answered in O(log2 n) time.

3 Fully Dynamic Single Source Shortest Paths

In this section we show our single-source exact distance oracle for planar graphs with
O(n4/5 log2 n) update time and O(log2 n) query time and thus prove Theorem 1. For
simplicity, let us assume that G is non-negatively weighted. Negative edges can be handled
as in [56] – see Appendix C.

I Theorem 1. Let G be a real-weighted planar digraph with a source s ∈ V (G). There exists
an O(n logn)-space data structure maintaining G under edge insertions, edge deletions, and
source changes with O(n4/5 log2 n) worst-case update time that can compute distG(s, v) for
any v ∈ V (G) in O(log2 n) time. The initialization time is O(n log2 n).

The base of our data structure is a dynamic r-division R with few holes, as given in
Theorem 6. Note that in our shortest-paths problem, indeed adding infinite-weight edges to G
does no harm. Hence, in the following we work with the graph G+ from Theorem 6 when
computing distances, but identify it, without loss of generality, with our original graph G.

For technical reasons, however, we would like to avoid dealing with infinite weights in
some of our data structures handling individual pieces. In the real-weighted fully dynamic
setting, however, we cannot fix a sufficiently large finite number, larger than all edge weights
that will ever appear in the future graph G, beforehand. Instead, we do the following. For

P. Charalampopoulos and A. Karczmarz 31:9

each P ∈ R, let MP be a sufficiently large finite number, e.g., larger than the sum of finite
edge weights in P . Consider MP to be an auxiliary data structure of P as in Theorem 6. We
will use MP to simulate infinite edge weights in P , and also for detecting paths non-existent
in the original graph G (but having infinite weight in G+ ∩P). As a result, below we assume
each infinite weight in P (or any auxiliary data structure related to P) is replaced by MP in
all the computations performed locally on the piece P , whereas globally (when performing
some computation for many pieces at once, like the shortest paths algorithm of Lemma 3)
we treat all edge or path weights in P that are at least MP as infinite.

For each piece P ∈ R we store the following additional data structures.
We store the recursive decomposition T (P) with the initial boundary set to ∂P , and also
DDGs for all the pieces H ∈ T (P).
For each hole h of P , let Ph be the piece P after applying the following standard
augmentations. First, P is extended into a graph P ′h using O(r) vertices and edges of
weight MP embedded inside either the piece or other (than h) holes of P that would
make P strongly connected and triangulated (except for the hole h) without changing the
distance between any pair of reachable vertices in P . The graph Ph is in turn obtained
from P ′h by changing P ′h’s edge weights into O(1)-size vectors as described in [36] so that
there is a unique shortest path (wrt. the lexicographical order on path weights, defined as
the coordinate-wise sum of the path’s individual edge weights) between any u, v ∈ V (Ph)
with cost of the form (distP ′

h
(u, v), ·). As proven in [36], one can compute Ph from P

deterministically in linear time. The O(1)-size vector weights, in turn, can be easily
packed into usual single-number weights.
For each Ph, we store an MSSP data structure initialized for the hole h. Recall that an
MSSP data structure can be computed in O(r log r) time. Moreover, we store a recursive
decomposition T (Ph) of Ph with the boundary ∂Ph of the root piece set to ∂P ∩ V (h) of
size O(

√
r). For each node (piece) H ∈ T (Ph), we also store DDGH . Since the sum of

sizes of all the pieces of T (Ph) is O(r log r), computing all these dense distance graphs
takes O(r log2 r) time (see Section 2).

Note that computing piecewise auxiliary data structures defined so far takes O(r log2 r)
time. So, by Theorem 6, they can be updated in O(r log2 r) worst-case time after G undergoes
an update.

After the initialization and each update, once R and all auxiliary data structures are
updated, we compute for each P ∈ R a point location data structure.

I Lemma 10. Given a weight function ω : ∂P → R ∪∞, one can compute in O(r3/4 log2 r)
time a data structure L(P) answering the following queries in O(log2 r) time: given any
v ∈ V (P), compute the value minb∈∂P {ω(b) + distP (b, v)} along with the minimizer b.

Proof. Since ∂P is a union of O(1) sets ∂Ph, we can compute the desired minimum over
each ∂Ph separately and then take the minimum over all h.

Let us first note that negative values of ω are not a problem. We can turn negative
weights into non-negative by adding some common large value to the weights of all sites. We
can thus suppose wlog. that all values of ω are non-negative.

If all the weights are infinite, the queries can be answered trivially in O(1) time. So in
the following assume that there is at least one site whose weight is finite.

Let S = ∂Ph = {s1, . . . , sk} be the set of sites. In order to guarantee that for each
v ∈ V (G) there is a unique site s minimizing distωG(s, v), we will break ties by considering
(ω(si), i) instead of ω(si) as the weight of site si, adding a second coordinate to each edge
weight in Ph, set to 0, and comparing additively weighted distances lexicographically. Clearly,
this extension does not break any of the properties of Ph.

E S A 2 0 2 0

31:10 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

Recall that Ph has finite non-negative real weights, is strongly connected, has unique
shortest paths, and has a single face h that is possibly non-triangular that contains all the
sites S. Moreover, the additively weighted distances in Ph are unique. Therefore, we can
invoke Theorem 7 to construct the dual representation VD∗(S, ω) of the Voronoi diagram
VD(S, ω). This requires O

(√
r|∂Ph| log2 n

)
= O

(
r3/4 log2 n

)
time.

Then, we construct the point location data structure of Theorem 9 for VD(S, ω). Note
that we have an MSSP data structure for Ph for hole h and hence point location queries,
given VD∗(S, ω), can be answered in O(log2 n) time. J

We invoke Lemma 10 with weight function ω(b) := distG(a, b) in order to construct L(P)
for each P ∈ R. This requires O

(
n/r1/4 · log2 n

)
time in total. By Lemma 5, the values

distG(s, b) for all b ∈ ∂R can be computed in O
(
n/
√
r · log2 n

)
time if we run the single-

source shortest paths algorithm of Lemma 3 (FR-Dijkstra) on the graph DDG(coneR(s)).
We also compute distPs(s, u) for all u ∈ Ps, where Ps is an arbitrary piece containing s using
Dijkstra’s algorithm in O(r log r) time.

Now, we can compute distG(s, v) for a query vertex v as follows. If the shortest s→ v

path in G does not go through ∂R, then it is fully contained in Ps and therefore v ∈ Ps and
distG(s, v) = distPs

(s, v), i.e., we have distG(s, v) already computed. Otherwise, let Pv be
an arbitrary piece containing v. Observe that we have distG(s, v) = minb∈∂Pv{distG(s, b) +
distPv

(b, v)} where the minimizer b corresponds to the a boundary vertex of some shortest
s→ v path in G. So this case can be reduced to a single query to the data structure L(Pv).
This takes O(log2 n) time.

The worst-case update time is O(r log2 r + n
r1/4 log2 r). By setting r = n4/5 we get

O(n4/5 log2 n) worst-case update time. Since the space usage per piece is O(r log r), we need
O(n logn) space.
I Remark 11. Our data structure can be extended to report, following the computation
of distG(s, v), a shortest s → v path Q in time nearly linear in the number of edges of Q.
This follows easily by the fact that the MSSP data structure [63] can report shortest paths
efficiently (see e.g., [56] for details). Therefore, we can efficiently expand the used edges of
dense distance graphs and the shortest b→ v path into actual edges in G.

3.1 A Dynamic Closest Facility Data Structure
We can generalize the dynamic single-source shortest paths data structure as follows. Suppose
we replace a single source vertex s with a set of facilities F ⊆ V . Given F , for a query
vertex v we would like to compute minf∈F {distG(f, v)}, and also possibly f ∈ F minimizing
this expression. A dynamic update would consist of either an edge update or changing the
set F . In other words, such a problem can be seen as dynamic point location in a Voronoi
diagram wrt. F , where each update either changes the graph or resets the Voronoi diagram
of interest.

In this setting, we consider the following simple generalization of the single-source data
structure. Let the update procedure first compute the distances d(b) = minf∈F {distG(f, b)}
for all b ∈ ∂R. Note that by Lemmas 5 this can be achieved by computing single-source
shortest paths in the graph DDG(DF), where DF = coneR(F), extended with 0-weight edges
sf , where s is an auxiliary super-source. By Lemma 3 this can be done in O((

√
n|F |+n/

√
r+

|F |) log2 n) = O((
√
n|F | + n4/5) log2 n) time. By using weights ω := d in the individual

point-location data structures L(P), P ∈ R, a single point location query on L(Pv) (recall
that Pv is some piece containing v) would compute the desired closest facility fv minimizing
distG(fv, v) unless the sought (weighted) shortest fv → v does not go through a boundary

P. Charalampopoulos and A. Karczmarz 31:11

vertex of R. We could in principle handle such paths by proceeding as in the single-source
case and computing shortest paths naively in each piece containing a facility. However, this
could take time Ω(r ·min(n/r, |F |)), i.e., linear in n even for moderately large facility set
sizes, e.g., |F | = Ω(n1/5).

To improve upon this simple approach, we proceed as follows. Let (ρm, . . . , ρ1) be such a
sequence of integers that ρm = r, ρ1 = O(1) and ρi+1/ρi = 2 for all i < m. For each P ∈ R
we store a recursive (ρm, . . . , ρ1)-division consisting of pieces of T (P) (cf. Section 2). Let
RP,i be the ρi-division of P . All RP,i can be computed in linear time given T (P) [64]. Note
that Ri, defined as the union of RP,i over all pieces P ∈ R, actually forms an ρi-division
with few holes of the entire graph G. In particular, we have Rm = R.

We store the extended pieces Qh (recall how we obtained extended pieces Ph with
unique shortest paths from P in the single-source case) plus their recursive decompositions
T (Qh), DDGs, and an MSSP data structure for all pieces Q of all T (P) instead of just
the pieces of Rm = R as we did in the single-source case. However, we stress that these
auxiliary components for a piece Q ⊆ P where P ∈ R, are counted as accompanying data
structures of the piece P . So, we compute O(1) fresh recursive decompositions T (Qh) for
each piece Q ∈ T (P) – computing each takes O(|Q| log2 n) time. As a result, by the bound∑
Q∈T (P) |Q| = O(|P | log |P |), the time to compute accompanying data structures of piece P

increases to O(r log3 n).
Given the set of facilities F , let j be such that ρj = Θ

(
min

(
n
|F | , r

))
. Redefine DF =

coneRj (F). Again, let us compute distances d(b) = minf∈F {distG(f, b)} (and the closest facil-
ities) for all b ∈

⋃
H∈DF

|∂H| using FR-Dijkstra on DDG(DF) extended with a super-source s
and auxiliary edges sf , f ∈ F . This takes O

((√
n|F |+ n/

√
ρj

)
log2 n

)
= O(

√
n|F | log2 n)

time by Lemmas 3 and 5.
It only remains to show how to handle computation of closest facilities for

v ∈ V \
⋃
H∈DF

∂H. Recall that the pieces DF cover the entire G, no facility f is an
internal (non-boundary) vertex of a piece H ∈ DF , and each v ∈ V \

⋃
H∈DF

∂H is clearly
an internal vertex of a unique piece Hv ∈ DF . Consequently, by Lemma 10, the closest
facility to v can be found in O(log2 n) time using a single query to the data structure L(Hv).
For this to be possible, upon update we need to build the data structures L(H) for all
H ∈ DF . By Lemma 10, this takes O

(∑
H∈DF

√
|H| · |∂H| log2 n

)
time. Let us now bound

this sum. First, let us consider the sum restricted to the pieces H ∈ DF ∩Rj , i.e., the pieces
of r-division Rj . Since ρj = Ω(n/|F |) or ρj = Ω(r) we get:

O

 ∑
H∈DF∩Rj

√
|H| · |∂H| log2 n

 =

O

(
n

ρj
· ρ3/4
j log2 n

)
= O

((
n3/4 · |F |1/4 + n

r1/4

)
log2 n

)
.

On the other hand, if H /∈ DF ∩ Rj , then H ∈ conePf
(Lf), where f ∈ F \ Rj , Pf is the

unique piece of Rj containing f , and Lf is some leaf of T (Pf) containing f . For a fixed f ,
by the definition of conePf

(Lf), there are O(logn) pieces H satisfying this, at most two per
each level i of T (Pf). Hence, the sum of

√
|H| · |∂H| over such pieces can be bounded by∑∞

i=0

√
|Pf | ·

√
|Pf |/ci = O(ρ3/4

j). Summing over all f , and using ρj = O(n/|F |), we get

O

 ∑
H∈DF \Rj

√
|H| · |∂H| log2 n

 = O
(
|F | · ρ3/4

j log2 n
)

= O
(
n3/4 · |F |1/4 log2 n

)
.

E S A 2 0 2 0

31:12 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

To conclude, the update time is O
((
n3/4 · |F |1/4 + n

r1/4

)
log2 n+ r log3 n

)
. By setting

r = (n/ logn)4/5 we obtain the following theorem.

I Theorem 12. Let G be a real-weighted planar digraph with a set F ⊆ V of facilities. There
exists an O(n log2 n)-space data structure maintaining G under edge insertions, edge deletions,
and changes of the facilities set F with O

((
n3/4 · |F |1/4 + n4/5) log11/5 n

)
worst-case update

time that can compute minf∈F {distG(f, v)} along with the respective closest facility of v for
any v ∈ V (G) in O(log2 n) time. The initialization time is O(n log3 n).

4 Fully Dynamic Strongly Connected Components

In this section we show that a strategy similar to that of Section 3 can be used to obtain
a fully dynamic strong-connectivity algorithm. Again, we maintain an r-division R and
some auxiliary data structures for all the individual pieces. Formally, using a dynamic
r-division as in Theorem 6 may require introducing new infinite-weight edges to G which in
turn may change the reachability relation in G. We circumvent this problem by setting the
weights of the original edges of G to 0, and all auxiliary edges plus infinity (simulated in the
implementation by sufficiently large values MP inside individual pieces, as in Section 3). This
way, u can reach v in G if and only if distG(u, v) = 0, and otherwise distG(u, v) =∞. All
known properties of reachability in plane graphs also extend to reachability using 0-weight
paths (assuming non-negative weights). In the following, whenever we say that v is reachable
from u, or there exists a u→ v path, we mean distG(u, v) = 0.

As in Section 3, for each piece of R we store a recursive decomposition, dense distance
graphs and MSSP data structures. All these data structures are also maintained for pieces
of R with all edges reversed – for a piece P we call this graph the reverse of P and denote it
by P rev.

Another ingredient is a collection of reachability certificates XP for all the pieces, as
defined in the following lemma due to Subramanian [75], slightly adjusted to certify 0-weight
paths.

I Lemma 13 ([75]). Let P ∈ R be a piece. There exists a directed graph XP , where
∂P ⊆ V (XP), of size O(

√
r log r) satisfying the following property: for any u, v ∈ ∂P ,

distP (u, v) = 0 if and only if there exists a u → v path in XP . The graph XP can be
computed in O(r log r) time.

We include the reachability certificate in the set of auxiliary piecewise data structures.
Since reachability certificates can be computed in O(r log r) time, maintaining them does
not incur any additional asymptotic cost. The following lemma is a direct consequence
of Lemma 13.

I Lemma 14. For any u, v ∈ ∂R, u can reach v in G if and only if u can reach v in
X =

⋃
P∈RXP .

Proof. Let u, v ∈ ∂R. Since each XP certifies the reachability between ∂P in P , clearly a
u→ v path in X implies an existence of a u→ v path in G. Now suppose there is a u→ v

path Q in G. Split P into maximal subpaths Q1, . . . , Qk, such that each Qi is fully contained
in a single piece Pi ∈ R. For each i, the endpoints a, b of Qi are contained in ∂Pi and hence
there exists a a→ b path in XP ⊆ X. Consequently, there exist a u→ v path in X. J

To handle an edge update, after R and auxiliary data structures are updated, we compute
the strongly connected components of X (defined as in Lemma 14) in O(|X|) = O(n/

√
r)

time using any classical linear-time algorithm. For any b ∈ ∂R, let sX(b) denote an integer

P. Charalampopoulos and A. Karczmarz 31:13

identifier of b’s strongly connected component in X. By additionally sorting the SCCs of X
topologically we can further assume that sX satisfies the following property: if a, b ∈ ∂R
are not strongly connected, but a can reach b in X then sX(a) < sX(b). By Lemma 14,
for a, b ∈ ∂R, we have sX(a) = sX(b) if and only if a and b are strongly connected in G;
moreover, if a can reach b in G, then sX(a) ≤ sX(b).

We also define and maintain similar SCC-identifiers sP for individual pieces P , i.e., for
u, v ∈ V (P), sP (u) = sP (v) implies u, v are strongly connected in P , whereas sP (u) < sP (v)
implies there is no v → u path in P . Clearly, the identifiers sP can be recomputed in O(r)
time given P , so we also include them into the set of auxiliary per-piece data structures.

For any Q ∈ {X} ∪ R, let SQ be the set of used identifiers of the form sQ(·). Observe
that we can easily guarantee that the sets SQ are pairwise disjoint, e.g., by using disjoint
integer ranges for different sets SQ.

The final component of our data structure, is, again a collection of per-piece point location
data structures. For each P ∈ R, we have two point location data structures L(P rev) and
L(P) of Lemma 10. After each edge update, L(P rev) is computed for P rev with weight
function ω = sX . On the other hand, L(P) is initialized with weight function ω = −sX . As
in Section 3, all these point location data structures are recomputed in O(n/r1/4 · log2 n)
time (over all pieces).

We now describe how our data structure handles a query for an SCC identifier of a
vertex v. The returned identifier always comes from the set

⋃
Q∈{X}∪R SQ. Let Pv be some

piece containing v. Let smin be the value computed by L(P rev
v) for vertex v. Let smax be

minus the value computed by L(Pv) for v. If either of smin, smax equals ±∞ or smin 6= smax
holds, we return sPv

(v). Otherwise, we return smin ∈ SX . The following lemma establishes
the correctness of this query procedure.

I Lemma 15. Let u, v ∈ V (G) and let su, sv be the respective identifiers returned by the
query procedure. Then, su = sv if and only if u and v are strongly connected in G.

Proof. Suppose su = sv. If su ∈ SP for some piece P , then su = sv implies that u and v are
strongly connected in P and thus also in G. So suppose sv ∈ SX . Take any b ∈ ∂R such
that sv = sX(b). We now prove that v and b are strongly connected in G. Similarly we prove
that u and b are strongly connected in G. By transitivity it will follow that u and v are
indeed strongly connected.

Let Pv, smin, smax be defined as in the query procedure’s description. Recall that sv ∈ SX
implies that smin, smax are finite and sv = smin = smax. Since all edges of Pv have weight 0,
and smax is finite, smax in fact represents the maximum value sX(a) among those a ∈ ∂Pv
such that a path a→ v exists in Pv. Similarly, observe that smin represents the minimum
value sX(c) among those c ∈ ∂Pv such that a path c → v exists in P rev

v , i.e., such that a
path v → c exists in Pv. Let us denote by a and c the respective vertices of ∂Pv attaining
the maximum and minimum values of sX . Since sX(a) = sX(c), there exists a path c→ a

in G. However, by the definition of a and c, paths a → v and v → c also exist in G, and
hence a, v and c are strongly connected in G. Since a is clearly strongly connected to b by
sX(a) = sX(b), indeed v and b are strongly connected in G.

Now let us move to proving the “⇐= ” direction. Suppose u and v are strongly connected
in G. First consider the case when there exists some vertex b ∈ ∂R located in the same
strongly connected component of G as u and v. In this case we prove that sv = sX(b). An
analogous proof that su = sX(b) will establish su = sv. Since v and b are strongly connected,
there exist some paths Q1 = v → b and Q2 = b→ v in G. Let v1 be the first vertex on Q1
such that v1 ∈ ∂Pv – note that v1 necessarily exists since b ∈ ∂R. Similarly set v2 to be

E S A 2 0 2 0

31:14 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

the last vertex on Q2 such that v2 ∈ ∂Pv. Observe that the subpaths v → v1 and v2 → v of
Q1 and Q2 respectively lie entirely inside Pv. Hence, smin and smax are finite and we have
smax ≥ sX(v2) and smin ≤ sX(v1). Recall that there exists a walk v → v1 → b → v2 → v,
so in fact v1, v2, b are strongly connected, i.e., sX(v1) = sX(v2) = sX(b). Thus, we obtain
smin ≤ sX(b) ≤ smax.

On the other hand, let a ∈ ∂Pv be such that a path a→ v exists in Pv and smax = sX(a)
(a exists by smax 6= ±∞). Similarly, let c ∈ ∂Pv be such that a path v → c exists in Pv
and smin = sX(c). Since a path a → c through v exists in Pv (so also in G), we have
that smax ≤ smin by the fact that the identifiers SX respect the topological order of the
SCCs of X. Recall that we have already proved smin ≤ sX(b) ≤ smax so in fact we have
smin = smax = sX(b), and consequently sv = sX(b).

Finally, suppose there is no vertex of ∂R in the SCC of G containing u and v. First, this
implies that u, v /∈ ∂R and all u → v and v → u paths are contained in a single, unique
piece P . This implies that sP (u) = sP (v). Hence it is sufficient to prove su = sP (u) and
sv = sP (v). We prove the latter equality; proving the former is analogous. Recall that sv is
not set to sP (v) only if both smin, smax are finite and smin = smax. This can only happen
if there exists vertices a, c ∈ ∂P such that a can reach v in P , v can reach c in P and
sX(c) = smin = smax = sX(a), i.e., a and c are strongly connected in G. But this implies
that a, c and v are strongly connected in G, which contradicts the fact that the SCC of v
in G does not contain vertices of ∂R. J

The running time analyses of both the update and query procedures are identical to the
analyses of Section 3. Hence, we have proved the following theorem.

I Theorem 2. Let G be a planar digraph. There exists an O(n logn)-space data structure
maintaining G under edge insertions and deletions with O(n4/5 log2 n) worst-case update
time that can compute the identifier of the strongly connected component of any v ∈ V (G) in
O(log2 n) time. The initialization time is O(n log2 n).

References
1 Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier for dynamic planar

graph algorithms. In IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, pages 477–486, 2016. doi:10.1109/FOCS.2016.58.

2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, pages 434–443. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.
53.

3 Ittai Abraham, Shiri Chechik, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
On dynamic approximate shortest paths for planar graphs with worst-case costs. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
pages 740–753, 2016. doi:10.1137/1.9781611974331.ch53.

4 Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic approximate distance oracles
for planar graphs via forbidden-set distance labels. In Proceedings of the 44th Symposium
on Theory of Computing Conference, STOC 2012, pages 1199–1218, 2012. doi:10.1145/
2213977.2214084.

5 Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs shortest
paths with worst-case update-time revisited. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 440–452, 2017. doi:
10.1137/1.9781611974782.28.

https://doi.org/10.1109/FOCS.2016.58
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/1.9781611974331.ch53
https://doi.org/10.1145/2213977.2214084
https://doi.org/10.1145/2213977.2214084
https://doi.org/10.1137/1.9781611974782.28
https://doi.org/10.1137/1.9781611974782.28

P. Charalampopoulos and A. Karczmarz 31:15

6 Giorgio Ausiello, Giuseppe F. Italiano, Alberto Marchetti-Spaccamela, and Umberto Nanni.
Incremental algorithms for minimal length paths. In Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 1990, pages 12–21, 1990. URL: http:
//dl.acm.org/citation.cfm?id=320176.320178.

7 Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Improved decremental algorithms
for maintaining transitive closure and all-pairs shortest paths. J. Algorithms, 62(2):74–92,
2007. doi:10.1016/j.jalgor.2004.08.004.

8 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E. Tarjan. A new approach
to incremental cycle detection and related problems. ACM Trans. Algorithms, 12(2):14:1–14:22,
2016. doi:10.1145/2756553.

9 Aaron Bernstein. Maintaining shortest paths under deletions in weighted directed graphs.
SIAM J. Comput., 45(2):548–574, 2016. doi:10.1137/130938670.

10 Aaron Bernstein. Deterministic partially dynamic single source shortest paths in weighted
graphs. In 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, pages 44:1–44:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.44.

11 Aaron Bernstein and Shiri Chechik. Deterministic decremental single source shortest paths:
beyond the o(mn) bound. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, pages 389–397, 2016. doi:10.1145/2897518.2897521.

12 Aaron Bernstein and Shiri Chechik. Deterministic partially dynamic single source shortest
paths for sparse graphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, pages 453–469, 2017. doi:10.1137/1.9781611974782.29.

13 Aaron Bernstein, Maximilian Probst Gutenberg, and Christian Wulff-Nilsen. Near-optimal
decremental SSSP in dense weighted digraphs. CoRR, abs/2004.04496, 2020. arXiv:2004.
04496.

14 Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. Decremental strongly-
connected components and single-source reachability in near-linear time. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 365–376.
ACM, 2019. doi:10.1145/3313276.3316335.

15 Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon Nanongkai,
Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-dynamic graph sparsifiers against
an adaptive adversary. CoRR, abs/2004.08432, 2020. arXiv:2004.08432.

16 Glencora Borradaile and Philip N. Klein. An O(n log n) algorithm for maximum st-flow in a
directed planar graph. J. ACM, 56(2):9:1–9:30, 2009. doi:10.1145/1502793.1502798.

17 Glencora Borradaile, Philip N. Klein, Shay Mozes, Yahav Nussbaum, and Christian Wulff-
Nilsen. Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear
time. SIAM J. Comput., 46(4):1280–1303, 2017. doi:10.1137/15M1042929.

18 Glencora Borradaile, Piotr Sankowski, and Christian Wulff-Nilsen. Min st-cut oracle for planar
graphs with near-linear preprocessing time. ACM Trans. Algorithms, 11(3):16:1–16:29, 2015.
doi:10.1145/2684068.

19 Sergio Cabello. Many distances in planar graphs. Algorithmica, 62(1-2):361–381, 2012.
doi:10.1007/s00453-010-9459-0.

20 Sergio Cabello. Subquadratic algorithms for the diameter and the sum of pairwise distances
in planar graphs. ACM Trans. Algorithms, 15(2):21:1–21:38, 2019. doi:10.1145/3218821.

21 Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-source shortest paths in
embedded graphs. SIAM J. Comput., 42(4):1542–1571, 2013. doi:10.1137/120864271.

22 Timothy M. Chan and Dimitrios Skrepetos. Faster approximate diameter and distance oracles
in planar graphs. Algorithmica, 81(8):3075–3098, 2019. doi:10.1007/s00453-019-00570-z.

23 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Almost
optimal distance oracles for planar graphs. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, pages 138–151, 2019. doi:10.1145/
3313276.3316316.

E S A 2 0 2 0

http://dl.acm.org/citation.cfm?id=320176.320178
http://dl.acm.org/citation.cfm?id=320176.320178
https://doi.org/10.1016/j.jalgor.2004.08.004
https://doi.org/10.1145/2756553
https://doi.org/10.1137/130938670
https://doi.org/10.4230/LIPIcs.ICALP.2017.44
https://doi.org/10.1145/2897518.2897521
https://doi.org/10.1137/1.9781611974782.29
http://arxiv.org/abs/2004.04496
http://arxiv.org/abs/2004.04496
https://doi.org/10.1145/3313276.3316335
http://arxiv.org/abs/2004.08432
https://doi.org/10.1145/1502793.1502798
https://doi.org/10.1137/15M1042929
https://doi.org/10.1145/2684068
https://doi.org/10.1007/s00453-010-9459-0
https://doi.org/10.1145/3218821
https://doi.org/10.1137/120864271
https://doi.org/10.1007/s00453-019-00570-z
https://doi.org/10.1145/3313276.3316316
https://doi.org/10.1145/3313276.3316316

31:16 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

24 Panagiotis Charalampopoulos, Shay Mozes, and Benjamin Tebeka. Exact distance oracles
for planar graphs with failing vertices. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, pages 2110–2123, 2019. doi:10.1137/1.
9781611975482.127.

25 Shiri Chechik. Approximate distance oracles with improved bounds. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, pages 1–10,
2015. doi:10.1145/2746539.2746562.

26 Shiri Chechik. Near-optimal approximate decremental all pairs shortest paths. In 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2018, pages 170–181. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00025.

27 Danny Z. Chen and Jinhui Xu. Shortest path queries in planar graphs. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, STOC 2000, pages 469–478,
2000. doi:10.1145/335305.335359.

28 Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Sara-
nurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity,
flows, and beyond. CoRR, abs/1910.08025, 2019. arXiv:1910.08025.

29 Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source shortest
paths with applications to vertex-capacitated flow and cut problems. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, pages 389–400.
ACM, 2019. doi:10.1145/3313276.3316320.

30 Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen. Fast and compact
exact distance oracle for planar graphs. In 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, pages 962–973, 2017. doi:10.1109/FOCS.2017.93.

31 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

32 Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In Algorithms
- ESA 2007, 15th Annual European Symposium, Proceedings, pages 594–604, 2007. doi:
10.1007/978-3-540-75520-3_53.

33 Hristo Djidjev. On-line algorithms for shortest path problems on planar digraphs. In Graph-
Theoretic Concepts in Computer Science, 22nd International Workshop, WG ’96, pages 151–165,
1996. doi:10.1007/3-540-62559-3_14.

34 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification. I. Planary testing and minimum spanning trees. J. Comput. Syst. Sci., 52(1):3–27,
1996. doi:10.1006/jcss.1996.0002.

35 David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert Endre Tarjan, Jeffery R.
Westbrook, and Moti Yung. Maintenance of a minimum spanning forest in a dynamic plane
graph. J. Algorithms, 13(1):33–54, 1992. doi:10.1016/0196-6774(92)90004-V.

36 Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. Holiest minimum-cost paths and
flows in surface graphs. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pages 1319–1332, 2018. doi:10.1145/3188745.3188904.

37 Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4, 1981.
doi:10.1145/322234.322235.

38 Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci., 72(5):868–889, 2006. doi:10.1016/j.jcss.2005.
05.007.

39 Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM J. Comput., 16(6):1004–1022, 1987. doi:10.1137/0216064.

40 Pawel Gawrychowski and Adam Karczmarz. Improved bounds for shortest paths in dense
distance graphs. In 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, pages 61:1–61:15, 2018. doi:10.4230/LIPIcs.ICALP.2018.61.

41 Pawel Gawrychowski, Shay Mozes, Oren Weimann, and Christian Wulff-Nilsen. Better
tradeoffs for exact distance oracles in planar graphs. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 515–529, 2018.
doi:10.1137/1.9781611975031.34.

https://doi.org/10.1137/1.9781611975482.127
https://doi.org/10.1137/1.9781611975482.127
https://doi.org/10.1145/2746539.2746562
https://doi.org/10.1109/FOCS.2018.00025
https://doi.org/10.1145/335305.335359
http://arxiv.org/abs/1910.08025
https://doi.org/10.1145/3313276.3316320
https://doi.org/10.1109/FOCS.2017.93
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1007/978-3-540-75520-3_53
https://doi.org/10.1007/978-3-540-75520-3_53
https://doi.org/10.1007/3-540-62559-3_14
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1016/0196-6774(92)90004-V
https://doi.org/10.1145/3188745.3188904
https://doi.org/10.1145/322234.322235
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1137/0216064
https://doi.org/10.4230/LIPIcs.ICALP.2018.61
https://doi.org/10.1137/1.9781611975031.34

P. Charalampopoulos and A. Karczmarz 31:17

42 Qian-Ping Gu and Gengchun Xu. Constant query time (1 + ε) -approximate distance oracle for
planar graphs. In Algorithms and Computation - 26th International Symposium, ISAAC 2015,
Proceedings, volume 9472 of Lecture Notes in Computer Science, pages 625–636. Springer,
2015. doi:10.1007/978-3-662-48971-0_53.

43 Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein. New algorithms
and hardness for incremental single-source shortest paths in directed graphs. In Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages
153–166. ACM, 2020. doi:10.1145/3357713.3384236.

44 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Decremental SSSP in weighted
digraphs: Faster and against an adaptive adversary. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, pages 2542–2561. SIAM, 2020. doi:
10.1137/1.9781611975994.155.

45 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Deterministic algorithms for
decremental approximate shortest paths: Faster and simpler. In Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 2522–2541. SIAM, 2020.
doi:10.1137/1.9781611975994.154.

46 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs shortest
paths: Improved worst-case time and space bounds. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, pages 2562–2574. SIAM, 2020. doi:
10.1137/1.9781611975994.156.

47 Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and Robert Endre
Tarjan. Incremental cycle detection, topological ordering, and strong component maintenance.
ACM Trans. Algorithms, 8(1):3:1–3:33, 2012. doi:10.1145/2071379.2071382.

48 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-
source shortest paths on undirected graphs in near-linear total update time. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 146–155, 2014.
doi:10.1109/FOCS.2014.24.

49 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decremental
algorithms for single-source reachability and shortest paths on directed graphs. In Symposium
on Theory of Computing, STOC 2014, pages 674–683, 2014. doi:10.1145/2591796.2591869.

50 Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approximate
all-pairs shortest paths: Breaking the O(mn) barrier and derandomization. SIAM J. Comput.,
45(3):947–1006, 2016. doi:10.1137/140957299.

51 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001. doi:10.1145/502090.502095.

52 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity
in O(log n(log log n)2) amortized expected time. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 510–520, 2017.
doi:10.1137/1.9781611974782.32.

53 Giuseppe F. Italiano, Adam Karczmarz, Jakub Lacki, and Piotr Sankowski. Decremental
single-source reachability in planar digraphs. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pages 1108–1121. ACM, 2017. doi:
10.1145/3055399.3055480.

54 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Improved
algorithms for min cut and max flow in undirected planar graphs. In Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, pages 313–322, 2011. doi:
10.1145/1993636.1993679.

55 Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM,
24(1):1–13, 1977. doi:10.1145/321992.321993.

E S A 2 0 2 0

https://doi.org/10.1007/978-3-662-48971-0_53
https://doi.org/10.1145/3357713.3384236
https://doi.org/10.1137/1.9781611975994.155
https://doi.org/10.1137/1.9781611975994.155
https://doi.org/10.1137/1.9781611975994.154
https://doi.org/10.1137/1.9781611975994.156
https://doi.org/10.1137/1.9781611975994.156
https://doi.org/10.1145/2071379.2071382
https://doi.org/10.1109/FOCS.2014.24
https://doi.org/10.1145/2591796.2591869
https://doi.org/10.1137/140957299
https://doi.org/10.1145/502090.502095
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1145/3055399.3055480
https://doi.org/10.1145/3055399.3055480
https://doi.org/10.1145/1993636.1993679
https://doi.org/10.1145/1993636.1993679
https://doi.org/10.1145/321992.321993

31:18 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

56 Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Submatrix maximum queries
in monge matrices and partial monge matrices, and their applications. ACM Trans. Algorithms,
13(2):26:1–26:42, 2017. doi:10.1145/3039873.

57 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2013, pages 1131–1142, 2013. doi:10.1137/1.9781611973105.81.

58 Adam Karczmarz. Decremental transitive closure and shortest paths for planar digraphs and
beyond. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, pages 73–92. SIAM, 2018. doi:10.1137/1.9781611975031.5.

59 Adam Karczmarz and Jakub Lacki. Simple label-correcting algorithms for partially dynamic
approximate shortest paths in directed graphs. In 3rd Symposium on Simplicity in Algorithms,
SOSA@SODA 2020, pages 106–120. SIAM, 2020. doi:10.1137/1.9781611976014.15.

60 Adam Karczmarz and Jakub Łącki. Reliable hubs for partially-dynamic all-pairs shortest
paths in directed graphs. In 27th Annual European Symposium on Algorithms, ESA 2019,
pages 65:1–65:15, 2019. doi:10.4230/LIPIcs.ESA.2019.65.

61 Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. More compact oracles for
approximate distances in undirected planar graphs. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pages 550–563, 2013.
doi:10.1137/1.9781611973105.40.

62 Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate
distance queries. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms,SODA 2002, pages 820–827, 2002. URL: http://dl.acm.org/citation.cfm?id=
545381.545488.

63 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pages 146–155, 2005.
URL: http://dl.acm.org/citation.cfm?id=1070432.1070454.

64 Philip N. Klein, Shay Mozes, and Christian Sommer. Structured recursive separator decom-
positions for planar graphs in linear time. In Symposium on Theory of Computing Conference,
STOC’13, pages 505–514, 2013. doi:10.1145/2488608.2488672.

65 Philip N. Klein, Shay Mozes, and Oren Weimann. Shortest paths in directed planar graphs
with negative lengths: A linear-space O(nlog2n)-time algorithm. ACM Trans. Algorithms,
6(2):30:1–30:18, 2010. doi:10.1145/1721837.1721846.

66 Philip N. Klein and Sairam Subramanian. A fully dynamic approximation scheme for shortest
paths in planar graphs. Algorithmica, 22(3):235–249, 1998. doi:10.1007/PL00009223.

67 Aleksander Madry. Faster approximation schemes for fractional multicommodity flow problems
via dynamic graph algorithms. In Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, pages 121–130. ACM, 2010. doi:10.1145/1806689.1806708.

68 Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. In
Proceedings of the 16th Annual ACM Symposium on Theory of Computing, STOC 1984, pages
376–382, 1984. doi:10.1145/800057.808703.

69 Shay Mozes and Christian Sommer. Exact distance oracles for planar graphs. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,
pages 209–222, 2012. doi:10.1137/1.9781611973099.19.

70 Shay Mozes and Christian Wulff-Nilsen. Shortest paths in planar graphs with real lengths
in O(nlog2n/loglogn) time. In Algorithms - ESA 2010, 18th Annual European Symposium.
Proceedings, Part II, pages 206–217, 2010. doi:10.1007/978-3-642-15781-3_18.

71 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, pages 950–961. IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.92.

72 Yahav Nussbaum. Network flow problems in planar graphs. PhD thesis, Tel Aviv University,
2014.

https://doi.org/10.1145/3039873
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1137/1.9781611975031.5
https://doi.org/10.1137/1.9781611976014.15
https://doi.org/10.4230/LIPIcs.ESA.2019.65
https://doi.org/10.1137/1.9781611973105.40
http://dl.acm.org/citation.cfm?id=545381.545488
http://dl.acm.org/citation.cfm?id=545381.545488
http://dl.acm.org/citation.cfm?id=1070432.1070454
https://doi.org/10.1145/2488608.2488672
https://doi.org/10.1145/1721837.1721846
https://doi.org/10.1007/PL00009223
https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1145/800057.808703
https://doi.org/10.1137/1.9781611973099.19
https://doi.org/10.1007/978-3-642-15781-3_18
https://doi.org/10.1109/FOCS.2017.92

P. Charalampopoulos and A. Karczmarz 31:19

73 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

74 Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In Computing and
Combinatorics, 11th Annual International Conference, COCOON 2005, Proceedings, pages
461–470, 2005. doi:10.1007/11533719_47.

75 Sairam Subramanian. A fully dynamic data structure for reachability in planar digraphs. In
Algorithms - ESA ’93, First Annual European Symposium, Bad Honnef, Germany, September
30 - October 2, 1993, Proceedings, pages 372–383, 1993. doi:10.1007/3-540-57273-2_72.

76 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
J. ACM, 51(6):993–1024, 2004. doi:10.1145/1039488.1039493.

77 Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In
Algorithm Theory - SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory, Proceedings,
pages 384–396, 2004. doi:10.1007/978-3-540-27810-8_33.

78 Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, STOC 2005, pages
112–119, 2005. doi:10.1145/1060590.1060607.

79 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.
doi:10.1145/1044731.1044732.

80 Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and
beyond: Subquadratic and worst-case update time. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, pages 436–455. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00035.

81 Zhengyu Wang. An improved randomized data structure for dynamic graph connectivity.
CoRR, abs/1510.04590, 2015. arXiv:1510.04590.

82 Christian Wulff-Nilsen. Approximate distance oracles with improved query time. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
pages 539–549. SIAM, 2013. doi:10.1137/1.9781611973105.39.

83 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
pages 1757–1769. SIAM, 2013. doi:10.1137/1.9781611973105.126.

84 Christian Wulff-Nilsen. Approximate distance oracles for planar graphs with improved
query time-space tradeoff. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, pages 351–362. SIAM, 2016. doi:10.1137/1.
9781611974331.ch26.

A Omitted Proofs

I Lemma 16. Let Q be some collection of pieces from T (G) such that:
1. for each leaf piece L ∈ T (G), either L or some ancestor of L is in Q,
2. for each H ∈ Q, if some ancestor of H is in Q, then the parent of H is also in Q.

Then for any u, v ∈ V (DDG(Q)), distDDG(Q)(u, v) = distG(u, v).

Proof. Let us note that if for some H ∈ T (G) no ancestor of H belongs to Q, then
∂H ⊆ V (DDG(Q)). We prove this claim by induction on the level ` of piece H. For ` = 0,
we get H ∈ Q, so clearly ∂H ⊆ V (H) ⊆ V (DDG(Q)). Suppose ` ≥ 1. The statement is
trivial if H ∈ Q. Otherwise, consider the children H1, . . . ,Hk of H. By induction we get
∂Hi ⊆ V (DDG(Q)). So in fact we have ∂H ⊆

⋃k
i=1 ∂Hi ⊆ V (DDG(Q)).

Since the edges of each DDGH encode lengths of some paths in G, we have that
distDDG(Q)(u, v) ≥ distG(u, v). We now prove that there is a path of length at most
distG(u, v) in DDG(Q). Let P be some shortest u→ v path in G. Let H be a piece of T (G)
of minimum level that contains P . We prove our claim by induction on the level ` of H.

E S A 2 0 2 0

https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1007/11533719_47
https://doi.org/10.1007/3-540-57273-2_72
https://doi.org/10.1145/1039488.1039493
https://doi.org/10.1007/978-3-540-27810-8_33
https://doi.org/10.1145/1060590.1060607
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1109/FOCS.2019.00035
http://arxiv.org/abs/1510.04590
https://doi.org/10.1137/1.9781611973105.39
https://doi.org/10.1137/1.9781611973105.126
https://doi.org/10.1137/1.9781611974331.ch26
https://doi.org/10.1137/1.9781611974331.ch26

31:20 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

First note that by property 1 of Q, if H /∈ Q and no descendant of H belongs to Q,
then H has a nearest ancestor H∗ such that H∗ ∈ Q. Observe that V (DDG(Q)) ∩ V (H) ⊆
∂H∗. Hence, u, v ∈ ∂H∗ and thus distDDG(Q)(u, v) ≤ distDDGH∗ (u, v) = distH∗(u, v) ≤
distH(u, v) = distG(u, v).

So we can assume that either H ∈ Q or some descendant of H belongs to Q. Then by
property 2 of Q, we have that either H ∈ Q or no ancestor of H belongs to Q. In either of
these cases we have ∂H ⊆ V (DDG(Q)). Suppose first ` = 0 – then H is a leaf piece and
thus H ∈ Q. So clearly P ⊆ H ⊆ DDG(Q), i.e., distDDG(Q)(u, v) ≤ distG(u, v). On the
other hand, if we assume ` ≥ 1 then we can split P into maximal subpaths P1, . . . , Pk such
that each Pi = ui → vi is entirely contained in a single child of HP . Then for each i we
have {ui, vi} ⊆ {u, v} ∪ ∂H ⊆ V (DDG(Q)) so by induction we get that distDDG(Q)(ui, vi) ≤
distG(ui, vi) which implies distDDG(Q)(u, v) ≤ distG(u, v). J

I Lemma 4 ([24,38]). Let L be some collection of leaf pieces of T (G). Then:
1. For any u, v ∈ V (DDG(coneG(L))), distG(u, v) = distDDG(coneG(L))(u, v).
2.
∑
H∈coneG(L) |∂H| = O

(√
n|L|

)
.

Proof. To obtain item 1 it is enough to note that coneG(L) satisfies the requirements posed
on the collection Q in Lemma 16.

Let A be the set containing all ancestors of all the leaf pieces L ∈ L. We show item 2 by
bounding the sum X =

∑
H∈A |∂H|. Since the number of boundary vertices of a piece is

bounded by the sum of numbers of boundary vertices of its parent and its sibling, the sum∑
H∈coneG(L) |∂H| of our interest can be larger from X only by a constant factor.
Recall that T (G) admits an r-division for any r ∈ [1, n], i.e., there exists such r-division

R that R ⊆ T (G) and the boundary of each piece of R equals the boundary of that piece in
T (G). Let us split A into two parts: let A1 contain those H ∈ A that are descendants of
some piece P ∈ R, and let A2 = A \ A1. Let Xi =

∑
H∈Ai

|∂H|.
Since each L ∈ L is a descendant of a unique piece P ∈ R, we now bound the sum of |∂H|

over all ancestors of L that are descendants of P . Recall (Section 2) that if H is a piece in a
recursive decomposition of an n-vertex graph, then |∂H| = O(

√
n/cd) where d is the depth

of H in that decomposition. Consider the subtree of T (G) rooted at P – it forms a recursive
decomposition T (P) of P with some initial boundary vertex set |∂P | of size O(

√
r). So the

sum of |∂H| over all ancestors of L that are descendants of P is actually equal to the sum
of |∂H| over all ancestors H of L in T (P). Since each ancestor has distinct integral depth,
this sum is O(

∑∞
i=0
√
|P |/ci) = O(

√
|P |) = O(

√
r). Hence X1 = O(|L| ·

√
r). On the other

hand, X2 ≤
∑
P∈R |∂P | = O(n/

√
r). So we obtain X = X1 +X2 = O(n/

√
r + |L| ·

√
r). By

choosing r = n/|L|, we obtain X = O(
√
n · |L|) as desired. J

I Lemma 5 ([24,38]). Let X ⊆ V (G) be non-empty. Then:
1. For any u, v ∈ V (DDG(coneR(X))), distG(u, v) = distDDG(coneR(X))(u, v).
2.
∑
H∈coneR(X) |∂H| = O

(
n/
√
r + min

(√
n · |X|, |X| ·

√
r
))

.

Proof sketch. The proof is completely analogous to that of items 2 and 3 of Lemma 4. It is
enough to glue the individual decompositions T (P) into a single decomposition T ′(G) such
that the root has O(n/r) children instead of just 2: the individual pieces of R. Then item 1
follows by Lemma 16. Let Y =

∑
H∈coneR(X) |∂H|. Note that Y = O(n/

√
r+ |X| ·

√
r). If we

have r = n/|X| ≤ r, then we can obtain the bound Y = O(
√
n · |X|) in the proof of Lemma 4.

Otherwise, |X| ≤ n/r, so Y = O(n/
√
r+ |X| ·

√
r) = O(n/

√
r). So Y = O(n/

√
r+

√
n · |X|)

in all cases as well. J

P. Charalampopoulos and A. Karczmarz 31:21

I Theorem 6. Let G = (V,E) be a weighted planar graph. Suppose that adding infinite-weight
edges to G does not have effect on any properties of G that we care about. Let r ∈ [1, n].

There is a data structure maintaining an r-division with few holes R of some G+ such
that:
1. G+ is obtained from G by adding infinite-weight edges.
2. Each P has all its faces except its holes triangular and is accompanied with some auxiliary

data structures that can be constructed in T (r) time given P and use S(r) space.

The data structure uses O
(
n+ n

r · S(r)
)

space and can be initialized in O
(
n+ n

r · T (r)
)

time. After each edge deletion and edge insertion (preserving the planarity of G), it can be
updated in O(r + T (r)) worst-case time.

Proof. On initialization, we first connect and triangulate G using infinite-weight edges, thus
obtaining G+. Then, we compute an r-division R with few holes of G+ in linear time [64] and
subsequently initialize the auxiliary data structures. Let h ≥ 2 and c ≥ 8 be constants such
that a single piece of the computed r-division has at most c

√
r boundary vertices distributed

over h holes.
We will guarantee at all times that for any single piece P , |∂P | ≤ 3c

√
r, and there exist

at most 3h faces of P such that any v ∈ ∂P lies on one of these faces, called holes of P .
Moreover, each edge of G+ is contained in at most two pieces of R: this is satisfied initially
since the r-division of [64] forms a partition of faces of G+.

Suppose that the removal of an edge e = uv is issued to G. We then remove e from each
of the at most two pieces P containing it. If P is disconnected afterwards, we replace it
with two connected pieces P1, P2. Otherwise, since removing e merges two faces of P , the
total number of holes of P does not increase. If, on the other hand, a new edge e = uv is
inserted, we add a new piece Pe consisting of a single edge e to R. Adding Pe may cause an
endpoint of e, say u, to become a boundary vertex of R. If u was not a boundary vertex
before the insertion, it had to be a vertex of a single piece Pu. At this point, since a new
boundary vertex emerges in Pu, we might have ∂Pu > 3c

√
r or ∂P might no longer lie

on at most 3h faces of Pu. However, there surely exist some 3h + 1 faces whose vertices
include the whole set ∂Pu, and |∂Pu| ≤ 3c

√
r + 1. To fix our invariants, we first compute

a cycle separator C of Pu wrt. the boundary vertices of Pu in O(r) time, and replace Pu
with two pieces Pu,1, Pu,2 – the two subgraphs of Pu induced by vertices weakly on one side
of C. Clearly, the vertices of C become new boundary vertices afterwards. Subsequently,
we similarly break each of Pu,1, Pu,2 further into two parts using a cycle separator wrt. the
holes of this piece (see [64] for details). Each of the at most four resulting pieces has at
most 2

3 (3c
√
r + 1) + 2

√
2
√
r ≤ (2c + 2

√
2 + 2)

√
r ≤ 3c

√
r boundary vertices, and at most

2
3 · (3h+ 1) + 1 ≤ 2h+ 2 ≤ 3h holes.

Observe that a single edge update can introduce O(1) new pieces of size O(r) in the
maintained r-division, and the sizes of the existing pieces do not increase. For each of the
affected pieces we recompute the auxiliary data structures in O(T (r)) time. As a result, after
O(n/r) updates, there are still O(n/r) pieces, each of size O(r) and with O(

√
r) boundary

vertices distributed over O(1) holes of that piece. Consequently, after every Ω(n/r) updates,
we reinitialize R for the current graph G in O

(
n+ n

r · T (r)
)

time. Hence, the amortized
time to update R is O(r + T (r)).

Finally, observe that our data structure can be modified in a standard way (see e.g., [5])
to have O(r + T (r)) worst-case update time bound instead of just an amortized one. This is
possible since our update procedure actually takes O(r + T (r)) worst-case time apart from
once every k = Ω(n/t) updates when the whole data structure is rebuilt in O

(
n+ n

r · T (r)
)

E S A 2 0 2 0

31:22 Single-Source Shortest Paths and Strong Connectivity in Dynamic Planar Graphs

worst-case time. To this end we apply the time-slicing technique. We use two copies of our
data structure switching their roles every k/2 updates. One copy is for handling at most
k/2 updates and answering queries, and another is being gradually reinitialized in chunks of
Ω(r + T (r)) time (of either initialization or updates replayed) in the background. J

B Empty Voronoi Cells

Here, we briefly explain why the algorithm of [23] that underlies Theorem 7 works irrespective
of whether there are empty Voronoi cells.

We need a few more definitions. Let f∗ be the vertex of the dual graph of G corresponding
to the face f , where the sites lie. For an additively weighted Voronoi diagram VD(S, ω) over
a triangulated graph (possibly apart from face f), we call a face whose incident vertices
belong to three different Voronoi cells trichromatic. Let VD∗0(S, ω) be the forest obtained
by considering the dual edges of G whose endpoints belong to different Voronoi cells. Then,
we obtain VD∗1(S, ω) by repeatedly contracting edges of the forest that have an endpoint of
degree 2. We obtain VD∗2(S, ω) by creating one copy of f∗ for each of its incident edges –
inheriting only that edge. The vertices of VD∗2(S, ω) that are not copies of f∗ are in one-to-one
correspondence with the trichromatic faces of G, other than f . If VD∗2(S, ω) is a tree then we
are done. Otherwise, is some cell of VD(S, ω) is empty, VD∗2(S, ω) might be a forest. However,
as shown in Section 6 of [41], VD∗2(S, ω) can be turned into the sought tree VD∗(S, ω) in
O(|S|) time.

The algorithm of [23] for computing VD∗(S, ω) implicitly assumes that all Voronoi cells
are non-empty, and hence that VD∗2(S, ω) is a tree. This algorithm performs FR-Dijkstra
computations on G in order to compute the trichromatic faces of G, and a representation
of shortest paths from the sites to the vertices incident to these trichromatic faces. Then,
VD∗2(S, ω) can be straightforwardly retrieved from this representation. If we run the same
algorithm without assuming that there are no non-empty Voronoi cells, the sites with empty
Voronoi cells can be easily read from the shortest paths tree obtained from FR-Dijkstra
(more specifically, these are the sites whose some ancestor in this tree is also in S). Since the
proof of correctness of the algorithm of [23] for computing the trichromatic faces actually
only requires the set S to lie on a single face of G (and not necessarily to be equal to V (f)),
we can re-run it with S pruned from “empty” sites. From all the trichromatic faces and the
corresponding shortest paths from sites to their incident vertices, we can retrieve the forest
VD∗2(S, ω) in the same way as if it were a tree. Finally, we can then turn this forest into the
sought tree VD∗(S, ω) in O(|S|) time as in [41].

C Negative Edges in the Fully Dynamic SSSP Algorithm

Recall that p : V (H)→ R is called a feasible price function of H if distH(u, v)+p(u)−p(v) ≥ 0
for all u, v ∈ V (H). A feasible price function is guaranteed to exist if H contains no negative-
cost cycle. It is well-known that, provided that a graph H is strongly connected, a vector of
distances from any vertex of H constitutes a feasible price function of H.

As in the fully dynamic all-pairs algorithm of [56], we maintain functions φ : ∂R → R
and φP : ∂P → R, where P ∈ R, such that φ is some feasible price function of G restricted
to ∂R, and each φP is a feasible price function of P .

Since single-source shortest paths in planar graphs with negative weights can be computed
in O(n log2 n) time [65,70], each φP can be seen as an accompanying data structure of piece P
computable in O(r log2 r) time and maintained by the fully dynamic r-division algorithm.

P. Charalampopoulos and A. Karczmarz 31:23

The functions φP allow to treat individual graphs P and Ph as non-negatively weighted when
computing all the needed DDGs and MSSP data structures, and also point location data
structures L(P).

It is known [40,56] that the FR-Dijkstra algorithm (as in Lemma 3) can handle negative
weights in DDG(H) with no asymptotic overhead if a feasible price function on DDG(H)
is provided. Therefore, we would like to have a feasible price function on DDG(coneR(s))
to compute distances from s in DDG(coneR(s)) needed by the update algorithm. We can
extend φ from ∂R to all vertices in DDG(coneR(s)) as follows. Note that all pieces in
coneR(s) except of those in R have their parents also in coneR(s). We call those pieces
H ∈ coneR(s) for which we know the value of φ on all of ∂H processed. Initially, only the
pieces P ∈ R are processed by the definition of φ. While there are still unprocessed pieces,
we take any unprocessed piece H whose parent A ∈ T (P) has already been processed. Let
H ′ be the sibling of H in T (P). Observe that φP is a feasible price function of A as well.
We extend φ to boundary vertices of H,H ′ by computing shortest paths on DDG({H,H ′})
from vertices ∂A, with the initial distance to each v ∈ ∂A set to φ(v), and using FR-Dijkstra
(Lemma 3) with price function φP . This way, only the initial distances of ∂A are possibly
negative from the point of view of FR-Dijkstra. This does not constitute a problem for either
Dijkstra’s algorithm or FR-Dijkstra though (see [56]; one can treat the initial distances as
weights of edges going out of a super-source; these weights can be all increased by the same
large value to be made positive). One can show from the definition of φ that the values of
φ on ∂A will not be altered and the computed distances form a feasible price function on
∂H ∪ ∂H ′ in G. Hence, given that ∂A ⊆ ∂H ∪ ∂H ′, we can process the children H,H ′ of a
processed piece A in O((|∂H|+ |∂H ′|) log2 n) time. Summing over all pieces, we obtain by
Lemma 5 that extending φ to all V (DDG(coneR(s))) takes O(n/

√
r log2 n) time. This cost

is therefore negligible.
Note that an edge deletion or weight increase cannot break the feasibility of φ. We might

need to recompute φ only upon insertion or weight decrease of some edge uv. As shown by
Kaplan et al. [56], the new “global” price function φ′ (or a negative cycle) can be found by
computing distances from v to ∂R∪{u} in DDG(coneR(u, v)) (before applying the insertion)
using FR-Dijsktra and the old price function φ. This can be done in O(n/

√
r log2 n) time by

first extending the old φ to V (DDG(coneR(u, v))) as described above and then running the
single-source shortest paths algorithm of Lemma 3.

E S A 2 0 2 0

The Number of Repetitions in 2D-Strings
Panagiotis Charalampopoulos
Department of Informatics, King’s College London, UK
Institute of Informatics, University of Warsaw, Poland
panagiotis.charalampopoulos@kcl.ac.uk

Jakub Radoszewski
Institute of Informatics, University of Warsaw, Poland
Samsung R&D Poland, Warsaw, Poland
jrad@mimuw.edu.pl

Wojciech Rytter
Institute of Informatics, University of Warsaw, Poland
rytter@mimuw.edu.pl

Tomasz Waleń
Institute of Informatics, University of Warsaw, Poland
walen@mimuw.edu.pl

Wiktor Zuba
Institute of Informatics, University of Warsaw, Poland
w.zuba@mimuw.edu.pl

Abstract
The notions of periodicity and repetitions in strings, and hence these of runs and squares, naturally
extend to two-dimensional strings. We consider two types of repetitions in 2D-strings: 2D-runs and
quartics (quartics are a 2D-version of squares in standard strings). Amir et al. introduced 2D-runs,
showed that there are O(n3) of them in an n × n 2D-string and presented a simple construction
giving a lower bound of Ω(n2) for their number (Theoretical Computer Science, 2020). We make a
significant step towards closing the gap between these bounds by showing that the number of 2D-runs
in an n× n 2D-string is O(n2 log2 n). In particular, our bound implies that the O(n2 logn+ output)
run-time of the algorithm of Amir et al. for computing 2D-runs is also O(n2 log2 n). We expect this
result to allow for exploiting 2D-runs algorithmically in the area of 2D pattern matching.

A quartic is a 2D-string composed of 2× 2 identical blocks (2D-strings) that was introduced by
Apostolico and Brimkov (Theoretical Computer Science, 2000), where by quartics they meant only
primitively rooted quartics, i.e. built of a primitive block. Here our notion of quartics is more general
and analogous to that of squares in 1D-strings. Apostolico and Brimkov showed that there are
O(n2 log2 n) occurrences of primitively rooted quartics in an n× n 2D-string and that this bound is
attainable. Consequently the number of distinct primitively rooted quartics is O(n2 log2 n). The
straightforward bound for the maximal number of distinct general quartics is O(n4). Here, we prove
that the number of distinct general quartics is also O(n2 log2 n). This extends the rich combinatorial
study of the number of distinct squares in a 1D-string, that was initiated by Fraenkel and Simpson
(Journal of Combinatorial Theory, Series A, 1998), to two dimensions.

Finally, we show some algorithmic applications of 2D-runs. Specifically, we present algorithms for
computing all occurrences of primitively rooted quartics and counting all general distinct quartics in
O(n2 log2 n) time, which is quasi-linear with respect to the size of the input. The former algorithm is
optimal due to the lower bound of Apostolico and Brimkov. The latter can be seen as a continuation
of works on enumeration of distinct squares in 1D-strings using runs (Crochemore et al., Theoretical
Computer Science, 2014). However, the methods used in 2D are different because of different
properties of 2D-runs and quartics.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases 2D-run, quartic, run, square

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.32

© Panagiotis Charalampopoulos, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor
Zuba;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 32; pp. 32:1–32:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6024-1557
mailto:panagiotis.charalampopoulos@kcl.ac.uk
https://orcid.org/0000-0002-0067-6401
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-9162-6724
mailto:rytter@mimuw.edu.pl
https://orcid.org/0000-0002-7369-3309
mailto:walen@mimuw.edu.pl
https://orcid.org/0000-0002-1988-3507
mailto:w.zuba@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.ESA.2020.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 The Number of Repetitions in 2D-Strings

Funding Panagiotis Charalampopoulos: Partially supported by ERC grant TOTAL under the EU’s
Horizon 2020 Research and Innovation Programme (agreement no. 677651).
Jakub Radoszewski: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/
03991.
Tomasz Waleń: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.
Wiktor Zuba: Supported by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.

1 Introduction

Periodicity is one of the main and most elegant notions in stringology. It has been studied
extensively both from the combinatorial and the algorithmic perspective; see e.g. the books [18,
25, 39]. A classic combinatorial result is the periodicity lemma due to Fine and Wilf [27].
From the algorithmic side, periodicity often poses challenges in pattern matching, due to
the following fact: a pattern P can have many occurrences in a text T that are “close” to
each other if and only if P has a “small” period. On the other hand, the periodic structure
indeed allows us to overcome such challenges; see [18, 25].

Runs, also known as maximal repetitions, are a fundamental notion in stringology. A
run is a periodic fragment of the text that cannot be extended without changing the period.
Runs were introduced in [35]. Kolpakov and Kucherov presented an algorithm to compute
all runs in a string in time linear with respect to the length of the string over a linearly-
sortable alphabet [38]. Runs fully capture the periodicity of the underlying string and, since
the publication of the algorithm for their linear-time computation, they have assumed a
central role in algorithm design for strings. They have been exploited for text indexing [36],
answering internal pattern matching queries in texts [16, 37], or reporting repetitions in a
string [2, 15, 22], to name a few applications.

Kolpakov and Kucherov also posed the so-called runs conjecture which states that there
are at most n runs in a string of length n. A long line of work on the upper [19, 20, 21,
31, 42, 43, 44] and lower bounds [30, 41, 45] was concluded by Bannai et al. who positively
resolved the runs conjecture in [10] (see also an alternative proof in [23] and a tighter upper
bound for binary strings from [28]).

A square is a concatenation of two copies of the same string. Fraenkel and Simpson [29]
showed that a string of length n contains at most 2n distinct square factors. This bound was
improved in [26, 34]. All distinct squares in a string of length n can be computed in O(n)
time assuming an integer alphabet [11, 22, 33] (see [46] for an earlier O(n logn) algorithm).

Pattern matching and combinatorics on 2D strings have been studied for more than 40
years, see e.g. [1, 4, 9, 14, 18, 25]. In this paper we consider 2-dimensional versions of runs,
introduced by Amir et al. [5, 6], and of repetitions in 2D-strings, introduced by Apostolico
and Brimkov [7]. As discussed in [6, 8], one could potentially exploit such repetitions in a
2D-string, which could for instance be an image, in order to compress it.

A 2D-run in a 2D-string A is a subarray of A that is both horizontally periodic and
vertically periodic and that cannot be extended by a row or column without changing the
horizontal or vertical periodicity (a formal definition follows in Section 2); see Figure 1(a).
Amir et al. [5, 6] have shown that the maximum number of 2D-runs in an n×n array is O(n3)
and presented an example with Θ(n2) 2D-runs. In [6] they presented an O(n2 logn+ output)-
time algorithm for computing 2D-runs.

A quartic is a configuration that is composed of 2 × 2 occurrences of an array W (see
Figure 1(b)) and a tandem is a configuration consisting of two occurrences of an arrayW that
share one side (Apostolico and Brimkov [7] also considered another type of tandems, which

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:3

share one corner; see also [3]). An array W is called primitive if it cannot be partitioned
into non-overlapping replicas of some array W ′. Apostolico and Brimkov [7] considered only
quartics and tandems with primitive W (we call them primitively rooted) and showed tight
asymptotic bounds Θ(n2 log2 n) and Θ(n3 logn) for the maximum number of occurrences of
such quartics and tandems in an n× n array, respectively. In [8] they presented an optimal
O(n3 logn)-time algorithm for computing all occurrences of tandems with primitive W . This
extends a result that a 1D-string of length n contains O(n logn) occurrences of primitively
rooted squares and they can all be computed in O(n logn) time; see [17, 46]. In this paper
we consider the numbers of all distinct quartics, which is a more complicated problem.

a a a a a a a a

b a b a b a b a

a a a a a a a a

a a b a b a b a

a b a a a b a b

(a) a 2D-run

a a a a a a a a

b a b a b a b a

a a a a a a a a

a a b a b a b a

a b a a a b a b

(b) a quartic

Figure 1 Examples of a 2D-run and a quartic.

When computing 2D-runs we consider positioned runs: two 2D-runs with same content
but starting in different points are considered distinct. However in case of quartics, similarly
as in case of 1D-squares, we consider unpositioned quartics; if two quartics have the same
content but start in different positions, we consider them equal.

Our Results.
We show that the number of 2D-runs in an n× n array is O(n2 log2 n). This improves
upon the O(n3) upper bound of Amir et al. [5, 6] and proves that their algorithm computes
all 2D-runs in an n× n 2D-string in O(n2 log2 n) time (Section 3).
We show that the number of distinct quartics in an n × n array is O(n2 log2 n). This
can be viewed as an extension of the bounds on the maximum number of distinct square
factors in a 1D-string [26, 29] (Section 4).
We present algorithmic implications of the new upper bound for 2D-runs. We show
that all occurrences of primitively rooted quartics can be computed in quasi-linear,
O(n2 log2 n) time, which is optimal by the bound of Apostolico and Brimkov [7]. Thus
our algorithm complements the result of Apostolico and Brimkov [8] who gave an optimal
algorithm for computing all occurrences of primitively rooted tandems. We also show that
all distinct quartics can be computed in quasi-linear, O(n2 log2 n) time, which extends
efficient computation of distinct squares in 1D-strings [11, 22, 33] to 2D (Section 5).
As an easy side result, we show tight Θ(n3) bounds for the maximum number of distinct
tandems in an n× n array and how to report them in O(n3) time (Section 2).

2 Preliminaries

1D-Strings. We denote by [a, b] the set {i ∈ Z : a ≤ i ≤ b}. Let S = S[1]S[2] · · ·S[|S|] be
a string of length |S| over an alphabet Σ. The elements of Σ are called letters. For two
positions i and j on S, we denote by S[i . . j] = S[i] · · ·S[j] the fragment of S that starts at
position i and ends at position j (it equals ε if j < i). A positive integer p is called a period
of S if S[i] = S[i+ p] for all i = 1, . . . , |S| − p. We refer to the smallest period as the period
of the string, and denote it by per(S).

ESA 2020

32:4 The Number of Repetitions in 2D-Strings

I Lemma 1 (Periodicity Lemma (weak version), Fine and Wilf [27]). If p and q are periods of
a string S and satisfy p+ q ≤ |S|, then gcd(p, q) is also a period of S.

A string S is called periodic if per(S) ≤ |S|/2. By ST and Sk we denote the concatenation
of strings S and T and k copies of the string S, respectively. A string S is called primitive if
it cannot be expressed as Uk for a string U and an integer k > 1.

A string of the form U2 for string U is called a square. A square U2 is called primitively
rooted if U is primitive. We will make use of the following important property of squares.

I Lemma 2 (Three Squares Lemma, [24]). Let U , V and W be three strings such that U2 is
a proper prefix of V 2, V 2 is a proper prefix of W 2 and U is primitive. Then |U |+ |V | ≤ |W |.

A run (also known as maximal repetition) in S is a periodic fragment R = S[i . . j] which
cannot be extended either to the left or to the right without increasing the period p = per(R),
i.e. if i > 1 then S[i − 1] 6= S[i + p − 1] and if j < |S| then S[j + 1] 6= S[j − p + 1]. Let
R(S) denote the set of all runs of string S. For periodic fragment U = S[a . . b], the run that
extends U is the unique run R = S[i . . j] such that i ≤ a ≤ b ≤ j and per(R) = per(U). An
occurrence of a square U2 is said to be induced by a run R if R extends U2. Every square is
induced by exactly one run [22].

2D-Strings. Let A be an m×n array (2D-string). We denote the height and width of A by
height(A) = m and width(A) = n, respectively. By A[i, j] we denote the cell in the ith row
and jth column of A; see Figure 2(a). By A[i1 . . i2, j1 . . j2] we denote the subarray formed
of rows i1, . . . , i2 and columns j1, . . . , j2.

A positive integer p is a horizontal period of A if the i-th column of A equals the (i+p)-th
column of A for all i = 1, . . . , n − p. We denote the smallest horizontal period of A by
hper(A). Similarly, a positive integer q is a vertical period of A if the i-th row of A equals
the (i+ q)-th row of A for all i = 1, . . . ,m− q; the smallest vertical period of A is denoted
by vper(A).

1
...
i

...
m

n. . .j. . .1

A[i, j]

(a) 2D string A

W

W

W

W

W

W

W

W

W

. . .

β

α

(b) Wα,β

Figure 2 A 2D-string and the structure of Wα,β .

An r×c subarray B = A[i1 . . i2, j1 . . j2] of A is a 2D-run if hper(B) ≤ c/2, vper(B) ≤ r/2
and extending B by a row or column, i.e. either of A[i1 − 1, j1 . . j2], A[i2 + 1, j1 . . j2],
A[i1 . . i2, j1 − 1], or A[i1 . . i2, j2 + 1], would result in a change of the smallest vertical or the
horizontal period.

If W is a 2D array, then by Wα,β we denote an array that is composed of α× β copies of
W ; see Figure 2(b). A tandem of W is an array of the form W 1,2 and a quartic of W is the
array W 2,2. A 2D array A is called primitive if A = Bα,β for positive integers α, β implies
that α = β = 1. The primitive root of an array A is the unique primitive array B for which
A = Bα,β for α, β ≥ 1.

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:5

Apostolico and Brimkov [7] proved the following upper bound, and showed that it is tight
by giving a corresponding lower bound.

I Fact 3 (Lemma 5 in [7]). A 2D array of size n × n has O(n2 log2 n) occurrences of
primitively rooted quartics.

We say that a quartic Q = W 2,2 is induced by a 2D-run R if Q is a subarray of R and
hper(R) and vper(R) divide the width and height of W , respectively.

Figure 3 Shaded positions contain letters b, all the other the letters a. Each rectangle with
top-left and bottom-right corners marked is a 2D-run; altogether there are 18 distinct 2D-runs,
including two of the form b2,2. There are also 10 distinct quartics aα,β , where 0 < α, β ≤ 8 are even
and α+ β ≤ 10. There is also the quartic b2,2 (altogether 11 distinct quartics). The centrally placed
quartic a2,2 is contained in 16 2D-runs. There are only two distinct primitively rooted quartics.

I Observation 4. Every quartic is induced by a 2D-run. However; the same quartic can be
induced even by Θ(n2) 2D-runs; say the middle quartic a2,2 in Figure 3.

I Remark 5. The fact that a string of length n has O(n logn) occurrences of primitively
rooted squares immediately shows (by the fact that a square is induced by exactly one
run) that it has O(n logn) runs. However, an analogous argument applied for quartics and
2D-runs does not give a non-trivial upper bound for the number of the latter because of
Observation 4.

In our algorithms, we use a variant of the Dictionary of Basic Factors in 2D (2D-DBF in
short) that is similar to the one presented in [25]. Namely, to each subarray of A whose width
and height is an integer power of 2 we assign an integer identifier from [0, n2] so that two
arrays with the same dimensions are equal if and only if their identifiers are equal. The total
number of such subarrays is O(n2 log2 n) and the identifiers can be assigned in O(n2 log2 n)
time; see [25]. Using 2D-DBF, we can assign an identifier to a subarray of A of arbitrary
dimensions r × c being a quadruple of 2D-DBF identifiers of its four 2i × 2j subarrays that
share one of its corners, where 2i ≤ r < 2i+1 and 2j ≤ c < 2j+1. Such quadruples preserve
the property that two subarrays of the same dimensions are equal if and only if the 2D-DBF
quadruples are the same.

As an illustration, we show a tight bound for the number of distinct tandems and an
optimal algorithm for computing them.

I Theorem 6. The maximum number of distinct tandems in an n×n array A is Θ(n3). All
distinct tandems in an n× n array can be reported in the optimal Θ(n3) time.

Proof. Let us fix two row numbers i < i′ in A. Then, the number of distinct tandems with
top row i and bottom row i′ is O(n) by the fact that a string of length n contains O(n)
squares [26, 29]. Thus, in total there are O(n3) distinct tandems. For the lower bound, let

ESA 2020

32:6 The Number of Repetitions in 2D-Strings

the ith row of A be filled with occurrences of the letter i. Every subarray of A of even width
is a tandem. For each distinct triplet of top and bottom rows and even width, we obtain a
distinct tandem.

Let us proceed to the algorithm. For a height h ∈ [1, n], we assign integer identifiers from
[1, n2] that preserve lexicographical comparison to all height-h substrings of columns of A.
They can be assigned using the generalized suffix tree [18, 47] of the columns of A inO(n2 logn)
time. Let Bh be an array such that Bh[i, j] stores the identifier of A[i . . i+ h− 1, j]. To a
subarrayW = A[i . . i+h−1, j . . j+w−1] we assign an identifier id(W) = Bh[i, j . . j+w−1].
Then for any two subarrays W and W ′ of height h, W = W ′ if and only if id(W) = id(W ′).
For every height h = 1, . . . , n and row i, we find all distinct squares in Bh[i, 1], . . . , Bh[i, n]
in O(n) time [11, 22, 33]. This corresponds to the set of distinct tandems with top row i

and bottom row i+ h− 1. Finally, we assign identifiers from 2D-DBF of A to each of the
tandems and use radix sort to sort them and enumerate distinct tandems. J

3 Improved Upper Bound for 2D-Runs

We introduce the framework that Amir et al. used for efficiently computing 2D-runs [5, 6].
We say that a subarray B = A[i1 . . i2, j1 . . j2] of A is a horizontal run if it is horizont-

ally periodic (that is, hper(B) ≤ width(B)/2) and extending B by either of the columns
A[i1 . . i2, j1−1] or A[i1 . . i2, j2 + 1] would result in a change of the smallest horizontal period.
(Note that B does not have to be vertically periodic.)

For k ∈ [1, blognc] and i ∈ [1, n − 2k + 1], let Hk
i be the string obtained by replacing

the columns of array A[i . . i+ 2k − 1, 1 . . n] with metasymbols such that Hk
i [j] = Hk

i [j′] if
and only if A[i . . i+ 2k − 1, j] = A[i . . i+ 2k − 1, j′]. Notice that each such horizontal run of
height 2k corresponds to a run in some Hk

i .
The following lemma will enable us to “anchor” each 2D-run R in the top-left or bottom-

left corner of a horizontal run of “similar” height as R. It was proved in [6], but we provide
a proof for completeness.

I Lemma 7 (Lemma 7 in [6]). Let R be a 2D-run whose height is in the range [2k, 2k+1). Then
there is a horizontal run R′ of height 2k with hper(R′) = hper(R) and width(R′) ≥ width(R)
such that top-left or bottom-left corners of R and R′ coincide (see Figure 4).

Proof. Let R = A[i1 . . i2, j1 . . j2] be the 2D-run in scope and let k = blog(i2 − i1 + 1)c. We
have to show that at least one of the two following statements holds.

There is a run R1 = S[j1 . . b] in S = Hk
i1

with smallest period p and b ≥ j2.
There is a run R2 = T [j1 . . d] in T = Hk

i2−2k+1 with smallest period p and d ≥ j2.

Since vper(R) ≤ height(R)/2, all distinct rows of R are represented in each of U =
S[j1 . . j2] and V = T [j1 . . j2] and hence p = per(U) = per(V). Let R1 = S[a . . b] be the
run that extends U and R2 = T [c . . d] be the run that extends V . Let us suppose towards
a contradiction that max(a, c) < j1. Then, A[i1 . . i2, j1 − 1] = A[i1 . . i2, j1 − 1 + p], which
contradicts R being a run, since R and B = A[i1 . . i2, j1 − 1 . . j2] have the same horizontal
and vertical periods. J

The sum of the lengths of the runs in a string of length n can be Ω(n2) as shown in [32].
However, we prove the following lemma, which is crucial for our approach. We will use it to
obtain an overall bound on the possible widths of 2D-runs for our anchors.

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:7

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a b c

a a a
b a c

a a a a a a

b b b b b b b b b b b b

b
b
b
b
b
b
b

b
b
b
b
b
b
b

b
b
b
b
b
b
b

b b b

Figure 4 The shaded 7× 6 subarray is a 2D-run R, with vertical period 3 and horizontal period
p = 3. The other marked 4× 9 rectangle encloses a horizontal run R′ with the same top-left corner
and the same horizontal period as R. We have 2 · p ≤ width(R) ≤ width(R′).

I Lemma 8. For any string S of length n we have that

ρ(S) :=
∑

R∈R(S)

(|R| − 2 · per(R) + 1) = O(n logn).

Proof. We consider for each run R = S[i . . j] of S the interval IR = [i, j − 2 · per(R) + 1].
Note that ρ(S) =

∑
R∈R(S) |IR|.

Observe that for every a ∈ IR the string S[a . . a+ per(R)− 1] is primitive, since if it was
of the form Uk for a string U and an integer k > 1, then |U | < per(R) would be a period of
R, a contradiction. Hence, at each position a ∈ IR there is an occurrence of a primitively
rooted square of length 2 · per(R).

A direct application of the Three Squares Lemma (Lemma 2) implies that at most O(logn)
primitively rooted squares can start at each position a. Each such square extends to a unique
run. Thus, each position i belongs to O(logn) intervals IR for R ∈ R(S). This completes
the proof. J

We are now ready to prove the main result of this section.

I Theorem 9. There are O(n2 log2 n) 2D-runs in an n× n array A.

Proof. We will iterate over all horizontal runs R′ = A[i . . i′, j . . j′] whose height is a power
of 2, i.e. i′ = i+ 2k − 1 for some k. For each such horizontal run R′, we consider the 2D-runs
R with:
(a) top-left corner A[i, j] or bottom-left corner A[i′, j],
(b) hper(R) = hper(R′), and
(c) height(R) ∈ [2k, 2k+1).
For each such 2D-run R, we have width(R) ∈ [2 · hper(R′),width(R′)], else the horizontal
period would break, i.e. property (b) would be violated. Let us notice that R′ corresponds
to a run U = Hk

i [j . . j′] ∈ R(Hk
i). In particular, width(R) ∈ [2 · per(U), |U |].

Lemma 7 implies that each 2D-run is accounted for at least once in this manner. It is thus
enough to bound the number of considered runs. We have n choices for i and logn choices
for k. Further, due to Lemma 8, for each corresponding meta-string Hk

i we have O(n logn)
choices for a pair (j, c) such that U = Hk

i [j . . j′] ∈ R(Hk
i) and c ∈ [2 · per(U), |U |]. In total,

we thus have O(n2 log2 n) choices for (i, k, j, c). We will complete the proof by showing that
there is only a constant number of 2D-runs with top-left corner A[i, j], width w and whose
height is in the range [2k, 2k+1). (2D-runs with bottom-left corner A[i′, j] can be bounded
symmetrically.)

ESA 2020

32:8 The Number of Repetitions in 2D-Strings

B Claim 10 (cf. Lemma 10 in [6]). Let B be an r × c array with r ∈ [2k, 2k+1). Then, there
are at most two integers p > 2k−1 such that p = vper(B′) ≤ height(B′)/2 for B′ consisting
of the top height(B′) ≥ 2k rows of B.

Proof. Consider S to be the meta-string obtained by replacing the rows of B by single letters.
Then, a direct application of the Three Squares Lemma (Lemma 2) to S yields the claimed
bound. C

We apply Claim 10 to B = A[i . .min(i+ 2k+1 − 2, n), j . . j + c− 1]. If vper(R) ≤ 2k−1,
then vper(R) = vper(R′) by the Periodicity Lemma (Lemma 1) applied to the meta-string
obtained by replacing the rows of the intersection of R′ and B by single letters. Now Claim 10
implies that there are at most three choices to make for the vertical period: vper(R′) and
the two integers from the claim. Finally, for fixed top-left corner, width and vertical period
we can have a single 2D-run. This concludes the proof. J

Amir et al. [6] presented the following algorithmic result.

I Theorem 11 ([6]). All 2D-runs in an n×n array can be computed in O(n2 logn+ output)
time, where output is the number of 2D-runs reported.

By combining Theorems 9 and 11 we get the following corollary.

I Corollary 12. All 2D-runs in an n× n array can be computed in O(n2 log2 n) time.

4 Upper Bound on the Number of Distinct Quartics

Fact 3 that originates from [7] shows that an n× n array A has O(n2 log2 n) occurrences of
primitively rooted quartics. This obviously implies that the number of distinct primitively
rooted quartics is upper bounded by O(n2 log2 n). Unfortunately, an array can contain Θ(n4)
occurrences of general quartics; this takes place e.g. for a unary array. In this section we
show that O(n2 log2 n) is also an upper bound for the number of distinct general quartics,
i.e. subarrays of A of the form Wα,β for even α, β ≥ 2 and primitive W .

The following lemma and its corollary are the combinatorial foundation of our proofs. An
array W with height(W) ∈ [2a, 2a+1) and width(W) ∈ [2b, 2b+1) will be called an (a, b)-array.

I Lemma 13. Let a, b be non-negative integers and W,W ′ be different primitive (a, b)-arrays.
If occurrences of W 2,3 and (W ′)2,3 (of W 3,2 and (W ′)3,2, respectively) in A share the same
corner (i.e., top-left, top-right, bottom-left or bottom-right), then width(W) = width(W ′)
(height(W) = height(W ′), respectively).

Proof. Clearly it is sufficient to prove the lemma for W 2,3 and (W ′)2,3. Assume w.l.o.g. that
occurrences of W 2,3 and (W ′)2,3 in A share the top-left corner and consider their overlap X.

Each of the rows of X has periods width(W) and width(W ′). Assume w.l.o.g. that
width(W) ≤ width(W ′). Then

width(X) = 3 · width(W) ≥ width(W) + 2a+1 ≥ width(W) + width(W ′).

By the Periodicity Lemma (Lemma 1), p = gcd(width(W),width(W ′)) is a horizontal period
of X.

The array X contains at least one occurrence of W and W ′ in its top-left corner. Hence,
W and W ′ have a horizontal period p. If width(W) < width(W ′), then width(W ′) cannot
be a multiple of width(W), because then we would have width(W ′) > 2a+1. Hence, if
width(W) < width(W ′), we would have p < width(W) which by p | width(W) would mean
that W is not primitive. This indeed shows that width(W) = width(W ′). J

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:9

I Corollary 14. Let a, b be non-negative integers and W,W ′ be different (a, b)-arrays. If
occurrences of W 3,3 and (W ′)3,3 in A share the same corner (i.e., top-left, top-right, bottom-
left or bottom-right), then at least one of W , W ′ is not primitive.

If V 2,2 is a non-primitively rooted quartic, then there exists a primitive array W such
that V = Wα,β and at least one of α, β is greater than one. We will call the quartic W 2α,2β

thin if α = 1 or β = 1 for this decomposition, and thick otherwise. We refer to points in A as
the (n + 1)2 positions where row and column delimiters intersect. Let us first bound the
number of distinct thin quartics. For β > 1, we consider any rightmost occurrence of every
such quartic, that is, any occurrence A[i1 . . i2, j1 . . j2] that maximizes j1.

I Lemma 15. The total number of distinct thin quartics in A is O(n2 log2 n).

Proof. We give a proof for quartics of the form W 2,2β for primitive W and β > 1; the proof
for quartics of the form W 2α,2 for α > 1 is symmetric. We consider each pair of positive
integers a, b and show that each point holds the top-left corner of at most two rightmost
occurrences of W 2,2β for primitive (a, b)-arrays W and β > 1.

Assume to the contrary that the rightmost occurrences ofW 2,2β , (W ′)2,2β′ and (W ′′)2,2β′′

share their top-left corner for primitive (a, b)-arrays W,W ′,W ′′. The arrays W,W ′,W ′′ are
pairwise different, since otherwise one of the occurrences would not be the rightmost. By
Lemma 13, we have width(W) = width(W ′) = width(W ′′). Assume w.l.o.g. that height(W) <
height(W ′) < height(W ′′).

Let (i, j) denote the top-left corner of the three quartics. Let us consider three length-2`
strings formed of metacharacters that correspond to row fragments:

(A[i, j . . j + w − 1]), . . . , (A[i+ 2`− 1, j . . j + w − 1])

for w = width(W) and ` ∈ {height(W), height(W ′), height(W ′′)}. All the three strings need
to be primitively rooted squares. We apply the Three Squares Lemma (Lemma 2) to conclude
that height(W ′′) > height(W) + height(W ′) > 2a+1, a contradiction. J

Now let us proceed to thick quartics. Unfortunately, in this case a single point can be
the top-left corner of a linear number of rightmost occurrences of thick quartics; see the
example in Figure 3. Let us consider an occurrence of Wα,β for even α, β > 2 and primitive
W , called a positioned quartic. It implies α · β occurrences of W . Let us call all corners of
all these occurrences of W special points of this positioned quartic. Each special point stores
a direction in {top-left, top-right, bottom-left,bottom-right}. A special point has one of the
directions if it is the respective corner of an occurrence of W 3,3 in this positioned quartic.
Clearly, since α, β ≥ 4, for every special point in Wα,β except for the middle row if α = 4 or
middle column if β = 4, one can assign such a direction (if many directions are possible, we
choose an arbitrary one); see Figure 5.

The quartics with primitive root W are called W -quartics. The set of all special
points (with directions) of all positioned thick W -quartics for a given W is denoted by
SpecialPoints(W). Among W -quartics of the same height we distinguish the ones with
maximal width, which we call h-maximal (horizontally maximal). Let us observe that each
W -quartic is contained in an occurrence of some h-maximal W -quartic.

I Theorem 16. The number of distinct quartics in an n× n array is O(n2 log2 n).

Proof. By Fact 3 and Lemma 15 it suffices to show that the total number of distinct thick
quartics in A is O(n2 log2 n). Let us fix non-negative integers a, b. It is enough to show that
the number of distinct subarrays of A of the form Wα,β for even α, β > 2 and any primitive
(a, b)-array W is O(n2).

The sets of special points have the following properties. Claim 17 follows from Corollary 14.

ESA 2020

32:10 The Number of Repetitions in 2D-Strings

W 6,6 W 4,4

Figure 5 Special points of a positioned quartic with primitive root W with associated directions
of four types. The arrow indicates the corner (four possibilities) of W 3,3 which is contained in the
quartic. If several assignments of directions are possible, only one of them is chosen (it does not
matter which one). In case of W 4,4 the middle row and column are not special.

B Claim 17. For primitive (a, b)-arraysW 6= W ′ , SpecialPoints(W)∩SpecialPoints(W ′) = ∅.

For an array W , let us denote by ThickQuartics(W) the total number of thick quartics
in A with primitive root W .

B Claim 18. For a primitive (a, b)-array W , ThickQuartics(W) < |SpecialPoints(W)|.

Proof. For each α = 4, 6, . . . in this order, we select one positioned h-maximal W -quartic Uα
of height α · height(W). The number of distinct W -quartics in A of height α · height(W) is
at most the number of special points in Uα in any of its rows. Note that this statement also
holds if Uα = Wα,4; then there are still four special points in each (non-middle if α = 4) row.

We describe a process of assigning distinct W -quartics to distinct special points in
SpecialPoints(W). Assume all points in this set are initially not marked. We choose any
single row from Uα with all special points in this row still not marked. Then we mark all
these special points. We can always choose a suitable row because the heights are increasing.

This way each W -quartic is assigned to only one special point from SpecialPoints(W).
C

By the claims, the total number of thick W -quartics for primitive (a, b)-arrays W is
bounded by:∑

W

ThickQuartics(W) <
∑
W

|SpecialPoints(W)| ≤ 4(n+ 1)2,

where the sum is over all primitive (a, b)-arrays W . The conclusion follows. J

5 Algorithms for Computing Quartics

In this section we show algorithmic applications of 2D-runs related to quartics.

I Theorem 19. All occurrences of primitively rooted quartics in an n× n array A can be
computed in the optimal O(n2 log2 n) time.

Proof. Let us consider a 2D-run R = A[i1 . . i2, j1 . . j2] with periods hper(R) = p and
vper(R) = q. It induces primitively rooted quartics of width 2p and height 2q. The set of
top-left corners of these quartics forms a rectangle R̂ = [i1, i2− 2p+ 1]× [j1, j2− 2q+ 1]. We
denote by Fp,q the family of such rectangles R̂ over 2D-runs R with the same periods p, q.

Such rectangles for different 2D-runs may overlap, even when the dimensions of the
quartic are fixed (see Observation 4). In order not to report the same occurrence multiple
times, we need to compute, for every dimensions of a quartic, all points in the union of

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:11

the corresponding rectangles. This could be done with an additional logn-factor in the
complexity using a standard line sweep algorithm [12]. However, we can achieve O(n2 log2 n)
total time using the fact that the total number of occurrences reported is O(n2 log2 n).

B Claim 20. Let F1, . . . ,Fk be families of 2D rectangles in [1, n]2 and let r =
∑k
i=1 |Fi|. We

can compute k (not necessarily disjoint) sets of grid points Outi =
⋃
Fi in O(n+ r+ output)

total time, where output =
∑
i |Outi| is the total number of reported points.

Proof. We design an efficient line sweep algorithm. We will perform a separate line sweep,
left to right, for each family Fi.

The sweep goes over horizontal (x) coordinates in a left-to-right manner. The broom
stores vertical (y) coordinates of horizontal sides of rectangles that it currently intersects.
They are stored in a sorted list L of pairs (y, c), where y is the coordinate, and c is the count
of rectangles with bottom side at coordinate y minus the count of the rectangles with top
side at coordinate y. Only pairs with non-zero second component are stored. Clearly, the
second components of the list elements always sum up to 0.

A coordinate x is processed if L is non-empty before accessing it or there exist any vertical
sides of rectangles at x. All vertical sides with the same y-coordinate are processed in a
batch. For every such batch we want to guarantee that endpoints of all sides are stored in a
list B in a top-down order.

A top (bottom) endpoint at vertical coordinate y is stored as (y,+1) ((y,−1), respectively).
Let us now describe how to process a horizontal coordinate x. Let us merge the list L

that is currently in the broom with the list B of the batch by the first components. If there is
more than one pair with the same first component, we merge all of them together, summing
up the second components.

Let us denote by L′ the resulting list. We iterate over all elements of L′, keeping track of
the partial sum of second components, denoted as s. For every element (y, c) of L′, the point
(x, y) is reported for

⋃
Fi. Moreover, if the partial sum s before considering c was positive

and the previous element of L′ is (y′, c′), all points (x, y′ + 1), . . . , (x, y − 1) are reported to
Outi.

Finally, all pairs with second component equal to zero are removed from L′ which becomes
the new list L.

Let us now analyze the complexity of the algorithm. The line sweep makes n steps. The
total size of lists B across all families Fi is O(r) and they can be constructed simultaneously
in O(n+ r) time via bucket sort.

Processing a batch with list B takes O(|L|+ |B|) time plus the time to report points in
Outi. As we have already noticed, the sum of O(|B|) components is O(r). For every element
(y, c) of the initial list L, a point with the vertical coordinate y is reported upon merging;
hence, the sum of O(|L|) components is dominated by O(output). Overall we achieve time
complexity O(n+ r + output). C

We apply the claim to the families Fp,q. Then r and output are upper bounded by
O(n2 log2 n) by Theorem 9 and Fact 3, respectively. The optimality of our algorithm’s
complexity is due to the Ω(n2 log2 n) lower bound on the maximum number of occurrences
of primitively rooted quartics from [7]. J

We proceed to an efficient algorithm for enumerating distinct, not necessarily primitively
rooted, quartics using 2D-runs. The solution for an analogous problem for 1-dimensional
strings (computing distinct squares from runs) uses Lyndon roots of runs [22]. However, in 2
dimensions it is not clear if a similar approach could be applied efficiently, say, with the aid

ESA 2020

32:12 The Number of Repetitions in 2D-Strings

of 2D Lyndon words [40] as Lyndon roots of 2D-runs. We develop a different approach in
which the workhorse is the following auxiliary problem related to the folklore nearest smaller
value problem.

Let us consider a grid of height m in which every cell can be black or white. We say
that the grid forms a staircase if the set of white cells in each row is nonempty and is
a prefix of this row (see Figure 6). A staircase can be uniquely determined by an array
Whites[1 . .m] such that Whites[i] is the number of white cells in the ith row. We consider
shapes of white rectangles. Each shape is a pair (p, q) that represents the dimensions
of the rectangle. These shapes (and corresponding rectangles) are partially ordered by:
(p, q) < (p′, q′) ⇔ (p, q) 6= (p′, q′) ∧ p ≤ p′ ∧ q ≤ q′.

Max White Rectangles
Input: An array Whites[1 . .m] that represents a staircase.
Output: Shapes of all maximal white rectangles in this staircase.

I Lemma 21. Max White Rectangles problem can be solved in O(m) time.

Proof. Assume that Whites[0] = Whites[m+ 1] = −1. Let us define two tables of size m:

NSVUp[i] = max{j : j < i, Whites[j] < Whites[i]},
NSVDown[i] = min{j : j > i, Whites[j] < Whites[i]}.

They can be computed in O(m) time by a folklore algorithm for the nearest smaller
value table; see e.g. [13]. Then the problem can be solved as in Algorithm 1 presented below.
After the first for-loop, for each maximal white rectangle R we have MaxWidth[height(R)] =
width(R), but we could have redundant values for non-maximal rectangles. In order to filter
out non-maximal rectangles, we process the candidates by decreasing height and remove the
ones that are dominated by the previous maximal rectangle in the partial order of shapes. J

Algorithm 1 The first phase computes a set of shapes of type (h,MaxWidth[h]), at most
one for each height h; see also Figure 6. In the second phase only inclusion-maximal shapes
from this set are reported.

ComputeCandidates:
MaxWidth[1 . .m] := (0, . . . , 0)
for i := 1 to m do

h := NSVDown[i]−NSVUp[i]− 1
MaxWidth[h] := max(MaxWidth[h],Whites[i])

ReportMaximal:
mw := 0
for h := m down to 1 do

if MaxWidth[h] > mw then
Report the shape (h,MaxWidth[h])
mw := MaxWidth[h]

I Remark 22. Note that the total area (and width) of a staircase can be large but the
complexity of our algorithm is linear with respect to the number of rows, thanks to the small
representation (array Whites).

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:13

i

NSVUp[i]

NSVDown[i]

Figure 6 A maximal white rectangle containing row i is computed using the NSV tables for i.

Now our approach is graph-theoretic. The graph nodes correspond to occurrences of
primitively rooted quartics. For a fixed primitively rooted quartic W 2,2 we consider the
graph GW = (V,E), where V is the set of top-left corners of occurrences of W 2,2. Let
r = height(W) and c = width(W). The edges in G connect vertex (i, j) with vertices (i± r, j)
and (i, j ± c), if they exist. See also Figure 7. This graph can be efficiently computed since
we know its nodes due to Theorem 19.

b

c

a

c

a

b

a

b

c

W

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

b

c

a

c

a

b

a

b

c

A
GW

Figure 7 Graph GW has 12 vertices that form two components with 3 vertices each (green and
brown) and one component with 6 vertices (blue). Note the non-trivial occurrences of W in W 3,4.

I Lemma 23. All graphs GW , and their connected components, for all W which are primitive
roots of quartics in A can be constructed in O(n2 log2 n) time.

Proof. We first compute all occurrences of primitively rooted quartics in A using Theorem 19.
By Fact 3, there are O(n2 log2 n) of them in total.

We can assign 2D-DBF identifiers (quadruples) to each of the occurrences and group the
occurrences by distinct primitively rooted quartics via radix sort in O(n2 log2 n) time. This
gives us the vertices of GW .

To compute the edges, we use an auxiliary n× n Boolean array D that will store top-left
corners of occurrences of each subsequent primitively rooted quartic W 2,2.

Initially D is set to zeroes and after each W , all cells with ones are zeroed in O(|GW |)
time. Using this array and the positions of occurrences of W 2,2, the edges of GW can be
computed in O(|GW |) time. It also allows to divide GW into connected components via
graph search in O(|GW |) time. J

I Theorem 24. All distinct quartics in an n× n array A can be computed in O(n2 log2 n)
time.

ESA 2020

32:14 The Number of Repetitions in 2D-Strings

Proof. We first apply Lemma 23. Now consider a fixed primitive W of height c and width r.
Let us note that if (i, j), (i′, j′) belong to the same connected component H of GW , then
i ≡ i′ (mod r) and j ≡ j′ (mod c). We say that a connected component H of GW generates
an occurrence of a power Wα,β if the αβ occurrences of W that are implied by it belong to
H. If Wα,β has an occurrence in A, then it is generated by some connected component H of
GW , unless min(α, β) = 1.

We say that Wα,β is a maximal power if there is no other power Wα′,β′ in A such that
α′ ≥ α, β′ ≥ β, and (α′, β′) 6= (α, β). Similarly, we consider powers that are maximal among
ones that are generated by a connected component H. Let MaxPowersW (H) be the set of
maximal powers generated by a connected component H. It can be computed in linear time
using Lemma 21 as shown in Algorithm 2, which we now explain.

For each vertex (i, j) in H, we insert four points to a set S, which correspond to the
four occurrences of W underlying the occurrence of quartic W 2,2 at position (i, j). If S is
treated as a set of white cells in a grid, then Wα,β for α > 1 is a power generated by H
if and only if the grid contains a white rectangle of shape (α, β). For a cell (i, j) ∈ S, we
denote R[i, j] = min{p ≥ 0 : (i, j + p) 6∈ S}. Assuming that the cells of S are sorted by
non-increasing second component, each value R[i, j] can be computed from R[i, j + 1] in
constant time, for a total of O(|S|) time. The sorting for all S can be done globally, using
radix sort. Also, the array R can be stored globally and used for all S, cleared after each use.
Finally, we process each maximal set of consecutive cells (i, j), . . . , (i+m− 1, j) ∈ S that
are located in the same column and apply Lemma 21 to solve the resulting instance of the
Max White Rectangles problem. The total time required by this step is O(|S|).

Algorithm 2 Computing MaxPowersW (H) for a component H of GW .

S := ∅
foreach (i, j) in V (H) do

a := bi/rc; b = bj/cc
S := S ∪ {(a, b), (a+ 1, b), (a, b+ 1), (a+ 1, b+ 1)}

R[0 . . n, 0 . . n] := (0, . . . , 0)
foreach (i, j) in S in non-increasing order of j do

R[i, j] := R[i, j + 1] + 1
Result := ∅
foreach maximal set {(i, j), (i+ 1, j) . . . , (i+m− 1, j)} ⊆ S do

Whites[1 . .m] := R[i . . i+m− 1, j]
Result := Result ∪MaxWhiteRectangles(Whites)

remove redundant rectangles from Result
return Result

In the end we filter out the powers Wα,β that are not maximal in A similarly as
in the proof of Lemma 21, using a global array MaxWidth. Let Wα1,β1 , . . . ,Wαk,βk be
the resulting sequence of maximal powers, sorted by increasing first component, and let
α0 = β0 = 0. Then the set of all quartics in A with primitive root W contains all W 2α,2β

over αp−1 < 2α ≤ αp, 1 ≤ 2β ≤ βp, for p ∈ [2, k]. They can be reported in O(n2 log2 n) total
time over all W due to the upper bound of Theorem 16. J

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:15

6 Final Remarks

We showed that the numbers of distinct runs and quartics in an n× n array are O(n2 log2 n).
This improves upon previously known estimations. We also proposed O(n2 log2 n)-time
algorithms for computing all occurrences of primitively rooted quartics and all distinct
quartics. A straightforward adaptation shows that for an m × n array these bounds and
complexities all become O(mn logm logn).

We pose two conjectures for n× n 2D-strings:
The number of 2D-runs is O(n2).
The number of distinct quartics is O(n2).

References
1 Amihood Amir, Gary Benson, and Martin Farach. An alphabet independent approach

to two-dimensional pattern matching. SIAM Journal on Computing, 23(2):313–323, 1994.
doi:10.1137/S0097539792226321.

2 Amihood Amir, Itai Boneh, Panagiotis Charalampopoulos, and Eitan Kondratovsky. Repetition
detection in a dynamic string. In 27th Annual European Symposium on Algorithms, ESA 2019,
volume 144 of LIPIcs, pages 5:1–5:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ESA.2019.5.

3 Amihood Amir, Ayelet Butman, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Double
string tandem repeats. In 31st Annual Symposium on Combinatorial Pattern Matching, CPM
2020, volume 161 of LIPIcs, pages 3:1–3:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.CPM.2020.3.

4 Amihood Amir and Martin Farach. Efficient 2-dimensional approximate matching of non-
rectangular figures. In Proceedings of the Second Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms, pages 212–223. ACM/SIAM, 1991. URL: http://dl.acm.org/citation.
cfm?id=127787.127829.

5 Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-dimensional
maximal repetitions. In 26th Annual European Symposium on Algorithms, ESA 2018, volume
112 of LIPIcs, pages 2:1–2:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ESA.2018.2.

6 Amihood Amir, Gad M. Landau, Shoshana Marcus, and Dina Sokol. Two-dimensional maximal
repetitions. Theoretical Computer Science, 812:49–61, 2020. doi:10.1016/j.tcs.2019.07.
006.

7 Alberto Apostolico and Valentin E. Brimkov. Fibonacci arrays and their two-dimensional repe-
titions. Theoretical Computer Science, 237(1-2):263–273, 2000. doi:10.1016/S0304-3975(98)
00182-0.

8 Alberto Apostolico and Valentin E. Brimkov. Optimal discovery of repetitions in 2D. Discrete
Applied Mathematics, 151(1-3):5–20, 2005. doi:10.1016/j.dam.2005.02.019.

9 Theodore P. Baker. A technique for extending rapid exact-match string matching to arrays of
more than one dimension. SIAM Journal on Computing, 7(4):533–541, 1978. doi:10.1137/
0207043.

10 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

11 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in linear
time for integer alphabets. In 28th Annual Symposium on Combinatorial Pattern Matching,
CPM 2017, volume 78 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.22.

12 Jon Louis Bentley. Algorithms for Klee’s rectangle problems. Unpublished notes, Computer
Science Department, Carnegie Mellon University, 1977.

ESA 2020

https://doi.org/10.1137/S0097539792226321
https://doi.org/10.4230/LIPIcs.ESA.2019.5
https://doi.org/10.4230/LIPIcs.CPM.2020.3
http://dl.acm.org/citation.cfm?id=127787.127829
http://dl.acm.org/citation.cfm?id=127787.127829
https://doi.org/10.4230/LIPIcs.ESA.2018.2
https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1016/j.tcs.2019.07.006
https://doi.org/10.1016/S0304-3975(98)00182-0
https://doi.org/10.1016/S0304-3975(98)00182-0
https://doi.org/10.1016/j.dam.2005.02.019
https://doi.org/10.1137/0207043
https://doi.org/10.1137/0207043
https://doi.org/10.1137/15M1011032
https://doi.org/10.4230/LIPIcs.CPM.2017.22

32:16 The Number of Repetitions in 2D-Strings

13 Omer Berkman, Baruch Schieber, and Uzi Vishkin. Optimal doubly logarithmic parallel
algorithms based on finding all nearest smaller values. Journal of Algorithms, 14(3):344–370,
1993. doi:10.1006/jagm.1993.1018.

14 Richard S. Bird. Two dimensional pattern matching. Information Processing Letters, 6(5):168–
170, 1977. doi:10.1016/0020-0190(77)90017-5.

15 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba. Counting distinct
patterns in internal dictionary matching. In 31st Annual Symposium on Combinatorial
Pattern Matching, CPM 2020, volume 161 of LIPIcs, pages 8:1–8:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CPM.2020.8.

16 Panagiotis Charalampopoulos, Tomasz Kociumaka, Manal Mohamed, Jakub Radoszewski,
Wojciech Rytter, and Tomasz Waleń. Internal dictionary matching. In 30th International
Symposium on Algorithms and Computation, ISAAC 2019, volume 149 of LIPIcs, pages
22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ISAAC.2019.22.

17 Maxime Crochemore. An optimal algorithm for computing the repetitions in a word. Informa-
tion Processing Letters, 12(5):244–250, 1981. doi:10.1016/0020-0190(81)90024-7.

18 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007.

19 Maxime Crochemore and Lucian Ilie. Analysis of maximal repetitions in strings. In Math-
ematical Foundations of Computer Science 2007, 32nd International Symposium, MFCS
2007, volume 4708 of Lecture Notes in Computer Science, pages 465–476. Springer, 2007.
doi:10.1007/978-3-540-74456-6_42.

20 Maxime Crochemore and Lucian Ilie. Maximal repetitions in strings. Journal of Computer
and System Sciences, 74(5):796–807, 2008. doi:10.1016/j.jcss.2007.09.003.

21 Maxime Crochemore, Lucian Ilie, and Liviu Tinta. The "runs" conjecture. Theoretical Computer
Science, 412(27):2931–2941, 2011. doi:10.1016/j.tcs.2010.06.019.

22 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Extracting powers and periods in a word from its runs structure.
Theoretical Computer Science, 521:29–41, 2014. doi:10.1016/j.tcs.2013.11.018.

23 Maxime Crochemore and Robert Mercaş. On the density of Lyndon roots in factors. Theoretical
Computer Science, 656:234–240, 2016. doi:10.1016/j.tcs.2016.02.015.

24 Maxime Crochemore and Wojciech Rytter. Squares, cubes, and time-space efficient string
searching. Algorithmica, 13(5):405–425, 1995. doi:10.1007/BF01190846.

25 Maxime Crochemore and Wojciech Rytter. Jewels of stringology. World Scientific, 2002.
doi:10.1142/4838.

26 Antoine Deza, Frantisek Franek, and Adrien Thierry. How many double squares can a string
contain? Discrete Applied Mathematics, 180:52–69, 2015. doi:10.1016/j.dam.2014.08.016.

27 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965. doi:10.2307/2034009.

28 Johannes Fischer, Stepan Holub, Tomohiro I, and Moshe Lewenstein. Beyond the runs
theorem. In String Processing and Information Retrieval - 22nd International Symposium,
SPIRE 2015, volume 9309 of Lecture Notes in Computer Science, pages 277–286. Springer,
2015. doi:10.1007/978-3-319-23826-5_27.

29 Aviezri S. Fraenkel and Jamie Simpson. How many squares can a string contain? Journal of
Combinatorial Theory, Series A, 82(1):112–120, 1998. doi:10.1006/jcta.1997.2843.

30 Frantisek Franek and Qian Yang. An asymptotic lower bound for the maximal number of runs
in a string. International Journal of Foundations of Computer Science, 19(1):195–203, 2008.
doi:10.1142/S0129054108005620.

31 Mathieu Giraud. Not so many runs in strings. In Language and Automata Theory and
Applications, Second International Conference, LATA 2008, volume 5196 of Lecture Notes in
Computer Science, pages 232–239. Springer, 2008. doi:10.1007/978-3-540-88282-4_22.

https://doi.org/10.1006/jagm.1993.1018
https://doi.org/10.1016/0020-0190(77)90017-5
https://doi.org/10.4230/LIPIcs.CPM.2020.8
https://doi.org/10.4230/LIPIcs.ISAAC.2019.22
https://doi.org/10.4230/LIPIcs.ISAAC.2019.22
https://doi.org/10.1016/0020-0190(81)90024-7
https://doi.org/10.1007/978-3-540-74456-6_42
https://doi.org/10.1016/j.jcss.2007.09.003
https://doi.org/10.1016/j.tcs.2010.06.019
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1016/j.tcs.2016.02.015
https://doi.org/10.1007/BF01190846
https://doi.org/10.1142/4838
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.2307/2034009
https://doi.org/10.1007/978-3-319-23826-5_27
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1142/S0129054108005620
https://doi.org/10.1007/978-3-540-88282-4_22

P. Charalampopoulos, J. Radoszewski, W. Rytter, T. Waleń, and W. Zuba 32:17

32 Amy Glen and Jamie Simpson. The total run length of a word. Theoretical Computer Science,
501:41–48, 2013. doi:10.1016/j.tcs.2013.06.004.

33 Dan Gusfield and Jens Stoye. Linear time algorithms for finding and representing all the
tandem repeats in a string. Journal of Computer and System Sciences, 69(4):525–546, 2004.
doi:10.1016/j.jcss.2004.03.004.

34 Lucian Ilie. A note on the number of squares in a word. Theoretical Computer Science,
380(3):373–376, 2007. doi:10.1016/j.tcs.2007.03.025.

35 Costas S. Iliopoulos, Dennis W. G. Moore, and William F. Smyth. A characterization of
the squares in a Fibonacci string. Theoretical Computer Science, 172(1-2):281–291, 1997.
doi:10.1016/S0304-3975(96)00141-7.

36 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, pages 756–767. ACM, 2019.
doi:10.1145/3313276.3316368.

37 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal
pattern matching queries in a text and applications. In Piotr Indyk, editor, Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages
532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

38 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear
time. In 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pages
596–604. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814634.

39 M. Lothaire. Combinatorics on words, Second Edition. Cambridge mathematical library.
Cambridge University Press, 1997.

40 Shoshana Marcus and Dina Sokol. 2D Lyndon words and applications. Algorithmica, 77(1):116–
133, 2017. doi:10.1007/s00453-015-0065-z.

41 Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai, and Ayumi Shinohara.
New lower bounds for the maximum number of runs in a string. In Proceedings of the Prague
Stringology Conference 2008, pages 140–145, 2008. URL: http://www.stringology.org/
event/2008/p13.html.

42 Simon J. Puglisi, Jamie Simpson, and William F. Smyth. How many runs can a string contain?
Theoretical Computer Science, 401(1-3):165–171, 2008. doi:10.1016/j.tcs.2008.04.020.

43 Wojciech Rytter. The number of runs in a string: Improved analysis of the linear upper
bound. In 23rd Annual Symposium on Theoretical Aspects of Computer Science, STACS
2006, volume 3884 of Lecture Notes in Computer Science, pages 184–195. Springer, 2006.
doi:10.1007/11672142_14.

44 Wojciech Rytter. The number of runs in a string. Information and Computation, 205(9):1459–
1469, 2007. doi:10.1016/j.ic.2007.01.007.

45 Jamie Simpson. Modified Padovan words and the maximum number of runs in a word. The
Australasian Journal of Combinatorics, 46:129–146, 2010. URL: http://ajc.maths.uq.edu.
au/pdf/46/ajc_v46_p129.pdf.

46 Jens Stoye and Dan Gusfield. Simple and flexible detection of contiguous repeats using a suffix
tree. Theoretical Computer Science, 270(1-2):843–856, 2002. doi:10.1016/S0304-3975(01)
00121-9.

47 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

A Alternative Algorithm for the Proof of Lemma 21

An alternative, space efficient and more direct algorithm that does not use additional tables
NSVDown and NSVUp, is shown below. The algorithm computes only the table MaxWidth.
Then, we can use the second phase from Algorithm 1. We assume that the table MaxWidth
is initially filled with zeros.

ESA 2020

https://doi.org/10.1016/j.tcs.2013.06.004
https://doi.org/10.1016/j.jcss.2004.03.004
https://doi.org/10.1016/j.tcs.2007.03.025
https://doi.org/10.1016/S0304-3975(96)00141-7
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1007/s00453-015-0065-z
http://www.stringology.org/event/2008/p13.html
http://www.stringology.org/event/2008/p13.html
https://doi.org/10.1016/j.tcs.2008.04.020
https://doi.org/10.1007/11672142_14
https://doi.org/10.1016/j.ic.2007.01.007
http://ajc.maths.uq.edu.au/pdf/46/ajc_v46_p129.pdf
http://ajc.maths.uq.edu.au/pdf/46/ajc_v46_p129.pdf
https://doi.org/10.1016/S0304-3975(01)00121-9
https://doi.org/10.1016/S0304-3975(01)00121-9
https://doi.org/10.1007/BF01206331

32:18 The Number of Repetitions in 2D-Strings

Algorithm 3 Alternative implementation of the first phase in Algorithm 1.

Whites[0] := Whites[m+ 1] := 0
S := empty stack; push(S, 0)
for i := m down to 0 do

while Whites[i] < Whites[top(S)] do
k := top(S); h := top(S)− i− 1
MaxWidth[h] := max(MaxWidth[h],Whites[k])
pop(S)

if Whites[top(S)] = Whites[i] then pop(S)
push(S, i)

The algorithm is a version of a folklore algorithm for the Nearest Smaller Values problem
and correctness can be shown using the same arguments. If Whites[i] < Whites[i+ 1], then
the algorithm produces shapes of all Max White Rectangles anchored at i + 1, otherwise
i+ 1 is “nonproductive”. Observe that i+ 1 = top(S) when we start processing i ≥ 1.

Let us analyze the time complexity of the algorithm. In total m+ 2 elements are pushed
to the stack. Each iteration of the while-loop pops an element, so the total number of
iterations of this loop is O(m). Consequently, the algorithm works in O(m) time. In the end
one needs to filter out non-maximal rectangles as in the previous proof of Lemma 21.

New Bounds on Augmenting Steps
of Block-Structured Integer Programs
Lin Chen
Department of Computer Science, Texas Tech University, Lubbock, TX, US
chenlin198662@gmail.com

Martin Koutecký
Computer Science Institute, Charles University, Prague, Czech Republic
koutecky@iuuk.mff.cuni.cz

Lei Xu
Department of Computer Science, University of Texas Rio Grande Valley, TX, US
xuleimath@gmail.com

Weidong Shi
Department of Computer Science, University of Houston, TX, US
larryshi@ymail.com

Abstract
Iterative augmentation has recently emerged as an overarching method for solving Integer Programs
(IP) in variable dimension, in stark contrast with the volume and flatness techniques of IP in fixed
dimension. Here we consider 4-block n-fold integer programs, which are the most general class
considered so far. A 4-block n-fold IP has a constraint matrix which consists of n copies of small
matrices A, B, and D, and one copy of C, in a specific block structure. Iterative augmentation
methods rely on the so-called Graver basis of the constraint matrix, which constitutes a set of
fundamental augmenting steps. All existing algorithms rely on bounding the `1- or `∞-norm of
elements of the Graver basis. Hemmecke et al. [Math. Prog. 2014] showed that 4-block n-fold
IP has Graver elements of `∞-norm at most OFPT(n2sD), leading to an algorithm with a similar
runtime; here, sD is the number of rows of matrix D and OFPT hides a multiplicative factor that is
only dependent on the small matrices A, B, C, D, However, it remained open whether their bounds
are tight, in particular, whether they could be improved to OFPT(1), perhaps at least in some
restricted cases.

We prove that the `∞-norm of the Graver elements of 4-block n-fold IP is upper bounded by
OFPT(nsD), improving significantly over the previous bound OFPT(n2sD). We also provide a matching
lower bound of Ω(nsD) which even holds for arbitrary non-zero lattice elements, ruling out augmenting
algorithm relying on even more restricted notions of augmentation than the Graver basis. We then
consider a special case of 4-block n-fold in which C is a zero matrix, called 3-block n-fold IP. We
show that while the `∞-norm of its Graver elements is Ω(nsD), there exists a different decomposition
into lattice elements whose `∞-norm is bounded by OFPT(1), which allows us to provide improved
upper bounds on the `∞-norm of Graver elements for 3-block n-fold IP. The key difference between
the respective decompositions is that a Graver basis guarantees a sign-compatible decomposition;
this property is critical in applications because it guarantees each step of the decomposition to be
feasible. Consequently, our improved upper bounds let us establish faster algorithms for 3-block
n-fold IP and 4-block IP, and our lower bounds strongly hint at parameterized hardness of 4-block
and even 3-block n-fold IP. Furthermore, we show that 3-block n-fold IP is without loss of generality
in the sense that 4-block n-fold IP can be solved in FPT oracle time by taking an algorithm for
3-block n-fold IP as an oracle.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Mathematics of computing → Combinatorial algorithms

Keywords and phrases Integer Programming, Graver basis, Fixed parameter tractable

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.33

© Lin Chen, Martin Koutecký, Lei Xu, and Weidong Shi;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 33; pp. 33:1–33:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3909-4916
mailto:chenlin198662@gmail.com
https://orcid.org/0000-0002-7846-0053
mailto:koutecky@iuuk.mff.cuni.cz
https://orcid.org/0000-0002-7662-2119
mailto:xuleimath@gmail.com
mailto:larryshi@ymail.com
https://doi.org/10.4230/LIPIcs.ESA.2020.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 New Bounds on Augmenting Steps of Block-Structured IP

Related Version A full version of this paper is available at https://arxiv.org/abs/1805.03741.

Funding Lin Chen: Research was supported in part by NSF 1756014.
Martin Koutecký: Partially supported by Israel Science Foundation grant 308/18, Charles University
project UNCE/SCI/004 and by the project 19-27871X of GA ČR.

1 Introduction

A powerful mathematical tool for modeling of various optimization problems is Integer
Programming:

min{w · x : Ax = b, l ≤ x ≤ u, x ∈ ZN}, (IP)

where w,b, l,u are integer vectors of the objective function, right hand side, and lower and
upper bounds, respectively, A is an integer constraint matrix, and x is a vector of variables. It
plays a key role in theory as a component in the design of approximation and parameterized
algorithms, as well as in practice, with current solvers being routinely utilized in industry
and capable of handling models with thousands of variables.

In general, Integer Programming is NP-hard, as was shown already by Karp [23],
which motivates the search for tractable special cases. Famous polynomially solvable cases
are IPs with few rows and small coefficients as shown by Papadimitriou in 1981 [30], and IPs
with few variables as shown by Lenstra in 1983. Arguably the most significant development
in the last 20 years has been the introduction of iterative augmentation methods which led
to the development of fast algorithms for wide classes of IPs whose constraint matrix has a
special block structure, and to subsequent breakthrough applications in parameterized and
approximation algorithms [5, 21, 27]. In fact, essentially all known tractable classes of IP in
variable dimension are of this kind, except total unimodular IPs from the ’60s.

An iterative augmentation algorithm starts with an initial feasible solution x and iterat-
ively finds augmenting steps g ∈ ZN , i.e., x + g is feasible and w(x + g) < wx. A major
question is where to obtain “good” augmenting steps. The Graver basis of A, G(A), has
emerged as an excellent choice, with good guarantees on convergence to optimal solutions
while still being algorithmically “tame”. Specifically, at the heart of iterative augmentation
techniques are bounds on the `1- and `∞-norm of elements of the Graver basis, which enable
dynamic programming to be used to find Graver elements.

We stress the role of bounds on the elements of G(A). Historically, all tractable classes
of IP were discovered by proving new norm bounds and subsequently designing a dynamic
program around them, with the former typically being much harder than the latter. Moreover,
recent runtime improvements have followed from improving existing bounds [8, 28], and the
most challenging questions in the field are tightly connected to norm bounds. Our focus here
is the currently least understood class of IPs, 4-block n-fold IP:

(IP)n,b,l,u,w : min{w · x : Hx = b, l ≤ x ≤ u, x ∈ ZtB+ntA}, (1)

where H (called a 4-block n-fold matrix) is build from smaller blocks A, B, C and D:

H =
(
C D

B A

)(n)

:=

C D D · · · D

B A 0 0
B 0 A 0
...

. . .
B 0 0 A

 .

https://arxiv.org/abs/1805.03741

L. Chen, M. Koutecký, L. Xu, and W. Shi 33:3

Here, A,B,C,D are si × ti matrices, i = A,B,C,D, respectively, and H consists of n copies
of A,B,D and one copy of C. Notice that by plugging A,B,C,D into the above block
structure we require that sC = sD, sA = sB, tB = tC and tA = tD. Let ∆ be the largest
absolute value among all the entries of A,B,C,D. Let H0 be a matrix obtained from H by
setting C = 0. We also study 3-block n-fold IP, obtained by replacing H with H0.

For ease of presentation, we introduce the submatrices E and F such that

E :=

D D · · · D

A 0 0
0 A 0
...

. . .
0 0 A

 F :=

B A 0 0
B 0 A 0
...

. . .
B 0 0 A

 , (2)

4-block n-fold IP remains the simplest case of block-structured IPs for which an algorithm
of runtime f(sA, tA, . . . , sD, tD,∆)nO(1) (i.e., an FPT algorithm; see below) remains unknown.
From another perspective, Koutecký et al. [28] has recently resolved the complexity of IP with
respect to the structural parameters primal and dual treedepth tdP and tdD, respectively, by
showing that IPs with small tdP and tdD are efficiently solvable. IPs with small incidence
treedepth tdI subsume both of the aforementioned classes as well as 4-block n-fold IP, and
4-block n-fold IP remains the simplest open case with respect to tdI .

Our Contribution. Because we are interested in efficient algorithms, we wish to confine the
exponential dependence on the input into the small numbers si, ti, i = A,B,C,D, and ∆.
Thus we take the perspective of parameterized complexity: for a problem instance I with
a parameter k, we call an algorithm with runtime f(k)|I|O(1) a fixed-parameter tractable
(FPT) algorithm, and an algorithm with runtime |I|f(k) an XP algorithm (for slice-wise
polynomial). If such algorithms exist, we say that the problem is FPT or XP parameterized
by k, respectively.

In this paper, we provide new and improved upper bounds and resulting algorithms
for 4-block and 3-block n-fold IP, as well as the very first lower bounds for these classes
which we believe to hint at the parameterized hardness of these problems. We denote by
kerZ(H) = {x ∈ ZtB+ntA | Hx = 0} the integer kernel of H, also called the lattice of H, and
by g∞(H) = maxg∈G(H) ‖g‖∞ the largest `∞-norm of an element of the Graver basis G(H)
(a precise definition is given below in Section 2); analogously for H0. First, we show an upper
bound on g∞(H).

I Theorem 1. For any 4-block n-fold matrix H, g∞(H) ≤ OFPT(nsD).

This improves on the previous bound of OFPT(n2sD) [16]. We also establish the first
explicit lower bound matching our upper bound, making it tight up to an FPT factor.
Importantly, our lower bound even applies to the first tB coordinates (denoted x0 for a vector
x ∈ ZtB+ntA) which play a special role in algorithms for 4-block n-fold IP. What is more,
our lower bound even applies to any non-zero element of kerZ(H):

I Theorem 2. For arbitrary integer t ∈ N, there exists a 4-block n-fold matrix H such that
si, ti ∈ O(t) for i = A,B,C,D, and for any g ∈ kerZ(H) we have ‖g0‖∞ = Ω(nt).

Therefore, even augmenting via a different set of steps may have to deal with steps that
are unbounded by OFPT(1). Combining Theorem 1 with the original idea of Hemmecke et
al. [16] and a strongly polynomial framework of Koutecký et al. [28], we obtain the currently
fastest algorithm for 4-block n-fold IP:

ESA 2020

33:4 New Bounds on Augmenting Steps of Block-Structured IP

I Theorem 3. 4-block n-fold IP can be solved in time OFPT(nO(sDtB)).

Second, we restrict our attention to 3-block n-fold IP. The motivation is that 3-block
n-fold IP is essentially no less general than 4-block n-fold IP. Indeed, for any 4-block n-fold IP,
there exists an equivalent 3-block n-fold IP where the largest coefficient, number of rows and
columns of the submatrices only increase by O(1) times (see Theorem 19 and Definition 17
in Appendix 5 for a formal statement).

Interestingly, the lattice elements (i.e., augmenting step candidates) of 3-block n-fold IP
admit a decomposition with `∞-norm bounded by OFPT(1):

I Theorem 4. Any g ∈ kerZ(H0) decomposes to
∑N
i=1 ei for some N ∈ Z≥0 with ei ∈

kerZ(H0) and ‖ei‖∞ ≤ OFPT(1) for each i.

However, this decomposition is not “sign-compatible”, meaning possibly none of its
elements is a feasible step on its own, which makes its immediate algorithmic use complicated.
Nevertheless, we are able to use it to establish an upper bound of
min{OFPT(nsD),OFPT(nt2A+1)} (below, and Theorem 1):

I Theorem 5. For any 3-block n-fold matrix H0, g∞(H0) ≤ OFPT(nt2A+1).

This upper bound of OFPT(nt2A+1), which is singly exponential in tA, is much more
involved compared with the upper bound of Theorem 1. This coincides with the existing
results for 4-block n-fold IP [16], where an upper bound depending on A,B (instead of
C,D) is much more complicated. Our proof relies on a completely new approach, which
first establishes the decomposition of Theorem 4 and then modifies it into a sign-compatible
decomposition through merging summands. This may be of separate interest for deriving
upper bounds on g∞(A) for other classes of matrices A, particularly for deriving an upper
bound on g∞(H) which has an explicit dependency on sA, sB , tA, tB in the exponent of
n. Moreover, we show that any 4-block n-fold IP can be embedded in a 3-block n-fold IP
(Theorem 19) in a particular way, which allows us to transfer the 4-block n-fold lower bound
(now restricted to feasible lattice elements):

I Theorem 6. For arbitrary integer t ∈ N, there exists a 3-block n-fold IP with a matrix H
such that si, ti ∈ O(t) for i = A,B,C,D, and for any feasible nonzero g ∈ kerZ(H0) we have
‖g0‖∞ = Ω(nt).

Finally, using our new upper bound of Theorem 5, we get that:

I Theorem 7. 3-block n-fold IP can be solved in time min{OFPT(nO(sDtB),OFPT(nO(t2AtB))}.

Related Work

4-block n-fold IP originated as a generalization of two previously studied classes of IP, the
n-fold and 2-stage stochastic IP, which are obtained by substituting the constraint matrix
H with E and F we defined before. We also call E the n-fold matrix and F the 2-stage
stochastic matrix, respectively. The origins of iterative augmentation methods for 2-stage
stochastic IP reach the work of Hemmecke and Schultz in 2001 [19]. De Loera et al. [7] first
studied n-fold IP in 2008. Later, Hemmecke et al. [17] showed an FPT algorithm for n-fold
IP based on dynamic programming, which led to a breakthrough in computational social
choice [26] and was also applied in the context of scheduling by Knop and Koutecký [25].
Later, this FPT algorithm inspired a better algorithm for a special case of combinatorial

L. Chen, M. Koutecký, L. Xu, and W. Shi 33:5

n-fold IP developed by Knop et al. [27], who also apply it to problems in stringology and
graph algorithms. Finally, this algorithm was lifted to the general n-fold IP by Koutecký et
al. [28] and Eisenbrand et al. [8].

An extension of n-fold IP to tree-structured matrices called tree-fold IP was developed by
Chen and Marx [5] and applied to scheduling problems. Jansen et al. [21] have used n-fold
IP to obtain efficient PTASes for scheduling problems. An extension of 2-stage stochastic IP
analogous to tree-folds is called multi-stage stochastic and was studied by Aschenbrenner
and Hemmecke [4]. Ganian and Ordyniak [12] studied the structural parameters primal
treedepth and treewidth, and later Ganian et al. [13] studied dual and incidence treedepth
and treewidth. Koutecký et al. [28] discovered that tree-fold and multi-stage stochastic
IPs are essentially equivalent to IPs with small dual and primal treedepth, settling the
parameterized complexity with respect to these parameters. The work of Koutecký et al. [28]
subsumes essentially all current knowledge about the solvability of IP in variable dimension
with the exception of totally unimodular constraint matrices and two related classes [2, 3],
with the main remaining open problem being the complexity of 4-block n-fold IP and, more
generally, IP with respect to incidence treedepth.

Bounds on g∞(A) and g1(A) = maxg∈G(A) ‖g‖1 play a central role in the recent devel-
opments. For example, Chen and Marx [5] showed that tree-fold IP is FPT, but a naïve
analysis yields a tower-of-exponentials dependence on the parameters. Eisenbrand et al. [8]
lower this to double-exponential by improving the bounds on g1(A), and, at least with the
current approach, the only way to obtain a single-exponential algorithm is by obtaining
single-exponential bounds on g1(A). It has been known for a long time that 2-stage stochastic
IP is FPT [19], however, there are no known bounds at all for this algorithm except for the
computability of the parameter dependence f due to no bounds being available for g∞(F).
Very recently, Klein [24] is able to obtain such a bound for g∞(F), which yields an FPT
algorithm with a concrete running time. Lower bounds on g∞(A) have been rare so far.
Finhold and Hemmecke [11] study them in the context of n-fold IP. Koutecký et al. [28] show
lower bounds (only using elementary techniques) for IPs in terms of their primal and dual
treewidth.

We use the Steinitz Lemma, which has recently gained renewed attention [10, 8, 22].

2 Preliminaries

Notations

We write vectors in boldface, e.g. x,y, and their entries in normal font, e.g. xi, yi. Any
(tB+ntA)-dimensional vector x can be divided into n+1 bricks, such that x = (x0,x1, · · · ,xn)
where x0 ∈ ZtB and each xi ∈ ZtA , 1 ≤ i ≤ n. We call xi the i-th brick for 0 ≤ i ≤ n. We
write 0s×t for an s× t matrix consisting of 0, and It for an t× t identity matrix. For a vector
or a matrix, we write ‖ · ‖∞ to denote the maximal absolute value of its elements. For two
vectors x,y of the same dimension, x · y denotes their inner product.

Throughout this paper, we write OFPT(1) to represent a parameter that is only dependent
on ∆, sA, sB , sC , sD, tA, tB , tC , tD where ∆ is the maximal absolute value among all the entries
of A,B,C,D, that is, OFPT(1) is only dependent on the small matrices A,B,C,D and is
independent of n. For any computable function f(x), we write OFPT(f) to represent a
computable function f ′(x) such that |f ′(x)| ≤ OFPT(1) · |f(x)|, and ΩFPT (f) to represent a
function f ′′ such that |f ′′(x)| ≥ Ω(1) · |f(x)|. If no FPT-term is hidden, we will use O in its
standard meaning (e.g., in Theorem 6).

ESA 2020

33:6 New Bounds on Augmenting Steps of Block-Structured IP

Two vectors x and y are called sign-compatible if xi · yi ≥ 0 holds for every pair
of coordinates (xi, yi). Furthermore, we call a summation

∑
i xi sign-compatible if the

summands are pair-wise sign-compatible.

Graver basis

Consider the general integer linear programming in the standard form (IP). Let v be the
conformal order in Rm defined such that x v y if x and y lie in the same orthant, i.e.,
xi · yi ≥ 0 for each i = 1, . . . ,m, and |xi| ≤ |yi| for each i = 1, . . . ,m. Given any subset
X ⊆ Rn, we say x is an v-minimal element of X if x ∈ X and there does not exist y ∈ X,
y 6= x such that y v x. It is known that every subset of Zm has finitely many v-minimal
elements. We study the Graver basis:

I Definition 8 (Graver basis [14]). The Graver basis of an integer matrix E is the finite set
G(E) ⊆ kerZ(E) of all v-minimal elements of kerZ(E) \ {0}.

For clarity, we sometimes emphasize that g comes from G(H) by writing it as g(H), and
similarly for other vectors. We use the fact that any x ∈ kerZ(H), x 6= 0 can be written as
x =

∑
i αigi(H), where αi ∈ Z+, gi(H) ∈ G(H) and gi(H) v x [29, Lemma 3.4].

The Graver basis G(H) is only dependent on H. Let ‖B‖∞ be the largest absolute value
over all entries. For any g ∈ G(A), we have the following rough estimation for some constant
c1, c2 [29]:

|G(H)| ≤ (c1‖H‖∞)mn and ‖g‖∞ ≤ (c2‖A‖∞)mn.

Augmentation algorithms for IP and Graver-best oracle

There is a general framework for solving (IP) by utilizing G(A), which was developed in
a series of papers [5, 17, 21, 27]. A recent paper by Koutecký et al. [28] formalizes this
framework and extends it to also obtaining strongly polynomial algorithms (algorithms whose
number of arithmetic operations does not depend on the length of the numbers on input).

We say that x is feasible for (IP) if Ax = b and l ≤ x ≤ u. Let x be a feasible solution
for (IP). We call g a feasible step if x + g is feasible for (IP). Further, call a feasible step
g augmenting if w(x + g) < w(x). An augmenting step g and a step length ρ ∈ Z form an
x-feasible step pair with respect to a feasible solution x if l ≤ x + ρg ≤ u. An augmenting
step h is a Graver-best step for x if w(x + h) ≤ w(x + ρg) for all x-feasible step pairs
(g, ρ) ∈ G(A)× Z. The next definition and theorem show that it is sufficient to focus all our
attention on finding Graver-best steps. This takes care of matters such as finding an initial
feasible solution, using a proximity theorem to shrink w,b, l,u and so on.

I Definition 9 (Graver-best oracle). A Graver-best oracle for an integer matrix A is one
that, queried on w,b, l,u and x feasible to (IP), returns a Graver-best step h for x.

I Theorem 10 ([28]). Given a Graver-best oracle for E, (IP) can be solved in strongly
polynomial oracle time.

We remark that the polynomial dependence on the dimension N and in particular the
number of bricks n when it comes to 4-block n-fold IP, can be reduced using an approximate
Graver-best oracle introduced by Altmanová et al. [1] and implicitly by Eisenbrand et al. [8].

L. Chen, M. Koutecký, L. Xu, and W. Shi 33:7

Finiteness theorems for n-fold and 2-stage stochastic matrices

Consider an n-fold matrix E that consists of A and D (i.e., B = C = 0 in a 4-block n-fold
matrix). It is shown that g∞(E) is OFPT(1). More precisely, we have the following lemma.

I Lemma 11 ([9, Lemma 28]). Let E be an n-fold matrix. Then g1(E) ≤ (‖E‖∞sDsA)O(sDsA).

I Lemma 12 ([9, Lemma 26]). Let F be a two-stage stochastic matrix. Then g∞(F) ≤
f(tB , tA, ‖A,B‖∞) for a double-exponential function f .

Both lemmas hold for more general classes of tree-fold and multi-stage stochastic matrices.

The Steinitz lemma

The Steinitz lemma has been utilized in several recent papers [8, 10, 22] to establish better
algorithms for IP. We use it as well.

I Lemma 13 ([15]). Let an arbitrary norm be given in Rκ and assume that ‖xi‖ ≤ ζ for
1 ≤ i ≤ m and

∑m
i=1 xi = x. Then there exists a permutation π such that for all positive

integers ` ≤ m, ‖
∑`
i=1 xπ(i) − `−κ

m x‖ ≤ κζ.

3 4-block n-fold IP

In this section we consider IP (1) for arbitrary H and derive matching upper and lower
bounds on the `∞-norm of its Graver basis depending on the parameter sC = sD.

We first establish the following upper bound that improves significantly the current result.

I Theorem 1. For any 4-block n-fold matrix H, g∞(H) ≤ OFPT(nsD).

Proof. Let g ∈ G(H). Recall the definition of F in Eq (2). As F · g = 0, there exist
αj ∈ Z+, gj(F) ∈ G(F) and gj(F) v g such that g =

∑m
j=1 αjgj(F). Furthermore,

‖gj(F)‖∞ = OFPT(1) according to Lemma 12. Let hj = C · g0
j(F) +

∑n
i=1 Dgij(F), which

is an sD-dimensional vector such that ‖hj‖∞ = OFPT(n). As Hg = 0, it follows that
m∑
j=1

αjhj = h1 + h1 + · · ·+ h1︸ ︷︷ ︸
α1

+ h2 + h2 + · · ·+ h2︸ ︷︷ ︸
α2

+ · · ·+ hm + hm + · · ·+ hm︸ ︷︷ ︸
αm

= 0,

i.e., the sequence of hi’s sum up to 0. According to Lemma 13, there exists a permutation of
the sequence such that ‖

∑`
i=1 zi‖∞ ≤ sD ·OFPT(n) = OFPT(n) for all ` ≤ m′, where m′ =∑m

i=1 αi and z1, z2, · · · , zm′ is a permutation of the sequence h1,h1, · · · ,h1︸ ︷︷ ︸
α1

,h2,h2, · · · ,h2︸ ︷︷ ︸
α2

,

· · · , hm,hm, · · · ,hm︸ ︷︷ ︸
αm

. Let τ = OFPT(n) be the upper bound on ‖
∑`
i=1 zi‖∞, then we know

that
∑`
i=1 zi ∈ {−τ,−τ + 1, · · · , τ}sD . Consequently, if m′ > (2τ + 1)sD + 1, there exists

`1 < `2 such that
∑`1
i=1 zi =

∑`2
i=1 zi, i.e.,

∑`2−`1
i=1 zi = 0. Recall that every zi corresponds

to some hi′ . Suppose
∑`2−`1
i=1 zi =

∑m
j=1 α

′
jhj for α′j ≤ αj , then by the definition of hj it

follows that

C

 m∑
j=1

α′jg0
j (F)

+
n∑
i=1

D

 m∑
j=1

α′jgij(F)

 = 0.

Hence, H
∑m
j=1 α

′
jgj(F) = 0. That is, if m′ =

∑m
j=1 αj > (2τ + 1)sD + 1, then there exists

some g′ = α′jgj(F) such that Hg′ = 0, g′ @ g and g′ 6= g, contradicting the fact that
g ∈ G(H). Thus,

∑m
j=1 αj ≤ (2τ + 1)sD + 1, implying that ‖g‖∞ = OFPT(nsD). J

ESA 2020

33:8 New Bounds on Augmenting Steps of Block-Structured IP

We complement our upper bound by establishing a matching lower bound. We remark
that lower bound from Theorem 2 not only holds for the `∞-norm of Graver basis elements,
but even holds for any non-zero lattice element. This gives a sharp contrast to 3-block
n-fold IP. As we will show later in Theorem 6 and Theorem 4, a similar lower bound also
exists for the `∞-norm of Graver basis elements of kerZ(H0), however, kerZ(H0) does admit
a decomposition into lattice elements whose `∞-norm is bounded by OFPT(1).

I Theorem 2. For arbitrary integer t ∈ N, there exists a 4-block n-fold matrix H such that
si, ti ∈ O(t) for i = A,B,C,D, and for any g ∈ kerZ(H) we have ‖g0‖∞ = Ω(nt).

Proof. We let A = It×t, B = −It×t. We define (t− 1)× t matrices D and C such that

D =

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

. . .
0 0 0 · · · 1 −1

 C =

−1 0 0 · · · 0 0
0 −1 0 · · · 0 0
...

. . .
0 0 0 · · · −1 0

Consider any nonzero y ∈ kerZ(H). According to Ay0 −Byi = 0, we know that y0 = yi

for every 1 ≤ i ≤ n. According to Cy0 +
∑n
i=1 Dyi = 0, we have (C + nD)y0 = 0, i.e.,

n− 1 −n 0 · · · 0 0
0 n− 1 −n · · · 0 0
...

. . .
0 0 0 · · · n− 1 −n

 · y = 0

Let y0 = (y1, y2, · · · , yt), the following is true:

(n− 1)yi = nyi+1, 1 ≤ i ≤ t− 1 (3)

It is easy to see that as long as y 6= 0, we have y0 6= 0 and consequently yi 6= 0 for every
1 ≤ i ≤ t. According to (n − 1)yt−1 = nyt, yt−1 is dividable by n. Let yt−1 = nzt−1
for some zt−1 ∈ Z6=0. According to (n − 1)yt−2 = nyt−1 = n2zt−1, we know that yt−2 is
dividable by n2. Let yt−2 = n2zt−2 and we plug it into (n − 1)yt−3 = nyt−2. In general,
suppose we have shown that yt−k = nkzt−k for all k ≤ k0. Now for k = k0 + 1, we have
(n − 1)yt−k0−1 = nyt−k0 = nk0+1zn−k0 , then yt−k0−1 is dividable by nk0+1. Hence, we
conclude that y1 is dividable by nt−1, i.e., ‖y‖∞ = Ω(nt−1) and Theorem 2 is proved. J

4 3-block n-fold IP

In this section we focus on 3-block n-fold IP where H = H0, i.e., C = 0. As we will show in
this section, 3-block n-fold IP admits several properties that make it a particularly interesting
and important special case. First, 3-block n-fold IP is without loss of generality – any
4-block n-fold IP reduces to 3-block n-fold IP with a constant increase in the parameters.
Second, any element of kerZ(H0) admits a decomposition into lattice elements with bounded
`∞-norm, which is in certain contrast to Theorem 2. Unfortunately, a strong lower bound of
Ω(nt) for feasible lattice elements still exists for si = ti = O(t). Nevertheless, we establish
an alternative upper bound of OFPT(nt2A+1) on the `∞-norm of the Graver basis elements
for 3-block n-fold IP which only depends on parameters of A.

L. Chen, M. Koutecký, L. Xu, and W. Shi 33:9

4.1 Decomposition into lattice elements with bounded `∞-norm
The goal of this subsection is to prove the following theorem.

I Theorem 4. Any g ∈ kerZ(H0) decomposes to
∑N
i=1 ei for some N ∈ Z≥0 with ei ∈

kerZ(H0) and ‖ei‖∞ ≤ OFPT(1) for each i.

Proof. Since H0g = 0, we know that F ·g = 0. Therefore, there exist αj ∈ Z+ and gj(F) v g
such that g =

∑
j αjgj(F), where gj(F) ∈ G(F). Consider each gj(F). As F is a two-stage

stochastic matrix (recall its definition in Eq (2)), by Lemma 12 it holds for every j that
‖gj(F)‖∞ = OFPT(1). Note that each gj(F) can be written into n + 1 bricks such that
gj(F) =

(
g0
j (F),g1

j (F), · · · ,gnj (F)
)
where g0

j (F) is a tB-dimensional vector, and gij(F) is a
tA-dimensional vector for every 1 ≤ i ≤ n. It is obvious that ‖gij(F)‖∞ = OFPT(1) for every
0 ≤ i ≤ n, and it holds that

Bg0
j (F) +Agij(F) = 0, ∀1 ≤ i ≤ n.

The claim below follows from picking a suitable v∗j such that gij(F) − v∗j has “balanced”
coefficients.

B Claim 14. For every gj(F) and 1 ≤ ` ≤ |G(A)|, there exist some v∗j and αij,` ∈ Z≥0 with
gij(F)− v∗j =

∑|G(A)|
`=1 αij,`g`(A), ∀1 ≤ i ≤ n.

For every 1 ≤ ` ≤ |G(A)|, either |{i : αij,` > 0}| = 0, or |{i : αij,` > 0}| ≥ n/2.
maxi,j,` |αij,`| ≤ αmax, where αmax = 2g∞(F) = OFPT(1)
‖v∗j‖∞ = OFPT(1).

Proof. Consider an arbitrary vj such that
(

g0
j (F)
vj

)
∈ kerZ([B,A]) and ‖

(
g0

j (F)
vj

)
‖∞ ≤

g∞(F) = αmax/2. Such vj exists since gj(F) satisfies that Bg0
j(F) + Agij(F) = 0 for any

1 ≤ i ≤ n. We have A(gij(F) − vj) = 0 for every 1 ≤ i ≤ n, hence there exist ᾱij,` ∈ Z+,
g`(A) ∈ G(A) and g`(A) v gij(F)− vj such that for some integer m,

gij(F)− vj =
m∑
`=1

ᾱij,`g`(A), ∀1 ≤ i ≤ n.

Since ‖
(

g0
j (F)
vj

)
‖∞ ≤ αmax/2, consequently ‖gij(F) − vj‖∞ ≤ αmax, and ᾱij,` ≤ αmax.

Consider the cardinality of the set {i : ᾱij,` > 0}. If 1 ≤ |{i : ᾱij,` > 0}| ≤ bn/2c, we say `
is unbalanced for gj(F). Let ᾱij,max = max1≤`≤m ᾱ

i
j,` and UBj be the set of all unbalanced

indices `, we define

v∗j := vj +
∑
`∈UBj

ᾱij,maxg`(A),

then, gij(F)−v∗j =
∑

`∈{1,2,··· ,m}\UBj

ᾱij,`g`(A)+
∑
`∈UBj

(ᾱij,max−ᾱij,`)·(−g`(A)), ∀1 ≤ i ≤ n.

Note that −g`(A) ∈ G(A). For all the g`(A)’s in G(A) that do not appear in the above
equation, we take their coefficients as 0. Furthermore, we have |ᾱij,`| ≤ αmax and |ᾱij,max −
ᾱij,`| ≤ αmax for all i, `. As ‖vj‖∞ = OFPT(1), ‖g`(A)‖∞ = OFPT(1), we know that
‖v∗j‖∞ = OFPT(1). Thus, the claim is proved. C

ESA 2020

33:10 New Bounds on Augmenting Steps of Block-Structured IP

We call (g0
j(F),v∗j ,v∗j , · · · ,v∗j) as a canonical vector (of gj(F)). It is easy to see that

F (g0
j (F),v∗j ,v∗j , · · · ,v∗j) = 0. Since ‖v∗j‖∞ = OFPT(1) and ‖g0

j (F)‖∞ = OFPT(1), there are
at most τ = OFPT(1) different kinds of canonical vectors. This means, there may be different
gk(F)’s with the same canonical vector. We list all the τ possible canonical vectors and let
rj := (p∗j ,v∗j ,v∗j , · · · ,v∗j) be the j-th one. Let CAj be the set of indices of all gk(F)’s whose
canonical vector is rj , then we have

g =
τ∑
j=1

(
∑

k∈CAj

αk)rj +
τ∑
j=1

∑
k∈CAj

αk (gk(F)− rj) . (4)

We say an n-dimensional vector α = (α1, α2, · · · , αn) ∈ Zn≥0 is balanced, if α = 0, or
‖α‖∞ ≤ αmax = OFPT(1) and |{i : αi > 0}| ≥ n/2. Then the following observation is true.

I Observation 15. For any nonzero balanced vector α it holds that ‖α‖1 ≥ n/2 · αi/αmax
for every 1 ≤ i ≤ n.

Using the concept of a balanced vector, Claim 14 indicates that if rj is a canonical vector
of gk(F), then gik(F)− v∗j =

∑|G(A)|
`=1 αik,`g`(A) such that the vector (α1

k,`, α
2
k,`, · · · , αnk,`) is

a balanced vector. The nice thing about balanced vectors is that we can have the following
claim, which will be used several times later.

B Claim 16. Let y1,y2, · · · ,yk be a sequence of balanced vectors in Zn≥0 such that
‖
∑k
h=1 yh‖1 ≤ nΛ where Λ = OFPT(1), then ‖

∑k
h=1 yh‖∞ ≤ 2αmaxΛ = OFPT(1).

Proof of Claim 16. We prove by contradiction. Suppose on the contrary that ‖
∑k
h=1 yh‖∞ >

2αmaxΛ, then there exists some i∗ such that
∑k
h=1 yi∗h > 2αmaxΛ. Since yh’s are balanced

vectors, according to Observation 15, we have

‖
k∑
h=1

yh‖1 =
k∑
h=1
‖yh‖1 ≥ n ·

∑k
h=1 yi∗h

2αmax
> nΛ,

which contradicts the fact that ‖
∑k
h=1 yh‖1 ≤ nΛ. Hence, the claim is true. C

Since rj is a canonical vector of gk(F), by Claim 14, there exist balanced vectors βk,`
such that Eq (4) can be rewritten as (ignoring g0):

gi =
τ∑
j=1

(
∑

k∈CAj

αk)v∗j +
τ∑
j=1

∑
k∈CAj

αk

|G(A)|∑
`=1

βik,`g`(A)

 , ∀1 ≤ i ≤ n,

or equivalently, gi =
τ∑
j=1

α′jv∗j +
|G(A)|∑
`=1

βi`g`(A), ∀1 ≤ i ≤ n, (5)

where α′j =
∑
k∈CAj

αk and each β` = (β1
` , · · · , βn`) is the summation of balanced vectors.

As [0, D,D, · · · , D]g = 0, we have
τ∑
j=1

nα′jDv∗j +
|G(A)|∑
`=1

(
n∑
i=1

βi`)Dg`(A) = 0. (6)

Note that |G(A)| = OFPT(1), the equation above can be rewritten as

[Dv∗1, · · · , Dv∗τ , Dg1(A), · · · , Dg|G(A)|(A)] · (nα′1, · · · , nα′τ ,
n∑
i=1

βi1, · · · ,
n∑
i=1

βi|G(A)|) = 0. (7)

L. Chen, M. Koutecký, L. Xu, and W. Shi 33:11

Let V = [Dv∗1, Dv∗2, · · · , Dv∗τ , Dg1(A), Dg2(A), · · · , Dg|G(A)|(A)], which is an OFPT(1)×
OFPT(1)-matrix with ‖V ‖∞ = OFPT(1), then there exist λk ∈ Z+ and gk(V) ∈ G(V),
such that (nα′1, nα′2, · · · , nα′τ ,

∑n
i=1 β

i
1, · · · ,

∑n
i=1 β

i
|G(A)|) =

∑
k λkgk(V). Note that since

α′j , β
i
` ≥ 0, we can restrict that every gk(V) ∈ Zτ+|G(A)|

≥0 .
For ease of description, from now on we take the viewpoint of a packing problem. We

view each canonical vector r∗j and g`(A) as an item, whereas there are τ + |G(A)| different
kinds of items. There are n + 1 different bins. Bin 0 can only be used to pack items r∗j ,
1 ≤ j ≤ τ , and bin i (1 ≤ i ≤ n) can only be used to pack items g`(A), 1 ≤ ` ≤ |G(A)|.
Currently there are α′j copies of item r∗j in bin 0, and βi` copies of item g`(A) in bin i. This is
called a packing profile. Now we want to split this packing profile into several “sub-profiles”,
i.e., we want to determine integers µhj , σ

i,h
` ∈ Z≥0 such that the followings are true:

(i) µhj , σ
i,h
` = OFPT(1) and µhj + σi,h` > 0.

(ii)
∑
h µ

h
j = α′j ,

∑
h σ

i,h
` = βi`;

(iii) [Dv∗1, · · · , Dv∗τ , Dg1(A), · · · , Dg|G(A)|(A)]
· (nµh1 , · · · , nµhτ ,

∑n
i=1 σ

i,h
` , · · · ,

∑n
i=1 σ

i,h
|G(A)|) = 0 for every h.

A packing with µhj copies of r∗j in bin 0 and σi,h` copies of g`(A) in bin i is called a sub-profile.
Any sub-profile corresponds to a (tA + ntB)-dimensional vector eh = (e0

h, e1
h, · · · , enh) where

e0
h =

τ∑
j=1

µhjp∗j

eih =
τ∑
j=1

µhj v∗j +
|G(A)|∑
`=1

σi,h` g`(A), ∀1 ≤ i ≤ n

If all the three conditions on sub-profiles hold, then we know that ‖eh‖∞ = OFPT(1),
g =

∑
h eh and H0eh = 0 (to see why H0eh = 0 holds, simply recall that Fr∗j = 0 and

condition (iii) implies that [0, D,D, · · · , D]eh = 0), and furthermore, there are at most∑
j α
′
j +

∑
i,` β

i
` sub-profiles, which is finite. Hence, g =

∑
h eh and the theorem is proved.

We will construct eh’s iteratively. Once eh is constructed, we continue our decomposition
procedure on g−

∑h
k=1 ek.

Suppose we have constructed e1 to eh0−1 where conditions (i) and (iii) are satisfied
for each eh, α′j −

∑h0−1
h=1 µhj ≥ 0, β̄i` := βi` −

∑h0−1
h=1 σi,h` ≥ 0 and furthermore, each vector

β̄` = (β̄1
` , · · · , β̄n`) can be expressed as a summation of all but one balanced vectors, more

precisely, there exist balanced vectors φ`,k ∈ Zn≥0, 1 ≤ k ≤ kmax such that

β̄` =
kmax−1∑
k=1

φ`,k + φ̄`,kmax , where φ̄`,kmax v φ`,kmax .

We show how to construct eh0 . Let ᾱ′j = α′j −
∑h0−1
h=1 µhj . According to condition (iii) of

each eh, we know that

[Dv∗1, · · · , Dv∗τ , Dg1(A), · · · , Dg|G(A)|(A)] · (nᾱ′1, · · · , nᾱ′τ ,
n∑
i=1

β̄i1, · · · ,
n∑
i=1

β̄i|G(A)|) = 0

Consequently, there exist λ′k ∈ Z≥0 and gk ∈ Zτ+|G(A)|
≥0 ∩ G(V) such that

(nᾱ′1, nᾱ′2, · · · , nᾱ′τ ,
n∑
i=1

β̄i1, · · · ,
n∑
i=1

β̄i|G(A)|) =
∑
k

λ′kgk(V).

ESA 2020

33:12 New Bounds on Augmenting Steps of Block-Structured IP

There are two possibilities.

Case 1. If there exists some λ′k ≥ n, we consider the vector-summand ngk(V) out of λ′kgk(V).
Let ngk(V) = (nζ1, nζ2, · · · , nζτ+|G(A)|). We set µh0

j = ζj = OFPT(1) for 1 ≤ j ≤ τ . We set
the values of σi,h0

` such that
∑n
i=1 σ

i,h0
` = nζτ+`. Consequently, condition (iii) is satisfied for

eh0 . Now it suffices to set the values of each σi,h0
` such that they are bounded by OFPT(1).

Equivalently, this means out of the β̄i` copies of g`(A), our goal is to take σi,h0
` copies such

that in total we take nζτ+` copies and σi,h0
` = OFPT(1). We achieve this in a simple greedy

way. Let k∗ be the index such that
kmax−1∑
k=k∗+1

‖φ`,k‖1 + ‖φ̄`,kmax‖1 < nζτ+` ≤
kmax−1∑
k=k∗

‖φ`,k‖1 + ‖φ̄`,kmax‖1

Let φ̄`,k∗ v φ`,k∗ be an arbitrary vector such that

‖φ̄`,k∗‖1 +
kmax−1∑
k=k∗+1

‖φ`,k‖1 + ‖φ̄`,kmax‖1 = nζτ+`.

We set σi,h0
` = φ̄i`,k∗ +

∑kmax−1
k=k∗+1 φ

i
`,k + φ̄i`,kmax

. It is obvious that in total we have taken nζτ+`

copies of g`(A). Now it remains to show that ‖σh0
` ‖∞ = ‖φ̄`,k∗+

∑kmax−1
k=k∗+1 φ`,k+ φ̄`,kmax‖∞ =

OFPT(1). To see this, notice that each φ`,k is a balanced vector, hence

‖φ`,k∗‖1 +
kmax−1∑
k=k∗+1

‖φ`,k‖1 + ‖φ`,kmax‖1 ≤ nζτ+` + 2nαmax = OFPT(n).

According to Claim 16, ‖φ`,k∗ +
∑kmax−1
k=k∗+1 φ`,k + φ`,kmax‖∞ = OFPT(1). Consequently,

‖σh0
` ‖∞ = OFPT(1).
Also notice that after we take σi,h0

` copies of g`(A), β̄`−σh0
` =

∑k∗−1
k=1 φ`,k+(φ`,k∗−φ̄`,k∗),

which is still the summation of all but one balanced vector. Hence we can continue to
decompose g−

∑h0
h=1 eh.

Case 2. λ′k < n for every k. We claim that ‖g −
∑h0−1
h=1 eh‖∞ = OFPT(1). If this claim is

true, then g =
∑h0−1
h=1 eh + (g−

∑h0−1
h=1 eh), and Theorem 4 is proved. To show the claim, we

use a similar argument as that of case 1. First, nᾱ′j ≤ (
∑
k λk) ·maxk ‖gk(V)‖∞ = OFPT(n),

hence ᾱ′j = OFPT(1). Second, we consider the n-dimensional vector β =
∑|G(A)|
`=1 β`. Recall

that β̄i` := βi` −
∑h0−1
h=1 σi,h` ≥ 0 and each vector β̄` satisfy that

β̄` =
kmax−1∑
k=1

φ`,k + φ̄`,kmax

where φ̄`,kmax v φ`,kmax . Let β̄′` =
∑kmax
k=1 φ`,k and β′ =

∑|G(A)|
`=1 β′`. Given that φ̄`,kmax v

φ`,kmax and φ`,kmax is a balanced vector, ‖β̄′`‖1 ≤ ‖β̄`‖1 + nαmax. Consequently

‖β′‖1 ≤
|G(A)|∑
`=1
‖β̄′`‖1 ≤

|G(A)|∑
`=1
‖β̄`‖1 + nαmax · |G(A)|

≤
∑
k

λ′k ·max
k
‖gk(V)‖1 + nαmax · |G(A)| = OFPT(n).

Note that β′ is the summation of balanced vectors. According to Claim 16, ‖β′‖∞ = OFPT(1),
consequently ‖β‖∞ ≤ ‖β′‖∞ = OFPT(1). Combining the fact that ‖p∗j‖∞ = OFPT(1),
‖v∗j‖∞ = OFPT(1) and ‖g`(A)‖∞ = OFPT(1), we have ‖g−

∑h0−1
i=1 eh‖∞ = OFPT(1). J

L. Chen, M. Koutecký, L. Xu, and W. Shi 33:13

Theorem 4 indicates that, there exists some “basis” for 3-block n-fold IP with FPT-
bounded `∞-norms. Unfortunately, this basis need not be Graver basis; indeed, we will show
later that the Graver basis of 3-block n-fold IP does not have an FPT-bounded `∞-norm.
However, Theorem 4 provides a new perspective on the structure of the kernel space, which
can be utilized to bound the `∞-norm of the Graver basis through a “merging” technique for
the proof of Theorem 5 as we illustrate in the following subsection.

4.2 A sign-compatible decomposition
We have shown in the previous subsection that any element of kerZ(H0) admits a de-
composition into lattice elements whose `∞-norm is bounded by OFPT(1). However, this
decomposition is not necessarily “sign-compatible”, meaning that possibly none of its elements
is a feasible step on its own, which makes its immediate algorithmic use complicated. Towards
the algorithm for 3-block n-fold IP, we resort to Graver basis. The goal of this subsection is
to prove the following theorem.

I Theorem 5. For any 3-block n-fold matrix H0, g∞(H0) ≤ OFPT(nt2A+1).

Following the line of arguments in previous papers [4, 16, 18, 20], it seems very difficult
to derive an upper bound singly exponential in tA. To prove Theorem 5, we use a completely
different approach. We give a brief overview of the proof idea. The reader is referred to the
full version of this paper [6] for details.

Proof idea. The basic idea is to show that if ‖g(H0)‖∞ is too large for some g(H0) ∈ G(H0),
then we are able to find some z @ g(H0) and H0z = 0, contradicting the fact that g(H0) is
a Graver basis element. Suppose y = g(H0) and ‖y‖∞ is very large. The crucial idea is that
we do not search directly for z @ y, but rather search for z @ ỹ where ỹ is an “equalization”,
of y, and then prove that such a z also satisfies that z @ y.

Roughly speaking, we will divide the n bricks of y, i.e., yi for i = 1, 2, · · · , n, into
σ = OFPT(1) groups N1, N2, · · · , Nσ such that for any k ∈ Nj , ỹk ≈ 1

|Nj |
∑
i∈Nj

yi. Why do
we need to take such a detour in the proof? The problem is that by directly arguing on y we
run into a bound that is similar as [16]. Therefore, we use a completely different approach –
we adopt the decomposition of Theorem 4, and then modify such a decomposition into a
sign-compatible one by “merging” summands. Towards this, we first prove a merging lemma
(see Lemma 5 of the full version) which states that given a summation of a sequence of vectors,
we can always divide them into disjoint subsets such the summation of vectors in each subset
becomes sign-compatible. The merging lemma can turn an arbitrary decomposition into
a sign-compatible one, despite the fact that the cardinality of each subset is exponential
in the dimension of the vectors (which means the `∞-norm of the summands will explode
by a factor that is exponential in the dimension). Consequently, if we directly merge the
OFPT(n)-dimensional vectors in the decomposition of Theorem 4, we get a very weak bound.
To handle this, we consider an alternative sum ỹ, which is derived by averaging multiple
bricks of y as we mentioned above.

By altering the decomposition of y, we get a decomposition of ỹ such that the following
is true: all the n+ 1 bricks of each vector-summand can be divided into OFPT(1) subsets
where in each subset the bricks are identical. This indicates that, although we are summing
up OFPT(n)-dimensional vectors to ỹ, it is essentially the same as summing up OFPT(1)-
dimensional vectors. Such a transformation comes at a cost – summands summing up to
ỹ do not have OFPT(1)-bounded `∞-norms, indeed, each vector-summand consists of n
bricks whose `∞-norm is OFPT(1), and at most 1 brick (which is a tA-dimensional vector)
whose `∞-norm is OFPT(n). Applying our merging lemma, we derive a sign-compatible
decomposition of ỹ where the summands have an `∞-norm bounded by OFPT(nt2A+1).

ESA 2020

33:14 New Bounds on Augmenting Steps of Block-Structured IP

It remains to show that at least one summand z in the sign-compatible decomposition
of ỹ also satisfies that z @ y. To show this we need to go back to the definition of ỹ. We
are averaging bricks of y, but which bricks shall we average? Each brick is a tA-dimensional
vector and we consider each coordinate. We set up a threshold Γ. If the absolute value
of a coordinate is larger than Γ, we say it is (positive or negative) large. Otherwise it is
small. Therefore, each brick can be characterized by identifying its coordinates being positive
large, negative large or small (which is defined as the quantity type of a brick). We only
average the bricks of the same quantity type. By doing so, we can ensure that ỹi is roughly
sign-compatible with yi – if the j-th coordinate of yi is positive or negative large, then this
coordinate of ỹi is also positive or negative. Hence, any z @ ỹi is almost sign-compatible
with y – indeed, if we can ensure additionally that the j-th coordinate of zi is 0 as long as
the j-th coordinate of yi is small, then we can conclude that z @ y. This “if” can be proved
using a counting argument, and we get Theorem 5. J

5 4-block n-fold IP reduces to 3-block n-fold IP

In this section, we will show that for any 4-block n-fold IP, there exists an equivalent 3-block
n-fold IP which is kernel preserving, as we define in the following.

I Definition 17 (Extended formulation). Let n′ ≥ n, m′ ∈ N, A ∈ Zm×n, b ∈ Zm, l,u ∈
(Z ∪ {±∞})n and A′ ∈ Zm′×n′ , b′ ∈ Zm′ , l′,u′ ∈ (Z ∪ {±∞})n′ . We say that

A′(x,y) = b′, l′ ≤ (x,y) ≤ u′ (EF)

is an extended formulation of

Ax = b, l ≤ x ≤ u (OrigF)

if {x | Ax = b, l ≤ x ≤ u} = {x | ∃y : A′(x,y) = b′, l′ ≤ (x,y) ≤ u′}.

I Definition 18 (Feasibly kernel-preserving extended formulation). We say that (EF) is a
feasibly kernel preserving extended formulation of (OrigF) if for each (x,y) feasible in (EF),

A′(g,h) = 0, l′ ≤ (x,y) + (g,h) ≤ u′ =⇒ Ag = 0, l ≤ x + g ≤ u,

that is, each element (g,h) of ker(A′) which is feasible with respect to (x,y) corresponds to
an element g ∈ ker(A) which is feasible with respect to x.

Extended formulations are commonly used to show how a set of solutions can be embedded
in an extended space, perhaps using less inequalities or obeying some extra structural
requirements. The basic observation is that if we take an objective function f over the
original formulation (OrigF) and optimize f ′(x,y) = f(x) over (EF), the optimal solution
(x,y) over (EF) is such that x is an optimum over (OrigF). In the subsequent theorem we
will use it to show that any 4-block n-fold IP can be embedded in a 3-block n-fold IP without
blowing up the block sizes too much. The specific notion of a feasibly kernel-preserving
extended formulation is useful to show that also our lower bounds on lattice elements are
transferred, as we will show subsequently in Theorem 6.

Now we come to the main result of this subsection.

I Theorem 19. Any 4-block n-fold IP with parameters ∆, sA, sB , sC , sD, tA, tB , tC , tD has a
feasibly kernel-preserving extended formulation whose constraint matrix is a 3-block n-fold
matrix with parameters ∆̂, ŝA, ŝB , ŝD, t̂A, t̂B , t̂D satisfying

∆̂ = ∆ t̂A = t̂D = 2tC + tD + sA t̂B = tB ŝA = ŝB = sB + tC ŝD = sD = sC .

L. Chen, M. Koutecký, L. Xu, and W. Shi 33:15

Proof. Let us construct a 3-block n-fold IP instance which models the given 4-block IP
instance. It’s matrix Ĥ0 is a 3-block n-fold matrix composed of blocks Â, B̂ and D̂, and the
remaining data is b̂, l̂, û and ŵ. Let the blocks be defined as follows.

D̂ = (C D 0 0) Â =
(−I 0 I 0

0 A 0 I

)
B̂ = (IB)

We call the four block columns of Â and D̂ subbricks and index them by greek letters α, β, γ
and δ, i.e., x1α is the α-subbrick of the first brick.

Now, we add an extra brick which we call an aggregation brick, denoted xd where d = n+1.
The idea is that the α subbrick is non-zero only at the aggregation brick and corresponds to
the first-stage variables of the original 4-block n-fold IP. We shall ensure that this is true
using lower and upper bounds. However, to subsequently “assign” the aggregated values
to the first stage variables, we also need to modify the B block, which, in turn, forces us
to introduce new slack variables. This is the meaning of the γ subbrick (slack variables for
bricks i 6= d) and δ subbrick (slack variables for the dth brick).

The right hand side b̂ is simply b̂
0

= b0 and b̂
i

= (0 bi) for i 6= d and b̂
d

= (0 0). We
set the new lower and upper bounds l̂, û as follows:
α subbrick l̂

iα
= ûiα = 0 for all i 6= d, and l̂

dα
= −∞, ûdα = +∞. This ensures the α

subbrick to be only possibly non-zero in brick d.
β subbrick l̂

iβ
= li and ûiβ = ui for all i 6= d and l̂

dβ
= ûdβ = 0. This ensures that the β

subbrick has the meaning of the original variables xi for all bricks except brick d, where
we enforce x̂dβ = 0.

γ subbrick l̂
dγ

= ûdγ = 0 and l̂
iγ

= −∞, ûiγ = +∞ for i 6= d. Without these variables
and due to the structure of Â and B̂, we would be enforcing for each brick i 6= d that
x̂0 = x̂iα, and since x̂iα = 0 this would mean x̂0 = 0. The γ subbrick relaxes this to
x̂0 = x̂iα + x̂iγ = 0 + x̂iγ which is trivially satisfiable considering our setting of the
bounds l̂

dγ
and ûdγ .

δ subbrick l̂
iδ

= ûiδ = 0 for all i 6= d, and l̂
dδ

= −∞, ûdδ = +∞, i.e., the same as for the
α subbrick. Similarly to the γ subbrick, without the δ subbrick we would be enforcing
Bx̂0 +Ax̂dβ = 0, however x̂dβ = 0 so we would be forcing Bx̂0 = 0, which is undesired.
Thus we relax it to Bx̂0 +Ax̂dβ + x̂dδ = Bx̂0 + x̂dδ = 0 which is trivially satisfiable.

To show that the constructed system

H0x̂ = b̂, l̂ ≤ x̂ ≤ û, x̂ ∈ Zt̂B+(n+1)t̂A (8)

is truly an extended formulation of Hx = b, l ≤ x ≤ u, x ∈ ZtC +ntA , let us define
a projection π : Zt̂B+(n+1)t̂A → ZtC +ntA which defines the mapping from the extended
formulation to the original instance. Specifically, we let

π((x̂0, x̂1α, x̂1β , x̂1γ , x̂1δ, x̂2α, . . . , x̂nδ, x̂dα, . . . , x̂dδ) = (x̂0, x̂1β , x̂2β , . . . , x̂nβ) .

By the arguments above we see that x̂0 has precisely the meaning of x0 and x̂iβ for i 6= d

has the meaning of xi.
Finally, let us argue that this extended formulation is also feasibly kernel-preserving.

Consider now a feasible solution x̂ of (8), and consider any ĝ in ker(H0) such that x̂ + ĝ is
again feasible. We have to show that Hπ(x̂) = 0 and l ≤ x + π(x̂) ≤ u. The latter follows
easily from the fact that l̂ ≤ x̂ + ĝ ≤ û and that π(̂l) = l and π(û) = u. To see the former,
consider separately first the upper row (C D · · · D) of H and after that the remaining rows.

ESA 2020

33:16 New Bounds on Augmenting Steps of Block-Structured IP

We have that

Cx̂dα +Dx̂dβ + 0x̂dγ + 0x̂dδ +
n∑
i=1

Cx̂iα +Dx̂iβ + 0x̂iγ + 0x̂iδ = 0 .

Omitting the zero blocks, we obtain

Cx̂aα +Dx̂aβ +
n∑
i=1

Cx̂iα +Dx̂iβ = 0 .

Recall that our bounds enforce x̂dβ = 0 and x̂iα = 0 for i 6= d, and finally x̂0 = x̂dα, so
plugging these in we obtain

Cx̂0 +
n∑
i=1

Dx̂iβ = 0,

which by the definition of π implies that Cπ(x)0 +
∑n
i=1 Dπ(x)i = 0 as desired. Now it is

left to show that, for each i 6= d, Bπ(x)0 +Aπ(x)i = 0. We have that

Bx̂0 + 0x̂iα +Ax̂iβ + 0x̂iγ + Ix̂iδ = 0 .

Omitting the zero blocks and recalling that our bounds enforce x̂iδ = 0 for each i 6= d, we
have

Ax̂0 +Ax̂iβ = 0,

which, by definition of π, is what we wanted to show. J

I Remark 20. Theorem 19 has several consequences. One is that 4-block n-fold IP is in FPT
if and only if 3-block n-fold IP is in FPT. Furthermore, as the reduction is kernel preserving,
we can also utilize Theorem 19 to transfer the Graver basis elements between 4-block n-fold
IP and 3-block n-fold IP, as is implied by Theorem 6.

I Theorem 6. For arbitrary integer t ∈ N, there exists a 3-block n-fold IP with a matrix H
such that si, ti ∈ O(t) for i = A,B,C,D, and for any feasible nonzero g ∈ kerZ(H0) we have
‖g0‖∞ = Ω(nt).

Proof. Consider the instance constructed in Theorem 2 with H being the 4-block n-fold
matrix from the proof. Apply Theorem 19 to this instance to obtain its feasible kernel-
preserving extended formulation, which is a 3-block n-fold IP, and consider any x̂ which is a
feasible solution for it. Denote by π the projection from the proof of Theorem 19.

Now let ĝ ∈ kerZ(H0) ⊆ ker(H0) be feasible with respect to x̂. By Definition 18, we
have g = π(ĝ) ∈ kerZ(H), and by Theorem 2 we have ‖g‖∞ = Ω(nt−1) and in particular
‖g0‖∞ = Ω(nt−1). By the definition of π these lower bounds transfer to ĝ and ĝ0. J

I Remark 21. The reader may wonder what if we take a “fat” kernel element of a 4-block
n-fold IP, which cannot be decomposed into “thin” kernel element whose infinity norm
bounded by OFPT(1), then use Theorem 19 to construct an equivalent 3-block n-fold IP,
and apply Theorem 4 to decompose the kernel element of the 3-block n-fold IP into thin
elements and transform them back to the original 4-block n-fold IP. This seems to suggest
that Theorem 19 is contradicting Theorem 2 and Theorem 4. We emphasize that such
a contradiction does not exist. Indeed, our definition of a feasibly-preserving extended
formulation is such that it takes kernel elements from 3-block n-fold IP to 4-block n-fold IP

L. Chen, M. Koutecký, L. Xu, and W. Shi 33:17

only if they are feasible in the 3-block n-fold IP. Note that the construction of Theorem 19
requires specific lower and upper bounds on the extended variables y. This is where the
non-conformality of the decomposition of Thm 4 comes into play: what happens is that we
decompose a kernel element of 3-block into “thin” kernel elements, however, we cannot take
them back to the 4-block because they do not satisfy the bounds on the extended variables,
and thus the definition of feasibly kernel-preserving extended formulation does not guarantee
anything for them.

6 Algorithms

Using the upper bound on the Graver basis elements, we can derive algorithms for 3-block
and 4-block n-fold IP by combining the idea from [16] and the recent progress in [28, 8], as
indicated by Theorem 7 and Theorem 3.

In the following we prove Theorem 7. Theorem 3 can be proved by plugging in the upper
bound of 4-block n-fold IP and proceed with the same argument.

I Theorem 7. 3-block n-fold IP can be solved in time min{OFPT(nO(sDtB),OFPT(nO(t2AtB))}.

Proof. Using the idea of approximate Graver-best oracle introduced by Altmanová et al. [1]
and implicitly by Eisenbrand et al. [8], it suffices for us to solve the following IP for each
fixed value ρ0 = 20, 21, 22, · · · :

min{wx : H0x = 0, l ≤ x0 + ρ0x ≤ u,x ∈ Zm, ‖x‖∞ ≤ min{OFPT(nsc),OFPT(nt
2
A+1)}}

Let x∗ be the optimal solution. Given that ‖x∗‖∞ ≤ OFPT(nt2A+1), we can guess x0
∗ and

there are OFPT(n(t2A+1)tB) different possibilities. For each guess, say, x0
∗ = v, we solve the

following problem:

min{w · x : H0x = 0, l ≤ x0 + ρ0x ≤ u,x ∈ Zm,x0 = v}

By fixing x0, the above problem becomes exactly an n-fold IP, which can be solved efficiently
in OFPT(n2 logn2) time [8]. Notice that ρ0 may take OFPT(n logn) distinct values, the
overall running time is min{OFPT(nsDtB+3) log3 n,OFPT(n(t2A+1)tB+3 log3 n)}. J

7 Conclusion

We consider 4-block n-fold IP and its important special case 3-block n-fold IP, both gener-
alizing the two-stage stochastic IP and n-fold IP. We show that lattice elements of 3-block
n-fold IP admit a decomposition whose `∞-norm is bounded in OFPT(1), while any non-zero
integral element in the kernel of 4-block n-fold IP may have an `∞-norm at least Ω(nsc).
We provide a matching upper bound on the `∞-norm of the Graver basis for 4-block n-fold
IP, which gives an exponential improvement upon the best known result. We also establish
an upper bound of min{OFPT(nsc),OFPT(nt2A + 1)} on the `∞-norm of the Graver basis
for 3-block n-fold IP. A remaining important open problem is whether 4-block n-fold IP, or
equivalently, 3-block n-fold IP, is in FPT. Our lower bounds give some indication that this is
unlikely.

References
1 Katerina Altmanová, Dusan Knop, and Martin Koutecký. Evaluating and tuning n-fold

integer programming. ACM Journal of Experimental Algorithmics, 24(1):2.2:1–2.2:22, 2019.
doi:10.1145/3330137.

2 Gautam Appa, Balázs Kotnyek, Konstantinos Papalamprou, and Leonidas Pitsoulis. Optimiz-
ation with binet matrices. Operations research letters, 35(3):345–352, 2007.

ESA 2020

https://doi.org/10.1145/3330137

33:18 New Bounds on Augmenting Steps of Block-Structured IP

3 Stephan Artmann, Robert Weismantel, and Rico Zenklusen. A strongly polynomial algorithm
for bimodular integer linear programming. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, pages 1206–1219. ACM, 2017.

4 Matthias Aschenbrenner and Raymond Hemmecke. Finiteness theorems in stochastic integer
programming. Foundations of Computational Mathematics, 7(2):183–227, 2007.

5 Lin Chen and Daniel Marx. Covering a tree with rooted subtrees–parameterized and approx-
imation algorithms. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2801–2820. SIAM, 2018.

6 Lin Chen, Lei Xu, Weidong Shi, and Martin Kouteckỳ. New bounds on augmenting steps of
block-structured integer programs. arXiv preprint, 2018. arXiv:1805.03741.

7 Jesús A De Loera, Raymond Hemmecke, Shmuel Onn, and Robert Weismantel. N-fold integer
programming. Discrete Optimization, 5(2):231–241, 2008.

8 Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster algorithms
for integer programs with block structure. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.49.

9 Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Kouteckỳ, Asaf
Levin, and Shmuel Onn. An algorithmic theory of integer programming. arXiv preprint, 2019.
arXiv:1904.01361.

10 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for
integer programming using the steinitz lemma. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 808–816. SIAM, 2018.

11 Elisabeth Finhold and Raymond Hemmecke. Lower bounds on the graver complexity of m-fold
matrices. Annals of Combinatorics, 20(1):73–85, 2016.

12 Robert Ganian and Sebastian Ordyniak. The complexity landscape of decompositional
parameters for ILP. Artificial Intelligence, 2018.

13 Robert Ganian, Sebastian Ordyniak, and MS Ramanujan. Going beyond primal treewidth for
(m) ilp. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

14 Jack E Graver. On the foundations of linear and integer linear programming i. Mathematical
Programming, 9(1):207–226, 1975.

15 Victor S Grinberg and Sergey V Sevast’yanov. Value of the steinitz constant. Functional
Analysis and Its Applications, 14(2):125–126, 1980.

16 Raymond Hemmecke, Matthias Köppe, and Robert Weismantel. Graver basis and proximity
techniques for block-structured separable convex integer minimization problems. Mathematical
Programming, 145(1-2):1–18, 2014.

17 Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. N-fold integer programming in
cubic time. Mathematical Programming, 137(1-2):325–341, 2013.

18 Raymond Hemmecke, Shmuel Onn, and Robert Weismantel. A polynomial oracle-time
algorithm for convex integer minimization. Mathematical Programming, 126(1):97–117, 2011.

19 Raymond Hemmecke and Rüdiger Schultz. Decomposition methods for two-stage stochastic
integer programs. In Online optimization of large scale systems, pages 601–622. Springer, 2001.

20 Serkan Hoşten and Seth Sullivant. A finiteness theorem for markov bases of hierarchical
models. Journal of Combinatorial Theory, Series A, 114(2):311–321, 2007.

21 Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau. Empowering the
configuration-ip - new PTAS results for scheduling with setups times. In Avrim Blum,
editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January
10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 44:1–44:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITCS.2019.44.

22 Klaus Jansen and Lars Rohwedder. On integer programming and convolution. In Avrim Blum,
editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January
10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pages 43:1–43:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ITCS.2019.43.

http://arxiv.org/abs/1805.03741
https://doi.org/10.4230/LIPIcs.ICALP.2018.49
http://arxiv.org/abs/1904.01361
https://doi.org/10.4230/LIPIcs.ITCS.2019.44
https://doi.org/10.4230/LIPIcs.ITCS.2019.43

L. Chen, M. Koutecký, L. Xu, and W. Shi 33:19

23 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

24 Kim-Manuel Klein. About the complexity of two-stage stochastic ips. In Daniel Bienstock
and Giacomo Zambelli, editors, Integer Programming and Combinatorial Optimization -
21st International Conference, IPCO 2020, London, UK, June 8-10, 2020, Proceedings,
volume 12125 of Lecture Notes in Computer Science, pages 252–265. Springer, 2020. doi:
10.1007/978-3-030-45771-6_20.

25 Dusan Knop and Martin Koutecký. Scheduling meets n-fold integer programming. J. Sched.,
21(5):493–503, 2018. doi:10.1007/s10951-017-0550-0.

26 Dusan Knop, Martin Kouteckỳ, and Matthias Mnich. Voting and bribing in single-exponential
time. In LIPIcs-Leibniz International Proceedings in Informatics, volume 66. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

27 Dušan Knop, Martin Kouteckỳ, and Matthias Mnich. Combinatorial n-fold integer program-
ming and applications. Mathematical Programming, pages 1–34, 2019.

28 Martin Koutecký, Asaf Levin, and Shmuel Onn. A parameterized strongly polynomial algorithm
for block structured integer programs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 85:1–85:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.85.

29 Shmuel Onn. Nonlinear discrete optimization. Zurich Lectures in Advanced Mathematics,
European Mathematical Society, 2010.

30 Christos H Papadimitriou. On the complexity of integer programming. Journal of the ACM
(JACM), 28(4):765–768, 1981.

ESA 2020

https://doi.org/10.1007/978-3-030-45771-6_20
https://doi.org/10.1007/978-3-030-45771-6_20
https://doi.org/10.1007/s10951-017-0550-0
https://doi.org/10.4230/LIPIcs.ICALP.2018.85

Distance Bounds for High Dimensional Consistent
Digital Rays and 2-D Partially-Consistent Digital
Rays
Man-Kwun Chiu
Institut für Informatik, Freie Universität Berlin, Germany
chiumk@zedat.fu-berlin.de

Matias Korman
Department of Computer Science, Tufts University, Medford, MA, USA
matias.korman@tufts.edu

Martin Suderland
Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
martin.suderland@usi.ch

Takeshi Tokuyama
Kwansei Gakuin University, Sanda, Japan
tokuyama@kwansei.ac.jp

Abstract
We consider the problem of digitalizing Euclidean segments. Specifically, we look for a constructive
method to connect any two points in Zd. The construction must be consistent (that is, satisfy the
natural extension of the Euclidean axioms) while resembling them as much as possible. Previous work
has shown asymptotically tight results in two dimensions with Θ(logN) error, where resemblance
between segments is measured with the Hausdorff distance, and N is the L1 distance between the
two points. This construction was considered tight because of a Ω(logN) lower bound that applies
to any consistent construction in Z2.

In this paper we observe that the lower bound does not directly extend to higher dimensions.
We give an alternative argument showing that any consistent construction in d dimensions must
have Ω(log1/(d−1) N) error. We tie the error of a consistent construction in high dimensions to the
error of similar weak constructions in two dimensions (constructions for which some points need not
satisfy all the axioms). This not only opens the possibility for having constructions with o(logN)
error in high dimensions, but also opens up an interesting line of research in the tradeoff between
the number of axiom violations and the error of the construction. In order to show our lower bound,
we also consider a colored variation of the concept of discrepancy of a set of points that we find of
independent interest.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Consistent Digital Line Segments, Digital Geometry, Discrepancy

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.34

Related Version A full version of the paper is available at https://arxiv.org/abs/2006.14059.

Funding Man-Kwun Chiu: Partially supported by ERC StG 757609.
Matias Korman: Supported by MEXT Kakenhi No. 17K12635 and the NSF award CCF-1422311.
Takeshi Tokuyama: Supported by MEXT Kakenhi 17K19954 and 18H05291.

Acknowledgements The authors would like to thank Matthew Gibson, Evanthia Papadopoulou,
André van Renssen and Marcel Roeloffzen for their helpful discussions during the creation of this
paper. The authors would also like to thank the anonymous reviewers for the many comments that
helped improve the paper. We would especially like to thank the SODA reviewer that showed us
how to improve the lower bound from Ω(log1/dN) to Ω(log1/(d−1) N).

© Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 34; pp. 34:1–34:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7435-1020
mailto:chiumk@zedat.fu-berlin.de
mailto:matias.korman@tufts.edu
https://orcid.org/0000-0002-6604-6381
mailto:martin.suderland@usi.ch
mailto:tokuyama@kwansei.ac.jp
https://doi.org/10.4230/LIPIcs.ESA.2020.34
https://arxiv.org/abs/2006.14059
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

1 Introduction

Euclidean line segments are one of the most fundamental objects of geometry. Although often
loosely referred to as the shortest path connecting the endpoints, segments have a clear and
unique axiomatic definition out of which many interesting properties follow. For example, it
is well-known that the intersection of two segments is always a segment (that could possibly
degenerate to a point or even become empty). The definition of other mathematical concepts
heavily depends on the definition of segments (such as convex regions).

The definition of segment works very well in a Euclidean or similar spaces with infinite
precision. Digital representation (such as pixels in a screen) introduces imprecision. The
most common approach used in practice is to somehow round the Euclidean segment into
the digital space. The digital segments will look very similar to the Euclidean counterparts
(that is, the error is very small). However, we cannot guarantee the useful properties and
concepts that follow from the axiomatic definition of Euclidean segment (see Figure 1).

In the aspect of the consistency of digital segments, we look for a deterministic method to
construct digital segments in a way that (i) the analogous of Euclidean axioms are satisfied
and (ii) the digital segments resemble the Euclidean ones as much as possible.

Figure 1 Left: Two Euclidean line segments that intersect in a point. Right: Rounding produces
polylines that intersect in three disconnected components.

Preliminaries
Our aim is to construct a digital path dig(p, q) for any two points p, q ∈ Zd. Ideally, we want
dig to be defined for any pairs of points in Zd (full list of requirements is described below),
but sometimes we consider the case in which dig is only defined for a subset of Zd × Zd.

I Definition 1. For any S ⊆ Zd × Zd, let DS(S) be a set of digital segments such that
dig(p, q) ∈ DS(S) for all (p, q) ∈ S. We say that DS(S) forms a partial set of consistent
digital segments on S (partial CDS for short) if for every pair (p, q) ∈ S it satisfies the
following five axioms:
(S1) Grid path property: dig(p, q) is a path between p and q under the 2d-neighbor topology1.
(S2) Symmetry property: if (q, p) ∈ S, dig(p, q) = dig(q, p).
(S3) Subsegment property: for any r ∈ dig(p, q), dig(p, r) ∈ DS(S) and dig(p, r) ⊆ dig(p, q).
(S4) Prolongation property: ∃ r ∈ Zd such that dig(p, r) ∈ DS(S) and dig(p, q) ⊂ dig(p, r).
(S5) Monotonicity property: for all i ≤ d such that pi = qi, it holds that every point

r ∈ dig(p, q) satisfies ri = pi = qi.

These axioms give nice properties of digital segments analogous to Euclidean line segments.
For example, (S1) and (S3) imply that the intersection of two digital segments is another
segment (that could degenerate to a single point or an empty set). (S5) implies that the
intersection of a segment with an axis-aligned halfspace is a segment.

1 The 2d-neighbor topology is the natural one that connects to your predecessor and successor in each
dimension. Formally speaking, two points are connected if and only if their || · ||1 distance is exactly one.

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:3

A partial CDS for S = Zd × Zd is called a set of consistent digital segments (CDS for
short). Although our final goal is to have such a construction that works for the case in
which S = Zd × Zd, in this paper we consider subsets of the form S = {o} × Zd (where o is
the origin or any fixed point in Zd). We say that a partial CDS on such a set is a consistent
digital ray system (CDR for short), as it contains all segments (or rays) from o to Zd.

Another property that we want from partial CDS is that they visually resemble the
Euclidean segments. The resemblance between the digital segment dig(p, q) and the Euclidean
counterpart pq is measured using the Hausdorff distance. The Hausdorff distance H(A,B)
of two objects A and B is defined by H(A,B) = max{h(A,B), h(B,A)}, where h(A,B) =
maxa∈A minb∈B δ(a, b), and δ(a, b) is the standard || · ||∞ L-infinity norm.

Thus, the resemblance of a partial CDS on S is defined as max(p,q)∈S H(dig(p, q), pq) (that
is, the biggest error created between a digital segment and its Euclidean counterpart). This
value is simply referred to as the error of the partial CDS construction. We are interested
to see how the error grows as we enlarge our focus of interest. Thus, we limit the domain
to the case in which both points are in the L1 ball of radius N centered at the origin (i.e.
GN = Zd ∩B1(o,N)). Rather than looking for the exact function, we are interested in the
asymptotic behavior of the error as a function of N . For simplicity, we will actually restrict
ourselves to the positive orthant G+

N = GN ∩i Hi, where Hi = {p ∈ Zd : pi ≥ 0} and pi is the
i-th coordinate of p (the results extend to other orthants by symmetry).

Previous Work
Research on the digital representation of line segments has been an active area of research
for over half a century [10]. Many different approaches have been considered. Most common
techniques look for methods that implicitly encode the properties we desire. For example, a
popular approach is to consider a dynamic method to digitize line segments. In this setting,
the way we transform a Euclidean segment into a digital one will depend on which other
segments are present (and their specific coordinates). It is known that a grid of exponential
size is needed if we want to preserve the combinatorial types [9]. Another workaround is
known as snap rounding that represents line segments by polygonal chains: Each segment is
carefully rounded to avoid inconsistencies. Note that both of these ideas implicitly keep the
error small while making sure that the intersection of two digital segments is a connected
component. Although they work well in practice, they have the drawback that they cannot
be used to define objects that are based on digital segments (such as digital starshapes or
convex region).

The first paper to explicitly look for an axiomatic approach was in 1987 by Luby [11]: in
his work he introduced the concept of CDS (under the name of smooth geometries) and gave
a method to construct CDSs in Z2 based on a characterization of CDRs in Z2: any CDR
can be uniquely identified by four total orders of the integers (and vice versa). By choosing
a proper total order and using it for all points of Z2 we obtain a CDR with O(logN) error.
Håstad2 gave a matching lower bound for any such construction. The lower bound is based
on discrepancy theory [12]: any CDR is mapped to a sequence of real numbers in [0, 1) in a
way that the error of the CDR is proportional to the discrepancy of the sequence (intuitively
speaking, a measure on how well shuffled the numbers are).

These results were rediscovered by Chun et al. [8] and Christ et al. [6]. They renewed
interest in the topic and sparked other related research: Chowdhury and Gibson [4] gave
necessary and sufficient conditions for a collection of CDRs to form a CDS. In a companion

2 The lower bound was published by Luby, but credit given to Håstad (see Theorem 19 of [11]).

ESA 2020

34:4 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

paper, the same authors [5] afterwards provided an alternative characterization together
with a constructive algorithm; specifically, they gave an algorithm that, given a collection
of segments in an N ×N grid that satisfies the five axioms, computes a CDS that contains
those segments. The algorithm runs in polynomial time of N .

Unfortunately, most of these results only work on the digital plane. Out of the previously
mentioned results, only the CDR construction of Chun et al. [8] extends to three and higher
dimensions. The construction has O(logN) error regardless of the dimension. Chun et al. [8]
also considered the case in which the monotonicity property (S5) is not preserved. They
showed that if we remove (S5), we can obtain a CDR with O(1) error in any dimension.
Although the error is small, the resulting segments are far from what we would consider
similar to the Euclidean segments (because they loop around many times). Recently, Chiu
and Korman [2] showed that the problem in higher dimensions behaves very differently from
the two dimensional case. Specifically, they studied how to extend the CDS construction of
Christ et al. [6] and showed that it is very limiting in three (and higher) dimensions. We can
use their method to get arbitrarily many CDRs (with Ω(logN) error) and sometimes we can
get a CDS. However, whenever the construction yields a CDS, it will have Ω(N) error.

Our interest in higher dimensions comes motivated by an application in image segmenta-
tion. Image segmentation is the act of separating an object from its background in an image
(that is, determining which pixels are part of the background and which ones not). Chun et
al. [8] showed how to combine their CDR construction with the framework of Asano et al. [1]
to segment two dimensional images. This idea has been extended to consider other shapes (see
[7] for a detailed list), but always two dimensional. The hope is that a high dimensional CDR
with low error will produce more accurate segmentation algorithms. Although traditional
images taken with a camera are two dimensional, images from a medical equipment such as
those taken with an MRI machine can have three or even higher dimensions (say, when we
want to track changes of a particular object along time).

Results and paper organization
When approximating some geometric object, it often happens that higher dimensions create
a larger error than in a lower dimension setting. Since the high dimensional setting contains
a two dimensional subspace, it is common for lower bounds to extend to higher dimensions.
However, this is not true for the case of CDRs: although a three dimensional CDR contains two
dimensional subspaces, those subspaces need not exactly be CDRs (and thus the Ω(logN)
lower bound does not directly hold). In this paper, we further explain the reason and
investigate the lower bound for the higher dimensional case.

The main reason why a subspace is not a CDR is because of the prolongation property
(S4): we require that every segment is extendable, but has no constraints on the dimension
in which it does so. In particular, a subspace of a high dimensional CDR need not be a
CDR (see an example in Figure 2). Subspaces of CDRs are what we call weak CDR: it is
a construction that almost always behaves like a CDR but some vertices may not satisfy
the prolongation property (S4). Each vertex that does not extend is called an inner leaf. In
this paper we study weak CDRs in two dimensions and the implications that they have for
(proper) CDRs in higher dimensions.

The new found properties of weak CDRs allow us to extend the two-dimensional lower
bound to higher dimensions. Håstad’s bound was based on a mapping from a (two-
dimensional) CDR into a pointset in [0, 1) ⊂ R and tied the error of the CDR to the
discrepancy of the transformed pointset. Our lower bound uses an additional intermediate
step: from any CDR we consider the weak CDR it generates in the x1x2-plane. We then

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:5

A B

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

Figure 2 (left) A drawing of a CDR in G+
N ⊂ Z3 for N = 4. Notice that the CDR is a tree whose

leaves are at the plane x+ y + z = N . (middle) A cross section on the xy-plane of the same CDR.
Observe that vertices A and B do not extend within the xy-plane. Thus, the subspace is a weak
CDR (rather than a proper CDR). (right) A map of the weak CDR into a two-colored pointset.
Regions with many blue points and few red correspond to portions of the CDR with high error.

map this weak CDR into a set of points in the unit square and then use discrepancy theory
to obtain a lower bound for the weak CDR and eventually to the high dimensional CDR.
Overall, we show a very strong link between the three spaces (CDR in high dimensions, weak
CDR in the x1x2-plane and set of points created by our mapping). Along the paper we will
analyze properties of each of the spaces, and see what implications it has for the other two.
Specifically, we show the following:
(i) Because we now need to account for more general constructions (weak CDRs instead

of proper CDRs), the mapping needs to be changed. Instead of creating points in the
[0, 1) interval, in Section 2 we map into a two-colored pointset in [0, 1)× [0, 1).

(ii) Similar to the two dimensional case, we can tie the error of the weak CDR to the
discrepancy of the mapped pointset. First, we extend the discrepancy results [12] to
our exact setting. Let R and B be a set of red and blue points in the unit square,
respectively. Let m = |B| − |R| and assume m > 0. For any set P of points in the unit
square and x, y ∈ [0, 1] let P [x, y] be the number of points in P ∩ [0, x] × [0, y]. For
any two real numbers 0 ≤ x, y ≤ 1 we define the discrepancy of R and B at (x, y) as
DR,B(x, y) = mxy − (B[x, y]−R[x, y]). The discrepancy of R and B is simply defined
as D∗R,B = max(x,y)∈[0,1]2 |DR,B(x, y)| (i.e., the highest discrepancy we can achieve
among all possible rectangles). The discrepancy D∗R,B of a two-colored pointset is high
if and only if there is an axis-aligned rectangle with the origin as corner in which the
difference of the cardinalities is far from the expected difference.
I Theorem 2 (Two colors discrepancy). For any set R and B of points such that
|B| > |R| it holds that D∗R,B = Ω

(
(|B|−|R|)·log(|B|+|R|)

|B|+|R|

)
.

The proof is given in Section 3.
(iii) With this new discrepancy result we obtain a trade-off between the error of any weak

CDR and the number of inner leaves (i.e., vertices that do not satisfy (S4)). When
the weak CDR has zero inner leaves (and thus is a proper CDR) our bound matches
the lower bound of Håstad. As the number of inner leaves increases, the lower bound
decreases. In Section 4 we prove the following relationship.
I Theorem 3. For any N ∈ N, any weak CDR defined on G+

N ⊂ Z2 with κ2 inner
leaves between lines x+ y = dN/2e and x+ y = N has Ω(N logN

N+κ2
) error.

(iv) We then apply Theorem 3 to obtain a lower bound for CDRs in d dimensions: intuitively
speaking, if the 2-D subspace has few inner leaves (say, o(N logN)), then it will have
ω(1) error. On the other hand, a weak CDR with many inner leaves in the 2-D

ESA 2020

34:6 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

subspace will cause too many points to extend to one of the remaining dimensions, and
create large error as well. This gives a lower bound of Ω(log1/(d−1) N) for any CDR
construction in d dimensions (see Section 5):
I Theorem 4. Any CDR in Zd has Ω(log1/(d−1) N) error.

Although we believe our analysis to be loose (especially in Theorem 4), we are not certain
that the existing CDR constructions with O(logN) error are tight either. In the full version of
the paper in [3], we explore the possibility of having a CDR in high dimensions with o(logN)
error (rather than directly looking at CDRs in high dimensions, we see what properties it
would imply in the other two subspaces). Although we cannot explicitly find a construction
with o(logN) error, we provide interesting insight on how further research can solve this
question. In particular, we give a weak CDR construction with 5/2 error and Θ(N2) inner
leaves. In order to further reduce the number of inner leaves in weak CDRs with constant
error we instead look at how to create a two-colored pointset with constant discrepancy. We
show that it is not possible to have o(N2) red points in some pattern of the pointset with
constant discrepancy, which gives us a condition on any weak CDR with o(N2) inner leaves.

Further discussion on the implication of these results is given in Section 6.

2 Mapping a weak CDR into a pointset

We start by showing how to transform a weak CDR in two dimensions into a two-colored
pointset in [0, 1)2. Given any weak CDR, its restriction to G+

N forms a spanning tree T of
G+
N because of axioms (S1) and (S3). Although the tree is undirected, we see it as a directed

graph (rooted tree) whose edges are oriented away from the origin (root). Then, (S5) implies
that the parent of each vertex (x, y) (except the root) is either (x− 1, y) or (x, y − 1). For
any edge e = uv of T , where u is the parent of v, we define T (e) as the subtree of T that is
rooted at the child node v of e. We slightly abuse the notation and use T (v) to denote the
subtree that is emanating from v towards the leaves (that is, T (v) = T (e)).

For any n ≤ N let Ln be the points of G+
N whose sum of coordinates is n (i.e., Ln =

{(x, y) ∈ G+
N : x+ y = n}). We follow the usual terminology that we call a vertex of degree

one a leaf. We further consider two subcategories: we say that a leaf v of T is an inner leaf
if it is not in LN . All the vertices in LN are called boundary leaves. Note that, by properties
of CDR, all vertices of LN are proper leaves (since any children should be in LN+1, which is
outside G+

N). Further note that in a proper CDR there will be no inner leaves. A vertex v of
T is a split vertex if it has degree three or it is the origin. Let S be the set of split vertices
and D the set of inner leaves.

2.1 Auxiliary function
Before giving the transformation from a tree to a point set we first define an auxiliary
function M : G+

N → [0, 1]. For any p ∈ LN we set M(p) = px
px+py . For any subtree T ′(v) of T

we define two more functions inductively for v ∈ Ln from n = N to 0 as follows:

max(T ′(v)) = max
p∈T ′(v)∩(D∪LN)

M(p) and min(T ′(v)) = min
p∈T ′(v)∩(D∪LN)

M(p),

where M(p) for p ∈ D is defined in the next paragraph.
For any inner leaf ` ∈ D, we know that the edges e1 = (`x − 1, `y + 1)(`x, `y + 1)

and e2 = (`x + 1, `y − 1)(`x + 1, `y) must be present in T . Thus, we define M(`) as
M(`) = max(T (e1))+min(T (e2))

2 . Intuitively speaking, we look at the leaves above and to the
right of `, and assign a value that is in between the two of them (see Figure 3, left). The
following statement shows that these values are sorted along Ln.

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:7

I Lemma 5. Let T (u), T (v) ⊂ T be two subtrees of T rooted at the vertices u, v ∈ Ln
(respectively) for some n ≤ N such that ux < vx. Then, it holds that max(T (u)) < min(T (v)).

Proof. We prove this statement by induction on n from N to 1. If both u, v ∈ LN then both
T (u) and T (v) consist of a single vertex and the proof trivially follows. Now, assume that
the statement is true for any two vertices u′, v′ ∈ Li for i > n. We need to show that the
statement holds for any two vertices u, v ∈ Ln such that ux < vx.

First observe that if we have two descendants u′ and v′ from u and v respectively such
that u′, v′ ∈ Ln′ for some n′ > n, then it holds that u′x < v′x. Indeed, this follows from the
fact that when we embed T in the natural way with edges drawn as straight segments, the
result is a tree with no crossings. Thus, if v′x < u′x happened for some descendants, then the
two paths in T from u to u′ and from v to v′ would either cross or form a cycle. Any of
those two situations would contradict with the fact that T is a weak CDR.

Back to our original proof, consider the case in which neither u nor v are inner leaves. By
the above argument we have that the x-coordinate of any child u′ ∈ Ln+1 of u must be smaller
than any child v′ ∈ Ln+1 of v. By induction, this implies that max(T (u′)) < min(T (v′)) and
thus max(T (u)) < min(T (v)).

The cases in which u or v are inner leaves are similar: if u is an inner leaf, we have
max(T (u)) = M(u) = max(T (u1))+min(T (u2))

2 , where u1 = (ux, uy + 1) ∈ Ln+1 and u2 =
(ux + 1, uy) ∈ Ln+1. By induction on u1 and u2 we have max(T (u1)) < min(T (u2)) and
max(T (u)) < min(T (u2)), thus we need to compare min(T (u2)) with any children of v. If v
is also an inner leaf, we can do a similar argument and have that max(T (v1)) < min(T (v))
where v1 = (vx, vy + 1).

In general, given u, let u′ ∈ Ln+1 be the child of u with the largest x-coordinate (or u′ = u2
if u is an inner leaf). Similarly, we define v′ as the child of v with the smallest x-coordinate
(or v′ = v1 if v is an inner leaf). Again, by planarity of the natural embedding, we have
that u′x ≤ v′x if at least one of u, v is an inner leaf. In either case, we can use induction and
get that max(T (u′)) ≤ min(T (v′)) which implies max(T (u)) < max(T (u′)) ≤ min(T (v′)) ≤
min(T (v)) (if u is an inner leaf) or max(T (u)) ≤ max(T (u′)) ≤ min(T (v′)) < min(T (v)) (if
v is an inner leaf) completing the proof. J

For any subtree T ′ of T , its depth is the longest possible length of a path from its root to
any of its leaves. Any split vertex s ∈ S has two branching edges e1 and e2, each defining a
subtree. The subtree of higher depth is the preferred subtree of s (in case of tie, we choose
the tree emanating from (sx + 1, sy)). For any point p ∈ G+

N we define a walk from p to some
leaf of T . If p ∈ Ln has degree two, we follow the single edge to Ln+1. If p ∈ S, we follow
the edge to the preferred subtree. This process is continued until we reach a leaf γ(p).

With this virtual walk we can define the function M to all points p ∈ G+
N (not only leaves)

of the domain as follows. If p is neither a split nor a leaf, we define M(p) as M(p) = M(γ(p)).
For a split vertex s, let s′ be the child of s that is not on the preferred subtree of s. Then,
we define M(s) as M(s) = M(γ(s′)).

Intuitively speaking, from any vertex we always follow its only edge away from the root
(if it has degree 2) or the preferred edge (if it has degree 3) until we reach a leaf. The only
exception is if we start on a split vertex, in which case we do not follow the preferred edge at
the first step. This exception is needed to make sure that the end points of the walk starting
from split vertices are distinct.

I Lemma 6. For any split vertex s ∈ S, there exists a unique leaf ` ∈ D ∪ LN such that
M(s) = M(`). And for any leaf ` ∈ D ∪ LN \ {(N, 0)}, there exists a unique split vertex
s ∈ S such that M(s) = M(`).

ESA 2020

34:8 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

0
12

1
12

2
12

3
12

4
12

5
12

6
12

7
12

8
12

9
12

10
12

11
12

12
12

11
24

3
24

23
48

21
24

41
48

29
48

59
96

117
192

15
24

9
24

45
96

x

y

3 6 9 12

3

6

9

12

v

Figure 3 (left) A tree of a weak CDR and the value of the auxiliary function M applied to
all leaves of the tree. (right) The tree transformed into blue and red point sets. Two vertices
of the same layer are mapped to points with the same y-coordinate and an inner leaf and its
corresponding split vertex are mapped to points with the same x-coordinate (see the highlighted
orange circles). (For Theorem 8) The x-coordinate of v = (6, 2) (green circle) can be bounded in
terms of the difference between blue and red point in the axis-aligned rectangle with corners (0, 0)
and π(v) = (M(v), vx+vy

N
) = (10

12 ,
8

12). The rectangle contains 11 blue points and 3 red ones.

Proof. By definition of the auxiliary function, two leaves do not have the same mapping.
Thus, it remains to show that the walk of two different split vertices cannot end at the same
leaf. Imagine doing the walk backwards: start at any leaf, walk towards the origin and
stop as soon as you reach a split vertex by traversing its non-preferred edge. Since each
split vertex has exactly two children, it follows that exactly one leaf will stop at each split
vertex. The exceptional case is the leaf (N, 0), from which walking backwards to the origin
is a horizontal path and the path does not contain any non-preferred edge. That is, in the
inverse walk we follow preferred edges until we reach a non-preferred edge. This is equivalent
to starting at a split vertex and follow the non-preferred edge once and continue with the
preferred edges, which is the exact definition of our auxiliary function. J

2.2 Transforming the tree into a pointset

With the auxiliary function M we can define the mapping between a weak CDR into a
bicolored pointset in the unit square. For any vertex v = (vx, vy) ∈ G+

N we define its
transformation as π(v) = (M(v), vx+vy

N). Given any weak CDR, we look at the tree T it
defines in G+

N . Each vertex v ∈ D creates a red point π(v) and each split vertex w ∈ S creates
a blue point π(w) (note that we do not transform the boundary leaves in LN into points). We
define the mapping of T as the union of the sets R = {π(v) : v ∈ D} and B = {π(v) : v ∈ S}
(see Figure 3, right). Note that the two sets depend on the tree T (and thus R = R(T) and
B = B(T)). From now on we assume that T is fixed, and thus we simplify the notation for
ease of reading. For any set P of points in the unit square and x, y ∈ [0, 1] let P [x, y] be the
number of points in P ∩ [0, x]× [0, y].

I Lemma 7. For any weak CDR T in G+
N ⊂ Z2 and n < N , the red and blue points on

the horizontal line y = n/N alternate in color starting and ending with a blue point. In
particular, we have B[1, n/N]−R[1, n/N] = n+ 1.

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:9

Proof. For the first statement we observe that only points that lie in Ln will have y-
coordinates equal to n/N . Moreover, since Ln+1 has one more vertex than Ln, each diagonal
must have exactly one more split vertex than inner leaves. Indeed, Chun et al. showed that
in proper CDRs each diagonal has exactly one split vertex (and of course, zero inner leaves).

Now we need to show that split vertices and inner leaves appear alternatingly on the
diagonal line. Consider two consecutive split vertices u, v ∈ Ln such that ux < vx. By
definition of split, the edges eu = (ux, uy)(ux + 1, uy) and ev = (vx, vy)(vx, vy + 1) are all
in T . Observe that there are vx − ux − 1 vertices in Ln and vx − ux − 2 vertices in Ln+1
between eu and ev. Since two different vertices of Ln cannot connect to the same vertex of
Ln+1, one of them will not reach Ln+1. That vertex will be an inner leaf and will be between
u and v as claimed.

That is, the blue pointset has one more point than the red pointset in each horizontal
line y = i/N . Summing up the differences from i = 0 to n, we get that in total there are
n+ 1 additional blue points p = (x, y) with y ≤ n/N . J

With the above observations we can now state the main relationship between the weak
CDR and its mapped pointset. For any vertex v ∈ Ln, its path to the origin splits the tree
into two portions. Consider the portion of the tree up to Ln that is above the path from v to
the origin. In L0, the subtree contains a single vertex (the root) whereas at the diagonal Ln
contains vx+ 1 vertices. Since the number of leaves grows with split vertices and shrinks with
inner leaves, this means that in the portion of the tree that we are looking at, the difference
between split vertices and inner leaves must be vx, see Figure 3. Note that if the two children
of a split vertex (e.g., (5, 0) in Figure 3) are not in the same portion, the number of leaves
does not grow with that split vertex. However, these split vertices may be still contained in
the rectangle that we consider in the mapped pointset. This is the reason why we do not
have an equality in Theorem 8.

I Theorem 8. For any vertex v ∈ G+
N it holds that B[M(v), vx+vy

N]−R[M(v), vx+vy
N]− 2 ≤

vx ≤ B[M(v), vx+vy
N]−R[M(v), vx+vy

N].

Proof. We split the proof into two auxiliary lemmas.

I Lemma 9. Let v ∈ Ln be a split vertex such that vx < n. If M(v) < M(γ(v)) the rectangle
[M(v),M(γ(v))] ×

[
0, n−1

N

]
contains exactly one point, which is blue and has M(γ(v)) as

x-coordinate. If M(γ(v)) < M(v) the rectangle [M(γ(v)),M(v)]×
[
0, n−1

N

]
contains exactly

one point, which is blue and has M(γ(v)) as x-coordinate. When v = (n, 0) ∈ Ln the rectangle
[M(v),M(γ(v))]×

[
0, n−1

N

]
is empty.

Proof. We first consider the case of M(v) < M(γ(v)). When we keep following from v to the
preferred subtree, we end up in a leaf, called `. By definition of M we have M(`) = M(γ(v)).
Since vx < n we have M(γ(v)) 6= 1. By Lemma 6 there is a unique split vertex s ∈ S
such that M(s) = M(`). This split vertex is below layer Ln (indeed, we reach Ln from
` by following only preferred edges and the inverse walk has to stop when we traverse a
non-preferred edge of s) and therefore s is transformed to a blue point in the rectangle. Now
let s′ be a split vertex which is mapped to a blue point in the rectangle. We will show that
s′ = s. Let `′ be the unique leaf such that M(`′) = M(s′). Consider first the case in which
`′ is below layer Ln (that is, `′x + `′y < n). Then let v′ be the vertex on dig(o, v) and L`′x+`′y .
If `′x < v′x (resp. v′x < `′x) then Lemma 5 implies that M(`′) < min(Tv′) ≤ M(v) (resp.
M(γ(v)) ≤ max(Tv′) < M(`′)). This would be a contradiction to s′ being mapped to a blue
point in the rectangle.

ESA 2020

34:10 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

It remains to consider the case in which `′ is above layer Ln. Define `′′ to be the vertex
on dig(o, `′) and Ln. Lemma 5 implies that `′′ = v (otherwise we have either M(`′) < M(v)
or M(γ(v)) < M(`′) which would again be a contradiction). Recall that there is only one
split vertex whose walk to its corresponding leaf through preferred subtrees passes through v.
Hence s′ = s and there is exactly one blue point in the rectangle.

We now show that there cannot be any red point either. Indeed, recall that for every
red point there is a blue point with the same x-coordinate and smaller y-coordinate because
for each inner leaf ` there is a unique split vertex s defined by the walk from s to ` such
that M(`) = M(s). From the previous argument, we know that s with M(s) = M(γ(v)) is
mapped to the only one blue point in the rectangle and its corresponding leaf ` defined by
the walk is above Ln. Hence, even if ` is an inner leaf, the mapped red point is not in the
rectangle. Moreover, there cannot be any other red point in the rectangle (since it would
imply that the corresponding blue point would also be in and we already ruled out this case).

In the same way we can also prove that ifM(γ(v)) < M(v) the rectangle [M(γ(v)),M(v)]×[
0, n−1

N

]
contains exactly one point, which is blue and hasM(γ(v)) as x-coordinate. If vx = n

then ` as defined above is the leaf (N, 0) and M(`) = 1. Lemma 6 implies that there is no
split vertex s with M(s) = 1. J

I Lemma 10. For any vertex v ∈ G+
N it holds that

vx −B
[
M(v), vx + vy − 1

N

]
+R

[
M(v), vx + vy − 1

N

]
+ 1 ∈ {0, 1}. (1)

Proof. We first prove by induction over n that ∀n ∈ {0, 1, ..., N} the following statement
holds.

{M(γ(p))|p ∈ Ln}

=
{
x ∈ [0, 1] :

∣∣∣∣B ∩ {x} × [0, n− 1
N

]∣∣∣∣− ∣∣∣∣R ∩ {x} × [0, n− 1
N

]∣∣∣∣ = 1
}
∪ {1}. (2)

The quantity |B ∩ {x} × [0, n−1
N]| − |R ∩ {x} × [0, n−1

N]| counts the difference between the
number of blue points and red points on the vertical segment with x-coordinate x and
length n−1

N . Because of Lemma 6 we know that each split vertex shares the same value
with a leaf in the auxiliary function M . If the leaf is an inner leaf, both blue (split) and
red (inner) points lie on the same unit segment {x} × [0, 1]. Otherwise, there is only one
blue point on {x} × [0, 1] because M(p) for p ∈ LN are all different. Hence the quantity
|B ∩ {x} × [0, n−1

N]| − |R ∩ {x} × [0, n−1
N]| can either be 0 or 1.

The base case n = 0 trivially holds. We have {M(γ(p))|p ∈ L0} = {1} and

B ∩ {x} ×
[
0, n− 1

N

]
= R ∩ {x} ×

[
0, n− 1

N

]
= ∅

We assume that Section 2.2 holds for layer Ln and we prove that it also holds for Ln+1. We
distinguish 3 cases for any vertex q in layer Ln.

If q has degree 2 then q and its child r ∈ Ln+1 are mapped by M ◦ γ to the same value.
Moreover q does not create any vertex in the set B nor R.
If q is an inner leaf, then the value M(γ(q)) will not appear in {M(γ(p))|p ∈ Ln+1} any
more. The value M(γ(q)) also disappears in{

x ∈ [0, 1] :
∣∣∣B ∩ {x} × [0, n

N

]∣∣∣− ∣∣∣R ∩ {x} × [0, n
N

]∣∣∣ = 1
}
∪ {1}.

because q created a red point in R with the coordinates (M(γ(q)), nN) = (M(q), nN).

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:11

If q is a split vertex, then the value M(γ(q)) will stay in {M(γ(p))|p ∈ Ln+1}. Moreover
{M(γ(p))|p ∈ Ln+1} contains the additional value M(q). The value M(q) also appears in{

x ∈ [0, 1] :
∣∣∣B ∩ {x} × [0, n

N

]∣∣∣− ∣∣∣R ∩ {x} × [0, n
N

]∣∣∣ = 1
}
∪ {1}

because q creates a blue point in B with the coordinates (M(q), nN).

Hence Section 2.2 holds.
Let v be a vertex in layer Ln, i.e. n = vx + vy. By Lemma 5 we know that a vertex u ∈ Ln
with ux < vx satisfies M(γ(u)) < M(γ(v)). By Lemma 5 we also know that a vertex w ∈ Ln
with vx < wx satisfies M(γ(v)) < M(γ(w)). Hence the number of vertices in layer Ln with
smaller x-coordinate than that of v is exactly the number of vertices which are mapped by
M ◦ γ to a smaller value than that of v. If vx < n:

vx = |{u ∈ Ln|ux < vx}|
Lemma 5= |{u ∈ Ln|M(γ(u)) < M(γ(v))}|

= |{u ∈ Ln|M(γ(u)) ≤M(γ(v))}| − 1
(2)= B

[
M(γ(v)), n− 1

N

]
−R

[
M(γ(v)), n− 1

N

]
− 1

Lemma 9=
{
B[M(v), n−1

N]−R
[
M(v), n−1

N

]
− 1 if M(γ(v)) ≤M(v)

B[M(v), n−1
N]−R

[
M(v), n−1

N

]
if M(v) < M(γ(v))

If vx = n then:

vx = |{u ∈ Ln|M(γ(u)) ≤M(γ(v))}| − 1 (2)= B

[
M(γ(v)), n− 1

N

]
−R

[
M(γ(v)), n− 1

N

]
Lemma 9= B

[
M(v), n− 1

N

]
−R

[
M(v), n− 1

N

]
J

By Lemma 7, the red and blue points on the line y = vx+vy alternate in color starting and
ending with a blue point. Hence, any interval [0, x] on the line y = vx + vy contains at most
one more blue points. Therefore, B[M(v), vx+vy

N]−R[M(v), vx+vy
N]− (B[M(v), vx+vy−1

N]−
R[M(v), vx+vy−1

N]) is at most one. Lemmas 10 and 7 directly imply Theorem 8. J

3 Bichromatic discrepancy

Let R and B be a set of red and blue points in the unit square, respectively. Let r = |R| and
b = |B|, and further assume that b > r. Let m = b− r (which is positive since b > r). For
any set P of points in the unit square and x, y ∈ [0, 1] let P [x, y] be the number of points in
P ∩ [0, x]× [0, y].

For any two sets R and B and real numbers x, y ≤ 1 we define the discrepancy of R and
B at (x, y) as

DR,B(x, y) = (b− r)xy − (B[x, y]−R[x, y]). (3)

The discrepancy of R and B is simply defined as D∗R,B = max(x,y)∈[0,1]2 |DR,B(x, y)| (i.e.,
the highest discrepancy we can achieve among all possible rectangles).

I Theorem 2 (Two colors discrepancy). For any set R and B of points such that |B| > |R|
it holds that D∗R,B = Ω

(
(|B|−|R|)·log(|B|+|R|)

|B|+|R|

)
.

ESA 2020

34:12 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

Note that if we set R = ∅ we get the classic two dimensional discrepancy result for which
there are several proofs (see [12] for a detailed survey). In order to extend the bound for
the case of R 6= ∅, we make minor changes to Schmidt’s proof [13]. We start by using an
auxiliary function G (defined below) and combining it with the trivial inequality∫

(x,y)∈[0,1]2
DR,B(x, y)G(x, y)dxdy ≤ max

(x,y)∈[0,1]2
|DR,B(x, y)|

∫
(x,y)∈[0,1]2

|G(x, y)|dxdy

to obtain D∗R,B = max(x,y)∈[0,1]2 |DR,B(x, y)| ≥
∫
DR,BG∫
|G|

.

Note that for simplicity in the notation we removed the integration limits. Our definition
of G is identical to the one used by Schimdt: Let m = dlog2(b+ r)e+ 1 and observe that, by
definition of m we have 2(b+ r) ≤ 2m ≤ 4(b+ r). For any j ∈ {0, . . . ,m} we define function
fj : [0, 1]2 → {−1, 0, 1} as follows: subdivide the unit square with 2j equally spaced vertical
lines and 2m−j horizontal lines.

For any value of j we subdivide the unit square into rectangles of area 2−m (larger values
of j will result in thinner but wider rectangles). Let A be a rectangle of subdivision associated
to fj . We define fj within the rectangle to be 0 if A contains any point of R ∪B. If A does
not have neither red nor blue points, we further subdivide it into four congruent quadrants.
The function value of fj is equal to 1 in the upper right and lower left quadrants, and −1 in
upper left and lower right quadrants (see a visual representation of fj in [12], page 173).

Then, we define G as G = (1 + cf0)(1 + cf1) . . . (1 + cfm) − 1, where c > 0 is a small
constant (whose value will be chosen afterwards). Note that G can also be expressed as
G = G1 + . . . Gm, where Gk = ck

∑
0≤j1≤...≤jm≤m fj1fj2 . . . fjk .

Schmidt showed that
∫
|G| ≤ 2 (regardless of the value of m). Thus, we now focus in

giving an upper bound for
∫
DR,BG.

I Lemma 11. There exists a constant c1 such that
∫
DR,BG1 ≥ cc1

b−r
b+r log(b+ r).

Proof. By definition of G1 we have
∫
DR,BG1 = c

∑m
j=0

∫
DR,Bfj . Thus, it suffices to show

that for any value of j it holds that
∫
DR,Bfj ≥ c′ b−rb+r (for some other constant c′ > 0).

Recall that, when defining fj , we subdivided the unit square into at least 2(b + r)
rectangles. For the rectangles that contain at least one point of R ∪B, fj is set to zero, and
thus they do not contribute to the integral. Since we have b+ r many points, we know that
there must exist at least b+ r rectangles that do not contain any point of R or B. Let A
be any such rectangle, and let ASW , ANW , ASE , ANE be the four subquadrants of A (where
the subindex refers to the cardinal position of the quadrant). Recall that fj is equal to 1 for
any point of ASW ∪ANE and −1 for points of ASE ∪ANW .

Let w and h be vectors defined by the horizontal and vertical sides of ASW , respectively.
Observe that their lengths are 2−j−1 and 2j−m−1, respectively. Then, we have∫

A

fjDR,B

=
∫
ASW

DR,B −
∫
ANW

DR,B +
∫
ANE

DR,B −
∫
ASE

DR,B

=
∫
ASW

[DR,B(x, y) +DR,B(x+ w, y + h)−DR,B(x, y + h)−DR,B(x+ w, y)]dxdy.

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:13

If we apply the definition of DR,B (Eq. (3)) to the four terms inside the integral we get∫
A

fjDR,B =
∫
ASW

((b− r)[xy + (x+ w)(y + h)− x(y + h)− (x+ w)y])dxdy

−
∫
ASW

(B[x, y] +B[x+ w, y + h]−B[x, y + h]−B[x+ w, y])dxdy

+
∫
ASW

(R[x, y] +R[x+ w, y + h]−R[x, y + h]−R[x+ w, y])dxdy.

Observe that we are integrating twice positively and twice negatively over almost identical
functions. In fact, the terms of the first integral all cancel out except along the rectangle
[x, x+w)× [y, y+h). Similarly, when we look at the second and third terms, the contribution
of any point in R ∪ B is cancelled out unless it is in the rectangle [x, x + w) × [y, y + h).
However, by definition of A there are no such points. Thus, we obtain∫

A

fjDR,B =
∫
ASW

(b− r)w · h dxdy =
∫
ASW

(b− r)2−m−2dxdy = (b− r)2−2m−4

That is, when we integrate fjDR,B over a rectangle A containing no point of R ∪B, the
result is (b−r)2−2m−4. We know that there are at least b+r rectangles not containing points of
R∪B, thus their contribution is at least (b+r)(b−r)

22m+4 = (b+r)
2m

(b−r)
16·2m ≥

1
4

(b−r)
16·4(b+r) = Ω(b−rb+r). J

I Lemma 12. There exists a constant c2 such that
∑m
k=2

∫
DR,BGk ≤ c2c2

b−r
b+r log(b+ r).

Proof. Recall that Gk = ck
∑

0≤j1<j2<...<jk≤m fj1 . . . fjk . Fix any valid set of indices and
consider the value of

∫
fj1 . . . fjkDR,B .

As shown in [12], function fj1 . . . fjk is largely defined by fj1 and fjk . Indeed, if we overlay
the rectangular partition defined by functions fj1 , . . . , fjk we obtain a grid of rectangles
whose width is 2−jk and height 2−(m−j1). In each of these rectangles, the function is zero (if
any of the rectangles associated to the fji functions contains a point of R ∪B), or is further
subdivided into four equal sized quadrants and in each one it is +1 or −1 alternatively.

Let A be one of the rectangles of the refined grid. As shown in Lemma 11, we have that∫
A

fj1 . . . fjkDR,B = τ(b− r)2−2(m+jk−j1)−4,

where τ ∈ {−1, 1}. This extra term appears because the product of the different func-
tions involved can change the sign of each of the four quadrants. In any case, we have∫
A
fj1 . . . fjkDR,B ≤ (b− r)2−2(m+g)−4 where g = jk − j1.
By the way the grid is constructed, there are 2m−j1 × 2jk = 2m+g many rectangles, and

thus we conclude that
∫
fj1 . . . fjkDR,B ≤ (b − r)2−m−g−4. In order to obtain a bound∫

DR,BGk we sum over all possible indices.∫
DR,BGk = ck

∑
0≤j1<...<jk≤m

∫
fj1 . . . fjkDR,B ≤

ck(b− r)
2m+4

∑
0≤j1<...<jk≤m

2−(jk−j1).

Note that in the sum, the indices j2, . . . jk−1 do not matter. Thus, we group the terms by
the gap between the indices j1 and jk (say, if j1 = 3 and jk = 7 the gap is 4). Note that the
minimum gap is at least k − 1 (since otherwise we do not have enough space to choose the
k − 2 indices in between) and at most m. Once we have a gap of g there are m− g options
for index j1.

ESA 2020

34:14 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

∫
DR,BGk ≤ ck(b− r)

2m+4

m∑
g=k−1

m−g∑
j1=0

∑
j1<j2<...<jk−1<j1+g

2−g

= ck(b− r)
2m+4

m∑
g=k−1

m−g∑
j1=0

(
g − 1
k − 2

)
2−g ≤ ck(b− r)m

2m+4

m∑
g=k−1

(
g − 1
k − 2

)
2−g.

In order to upper bound the sum over all Gk, we first reorder the summation order.
m∑
k=2

∫
DR,BGk ≤

m∑
k=2

ck(b− r)m
2m+4

m∑
g=k−1

(
g − 1
k − 2

)
2−g

= (b− r)m
2m+4

m∑
g=1

2−gc2
g+1∑
k=2

(
g − 1
k − 2

)
ck−2

= (b− r)m
2m+4

m∑
g=1

2−gc2(1 + c)g−1

= (b− r)mc2

2m+5

m∑
g=1

(
1 + c

2

)g−1
.

The sum contains the first terms of the geometric sum
∑∞
g=1

(1+c
2
)g−1 ≤ 2

1−c (for any
c < 1). In particular, if we set c ≤ 1/2 we can upper bound the partial sum by 4. Recall
that m = Θ(log(b+ r)) and 2m = Θ(b+ r). Thus, the lemma is proven. J

I Corollary 13. There exists a constant κ > 0 such that
∫
DR,BG ≥ κ

(
(b−r)·log(b+r)

b+r

)
.

Proof. Apply the inequality
∫

(A+B) ≥
∫
A−

∫
|B| and Lemmas 11 and 12 to obtain:∫

DR,BG =
∫
DR,BG1 +

m∑
k=2

∫
DR,BGk ≥ c(c1 − cc2)

(
(b− r) · log(b+ r)

b+ r

)
Note that Lemmas 11 and 12 holds for any value of c such that c ∈ (0, 1/2]. By choosing a

sufficiently small value of c (say, c = min{ 1
2 ,

c1
2c2
}) we obtain

∫
DR,BG ≥ cc1

2

(
(b−r)·log(b+r)

b+r

)
.

J

This completes the proof of Theorem 2.
When R = ∅, it would be expected that we need to distribute the blue points uniformly

in the unit square to have a low discrepancy. Indeed, it is also held for the red points. The
following theorem implies that even if there are many red points, but the red points are
concentrated in the lower half of the unit square, the discrepancy cannot be reduced. For
simplicity, we only show a special case of how the discrepancy is depended on the points in
[0, 1] × [1/2, 1], which is good enough for our purpose in Section 5. Notice that the same
argument can be applied in a more general case.

I Theorem 14. For any set R and B of points in the unit square such that |R| = r, |B| = b

and b > r. Let r2 and b2 be the number of red and blue points in [0, 1]× [1/2, 1] respectively.
It holds that

D∗R,B = Ω
(

(b2 − r2) · log(b2 + r2)
b2 + r2

)
.

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:15

Proof. Let R2 and B2 be the set of red and blue points in [0, 1] × [1/2, 1] respectively.
Consider the upper half of the unit square [0, 1]× [1/2, 1] and rescale the vertical length to
be 1. By Theorem 2, there exists a point (x, 2y) such that |DR2,B2(x, 2y)| = |2xy(b2 − r2)−
(B2[x, 2y]−R2[x, 2y])| ≥ 2c

(
(b2−r2)·log(b2+r2)

b2+r2

)
for some constant c.

Then, we map the point (x, 2y) back to a point (x, 1/2 + y) in the original unit square.
We will show that either DR,B(x, 1/2 + y) or DR,B(x, 1/2 − ε) would give us the desired
lower bound, where ε is an arbitrarily small constant such that rectangle [0, 1]× [0, 1/2− ε]
only contains B \B2 and R \R2.

If |DR,B(x, 1/2 + y)| ≥ c
(

(b2−r2)·log(b2+r2)
b2+r2

)
, we are done.

If |(b− r)/2− (b2 − r2)| ≥ c/4
(

(b2−r2)·log(b2+r2)
b2+r2

)
, the proof is also done. Because

|DR,B(1, 1/2− ε)|
(3)= |(b− r)(1/2− ε)− (B[1, 1/2− ε]−R[1, 1/2− ε])|
= |(b− r)(1/2− ε)− (b− r − (b2 − r2))|
= |(b− r)/2− (b2 − r2)− (b− r)ε|

> c/8
(

(b2 − r2) · log(b2 + r2)
b2 + r2

)
.

Suppose that the two cases do not hold, we have |DR,B(x, 1/2+y)| < c
(

(b2−r2)·log(b2+r2)
b2+r2

)
and |(b − r)/2 − (b2 − r2)| < c/4

(
(b2−r2)·log(b2+r2)

b2+r2

)
. Let R1 = R \ R2 and B1 = B \ B2,

which are inside the rectangle [0, 1]× [0, 1/2− ε]. Consider

DR,B(x, 1/2 + y)
= (b− r)x(1/2 + y)− (B[x, 1/2 + y]−R[x, 1/2 + y])
= (b− r)x(1/2 + y)− (B2[x, 1/2 + y]−R2[x, 1/2 + y] +B1[x, 1/2− ε]−R1[x, 1/2− ε])
= (b− r)x(1/2− ε)− (B1[x, 1/2− ε]−R1[x, 1/2− ε]) + (b− r)xε

+(b− r)xy − (B2[x, 1/2 + y]−R2[x, 1/2 + y])
= DR,B(x, 1/2− ε) + (b− r)xy − (B2[x, 1/2 + y]−R2[x, 1/2 + y]) + (b− r)xε
> DR,B(x, 1/2− ε) + 2(b2 − r2)xy − (B2[x, 1/2 + y]−R2[x, 1/2 + y])

−c/2
(

(b2 − r2) · log(b2 + r2)
b2 + r2

)
+ (b− r)xε

= DR,B(x, 1/2− ε) +DR2,B2(x, 2y)− c/2
(

(b2 − r2) · log(b2 + r2)
b2 + r2

)
+ (b− r)xε

The first inequality is given by b−r > 2(b2−r2)−c/2
(

(b2−r2)·log(b2+r2)
b2+r2

)
. Since |DR,B(x, 1/2+

y)| < c
(

(b2−r2)·log(b2+r2)
b2+r2

)
and |DR2,B2(x, 2y)| ≥ 2c

(
(b2−r2)·log(b2+r2)

b2+r2

)
, we can conclude that

|DR,B(x, 1/2− ε)| = Ω((b2−r2)·log(b2+r2)
b2+r2

). J

4 Lower bound for two dimensional weak CDRs

Before giving the proof of Theorem 3, we recall that a proof for a proper CDR (i.e., one
without inner leaves) was given in [8]. Our proof follows the same spirit, so we first give an
overview of their proof and describe what changes when we introduce inner leaves.

ESA 2020

34:16 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

Figure 4 Illustration of why the two sets I (purple disks) and L(I) (green squares) should have
proportional sizes. If the size of L(I) grows drastically (as shown in the figure), the point of the
highest x-coordinate in L(I) must make a significant detour to pass through I, causing a large error.
A similar effect happens if the size of L(I) is comparatively small.

I Lemma 15. Given a CDR, a point p = (x, y) ∈ LN , and an integer n < N , let p′ =
(x′, y′) ∈ Ln be the unique point of Ln that is in dig(o, p). The Hausdorff error of the CDR
is at least |x′ − x · nN |.

Proof. This result was shown by Chun et al. [8] (Lemma 3.5, in Cases 1 and 2). We give the
proof for completeness. Consider the L-infinity ball of radius |x′ − x · nN | centered at p · nN .
By construction, this ball contains p′ in its boundary. Because of the monotonicity axiom,
no vertex of dig(o, p) can be in the interior of the ball. In particular, when measuring the
Hausdorff distance of point p · nN ∈ op we get an error of at least |x′ − x · nN |. J

Consider any point p ∈ LN and virtually sweep a line of slope −1 from the origin all
the way to LN . During the sweep, the intersection between the diagonal line and either the
Euclidean segment op or the digital one dig(o, p) will be a point. Lemma 15 says that if we
can find an instant of time for which two intersection points are at distance ∂ from each
other, then the Hausdorff error of the whole CDR must be Ω(∂) (see Figure 4).

In order to find this instant of time we see how much the subtrees grow. Consider a
consecutive set of I vertices in some intermediate layer Ln. Let L(I) be the vertices of LN
whose digital path to the origin passes through some vertex of I. If the CDR has small
error, we need L(I) to have roughly N

n |I| many points. The difference between the expected
number of vertices and |L(I)| combined with Lemma 15 will give a lower bound on the
Hausdorff error.

Our proof follows the same spirit (transform the tree into a pointset, use discrepancy
to find a subset with too many/too few children and use Lemma 15 to find a large error).
Although all three steps follow the same spirit, they need major changes to account for the
possibility of inner leaves.

The biggest change is how we map the tree. In proper CDRs each line has a unique
split vertex and always extends to LN . Thus, a region with a large number of split vertices
directly implies a large error. In our setting, we could potentially have a region with many
split vertices followed by a large number of inner leaves to cancel out the growth. This is
why we need two major changes: first we now color the points red and blue depending on
whether they are split vertices or inner leaves. We also introduce a second dimension to track
when the children of a split vertex stop extending. Intuitively speaking, the x-coordinate of
our mapping will be similar to the mapping done by Chun et al. [8] whereas the y-coordinate
represents time. Thus, the difference in y-coordinates between red and blue points can be
used to determine for how long are the two children of a split vertex alive (the longer the
difference in y-coordinates, the further away that the two children extend).

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:17

We now use the mapping of Section 2 together with the two colors discrepancy (Theorems 2
and 14) to show a lower bound on the error of weak CDRs. The discrepancy result in
Theorem 2 considers the points in the whole unit square. Due to some technical reasons, in
Section 5 we will need a discrepancy result for the points in the upper half of the unit square
instead (Theorem 14). The difference between the two theorems is just a constant factor and
thus would have little implication. Here we use Theorem 14 and prove the result in terms of
the number of inner leaves in the upper half. Specifically, we show the following result.

I Theorem 3. For any N ∈ N, any weak CDR defined on G+
N ⊂ Z2 with κ2 inner leaves

between lines x+ y = dN/2e and x+ y = N has Ω(N logN
N+κ2

) error.

Proof. Given a weak CDR and its associated tree T , consider its transformation into the sets
R and B of red and blue points defined by π. Let b2 and r2 be the numbers of blue and red
points in the rectangle [0, 1]× [1/2, 1] respectively. By Lemma 7, we have b2 − r2 = bN/2c.
We apply the discrepancy result (Theorem 14) with b2− r2 = bN/2c and r2 = κ2, and obtain
that there exists α, β ∈ [0, 1] such that |B[α, β]−R[α, β]−N · α · β| > c′ · N ·logN

N+κ2
.

We want to use Theorem 8 on the vertex of T whose image is (α, β). Naturally, such
a vertex need not exist, but we will find one nearby whose associated discrepancy is also
high. Let n = bN · βc and observe that B[α, β] = B[α, nN]; indeed, by the way we transform
points, their y-coordinates are of the form i/N . However, by definition of n we know that β
is between n/N and (n+ 1)/N and thus no point can lie in the horizontal strip y ∈ (n/N, β]
(by the same argument we also have R[α, β] = R[α, nN]).

If we substitute β in the previous equation we get∣∣∣B [α, n
N

]
−R

[
α,

n

N

]
− αn

∣∣∣ > c′ · N logN
N + κ2

− 1 ≥ c′′ · N · logN
N + κ2

for a large enough N , κ2 ∈ O(N logN) and for some c′′ > 0. We get the additional 1 term
because of the rounding in the definition of n.

Now we need to do a similar operation for α. Let qi = (i, n− i) be a vertex of Ln. By
Lemma 5 the image of the auxiliary function M(qi) monotonically increases as i grows. Let
Q = {qi : M(qi) ≤ α} and α′ = maxqi∈QM(qi). Note that, by definition of the set Q, it
trivially holds that α′ ≤ α.

I Lemma 16. B[α, nN]−R[α, nN] = B[α′, nN]−R[α′, nN]

Proof. The difference between the two rectangles is the rectangle ∆ whose opposite corners
are (α′, 0) and (α, n/N), and one of the boundary (α′, 0)(α′, nN) is open. We claim that red
and blue points are paired (sharing the same x-coordinate) in ∆ (and thus, for each red point
that we remove we are also removing a blue one). By Lemma 6, we know that all the blue
points have different x-coordinates, so do red points. Hence, if there are red and blue points
on the same vertical line, they must be the only pair in that vertical line. First notice that if
there is a red point in ∆, there also exists a blue point in ∆ with the same x-coordinate and
below the red point. By the virtual walk that we define the auxiliary function, every split
vertex is closer to the origin than the corresponding leaf. Hence, after the transformation π,
if there is a red point, then there must exist a blue point with the same x-coordinate (by
Lemma 6) and smaller y-coordinate. Then, we will show that if there is a blue point in ∆,
there also exists a red point in ∆ with the same x-coordinate.

Assume, for the sake of contradiction that there exists a blue point p in ∆ such that there
does not exist a red point q with the same x-coordinate as p in ∆. Let s be the split vertex
whose image is p. By definition of the transformation π, the x-coordinate of p is M(s), which

ESA 2020

34:18 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

n N

p

qm

γ
γ′

dig(op)

n N

αN

qk

p

dig(op)

Figure 5 (left) When k is small we have Ω(N logN
N+κ2

) consecutive vertices in Ln that are not
productive (shown as squares). In particular, the ray γ through the middle point must make a large
detour. (right) When k is large, there is a digital path through qk with a big detour.

is between α′ and α. We apply Lemma 6 to find the unique leaf ` such that M(s) = M(`).
Since π(`) 6∈ ∆, we have that `x + `y > n. Let m be the unique vertex of Ln that is in the
path from s to `. It follows that π(m) = (M(`), nN) ∈ ∆. This gives a contradiction with the
definition of α′, and thus implies that if there exists a blue point in ∆, then there also exists
a red point in ∆ with the same x-coordinate. J

Thus, given a pair (α, β) whose associated rectangle has high discrepancy, we have snapped
it to the pair (α′, nN) that defines another rectangle with high discrepancy. More importantly,
by definition of Q, we know that π(q|Q|−1) = (α′, nN). Note that q|Q|−1 need not be a split
vertex or an inner leaf (and thus, (α′, nN) may not be a point of R ∪B).

Let b′ = B[α′, nN] and r′ = R[α′, nN]. If we apply Theorem 8 to point q|Q|−1 we get that
b′ − r′ − 2 ≤ |Q| − 1 ≤ b′ − r′. This set Q is the one that makes the role of I in the proof
overview: we know that vertices of Q are the ones that extend to cover all the vertices of LN
whose image is α′ or less. As such, we would expect |Q| to contain roughly nα′ elements.
However, the discrepancy result tells us that the size of Q is c′′N logN

N+κ2
units away from that

value. We say that p is productive if some point of T (p) is in LN (this is equivalent to the
fact that p can be extended to reach the boundary). Let k ≤ b′− r′− 2 be the biggest integer
such that qk is productive. Note that k is well defined because q0 is always productive ((0, n)
always extends to (0, N)). The proof now considers a few cases depending on whether k is
small or large (specifically, we say that k is small if |Q|−1−k ≥ (b′−r′−2)−k > c′′

2 ·
N logN
N+κ2

,
large otherwise) and if Q contains too few or too many points.

k is small. Recall that we looked for the largest possible k (such that qk is productive). Thus,
if k is small, we have many points in layer Ln that are consecutive and not productive.
In particular, none of the vertices in qb′−r′−b c′′2 ·N logN

N+κ2
c, . . . , qb′−r′−2 are productive. Let

qm = qb′−r′−b c′′4 ·
N logN
N+κ2

c (note that this point is surrounded by non-productive points in
both sides along Ln).
Shoot a ray γ from o towards qm. Let p be the vertex on LN that is closest to γ. Observe
that the || · ||∞ distance between γ and p is at most 1/2. Let γ′ be the ray shooting
from o towards p. Similarly, the || · ||∞ distance between γ′ and qm is at most 1/2 (see
Figure 5, left).
We now apply Lemma 15 to dig(o, p). We know that the Euclidean segment op is close
to qm. The digital segment must cross Ln and is far from qm (the closest it can pass
is either qb′−r′−b c′′2 ·N logN

N+κ2
c−1 or qb′−r′−1). That is, we know that the intersection of op

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:19

with the line x+ y = n is at most half a unit away from qm. Similarly, the intersection
with dig(o, p) is at least b c

′′

4 ·
N logN
N+κ2

c from qm. Thus, by triangle inequality the || · ||∞
distance between dig(o, p) and op is at least b c

′′

4 ·
N logN
N+κ2

c − 3/2 ∈ Ω(N logN
N+κ2

).
k is large and b′ − r′ ≥ nα+ c′′ · N logN

N+κ2
. Look at the x-coordinate of qk. We know that

Q has at least b′ − r′ − 1 ≥ nα + c′′ · N logN
N+κ2

− 1 many elements, and k is among the
productive vertices with the largest x-coordinate. In particular, the x-coordinate of qk is
at least b′ − r′ − 2 ≥ nα+ c′′

2 ·
N logN
N+κ2

− 2.
Let p be the unique leaf of LN such that M(p) = M(qk). We now apply Lemma 15 to
dig(o, p) at the line x+ y = n. By definition of p, we have that dig(o, p) passes through
qk. Now, by definition of Q, we know that M(qk) ≤ α and in particular the x-coordinate
of p is at most αN (see Figure 5, right). Thus, the Euclidean segment op must intersect
at a point whose x-coordinate is at most αn.
That is, when we look at the Euclidean and the digital segments along line x+ y = n,
the Euclidean crossing happens at x-coordinate at most αn. However, the x-coordinate
of the digital crossing is at least αn+ c′′

2 ·
N logN
N+κ2

− 1. By Lemma 15 we conclude that
the error must be Ω(N logN

N+κ2
) as claimed.

b′ − r′ < nα− c′′ · N logN
N+κ2

. This proof is very similar to the previous case. Consider the
vertex p = (bαNc, N − bαNc) ∈ LN and apply Lemma 15 to dig(o, p) and op.
At line x+ y = n the Euclidean segment op passes through a point whose x-coordinate is
bαNc · nN ≥ bαnc−1. By definition, M(p) ≤ α and thus dig(o, p) must pass through some
vertex q of Q. In particular, the x-coordinate of q is at most b′ − r′ < nα− c′′ · N logN

N+κ2
,

giving the Ω(N logN
N+κ2

) error and completing the proof of Theorem 3. J

Note that if we use Theorem 2 instead, the same argument follows and we would get the
following result.

I Theorem 17. For any N ∈ N, any weak CDR defined on G+
N ⊂ Z2 with κ1 inner leaves

has Ω(N logN
N+κ1

) error.

5 Lower bound for CDRs in high dimensions

We now use the lower bound of weak CDRs to obtain a lower bound for CDRs in three or
higher dimensions. Consider the restriction of any d-dimensional CDR T to the x1x2-plane
(we call this restriction the x1x2-restriction of T and denote it by Tx1x2). Recall that the
key observation is that Tx1x2 is a (possibly weak) CDR and that any inner leaf in Tx1x2 must
extend in some xi-direction in T for some i ∈ [3..d]. We have seen that Tx1x2 needs to have
a large number of inner leaves to have o(logN) error. In the following, we will show that a
large number of inner leaves will cause constraints for Zd and have an impact in the overall
error of T .

We do a slight abuse of notation and use the same terms as in two dimensions. For
simplicity of the notation, we assume that N is a positive even number. For any n ≤ N , let
Ln = {(x1, x2, . . . , xd) ∈ G+

N :
∑d
i=1 xi = n}. Given any CDR in G+

N , we consider the CDR
as a tree rooted at the origin. Let T (v) be the subtree rooted at v.

From Theorem 3, we already know that in order for Tx1x2 to have sublogarithmic error
we must have κ2 ∈ ω(N) inner leaves. However, each inner leaf ties to a boundary leaf in
LN in d dimensions. In other words, the subtrees rooted at the vertices in LN/2−1 ∩ Tx1x2

must cover all these boundary vertices. We now observe that a weak CDR with inner leaves
in the x1x2-plane induces subtrees which are too big for the high dimensional proper CDR
(See Figure 6).

ESA 2020

34:20 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

v

LN

z

y

xo

u

u′

error

LN/2−1

BN

Figure 6 Illustration of Lemmas 18 and 19: the red region represents the region of BN . If we
have lots of inner leaves in Txy, it will have many descendants in the three dimensional CDR at
layer LN so that the height of the red region attempting to contain them is large. In particular,
we can find a vertex v on the xy-plane such that v is on the dig(o, u) and u is far away from the
xy-plane. For simplicity, we show the Euclidean error between v and u′, but we note that the proof
argues under the || · ||∞ metric.

I Lemma 18. Given any CDR in G+
N , let κ2 be the number of inner leaves in Tx1x2 between

LN/2 and LN . There exists a vertex v ∈ LN/2−1 such that vi = 0 for i = 3, . . . , d and some
boundary leaf u ∈ T (v) ∩ LN has uj ≥ (κ2/N)

1
d−2 − 1 for some j ∈ [3..d].

Proof. The proof follows from a packing argument. Consider the set V = {(0, N/2 −
1, 0, . . . , 0), (1, N/2 − 2, 0, . . . , 0), . . . , (N/2 − 1, 0, 0, . . . , 0)}. Note that these vertices lie in
the x1x2-plane and thus are in Tx1x2 . Because they are the two dimensional equivalent of
LN/2−1, the union of their subtrees covers Tx1x2 between N/2 and N . In this region we
know that we have κ2 many inner leaves, which will extend to LN with the first step in the
xi-direction for some i ∈ [3..d]. Let YN be the extended vertices on LN from these κ2 inner
leaves, i.e., |YN | ≥ κ2.

Let BN = {(x1, x2, . . . , xd) ∈ G+
N :

∑d
i=1 xi = N, x1 + x2 < N and ∀i ∈ [3..d], xi <

(κ2/N)
1
d−2 − 1}, see Figure 6. Since we have less than (κ2/N)

1
d−2 choices for x3, . . . , xd, at

mostN choices for x1 and the value of x2 is adjusted to satisfy the constraint
∑d
i=1 xi = N , the

size of BN is less than κ2. Hence, BN cannot contain all vertices of YN . Moreover, no vertices
of YN lie on x1x2-plane, so there exists some vertex u ∈ YN such that uj ≥ (κ2/N)

1
d−2 − 1

for some j ∈ [3..d], which is in T (v) ∩ LN for some v ∈ V . J

The existence of this vertex v is the root of the problem. We conclude with the following
statement.

I Lemma 19. Any CDR defined on G+
N ⊂ Zd with κ2 inner leaves in Tx1x2 between LN/2

and LN has Ω((κ2/N)
1
d−2) error.

M.-K. Chiu, M. Korman, M. Suderland, and T. Tokuyama 34:21

Proof. Apply Lemma 18 to obtain a vertex v ∈ LN/2−1 ∩ Tx1x2 that satisfies some u ∈
T (v) ∩LN with uj ≥ (κ2/N)

1
d−2 − 1 for some j ∈ [3..d]. Let u′ be the intersection of ou and

the affine plane containing LN/2−1, see Figure 6. As LN and LN/2−1 are parallel, u
′
j−oj
uj−oj ≥

1
3

for N ≥ 6, this implies that u′j = Ω((κ2/N)
1
d−2). By construction, we have that v is on the

dig(o, u) and vj = 0, hence || · ||∞ distance between dig(o, u) and ou is Ω((κ2/N)
1
d−2). J

Combining with Theorem 3 gives us a lower bound for CDRs in d dimensions.

I Theorem 4. Any CDR in Zd has Ω(log1/(d−1) N) error.

Proof. By Theorem 3 and Lemma 19, the error is Ω(N logN
N+κ2

) and Ω((κ2/N)
1
d−2), where κ2

is the number of inner leaves in Tx1x2 between LN/2 and LN . The balance between the two
is obtained by choosing κ2 = Θ(N log

d−2
d−1 N), giving the Ω(log1/(d−1) N) lower bound. J

6 Final remarks

Common intuition would say that the Ω(logN) lower bound for the error of two-dimensional
CDR and CDS automatically extends to higher dimensions. The observation that this is not
true opens up new ways in which research can continue. We believe that further analysis of
the mapping between the three spaces (from CDR in high dimensions to the 2-D weak CDR
to the two-colored pointset) and the high interdependence between the three spaces can help
in designing better lower and upper bounds.

Our lower bound Ω(log1/(d−1) N) extends the previous lower bound. The next step would
be to close the gap between Ω(log1/2 N) and O(logN) bounds in three dimensions. Even
if the final answer ends up being Θ(logN) we believe that the relationship between high
dimensional CDRs, weak CDRs induced in subspaces and the mapping to pointset gives a
better understanding of CDRs.

We also find that weak CDRs are an interesting research topic on their own. In particular,
we would like to find the relationship between the number of inner leaves and the error of
the construction. That is, say that we want a CDR with O(e) error (for some e ≤ logn).
What is the minimum number of leaves ` = `(e) that such a CDR must have? Can we find
such a construction?

Theorem 3 seems to indicate a linear relationship between the two, and it is not hard
to obtain one (an example is given in [3]). However, this construction is most likely not
the best possible one. Indeed, even if we are interested in O(logN) error, this construction
creates a large number of inner leaves, but we know of CDRs with the same error and no
inner leaves. Thus, the question becomes, can we significantly improve upon the greedy
construction, which can be found in the full version of the paper in [3]? Or is there some
exponential dependency between the number of inner leaves and the error of the weak CDR?

References
1 Tetsuo Asano, Danny Z. Chen, Naoki Katoh, and Takeshi Tokuyama. Efficient algorithms for

optimization-based image segmentation. International Journal of Computational Geometry
and Applications, 11(2):145–166, 2001.

2 Man-Kwun Chiu and Matias Korman. High dimensional consistent digital segments. SIAM
Journal on Discrete Mathematics, 32(4):2566–2590, 2018.

3 Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama. Distance bounds
for high dimensional consistent digital rays and 2-d partially-consistent digital rays, 2020.
arXiv:2006.14059.

ESA 2020

http://arxiv.org/abs/2006.14059

34:22 Distance Bounds for High Dimensional CDRs and 2-D Partially-CDRs

4 Iffat Chowdhury and Matt Gibson. A characterization of consistent digital line segments in
Z2. In Nikhil Bansal and Irene Finocchi, editors, Proceedings of the 23rd Annual European
Symposium on Algorithms, volume 9294, pages 337–348, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

5 Iffat Chowdhury and Matt Gibson. Constructing consistent digital line segments. In Evangelos
Kranakis, Gonzalo Navarro, and Edgar Chávez, editors, Proceedings of the 12th Latin American
Theoretical Informatics Symposium, volume 9644, pages 263–274, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

6 Tobias Christ, Dömötör Pálvölgyi, and Miloš Stojaković. Consistent digital line segments.
Discrete & Computational Geometry, 47(4):691–710, 2012.

7 Jinhee Chun, Natsuda Kaothanthong, Ryosei Kasai, Matias Korman, Martin Nöllenburg, and
Takeshi Tokuyama. Algorithms for computing the maximum weight region decomposable into
elementary shapes. Computer Vision and Image Understanding, 116(7):803–814, 2012.

8 Jinhee Chun, Matias Korman, Martin Nöllenburg, and Takeshi Tokuyama. Consistent digital
rays. Discrete and Computational Geometry, 42(3):359–378, 2009.

9 Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. Coordinate representation of order
types requires exponential storage. In Proceedings of the 21st Annual ACM Symposium on
Theory of Computing, pages 405–410. ACM, 1989.

10 Reinhard Klette and Azriel Rosenfeld. Digital straightness—a review. Discrete Appl. Math.,
139(1–3):197–230, 2004.

11 Michael G. Luby. Grid geometries which preserve properties of Euclidean geometry: A study
of graphics line drawing algorithms. In NATO Conference on Graphics/CAD, pages 397–432,
1987.

12 Jiří Matoušek. Geometric Discrepancy: An Illustrated Guide. Algorithms and Combin-
atorics. Springer Berlin Heidelberg, 1999. URL: https://books.google.co.jp/books?id=
BKvXj1GisP0C.

13 Wolfgang Schmidt. Irregularities of distribution, vii. Acta Arithmetica, 21(1):45–50, 1972.
URL: http://eudml.org/doc/205130.

https://books.google.co.jp/books?id=BKvXj1GisP0C
https://books.google.co.jp/books?id=BKvXj1GisP0C
http://eudml.org/doc/205130

Finding Large H-Colorable Subgraphs in
Hereditary Graph Classes
Maria Chudnovsky
Princeton University, NJ, USA
mchudnov@math.princeton.edu

Jason King
Princeton University, NJ, USA
jtking@princeton.edu

Michał Pilipczuk
Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Paweł Rzążewski
Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
University of Warsaw, Institute of Informatics, Poland
p.rzazewski@mini.pw.edu.pl

Sophie Spirkl
Princeton University, NJ, USA
sspirkl@math.princeton.edu

Abstract
We study the Max Partial H-Coloring problem: given a graph G, find the largest induced
subgraph of G that admits a homomorphism into H, where H is a fixed pattern graph without loops.
Note that when H is a complete graph on k vertices, the problem reduces to finding the largest
induced k-colorable subgraph, which for k = 2 is equivalent (by complementation) to Odd Cycle
Transversal.

We prove that for every fixed pattern graph H without loops, Max Partial H-Coloring can
be solved:

in {P5, F }-free graphs in polynomial time, whenever F is a threshold graph;
in {P5,bull}-free graphs in polynomial time;
in P5-free graphs in time nO(ω(G));
in {P6, 1-subdivided claw}-free graphs in time nO(ω(G)3).

Here, n is the number of vertices of the input graph G and ω(G) is the maximum size of a clique in G.
Furthermore, by combining the mentioned algorithms for P5-free and for {P6, 1-subdivided claw}-free
graphs with a simple branching procedure, we obtain subexponential-time algorithms for Max
Partial H-Coloring in these classes of graphs.

Finally, we show that even a restricted variant of Max Partial H-Coloring is NP-hard in the
considered subclasses of P5-free graphs, if we allow loops on H.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Theory of com-
putation → Problems, reductions and completeness; Theory of computation → Graph algorithms
analysis; Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases homomorphisms, hereditary graph classes, odd cycle transversal

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.35

Related Version A full version of the paper is available at [8], https://arxiv.org/abs/2004.09425.

Funding Maria Chudnovsky: This material is based upon work supported in part by the U. S.
Army Research Office under grant number W911NF-16-1-0404, and by NSF grant DMS-1763817.
Michał Pilipczuk: This work is a part of project TOTAL that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No. 677651).

© Maria Chudnovsky, Jason King, Michał Pilipczuk, Paweł Rzążewski, and Sophie Spirkl;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 35; pp. 35:1–35:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mchudnov@math.princeton.edu
mailto:jtking@princeton.edu
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7696-3848
mailto:p.rzazewski@mini.pw.edu.pl
mailto:sspirkl@math.princeton.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.35
https://arxiv.org/abs/2004.09425
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

Paweł Rzążewski: Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.
Sophie Spirkl: This material is based upon work supported by the National Science Foundation
under Award No. DMS1802201.

Acknowledgements We acknowledge the welcoming and productive atmosphere at Dagstuhl Semi-
nar 19271 “Graph Colouring: from Structure to Algorithms”, where this work has been initiated.

1 Introduction

Many computational graph problems that are (NP-)hard in general become tractable in
restricted classes of input graphs. In this work we are interested in hereditary graph classes,
or equivalently classes defined by forbidding induced subgraphs. For a set of graphs F , we
say that a graph G is F-free if G does not contain any induced subgraph isomorphic to a
graph from F . By forbidding different sets F we obtain graph classes with various structural
properties, which can be used in the algorithmic context. This highlights an interesting
interplay between structural graph theory and algorithm design.

Perhaps the best known example of this paradigm is the case of the Maximum In-
dependent Set problem: given a graph G, find the largest set of pairwise non-adjacent
vertices in G. It is known that the problem is NP-hard on F -free graphs unless F is a forest
whose every component is a path or a subdivided claw [2]; here, a claw is a star with 3
leaves. However, the remaining cases, when F is a subdivided claw forest, remain largely
unexplored despite significant effort. Polynomial-time algorithms have been given for P5-free
graphs [24], P6-free graphs [20], claw-free graphs [26, 29], and fork-free graphs [3, 25]. While
the complexity status in all the other cases remains open, it has been observed that relaxing
the goal of polynomial-time solvability leads to positive results in a larger generality. For
instance, for every t ∈ N, Maximum Independent Set can be solved in time 2O(

√
tn logn)

in Pt-free graphs [4]. The existence of such a subexponential-time algorithm for F -free graphs
is excluded under the Exponential Time Hypothesis whenever F is not a subdivided claw
forest (see e.g. the discussion in [27]), which shows a qualitative difference between the
negative and the potentially positive cases. Also, Chudnovsky et al. [10] recently gave a
quasi-polynomial-time approximation scheme (QPTAS) for Maximum Independent Set
in F -free graphs, for every fixed subdivided claw forest F .

The abovementioned positive results use a variety of structural techniques related to
the considered graph classes, for instance: the concept of Gyárfás path that gives useful
separators in Pt-free graphs [4, 6, 10], the dynamic programming approach based on potential
maximal cliques [24, 20], or structural properties of claw-free and fork-free graphs that relate
them to line graphs [25, 26, 29]. Some of these techniques can be used to give algorithms for
related problems, which can be expressed as looking for the largest (in terms of the number
of vertices) induced subgraph satisfying a fixed property. For Maximum Independent Set
this property is being edgeless, but for instance the property of being acyclic corresponds
to the Maximum Induced Forest problem, which by complementation is equivalent to
Feedback Vertex Set. Work in this direction so far focused on properties that imply
bounded treewidth [1, 17] or, more generally, that imply sparsity [27].

A different class of problems that admits an interesting complexity landscape on hereditary
graphs classes are coloring problems. For fixed k ∈ N, the k-Coloring problem asks whether
the input graph admits a proper coloring with k colors. For every k > 3, the problem is NP-
hard on F -free graphs unless F is a forest of paths (a linear forest) [18]. The classification of
the remaining cases is more advanced than in the case of Maximum Independent Set, but
not yet complete. On one hand, Hoàng et al. [22] showed that for every fixed k, k-Coloring

M. Chudnovsky, J. King, M. Pilipczuk, P. Rzążewski, and S. Spirkl 35:3

is polynomial-time solvable on P5-free graphs. On the other hand, the problem becomes
NP-hard already on P6-free graphs for all k > 5 [23]. The cases k = 3 and k = 4 turn out
to be very interesting. 4-Coloring is polynomial-time solvable on P6-free graphs [14] and
NP-hard in P7-free graphs [23]. While there is a polynomial-time algorithm for 3-Coloring
in P7-free graphs [5], the complexity status in Pt-free graphs for t > 8 remains open. However,
relaxing the goal again leads to positive results in a wider generality: for every t ∈ N, there is
a subexponential-time algorithm with running time 2O(

√
tn logn) for 3-Coloring in Pt-free

graphs [19], and there is also a polynomial-time algorithm that given a 3-colorable Pt-free
graph outputs its proper coloring with O(t) colors [12].

We are interested in using the toolbox developed for coloring problems in Pt-free graphs
to the setting of finding maximum induced subgraphs with certain properties. Specifically,
consider the following Maximum Induced k-Colorable Subgraph problem: given a
graph G, find the largest induced subgraph of G that admits a proper coloring with k

colors. While this problem clearly generalizes k-Coloring, for k = 1 it boils down to
Maximum Independent Set. For k = 2 it can be expressed as Maximum Induced
Bipartite Subgraph, which by complementation is equivalent to the well-studied Odd
Cycle Transversal problem: find the smallest subset of vertices that intersects all odd
cycles in a given graph. While polynomial-time solvability of Odd Cycle Transversal
on P4-free graphs (also known as cographs) follows from the fact that these graphs have
bounded cliquewidth (see [15]), it is known that the problem is NP-hard in P6-free graphs [16].
The complexity status of Odd Cycle Transversal in P5-free graphs remains open [9,
Problem 4.4]: resolving this question was the original motivation of our work.

Our contribution. Following the work of Groenland et al. [19], we work with a very general
form of coloring problems, defined through homomorphisms. For graphs G and H, a
homomorphism from G to H, or an H-coloring of G, is a function φ : V (G)→ V (H) such
that for every edge uv in G, we have φ(u)φ(v) ∈ E(H). We study the Max Partial
H-Coloring problem defined as follows: given a graph G, find the largest induced subgraph
of G that admits an H-coloring. Note that if H is the complete graph on k vertices, then
an H-coloring is simply a proper coloring with k colors, hence this formulation generalizes
the Maximum Induced k-Colorable Subgraph problem. Unless stated explicitly, we
will always assume that the pattern graph H does not have loops, hence an H-coloring is a
proper coloring with |V (H)| colors.

Figure 1 A bull, a 1-subdivided claw, and an example threshold graph.

Fix a pattern graph H without loops. We prove that Max Partial H-Coloring can
be solved:
(R1) in {P5, F}-free graphs in polynomial time, whenever F is a threshold graph;
(R2) in {P5,bull}-free graphs in polynomial time;
(R3) in P5-free graphs in time nO(ω(G)); and
(R4) in {P6, 1-subdivided claw}-free graphs in time nO(ω(G)3).

ESA 2020

35:4 Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

Here, n is the number of vertices of the input graph G and ω(G) is the size of the maximum
clique in G. Also, recall that a graph G is a threshold graph if V (G) can be partitioned into an
independent set A and a clique B such that for each a, a′ ∈ A, we have either N(a) ⊇ N(a′)
or N(a) ⊆ N(a′). There is also a characterization via forbidden induced subgraphs: threshold
graphs are exactly {2P2, C4, P4}-free graphs, where 2P2 is an induced matching of size 2.
Figure 1 depicts a bull, a 1-subdivided claw, and an example threshold graph.

Further, we observe that by employing a simple branching strategy, an nO(ω(G)α)-time
algorithm for Max Partial H-Coloring in F-free graphs can be used to give also
a subexponential-time algorithm in this setting, with running time nO(nα/(α+1)). Thus,
results (R3) and (R4) imply that for every fixed irreflexive H, the Max Partial H-
Coloring problem can be solved in time nO(

√
n) in P5-free graphs and in time nO(n3/4)

in {P6, 1-subdivided claw}-free graphs. This in particular applies to the Odd Cycle
Transversal problem. We note here that Dabrowski et al. [16] proved that Odd Cycle
Transversal in {P6,K4}-free graphs is NP-hard and does not admit a subexponential-time
algorithm under the Exponential Time Hypothesis. Thus, it is unlikely that any of our
algorithmic results – the nO(ω(G))-time algorithm and the nO(

√
n)-time algorithm – can be

extended from P5-free graphs to P6-free graphs.
All our algorithms work in a weighted setting, where instead of just maximizing the

size of the domain of an H-coloring, we maximize its total revenue, where for each pair
(u, v) ∈ V (G)× V (H) we have a prescribed revenue yielded by sending u to v. This setting
allows encoding a broader range of coloring problems. For instance, list variants can be
expressed by giving negative revenues for forbidden assignments (see e.g. [21, 28]). Also, our
algorithms work in a slightly larger generality than stated above, see Section 5 for precise
statements.

Finally, we investigate the possibility of extending our algorithmic results to pattern
graphs with possible loops. We show an example of a graph H with loops, for which Max
Partial H-Coloring is NP-hard and admits no subexponential-time algorithm under the
ETH even in very restricted subclasses of P5-free graphs, including {P5,bull}-free graphs.
This shows that whether the pattern graph is allowed to have loops has a major impact on
the complexity of the problem.

Full version. In this extended abstract we focus on proving results (R3) and (R4). Results
(R1) and (R2), as well as of the abovementioned lower bound, are proved in the full version
of the paper, which is available on arXiv [8]. Also, the main branching step is given here in a
simplified form that is sufficient for results (R3) and (R4), but not for results (R1) and (R2).

Our techniques. The key element of our approach is a branching procedure that, given
an instance (G, rev) of Max Partial H-Coloring, where rev is the revenue function,
produces a relatively small set of instances Π such that solving (G, rev) reduces to solving
all the instances in Π. Moreover, every instance (G′, rev′) ∈ Π is simpler in the following
sense: either it is an instance of Max Partial H ′-Coloring for H ′ being a proper induced
subgraph of H (hence it can be solved by induction on |V (H)|), or for any connected graph F
on at least two vertices, G′ is F -free provided we assume that G is F •−◦-free. Here, F •−◦ is the
graph obtained from F by adding a universal vertex y and a degree-1 vertex x adjacent only
to y. In particular we have ω(G′) < ω(G), so applying the branching procedure exhaustively
in a recursion scheme yields a recursion tree of depth bounded by ω(G). Now, for results (R3)
and (R4) we respectively have |Π| 6 nO(1) and |Π| 6 nO(ω(G)2), giving bounds of nO(ω(G))

and nO(ω(G)3) on the total size of the recursion tree and on the overall time complexity.

M. Chudnovsky, J. King, M. Pilipczuk, P. Rzążewski, and S. Spirkl 35:5

For result (R1) we apply the branching procedure not exhaustively, but a constant number
of times: if the original graph G is {P5, F}-free for some threshold graph F , it suffices to apply
the branching procedure O(|V (F)|) times to reduce the original instances to a set of edgeless
instances, which can be solved trivially. As O(|V (F)|) = O(1), this gives recursion tree of
polynomial size, and hence a polynomial-time complexity due to always having |Π| 6 nO(1)

in this setting. For result (R2), we show that two applications of the branching procedure
reduce the input instance to a polynomial number of instances that are P4-free, which can be
solved in polynomial time due to P4-free graphs (also known as cographs) having cliquewidth
at most 2. However, these applications are interleaved with a reduction to the case of prime
graphs – graphs with no non-trivial modules – which we achieve using dynamic programming
on the modular decomposition of the input graph. This is in order to apply some results on
the structure of prime bull-free graphs [11, 13], so that P4-freeness is achieved at the end.

Let us briefly discuss the key branching procedure. The first step is finding a useful
dominating structure that we call a monitor : a subset of vertices M of a connected graph G
is a monitor if for every connected component C of G−M , there is a vertex in M that is
complete to C. We prove that in a connected P6-free graph there is always a monitor that
is the closed neighborhood of a set of at most three vertices. After finding such a monitor
N [X] for |X| 6 3, we perform a structural analysis of the graph centered around the set
X. This analysis shows that there exists a subset of O(|V (H)|) vertices such that after
guessing this subset and the H-coloring on it, the instance can be partitioned into several
separate subinstances, each of which has a strictly smaller clique number. This structural
analysis, and in particular the way the separation of subinstances is achieved, is inspired by
the polynomial-time algorithm of Hoàng et al. [22] for k-Coloring in P5-free graphs.

Other related work. We remark that very recently and independently of us, Brettell et
al. [7] proved that for every fixed s, t ∈ N, the class of {Kt, sK1 + P5}-free graphs has
bounded mim-width. Here, mim-width is a graph parameter that is less restrictive than
cliquewidth, but the important aspect is that a wide range of vertex-partitioning problems,
including the Max Partial H-Coloring problem considered in this work, can be solved
in polynomial time on every class of graphs where the mim-width is universally bounded
and a corresponding decomposition can be computed efficiently. The result of Brettell et
al. thus shows that in P5-free graphs, the mim-width is bounded by a function of the clique
number. This gives an nf(ω(G))-time algorithm for Max Partial H-Coloring in P5-free
graphs (for fixed H), for some function f . However, the proof presented in [7] gives only an
exponential upper bound on the function f , which in particular does not imply the existence
of a subexponential-time algorithm. To compare, our reasoning leads to an nO(ω(G))-time
algorithm and a subexponential-time algorithm with complexity nO(

√
n).

We remark that the techniques used by Brettell et al. [7] also rely on revisiting the
approach of Hoàng et al. [22], and they similarly observe that this approach can be used to
apply induction based on the clique number of the graph.

2 Preliminaries

Graphs. For a graph G, the vertex and edge sets of G are denoted by V (G) and E(G),
respectively. The open neighborhood of a vertex u is the set NG(u) := {v : uv ∈ E(G)},
while the closed neighborhood is NG[u] := NG(u) ∪ {u}. This notation is extended to sets
of vertices: for X ⊆ V (G), we set NG[X] :=

⋃
u∈X NG[u] and NG(X) := NG[X] −X. We

may omit the subscript if the graph G is clear from the context. By Ct, Pt, and Kt we
respectively denote the cycle, the path, and the complete graph on t vertices.

ESA 2020

35:6 Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

The clique number ω(G) is the size of the largest clique in a graph G. A clique K in G is
maximal if no proper superset of K is a clique.

For s, t ∈ N, the Ramsey number of s and t is the smallest integer k such that every
graph on k vertices contains either a clique of size s or an independent set of size t. It is
well-known that the Ramsey number of s and t is bounded from above by

(
s+t−2
s−1

)
, hence we

will denote Ramsey(s, t) :=
(
s+t−2
s−1

)
.

For a graph G and A ⊆ V (G), by G[A] we denote the subgraph of G induced by A. We
write G−A := G[V (G)−A]. We say that F is an induced subgraph of G if there is A ⊆ V (G)
such that G[A] is isomorphic to F ; this containment is proper if in addition A 6= V (G). For
a family of graphs F , a graph G is F-free if G does not contain any induced subgraph from
F . If F = {H}, then we may speak about H-free graphs as well.

If G is a graph and A ⊆ V (G) is a subset of vertices, then a vertex u /∈ A is complete to
A if u is adjacent to all the vertices of A, and u is anti-complete to A if u has no neighbors
in A. We will use the following simple claim several times.

I Lemma 1. Suppose G is a graph, A is a subset of its vertices such that G[A] is connected,
and u /∈ A is a vertex that is neither complete nor anti-complete to A in G. Then there are
vertices a, b ∈ A such that u− a− b is an induced P3 in G.

Proof. Since u is neither complete nor anticomplete to A, both the sets A ∩ N(u) and
A −N(u) are non-empty. As A is connected, there exist a ∈ A ∩N(u) and b ∈ A −N(u)
such that a and b are adjacent. Now u− a− b is the desired induced P3. J

For a graph F , by F • we denote the graph obtained from F by adding a universal vertex :
a vertex adjacent to all the other vertices. Similarly, by F •−◦ we denote the graph obtained
from F by adding first an isolated vertex, say x, and then a universal vertex, say y. Note
that thus y is adjacent to all the other vertices of F •−◦, while x is adjacent only to y.

H-colorings. For graphs H and G, a function φ : V (G)→ V (H) is a homomorphism from
G to H if for every uv ∈ E(G), we also have φ(u)φ(v) ∈ E(H). Note that a homomorphism
from G to the complete graph Kt is nothing else than a proper coloring of G with t colors.
Therefore, a homomorphism from G to H will be also called an H-coloring of G, and we will
refer to vertices of H as colors. Note that we will always assume that H is a simple graph
without loops, so no two adjacent vertices of G can be mapped by a homomorphism to the
same vertex of H. To stress this, we will call such H an irreflexive pattern graph.

A partial homomorphism from G to H, or a partial H-coloring of G, is a partial function
φ : V (G) ⇀ V (H) that is a homomorphism from G[domφ] to H, where domφ denotes the
domain of φ.

Suppose that with graphsG andH we associate a revenue function rev : V (G)×V (H)→ R.
Then the revenue of a partial H-coloring φ is defined as

rev(φ) :=
∑

u∈domφ

rev(u, φ(u)).

In other words, for u ∈ V (G) and v ∈ V (H), rev(u, v) denotes the revenue yielded by
assigning φ(u) := v.

We now define the main problem studied in this work. In the following, we consider the
graph H fixed.

Max Partial H-Coloring
Input: Graph G and a revenue function rev : V (G)× V (H)→ R
Output: A partial H-coloring φ of G that maximizes rev(φ)

M. Chudnovsky, J. King, M. Pilipczuk, P. Rzążewski, and S. Spirkl 35:7

An instance of the Max Partial H-Coloring problem is a pair (G, rev) as above. A
solution to an instance (G, rev) is a partial H-coloring of G, and it is optimum if it maximizes
rev(φ) among solutions. By OPT(G, rev) we denote the maximum possible revenue of a
solution to the instance (G, rev).

Let us note one aspect that will be used later on. Observe that in revenue functions we
allow negative revenues for some assignments. However, if we are interested in maximizing the
total revenue, there is no point in using such assignments: if u ∈ domφ and rev(u, φ(u)) < 0,
then just removing u from the domain of φ increases the revenue. Thus, optimal solutions
never use assignments with negative revenues. Note that this feature can be used to model
list versions of partial coloring problems, where each vertex v ∈ V (G) is assigned a list of
colors L(v) ⊆ V (H) and can only be mapped to a vertex from L(v).

3 Monitors in P6-free graphs

In this section we prove an auxiliary result about finding useful separators in P6-free graphs.
The desired property is expressed in the following definition.

I Definition 2. Let G be a connected graph. A subset of vertices M ⊆ V (G) is a monitor
in G if for every connected component C of G −M , there exists a vertex w ∈ M that is
complete to C.

Let us note the following property of monitors.

I Lemma 3. If M is a monitor in a connected graph G, then every maximal clique in G

intersects M . In particular, ω(G−M) < ω(G).

Proof. If K is a clique in G−M , then K has to be entirely contained in some connected
component C of G−M . Since M is a monitor, there exists w ∈M that is complete to C.
Then K ∪ {w} is also a clique in G, hence K cannot be a maximal clique in G. J

We now prove that in P6-free graphs we can always find easily describable monitors.

I Lemma 4. Let G be a connected P6-free graph. Then for every u ∈ V (G) there exists a
subset of vertices X such that u ∈ X, |X| 6 3, G[X] is a path whose one endpoint is u, and
NG[X] is a monitor in G.

Lemma 4 follows immediately from the following statement applied for t = 6.

I Lemma 5. Let t ∈ {4, 5, 6}, G be a connected P6-free graph, and u ∈ V (G) be a vertex
such that in G there is no induced Pt with u being one of the endpoints. Then there exists a
subset X of vertices such that u ∈ X, |X| 6 t− 3, G[X] is a path whose one endpoint is u,
and NG[X] is a monitor in G.

Proof. We proceed by induction on t. The base case for t = 4 will be proved directly within
the analysis.

In the following, by slabs we mean connected components of the graph G−NG[u]. We shall
say that a vertex w ∈ NG(u) is mixed on a slab C if w is neither complete nor anti-complete
to C. A slab C is simple if there exists a vertex w ∈ NG(u) that is complete to C, and
difficult otherwise.

Note that since G is connected, for every difficult slab D there exists some vertex
w ∈ NG(u) that is mixed on D. Then, by Lemma 1, we can find vertices a, b ∈ D such that
u − w − a − b is an induced P4 in G. If t = 4 then no such induced P4 can exists, so we
infer that in this case there are no difficult slabs. Then NG[u] is a monitor, so we may set
X := {u}. This proves the claim for t = 4; from now on we assume that t > 5.

ESA 2020

35:8 Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

Let us choose a vertex v ∈ NG(u) that maximizes the number of difficult slabs on which v
is mixed. Suppose there is a difficult slab D′ such that v is anti-complete to D′. As we argued,
there exists a vertex v′ ∈ NG(u) such that v′ is mixed on D′; clearly v′ 6= v. By the choice
of v, there exists a difficult slab D such that v is mixed on D and v′ is anti-complete to D.
By applying Lemma 1 twice, we find vertices a, b ∈ D and a′, b′ ∈ D′ such that v− a− b and
v′− a′− b′ are induced P3s in G. Now, if v and v′ were adjacent, then b− a− v− v′− a′− b′
would be an induced P6 in G, a contradiction. Otherwise b− a− v − u− v′ − a′ − b′ is an
induced P7 in G, again a contradiction (see Figure 2).

u

NG(u)

D D′

v v′

ab b′a′

Figure 2 The graph G in the proof of Lemma 5 when v anti-complete to some difficult slab D′.
Dotted lines show non-edges. The edge vv′ might be present.

We conclude that v is mixed on every difficult slab. Let

A := {v} ∪
⋃

D : difficult slab
V (D).

Then G[A] is connected and P6-free. Moreover, in G[A] there is no Pt−1 with one endpoint
being v, because otherwise we would be able to extend such an induced Pt−1 using u, and
thus obtain an induced Pt in G with one endpoint being u. Consequently, by induction we
find a subset Y ⊆ A such that |Y | 6 (t − 1) − 3 = t − 4, G[Y] is a path with one of the
endpoints being v, and NG[A][Y] is a monitor in G[A]. Let X := Y ∪ {u}. Then |X| 6 t− 3
and G[X] is a path with u being one of the endpoints.

We verify that NG[X] is a monitor in G. Consider any connected component C of
G − NG[X]. As NG[X] ⊇ NG[u], C is contained in some slab D. If D is simple, then
by definition there exists a vertex w ∈ NG[u] ⊆ NG[X] that is complete to D, hence also
complete to C. Otherwise D is difficult, hence C is a connected component of G[A]−NG[A][Y].
Since NG[A][Y] is a monitor in G[A], there exists a vertex w ∈ NG[A][Y] ⊆ NG[X] that is
complete to C. This completes the proof. J

We remark that no statement analogous to Lemma 4 can hold for P7-free graphs, even if
from X we only require that NG[X] intersects all the maximum-size cliques in G (which is
implied by the property of being a monitor, see Lemma 3). Consider the following example.
Let G be a graph obtained from the union of n + 1 complete graphs K(0), . . . ,K(n), each
on n vertices, by making one vertex from each of the graphs K(1), . . . ,K(n) adjacent to a
different vertex of K(0). Then G is P7-free, but the minimum size of a set X ⊆ V (G) such
that NG[X] intersects all maximum-size cliques in G is n.

M. Chudnovsky, J. King, M. Pilipczuk, P. Rzążewski, and S. Spirkl 35:9

4 Branching

We now present the core branching step that is used by all our algorithms. This part is
inspired by the approach of Hoàng et al. [22]. We will rely on the following two graph families;
see Figure 3. For t ∈ N, the graph St is obtained from the star K1,t by subdividing every
edge once. Then L1 := P3 and for t > 2 the graph Lt is obtained from St by making all the
leaves of St pairwise adjacent.

Figure 3 Graphs S4 and L4.

I Lemma 6. Let H be a fixed irreflexive pattern graph. Suppose we are given integers
s, t and an instance (G, rev) of Max Partial H-Coloring such that G is connected and
{P6, Ls, St}-free. Denoting n := |V (G)|, one can in time nO(Ramsey(s,t)) construct a subgraph
G′ of G with V (G′) = V (G) and a set Π consisting of at most nO(Ramsey(s,t)) revenue functions
with domain V (G)× V (H) such that the following conditions hold:
(C1) The graph G′ is {P6, Ls, St}-free. Moreover, if G is F •-free for some connected graph

F on at least two vertices, then G′ is F -free.
(C2) We have OPT(G, rev) = maxrev′∈Π OPT(G′, rev′). Moreover, for any rev′ ∈ Π for which

the maximum is reached, every optimum solution φ to (G′, rev′) is also an optimum
solution to (G, rev) with rev(φ) = rev′(φ).

We remark that the statement above is a simplified variant of the lemma, and it is
sufficient for proving results (R3) and (R4), but not for results (R1) and (R2). In the full
variant, presented in the full version of the paper, solving the instance (G, rev) is reduced
to solving a list Π of pairs of instances. Each pair ((G1, rev1), (G2, rev2)) ∈ Π satisfies the
following: (G1, rev1) is an instance of Max Partial H ′-Coloring for some proper induced
subgraph H ′ of G; and if G2 contains some induced connected graph F on at least two
vertices, then G contains not only an induced F •, but even an induced F •−◦. This gives a
stronger reduction of structure upon application of Lemma 6, which is vitally used in the
proofs of results (R1) and (R2).

The remainder of this section is devoted to the proof of Lemma 6. We fix the irreflexive
pattern graph H and consider an input instance (G, rev). We find it more didactic to first
perform an analysis of (G, rev), and only provide the algorithm at the end. Thus, the
correctness will be clear from the previous observations.

Since G is connected, by Lemma 4 there exists X ⊆ V (G) such that |X| 6 3 and N [X]
is a monitor in G. Note that such a set X can be found in polynomial time by checking
all subsets of V (G) of size at most 3. In case |X| < 3, we may add arbitrary vertices to X
so that |X| = 3, note that the property of being a monitor still holds. Let us arbitrarily
enumerate the vertices of X as {x1, x2, x3}.

We partition V (G)−X into A1, A2, A3, A4 as follows (see Figure 4):

A1 := N(x1)−X, A2 := N(x2)−(X∪A1), A3 := N(x3)−(X∪A1∪A2), A4 := V (G)−N [X].

ESA 2020

35:10 Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

Note that {A1, A2, A3} is a partition of N(X). For i ∈ {1, 2, 3}, denote A>i :=
⋃4
j=i+1Aj

and observe that xi is complete to Ai and anti-complete to A>i. Moreover, we have the
following.

B Claim 7. For every connected graph F and i ∈ {1, 2, 3, 4}, if G[Ai] contains an induced
F , then G contains an induced F •.

Proof. Suppose B ⊆ Ai induces F in G. If i ∈ {1, 2, 3} then B ∪{xi} induces F • in G, hence
assume that i = 4. Since F is connected, B is entirely contained in one connected component
C of G[A4]. As N [X] is a monitor in G, there exists a vertex w ∈ N [X] that is complete to
C. Now B ∪ {w} induces F • in G. C

x1 x2 x3

A1 A2 A3

A4

NG(X)

X

V (G) \NG[X]

Figure 4 The partition on V (G) in the proof of Lemma 6. Solid and dotted lines respectively
indicate that a vertex is complete or anti-complete to a set. Dashed edges might, but do not have to
exist.

The next claim contains the core combinatorial observation of the proof.

B Claim 8. Let φ be a solution to the instance (G, rev). Then for every i ∈ {1, 2, 3} and
v ∈ V (H), there exists a set S ⊆ Ai such that:
|S| < Ramsey(s, t) and S ⊆ Ai ∩ φ−1(v); and
every vertex u ∈ A>i that has a neighbor in Ai ∩ φ−1(v), also has a neighbor in S.

Proof. Let S be the smallest set contained in Ai∩φ−1(v) and satisfying the second condition,
it exists, as this condition is satisfied by Ai ∩ φ−1(v) . Note that since H is irreflexive, it
follows that φ−1(v) is an independent set in G, hence S is independent as well.

Suppose for contradiction that |S| > Ramsey(s, t). By minimality, for every u ∈ S there
exists u′ ∈ A>i such that u is the only neighbor of u′ in S. Let S′ := {u′ : u ∈ S}. Since
|S′| = |S| > Ramsey(s, t), in G[S′] we can either find a clique K ′ of size s or an independent
set I ′ of size t; denote K := {u : u′ ∈ K ′} and I := {u : u′ ∈ I ′}. In the former case, we find
that {xi} ∪K ∪K ′ induces the graph Ls in G, a contradiction. Similarly, in the latter case
we have that {xi} ∪ I ∪ I ′ induces St in G, again a contradiction. This completes the proof
of the claim. C

Claim 8 suggests the following notion. A guess is a function R : V (H)→ 2N [X] satisfying
that:

for each v ∈ V (H), R(v) is a subset of N [X] such that |R(v) ∩Ai| < Ramsey(s, t) for all
i ∈ {1, 2, 3}; and
sets R(v) are pairwise disjoint for different v ∈ V (H).

M. Chudnovsky, J. King, M. Pilipczuk, P. Rzążewski, and S. Spirkl 35:11

Let R be the family of all possible guesses; then we easily have the following.

B Claim 9. We have that |R| 6 nO(Ramsey(s,t)) and R can be enumerated in time
nO(Ramsey(s,t)).

Proof. For each v ∈ V (H), the number of choices for R(v) in a guess R is bounded by
23 · n3·Ramsey(s,t): the first factor corresponds to the choice of R(v) ∩X, while the second
factor bounds the number of choices of R(v) ∩ Ai for i ∈ {1, 2, 3}. Since the guess R is
determined by choosing R(v) for each v ∈ V (H) and |V (H)| is considered a constant, the
number of different guesses is bounded by

(
23 · n3·Ramsey(s,t))|V (H)| = nO(Ramsey(s,t)). Clearly,

they can be also enumerated in time nO(Ramsey(s,t)). C

Now, we say that a guess R is compatible with a solution φ to (G, rev) if the following
conditions hold for every v ∈ V (H):
(C1) R(v) ⊆ φ−1(v);
(C2) R(v) ∩X = φ−1(v) ∩X; and
(C3) for all i ∈ {1, 2, 3} and u ∈ A>i, if u has a neighbor in φ−1(v) ∩Ai, then u also has a

neighbor in R(v) ∩Ai.
The following statement follows immediately from Claim 8.

B Claim 10. For every solution φ to the instance (G, rev), there exists a guess R ∈ R that is
compatible with φ.

Consider a guess R ∈ R. We define a set BR ⊆ V (G)× V (H) of disallowed pairs for R
as follows. We include a pair (u, v) ∈ V (G)× V (H) in BR if any of the following conditions
holds:
(D1) u ∈ X and u /∈ R(v);
(D2) u ∈ R(v′) for some v′ ∈ V (H) that is different from v;
(D3) u has a neighbor in G that belongs to R(v′) for some v′ ∈ V (H) such that vv′ /∈ E(H);

or
(D4) u ∈ Ai − R(v) for some i ∈ {1, 2, 3} and there exists u′ ∈ A>i such that uu′ ∈ E(G)

and NG(u′) ∩Ai ∩R(v) = ∅.
Intuitively, BR contains assignments that contradict the supposition that R is compatible
with a considered solution.

Based on BR, we define a new revenue function revR : V (G)× V (H)→ R as follows:

revR(u, v) =
{
−1 if (u, v) ∈ BR;
rev(u, v) otherwise.

The intuition is that disallowing a pair (u, v) is modelled by assigning a negative revenue to
the corresponding assignment. This forbids optimum solutions from using this assignment.

We define a subgraph G′ of G as follows: V (G′) := V (G) and E(G′) comprises all edges
of G whose both endpoints belong to the same set Ai, for some i ∈ {1, 2, 3, 4}. Thus, in G′
the vertices of X are isolated, and there are no edges between any Ai and Aj for i 6= j, nor
between any Ai and X. For every guess R ∈ R, we may consider a new instance (G′, revR)
of Max Partial H-Coloring. In the following two claims we establish the relationship
between solutions to the instance (G, rev) and solutions to instances (G′, revR) for R ∈ R.
The proofs essentially boil down to a verification that all the previous definitions work as
expected. In particular, the key point is that the modification of revenues applied when
constructing revR implies automatic satisfaction of all the constraints associated with edges
that were present in G, but got removed in G′.

ESA 2020

35:12 Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

B Claim 11. For every guess R ∈ R, every optimum solution φ to the instance (G′, revR) is
also a solution to the instance (G, rev), and moreover revR(φ) = rev(φ).

Proof. Recall that φ is a solution to (G, rev) if and only if φ is a partialH-coloring of G. Hence,
we need to prove that for every uu′ ∈ E(G) with u, u′ ∈ domφ, we have φ(u)φ(u′) ∈ E(H).
Denote v := φ(u) and v′ := φ(u′) and suppose for contradiction that vv′ /∈ E(H). Since φ is
an optimum solution to (G′, revR), we have revR(u, v) > 0, which implies that (u, v) /∈ BR.
Similarly (u′, v′) /∈ BR. We now consider cases depending on the alignment of u and u′ in G.

If u, u′ ∈ Ai for some i ∈ {1, 2, 3, 4} then uu′ ∈ E(G′), so the supposition vv′ /∈ E(H)
would contradict the assumption that φ is a solution to (G′, revR).

Suppose u ∈ Ai and u′ ∈ Aj for i, j ∈ {1, 2, 3, 4}, i 6= j; by symmetry, assume i < j. As
vv′ /∈ E(H), we infer that u′ does not have any neighbors in R(v) in G, for otherwise we
would have (u′, v′) ∈ BR by (D3). As uu′ ∈ E(G), u ∈ Ai, and u′ ∈ A>i, this implies that
(u, v) ∈ BR by (D4), a contradiction.

Finally, suppose that {u, u′}∩X 6= ∅, say u ∈ X. Since (u, v) /∈ BR, by (D1) we infer that
u ∈ R(v). Then, by (D3), vv′ /∈ E(H) and uu′ ∈ E(G) together imply that (u′, v′) ∈ BR, a
contradiction.

This completes the proof that φ is a solution to (G, rev). To see that revR(φ) = rev(φ)
note that φ, being an optimum solution to (G′, revR), does not use any assignments with
negative revenues in revR, while rev(u, v) = revR(u, v) for all (u, v) satisfying revR(u, v) > 0.

C

B Claim 12. If φ is a solution to (G, rev) that is compatible with a guess R ∈ R, then φ is
also a solution to (G′, revR) and revR(φ) = rev(φ).

Proof. As φ is a solution to (G, rev), it is a partial H-coloring of G. Since G′ is a subgraph
of G with V (G′) = V (G), φ is also a partial H-coloring of G′. Hence φ is a solution to
(G′, revR).

To prove that revR(φ) = rev(φ) it suffices to show that (u, φ(u)) /∈ BR for every u ∈ domφ,
since functions revR and rev differ only on the pairs from BR. Suppose otherwise, and consider
cases depending on the reason for including (u, φ(u)) in BR. Denote v := φ(u).

First, suppose u ∈ X and u /∈ R(v). By (C2) we have u /∈ R(v) ∩X = φ−1(v) ∩X 3 u, a
contradiction.

Second, suppose u ∈ R(v′) for some v′ 6= v. By (C1) we have v = φ(u) = v′, again a
contradiction.

Third, suppose that u has a neighbor u′ in G such that u′ ∈ R(v′) for some v′ ∈ V (H)
satisfying vv′ /∈ E(H). By (C1), we have u′ ∈ domφ and φ(u′) = v′. But then φ(u)φ(u′) =
vv′ /∈ E(H) even though uu′ ∈ E(G), a contradiction with the assumption that φ is a partial
H-coloring of G.

Fourth, suppose that u ∈ Ai −R(v) for some i ∈ {1, 2, 3} and there exists u′ ∈ A>i such
that uu′ ∈ E(G) and NG(u′) ∩ R(v) ∩ Ai = ∅. Observe that since u ∈ Ai ∩ φ−1(v) and
uu′ ∈ E(G), by (C3) u′ has a neighbor in R(v) ∩ Ai in the graph G. This contradicts the
supposition that NG(u′) ∩R(v) ∩Ai = ∅.

As in all the cases we have obtained a contradiction, this concludes the proof of the claim.
C

Let now Π := {revR : R ∈ R}. Then, condition (C2) can be easily derived from Claim 11
and Claim 12, while condition (C1) is implied by Claim 7. Note here that G′ is {P6, Ls, St}-
free, because it is a disjoint union of induced subgraphs of G. Finally, from Claim 9 we infer
that |Π| = |R| 6 nO(Ramsey(s,t)) and Π can be constructed in time nO(Ramsey(s,t)), because
given R ∈ R it is straightforward to construct revR in polynomial time. Hence Π satisfies all
the requested properties, and this completes the proof of Lemma 6.

M. Chudnovsky, J. King, M. Pilipczuk, P. Rzążewski, and S. Spirkl 35:13

5 Corollaries for subclasses of P6-free graphs

In this section we prove results (R3) and (R4) promised in Section 1. The idea is to apply
Lemma 6 exhaustively, until the considered instance becomes trivial. The main point is that
with each application the clique number of the graph drops, hence we naturally obtain an
upper bound of the form nf(ω(G)) for the total size of the recursion tree, hence also on the
running time.

The following statement captures the idea of exhaustive applying Lemma 6 in a recursive
scheme. For convenience, we formulate the statement so that s and t are given on input.

I Theorem 13. Let H be a fixed irreflexive pattern graph. There exists an algorithm
that given s, t ∈ N and an instance (G, rev) of Max Partial H-Coloring where G is
{P6, Ls, St}-free, solves this instance in time nO(Ramsey(s,t)·ω(G)).

Proof. If G is not connected, then for every connected component C of G we apply the
algorithm recursively to (C, rev|V (C)). If φC is the obtained optimum solution to this instance,
we may output φ :=

⋃
C φC . It is clear that φ constructed in this way is an optimum solution

to (G, rev).
Assume then that G is connected. If G consists of only one vertex, say u, then we may

simply output φ := {(u, v)} where v maximizes rev(u, v), or φ := ∅ if rev(·) has no positive
value in its range. Hence, assume that G has at least two vertices, in particular ω(G) > 2.
We now apply Lemma 6 to G. Thus, in time nO(Ramsey(s,t)) we obtain a subgraph G′ of G
with V (G) = V (G′) and a suitable set of revenue functions Π satisfying |Π| 6 nO(Ramsey(s,t)).
Recall here that G′ is {P6, Ls, St}-free. Moreover, if we set F = Kω(G) then G is F •-free, so
Lemma 6 implies that G′ is F -free. This means that ω(G′) < ω(G).

Next, for every rev′ ∈ Π we recursively solve the instance (G′, rev′). Lemma 6 implies
that if among the obtained optimum solutions to instances (G′, rev′) we pick the one with
the largest revenue, then this solution is also an optimum solution to (G, rev).

We are left with analyzing the running time. Recall that every time we recurse into
subproblems constructed using Lemma 6, the clique number of the currently considered
graph drops by at least one. Since recursing on a disconnected graph yields connected graphs
in subproblems, we conclude that the total depth of the recursion tree is bounded by 2 ·ω(G).
In every recursion step we branch into nO(Ramsey(s,t)) subproblems, hence the total number of
nodes in the recursion tree is bounded by

(
nO(Ramsey(s,t)))2·ω(G) = nO(Ramsey(s,t)·ω(G)). The

internal computation in each subproblem take time nO(Ramsey(s,t)), hence the total running
time is indeed nO(Ramsey(s,t)·ω(G)). J

Note that since both L3 and S2 contain P5 as an induced subgraph, every P5-free graph
is {P6, L3, S2}-free. Hence, from Theorem 13 we may immediately conclude the following
statement, where the setting of P5-free graphs is covered by the case s = 3 and t = 2.

I Corollary 14. For any fixed s, t ∈ N and irreflexive pattern graph H, Max Partial
H-Coloring can be solved in {P6, Ls, St}-free graphs in time nO(ω(G)). This in particular
applies to P5-free graphs.

Next, we observe that the statement of Theorem 13 can be also used for non-constant s
to obtain an algorithm for the case when the graph Ls is not excluded.

I Corollary 15. For any fixed t ∈ N and irreflexive pattern graph H, Max Partial H-
Coloring can be solved in {P6, St}-free graphs in time nO(ω(G)t).

ESA 2020

35:14 Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

Proof. Observe that since the graph Ls contains a clique of size s, every graph G is actually
Lω(G)+1-free. Therefore, we may apply the algorithm of Theorem 13 for s := ω(G) + 1. Note
here that ω(G) can be computed in time nω(G)+O(1) by verifying whether G has cliques of
size 1, 2, 3, . . . up to the point when the check yields a negative answer. Since for s = ω(G)+1
and fixed t we have

Ramsey(s, t) =
(
s+ t− 2
t− 1

)
6 O(ω(G)t−1),

the obtained running time is nO(Ramsey(s,t)·ω(G)) 6 nO(ω(G)t). J

Let us note that an algorithm with running time nO(ω(G)α), for some constant α, can be
used within a simple branching strategy to obtain a subexponential-time algorithm.

I Lemma 16. Let H be a fixed irreflexive graph and suppose Max Partial H-Coloring
can be solved in time nO(ω(G)α) on F-free graphs, for some family of graphs F and some
constant α > 1. Then Max Partial H-Coloring can be solved in time nO(nα/(α+1)) on
F-free graphs.

Proof. Let (G, rev) be the input instance, where G has n vertices. We define threshold
τ :=

⌊
n

1
α+1

⌋
.

The algorithm first checks whether G contains a clique on τ vertices. This can be done
in time nτ+O(1) 6 nO(n1/(α+1)) by verifying all subsets of τ vertices in G. If there is no such
clique then ω(G) < τ , so we can solve the problem using the assumed algorithm in time
nO(ω(G)α) 6 nO(τα) 6 nO(nα/(α+1)). Hence, suppose that we have found a clique K on τ

vertices.
Observe that since H is irreflexive, in any partial H-coloring φ of G only at most |V (H)|

vertices of K can be colored, that is, belong to domφ. We recurse into
(

τ
6|V (H)|

)
6 n|V (H)|

subproblems: in each subproblem we fix a different subset A ⊆ K with |A| 6 |V (H)|
and recurse on the graph GA := G − (K − A) with revenue function revA := rev|V (GA).
Note here that GA is F-free. From the above discussion it is clear that OPT(G, rev) =
maxA⊆K,|A|6|V (H)|OPT(GA, revA). Therefore, the algorithm may return the solution with
the highest revenue among those obtained in recursive calls.

As for the running time, observe that in every recursive call, the algorithm either solves
the problem in time nO(nα/(α+1)), or recurses into n|V (H)| = nO(1) subcalls, where in each
subcall the vertex count is decremented by at least

⌊
n

1
α+1

⌋
. It follows that the depth of the

recursion is bounded by O(nα/(α+1)), hence the total number of nodes in the recursion tree
is at most nO(nα/(α+1)). Since the time used for each node is bounded by nO(nα/(α+1)), the
total running time of nO(nα/(α+1)) follows. J

By combining Corollary 14 and Corollary 15 with Lemma 16 we conclude the following.

I Corollary 17. For any fixed s, t ∈ N and irreflexive pattern graph H, Max Partial
H-Coloring can be solved in
1. {P6, Ls, St}-free graphs in time nO(

√
n) (this in particular applies to P5-free graphs),

2. {P6, St}-free graphs in time nO(nt/(t+1)).

M. Chudnovsky, J. King, M. Pilipczuk, P. Rzążewski, and S. Spirkl 35:15

6 Open problems

The following question, which originally motivated our work, still remains unresolved.

I Question 1. Is Odd Cycle Transversal polynomial-time solvable in P5-free graphs?

Note that our work stops short of giving a positive answer to this question: we give an
algorithm with running time nO(ω(G)), a subexponential-time algorithm, and polynomial time
algorithms for the cases when either a threshold graphs or a bull is additionally forbidden.
Therefore, we are hopeful that the answer to the question is indeed positive.

One aspect of our work that we find particularly interesting is the possibility of treating
the clique number ω(G) as a progress measure for an algorithm, which enables bounding
the recursion depth in terms of ω(G). This approach naturally leads to algorithms with
running time of the form nf(ω(G)) for some function f , that is, polynomial-time for every
fixed clique number. By Lemma 16, having a polynomial function f in the above gives
a subexponential-time algorithm, at least in the setting of Max Partial H-Coloring
for irreflexive H. However, looking for algorithms with time complexity nf(ω(G)) seems to
be another relaxation of the goal of polynomial-time solvability, somewhat orthogonal to
subexponential-time algorithms [4, 6, 19] or approximation schemes [10]. Note that our work
and the recent work of Brettell et al. [7] actually show two different methods of obtaining such
algorithms: using direct recursion, or via dynamic programming on branch decompositions
of bounded mim-width. It would be interesting to investigate this direction in the context of
Maximum Independent Set in Pt-free graphs. A concrete question would be:

I Question 2. Is there a polynomial-time algorithm for Maximum Independent Set in
{Pt,Kt}-free graphs, for every fixed t?

In all our algorithms, we state the time complexity assuming that the pattern graph H is
fixed. This means that the constants hidden in the O(·) notation in the exponent may – and
do – depend on the size of H. In the language of parameterized complexity, this means that
we give XP algorithms for the parameterization by the size of H. It is natural to ask whether
this state of art can be improved to the existence of FPT algorithms, that is, with running
time f(H) · nc for some computable function f and universal constant c, independent of H.
This is not known even for the case of k-Coloring P5-free graphs, so let us re-iterate the
old question of Hoàng et al. [22].

I Question 3. Is there an FPT algorithm for k-Coloring in P5-free graphs parameterized
by k?

While the above question seems hard, it is conceivable that FPT results could be derived
in some more restricted settings considered in this work, for instance for {P5,bull}-free
graphs.

References
1 Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, Paweł Rzążewski, and Paul Seymour.

Induced subgraphs of bounded treewidth and the container method. CoRR, abs/2003.05185,
2020. arXiv:2003.05185.

2 Vladimir E. Alekseev. The effect of local constraints on the complexity of determination of
the graph independence number. Combinatorial-algebraic methods in applied mathematics,
pages 3–13, 1982. (in Russian).

ESA 2020

http://arxiv.org/abs/2003.05185

35:16 Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

3 Vladimir E. Alekseev. Polynomial algorithm for finding the largest independent sets in graphs
without forks. Discret. Appl. Math., 135(1-3):3–16, 2004. doi:10.1016/S0166-218X(02)
00290-1.

4 Gábor Bacsó, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Zsolt Tuza, and Erik Jan
van Leeuwen. Subexponential-time algorithms for Maximum Independent Set in Pt-free and
broom-free graphs. Algorithmica, 81(2):421–438, 2019. doi:10.1007/s00453-018-0479-5.

5 Flavia Bonomo, Maria Chudnovsky, Peter Maceli, Oliver Schaudt, Maya Stein, and Mingxian
Zhong. Three-coloring and list three-coloring of graphs without induced paths on seven vertices.
Combinatorica, 38(4):779–801, 2018. doi:10.1007/s00493-017-3553-8.

6 Christoph Brause. A subexponential-time algorithm for the Maximum Independent Set problem
in Pt-free graphs. Discret. Appl. Math., 231:113–118, 2017. doi:10.1016/j.dam.2016.06.016.

7 Nick Brettell, Jake Horsfield, and Daniël Paulusma. Colouring sP1 + P5-free graphs: a
mim-width perspective. CoRR, abs/2004.05022, 2020. arXiv:2004.05022.

8 Maria Chudnovsky, Jason King, Michal Pilipczuk, Paweł Rzążewski, and Sophie Spirkl.
Finding large H-colorable subgraphs in hereditary graph classes. CoRR, abs/2004.09425, 2020.
arXiv:2004.09425.

9 Maria Chudnovsky, Daniël Paulusma, and Oliver Schaudt. Graph colouring: from structure
to algorithms (dagstuhl seminar 19271). Dagstuhl Reports, 9(6):125–142, 2019. doi:10.4230/
DagRep.9.6.125.

10 Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé. Quasi-
polynomial time approximation schemes for the Maximum Weight Independent Set problem
in H-free graphs. In Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, pages 2260–2278. SIAM, 2020. doi:10.1137/1.9781611975994.139.

11 Maria Chudnovsky and Shmuel Safra. The Erdős-Hajnal conjecture for bull-free graphs. J.
Comb. Theory, Ser. B, 98(6):1301–1310, 2008. doi:10.1016/j.jctb.2008.02.005.

12 Maria Chudnovsky, Oliver Schaudt, Sophie Spirkl, Maya Stein, and Mingxian Zhong. Ap-
proximately coloring graphs without long induced paths. Algorithmica, 81(8):3186–3199, 2019.
doi:10.1007/s00453-019-00577-6.

13 Maria Chudnovsky and Vaidy Sivaraman. Odd holes in bull-free graphs. SIAM J. Discrete
Math., 32(2):951–955, 2018. doi:10.1137/17M1131301.

14 Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring P6-free graphs. In
Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019,
pages 1239–1256. SIAM, 2019. doi:10.1137/1.9781611975482.76.

15 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

16 Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, Giacomo Paesani, Daniël Paulusma,
and Paweł Rzążewski. On cycle transversals and their connected variants in the absence
of a small linear forest. CoRR, abs/1908.00491, 2019. Accepted to Algorithmica. arXiv:
1908.00491.

17 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangulations
and CMSO. SIAM J. Comput., 44(1):54–87, 2015. doi:10.1137/140964801.

18 Petr A. Golovach, Daniël Paulusma, and Jian Song. Closing complexity gaps for coloring
problems on H-free graphs. Inf. Comput., 237:204–214, 2014. doi:10.1016/j.ic.2014.02.004.

19 Carla Groenland, Karolina Okrasa, Paweł Rzążewski, Alex D. Scott, Paul D. Seymour, and
Sophie Spirkl. H-colouring Pt-free graphs in subexponential time. Discret. Appl. Math.,
267:184–189, 2019. doi:10.1016/j.dam.2019.04.010.

20 Andrzej Grzesik, Tereza Klimošová, Marcin Pilipczuk, and Michał Pilipczuk. Polynomial-time
algorithm for Maximum Weight Independent Set on P6-free graphs. In Proceedings of the 30th

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 1257–1271. SIAM,
2019. doi:10.1137/1.9781611975482.77.

https://doi.org/10.1016/S0166-218X(02)00290-1
https://doi.org/10.1016/S0166-218X(02)00290-1
https://doi.org/10.1007/s00453-018-0479-5
https://doi.org/10.1007/s00493-017-3553-8
https://doi.org/10.1016/j.dam.2016.06.016
http://arxiv.org/abs/2004.05022
http://arxiv.org/abs/2004.09425
https://doi.org/10.4230/DagRep.9.6.125
https://doi.org/10.4230/DagRep.9.6.125
https://doi.org/10.1137/1.9781611975994.139
https://doi.org/10.1016/j.jctb.2008.02.005
https://doi.org/10.1007/s00453-019-00577-6
https://doi.org/10.1137/17M1131301
https://doi.org/10.1137/1.9781611975482.76
https://doi.org/10.1007/s002249910009
http://arxiv.org/abs/1908.00491
http://arxiv.org/abs/1908.00491
https://doi.org/10.1137/140964801
https://doi.org/10.1016/j.ic.2014.02.004
https://doi.org/10.1016/j.dam.2019.04.010
https://doi.org/10.1137/1.9781611975482.77

M. Chudnovsky, J. King, M. Pilipczuk, P. Rzążewski, and S. Spirkl 35:17

21 Gregory Z. Gutin, Pavol Hell, Arash Rafiey, and Anders Yeo. A dichotomy for minimum cost
graph homomorphisms. Eur. J. Comb., 29(4):900–911, 2008. doi:10.1016/j.ejc.2007.11.
012.

22 Chính T Hoàng, Marcin Kamiński, Vadim Lozin, Joe Sawada, and Xiao Shu. Deciding
k-colorability of P5-free graphs in polynomial time. Algorithmica, 57(1):74–81, 2010.

23 Shenwei Huang. Improved complexity results on k-coloring Pt-free graphs. Eur. J. Comb.,
51:336–346, 2016. doi:10.1016/j.ejc.2015.06.005.

24 Daniel Lokshtanov, Martin Vatshelle, and Yngve Villanger. Independent set in P5-free graphs
in polynomial time. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, pages 570–581. SIAM, 2014. doi:10.1137/1.9781611973402.43.

25 Vadim V. Lozin and Martin Milanič. A polynomial algorithm to find an independent set
of maximum weight in a fork-free graph. J. Discrete Algorithms, 6(4):595–604, 2008. doi:
10.1016/j.jda.2008.04.001.

26 George J. Minty. On maximal independent sets of vertices in claw-free graphs. J. Comb.
Theory, Ser. B, 28(3):284–304, 1980. doi:10.1016/0095-8956(80)90074-X.

27 Jana Novotná, Karolina Okrasa, Michał Pilipczuk, Paweł Rzążewski, Erik Jan van Leeuwen,
and Bartosz Walczak. Subexponential-time algorithms for finding large induced sparse
subgraphs. In Proceedings of the 14th International Symposium on Parameterized and Exact
Computation, IPEC 2019, volume 148 of LIPIcs, pages 23:1–23:11. Schloss Dagstuhl — Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.23.

28 Karolina Okrasa and Paweł Rzążewski. Subexponential algorithms for variants of the
homomorphism problem in string graphs. J. Comput. Syst. Sci., 109:126–144, 2020.
doi:10.1016/j.jcss.2019.12.004.

29 Najiba Sbihi. Algorithme de recherche d’un stable de cardinalité maximum dans un graphe
sans étoile. Discrete Mathematics, 29(1):53–76, 1980. (in French).

ESA 2020

https://doi.org/10.1016/j.ejc.2007.11.012
https://doi.org/10.1016/j.ejc.2007.11.012
https://doi.org/10.1016/j.ejc.2015.06.005
https://doi.org/10.1137/1.9781611973402.43
https://doi.org/10.1016/j.jda.2008.04.001
https://doi.org/10.1016/j.jda.2008.04.001
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.4230/LIPIcs.IPEC.2019.23
https://doi.org/10.1016/j.jcss.2019.12.004

Compact Oblivious Routing in Weighted Graphs
Philipp Czerner
Department of Informatics, TU München, Germany
czerner@in.tum.de

Harald Räcke
Department of Informatics, TU München, Germany
raecke@in.tum.de

Abstract
The space-requirement for routing-tables is an important characteristic of routing schemes. For the
cost-measure of minimizing the total network load there exist a variety of results that show tradeoffs
between stretch and required size for the routing tables. This paper designs compact routing schemes
for the cost-measure congestion, where the goal is to minimize the maximum relative load of a link
in the network (the relative load of a link is its traffic divided by its bandwidth). We show that for
arbitrary undirected graphs we can obtain oblivious routing strategies with competitive ratio Õ(1)
that have header length Õ(1), label size Õ(1), and require routing-tables of size Õ(deg(v)) at each
vertex v in the graph.

This improves a result of Räcke and Schmid who proved a similar result in unweighted graphs.

2012 ACM Subject Classification Theory of computation → Network flows; Networks → Network
algorithms

Keywords and phrases Oblivious Routing, Compact Routing, Competitive Analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.36

Related Version A full version of the paper is available at https://arxiv.org/abs/2007.02427.

1 Introduction

Oblivious routing strategies choose routing paths independent of the traffic in the network
and are therefore usually much easier to implement than adaptive routing solutions that
might require centralized control and/or lead to frequent reconfigurations of traffic routes.
Because of this simplicity a lot of research in recent years has been performed on the question
whether the quality of route allocations performed by oblivious algorithms is comparable
to that of adaptive solutions (see e.g. [2, 5, 6, 17, 19, 20, 21, 26]). For some cost-metrics
this is indeed the case. For example for minimizing the total traffic in the network (a.k.a.
total load), shortest path routing is a simple optimal oblivious strategy. When one aims to
minimize the congestion, i.e., the maximum (relative) load of a network link, one can still
obtain strategies with a competitive ratio of O(logn), i.e., the congestion generated by these
strategies is at most an O(logn)-factor than the best possible congestion [21].

However, another important aspect for implementing oblivious routing strategies on
large networks is the size of the required routing tables. This aspect has been investigated
thoroughly for the cost-measure total load (see e.g. [7, 9, 11, 18, 24, 25, 29]), and various
trade-offs between competitive ratio (also called stretch for the total load scenario) and the
table-size have been discovered.

If for example every vertex stores the next hop on a shortest path to a target one can
obtain a stretch of 1 at the cost of having routing tables of size O(n logn) per node. If one
allows non-optimal solutions Thorup and Zwick [25] have shown how to obtain a stretch of
4k − 5 for any k > 2 with routing tables of size Õ(n1/k). This routing scheme works for the
so-called labeled scenario in which the designer of the routing-scheme is allowed to relabel
the vertices of the network in order to make routing decisions easier. Of course, there is still
a restriction on the label-size as otherwise the power of being able to assign labels to vertices
could be abused.

© Philipp Czerner and Harald Räcke;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 36; pp. 36:1–36:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1786-9592
mailto:czerner@in.tum.de
mailto:raecke@in.tum.de
https://doi.org/10.4230/LIPIcs.ESA.2020.36
https://arxiv.org/abs/2007.02427
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Compact Oblivious Routing in Weighted Graphs

In the (more difficult) so-called name-independent model the designer is not allowed
to relabel the vertices. Abraham et al. [1] have shown that for general undirected graphs
one can asymptotically match the bounds for the labeled variant. They obtain a stretch of
O(k) and routing tables of size Õ(n1/k). If a famous conjecture due to Erdős [8] about the
existence of low-girth graphs holds then there is also a lower bound that says that obtaining
a stretch better than 2k + 1 requires routing tables of size Ω(n1/k). This means that for
general undirected graphs the existing tradeoffs between stretch and space are fairly tight.

There exist many more results that analyze problem variants as e.g. obtained by restricting
the graph representing the network (see e.g. [18, 7, 10, 12, 13, 24]); so the problem of designing
compact routing schemes is very well studied for the cost-measure total load.

However, for the cost-measure congestion this is not the case. Räcke and Schmid [22] gave
the first oblivious routing scheme that combines a guarantee w.r.t. the congestion with small
routing-tables. They consider the labeled model and design an oblivious routing scheme that
for a general undirected, unweighted graph G requires routing tables of size Õ(deg(v)) at
each vertex v and obtains a competitive ratio of Õ(1) w.r.t. congestion.

There are important differences when comparing this result to its counter-parts for the
total-load scenario. Firstly, the space used at a vertex v may depend on the degree of v. This
is a reasonable assumption from a practical perspective as a node corresponds to a router in
the network and it is reasonable to assume that the memory at a router (node) grows with
the number of ports (number of incident edges). However, this assumption seems also crucial
for getting any reasonable guarantees. In order to minimize congestion it is important to
distribute the traffic among all network resources. It seems very difficult to do this if the
routing table at a vertex is a lot smaller than the number of outgoing edges.

Another difference is that there is no tradeoff parameter k that gives a smooth transition
from optimal routing with large tables to more compact routing. The reason is that for
congestion the competitive ratio may be Ω(logn) even for unlimited routing tables [3].

One important shortcoming of the result by Schmid and Räcke [22] is that it only applies
to unweighted graphs (there is a straightforward generalization that obtains routing tables of
size O(W polylogn) where W is the largest weight of an edge, but this is undesirable). This
restriction is due to the fact that the result by Schmid and Räcke uses paths to route within
well-connected clusters, which they obtain by randomized rounding.

There are two major obstacles in generalizing this result to the weighted case:
(1) In unweighted graphs, low congestion also ensures a low number of paths using an edge.

However, an edge of weight W might be used by W small paths, which cannot be stored
in a compact manner.

(2) Even within a well-connected cluster, it is not sufficient to route a commodity using a
small number of paths, if the nodes are connected by many low-weight edges (illustrated
in Figure 1). Hence a source node may have to route (and store) W small paths.

In this paper we give a construction of an oblivious routing scheme that avoids both
problems, by storing aggregate routing information for many paths at once, as well as
distributing storage across nodes for commodities that need to spread out over multiple
paths. In this manner we obtain a polylogarithmic competitive ratio with polylogarithmic
space requirement per edge in the network. Our main result is the following.

I Theorem 13. There is a compact oblivious routing scheme with competitive ratio at most
O(log6 n log3W), that uses routing tables of size O(log5 n logW log3(nW) ·deg(v)) at a node
v, packet headers of length O(log3(nW)), and node labels of length O(log2 n).

P. Czerner and H. Räcke 36:3

edge (weight 1)
edge (weight W)

ba

Figure 1 Routing a single demand over multiple edges. Sending data from a to b requires roughly
W paths, but a has degree 1 and can store only Õ(1) bits.

In particular this result shows that if we can route some demand in a network with a
multicommodity flow f of congestion C, then it is possible to route the demands space-
efficiently, i.e., one can set up small routing tables so that packets follow a (maybe) different
flow f ′ that routes the same demands with a slightly worse congestion. This question of
space-efficiently routing demands in a network is orthogonal to oblivious routing and it
is not clear by how much the performance (i.e., the congestion) degrades because of the
space-requirement. The above theorem gives a polylogarithmic upper bound but to the best
of our knowledge this problem has not been studied before.

1.1 Further Work

Oblivious routing with the goal of either minimizing the total load (or stretch), minimizing
the congestion or a combination of both is a well studied problem. The research started with
deterministic algorithms and it was shown by Borodin and Hopcroft [5] that on any bounded
degree graph G for any deterministic routing scheme there exists a permutation routing
instance that incurs congestion Ω(

√
n/∆3/2). This result was improved by Kaklamanis et

al. [15] to a lower bound of Ω(
√
n/∆). As there exist bounded degree graphs that can route

any permutation with small congestion this gives a large lower bound on the competitive
ratio of deterministic oblivious routing schemes.

For randomized algorithms Valiant and Brebner [28] showed how to obtain a polyloga-
rithmic competitive ratio for the hypercube by routing to random intermediate destinations
(known as Valiant’s trick).

Räcke [20] presented the first oblivious routing scheme with a polylogarithmic competitive
ratio of O(log3 n) in general undirected networks. This routing scheme is based on a
hierarchical decomposition of a graph and forms the basis for the compact routing schemes
that we construct in this paper. The construction in [20] was not polynomial time. This
drawback was independently addressed by Bienkowski et al. [4] and Harrelson et al. [14].
Both papers give a polynomial-time algorithm for constructing the hierarchical decomposition
(and, hence, the routing scheme) – the first with a competitive ratio of O(log4 n), and the
second with a competitive ratio of O(log2 n log logn).

In 2014 Räcke et al. [23] presented another construction of the hierarchy that runs in
time O(m polylogn) and guarantees a competitive ratio of O(log5 n) (however, going from
the hierarchy to the actual routing scheme may require superlinear time).

The above oblivious routing schemes that are based on hierarchical tree decompositions
do not give the best possible competitive ratio. In [21] Räcke presents an oblivious routing
scheme that is based on embedding a convex combination of trees into the graph G. This
scheme obtains a competitive ratio of O(logn), which is optimal due to a lower bound of
Bartal and Leonardi for online routing in grids [3].

ESA 2020

36:4 Compact Oblivious Routing in Weighted Graphs

However, the number of trees that are used in the above result [21] is fairly large
(Θ(m)). Therefore, it seems difficult to design a compact routing scheme based on the tree
embedding approach, and, therefore we use the earlier results that are based on hierarchical
decompositions (a single tree!) but only guarantee slightly weaker competitive ratios.

1.2 Preliminaries
Throughout the paper we use G = (V,E,w) to denote an undirected weighted graph with n
node and m edges. We will refer to the weight of an edge also as the capacity of the edge.
Wlog. we assume that the minimum edge weight is 1, that edge-weights are a power of 2,
and that the largest edge weight is W . We call an edge of capacity/weight 2i a class i edge
and use Nclass := 1 + log2W to denote the total number of classes. Further, we use Γ(v) to
denote the neighborhood of a vertex v, i.e., Γ(v) = {u ∈ V | {u, v} ∈ E}.

The degree of a node v in the graph G will be referred to as degG(v), that is degG(v) :=
|Γ(v)|. We apply that to directed graphs as well, where it refers to the number of outgoing
edges.

While the edges E are undirected, it will be convenient to refer to a certain orientation
of an edge, so we define Eor := {(u, v) ∈ V 2 : {u, v} ∈ E}. A mapping f : Eor → R with
f((u, v)) = −f((v, u)) for (u, v) ∈ Eor is called a (single-commodity) flow. If f(u, v) > 0 for
some edge (u, v) ∈ E, this indicates flow from u to v. The reverse flow of f is simply −f .
For the sake of readability we omit double parentheses and write, e.g., f(u, v) instead of
f((u, v)).

A flow f may have multiple sources and sinks. The balance of a node v ∈ V is denoted
by balf (v) :=

∑
u∈Γ(v) f(u, v), so a positive balance indicates that the node is receiving more

flow than sending out. A flow is acyclic, if there is no path (p0, ..., pk) in G with p0 = pk and
f(pi, pi+1) > 0 for all i. Its congestion is the maximum ratio between the flow over an edge
and its weight, denoted by cong(f) := max{u,v}∈E |f(u, v)|/w(u, v). Given a multi-set of flows
F := {f1, f2, ..., fk}, its total congestion is cong(F) := max{u,v}∈E

∑
k |fk(u, v)|/w(u, v).

If a flow f has all flow originating at a single node s, i.e., balf (s) ≤ 0 and balf (u) ≥ 0 for
u 6= s, we say that f is an s-flow. If additionally balf (s) = −1, we call f a unit s-flow. The
set of all unit s-flows is denoted with flow(s). If a flow f only sends from s to t, i.e., f is an
s-flow and −f is a t-flow we call f an s-t flow.

We use Õ to disregard logarithmic factors, so g = Õ(h) iff g = O(h logc(nW)) for some
constant c.

Oblivious Routing Scheme

Now we define the concept of an oblivious routing scheme. The idea is to fix a single flow
between each pair of nodes (u, v), and then multiply that flow with the actual demand from
u to v to get the route. This flow can be interpreted probabilistically or fractionally, so if we
have f(e) = 1

2 for some edge e it means that the probability of the packet being routed across
edge e is 1

2 ; or that half a packet travels along that edge. We will use both interpretations
interchangeably.

I Definition 1. An oblivious routing scheme S = (fu,v)u,v∈V consists of a unit u-v-flow for
each pair of nodes u, v ∈ V . Given demands d : V × V → R≥0 the congestion of S w.r.t. d,
denoted cong(S, d), is the total congestion of the set of flows {d(u, v)fu,v : u, v ∈ V }. The
competitive ratio of S is maxd cong(S, d)/congopt(d), where congopt(d) denotes the optimal
congestion that can be obtained for demands d by any routing scheme.

P. Czerner and H. Räcke 36:5

Defining a compact oblivious routing scheme formally is a bit more involved, as we have
to clarify where information is stored and how it is used. Before we do so, we introduce
the notion of a routing algorithm, which defines formally how packets are sent through
the network. The intuition is that each packet carries a packet header, storing per-packet
information. Each node stores a routing table, containing arbitrary information for the
routing algorithm to use.

The routing algorithms forwards a packet in a local manner, meaning that it reads both
the packet header and the routing table before choosing an outgoing edge on which to sent
the packet. At the same time, it may modify the packet header. This procedure repeats,
until routing algorithm indicates that the packet has reached its destination, by outputting
no outgoing edge.

It remains to describe how the packet header is initialized. For oblivious routing schemes,
we simply use the name of the target node as initial packet header. However, we will
later define more general building blocks, namely transformation schemes. Hence a routing
algorithm works with a set of abstract input labels as possible initial packet headers (and
thus as input to the routing algorithm). For the purposes of a routing algorithm these are
simply some set, but later definitions will describe their structure more concretely.

I Definition 2. A routing algorithm A = (A,L, T) is a tuple, L ⊂ {0, 1}∗ denoting a
finite set of input labels and T : V → {0, 1}∗ a routing table for each node. Additionally,
A : T (V)× {0, 1}∗ → (E ∪ {∅})× {0, 1}∗ is a (possibly randomized) algorithm, taking both a
routing table and a packet header as input, which calculates both the outgoing edge (if any)
and the new packet header.

We remark that the outgoing edge given by A has to be encoded in some manner, and it
must be adjacent to the node the routing table belongs to. The routing table T (v) for a node
v can contain information about v, such as a list of adjacent nodes, so any straightforward
encoding, e.g., the index in this list, will work.

Given a routing algorithm A = (A,L, T), a start vertex v ∈ V , and an input label l ∈ L,
the above mechanism defines a process for probabilistically distributing packets from v to
targets in the network. We use A(v, l) to denote a flow that describes the associated routing
paths. This is defined as follows: We inject a packet at v, with l as packet header and execute
A until no outgoing edge is returned. Then A(v, l)(e) is the probability that the packet is
routed over e (note that A may be randomized).

A routing algorithm A = (A,L, T) is compact, if packet headers and input labels have
size Õ(1), and the routing table of a node v ∈ V has size Õ(deg(v)).

Recall that an oblivious routing scheme corresponds to a routing algorithm where the
input labels are names of nodes in the graph. Consequently, we say that such a scheme is
compact if its routing algorithm is compact.

Formally, we assign a name to each vertex in the graph, which we call node label, i.e., we
have some function node : V → {0, 1}∗. For an oblivious routing scheme S = (fu,v)u,v∈V we
use the set of all node labels node(V) as input labels, so the initial packet header is the node
label of the target node.

We say that S is compact if there exists a compact routing algorithm A = (A,node(V), T)
with fu,v = A(u,node(v)). This definition matches the one used by Räcke and Schmid [22],
although it is more explicit.

The main result of this paper is the existence of a compact oblivious routing scheme,
with competitive ratio Õ(1).

ESA 2020

36:6 Compact Oblivious Routing in Weighted Graphs

Transformation Schemes

Our routing scheme will be composed out of several building blocks, which we call transfor-
mation schemes. Loosely speaking, they correspond to single-commodity flows which we are
able to route.

We consider distributions or weight functions of the form µ : V → R≥0 that assign a
non-negative weight to vertices in V . If we only specify a weight function on a subset S ⊆ V
we assume that it is 0 on V \ S. We use µ(S) :=

∑
v∈S µ(v) to denote the weight of a subset

S, and 1v : V → N to denote the special weight function that has weight 1 on v and 0
elsewhere. For a distribution µ we use µ̄ := 1

µ(V)µ to denote the corresponding normalized
distribution.

I Definition 3. A (compact1) transformation scheme (TS) is a compact routing algorithm
with a single input label.

The above definition is not very useful by itself. The underlying idea is that we view
a transformation scheme TS as on operation to transform one distribution of packets into
another, by executing the routing algorithm. More precisely, given P packets each packet
follows the flow TS(v) at its source location v ∈ V . This will send it to some target node
(probabilistically, according to TS(v)).

We say that a transformation scheme routes from some input distribution µin to an output
distribution µout, if the above process transforms a set of P packets that are distributed
according to µ̄in (i.e., a node v has µin(v)/µin(V) · P packets in expectation) into a set of
packets that are distributed according to µ̄out, i.e., afterwards a node has µout/µout(V) · P
packets in expectation.

In addition we associate a demand d(TS) and congestion cong(TS) with a transformation
scheme TS . We say a tranformation scheme routes demand d(TS) from µin to µout with
congestion cong(TS) if the expected load on an edge e for the above process is at most
cong(TS) · w(e) when P = d(TS) (we allow P to be non-integral).

Note that, of course, the input for a transformation scheme could be any packet distribu-
tion. However, the congestion of the scheme is stated w.r.t. some fixed input distribution µin
(its natural input distribution) and some total demand d(TS).

From the congestion-value for µin and its demand d, one can then deduce the congestion-
value for other inputs. If we, e.g., use the transformation scheme on a demand d′ that is
distributed according to ν we experience congestion at most maxv∈V d′ν̄(v)/dµ̄in(v).

To make our notation more concise, we write a statement like “TS routes µin to µout
with demand d and congestion at most C” as “TS routes µin

d−→ µout with congestion (at
most) C”. We omit the demand d if it equals 1.

It may happen that for some transformation scheme TS we cannot exactly specify
the output distribution that corresponds to its natural input distribution µin. We say
TS routes µin −→ µout with approximation σ if the real output distribution µ′out fulfills
µ̄out(v)/σ ≤ µ̄′out(v) ≤ µ̄out · σ.

Finally, in some proofs we will view packets as discrete entities and specify that the
transformation scheme does not split them up.

However, this collides with the fractional nature of the transformation scheme, which is
caused by randomization. Therefore we introduce the following definition of a deterministic
transformation scheme, that extracts this randomness and makes it explicit.

1 As all of our transformation schemes are compact (the later variants of deterministic and concurrent
transformation schemes will be as well), we may drop the ‘compact’ when appropriate.

P. Czerner and H. Räcke 36:7

I Definition 4. A (compact) deterministic transformation scheme TS = (A,P(V), T) is
a compact routing algorithm where A is deterministic and P(v) = {1, ..., Nv} is a set of
path-ids valid for a node v ∈ V .

The idea of the above definition is that we can specify a“random seed” as input label,
which will determine precisely how a packet is routed. The ordinary transformation scheme
will correspond to choosing an input label u.a.r. from sets P(v). In this sense the above
definition makes the random choices of a transformation scheme explicit.

Note that, technically, the definition of routing algorithms allows any path id in P(V) to
be specified at a node v, not only the ones in P(v). We ensure that this does not occur.

As A is deterministic, the path id indeed determines the exact route a packet will take
when starting at a certain node. More precisely, each flow TS(v, l) for v ∈ V, l ∈ {1, ..., Nv}
is simply a path starting at v. Still, there is no guarantee that different path-ids send the
packet to the same node.

We associate a transformation scheme with each deterministic TS, by choosing the path-id
uniformly at random. In this fashion we extend the notions, such as congestion, input/output
distributions, etc., that were defined above for ordinary transformation schemes to also cover
deterministic transformation schemes.

Concurrent Transformation Schemes

While a transformation scheme can mix packets arbitrarily, often we want to distribute
several commodities at the same time, with separate input and output distributions for
each commodity. This allows us to analyze the congestion more precisely and aggregate the
routing information for different commodities. Hence we define the notion of a concurrent
transformation scheme, which executes multiple transformation schemes in parallel.

The idea is that we take a transformation scheme and additionally specify a commodity
as input.

I Definition 5. Let I denote a set of commodities. A (compact) concurrent [deterministic]
transformation scheme (CTS) is a compact routing algorithm TS = (A, I × L, T), s.t.
TS i := (A, {i} × L, T) is a [deterministic] transformation scheme for each commodity i ∈ I.

Note that transformation schemes have a single input label, in which case the L in the
above definition is superfluous and the input to the concurrent transformation scheme is just
the commodity. If it is deterministic, we need the path id as input, and L would be the set
of possible path ids. Similar to before, any combination of commodity and path id may be
specified at a node, according to the definition of a routing algorithm, but for our purpose
only some of these make sense.

The congestion of such a concurrent transformation scheme is defined as follows. Let µi
and di denote the input distribution and demand of TS i, respectively. Let Xi(e) denote the
expected load on an edge e if we execute TS i on di packets distributed according to µi. The
congestion of the CTS D is defined as cong(D) := maxe 1

w(e)
∑
iXi(e).

As an input to the routing algorithm, a commodity i ∈ I has to be encoded in some
fashion. Often, the commodity is determined by the source node (i.e., for each node v at
most one input distributions µi is nonzero) and does not need to be specified. Otherwise, we
will explicitly describe the necessary encoding as a property of the CTS.

Analogous to transformation schemes, we write “TS routes µi di−→ νi with congestion (at
most) C” for each commodity i ∈ I for a CTS, and extend this notation to deterministic
CTS by considering the associated transformation schemes.

ESA 2020

36:8 Compact Oblivious Routing in Weighted Graphs

wS outS outSi

Figure 2 Distributions inside a cluster S with child Si. The child clusters are separated by
dashed lines. The respective distribution is nonzero only on the highlighted nodes and counts the
total weight of highlighted edges adjacent to a node.

2 Overview

In this section we give a high-level overview of the most important steps in our construction.
The first part gives a rough outline of the general approach of routing along a decomposition
tree that forms the basis for some oblivious routing schemes (e.g. [20, 4, 14]), and has also
been used by Räcke and Schmid [22] to obtain compact routing schemes.

2.1 The Decomposition Tree
The result by Räcke and Schmid [22] as well as our extension of it use a decomposition tree,
in particular the one described in [20]. We refer the reader to these for a more detailed
description and just briefly mention the key ideas here. We start with a single cluster
containing all nodes, and then further refine that until all clusters consist of just a single
node. Hence we get a tree T where nodes are subsets of V , which we call clusters. The tree
T has root V , i.e., the cluster containing all nodes, and leaves {v} for each v ∈ V . For a
cluster S with children S1, ..., Sr we have S = S1 ∪̇ ... ∪̇ Sr, so the children are a partition of
the parent. We use height(T) to denote the maximum distance from any leaf to the root,
and deg(T) to denote the largest number of children of any cluster.

Now we introduce a number of distributions, which will be important for routing within
the decomposition tree. For any cluster S we define the border-weight outS : S → N by
outS(v) :=

∑
u/∈S w(v, u) for v ∈ S, counting the total weight of edges leaving the cluster

adjacent to a node. Additionally, for any cluster S with child clusters S1, ..., Sr we define the
cluster-weight wS : S → N as wS :=

∑
i outSi

, which also counts edges between children of S.
These distributions are shown schematically in Figure 2.

The decomposition from [20] has two essential properties:
For each cluster S we can solve the multi-commodity flow problem with demands d(u, v) :=
wS(u)wS(v)/wS(S) for u, v ∈ S with congestion C ∈ O(log2 n) within S, and
the tree has logarithmic height, i.e., height(T) ∈ O(logn).

The essential idea for oblivious routing is that in order to route between two nodes
s and t in the graph we determine the path {s} = S1, S2, . . . , Sk = {t} in the tree and
then we route a packet successively along this path by routing it from distribution w̄Si

to distribution w̄Si+1 for i = 1, . . . , k − 1. Note that distribution w̄S1 = w̄S{s} = 1s and
distribution w̄Sk

= w̄S{t} = 1t, i.e., we indeed route from s to t.

P. Czerner and H. Räcke 36:9

Now suppose that the optimal congestion for the given demand d is Copt(d). How much
demand does the above process induce for routing from wSi

to wS for a child-cluster Si of
some cluster S (for all packets)? Each packet that uses the tree edge (Si, S) in its path has
to leave the cluster Si and thus create a load of 1 in outSi . Conversely, OPT has congestion
Copt(d), i.e., a load of at most outSi

(Si) · Copt(d) on outSi
. Therefore the total demand

that has to be routed for wSi −→ wS is at most outSi(Si) · Copt(d) = wS(Si) · Copt(d). An
analogous argument holds for sending from wS to wSi

.
Now, we define a CTS for every cluster S that concurrently routes wSi

wS(Si)−−−−→ wS for all
child-clusters with small congestion. If these schemes have congestion at most C then the
overall competitive ratio of the compact oblivious routing scheme is height(T)C as an edge
is contained in at most height(T) many clusters. Hence, we can restate our goal as follows.
For every cluster S find

Mixing CTS
A CTS that routes wSi

wS(Si)−−−−→ wS for each child Si, with congestion Õ(1).

Unmixing CTS
A CTS that routes wS wS(Si)−−−−→ wSi

for each child Si, with congestion Õ(1).

Here, we have to think about the encoding of the commodities, i.e., the indices of child
clusters Si. For our oblivious routing scheme we relabel the vertices so that the new name of
a vertex v encodes the path from the root to the leaf {v} in the decomposition tree. Then
when we are given a packet with a source and a target node we can determine the path in
the tree. For routing along an edge (Si, Si+1) of this path we extract the name of the child
cluster and use this as commodity for the CTS. Furthermore, we will fix a specific name for
each child cluster, incorporating a little bit of information for the CTS. (As in the scheme
by Räcke and Schmid [22], the name will be the index in the list of child clusters, sorted by
size.)

2.2 Constructing Transformation Schemes
In this section we give an overview of the steps for constructing transformation schemes
that for some cluster S route wSi

wS(Si)−−−−→ wS and wS
wS(Si)−−−−→ wSi

with small congestion.
For this we use simplified versions of the main lemmata that are proven in the technical
analysis in Section A. We mark these simplified version with a “ ′ ”, so Lemma 3′ would be
the simplified version of Lemma 3 in Section A.

Single-commodity flows

The first lemma that we show is how to construct a transformation scheme from a given flow,
to route between integral distributions.

I Lemma 3′ (Single-commodity flow routing). Let f denote a flow with congestion at most
O(poly(nW)), and µ, µ′ integral distributions with µ′ − µ = balf .2 Then there exists
a compact, deterministic transformation scheme that routes µ µ(V)−−−→ µ′ with congestion
O(cong(f)) and has Nv := µ(v) valid path-ids at node v.

This means that if we are given a flow then we can construct a transformation scheme
that allows us to send packets from sources (outgoing net-flow) to targets (incoming net-flow).
Note that there is no guarantee which target a packet will be sent to if the flow contains
several targets.

2 We remark that due to flow conservation, µ(V) = µ′(V) holds.

ESA 2020

36:10 Compact Oblivious Routing in Weighted Graphs

Product multicommodity flow

The second step of our approach is to obtain a concurrent transformation scheme that
routes a product multicommodity flow (PMCF). Suppose that we are given a weight function
c : V → N on the vertices of the graph. We associate a multicommodity flow problem with
this weight function by defining a demand d(u, v) = c(u)c(v)/c(V) for any pair (u, v) of
vertices. One can view this demand as each vertex u generating a flow of c(u) and distributing
it according to c̄. Suppose that we can solve this multicommodity flow problem with some
congestion C = O(poly(nW)). We show that we can then obtain a CTS that routes a
solution to the PMCF.

I Lemma 6′ (PMCF-routing). Given a graph G together with a weight function w : V → N
on the vertices there exists a compact, deterministic CTS that routes 1u c(u)−−→ c for each
u ∈ V with approximation 1 +O(n−1) and congestion Õ(C).

We obtain this result by making use of the KRV-framework [16]. One way to view this
framework is that it tries to embed an expander into a graph by solving a small number
of single-commodity maximum flow problems. Each maximum flow solution gives rise to a
matching. One can then route to a random vertex by following the “matching random walk”,
i.e., in the i-th step the packet takes the (embedded) matching edge with probability 1/2.

We proceed slightly differently. Instead of decomposing the flow into matchings and then
route along the matchings (which seems difficult to do with small routing tables) we simply
use Lemma 3′ to route along the flow. This means in the i-th step we stay with probability
1/2 or we route the packet along the flow to some target of the flow. More concretely, assume
that the KRV-scheme uses a flow f between sources S := {v ∈ V | balf (v) < 0} and targets
T := {v ∈ V | balf (v) > 0} in the i-th step. Then we construct two transformation schemes.
Let

µ(v) :=
{
−balf (v) v ∈ S
0 otw. and µ′(v) :=

{
balf (v) v ∈ T
0 otw.

We use Lemma 3′ to construct a transformation scheme that routes µ → µ′ and one that
routes µ′ → µ. These then allow us to distribute packets in the described way. The guarantees
of KRV still hold for this slightly modified scheme, which means that after performing a
polylogarithmic number of such steps a packet is at a random location.

The above process and the transformation schemes for the individual iterations can be
combined into a single concurrent transformation scheme. The id-sets Mv for this scheme
contain bitstrings that encode for every iteration: (a) the id to be used in the transformation
scheme for this iteration and (b) a bit that indicates whether to route along the flow or to
stay. Note that the CTS is deterministic, i.e., after choosing the id the packet follows a fixed
path in the network.

The result by Räcke and Schmid [22] also required a sub-routine for routing a product
multicommodity flow. They used a randomized rounding approach on the multicommodity
flow solution of the PMCF-instance, and crucially exploited the fact that the number of
routing paths going through an edge in such a solution is Õ(C). As illustrated in Figure 3,
we cannot do this in our scenario as the number of paths going through an edge might be as
large as Õ(CW). Storing these paths would require large routing tables.

P. Czerner and H. Räcke 36:11

a1 b1

a2

a3

ak−1

ak

b2

b3

bk−1

bkk times

Figure 3 Routing multiple paths over a single edge. Each node ai sends a packet to bi. A single
path needs k bits of information to encode, there are k paths and n = O(k) nodes, so on average
each node needs to store k2/n = Ω(n) bits if an arbitrary set of paths is chosen, which is too much.
The same holds for paths chosen uniformly at random.

Routing arbitrary demands

The PMCF-scheme described above routes 1u w(u)−−−→ c. If we choose c := wS for some cluster S
then this scheme gives us the first part of our goal: we can concurrently route wSi

wS(Si)−−−−→ wS
with small congestion. To see this, observe that if we consider the demands in the PMCF-
scheme for all commodities u ∈ Si combined, this is

∑
u wS(u)1u = wS � Si = outSi

. We
can go from wSi to outSi within Si using Lemma 3′, and then the PMCF-scheme distributes
it according to wS .

Hence, by simply merging commodities u ∈ Si into one we obtain our desired CTS.
However, for our oblivious routing scheme we also need to be able to route commodities

wS
wS(Si)−−−−→ wSi . This turns out to be much more involved. Note that we cannot simply

“route in reverse” because a transformation scheme is inherently directed.
We do not directly construct a transformation scheme that routes wS wS(Si)−−−−→ wSi

but
we first embed an auxiliary graph into the cluster S (via a transformation scheme). This
auxiliary graph is directed and must have small degree for the embedding to be compact.

I Lemma 10′ (general graph embedding). Let G′ = (S,A, d) denote a weighted, directed
graph, where the total weight of incoming and outgoing edges of a node v is at most wS(v),
and degG′(v) ∈ Õ(deg(v)). Then there is a compact CTS that routes 1u d(u,v)−−−−→ 1v for each
(u, v) ∈ A with congestion Õ(C).

This lemma is the main technical contribution of our work. A rough outline of the
approach is as follows. The first observation is that one could combine the result for the
PMCF-routing with Valiant’s trick [28, 27] of routing to random intermediate destinations.
Suppose that we want to route from x to y. Then we first apply the PMCF-scheme of
Lemma 6′; this brings us to a node z chosen according to wS . At z we choose a path id idy
that brings us to y, i.e., if we apply the transformation scheme starting from node z with id
idy the packet is delivered to y. We choose idy uniformly at random from all path ids that
will deliver the packet to y. This applies Valiant’s trick and the standard analysis shows that
the congestion of this approach will be Õ(C).

However, implementing this approach with small routing tables is problematic. The node
z could store a table of path ids which can be used for routing to y but this is clearly not
compact.

If all edges have weight 1, we can apply a suitable randomized rounding to the above
path generation method. Then the number of paths that go from x to y are just Õ(deg(x)).
This allows the node x to store the necessary information for every path. In the weighted
setting, however, the randomized rounding approach leads to Õ(W · deg(x)) many paths.
The resulting tables would not be compact.

ESA 2020

36:12 Compact Oblivious Routing in Weighted Graphs

Instead we proceed as follows. We say a path p is a class l path if the smallest capacity
edge of p is from class l. (Recall that we assume all capacities to be powers of two, and that
a class l edge is one with capacity 2l.)

A pair (x, y) is from class l if l is the most frequent class that occurs when generating
x-y-paths by the above process.

In a first step we change the path generation process to only use class l paths for a class
l pair. This only increases the congestion by a factor of Nclass (the number of classes). For a
randomized rounding approach to guarantee a good congestion we need to spread the traffic
between a class l pair (x, y) over roughly k := d(x, y)/2l many class l paths.

For this we split the packet into k different parts, each with a different path. However,
we cannot store information for each such path in x directly, as k may be large. Instead, we
identify k many other nodes, each of which we use to store the information for just a single
path. Of course, we cannot simply pick any nodes in the cluster — they have to be reachable
from x with low congestion.

As it turns out, the set of k class l paths from x to y already contains an appropriate
choice. Each class l path contains a class l edge, and we pick one of its two adjacent nodes
as helper node. Now observe that each path transports 2l flow, so there can only be a small
number of paths using that edge, because we have low congestion. That means that we can
use Õ(1) space in the helper node, for each path that uses it.

Now that we have found k helper nodes that can store our routing information, the
packets still have to reach these nodes, to pick up that information. So now we send a
single-commodity flow from all source nodes x′ of class l pairs to their helper nodes, and
then back. We set up a TS for both directions of the flow, using Lemma 3.

Note that this does not guarantee that a packet from source node x reaches “its” helper
node, but this is not required — it only needs to reach a node in which to store its routing
information. Similarly, the packet may not get back to x, but end up at a different x′.

We have the same packet distribution as before, meaning every x′ has the same number of
packets, but possibly different ones. However, each packet has picked up Õ(1) of information
while passing its helper node.

Suppose that all packets now in x have a target y′ s.t. (x, y′) is a class l′ ≥ l pair. Then
we can pick a single path for each of these packets, and store the information for that path
in the helper node. (Recall that paths are generated by the PMCF-scheme of Lemma 6′, so
we only need to store their path ids.)

If that is not the case we split the packet further, by applying the scheme recursively.

Hypercube embedding

The previous lemma tells us that we can embed graphs with low degree. More precisely, we
can embed any graph G′ = (S,A, d) which fulfills the following properties.
(1) The degree degG′(v) at a vertex is polylogarithmic.
(2) The capacity of incoming edges and the capacity of outgoing edges at a vertex is roughly

equal to wS(v).
Now, in order to be able to construct an unmixing CTS, i.e., route wS wS(Si)−−−−→ wSi

for a
cluster S, we find some graph with the above properties where an unmixing CTS is easy to
implement, and then embed that graph into G. In particular, we want a G′ which has one
additional property.
(3) There is a suitable numbering of the child clusters of S for which there exists a CTS

for G′ that routes wS wS(Si)−−−−→ wSi for each Si with small congestion and commodity Si
encoded as integer i.

P. Czerner and H. Räcke 36:13

The result by Räcke and Schmidt [22] used a hypercube, where each node v received
wS(v) hypercube ids. For weighted edges this would violate property (1).

Instead, we essentially embed several (disconnected) hypercubes, one for each class l. A
node v then receives roughly w(l)

S (v) hypercube ids, at most one for each class l edge adjacent
to it. The existence of a good CTS scheme for G′ then follows from classical results about
online routing on the hypercube [28].

References
1 Ittai Abraham, Cyril Gavoille, and Dahlia Malkhi. On space-stretch trade-offs: Upper bounds.

In Proc. 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 217–224, 2006. doi:10.1145/1148109.1148144.

2 Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Räcke. Optimal oblivious
routing in polynomial time. Journal of Computer and System Sciences, 69(3):383–394, 2004.
doi:10.1145/780542.780599.

3 Yair Bartal and Stefano Leonardi. On-line routing in all-optical networks. In Proc. International
Colloquium on Automata, Languages, and Programming (ICALP), pages 516–526. Springer,
1997.

4 Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke. A practical algorithm for
constructing oblivious routing schemes. In Proceedings of the 15th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 24–33, 2003. doi:10.1145/777412.
777418.

5 Allan Borodin and John E. Hopcroft. Routing, merging, and sorting on parallel models of
computation. Journal of computer and system sciences, 30(1):130–145, 1985. doi:10.1145/
800070.802209.

6 Marco Chiesa, Gábor Rétvári, and Michael Schapira. Oblivious routing in ip networks.
IEEE/ACM Transactions on Networking (TON), 26(3):1292–1305, 2018. doi:10.1109/TNET.
2018.2832020.

7 Lenore J Cowen. Compact routing with minimum stretch. Journal of Algorithms, 38(1):170–183,
2001. doi:10.1006/jagm.2000.1134.

8 Paul Erdős. Extremal problems in graph theory. In Proceedings of the Symposium on Theory
of Graphs and its Applications, pages 29–36, 1963. doi:10.1002/jgt.3190010206.

9 Pierre Fraigniaud and Cyril Gavoille. Memory requirement for universal routing schemes. In
Proc. 14th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
223–230. ACM, 1995. doi:10.1145/224964.224989.

10 Pierre Fraigniaud and Cyril Gavoille. Routing in trees. In Proc. International Colloquium
on Automata, Languages, and Programming (ICALP), pages 757–772. Springer, 2001. doi:
10.1007/3-540-48224-5_62.

11 Greg N Frederickson and Ravi Janardan. Designing networks with compact routing tables.
Algorithmica, 3(1-4):171–190, 1988. doi:10.1007/BF01762113.

12 Cyril Gavoille. Routing in distributed networks: Overview and open problems. ACM SIGACT
News, 32(1):36–52, 2001. doi:10.1145/568438.568451.

13 Cyril Gavoille and Stéphane Pérennès. Memory requirement for routing in distributed networks.
In Proc. 15th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
125–133. ACM, 1996. doi:10.1145/248052.248075.

14 Chris Harrelson, Kirsten Hildrum, and Satish Rao. A polynomial-time tree decomposition
to minimize congestion. In Proc. 15th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 34–43, 2003. doi:10.1145/777412.777419.

15 Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight bounds for oblivious
routing in the hypercube. Mathematical Systems Theory, 24(1):223–232, 1991. doi:10.1145/
97444.97453.

ESA 2020

https://doi.org/10.1145/1148109.1148144
https://doi.org/10.1145/780542.780599
https://doi.org/10.1145/777412.777418
https://doi.org/10.1145/777412.777418
https://doi.org/10.1145/800070.802209
https://doi.org/10.1145/800070.802209
https://doi.org/10.1109/TNET.2018.2832020
https://doi.org/10.1109/TNET.2018.2832020
https://doi.org/10.1006/jagm.2000.1134
https://doi.org/10.1002/jgt.3190010206
https://doi.org/10.1145/224964.224989
https://doi.org/10.1007/3-540-48224-5_62
https://doi.org/10.1007/3-540-48224-5_62
https://doi.org/10.1007/BF01762113
https://doi.org/10.1145/568438.568451
https://doi.org/10.1145/248052.248075
https://doi.org/10.1145/777412.777419
https://doi.org/10.1145/97444.97453
https://doi.org/10.1145/97444.97453

36:14 Compact Oblivious Routing in Weighted Graphs

16 Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single commodity
flows. Journal of the ACM (JACM), 56(4):19, 2009. doi:10.1145/1538902.1538903.

17 M. Kodialam, T.V. Lakshman, J.B. Orlin, and S. Sengupta. Oblivious routing of highly
variable traffic in service overlays and ip backbones. IEEE/ACM Transactions on Networking
(TON), 17(2):459–472, 2009. doi:10.1109/TNET.2008.927257.

18 Dmitri Krioukov, Kevin Fall, and Xiaowei Yang. Compact routing on internet-like graphs. In
Proc. IEEE INFOCOM. IEEE, 2004. doi:10.1109/INFCOM.2004.1354495.

19 Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr Lapukhov,
Chiun Lin Lim, and Robert Soulé. Semi-oblivious traffic engineering: The road not taken.
In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
pages 157–170, Renton, WA, April 2018. USENIX Association. URL: https://www.usenix.
org/conference/nsdi18/presentation/kumar.

20 Harald Racke. Minimizing congestion in general networks. In Proc. 43rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 43–52. IEEE, 2002. doi:
10.1109/SFCS.2002.1181881.

21 Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks.
In Proc. 40th Annual ACM Symposium on Theory of Computing (STOC), pages 255–264.
ACM, 2008. doi:10.1145/1374376.1374415.

22 Harald Räcke and Stefan Schmid. Compact oblivious routing. In Proceedings of the 27th
European Symposium on Algorithms (ESA), 2019. doi:10.4230/LIPIcs.ESA.2019.75.

23 Harald Räcke, Chintan Shah, and Hanjo Täubig. Computing cut-based hierarchical decom-
positions in almost linear time. In Proc. 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 227–238. Society for Industrial and Applied Mathematics, 2014.
doi:10.1137/1.9781611973402.17.

24 Gábor Rétvári, András Gulyás, Zalán Heszberger, Márton Csernai, and József J Bíró.
Compact policy routing. Distributed computing, 26(5-6):309–320, 2013. doi:10.1007/
s00446-012-0181-9.

25 Mikkel Thorup and Uri Zwick. Compact routing schemes. In Proceedings of the 13th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), SPAA 01, pages 1–10, New
York, NY, USA, 2001. Association for Computing Machinery. doi:10.1145/378580.378581.

26 Brian Towles and William J Dally. Worst-case traffic for oblivious routing functions. In Proc.
14th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA). ACM, 2002.
doi:10.1109/L-CA.2002.12.

27 Leslie G. Valiant. A scheme for fast parallel communication. SIAM Journal on Computing,
11(2):350–361, 1982. doi:10.1137/0211027.

28 Leslie G. Valiant and Gordon J. Brebner. Universal schemes for parallel communication. In
Proceedings of the 13th ACM Symposium on Theory of Computing (STOC), pages 263–277,
1981. doi:10.1145/800076.802479.

29 Jan van Leeuwen and Richard B Tan. Compact routing methods: A survey. In Proc. Colloquium
on Structural Information and Communication Complexity (SICC), pages 99–109, 1995.

A Detailed Analysis

In this section we provide the details for constructing a mixing and an unmixing CTS for
every cluster. This will then give the oblivious routing scheme.

Most of our lemmata related to the PMCF work for arbitrary weights c where the
corresponding PMCF can be solved with congestion C ∈ O(poly(nW)). We prove those
without making further assumptions.

Note also that we can restrict the transformation schemes to route within a cluster: If
a lemma is proven for arbitrary weights c, then it also works for weights wS within the
subgraph G[S].

https://doi.org/10.1145/1538902.1538903
https://doi.org/10.1109/TNET.2008.927257
https://doi.org/10.1109/INFCOM.2004.1354495
https://www.usenix.org/conference/nsdi18/presentation/kumar
https://www.usenix.org/conference/nsdi18/presentation/kumar
https://doi.org/10.1109/SFCS.2002.1181881
https://doi.org/10.1109/SFCS.2002.1181881
https://doi.org/10.1145/1374376.1374415
https://doi.org/10.4230/LIPIcs.ESA.2019.75
https://doi.org/10.1137/1.9781611973402.17
https://doi.org/10.1007/s00446-012-0181-9
https://doi.org/10.1007/s00446-012-0181-9
https://doi.org/10.1145/378580.378581
https://doi.org/10.1109/L-CA.2002.12
https://doi.org/10.1137/0211027
https://doi.org/10.1145/800076.802479

P. Czerner and H. Räcke 36:15

A.1 Constructing a mixing CTS
Single-commodity flows

To get started, we show how to use a single-commodity flow to construct a transformation
scheme. The key idea is that we decompose the flow into paths with unique identifiers and
store intervals for each edge, to encode the outgoing paths.

I Lemma 3 (Flow routing). Let f denote a flow with cong(f) ∈ O(poly(nW)), and µ, µ′
integral distributions with µ′ − µ = balf . Then there exists a deterministic TS that routes
µ µ(V)−−−→ µ′ with congestion O(cong(f)).

The routing table of node v has size O(deg(v) log(nW)), and packet headers have length
O(log(nW)). At a node v there are Nv := µ(v) valid path ids.

Proof. First, we transform f to be integral and acyclic.
Let F := dcong(f)e. We consider the single-commodity flow problem where we add a

source s, a sink t and edges (s, v), (v, t) for v ∈ V with respective capacities µ(v) and µ′(v).
We retain the other edges, scaling their capacities by F . All capacities are integral and f is
a solution with flow value µ(V), so there is also an integral, acyclic solution f ′, which by
construction has µ′ − µ = balf ′ and cong(f ′) ≤ F .

For each source v ∈ V (i.e., a node that has k := −balf ′(v) > 0) we put k tokens into v.
These have labels a+ 1, a+ 2, ..., a+ k where a is chosen s.t. the labels are disjoint for all
nodes. We store a and k in v, which takes O(log(nW)) space.

Now we repeatedly move those tokens according to f ′, iteratively constructing the TS in
the process. Each token represents a unit of flow.

As f ′ is acyclic, we iterate over the nodes based on the topological ordering given by f ′.
Let u denote the current node. We assume the invariant that no previous node contains any
tokens, which is true in the beginning and will hold inductively for all other iterations.

Therefore, u has tokens precisely equal to the flow over incoming edges of u (plus −balf ′(u)
if u is a source), which, due to flow conservation, is the same as the flow over outgoing
edges (plus balf ′(u) if u is a sink). We distribute the tokens by sorting them and assign each
outgoing edge (u, v) an amount of consecutive tokens, according to its flow f ′(u, v). These
tokens are sent over that edge. Exactly max{balf ′(v), 0} tokens remain, which we remove
from the graph. Hence we deleted all tokens from u and added tokens only to its successors,
so our invariant still holds.

After the last iteration, all nodes are empty, so each token has been routed. To construct
a TS, we encode the path of all tokens, by storing an interval I(u, v) of ids for each edge
(u, v), which contains the tokens which were routed over that edge. Note that the interval
may be larger than the number of tokens that use e; all tokens that traverse u and are inside
I(u, v) use edge e = (u, v), but the interval may contain tokens that do not traverse u. In
total we just need to store two ids of length O(log(nW)) per incident edge. (Recall that the
maximum load over any edge is at most FW ∈ O(poly(nW)).)

As we send exactly |f ′(e)| tokens over an edge e we get the same congestion as f ′.
We want to construct a deterministic TS, so the input label at a node v contains a path

id l ∈ {1, ..., µ(v)}. As v stores the offset a from above, we can map the path id to a+ l, one
of the tokens starting at v. Afterwards, the routing algorithm simply needs to check which
interval contains the token, to simulate their movement. This is deterministic. J

We use Lemma 3 typically to route between distributions which are ‘close’ to our weights
c. As we can solve the PMCF with low congestion, this will have low congestion as well. The
following lemma encapsulates that argument.

ESA 2020

36:16 Compact Oblivious Routing in Weighted Graphs

I Lemma 4. Let µin, µout denote distributions with µin, µout ≤ c and µin(V) = µout(V).
Then there is a flow f with balf = µout − µin and cong(f) ≤ 2C.

Proof (omitted). The proof simply uses the PMCF together with Valiant’s trick. It can be
found in the full version of this paper. J

Routing the PMCF

Our first goal is to create a transformation scheme for the PMCF, for which we use the
technique of cut-matching games introduced in [16]. We will not discuss it in detail, but
instead encapsulate the properties of interest and refer to the original proofs. We need modify
the technique slightly 3 , so for those parts we briefly show how the proofs can be adapted.

Consider the following game. We are given a finite set of nodes V ′, with |V ′| even. There
are N ∈ O(log2 |V ′|) rounds and two players. In round k,

Player 1 (the“cut player”) chooses a partition A1 ∪̇A2 = V ′ with |A1| = |A2|,
Player 2 (the“matching player”) chooses a bijection M : V ′ → V ′ respecting the partition,
i.e., it maps A1 to A2 and vice versa, and
Player 2 chooses a partition B of V ′.

At the end of the game, we define a random walk on V ′ consisting of N steps. In step k,
a packet

moves from node v to either v or M(v) with probability 1
2 , and then

moves from the resulting node v′ to a node in Bv′ uniformly at random, where v′ ∈ Bv′ ∈ B
is the group of v′ in the partition B.

The game is won by Player 1 if this random walk is mixing, i.e., for any u, v ∈ V ′ it moves
from u to v with probability between 1/|V ′| ± ε, where ε = 1/|V ′|2.

I Lemma 5 (KRV). Player 1 has a winning strategy.

Proof (omitted). See [16, Section 3.1]. The proofs have to be changed slightly to work here,
a precise explanation can be found in the full version of this paper. J

These random walks can be made deterministic, by storing whether to switch sides at
each step, provided that we can send packets along our chosen bijection M . Additionally,
while we need a lot of nodes in V ′ to match the weights c, a single node v can simulate many
in V ′ with only little bookkeeping. Here we use that “mixing” nodes of V ′ at each step is not
problematic, a notion made precise by choosing the appropriate partition B. The bijections
M will be stored implicitly using single-commodity flows.

In total we get short descriptions of the possible paths taken by the random walk, enabling
us to circumvent one of the key problems arising in weighted graphs — the inability to store
paths directly within the graph due to too many paths going over a single edge.

I Lemma 6 (PMCF transformation scheme). There exists a deterministic CTS that routes
1v c(v)−−→ c for each v ∈ V with approximation 1 +O(n−1) and congestion O(C log2 n).

The routing table of node v has size O(deg(v) log3(nW)), while path ids and packet
headers have length O(log3(nW)).

3 In particular, we use a bijection instead of a perfect matching, allow the matching player to choose
subsets which will be shuffled randomly, and require a stronger bound on the error.

P. Czerner and H. Räcke 36:17

Proof. We want to play the game described above Lemma 5, so we define a set of“virtual”
nodes V ′ := {1, ..., 2nc(V)} 4 and choose an embedding ϕ : V ′ → V which assigns each node
virtual nodes according to its weight, i.e. |ϕ−1(v)| = 2nc(v).

In each turn we have A1∪A2 = V ′, |A1| = |A2| and can choose any bijectionM respecting
that partition. We want to simulate the random walk, so we also need a way to send packets
according to M . In other words, we need a CTS that routes 1ϕ(v′) → 1M(ϕ(v′)) for each
v′ ∈ V ′. It is difficult to construct such a CTS given a specific M , so instead we build the
transformation scheme first, and then define M accordingly.

We construct two deterministic transformation schemes TS1 and TS2, routing from A1
to A2 and vice versa. Let us first consider TS1.

A node v sends out a packet for each virtual node in A1 assigned to it, so µ1(v) :=
|ϕ−1(v) ∩ A1| in total. Analogously, it receives µ2(v) := |ϕ−1(v) ∩ A2| packets. Hence we
want to route µ1

nc(V)−−−−→ µ2.
We have µ1, µ2 ≤ c and µ1(V) = µ2(V) = nc(V), so Lemma 4 yields a flow f with

balf = µ2 − µ1 and cong(f) ≤ 2nc(V). (We scale µ1, µ2 by 1/n and the resulting flow by n.)
Using f , we apply Lemma 3 to get a deterministic transformation scheme TS1 that routes

µ1
nc(V)−−−−→ µ2 with congestion O(nC).
At each node v there are now µ1(v) path ids to route a packet using TS1. The transfor-

mation scheme is deterministic, so each path id corresponds to a single target node. Consider
giving µ1(v) packets to each node v, one for each path id, and routing them accordingly.
Then, v will receive µ2(v) packets. By mapping the outgoing packets to ϕ−1(v) ∩ A1 and
the incoming packets to ϕ−1(v) ∩A2 in some fashion, we get a bijection from A1 to A2.

We construct TS2 in the same manner, and combine the two mappings to get the desired
bijection M from V ′ to V ′.

It remains to be shown that we can indeed route this bijection efficiently, i.e., without
encoding any arbitrary mappings between virtual nodes and path ids.

Instead, we will simply choose a random path id for either TS1 or TS2, weighted such
that each path id has the same probability. This corresponds to moving to a random virtual
node assigned to v in each iteration, i.e. choosing our partition as B := {ϕ−1(v) : v ∈ V } in
each round.

To summarize, we route the random walk as follows. In each iteration k = 1, ..., N we
flip a fair coin to decide whether we move from node v according to M or not. If yes, we
pick a number i u.a.r. in {1, ..., 2nc(v)}. The first µ1(v) numbers stand for path ids of TS1,
the others for path ids of TS2. Then we route using the given transformation scheme and
path id.

As we want our transformation scheme to be deterministic, these random choices will not
be made while routing the packet, but encoded in the path id. There is a small technical
issue in that the set {1, ..., 2nc(v)} from which we sample i depends on v, but needs to be
encoded in a path id chosen u.a.r. from some fixed range of integers. Instead, we will sample
i′ ∈ {1, ..., 2n2c(V)N} u.a.r and set i := i′ (mod 2nc(v)). (Recall that N is the number of
rounds.) So i is not quite uniform, but the probabilities differ by at most a factor of 1+1/nN
in each round, and 1 + 1/n in total.

Thus we can store all random choices for the O(log2 nc(V)) = O(log2(nW)) iterations
using O(log3(nW)) bits. These are the path ids of our transformation scheme. As there is
no randomness apart from the choices encoded in the path id, the transformation scheme is
deterministic. The packet headers need to include the headers from Lemma 3, as well as our
path ids; the length of the latter dominates.

4 We would like to have V ′ = {1, ..., c(V)}, but we need to make sure that |V ′| is even and at least n.

ESA 2020

36:18 Compact Oblivious Routing in Weighted Graphs

Recall that we want to have a CDS that routes 1v c(v)−−→ c for each v ∈ V . Hence, in
aggregate the input distribution is c.

Let us now analyze the congestion. TS1 routes µ1
nc(V)−−−−→ µ2 and TS2 does µ2

nc(V)−−−−→ µ1,
both with congestion O(nC). If we add them and scale the demand by 1/n we route c c(V)−−−→ c

with congestion O(C). So the distribution of packets does not change in an iteration, except
for the factor of 1 + 1/nN above, and the total congestion is O(C log2(nW)).

Due to Lemma 5, the random walk moves to any virtual node with probability between
1/2nc(V)± 1/|V ′|2. We have |V ′|2 ≥ 2n2c(V), so scaling by the total amount of flow c(V)
yields a value in 1/2n± 1/2n2. A node v ∈ V has 2nc(v) virtual nodes, so it receives between
c(v)(1±1/n) packets in the random walk, or between c(v)(1±2/n) in the actual CTS. Hence
the output distribution is c, with an approximation of 1 +O(n−1). J

We remark that this CTS has input distribution 1v for commodity v ∈ V , which means
that the source node of a packet already encodes its commodity.

Mixing CTS

To close out section we prove that we can implement the mixing step with the tools we have.
To start, we need a small helper lemma.

I Lemma 7 (Routing distributions similar to c). Let µin, µout denote integral distributions
with µin, µout ≤ c and set M := min{µin(V), µout(V)}. Then there exists a deterministic TS
that routes µin(V) M−→ µout(V) with congestion O(C). The routing table of node v has size
O(deg(v) log(nW)), while path ids and packet headers have length O(log(nW)).

Proof (omitted). The proof can be found in the full version of this paper. J

Now we fix a cluster S with children S1, ..., Sr. As we will later change the numbering of
children, it is important that the following lemma works for an arbitrary one.

I Lemma 8 (Mixing CTS). There exists a CTS that routes wSi
wS(Si)−−−−→ wS for each i = 1, ..., r

with congestion O(C log2 n) and approximation 1 +O(n−1). The routing table of node v has
size O(deg(v) log3(nW)), while path ids and packet headers have length O(log3(nW)).

Proof. For each Si we route wSi
wS(Si)−−−−→ outSi

within Si using Lemma 7 for weights c :=
wSi . This has congestion O(C), as wS(Si) = out(Si). It uses space only within Si, so
O(deg(v) log(nW)) per node v ∈ S.

In total, the packets are now in distribution
∑
i outSi = wS and we apply Lemma 6 with

c := wS . (Here we do not use that Lemma 6 gives a deterministic CTS.) As all source nodes
route to wS concurrently, we route outSi

wS(Si)−−−−→ wS for each i = 1, ..., r (with approximation
1 +O(n−1)). This has congestion O(C log2 n).

For the bounds on space, the costs of the latter step dominate. J

As for Lemma 6, the source node of a packet already determines the commodity, so there
is no need to specify an encoding for it.

A.2 Constructing an Unmixing CTS
General Graph Embedding

Up until now, we have not used that we have only edges of distinct classes. The next two
lemmas concern randomized rounding, which we use to select a small number of paths from
a flow without increasing congestion. This uses a probabilistic argument to prove existence,
but the choice of paths is fixed and not subject to randomness.

P. Czerner and H. Räcke 36:19

Consider some flow f sending k packets from a source node u to a node v with congestion 1,
where the flow involves only edges of weight 1. It is obvious that taking a single path with
weight k from that flow uniformly at random increases the congestion to k, while taking k
paths with weight one should intuitively work quite well, giving a congestion 1 +O(log k).
This intuition is correct, which we now prove formally.

We call a multi-set of u-v-paths a path system. The class of a path is the minimum class
of its edges, and the class of a path system P is the minimum class amongst its paths. To
send a packet using a path system P we choose a path uniformly at random. Therefore, if
we have multiple path systems P = {P1, ..., Pk} with demands d = {d1, ..., dk}, then their
total congestion is cong(P, d) := cong({dip/|Pi| : i ∈ {1, ..., k}, p ∈ Pi}).

I Lemma 9 (Randomized rounding). Let P = {P1, ..., Pk} denote a set of path systems with
demands d. Then there exists a set P ′ = {P ′1, ..., P ′k}, with P ′i ⊆ Pi and |P ′i | ≤ d2−ldie for
each Pi of class l. The congestion is cong(P ′, d) ∈ O(cong(P, d) + logn).

Proof (omitted). The proof can be found in the full version of this paper. J

Having the tool of randomized rounding at our disposal, we now turn to the most involved
lemma in our construction. If we want to route small demands we can already do so using
Lemmata 6 (to get a path system) and 9 (to pick a small number of paths to store). However,
routing a demand of size, say, W from node u to v, we would have to pick 2−lW paths from
a path system Pu,v connecting u and v, to ensure low congestion. Here, l is the class of Pu,v.

Hence, if l is small we would need to route a large number of paths. Instead, we find a
cut consisting only of small (i.e., class l) edges separating each path in Pu,v. 5 These can be
used to store routing information.

So we take all pairs (ui, vi) in the same situation, that is, connected by a class l path
system, and take the union of all the cuts consisting of class l edges. Then we route a
single-commodity flow from the nodes ui to this cut. Of course, the packets from u may
have ended up at an edge belonging to some other ui, so it may not be possible to route to v
directly. Instead we send the packets back through the single-commodity flow.

Again, the packets from u may now reside in a different node u′. However, on the way
they passed through a class l edge, which we can use for storing the path from u′ to v. (To
be precise, we use one of the adjacent nodes for storage.) But now we have a new problem –
while both Pu,v and Pu′,v′ are class l path systems, Pu′,v need not be. If it has class at least
l, all is well and we can route the packet with a single path. Though if it has a class l′ < l

we have to route using multiple paths again.
The fact that the class keeps decreasing allows us to solve this problem recursively.

At each class we split the packet into smaller ones and find an edge to store the routing
information for each of them. This stops when the packet is small enough to route directly,
at the latest once it has reached size 1.

When we refer to storing the routing information for a node u in some previous node
v on the path of a packet, we are using shorthand for a slightly elaborate transformation
scheme, which we will refer to as anticipative routing. When the packet arrives at node v, the
node checks the packet header and adds the stored routing information to it, before sending
the packet on its way normally. Then, once the packet has reached the node u the routing
information is extracted from the packet header and used.

5 Note that this is not a cut of the graph, which might still be connected, but of the path system.

ESA 2020

36:20 Compact Oblivious Routing in Weighted Graphs

I Lemma 10 (General graph embedding). Let G′ = (V,A, d) denote a weighted, directed
graph, where the total weight of incoming and outgoing arcs of a node v is at most c(v),
and degG′(v) ∈ O(deg(v) log2 n). Then there is a CTS that routes 1v d(u,v)−−−−→ 1v for each
(u, v) ∈ A with congestion O(C log2 n log2W).

The routing table of node v has size O(deg(v)C log2 n logW log3(nW)), while packet
headers have length O(log3(nW)). Commodity (u, v) ∈ A is encoded as l ∈ {1, ...,degG′(u)}.

Proof. As mentioned above, the problematic demands are those which need multiple paths
to route with low congestion. We will refer to those demands as large. More precisely, we
call an arc (u, v) ∈ A l-large if d(u, v) > 2l and l is the class of Pu,v (defined below).

The proof will proceed in three parts.
(a) First, we construct path systems P = {Pu,v : u, v ∈ V }, s.t. all paths in Pu,v have the

same class and can be routed by storing a O(log3(nW)) path id. For any demands d′
where both the total incoming and outgoing demand of a node v are at most c(v), we
have cong(P, d′) ∈ O(C log2 n logW).

(b) Then we show that we can partially route arcs a ∈ A which are l-large, replacing them
with 2−ld(u, v) arcs of weight 2l. This does not change either the total outgoing or
incoming demand of any node.

(c) Finally, we construct the CTS and derive the resulting bounds.

Part (a). We use Lemma 6 to construct a deterministic concurrent transformation
scheme TS1 routing the PMCF. Hence we can have P ′u,v denote the path system containing
the paths from u to v, one for each path id. Then we employ Valiant’s trick and define
P ∗u,v as

⋃
w∈V P

′
u,w ◦ P ′w,v, where P ◦ P ′ is a concatenation of path systems P, P ′ given by

P ◦ P ′ := {p ◦ p′ : p ∈ P, p′ ∈ P ′}. That means that we can split a path in P ∗u,v into its first
and second part.

Now consider some demands d′, where the incoming or outgoing demand of any node v is
at most c(v). As

⋃
w∈V P

′
u,w are all outgoing paths of u, sampling one u.a.r. is equivalent to

sending a packet with TS1 from u. So the first parts create the same congestion as TS1, given
that

∑
v d(u, v) ≤ c(v). To be precise, the congestion increases by a factor of 1 +O(n−1),

the approximation guaranteed by Lemma 6. This is only a constant factor, so we are going
to disregard it.

The intermediate node w follows distribution c. The second parts, i.e., the paths from
P ′w,v then have weight

∑
u c(w)d(u, v) ≤ c(w)c(v). Routing a packet from w using TS1

chooses a path from P ′w,v with weight c̄(v), so we also bound the congestion based on TS1.
In total we get cong(P ∗, d′) ≤ 2 cong(TS1, c) ∈ O(C log2 n). Finally, we want to modify

P ∗u,v so that it only contains paths of one class. We simply pick a class l with the maximum
number of paths in P ∗u,v, and set Pu,v := {p ∈ P ∗u,v : p has class l}. As there are Nclass
classes, we have |P ∗u,v| ≤ |Pu,v|Nclass and the congestion increases by O(logW).

Each path in Pu,v is the concatenation of two paths from TS1, so we can store two path
ids of TS1 to route it.

Part (b). We choose the highest class l where the set A′ of l-large arcs is non-empty.
Additionally, we introduce str : A → V , which is the node that will be used to store the
routing information for an arc. Initially, str(u, v) = u.

For any arc a ∈ A′ we define d′(a) as the largest multiple of 2l s.t. d′(a) ≤ d(a), and then
set d := d− d′. So when routing a, a coin is flipped. With weight d(a) we route using a (how
precisely is yet to be determined), with weight d′(a) we do the following procedure.

P. Czerner and H. Räcke 36:21

For all (u, v) ∈ A′ the path system Pu,v has class l. Using Lemma 9 with demands
d′, we find a set of d′(u, v)2−l class l paths from u to v for (u, v) ∈ A, with congestion
O(C log2 n logW). We let M denote the set of prefixes of these paths, up to (and including)
their first class l edge. By treating M them as a flow f , we can construct a transformation
scheme TS , using Lemma 3, which has the same congestion.

Going back to the arc a we want to route, we send a packet using TS , with path id
chosen uniformly at random. The necessary information for this is stored in str(a). There are
N := d′(a)2−l paths in M for a (and thus path ids of TS). If we put that number of tokens
into the source of a and apply TS (one path id per token), they end up at nodes z1, ..., zN . A
node zi may receive tokens from other demands a′ ∈ A′, but at most O(deg(zi)C log2 n logW)
in total, as each path ending in zi in M induces a load of 2l on a class l edge adjacent to zi,
i.e., a congestion of 1.

We also construct a transformation scheme based on the reverse flow −f , to send the
tokens back. This does not use a random path id, instead a node zi stores a mapping from
incoming to outgoing path ids (any mapping is fine). We remark that the tokens of a may
not end up where they started, as routing through a single-commodity flow mixes packets
arbitrarily.

To summarize, an arc a =: (u, v) has sent out N tokens, each of which corresponds to 2l
flow from d′(a). Each token traversed an intermediate node zi to end up at a node u′. Node
zi was passed by a low number of tokens in total. So now we add a new arc a′ := (u′, v) to
A, with demand d(a′) := 2l. Crucially, the routing information for a′ is stored in zi, i.e.,
str(a′) := zi.

As a technical detail we note that we allow for parallel arcs in G′. It is important that we
do not merge multiple small demands into a larger one, as we have already ensured sufficient
storage space for each, which would be lost.

The tokens are routed through f and then −f , so the number of tokens starting and
ending at u is the same. This implies that both the total outgoing and incoming demand of
any node remain unchanged.

As mentioned above, this procedure uses anticipative routing. For demand a we send
N packets from u, each of which follows a deterministic path. So the intermediate node zi
assigns the packet the specific path id sending it to u′ as well as the (yet to be determined)
information on how to proceed from there. At u′ the node does not have to look up the
packet header in its routing table, but merely execute the information contained within.

Part (c). First, we apply (b) at most Nclass times to eliminate all large arcs. Note that
while (b) introduces new arcs, these have demand 2l, where l is maximum class s.t. l-large
arcs exist. So the new demands can only be l′-large for an l′ < l.

Now we route the remaining arcs. Those are not large, so we can use Lemma 9 to pick a
single path from Pu,v for each (u, v) ∈ A. Based on our construction in (a), each path in
Pu,v can be routed using a O(log3(nW)) path id. This will be stored in str(u, v).

For the initial arcs, we store their path ids within their respective source nodes together
with their (encoded) commodity.

Finally, we analyze the congestion and space requirements.
Each use of (b) creates congestion of O(C log2 n logW), due to embedding two flows.

Routing the non-large arcs at the end creates the same congestion (though only once). So in
total we have a congestion of O(C log2 n log2W).

In total, each node v is used at most degG′(v) ∈ O(deg(v) log2 n) times for storage due to
our initial demands, and then at most ·O(C log2 n logW) times for each adjacent class l edge
when executing (b) for class l. Storing routing information for a large arc needs O(log(nW))

ESA 2020

36:22 Compact Oblivious Routing in Weighted Graphs

additional space to store the number of tokens and the range of path ids for them. This
is dominated by the O(log3(nW)) sized path id we need for both large and non-large arcs.
(Recall that a large demand is first split into a fractional part and a multiple of 2l.)

To embed the flows in (b) using Lemma 3, we need a total of O(deg(v) log(nW) logW)
space per node v for the routing tables, and transformation scheme in (a) from Lemma 6 uses
O(deg(v) log3(nW))) space. Summing everything up, we get O(deg(v)C log2 n log2 W log3(nW)).

Regarding packet headers, we need packet headers of Lemmata 3 and 6, as well as
some additional space for our anticipative routing (at most O(log3(nW))). In total we get
O(log3(nW)). J

We want to remark on a slight technicality in the previous proof. Usually, scaling the
routed distributions by some constant factor will scale the congestion by the same and
nothing of importance has changed. However, the proof argues that there is a bound on the
space used for each node, based on the congestion. Scaling the routed distribution to decrease
congestion does actually affect this bound, so we could try scaling the congestion even lower.
Though, as it turns out it is not possible to get a congestion below O(C log2 n logW) as
that is the minimum when fixing a single path provided by part (a). Using a fractional path
would indeed have lower congestion, but not take up less space.

Hypercube embedding

Similar to Räcke and Schmid [22], we embed a hypercube. However, as mentioned earlier,
we use a hypercube for each class l of edges and each hypercube id we assign has weight 2l,
i.e., a node v ∈ S gets roughly maj(l)S (v)/2l hypercube ids. The construction proceeds in a
similar manner as the one of Räcke and Schmid up until the embedding of the hypercube
edges, where we use Lemma 10 instead of simple randomized rounding.

The details can be found in the full version of this paper.

I Lemma 11 (Hypercube embedding). Let S be an arbitrary cluster with children S1, ..., Sr.
There exists a compact CTS that routes maj(l)S wS(Si)−−−−→ out(l)

Si
for each Si of class l with

approximation 2 and congestion O(C log3 n log3W).
The routing table of node v has size O(deg(v)C log2 n logW log3(nW)), while packet

headers have length O(log3(nW)). There exists a numbering of S1, ..., Sr s.t. commodity Si
is encoded as integer i.

Unmixing CTS

Given the hypercube embedding from the last lemma, we can now construct the unmixing
CTS. At the beginning we need to ensure that we move to the distribution for the correct
class, then we move through the (class specific) hypercube, and finally we go to the target
distribution.

I Lemma 12 (Unmixing CTS). There exists a CTS that routes wS wS(Si)−−−−→ wSi for each
i = 1, ..., r with congestion O(C log3 n log3W). The routing table of node v has size
O(deg(v)C log2 n logW log3(nW)), while packet headers have length O(log3(nW)). There
exists a numbering of S1, ..., Sr s.t. commodity Si is encoded as integer i.

Proof. The numbering of child clusters and our path ids are the same as for Lemma 11.
Therefore we can determine the class l of Si based on its index, as shown in the proof of that
lemma.

For a child Si with class l we want to route wS → maj(l)S → out(l)
Si
→ outSi

.

P. Czerner and H. Räcke 36:23

(1) For each class l let M ⊆ S denote the union of class l child clusters. We route
wS

wS(M)−−−−→ maj(l)S using Lemma 7 with congestion C · wS(M)/maj(l)S (M). This is at
most CNclass, as maj(l)S (Si) = out(l)

Si
(Si) ≥ wS(Si)/Nclass for each child Si with class l.

(2) We use Lemma 11 once, to route maj(l)S wS(Si)−−−−→ out(l)
Si
, with congestionO(C log3 n log3W).

(3) For each Si we route out(l)
Si

wS(Si)−−−−→ outSi
within Si using Lemma 7. Here we have

congestion C · wS(Si)/ out(l)
Si

(Si) ≤ CNclass.

Note that (1) has to be implemented on the whole cluster for each class, so its total
congestion is O(C log2W) (but still lower than step (2)). For the bounds on size of routing
tables and length of packet headers, the costs of step (2) dominate. J

A.3 Combining the Results
Lemma 11 can be used directly as a drop-in replacement in the original result in [22].

The key idea is routing between two nodes u and v using the decomposition tree, spreading
out a packet according to distribution wS in each cluster. This ensures that routing within
a cluster can be done with low congestion. Moving through the tree, the congestion is
determined by the bottlenecks outS . However, the optimal algorithm has to send the packets
through these bottlenecks as well, so we remain competitive.

I Theorem 13. There exists a compact oblivious routing scheme with competitive ratio
O(log6 n log3W), using a routing table of length O(deg(v) log5 n logW log3(nW)) for a
node v ∈ V , packet headers of length O(log3(nW)), and node labels of length at most
O(height(T) log deg(T)).

Proof (omitted). The proof can be found in the full version of this paper. J

I Corollary 14. Assume W ∈ O(poly(n)). Then there exists a compact oblivious routing
scheme with competitive ratio O(log9 n), using a routing table of length O(deg(v) log9 n) for
a node v ∈ V , packet headers of length O(log3 n) and node labels of length O(log2 n).

ESA 2020

Approximation Algorithms for Clustering with
Dynamic Points
Shichuan Deng
Institute for Interdisciplinary Information Sciences, Tsinghua University, China
dsc15@mails.tsinghua.edu.cn

Jian Li
Institute for Interdisciplinary Information Sciences, Tsinghua University, China
lijian83@mail.tsinghua.edu.cn

Yuval Rabani
The Rachel and Selim Benin School of Computer Science and Engineering,
The Hebrew University of Jerusalem, Israel
yrabani@cs.huji.ac.il

Abstract
In many classic clustering problems, we seek to sketch a massive data set of n points (a.k.a clients)
in a metric space, by segmenting them into k categories or clusters, each cluster represented concisely
by a single point in the metric space (a.k.a. the cluster’s center or its facility). The goal is to find
such a sketch that minimizes some objective that depends on the distances between the clients and
their respective facilities (the objective is a.k.a. the service cost). Two notable examples are the
k-center/k-supplier problem where the objective is to minimize the maximum distance from any
client to its facility, and the k-median problem where the objective is to minimize the sum over all
clients of the distance from the client to its facility.

In practical applications of clustering, the data set may evolve over time, reflecting an evolution
of the underlying clustering model. Thus, in such applications, a good clustering must simultaneously
represent the temporal data set well, but also not change too drastically between time steps. In this
paper, we initiate the study of a dynamic version of clustering problems that aims to capture these
considerations. In this version there are T time steps, and in each time step t ∈ {1, 2, . . . , T}, the set
of clients needed to be clustered may change, and we can move the k facilities between time steps.
The general goal is to minimize certain combinations of the service cost and the facility movement
cost, or minimize one subject to some constraints on the other. More specifically, we study two
concrete problems in this framework: the Dynamic Ordered k-Median and the Dynamic k-Supplier
problem. Our technical contributions are as follows:

We consider the Dynamic Ordered k-Median problem, where the objective is to minimize the
weighted sum of ordered distances over all time steps, plus the total cost of moving the facilities
between time steps. We present one constant-factor approximation algorithm for T = 2 and
another approximation algorithm for fixed T ≥ 3.
We consider the Dynamic k-Supplier problem, where the objective is to minimize the maximum
distance from any client to its facility, subject to the constraint that between time steps the
maximum distance moved by any facility is no more than a given threshold. When the number of
time steps T is 2, we present a simple constant factor approximation algorithm and a bi-criteria
constant factor approximation algorithm for the outlier version, where some of the clients can
be discarded. We also show that it is NP-hard to approximate the problem with any factor for
T ≥ 3.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases clustering, dynamic points, multi-objective optimization

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.37

Related Version A full version of the paper is available at https://arxiv.org/abs/2006.14403.

© Shichuan Deng, Jian Li, and Yuval Rabani;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 37; pp. 37:1–37:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dsc15@mails.tsinghua.edu.cn
mailto:lijian83@mail.tsinghua.edu.cn
mailto:yrabani@cs.huji.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2020.37
https://arxiv.org/abs/2006.14403
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Dynamic Clustering Approximations

Funding Shichuan Deng and Jian Li: Supported in part by the National Natural Science Foundation
of China Grant 61822203, 61772297, 61632016, 61761146003, the Zhongguancun Haihua Institute
for Frontier Information Technology, Turing AI Institute of Nanjing, and Xi’an Institute for Interdis-
ciplinary Information Core Technology.
Yuval Rabani: Supported in part by ISF grant number 2553-17.

Acknowledgements We want to thank the reviewers for their insightful and constructive comments.

1 Introduction

Clustering a data set of points in a metric space is a fundamental abstraction of many practical
problems of interest and has been subject to extensive study as a fundamental problem of
both machine learning and combinatorial optimization. In particular, cluster analysis is one
of the main methods of unsupervised learning, and clustering often models facility location
problems.1 More specifically, some of the most well-studied clustering problems involve the
following generic setting. We are given a set C of points in a metric space, and our goal is to
compute a set of k centers that optimizes a certain objective function which involves the
distances between the points in C and the computed centers. Two prominent examples are
the k-median problem and the k-center problem. They are formally defined as follows. Let
S denote the computed set of k cluster centers, let d(j, S) = mini∈S d(i, j) be the minimum
distance from a point j ∈ C to S, and let D = (d(j, S))j∈C be called the service cost vector.
The k-median problem aims to minimize the L1 objective ‖D‖1 =

∑
j∈C d(j, S) over the

choices of S, and the k-center aims to minimize the L∞ objective ‖D‖∞ = maxj∈C d(j, S).
In general metric spaces and when k is not a fixed constant, both problems are APX-hard
and exhibit constant factor approximation algorithms [4, 6, 12, 23, 30]. An important
generalization is the ordered k-median problem. Here, in addition to C and k, we are given
also a non-increasing weight vector w ∈ R|C|≥0 . Letting D↓ denote the sorted version of D in
non-increasing order, the objective of ordered k-median is to minimize w ·D↓. This problem
generalizes both k-center and k-median and has attracted significant attention recently and
several constant factor approximation algorithms have been developed [3, 7, 9, 10].

In this paper, we study several dynamic versions of the classical clustering problems,
in which the points that need to be clustered may change for each time step, and we are
allowed to move the cluster centers in each time step, either subject to a constraint on the
distance moved, or by incurring a cost proportional to that distance. These versions are
motivated in general by practical applications of clustering, where the data set evolves over
time, reflecting an evolution of the underlying clustering model. Consider, for instance, a
data set representing the active users of a web service, and a clustering representing some
meaningful segmentation of the user base. The segmentation should be allowed to change
over time, but if it is changed drastically between time steps, then it is probably meaningless.
For a more concrete example, consider the following application scenario. There is a giant
construction company with several construction teams working in a city. The company has k
movable wireless base stations for their private radio communication, and each construction
team also has a terminal device. The teams need to put their devices at a certain energy
level, in order to maintain the communication channel between the device and the nearest
base station. Some construction team may finish some project and move to another place at

1 In the facility location literature, points are called clients and centers are called facilities, and we will
use these terms interchangeably.

S. Deng, J. Li, and Y. Rabani 37:3

some time. Note that the wireless base stations are also movable at a certain expense. Our
high level objective is to have all teams covered by the base stations at all times, meanwhile
minimizing the energy cost of all teams plus the cost of moving these base stations.

We study two problems of this flavor. The first problem, a dynamic version of the ordered
k-median problem, is a very general model that captures a wide range of dynamic clustering
problems where the objective is to minimize the sum of service cost and movement cost. In
particular, it generalizes dynamic versions of k-center and k-median. The problem is defined
as follows. We are given a metric space and there are T time steps. In each time step t, there
is a set Ct of clients that we need to serve. In each time step, we can also choose the locations
for k movable facilities to serve the clients (each client is served by its closest facility). Our
goal is to minimize the total ordered service distance (i.e., the ordered k-median objective),
summed over all times steps, plus the total distances traveled by the k movable facilities.
We define the problem formally as follows.

I Definition 1 (Dynamic Ordered k-Median). We are given a metric space (X, d). An instance
of Dynamic Ordered k-Median is specified by ({Ct}Tt=1, {Ft}Tt=1, {wt ∈ R|Ct|≥0 }Tt=1, γ > 0, k ∈
N+), where T ≥ 2 is a constant integer, Ct ⊂ X is the set of clients for time t, Ft ⊂ X

is the set of candidate locations where we can place facilities. For a vector v, denote by
v↓ the vector derived from v by sorting its entries in non-increasing order. Also denote
by m(X,Y) = minM0∈M(X,Y)

∑
(i,i′)∈M0

d(i, i′) the total weight of minimum-weight perfect
matching between two equal-sized multi-sets X,Y . We are required to compute a sequence of
multi-sets of facilities {At}Tt=1 with At ⊂ Ft, |At| = k, so that the following sum of ordered
service cost and movement cost is minimized:

T∑
t=1

wt · (d(j, At))↓j∈Ct + γ ·
T−1∑
t=1

m(At, At+1). (1)

It is also natural to formulate dynamic clustering problems where the objective is to
minimize just the service cost, subject to a constraint on the movement cost. This turns out
to be technically very different from Dynamic Ordered k-Median. Our second problem, which
we call Dynamic k-Supplier, is such a concrete problem, motivated by the above-mentioned
construction company application. In this problem the service cost is the k-supplier objective,
i.e. the maximum client service distance over all time steps, and the constraints are that any
facility cannot be moved further than a fixed value B > 0 between any two consecutive time
steps. More formally:

I Definition 2 (Dynamic k-Supplier). We are given a metric space (X, d). An instance of
Dynamic k-Supplier is specified by ({Ct}Tt=1, {Ft}Tt=1, B > 0, k ∈ N+), where T ≥ 2 is the
number of time steps, Ct ⊂ X is the set of clients for time t, Ft ⊂ X is the set of candidate
locations where we can place facilities. We are required to compute a sequence of multi-sets
of facilities {At}Tt=1, with At ⊂ Ft, |At| = k, minimizing the maximum service cost of any
client maxt maxj∈Ct d(j, At), subject to the constraint that there must exist a one-to-one
matching between At and At+1 for any t, such that the distance between each matched pair
is at most B.

In the outlier version, we are additionally given the outlier constraints {lt ∈ N}Tt=1. We
are asked to identify a sequence of multi-sets of facilities {At}Tt=1, as well as a sequence of
subsets of served clients {St ⊂ Ct}Tt=1. The goal is to minimize the maximum service cost of
any served client maxt maxj∈St d(j, At), with the constraints that At ⊂ Ft, |At| = k, |St| ≥ lt,
and there must exist a one-to-one matching between At and At+1 for any t, such that the
distance between each matched pair is at most B.

ESA 2020

37:4 Dynamic Clustering Approximations

Note. The solutions for both Dynamic Ordered k-Median and Dynamic k-Supplier may be
multi-sets, since we allow multiple centers to travel to the same location.

1.1 Our Results
We first study Dynamic Ordered k-Median. We assume the number of time steps T is a
constant and all entries of the weight vector are larger than some small constant ε > 0. We
present a polynomial-time approximation on general metrics. Moreover, if T = 2 we present
a constant-factor approximation algorithm without the assumption on the entries of the
weight vectors.

I Theorem 3. 1. If T = 2, for any constant δ > 0 there exists a polynomial-time (48 +
20
√

3 + δ)-approximation for Dynamic Ordered k-Median.
2. If T ≥ 3 is a constant and all entries in {wt}Tt=1 are at least ε > 0, for any constant

δ > 0 there exists a polynomial-time (48 + 20
√

3 + δ + 6γ/ε)-approximation algorithm for
Dynamic Ordered k-Median.

Our techniques. The key idea in our algorithm is to design a surrogate relaxed LP as in [7]
and embed the fractional LP solution in a network flow instance. We then proceed to round
the fractional flow to an integral flow, thus obtaining the integral solution. The network
is constructed based on a filtering process introduced by Charikar and Li [12]. We also
adapt the oblivious clustering arguments by Byrka et al. [7], but with a slight increase in
approximation factors due to the structure of our network flow.

Our approach can also give a constant approximation to the facility-weighted minimum
total movement mobile facility location problem (facility-weighted TM-MFL), with a simpler
analysis than the previously known local-search based algorithm [1], which achieves an
approximation factor of 3 +O(

√
log log p/ log p) for a p-Swap algorithm. The following result

is also an improvement over the previously proven factor 499 in [1] when p = 1. For more
details, we direct the interested readers to the full version of the paper and [1].

I Theorem 4. There exists a polynomial-time 10-approximation algorithm for facility-
weighted minimum total movement mobile facility location problem.

As a second result, we consider Dynamic k-Supplier and its outlier version. We show
that if T ≥ 3, it is not possible to obtain efficient approximation algorithms for Dynamic
k-Supplier with any approximation factor, unless P = NP, via a simple reduction from perfect
3D matching [27]. However, for the case of T = 2, we present a flow-based 3-approximation,
which is the best possible factor since vanilla k-supplier is NP-hard to approximate within a
factor of (3− ε) for any constant ε > 0 [24].

I Theorem 5.
1. There exists a 3-approximation for Dynamic k-Supplier when T = 2.
2. There is no polynomial time algorithm for solving Dynamic k-Supplier with any approxim-

ation factor if T ≥ 3, unless P = NP .

We also study the outlier version of the problem for T = 2. In the outlier version, we can
exclude a certain fraction of the clients as outliers in each time step. We obtain a bi-criteria
approximation for the problem.

I Theorem 6. For any constant ε > 0, there exists a bi-criteria 3-approximation algorithm
for Dynamic k-Supplier with outliers when T = 2, that outputs a solution which covers at least
(1− ε)lt clients within radius 3R∗ at time t, where t = 1, 2 and R∗ is the optimal radius.

S. Deng, J. Li, and Y. Rabani 37:5

Our techniques. We first guess a constant-size portion of facilities in the optimal solution,
remove these facilities and solve the LP relaxation of the remaining problem. This guessing
step is standard as in multi-objective optimizations in [20]. From the LP solution, we
form clusters as in Harris et al. [22], cast the outlier constraints as budget constraints
over the LP solution, and finally round the fractional LP solution to an integral solution
using the budgeted optimization methods by Grandoni et al. [20]. Note that since our
outlier constraints translate naturally to budget lower bounds, and our optimization goal
is minimization, we are only able to achieve bi-criteria approximations instead of pure
approximations. For more details, please refer to the full version of this paper.

1.2 Other Related Work
The ordered k-median problem generalizes a number of classic clustering problems like
k-center, k-median, k-facility l-centrum, and has been studied extensively in the literature.
There are numerous approximation algorithms known for its special cases. We survey here
only the results most relevant to our work (ignoring, for instance, results regarding restricted
metric spaces or fixed k). Constant approximations for k-median can be obtained via local
search, Lagrangian relaxations and the primal-dual schema, or LP-rounding [4, 6, 25, 26].
Constant approximations for k-center are obtained via greedy algorithms [23]. Aouad and
Segev [3] employ the idea of surrogate models and give the first O(logn)-approximation for
ordered k-median. Later, Byrka et al. [7], Chakrabarty and Swamy [9] both successfully design
constant-factor approximations for k-facility l-centrum and ordered k-median. Chakrabarty
and Swamy [10] subsequently improve the approximation factor for ordered k-median to
(5 + ε), using deterministic rounding in a unified framework.

The outlier setting of clustering problems, specifically for center-type clustering problems,
was introduced by Charikar et al. [11] and later further studied by Chakrabarty et al.
[8]. Many other variants of different clustering constraints are also extensively studied,
including matroid and knapsack center with outliers [13], and fair center-type problems with
outliers [22].

Our problems are closely related to the mobile facility location problems (MFL), introduced
by Demaine et al. [16]. In these problems, a static set of clients has to be served by a set
of facilities that are given initial locations and can be moved to improve the service cost
at the expense of incurring a facility movement cost. For the minimum total movement
MFL problem (TM-MFL), Friggstad and Salavatipour [18] give an 8-approximation using
LP-rounding, where all facilities have unit weights. Ahmadian et al. [1] give a local search
algorithm for TM-MFL with weighted facilities using p-swaps with an approximation ratio of
3 +O(

√
log log p/ log p), and specifically show that the approximation ratio is at most 499

for p = 1.
The dynamic formulations of our problems are closely related to the facility location

problem with evolving metrics, proposed by Eisenstat et al. [17]. In this problem, there
are also T time steps, while the facilities and clients are fixed, and the underlying metric is
changing. The total cost is the sum of facility-opening cost, client-serving cost and additional
switching costs for each client. The switching cost is paid whenever a client switches facility
between adjacent time steps. In comparison, our problem Dynamic k-Supplier considers the
cost of moving facilities instead of opening costs, and allows the number of clients to change
over time. Eisenstat et al. [17] consider the problem when the open facility set A is fixed,
and give a O(log(nT))-approximation, where n is the number of clients. They also show a
hardness result on o(log T)-approximations. An et al. [2] consider the case when the open
facilities are allowed to evolve as well, and give a 14-approximation.

ESA 2020

37:6 Dynamic Clustering Approximations

Our problem is also related to stochastic k-server [15] and the page migration problem [5,
32]. Dehghani et al. [15] first study the stochastic k-server problem. In this problem, we
also have T time steps, and the distributions {Pt}t∈[T] are given in advance. The t-th client
is drawn from Pt, and we can use k movable servers. One variant they consider is that,
after a client shows up, its closest server goes to the client’s location and comes back, and
the optimization objective is the total distance travelled by all servers. They provide an
O(logn)-approximation for general metrics, where n is the size of the distribution support.
In expectation, their objective is the same as in Dynamic Ordered k-Median, if we consider
non-ordered weighted clients and total weights sum up to 1 for each time slot. However, we
note that our result does not imply a constant approximation for their problem. The difficulty
is that if one maps the stochastic k-server problem to our problem, the corresponding weight
coefficient γ is not necessarily a constant and our approximation ratio is proportional to
γ. Obtaining a constant factor approximation algorithm for stochastic k-server is still an
interesting open problem.

2 A Constant Approximation for Dynamic Ordered k-Median

We devise an LP-based algorithm, which generalizes the oblivious-clustering argument by
Byrka et al. [7]. At the center of our algorithm, a network flow method is used, where an
integral flow is used to represent our solution.

2.1 Flow-based Rounding of LP Solution

We first formulate the LP relaxation. By adding a superscript to every variable to indicate
the time step, we denote x(t)

ij ∈ [0, 1] the partial assignment of client j to facility i and
y

(t)
i ∈ [0, 1] the extent of opening facility location i at time step t. Moreover, denote z(t)

ii′ the
fractional movement from facility i to facility i′, between neighboring time steps t and t+ 1.

The following surrogate LP is designed using the cost reduction trick by Byrka et al. [7].
When the reduced cost functions are exactly guessed, the LP relaxation has an objective
value at most the total cost of the optimal solution, denoted by OPT. Call d′ : X×X → R≥0
a reduced cost function (not necessarily a metric) of distance function d, if for any x, y ∈ X,
d′(x, y) ≥ 0, d′(x, y) = d′(y, x), and d(x1, y1) ≤ d(x2, y2) ⇒ d′(x1, y1) ≤ d′(x2, y2). For a
sequence of reduced cost functions D = {dt}Tt=1 of d, the modified LP relaxation is defined
as follows.

minimize :
T∑
t=1

∑
j∈Ct

∑
i∈Ft

dt(i, j)x(t)
ij + γ

T−1∑
t=1

∑
i∈Ft

∑
i′∈Ft+1

d(i, i′)z(t)
ii′ LP(D)

subject to :
∑
i∈Ft

x
(t)
ij = 1, ∀j ∈ Ct, t ∈ [T] (2)

∑
i∈Ft

y
(t)
i = k, ∀t ∈ [T] (3)

0 ≤ x(t)
ij ≤ y

(t)
i , ∀i ∈ Ft, j ∈ Ct, t ∈ [T] (4)∑

i′∈Ft+1

z
(t)
ii′ = y

(t)
i , ∀i ∈ Ft, t ∈ [T − 1] (5)

∑
i∈Ft

z
(t)
ii′ = y

(t+1)
i′ , ∀i′ ∈ Ft+1, t ∈ [T − 1] (6)

S. Deng, J. Li, and Y. Rabani 37:7

Suppose we have solved the corresponding surrogate LP(D). In the optimal solution
(x, y, z), we assume that whenever x(t)

ij > 0, we have x(t)
ij = y

(t)
i , via the standard duplication

technique of facility locations (for example, see [12]). Denote Ballo(j, R) = {x ∈ X : d(x, j) <
R} the open ball centered at j with radius R, and E(t)

j = {i ∈ Ft : x(t)
ij > 0} the relevant

facilities for client j. For any specific time step t, denote d(t)
av (j) =

∑
i∈Ft d(i, j)x(t)

ij the
average unweighted service cost of client j and y(t)(S) =

∑
i∈S y

(t)(i) the amount of fractional
facilities in S ⊂ Ft. We perform a filtering-and-matching algorithm (see the full version of
this paper) to obtain a subset C ′t ⊂ Ct for each t, a bundle U (t)

j ⊂ Ft for each j ∈ C ′t, as well
as Pt a partition of C ′t, where
1. C ′t is a subset of “well-separated” clients of Ct, such that for any client in Ct\C ′t, there

exists another relatively close client in C ′t. To be more precise, for any j 6= j′ in C ′t,
d(j, j′) ≥ 4 max{d(t)

av (j), d(t)
av (j′)}, and for any j′′ ∈ Ct\C ′t, there exists j′′′ ∈ C ′t such that

d
(t)
av (j′′′) ≤ d(t)

av (j′′), d(j′′, j′′′) ≤ 4 max{d(t)
av (j′′), d(t)

av (j′′′)};
2. U (t)

j is a subset of fractionally open facility locations that are relatively close to client j;
3. Pt is a judiciously created partition of C ′t, where every subset contains either a pair of

clients, or a single client. Each pair {j, j′} in Pt is chosen such that either j or j′ is the
closest neighbor of the other, and we guarantee to open a facility location in U (t)

j or U (t)
j′ .

The filtering-and-matching algorithm is fairly standard in several LP-based methods
for median-type problems (see e.g. [7, 10, 12]). It is worth noting that, while we define
the objective value of LP(D) using reduced cost functions D with respect to the weights,
the filtering algorithm is completely oblivious of the weights and only uses the underlying
metric d.

Network construction. We construct an instance of network flow N , and embed the LP
solution as a fractional flow f̃ . The network N consists of a source s, a sink t and 6T
intermediate layers L1, L2, . . . , L6T arranged in a linear fashion.

For each time step t ∈ [T], we create two nodes for every pair p ∈ Pt, every bundle
U (t)
j and every candidate facility location i ∈ Ft. All these nodes are contained in the

layers L6t−5, . . . , L6t. To distinguish between the two mirror nodes, we use L (·) and R(·) to
represent the nodes in {L6t−5, L6t−4, L6t−3} and the nodes in {L6t−2, L6t−1, L6t}, respectively.
The network is constructed as follows. An example figure is shown in Figure 1.

1. For all t ∈ [T], add L (i) to L6t−5 and R(i) to L6t for each i ∈ Ft.
2. For all t ∈ [T], add L (U (t)

j) to L6t−4 and R(U (t)
j) to L6t−1 for each U (t)

j .
3. For all t ∈ [T], add L (p) to L6t−3 and R(p) to L6t−2 for each p ∈ Pt.
4. For all t ∈ [T], j ∈ C ′t, p ∈ Pt such that j ∈ p, connect (L (U (t)

j),L (p)), (R(p),R(U (t)
j))

in neighboring layers with an edge of capacity
[
by(t)(U (t)

j)c, dy(t)(U (t)
j)e

]
. Let their initial

fractional flow values be f̃(L (U (t)
j),L (p)) = f̃(R(p),R(U (t)

j)) = y(t)(U (t)
j). The capacity

is either [0, 1] or {1}.
5. For all t ∈ [T], p ∈ Pt, connect (L (p),R(p)) with an edge of capacity

[
by(t)(p)c, dy(t)(p)e

]
,

and define f̃(L (p),R(p)) = y(t)(p) =
∑
j∈p y

(t)(U (t)
j). If p is a normal pair, the capacity

is either [1, 2] or {1} or {2}; if p is a singleton pair, the capacity is either [0, 1] or {1}.
6. For all t ∈ [T], j ∈ C ′t and i ∈ U (t)

j , connect (L (i),L (U (t)
j)), (R(U (t)

j),R(i)) in neigh-
boring layers with an edge of unit capacity. Let the initial fractional flows be f̃(L (i),
L (U (t)

j)) = f̃(R(U (t)
j),R(i)) = y

(t)
i .

ESA 2020

37:8 Dynamic Clustering Approximations

7. For all t ∈ [T] but i ∈ Ft −
⋃
j∈C′

t
U (t)
j , connect (L (i),R(i)) with an edge of unit

capacity (across intermediate layers L6t−4, . . . , L6t−1). Let its initial fractional flow be
f̃(L (i),R(i)) = y

(t)
i .

8. For all z(t)
ii′ , i ∈ Ft, i′ ∈ Ft+1, connect (R(i),L (i′)) with an edge of unit capacity. Let its

initial fractional flow be f̃(R(i),L (i′)) = z
(t)
ii′ .

L6t−5, L6t−4, L6t−3 L6t−2, L6t−1, L6t

p
(t)
1

p
(t)
2

p
(t)
1

p
(t)
2

U(t)
j1

U(t)
j2

U(t)
j3

U(t)
j4

U(t)
j3

U(t)
j4

Ft\
⋃

j∈C′
t

U(t)
j

U(t)
j1

U(t)
j2

U(t)
j3

U(t)
j4

U(t)
j3

U(t)
j4

Ft\
⋃

j∈C′
t

U(t)
j

Figure 1 Some intermediate layers of N representing a single time step t.

Notice f̃ is naturally a flow with value k. Since the flow polytope is defined by a totally
unimodular matrix, and our capacity constraints are all integers, it is a well-known result
(see e.g. [19]) that we can efficiently and stochastically round f̃ to an integral flow f̄ , such
that f̄ is guaranteed to have value k, and E[f̄] = f̃ . Next, given the integral flow f̄ , we
deterministically construct the facilities to open {At}t∈[T] as follows.

If T = 2, there are 12 layers L1, L2, . . . , L12 in the network. For each link e =
(R(i1),L (i2)) between L6 and L7 such that f̄(e) = 1, we add the original facility
corresponding to i1 to A1, and the original facility of i2 to A2.
If T ≥ 3, the integral flow f̄ may enter L6t−5 and exit from L6t at sets of different facility
locations. For illustration, denote At,1 the set in L6t−5 and At,2 the set in L6t. Notice
it may happens that |At,1

⋃
At,2| > k and we cannot open them both, so we design an

algorithm to find At ⊆ At,1
⋃
At,2 and |At| = k, and open the facilities in At for time t.

The algorithm looks at each pair (j1, j2) = p ∈ Pt, and consider the 1 or 2 units of flow f̄ on
the link (L (p),R(p)). For a facility i, if there is one unit of flow through L (i) or R(i), we
call the facility i activated. But if L (i1) and R(i2) are activated and i1, i2 ∈ Uj1 , i1 6= i2,
we only open one of them. The same is true when i1 ∈ Uj1 , i2 ∈ Uj2 , i1 6= i2.
For each unit flow, our algorithm either always choose i1 to open where L (i1) is activated,
or always choose the facility in Uj2 if j1 is not the closest neighbor of j2. As a result, we
give the following lemma estimating the movement cost, and the detailed algorithm can
be found in the full version of this paper.

S. Deng, J. Li, and Y. Rabani 37:9

I Lemma 7. Let d(A,A′) denote the cost of minimum weight matching between A,A′. If
T = 2, the expected movement cost of solution {A1, A2} satisfies

E[d(A1, A2)] =
∑
i∈F1

∑
i′∈F2

d(i, i′)z(1)
ii′ .

If T ≥ 3, the expected movement cost of solution {At}Tt=1 after rerouting satisfies

E

 ∑
t∈[T−1]

d(At, At+1)

 ≤ ∑
t∈[T−1]

∑
i∈Ft

∑
i′∈Ft+1

d(i, i′)z(t)
ii′ + 6

T∑
t=1

∑
j∈Ct

d(t)
av (j).

2.2 From Rectangular to General Cases
We first provide a lemma to bound the stochastic k-facility l-centrum cost of At for any
fixed time t. Consequently, the ordered cost can be nicely bounded as well. The proof of the
following lemma can be found in the full version of this paper.

I Lemma 8 (adapted from [7]). Fix t ∈ [T] and let m ∈ N+, h > 0. Define rect(a, b) the
rectangular vector of length b, where the first a elements are 1s and the rest are 0s. For
At as the (random) set of activated locations returned by our algorithm, and d(Ct, At) =
(d(j, At))j∈Ct as the service cost vector, we have

EAt [rect(m, |Ct|) · d(Ct, At)↓] ≤ (24 + 10
√

3)m · h+ (24 + 10
√

3)
∑
j∈Ct

d−h
(t)
av (j),

where d−h(j, j′) = 0 if d(j, j′) < h and d−h(j, j′) = d(j, j′) otherwise. Similar to dav(j), the
average clipped service cost d−h(t)

av (j) is defined as d−hav
(t)(j) =

∑
i∈Ft d

−h(i, j)x(t)
ij .

Finally we turn to the generally-weighted case, where the weight vectors wt, t ∈ [T] are
not necessarily rectangular ones like rect(m, |Ct|). The guessing of underlying reduced cost
functions D is exactly the same as in Byrka et al. [7], thus omitted here. We solve LP(D)
using these induced reduced cost functions and proceed accordingly. The following lemma
is similar to that of Lemma 5.1 in Byrka et al. [7], and the proof can be found in the full
version of this paper.

I Lemma 9. When T = 2, the procedure described above is a (48 + 20
√

3)-approximation
for Dynamic Ordered k-Median.

If T ≥ 3 is a constant and the smallest entry in {wt}Tt=1 is at least some constant ε > 0,
the above-described procedure is a (48 + 20

√
3 + 6γ/ε)-approximation for Dynamic Ordered

k-Median.
In both cases, the procedure makes O

(∏T
t=1 (|Ft| · |Ct|)Nt

)
calls to its subroutines, where

Nt is the number of distinct entries in the weight vector wt, t ∈ [T].

Fix some positive parameter δ > 0 and recall the distance bucketing trick by Aouad and
Segev [3]. When T is a constant, it is possible to guess the largest service distance for each
time step by paying a polynomial factor in the running time. Then we make logarithmically
many buckets for each time step to hold the service cost values of clients. For each bucket,
its average weight is also guessed up to a small multiplicative error (1 + δ). Since there are
at most O

(
log1+δ

(
n
δ

))
= O

(1
δ log

(
n
δ

))
buckets for each time step, where n = |F | + |C|,

guessing a non-increasing sequence of the average weights only causes another polynomial
factor exp

(
O
(1
δ log

(
n
δ

)))
= nO(1/δ). Finally, because T is a constant, the overall number of

guesses is still bounded by a polynomial. For more details, see [3, 7].

ESA 2020

37:10 Dynamic Clustering Approximations

I Theorem 10. When T = 2, for any δ > 0 there exists a (48+20
√

3)(1+δ)-approximation al-
gorithm for Dynamic Ordered k-Median, with running time (|F1|+ |C1|)O(1/δ) ·
(|F2|+ |C2|)O(1/δ).

When T ≥ 3 is a constant, and the smallest entry in {wt}Tt=1 is at least some constant
ε > 0, for any δ > 0 there exists a

(
48 + 20

√
3 + 6γ/ε

)
(1 + δ)-approximation algorithm for

Dynamic Ordered k-Median, with running time
∏
t∈[T] (|Ft|+ |Ct|)O(1/δ).

Proof. This is almost a direct consequence of Theorem 5.2 in [7], with the constant factor
replaced by our µ = 24+10

√
3. Notice that we need to slightly modify the way of constructing

rounded weights {w∗t }Tt=1 in the following way,

∀t ∈ [T], r ∈ [|Ct|], w∗tr =

wt1 r = 1,

min
{

(1 + δ)dlog1+δ wtre, wt1
}

wtr ≥ εwt1/|Ct|, r 6= 1,
εwt1/|Ct| wtr < εwt1/|Ct|,

so that the perturbed weight vectors are rounded larger, but at most (1 + δ) times larger in
terms of the overall objective, and there are O(log1+δ(|Ct|/δ)) different values in w∗t .

Plugging in the approximations of individual time steps does not affect the analysis of
movement costs in the proof of Lemma 9, hence the approximation factor follows. We omit
the technical details here due to space limit. They can be be found in Appendix D of [7]. J

3 Approximating Dynamic k-Supplier

We present a flow-based algorithm that gives a 3-approximation for Dynamic k-Supplier when
T = 2, and show it is NP-hard to obtain polynomial-time approximation algorithms for
Dynamic k-Supplier with any approximation factor when T ≥ 3. We also briefly introduce our
bi-criteria approximation algorithm for Dynamic k-Supplier with outliers and T = 2, while
the detailed algorithm and analysis can be found in the full version of this paper.

3.1 A 3-Approximation for Dynamic k-Supplier, T = 2
In contrast to the NP-hardness of approximating Dynamic k-Supplier for T ≥ 3, we consider
Dynamic k-Supplier when T = 2 on general metrics and present a simple flow-based constant
approximation. Suppose we are given the client sets C1, C2 and F1, F2 as candidate facility
locations and the movement constraint is B > 0.

First, since the optimal radius R∗ is obviously the distance between some client and some
facility location, we assume we have successfully guessed the optimal radius R∗ (using binary
search). Next, we construct the following network flow instance G(V, E). V consists of 4
layers of vertices (two layers L11,L12 for t = 1, two layers L21,L22 for t = 2), a source s and
sink t. We define the layers and links in G as follows:

For each i ∈ F1, add a vertex in L12. For i′ ∈ F2, add a vertex in L21.
Repeatedly pick an arbitrary client j ∈ C1 and remove from C1 every client within
distance 2R∗ from j. Denote these clients a new cluster corresponding to j. Since we have
guessed the optimal radius R∗, it is easy to see we can get at most k such clusters. And
if there are less than k clusters, we create some extra dummy clusters to obtain exactly k
clusters, while dummy clusters do not correspond to any client. For each cluster, add a
vertex to L11. Repeat this for C2 and form L22.
The four layers are arranged in order as L11,L12,L21,L22. With a slight abuse of notation,
for u ∈ L11, v ∈ L12, connect them using a link with unit capacity if d(u, v) ≤ R∗; for
w ∈ L21, z ∈ L22, connect them using a link with unit capacity if d(w, z) ≤ R∗. For
v ∈ L12, w ∈ L21, connect them using a link with unbounded capacity if d(v, w) ≤ B.

S. Deng, J. Li, and Y. Rabani 37:11

Connect every dummy cluster in L11 with every facility location vertex in L12. Connect
every dummy cluster in L22 with every facility location vertex in L21. Every such link
has unit capacity.
Finally, the source s is connected to every vertex in L11 and the sink t is connected to
every vertex in L22, with every edge having unit capacity.

I Lemma 11. G(V, E) admits a flow of value k. Moreover, we can obtain a feasible solution
of cost at most 3R∗ from an integral flow of value k in G(V, E).

Proof. As an optimal solution with objective R∗, there exist two multi-sets A1 ⊂ F1, A2 ⊂ F2
such that |A1| = |A2| = k and there exists a perfect matching between them. For any
i ∈ F1, i

′ ∈ F2, if the pair (i, i′) appears m times in the perfect matching, define a flow value
f(i, i′) = m over link (i, i′).

Consider the first time step. For any facility location i and clusters j, j′, either d(i, j)
or d(i, j′) is larger than R∗, otherwise d(j, j′) ≤ 2R∗, contradicting with our construction.
Because A1 also covers all j ∈ C1 with radius R∗, for every j ∈ L11, we can always find a
different element i ∈ A1 such that d(i, j) ≤ R∗, and we add a unit flow as f(j, i) = 1. The
same process is repeated for L22 and A2.

The total flow between L12 and L21 is now obviously k, since the perfect matching
between A1 and A2 has size k. After the construction of unit flows for non-dummy clusters,
we arbitrarily direct the remaining flows from facility locations to the dummy clusters, one
unit each time. Finally, for any cluster with unit flow, define the flow between it and the
source/sink to be 1. This completes an integral flow of value k on G.

For the second part, suppose we have an integral flow f̄ of value k on G. For any facility
location i ∈ F1, denote g(i) the total flow through i. We place g(i) facilities at location
i, and repeat the same procedures for i′ ∈ F2. If f̄(i, i′) = m for i ∈ F1, i

′ ∈ F2, move m
facilities from i to i′ in the transition between 2 time steps.

For any j′ ∈ C1, if j is the cluster center it belongs to, there exists a facility at most
d(j′, i) ≤ d(j′, j) + d(j, i) ≤ 3R∗ away. J

I Theorem 12. There exists a 3-approximation for Dynamic k-Supplier when T = 2.

Proof. Consider the network flow instance we construct. It only has integer constraints and
the coefficient matrix is totally unimodular. Moreover, there exists a flow of value k due to
Lemma 11, hence we can efficiently compute an integral solution f̄ of value k, thus obtaining
a 3-approximation solution. J

3.2 The Hardness of Approximating Dynamic k-Supplier, T ≥ 3
We show it is NP-hard to design approximation algorithms for Dynamic k-Supplier with any
approximation factor when T ≥ 3. The proof is via reduction from the perfect 3D matching
problem, which is known to be NP-Complete [27].

I Theorem 13. There is no polynomial time algorithm for solving Dynamic k-Supplier with
any approximation factor if T ≥ 3, unless P = NP .

Proof. We reduce an arbitrary instance of perfect 3D-matching to Dynamic k-Supplier to
show the NP-hardness. Recall for an instance of perfect 3D-matching, we are given three
finite sets A,B,C with |A| = |B| = |C|, and a triplet set T ⊂ A×B × C. Suppose |A| = n

and |T | = m, and we are asked to decide whether there exists a subset S ⊂ T , such that
|S| = n, and each element in A,B,C appears exactly once in some triplet in S. We construct
the following graph G = (V,E), where V,E are initially empty.

ESA 2020

37:12 Dynamic Clustering Approximations

For each triplet g = (a, b, c) ∈ T , add three new vertices ag, bg, cg to V correspondingly.
Connect ag, bg with an edge of length α. Connect bg, cg with an edge of length α.
Denote VA all the vertices that correspond to vertices in A. Similarly for VB and VC .
For any two vertices in VA corresponding to the same element a ∈ A, connect them with
an edge of length 1. Repeat the same procedure for VB , VC .

Assume we are able to solve Dynamic k-Supplier for T = 3 with an approximation factor
α. We solve Dynamic k-Supplier for G on its graph metric dG, with k = n and the movement
constraint B = α, where the client sets are {VA, VB , VC} and facility sets are {VA, VB , VC}
for the three time steps, respectively.

It is easy to see that the reduced Dynamic k-Supplier instance has covering radius R∗ = 1
if and only if there exists a perfect 3D-matching, otherwise the covering radius is at least
2α+1. Since our approximation factor is α, this concludes the NP-hardness of approximation
algorithms with any factor for Dynamic k-Supplier when T ≥ 3. J

3.3 A Bi-criteria Approximation for Dynamic k-Supplier with Outliers
Lastly, we present our bi-criteria approximation algorithm that solves Dynamic k-Supplier,
when T = 2 and outliers are allowed. As a useful ingredient, let us first briefly review
the m-budgeted bipartite matching problem. The input consists of a bipartite graph G =
(V,E), and each edge e ∈ E is associated with a weight w(e) ≥ 0 and m types of lengths
fi(e) ≥ 0, i = 1, . . . ,m. The problem asks for a maximum weight matching M with m

budget constraints, where the ith constraint is that the sum of all fi lengths in M is no more
than Li, i.e.

∑
e∈M fi(e) ≤ Li. When the number of constraints m is a constant, a pure

(1− ε)-approximation algorithm for any constant ε > 0 is devised by Grandoni et al. [20].

Sketch. Due to space limit, we provide a sketch here and defer the details to the full version
of this paper. Consider Dynamic k-Supplier with outliers and T = 2. In the solution, we place
k facilities for time t = 1, serving in total at least l1 clients in C1, then move each of these
facilities for a distance at most B to serve at least l2 clients in C2, and the maximum service
distance is our minimization goal. Clearly, the optimal solution R∗ only has a polynomial
number of possible values and can be guessed efficiently, so we assume that R∗ is known to
us in the following analysis.

For a fixed R∗, denote ci the number of clients that facility location i can serve within
distance R∗. We assign two lengths f1(e) = ci, f2(e) = ci′ and weight w(e) = 1 for every
candidate edge e = (i, i′), where i ∈ F1, i

′ ∈ F2. By duplicating each possible facility location
in F1 and F2 and only allowing vertices within distance B to be matched, the required
solution can be fully represented by a k-cardinality matching M between F1 and F2. Let us
temporarily assume that any client miraculously contribute only once to the total number
of clients served. Then the problem naturally translates to deciding whether there exists
a bipartite matching M between F1 and F2 (with candidate facility locations duplicated)
with weight k, such that the sum of all f1 lengths in M is at least l1, and the sum of all f2
lengths in M is at least l2.

This new problem is very similar to 2-budgeted bipartite matching, but there are still
some major differences. In the approximation algorithm in [20], every integral matching
M is obtained by first finding a feasible fractional matching M ′, which has at most 2m
edges being fractional, and then dropping these fractionally-matched edges completely. Back
to our problem where m = 2. If we obtain such a fractional solution M ′ which satisfies
the constraints and only has at most 4 fractional edges, we would like to find an integral

S. Deng, J. Li, and Y. Rabani 37:13

matching M in a way that uses more “budget” instead of using less, so as to cover at least
as many clients as M ′ does and not violate any budget constraint (in other words, outlier
constraints), and we have to drop these fractional edges again from M ′.

Contrary to 2-budgeted bipartite matching, we want to control the portion of budget
dropped in this case. We achieve this by guessing a constant number of edges, which has
either the top-θ f1 lengths or top-θ f2 lengths in the optimal solution, using a suitably chosen
constant θ > 0. We are able to devise a bi-criteria approximation algorithm that violates
both budget constraints by any small constant ε-portion. The bi-criteria method is developed
in line with the multi-criteria approximation schemes in [20].

To fully avoid counting any served client multiple times, whenever we duplicate a facility
location, we make sure that only one copy induces non-zero lengths on edges that reside on
it. We also use a greedy algorithm to remove some facility locations in F1, F2 and form client
clusters around the remaining ones. Now, instead of defining ci as the number of clients that
facility location i can serve within distance R∗, we change ci to the number of clients that
are gathered around i. More specifically, for client set Ct and facility location set Ft, we find
a subset F ′t ⊂ Ft and a corresponding sub-partition {Ki}i∈F ′

t
of Ct (i.e., Kis are pair-wise

disjoint and their union is a subset of Ct), such that ∀j ∈ Ki, d(i, j) ≤ 3R∗ and we define
ci = |Ki| for i ∈ F ′t , ci = 0 for i ∈ Ft\F ′t . Using this method, every client is counted at most
once in all cis, hence its contribution to the total number is always at most 1. The same
filtering process can be found in [22]. See the full version of the paper for more details.

4 Future Directions

We list some interesting future directions and open problems.

1. It would be very interesting to remove the dependency of γ (the coefficient of movement
cost) and ε (the lower bound of the weight) from the approximation factor for Dynamic
Ordered k-Median in Theorem 10, or show such dependency is inevitable. We leave
it as an important open problem. We note that a constant approximation factor for
Dynamic Ordered k-Median without depending on γ would imply a constant approximation
for stochastic k-server, for which only a logarithmic-factor approximation algorithm is
known [15].

2. Our approximation algorithm for Dynamic Ordered k-Median is based on the technique
developed in Byrka et al. [7]. The original ordered k-median problem has subsequently
seen improved approximation results in [9, 10]. We did not try hard to optimize the
constant factors. Nevertheless, it is an interesting future direction to further improve the
constant approximation factors by leveraging the techniques from [9, 10] or other ideas.

3. From Theorem 13, we can see that Dynamic k-Supplier is hard to approximate when
T ≥ 3. However, it makes sense to relax the hard constraint B (we allow the distance a
facility can move be at most αB for some constant α).

It is possible to formulate other concrete problems that naturally fit into the dynamic
clustering theme and are well motivated by realistic applications, but not yet considered in
the paper. For example, one can use the k-median objective for the service cost and the
maximum distance of any facility movement as the movement cost. One can also consider
combining the cost in more general fashion like in [10], or extending the problems to the
fault-tolerant version [21, 28, 31] or the capacitated version [14, 29].

ESA 2020

37:14 Dynamic Clustering Approximations

References
1 Sara Ahmadian, Zachary Friggstad, and Chaitanya Swamy. Local-search based approximation

algorithms for mobile facility location problems. In Proceedings of the twenty-fourth annual
ACM-SIAM symposium on Discrete algorithms, pages 1607–1621, 2013. doi:10.1137/1.
9781611973105.115.

2 Hyung-Chan An, Ashkan Norouzi-Fard, and Ola Svensson. Dynamic facility location via
exponential clocks. ACM Transactions on Algorithms, 13(2):1–20, 2017. doi:10.1145/2928272.

3 Ali Aouad and Danny Segev. The ordered k-median problem: surrogate models and ap-
proximation algorithms. Mathematical Programming, 177(1-2):55–83, 2019. doi:10.1007/
s10107-018-1259-3.

4 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004. doi:10.1137/S0097539702416402.

5 David L Black, Anoop Gupta, and Wolf-Dietrich Weber. Competitive management of dis-
tributed shared memory. COMPCON Spring 89, pages 184–185, 1989. doi:10.1109/CMPCON.
1989.301925.

6 Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization. ACM
Transactions on Algorithms, 13(2):1–31, 2017. doi:10.1145/2981561.

7 Jarosław Byrka, Krzysztof Sornat, and Joachim Spoerhase. Constant-factor approximation for
ordered k-median. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 620–631, 2018. doi:10.1145/3188745.3188930.

8 Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-uniform k-
center problem. In 43rd International Colloquium on Automata, Languages, and Programming,
volume 55, page 67, 2016. doi:10.4230/LIPIcs.ICALP.2016.67.

9 Deeparnab Chakrabarty and Chaitanya Swamy. Interpolating between k-median and k-
center: Approximation algorithms for ordered k-median. In 45th International Colloquium on
Automata, Languages, and Programming, volume 107, page 29, 2018. doi:10.4230/LIPIcs.
ICALP.2018.29.

10 Deeparnab Chakrabarty and Chaitanya Swamy. Approximation algorithms for minimum
norm and ordered optimization problems. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pages 126–137, 2019. doi:10.1145/3313276.3316322.

11 Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, pages 642–651, 2001. URL: http://dl.acm.org/citation.cfm?id=
365411.365555.

12 Moses Charikar and Shi Li. A dependent LP-rounding approach for the k-median problem. In
Proceedings of the 39th International Colloquium on Automata, Languages, and Programming-
Volume Part I, pages 194–205, 2012. doi:10.1007/978-3-642-31594-7_17.

13 Danny Z Chen, Jian Li, Hongyu Liang, and Haitao Wang. Matroid and knapsack center
problems. Algorithmica, 75(1):27–52, 2016. doi:10.1007/s00453-015-0010-1.

14 Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform capacities. In
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
952–958, 2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070569.

15 Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed
Seddighin. Stochastic k-server: How should Uber work? In 44th International Colloquium on
Automata, Languages, and Programming, volume 80, page 126, 2017. doi:10.4230/LIPIcs.
ICALP.2017.126.

16 Erik D Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, Amin S Sayedi-Roshkhar,
Shayan Oveisgharan, and Morteza Zadimoghaddam. Minimizing movement. ACM Transactions
on Algorithms, 5(3):30, 2009. doi:10.1145/1541885.1541891.

https://doi.org/10.1137/1.9781611973105.115
https://doi.org/10.1137/1.9781611973105.115
https://doi.org/10.1145/2928272
https://doi.org/10.1007/s10107-018-1259-3
https://doi.org/10.1007/s10107-018-1259-3
https://doi.org/10.1137/S0097539702416402
https://doi.org/10.1109/CMPCON.1989.301925
https://doi.org/10.1109/CMPCON.1989.301925
https://doi.org/10.1145/2981561
https://doi.org/10.1145/3188745.3188930
https://doi.org/10.4230/LIPIcs.ICALP.2016.67
https://doi.org/10.4230/LIPIcs.ICALP.2018.29
https://doi.org/10.4230/LIPIcs.ICALP.2018.29
https://doi.org/10.1145/3313276.3316322
http://dl.acm.org/citation.cfm?id=365411.365555
http://dl.acm.org/citation.cfm?id=365411.365555
https://doi.org/10.1007/978-3-642-31594-7_17
https://doi.org/10.1007/s00453-015-0010-1
http://dl.acm.org/citation.cfm?id=1070432.1070569
https://doi.org/10.4230/LIPIcs.ICALP.2017.126
https://doi.org/10.4230/LIPIcs.ICALP.2017.126
https://doi.org/10.1145/1541885.1541891

S. Deng, J. Li, and Y. Rabani 37:15

17 David Eisenstat, Claire Mathieu, and Nicolas Schabanel. Facility location in evolving metrics.
In International Colloquium on Automata, Languages, and Programming, pages 459–470, 2014.
doi:10.1007/978-3-662-43951-7_39.

18 Zachary Friggstad and Mohammad R Salavatipour. Minimizing movement in mobile facility
location problems. ACM Transactions on Algorithms, 7(3):28, 2011. doi:10.1145/1978782.
1978783.

19 Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent
rounding and its applications to approximation algorithms. Journal of the ACM, 53(3):324–360,
2006. doi:10.1145/1147954.1147956.

20 Fabrizio Grandoni, R Ravi, Mohit Singh, and Rico Zenklusen. New approaches to multi-
objective optimization. Mathematical Programming, 146(1-2):525–554, 2014. doi:10.1007/
s10107-013-0703-7.

21 Mohammadtaghi Hajiaghayi, Wei Hu, Jian Li, Shi Li, and Barna Saha. A constant factor
approximation algorithm for fault-tolerant k-median. ACM Transactions on Algorithms,
12(3):36, 2016. doi:10.1145/2854153.

22 David G Harris, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh. A lottery model
for center-type problems with outliers. ACM Transactions on Algorithms, 15(3):1–25, 2019.
doi:10.1145/3311953.

23 Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10(2):180–184, 1985. doi:10.1287/moor.10.2.180.

24 Dorit S Hochbaum and David B Shmoys. A unified approach to approximation algorithms for
bottleneck problems. Journal of the ACM, 33(3):533–550, 1986. doi:10.1145/5925.5933.

25 Kamal Jain and Vijay V Vazirani. Primal-dual approximation algorithms for metric facility
location and k-median problems. In 40th Annual Symposium on Foundations of Computer
Science, pages 2–13, 1999. doi:10.1109/SFFCS.1999.814571.

26 Kamal Jain and Vijay V Vazirani. Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of the
ACM, 48(2):274–296, 2001. doi:10.1145/375827.375845.

27 Richard M Karp. Reducibility among combinatorial problems. 50 Years of Integer Programming
1958-2008, pages 219–241, 2010. doi:10.1007/978-3-540-68279-0_8.

28 Samir Khuller, Robert Pless, and Yoram J Sussmann. Fault tolerant k-center problems.
Theoretical Computer Science, 242(1-2):237–245, 2000. doi:10.1016/S0304-3975(98)00222-9.

29 Shi Li. Approximating capacitated k-median with (1 + ε)k open facilities. In Proceedings
of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages 786–796,
2016. doi:10.1137/1.9781611974331.ch56.

30 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proceedings
of the forty-fifth annual ACM symposium on Theory of Computing, pages 901–910, 2013.
doi:10.1145/2488608.2488723.

31 Chaitanya Swamy and David B Shmoys. Fault-tolerant facility location. ACM Transactions
on Algorithms, 4(4):1–27, 2008. doi:10.1145/1383369.1383382.

32 Jeffery Westbrook. Randomized algorithms for multiprocessor page migration. SIAM Journal
on Computing, 23(5):951–965, 1994. doi:10.1137/S0097539791199796.

ESA 2020

https://doi.org/10.1007/978-3-662-43951-7_39
https://doi.org/10.1145/1978782.1978783
https://doi.org/10.1145/1978782.1978783
https://doi.org/10.1145/1147954.1147956
https://doi.org/10.1007/s10107-013-0703-7
https://doi.org/10.1007/s10107-013-0703-7
https://doi.org/10.1145/2854153
https://doi.org/10.1145/3311953
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1145/5925.5933
https://doi.org/10.1109/SFFCS.1999.814571
https://doi.org/10.1145/375827.375845
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1016/S0304-3975(98)00222-9
https://doi.org/10.1137/1.9781611974331.ch56
https://doi.org/10.1145/2488608.2488723
https://doi.org/10.1145/1383369.1383382
https://doi.org/10.1137/S0097539791199796

A Sub-Linear Time Framework for Geometric
Optimization with Outliers in High Dimensions
Hu Ding
School of Computer Science and Technology, University of Science and Technology of China,
Anhui, China
http://staff.ustc.edu.cn/~huding/index.html
huding@ustc.edu.cn

Abstract
Many real-world problems can be formulated as geometric optimization problems in high dimensions,
especially in the fields of machine learning and data mining. Moreover, we often need to take into
account of outliers when optimizing the objective functions. However, the presence of outliers could
make the problems to be much more challenging than their vanilla versions. In this paper, we study
the fundamental minimum enclosing ball (MEB) with outliers problem first; partly inspired by the
core-set method from Bădoiu and Clarkson, we propose a sub-linear time bi-criteria approximation
algorithm based on two novel techniques, the Uniform-Adaptive Sampling method and Sandwich
Lemma. To the best of our knowledge, our result is the first sub-linear time algorithm, which has
the sample size (i.e., the number of sampled points) independent of both the number of input points
n and dimensionality d, for MEB with outliers in high dimensions. Furthermore, we observe that
these two techniques can be generalized to deal with a broader range of geometric optimization
problems with outliers in high dimensions, including flat fitting, k-center clustering, and SVM with
outliers, and therefore achieve the sub-linear time algorithms for these problems respectively.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases minimum enclosing ball, outliers, shape fitting, high dimensions, sub-linear
time

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.38

Related Version A full version of the paper is available at https://arxiv.org/abs/2004.10090.

Acknowledgements The author wants to thank the anonymous reviewers for their helpful comments
and suggestions for improving the paper.

1 Introduction

Geometric optimization is a fundamental topic that has been extensively studied in the
community of computational geometry [1]. The minimum enclosing ball (MEB) problem is
one of the most popular geometric optimization problems who has attracted a lot of attentions
in past years, where the goal is to compute the smallest ball covering a given set of points in
the Euclidean space [11, 50, 32]. Though its formulation is very simple, MEB has a number
of applications in real world, such as classification [68, 20, 21], preserving privacy [59, 31],
and quantum cryptography [38]. A more general geometric optimization problem is called
flat fitting that is to compute the smallest slab (centered at a low-dimensional flat) to cover
the input data [42, 60, 71]. Another closely related important topic is the k-center clustering
problem, where the goal is to find k > 1 balls to cover the given input data and minimize the
maximum radius of the balls [35]; the problem has been widely applied to many areas, such as
facility location [18] and data analysis [67]. Moreover, some geometric optimization problems
are trying to maximize their size functions. As an example, the well known classification
technique support vector machine (SVM) [17] is to maximum the margin separating two
differently labeled point sets in the space.

© Hu Ding;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 38; pp. 38:1–38:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1307-6077
http://staff.ustc.edu.cn/~huding/index.html
mailto:huding@ustc.edu.cn
https://doi.org/10.4230/LIPIcs.ESA.2020.38
https://arxiv.org/abs/2004.10090
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 A Sub-Linear Time Framework for Geometric Optimization with Outliers

Real-world datasets are often noisy and contain outliers. Moreover, outliers could seriously
affect the final optimization results. For example, it is easy to see that even one outlier could
make the MEB arbitrarily large. In particular, as the rapid development of machine learning,
the field of adversarial machine learning concerning about the potential vulnerabilities of
the algorithms has attracted a great amount of attentions [45, 51, 9, 36]. A small set of
outliers could be added by some adversarial attacker to make the decision boundary severely
deviate [8, 48]. Furthermore, the presence of outliers often results in a quite challenging
combinatorial optimization problem; as an example, if m of the input n data items are
outliers (m < n), we have to consider an exponentially large number

(
n
m

)
of different possible

cases when optimizing the objective function. Therefore, the design of efficient and robust
optimization algorithms is urgently needed to meet these challenges.

1.1 Our Contributions
In big data era, the data size could be so large that we cannot even afford to read the
whole dataset once. In this paper, we consider to develop sub-linear time algorithms for
several geometric optimization problems involving outliers. We study the aforementioned
MEB with outliers problem first. Informally speaking, given a set of n points in Rd and
a small parameter γ ∈ (0, 1), the problem is to find the smallest ball covering at least
(1− γ)n points from the input. We are aware of several existing sub-linear time bi-criteria
approximation algorithms based on uniform sampling for MEB and k-center clustering with
outliers [7, 46, 29], where the “bi-criteria” means that the ball (or the union of the k balls) is
allowed to exclude a little more points than the pre-specified number of outliers. Their ideas
are based on the theory of VC dimension [69]. But the sample size usually depends on the
dimensionality d, which is roughly O

(1
δ2γ kd · polylog(

kd
δγ)
)
, if allowing to discard (1 + δ)γn

outliers with δ ∈ (0, 1) (k = 1 in the complexity for the MEB with outliers problem). A
detailed overview on previous works is shown in Section 1.2.

Since many optimization problems in practice need to consider high-dimensional datasets,
especially in the fields of machine learning and data mining, the above sample size from [7,
46, 29] could be very large. Partly inspired by the core-set method from Bădoiu and
Clarkson [11] for computing MEB in high dimensions, we are wondering that whether
it is possible to remove the dependency on d in the sample size for MEB with
outliers and other related high dimensional geometric optimization problems.
Given a parameter ε ∈ (0, 1), the method of [11] is a simple greedy algorithm that selects 2

ε

points (as the core-set) for constructing a (1 + ε)-approximate MEB, where the resulting
radius is at most 1 + ε times the optimal one. A highlight of their method is that the core-set
size 2

ε is independent of d. However, there are several substantial challenges when applying
their method to design sub-linear time algorithm for MEB with outliers. First, we need to
implement the “greedy selection” step by a random sampling manner, but it is challenging
to guarantee the resulting quality especially when the data is mixed with outliers. Second,
the random sampling approach often yields a set of candidates for the ball center (e.g., we
may need to repeatedly run the algorithm multiple times for boosting the success probability,
and each time generates a candidate solution), and thus it is necessary to design an efficient
strategy to determine which candidate is the best one in sub-linear time.

To tackle these challenges, we propose two key techniques, the novel “Uniform-Adaptive
Sampling” method and “Sandwich Lemma”. Roughly speaking, the Uniform-Adaptive
Sampling method can help us to bound the error induced in each “randomized greedy
selection” step; the Sandwich Lemma enables us to estimate the objective value of each
candidate and select the best one in sub-linear time. To the best of our knowledge, our result

H. Ding 38:3

is the first sub-linear time approximation algorithm for the MEB with outliers problem with
sample size being independent of the number of points n and the dimensionality d, which
significantly improves the time complexities of existing algorithms.

Moreover, we observe that our proposed techniques can be used to solve a broader
range of geometric optimization problems. We define a general optimization problem called
minimum enclosing “x” (MEX) with Outliers, where the “x” stands for a specified
kind of shape (e.g., the shape is a ball for MEB with outliers). We prove that it is able
to generalize the Uniform-Adaptive Sampling method and Sandwich Lemma to adapt the
shape “x”, as long as it satisfies several properties. In particular we focus on the MEX with
outlier problems including flat fitting, k-center clustering, and SVM with outliers; a common
characteristic of these problems is that each of them has an iterative algorithm based on
greedy selection for its vanilla version (without outliers) that is similar to the MEB algorithm
of [11]. Though these problems have been widely studied before, the research in terms of
their sub-linear time algorithms is still quite limited.

1.2 Related Work
Sub-linear time algorithms. The research on sub-linear time algorithms design has a long
history [63, 25]. For example, a number of sub-linear time clustering algorithms have been
studied in [47, 56, 57, 24]. Another important application of sub-linear time algorithms is
property testing on graphs or probability distributions [34].

As mentioned before, the uniform sampling idea can be used to design sub-linear time
algorithms for the problems of MEB and k-center clustering with outliers [7, 46, 29], but
the sample size depends on the dimensionality d that could be very large in practice. Note
that Alon et al. [7] presented another sub-linear time algorithm, which has the sample
size independent of d, to test whether an input point set can be covered by a ball with a
given radius; however, it is difficult to apply their method to solve the MEB with outliers
problem as the algorithm relies on some nice properties of minimum enclosing ball, but these
properties are not easy to be utilized when inliers and outliers are mixed. In [26], we proposed
a notion of stability for MEB and developed the sub-linear time MEB algorithms for stable
instance. Clarkson et al. [21] developed an elegant perceptron framework for solving several
optimization problems arising in machine learning, such as MEB. For a set of n points in
Rd, their framework can solve the MEB problem in Õ(nε2 + d

ε) 1 time. Based on a stochastic
primal-dual approach, Hazan et al. [44] provided an algorithm for solving the SVM problem
in sub-linear time.

MEB and k-center clustering with outliers. Core-set is a popular technique to reduce the
time complexities for many optimization problems [2, 61]. The core-set idea has also been
used to compute approximate MEB in high dimensional space [20, 13, 50, 60, 49]. Bădoiu
and Clarkson [11] showed that it is possible to find a core-set of size d2/εe that yields a
(1 + ε)-approximate MEB. There are also several exact and approximation algorithms for
MEB that do not rely on core-sets [32, 64, 6]. Streaming algorithms for computing MEB
were also studied before [4, 16].

Bădoiu et al. [13] extended their core-set idea to the problems of MEB and k-center
clustering with outliers, and achieved linear time bi-criteria approximation algorithms (if
k is assumed to be a constant). Several algorithms for the low dimensional MEB with

1 The asymptotic notation Õ(f) = O
(
f · polylog(ndε)

)
.

ESA 2020

38:4 A Sub-Linear Time Framework for Geometric Optimization with Outliers

outliers problem have been also developed [5, 30, 39, 54]. A 3-approximation algorithm for
k-center clustering with outliers in arbitrary metrics was proposed by Charikar et al. [18];
Chakrabarty et al. [15] proposed a 2-approximation algorithm for k-center clustering with
outliers. These algorithms often have high time complexities (e.g., Ω(n2d)). Recently, Ding
et al. [29] provided a linear time greedy algorithm for k-center clustering with outliers based
on the idea of the Gonzalez’s algorithm [35]. Furthermore, there exist a number of works on
streaming and distributed algorithms, such as [19, 55, 72, 53, 37, 14, 52].

Flat fitting with outliers. Given an integer j ≥ 0 and a set of points in Rd, the flat fitting
problem is to find a j-dimensional flat having the smallest maximum distance to the input
points [41]; obviously, the MEB problem is a special case with j = 0. In high dimensions,
Har-Peled and Varadarajan [42] provided a linear time algorithm if j is assumed to be fixed;
their running time was further reduced by Panigrahy [60] based on a core-set approach. There
also exist several methods considering flat fitting with outliers but only for low-dimensional
case [43, 3].

SVM with outliers. Given two point sets P1 and P2 in Rd, the problem of Support Vector
Machine (SVM) is to find the largest margin to separate P1 and P2 (if they are separable) [17].
SVM can be formulated as a quadratic programming problem, and a number of efficient
techniques have been developed in the past, such as the soft margin SVM [22, 62], ν-
SVM [65, 23], and Core-SVM [68, 20]. There also exist a number of works on designing
robust algorithms of SVM with outliers [70, 40, 66, 28].

2 Definitions and Preliminaries

In this paper, we let |A| denote the number of points of a given point set A in Rd, and
||x− y|| denote the Euclidean distance between two points x and y in Rd. We use B(c, r) to
denote the ball centered at a point c with radius r > 0. Below, we give several definitions
used throughout this paper.

I Definition 1 (Minimum Enclosing Ball (MEB)). Given a set P of n points in Rd, the MEB
problem is to find a ball with minimum radius to cover all the points in P . The resulting ball
and its radius are denoted by MEB(P) and Rad(P), respectively.

A ball B(c, r) is called a λ-approximation of MEB(P) for some λ ≥ 1, if the ball covers
all points in P and has radius r ≤ λRad(P).

I Definition 2 (MEB with Outliers). Given a set P of n points in Rd and a small parameter
γ ∈ (0, 1), the MEB with outliers problem is to find the smallest ball that covers (1 − γ)n
points. Namely, the task is to find a subset of P with size (1− γ)n such that the resulting
MEB is the smallest among all possible choices of the subset. The obtained ball is denoted by
MEB(P, γ).

For convenience, we use Popt to denote the optimal subset of P with respect toMEB(P, γ).
That is, Popt = argQ min

{
Rad(Q) | Q ⊂ P, |Q| = (1− γ)n

}
. From Definition 2, we can see

that the main issue is to determine the subset of P . Actually, solving such combinatorial
problems involving outliers are often challenging. In Section A.1, we present an example
to show that it is impossible to achieve an approximation factor less than 2 for MEB with
outliers, if the time complexity is required to be independent of n. Therefore, we consider
finding the bi-criteria approximation. Actually, it is also a common way for solving other

H. Ding 38:5

optimization problems with outliers. For example, Mount et al. [58] and Meyerson et al. [56]
studied the bi-criteria approximation algorithms respectively for the problems of linear
regression and k-median clustering with outliers before.

I Definition 3 (Bi-criteria Approximation). Given an instance (P, γ) for MEB with outliers
and two small parameters 0 < ε, δ < 1, a (1 + ε, 1 + δ)-approximation of (P, γ) is a ball that
covers at least

(
1− (1 + δ)γ

)
n points and has radius at most (1 + ε)Rad(Popt).

When both ε and δ are small, the bi-criteria approximation is very close to the optimal
solution with only slight changes on the number of covered points and the radius.

We also extend Definition 2 to the problem called minimum enclosing “x” (MEX)
with Outliers, where the “x” could be any specified shape. To keep the structure of
our paper more compact, we state the formal definition of MEX with outliers and the
corresponding results in Section 5.

2.1 A More Careful Analysis for Core-set Construction in [11]
Before presenting our main results, we first revisit the core-set construction algorithm for
MEB of Bădoiu and Clarkson [11], since their method will be used in our algorithms for
MEB with outliers.

Let 0 < ε < 1. The algorithm in [11] yields an MEB core-set of size 2/ε (for convenience,
we always assume that 2/ε is an integer). However, there is a small issue in their paper.
The analysis assumes that the exact MEB of the core-set is computed in each iteration,
but in fact one may only compute an approximate MEB. Thus, an immediate question is
whether the quality is still guaranteed with such a change. Kumar et al. [50] fixed this
issue, and showed that computing a (1 +O(ε2))-approximate MEB for the core-set in each
iteration still guarantees a core-set with size O(1/ε), where the hidden constant is larger
than 80. Clarkson [20] systematically studied the Frank-Wolfe algorithm [33], and showed
that the greedy core-set construction algorithm of MEB, as a special case of the Frank-Wolfe
algorithm, yields a core-set with size slightly larger than 4/ε. Note that there exist several
other methods yielding even lower core-set size [12, 49], but their construction algorithms
are more complicated and thus not applicable to our problems. Increasing the core-set size
from 2/ε to α/ε (for some α > 2) is neglectable in asymptotic analysis. But in Section 4, we
will show that it could cause serious issue if outliers exist. Hence, a core-set of size 2/ε is still
desirable. For this purpose, we provide a new analysis which is also interesting
in its own right.

For the sake of completeness, we first briefly introduce the idea of the core-set construction
algorithm in [11]. Given a point set P ⊂ Rd, the algorithm is a simple iterative procedure.
Initially, it selects an arbitrary point from P and places it into an initially empty set T . In
each of the following 2/ε iterations, the algorithm updates the center of MEB(T) and adds
to T the farthest point from the current center of MEB(T). Finally, the center of MEB(T)
induces a (1 + ε)-approximation for MEB(P). The selected set of 2/ε points (i.e., T) is
called the core-set of MEB. To ensure the expected improvement in each iteration, [11]
showed that the following two inequalities hold if the algorithm always selects the farthest
point to the current center of MEB(T):

ri+1 ≥ (1 + ε)Rad(P)− Li; ri+1 ≥
√
r2
i + L2

i , (1)

where ri and ri+1 are the radii of MEB(T) in the i-th and (i+ 1)-th iterations, respectively,
and Li is the shifting distance of the center of MEB(T) from the i-th to (i+ 1)-th iteration.

ESA 2020

38:6 A Sub-Linear Time Framework for Geometric Optimization with Outliers

qq

oioi

cici

ci+1ci+1≤ ri+1≤ ri+1

> (1 + ϵ)Rad(P)> (1 + ϵ)Rad(P)

= Li= Li

≤ ξri≤ ξri

Figure 1 An illustration of (2).

As mentioned earlier, we often compute only an approximate MEB(T) in each iteration.
In the i-th iteration, we let ci and oi denote the centers of the exact and the approximate
MEB(T), respectively. Suppose that ||ci − oi|| ≤ ξri, where ξ ∈ (0, ε

1+ε) (we will see why
this bound is needed later). Using another algorithm proposed in [11], one can obtain the
point oi in O(1

ξ2 |T |d) time. Note that we only compute oi rather than ci in each iteration.
Hence we can only select the farthest point (say q) to oi. If ||q − oi|| ≤ (1 + ε)Rad(P), we
are done and a (1 + ε)-approximation of MEB is already obtained. Otherwise, we have

(1 + ε)Rad(P) < ||q − oi|| ≤ ||q − ci+1||+ ||ci+1 − ci||+ ||ci − oi|| ≤ ri+1 + Li + ξri (2)

by the triangle inequality (see Figure 1). In other words, we should replace the first inequality
of (1) by ri+1 > (1 + ε)Rad(P)−Li − ξri. Also, the second inequality of (1) still holds since
it depends only on the property of the exact MEB (see Lemma 2.1 in [11]). Thus, we have

ri+1 ≥ max
{√

r2
i + L2

i , (1 + ε)Rad(P)− Li − ξri
}
. (3)

This leads to the following theorem whose proof can be found in Section A.2.

I Theorem 4. In the core-set construction algorithm of [11], if one computes an approximate
MEB for T in each iteration and the resulting center oi has the distance to ci less than
ξri = s ε

1+εri for some s ∈ (0, 1), the final core-set size is bounded by z = 2
(1−s)ε . Also, the

bound could be arbitrarily close to 2/ε when s is small enough.

I Remark 5. We want to emphasize a simple observation on the above core-set construction
procedure, which will be used in our algorithms and analysis later on. The algorithm always
selects the farthest point to oi in each iteration. However, this is actually not necessary. As
long as the selected point has distance at least (1 + ε)Rad(P), the inequality (2) always holds
and the following analysis is still true. If no such a point exists (i.e., P \B

(
oi, (1+ε)Rad(P)

)
=

∅), a (1 + ε)-approximate MEB (i.e., B
(
oi, (1 + ε)Rad(P)

)
) has already been obtained.

3 Two Key Lemmas for Handling Outliers

In this section, we introduce two important techniques, Lemma 6 and 7, for solving the
problem of MEB with outliers in sub-linear time; the proofs are placed in Section 3.1 and
3.2, respectively. The algorithms are presented in Section 4. Moreover, these techniques can
be generalized to solve a broader range of optimization problems, and we show the details in
Section 5.

To shed some light on our ideas, consider using the core-set construction method in
Section 2.1 to compute a bi-criteria (1 + ε, 1 + δ)-approximation for an instance (P, γ) of
MEB with outliers. Let oi be the obtained ball center in the current iteration, and Q be the
set of (1 + δ)γn farthest points to oi from P . A key step for updating oi is finding a point
in the set Popt ∩Q (the formal analysis is given in Section 4). Actually, this can be done

H. Ding 38:7

l̃′il̃
′
i

lili

l̃ĩli

Figure 2 The red points are the sampled n′′ points in Lemma 7, and the
(
(1 + δ)2γn′′ + 1

)
-th

farthest point is in the ring bounded by the spheres B(oi, l̃′i) and B(oi, li).

by performing a random sampling from Q. However, it requires to compute the set Q in
advance, which takes an Ω(nd) time complexity. To keep the running time to be sub-linear,
we need to find a point from Popt ∩Q by a more sophisticated way.

Since Popt is mixed with outliers in the set Q, simple uniform sampling cannot realize
our goal. To remedy this issue, we propose a “two level” sampling procedure which is called
“Uniform-Adaptive Sampling” (see Lemma 6). Roughly speaking, we take a random
sample A of size n′ first (i.e., the uniform sampling step), and then randomly select a point
from Q′, the set of the farthest 3

2 (1 + δ)γn′ points from A to oi (i.e., the adaptive sampling
step). According to Lemma 6, with probability at least (1 − η1) δ

3(1+δ) , the selected point
belongs to Popt ∩Q; more importantly, the sample size n′ is independent of n and d. The key
to prove Lemma 6 is to show that the size of the intersection Q′ ∩

(
Popt ∩Q

)
is large enough.

By setting an appropriate value for n′, we can prove a lower bound of |Q′ ∩
(
Popt ∩Q

)
|.

I Lemma 6 (Uniform-Adaptive Sampling). Let η1 ∈ (0, 1). If we sample n′ = O(1
δγ log 1

η1
)

points independently and uniformly at random from P and let Q′ be the set of farthest
3
2 (1 + δ)γn′ points to oi from the sample, then, with probability at least 1− η1, the following
holds∣∣∣Q′ ∩ (Popt ∩Q)∣∣∣

|Q′|
≥ δ

3(1 + δ) . (4)

The Uniform-Adaptive Sampling procedure will result in a “side-effect”. To boost the
overall success probability, we have to repeatedly run the algorithm multiple times and each
time the algorithm will generate a candidate solution (i.e., the ball center). Consequently we
have to select the best one as our final solution. With a slight abuse of notation, we still
use oi to denote a candidate ball center; to achieve a (1 + ε, 1 + δ)-approximation, its radius
should be the

(
(1 + δ)γn + 1

)
-th largest distance from P to oi, which is denoted as li. A

straightforward way is to compute the value “li” in linear time for each candidate and return
the one having the smallest li. In this section, we propose the “Sandwich Lemma” to
estimate li in sub-linear time (see Lemma 7). Let B be the set of n′′ sampled points from P

in Lemma 7, and l̃i be the
(
(1 + δ)2γn′′ + 1

)
-th largest distance from B to oi. The key idea

is to prove that the ball B(oi, l̃i) is “sandwiched” by two balls B(oi, l̃′i) and B(oi, li), where l̃′i
is a carefully designed value satisfying (i) l̃′i ≤ l̃i ≤ li and (ii)

∣∣∣P \ B(oi, l̃′i)
∣∣∣ ≤ (1 +O(δ))γn.

See Figure 2 for an illustration. These two conditions of l̃′i can imply the inequalities (5)
and (6) of Lemma 7. Further, the inequalities (5) and (6) jointly imply that l̃i is a qualified
estimation of li: if B(oi, li) is a (1 + ε, 1 + δ)-approximation, the ball B(oi, l̃i) should be a
(1 + ε, 1 +O(δ))-approximation. Similar to Lemma 6, the sample size n′′ is also independent
of n and d.

ESA 2020

38:8 A Sub-Linear Time Framework for Geometric Optimization with Outliers

I Lemma 7 (Sandwich Lemma). Let η2 ∈ (0, 1) and assume δ < 1/3. If we sample
n′′ = O

(1
δ2γ log 1

η2

)
points independently and uniformly at random from P and let l̃i be the(

(1 + δ)2γn′′ + 1
)
-th largest distance from the sample to oi, then, with probability 1− η2, the

following holds

l̃i ≤ li; (5)∣∣∣P \ B(oi, l̃i)
∣∣∣ ≤ (1 +O(δ))γn. (6)

3.1 Proof of Lemma 6
Let A denote the set of sampled n′ points from P . First, we know |Q| = (1 + δ)γn and
|Popt ∩ Q| ≥ δγn (since there are at most γn outliers in Q). For ease of presentation, let
λ = |Popt∩Q|

n ≥ δγ. Let {xi | 1 ≤ i ≤ n′} be n′ independent random variables with xi = 1
if the i-th sampled point of A belongs to Popt ∩Q, and xi = 0 otherwise. Thus, E[xi] = λ

for each i. Let σ be a small parameter in (0, 1). By using the Chernoff bound, we have
Pr
(∑n′

i=1 xi /∈ (1± σ)λn′
)
≤ e−O(σ2λn′). That is,

Pr
(
|A ∩

(
Popt ∩Q

)
| ∈ (1± σ)λn′

)
≥ 1− e−O(σ2λn′). (7)

Similarly, we have

Pr
(
|A ∩Q| ∈ (1± σ)(1 + δ)γn′

)
≥ 1− e−O(σ2(1+δ)γn′). (8)

Note that n′ = O(1
δγ log 1

η1
). By setting σ < 1/2 in (7) and (8), we have∣∣∣A ∩ (Popt ∩Q)∣∣∣ > 1

2δγn
′ and

∣∣∣A ∩Q∣∣∣ < 3
2(1 + δ)γn′ (9)

with probability 1− η1. Note that Q contains all the farthest (1 + δ)γn points to oi. Denote
by li the

(
(1 + δ)γn+ 1

)
-th largest distance from P to oi. Thus

A ∩Q = {p ∈ A | ||p− oi|| > li}. (10)

Also, since Q′ is the set of the farthest 3
2 (1 + δ)γn′ points to oi from A, there exists some

l′i > 0 such that

Q′ = {p ∈ A | ||p− oi|| > l′i}. (11)

(10) and (11) imply that either (A ∩Q) ⊆ Q′ or Q′ ⊆ (A ∩Q). Since
∣∣A ∩Q∣∣ < 3

2 (1 + δ)γn′

and |Q′| = 3
2 (1 + δ)γn′, we know

(
A ∩Q

)
⊆ Q′. Therefore,(

A ∩
(
Popt ∩Q

))
=
(
Popt ∩

(
A ∩Q

))
⊆ Q′. (12)

Obviously,(
A ∩

(
Popt ∩Q

))
⊆
(
Popt ∩Q

)
. (13)

The above (12) and (13) together imply(
A ∩

(
Popt ∩Q

))
⊆
(
Q′ ∩

(
Popt ∩Q

))
. (14)

Moreover, since Q′ ⊆ A, we have(
Q′ ∩

(
Popt ∩Q

))
⊆
(
A ∩

(
Popt ∩Q

))
. (15)

H. Ding 38:9

Consequently, (14) and (15) together imply Q′ ∩
(
Popt ∩Q

)
= A ∩

(
Popt ∩Q

)
and hence∣∣∣Q′ ∩ (Popt ∩Q)∣∣∣

|Q′|
=

∣∣∣A ∩ (Popt ∩Q)∣∣∣
|Q′|

≥ δ

3(1 + δ) , (16)

where the final inequality comes from the first inequality of (9) and the fact |Q′| = 3
2 (1+δ)γn′.

3.2 Proof of Lemma 7
Let B denote the set of sampled n′′ points from P . For simplicity, let t = (1 + δ)γn. Assume
l̃′i > 0 is the value such that

∣∣∣P \ B(oi, l̃′i)
∣∣∣ = (1+δ)2

1−δ γn. Recall that li is the
(
t+ 1

)
-th largest

distance from P to oi. Since (1 + δ)γn < (1+δ)2

1−δ γn, it is easy to know l̃′i ≤ li. Below, we aim
to prove that the

(
(1 + δ)2γn′′ + 1

)
-th farthest point from B is in the ring bounded by the

spheres B(oi, l̃′i) and B(oi, li) (see Figure 2).
Again, using the Chernoff bound (let σ = δ/2) and the same idea for proving (9), since

|B| = n′′ = O
(1
δ2γ log 1

η2

)
, we have∣∣∣B \ B(oi, l̃′i)

∣∣∣ ≥ (1− δ/2)(1 + δ)2

1− δ γn′′ > (1− δ) (1 + δ)2

1− δ γn′′ = (1 + δ)2γn′′; (17)∣∣∣B ∩Q∣∣ ≤ (1 + δ/2) t
n
n′′ < (1 + δ) t

n
n′′ = (1 + δ)2γn′′, (18)

with probability 1 − η2. Suppose that (17) and (18) both hold. Recall that l̃i is the(
(1 + δ)2γn′′ + 1

)
-th largest distance from the sampled points B to oi, so

∣∣∣B \ B(oi, l̃i)
∣∣∣ =

(1 + δ)2γn′′, and thus l̃i ≥ l̃′i by (17).
The inequality (18) implies that the

(
(1 + δ)2γn′′ + 1

)
-th farthest point (say qx) from B

to oi is not in Q. Then, we claim that B(oi, l̃i) ∩ Q = ∅. Otherwise, let qy ∈ B(oi, l̃i) ∩ Q.
Then we have

||qy − oi|| ≤ l̃i = ||qx − oi||. (19)

Note that Q is the set of farthest t points to oi of P . So qx /∈ Q implies

||qx − oi|| < min
q∈Q
||q − oi|| ≤ ||qy − oi|| (20)

which is in contradiction to (19). Therefore, B(oi, l̃i)∩Q = ∅. Further, since B(oi, li) excludes
exactly the farthest t points (i.e., Q), B(oi, l̃i) ∩Q = ∅ implies l̃i ≤ li.

Overall, we have l̃i ∈ [l̃′i, li], i.e., the
(
(1 + δ)2γn′′ + 1

)
-th farthest point from B locates

in the ring bounded by the spheres B(oi, l̃′i) and B(oi, li) as shown in Figure 2. Also, l̃i ≥ l̃′i
implies∣∣∣P \ B(oi, l̃i)

∣∣∣ ≤ ∣∣∣P \ B(oi, l̃′i)
∣∣∣ = (1 + δ)2

1− δ γn = (1 +O(δ))γn, (21)

where the last equality comes from the assumption δ < 1/3. So (5) and (6) are true in
Lemma 7.

4 Sub-linear Time Algorithm of MEB with Outliers

Recall the remark following Theorem 4. As long as the selected point has a distance to the
center of MEB(T) larger than (1 + ε) times the optimal radius, the expected improvement
will always be guaranteed. Following this observation, we investigate the following approach.

ESA 2020

38:10 A Sub-Linear Time Framework for Geometric Optimization with Outliers

Suppose we run the core-set construction procedure decribed in Theorem 4 (we should
replace P by Popt in our following analysis). In the i-th step, we add an arbitrary point from
Popt \ B(oi, (1 + ε)Rad(Popt)) to T . We know that a (1 + ε)-approximation is obtained after
at most 2

(1−s)ε steps, that is, Popt ⊂ B
(
oi, (1 + ε)Rad(Popt)

)
for some i ≤ 2

(1−s)ε .
However, we need to solve two key issues in order to implement the above approach:

(i) how to determine the value of Rad(Popt) and (ii) how to correctly select a point from
Popt \ B(oi, (1 + ε)Rad(Popt)). Actually, we can implicitly avoid the first issue via replacing
(1 + ε)Rad(Popt) by the t-th largest distance from the points of P to oi, where we set
t = (1 + δ)γn for achieving a (1 + ε, 1 + δ)-approximation in the following analysis. For the
second issue, we randomly select one point from the farthest t points of P to oi, and show
that it belongs to Popt \ B(oi, (1 + ε)Rad(Popt)) with a certain probability.

Based on the above idea, we present a sub-linear time (1+ε, 1+δ)-approximation algorithm
in this section. To better understand the algorithm, we show a linear time algorithm first
(Algorithm 1 in Sections 4.1). Note that Bădoiu et al. [13] also achieved a (1 + ε, 1 + δ)-
approximation algorithm but with a higher complexity. Please see more details in our
analysis on the running time at the end of Sections 4.1. More importantly, we
improve the running time of Algorithm 1 to be sub-linear. For this purpose, we need to
avoid computing the farthest t points to oi, since this operation will take linear time. Also,
Algorithm 1 generates a set of candidates for the solution and we need to select the best one.
This process also costs linear time. By using the techniques proposed in Section 3, we can
remedy these issues and develop a sub-linear time algorithm that has the sample complexity
independent of n and d, in Section 4.2.

4.1 A Linear Time Algorithm

Algorithm 1 (1 + ε, 1 + δ)-approximation Algorithm for MEB with Outliers.

Input: A point set P with n points in Rd, the fraction of outliers γ ∈ (0, 1), and the
parameters 0 < ε, δ < 1, z ∈ Z+.

1: Let t = (1 + δ)γn.
2: Initially, randomly select a point p ∈ P and let T = {p}.
3: i = 1; repeat the following steps until i > z:
(1) Compute the approximate MEB center oi of T .
(2) Let Q be the set of farthest t points from P to oi; denote by li the (t+ 1)-th largest

distance from P to oi.
(3) Randomly select a point q ∈ Q, and add it to T .
(4) i = i+ 1.

4: Output the ball B(oî, l̂i) where î = argi min{li | 1 ≤ i ≤ z}.

In this section, we present our linear time (1 + ε, 1 + δ)-approximation algorithm for MEB
with outliers (see Algorithm 1). For convenience, denote by ci and ri the exact center and
radius of MEB(T) respectively in the i-th round of Step 3 of Algorithm 1. In Step 3(1), we
compute the approximate center oi with a distance to ci of less than ξRad(T) = s ε

1+εRad(T),
where s ∈ (0, 1) as described in Theorem 4 (we will determine the value of s in our following
analysis on the running time). The following theorem shows the success probability of
Algorithm 1.

I Theorem 8. If the input parameter z = 2
(1−s)ε (we assume it is an integer for convenience),

then with probability (1− γ)(δ
1+δ)z, Algorithm 1 outputs a (1 + ε, 1 + δ)-approximation for

the MEB with outliers problem.

H. Ding 38:11

Before proving Theorem 8, we present the following two lemmas first.

I Lemma 9. With probability (1 − γ)(δ
1+δ)z, after running z rounds in Step 3, the set

T ⊂ Popt in Algorithm 1.

Proof. Initially, because |Popt|/|P | = 1− γ, the first selected point in Step 2 belongs to Popt
with probability 1− γ. In each of the z rounds in Step 3, the selected point belongs to Popt
with probability δ

1+δ , since

|Popt ∩Q|
|Q|

= 1− |Q \ Popt|
|Q|

≥ 1− |P \ Popt|
|Q|

= 1− γn

(1 + δ)γn = δ

1 + δ
. (22)

Therefore, T ⊂ Popt with probability (1− γ)(δ
1+δ)z. J

I Lemma 10. In the i-th round of Step 3 for 1 ≤ i ≤ z, at least one of the following
two events happens: (1) oi is the ball center of a (1 + ε, 1 + δ)-approximation; (2) ri+1 >

(1 + ε)Rad(Popt)− ||ci − ci+1|| − ξri.

Proof. If li ≤ (1 + ε)Rad(Popt), then we are done. That is, the ball B(oi, li) covers (1 −
(1 + δ)γ)n points with radius li ≤ (1 + ε)Rad(Popt) (the first event happens). Otherwise,
li > (1 + ε)Rad(Popt) and we consider the second event. Let q be the point added to T in
the i-th round. Using the triangle inequality, we have

||oi − q|| ≤ ||oi − ci||+ ||ci − ci+1||+ |ci+1 − q|| ≤ ξri + ||ci − ci+1||+ ri+1. (23)

Since li > (1+ ε)Rad(Popt) and q lies outside of B(oi, li), i.e, ||oi−q|| ≥ li > (1+ ε)Rad(Popt),
(23) implies that the second event happens and the proof is completed. J

Proof of Theorem 8. Suppose that the first event of Lemma 10 never happens. As a
consequence, we obtain a series of inequalities for each pair of radii ri+1 and ri, i.e., ri+1 >

(1 + ε)Rad(Popt)− ||ci − ci+1|| − ξri. Assume that T ⊂ Popt in Lemma 9, i.e., each time the
algorithm correctly adds a point from Popt to T . Using the almost identical idea for proving
Theorem 4 in Section 2.1, we know that a (1 + ε)-approximate MEB of Popt is obtained after
at most z rounds. The success probability directly comes from Lemma 9. Overall, we obtain
Theorem 8. J

Moreover, Theorem 8 implies the following corollary.

I Corollary 11. If one repeatedly runs Algorithm 1 O(1
1−γ (1 + 1

δ)z) times, with constant
probability, the algorithm outputs a (1 + ε, 1 + δ)-approximation for the problem of MEB with
outliers.

Running time. In Theorem 8, we set z = 2
(1−s)ε and s ∈ (0, 1). To keep z small, according

to Theorem 4, we set s = ε
2+ε so that z = 2

ε + 1 (only larger than the lower bound 2
ε by 1).

For each round of Step 3, we need to compute an approximate center oi that has a distance
to the exact one less than ξri = s ε

1+εri = O(ε2)ri. Using the algorithm proposed in [11], this
can be done in O(1

ξ2 |T |d) = O(1
ε5 d) time. Also, the set Q can be obtained in linear time by

the algorithm in [10]. In total, the time complexity for obtaining a (1+ε, 1+δ)-approximation
in Corollary 11 is

O
(C
ε

(n+ 1
ε5

)d
)
, (24)

where C = O(1
1−γ (1 + 1

δ) 2
ε+1). As mentioned before, Bădoiu et al. [13] also achieved

a linear time bi-criteria approximation. However, the hidden constant of their running
time is exponential in Θ(1

εµ) (where µ is defined in [13], and should be δγ to ensure a
(1 + ε, 1 + δ)-approximation) that is much larger than 2

ε + 1.

ESA 2020

38:12 A Sub-Linear Time Framework for Geometric Optimization with Outliers

4.2 Improvement on Running Time

In this section, we show that the running time of Algorithm 1 can be further improved to
be independent of the number of points n. First, we observe that it is not necessary to
compute the set Q of the farthest t points in Step 3(2) of the algorithm. Actually, as long
as the selected point q is part of Popt ∩ Q in Step 3(3), a (1 + ε, 1 + δ)-approximation is
still guaranteed. The Uniform-Adaptive Sampling procedure proposed in Section 3 can help
us to obtain a point q ∈ Popt ∩ Q without computing the set Q. Moreover, in Lemma 7,
we show that the radius of each candidate solution can be estimated via random sampling.
Overall, we achieve a sub-linear time algorithm (Algorithm 2). Following the analysis in
Section 4.1, we set s = ε

2+ε so that z = 2
(1−s)ε = 2

ε + 1. We present the results in Theorem 12
and Corollary 13. Comparing with Theorem 8, we have an extra (1 − η1)(1 − η2) in the
success probability in Theorem 12, due to the probabilities from Lemmas 6 and 7.

Algorithm 2 Sub-linear Time (1 + ε, 1 +O(δ))-approximation Algorithm for MEB with Outliers.
Input: A point set P with n points in Rd, the fraction of outliers γ ∈ (0, 1), and the

parameters ε, η1, η2 ∈ (0, 1), δ ∈ (0, 1/3), and z ∈ Z+.
1: Let n′ = O(1

δγ log 1
η1

), n′′ = O
(1
δ2γ log 1

η2

)
, t′ = 3

2 (1 + δ)γn′, and t′′ = (1 + δ)2γn′′.
2: Initially, randomly select a point p ∈ P and let T = {p}.
3: i = 1; repeat the following steps until j = z:
(1) Compute the approximate MEB center oi of T .
(2) Sample n′ points uniformly at random from P , and let Q′ be the set of farthest t′

points to oi from the sample.
(3) Randomly select a point q ∈ Q′, and add it to T .
(4) Sample n′′ points uniformly at random from P , and let l̃i be the (t′′ + 1)-th largest

distance from the sampled points to oi.
(5) i = i+ 1.

4: Output the ball B(oî, l̃̂i) where î = argi min{l̃i | 1 ≤ i ≤ z}.

I Theorem 12. If the input parameter z = 2
ε + 1, then with probability (1− γ)

(
(1− η1)(1−

η2) δ
3(1+δ)

)z, Algorithm 2 outputs a (1 + ε, 1 +O(δ))-approximation for the problem of MEB
with outliers.

To boost the success probability in Theorem 12, we need to repeatedly run Algorithm 2
and output the best candidate. However, we need to be careful on setting the parameters.
The success probability in Theorem 12 consists of two parts, P1 = (1− γ)

(
(1− η1) δ

3(1+δ)
)z

and P2 = (1− η2)z, where P1 indicates the probability that {o1, · · · , oz} contains a qualified
candidate, and P2 indicates the success probability of Lemma 7 over all the z rounds.
Therefore, if we run Algorithm 2 N = O(1

P1
) times, with constant probability (by taking

the union bound), the set of all the generated candidates contains at least one that yields a
(1 + ε, 1 +O(δ))-approximation; moreover, to guarantee that we can correctly estimate the
resulting radii of all the candidates via the Sandwich Lemma with constant probability, we
need to set η2 = O(1

zN) (because there are O(zN) candidates).

I Corollary 13. If one repeatedly runs Algorithm 2 N = O
(

1
1−γ

(1
1−η1

(3 + 3
δ)
)z) times with

setting η2 = O(1
zN), with constant probability, the algorithm outputs a (1 + ε, 1 + O(δ))-

approximation for the problem of MEB with outliers.

H. Ding 38:13

The calculation of running time is similar to (24) in Section 4.1. We just replace n by
max{n′, n′′} = O

(1
δ2γ log 1

η2

)
= O

(1
δ2γ log(zN)

)
= Õ

(1
δ2γε

) 2, and change the value of C to

be O
(

1
1−γ

(1
1−η1

(3 + 3
δ)
) 2
ε+1
)
. So the total running time is independent of n. Also, to covert

the result from (1 + ε, 1 +O(δ))-approximation to (1 + ε, 1 + δ)-approximation, we just need
to reduce the value of δ in the input of Algorithm 2 appropriately.

5 The Extension: MEX with Outliers

In this section, we extend Definition 2 and define a more general problem called minimum
enclosing “x” (MEX) with Outliers. We observe that the ideas of Lemma 6 and 7 can
be further extended to deal with MEX with outliers problems, as long as the shape “x”
satisfies several properties. To describe a shape “x”, we need to clarify three basic
concepts: center, size, and distance function.

Let X be the set of specified shapes in Rd. In this paper, we require that each shape
x ∈ X is uniquely determined by the following two components: “c(x)”, the center of x, and
“s(x) ≥ 0”, the size of x. For any two shapes x1, x2 ∈ X , x1 = x2 if and only if c(x1) = c(x2)
and s(x1) = s(x2). Moreover, given a center o0 and a value l0 ≥ 0, we use x(o0, l0) to denote
the shape x with c(x) = o0 and s(x) = l0. For different shapes, we have different definitions
for the center and size. For example, if x is a ball, c(x) and s(x) should be the ball center and
the radius respectively; given o0 ∈ Rd and l0 ≥ 0, x(o0, l0) should be the ball B(o0, l0). As a
more complicated example, consider the k-center clustering with outliers problem, which is to
find k balls to cover the input point set excluding a certain number of outliers and minimize
the maximum radius (w.l.o.g., we can assume that the k balls have the same radius). For
this problem, the shape “x” is a union of k balls in Rd; the center c(x) is the set of the k
ball centers and the size s(x) is the radius.

For any point p ∈ Rd and any shape x ∈ X , we also need to define a distance function
f(c(x), p) between the center c(x) and p. For example, if x is a ball, f(c(x), p) is simply
equal to ||p − c(x)||; if x is a union of k balls with the center c(x) = {c1, c2, · · · , ck}, the
distance should be min1≤j≤k ||p− cj ||. Note that the distance function is only for ranking
the points to c(x), and not necessary to be non-negative (e.g., we define a distance function
f(c(x), p) ≤ 0 for SVM). By using this distance function, we can define the set “Q” and the
value “li” when generalizing Lemma 6 and 7 below. To guarantee their correctnesses, we
also require X to satisfy the following three properties.

I Property 1. For any two shapes x1 6= x2 ∈ X , if c(x1) = c(x2), then

s(x1) ≤ s(x2)⇐⇒ x1 is covered by x2, (25)

where “x1 is covered by x2” means “for any point p ∈ Rd, p ∈ x1 ⇒ p ∈ x2”.

I Property 2. Given any shape x ∈ X and any point p0 ∈ x, the set

{p | p ∈ Rd and f(c(x), p) ≤ f(c(x), p0)} ⊆ x. (26)

I Property 3. Given any shape center o0 and any point p0 ∈ Rd, they together determine
a value r0 = min{r | r ≥ 0, p0 ∈ x(o0, r)}; that is, p0 ∈ x(o0, r0) and p0 /∈ x(o0, r) for any
r < r0. (Note: usually the value r0 is just the distance from p0 to the shape center o0; but
for some cases, such as the SVM problem, the shape size and distance function have different
meanings).

2 The asymptotic notation Õ(f) = O
(
f · polylog(1

η1δ(1−γ))
)
.

ESA 2020

38:14 A Sub-Linear Time Framework for Geometric Optimization with Outliers

Intuitively, Property 1 shows that s(x) defines an order of the shapes sharing the same
center c(x). Property 2 shows that the distance function f defines an order of the points to a
given shape center c(x). Property 3 shows that a center o0 and a point p0 can define a shape
just “touching” p0. We can take X = {all d-dimensional balls} as an example. For any two
concentric balls, the smaller one is always covered by the larger one (Property 1); if a point
p0 is inside a ball x, any point p having the distance ||p − c(x)|| ≤ ||p0 − c(x)|| should be
inside x too (Property 2); also, given a ball center o0 and a point p0, p0 ∈ B(o0, ||p0 − o0||)
and p0 /∈ B(o0, r) for any r < ||p0 − o0|| (Property 3).

Now, we introduce the formal definitions of the MEX with outliers problem and its
bi-criteria approximation.

I Definition 14 (MEX with Outliers). Suppose the shape set X satisfies Property 1, 2, and 3.
Given a set P of n points in Rd and a small parameter γ ∈ (0, 1), the MEX with outliers
problem is to find the smallest shape x ∈ X that covers (1− γ)n points. Namely, the task
is to find a subset of P with size (1 − γ)n such that its minimum enclosing shape of X is
the smallest among all possible choices of the subset. The obtained solution is denoted by
MEX(P, γ).

I Definition 15 (Bi-criteria Approximation). Given an instance (P, γ) for MEX with outliers
and two small parameters 0 < ε, δ < 1, a (1 + ε, 1 + δ)-approximation of (P, γ) is a solution
x ∈ X that covers at least

(
1 − (1 + δ)γ

)
n points and has the size at most (1 + ε)s(xopt),

where xopt is the optimal solution.

It is easy to see that Definition 2 of MEB with outliers actually is a special case
of Definition 14. Similar to MEB with outliers, we still use Popt, where Popt ⊂ P and
|Popt| = (1− γ)n, to denote the subset covered by the optimal solution of MEX with outliers.

Now, we provide the generalized versions of Lemma 6 and 7. Similar to the core-set
construction method in Section 2.1, we assume that there exists an iterative algorithm Γ to
compute MEX (without outliers); actually, this is an important prerequisite to design the
sub-linear time algorithms under our framework (we will discuss the iterative algorithms
for the MEX with outliers problems considered in our paper, including flat fitting, k-center
clustering, and SVM, in the appendix). In the i-th iteration of Γ, it maintains a shape center
oi. Also, let Q be the set of (1 + δ)γn farthest points from P to oi with respect to the
distance function f . First, we need to define the value “li” by Q in the following claim.

B Claim 16. There exists a value li ≥ 0 satisfying P \ x(oi, li) = Q.

Proof. The points of P can be ranked based on their distances to oi. Without loss of generality,
let P = {p1, p2, · · · , pn} with f(oi, p1) > f(oi, p2) > · · · > f(oi, pn) (for convenience, we
assume that any two distances are not equal; if there is a tie, we can arbitrarily decide their
order to oi). Therefore, the set Q = {pj | 1 ≤ j ≤ (1 + δ)γn}. Moreover, from Property 3, we
know that each point pj ∈ P corresponds to a value rj that pj ∈ x(oi, rj) and pj /∈ x(oi, r) for
any r < rj . Denote by xj the shape x(oi, rj). We select the point pj0 with j0 = (1 + δ)γn+ 1.
From Property 2, we know that pj ∈ xj0 for any j ≥ j0, i.e., (a) P \Q ⊆ xj0 . We also need
to prove that pj /∈ xj0 for any j < j0. Assume there exists some pj1 ∈ xj0 with j1 < j0.
Then we have rj1 < rj0 and thus pj0 /∈ xj1 (by Property 3). By Property 2, pj0 /∈ xj1 implies
f(oi, pj0) > f(oi, pj1), which is in contradiction to the fact f(oi, pj0) < f(oi, pj1). So we have
(b) Q ∩ xj0 = ∅.

From the above (a) and (b), we know P \ xj0 = Q. Therefore, we can set the value
li = rj0 and then P \ x(oi, li) = Q. C

H. Ding 38:15

I Lemma 17 (Generalized Uniform-Adaptive Sampling). Let η1 ∈ (0, 1). If we sample n′ =
O(1

δγ log 1
η1

) points independently and uniformly at random from P and let Q′ be the set of
farthest 3

2 (1 + δ)γn′ points to oi from the sample, then, with probability at least 1− η1, the
following holds∣∣∣Q′ ∩ (Popt ∩Q)∣∣∣

|Q′|
≥ δ

3(1 + δ) . (27)

Proof. Let A denote the set of sampled n′ points from P . Similar to (9), we have∣∣∣A ∩ (Popt ∩Q)∣∣∣ > 1
2δγn

′ and
∣∣∣A ∩Q∣∣∣ < 3

2(1 + δ)γn′ (28)

with probability 1− η1. Similar to (10), we have

A ∩Q = {p ∈ A | f(oi, p) > f(oi, pj0)}, (29)

where pj0 is the point selected in the proof of Claim 16. By using the same manner of
Claim 16, we also can select a point pj′0 ∈ A with

Q′ = {p ∈ A | f(oi, p) > f(oi, pj′0)}. (30)

Then, we can prove(
A ∩

(
Popt ∩Q

))
=
(
Q′ ∩

(
Popt ∩Q

))
. (31)

by using the same idea of (14). Hence,∣∣∣Q′ ∩ (Popt ∩Q)∣∣∣
|Q′|

=

∣∣∣A ∩ (Popt ∩Q)∣∣∣
|Q′|

≥ δ

3(1 + δ) , (32)

where the final inequality comes from the first inequality of (28) and the fact |Q′| =
3
2 (1 + δ)γn′. J

I Lemma 18 (Generalized Sandwich Lemma). Let η2 ∈ (0, 1) and assume δ < 1/3. li is the
value from Claim 16. We sample n′′ = O

(1
δ2γ log 1

η2

)
points independently and uniformly at

random from P and let q be the
(
(1 + δ)2γn′′ + 1

)
-th farthest one from the sampled points to

oi. If l̃i = min{r | r ≥ 0, q ∈ x(oi, r)} (similar to the way defining “r0” in Property 3), then,
with probability 1− η2, the following holds

l̃i ≤ li; (33)∣∣∣P \ x(oi, l̃i)
∣∣∣ ≤ (1 +O(δ))γn. (34)

Proof. Let B denote the set of sampled n′′ points from P . By using the same manner
of Claim 16, we know that there exists a value l̃′i > 0 satisfying

∣∣∣P \ x(oi, l̃′i)
∣∣∣ = (1+δ)2

1−δ γn.
Similar to the proof of Lemma 7, we can prove that l̃i ∈ [l̃′i, li]. Due to Property 1, we know
that x(oi, l̃i) is “sandwiched” by the two shapes x(oi, l̃′i) and x(oi, li). Further, since x(oi, l̃′i)
is covered by x(oi, l̃i), we have∣∣∣P \ x(oi, l̃i)

∣∣∣ ≤ ∣∣∣P \ x(oi, l̃′i)
∣∣∣ = (1 + δ)2

1− δ γn = (1 +O(δ))γn, (35)

where the last equality comes from the assumption δ < 1/3. So (33) and (34) are true. J

ESA 2020

38:16 A Sub-Linear Time Framework for Geometric Optimization with Outliers

Due to the space limit, we place other parts to the full version of our paper [27]. We
propose the sub-linear time bi-criteria approximation algorithms for three different MEX
with outlier problems: k-center clustering, flat fitting, and SVM with outliers. All of these
problems have important applications in real world, and our results significantly reduce their
time complexities comparing with existing approaches.

References
1 Pankaj K. Agarwal, Esther Ezra, and Kyle Fox. Geometric optimization revisited. In Bernhard

Steffen and Gerhard J. Woeginger, editors, Computing and Software Science - State of the Art
and Perspectives, volume 10000 of Lecture Notes in Computer Science, pages 66–84. Springer,
2019.

2 Pankaj K. Agarwal, Sariel Har-Peled, and Kasturi R. Varadarajan. Geometric approximation
via coresets. Combinatorial and Computational Geometry, 52:1–30, 2005.

3 Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu. Robust shape fitting via peeling and grating
coresets. Discrete & Computational Geometry, 39(1-3):38–58, 2008.

4 Pankaj K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems in high
dimensions. Algorithmica, 72(1):83–98, 2015.

5 Alok Aggarwal, Hiroshi Imai, Naoki Katoh, and Subhash Suri. Finding k points with minimum
diameter and related problems. Journal of algorithms, 12(1):38–56, 1991.

6 Zeyuan Allen Zhu, Zhenyu Liao, and Yang Yuan. Optimization algorithms for faster computa-
tional geometry. In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, pages 53:1–53:6, 2016.

7 Noga Alon, Seannie Dar, Michal Parnas, and Dana Ron. Testing of clustering. SIAM Journal
on Discrete Mathematics, 16(3):393–417, 2003.

8 Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. In Proceedings of the 29th International Conference on Machine Learning, ICML
2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012, 2012.

9 Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018.

10 Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan.
Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461, 1973.

11 Mihai Bădoiu and Kenneth L. Clarkson. Smaller core-sets for balls. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 801–802, 2003.

12 Mihai Bădoiu and Kenneth L. Clarkson. Optimal core-sets for balls. Computational Geometry,
40(1):14–22, 2008.

13 Mihai Bădoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In
Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 250–257, 2002.

14 Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. Solving k-center clustering
(with outliers) in mapreduce and streaming, almost as accurately as sequentially. PVLDB,
12(7):766–778, 2019.

15 Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The non-uniform k-
center problem. In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, July 11-15, 2016, Rome, Italy, pages 67:1–67:15, 2016.

16 Timothy M. Chan and Vinayak Pathak. Streaming and dynamic algorithms for minimum
enclosing balls in high dimensions. Comput. Geom., 47(2):240–247, 2014.

17 Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
TIST, 2(3), 2011.

18 Moses Charikar, Samir Khuller, David M Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In Proceedings of the twelfth annual ACM-SIAM symposium
on Discrete algorithms, pages 642–651. Society for Industrial and Applied Mathematics, 2001.

H. Ding 38:17

19 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for
clustering problems. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 30–39. ACM, 2003.

20 Kenneth L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm.
ACM Transactions on Algorithms, 6(4):63, 2010.

21 Kenneth L. Clarkson, Elad Hazan, and David P. Woodruff. Sublinear optimization for machine
learning. J. ACM, 59(5):23:1–23:49, 2012.

22 Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273,
1995.

23 David J. Crisp and Christopher J. C. Burges. A geometric interpretation of v-SVM classifiers.
In Sara A. Solla, Todd K. Leen, and Klaus-Robert Müller, editors, NIPS, pages 244–250. The
MIT Press, 1999.

24 Artur Czumaj and Christian Sohler. Sublinear-time approximation for clustering via random
sampling. In International Colloquium on Automata, Languages, and Programming, pages
396–407. Springer, 2004.

25 Artur Czumaj and Christian Sohler. Sublinear-time algorithms. In Property Testing - Current
Research and Surveys, pages 41–64, 2010.

26 Hu Ding. Minimum enclosing ball revisited: Stability and sub-linear time algorithms. CoRR,
abs/1904.03796, 2019.

27 Hu Ding. A sub-linear time framework for geometric optimization with outliers in high
dimensions. CoRR, abs/2004.10090, 2020. arXiv:2004.10090.

28 Hu Ding and Jinhui Xu. Random gradient descent tree: A combinatorial approach for svm
with outliers. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages
2561–2567, 2015.

29 Hu Ding, Haikuo Yu, and Zixiu Wang. Greedy strategy works for k-center clustering with
outliers and coreset construction. In 27th Annual European Symposium on Algorithms, ESA
2019, September 9-11, 2019, Munich/Garching, Germany., pages 40:1–40:16, 2019.

30 Alon Efrat, Micha Sharir, and Alon Ziv. Computing the smallest k-enclosing circle and related
problems. Computational Geometry, 4(3):119–136, 1994.

31 Dan Feldman, Chongyuan Xiang, Ruihao Zhu, and Daniela Rus. Coresets for differentially
private k-means clustering and applications to privacy in mobile sensor networks. In Proceed-
ings of the 16th ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN 2017, Pittsburgh, PA, USA, April 18-21, 2017, pages 3–15, 2017.

32 Kaspar Fischer, Bernd Gärtner, and Martin Kutz. Fast smallest-enclosing-ball computation in
high dimensions. In Algorithms - ESA 2003, 11th Annual European Symposium, Budapest,
Hungary, September 16-19, 2003, Proceedings, pages 630–641, 2003.

33 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956.

34 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

35 Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

36 Ian J. Goodfellow, Patrick D. McDaniel, and Nicolas Papernot. Making machine learning
robust against adversarial inputs. Commun. ACM, 61(7):56–66, 2018.

37 Sudipto Guha, Yi Li, and Qin Zhang. Distributed partial clustering. In Proceedings of the 29th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 143–152. ACM, 2017.

38 Laszlo Gyongyosi and Sandor Imre. Geometrical analysis of physically allowed quantum
cloning transformations for quantum cryptography. Information Sciences, 285:1–23, 2014.

39 Sariel Har-Peled and Soham Mazumdar. Fast algorithms for computing the smallest k-enclosing
circle. Algorithmica, 41(3):147–157, 2005.

ESA 2020

http://arxiv.org/abs/2004.10090

38:18 A Sub-Linear Time Framework for Geometric Optimization with Outliers

40 Sariel Har-Peled, Dan Roth, and Dav Zimak. Maximum margin coresets for active and noise
tolerant learning. In IJCAI 2007, Proceedings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-12, 2007, pages 836–841, 2007.

41 Sariel Har-Peled and Kasturi R. Varadarajan. Approximate shape fitting via linearization. In
42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October
2001, Las Vegas, Nevada, USA, pages 66–73, 2001.

42 Sariel Har-Peled and Kasturi R. Varadarajan. High-dimensional shape fitting in linear time.
Discret. Comput. Geom., 32(2):269–288, 2004.

43 Sariel Har-Peled and Yusu Wang. Shape fitting with outliers. SIAM Journal on Computing,
33(2):269–285, 2004.

44 Elad Hazan, Tomer Koren, and Nati Srebro. Beating SGD: learning svms in sublinear time. In
John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held
12-14 December 2011, Granada, Spain, pages 1233–1241, 2011.

45 Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar.
Adversarial machine learning. In Proceedings of the 4th ACM workshop on Security and
artificial intelligence, pages 43–58, 2011.

46 Lingxiao Huang, Shaofeng Jiang, Jian Li, and Xuan Wu. Epsilon-coresets for clustering (with
outliers) in doubling metrics. In 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 814–825, 2018.

47 Piotr Indyk. Sublinear time algorithms for metric space problems. In Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta,
Georgia, USA, pages 428–434, 1999.

48 Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li.
Manipulating machine learning: Poisoning attacks and countermeasures for regression learning.
In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018,
San Francisco, California, USA, pages 19–35, 2018.

49 Michael Kerber and R. Sharathkumar. Approximate čech complex in low and high dimensions.
In Algorithms and Computation - 24th International Symposium, ISAAC 2013, Hong Kong,
China, December 16-18, 2013, Proceedings, pages 666–676, 2013.

50 Piyush Kumar, Joseph S. B. Mitchell, and E. Alper Yildirim. Approximate minimum enclosing
balls in high dimensions using core-sets. ACM Journal of Experimental Algorithmics, 8, 2003.

51 Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
arXiv preprint, 2016. arXiv:1611.01236.

52 Shi Li and Xiangyu Guo. Distributed k-clustering for data with heavy noise. In Advances in
Neural Information Processing Systems, pages 7849–7857, 2018.

53 Gustavo Malkomes, Matt J Kusner, Wenlin Chen, Kilian Q Weinberger, and Benjamin Moseley.
Fast distributed k-center clustering with outliers on massive data. In Advances in Neural
Information Processing Systems, pages 1063–1071, 2015.

54 Jiří Matoušek. On enclosing k points by a circle. Information Processing Letters, 53(4):217–221,
1995.

55 Richard Matthew McCutchen and Samir Khuller. Streaming algorithms for k-center clustering
with outliers and with anonymity. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, pages 165–178. Springer, 2008.

56 Adam Meyerson, Liadan O’Callaghan, and Serge A. Plotkin. A k-median algorithm with
running time independent of data size. Machine Learning, 56(1-3):61–87, 2004.

57 Nina Mishra, Dan Oblinger, and Leonard Pitt. Sublinear time approximate clustering. In
Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 439–447.
Society for Industrial and Applied Mathematics, 2001.

58 David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y.
Wu. On the least trimmed squares estimator. Algorithmica, 69(1):148–183, 2014.

http://arxiv.org/abs/1611.01236

H. Ding 38:19

59 Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Locating a small cluster privately. In
Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 413–427, 2016.

60 Rina Panigrahy. Minimum enclosing polytope in high dimensions. arXiv preprint, 2004.
arXiv:cs/0407020.

61 Jeff M. Phillips. Coresets and sketches. Computing Research Repository, 2016.
62 J. Platt. Fast training of support vector machines using sequential minimal optimization.

In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods —
Support Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

63 Ronitt Rubinfeld. Sublinear time algorithms. In Survey. Citeseer, 2006.
64 Ankan Saha, S. V. N. Vishwanathan, and Xinhua Zhang. New approximation algorithms for

minimum enclosing convex shapes. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 1146–1160, 2011.

65 B. Scholkopf, A. J. Smola, K. R. Muller, and P. L. Bartlett. New support vector algorithms.
Neural Computation, 12:1207–1245, 2000.

66 Shinya Suzumura, Kohei Ogawa, Masashi Sugiyama, and Ichiro Takeuchi. Outlier path: A
homotopy algorithm for robust svm. In Tony Jebara and Eric P. Xing, editors, Proceedings of
the 31st International Conference on Machine Learning (ICML-14), pages 1098–1106, 2014.

67 Pang-Ning Tan, Michael S. Steinbach, and Vipin Kumar. Introduction to Data Mining.
Addison-Wesley, 2005.

68 Ivor W. Tsang, James T. Kwok, and Pak-Ming Cheung. Core vector machines: Fast SVM
training on very large data sets. Journal of Machine Learning Research, 6:363–392, 2005.
URL: http://jmlr.org/papers/v6/tsang05a.html.

69 Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative frequencies
of events to their probabilities. In Measures of complexity, pages 11–30. Springer, 2015.

70 Linli Xu, Koby Crammer, and Dale Schuurmans. Robust support vector machine training via
convex outlier ablation. In AAAI, pages 536–542. AAAI Press, 2006.

71 Hai Yu, Pankaj K. Agarwal, Raghunath Poreddy, and Kasturi R. Varadarajan. Practical
methods for shape fitting and kinetic data structures using coresets. Algorithmica, 52(3):378–
402, 2008.

72 Hamid Zarrabi-Zadeh and Asish Mukhopadhyay. Streaming 1-center with outliers in high
dimensions. In Proceedings of the Canadian Conference on Computational Geometry (CCCG),
pages 83–86, 2009.

A Appendix

A.1 The Lower Bound of Sample Size for MEB with Outliers
Actually, it is easy to obtain a sub-linear time randomized 2-approximation algorithm for
MEB with outliers (if only returning the center): one can randomly select one point p ∈ P ,
and it belongs Popt with probability 1− γ; thus, with probability 1− γ, the point p yields a
2-approximation by using the triangle inequality. Below, we consider an example and show
that it is impossible to achieve a single-criterion λ-approximation for any λ < 2, if the time
complexity is required to be independent of n.

Let qa, qb, and qc be three colinear points in Rd, where ||qa − qb|| = x and ||qb − qc|| = y

(see Figure 3). Let γ ∈ (0, 1) and the point set P = Pa ∪ Pb ∪ Pc, where Pa contains a single
point located at qa, Pb contains (1− γ)n− 1 points overlapping at qb, and Pc contains γn
points overlapping at qc. Consider the instance (P, γ) for the problem of MEB with outliers.
Suppose x� y. Consequently, the optimal subset Popt should be Pa ∪ Pb and the optimal
radius is x/2.

ESA 2020

http://arxiv.org/abs/cs/0407020
http://jmlr.org/papers/v6/tsang05a.html

38:20 A Sub-Linear Time Framework for Geometric Optimization with Outliers

Figure 3 ||qa − qb|| = x and ||qb − qc|| = y.

If we take a random sample S of size m = o(n) from P , with high probability, Pa ∩S = ∅
(even if we repeat our sampling a constant number of times, the single point Pa will still be
missing with high probability). Therefore, S only contains the points from Pb and Pc. If we
run an existing algorithm on S, the resulting ball center, say o, should always be inside the
convex hull of S, i.e., the segment qbqc. Let B(o, r) be the ball covering (1− γ)n points of P .
We consider two cases: (1) qa ∈ B(o, r) and (2) qa /∈ B(o, r). For case (1), since o ∈ qbqc, it is
easy to know that the radius r ≥ ||qa − qb|| = x and therefore the approximation ratio is at
least 2. For case (2), since |Pb| = (1− γ)n− 1, B(o, r) must cover some point from Pc and
therefore r = y/2; because x� y, the approximation ratio is also larger than 2.

A.2 Proof of Theorem 4
Similar to the analysis in [11], we let λi = ri

(1+ε)Rad(P) . Because ri is the radius of MEB(T)
and T ⊂ P , we know ri ≤ Rad(P) and then λi ≤ 1/(1 + ε). By simple calculation, we know

that when Li =
(

(1+ε)Rad(P)−ξri
)2
−r2

i

2
(

(1+ε)Rad(P)−ξri
) the lower bound of ri+1 in (3) achieves the minimum

value. Plugging this value of Li into (3), we have

λ2
i+1 ≥ λ2

i +
(
(1− ξλi)2 − λ2

i

)2

4(1− ξλi)2 . (36)

To simplify inequality (36), we consider the function g(x) = (1−x)2−λ2
i

1−x , where 0 < x < ξ. Its
derivative g′(x) = −1− λ2

i

(1−x)2 is always negative, thus we have

g(x) ≥ g(ξ) = (1− ξ)2 − λ2
i

1− ξ . (37)

Because ξ < ε
1+ε and λi ≤ 1/(1 + ε), we know that the right-hand side of (37) is always

non-negative. Using (37), the inequality (36) can be simplified to

λ2
i+1 ≥ λ2

i + 1
4
(
g(ξ)

)2

= λ2
i +

(
(1− ξ)2 − λ2

i

)2

4(1− ξ)2 . (38)

(38) can be further rewritten as(λi+1

1− ξ

)2
≥ 1

4

(
1 + (λi

1− ξ)2
)2

=⇒ λi+1

1− ξ ≥ 1
2

(
1 + (λi

1− ξ)2
)
. (39)

Now, we can apply a similar transformation of λi which was used in [11]. Let γi = 1
1− λi

1−ξ
.

H. Ding 38:21

We know γi > 1 (note 0 ≤ λi ≤ 1
1+ε and ξ < ε

1+ε). Then, (39) implies that

γi+1 ≥ γi

1− 1
2γi

= γi
(
1 + 1

2γi
+ (1

2γi
)2 + · · ·

)
> γi + 1

2 , (40)

where the equation comes from the fact that γi > 1 and thus 1
2γi ∈ (0, 1

2). Note that λ0 = 0
and thus γ0 = 1. As a consequence, we have γi > 1 + i

2 . In addition, since λi ≤ 1
1+ε , that is,

γi ≤ 1
1− 1

(1+ε)(1−ξ)
, we have

i <
2

ε− ξ − εξ
= 2

(1− 1+ε
ε ξ)ε

. (41)

Consequently, we obtain the theorem.

ESA 2020

Practical Performance of Space Efficient Data
Structures for Longest Common Extensions
Patrick Dinklage
Department of Computer Science, Technical University of Dortmund, Germany
patrick.dinklage@tu-dortmund.de

Johannes Fischer
Department of Computer Science, Technical University of Dortmund, Germany
johannes.fischer@cs.tu-dortmund.de

Alexander Herlez
Department of Computer Science, Technical University of Dortmund, Germany
alexander.herlez@tu-dortmund.de

Tomasz Kociumaka
Department of Computer Science, Bar-Ilan Unviersity, Ramat Gan, Israel
kociumaka@mimuw.edu.pl

Florian Kurpicz
Department of Computer Science, Technical University of Dortmund, Germany
florian.kurpicz@tu-dortmund.de

Abstract
For a text T [1, n], a Longest Common Extension (LCE) query lceT (i, j) asks for the length of
the longest common prefix of the suffixes T [i, n] and T [j, n] identified by their starting positions
1 ≤ i, j ≤ n. A classic problem in stringology asks to preprocess a static text T [1, n] over an alphabet
of size σ so that LCE queries can be efficiently answered on-line. Since its introduction in the
1980’s, this problem has found numerous applications: in suffix sorting, edit distance computation,
approximate pattern matching, regularities finding, string mining, and many more. Text-book
solutions offer O(n) preprocessing time and O(1) query time, but they employ memory-heavy data
structures, such as suffix arrays, in practice several times bigger than the text itself.

Very recently, more space efficient solutions using O(n log σ) bits of total space or even only
O(logn) bits of extra space have been proposed: string synchronizing sets [Kempa and Kociumaka,
STOC’19, and Birenzwige et al., SODA’20] and in-place fingerprinting [Prezza, SODA’18]. The goal
of this article is to present well-engineered implementations of these new solutions and study their
practicality on a commonly agreed text corpus. We show that both perform extremely well in practice,
with space consumption of only around 10% of the input size for string synchronizing sets (around
20% for highly repetitive texts), and essentially no extra space for fingerprinting. Interestingly,
our experiments also show that both solutions become much faster than naive scanning even for
finding common prefixes of moderate length, contradicting a common belief that sophisticated data
structures for LCE queries are not competitive with naive approaches [Ilie and Tinta, SPIRE’09].

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases text indexing, longest common prefix, space efficient data structures

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.39

Supplementary Material https://github.com/herlez/lce-test

Funding Patrick Dinklage: Supported by the DFG SPP 1736 “Algorithms for Big Data”.
Tomasz Kociumaka: Supported by ISF grants no. 1278/16 and 1926/19, by a BSF grant no. 2018364,
and by an ERC grant MPM under the EU’s Horizon 2020 Research and Innovation Programme
(grant no. 683064).
Florian Kurpicz: Supported by the DFG SPP 1736 “Algorithms for Big Data”.

Acknowledgements Part of this work was carried out during the Dagstuhl Seminar 19241, “25 Years
of the Burrows–Wheeler Transform”.

© Patrick Dinklage, Johannes Fischer, Alexander Herlez, Tomasz Kociumaka, and Florian Kurpicz;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 39; pp. 39:1–39:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2004-6781
mailto:patrick.dinklage@tu-dortmund.de
mailto:johannes.fischer@cs.tu-dortmund.de
mailto:alexander.herlez@tu-dortmund.de
https://orcid.org/0000-0002-2477-1702
mailto:kociumaka@mimuw.edu.pl
https://orcid.org/0000-0002-2379-9455
mailto:florian.kurpicz@tu-dortmund.de
https://doi.org/10.4230/LIPIcs.ESA.2020.39
https://github.com/herlez/lce-test
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Practical Performance of Data Structures for LCE Queries

1 Introduction and Related Work

The longest common extension (LCE) problem is formally defined as follows:

Given: A text T [1, n] with n symbols from an alphabet of size σ.

Construct: A data structure that allows subsequent on-line queries of the form

lceT (i, j) := max{` ≥ 0 : T [i, i+ `) = T [j, j + `)}.

This is a fundamental problem in stringology, with numerous applications in (sparse) suffix
sorting [12,19,24], edit distance computation [35,37], approximate pattern matching [2,22,36],
regularities finding [4, 5, 13], string mining [21], and many more. The problem has a classic
solution with O(1)-time queries based either on the suffix tree of T combined with lowest
common ancestor queries [15,26,37], or using the inverse suffix array of T and the longest
common prefix array with a data structure for range minimum queries [18,30]. The latter
variant is more space efficient in practice but still several times larger than the text itself.

Recently, two notable methods appeared that also partly address the LCE problem:
Prezza’s in-place fingerprinting data structure [44] using a clever replacement of the original
text by well-chosen Karp–Rabin fingerprints [31], and data structures relying on local
consistency techniques [33,39,46] to construct so-called string synchronizing sets (SSS) [12,32].

Although the LCE problem is also of high practical importance, we are only aware of
a few experimental papers on the LCE problem [18, 29]. However, these studies are now
somewhat dated, and naturally none of them includes the recent theoretical advances on the
problem. As a result, practitioners (e.g., in bioinformatics) still use those old (slow and/or
memory-heavy) data structures (see, e.g., [43, 45, 47, 50]), thereby limiting themselves to
problem sizes much smaller than they could actually handle.

Our Contributions and Outline. The goal of this paper is to engineer and evaluate LCE
data structures based on the recent theoretical advances in this field [12, 32, 44]: in-place
fingerprinting and string synchronizing sets. We first describe the theory behind these
two approaches in Sect. 3, after having introduced some general background in Sect. 2.
Sect. 4 describes further details of the implementations, including a simple but practical
data structure for the well-known predecessor/successor queries [49]. Finally, in Sect. 5, we
evaluate our implementations on a well-established benchmarking set, showing that

(1) our implementations based on SSS are always among the fastest to answer queries and

(2) in-place fingerprinting is very fast in practice and useful to answer queries that have long
results.

Further Related Work. Compressed suffix trees with LCA functionality [20] can also be
used for LCE queries, but they are certainly too powerful (and hence too space consuming)
for the singular problem considered in this paper; this is confirmed experimentally in Sect. 5.

Time-space tradeoffs for LCE queries were considered by many authors [7,9,10,12,24,48].
Kosolobov [34] showed that the product of extra space (in bits) and LCE query time must
be at least Ω(n logn) under certain assumptions. Furthermore, there are data structures for
LCE queries in compressed [6, 8, 27,28,42,48] and dynamic texts [1, 23,39,42].

P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 39:3

2 Preliminaries

2.1 Karp–Rabin Fingerprints
The goal of Karp–Rabin fingerprints [31] is to hash substrings to small integers in order to
achieve fast comparisons for equality. To construct Karp–Rabin fingerprints, we choose a
random prime number q = Θ(nc) for some constant c > 1. The Karp–Rabin fingerprint
φ(x, y) of the substring T [x, y] is then defined as

φ(x, y) =
(

y∑
z=x

T [z] · σy−z
)

mod q . (1)

Observe that the Karp–Rabin fingerprints of matching substrings are equal, i.e., for every
integer ` ≥ 0, if T [x, x+ `] = T [y, y + `], then φ(x, x+ `) = φ(y, y + `). On the other hand,
if two substrings do not match, their fingerprints will be different with high probability.
Specifically, if T [x, x+ `] 6= T [y, y+ `], then Prob[φ(x, x+ `) = φ(y, y+ `)] = O

(
` logσ
nc

)
. Thus,

by choosing large enough constant c > 1, we can control the probability of false positives
when comparing fingerprints instead of the underlying substrings.

2.2 Static Successor Data Structures
Let U be a universe of u subsequent integers and let S[0, n− 1] be a sequence of n integers
from U sorted in ascending order. For any x ∈ U , we call succS(x) := min{y ∈ S | y ≥ x}
the successor of x in S, i.e., the smallest value in S larger than or equal to x. Without loss
of generality, we assume that x > S[0] (otherwise, its successor is S[0]) and x ≤ S[n − 1]
(otherwise, it has no successor). Furthermore, in the following, we are interested only in the
position i of the successor such that S[i] = succS(x).

The most straightforward ways to find succS(x) are by doing a linear search in time
O(n) or, since S is sorted, by doing a binary search in time O(logn). Both require O(logn)
bits of extra space for keeping track of the current position or the search interval and pivot,
respectively. Alternatively, we can construct a bit vector BS of size u′ = S[n− 1]− S[0] + 1
bits, in which we set BS [x − S[0]] := 1 if and only if x ∈ S. Enhancing BS to support
constant-time rank queries (see [41, p. 75]) then allows for constant-time successor queries,
because succS(x) = rank1(BS , x − S[0]). However, this method requires u′ + o(u′) bits of
memory and only works for static sets. Matsuoka et al. [38, Corollary 1] showed how to
achieve the same space bounds in a dynamic setting, raising the query time to O(log log u).

One can also interpret the numbers from S as binary strings and store them in a trie;
some nodes of that trie can then be sampled to speed up the successor search. Such
universe-based sampling has already been used in the van Emde Boas tree [49], which answers
successor queries in time O(log log u) and requires O(n log u) bits of memory using hashing.
Dementiev et al. [14] described a careful implementation of this idea for 32-bit universes,
called STree. However, the STree is designed for dynamic sequences and contains components
to support insertion and deletion into the set, which are not needed in the static case.

3 LCE Data Structures

3.1 In-Place Fingerprinting
Prezza [44] showed how to store the Karp–Rabin fingerprints from Sect. 2.1 succinctly so
that the fingerprints replace the original text characters, but the original characters can still
be recovered.

ESA 2020

39:4 Practical Performance of Data Structures for LCE Queries

To facilitate explanation, let us assume a byte-alphabet (σ = 256) and a computer with
word size w := 64 bits. We group characters from T into blocks of size τ := Θ(w/ log σ);
in our case, τ = 8. Call the resulting array B[1, n/τ], with B[i] := T [(i − 1)τ + 1, iτ]
for all i = 1, . . . , n/τ (assume for simplicity that τ divides n). Note that τ characters fit
into a computer word, and can hence be transferred to/from memory and arithmetically
manipulated in constant time. We also choose a random prime q such that 1

2σ
τ ≤ q < στ .

We then compute the fingerprints φ(1, iτ) for all i = 1, . . . , n/τ . (The original description
actually computes the values (φ(1, iτ) + s̄) mod q, where 0 ≤ s̄ < q is a random seed, which
we omit in the following.) Since D[i] := bB[i]/qc ∈ {0, 1}, all we need to recover the full
contents of block B[i] are the two fingerprints φ(1, (i− 1)τ) and φ(1, iτ), and the value D[i].
Prezza then shows how to choose q such that w.h.p. the fingerprints φ(1, iτ) all have their
most significant bit (MSB) set to 0; thus, the array D can be stored instead of those MSBs.
(If this doesn’t hold, one can recompute the data structure with a different value of q until it
holds.) This also allows us to compute the fingerprints for arbitrary substrings of T (not
necessarily aligned with the block boundaries), also in O(1) time. Prezza shows that with the
above choices of q and τ , the fingerprints are collision free with high probability 1− n−Ω(1).

The advantage of replacing the original text characters with fingerprints is that arbitrarily
long substrings of the text can be tested for equality in constant time, using the fingerprints
of those substrings. This can be applied for longest common extension queries as follows:
To compute ` := lceT (i, j) for any 1 ≤ i, j ≤ n, we do an exponential search by comparing
φ(i, i+ 2k) with φ(j, j + 2k) for increasing exponents k until the fingerprints mismatch; the
actual position of the first mismatch between T [i, n] and T [j, n] is then found by a further
binary search on an interval of size O(`). The whole process takes O(log `) time, assuming
that we have access to a precomputed table of all necessary powers of σ modulo q, which
adds another O(w logn) bits of space (negligible in practice).

3.2 String Synchronizing Sets

The idea behind a string synchronizing set (SSS for short) is to designate a (hopefully small)
set of positions from T such that this choice of positions is locally consistent, meaning that
in sufficiently long matching substrings of T , the chosen positions are the same (relative to
the beginnings of these substrings). We use the following simplified definition of SSS that is
sufficient for our purposes:

I Definition 1. For a positive integer τ ≤ n/2, the τ -synchronizing set of T is defined as

S = {i ∈ [1, n−2τ+1] : min{φ(j, j+τ−1) : j ∈ [i, i+τ]} ∈ {φ(i, i+τ−1), φ(i+τ, i+2τ−1)}}.

The τ -synchronizing set satisfies the following consistency property: for all i, j ∈ [1, n−2τ+1],
if T [i, i+ 2τ − 1] = T [j, j + 2τ − 1], then i ∈ S ⇐⇒ j ∈ S. The original definition [32] also
includes a density property that is necessary to guarantee a small SSS (of size O(n/τ)) even
for highly repetitive parts of T , which we do not consider in this paper, as it would make
the data structure and the query procedure significantly more complicated. (Omitting the
density property can only make our data structure larger, but it remains correct).

We can use SSS for LCE data structures as follows. We first build a successor data
structure on S. Let n′ := |S| denote the size of the SSS, and let s1 < s2 < · · · < sn′

denote the positions of S in increasing order. Define a new text T ′ of length n′ by setting
T ′[i] := T [si, si + 3τ − 1] for all 1 ≤ i ≤ n′. Then, build a data structure for constant-time
LCE queries on T ′, e.g., the RMQ-based solution mentioned in the introduction [18].

P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 39:5

In order to answer an lceT (i, j) query for arbitrary 1 ≤ i, j ≤ n, first compare at most
3τ + 1 characters from T [i, i+ 3τ] and T [j, j + 3τ]. If this comparison yields a mismatch, we
are done. If not, compute si′ := succS(i), sj′ := succS(j), and `′ := lceT ′(i′, j′). Then,

lceT (i, j) = si′+`′ − i+ lceT (si′+`′ , sj′+`′) , (2)

and the latter lceT value can again be computed naively as it is at most 3τ due to T ′[i′+`′] 6=
T ′[j′ + `′]. Overall, we get O(τ) query time. (The original description [32] sets τ = Θ(logσ n)
and uses the bit-vector approach from Sect. 2.2 for successor queries, as well as word-packing
and bit-fiddling techniques, to achieve O(1) query time, still in O(n log σ) bits of space.)

An advantage of this LCE data structure is that it naturally combines fast naive scanning
for small LCE values (up to 3τ) with more sophisticated data structures guaranteeing a
good worst-case performance. Taken together with the fact that the data structure is easily
tunable by adjusting τ , it is an excellent candidate for a practical LCE data structure.

4 Implementation

In this section, we describe our C++ implementations of the data structures from Sect. 3.
The code is optimized for byte-alphabets (σ = 256) and can handle texts of arbitrary length,
with the restriction for the algorithms described in Sect. 4.4 that the synchronizing set S
can contain at most |S| < 232 elements.

4.1 A Simple but Fast Static Successor Data Structure
We first describe our implementation of a fast practical data structure for successor queries
on a static sorted integer sequence S[0, n− 1] of length n over a universe U of size u = 2w.
To the best of our knowledge, there is no systematic study of such data structures. Our data
structure is a simple index that combines universe-based sampling, binary search, and linear
search to find the successor succS(x) for any given x ∈ U .

Let k < w be a trade-off parameter and let c be the number of elements from U that fit
into a cache line. We build an index P over S such that we can, in constant time, look up
an interval in S of length at most 2k + 1 in which succS(x) is guaranteed to be contained. In
this interval, we proceed with a binary search up to the point when the size of the current
search interval becomes at most c. In this final small interval, which fully fits into a cache
line, we look for succS(x) using linear search. This successor query takes O(k + c) time.

It remains to construct P . Let hik(x) = bx/2kc. We define an array IP of 2w−k = u/2k
intervals such that, for every non-negative integer q < u/2k, the entry IP [q] is defined as

[max{i ∈ [0, n− 1] : hik(S[i]) < q}+ 1, max{j ∈ [0, n− 2] : hik(S[j]) ≤ q}+ 1] .

If any maximum does not exist, we set the corresponding boundary to 0. As hik(s) ≤ u/2k
for each s ∈ S, the right boundary of the last interval is always n− 1. Informally, we split
the universe U into 2w−k intervals of size 2k, find the corresponding boundaries in S, and
store them in IP with the right boundary shifted forward by one. The successor of x is then
guaranteed to be contained in the interval IP [hik(x)] of S, which is of length at most 2k + 1.

Since, for 1 < q < u/2k, the right boundary of IP [q − 1] equals the left boundary of
IP [q], in our final index P , we only store the left boundaries and append n− 1 (the right
boundary of the last interval) at the end. Then, the interval of S in which the successor of
x is contained can be expressed as [P [hik(x)], P [hik(x) + 1]]. We can construct P in time
O(n+ u/2k) with one scan over S; observe that P takes (u/2k + 1)dlgne bits of space.

ESA 2020

39:6 Practical Performance of Data Structures for LCE Queries

106.6 106.8 107 107.2 107.4
0

20

40

60

throughput [queries/s]

m
em

or
y
[M

iB
]

average (τ = 256)

106.6 106.8 107 107.2 107.4
0

20

40

60

throughput [queries/s]

average (τ = 512)

106.8 107 107.2 107.4
0

20

40

60

throughput [queries/s]

m
em

or
y
[M

iB
]

average (τ = 1024)

106.8 107 107.2 107.4 107.6
0

20

40

60

throughput [queries/s]

average (τ = 2048)

bs bs* idx<6> idx<7> idx<8>
idx<9> idx<10> idx<11> idx<12> rank

Figure 1 Query throughput versus space usage for static successor data structures built on top
of string synchronizing sets with various values of τ , averaged over all texts in the corpus (Tbl. 1).

Note that the space requirement is not optimal in theory and very wasteful if u � n.
However, in our use case of τ -synchronizing sets, the universe is relatively small and gaps
between two subsequent integers in S are of length at most τ , making our index practical.

In a preliminary experiment, we looked for the best configuration of the parameter k for
our successor data structure. For this experiment, we constructed the string synchronizing
sets S for our input texts (see Tbl. 1) and compared the following successor data structures:
1. simple binary search (bs),
2. binary search that switches to linear search (bs*) for intervals of length at most c,
3. the simple data structure from Sect. 2.2, using a bit vector supporting constant-time rank

queries, and
4. our index P for different parameters k (idx<k>).

We measured the memory consumption of the successor data structures and the median
query throughput for ten million successor queries over five iterations. The results in
Figure 1 indicate that k := 7 yields the most beneficial trade-off between query throughput
and memory consumption. Therefore, we used this configuration in further experiments.
Appendix A shows a detailed breakdown of the results for all input texts.

4.2 Naive LCE Queries
Let us now turn our attention to LCE data structures. An ultra naive LCE query algorithm
compares characters one by one until a mismatch is detected. This can be sped up significantly
by using uint_128 variables – nowadays supported by most CPUs – to compare blocks of
16 characters at once. Once we have a mismatch, we compare the last block character by
character. This algorithm is called naive.

P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 39:7

4.3 In-Place Fingerprinting
We group 8 consecutive bytes of the input text into a block, reverse the order of the characters
in each block by simply swapping the characters (to speed up arithmetic operations when
querying the data structure), compute the fingerprint up to the end of the block using Eq. (1),
and overwrite the block with this fingerprint. Reversing the order of characters has no
significant effect on the construction time, as this construction algorithm is still the fastest on
all tested inputs (ignoring the naive approaches that do not require any construction at all),
see Sect. 5. We use the smallest prime q > 263, which is q = 263 + 29; this worked without
any collision detected and with MSB = 0 for all stored fingerprints across all tested texts.
We also use uint_128 and the appropriate extended processor instructions for multiplying
two 64-bit fingerprints.

Answering LCE queries using the procedure explained in Sect. 2.1 is done block-wise, i.e.,
in steps by 8, 16, . . . characters. Within a block, instead of reconstructing and comparing
fingerprints of short substrings, we first translate the fingerprint of the block back to its
original contents (characters from T) and scan these characters naively. Because this is faster
for LCE values smaller than 256, we also do this at the start of every LCE query. That
means that we only start the exponential search after scanning 8 blocks of 8 characters each.
We do the same when the final binary search reaches an interval shorter than 256 characters.

4.4 String Synchronizing Sets
While constructing a synchronizing set S, we only need to keep the fingerprints of a window
of size 2τ in memory. For reasons of speed, we do so by using a ring buffer of size 2dlg 2τe:
the power of two allows us to compute the positions in the buffer using fast bit operations.

When sorting the suffixes of T ′, we first use sequential radix sort (bingmann_msd_CI3_sb)
by Bingmann et al. [11] to reduce the alphabet size of T ′ (its characters are length-3τ
substrings of T). Then, we compute the suffix array using SAIS-LITE [40], because it is
the fastest for integer alphabets [3]. According to Sect. 3.2, we now have to compute the
LCP array of T ′. However, since in the end we are interested only in the LCP values within
the original text T , we deviate slightly from Eq. (2) and compute a sparse LCP array of T ,
using the positions from S as indexed positions. For this, we rely on [32, Fact 5.1] that the
lexicographic order of suffixes of T ′ coincides with the order of the corresponding suffixes
of T . Apart from eliminating the need to map positions from T ′ back to T , this also saves
us from performing the 3τ naive character comparisons at the end of the query in Eq. (2).

For the actual LCE computation for positions in S, we also build an RMQ data structure
on the sparse LCP array; we apply a data structure by Ferrada and Navarro [16] for this
purpose. We use a trick to speed up RMQ computations: since we know the length of the
interval on which an RMQ is performed, we can make use of the fact that scanning small
intervals is faster than an RMQ [29]. In our implementation, we only use the complicated
RMQ machinery for intervals larger than 1024; this value yielded the fastest query times.
Smaller intervals are simply scanned for the minimum. We implemented two variants of LCE
queries:

Prefer-short corresponds to the description in Sect. 3.2: First, scan 3τ characters from
T naively; if they are equal, compute the successors, and then apply Eq. (2) (with the
modification described in the preceding paragraph). This variant should be used when small
LCE values are expected, as the procedure is likely to stop already in the initial scan (before
computing the successors).

ESA 2020

39:8 Practical Performance of Data Structures for LCE Queries

Prefer-long, on the other hand, is optimized for a setting where large LCE values
are expected. Here, the important observation is that the initial naive scan could reach
synchronized positions much earlier than after 3τ comparisons. From that point on, one
could immediately resort to LCE computation on T ′. We therefore swap the computation of
the successors (si′ and sj′) and the naive scan. The naive scan then only has to verify that
T [i, si′) and T [j, sj′) indeed match.

5 Experimental Evaluation

We tested the data structures from Sect. 4: ultra_naive and naive (Sect. 4.2), our-
rk (fingerprinting from Sect. 4.3), and sssτ (string synchronizing sets from Sect. 4.4
with τ = 256, 512, 1024, 2048) in the both variants (pl denotes the prefer-long vari-
ant). Our implementations are available at https://github.com/herlez/lce-test. We
also compared our implementations with existing implementations: prezza-rk (https:
//github.com/nicolaprezza/rk-lce) and data structures using the compressed suffix trees
(CST) sada and sct3 contained in SDSL [25] (https://github.com/simongog/sdsl-lite).
Other existing implementations were excluded due to their much higher space consumption.

Our experiments were conducted on a computer with two Intel Xeon E5-2640v4 CPUs
(each with 10 cores at 2.4GHz base frequency (3.4GHz maximum turbo frequency) and
cache sizes: 32KB L1, 256KB L2, 25.6MB L3 cache) and 64GB RAM. All algorithms are
sequential and only use a single core, and the results are averages of five runs. The code was
compiled with GCC 9.2.0 and compiler flags -O3, -ffast-math, and -march=native.

We ran all algorithms on the input shown in Tbl. 1. The texts were taken from the
well-established benchmark suite Pizza&Chili [17]. Data sets from the top half of the table are
from the regular corpus, whereas those from the bottom half are from the repetitive corpus.

Apart from several characteristics of the input texts, like length and alphabet size, Tbl. 1
also shows the sizes of the resulting string synchronizing sets for different values of τ . These
numbers confirm our claim from Sect. 3.2 that the additional measures for keeping the SSS
small are not necessary in practice, as it can be observed that the growth of SSS size is
almost always perfectly proportional to the decrease of the values τ (growth rate only slightly
less than 1). The only notable exception is the data set “cere”, one of the highly repetitive
texts, which contains long runs (of the character N). There, for example, when halving τ
from 512 to 256, the SSS grows only by a factor of ≈ 1.21 (instead of the expected ≈ 2).

Table 1 Additional information about inputs used in evaluation: name, size n, alphabet size σ,
and sizes of the corresponding synchronizing sets |Sτ | for τ = 256, 512, 1024, and 2048.

name n σ |S256| |S512| |S1024| |S2048|

dblp.xml 296 135 874 97 2 304 012 1 153 799 578 703 288 758
dna 403 927 746 16 3 141 655 1 575 668 788 113 393 823

english.1024MB 1 073 741 824 239 8 354 560 4 187 042 2 095 466 1 047 924
proteins 1 184 051 855 27 9 215 429 4 616 809 2 341 374 1 155 364
sources 210 866 607 230 1 640 498 821 450 417 457 205 792

cere 461 286 644 5 31 619 034 26 205 215 20 013 847 12 699 848
coreutils 205 281 778 236 1 596 863 800 826 422 577 205 539

Escherichia_Coli 112 689 515 15 876 378 439 647 222 292 109 797
einstein.de.txt 92 758 441 117 721 365 361 616 181 080 90 702
einstein.en.txt 467 626 544 139 3 640 253 1 823 454 998 765 547 184

influenza 154 808 555 15 1 204 011 604 046 301 601 151 142
kernel 257 961 616 160 2 008 714 1 006 209 505 080 252 391

https://github.com/herlez/lce-test
https://github.com/nicolaprezza/rk-lce
https://github.com/nicolaprezza/rk-lce
https://github.com/simongog/sdsl-lite

P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 39:9

8.5

9

0 20 40 60 80
0

0.5

1

1.5

66
0

70
0

dblp.xml
m
em

or
y
[B
/n

] 8.5

9

0 50 100
0

0.5

1

1.5

83
0

89
0

dna

0 200 400
0

0.5

1

1.5
english.1024MB

8.5

9

0 50 100
0

0.5

1

1.5

84
0

89
0

proteins

m
em

or
y
[B
/n

] 8.5

9

0 50 100
0

0.5

1

1.5

63
0

67
0

sources

0 500 1000
0

2.5

5

7.5

10
cere

8.5

9

0 500 1000 1500
0

0.5

1

1.5

coreutils

m
em

or
y
[B
/n

] 8.5

9

0 200 400 600
0

0.5

1

1.5

einstein.de.txt

8.5

9

0 250 500 750
0

0.5

1

1.5

einstein.en.txt

8.5

9

0 100 200
0

0.5

1

1.5

70
0

74
0

Escherichia_Coli

m
em

or
y
[B
/n

]

construction time [ns/n]

8.5

9

0 50 100
0

0.5

1

1.5

65
0

70
0

influenza

construction time [ns/n]

8.5

9

0 500 1000 1500
0

0.5

1

1.5

kernel

construction time [ns/n]

sada sct3 naive our-rk prezza-rk
ultra_naive sss256 sss512 sss1024 sss2048

Figure 2 Construction time in nanoseconds and memory consumption in bytes per character of
the input for the LCE data structures. The upper mark is the memory peak during construction,
and the lower mark is the memory required for the final data structure. (Needs colors for viewing.)

ESA 2020

39:10 Practical Performance of Data Structures for LCE Queries

5.1 Construction and Space Usage

Fig. 2 shows the construction times and the space usage of the data structures. For the SSS
and CST data structures, that figure shows two numbers: the final size of the data structure
(bottom mark) and the memory peak during construction time (top mark). The difference of
these two numbers is therefore the additional space at construction time, which results from
the intermediate steps using additional data structures (as described in Sect. 4.4 for SSS).

The other data structures need no extra space during construction, as they are either
in-place (“prezza-rk” and “our-rk”) or do not do any preprocessing at all (“ultra_naive”
and “naive”). Also, “our-rk” is significantly faster to build than “prezza-rk” on all inputs; it
is 19.76 times faster on “sources”. The CST could not be computed for “english.1024MB”.
Overall, the CST data structures require the most memory. They are also the slowest to
construct on all texts but “cere”, “coreutils”, and “kernel”, where SSS is slower for some τ .

The first thing to note is that both time and space requirements grow for SSS with
decreasing parameter τ . For space, this is what one would expect immediately, whereas for
the running time, this needs further explanation: the times for sorting the characters of T ′,
which are substrings of T , depend both on their length 3τ and their number |S|. One could
now conjecture that, in all cases, roughly the same amount of characters has to be sorted,
resulting in construction times mostly independent of τ . However, as our string sorting
procedure is prefix aware (it only considers the strings up to their distinguishing prefixes),
the 3τ -long substrings are usually not inspected in full. This implies that the number of
strings can have a higher impact on the running times than their total length, despite the
fact that the total length of the strings remains the same (e.g., “english.1024MB”). For other
texts (like “dblp.xml”), the construction times are very similar for different values of τ , but
are generally faster with growing τ . The notable exception is again the data set “cere”, where
the order on the time-axis is reversed (but not on the space-axis). This can be explained as
follows: we already said before that the growth of the size of the SSS is much less pronounced
with decreasing values of τ than for the other data sets. The string sorter is likely to inspect
a number of characters proportional to the length of the strings. Therefore, the sorting times
for the cere-substrings are influenced more by their total lengths than for the other data sets.

tim
e
[s]

cere
47.27

0.051

233.3
39.60

100.15
1.474

m
em

or
y
[M

iB
] 512.0

10.74

1586.0

799.71

399.85
21.84

dblp.xml

23.575

0.018
0.352

0.428
0.2050.063

32.0
5.79

72.0

35.22
17.61

0.92

english.1024MB

32.285

0.025
2.83

0.654
2.180.087

32.0
7.90

72.0
48.08

24.04
1.27

SSS Succ String Sorting SA LCP RMQ

Figure 3 Snapshots of construction time and memory usage during construction for different
phases of sss512 (same as ssspl

512).

P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 39:11

The construction of the SSS structure can be broken down into several steps. Fig. 3
shows examples of how much time is needed for the individual components (building SSS,
sorting the length-3τ substrings, building the successor data structure, the suffix array, the
LCP array, and the RMQ data structure). Some components differ significantly from text to
text: for “cere”, the string sorting takes almost half of the total time, whereas for “dblp.xml”
(and partly also “english”), the construction of the SSS itself takes almost all of the time.
The charts also indicate if and where further engineering efforts can pay off: for example,
improving the successor data structure further will most likely neither speed up the final
construction times significantly nor improve the space usage. On the contrary, speeding up
string sorting or SSS construction (e.g., by parallelization) could result in an overall speedup.

5.2 Query Times
Now, we are interested in query times for different LCE values. To this end, we precomputed
queries whose results are in the interval [2k, 2k+1) for all k, allowing us to get a detailed look
at query times depending on the LCE value and use the same queries for all data structures.

We now first evaluate the query throughput of the different SSS data structures (with
varying values for τ). The results are shown in Fig. 4, grouped by the lengths of the actual
LCEs. It can be observed that the initial scanning of characters generally results in a visible
drop of the throughput for longer LCEs; smaller values of τ lead to faster query times; the
prefer-long variants are indeed faster for longer LCEs, whereas they are slower for shorter
ones; and the throughput of all variants does not drop below a threshold for very long LCEs.
Indeed, for many data sets, very long LCEs become faster, which can be explained by our
method for answering RMQs: for very long LCEs, the corresponding LCP values are likely to
be close together in the LCP array, so our query procedure is likely to use the fast scanning
for the minimum instead of invoking the heavy O(1)-time machinery. Given that the results
for τ = 512 and τ = 256 are almost equally fast (in particular for “prefer-long”), we choose
the larger of the two values for the following tests, as it results in a smaller data structure.

Fig. 5 shows the query throughput of all data structures (for SSS only with τ = 512).
We observe that “ultra_naive” is always slower than “naive” (this comes at no surprise);
for short LCEs (roughly up to 28), “ultra_naive”, “naive”, and “sss512” are fastest due to
the simple initial scanning; for longer LCEs (greater than 212), “ssspl512” becomes the fastest
data structure (also faster than “sss512”, which becomes faster than the naive approaches
for LCEs longer than ≈ 212); “our-rk” is slower than Prezza’s original implementation
“prezza-rk” except for medium sized LCEs around 25–210; and SSS’s are much faster than
the fingerprinting or naive methods for LCEs longer than ≈ 212. The CST data structures
“sada” and “sct3” are of similar speed and faster than “ultra_naive” only for long LCEs,
around 216 on most inputs. On the repetitive texts “einstein.de.txt” and “einstein.en.txt”
both are faster than the fingerprint data structures for medium-size LCEs around ≈ 213.

6 Conclusions

We conclude from the experiments that string synchronizing sets (SSS) are the method
of choice if their 10–20% overhead on top of the original text size fits into RAM, as they
naturally combine the best of two worlds: they answer short LCEs equally fast as naive
scanning methods, but are much faster for long LCEs and have a guaranteed worst-case
query time. This threshold is much earlier than previously conjectured: even for LCE values
larger than ≈ 29, the additional effort for constructing the data structure pays off. If even the
little extra space for the SSS is too much and worst case query times have to be guaranteed
for long LCEs, then one should use an in-place fingerprinting method.

ESA 2020

39:12 Practical Performance of Data Structures for LCE Queries

0 5 10

107

108
th
ro
ug

hp
ut

[q
ue
rie

s/
s]

dblp.xml

0 5 10 15 20

107

108

dna

0 5 10 15 20
106

107

108

english.1024MB

0 5 10 15 20

107

108

th
ro
ug

hp
ut

[q
ue

rie
s/
s]

proteins

0 5 10 15

107

108

sources

0 5 10 15
106

107

108

cere

0 5 10 15 20

107

108

th
ro
ug

hp
ut

[q
ue

rie
s/
s]

coreutils

0 5 10 15106

107

108

einstein.de.txt

0 5 10 15 20
106

107

108

einstein.en.txt

0 5 10 15 20

107

108

LCEs in [2k, 2k+1)

th
ro
ug

hp
ut

[q
ue

rie
s/
s]

Escherichia_Coli

0 5 10 15

107

108

LCEs in [2k, 2k+1)

influenza

0 5 10 15 20

107

108

LCEs in [2k, 2k+1)

kernel

sss256 ssspl256 sss512 ssspl512 sss1024 ssspl1024 sss2048 ssspl2048

Figure 4 Comparing query throughput of our SSS LCE data structures.

P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 39:13

0 5 10

105

106

107

108
th
ro
ug

hp
ut

[q
ue

rie
s/
s]

dblp.xml

0 5 10 15 20
104

105

106

107

108
dna

0 5 10 15 20
104

105

106

107

108
english.1024MB

0 5 10 15 20
104

105

106

107

108

th
ro
ug

hp
ut

[q
ue

rie
s/
s]

proteins

0 5 10 15
104

105

106

107

108
sources

0 5 10 15
104

105

106

107

108
cere

0 5 10 15 20
104

105

106

107

108

th
ro
ug

hp
ut

[q
ue
rie

s/
s]

coreutils

0 5 10 15
104

105

106

107

108
einstein.de.txt

0 5 10 15 20
104

105

106

107

108
einstein.en.txt

0 5 10 15 20
104

105

106

107

108

LCEs in [2k, 2k+1)

th
ro
ug

hp
ut

[q
ue

rie
s/
s]

Escherichia_Coli

0 5 10 15

105

106

107

108

LCEs in [2k, 2k+1)

influenza

0 5 10 15 20
104

105

106

107

108

LCEs in [2k, 2k+1)

kernel

sss512 ssspl512 our-rk prezza-rk naive ultra_naive sada sct3

Figure 5 Query throughput of the LCE data structures, only including the fastest SSS (τ = 512).

ESA 2020

39:14 Practical Performance of Data Structures for LCE Queries

References
1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic

texts. In 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 819–828.
ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.338645.

2 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with
k mismatches. Journal of Algorithms, 50(2):257–275, 2004. doi:10.1016/S0196-6774(03)
00097-X.

3 Johannes Bahne, Nico Bertram, Marvin Böcker, Jonas Bode, Johannes Fischer, Hermann
Foot, Florian Grieskamp, Florian Kurpicz, Marvin Löbel, Oliver Magiera, Rosa Pink, David
Piper, and Christopher Poeplau. Sacabench: Benchmarking suffix array construction. In
26th International Symposium on String Processing and Information Retrieval (SPIRE),
volume 11811 of Lecture Notes in Computer Science, pages 407–416. Springer, 2019. doi:
10.1007/978-3-030-32686-9_29.

4 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

5 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in
linear time for integer alphabets. In 28th Annual Symposium on Combinatorial Pattern
Matching (CPM), volume 78 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.22.

6 Philip Bille, Anders Roy Christiansen, Patrick Hagge Cording, and Inge Li Gørtz. Finger
search in grammar-compressed strings. Theory of Computing Systems, 62(8):1715–1735, 2018.
doi:10.1007/s00224-017-9839-9.

7 Philip Bille, Johannes Fischer, Inge Li Gørtz, Tsvi Kopelowitz, Benjamin Sach, and
Hjalte Wedel Vildhøj. Sparse text indexing in small space. ACM Transactions on Algo-
rithms, 12(3):39:1–39:19, 2016. doi:10.1145/2836166.

8 Philip Bille, Inge Li Gørtz, Patrick Hagge Cording, Benjamin Sach, Hjalte Wedel Vildhøj, and
Søren Vind. Fingerprints in compressed strings. Journal of Computer and System Sciences,
86:171–180, 2017. doi:10.1016/j.jcss.2017.01.002.

9 Philip Bille, Inge Li Gørtz, Mathias Bæk Tejs Knudsen, Moshe Lewenstein, and Hjalte Wedel
Vildhøj. Longest common extensions in sublinear space. In 26th Annual Symposium on
Combinatorial Pattern Matching (CPM), volume 9133 of Lecture Notes in Computer Science,
pages 65–76. Springer, 2015. doi:10.1007/978-3-319-19929-0_6.

10 Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj. Time-space trade-
offs for longest common extensions. Journal of Discrete Algorithms, 25:42–50, 2014. doi:
10.1016/j.jda.2013.06.003.

11 Timo Bingmann, Andreas Eberle, and Peter Sanders. Engineering parallel string sorting.
Algorithmica, 77(1):235–286, 2017. doi:10.1007/s00453-015-0071-1.

12 Or Birenzwige, Shay Golan, and Ely Porat. Locally consistent parsing for text indexing in
small space. In 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
607–626. SIAM, 2020. doi:10.1137/1.9781611975994.37.

13 Maxime Crochemore, Roman Kolpakov, and Gregory Kucherov. Optimal bounds for computing
α-gapped repeats. Information and Computation, 268, 2019. doi:10.1016/j.ic.2019.104434.

14 Roman Dementiev, Lutz Kettner, Jens Mehnert, and Peter Sanders. Engineering a sorted list
data structure for 32 bit key. In Sixth Workshop on Algorithm Engineering and Experiments
(ALENEX) and the First Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
pages 142–151. SIAM, 2004.

15 Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000. doi:10.1145/355541.
355547.

16 Héctor Ferrada and Gonzalo Navarro. Improved range minimum queries. Journal of Discrete
Algorithms, 43:72–80, 2017. doi:10.1016/j.jda.2016.09.002.

http://dl.acm.org/citation.cfm?id=338219.338645
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1007/978-3-030-32686-9_29
https://doi.org/10.1007/978-3-030-32686-9_29
https://doi.org/10.1137/15M1011032
https://doi.org/10.4230/LIPIcs.CPM.2017.22
https://doi.org/10.1007/s00224-017-9839-9
https://doi.org/10.1145/2836166
https://doi.org/10.1016/j.jcss.2017.01.002
https://doi.org/10.1007/978-3-319-19929-0_6
https://doi.org/10.1016/j.jda.2013.06.003
https://doi.org/10.1016/j.jda.2013.06.003
https://doi.org/10.1007/s00453-015-0071-1
https://doi.org/10.1137/1.9781611975994.37
https://doi.org/10.1016/j.ic.2019.104434
https://doi.org/10.1145/355541.355547
https://doi.org/10.1145/355541.355547
https://doi.org/10.1016/j.jda.2016.09.002

P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 39:15

17 Paolo Ferragina and Gonzalo Navarro. Pizza&Chili corpus: Compressed indexes and their
testbeds. URL: http://pizzachili.dcc.uchile.cl/.

18 Johannes Fischer and Volker Heun. Theoretical and practical improvements on the rmq-
problem, with applications to LCA and LCE. In 17th Annual Symposium on Combinatorial
Pattern Matching (CPM), volume 4009 of Lecture Notes in Computer Science, pages 36–48.
Springer, 2006. doi:10.1007/11780441_5.

19 Johannes Fischer, Tomohiro I, and Dominik Köppl. Deterministic sparse suffix sorting on
rewritable texts. In 12th Latin American Symposium on Theoretical Informatics (LATIN),
volume 9644 of Lecture Notes in Computer Science, pages 483–496. Springer, 2016. doi:
10.1007/978-3-662-49529-2_36.

20 Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. Faster entropy-bounded compressed
suffix trees. Theoretical Computer Science, 410(51):5354–5364, 2009. doi:10.1016/j.tcs.
2009.09.012.

21 Johannes Fischer, Veli Mäkinen, and Niko Välimäki. Space efficient string mining under
frequency constraints. In 8th IEEE International Conference on Data Mining (ICDM), pages
193–202. IEEE Computer Society, 2008. doi:10.1109/ICDM.2008.32.

22 Zvi Galil and Raffaele Giancarlo. Improved string matching with k mismatches. SIGACT
News, 17(4):52–54, 1986. doi:10.1145/8307.8309.

23 Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Łącki, and Piotr
Sankowski. Optimal dynamic strings. In 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1509–1528. SIAM, 2018. doi:10.1137/1.9781611975031.99.

24 Paweł Gawrychowski and Tomasz Kociumaka. Sparse suffix tree construction in optimal time
and space. In 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
425–439. SIAM, 2017. doi:10.1137/1.9781611974782.27.

25 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Joachim Gudmundsson and Jyrki Katajainen,
editors, 13th International Symposium on Experimental Algorithms, SEA 2014, volume 8504
of LNCS, pages 326–337. Springer, 2014. doi:10.1007/978-3-319-07959-2_28.

26 Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.
doi:10.1017/cbo9780511574931.

27 Tomohiro I. Longest common extensions with recompression. In 28th Annual Symposium
on Combinatorial Pattern Matching (CPM), volume 78 of LIPIcs, pages 18:1–18:15. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.CPM.2017.18.

28 Tomohiro I, Wataru Matsubara, Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, Masayuki
Takeda, Kazuyuki Narisawa, and Ayumi Shinohara. Detecting regularities on grammar-
compressed strings. Information and Computation, 240:74–89, 2015. doi:10.1016/j.ic.2014.
09.009.

29 Lucian Ilie and Liviu Tinta. Practical algorithms for the longest common extension problem.
In 16th International Symposium on String Processing and Information Retrieval (SPIRE),
volume 5721 of Lecture Notes in Computer Science, pages 302–309. Springer, 2009. doi:
10.1007/978-3-642-03784-9_30.

30 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
Journal of the ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

31 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987. doi:10.1147/rd.312.0249.

32 Dominik Kempa and Tomasz Kociumaka. String synchronizing sets: sublinear-time BWT
construction and optimal LCE data structure. In 51st Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 756–767. ACM, 2019. doi:10.1145/3313276.3316368.

33 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal pattern
matching queries in a text and applications. In 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 532–551. SIAM, 2015. doi:10.1137/1.9781611973730.36.

ESA 2020

http://pizzachili.dcc.uchile.cl/
https://doi.org/10.1007/11780441_5
https://doi.org/10.1007/978-3-662-49529-2_36
https://doi.org/10.1007/978-3-662-49529-2_36
https://doi.org/10.1016/j.tcs.2009.09.012
https://doi.org/10.1016/j.tcs.2009.09.012
https://doi.org/10.1109/ICDM.2008.32
https://doi.org/10.1145/8307.8309
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1137/1.9781611974782.27
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.4230/LIPIcs.CPM.2017.18
https://doi.org/10.1016/j.ic.2014.09.009
https://doi.org/10.1016/j.ic.2014.09.009
https://doi.org/10.1007/978-3-642-03784-9_30
https://doi.org/10.1007/978-3-642-03784-9_30
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1137/1.9781611973730.36

39:16 Practical Performance of Data Structures for LCE Queries

34 Dmitry Kosolobov. Tight lower bounds for the longest common extension problem. Information
Processing Letters, 125:26–29, 2017. doi:10.1016/j.ipl.2017.05.003.

35 Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557–582, 1998. doi:10.1137/S0097539794264810.

36 Gad M. Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theoretical
Computer Science, 43:239–249, 1986. doi:10.1016/0304-3975(86)90178-7.

37 Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. Journal of Computer
and System Sciences, 37(1):63–78, 1988. doi:10.1016/0022-0000(88)90045-1.

38 Yoshiaki Matsuoka, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Semi-dynamic compact index for short patterns and succinct van Emde Boas tree. In 26th
Annual Symposium on Combinatorial Pattern Matching (CPM), volume 9133 of Lecture Notes
in Computer Science, pages 355–366. Springer, 2015. doi:10.1007/978-3-319-19929-0_30.

39 Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining dynamic sequences under equality
tests in polylogarithmic time. Algorithmica, 17(2):183–198, 1997. doi:10.1007/BF02522825.

40 Yuta Mori. sais: An implementation of the induced sorting algorithm. URL: https://sites.
google.com/site/yuta256/.

41 Gonzalo Navarro. Compact Data Structures: A Practical Approach. Cambridge University
Press, 2016. doi:10.1017/cbo9781316588284.

42 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Fully dynamic data structure for LCE queries in compressed space. In 41st International
Symposium on Mathematical Foundations of Computer Science (MFCS), volume 58 of LIPIcs,
pages 72:1–72:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016. doi:10.4230/
LIPIcs.MFCS.2016.72.

43 Cinzia Pizzi. Missmax: alignment-free sequence comparison with mismatches through
filtering and heuristics. Algorithms for Molecular Biology, 11:6, 2016. doi:10.1186/
s13015-016-0072-x.

44 Nicola Prezza. In-place sparse suffix sorting. In 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1496–1508. SIAM, 2018. doi:10.1137/1.9781611975031.
98.

45 Wei Quan, Bo Liu, and Yadong Wang. SALT: a fast, memory-efficient and snp-aware short
read alignment tool. In IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pages 1774–1779. IEEE, 2019. doi:10.1109/BIBM47256.2019.8983162.

46 Süleyman Cenk Sahinalp and Uzi Vishkin. On a parallel-algorithms method for string matching
problems. In Second Italian Conference on Algorithms and Complexity (CIAC), volume 778 of
LNCS, pages 22–32. Springer, 1994. doi:10.1007/3-540-57811-0_3.

47 Avi Srivastava, Hirak Sarkar, Nitish Gupta, and Robert Patro. Rapmap: a rapid, sensitive and
accurate tool for mapping rna-seq reads to transcriptomes. Bioinformatics, 32(12):192–200,
2016. doi:10.1093/bioinformatics/btw277.

48 Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi, and Masayuki
Takeda. Deterministic sub-linear space LCE data structures with efficient construction. In
27th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 54 of LIPIcs,
pages 1:1–1:10. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
CPM.2016.1.

49 Peter van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space.
Information Processing Letters, 6(3):80–82, 1977. doi:10.1016/0020-0190(77)90031-X.

50 Chen Zhou, Hao Chi, Leheng Wang, You Li, Yan-Jie Wu, Yan Fu, Ruixiang Sun, and Si-Min
He. Speeding up tandem mass spectrometry-based database searching by longest common
prefix. BMC Bioinformatics, 11:577, 2010. doi:10.1186/1471-2105-11-577.

https://doi.org/10.1016/j.ipl.2017.05.003
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0304-3975(86)90178-7
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1007/978-3-319-19929-0_30
https://doi.org/10.1007/BF02522825
https://sites.google.com/site/yuta256/
https://sites.google.com/site/yuta256/
https://doi.org/10.1017/cbo9781316588284
https://doi.org/10.4230/LIPIcs.MFCS.2016.72
https://doi.org/10.4230/LIPIcs.MFCS.2016.72
https://doi.org/10.1186/s13015-016-0072-x
https://doi.org/10.1186/s13015-016-0072-x
https://doi.org/10.1137/1.9781611975031.98
https://doi.org/10.1137/1.9781611975031.98
https://doi.org/10.1109/BIBM47256.2019.8983162
https://doi.org/10.1007/3-540-57811-0_3
https://doi.org/10.1093/bioinformatics/btw277
https://doi.org/10.4230/LIPIcs.CPM.2016.1
https://doi.org/10.4230/LIPIcs.CPM.2016.1
https://doi.org/10.1016/0020-0190(77)90031-X
https://doi.org/10.1186/1471-2105-11-577

P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 39:17

A Detailed Results for Predecessor Queries

(a) τ = 256.

107 107.5
0

20

40

R
A
M

U
sa
ge

[M
iB
] dblp.xml

106.5 107
0

20

40

dna

106.5 107
0

100

200

300
english

106.5 107
0

50

100

150

R
A
M

U
sa
ge

[M
iB
] proteins

107 107.5
0

10

20

30
sources

106.5 107
0

20

40

60
cere

107 107.5
0

10

20

30

R
A
M

U
sa
ge

[M
iB
] coreutils

107 107.5
0

5

10

einstein.de.txt

107
0

20

40

60
einstein.en.txt

107 107.5
0

5

10

15

throughput
[queries/s]

R
A
M

U
sa
ge

[M
iB
] Escherichia_Coli

107 107.5
0

10

20

throughput
[queries/s]

influenza

107 107.5
0

10
20
30

throughput
[queries/s]

kernel

bs bs* idx<6> idx<7> idx<8>
idx<9> idx<10> idx<11> idx<12> rank

Figure 6 Query throughput and space usage for static successor data structures on SSS’s.

ESA 2020

39:18 Practical Performance of Data Structures for LCE Queries

(a) τ = 512.

107 107.5
0

20

40

R
A
M

U
sa
ge

[M
iB
] dblp.xml

107 107.5
0

20

40

dna

106.5 107
0

100

200

300
english

106.5 107
0

50

100

150

R
A
M

U
sa
ge

[M
iB
] proteins

107 107.5
0

10

20

30
sources

106.5 107
0

20

40

60
cere

107 107.5
0

10

20

30

R
A
M

U
sa
ge

[M
iB
] coreutils

107 107.5
0

5

10

einstein.de.txt

107 107.5
0

20

40

60
einstein.en.txt

107 107.5
0

5

10

15

throughput
[queries/s]

R
A
M

U
sa
ge

[M
iB
] Escherichia_Coli

107 107.5
0

10

20

throughput
[queries/s]

influenza

107 107.5
0

10
20
30

throughput
[queries/s]

kernel

Figure 7 Query throughput and space usage for static successor data structures on SSS’s (cont.).

P. Dinklage, J. Fischer, A. Herlez, T. Kociumaka, and F. Kurpicz 39:19

(a) τ = 1024.

107 107.5
0

20

40

R
A
M

U
sa
ge

[M
iB
] dblp.xml

107 107.5
0

20

40

dna

106.5 107
0

100

200

300
english

107 107.5
0

50

100

150

R
A
M

U
sa
ge

[M
iB
] proteins

107 107.5
0

10

20

30
sources

106.5 107
0

20

40

60
cere

107 107.5
0

10

20

30

R
A
M

U
sa
ge

[M
iB
] coreutils

107 107.5
0

5

10

einstein.de.txt

107 107.5
0

20

40

60
einstein.en.txt

107 107.5
0

5

10

15

throughput
[queries/s]

R
A
M

U
sa
ge

[M
iB
] Escherichia_Coli

107 107.5
0

10

20

throughput
[queries/s]

influenza

107 107.5
0

10
20
30

throughput
[queries/s]

kernel

bs bs* idx<6> idx<7> idx<8>
idx<9> idx<10> idx<11> idx<12> rank

Figure 8 Query throughput and space usage for static successor data structures on SSS’s (cont.).

ESA 2020

39:20 Practical Performance of Data Structures for LCE Queries

(a) τ = 2048.

107 107.5
0

20

40

R
A
M

U
sa
ge

[M
iB
] dblp.xml

107 107.5
0

20

40

dna

107 107.5
0

100

200

300
english

107 107.5
0

50

100

150

R
A
M

U
sa
ge

[M
iB
] proteins

107 107.5
0

10

20

30
sources

106.5 107 107.5
0

20

40

60
cere

107 107.5
0

10

20

30

R
A
M

U
sa
ge

[M
iB
] coreutils

107 107.5
0

5

10

einstein.de.txt

107 107.5
0

20

40

60
einstein.en.txt

107 107.5
0

5

10

15

throughput
[queries/s]

R
A
M

U
sa
ge

[M
iB
] Escherichia_Coli

107 107.5
0

10

20

throughput
[queries/s]

influenza

107 107.5
0

10
20
30

throughput
[queries/s]

kernel

bs bs* idx<6> idx<7> idx<8>
idx<9> idx<10> idx<11> idx<12> rank

Figure 9 Query throughput and space usage for static successor data structures on SSS’s (cont.).

First-Order Model-Checking in Random Graphs
and Complex Networks
Jan Dreier
Department of Computer Science, RWTH Aachen University, Germany
https://tcs.rwth-aachen.de/~dreier
dreier@cs.rwth-aachen.de

Philipp Kuinke
Department of Computer Science, RWTH Aachen University, Germany
https://tcs.rwth-aachen.de/~kuinke
kuinke@cs.rwth-aachen.de

Peter Rossmanith
Department of Computer Science, RWTH Aachen University, Germany
https://tcs.rwth-aachen.de
rossmani@cs.rwth-aachen.de

Abstract
Complex networks are everywhere. They appear for example in the form of biological networks, social
networks, or computer networks and have been studied extensively. Efficient algorithms to solve
problems on complex networks play a central role in today’s society. Algorithmic meta-theorems
show that many problems can be solved efficiently. Since logic is a powerful tool to model problems,
it has been used to obtain very general meta-theorems. In this work, we consider all problems
definable in first-order logic and analyze which properties of complex networks allow them to be
solved efficiently.

The mathematical tool to describe complex networks are random graph models. We define a
property of random graph models called α-power-law-boundedness. Roughly speaking, a random
graph is α-power-law-bounded if it does not admit strong clustering and its degree sequence is
bounded by a power-law distribution with exponent at least α (i.e. the fraction of vertices with
degree k is roughly O(k−α)).

We solve the first-order model-checking problem (parameterized by the length of the formula) in
almost linear FPT time on random graph models satisfying this property with α ≥ 3. This means in
particular that one can solve every problem expressible in first-order logic in almost linear expected
time on these random graph models. This includes for example preferential attachment graphs,
Chung–Lu graphs, configuration graphs, and sparse Erdős–Rényi graphs. Our results match known
hardness results and generalize previous tractability results on this topic.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases random graphs, average case analysis, first-order model-checking

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.40

Related Version A full version of the paper is available at https://arxiv.org/abs/2006.14488.

Funding This research has been partially supported by the German Science Foundation (DFG)
under grant DFG RO 927/15-1.

1 Introduction

Complex networks, as they occur in society, biology and technology, play a central role in
our everyday lives. Even though these networks occur in vastly different contexts, they are
structured and evolve according to a common set of underlying principles. Over the last two

© Jan Dreier, Philipp Kuinke, and Peter Rossmanith;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 40; pp. 40:1–40:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2662-5303
https://tcs.rwth-aachen.de/~dreier
mailto:dreier@cs.rwth-aachen.de
https://orcid.org/0000-0001-9716-6346
https://tcs.rwth-aachen.de/~kuinke
mailto:kuinke@cs.rwth-aachen.de
https://orcid.org/0000-0003-0177-8028
https://tcs.rwth-aachen.de
mailto:rossmani@cs.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.ESA.2020.40
https://arxiv.org/abs/2006.14488
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 First-Order Model-Checking in Random Graphs and Complex Networks

decades, with the emergence of the field of network science, there has been an explosion in
research to understand these fundamental laws. One well observed property is the small-world
phenomenon, which means that distances between vertices are very small. This has been
verified for the internet and many other networks [1, 56]. Furthermore, many real networks
tend to be clustered. They contain groups of vertices that are densely connected [67]. If two
vertices share a common neighbor, then there is a high chance that there is also an edge
between them. A network can be considered clustered if the ratio between the number of
triangles and the number of paths with three vertices is non-vanishing. This is formalized by
the clustering coefficient, which is high for many networks [72]. A third important property
is a heavy tailed degree distribution. While most vertices have a low number of connections,
there are a few hubs with a high degree. Experiments show that the degrees follow for
example a power-law or log-normal distribution. In a power-law distribution, the fraction
of vertices with degree k is proportional to k−α (usually with α between 2 and 3). This
behavior makes complex networks highly inhomogeneous [65, 58, 10, 15].

One important goal of theoretical computer science has always been to explore what kinds
of inputs allow or forbid us to construct efficient algorithms. In this context, algorithmic
meta-theorems [52] are of particular interest. They are usually theorems stating that problems
definable in a certain logic can be solved efficiently on graph classes that satisfy certain
properties. Logic is a powerful tool to model problems and therefore has been used to obtain
very general meta-theorems. A well-known example is Courcelle’s theorem [16], which states
that every problem expressible in counting monadic second-order logic can be solved in linear
time on graph classes with bounded treewidth. It has been further generalized to graph
classes with bounded cliquewidth [17]. To obtain results for larger graph classes one has to
consider weaker logics. The languages of relational database systems are based on first-order
logic. In this logic, one is allowed to quantify over vertices and to test equality and adjacency
of vertices. With k existential quantifiers, one may ask for the existence of a fixed graph with
k vertices (k-subgraph isomorphism), a problem relevant to motif-counting [57, 29]. On the
other hand, connectivity properties cannot be expressed in first-order logic. We define for
every graph class G the parameterized first-order model-checking problem p-MC(FO,G) [45].

p-MC(FO,G)
Input: A graph G ∈ G and a first-order sentence ϕ

Parameter: The number of symbols in ϕ, denoted by |ϕ|
Problem: Does ϕ hold on G (i.e. G |= ϕ)?

The aim is to show for a given graph class G that p-MC(FO,G) is fixed parameter tractable
(FPT), i.e., can be decided in time f(|ϕ|)nO(1) for some function f (see for example [18]
for an introduction to fixed parameter tractability). Since input graphs may be large, a
linear dependence on n is desirable. If one is successful, then every problem expressible in
first-order logic can be solved on G in linear time.

For the class of all graphs G, p-MC(FO,G) is AW[∗]-complete [25] and therefore most
likely not fpt. Over time, tractability of p-MC(FO,G) has been shown for more and more
sparse graph classes G: bounded vertex degree [69], forbidden minors [35], bounded local
treewidth [34], and further generalizations [19, 30, 68]. Grohe, Kreutzer and Siebertz prove
that p-MC(FO,G) can be solved in almost linear FPT time f(|ϕ|, ε)n1+ε for all ε > 0 if G is
a nowhere dense graph class [46]. On the other hand if G is a monotone somewhere dense
graph class, p-MC(FO,G) is AW[∗]-hard [46]. Nowhere dense graph classes were introduced
by Nešetřil and Ossona de Mendez as those graph classes where for every r ∈ N the size of
all r-shallow clique minors of all graphs in the graph class is bounded by a function of r

J. Dreier, P. Kuinke, and P. Rossmanith 40:3

(Section 4.3). A graph class is somewhere dense if it is not nowhere dense. The tractability
of the model-checking problem on monotone graph classes is completely characterized with a
dichotomy between nowhere dense and somewhere dense graph classes. These very general
results come at a cost: Frick and Grohe showed that the dependence of the run time on ϕ is
non-elementary [38]. We want to transfer this rich algorithmic theory to complex networks.
But what is the right abstraction to describe complex networks?

Network scientists observed that the chaotic and unordered structure of real networks
can by captured using randomness. There is a vast body of research using random processes
to create graphs that mimic the fundamental properties of complex networks. The most
prominent ones are the preferential attachment model [3, 64], Chung–Lu model [12, 13],
configuration model [60, 59], Kleinberg model [50, 51], hyperbolic graph model [53], and
random intersection graph model [47, 66]. All these are random models. It has been
thoroughly analyzed how well they predict various properties of complex networks [43].

When it comes to algorithmic meta-theorems on random graph models “even the most
basic questions are wide open,” as Grohe puts it [45]. By analyzing which models of complex
networks and which values of the model-parameters allow for efficient algorithms, we aim
to develop an understanding how the different properties of complex networks control their
algorithmic tractability.

In this work we show for a wide range of models, including the well known preferential
attachment model, that one can solve the parameterized first-order model-checking problem
in almost linear FPT time. This means in particular that one can solve every problem
expressible in first-order logic efficiently on these models. Our original goal was to obtain
efficient algorithms only for preferential attachment graphs, but we found an abstraction
that transfers these results to many other random graph models. Roughly speaking, the
following two criteria are sufficient for efficiently solving first-order definable problems on a
random graph model:

The model needs to be unclustered. In particular the expected number of triangles needs
to be subpolynomial.
For every k, the fraction of vertices with degree k is roughly O(k−3). In other words, the
degree sequence needs to be bounded by a power-law distribution with exponent 3 or
higher.

Models satisfying these properties include sparse Erdős–Rényi graphs, preferential attach-
ment graphs as well as certain Chung–Lu and configuration graphs. On the other hand, the
Kleinberg model, the hyperbolic random graph model, or the random intersection graph
model do not satisfy these properties. Our results generalize previous results [44, 22] and
match known hardness results: The model-checking problem has been proven to be hard
on power-law distributions with exponent smaller than 3 [28]. We therefore identify the
threshold for tractability to be a power-law coefficient of 3. It is also a big open question
whether the model-checking problem can also be solved on clustered random graph models,
especially since real networks tend to be clustered. Furthermore, significant engineering
challenges need to be overcome to make our algorithms applicable in practice.

1.1 Average Case Complexity
Average-case complexity analyzes the typical run time of algorithms on random instances
(see [6] for a survey), based on the idea that a worst-case analysis often is too pessimistic as
for many problems hard instances occur rarely in the real world. Since models of complex
networks are probability distributions over graphs, we analyze the run time of algorithms
under average-case complexity. However, there are multiple notions and one needs to be
careful which one to choose.

ESA 2020

40:4 First-Order Model-Checking in Random Graphs and Complex Networks

Assume a random graph model is asymptotically almost surely (a.a.s.) nowhere dense, i.e.,
a random graph from the model with n vertices belongs with probability 1−δ(n) to a nowhere
dense graph class, where limn→∞ δ(n) = 0 (Section 4.3). Then the first-order model-checking
problem can be efficiently solved with a probability converging to one [46]. However, with
probability δ(n) the run time can be arbitrarily high and the rate of convergence of δ(n) to
zero can be arbitrarily slow. These two missing bounds are undesirable from an algorithmic
standpoint and the field of average-case complexity has established a theory on how the run
time needs to be bounded with respect to the fraction of inputs that lead to this run time.

This is formalized by the well-established notion of average polynomial run time, intro-
duced by Levin [54]. An algorithm has average polynomial run time with respect to a random
graph model if there is an ε > 0 and a polynomial p such that for every n, t the probability
that the algorithm runs longer than t steps on an input of size n is at most p(n)/tε. This
means there is a polynomial trade-off between run time and fraction of inputs. This notion
has been widely studied [6, 2] and is considered from a complexity theoretic standpoint the
right notion of polynomial run time on random inputs. It is closed under invoking polynomial
subroutines.

In our work, however, we wish to explicitly distinguish linear time. While Levin’s
complexity class is a good analogy to the class P, it is not suited to capture algorithms with
average linear run time. For this reason, we turn to the expected value of the run time, a
stronger notion than average polynomial time. In fact, using Markov’s inequality we see that
if an algorithm has expected linear run time, all previous measures of average tractability
are also bounded. Their relationship is as follows.

expected linear ⇒ expected polynomial ⇒ average polynomial ⇒ a.a.s. polynomial

With this in mind we can present our notion of algorithmic tractability. A labeled graph
is a graph where every vertex can have (multiple) labels. First-order formulas can have
unary predicates for each type of label. These predicates test whether a vertex has a label
of a certain type. We define G to be the class of all graphs, and Glb to be the class of all
vertex-labeled graphs. A function L : G→ Glb is an l-labeling function for l ∈ N if for every
G ∈ G, L(G) is a labeling of G with up to l classes of labels (see Section 4 for details).
Furthermore, a random graph model is a sequence G = (Gn)n∈N, where Gn is a probability
distribution over unlabeled simple graphs with n vertices.

I Definition 1. We say p-MC(FO,Glb) can be decided on a random graph model (Gn)n∈N
in expected time f(|ϕ|, n) if there exists a deterministic algorithm A which decides p-
MC(FO,Glb) on input G, ϕ in time tA(G,ϕ) and if for all n ∈ N, all first-order sentences ϕ
and all |ϕ|-labeling functions L, EG∼Gn

[
tA(L(G), ϕ)

]
≤ f(|ϕ|, n). We say p-MC(FO,Glb) on

a random graph model can be decided in expected FPT time if it can be decided in expected
time g(|ϕ|)nO(1) for some function g.

In particular, this definition implies efficient average run time according to Levin’s notion
(which is closed under polynomial subroutines). We choose to include labels into our notion
of average-case hardness for two reasons: First, it makes our algorithmic results stronger, as
the expected run time is small, even in the presence of an adversary that labels the vertices
of the graph. Secondly, it matches known hardness results that require adversary labeling.

1.2 Previous Work
There have been efforts to transfer the results for classical graph classes to random graph
models by showing that a graph sampled from some random graph model belongs with
high probability to a certain algorithmically tractable graph class. For most random graph

J. Dreier, P. Kuinke, and P. Rossmanith 40:5

models the treewidth is polynomial in the size of the graph [41, 4]. Therefore, people have
considered more permissive graph measures than treewidth, such as low degree [44], or
bounded expansion [22, 33]. Demaine et al. showed that some Chung–Lu and configuration
graphs have bounded expansion and provided empirical evidence that some real-world
networks do, too [22]. However, this technique is still limited, as many random graph models
(such as the preferential attachment model [22, 27]) are not known to be contained in any of
the well-known tractable graph classes.

The previous tractability results presented in this section all use the following technique:
Assume we have a formula ϕ and sample a graph of size n from a random graph model. If
the sampled graph belongs to the tractable graph class, an efficient model-checking algorithm
for the graph class can solve the instance in FPT time. If the graph does not belong to the
graph class, the naive model-checking algorithm can still solve the instance in time O(n|ϕ|).
Assume we can show that the second case only happens with probability δ(n) converging to
zero faster than any polynomial. Then δ(n)O(n|ϕ|) converges to zero and the expected run
time remains bounded by an FPT function.

Let p(n) be a function with p(n) = O(nε/n) for all ε > 0. Grohe showed that one
can solve p-MC(FO,Glb) on Erdős–Rényi graphs G(n, p(n)) in expected time f(|ϕ|, ε)n1+ε

for every ε > 0 [44]. This result was obtained by showing that with high probability the
maximum degree of the random graph model is O(nε) for every ε > 0 and then using a
model-checking algorithm for low degree graphs. Later Demaine et al. and Farrell et al.
showed that certain Chung–Lu and configuration graphs whose degrees follow a power-law
distribution with exponent α > 3 [22] as well as certain random intersection graphs [33]
belong with high probability to a graph class with bounded expansion. While they do not
mention it explicitly, the previous argument implies that one can solve p-MC(FO,Glb) in
expected time f(|ϕ|)n on these random graph models.

There further exist some average-case hardness results for the model-checking problem.
It has been shown that one cannot decide p-MC(FO,Glb) on Erdős–Rényi graphs G(n, 1/2)
or G(n, p(n)) with p(n) = nε/n for some 0 < ε < 1, ε ∈ Q, in expected FPT time unless
AW[∗] ⊆ FPT/poly [28]. The same holds for Chung–Lu graphs with exponent 2.5 < α < 3,
α ∈ Q. These hardness results fundamentally require the adversary labeling of Definition 1.
It is a big open question whether they can be transferred to model-checking without labels.

Another thing to keep in mind when considering logic and random graphs [70] are zero-one
laws. They state that in many Erdős–Rényi graphs every first-order formula holds in the
limit either with probability zero or one [70, 42, 32]. Not all random graph models satisfy
a zero-one law for first-order logic (e.g. the limit probability of the existence of a K4 in a
Chung–Lu graph with weights wi =

√
n/i is neither zero nor one).

2 Our Results

We define a property called α-power-law-boundedness. This property depends on a para-
meter α and captures many unclustered random graph models for which the fraction of
vertices with expected degree d ∈ N is roughly O(d−α). Our main contribution is solving
the model-checking problem efficiently on all α-power-law-bounded random graph models
with α ≥ 3. This includes preferential attachment graphs, Chung–Lu graphs, Erdős–Rényi
graphs, and other random graph models. Note that graphs do not need to have a power-law
degree distribution to be α-power-law-bounded. Our results hold for arbitrary labelings of
the random graph and are based on a novel decomposition technique for local regions of
random graphs. While all previous algorithms work by placing the random graph model with
high probability in a sparse graph class, our technique also works for some a.a.s. somewhere
dense random graphs (e.g. preferential attachment graphs [27]).

ESA 2020

40:6 First-Order Model-Checking in Random Graphs and Complex Networks

2.1 Power-Law-Boundedness
We start by formalizing our property. Since it generalizes the Chung–Lu model, we define this
model first. A Chung–Lu graph with exponent α and vertices v1, . . . , vn is defined such that
two vertices vi and vj are adjacent with probability Θ(wiwj/n) where wi = (n/i)1/(α−1) [12].
Furthermore all edges are independent, which means that the probability that a set of edges
occurs equals the product over the probabilities of each individual edge. In our model the
probability of a set of edges can be a certain factor larger than the product of the individual
probabilities, which allows edges to be moderately dependent.

I Definition 2. Let α > 2. We say a random graph model (Gn)n∈N is α-power-law-bounded if
for every n ∈ N there exists an ordering v1, . . . , vn of V (Gn) such that for all E ⊆

({v1,...,vn}
2

)

Pr
[
E ⊆ E(Gn)

]
≤

∏
vivj∈E

(n/i)1/(α−1)(n/j)1/(α−1)

n
·

2O(|E|2) if α > 3
log(n)O(|E|2) if α = 3
O(nε)|E|2 for every ε > 0 if α < 3.

The probability that a set of edges E occurs may be up to a factor 2O(|E|2) or log(n)O(|E|2)

or O(nε)|E|2 (depending on α) larger than the probability in the corresponding Chung–Lu
graph. For conditional probabilities this means the following: The probability bound for
an edge under the condition that some set of l edges is already present may be up to a
factor 2O(l) or log(n)O(l) or O(nε)l larger than the unconditional probability. This lets
power-law-bounded random graphs capture moderate dependence between edges. The factor
undergoes a phase transition at α = 3. The smaller factor 2O(|E|2) for α > 3 was chosen to
guarantee linear FPT run time of our model-checking algorithm (Theorem 4) if α > 3. The
slightly larger factor of log(n)O(|E|2) for α = 3 was chosen to capture preferential attachment
graphs while still maintaining a quasilinear FPT run time of our algorithm.

The parameter α of an α-power-law-bounded random graph model controls the degree
distribution. Note that if a graph class is α-power-law-bounded it is also α′-power-law-
bounded for all 2 < α′ < α. It can be easily seen that a vertex vi has expected degree
at most O(nε)(n/i)1/(α−1) for every ε > 0. This means the expected degree sequence of
an α-power-law-bounded random graph model is not power-law distributed with exponent
smaller than α. The gap is often tight: For example, Chung–Lu graphs with a power-law
degree distribution exponent α are α-power-law-bounded and preferential attachment graphs
have a power-law degree distribution with exponent 3 and are 3-power-law-bounded. For the
interesting case α = 3, the inequality in Definition 2 simplifies to

Pr
[
E ⊆ E(Gn)

]
≤ log(n)O(|E|2)

∏
vivj∈E

1√
ij
.

2.2 Model Checking
We now present our model-checking algorithm for α-power-law-bounded graphs. We express
its run time relative to the term

d̃α(n) =

O(1) α > 3
log(n)O(1) α = 3
O(n3−α) α < 3.

J. Dreier, P. Kuinke, and P. Rossmanith 40:7

This term is related to an established property of degree distributions, namely the second
order average degree [12]. If a random graph with n vertices has expected degrees w1, . . . , wn
then the second order average degree is defined as

∑n
i=1 w

2
i /
∑n
k=1 wk. In graphs with a

power-law degree distribution α we have wi = Θ((n/i)1/(α−1)). The second order average
degree then is Θ

(∑n
i=1(n/i)2/(α−1)/

∑n
k=1(n/k)1/(α−1)). For α > 3, this term is constant,

for α = 3 it is logarithmic, and for α < 3 it is polynomial in n [12]. Thus, we can interpret
d̃α(n) as an estimate of the second order average degree. We prove that the model-checking
problem can be solved efficiently if d̃α(n) is small.

I Theorem 3. There exists a function f such that one can solve p-MC(FO,Glb) on every
α-power-law-bounded random graph model in expected time d̃α(n)f(|ϕ|)n.

The term d̃α(n) naturally arises in our proofs and is not a consequence of how we defined
the multiplicative factor (i.e., 2O(|E|2), log(n)O(|E|2), O(nε)|E|2) in Definition 2. In fact the
dependence goes the other way: We defined the factor for each α as large as possible such
that it does not dominate the run time of the algorithm. Next we specify exactly those
values of α where the previous theorem leads to FPT run times. (In the third case ε > 0 can
be chosen arbitrarily small since we require α to be arbitrarily close to 3.)

I Theorem 4. Let (Gn)n∈N be a random graph model and ε > 0. There exists a function f
such that one can solve p-MC(FO,Glb) in expected time

f(|ϕ|)n if (Gn)n∈N is α-power-law-bounded for some α > 3,
log(n)f(|ϕ|)n if (Gn)n∈N is α-power-law-bounded for α = 3,
f(|ϕ|, ε)n1+ε for all ε > 0 if (Gn)n∈N is α-power-law-bounded for every 2 < α < 3.

This solves the model-checking problem efficiently on a wide range of random graph
models. These tractability results are matched by previous intractability results. (Note that
the third case of Theorem 4 requires power-law-boundedness for every 2 < α < 3 and thus
does not contradict Proposition 5.)

I Proposition 5 ([28] and [26, Lemma 10.3]). For every 2 < α < 3 there exists an α-power-
law-bounded random graph model (Gn)n∈N such that one cannot solve p-MC(FO,Glb) on
(Gn)n∈N in expected FPT time unless AW[∗] ⊆ FPT/poly.

We observe a phase transition in tractability at power-law exponent α = 3. Also the run
time of our algorithm cannot be linear in n for α ≤ 3 as a 3-power-law-bounded random
graph can have for example n log(n) edges in expectation. We discuss some of the algorithmic
implications of our result for some well-known random graph models in Section 9. More
details can be found in Section 10 of [26].

2.3 Structure
Many algorithmic results are based on structural decompositions. For example, bidimen-
sionality theory introduced by Demaine et al. [20, 21] is based on the grid minor theorem,
which is itself based on a structural decomposition into a clique-sum of almost-embeddable
graphs developed by Robertson and Seymour [61]. The model-checking algorithm for graph
classes with bounded expansion by Dvořak, Král, and Thomas [30] relies on a structural
decomposition of bounded expansion graph classes by Nešetřil and Ossona de Mendez called
low tree-depth colorings [63]. Our algorithms are based on a structural decomposition of
α-power-law-bounded random graph models.

All algorithms prior to this work rely on showing that a certain graph model is with high
probability contained in a certain well-known tractable graph class (for example bounded
expansion) and then use the structural decompositions [63] of said graph class. However,

ESA 2020

40:8 First-Order Model-Checking in Random Graphs and Complex Networks

these decompositions were not originally designed with random graphs in mind and therefore
may not provide the optimal level of abstraction for random graphs. Our algorithms are
based on a specially defined structural decomposition. This direct approach helps us capture
random graph models that could otherwise not be captured such as the a.a.s. somewhere
dense preferential attachment model. By focusing on α-power-law-bounded random graph
models, we obtain structural decompositions for a wide range of models.

We observe that α-power-law-bounded random graphs have mostly an extremely sparse
structure with the exception of a part whose size is bounded by the second order average
degree. However, this denser part can be separated well from the remaining graph. We show
that local regions consist of a core part, bounded in size by the second order average degree,
to which trees and graphs of constant size are attached by a constant number of edges. This
decomposition is similar to so called protrusion decompositions, which have been used by
Bodlaender et al. to obtain meta-theorems on kernelization [5]. Our structural decomposition
is valid for all graphs that fit into the framework of α-power-law-boundedness, such as
preferential attachment graphs or Chung–Lu graphs. We define an approximation of the
second order average degree of the degree distribution as d̂α(n) = 2 for α > 3, d̂α(n) = log(n)
for α = 3 and d̂α(n) = n3−α for α < 3 (similarly to d̃α(n) without O-notation).

I Theorem 6. Let (Gn)n∈N be an α-power-law-bounded random graph model. There exist
constants c, r0 such that for every r ≥ r0 a.a.s. for every r-neighborhood H of Gn one can
partition V (H) into three (possibly empty) sets X, Y , Z with the following properties.
|X| ≤ d̂α(n)cr2 .
Every connected component of H[Y] has size at most cr and at most c neighbors in X.
Every connected component of H[Z] is a tree with at most one edge to H[X ∪ Y].

Removing a few vertices makes the local neighborhoods even sparser:

I Corollary 7. Let (Gn)n∈N be an α-power-law-bounded random graph model. There exist
constants c, r0 such that for every r ≥ r0 a.a.s. one can remove d̂α(n)cr2 vertices from Gn
such that every r-neighborhood has treewidth at most 26.

Further structural results that may be interesting beyond the purpose of model-checking as
well as proofs of the results outlined here can be found in Section 9 of [26]. We now discuss
how we use the decomposition of Theorem 6 for our algorithms and why decompositions
similar to Corollary 7 are not sufficient for our purposes.

3 Techniques and Outline

A first building block of our algorithm is Gaifman’s locality theorem [39]. It implies that
in order to solve the first-order model-checking problem on a graph, it is sufficient to solve
the problem on all r-neighborhoods of the graph for some small r. We can therefore restrict
ourselves to the model-checking problem on the neighborhoods of random graphs. With this
in mind, we want to obtain structural decompositions of these neighborhoods.

One important thing to note is that a decomposition according to Corollary 7 is not
sufficient. Let us focus on the interesting case α = 3 where efficient model-checking is still
possible. Corollary 7 then states that the removal of polylogarithmically many vertices yields
neighborhoods with treewidth at most 26. While we could easily solve the model-checking
problem on graphs with treewidth at most 26 via Courcelle’s theorem [16], we cannot solve
it on graphs where we need to remove a set X of log(n) vertices to obtain a treewidth of at
most 26. Every vertex not in X may have an arbitrary subset of X as neighborhood. Since

J. Dreier, P. Kuinke, and P. Rossmanith 40:9

there are 2|X| = n possible neighborhoods, we can encode a large complicated structure
into this graph by stating that two vertices i, j ∈ N are adjacent if and only if there is
a vertex whose neighborhood in X represents a binary encoding of the edge ij (omitting
some details). Because of this, the model-checking problem on this graph class is as hard as
on general graphs. We need the additional requirement that X is only loosely connected
to the remaining graph. The decomposition in Theorem 6 fulfills this requirement. Every
component of H \X has at most a constant number of neighbors in X.

Let us assume we have decompositions of the neighborhoods of a graph according to
Theorem 6 where the sets X are chosen as small as possible. We can now use a variant of
the Feferman–Vaught theorem [48] for each r-neighborhood to prune the protrusions and
thereby construct a smaller graph that satisfies the same (short) first-order formulas as the
original graph, We call this smaller graph the kernel. The size of this kernel will be some
function of |X|. We then use the brute-force model-checking algorithm on the kernel.

For the first steps of the algorithm (decomposition into neighborhoods, kernelization
using Feferman–Vaught) one can easily show that they always take FPT time. However, the
run time of the last step requires a careful analysis. One can check a formula ϕ on a graph of
size x in time O(x|ϕ|) by brute force. Thus, checking the formula on the kernel of all n many
r-neighborhoods of a random graph takes expected time at most n

∑n
x=1 pxO(x|ϕ|), where

px is the probability that the kernelization procedure on an r-neighborhood of a random
graph yields a kernel of size x. In order to guarantee a run time of the form log(n)f(|ϕ|)n for
some function f , px should be of order log(n)f(|ϕ|)x−|ϕ|.

Earlier, we discussed that the size of the kernel will be some function of |X| and that
we choose X as small as possible. It is therefore sufficient to bound the probability that
the set X of the decomposition of a neighborhood exceeds a certain size. Parameterizing
the decomposition by two values (denoted by b and µ later on) gives us enough control
to guarantee such a bound on px. A large part of this work is devoted to proving a good
trade-off between the size of the set X of the decomposition and the probability that X is
of minimal size. Furthermore, computing the set X is computationally hard, so the whole
procedure has to work without knowing the set X, but only its existence.

Our proofs are structured as follows. First, we show in Section 5 that α-power-law-
bounded random graph models have the following structure with high probability: They
can be partitioned into sets A, B, C, where A ∪ B is small, B ∪ C is sparse and A and C
locally share only few edges. This is done by characterizing this structure by a collection
of small forbidden edge-sets and then excluding these edge-sets using the union bound and
Definition 2. Then in Section 6 we show that the partition into A, B, C implies the protrusion
decomposition of Theorem 6. In Section 7, we partially recover the protrusion decomposition
from a given input, and use it to kernelize each r-neighborhood into an equivalent smaller
graph. At last, in Section 8, we combine Gaifman’s locality theorem with the previous
algorithms and probability bounds to obtain our algorithm and bound its run time. Some
proofs are quite tedious, but the nature of this problem seems to stop us from using simpler
methods.

3.1 Missing Proofs

Many proofs of the results presented in this paper have been omitted. In particular Section
2.3, 5 – 9 sketch only the main ideas behind our results. All missing proofs can be found in
the corresponding full version of this paper [26].

ESA 2020

40:10 First-Order Model-Checking in Random Graphs and Complex Networks

4 Notations and Definitions

4.1 Graph Notation
We use common graph theory notation [23]. The length of a path equals its number of edges.
The distance between two vertices u and v (dist(u, v)) equals the length of a shortest path
between u and v. For a vertex v let NG

r (v) be the set of vertices that have distance at most
r to v in G. The radius of a graph is the minimum among all maximum distances from one
vertex to all other vertices. An r-neighborhood in G is an induced subgraph of G with radius
at most r. The order of a graph is |G| = |V (G)|. The size of a graph is ‖G‖ = |V (G)+E(G)|.
The edge-excess of a graph G is |E(G)| − |V (G)|.

In this work we obtain results for labeled graphs [45]. A labeled graph is a tuple
G = (V (G), E(G), P1(G), . . . , Pl(G)) with Pi(G) ⊆ V (G). We call P1(G), . . . , Pl(G) the labels
of G. We say a vertex v is labeled with label Pi(G) if v ∈ Pi(G). A vertex may have multiple
labels. We say the unlabeled simple graph G′ = (V (G), E(G)) is the underlying graph of G
and G is a labeling of G′. All notations for graphs extend to labeled graphs as expected. The
union of two labeled graphsG andH, (G∪H), is obtained by setting V (G∪H) = V (G)∪V (H),
E(G ∪H) = E(G) ∪ E(H) and for each label Pi(G ∪H) = Pi(G) ∪ Pi(H).

For a graph class G, we define Glb to be the class of all labelings of G. We define G to be
the class of all simple graphs and Glb to be the class of all labeled simple graphs.

4.2 Probabilities and Random Graph Models
We denote probabilities by Pr[∗] and expectation by E[∗]. We consider a random graph
model to be a sequence of probability distributions. For every n ∈ N a random graph model
describes a probability distribution on unlabeled simple graphs with n vertices. In order
to speak of probability distributions over graphs we fix a sequence of vertices (vi)i≥1 and
require that a graph with n vertices has the vertex set {v1, . . . , vn}. A random graph model
is a sequence G = (Gn)n∈N, where Gn is a probability distribution over all unlabeled simple
graphs G with V (G) = {v1, . . . , vn}. Even though some random processes naturally lead to
graphs with multi-edges or self-loops, we interpret them as simple graphs by removing all
self-loops and replacing multiple edges with one single edge. In slight abuse of notation, we
also write Gn for the random variable which is distributed according to Gn. This way, we
can lift graph notation to notation for random variables of graphs: For example edge sets
and neighborhoods of a random graph Gn are represented by random variables E(Gn) and
NGn
r (v).

4.3 Sparsity
At first, we define nowhere and somewhere density as a property of graph classes and then
lift the notation to random graph models. There are various equivalent definitions and we
use the most common definition based on shallow topological minors.

I Definition 8 (Shallow topological minor [63]). A graph H is an r-shallow topological minor
of G if a graph obtained from H by subdividing every edge up to 2r times is isomorphic to a
subgraph of G. The set of all r-shallow topological minors of a graph G is denoted by G Õ r.
We define the maximum clique size over all shallow topological minors of G as

ω(G Õ r) = max
H∈G Õ r

ω(H).

J. Dreier, P. Kuinke, and P. Rossmanith 40:11

I Definition 9 (Nowhere dense [62]). A graph class G is nowhere dense if there exists a
function f , such that for all r ∈ N and all G ∈ G, ω(G Õ r) ≤ f(r).

I Definition 10 (Somewhere dense [62]). A graph class G is somewhere dense if for all
functions f there exists an r ∈ N and a G ∈ G, such that ω(G Õ r) > f(r).

Observe that a graph class is somewhere dense if and only if it is not nowhere dense. We
lift these notions to random graph models using the following two definitions.

I Definition 11 (a.a.s. nowhere dense). A random graph model G is a.a.s. nowhere dense if
there exists a function f such that for all r ∈ N

lim
n→∞

Pr[ω(Gn Õ r) ≤ f(r)] = 1.

I Definition 12 (a.a.s. somewhere dense). A random graph model G is a.a.s. somewhere
dense if for all functions f there is an r ∈ N such that

lim
n→∞

Pr[ω(Gn Õ r) > f(r)] = 1.

While for graph classes the concepts are complementary, a random graph model can both be
neither a.a.s. somewhere dense nor a.a.s. nowhere dense (e.g., if the random graph model is
either the empty or the complete graph, both with a probability of 1/2).

4.4 First-Order Logic
We consider only first-order logic over labeled graphs. We interpret a labeled graph G =
(V,E, P1, . . . , Pl), as a structure with universe V and signature (E,P1, . . . , Pl). The binary
relation E expresses adjacency between vertices and the unary relations P1, . . . , Pl indicate
the labels of the vertices. Other structures can be easily converted into labeled graphs. We
write ϕ(x1, . . . , xk) to indicate that a formula ϕ has free variables x1, . . . , xk. The quantifier
rank of a formula is the maximum nesting depth of quantifiers in the formula. Two labeled
graphs G1, G2 with the same signature are q-equivalent (G1 ≡q G2) if for every first-order
sentence ϕ with quantifier rank at most q and matching signature holds G1 |= ϕ if and only
if G2 |= ϕ. Furthermore, |ϕ| is the number of symbols in ϕ. There exists a simple algorithm
which decides whether G |= ϕ in time O(|G||ϕ|).

4.5 Model-Checking
With all definitions in place, we can now properly restate the model-checking problem and
what it means to solve it efficiently on a random graph model. The model-checking problem
on labeled graphs is defined as follows.

p-MC(FO,Glb)
Input: A graph G ∈ Glb and a first-order sentence ϕ

Parameter: |ϕ|
Problem: G |= ϕ?

Under worst-case complexity, p-MC(FO,Glb) is AW[∗]-complete [25] (and PSPACE-
complete when unparameterized [71]). We want average case algorithms for p-MC(FO,Glb)
to be efficient for all possible labelings of a random graph model. A function L : G→ Glb is
called a l-labeling function for l ∈ N if for every G ∈ G, L(G) is a labeling of G with up to l
labels.

ESA 2020

40:12 First-Order Model-Checking in Random Graphs and Complex Networks

I Definition 1. We say p-MC(FO,Glb) can be decided on a random graph model (Gn)n∈N
in expected time f(|ϕ|, n) if there exists a deterministic algorithm A which decides p-
MC(FO,Glb) on input G, ϕ in time tA(G,ϕ) and if for all n ∈ N, all first-order sentences ϕ
and all |ϕ|-labeling functions L, EG∼Gn

[
tA(L(G), ϕ)

]
≤ f(|ϕ|, n). We say p-MC(FO,Glb) on

a random graph model can be decided in expected FPT time if it can be decided in expected
time g(|ϕ|)nO(1) for some function g.

5 Structure Theorem for Power-Law-Bounded Random Graph
Models

The goal of this section is to partition α-power-law-bounded random graph models. We show
in Theorem 14 that their vertices can with high probability be partitioned into sets A,B,C
with the following properties: The sets A and B are small, the graph G[B ∪ C] is locally
almost a tree, i.e., has locally only a small edge-excess, and the set B almost separates A
from C, i.e., every neighborhood in G[C] has only a small number of edges to A. We call
(A,B,C) a b-r-µ-partition. We state the formal definition.

I Definition 13 (b-r-µ-partition). Let b, r, µ ∈ N+. Let G be a graph. A tuple (A,B,C) is
called a b-r-µ-partition of G if
1. the sets A,B,C are pairwise disjoint and their union is V (G),
2. |A| ≤ b and |B| ≤ bµ,
3. every 40µr-neighborhood in G[B ∪ C] has an edge-excess of at most µ2, and
4. for every 20µr-neighborhood in G[C] there are at most µ edges incident to both the

neighborhood and to A.
A graph for which a b-r-µ-partition exists is called b-r-µ-partitionable.

In summary, B and C are well behaved and the large set C is almost separated from A.
Note that the properties of a b-r-µ-partition depend on three parameters b, r, µ. The
results of this section imply that our random graphs are asymptotically almost surely b-r-µ-
partitionable for b = d̃α(n)Ω(1) and constant r, µ. It therefore helps to assume that b is a
slowly growing function in n, such as log(n) and r, µ are constants. Higher values of µ boost
the probability of a random graph being b-r-µ-partitionable. The parameter µ is therefore
crucial for the design of efficient algorithms. The main result of this section is the following.

I Theorem 14. Let (Gn)n∈N be an α-power-law-bounded random graph model and let
b, r, µ, n ∈ N+ with µ ≥ 5. The probability that Gn is not b-r-µ-partitionable is at most
d̃α(n)O(µ6r2)b−µ

2/10.

For proofs of the results in this section, we refer the reader to Section 6 of the full version
of this paper [26]. In the following we only sketch the main ideas.

For an α-power-law-bounded random graph model (Gn)n∈N, we always assume the
vertices of Gn to be v1, . . . , vn, ordered as in Definition 2. We will choose A = {v1, . . . , vb},
B = {vb+1, . . . , vbµ}, C = {vbµ+1, . . . , vn} and show that the probability is low that (A,B,C)
does not form a b-r-µ-partition. To do so, we first define Hn(b, r, µ) to be a set of graphs
over the vertex set {v1, . . . , vn}.

I Definition 15. Let b, r, µ, n ∈ N+. We define Hn(b, r, µ) to be the set of
all graphs with vertex set V ⊆ {vb+1, . . . , vn} such that |V | ≤ 200rµ3, all vertices have
degree at least two, and the graph has an edge-excess of µ2, and

J. Dreier, P. Kuinke, and P. Rossmanith 40:13

all graphs (V1∪V2, E) such that V1 ⊆ {v1, . . . , vb}, V2 ⊆ {vbµ+1, . . . , vn}, |V1∪V2| ≤ 25rµ2,
|E| ≤ 25rµ2, |V1| ≤ µ, all vertices in V2 have degree at least two, and the summed degree
of V2 is 2|V2| − 2 + µ.

We show that if (A,B,C) is not a b-r-µ-partition then the complete edge-set of some
graph in Hn(b, r, µ) is present in the graph.

I Definition 16. Let G be a graph and H be a set of graphs over V (G). We say H v G if
for some H ∈ H, E(H) ⊆ E(G).

I Lemma 17. Let b, r, µ, n ∈ N+. If a graph G with vertex set {v1, . . . , vn} is not b-r-µ-
partitionable, then Hn(b, r, µ) v G.

For a fixed graph H ∈ Hn(b, r, µ), α-power-law-boundedness (Definition 2) immediately
gives us a good bound on the probability Pr

[
E(H) ⊆ E(Gn)

]
that its edge-set occurs. Using

the union bound over all graphs in Hn(b, r, µ) and some tedious calculations (Lemmas 5.6,
5.7, 5.8, 5.9 in [26]) we can bound the probability of the edge-set of any graph from Hn(b, r, µ)
being present in the random graph model, proving the main result Theorem 14.

At last, we present one more result in which we bound the sum of the expected sizes
of all r-neighborhoods in an α-power-law-bounded graph class. This is needed in Section 8
to bound the expected run time of an algorithm that iterates over all r-neighborhoods of a
graph.

I Lemma 18. Let (Gn)n∈N be an α-power-law-bounded random graph model. Let r, µ, n ∈ N+

with µ ≥ 5. Let Ab be the event that b ∈ N+ is the minimal value such that Gn is b-r-µ-
partitionable. Then

E
[∑
v∈V (Gn)

‖Gn[NGn
r (v)]‖

∣∣ Ab]Pr[Ab] ≤ (rµ)O(r)d̃α(n)O(µ6r2)b−µ
2/10n.

6 Protrusion Decompositions of Neighborhoods

In this section, we show that local neighborhoods of power-law-bounded graph classes are
likely to have the following nice structure: They consist of a (small) core graph to which
so called protrusions are attached. Protrusions are (possibly large) subgraphs with small
treewidth and boundary. The boundary of a subgraph is the size of its neighborhood in
the remaining graph. Protrusions were introduced by Bodlaender et al. for very general
kernelization results in graph classes with bounded genus [5].

Earlier, (Theorem 14) we showed that α-power-law-bounded random graph models are
(for certain values of α, b, r, µ) likely to be b-r-µ-partitionable. It is therefore sufficient
to show that r-neighborhoods of b-r-µ-partitionable graphs have such a nice protrusion
structure.

However, in general it is not easy to find protrusions in a graph [49]. As we later need
to be able to find them, we define special protrusion decompositions, called b-r-µ-local-
protrusion-partitions in which (most of) the protrusions can be efficiently identified. The
main and only result of this section is the following theorem.

I Theorem 19. Let b, r, µ ∈ N+ and let G be a b-r-µ-partitionable graph. Let Gr be an
r-neighborhood in G. Then Gr is O(µ17r3b)-r-O(µ)-locally-protrusion-partitionable.

It remains to define what a b-r-µ-local-protrusion-partition of a graph Gr with radius at
most r is. The definition has to strike the right balance: It needs to be permissive enough
such that neighborhoods of power-law-bounded graph classes are likely to have this structure

ESA 2020

40:14 First-Order Model-Checking in Random Graphs and Complex Networks

and it needs to be restrictive enough to admit efficient algorithms. Informally speaking, a
b-r-µ-local-protrusion-partition of a graph Gr is a partition (X,Y, Z) of the vertices of Gr
such that X has small size and the connected components of Gr[Y ∪ Z] are protrusions. In
order to be able to efficiently identify the protrusions, we further require that the components
of Gr[Y] have bounded size and the components of Gr[Z] are trees. This is formalized in the
following definition.

I Definition 20 (b-r-µ-local-protrusion-partition). Let b, r, µ ∈ N+. Let Gr be a graph with
radius at most r. A tuple (X,Y, Z) is called a b-r-µ-local-protrusion-partition of Gr if
1. the sets X,Y, Z are pairwise disjoint and their union is V (Gr),
2. |X| ≤ bµ,
3. every connected component of Gr[Y] has size at most rµ7 and at most µ neighbors in X,
4. every connected component of Gr[Z] is a tree with at most one edge to Gr[X ∪ Y],
5. for a subgraph H of Gr[Y ∪Z] we say NGr (V (H))∩X is the boundary of H. The connected

components of Gr[Y] may have at most bµ distinct boundaries, i.e., |{NGr (V (H)) ∩X |
H connected component of Gr[Y ∪ Z]}| ≤ bµ.

A graph for which a b-r-µ-local-protrusion-partition exists is called b-r-µ-locally-protrusion-
partitionable.

Property 3 and 4 enforce that the components of Gr[Y ∪ Z] are protrusions. Later, we
will transform b-r-µ-local-protrusion-partitions into equivalent graphs of bounded size by
replacing the protrusions with small graphs. Thus, Property 2 and 5 are there to ensure that
the resulting kernelized graph will have size roughly bµ (without Property 5 we could only
guarantee a size of roughly bµ2 which is too large for our purposes).

Proving Theorem 19 involves multiple pages of proofs for which we refer to the full
version of this paper [26]. Here, we only sketch the construction of an O(µ17r3b)-r-O(µ)-
local-protrusion-partition. Let a graph G and b, r, µ ∈ N+ be fixed. We further assume
G to be b-r-µ-partitionable and we fix a b-r-µ-partition (A,B,C) of G. Let further Gr
be an r-neighborhood in G and let Ar = A ∩ V (Gr), Br = B ∩ V (Gr), Cr = C ∩ V (Gr).
We construct an O(µ17r3b)-r-O(µ)-local-protrusion-partition (X,Y, Z) of Gr by placing all
vertices from Ar ∪Br into X. In order to distribute the vertices Cr to the sets X, Y , and Z,
we define so called ties.

I Definition 21 (Tie). Let W ⊆ Br ∪ Cr. We say (u1, u2, v) is a W -tie if u1, u2 ∈W and
v lies on a walk p with the following properties: Every inner vertex of p is contained in Cr
and has at least two neighbors in p; u1 and u2 are contained only as endpoints of p; and p is
contained in a 20µr-neighborhood in G[Br ∪ Cr].

We use this notion to partition the set Cr. We distinguish vertices connected to Ar,
vertices connected to Br (but not to Ar), those which are connected to neither but lie on a
tie, and the rest. We set

CrA = N(Ar) ∩ Cr,
CrB = (N(Br) \N(Ar)) ∩ Cr,
CrY = {v | v ∈ Cr \ (CrA ∪CrB) and there exist u1, u2 ∈ CrA ∪CrB such that (u1, u2, v) is a
(CrA ∪ CrB)-tie },
CrZ = Cr \ (CrA ∪ CrB ∪ CrY).

Finally, we define X to be the union of Ar, Br and all vertices from CrA ∪CrB ∪CrY which
are in a connected component of G[Cr] with more than one edge to Br. We define Y to be
the vertices from CrA ∪ CrB ∪ CrY which are in a connected component of G[Cr] with at most
one edge to Br, and we define Z = CrZ . The fact that (X,Y, Z) is an O(µ17r3b)-r-O(µ)-local-
protrusion-partition is proved in Section 6 of [26].

J. Dreier, P. Kuinke, and P. Rossmanith 40:15

7 Compressing Neighborhoods

In this section, we kernelize b-r-µ-partitionable graphs. This means we replace the protrusions
with subgraphs of bounded size that retain the same boundary. This yields a smaller graph
which is q-equivalent to the original graph. The same technique has been used for obtaining
small kernels in larger graph classes, e.g., in graphs that exclude a fixed minor [36]. The
main result of this section is the following theorem.

I Theorem 22. There exists an algorithm that takes q, r, µ ∈ N+ and a connected labeled
graph G with radius at most r and at most q labels as input, runs in time at most f(q, r, µ)‖G‖
for some function f(q, r, µ), and computes a labeled graph G∗ ≡q G. If G is b-r-µ-locally-
protrusion-partitionable for some b ∈ N+ then |G∗| ≤ f(q, r, µ)bµ.

This kernelization procedure and its run time bound is independent in b but the size of
the output kernel is not: If b is small, then the output is small. The result is obtained by
replacing protrusions with the help of the Feferman–Vaught theorem [48]. However, in order
to replace the protrusions, one first has to identify them. The main complication in this
section lies in partitioning a graph such that the relevant protrusions can be easily identified.
It is crucial that we obtain the size bound |G∗| ≤ f(q, r, µ)bµ in Theorem 22. Weaker bounds
are easier to obtain but would not be sufficient for our purposes.

We use a variant of the Feferman–Vaught theorem [48] to replace a protrusion by a
q-equivalent boundaried graph of minimal size. This size depends only on q and the size of
the boundary. The original Feferman–Vaught theorem states that the validity of FO-formulas
on the disjoint union or Cartesian product of two graphs is uniquely determined by the value
of FO-formulas on the individual graphs. Makowsky adjusted the theorem for algorithmic
use [55] in the context of MSO model-checking. The following proposition contains the
Feferman–Vaught theorem in a very accessible form. There is also a nice and short proof
in [45]. The notation is borrowed from [45], too. At first, we need to define so called q-types.

I Definition 23 ([45]). Let G be a labeled graph and v̄ = (v1, . . . , vk) ∈ V (G)k, for some
nonnegative integer k. The first-order q-type of v̄ in G is the set tpFOq (G, v̄) of all first-order
formulas ψ(x1, . . . xk) of rank at most q such that G |= ψ(v1, . . . , vk).

A q-type could be an infinite set, but one can reduce them to a finite set by syntactically
normalizing formulas, so that there are only finitely many normalized formulas of fixed
quantifier rank and with a fixed set of free variables. These finitely many formulas can
be enumerated. For a tuple ū = (u1, . . . , uk), we write {ū} for the set {u1, . . . , uk}. The
following is a variant of the Feferman–Vaught theorem [48].

I Proposition 24 ([45, Lemma 2.3]). Let G,H be labeled graphs and ū ∈ V (G)k, such that
V (G) ∩ V (H) = {ū}. Then for all q ≥ 0, tpFOq (G ∪H, ū) is determined by tpFOq (G, ū) and
tpFOq (H, ū).

We use this proposition to define a q-type preserving protrusion replacement procedure.
Assume we identify a protrusionH of a graph with boundary ū. Using Courcelle’s theorem [17],
we can compute tpFOq (H, ū) by checking all representing formulas. By then enumerating all
graphs in ascending order by their size we can find a small graph H ′ with tpFOq (H ′, ū) =
tpFOq (H ′, ū). Proposition 24 now states that we can replace H with H ′ to obtain a smaller
q-equivalent graph. We repeat this for every protrusion we identify. In the full version of this
paper [26], this procedure and the proof of Theorem 22 is presented in detail (Section 7).

ESA 2020

40:16 First-Order Model-Checking in Random Graphs and Complex Networks

8 Model-Checking

In this section, we finally obtain the main result of this paper, namely that for certain values
of α one can perform model-checking on α-power-law-bounded random graph models in
efficient expected time.

An important tool in this section is Gaifman’s locality theorem [39]. It states that
first-order formulas can express only local properties of graphs. It is a well established tool
for the design of model-checking algorithms (e.g. [44, 45, 37]). We use it to reduce the
model-checking problem on a graph to the model-checking problem on neighborhoods of said
graph [26, Lemma 8.2]. This technique is described well by Grohe [45, section 5].

To illustrate our approach, consider the following thought experiment: Let X be a
non-negative random variable with Pr[X = b] = Θ(b−10) for all b ∈ N. Assume an algorithm
that gets an integer b ∈ N as input and runs in time t(b). Its expected run time on input X
is
∑
b∈N Θ(b−10)t(X). If t(b) = b10 then the expected run time is infinite. If t(b) = b8 then

the expected run time is Θ(1). Thus, small polynomial differences in the run time can have
a huge impact on the expected run time. We notice that the run time on an input has to
grow slower than the inverse of the probability that the input occurs.

Let us fix a formula ϕ and let r and µ be constants depending on ϕ. In this section we
provide a model-checking algorithm whose run time on a graph G depends on the minimal
value b ∈ N such that G is b-r-µ-partitionable. This means, we need to solve the model-
checking problem on b-r-µ-partitionable graphs faster than the inverse of the probability
that b is minimal.

Section 5 states that a graph from power-law-bounded graph classes is for some b not
b-r-µ-partitionable with probability approximately b−µ2 (we ignore the terms in r, µ and
d̃α(n) for now). Thus, the probability that a value b is minimal is approximately b−µ2 .

Let G be a graph and a be the minimal value such that G is b-r-µ-partitionable. In
Section 6 we showed that all its r-neighborhoods are O(µ17r3b)-r-O(µ)-locally-protrusion-
partitionable. The kernelization result from Section 7 states that such r-neighborhoods
can be converted in linear time into |ϕ|-equivalent graphs of size approximately bµ (we
again ignore the factors independent of b for now). This means, using the naive model-
checking algorithm, one can decide for an r-neighborhood Gr of G whether Gr |= ϕ in time
approximately ‖G‖bµ|ϕ|. Thus, one can perform model-checking on all r-neighborhoods of G
in time approximately bµ|ϕ|

∑
v ‖NG

r (v)‖. Using Gaifman’s locality theorem, this (more or
less) yields the answer to the model checking problem in the whole graph. Let G be a graph
from a power-law-bounded random graph model. In summary, we have for every b ∈ N:

b ∈ N is the minimal value such that a graph is b-r-µ-partitionable with probability
approximately b−µ2 .
If b ∈ N is the minimal value such that G is b-r-µ-partitionable then we can decide
whether G |= ϕ in time approximately bµ|ϕ|

∑
v ‖NG

r (v)‖.

In this example one may choose µ = |ϕ|2 such that the run time grows slower than the
inverse of the probability. We changed some numbers in these examples to simplify our
arguments. Thus, in reality, µ needs to be chosen slightly differently.

The proofs of this section proceed as follows. We first use slightly nonstandard version
of Gaifman locality [26, Lemma 8.2] and the kernelization result in Theorem 22 to solve
the model-checking in b-r-µ-partitionable graphs, obtaining the following result (see [26,
Lemma 8.4] for the proof).

J. Dreier, P. Kuinke, and P. Rossmanith 40:17

I Lemma 25. Let µ ∈ N+. There exist functions ρ and f such that for every first-order
sentence ϕ and every labeled graph G with at most |ϕ| labels one can decide whether G |= ϕ

in time f(ρ(|ϕ|), µ)bµρ(|ϕ|)
∑
v∈V (G) ‖G[NG

ρ(|ϕ|)(v)]‖, where b ∈ N+ is the minimal value such
that G is b-ρ(r)-µ-partitionable.

The run time of this algorithm depends not only on b but also on the sum of the sizes of
all neighborhoods in a graph, which might be quadratic in the worst case. In order to get
almost linear expected run time, we bound the expectation of this value in Lemma 18. We
can now prove our main result.

I Theorem 3. There exists a function f such that one can solve p-MC(FO,Glb) on every
α-power-law-bounded random graph model in expected time d̃α(n)f(|ϕ|)n.

Proof. Let (Gn)n∈N be an α-power-law-bounded random graph model and ϕ be a first-order
formula. We fix a |ϕ|-labeling function L and n ∈ N. We consider labeled graphs with
vertices V (Gn) whose underlying graph is distributed according to Gn, and analyze the
expected run time of the model-checking algorithm from Lemma 25 on these graphs.

Let ρ be the function from Lemma 25 and let r = ρ(|ϕ|) and µ = ρ(|ϕ|)2 + 100. For
every graph G there exists a value b ∈ N+ such that G is b-r-µ-partitionable (i.e., by setting
b = |V (G)|, A = V (G)). Let Ab be the event that b ∈ N+ is the minimal value such that Gn
is b-r-µ-partitionable and let R be the expected run time of the model-checking algorithm
from Lemma 25. The expected run time of the algorithm is exactly

∑∞
b=1 E[R | Ab] Pr[Ab].

We use Lemma 25 and 18 to bound
∞∑
b=1

E[R | Ab] Pr[Ab]

≤
∞∑
b=1

E
[
f ′(r, µ)brµ

∑
v∈V (Gn)

‖Gn[NGn
r (v)]‖ | Ab

]
Pr[Ab]

=
∞∑
b=1

f ′(r, µ)brµ E
[∑
v∈V (Gn)

‖Gn[NGn
r (v)]‖ | Ab

]
Pr[Ab]

≤
∞∑
b=1

f ′(r, µ)brµ(200rµ3)O(r)d̃α(n)O(µ6r2)b−µ
2/10n

=f ′(r, µ)(200rµ3)O(r)d̃α(n)O(µ6r2)n

∞∑
b=1

b−µ
2/10+rµ.

Note that for µ = ρ(|ϕ|)2 +100 and r = ρ(|ϕ|) we have
∑∞
b=1 b

−µ2/10+rµ ≤
∑∞
b=1 b

−2 = O(1).
This yields a run time of d̃α(n)f(|ϕ|)n for some function f . J

By substituting the values of d̃α(n) and distinguishing three cases we obtain the following
alternative form of our main result.

I Theorem 4. Let (Gn)n∈N be a random graph model and ε > 0. There exists a function f
such that one can solve p-MC(FO,Glb) in expected time

f(|ϕ|)n if (Gn)n∈N is α-power-law-bounded for some α > 3,
log(n)f(|ϕ|)n if (Gn)n∈N is α-power-law-bounded for α = 3,
f(|ϕ|, ε)n1+ε for all ε > 0 if (Gn)n∈N is α-power-law-bounded for every 2 < α < 3.

ESA 2020

40:18 First-Order Model-Checking in Random Graphs and Complex Networks

9 Implications for Various Graph Models

A wide range of unclustered random graph models are α-power-law-bounded. In this section,
we discuss the implications of our result for preferential attachment, Chung–Lu, and Erdős–
Rényi graphs. A more detailed discussion with proofs can be found in Section 10 in the full
version [26].

9.1 Preferential Attachment Model
The preferential attachment model [3, 64] may be the best-known model for complex networks.
In this model, graphs are created by a random process that iteratively adds new vertices
and randomly connects them to already existing ones, where the attachment probability is
proportional to the current degree of a vertex. The preferential attachment process exhibits
small world behavior [24] and has been widely recognized as a reasonable explanation of
the heavy tailed degree distribution of complex networks [7]. It has a vanishing clustering
coefficient [8], but there exist extensions of the model that admit clustering [73].

Recent efficient model-checking algorithms on random graph models only worked on
random graph models that asymptotically almost surely (a.a.s.) are nowhere dense [44, 22].
It is known that preferential attachment graphs are not a.a.s. nowhere dense [22] and even
a.a.s. somewhere dense [27], thus previous techniques do not work.

We define Gnm to be the preferential attachment graph with n vertices and m edges
per vertex. Usually, the parameter m is considered to be constant. We obtain efficient
algorithms even if we allow m to be a function of the size of the network. For a function
m(n) : N→ N we define (Gnm(n))n∈N to be the random graph model where the number of
edges per vertex grows according to m(n). Previous work [29] implies that this model is
α-power-law-bounded ([26, Lemma 10.1]), which immediately implies the following model
checking result.

I Corollary 26. Let m : N → N. There exists a function f such that one can solve p-
MC(FO,Glb) on the preferential attachment model (Gnm(n))n∈N in expected time

log(n)f(|ϕ|)n if m(n) = log(n)O(1),
f(|ϕ|, ε)n1+ε for every ε > 0 if m(n) = O(nε) for every ε > 0.

9.2 Chung–Lu Model
This model generates random graphs that fit a certain degree sequence and has been studied
extensively [12, 13, 14]. The degree sequence is defined by a power-law distribution with
exponent α. One can easily show that this model is α-power-law-bounded [26, Lemma 10.3].
We can therefore characterize the tractability of the labeled model-checking problem on
Chung–Lu graphs based on α.

I Corollary 27. Let G be the Chung–Lu random graph model with exponent α. There exists
a function f such that one can solve p-MC(FO,Glb) on G in expected time

f(|ϕ|)n if α > 3,
log(n)f(|ϕ|)n if α = 3.

Furthermore, if 2.5 ≤ α < 3, α ∈ Q then one cannot solve p-MC(FO,Glb) on G in
expected FPT time unless AW[∗] ⊆ FPT/poly.

Previously, the model-checking problem has been known to be tractable on Chung–Lu
graphs with exponent α > 3, and hard on Chung–Lu graphs with exponent 2.5 ≤ α < 3.
The important case α = 3 was open. Furthermore, the previous tractability result assumes

J. Dreier, P. Kuinke, and P. Rossmanith 40:19

the maximum expected degree of a Chung–Lu graph with exponent α to be at most O(n1/α),
while in the canonical definition of Chung–Lu graphs it is Θ(n1/(α−1)). Our results hold for
the canonical definition. The missing case α < 2.5 is still open. We believe it can be proven
to be hard with similar techniques as for 2.5 ≤ α < 3.

9.3 Erdős–Rényi Model
One of the earliest and most intensively studied random graph models is the Erdős–Rényi
model [31]. We say G(n, p(n)) is a random graph with n vertices where each pair of vertices
is connected independently uniformly at random with probability p(n). Many properties of
Erdős–Rényi graphs are well studied, including but not limited to, threshold phenomena,
the sizes of components, diameter, and length of paths [9]. With a three-line argument [26,
Lemma 10.8], we obtain a fine grained picture over the tractability of the model-checking
problem on sparse Erdős–Rényi graphs.

I Corollary 28. There exists a function f such that one can solve p-MC(FO,Glb) on
G(n, p(n)) in expected time

f(|ϕ|)n if p(n) = O(1/n),
log(n)f(|ϕ|)n if p(n) = log(n)O(1)/n,
f(|ϕ|, ε)n1+ε for every ε > 0 if p(n) = O(nε/n) for every ε > 0.

The third case has been shown previously by Grohe [44]. Furthermore, under reasonable
assumptions (AW[∗] 6⊆ FPT/poly) we know that p-MC(FO,Glb) cannot be decided in
expected FPT time on denser Erdős–Rényi graphs with p(n) = nδ/n for some 0 < δ < 1,
δ ∈ Q [28].

10 Conclusion

We define α-power-law-bounded random graphs which generalize many unclustered random
graphs models. We provide a structural decomposition of neighborhoods of these graphs and
use it to obtain a meta-algorithm for deciding first-order properties in the the preferential
attachment-, Erdős–Rényi-, Chung–Lu- and configuration random graph model.

There are various factors to consider when evaluating the practical implications of this
result. The degree distribution of most real world networks is similar to a power-law
distribution with exponent between two and three [15], but our algorithm is only fast for
exponents at least three. This leaves many real world networks where our algorithm is slow.
However, it has been shown that the model-checking problem (with labels) becomes hard on
these graphs if we assume independently distributed edges [28].

So far, we do not know whether the model-checking problem is hard or tractable on
clustered random graphs. If a random graph model is 3-power-law-bounded then one can
show that the expected number of triangles is polylogarithmic (via union bound of all possible
embeddings of a triangle). Therefore, random models with clustering, such as the Kleinberg
model [50], the hyperbolic random graph model [53, 11], or the random intersection graph
model [47], which have a high number of triangles currently do not fit into our framework (see
[26, Section 10.5] for a proof that random intersection graphs are not α-power-law-bounded
for any α). This is unfortunate, since clustering is a key aspect of real networks [72]. In
the future, we hope to extend our results to clustered random graph models. We observe
that some clustered random graph models can be expressed as first-order transductions of
α-power-law-bounded random graph models. For example the random intersection graph
model is a transduction of a sparse Erdős–Rényi graph. We believe this connection can be

ESA 2020

40:20 First-Order Model-Checking in Random Graphs and Complex Networks

used to transfer tractability results to clustered random graphs. If we can efficiently compute
for a clustered random graph model G a pre-image of a transduction that is distributed like
an α-power-law-bounded random graph then we can efficiently solve p-MC(FO,Glb) on G.
The same idea is currently being considered for solving the model checking problem for
transductions of sparse graph classes (e.g. structurally bounded expansion classes) [40].

In our algorithm, we use Gaifman’s locality theorem to reduce our problem to r-neighbor-
hoods of the input graph. In this construction the value of r can be exponential in the length
of the formula [39]. On the other hand, the small world property states that the radius of
real networks is rather small. This means, even for short formulas our neighborhood-based
approach may practically be working on the whole graph instead of neighborhoods. It would
be interesting to analyze for which values of r practical protrusion decompositions according
to Theorem 6 exist in the real world.

At last, a big problem with all parameterized model-checking algorithms is their large
run time dependence on the length of the formula. Grohe and Frick showed that already
on trees every first-order model-checking algorithm takes worst-case time at least f(|ϕ|)n
where f is a non-elementary tower function [38]. So far, it is unclear whether this also
holds in the average-case setting. The results presented in this paper have a non-elementary
dependence on the length of the formula. We are curious whether one can find average-case
model-checking algorithms with elementary expected FPT run time. In summary, many more
obstacles need to be overcome to obtain a truly practical general purpose meta-algorithm for
complex networks.

References
1 Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diameter of the world-

wide web. Nature, 401(6749):130, 1999.
2 Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach. Cambridge

University Press, 2009.
3 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999.
4 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Hyperbolic random graphs: Separators

and treewidth. In 24th Annual European Symposium on Algorithms (ESA 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

5 Hans L Bodlaender, Fedor V Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and
Dimitrios M Thilikos. (Meta) kernelization. Journal of the ACM (JACM), 63(5):44, 2016.

6 Andrej Bogdanov and Luca Trevisan. Average-Case Complexity. Foundations and Trends in
Theoretical Computer Science, 2(1):1–106, 2006.

7 Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusnády. The degree sequence of a
scale-free random graph process. Random Structures & Algorithms, 18(3):279–290, May 2001.

8 Béla Bollobás and Oliver M Riordan. Mathematical results on scale-free random graphs.
Handbook of graphs and networks: from the genome to the internet, pages 1–34, 2003.

9 Béla Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001.
10 Anna D. Broido and Aaron Clauset. Scale-free networks are rare. Nature communications,

10(1):1017, 2019.
11 Elisabetta Candellero and Nikolaos Fountoulakis. Clustering and the hyperbolic geometry of

complex networks. Internet Mathematics, 12(1-2):2–53, 2016.
12 Fan Chung and Linyuan Lu. The average distances in random graphs with given expected

degrees. Proc. of the National Academy of Sciences, 99(25):15879–15882, 2002.
13 Fan Chung and Linyuan Lu. Connected components in random graphs with given expected

degree sequences. Annals of Combinatorics, 6(2):125–145, 2002.

J. Dreier, P. Kuinke, and P. Rossmanith 40:21

14 Fan Chung and Linyuan Lu. Complex graphs and networks, volume 107. American Math.
Soc., 2006.

15 Aaron Clauset, Cosma Rohilla Shalizi, and Mark E. J. Newman. Power-Law Distributions in
Empirical Data. SIAM Review, 51(4):661–703, 2009.

16 Bruno Courcelle. The monadic second-order logic of graphs I. Recognizable sets of finite
graphs. Information and Computation, 85(1):12–75, 1990.

17 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

18 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

19 Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally Excluding a Minor. In Proceedings
of the 22nd Symposium on Logic in Computer Science, pages 270–279, 2007.

20 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
J. ACM, 52(6):866–893, November 2005. doi:10.1145/1101821.1101823.

21 Erik D. Demaine and M. Hajiaghayi. The bidimensionality theory and its algorithmic
applications. Comput. J., 51(3):292–302, 2008.

22 Erik D. Demaine, Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, Somnath
Sikdar, and Blair D. Sullivan. Structural sparsity of complex networks: Bounded expansion
in random models and real-world graphs. J. Comput. Syst. Sci., 105:199–241, 2019. doi:
10.1016/j.jcss.2019.05.004.

23 R. Diestel. Graph Theory. Springer, Heidelberg, 2010.
24 Sander Dommers, Remco van der Hofstad, and Gerard Hooghiemstra. Diameters in preferential

attachment models. Journal of Statistical Physics, 139(1):72–107, 2010.
25 Rod G. Downey, Michael R. Fellows, and Udayan Taylor. The Parameterized Complexity of

Relational Database Queries and an Improved Characterization of W[1]. DMTCS, 96:194–213,
1996.

26 Jan Dreier, Philipp Kuinke, and Peter Rossmanith. First-order model-checking in random
graphs and complex networks, 2020. arXiv:2006.14488.

27 Jan Dreier, Philipp Kuinke, and Peter Rossmanith. Maximum shallow clique minors in
preferential attachment graphs have polylogarithmic size. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM), volume
176 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

28 Jan Dreier and Peter Rossmanith. Hardness of FO model-checking on random graphs. In 14th
International Symposium on Parameterized and Exact Computation, IPEC 2019, September
11-13, 2019, Munich, Germany, volume 148 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.IPEC.2019.11.

29 Jan Dreier and Peter Rossmanith. Motif counting in preferential attachment graphs. In
39th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2019, December 11-13, 2019, Bombay, India, volume 150 of
LIPIcs, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.FSTTCS.2019.13.

30 Zdenek Dvořak, Daniel Král, and Robin Thomas. Deciding First-Order Properties for Sparse
Graphs. In Proceedings of the 51st Conference on Foundations of Computer Science, pages
133–142, 2010.

31 P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae, 6:290–297, 1959.
32 Ronald Fagin. Probabilities on finite models 1. The Journal of Symbolic Logic, 41(1):50–58,

1976.
33 Matthew Farrell, Timothy D Goodrich, Nathan Lemons, Felix Reidl, Fernando Sánchez Vil-

laamil, and Blair D Sullivan. Hyperbolicity, degeneracy, and expansion of random intersection
graphs. In International Workshop on Algorithms and Models for the Web-Graph, pages 29–41.
Springer, 2015.

ESA 2020

https://doi.org/10.1007/s002249910009
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1016/j.jcss.2019.05.004
https://doi.org/10.1016/j.jcss.2019.05.004
http://arxiv.org/abs/2006.14488
https://doi.org/10.4230/LIPIcs.IPEC.2019.11
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.13
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.13

40:22 First-Order Model-Checking in Random Graphs and Complex Networks

34 Jörg Flum, Markus Frick, and Martin Grohe. Query Evaluation via Tree-Decompositions.
Journal of the ACM (JACM), 49(6):716–752, 2002.

35 Jörg Flum and Martin Grohe. Fixed-Parameter Tractability, Definability, and Model-Checking.
SIAM Journal on Computing, 31(1):113–145, 2001.

36 Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M Thilikos. Bidimensionality
and kernels. In Proc. of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 503–510, 2010.

37 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable
structures. Journal of the ACM (JACM), 48(6):1184–1206, 2001.

38 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Annals of pure and applied logic, 130(1-3):3–31, 2004.

39 Haim Gaifman. On local and non-local properties. In Studies in Logic and the Foundations of
Mathematics, volume 107, pages 105–135. Elsevier, 1982.

40 Jakub Gajarský, Petr Hliněnỳ, Jan Obdrzálek, Daniel Lokshtanov, and M. S. Ramanujan.
A new perspective on FO model checking of dense graph classes. In Proceedings of the 31st
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,
USA, July 5-8, 2016, pages 176–184, 2016. doi:10.1145/2933575.2935314.

41 Yong Gao. Treewidth of Erdős–Rényi random graphs, random intersection graphs, and
scale-free random graphs. Discrete Applied Mathematics, 160(4-5):566–578, 2012.

42 Yu V Glebskii, DI Kogan, MI Liogon’kii, and VA Talanov. Range and degree of realizability of
formulas in the restricted predicate calculus. Cybernetics and Systems Analysis, 5(2):142–154,
1969.

43 Anna Goldenberg, Alice X. Zheng, Stephen E. Fienberg, Edoardo M. Airoldi, et al. A survey
of statistical network models. Foundations and Trends in Machine Learning, 2(2):129–233,
2010.

44 Martin Grohe. Generalized model-checking problems for first-order logic. In Annual Symposium
on Theoretical Aspects of Computer Science, pages 12–26. Springer, 2001.

45 Martin Grohe. Logic, graphs, and algorithms. Logic and Automata, 2:357–422, 2008.
46 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of

nowhere dense graphs. J. ACM, 64(3), 2017.
47 Michał Karoński, Edward R. Scheinerman, and Karen B. Singer-Cohen. On random intersection

graphs: The subgraph problem. Combinatorics, Probability and Computing, 8(1-2):131–159,
1999.

48 Carol Karp. The first order properties of products of algebraic systems. fundamenta mathem-
aticae. Journal of Symbolic Logic, 32(2):276–276, 1967. doi:10.2307/2271704.

49 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms (TALG), 12(2):21, 2016.

50 Jon Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In Proceedings of
the 32nd Symposium on Theory of Computing, pages 163–170, 2000.

51 Jon M. Kleinberg. Navigation in a small world. Nature, 406(6798):845–845, 2000.
52 Stephan Kreutzer. Algorithmic meta-theorems. In International Workshop on Parameterized

and Exact Computation, pages 10–12. Springer, 2008.
53 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.

Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.
54 Leonid A. Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–286,

1986.
55 Johann A. Makowsky. Algorithmic uses of the feferman–vaught theorem. Annals of Pure and

Applied Logic, 126(1-3):159–213, 2004.
56 Stanley Milgram. The small world problem. Psychology Today, 2(1):60–67, 1967.

https://doi.org/10.1145/2933575.2935314
https://doi.org/10.2307/2271704

J. Dreier, P. Kuinke, and P. Rossmanith 40:23

57 Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

58 Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby Bhat-
tacharjee. Measurement and analysis of online social networks. In Proc. of the 7th ACM
SIGCOMM Conference on Internet Measurement, pages 29–42. ACM, 2007.

59 M. Molloy and B. A. Reed. The size of the giant component of a random graph with a given
degree sequence. Combin., Probab. Comput., 7(3):295–305, 1998.

60 Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree
sequence. Random Structures & Algorithms, 6(2-3):161–180, 1995.

61 Paul D. Seymour N. Robertson. Graph minors XVI. Excluding a non-planar graph. Journal
of Combinatorial Theory, Series B, 89:43–76, 2003.

62 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity. Springer, 2012.
63 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion I.

Decompositions. European Journal of Combinatorics, 29(3):760–776, 2008.
64 Derek de Solla Price. A general theory of bibliometric and other cumulative advantage

processes. Journal of the American society for Information science, 27(5):292–306, 1976.
65 Nataša Pržulj. Biological network comparison using graphlet degree distribution. Bioinform-

atics, 23(2):e177–e183, 2007.
66 Katarzyna Rybarczyk. Diameter, connectivity, and phase transition of the uniform random

intersection graph. Discrete Mathematics, 311(17):1998–2019, 2011.
67 Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
68 Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO queries over

nowhere dense graphs. In Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, Houston, TX, USA, June 10-15, 2018, pages 151–163.
ACM, 2018. doi:10.1145/3196959.3196971.

69 Detlef Seese. Linear time computable problems and first-order descriptions. Math. Struct. in
Comp. Science, 6:505–526, 1996.

70 Joel Spencer. The strange logic of random graphs, volume 22. Springer Science & Business
Media, 2013.

71 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976.

72 Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440, 1998.

73 Konstantin Zuev, Marián Boguná, Ginestra Bianconi, and Dmitri Krioukov. Emergence of
soft communities from geometric preferential attachment. Scientific reports, 5:9421, 2015.

ESA 2020

https://doi.org/10.1145/3196959.3196971

Optimally Handling Commitment Issues in Online
Throughput Maximization
Franziska Eberle
Department for Mathematics and Computer Science, University of Bremen, Germany
feberle@uni-bremen.de

Nicole Megow
Department for Mathematics and Computer Science, University of Bremen, Germany
nicole.megow@uni-bremen.de

Kevin Schewior
Universität zu Köln, Department of Mathematics and Computer Science, Germany
kschewior@gmail.com

Abstract
We consider a fundamental online scheduling problem in which jobs with processing times and
deadlines arrive online over time at their release dates. The task is to determine a feasible preemptive
schedule on m machines that maximizes the number of jobs that complete before their deadline.
Due to strong impossibility results for competitive analysis, it is commonly required that jobs
contain some slack ε > 0, which means that the feasible time window for scheduling a job is at
least 1 + ε times its processing time. In this paper, we answer the question on how to handle
commitment requirements which enforce that a scheduler has to guarantee at a certain point in
time the completion of admitted jobs. This is very relevant, e.g., in providing cloud-computing
services and disallows last-minute rejections of critical tasks. We present the first online algorithm for
handling commitment on parallel machines for arbitrary slack ε. When the scheduler must commit
upon starting a job, the algorithm is Θ(1

ε
)-competitive. Somewhat surprisingly, this is the same

optimal performance bound (up to constants) as for scheduling without commitment on a single
machine. If commitment decisions must be made before a job’s slack becomes less than a δ-fraction
of its size, we prove a competitive ratio of O(1

ε−δ) for 0 < δ < ε. This result nicely interpolates
between commitment upon starting a job and commitment upon arrival. For the latter commitment
model, it is known that no (randomized) online algorithms admits any bounded competitive ratio.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Scheduling algorithms

Keywords and phrases Deadline scheduling, throughput, online algorithms, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.41

Funding Nicole Megow: Partially supported by the German Science Foundation (DFG) under
contract ME 3825/1.
Kevin Schewior : Partially supported by the DAAD within the PRIME program using funds of
BMBF and the EU Marie Curie Actions.

1 Introduction

We consider the following fundamental online scheduling model: jobs from an unknown job
set arrive online over time at their release dates rj . Each job has a processing time pj ≥ 0 and
a deadline dj . There are m identical machines to process these jobs or a subset of them. A
job is said to complete if it receives pj units of processing time within the interval [rj , dj). We
allow preemption, i.e., the processing of a job can be interrupted at any time. We distinguish
schedules with and without migration. If we allow migration, then a preempted job can
resume processing on any machine whereas it must run completely on the same machine
otherwise. In the three-field notation this problem is P | online rj ,pmtn |

∑
(1− Uj) [16].

© Franziska Eberle, Nicole Megow, and Kevin Schewior;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 41; pp. 41:1–41:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8636-9711
mailto:feberle@uni-bremen.de
https://orcid.org/0000-0002-3531-7644
mailto:nicole.megow@uni-bremen.de
https://orcid.org/0000-0003-2236-0210
mailto:kschewior@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2020.41
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Optimally Handling Commitment Issues in Online Throughput Maximization

In a feasible schedule, two jobs are never processing at the same time on the same machine.
The number of completed jobs in a feasible schedule is called throughput. The task is to find
a feasible schedule with maximum throughput.

As jobs arrive online, we cannot hope to find an optimal schedule [12]. To assess the
performance of online algorithms, we resort to standard competitive analysis. This means,
we compare the throughput of an online algorithm with the throughput achievable by an
optimal offline algorithm that knows the job set in advance.

It is well-known that “tight” jobs with dj − rj ≈ pj prohibit competitive online decision
making as jobs must start immediately and do not leave a chance for observing online
arrivals [6]. Thus, it is commonly required that jobs contain some slack ε > 0, i.e., every
job j satisfies dj − rj ≥ (1 + ε)pj . The competitive ratio of our online algorithm will be a
function of ε; the greater the slack, the better should the performance of our algorithm be.
This slackness parameter has been considered in previous work, e.g., in [2, 4, 8, 14, 15,24, 26].
Other results for scheduling with deadlines use speed scaling, which can be viewed as another
way to add slack to the schedule, e.g., [1, 3, 17,18,25].

In this paper, we focus on the question how to handle commitment requirements in online
throughput maximization. Modeling commitment addresses the issue that a good-throughput
schedule may abort jobs close to their deadlines in favor of many shorter and more urgent
tasks [13], which may not be acceptable for the job owner. Consider a company that starts
outsourcing mission-critical processes to external clouds and that needs a guarantee that
jobs complete before a certain time point when they cannot be moved to another computing
cluster anymore. In other situations, a commitment to complete jobs might be required even
earlier just before starting the job, e.g., for a faultless copy of a database [8].

Different commitment models have been formalized [2, 8, 24]. The requirement to commit
at a job’s release date has been ruled out for online throughput maximization by strong
impossibility results (even for randomized algorithms) [8]. We distinguish (i) commitment
upon job admission and (ii) δ-commitment. In the first model, an algorithm may discard
a job any time before its start, we say its admission. This reflects a situation such as the
faultless copy of a database. In the second model, δ-commitment, an online algorithm must
commit to complete a job when its remaining slack is not less than a δ-fraction of the job
size, for 0 < δ < ε. The latest time for committing to job j is then dj − (1 + δ)pj . This
models an early enough commitment (parameterized by δ) for mission-critical jobs. Recently,
a first unified approach has been presented for these models in [8]. Gaps in the performance
bounds remained and it was left open if scheduling with commitment is even “harder” than
without commitment.

In this work, we give tight results for online throughput maximization on parallel machines
and answer the “hardness” question to the negative. We give an algorithm that achieves
the provably best competitive ratio (up to constants) for the aforementioned commitment
models. Somewhat surprisingly, we show that the same competitive ratio of O(1

ε) can be
achieved for both, scheduling without commitment and with commitment upon admission.
Further, our algorithm does not require job migration. For parallel machines, our algorithm
is the first online algorithm with bounded competitive ratio for arbitrary slack parameter ε.

Previous results

Preemptive online scheduling with hard deadlines and models for admission control have
been studied rigorously, see, e.g., [5, 14,15] and references therein. Already in the 90s several
impossibility results were shown for jobs without slack [6, 7, 21–23]. The only positive result
independent of slack for online throughput maximization without commitment seems to be a
randomized O(1)-competitive single-machine algorithm [20]. The best possible deterministic
algorithm in this setting is Θ(1/ε)-competitive for instances with ε-slack [8].

F. Eberle, N. Megow, and K. Schewior 41:3

Throughput maximization with commitment has attracted researchers more recently [2,
8, 24]. We summarize the state-of-the art for the particular problem of online throughput
maximization with commitment. For a single machine, Chen et al. [8] presented a universal
algorithmic framework, which achieved bounded competitive ratios for several commitment
models and even the tight result for scheduling without commitment. More precisely, their
algorithm is O(1/ε2)-competitive for commitment upon admission and O(ε/((ε − δ)δ2))-
competitive, for 0 < δ < ε, in the δ-commitment model. This improved on an earlier algorithm
by Azar et al. [2] for the δ-commitment model (in the context of truthful mechanisms for a
weighted setting) that is O(1/ε2)-competitive if the slack ε is sufficiently large. Chen et al.
showed a lower bound of Ω(1/ε) for deterministic scheduling algorithms without commitment,
which is tight in that model and also holds for the more restrictive commitment models. A
significant gap between lower and upper bounds remained. On parallel machines, there is a
competitive algorithm for online throughput maximization with commitment if the slack ε is
sufficiently large [2].

In a natural generalization of our problem, jobs have associated individual weights
and we aim for a schedule with maximum weighted throughput. The special case with
each job j satisfying wj = pj (aka machine utilization) is well understood. A simple
greedy algorithm achieves the best possible competitive ratio Θ(1/ε) [11, 14] on a single
machine in both commitment models, even for commitment upon arrival. For scheduling with
commitment onm parallel identical machines there is anO(m

√
1/ε)-competitive algorithm and

an almost matching lower bound [26]. It is worth mentioning that machine utilization without
commitment even allows for constant competitive ratios independent of slack [6,21,22,27].
General weighted (and even unweighted) throughput maximization is much less tractable. For
general weights, there is no bounded competitive ratio possible in any of the aforementioned
commitment models [2, 8, 24]. For weighted throughput maximization without commitment
requirements there is an O(1/ε2)-competitive online algorithm [24].

The power of migration has been investigated in several contexts: While it is typically
large in online scheduling, cf. machine-utilization [26] and resource-minimization [9, 10], we
show that, in our online setting, the guarantees that can be achieved by migratory and
non-migratory algorithms are within a constant factor, similar to the offline problem [19].

Our results and techniques

Our main result is one algorithm that is best possible (up to constant factors) for online
throughput maximization with and without commitment on parallel identical machines. Our
algorithm does not migrate jobs and still achieves a competitive ratio that matches the
general lower bound for migratory algorithms.

For scheduling with commitment upon admission, we give an (up to constant factors)
optimal online algorithm with competitive ratio Θ(1/ε). For scheduling with δ-commitment,
our result interpolates between the models commitment upon starting a job and commitment
upon arrival. If δ ≤ ε/2, the competitive ratio is Θ(1/ε) which is best possible [8]. For δ → ε,
the commitment requirements essentially implies commitment upon job arrival which has
unbounded competitive ratio [8]. Note that this is the first online algorithm with bounded
competitive ratio for arbitrary slackness parameter ε.

I Theorem 1. Consider throughput maximization on parallel identical machines with or
without migration. There is an O(1

ε−δ′)-competitive online algorithm with commitment where
δ′ = ε/2 in the commitment upon admission model and δ′ = max{δ, ε/2} in the δ-commitment
model.

ESA 2020

41:4 Optimally Handling Commitment Issues in Online Throughput Maximization

Clearly, scheduling with commitment is more restrictive than without commitment. Hence,
our algorithm is also (up to constants) optimal for the problem P | online rj ,pmtn |

∑
(1−Uj)

without any commitment requirements as its competitive ratio matches the lower bound [8].

I Theorem 2. There is a Θ(1/ε)-competitive algorithm for online throughput maximization
on parallel identical machines without commitment requirements, with and without migration.

The challenge in online scheduling with commitment is that, once we committed to
complete a job, the remaining slack of this job has to be spent very carefully. The key is a job
admission scheme which is implemented by different parameters. The high-level objectives are:
(i) never start a job for the first time if its remaining slack is too small (parameter δ),
(ii) during the processing of a job, admit only significantly shorter jobs (parameter γ), and
(iii) for each admitted shorter job, block some time period (parameter β) during which no

other jobs of similar size are accepted.
While the first two goals are quite natural and have been used before [8, 24], the third goal
is crucial for our new tight result. The intuition is the following: suppose we committed
to complete a job with processing time 1 and have only a slack of O(ε) left before the
deadline of this job. Suppose that c substantially smaller jobs of size 1/c arrive where c is
the competitive ratio we aim for. On the one hand, if we do not accept any of them, we
cannot hope to achieve c-competitiveness. On the other hand, accepting too many of them
fills up the slack and, thus, leaves no room for even smaller jobs. The idea is to keep the
flexibility for future small jobs by grouping jobs of similar size (within a factor two) into
classes. This gives the fine-grained classification of jobs which is crucial for our new tight
result. We distinguish two time periods with different class structures that guide acceptance.
During the scheduling interval of a job j, we have a more restrictive acceptance scheme that
ensures the completion of j whereas in the blocking period we guarantee the completion of
previously accepted jobs. In contrast, the previous algorithm in [8] uses one long region with
a uniform acceptance threshold and is then too conservative in accepting jobs.

As a key contribution on the technical side, we give a strong bound on the processing
volume of any feasible non-migratory schedule in terms of the accepted volume of a certain
class of online algorithms. It is crucial for our analysis and might be of independent interest.

2 The blocking algorithm

In this section, we describe the blocking algorithm which handles scheduling with commitment.
We assume that the slackness constant ε > 0 and, in the δ-commitment model, 0 < δ < ε

are given. If δ is not part of the input or if δ ≤ ε/2, we set δ = ε
2 .

The algorithm never migrates jobs between machines, i.e., a job is only processed by the
machine that initially started to process it, we say the job has been admitted to this machine.
Moreover, our algorithm commits to completing a job upon admission. Hence, its remaining
slack has to be spent very carefully on admitting other jobs while being competitive. As our
algorithm does not migrate jobs, it transfers the admission decision to the shortest admitted
and not yet completed job on each machine. Then, a job only admits significantly shorter
jobs and prevents the admission of too many jobs of similar size. To this end, the algorithm
maintains two types of intervals for each admitted job, a scheduling interval and a blocking
period. A job can only be processed in its scheduling interval. Thus, it has to complete in
this interval while admitting other jobs. Job j only admits jobs that are smaller by a factor
of γ = δ

16 < 1. For an admitted job k, job j creates a blocking period of length at most βpk,
where β = 16

δ , which blocks the admission of similar-length jobs (cf. Figure 1).

F. Eberle, N. Megow, and K. Schewior 41:5

For scheduling, the algorithm follows the Shortest Processing Time (SPT) order for the
set of uncompleted jobs assigned to a machine, which is independent of the admission scheme.
SPT ensures that, in the blocking periods of any job k admitted by j, j has highest priority.

Scheduling interval Blocking period

τ

Figure 1 Scheduling interval, blocking period, and processing intervals.

For admitting jobs, the algorithm keeps track of available jobs at any time point τ . A
job j with rj ≤ τ is called available if it has not yet been admitted to a machine by the
algorithm and its deadline is not too close, i.e., dj − τ ≥ (1 + δ)pj .

Whenever a job j is available at a time τ when there is a machine i such that this
time is not contained in the scheduling interval of any other job, the shortest such job j is
immediately admitted to i, creating the scheduling interval S(j) = [τ, τ +(1+δ)pj) := [aj , ej)
and an empty blocking period B(j) = ∅. In general, however, the blocking period is a finite
union of time intervals associated with job j, and its size is the sum of lengths of the intervals,
denoted by |B(j)|. Four types of events trigger a decision of the algorithm at time τ : the
release of a job, the end of a blocking period, the end of a scheduling interval, and the
admission of a job. In any of these four cases, the algorithm calls the class admission routine.
This subroutine iterates over all machines i and checks if j, the shortest job on i whose
scheduling interval contains τ , can admit the currently shortest available job j?.

To this end, any admitted job j classifies available jobs k with rk ∈ S(j) and pk < γpj
depending on their processing time. More precisely, job j maintains a class structure
(Cc(j))c∈N0 where Cc(j) contains all jobs k that are available at some time during S(j) and
satisfy γ

2c+1 pj ≤ pk < γ
2c pj . Only jobs k ∈ Cc(j) for c ∈ N0 qualify for admission by j. Upon

admission by j, job j? obtains two disjoint consecutive intervals, the scheduling interval
S(j?) = [aj? , ej?) and the blocking period B(j?) of size at most βpj? . At the admission
of job j?, the blocking period B(j?) is planned to start at ej? , the end of j?’s scheduling
interval. During B(j?) of job j? ∈ Cc(j), j only admits jobs k of higher classes, i.e., k ∈ Cc′(j)
for c′ > c. Particularly, j only admits job j? ∈ Cc(j) if the blocking period of the last job
in Cc(j) admitted to the same machine has completed.

Hence, when job j decides if it admits the currently shortest available job j? at time τ ,
it makes sure that j? indeed belongs to a class Cc(j) and that no higher class c′ ≥ c is
blocking τ , i.e., it checks that τ /∈ B(k) for all jobs k ∈ Cc′(j) admitted to the same machine.
In this case, we say that j? is a child of j and that j is the parent of j?, denoted by π(j?) = j.
If job j? is admitted at time τ by job j, the algorithm sets aj? = τ and ej? = aj? + (1 + δ)pj?

and assigns the scheduling interval S(j?) = [aj? , ej?) to j?.
If ej? ≤ ej , the routine sets fj? = min{ej , ej? +βpj?} which determines B(j?) = [ej? , fj?).

As the scheduling and blocking periods of children k of j are supposed to be disjoint, we have
to update the blocking periods. First consider the job k ∈ Cc′(j) for c′ < c admitted
to the same machine whose blocking period contains τ (if it exists), and let [e′k, f ′k) be the
maximal interval of B(k) containing τ . We set f ′′k = min{ej , f ′k + (1 + δ+ β)pj?} and replace
the interval [e′k, f ′k) by [e′k, τ) ∪ [τ + (1 + δ + β)pj? , f ′′k). For all other jobs k ∈ Cc′(j) with
B(k) ∩ [τ,∞) 6= ∅ admitted to the same machine, we replace the remaining part of their

ESA 2020

41:6 Optimally Handling Commitment Issues in Online Throughput Maximization

blocking period [e′k, f ′k) by [e′k + (1 + δ+ β)pj? , f ′′k) where f ′′k := min{ej , f ′k + (1 + δ+ β)pj?}.
In this update we follow the convention [e, f) = ∅ if f ≤ e. Observe that the length of the
blocking period might decrease due to such updates.

Note that ej? > ej is also possible as j does not take the end of its own scheduling
interval ej into account when admitting jobs. Thus, the scheduling interval of j? would end
outside j’s scheduling interval and inside j’s blocking period. During B(j), π(j), the parent
of j, did not allocate the interval [ej , ej?) for completing jobs admitted by j but for ensuring
its own completion. Hence, the completion of both j? and π(j) is not necessarily guaranteed
anymore. To prevent this, we modify all scheduling intervals S(k) (including S(j)) of
jobs admitted to the same machine that contain time τ and the corresponding blocking
periods B(k). For each job k admitted to the same machine with τ ∈ S(k) (i.e., including j)
and ej? > ek we set ek = ej? . We also update their blocking periods (in fact, single intervals)
to reflect their new starting points. If the parent π(k) of k does not exist, B(k) remains
empty; otherwise we set B(k) := [ek, fk) where fk = min{eπ(k), ek + βpk}. Note that, after
this update, the blocking intervals of any but the largest such job will be empty. Moreover,
the just admitted job j? does not get a blocking period in this special case.

During the analysis of the algorithm, we show that any admitted job j still completes
before aj+(1+δ)pj and that ej ≤ aj+(1+2δ)pj holds in retrospective for all admitted jobs j.
Thus, any job j that admits another job j? tentatively assigns this job a scheduling interval
of length (1 + δ)pj? but, for ensuring j’s completion, it is prepared for losing (1 + 2δ)pj? time
units of its scheduling interval S(j). We summarize the blocking algorithm in Algorithm 1.

Algorithm 1 Blocking algorithm.
Scheduling routine: At all time τ and on all machines i, run the job with shortest

processing time that has been admitted to i and has not yet completed

Event: Upon release of a new job at time τ:
Call admission routine.

Event: Upon ending of a blocking period or scheduling interval at time τ:
Call admission routine.

Admission routine:
j? ← a shortest available job at τ, i.e.,

j? ∈ arg min{pj | rj ≤ τ and dj − τ ≥ (1 + δ)pj}
i ← 1
while j? is not admitted and i ≤ m do

K ← the set of jobs on machine i whose scheduling intervals contain τ

if K = ∅
1. admit job j? to machine i, aj? ← τ, ej? ← aj? + (1 + δ)pj? , and fj? ← ej?

2. call admission routine
else

j ← arg min{pk | k ∈ K}
if j? ∈ Cc(j) and there exists no c′ ≥ c with t ∈ B(j′) for j′ ∈ Cc′(j), then

1. admit job j? to machine i, aj? ← τ and ej? ← aj? + (1 + δ)pj?

if ej? ≤ ej, then
fj? ← min{ej , ej? + βpj?}
set S(j?)← [aj? , ej?) and B(j?)← [ej? , fj?)

else
set ej ← ej? and fj? ← ej?

modify S(k) and B(k) for k ∈ K
2. update B(k) for k ∈ Cc′(j) admitted to machine i with c′ < c and

B(k) ∩ [τ,∞) 6= ∅
3. call admission routine

else
i ← i+ 1

F. Eberle, N. Megow, and K. Schewior 41:7

Roadmap for the analysis

During the analysis, it is sufficient to concentrate on instances with small slack, as also
noted in [8]. For ε > 1 we run the blocking algorithm with ε = 1, which only tightens
the commitment requirement, and obtain constant competitive ratios. Thus, we assume
0 < ε ≤ 1. Moreover, in the δ-commitment model, committing to the completion of a job j
at an earlier point in time clearly satisfies committing at a remaining slack of δpj . Therefore,
we may assume δ ∈ [ε2 , ε).

The blocking algorithm does not migrate any job. In the analysis, we first compare the
throughput of our algorithm to the solution of an optimal non-migratory schedule. We then
use a well-known result by Kalyanasundaram and Pruhs to compare this to an optimal
solution that may exploit migration. Here, ωm is the maximal ratio of the throughput of an
optimal migratory schedule to the throughput of an optimal non-migratory schedule [19].

I Theorem 3 (Theorem 1.1 in [19]). ωm ≤ (6m− 5)/m.

The proof of our results consists of two parts. In the first part, Section 3, we show that
the blocking algorithm completes all admitted jobs on time. The second part, Section 4, is
to show that the blocking algorithm admits sufficiently many jobs to be competitive.

3 Completing all admitted jobs on time

We show that the blocking algorithm finishes every admitted job on time in Theorem 5. Our
choice of parameters guarantees that Inequality (1) is satisfied.

As the blocking algorithm does not migrate jobs, it suffices to consider each machine
individually in this section. The proof relies on the following observations: (i) the sizes of
admitted jobs belonging to different classes of job j are geometrically decreasing, (ii) the
scheduling intervals of jobs are completely contained in the scheduling intervals of their
parents, and (iii) scheduling in Shortest Processing Time order guarantees that job j has
highest priority in the blocking periods of its children. We start by proving the following
technical lemma about the length of the final scheduling interval of an admitted job j. In
the proof we use that π(k) = j for two jobs j and k implies that pk < γpj .

I Lemma 4. Let 0 < δ < ε be fixed. If γ > 0 satisfies (1 + 2δ)γ ≤ δ, then the length of the
scheduling interval S(j) of an admitted job j is upper bounded by (1 + 2δ)pj . Moreover, S(j)
contains the scheduling intervals of all descendants of j.

Proof. By definition of the blocking algorithm, the end point ej of the scheduling interval of
job j is only modified when j or one of j’s descendants admits another job. Let us consider
such a case: If job j admits a job j? whose scheduling interval does not fit the scheduling
interval of j, we set ej = ej? = aj? + (1 + δ)pj? to accommodate the scheduling interval S(j?)
within S(j). The same modification is applied to any ancestor k of j with ek < ej? . This
implies that, after such a modification of the scheduling interval, neither j nor any affected
ancestors k of j are the smallest jobs in their scheduling intervals anymore. In particular, no
job whose scheduling interval was modified in such a case at time τ is able to admit jobs
after τ . Hence, any job j can only admit other jobs within the interval [aj , aj + (1 + δ)pj).
In particular, aj? ≤ aj + (1 + δ)pj for any job j? with π(j?) = j.

Thus, by induction, it is sufficient to show that aj? + (1 + 2δ)pj? ≤ aj + (1 + 2δ)pj for
admitted jobs j? and j with π(j?) = j in order to prove the lemma. Note that π(j?) = j

implies pj? < γpj . Thus,

aj? + (1 + 2δ)pj? ≤ (aj + (1 + δ)pj) + (1 + 2δ)γpj ≤ aj + (1 + 2δ)pj ,

where the last inequality follows from the assumption (1 + 2δ)γ ≤ δ. J

ESA 2020

41:8 Optimally Handling Commitment Issues in Online Throughput Maximization

I Theorem 5. Let 0 < δ < ε be fixed. If 0 < γ < 1 and β ≥ 1 satisfy

β/2
β/2 + (1 + 2δ) (1 + δ − 2(1 + 2δ)γ) ≥ 1, (1)

then the blocking algorithm completes a job j admitted at aj ≤ dj − (1 + δ)pj on time.

Our choice of parameters guarantees that Inequality (1) is satisfied.

Proof. Let j be a job admitted by the blocking algorithm with aj ≤ dj − (1 + δ)pj . Hence,
showing that a job j completes before time d′j := aj + (1 + δ)pj proves the theorem. Due
to scheduling in SPT order, each job j has highest priority in its own scheduling interval
if the time point does not belong to the scheduling interval of a descendant of j. Thus, it
suffices to show that at most δpj units of time in [aj , d′j) belong to scheduling intervals S(k)
of descendants of j. By Lemma 4, the scheduling intervals of any descendant k′ of a child k
of j is contained in S(k). Hence, it is sufficient to only consider K, the set of children of j.
In order to bound the contribution of each child k ∈ K, we partition K into two sets. The
first set K1 contains all children of j that where admitted as the first jobs in their class Cc(j).
The set K2 contains the remaining jobs.

We start with K2. Consider a job k ∈ Cc(j) admitted by j. By Lemma 4, we know
that |S(k)| = (1 + µδ)pk where 1 ≤ µ ≤ 2. Let k′ ∈ Cc(j) be the previous job admitted by j
in class c. Then, B(k′) ⊆ [ek′ , ek). Since scheduling and blocking periods of children of j are
always disjoint, j had highest scheduling priority in B(k′). Hence, during B(k′) ∪ S(k) job j
was processed for at least |B(k′)| units of time. In other words, j was processed for at least
a |B(k′)|
|B(k′)∪S(k)| -fraction of B(k′) ∪ S(k). We can rewrite this ratio by

|B(k′)|
|B(k′) ∪ S(k)| = βpk′

βpk′ + (1 + µδ)pk
= νβ

νβ + (1 + µδ) ,

where ν := pk′
pk
∈ (1

2 , 2]. By differentiating with respect to ν and µ, we observe that the last
term is increasing in ν and decreasing in µ. Thus, we can lower bound this expression by

|B(k′)|
|B(k′) ∪ S(k)| ≥

β/2
β/2 + (1 + 2δ) .

Therefore, j was processed for at least a β/2
β/2+(1+2δ) -fraction in

⋃
k∈K B(k) ∪

⋃
k∈K2

S(k).
We now consider the set K1. The total processing volume of these jobs is bounded by∑∞
c=0

γ
2c pj = 2γpj . By Lemma 4, we know that |S(k)| ≤ (1 + 2δ)pk. Combining these two

observations, we obtain
∣∣∣⋃k∈K1

S(k)
∣∣∣ ≤ 2(1 + 2δ)γpj . Combining the latter with the bound

for K2, we conclude that j is scheduled for at least∣∣∣[aj , d′j) \ ⋃
k∈K

S(k)
∣∣∣ ≥ β/2

β/2 + (1 + 2δ)
(
(1 + δ)− 2(1 + 2δ)γ

)
pj ≥ pj

units of time, where the last inequality follows from Equation (1). Thus, j completes before
d′j = aj + (1 + δ)pj ≤ dj . J

4 Admitting sufficiently many jobs

After proving that the blocking algorithm completes all admitted jobs on time, we show that
the blocking algorithm admits enough jobs to achieve the competitive ratio of Theorem 1.

F. Eberle, N. Megow, and K. Schewior 41:9

4.1 Key lemma on the size of non-admitted jobs
For the proof of the main result in this section, we rely on the following strong, structural
lemma about the volume processed by a feasible non-migratory schedule in some time interval
and the size of jobs admitted by a certain class of online algorithms in the same time interval.
Let σ be a feasible non-migratory schedule. Let Alg be a non-migratory online algorithm
satisfying the following two properties: (i) Alg never admits a job j later than dj − (1 + δ)pj
for 0 < δ < ε and (ii) retrospectively, for each time τ , there is a threshold uτ ∈ (0,∞]
such that any available job j with dj − τ ≥ (1 + δ)pj that was not admitted by Alg at τ
satisfies pj ≥ uτ . We will show that our blocking algorithm satisfies (i) and (ii) for a
non-trivial uτ that allows us to bound the volume of any feasible schedule.

Without loss of generality, we assume that σ completes all jobs on time that it started.
Let Xσ be the jobs completed by σ and not admitted by Alg. For 1 ≤ i ≤ m, let Xσ

i be
the jobs in Xσ processed by machine i. Let Cx be the completion time of job x ∈ Xσ in σ.

I Lemma 6. Let σ and Alg be defined as above. Let 0 ≤ ζ1 ≤ ζ2 and fix x ∈ Xσ
i as well as

Y ⊂ Xσ
i \ {x}. If

(R) rx ≥ ζ1 as well as ry ≥ ζ1 for all y ∈ Y ,
(C) Cx ≥ Cy for all y ∈ Y , and
(P)

∑
y∈Y py ≥

ε
ε−δ (ζ2 − ζ1)

hold, then px ≥ uζ2 where uζ2 is the upper bound imposed by Alg at time ζ2. In particular,
if uζ2 =∞, then no such job x exists.

Proof. We show the lemma by contradiction. More precisely, we show that, if px < uζ2 , the
schedule σ cannot complete x on time and, hence, is not feasible.

Remember that x ∈ Xσ
i implies that Alg did not admit job x at any point τ . At time ζ2,

there are two possible reasons why x was not admitted: px ≥ uζ2 or dx − ζ2 < (1 + δ)px. In
case of the former, the statement of the lemma holds. Thus, let us assume px < uζ2 and,
therefore, dx − ζ2 < (1 + δ)px has to hold. As job x arrived with a slack of at least εpx at its
release date rx and rx ≥ ζ1 by assumption, we have

ζ2 − ζ1 ≥ ζ2 − dx + dx − rx > −(1 + δ)px + (1 + ε)px = (ε− δ)px. (2)

As all jobs in Y complete earlier than x by Assumption (C) and are only released after ζ1
by (R), the volume processed by σ in [ζ1, Cx) on machine i is greater than ε

ε−δ (ζ2 − ζ1) + px
by (P). Moreover, σ can process at most a volume of (ζ2− ζ1) on machine i in [ζ1, ζ2). These
two bounds imply that σ has to process job parts with a processing volume of at least

ε

ε− δ
(ζ2 − ζ1) + px − (ζ2 − ζ1) > δ

ε− δ
(ε− δ)px + px = (1 + δ)px

in [ζ2, Cx), where the inequality follows using Inequality (2). Thus, Cx > ζ2 + (1 + δ)px > dx
which contradicts the feasibility of σ.

Observe that the online algorithm Alg admits the shortest available job that satisfies pj ≤
uτ . In particular, if uτ =∞ for some time point τ , Alg admits the shortest job if there is
one available. Hence, for 0 ≤ ζ1 ≤ ζ2 with uζ2 =∞, there does not exist a job x ∈ Xσ

i and a
set Y ⊂ Xσ

i \ {x} satisfying (R), (C), and (P) for any machine i. J

4.2 Admitting sufficiently many jobs
I Theorem 7. An optimal non-migratory (offline) algorithm can complete at most a factor
α+ 4 more jobs on time than admitted by the blocking algorithm where α := ε

ε−δ
(
2β + 1+2δ

γ

)
.

ESA 2020

41:10 Optimally Handling Commitment Issues in Online Throughput Maximization

For proving the theorem, we fix an instance and an optimal offline algorithm Opt. Let X
be the jobs that Opt scheduled and the blocking algorithm did not admit. We assume
without loss of generality that Opt completes all jobs in X on time. Let J be the jobs
that the blocking algorithm scheduled. Then, X ∪ J clearly is a superset of the jobs that
Opt scheduled. Hence, to show the theorem it is sufficient to prove that |X| ≤ (α+ 3)|J |.
Let X ⊆ X be the jobs scheduled on the machine with the highest throughput and let J ⊆ J
be the jobs scheduled on the machine with the lowest throughput. In Lemma 11 we develop
a charging scheme of X to jobs in J such that no job gets charged more than α+ 3 jobs.

Without loss of generality, we assume that the union of all scheduling intervals of jobs
in J , i.e.,

⋃
j∈J S(j), forms one interval. If this assumption does not hold, we consider each

maximal interval in
⋃
j∈J S(j) separately. Instead of directly charging the jobs in X to jobs

in J we take a detour and charge jobs in X to intervals that cover
⋃
j∈J S(j). The idea

behind our charging scheme is that Opt is not able to schedule arbitrarily many jobs during
a scheduling interval or a blocking period created by the blocking algorithm. Intuitively, jobs
that were released during a scheduling interval or a blocking period and not admitted by the
algorithm have to satisfy certain lower bounds on their processing times. Thus, the charging
scheme relies on the release date rx and the size px of a job x ∈ X as well as on the precise
structure of the intervals created by the blocking algorithm. The number of jobs we charge
to one interval will depend on the relative length of the interval.

We retrospectively consider the interval structure created by the algorithm on the machine
that schedules J ; let this w.l.o.g. be the first machine. Let T be the set of all time points
corresponding to the admission of a new job, the end of a scheduling interval, and the start
as well as the end of a blocking period of jobs in J . Index the elements in T by their actual
value, i.e., τ1 < τ2 < . . . < τ|T |. Let I be the set of intervals of the form It := [τt, τt+1) for
1 ≤ t < |T |. The next lemma holds as the admission of a job adds at most three time points.

I Fact 8. The set I contains at most 3|J | intervals.

For analyzing the competitive ratio of our algorithm, we first charge jobs x ∈ X to
intervals It ∈ I and then assign this subset to the job that was “responsible” for not
admitting other jobs during It because of its scheduling interval or because of its blocking
period. In Lemma 11, we show that a job j is assigned at most ε

ε−δ (2β + 1+2δ
γ) = α jobs

and that each interval It gets at most one job. Fact 8 bounds the number of intervals in I.
Combining these observations then proves that |X| ≤ (α+ 3)|J | and, thus, |X| ≤ (α+ 3)|J |.

Consider a time point τ ∈
⋃
j∈J S(j). Let j ∈ J be the shortest job on machine i such

that τ ∈ S(j) ∪B(j). The blocking algorithm only admits an available job k to machine i in
two cases: (i) τ ∈ S(j) and pk < γpj or (ii) τ ∈ B(j) and k belongs to a smaller class of the
parent of j. Condition (ii) clearly is satisfied if pk < pj/2. This implies that at any time τ
the blocking algorithm maintains a threshold uτ,i for each machine i so that only available
jobs smaller than this threshold qualify for admission to machine i. Note that the admission
of a job k at time τ to machine i decreases the threshold uτ,i. If τ does not belong to a
scheduling interval of a job on machine i, we set uτ,i =∞. By taking the maximum of these
upper bounds, we obtain a time-dependent threshold uτ that guides the admission decisions
of the blocking algorithm. Hence, the conditions of Lemma 6 are met by the our algorithm.

Note that these upper bounds only change when a scheduling interval starts or ends, or
when an interval belonging to a blocking period starts or ends. For an interval It ∈ I we
define ut as the threshold on the machine with the lowest throughput, i.e., ut := uτt,1 ∈ (0,∞].
If ut =∞, then the interval It ∈ I does not belong to the scheduling interval of a job in J
and uτ =∞ for all τ ∈ It. Then the next lemma holds.

F. Eberle, N. Megow, and K. Schewior 41:11

I Fact 9. In every interval It = [τt, τt+1) ∈ I the upper bound uτ created by the blocking
algorithm is lower bounded by uτt,1, i.e., uτ ≥ ut for all τ ∈ It.

The charging scheme developed in Lemma 11 is based on a careful modification of the
following partition (Ft)1≤t<|T | of the set X. Fix an interval It ∈ I and define the set Ft ⊂ X
as the set that contains all jobs x ∈ X released during It, i.e., Ft := {x ∈ X : rx ∈ It}. As,
upon release, each job is available, the next corollary directly follows from Fact 9.

I Fact 10. For all jobs x ∈ Ft it holds px ≥ ut. In particular, if ut =∞, then Ft = ∅.

In fact, the charging scheme maintains this property and only assigns jobs in X to
intervals It if px ≥ ut. In particular, no job will be assigned to an interval with ut =∞.

We now formalize how many jobs in X we will assign to a specific interval It. Let
ϕt :=

⌊
ε
ε−δ

τt+1−τt

ut

⌋
+ 1 be the target number of It if ut <∞ and ϕt = 0 if ut =∞.

If ut <∞, let jt ∈ J be the smallest job with τt ∈ S(j) ∪B(j). Except for one job per
interval It ∈ I which remains assigned to It, the jobs assigned to It will be accounted for
by jt. Suppose that each of the sets Ft satisfies |Ft| ≤ ϕt. Then, at most ε

ε−δ
τt+1−τt

ut
will be

charged to job jt because of interval It. By definition of ut, we have ut ≥ γpjt
if It ⊆ S(jt)

and, if It ⊆ B(jt), we have ut ≥ pjt/2. The total length of intervals It for which j = jt
holds sums up to at most (1 + 2δ)pj for It ⊆ S(j) and to at most 2βpj for It ⊆ B(j). Hence,
in total, the charging scheme assigns at most ε

ε−δ (2β + 1+2δ
γ) = α jobs in X to job j ∈ J .

In combination with Fact 8, that bounds the number of intervals in I, this would imply
Theorem 7. In general, |Ft| ≤ ϕt does not have to be true as Opt may preempt jobs and
process the parts during several intervals It. In the remainder of this section, we show that
there exists another partition (Gt)1≤t<|T | of the jobs in X such that |Gt| ≤ ϕt holds.

I Lemma 11. |X| ≤ α|J |+ |I|.

Proof. As observed before it suffices to show that there is a partition G =
(
Gt
)

1≤t<|T | such
that |Gt| ≤ ϕt and

⋃
1≤t<|T |Gt = X in order to prove the lemma. The high-level idea of this

proof is the following: Consider an interval It = [τt, τt+1). If Ft does not contain too many
jobs, i.e., |Ft| ≤ ϕt, we would like to set Gt = Ft. Otherwise, we find a later interval It′ with
|Ft′ | < ϕt′ such that we can assign the excess jobs in Ft to It′ .

In order to repeatedly apply Lemma 6, we only assign such excess jobs x ∈ Ft to
Gt′ if their processing time is at least the threshold of It′ , i.e., px ≥ ut′ . Then, by our
choice of parameters, a set Gt′ with ϕt′ many jobs of size at least ut′ “covers” the interval
It′ = [τt′ , τt′+1) as often as required by (P) in Lemma 6, i.e.,∑

x∈Gt′

px ≥ ϕt′ · ut′ =
(⌊

ε

ε− δ
τt′+1 − τt′

ut′

⌋
+ 1
)
· ut′ ≥

ε

ε− δ
(τt′+1 − τt′). (3)

The proof consists of two parts: the first one is to inductively (on t) construct the
partition G =

(
Gt
)

1≤t<|T | of X with |Gt| ≤ ϕt. The second one is the proof that a
job x ∈ Gt satisfies px ≥ ut. During the construction of G we define temporary sets At ⊂ X
for intervals It. The set Gt is chosen as a subset of Ft ∪ At of appropriate size. In order
to apply Lemma 6 to each job in At individually, alongside At, we construct a set Yx,t and
a time τx,t ≤ rx for each job x ∈ X that is added to At. Let C∗x be the completion time
of some job x ∈ X in the optimal schedule Opt. The second part of the proof is to show
that x, τx,t, and Yx,t satisfy

(R) ry ≥ τx,t for all y ∈ Yx,t,
(C) C∗x ≥ C∗y for all y ∈ Yx,t, and
(P)

∑
y∈Yx,t

py ≥ ε
ε−δ (τt − τx,t).

ESA 2020

41:12 Optimally Handling Commitment Issues in Online Throughput Maximization

Then, x, Y = Yx,t, ζ1 = τx,t, and ζ2 = τt satisfy the conditions of Lemma 6 and we can
deduce that the processing time of x is at least the threshold at time τt, i.e., px ≥ uτt

≥ ut.

Constructing G =
(
Gt
)

1≤t≤|T|. We inductively construct the sets Gt in the order defined
by their indices. For simplicity, we add a singleton as last interval, i.e., I|T | = {τ|T |}
with ϕ|T | = 0. We start by setting At = ∅ for all intervals 1 ≤ t ≤ |T |. We define Yx,t = ∅ for
each job x ∈ X and each interval It. The preliminary value of the time τx,t is the minimum
of the start point τt of the interval It and the release date rx of x, i.e., τx,t := min{τt, rx}.
We refer by step t to the step in the construction where Gt was defined.

Starting with t = 1, let It be the next interval to consider during the construction.
Depending on the cardinality of Ft ∪At, we have to distinguish two cases. If |Ft ∪At| ≤ ϕt,
we set Gt = Ft ∪At.

If |Ft ∪ At| > ϕt, we order the jobs in Ft ∪ At in increasing order of completion times
in Opt. The first ϕt jobs are assigned to Gt while the remaining |Ft ∪ At| − ϕt jobs are
added to At+1. In this case, we might have to redefine the times τx,t+1 and the sets Yx,t+1
for the jobs x that were newly added to At+1. Fix such a job x. If there is no job z in
the just defined set Gt that has a smaller release date than τx,t, we set τx,t+1 = τx,t and
Yx,t+1 = Yx,t ∪ Gt. Otherwise let z ∈ Gt be a job with rz < τx,t that has the smallest
time τz,t. We set τx,t+1 = τz,t and Yx,t+1 = Yz,t ∪Gt.

Finally, we also construct G|T | this way. As we will show that px ≥ u|T | for all x ∈ G|T |,
we will get that G|T | = ∅ (since u|T | =∞) and therefore G|T | ≤ ϕ|T | = 0.

Bounding the size of the jobs in Gt. We consider the intervals again in increasing order of
their indices and show by induction that any job x in Gt satisfies px ≥ ut which implies Gt = ∅
if ut =∞. Clearly, if x ∈ Ft ∩Gt, Fact 10 guarantees px ≥ ut. Hence, in order to show the
lower bound on the processing time of x ∈ Gt, it is sufficient to consider jobs in Gt \Ft ⊂ At.
To this end, we show that for such jobs (R), (C), and (P) are satisfied. Then, Lemma 6
guarantees that px ≥ uτt ≥ ut. Therefore, At = ∅ if ut = ∞ as the global bound is also
unbounded, i.e., uτt

≥ ut =∞, by Fact 9.
By construction, A1 = ∅. Hence, (R), (C), and (P) are satisfied for each job x ∈ A1.
Assume that the conditions (R), (C), and (P) are satisfied for all x ∈ At for all 1 ≤ t < s.

Hence, for t < s, the set Gt only contains jobs x with px ≥ ut. Let t ≥ s be the first
index with At 6= ∅ and fix x ∈ At. We want to show that px ≥ ut. By induction and by
Fact 10, py ≥ ut−1 holds for all y ∈ Gt−1. Because x did not fit in Gt−1, |Gt−1| = ϕt−1.

We distinguish two cases based on the jobs in Gt−1. If there is no z ∈ Gt−1 with rz <
τx,t−1, then τx,t = τx,t−1, and (R) and (C) are satisfied by construction and by induction.
For (P), consider∑

y∈Yx,t

py =
∑

y∈Yx,t−1

py +
∑

y∈Gt−1

py ≥
ε

ε− δ
(τt−1 − τx,t−1) + ut−1 · ϕt−1

>
ε

ε− δ
(τt−1 − τx,t−1) + ε

ε− δ
(τt − τt−1) = ε

ε− δ
(τt − τx,t) ,

where the first inequality holds by induction.
If there is a job z ∈ Gt−1 with rz < τx,t−1 ≤ τt−1, then z ∈ At−1. In step t, we chose z with

minimal τz,t−1. Thus, ry ≥ τy,t−1 ≥ τz,t−1 for all y ∈ Gt−1 and rx ≥ τx,t−1 > rz ≥ τz,t−1.
Moreover, by induction, ry ≥ τz,t−1 holds for all y ∈ Yz,t−1. Thus, τx,t and Yx,t satisfy (R).
For (C), consider that C∗x ≥ C∗y for all y ∈ Gt−1 by construction and, thus, C∗x ≥ C∗z ≥ C∗y
also holds for all y ∈ Yz,t−1. For (P), observe that

F. Eberle, N. Megow, and K. Schewior 41:13

∑
y∈Yx,t

py =
∑

y∈Yz,t−1

py +
∑

y∈Gt−1

py ≥
ε

ε− δ
(τt−1 − τz,t−1) + ut−1 · ϕt−1

≥ ε

ε− δ
(τt−1 − τz,t−1) + ε

ε− δ
(τt − τt−1) ≥ ε

ε− δ
(τt − τx,t).

Here, the first inequality follows by induction and the second by definition of ut−1 and ϕt−1.
Hence, Lemma 6 implies px ≥ uτt

≥ ut.

Showing |X| ≤ α|J |+ |I|. By construction, we know that
⋃|T |
t=1 Gt = X. We start with

considering intervals It with ut = ∞. Then, It is not covered by a scheduling interval on
machine i. Thus, uτ = ∞ for all τ ∈ It and Ft = ∅ by Fact 10. In the previous part we
have seen that the conditions for Lemma 6 are satisfied. Hence, Gt = ∅ if ut = ∞. For t
with ut <∞, we have |Gt| = ϕt =

⌊
ε
ε−δ

τt+1−τt

ut

⌋
+ 1. As explained before, we assign these

jobs (except the additive one) to jt, the shortest job in J with It ⊆ S(j) ∪ B(j), without
assigning more than α jobs in X to a particular job in J . Hence, the number of jobs in X is
indeed bounded by α|J |+ |I|. J

Proof of Theorem 7. As discussed before, the union X ∪ J of X, the jobs only scheduled
by Opt, and J , the jobs admitted by the blocking algorithm, is a superset of the jobs that
Opt completed. Lemma 11 shows that |X| ≤ α|J |+ |I|.Combining this with the bound on I
given in Fact 8, we conclude

Opt ≤ m · |X|+ |J | ≤ m (α+ 3) |J |+ |J | ≤ (α+ 4) |J |. J

Proof of Theorem 1. In Theorem 5 we show that the blocking algorithm completes all
admitted jobs J on time. This implies that the blocking algorithm is feasible for the model
commitment upon admission. As no job j ∈ J is admitted later than dj−(1+δ)pj , this shows
that the blocking algorithm also solves scheduling with δ-commitment. Theorem 1.1 in [19]
(Theorem 3) gives a bound on the optimal migratory schedule in terms of an optimal non-
migratory solution. In Theorem 7, we bound an optimal non-migratory solution Opt by |J |,
the throughput of the blocking algorithm. Combining these theorems shows that the blocking
algorithm achieves a competitive ratio of c = 6(α+4) = 6

(
ε
ε−δ
(
2β + 1+2δ

γ

)
+ 4
)
. Our choice

of parameters β = 16
δ and γ = δ

16 implies c ∈ O
(

ε
(ε−δ)δ

)
. In the case where δ ≤ ε/2, we run

the algorithm with parameter δ′ = ε/2. Hence, c ∈ O
(1
ε−δ′

)
= O

(1
ε

)
. If δ > ε/2, then we

set δ′ = δ in our algorithm. Thus, ε
δ′ ∈ O(1) and, again, c ∈ O

(1
ε−δ′

)
. J

Conclusion

We close the major questions regarding online throughput maximization with and without
commitment requirements and give an optimal online algorithm on identical parallel machines
for the problem P | online rj ,pmtn |

∑
(1 − Uj). It remains open whether the problem,

where m is not part of the input, admits an online algorithm with a better competitive ratio
as is the case for Pm | online rj ,pmtn |

∑
pj(1− Uj) [26].

Another interesting question asks whether randomization allows for improved results. On
a single machine, there is indeed an O(1)-competitive randomized algorithm for scheduling
without commitment, even without any slack assumption [20]. We are not aware of any
lower bound that rules out a similar result on multiple machines. Further research directions
include generalizations such as weighted throughput maximization. While strong lower
bounds exist for handling weighted throughput with commitment [8], there remains a gap
for the problem without commitment.

ESA 2020

41:14 Optimally Handling Commitment Issues in Online Throughput Maximization

References
1 Kunal Agrawal, Jing Li, Kefu Lu, and Benjamin Moseley. Scheduling parallelizable jobs

online to maximize throughput. In Proceedings of the Latin American Theoretical Informatics
Symposium (LATIN), pages 755–776, 2018. doi:10.1007/978-3-319-77404-6_55.

2 Yossi Azar, Inna Kalp-Shaltiel, Brendan Lucier, Ishai Menache, Joseph Naor, and Jonathan
Yaniv. Truthful online scheduling with commitments. In Proceedings of the ACM Symposium
on Economics and Computations (EC), pages 715–732, 2015. doi:10.1145/2764468.2764535.

3 Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Competitive algorithms for due date
scheduling. In Proceedings of the International Colloquium on Automata, Languages and
Programming (ICALP), pages 28–39, 2007. doi:10.1007/978-3-540-73420-8_5.

4 Sanjoy K. Baruah and Jayant R. Haritsa. Scheduling for overload in real-time systems. IEEE
Trans. Computers, 46(9):1034–1039, 1997. doi:10.1109/12.620484.

5 Sanjoy K. Baruah, Jayant R. Haritsa, and Nitin Sharma. On-line scheduling to maximize
task completions. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), pages
228–236, 1994. doi:10.1109/REAL.1994.342713.

6 Sanjoy K. Baruah, Gilad Koren, Decao Mao, Bhubaneswar Mishra, Arvind Raghunathan,
Louis E. Rosier, Dennis E. Shasha, and Fuxing Wang. On the competitiveness of on-line
real-time task scheduling. Real-Time Systems, 4(2):125–144, 1992. doi:10.1007/BF00365406.

7 Ran Canetti and Sandy Irani. Bounding the power of preemption in randomized scheduling.
SIAM J. Comput., 27(4):993–1015, 1998. doi:10.1137/S0097539795283292.

8 Lin Chen, Franziska Eberle, Nicole Megow, Kevin Schewior, and Cliff Stein. A general
framework for handling commitment in online throughput maximization. Math. Prog., 2020.
doi:10.1007/s10107-020-01469-2.

9 Lin Chen, Nicole Megow, and Kevin Schewior. The power of migration in online machine
minimization. In Proceedings of the ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 175–184, 2016. doi:10.1145/2935764.2935786.

10 Lin Chen, Nicole Megow, and Kevin Schewior. An O(logm)-competitive algorithm for online
machine minimization. SIAM J. Comput., 47(6):2057–2077, 2018. doi:10.1137/17M116032X.

11 Bhaskar DasGupta and Michael A. Palis. Online real-time preemptive scheduling of jobs
with deadlines. In Proceedings of the International Conference on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), pages 96–107, 2000. doi:10.1007/
3-540-44436-X_11.

12 Michael L. Dertouzos and Aloysius K. Mok. Multiprocessor on-line scheduling of hard-real-time
tasks. IEEE Trans. Software Eng., 15(12):1497–1506, 1989. doi:10.1109/32.58762.

13 Andrew D. Ferguson, Peter Bodík, Srikanth Kandula, Eric Boutin, and Rodrigo Fonseca.
Jockey: guaranteed job latency in data parallel clusters. In Proceedings of the European
Conference on Computer Systems (EuroSys), pages 99–112, 2012. doi:10.1145/2168836.
2168847.

14 Juan A. Garay, Joseph Naor, Bülent Yener, and Peng Zhao. On-line admission control and
packet scheduling with interleaving. In Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), pages 94–103, 2002. doi:10.1109/INFCOM.2002.
1019250.

15 Michael H. Goldwasser. Patience is a virtue: The effect of slack on competitiveness for
admission control. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 396–405, 1999. URL: http://dl.acm.org/citation.cfm?id=314500.314592.

16 Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and Alexander H.G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a survey. In
Discrete Optimization II, volume 5 of Annals of Discrete Mathematics, pages 287–326. Elsevier,
1979. doi:10.1016/S0167-5060(08)70356-X.

17 Sungjin Im and Benjamin Moseley. General profit scheduling and the power of migration on
heterogeneous machines. In Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 165–173, 2016. doi:10.1145/2935764.2935771.

https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.1145/2764468.2764535
https://doi.org/10.1007/978-3-540-73420-8_5
https://doi.org/10.1109/12.620484
https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1007/BF00365406
https://doi.org/10.1137/S0097539795283292
https://doi.org/10.1007/s10107-020-01469-2
https://doi.org/10.1145/2935764.2935786
https://doi.org/10.1137/17M116032X
https://doi.org/10.1007/3-540-44436-X_11
https://doi.org/10.1007/3-540-44436-X_11
https://doi.org/10.1109/32.58762
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1145/2168836.2168847
https://doi.org/10.1109/INFCOM.2002.1019250
https://doi.org/10.1109/INFCOM.2002.1019250
http://dl.acm.org/citation.cfm?id=314500.314592
https://doi.org/10.1016/S0167-5060(08)70356-X
https://doi.org/10.1145/2935764.2935771

F. Eberle, N. Megow, and K. Schewior 41:15

18 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM,
47(4):617–643, 2000. doi:10.1145/347476.347479.

19 Bala Kalyanasundaram and Kirk Pruhs. Eliminating migration in multi-processor scheduling.
J. Algorithms, 38(1):2–24, 2001. doi:10.1006/jagm.2000.1128.

20 Bala Kalyanasundaram and Kirk Pruhs. Maximizing job completions online. J. Algorithms,
49(1):63–85, 2003. doi:10.1016/S0196-6774(03)00074-9.

21 Gilad Koren and Dennis E. Shasha. MOCA: A multiprocessor on-line competitive algorithm
for real-time system scheduling. Theor. Comput. Sci., 128(1–2):75–97, 1994. doi:10.1016/
0304-3975(94)90165-1.

22 Gilad Koren and Dennis E. Shasha. Dover: An optimal on-line scheduling algorithm for
overloaded uniprocessor real-time systems. SIAM J. Comput., 24(2):318–339, 1995. doi:
10.1137/S0097539792236882.

23 Richard J. Lipton and Andrew Tomkins. Online interval scheduling. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 302–311, 1994. URL:
http://dl.acm.org/citation.cfm?id=314464.314506.

24 Brendan Lucier, Ishai Menache, Joseph Naor, and Jonathan Yaniv. Efficient online scheduling
for deadline-sensitive jobs: extended abstract. In Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 305–314, 2013. doi:10.1145/
2486159.2486187.

25 Kirk Pruhs and Clifford Stein. How to schedule when you have to buy your energy. In
Proceedings of the International Conference on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), pages 352–365, 2010. doi:10.1007/978-3-642-15369-3_
27.

26 Chris Schwiegelshohn and Uwe Schwiegelshohn. The power of migration for online slack
scheduling. In Proceedings of the European Symposium of Algorithms (ESA), volume 57, pages
75:1–75:17, 2016. doi:10.4230/LIPIcs.ESA.2016.75.

27 Gerhard J. Woeginger. On-line scheduling of jobs with fixed start and end times. Theor.
Comput. Sci., 130(1):5–16, 1994. doi:10.1016/0304-3975(94)90150-3.

ESA 2020

https://doi.org/10.1145/347476.347479
https://doi.org/10.1006/jagm.2000.1128
https://doi.org/10.1016/S0196-6774(03)00074-9
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1016/0304-3975(94)90165-1
https://doi.org/10.1137/S0097539792236882
https://doi.org/10.1137/S0097539792236882
http://dl.acm.org/citation.cfm?id=314464.314506
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1145/2486159.2486187
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.1007/978-3-642-15369-3_27
https://doi.org/10.4230/LIPIcs.ESA.2016.75
https://doi.org/10.1016/0304-3975(94)90150-3

A Polynomial Kernel for Line Graph Deletion
Eduard Eiben
Department of Computer Science, Royal Holloway University of London, Egham, UK
eduard.eiben@rhul.ac.uk

William Lochet
Department of Informatics, University of Bergen, Bergen, Norway
william.lochet@uib.no

Abstract
The line graph of a graph G is the graph L(G) whose vertex set is the edge set of G and there is an
edge between e, f ∈ E(G) if e and f share an endpoint in G. A graph is called line graph if it is a
line graph of some graph. We study the Line-Graph-Edge Deletion problem, which asks whether
we can delete at most k edges from the input graph G such that the resulting graph is a line graph.
More precisely, we give a polynomial kernel for Line-Graph-Edge Deletion with O

(
k5) vertices.

This answers an open question posed by Falk Hüffner at Workshop on Kernels (WorKer) in 2013.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis; Theory of computation → Parameterized
complexity and exact algorithms

Keywords and phrases Kernelization, line graphs, H-free editing, graph modification problem

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.42

Funding William Lochet: Supported by The Bergen Research Foundation (BFS).

1 Introduction

For a family G of graphs, the general G-Graph Modification problem asks whether we
can modify a graph G into a graph in G by performing at most k simple operations. Typical
examples of simple operations well-studied in the literature include vertex deletion, edge
deletion, edge addition, or a combination of edge deletion and addition. We call these
problems G-Vertex Deletion, G-Edge Deletion, G-Edge Addition, and G-Edge
Editing, respectively. By a classical result by Lewis and Yannakakis [20], G-Vertex
Deletion is NP-complete for all non-trivial hereditary graph classes. The situation is quite
different for the edge modification problems. Earlier efforts for edge deletion problems [13, 24],
though having produced fruitful concrete results, shed little light on a systematic answer,
and it was noted that such a generalization is difficult to obtain.
G-Graph Modification problems have been extensively investigated for graph classes

G that can be characterized by a finite set of forbidden induced subgraphs. We say that
a graph is H-free if it contains none of the graphs in H as an induced subgraph. For this
special case, the H-free Vertex Deletion is well understood. If H contains a graph
on at least two vertices, then all of these problems are NP-complete, but admit a cknO(1)

algorithm [4], where c is the size of the largest graph in H (the algorithms with running
time f(k)nO(1) are called fixed-parameter tractable (FPT) algorithms [7, 11]). On the other
hand, the NP-hardness proof of Lewis and Yannakakis [20] excludes algorithms with running
time 2o(k)nO(1) under the Exponential Time Hypothesis (ETH) [18]. Finally, as observed
by Flum and Grohe [15] a simple application of sunflower lemma [14] gives a kernel with
O (kc) vertices, where c is again the size of the largest graph in H. A kernel is a polynomial
time preprocessing algorithm which outputs an equivalent instance of the same problem such
that the size of the reduced instance is bounded by some function f(k) that depends only on

© Eduard Eiben and William Lochet;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 42; pp. 42:1–42:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2628-3435
mailto:eduard.eiben@rhul.ac.uk
mailto:william.lochet@uib.no
https://doi.org/10.4230/LIPIcs.ESA.2020.42
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 A Polynomial Kernel for Line Graph Deletion

k. We call the function f(k) the size of the kernel. It is well-known that any problem that
admits an FPT algorithm admits a kernel. Therefore, for problems with FPT algorithms
one is interested in polynomial kernels, i.e., kernels whose size is a polynomial function.

For the edge modification problems, the situation is more complicated. While all of these
problems also admit cknO(1) time algorithm, where c is the maximum number of edges in a
graph in H [4], the P vs NP dichotomy is still not known. Only recently Aravind et al. [1]
gave the dichotomy for the special case when H contains precisely one graph H. From the
kernelization point of view, the situation is also more difficult. The reason is that deleting or
adding an edge to a graph can introduce a new copy of H and this might further propagate.
Hence, we cannot use the sunflower lemma to reduce the size of the instance. Cai asked the
question whether H-free Edge Deletion admits a polynomial kernel for all graphs H [3].
Kratsch and Wahlström [19] showed that this is probably not the case and gave a graph H

on 7 vertices such that H-free Edge Deletion and H-free Edge Editing does not
admit a polynomial kernel unless coNP ⊆ NP/poly. Consequently, it was shown that this
is not an exception, but rather a rule [5, 16]. Indeed the result by Cai and Cai [5] shows
that H-free Edge Deletion, H-free Edge Addition, and H-free-Edge Editing do
not admit a polynomial kernel whenever H or its complement is a path or a cycle with at
least 4 edges or a 3-connected graph with at least 2 edges missing. Very recently, Marx and
Sandeep [21] gave a list of nine graphs, all on 5 vertices such that if H-free-Edge Editing
does not admit a kernel for any of these nine graphs under standard complexity assumptions,
then H-free-Edge Editing admits a polynomial kernel for |H| ≥ 5 if and only if H is
either empty or complete graph. They also provided a similar characterization for H-free
Edge Deletion and H-free Edge Editing. This suggests that actually the H-free edge
modification problems with a polynomial kernels are rather rare and only for small graphs
H. Recently, Eiben, Lochet, and Saurabh [12] announced a polynomial kernel for the case
when H is a paw, which leaves only one last graph on 4 vertices for which the kernelization
of H-free edge modification problems remains open, namely K1,3 known also as the claw.

The class of claw-free graphs is a very well studied class of graphs with some interesting
algorithmic properties. The most prominent example is probably the algorithm of Sbihi [22]
for computing the maximum independent set in polynomial time. It also has been extensively
studied from a structural point of view, and Chudnosky and Seymour proposed, after a
series of papers, a complete characterization of claw-free graphs [6]. Because of such a
characterization, it seems reasonable to believe that a polynomial kernel for Claw-free
Edge Deletion exists. However, the characterization of Chudnosky and Seymour is quite
complex, which makes it hard to use. For this reason, as noted by Cygan et al. [8], trying
to show the existence of a polynomial kernel in the cases of sub-classes of claw-free graphs
seems like a good first step to try to understand this problem. In this paper, we prove the
result for the most famous such class, line graphs.

I Theorem 1. Line-Graph Edge Deletion admits a kernel with O
(
k5) vertices.

Overview of the Algorithm
As the first step of the kernelization algorithm, we use the characterization of line graphs
by forbidden induced subgraphs to find a set S of at most 6k vertices such that for every
vertex v ∈ S, G− (S \ {v}) is a line graph. This is simply done by a greedy edge-disjoint
packing of forbidden induced subgraphs. Having the set S, we use the algorithm by Degiorgi
and Simon [9] to find a partition of edges of G− S into cliques such that each vertex is in
precisely 2 cliques. Let C = {C1, . . . , Cq} be the cliques in the partition. Since G− (S \ {v})

E. Eiben and W. Lochet 42:3

is also a line graph, it is a rather simple consequence of Whitney’s isomorphism theorem
that the neighborhood of v can be covered by constantly many cliques of C. Furthermore,
we will show that if a clique C in C has more than k + 7 vertices then the optimal solution
does not contain an edge in C. Hence, we can partition the cliques in C into two groups
“large” and “small”. Note that if the optimal solution contains an edge in some small clique
C, then for this change to be necessary, it has to be propagated from S by modifying small
cliques on some clique-path from S to C using only small cliques. We will therefore define
the distance of a clique to S, without going into too many details in here, to be basically
the length of a shortest clique-path from the clique to S using only small cliques. Since
there are only O (|S|) cliques in immediate neighborhood of S and the number of cliques in
the neighborhood of a small clique is bounded by its size, we obtain that there are at most
O
(
kd
)
cliques at distance at most d. Our main contribution and most technical part of our

proof is to show that we can remove the edges covered by cliques at distance at least 5 from
G. This is covered in Section 4. Afterwards we end up with an instance with all cliques in
C at distance at least 5 from S being singletons. As discussed above there are only O

(
k4)

cliques at distance at most 4 and because large cliques stay intact in any optimal solution,
it suffices to keep k + 7 vertices in each large clique, which leads to the desired kernel of
size O

(
k5).

2 Preliminaries

We assume familiarity with the basic notations and terminologies in graph theory. We refer
the reader to the standard book by Diestel [10] for more information. Given a graph G and
a set of edges F ⊆ E(G), we denote by G− F the graph whose set of vertices is V (G) and
set of edges is the set E(G) \ F . Given two vertices u, v ∈ V (G), we let the distance between
u and v in G, denoted distG(u, v)), be the number of edges on a shortest path from u to
v. Furthermore, for S ⊆ V (G) and u ∈ V (G) we let distG(u, S) = minv∈S distG(u, v)). We
omit the subscript G, if the graph is clear from the context.

Parameterized Algorithms and Kernelization. For a detailed illustration of the following
facts the reader is referred to [7, 11]. A parameterized problem is a language Π ⊆ Σ∗ × N,
where Σ is a finite alphabet; the second component k of instances (I, k) ∈ Σ∗ × N is called
the parameter. A parameterized problem Π is fixed-parameter tractable if it admits a fixed-
parameter algorithm, which decides instances (I, k) of Π in time f(k) · |I|O(1) for some
computable function f .

A kernelization for a parameterized problem Π is a polynomial-time algorithm that given
any instance (I, k) returns an instance (I ′, k′) such that (I, k) ∈ Π if and only if (I ′, k′) ∈ Π
and such that |I ′| + k′ ≤ f(k) for some computable function f . The function f is called
the size of the kernelization, and we have a polynomial kernelization if f(k) is polynomially
bounded in k. It is known that a parameterized problem is fixed-parameter tractable if and
only if it is decidable and has a kernelization. However, the kernels implied by this fact are
usually of superpolynomial size.

A reduction rule is an algorithm that takes as input an instance (I, k) of a parameterized
problem Π and outputs an instance (I ′, k′) of the same problem. We say that the reduction
rule is safe if (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance. In order to
describe our kernelization algorithm, we present a series of reduction rules.

ESA 2020

42:4 A Polynomial Kernel for Line Graph Deletion

Figure 1 The nine minimal non-line graphs, from characterization of line graphs by forbidden
induced subgraphs of Beineke [2]. Note that all of these graphs have at most 6 vertices.

Line graphs. Given a graph G, its line graph L(G) is a graph such that each vertex of
L(G) represents an edge of G and two vertices of L(G) are adjacent if and only if their
corresponding edges share a common endpoint (are incident) in G. It is well known that if
the line graphs of two connected graphs G1 and G2 are isomorphic then either G1 and G2
are K3 and K1,3, respectively, or G1 and G2 are isomorphic as well (Whitney’s isomorphism
theorem [23], see also Theorem 8.3 in [17]). We say that a graph H is a line graph, if there
exists a graph G such that H = L(G). Note that in this paper we only consider simple graphs,
i.e., the graphs without loops or multiple edges and in particular we also only consider line
graphs of simple graphs. Formally, we then study the following parameterized problem:

Line-Graph-Edge Deletion
Input: A graph G = (V, E) and k ∈ N.
Parameter: k.
Question: Is there a set of edges F ⊆ E(G) such that G−F is a line graph and |F | ≤ k.

We call a set of edges F ⊆ V (G) such that G−F is a line graph a solution for G. A solution
F is optimal, if there does not exists a solution F ′ such that |F ′| < |F |. To obtain our kernel,
we will make use of several equivalent characterizations of line graphs.

I Theorem 2 (see, e.g., Theorem 8.4 in [17]). The following statements are equivalent:
(1) G is a line graph.
(2) The edges of G can be partitioned into complete subgraphs in such a way that no vertex

lies in more than two of the subgraphs.
(3) G does not have K1,3 as an induced subgraph, and if two odd triangles (triangles with the

property that there exists another vertex adjacent to an odd number of triangle vertices)
share a common edge, then the subgraph induced by their vertices is K4.

(4) None of nine graphs of Figure 1 is an induced subgraph of G.

3 Structure of Line Graphs

To obtain our kernel, we heavily rely on different characterizations of line graphs given by
Theorem 2. The two main characterizations used throughout the paper are given in points
(2) and (4) To ease the presentation of our techniques, we will define a notion of a clique
partition witness for G, whose existence is implied by the point (2) of Theorem 2. Let G be
a line graph, a clique partition witness for G is a set C = {C1, . . . , Cq} be such that:

E. Eiben and W. Lochet 42:5

Ci ⊆ V (G) for all i ∈ [q],
G[Ci] is a complete graph for all i ∈ [q], that is every Ci is a clique in G,
|Ci ∩ Cj | ≤ 1 for all i 6= j ∈ [q],
every v ∈ V (G) is in exactly two sets in C, and
for every edge uv ∈ E(G) there exists exactly one set Ci ∈ C such that {u, v} ⊆ Ci.

Note that by Theorem 2, G is a line graph if and only if there exists a clique partition
witness for G. The following three observations follow directly from the definition of clique
partition witness and will be useful throughout the paper.

I Observation 3. If C is clique partition witness for G then every clique in C is either a
singleton, K2, or a maximal clique in G.

I Observation 4. If C is clique partition witness for G, then every maximal clique in G of
size at least 4 is in C.

I Observation 5. If C is clique partition witness for G, then any clique of G which is not a
sub-clique of some element of C is a triangle.

We would like to point out that given a line graph G one can find a clique partition
witness for G for example by using an algorithm of Degiorgi and Simon [9] for recognition of
line graphs in polynomial time. In the following lemma, we sketch the main procedure of
their algorithm together with necessary modifications to actually output a clique partition
witness instead of the underlying graph H such that G = L(H), for completeness.

I Lemma 6. Given a graph G, there is an algorithm that in time O (|E(G)|+ |V (G)|)
decides whether G is a line graph and if so, constructs a clique partition witness for G.

Proof. The algorithm by Degiorgi and Simon construct the input graph G by adding vertices
one at a time, at each step it chooses a vertex to add that is already adjacent to at least one
previously-added vertex. That is it construct graphs G1, G2, . . ., Gn = G such that Gi is a
connected subgraph of G on i vertices. At each step it maintains a graph Hi such that Gi is
a line graph of Hi. In here, we can actually keep a clique partition witness Ci for Gi such
that there is a bijection ϕi between vertices of Hi and clique in Ci such that uv ∈ E(Hi) if
and only if |ϕi(u) ∩ ϕi(v)| = 1.

The algorithm heavily relies on the Whitney’s isomorphism theorem that implies that if
the underlying graph of Gi has at least 4 vertices, then the underlying graph Hi is unique
up to isomorphism. When adding a vertex v to a graph Gi for i ≤ 4, the algorithm simply
brute-forces the possibilities for Hi and Ci.

When adding a vertex v to Gi when i > 4, let S be the subgraph of Hi formed by
the edges that correspond to the neighbors of v in Gi. Check that S has a vertex cover
consisting of one vertex or two non-adjacent vertices, i.e., there are cliques C1 and C2 in
Ci with Ci ∩ C2 = ∅ and S ⊆ C1 ∩ C2. If there are two vertices in the cover, add an edge
(corresponding to v) that connects these two vertices in Hi and add v to both C1 and C2. If
there is only one vertex u in the cover, then add a new vertex to Hi, adjacent to this vertex,
add v to the clique ϕi(u) in Ci and add a new clique {v} to Ci to create Ci+1. J

3.1 Level Structure of Instances
For the rest of the paper, let G be the input graph and let S be a set of at most 6k vertices
such that for every v ∈ S the graph G− (S \ {v}) is a line graph. We let C = {C1, . . . , Cq}
be a clique partition witness for G− S. The goal of this subsection is to split the cliques in

ESA 2020

42:6 A Polynomial Kernel for Line Graph Deletion

C to levels such that 1) each level contains only bounded number of cliques (that are not
singletons) and 2) if we do not remove any edge at level i, then we do not need to remove
any edge at level j > i. We will later show that we do not need to remove any edges in
cliques in level 5. The following lemma is useful to define/bound the number of cliques at
the first level, i.e., cliques that interact with S.

I Lemma 7. For every vertex v ∈ S there are at most two cliques C1, C2 ∈ C such that v is
adjacent to all vertices in C1 ∪ C2 and to at most 6 vertices in V (G) \ (S ∪ C1 ∪ C2).

Proof. By the choice of the set S, it follows that G − (S \ {v}) is a line graph. Let C′ be
clique partition witness for G− (S \ {v}). By definition, there are at most two cliques C ′1
and C ′2 in C′ that contains v and all its neighbors. If |C ′i| ≥ 5, for some i ∈ {1, 2}, then by
Observation 4, C ′i \ {v} is a clique in C and we can set Ci to be C ′i \ {v}. Else |C ′i \ v| ≤ 3
and C ′i contributes to at most 3 neighbors of v in G− S. J

The following lemma shows that cliques of size at least k+7 can serve as kind of separators
that will never be changed by a solution of size at most k. Hence, we can remove all cliques
separated from S by large cliques. Moreover, it allows us to define the (i + 1)-st level by
only considering the cliques of size at most k + 6 at level i.

I Lemma 8. Let C ∈ C such that |C| ≥ k + 7 and let A ⊂ E(G) be an optimal solution for
G. Then A ∩ E(G[C]) = ∅. Moreover, the clique partition witness C′ for G−A contains a
clique C ′ such that C ′ \ S = C.

Proof. Let {u, v} ∈ A such that {u, v} ⊆ C. Clearly there are at most k − 1 vertices w in
C such that either {u, w} ∈ A or {w, v} ∈ A. Let x ∈ C be such that xv, xu are edges in
G− A. Similarly, there are at most k − 1 non-edges to u, v, x in G− A, so let y ∈ C be a
vertex such that yu, yv, yx are edges in G− A. Repeating the same argument once again,
there is z ∈ C such that zu, zv, zx, zy are edges in G−A. However, the subgraph of G−A

induced on u, v, x, y, z is K5 minus an edge, which is one of the forbidden induced subgraphs
in the characterization of line graphs.

The moreover part follows from the following argument. Since |C| ≥ k + 7 ≥ 4 and, by
Observation 4 it follows that the clique partition witness C′ contains a maximal clique C ′ ⊇ C.
It remains to show that no vertex in V (G) \ (S ∪ C) is in C ′. Every vertex in V (G) \ S is
in two cliques C1, C2 in C that cover all its incident edges in G − S. If none of these two
cliques is C, then C intersect each of these two cliques in at most 1 vertex. It follows that,
because |C| ≥ 3, there is no vertex in V (G) \ (S ∪ C) adjacent to all vertices of C. J

Let us now partition the cliques in C into two parts C<k+7 and C≥k+7 such that C<k+7
contains precisely all the cliques in C with less than k + 7 vertices and C≥k+7 contains the
remaining cliques. We will refer to the cliques in C<k+7 as small cliques and the cliques in
C≥k+7 as large cliques. Intuitively, if we are forced to delete some edge in G− S, then this
change had to be propagated from S only by changes in small cliques.

We are now ready to define the level structure on the cliques in C. We divide the cliques
in C into levels L1,L2, . . . ,Lp, for some p ∈ N, that intuitively reflects on how far from S

the clique C ∈ C is if we consider a shortest path using only small cliques. We will define
the levels recursively as follows. By Lemma 7 for every vertex v ∈ S there exists at most
two cliques C1, C2 ∈ C such that v is adjacent to all vertices in C1 ∪ C2 and to at most 6
vertices in V (G) \ (S ∪ C1 ∪ C2). Now, for a vertex v ∈ S, let N v denote the set of cliques
that contains C1, C2 and all the cliques in C that contain at least one of the neighbors of
v in V (G) \ (S ∪ C1 ∪ C2). We let L1 be precisely the set

⋃
v∈S N v. Note that vertices in

E. Eiben and W. Lochet 42:7

C1 ∪ C2 can each appear in one other clique that is not in N v and in particular there are
cliques that contain a vertex adjacent to a vertex in S and are not in L1. For i > 1, we then
let Li be the set of cliques C in C \ (

⋃
j∈{1..i−1} Lj) such that there is a small clique C ′ in

the previous level (i.e., C ′ ∈ Li−1 ∩ C<k+7) such that C ∩ C ′ is not empty.

I Observation 9. Let C ∈ C and w a vertex in C. If w has a neighbor in S, then either
C ∈ L1 ∪ L2 or w is in a large clique.

Proof. Let v ∈ S be a neighbor of w. Then N v ⊆ L1 contains a clique C ′ with w ∈ C ′.
Clearly C ′ intersects C in w. Hence either C ′ is a large clique or by the definition of L2 the
clique C is in L1 ∪ L2. J

Let p ∈ N be such that Lp 6= ∅ and Lp+1 = ∅. While the following Reduction Rule is not
completely necessary and would be subsumed by Reduction Rule 2, we include it to showcase
some of the ideas needed for the proof in a simplified setting.

I Reduction Rule 1. Remove all vertices in V (G) \ S that are not in a clique in
⋃

i∈[p] Li.

Proof of safeness. Let H be the resulting graph and let CH be a set of cliques of H obtained
from C, by taking all cliques in

⋃
i∈[p] Li and for every clique in C ∈ (C \

⋃
i∈[q] Li), CH

contains C ∩ V (H), if it is nonempty. Since H is an induced subgraph of G and line graphs
can be characterized by a set for forbidden induced subgraphs, it follows that for every
A ∈ E(G), if G−A is a line graph, then H −A is a line graph. It remains to show that if
there is a set of edges A ∈ E(H) such that |A| ≤ k and H −A is a line graph, then G−A

is also a line graph. Let A be such a set of edges of minimum size and let CA be a clique
partition witness for H −A. It suffices to show that for every clique in C ∈ (CH \

⋃
i∈[p] Li),

it holds that C ∈ CA. If this is the case, we get a clique partition witness for G − A by
replacing the cliques of CH \

⋃
i∈[p] Li in CA by C \

⋃
i∈[p] Li.

Now, C ∈ (CH \
⋃

i∈[p] Li) means that all cliques intersecting C are large. Moreover,
because all vertices in H are in some clique on some level, by Lemma 8, for each clique
C1 ∈ CH that intersect C there is a clique in C ′1 ∈ CA that is the union of C1 and some
vertices in S. Hence, all vertices in C are already in at least one clique in CA \ C and all the
edges incident to exactly one vertex in C are already covered by these cliques. And hence
every clique that contains a vertex in C and intersects every other clique in CA in at most
one vertex has to be a subset of C. Moreover, the cliques in CA that are subsets of C have
to be vertex disjoint, since every vertex is in at most 2 cliques in CA. Hence, if C is not in
CA, then some of the edges in C have to be in A, but replacing all the subsets of C in CA by
C gives a clique partition witness for H − A′ for some A′ (A which contradicts the fact
that A is of minimum size. J

We will also say that C ∈ C is at L-distance d from S, denoted by distL(C), if C is
in Ld. We note that C still contains some cliques that are not in any of Li’s. We will let
distL(C) = ∞ for such a clique C. We can now upper bound the number of cliques at
L-distance d from S.

I Lemma 10. There are at most 14|S|(k + 6)d−1 cliques in C at level d, i.e., in Ld.

Proof. By the definition of L1 =
⋃

v∈S N v, where N v denote the set of cliques that contains
C1, C2 and all the cliques in C that contain at least one of the neighbors of v in V (G) \ (S ∪
C1∪C2). By Lemma 7 for every vertex v ∈ S there exists at most two cliques C1, C2 ∈ C such
that v is adjacent to all vertices in C1 ∪C2 and to at most 6 vertices in V (G) \ (S ∪C1 ∪C2).
Since every vertex appears in two cliques of C, it follows that |N v| ≤ 14 and consecutively

ESA 2020

42:8 A Polynomial Kernel for Line Graph Deletion

L1 contains at most 14|S| cliques. Now by the definition of Ld we know that for any d ≥ 2 a
clique is at level d if and only if it shares a vertex with a small clique at level d− 1. Since
no three cliques in C can share a vertex the number of cliques at level d is at most the
number of vertices in the small cliques at level d − 1 and the lemma follows by a simple
induction on d. J

The remainder of the algorithm consists of two steps. First, in Section 4, we show that
we can remove all edges from cliques that are at L-distance at least 5 from S. Afterwards,
due to Lemma 10, we are left with only O

(
k4) non-singleton cliques in C. To finish the

algorithm in Section 5, for each clique C ∈ C that is not a singleton, we mark an arbitrary
subset of k + 7 vertices in C and remove all unmarked vertices from G. It is then rather
straightforward consequence of Lemma 8 that this rule is safe and we get an equivalent
instance with O

(
k5) vertices.

4 Bounding the Distance from S

The purpose of this section is to show that it is only necessary to keep the cliques in C that
are at L-distance at most 4 from S (and adding a singleton for vertices covered by exactly
one clique at L-distance at most 4). To do so, we need to show that there is always a solution
that does not change the cliques at L-distance 5 at all. For this purpose, we first need to
understand the interaction of cliques at L-distance 4 from S with the solution. The first
step will be to show that there is an optimal solution A with clique partition witness CA

such that all cliques in CA that share an edge with a clique in C at L-distance at least 4
from S are actually subcliques of a clique in C (when restricted to G − S). It is a simple
consequence of Lemma 8 that this is true for any clique that intersect a large clique in an
edge. Hence, we can only care about cliques in CA that intersect a small clique C in an edge.
By Observation 9, no vertex in C has a neighbor in S. It then follows by Observation 5 that
any clique in CA that intersects C in an edge and is not a subclique of a clique in C is indeed
a triangle. This leads us to the following definition.

I Definition 11 (bad triangle). Let A ⊆ E(G) be such that G−A is a line graph and let CA

be a clique partition witness of G− A. A triangle xyz ∈ CA is said to be bad if it is not a
sub-clique of a clique in C, and one of the edges of the triangle, say xy, is an edge contained
in a clique of L-distance at least 4 from S.

I Lemma 12. There exists an optimal solution without any bad triangle.

Proof. Let A be an optimal solution and CA the clique partition witness of G−A. Suppose
xyz is a bad triangle and let C1, C2 and C3 be the elements of C containing the edges xy, yz

and zx respectively. See also Figure 2 for an illustration. Since xyz is a bad triangle, no
clique in CA is a superset of Ci, i ∈ {1, 2, 3} and it is a simple consequence of Lemma 8
that Ci is a small clique. By definition of bad triangle, at least one of C1, C2, and C3 is at
L-distance at least 4 from S and hence all of these cliques are at L-distance at least 3 from
S. Let X (resp. Y , Z) denote the other clique of CA containing x (reps. y, z). Let us define
X1 = X ∩ C1, X3 = X ∩ C3, Y1 = Y ∩ C1, Y2 = Y ∩ C2, Z3 = Z ∩ C3 and Z2 = Z ∩ C2.

Let C ′1 = X1 ∪ Y1, C ′2 = Y2 ∪ Z2 and C ′3 = Z3 ∪X3. Note that C ′i is a sub-clique of Ci

for i ∈ [3]. Now for every i ∈ [3] we will update C ′i as follows. As long as there exists an
edge e in C ′i such that e belongs to Ki ∈ CA, Ki is a sub-clique of Ci and Ki 6⊆ C ′i, we set
C ′i := C ′i ∪Ki (see also Figure 2b). When this process stops, C ′i corresponds to the union
of a set of elements of CA : Ki

1, . . . , Ki
li
which are sub-cliques of Ci, and C ′i. Moreover, for

E. Eiben and W. Lochet 42:9

any edge e of C ′i which is strictly contained in another clique of CA (meaning this clique is
not e), then this clique has to be a triangle by Observation 5, as the clique of C containing e

is Ci. Let ei
1, . . . , ei

si
denote the set of such edges and let Ci

1, . . . , Ci
si

be the triangles of CA

containing these edges. Note that |A ∩ C ′1| ≥ s1, as for any edge e1
j , either x or y has to be

non adjacent to each extremity in G−A or the edge would be in two cliques of CA (the same
statement is also correct for |A ∩ C ′2| and |A ∩ C ′3|). Let A′ be the set obtained from A by

Removing all the edges of A ∩ C ′1, A ∩ C ′2 and A ∩ C ′3.
Adding one of the two edges of Ci

j different from ei
j for every i ∈ [3] and j ∈ [si] (see

Figure 2c illustrating the replacement of Cj
i in CA by its proper subclique in CA′ implied

by this addition of an edge in A′.).

B Claim 13. A′ is a set of edges not larger than A and such that G − A′ is a line graph
with fewer bad triangles than G−A.

Proof. The fact that |A′| ≤ |A| follows from the fact that |A ∩ C ′i| ≥ si for all i ∈ [3]. To
see that G−A′ is a line graph, let us show that CA′ defined as follows is a clique partition
witness for G−A′. Let CA′ be the set defined from CA by

Removing CA, X, Y , Z, every Ci
j for i ∈ [3], j ∈ [si], every Ki

j for every i ∈ [3] and
j ∈ [li] and every edge which are contained in one of the C ′i.
Adding C ′i for i ∈ [3] and for every i ∈ [3] and j ∈ [si] the edge of Ci

j which has not been
removed from A, as well as singletons for vertices belonging to only one clique.

First it is clear that any set added to C′A is a clique as A′ does not contain any edge in
A ∩ C ′1, A ∩ C ′2 and A ∩ C ′3 and these sets are cliques of G.

Now take B and C two cliques of C′A. If B and C belong to CA, then clearly their
intersection has size at most 1. If one belongs to CA and the other is the remaining edge
of Ci

j for i ∈ [3] and j ∈ [si], then it is also clear as it is true for Ci
j . For i, j ∈ [3]2, C ′i

and C ′j also intersect on one vertex, because Ci and Cj do and moreover, the cliques of CA

intersecting C ′i on two vertices are exactly the Ci
j , so if B = C ′i and A ∈ CA, the intersection

has also size at most 1, and we covered all the cases for |C ∩B|.
Now for every vertex x ∈ V (G), if x does not belong to C ′1, C ′2 and C ′3, then it belongs

to the same cliques as in CA (where the Ci
j have been reduced to an edge and a singleton).

For the vertices of C ′1, C ′2 and C ′3 different from x, y, z, we replaced one sub-clique of Ci by
another. Finally x belongs to C ′1 and C ′3, y to C ′1 and C ′2 and z to C ′2 and C ′3.

Suppose uv is an edge of E(G−A′). If uv belongs to one of the C ′i, then by definition
of the Ci

j and because we removed all these triangles, uv only belongs to one clique. For
the other edges of E(G−A′), the fact that uv belongs to exactly one clique of C′A follows
from the fact that A′ differs on those edges from A only because we added some edges of the
Ci

j , and CA differs on these vertices only because we changed Ci
j into the remaining edge

outside C ′i.
Overall CA′ is indeed a clique partition for G−A′. Moreover, to obtain it, we removed at

least one bad triangle from CA (CA) without adding one. This ends the proof of the claim.
C

Finally, we can repeat the process until CA′ is without any bad triangles, which ends the
proof of the lemma. J

Before we show that indeed all cliques at L-distance at least 5 from S are intact in some
optimal solution, we show another auxiliary lemma that is rather simple consequence of
Lemma 12, namely that there is a clique partition witness for some optimal solution A such
that no two cliques CA that intersect the same clique C ∈ C at L-distance at least 4 from S

in an edge can intersect. This is important later to show that indeed no vertex in a clique
C ∈ C at L-distance 5 from S will be in two cliques in CA that are not subsets of C.

ESA 2020

42:10 A Polynomial Kernel for Line Graph Deletion

C1

C2C3

x y

z

X Y

Z

(a) A bad triangle xyz in CA.
C1, C2, C3 are three cliques in
C containing xy, yz, and xz re-
spectively. X, Y, Z ∈ CA are the
cliques containing x, y, z other
than xyz.

C1

C2C3

x y

z

X Y

Z

C ′
1

(b) C′
1 is the inclusion minimal

clique such that (X ∪Y)∩C1 ⊆
C′

1 ⊆ C1 and for all K ∈ CA if
K ⊆ C1 and |K ∩C′

1| ≥ 2, then
K ⊆ C′

1. C′
2 and C′

3 are defined
analogously.

C1

x y

C1
1

e11

(c) C1
1 intersects C′

1 in an edge e1
1.

C1
1 is replaced by an edge other than

e1
1. This forces to include one edge
in C1

1 to a solution A′. However,
this can be seen as replacing an edge
between {x, y} and endpoints of e1

1
that is in A.

Figure 2 The treatment of bad triangles. Let A ⊆ E(G) be an optimal solution, CA a clique
partition witness for A. A bad triangle xyz together with cliques X, Y , Z, as defined in Subfigure 2a
are replaced by cliques C′

1, C′
2, and C′

3 defined in Subfigure 2b. Subfigure 2c shows the treatment of
cliques in CA that intersect C′

i in an edge. By definition of C′
i, such clique is not a subclique of Ci

and hence a triangle.

I Lemma 14. There exists an optimal solution A ⊆ E(G) without any bad triangles and
clique partition witness CA for G−A such that for every C ∈ C of L-distance at least 4 and
every w ∈ C, if Cw

1 and Cw
2 are the two cliques in CA containing w, then either Cw

1 ∩C = {w}
or Cw

2 ∩ C = {w}.

Proof. Let A ⊆ E(G) be an optimal solution for G without any bad triangles and clique
partition witness CA for G − A minimizing the number of pairs (C, w) for which C is at
L-distance at least 4, w ∈ C and the two cliques, denoted Cw

1 and Cw
2 , in CA containing w

intersect C in two vertices. Furthermore, it follows from Lemma 8 that C is a small clique,
as the clique containing C as a subclique in CA would intersect Cw

1 in two vertices. Since
there are no bad triangles and C is at L-distance at least 4, it follows that Cw

1 ⊆ C and
Cw

2 ⊆ C and in particular Cw
1 ∪ Cw

2 is a clique in G. Indeed, our goal is to replace Cw
1 and

Cw
2 by a clique D such that Cw

1 ∪Cw
2 ⊆ D ⊆ C. We start by setting D = Cw

1 ∪Cw
2 . We will

also keep a track of cliques we will remove from CA. This set will be D and initialize it as
D = {C1, C2}.

As in the proof of Lemma 12, the only reason why we cannot replace C1 and C2 by D

and obtain a solution that removes a subset of edges of A is because there exist two vertices
v1, v2 ∈ D and a clique C12 ∈ CA with {v1, v2} ⊆ C12. Observe that by our assumption there
is no bad triangle and C12 ⊆ C. We let D = D ∪ C12 and D = D ∪ C12 and repeat until
there is no such pair of vertices. Note that every vertex in G is in at most two cliques of CA.
Therefore, this process has to stop after at most 2|C| steps.

When there are no two vertices in D that appear together in a different clique, we remove
D from CA and replace it by D and {v}. For every vertex that appears in D, we removed
one clique that it appeared in. Hence, every vertex appears in at most 2 cliques and we can
always add a singleton to clique partition witness for vertices that are only in one clique.
Moreover, no two cliques intersect in two vertices, since D is the only clique we added, and
we removed/changed all the cliques that intersected D in at least two vertices. Finally, all
edges in G−A remain covered, we only potentially covered some additional edges in D.

E. Eiben and W. Lochet 42:11

Note that this procedure does not introduce any bad triangles or new pair (C ′, w′) for
which C ′ is at L-distance at least 4, w′ ∈ C ′ and the two cliques in CA containing w′ intersect
C ′ in two vertices. As it also removes one such pair, we obtain a contradiction with the
choice of A. We can therefore deduce that A does not contain such pair (C, w) and the
lemma follows. J

Finally, we can state the main lemma of this section.

I Lemma 15. There exists an optimal solution A for G and a clique partition witness CA

for G−A such that for every clique C ∈ C at L-distance at least 5 it holds that C ∈ CA.

Proof. Let A be an optimal solution without any bad triangles and clique partition witness
CA for G−A such that for every C ∈ C of L-distance at least 4 and every w ∈ C, if Cw

1 and
Cw

2 are the two cliques in CA containing w, then either Cw
1 ∩ C = {w} or Cw

1 ∩ C = {w}.
Note that existence of such a solution is guaranteed by Lemma 14. Moreover let (A, CA)
be such an optimal solution satisfying properties in Lemma 14 that minimizes the number
of cliques C ∈ C of L-distance at least 5 such that C /∈ CA. We claim that A satisfies the
properties of the lemma.

For a contradiction let C ∈ C be a clique at L-distance at least 5 and let C1, . . . , Cp be
the cliques in CA that intersects C in at least 2 vertices. Since there is no bad triangle, it
follows that Ci ⊆ C for all i ∈ [p] and by optimality of A, p = 1 (else

⋃
i∈[p] Ci is missing at

least one edge). We claim that C = C1. Else let v ∈ C \ C1. Note that C is a small clique
and hence by Observation 9 v does not have a neighbor in S. In particular all neighbors of
v are covered by two cliques in C, one of those cliques is C and let the other clique be Cv.
Moreover, Let Cv

1 and Cv
2 be the two cliques in CA containing v. Since v ∈ C \ C1 both Cv

1
and Cv

2 are subsets of Cv. However, Cv is either a large clique and CA contains Cv and the
cliques Cv

1 and Cv
2 are Cv and {v} respectively, or Cv is a small clique, in which case Cv is

at L-distance at least 4 from S, because it shares a vertex with the clique C at L-distance at
least 5 from S. It follows by the choice of A that either Cv ∩Cv

1 = {v} or Cv ∩Cv
2 = {v}, but

then again either Cv
1 or Cv

2 is the singleton {v}. However then the clique partition witness
(CA \ {C1, {v}}) ∪ {C1 ∪ {v}} defines a better solution. It follows that indeed C ∈ CA for all
cliques in C at L-distance at least 5 in G. J

We are now ready to present our main reduction rule. Note that it would seem that we
could remove just the vertices that do no appear in a clique at distance at most 4. However,
because of the large cliques in at the first four levels, we would be potentially left with many
cliques at L-distance infinity that we cannot remove because all of their vertices are in a
large clique at L-distance at most 4 from S. While this case could have been dealt with
separately, we can actually show a stronger claim, i.e., that we can remove all edges from G

that are covered by a clique at L-distance at least 5 from S. Note that in this case we cannot
easily claim that if (G, k) is YES-instance then so is the reduced instance and we crucially
need the fact that cliques at L-distance at least 5 are kept in clique partition witness of some
optimal solution.

I Reduction Rule 2. Remove all edges uv ∈ E(G) such that {u, v} ⊆ C for some clique C

with distL(C) ≥ 5. Afterwards remove all isolated vertices from G.

Let D be the set of cliques at L-distance at least 5 from S, V5 the set of vertices that
appear in a clique in D and in a clique in C \ D and G′ be the graph obtained after applying
the reduction rule and let C′ = (C \D)∪

⋃
v∈V5
{v}. Note that C′ is a clique partition witness

for G′ − S and that {v}, for v ∈ V5, is a clique at L-distance at least 5.

ESA 2020

42:12 A Polynomial Kernel for Line Graph Deletion

Proof of safeness. Let D, V5, G′, C′ be as described above and let A be an optimal solution
for G′, that is G′ −A is a line graph, and let CA be clique partition witness for G′ −A. By
Lemma 15, we can assume that

⋃
v∈V5
{v} ⊆ CA. We will show that (CA \

⋃
v∈V5
{v}) ∪ D

is a clique partition witness for G − A. Clearly each edge in G − A is either covered by
(CA \

⋃
v∈V5
{v}) or by D. It is also easy to see that every vertex is in precisely two cliques.

Moreover, two cliques in D intersect in at most 1 vertex, because D ⊆ C and similarly two
cliques in CA intersect in at most one vertex. Finally, let D ∈ D and C ∈ (CA \

⋃
v∈V5
{v}).

Clearly, D∩C ⊆ V5. Moreover, for {u, v} ⊆ D, the edge uv is not in G′ and hence {u, v} 6⊆ C.
Hence, |D ∩ C| ≤ 1.

On the other hand, let A be an optimal solution for G and a clique partition witness CA

for G − A such that for every clique C ∈ C at L-distance at least 5 it holds that C ∈ CA.
Note that the existence of (A, CA) is guaranteed by Lemma 15. We claim that G′ −A is a
line graph. By the choice of (A, CA), it follows that D ⊆ CA. Moreover, for every edge e that
is covered by a clique in D it holds that e /∈ E(G′). It follows rather straightforwardly that
CA \ D ∪

⋃
v∈V5
{v} is indeed a clique partition witness for G′ −A. J

5 Finishing the Proof

Suppose now that G, S, and C correspond to the instance after applying Reduction
Rules 1 and 2. Clearly all cliques in C are either at L-distance at most 4 from S or
there are singletons at distance 5 or infinity, depending on whether the singleton inter-
sects a small or a large clique, respectively. It follows from Lemma 10 that there are at
most O

(
k4) cliques at distance at most 4. We let M be any minimal w.r.t. inclusion

set of vertices such that for every clique C in C at L-distance at most 4 it holds that
|M ∩ C| ≥ min{|C|, k + 7}. Such a set M can be easily obtained by including arbitrary
min{|C|, k + 7} vertices from every clique C at distance at most 4 and then removing the
vertices v such that |(M \ {v}) ∩ C| ≥ min{|C|, k + 7} for all C ∈ C at L-distance at most 4.
From this construction it is easy to see that |M | = O

(
k5).

I Reduction Rule 3. Remove all vertices in V (G) \ (S ∪M) from G.

Proof of safeness. Let the clique partition witness C′ for G − (S ∪M) be {C ∩M | C ∈
C, C ∩M 6= ∅}. Since line graphs are characterized by a finite set of forbidden induced
subgraphs, it is easy to see that if G − A is a line graph, for some A ⊆ E(G), then
G[S ∪M]−A = (G−A)[S ∪M] is also a line graph. For the other direction, let A ⊆ E(G)
be such that G[S ∪M]−A is line graph. We will show that G−A is a line graph. Let CA

be a clique partition witness for G[S ∪M]−A. Now let C′A be the set we obtain from CA by
adding to it all the singleton cliques in C that do not contain a marked vertex and for every
clique C ∈ CA for which there exists C ′ ∈ C with C \ S ⊆ C ′, we replace C by C ′ ∪ (C ∩ S).

First let us verify that every vertex in V (G) is in precisely two cliques in C′A. It is easy to
see that this holds for v ∈ S ∪M , because CA is a clique partition witness for G[S ∪M]−A

and we only added new cliques containing vertices in V (G) \ (M ∪ S) or extended existing
cliques in CA by vertices in V (G)\ (M ∪S). Now let v ∈ V (G)\M and let C1, C2 ∈ C be two
cliques that contain v. Because all cliques in C at L-distance at least 5 are singletons and we
keep all vertices of the cliques at L-distance at most 4 of size less than k + 7, it follows that
C1 and C2 either both contain at least k + 7 vertices or one of them, say C2, is a singleton
and the other, C1, contains at least k + 7 vertices. If C2 is a singleton, then C2 ∈ C′A. Else for
Ci, i ∈ {1, 2}, with |Ci| ≥ k + 7 there is C ′i ∈ C′ with |C ′i| ≥ k + 7 and C ′i ⊆ Ci. By Lemma 8,
CA contains a clique CA

i such that CA
i \S = C ′i \Ci. By the construction of C′A it now follows

E. Eiben and W. Lochet 42:13

that C′A contains CA
i ∪ Ci. From Lemma 7 it follows that if u ∈ S is adjacent to at least

7 vertices in a clique in C, then it is adjacent to the whole clique. Hence CA
i ∪ Ci indeed

induces a complete subgraph of G−A. It follows that v is indeed in precisely two cliques in
C′A. Note that above also shows that the sets in C′A induce cliques in G−A. Furthermore
every edge in G−A either has both endpoints in S ∪M and are covered by a clique C in CA

such that C′A contains a superset of C, or they are in the same clique of size at least k + 7 in
C that is a subset of a clique in C′A as well.

It remains to show that |C1 ∩C2| ≤ 1 for all cliques in C′A. If |C1 ∩C2| ≥ 2, then at least
one of the vertices in C1 ∩ C2 has to be outside S ∪M . But then from the above discussion
follows that C1 \ S and C2 \ S are in C, |C1 \ S| ≥ k + 7, |C2 \ S| ≥ k + 7 and at least k + 7
vertices from each of C1 \ S and C2 \ S are in G[S ∪M]. Clearly, C1 \ S and C2 \ S intersect
in at most one vertex, let us denote it u, and the other vertices in the intersection of C1 and
C2 are in S. Let v be arbitrary vertex in C1 ∩ C2 ∩ S. Note that v is adjacent to at least 7
vertices in both C1 \S and C2 \S and by Lemma 7 it is adjacent to all vertices in (C1∪C2)\S.
Since G− (S \ {v}) is a line graph, it follows that G[(C1 ∪ C2) \ (S \ {v})] is a line graph.
Every vertex in C1 \ (S ∪ {u}) is in exactly one other clique in C. This clique intersects
C2 \ (S∪{u}) in at most one vertex. Therefore, there is a pair of vertices w1 ∈ C1 \ (S∪{u}),
w2 ∈ C2 \ (S ∪ {u}) such that w1w2 /∈ E(G). Now uvw1 and uvw2 are two odd triangles
(any vertex in Ci \ (S ∪ {u, wi}) is adjacent to three vertices of the triangle uvwi) that share
a common edge, however uvw1w2 is not a K4. Hence, G[(C1 ∪ C2) \ (S \ {v})] is not a line
graph, a contradiction. It follows that if two cliques in C of size at least k + 7 intersect in a
vertex in G− S, then no vertex in S is adjacent to both cliques and consequently no two
cliques in C′A intersect in at least two vertices.

It follows that C′A is indeed a clique partition witness for G − A and by point (2) in
Theorem 2, G−A is indeed a line graph. J

We are now ready to prove Theorem 1.

I Theorem 1. Line-Graph Edge Deletion admits a kernel with O
(
k5) vertices.

Proof. We start the algorithm by finding the set S of at most 6k vertices such that for
every v ∈ S the graph G− (S \ {v}) is a line graph. This is simply done by greedily finding
maximal set of pairwise edge-disjoint forbidden induced subgraphs. Afterwards, we construct
a clique partition witness C for G− S by using the algorithm of Lemma 6. Finally, we apply
Reduction Rules 1, 2, and 3 in this order. By the discussion above Reduction Rule 3, after
applying all the reduction rules, the resulting instance has O

(
k5) vertices. The correctness

of the kernelization algorithm follows from the safeness proofs of the reduction rules. J

6 Concluding Remarks

In this paper, we positively answered the open question from WorKer 2013 about kernelization
of Line-Graph-Edge Deletion by giving a kernel for the problem with O

(
k5) vertices.

Our techniques crucially depend on the structural characterization of the line graphs. We
believe that similar techniques could lead also to polynomial kernels for Line-Graph-Edge
Addition and Line-Graph-Edge Editing. In particular, a result similar to Lemma 8 still
holds when we allow addition of the edges. However, we were not able to bound the distance
from S. Main difficulty seems to be the possibility of merging of some small cliques into one
in a clique partition witness. It is also worth noting that the line graphs of multigraphs (i.e.,
graphs that allow multiple edges between the same pair of vertices) have a similar structural
characterization with the main difference being that the cliques in a clique partition witness

ESA 2020

42:14 A Polynomial Kernel for Line Graph Deletion

can intersect in more than just one vertex. The kernelization of the edge deletion (as well
as addition or editing) to a line graph of a multigraph remains open as well. Finally, the
kernelization of Claw-free Edge Deletion as well as of the edge deletion to some of the
other natural subclasses of claw-free graphs remain wide open.

References
1 N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Dichotomy results on the hardness

of H-free edge modification problems. SIAM J. Discrete Math., 31(1):542–561, 2017. doi:
10.1137/16M1055797.

2 Lowell W. Beineke. Characterizations of derived graphs. Journal of Combinatorial Theory,
9(2):129–135, 1970. doi:10.1016/S0021-9800(70)80019-9.

3 Hans L Bodlaender, Leizhen Cai, Jianer Chen, Michael R Fellows, Jan Arne Telle, and Dániel
Marx. Open problems in parameterized and exact computation-iwpec 2006. UU-CS, 2006,
2006.

4 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

5 Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Algorithmica,
71(3):731–757, 2015. doi:10.1007/s00453-014-9937-x.

6 Maria Chudnovsky and Paul Seymour. Claw-free graphs. IV. decomposition theorem. Journal
of Combinatorial Theory, Series B, 98(5):839–938, 2008. doi:10.1016/j.jctb.2007.06.007.

7 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

8 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, Erik Jan van Leeuwen, and Marcin Wrochna.
Polynomial kernelization for removing induced claws and diamonds. Theory Comput. Syst.,
60(4):615–636, 2017. doi:10.1007/s00224-016-9689-x.

9 Daniele Giorgio Degiorgi and Klaus Simon. A dynamic algorithm for line graph recognition.
In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, 21st International
Workshop, WG ’95, Aachen, Germany, June 20-22, 1995, Proceedings, volume 1017 of Lecture
Notes in Computer Science, pages 37–48. Springer, 1995. doi:10.1007/3-540-60618-1_64.

10 R. Diestel. Graph Theory, 4th Edition. Springer, 2012.
11 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.

Texts in Computer Science. Springer, 2013.
12 Eduard Eiben, William Lochet, and Saket Saurabh. A polynomial kernel for paw-free editing.

CoRR, abs/1911.03683, 2019. arXiv:1911.03683.
13 Ehab S. El-Mallah and Charles J. Colbourn. The complexity of some edge deletion problems.

IEEE Transactions on Circuits and Systems, 35(3):354–362, 1988. doi:10.1109/31.1748.
14 Paul Erdős and Richard Rado. Intersection theorems for systems of sets. Journal of the

London Mathematical Society, 1(1):85–90, 1960.
15 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical

Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.
16 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-)existence

of polynomial kernels for P`-free edge modification problems. Algorithmica, 65(4):900–926,
2013. doi:10.1007/s00453-012-9619-5.

17 Frank Harary. Graph theory. Addison-Wesley series in mathematics. Addison-Wesley Pub.
Co., 1969.

18 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

19 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial
kernels. Discrete Optimization, 10(3):193–199, 2013. doi:10.1016/j.disopt.2013.02.001.

https://doi.org/10.1137/16M1055797
https://doi.org/10.1137/16M1055797
https://doi.org/10.1016/S0021-9800(70)80019-9
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/s00453-014-9937-x
https://doi.org/10.1016/j.jctb.2007.06.007
https://doi.org/10.1007/s00224-016-9689-x
https://doi.org/10.1007/3-540-60618-1_64
http://arxiv.org/abs/1911.03683
https://doi.org/10.1109/31.1748
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/s00453-012-9619-5
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1016/j.disopt.2013.02.001

E. Eiben and W. Lochet 42:15

20 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

21 Dániel Marx and R. B. Sandeep. Incompressibility of H-free edge modification problems:
Towards a dichotomy. CoRR, abs/2004.11761, 2020. arXiv:2004.11761.

22 Najiba Sbihi. Algorithme de recherche d’un stable de cardinalite maximum dans un graphe
sans etoile. Discrete Mathematics, 29(1):53–76, 1980. doi:10.1016/0012-365X(90)90287-R.

23 Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54(1):150–168, 1932. URL: http://www.jstor.org/stable/2371086.

24 Mihalis Yannakakis. Edge-deletion problems. SIAM J. Comput., 10(2):297–309, 1981. doi:
10.1137/0210021.

ESA 2020

https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
http://arxiv.org/abs/2004.11761
https://doi.org/10.1016/0012-365X(90)90287-R
http://www.jstor.org/stable/2371086
https://doi.org/10.1137/0210021
https://doi.org/10.1137/0210021

Approximate CVPp in Time 20.802 n

Friedrich Eisenbrand
Ecole Polytechnique Fédérale de Lausanne, Switzerland
friedrich.eisenbrand@epfl.ch

Moritz Venzin
Ecole Polytechnique Fédérale de Lausanne, Switzerland
moritz.venzin@epfl.ch

Abstract
We show that a constant factor approximation of the shortest and closest lattice vector problem
w.r.t. any `p-norm can be computed in time 2(0.802+ε) n. This matches the currently fastest constant
factor approximation algorithm for the shortest vector problem w.r.t. `2. To obtain our result, we
combine the latter algorithm w.r.t. `2 with geometric insights related to coverings.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Randomness, geometry and discrete structures

Keywords and phrases Shortest and closest vector problem, approximation algorithm, sieving,
covering convex bodies

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.43

Funding The authors acknowledge support from the Swiss National Science Foundation within the
project Lattice Algorithms and Integer Programming (Nr. 200021-185030).

Acknowledgements The authors would like to thank the reviewers for their careful reviews and
suggestions. The second author would like to thank Christoph Hunkenschröder, Noah Stephens-
Davidowitz and Márton Naszódi for inspiring discussions.

1 Introduction

The shortest vector problem (SVP) and the closest vector problem (CVP) are important
algorithmic problems in the geometry of numbers. Given a rational lattice

L(B) = {Bx : x ∈ Zn}

with B ∈ Qn×n and a target vector t ∈ Qn the closest vector problem asks for lattice vector
v ∈ L(B) minimizing ‖t− v‖. The shortest vector problem asks for a nonzero lattice vector
v ∈ L(B) of minimal norm. When using the `p norms for 1 ≤ p ≤ ∞, we denote the problems
by SVPp resp. CVPp.

Much attention has been devoted to the hardness of approximating SVP and CVP. In a
long sequence of papers, including [42, 7, 32, 10, 18, 28, 23] it has been shown that SVP and
CVP are hard to approximate to within almost polynomial factors under reasonable com-
plexity assumptions. The best polynomial-time approximation algorithms have exponential
approximation factors [29, 41, 8].

The first algorithm to solve CVP for any norm that has exponential running time in the
dimension only was given by Lenstra [30]. The running time of his procedure is 2O(n2) times
a polynomial in the encoding length. In fact, Lenstra’s algorithm solves the more general
integer programming problem. Kannan [27] improved this to nO(n) time and polynomial
space. It took almost 15 years until Ajtai, Kumar and Sivakumar presented a randomized
algorithm for SVP2 with time and space 2O(n) and a 2O(1+1/ε)n time and space algorithm
for (1 + ε)-CVP2 [8, 9]. Here (1 + ε)-CVP2 is the problem of finding a lattice vector, whose

© Friedrich Eisenbrand and Moritz Venzin;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:friedrich.eisenbrand@epfl.ch
mailto:moritz.venzin@epfl.ch
https://doi.org/10.4230/LIPIcs.ESA.2020.43
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Approximate CVPp in Time 20.802 n

distance to the target is at most 1 + ε times the minimal distance. Blömer and Naewe [14]
extended the randomized sieving algorithm of Ajtai et al. to solve SVPp and obtain a 2O(n)

time and space exact algorithm for SVPp and an O(1 + 1/ε)2n time algorithm to compute
a (1 + ε) approximation for CVPp. For CVP∞, one has a faster approximation algorithm.
Eisenbrand et al. [20] showed how to boost any constant approximation algorithm for CVP∞
to a (1 + ε)-approximation algorithm in time O(log(1 + 1/ε))n. Recently, this idea was
adapted in [36] to all `p norms, showing that (1 + ε) approximate CVPp can be solved in
time O(1 + 1/ε)n/min(2,p) by boosting the deterministic CVP algorithm for general (even
asymmetric) norms with a running time of (1 + 1/ε)n that was developed by Dadush and
Kun [16].

The first deterministic singly-exponential time and space algorithm for exact CVP2 (and
SVP2) was developed by [33]. The fastest exact algorithms for SVP2 and CVP2 run in time
and space 2n+o(n) [3, 1, 6]. Single exponential time and space algorithms for exact CVP are
only known for `2. Whether CVP and the more general integer programming problem can
be solved in time 2O(n) is a prominent mystery in algorithms.

Recently there has been exciting progress in understanding the fined grained complexity
of exact and constant approximation algorithms for CVP [2, 12, 5]. Under the assumption of
the strong exponential time hypothesis (SETH) and for p 6= 0 (mod 2), exact CVPp cannot
be solved in time 2(1−ε)d. Here d is the ambient dimension of the lattice, which is the number
of vectors in a basis of the lattice. Under the assumption of a gap-version of the strong
exponential time hypothesis (gap-SETH) these lower bounds also hold for the approximate
versions of CVPp. More precisely, for each ε > 0 there exists a constant γε > 1 such that
there exits no 2(1−ε)d algorithm that computes a γε-approximation of CVPp.

Unfortunately, the currently fastest algorithms for CVPp resp. SVPp do not match
these lower bounds, even for large approximation factors. These algorithms are based on
randomized sieving, [8, 9]. Many lattice vectors are generated that are then, during many
stages, subtracted from each other to obtain shorter and shorter vectors w.r.t. `p (resp.
any norm) until a short vector is found. However, the algorithm needs to start out with
sufficiently many lattice vectors just to guarantee that two of them are close. This issue
directly relates to the kissing number (w.r.t. some norm) which is the maximum number of
unit norm balls that can be arranged so that they touch another given unit norm ball. In the
setting of sieving, this is the number of vectors of length r that are needed to guarantee that
the difference of two of them is strictly smaller than r. Among all known upper bounds on
the kissing numbers, the best (i.e. smallest) upper bound is known for `2 and equals 20.401n,
[26]. For `2 the fastest such approximation algorithms require time 20.802n - the square of
the kissing number w.r.t. `2. For `∞ the kissing number equals 3n− 1 which is also an upper
bound on the kissing number for any norm. The current best constant factor approximation
algorithms for SVP∞ and CVP∞ require time 3n, their counterparts w.r.t. `p require even
more time, see [4, 35]. This then suggests the question, originally raised by Aggarwal et al.
in [2] for `∞, whether the kissing number w.r.t. `p is a natural lower bound on the running
time of SVPp resp. CVPp.

Our results indicate otherwise. For constant approximation factors, we are able to reduce
these problems w.r.t. `p to another lattice problem but w.r.t. `2. This directly improves the
running time of the algorithms for `p norms that hinge on the kissing number. Furthermore,
given that the development of algorithms for `2 has been much more dynamic than for
arbitrary `p norms and the difficulty of establishing hardness results for `2, there is hope to
find still faster algorithms for SVP2 that may not even rely on the kissing number w.r.t. `2.
It is likely that this would then improve the situation for `p norms as well.

F. Eisenbrand and M. Venzin 43:3

Our main results are resumed in the following theorem.
I Theorem. For each ε > 0, there exists a constant γε such that a γε approximate solution
to CVPp, as well as to SVPp for p ∈ [1,∞] can be found in time 2(0.802+ε)n.
Our main idea is to use coverings in order to obtain a constant factor approximation to the
shortest resp. closest vector w.r.t. `p by using a (approximate) shortest vector algorithm
w.r.t. `2. We need to distinguish between the cases p ∈ [2,∞] and p ∈ [1, 2). For p ∈ [2,∞],
we show that exponentially many short vectors w.r.t. `2 cannot all have large pairwise
distance w.r.t. `p. This follows from a bound on the number of `p norm balls scaled by some
constant that are required to cover the `2 norm ball of radius n1/2−1/p. The final procedure
is then to sieve w.r.t. `2 and to pick the smallest non zero pairwise difference w.r.t. `p of the
(exponentially many) generated lattice vectors. This yields a constant factor approximation
to the shortest resp. closest vector w.r.t. `p, p ∈ [2,∞]. For p ∈ [1, 2), we use a more direct
covering idea. There is a collection of at most 2εn balls w.r.t. `2, whose union contains the
`p norm ball but whose union is contained in the `p norm ball scaled by some constant. This
leads to a simple algorithm for `p norms (p ∈ [1, 2)) by using the approximate closest vector
algorithm w.r.t. `2 from this paper.
This paper is organized as follows. In Section 2 we present the main idea for p =∞ that also
applies to the case p ≥ 2. In Section 3 we first reintroduce the list-sieve method originally
due to [34] but with a slightly more general viewpoint, we resume this in Theorem 4. We
then present in detail our approximate CVP∞ resp. SVP∞ algorithm and extend this idea
resp. algorithm to `p, p ≥ 2. This is Theorem 5. Finally, in Section 4, using the covering
technique from Section 2 and our approximate CVP2 algorithm from Section 3.1, we show
how to solve approximate CVPp for p ∈ [1, 2). This is Theorem 8.

2 Covering balls with boxes

We now outline our main idea in the setting of an approximate SVP∞ algorithm. Let us
assume that the shortest vector of L w.r.t. `∞ is s ∈ L \ {0}. We can assume that the
lattice is scaled such that ‖s‖∞ = 1 holds. The euclidean norm of s is then bounded by√
n. Suppose now that there is a procedure that, for some constant γ > 1 independent of n,

generates distinct lattice vectors v1, . . . ,vN ∈ L of length at most ‖vi‖2 ≤ γ
√
n.

γ
√
n

vi

vj

α/2

Figure 1 The difference vi − vj is an α-approximate shortest vector w.r.t. `∞.

How large does the number of vectors N have to be such that we can guarantee that
there exist two indices i 6= j with

‖vi − vj‖∞ ≤ α, (1)

ESA 2020

43:4 Approximate CVPp in Time 20.802 n

where α ≥ 1 is the approximation guarantee for SVP∞ that we want to achieve? Suppose
that N is larger than the minimal number of copies of the box (α/2)Bn∞ that are required
to cover the ball

√
nBn2 . Here Bnp = {x ∈ Rn : ‖x‖p ≤ 1} denotes the unit ball w.r.t. the

`p-norm. Then, by the pigeon-hole principle, two different vectors vi and vj must be in
the same box. Their difference satisfies (1) and thus is an α-approximate shortest vector
w.r.t. `∞, see Figure 1.

Thus we are interested in the translative covering number N(
√
nBn2 , aB

n
∞), which is the

number of translated copies of the box aBn∞ that are needed to cover the `2-ball of radius
√
n.

In the setting above, a is the constant α/(2γ). For this procedure to be efficient, we need
N(
√
nBn2 , aB

n
∞) to be relatively small for a large enough - this is equivalent to decreasing

the number of vectors N we need to generate by worsening (increasing) the approximation
guarantee α. Since 2O(n) vol(Bn∞) = vol(

√
nBn2) and by a simple covering argument, we have

that N(
√
nBn2 , B

n
∞) ≤ 2Cn. This gives hope that by taking a large enough (but independent

of n), we can decrease N(
√
nBn2 , aB

n
∞) to, say, 20.401n or 2εn for ε > 0.

Covering problems like these have received considerable attention in the field of convex
geometry, see [11, 37]. These techniques rely on the classical set-cover problem and the
logarithmic integrality gap of its standard LP-relaxation, see, e.g. [43, 15]. To keep this
paper self-contained, we briefly explain how this can be applied to our setting.

If we cover the finite set (1/n)Zn ∩
√
nBn2 with cubes whose centers are on the grid

(1/n)Zn, then by increasing the side-length of those cubes by an additive 1/n, one obtains a
full covering of

√
nBn2 . Thus we can focus on the corresponding set-covering problem with

ground set U = (1/n)Zn ∩
√
nBn2 and sets

St = U ∩ aBn∞ + t, t ∈ (1/n)Zn,

ignoring empty sets. An element of the ground set is contained in exactly |(1/n)Zn ∩ aBn∞|
many sets. Therefore, by assigning each element of the ground set the fractional value
1/|(1/n)Zn ∩ aBn∞|, one obtains a feasible fractional covering. The weight of this fractional
covering is

T

|(1/n)Zn ∩ aBn∞|

where T is the number of sets. Clearly, if a cube intersects
√
nBn2 , then its center is contained

in the Minkowski sum
√
nBn2 + aBn∞ and thus the weight of the fractional covering is

|(
√
nBn2 + aBn∞) ∩ 1

nZ
n|

| 1nZn ∩ aBn∞|
= O

(
vol(
√
nBn2 + aBn∞)

vol(aBn∞)

)
Since the size of the ground-set is bounded by nO(n) and since the integrality gap of the
set-cover LP is at most the logarithm of this size, one obtains

N(
√
nBn2 , aB

n
∞) ≤ poly(n) vol(

√
nBn2 + aBn∞)

vol(aBn∞) (2)

By Steiner’s formula, see [22, 40, 24], the volume of K + tBn2 is a polynomial in t, with
coefficients Vj(K) only depending on the convex body K:

vol(K + tBn2) =
n∑
j=0

Vj(K) vol(Bn−j2)tn−j

For K = aBn∞, Vj(K) = (2a)j
(
n
j

)
. Setting t =

√
n, the resulting expression has been

evaluated in [25, Theorem 7.1].

F. Eisenbrand and M. Venzin 43:5

I Theorem 1 ([25]). Denote by H the binary entropy function and let φ ∈ (0, 1) the unique
solution to

1− φ2

φ3 = 2a2

π
(3)

Then

vol(aBn∞ +
√
nBn2) = O(2n[H(φ)+(1−φ) log(2a)+φ

2 log(2πe
φ)])

Using this bound in inequality (2) and simplifying, we find

N(
√
nBn2 , aB

n
∞) ≤ poly(n) 2n[H(φ)+φ

2 log(2πe
φ)]

Both H(φ) and φ
2 log(2πe

φ) decrease to 0 as φ decreases to 0. Since φ, the unique solution to
(3), satisfies φ ≤ 3

√
(π/2)a− 2

3 , we obtain the following bound.

I Lemma 2. For each ε > 0, there exists aε ∈ R>0 independent of n, such that

N(
√
nBn2 , aεB

n
∞) ≤ 2εn.

Going back to the idea for an approximate SVP∞ algorithm, we will use Lemma 2 with
ε = 0.401. If we generate 20.401n distinct lattice vectors of euclidean length at most γ

√
n,

then there must exist a pair of lattice vectors with pairwise distance w.r.t. `∞ shorter than
2γa0.401. We find it by trying out all possible pairwise combinations, this takes time 20.802n.

The main idea for approximate SVPp is similar. Set s̃ the shortest vector in L w.r.t. `p
and scale the lattice so that ‖s̃‖p = 1. The euclidean norm of s̃ is bounded by n1/2−1/p.
Again, we can consider the question of how many different lattice vectors there have to
be within a ball of radius γn1/2−1/p so that we can guarantee that there exist two lattice
vectors with constant pairwise distance w.r.t. `p. This leads us to consider the translative
covering number N(n1/2−1/pBn2 , aB

n
p). Since n−1/pBn∞ ⊆ Bnp , the following is immediate

from Lemma 2.

I Lemma 3. For each ε > 0, there exists aε ∈ R>0 independent of n, such that

N(n1/2−1/pBn2 , aεB
n
p) ≤ 2εn.

3 Approximate CVPp for p ≥ 2

We now describe our main contribution. As we mentioned already, SVP2 can be approximated
up to a constant factor in time 2(0.802+ε)n for each ε > 0. This follows from a careful analysis
of the list sieve algorithm of Micciancio and Voulgaris [34], see [31, 38]. The running time and
space of this algorithm is directly related to the kissing number of the `2-norm. The running
time is the square of the best known upper bound by Kabatiansky and Levenshtein [26].

The main insight of our paper is that the current list-sieve variants can be used to
approximate SVPp and CVPp by testing all pairwise differences of the generated lattice
vectors.

3.1 List sieve
We begin by describing the list-sieve method [34] to a level of detail that is necessary to
understand our main result. Our exposition follows closely the one given in [38]. Let L(B)
be a given lattice and s ∈ L be an unknown lattice vector. This unknown lattice vector s is
typically the shortest, respectively closest vector in L(B).

ESA 2020

43:6 Approximate CVPp in Time 20.802 n

The list-sieve algorithm has two stages. The input to the first stage of the algorithm is
an LLL-reduced lattice basis B of L(B), a constant ε > 0 and a guess µ on the length of s
that satisfies

‖s‖2 ≤ µ ≤ (1 + 1/n)‖s‖2. (4)

The first stage then constructs a list of lattice vectors L ⊆ L(B) that is random. This list of
lattice vectors is then passed on to the second stage of the algorithm.

The second stage of the algorithm proceeds by sampling points y1, . . . ,yN uniformly and
independently at random from the ball

(ξε · µ)Bn2 ,

where ξε is an explicit constant depending on ε only. It then transforms these points via a
deterministic algorithm ListRedL into lattice points

ListRedL(y1), . . . , ListRedL(yN) ∈ L(B).

The deterministic algorithm ListRedL uses the list L ⊆ L(B) from the first stage.

−s 0

IS

ξε · µBn
2

−s + ξε · µBn
2

Figure 2 The lens Is.

As we mentioned above, the list L ⊆ L(B) that is used by the deterministic algorithm
ListRedL is random. We will show the following theorem in the next section. The novelty
compared to the literature is the reasoning about pairwise differences lying in centrally
symmetric sets. In this theorem, ε > 0 is an arbitrary constant, ξε as well as cε are explicit
constants and K is some centrally symmetric set. Furthermore, we assume that µ satisfies (4).

The theorem reasons about an area Is that is often referred as the lens, see Figure 2.
The lens was introduced by Regev as a conceptual modification to facilitate the proof of the
original AKS algorithm [39].

Is = (ξε · µ)Bn2 ∩ (−s + (ξε · µ)Bn2) (5)

I Theorem 4. With probability at least 1/2, the list L that was generated in the first stage
satisfies the following. If y1, · · · ,yN are chosen independently and uniformly at random
within Bn2 (0, ξεµ) then
i) The probability of the event that two different samples yi,yj satisfy

yi,yj ∈ Is and ListRedL(yi)− ListRedL(yj) ∈ K

is at most twice the probability of the event that two different samples yi,yj satisfy

ListRedL(yi)− ListRedL(yj) ∈ K + s

F. Eisenbrand and M. Venzin 43:7

ii) For each sample yi the probability of the event

‖ListRedL(yi)‖2 ≤ cε ‖s‖2 and yi ∈ Is

is at least 2−εn.
The complete procedure, i.e. the construction of the list L in stage one and applying
ListRedL to the N samples y1, . . . ,yn in stage two takes time N2(0.401+ε)n + 2(0.802+ε)n

and space N + 2(0.401+ε)n.
The proof of Theorem 4 follows verbatim from Pujol and Stehlé [38], see also [31]. In [38],

s is a shortest vector w.r.t. `2. But this fact is never used in the proof and in the analysis.
Part ii) follows from Lemma 5 and Lemma 6 in [38]. Their probability of a sample being in
the lens Is ⊆ ξ ‖s‖2 B

n
2 depends only on ξ (corresponding to our ξε). By choosing ξ large

enough, this happens with probability at least 2−εn. Their Lemma 6 then guarantees that
the list L, with probability 1/2, when yi ∼ Is is sampled uniformly, returns a lattice vector
of length at most r0 ‖s‖2 (r0 corresponds to our cε). This corresponds to part ii) in our
setting. The size of their list (denoted by NT) is bounded above by 2(0.401+δ)n where δ > 0
decreases to 0 as the ratio r0/ξ increases, this is their Lemma 4.

Finally, part i) also follows from Pujol and Stehlé [38]. It is in their proof of correctness,
Lemma 7, involving the lens Is. We briefly comment on our general viewpoint. Given
y ∼ (ξ · µ)Bn2 , the algorithm computes the linear combination w.r.t. to the lattice basis
b1, . . . ,bn

y =
n∑
i=1

λibi

and then the remainder

y (mod L) =
n∑
i=1
bλicbi.

The important observation is that this remainder is the same for all vectors y + v, v ∈ L.
Next, it keeps reducing (minus) the remainder w.r.t. the list, as long as the length decreases.
This results in a vector of the form

−y (mod L)− v1 − · · · − vk, for some vi ∈ L.

The output ListRedL(y) is then

−y (mod L)− v1 − · · · − vk + y ∈ L.

The algorithm bases its decisions on y (mod L) and not on y directly. This is why one
can imagine that, after y (mod L) has been created, one applies a bijection τ of the ball
τ(·) : ξµBn2 → ξµBn2 on y with probability 1/2. For y ∈ Is one has τ(y) = y + s. We refer
to [38] for the definition of τ . Since τ is a bijection and preserves the measure, the result
of applying τ(y) with probability 1/2 is distributed uniformly. This means that for y ∈ Is
this modified but equivalent procedure outputs ListRedL(y) or ListRedL(y) + s, both with
probability 1/2. If ListRedL(yi)− ListRedL(yj) ∈ K, we toss a coin for i and j each. With
probability 1/2, their difference is in ±K + s.

3.2 Approximation to CVPp and SVPp for p ∈ [2,∞]
We now combine Theorem 4 with the covering ideas presented in Section 2.

ESA 2020

43:8 Approximate CVPp in Time 20.802 n

I Theorem 5. For p ≥ 2, there is a randomized algorithm that computes with constant
probability a constant factor (depending on ε) approximation to CVPp and SVPp respectively.
The algorithm runs in time 2(0.802+ε)n and it requires space 2(0.401+ε)n.

In short, the algorithm is the standard list-sieve algorithm with a slight twist: Check all
pairwise differences.
We first present in detail the case p =∞. Even though there is an approximation preserving
reduction from SVP to CVP, [21], we present separately the case SVP and CVP to highlight
the ideas from Section 2 and Theorem 4. The case p ≥ 2 then follows from this, we briefly
comment on it.

Proof for p =∞. We assume that the list L that was computed in the first stage satisfies
the properties described in Theorem 4. Recall that this is the case with probability at
least 1/2.
We first consider SVP∞. By Lemma 2, there is a > 0 such that N(

√
nBn2 , aB

n
∞) ≤ 20.401n.

Let s be a shortest vector w.r.t. `∞ and let µ > 0 such that ‖s‖2 ≤ µ < (1 + 1
n) ‖s‖2 as

above. Since ‖s‖2 ≤
√
n ‖s‖∞ we have N(cε ‖s‖2 B

n
2 , cεa ‖s‖∞Bn∞) ≤ 20.401n. This means

that, if d20.401ne+ 1 lattice vectors are contained in the ball cε‖s‖2B
n
2 at least two of them

have `∞-distance bounded by 2cεa which is a constant.
Set N = 2 · d2(ε+0.401)n+ 1e and {y1, . . . ,yN}

iid∼ Bn2 (0, ξεµ) uniformly and independently
at random. By Theorem 4 ii) and by the Chebychev inequality, see [38], the following event
has probability at least 1/2.

(Event A): There is a subset S ⊆ {1, . . . , N} with |S| = d20.401ne+ 1 such that for
each i ∈ S

yi ∈ Is and ‖ ListRedL(yi)‖2 ≤ cε‖s‖2. (6)

This event is the disjoint union of the event A ∩B and A ∩B, where B denotes the event
where the vectors ListRedL(yi), yi ∈ Is are all distinct. Thus

Pr(A) = Pr(A ∩B) + Pr(A ∩B).

The probability of at least one of the events A ∩B and A ∩B is bounded below by 1/4. In
the event A ∩B, there exists i 6= j such that

‖ ListRedL(vi)− ListRedL(vj)‖∞ ≤ 2cεa.

By Theorem 4 i) with K = {0} one has

Pr(A ∩B) ≤ 2 Pr (∃i 6= j : ListRedL(vi)− ListRedL(vj) = s) .

Therefore, with constant probability, there exist i, j ∈ {1, . . . , N} with

0 < ‖ ListRedL(yi)− ListRedL(yj)‖∞ ≤ 2cεa.

We try out all the pairs of N elements, which amounts to N2 = 2(0.802+ε′)n additional time.
We next describe how list-sieve yields a constant approximation for CVP∞. Let w ∈ L(B)

be the closest lattice vector w.r.t. `∞ to t ∈ Rn and let µ > 0 such that ‖t−w‖2 ≤ µ <

(1 + 1
n) ‖t−w‖2. We use Kannan’s embedding technique [27] and define a new lattice L′

with basis

B̃ =
(
B t
0 1

nµ

)
∈ Q(n+1)×(n+1),

F. Eisenbrand and M. Venzin 43:9

Finding the closest vector to t w.r.t. `∞ in L(B) amounts to finding the shortest vector
w.r.t. `∞ in L′(B̃) ∩ {x ∈ Rn+1 : xn+1 = 1

nµ}. The vector s = (t−w, 1
nµ) is such a vector

and its euclidean length is smaller than (1 + 1
n)µ. Let a > 0 be such that

N(
√
nBn2 , aB

n
∞) ≤ 20.401n.

This means that there is a covering of the n-dimensional ball (cε‖s‖2)Bn+1
2 ∩ {x ∈ Rn+1 :

xn+1 = 0} by 20.401n translated copies of K, where

K = (cε · a(1 + 1/n)‖s‖∞)Bn+1
∞ ∩ {x ∈ Rn+1 : xn+1 = 0}. (7)

(The factor (1 + 1/n) is a reminiscent of the embedding trick, s is n + 1 dimensional.)
Similarly, we may cover (cε‖s‖2)Bn+1

2 ∩ {x ∈ Rn+1 : xn+1 = k · µn} for all k ∈ Z (such that
the intersection is not empty) by translates of K. There are only 2cε(n+ 1) + 1 such layers
to consider and so (2cε(n+ 1) + 1)20.401n translates of K suffice. The last component of a
lattice vector of L′ is of the form k · µn and it follows that these translates of K cover all
lattice vectors of euclidean norm smaller than cε ‖s‖2, see Figure 3.

c
ǫ
‖s‖2

xn+1 = µ/n

xn+1 = 2µ/nvi
vj

s

xn+1 = 0

K

Figure 3 Covering the lattice points with translates of K.
.

Set N = d(2cε(n+1)+2)2(ε+0.401)ne and sample again {y1, . . . ,yN}
iid∼ Bn2 (0, ξεµ) uniformly

and independently at random. By Theorem 4 ii) and by the Chebychev inequality, see [38],
the following event has a probability at least 1/2.

(Event A′): There is a subset S ⊆ {1, . . . , N} with |S| = (2cε(n+ 1) + 1)20.401n + 1
such that for each i ∈ S

yi ∈ Is and ‖ ListRedL(yi)‖2 ≤ cε‖s‖2. (8)

In this case, there exists a translate of K that holds at least two vectors ListRedL(yi) and
ListRedL(yj) for different samples yi and yj , see Figure 3 with vi,vj ∈ L′ instead. Thus,
with probability at least 1/2, there are i, j ∈ [N] with yi,yj ∈ Is such that

ListRedL(yi)− ListRedL(yj) ∈ 2K

Theorem 4 i) implies that, with probability at least 1/4, there exist different samples yi and
yj such that

ListRedL(yi)− ListRedL(yj) ∈ 2K + s

ESA 2020

43:10 Approximate CVPp in Time 20.802 n

In this case, the first n coordinates of ListRedL(yi)− ListRedL(yj) can be written of the
form t− v for v ∈ L and the first n coordinates on the right hand side are of the of the form
(t −w) + z, where z ∈ L′ and ‖z‖∞ ≤ 2cε(1 + 1/n)a ‖s‖∞ = 2cε(1 + 1/n)a ‖t−w‖∞. In
particular, the lattice vector v ∈ L is a 2acε(1 + 1/n) + 1 approximation to the closest vector
to t. Since we need to try out all pairs of the N elements, this takes time N2 = 2(0.802+ε′)n

and space N . J

I Remark 6. For clarity we have not optimized the approximation factor. There are various
ways to do so. We remark that for SVP∞ we actually get a smaller approximation factor
than the one that we describe. Let ã be such that N(

√
nBn2 , ãB

n
∞) ≤ 20.802n, the algorithm

described above yields a 2cεã approximation instead of a 2cεa approximation to the shortest
vector. This follows by applying the birthday paradox in the way that it was used by Pujol
and Stehlé [38]. The same argument also applies to CVP∞. Finally, we remark that in the
case of SVP we have not really used property i) of Theorem 4. We only use this property to
ensure that the generated vectors are different. It is plausible that this can be done more
efficiently or with a better approximation factor.

Proof continued, p ≥ 2. For SVPp, p ≥ 2, we define s to be shortest vector w.r.t. `p instead.
Since ‖s‖2 ≤ n1/2−1/p ‖s‖p, we simply use Lemma 3 instead of Lemma 2 to conclude that
there is some a > 0 such that if we have a set of 20.401n different lattice vectors of (euclidean)
length smaller than cε ‖s‖2, then two of them must have pairwise distance smaller than 2cεa
w.r.t. `p.
For CVPp, we define w to be the closest lattice vector to t w.r.t. `p. Both s and L′ are
defined analogously. We will need to replace the convex body K in (7) by

K = (cε · a(1 + 1/n)‖s‖p)Bn+1
p ∩ {x ∈ Rn+1 : xn+1 = 0}.

The respective algorithms for SVPp and CVPp and the proof of correctness now follow from
the case p =∞. In particular, we can use the same parameters cε and a.

For the important case p = 2 we note that we can chose a = 1. This yields a approximation
to the closest vector with the approximation guarantee cε matching that of the fastest
approximate shortest vector problem w.r.t. `2, see [31]. J

4 Approximate CVPp for p ∈ [1, 2)

In the previous section, we have extended the approximate SVP2 solver to yield constant
factor approximations to SVPp and CVPp for p ∈ [2,∞] in time 2(0.802+ε)n. From simple
volumetric considerations, the technique from the previous section cannot be adapted to
solve SVPp and CVPp for p ∈ [1, 2) (in single exponential time). Instead, we can use a simple
covering technique similar to the one considered by Eisenbrand et al. in [20]. We first show
that for any constant ε > 0, there is a constant aε > 0, so that the crosspolytope Bn1 can be
covered by 2εn balls (w.r.t. `2) with radius (aε/

√
n) and whose union is contained inside

the crosspolytope scaled by aε. A similar covering also exists for Bnp . Using the centers of
these balls as targets, we can use the approximate CVP2 algorithm to solve approximate
CVP1 resp. CVPp. This is also similar to the technique of Dadush et al. in [17] resp. [16]
where they cover general norm balls with M-ellipsoids to solve SVP and CVP w.r.t. to
this norm by using the CVP2 algorithm due to [33]. Unfortunately, there is only an upper
bound of 2Cn for some (large) constant C > 0 on the number of required M-ellipsoids, for
our purpose we need a finer estimate. To achieve this, we rely on the set-covering idea and
volume computations as outlined in Section 2. The following analogue to Lemma 2 is shown
in the appendix.

F. Eisenbrand and M. Venzin 43:11

I Lemma 7. For each ε > 0, there exists aε ∈ R>0 independent of n such that

vol(Bn1 + (aε/
√
n)Bn2)

vol((aε/
√
n)Bn2)

≤ 2εn.

We now sketch the covering procedure for CVP1 and SVP1. Up to scaling the lattice and a
guess on the distance of the closest (resp. shortest) lattice vector v to the target t, we may
assume that 1 − 1/n ≤ ‖v− t‖1 ≤ 1 (resp. 1 − 1/n ≤ ‖v‖1 ≤ 1). We uniformly sample a
point x, [19], within t + Bn1 + (aε/

√
n)Bn2 (set t = 0 for SVP1) and place a ball of radius

aε/
√
n around x (or x′, the closest point to x in Bn1 , see Fig. 4).

x

x
′

v

Bn

1
+ (c/

√

n)Bn

2

Bn

1

x+ (c/
√

n)Bn

2

Figure 4 Generating a covering of Bn
1 by (c/

√
n)Bn

2 .
.

By Lemma 7, with probability at least 2−εn, v is covered by x+(aε/
√
n)Bn2 . Running the

c-approximate (randomized) CVP2 algorithm with target x (provided ‖v− x‖2 ≤ (aε/
√
n)),

a lattice vector w ∈ x + (c · aε/
√
n)Bn2 ⊆ t + c · (aε + 1)Bn1 is returned. The lattice vector

w is thus a c · (aε + 1) approximation to the closest (resp. shortest) vector. In general, we
run the c-approximate CVP2 algorithm O(poly(n)2εn) times with targets uniformly chosen
within t +Bn1 + (aε/

√
n)Bn2 and only output the closest of the resulting lattice vectors if it

is within c · (aε + 1)Bn1 . This ensures that, if there is lattice vector v in t +Bn1 , a constant
factor approximation to ‖t− v‖1 is found with high probability.
The same covering technique can be applied to Bnp , p ∈ (1, 2). By Hölder’s inequality,

Bnp ⊆ n1−1/pBn1 and n1/2−1/pBn2 ⊆ Bnp .

The first of these inclusions implies that for any ε > 0, we can pick the same constant aε as
in Lemma 7 and cover Bnp by at most 2εn translates of aεn1/2−1/pBn2 .

vol(Bnp + cn1/2−1/pBn2)
vol(cn1/2−1/pBn2)

≤ vol(n1−1/pBn1 + cn1/2−1/pBn2)
vol(cn1/2−1/pBn2)

= vol(Bn1 + (c/
√
n)Bn2)

vol((c/
√
n)Bn2)

The second inclusion implies that these translates do not overlap Bnp by more then a constant
factor. It is then straightforward to adapt the boosting procedure described for CVP1 to
CVPp. Using the approximate CVP2 algorithm from the previous section then implies the
following algorithm.

I Theorem 8. There is a randomized algorithm that computes with constant probability a
constant (depending on ε) factor approximation to CVPp, p ∈ [1, 2). The algorithm runs in
time 2(0.802+ε)n and requires space 2(0.401+ε)n.

ESA 2020

43:12 Approximate CVPp in Time 20.802 n

5 Proof of Lemma 7

Recall that the volume of K + tBn2 is a polynomial in t, with coefficients Vj(K) that only
depend on the convex body K:

vol(K + tBn2) =
n∑
j=0

Vj(K) vol(Bn−j2)tn−j

The coefficients Vj(K) are known as the intrinsic volumes of K. The intrinsic volumes of the
crosspolytope Bn1 were computed by Betke and Henk in [13], and are given by the following
formulae:

Vn(Bn1) = 2n

n!
and for 0 ≤ j ≤ n− 1

Vj(Bn1) = 2n
(

n

j + 1

) √
j + 1

j!
√
π
n−j ·

∫ ∞
0

e−x
2

(∫ x/
√
j+1

0
e−y

2
dy

)n−j−1

dx

Given that the upper bound of Lemma 7 is exponential in n, we do not care about
polynomial factors in n. For the sake of brevity, we will hide these polynomial factors by
“.”, i.e. poly(n) . 1. This already simplifies the intrinsic volumes and, for 1 ≤ j ≤ n:

Vj(Bn1) . 2j

j!

(
n

j

)
The volume of the k−dimensional ball Bk2 is given by

vol(Bk2) = πk/2

Γ(k/2 + 1)
Γ(·) is the Gamma function. For n ∈ N, we have Γ(n+ 1) = n!. By Stirling’s formula we
have the following estimate on Γ(·).(z

e

)z
. Γ(z + 1) .

(z
e

)z
With these estimates at hand, we can now prove Lemma 7.

vol(Bn1 + (c/
√
n)Bn2)

vol((c/
√
n)Bn2)

=
∑n
j=0 Vj(Bn1) vol(Bn−j2)(c/

√
n))n−j

(c/
√
n)n vol(Bn2)

.
n∑
j=0

2j n!
j!(n− j)!j!

nj/2

cj
vol(Bn−j2)
vol(Bn2)

.
n∑
j=0

(2e)j nn

jj (n− j)n−jjj
nj/2

cj
nn/2

(n− j)(n−j)/2(2πe)j/2

.
n∑
j=0

n3n/2nj/2

j2j(n− j)3(n−j)/2

(
2e
πc2

)j/2

(j=φn)
. max

φ∈[0,1]

e(3/2) ln(n)n+ln(n)nφ/2

e2 ln(φn)φn+(3/2) ln((1−φ)n)(1−φ)n

(
2e
πc2

)φn/2

. max
φ∈[0,1]

e−2 ln(φ)φn−2 ln(1−φ)(1−φ)n
(

2e
πc2

)φn/2

= max
φ∈[0,1]

22 H(φ)n
(

2e
πc2

)φn/2

F. Eisenbrand and M. Venzin 43:13

In passing to the second last line, we have added the factor e−(1/2) ln(1−φ)(1−φ)n which is
always greater than 1 for φ ∈ [0, 1]. H(·) is the binary entropy function, i.e. H(φ) =
− ln(φ)φ− ln(1− φ)(1− φ). H(φ) ≤ 1 for φ ∈ [0, 1] and H(φ) = H(1− φ)→ 0 monotonically
as φ→ 0. Thus, for some fixed c, the above expression reaches a maximum for some φ ∈ (0, 1).
If we increase c, we see that the φ∗ realizing the maximum will decrease which then implies
the lemma. This can be shown formally by fixing some c and taking a derivative w.r.t. φ.
This will then show that the maximum is reached when φ∗ = Θ(1√

c
).

Thus, for any ε > 0, we can chose c large enough so that Lemma 7 holds.

References
1 D. Aggarwal, D. Dadush, and N. Stephens-Davidowitz. Solving the closest vector problem

in 2n time – the discrete gaussian strikes again! In 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pages 563–582, October 2015. doi:10.1109/FOCS.2015.41.

2 Divesh Aggarwal, Huck Bennett, Alexander Golovnev, and Noah Stephens-Davidowitz. Fine-
grained hardness of cvp (p) – everything that we can prove (and nothing else). arXiv preprint,
2019. arXiv:1911.02440.

3 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving the
shortest vector problem in 2n time using discrete gaussian sampling. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages 733–742, 2015.

4 Divesh Aggarwal and Priyanka Mukhopadhyay. Faster algorithms for SVP and CVP in the
infinity norm. CoRR, abs/1801.02358, 2018. arXiv:1801.02358.

5 Divesh Aggarwal and Noah Stephens-Davidowitz. (gap/s)eth hardness of svp. In Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, page
228–238, New York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/
3188745.3188840.

6 Divesh Aggarwal and Noah Stephens-Davidowitz. Just take the average! An embarrassingly
simple 2ˆn-time algorithm for SVP (and CVP). In 1st Symposium on Simplicity in Algorithms,
SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, pages 12:1–12:19, 2018. doi:
10.4230/OASIcs.SOSA.2018.12.

7 Miklós Ajtai. The shortest vector problem in l2 is np-hard for randomized reductions (extended
abstract). In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
STOC ’98, page 10–19, New York, NY, USA, 1998. Association for Computing Machinery.
doi:10.1145/276698.276705.

8 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector
problem. In Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8,
2001, Heraklion, Crete, Greece, pages 601–610, 2001. doi:10.1145/380752.380857.

9 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. Sampling short lattice vectors and the
closest lattice vector problem. In Proceedings of the 17th Annual IEEE Conference on
Computational Complexity, Montréal, Québec, Canada, May 21-24, 2002, pages 53–57, 2002.
doi:10.1109/CCC.2002.1004339.

10 Sanjeev Arora. Probabilistic Checking of Proofs and Hardness of Approximation Problems.
PhD thesis, University of California at Berkeley, Berkeley, CA, USA, 1995. UMI Order No.
GAX95-30468.

11 Shiri Artstein-Avidan and Boaz A Slomka. On weighted covering numbers and the levi-hadwiger
conjecture. Israel Journal of Mathematics, 209(1):125–155, 2015.

12 H. Bennett, A. Golovnev, and N. Stephens-Davidowitz. On the quantitative hardness of cvp.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
13–24, October 2017. doi:10.1109/FOCS.2017.11.

13 Ulrich Betke and Martin Henk. Intrinsic volumes and lattice points of crosspolytopes. Monat-
shefte für Mathematik, 115(1):27–33, 1993. doi:10.1007/BF01311208.

ESA 2020

https://doi.org/10.1109/FOCS.2015.41
http://arxiv.org/abs/1911.02440
http://arxiv.org/abs/1801.02358
https://doi.org/10.1145/3188745.3188840
https://doi.org/10.1145/3188745.3188840
https://doi.org/10.4230/OASIcs.SOSA.2018.12
https://doi.org/10.4230/OASIcs.SOSA.2018.12
https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/380752.380857
https://doi.org/10.1109/CCC.2002.1004339
https://doi.org/10.1109/FOCS.2017.11
https://doi.org/10.1007/BF01311208

43:14 Approximate CVPp in Time 20.802 n

14 Johannes Blömer and Stefanie Naewe. Sampling methods for shortest vectors, closest vectors
and successive minima. Theor. Comput. Sci., 410(18):1648–1665, 2009. doi:10.1016/j.tcs.
2008.12.045.

15 V. Chvatal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233–235,
August 1979. doi:10.1287/moor.4.3.233.

16 Daniel Dadush and Gábor Kun. Lattice sparsification and the approximate closest vector
problem. Theory of Computing, 12(1):1–34, 2016. doi:10.4086/toc.2016.v012a002.

17 Daniel Dadush, Chris Peikert, and Santosh S. Vempala. Enumerative lattice algorithms in any
norm via m-ellipsoid coverings. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011,
pages 580–589. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.31.

18 Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within
almost-polynomial factors is NP-hard. Combinatorica, 23(2):205–243, 2003. doi:10.1007/
s00493-003-0019-y.

19 Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm for
approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991. doi:10.1145/102782.
102783.

20 Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier. Covering cubes and the closest
vector problem. In Proceedings of the 27th ACM Symposium on Computational Geometry,
Paris, France, June 13-15, 2011, pages 417–423, 2011. doi:10.1145/1998196.1998264.

21 O. Goldreich, D. Micciancio, S. Safra, and Jean-Pierre Seifert. Approximating shortest lattice
vectors is not harder than approximating closet lattice vectors. Inf. Process. Lett., 71(2):55–61,
July 1999. doi:10.1016/S0020-0190(99)00083-6.

22 Peter Gruber. Convex and Discrete Geometry. Encyclopedia of Mathematics and its Applica-
tions. Springer, 2007.

23 Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 469–477, 2007.

24 Martin Henk, Jürgen Richter-Gebert, and Günter M Ziegler. Basic properties of convex
polytopes. In Handbook of discrete and computational geometry, pages 243–270. CRC Press,
1997.

25 Varun Jog and Venkat Anantharam. A geometric analysis of the awgn channel with a (σ, ρ)-
power constraint. IEEE Transactions on Information Theory, April 2015. doi:10.1109/TIT.
2016.2580545.

26 Grigorii Anatol’evich Kabatiansky and Vladimir Iosifovich Levenshtein. On bounds for packings
on a sphere and in space. Problemy Peredachi Informatsii, 14(1):3–25, 1978.

27 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,
12(3):415–440, 1987. doi:10.1287/moor.12.3.415.

28 Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM,
52(5):789–808, September 2005. doi:10.1145/1089023.1089027.

29 A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261(4):515–534, 1982. doi:10.1007/BF01457454.

30 Hendrik W. Lenstra. Integer programming with a fixed number of variables. Math. Oper. Res.,
8(4):538–548, 1983. doi:10.1287/moor.8.4.538.

31 Mingjie Liu, Xiaoyun Wang, Guangwu Xu, and Xuexin Zheng. Shortest lattice vectors in the
presence of gaps. IACR Cryptology ePrint Archive, 2011:139, 2011.

32 Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some
constant. SIAM journal on Computing, 30(6):2008–2035, 2001.

33 Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm
for most lattice problems based on voronoi cell computations. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010, pages 351–358, 2010. doi:10.1145/1806689.1806739.

https://doi.org/10.1016/j.tcs.2008.12.045
https://doi.org/10.1016/j.tcs.2008.12.045
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.4086/toc.2016.v012a002
https://doi.org/10.1109/FOCS.2011.31
https://doi.org/10.1007/s00493-003-0019-y
https://doi.org/10.1007/s00493-003-0019-y
https://doi.org/10.1145/102782.102783
https://doi.org/10.1145/102782.102783
https://doi.org/10.1145/1998196.1998264
https://doi.org/10.1016/S0020-0190(99)00083-6
https://doi.org/10.1109/TIT.2016.2580545
https://doi.org/10.1109/TIT.2016.2580545
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1145/1089023.1089027
https://doi.org/10.1007/BF01457454
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1145/1806689.1806739

F. Eisenbrand and M. Venzin 43:15

34 Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time algorithms for the
shortest vector problem. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’10, page 1468–1480, USA, 2010. Society for Industrial and
Applied Mathematics.

35 Priyanka Mukhopadhyay. Faster provable sieving algorithms for the shortest vector problem
and the closest vector problem on lattices in `p norm. CoRR, abs/1907.04406, 2019. arXiv:
1907.04406.

36 Márton Naszódi and Moritz Venzin. Covering convex bodies and the closest vector problem.
arXiv preprint, 2019. arXiv:1908.08384.

37 Márton Naszódi. On some covering problems in geometry. Proceedings of the American
Mathematical Society, 144, April 2014. doi:10.1090/proc/12992.

38 Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time 2 2.465n.
IACR Cryptology ePrint Archive, 2009:605, January 2009.

39 Oded Regev. Lattices in computer science, lecture 8: 2O(n) algorithm for svp, 2004.
40 Rolf Schneider. Convex Bodies: The Brunn–Minkowski Theory. Encyclopedia of Math-

ematics and its Applications. Cambridge University Press, 2 edition, 2013. doi:10.1017/
CBO9781139003858.

41 Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theoretical computer science, 53(2-3):201–224, 1987.

42 P. van Emde Boas. Another NP-complete problem and the complexity of computing short
vectors in a lattice. Technical Report 81-04, Mathematische Instituut, University of Amsterdam,
1981.

43 Vijay V Vazirani. Approximation algorithms. Springer Science & Business Media, 2013.

ESA 2020

http://arxiv.org/abs/1907.04406
http://arxiv.org/abs/1907.04406
http://arxiv.org/abs/1908.08384
https://doi.org/10.1090/proc/12992
https://doi.org/10.1017/CBO9781139003858
https://doi.org/10.1017/CBO9781139003858

A (1 − e−1 − ε)-Approximation for the Monotone
Submodular Multiple Knapsack Problem
Yaron Fairstein
Computer Science Department, Technion, Haifa, Israel
yyfairstein@gmail.com

Ariel Kulik
Computer Science Department, Technion, Haifa, Israel
kulik@cs.technion.ac.il

Joseph (Seffi) Naor
Computer Science Department, Technion, Haifa, Israel
naor@cs.technion.ac.il

Danny Raz
Computer Science Department, Technion, Haifa, Israel
danny@cs.technion.ac.il

Hadas Shachnai
Computer Science Department, Technion, Haifa, Israel
hadas@cs.technion.ac.il

Abstract
We study the problem of maximizing a monotone submodular function subject to a Multiple Knapsack
constraint (SMKP) . The input is a set I of items, each associated with a non-negative weight, and a
set of bins having arbitrary capacities. Also, we are given a submodular, monotone and non-negative
function f over subsets of the items. The objective is to find a subset of items A ⊆ I and a packing
of these items in the bins, such that f(A) is maximized.

SMKP is a natural extension of both Multiple Knapsack and the problem of monotone submodular
maximization subject to a knapsack constraint. Our main result is a nearly optimal polynomial time
(1− e−1 − ε)-approximation algorithm for the problem, for any ε > 0. Our algorithm relies on a
refined analysis of techniques for constrained submodular optimization combined with sophisticated
application of tools used in the development of approximation schemes for packing problems.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Sumodular Optimization, Multiple Knapsack, Randomized Rounding

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.44

Related Version A full version of the paper is available at https://arxiv.org/abs/2004.12224.

Funding Joseph (Seffi) Naor : This research was supported in part by US-Israel BSF grant 2018352
and by ISF grant 2233/19 (2027511).

1 Introduction

Submodular optimization has recently attracted much attention as it provides a unifying
framework capturing many fundamental problems in combinatorial optimization, economics,
algorithmic game theory, networking, and other areas. Furthermore, submodularity also
captures many real world practical applications where economy of scale is prevalent. Classic
examples of submodular functions are coverage functions [9], matroid rank functions [3] and
graph cut functions [10]. A recent survey on submodular functions can be found in [1].

© Yaron Fairstein, Ariel Kulik, Joseph (Seffi) Naor, Danny Raz, and Hadas Shachnai;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 44; pp. 44:1–44:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yyfairstein@gmail.com
mailto:kulik@cs.technion.ac.il
mailto:naor@cs.technion.ac.il
mailto:danny@cs.technion.ac.il
mailto:hadas@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2020.44
https://arxiv.org/abs/2004.12224
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Aproximation for Monotone Submodular Multiple Knapsack

Submodular functions are defined over sets. Given a ground set I, a function f : 2I → R≥0
is called submodular if for every A ⊆ B ⊆ I and u ∈ I\B, f(A+u)−f(A) ≥ f(B+u)−f(B).1
This reflects the diminishing returns property: the marginal value from adding u ∈ I to a
solution diminishes as the solution set becomes larger. A set function f : 2I → R is monotone
if for any A ⊆ B ⊆ I it holds that f(A) ≤ f(B). While in many cases, such as coverage and
matroid rank function, the submodular function is monotone, this is not always the case (cut
functions are a classic example).

The focus of this work is optimization of monotone submodular functions. In [19]
Nemhauser and Wolsey presented a greedy based (1− e−1)-approximation for maximizing a
monotone submodular function subject to a cardinality constraint, along with a matching
lower bound in the oracle model. A (1 − e−1) hardness of approximation bound is also
known for the problem under P 6= NP, due to the hardness of max-k-cover [9] which is a
special case. The greedy algorithm of [19] was later generalized to monotone submodular
optimization with a knapsack constraint [16, 21].

A major breakthrough in the field was the continuous greedy algorithm presented in [22].
Initially used to derive a (1− e−1)-approximation for maximizing a monotone submodular
function subject to a matroid constraint, the algorithm has become a primary tool in the
development of monotone submodular maximization algorithms subject to various other
constraints. These include d-dimensional knapsack constraints [17], and combinations of
d-dimensional knapsack and matroid constraints [7]. A variant of the continuous greedy
algorithm for non-monotone functions is given in [11].

In the multiple knapsack problem (MKP) we are given a set of items, where each item
has a weight and a profit, and a set of bins of arbitrary capacities. The objective is to find
a packing of a subset of the items that respects the bin capacities and yields a maximum
profit. The problem is one of the most natural extensions of the classic Knapsack problem
that arises in the context of Virtual Machine (VM) allocation in cloud computing. The
practical task is to assign VMs to physical machines such that capacity constraints are
satisfied, while maximizing the profit of the cloud provider. A submodular cost function
allows cloud providers to offer complex cost models to high-volume customers, where the
price customers pay for each VM can depend on the overall number of machines used by the
customer.

A polynomial time approximation scheme for MKP was first presented by Chekuri and
Khanna [5]. The authors also ruled out the existence of a fully polynomial time approximation
scheme for the problem. An efficient polynomial time approximation scheme was later
developed by Jansen [14, 15].

1.1 Our Results
In this paper we consider the submodular multiple knapsack problem (SMKP). The input
consists of a set of n items I andm bins B. Each item i ∈ I is associated with a weight wi ≥ 0,
and each bin b ∈ B has a capacity Wb ≥ 0. We are also given an oracle to a non-negative
monotone submodular function f : 2I → R≥0. A feasible solution to the problem is a tuple
of m subsets (Ab)b∈B such that for every b ∈ B it holds that

∑
i∈Ab wi ≤Wb. The value of a

solution (Ab)b∈B is f
(⋃

b∈B Ab
)
. The goal is to find a feasible solution of maximum value.2

1 Equivalently, for every A, B ⊆ I: f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).
2 We note that the set of bins B is part of the input for SMKP, thus the number of bins is non-constant.

This is one difference between SMKP and the problem of maximizing a submodular set function subject
to d knapsack constraints (or, a d-dimensional knapsack constraint) where d is fixed (for more details
see, e.g., [17]).

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai 44:3

The problem is a natural generalization of both Multiple Knapsack [5] (where f is modular
or linear), and the problem of monotone submodular maximization subject to a knapsack
constraint [21] (where m = 1). Our result is stated in the next theorem.

I Theorem 1. For any ε > 0, there is a randomized (1− e−1 − ε)-approximation algorithm
for SMKP.

As mentioned above, a (1 − e−1) hardness of approximation bound is known for the
problem under P 6= NP, due to the hardness of max-k-cover [9] which is a special case
of SMKP. This is a vast improvement over previous results. Feldman presented in [12] a(
e−1
3e−1 − o(1)

)
≈ 0.24-approximation for the special case of identical bin capacities, along

with a 1
9 -approximation for general capacities. To the best of our knowledge, this is the best

known approximation ratio for the problem.3
In very recent work, carried out independently of our work, Sun et al. [20] present a

deterministic greedy based (1− e−1 − ε)-approximation for the special case of identical bins.
They also derive a randomized (1− e−1 − ε)-approximation for the special case where the
ratio between the capacity of the largest and smallest bins is a constant. In this paper we
give a randomized algorithm for the most general case, based on a different approach (as
described below).

1.2 Tools and Techniques
Our algorithm relies on a refined analysis of techniques for submodular optimization subject
to d-dimensional knapsack constraints [17, 4, 7], combined with sophisticated application of
tools used in the development of approximation schemes for packing problems [8].

At the heart of our algorithm lies the observation that SMKP for a large number of
identical bins (i.e., ∀b ∈ B, Wb = W for some W ≥ 0) can be easily approximated via a
reduction to the problem of maximizing a submodular function subject to a 2-dimensional
knapsack constraint (see, e.g., [17]). Given such an SMKP instance and ε > 0, we partition
the items to small and large, where an item i ∈ I is small if wi ≤ εW and large otherwise.
We further define a configuration to be a subset of large items which fits into a single bin,
and let C be the set of all configurations. It follows that for fixed ε > 0, the number of
configurations is polynomial.

Using the above we define a new submodular optimization problem, to which we refer as
the block-constraint problem. We define a new universe E which consists of all configurations
C and all small items, E = C ∪ {{i}| i is small}. We also define a new submodular function
g : 2E → R≥0 by g(T) = f

(⋃
A∈T A

)
. Now, we seek a subset of elements T ⊆ E such that

T has at most m = |B| configurations, i.e., |T ∩ C| ≤ m, and the total weight of sets selected
is at most m ·W ; namely,

∑
A∈T w(A) ≤ m ·W , where w(A) =

∑
i∈A wi.

It is easy to see that the optimal value of the block-constraint problem is at least the value
of the optimum for the original instance. Moreover, a solution T for the block-constraint
problem can be used to generate a solution for the SMKP instance with only a small loss in
value. As there are no more than m configurations, and all other items are small, the items in
T can be easily packed into (1+ε)m+1 bins of capacityW using First Fit. Then, it is possible

3 Sun et al. [20] indicate that a
(

1− e1−e−1
− o(1)

)
≈ 0.468-approximation for the problem can be

derived using the techniques of [4]. We note that this derivation is non-trivial (no details were given
in [4]).

ESA 2020

44:4 Aproximation for Monotone Submodular Multiple Knapsack

to remove εm+ 1 of the bins while maintaining at least m
εm+1 ≥

1
1+2ε of the solution value,

for m ≥ 1
ε . Once these εm+ 1 bins are removed, we have a feasible solution for the SMKP

instance. The block-constraint problem can be viewed as monotone submodular optimization
subject to a 2-dimensional knapsack constraint. Thus, a (1− e−1 − ε)-approximate solution
can be found efficiently [17].

Our approximation algorithm for SMKP is based on a generalization of the above. We
refer to a set of bins of identical capacity as a block, and show how to reduce an SMKP
instance into a submodular optimization problem with a d-dimensional knapsack constraint,
in which d is twice the number of blocks plus a constant. While, generally, this problem
cannot be solved for non-constant d, we use a refined analysis of known algorithms [17, 7] to
show that the problem can be efficiently solved if the blocks admit a certain structure, to
which we refer as leveled.

We utilize a grouping technique, inspired by the work of Fernandez de la Vega and Lueker
[8], to convert a general SMKP instance to a leveled instance. We sort the bins in decreasing
order by capacity and then partition them into levels, where level t, t ≥ 0, has N2+t bins,
divided into N2 consecutive blocks, each containing N t bins. We decrease the capacity of
each bin to the smallest capacity of a bin in the same block. While the decrease in capacity
generates the leveled structure required for our algorithm to work, it only slightly decreases
the optimal solution value. The main idea is that given an optimal solution, each block of
decreased capacity can now be used to store the items assigned to the subsequent block on
the same level. Also, the items assigned to N blocks from each level can be evicted, while
only causing a reduction of 1

N to the profit (as only N of the N2 blocks of the level are
evicted). These evicted blocks are then used for the items assigned to the first block in the
next level.

2 Preliminaries

Our analysis utilizes several basic properties of submodular functions. Given a monotone
submodular function f : 2I → R≥0 and a set S ⊆ I, we define fS : 2I → R≥0 by fS(A) =
f(S ∪A)− f(S). It follows that fS is a monotone, non-negative submodular function. The
proof of the next claim is given in Appendix A.

B Claim 2. Let f : 2I → R≥0 be a non-negative, monotone and submodular function, and
let E ⊆ 2I ×X for some set X (each element of E is a pair (S, h) with S ⊆ I and h ∈ X).
Then function g : 2E → R≥0 defined by g(A) = f

(
∪(S,h)∈AS

)
is non-negative, monotone

and submodular.

While Claim 2 is essential for our algorithm, it is important to emphasize it does not
hold for non-monotone submodular functions.

Many modern submodular optimization algorithms rely on the submodular Multilinear
Extension ([3, 17, 18, 23, 11, 2]). Given a function f : 2I → R≥0, its multilinear extension is
F : [0, 1]I → R≥0 defined as:

F (x̄) =
∑
S⊆I

f(S)
∏
i∈S

x̄i
∏
i∈I\S

(1− x̄i).

The multilinear extension can be interpreted as an expectation of a random variable. Given
x̄ ∈ [0, 1]I we say that a random set X is distributed according to x̄, X ∼ x̄, if Pr(i ∈ X) = x̄i
and the events (i ∈ X)i∈I are independent. It follows that F (x̄) = EX∼x̄[f(X)].

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai 44:5

The continuous greedy of [3] can be used to find approximate solution for maximization
problems of the form maxF (x̄) s.t. x̄ ∈ P , where F is the multilinear extension of a
monotone submodular function f , and P is a down-monotone polytope. The algorithm uses
two oracles, one for f and another which given λ̄ ∈ RI returns a vector x̄ ∈ P such that x̄ · λ̄
is maximal. The algorithm returns x̄ ∈ P such that F (x̄) ≥ (1− e−1) maxȳ∈P F (ȳ).

We use I = (I, w,B,W, f) to denote an SMKP instance consisting of a set of items I
with weights wi for i ∈ I, a set of bins B with capacities Wb for b ∈ B, and objective function
f . Given a set A ⊆ I, let w(A) =

∑
i∈A wi. We denote by OPT(I) the optimal solution

value for the instance I.

3 The Approximation Algorithm

In this section we present our approximation algorithm for SMKP. Given an instance I of
the problem, let A∗ = ∪b∈BA∗b be an optimal solution of value OPT (I). We first observe
that there exists a constant size subset A = ∪b∈BAb, where Ab ⊆ A∗b , satisfying the following
property: the value gained from any item in i ∈ A∗ \A is small relative to OPT (I). Thus,
our algorithm initially enumerates over all possible partial assignments of constant size. Each
assignment is then extended to an approximate solution for I. Among all possible partial
assignments and the respective extensions the algorithm returns the best solution. Thus,
from now on we restrict our attention to finding a solution for the residual problem, obtained
by fixing the initial partial assignment.

Formally, given an SMKP instance, I = (I, w,B,W, f), a feasible partial solution (Ab)b∈B
and ξ ∈ N, we define the residual instance I ′ = (I ′, w,B,W ′, f ′) with respect to (Ab)b∈B and
ξ as follows. Let A = ∪b∈BAb and set I ′ =

{
i ∈ I \A

∣∣∣ fA({i}) ≤ f(A)
ξ

}
. The weights of the

items remain the same and so is the set of bins. For every b ∈ B we set W ′b = Wb − w(Ab).
Finally, the objective function of the residual instance is f ′ = fA.

I Lemma 3. Let I be an SMKP instance, ξ ∈ N, and (A∗b)b∈B an optimal solution for I
such that A∗b1

∩ A∗b2
= ∅ for any b1, b2 ∈ B, b1 6= b2. If

∑
b∈B |A∗b | ≥ ξ there is a feasible

solution (Ab)b∈B for I such that Ab ⊆ A∗b for any b ∈ B,
∑
b∈B |Ab| = ξ, and (A∗b \Ab)b∈B

is a feasible solution for the residual instance of I ′ w.r.t (Ab)b∈B and ξ.

Proof. Let (A∗b)b∈B be an optimal solution to the SMKP instance. Define A∗ = ∪b∈BA∗b
and order the items of A∗ by their marginal values. That is A∗ = {a1, . . . , ar} where
fT`−1({a`}) = maxa∈A∗\T`−1 fT`−1({a}) with T` = {a1, . . . , a`} for every 1 ≤ ` ≤ r (also,
T0 = ∅). Define (Ab)b∈B by Ab = A∗b ∩ {a1, . . . , aξ} for every b ∈ B and A = ∪b∈BAb. We
therefore have A = {a1, . . . , aξ}.

For any b ∈ B it holds that w(Ab) ≤ w(A∗b) ≤Wb, and thus (Ab)b∈B is a feasible solution
for I. Furthermore, for any b ∈ B it holds that Ab ⊆ A∗b by definition. As the sets (A∗b)b∈B
are disjoint it follows that

∑
b∈B |Ab| = ξ.

Let I ′ = (I ′, w,B,W ′, f ′) be the residual instance of I w.r.t (Ab)b∈B and ξ. We are left
to show that (A∗b \Ab)b∈B is a feasible solution for I ′. For every ξ < i ≤ r and 1 ≤ ` ≤ ξ it
holds that fA({ai}) ≤ fT`−1({ai}) ≤ fT`−1({a`}) where the first inequality follows from the
submodularity of f and the second by the definition of a`. Combining the last inequality
with f ′ = fA we obtain,

ξ · f ′({ai}) = ξ · fA({ai}) ≤
ξ∑
`=1

fT`−1({a`}) = f(A)− f(∅) ≤ f(A).

ESA 2020

44:6 Aproximation for Monotone Submodular Multiple Knapsack

Thus, ai ∈ I ′, implying that A∗b \Ab ⊆ I ′ for any b ∈ B. Furthermore, for any b ∈ B,

w(A∗b \Ab) = w(A∗b)− w(Ab) ≤Wb − w(Ab) = W ′b.

It follows that (A∗b \Ab)b∈B is a solution to the residual instance. J

Next, we observe that instances of SMKP are easier to solve when the number of distinct
bin capacities is small (e.g., uniform bin capacities), leading us to consider bin blocks:

I Definition 4. For a given instance of SMKP we say that a subset of bins B̃ ⊆ B is a
block if all the bins in B̃ have the same capacity, i.e., for bins b1 and b2 belonging to the
same block it holds that Wb1 = Wb2 .

Following an enumeration over partial assignments, our algorithm reduces the number of
blocks by altering the bin capacities. To this end, we use a specific structure that we call
leveled, defined as follows.

I Definition 5. For any N ∈ N, we say that a partition (Bj)kj=0 of a set B of bins with
capacities (Wb)b∈B is N -leveled if Bj is a block, and |Bj | = Nb

j

N2 c for all 0 ≤ j ≤ k.

By the above definition, we can view each set of consecutive blocks of the same size as a
level. For 0 ≤ j ≤ k, block j belongs to level ` = b j

N2 c. Thus, for ` ≥ 0, the number of bins
in each block increases by factor of N when moving from level ` to level `+ 1.

In Section 3.1 we give Algorithm 2 which generates an N -leveled partition of the bins,
B̃ = ∪kj=0B̃j with the capacities of the bins (Wb)b∈B modified to (W̃b)b∈B̃. We show that
solving the problem with these new bin capacities may cause only a small harm to the
optimal solution value. In particular, we prove (in Section 3.1) the following.

I Lemma 6. Given a set of bins B, capacities (Wb)b∈B and a parameter N , Algorithm 2
returns in polynomial time a subset of bins B̃ ⊆ B, capacities (W̃b)b∈B̃ and an N-leveled
partition (B̃j)kj=0 of B̃, such that
1. The bin capacities satisfy W̃b ≤Wb, for all b ∈ B̃.
2. OPT(Ĩ) ≥

(
1− 1

N

)
OPT(I), for any SMKP instance I = (I, w,B,W, f) and Ĩ =

(I, w, B̃, W̃ , f).

Once the instance is N -leveled, we proceed to solve the problem (fractionally) and apply
randomized rounding to obtain an integral solution (see Section 3.2). Algorithm 4 utilizes
efficiently the leveled structure of the instance. Instead of having a separate constraint for
each bin in a block − to bound the total size of the items packed in this bin − we use only
two constraints for each block. The first constraint is a knapsack constraint referring to the
total capacity of a block, and the second constraint restricts the number of configurations
assigned to the block.4 Thus, the number of constraints significantly decreases if the blocks
are large. Since leveled instances also have a constant number of blocks consisting of a single
bin, those are handled separately via the notion of δ-restricted SMKP.

An input for δ-restricted SMKP includes the same parameters as an input for SMKP,
and also a subset Br ⊆ B of restricted bins. A solution for δ-restricted SMKP is a feasible
assignment (Ab)b∈B satisfying also the property that ∀b ∈ Br the items assigned to b are
relatively small; namely, for any i ∈ Ab wi ≤ δWb.

4 We defined a configuration in Section 1.2.

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai 44:7

Given the N -leveled instance of our problem, we turn the blocks of a single bin (that is
blocks B̃j such that |B̃j | = 1) to be restricted. We note that while items of weight greater
than δWb may be assigned to these blocks in some optimal solution, the overall number
of such items is bounded by a constant. Indeed, our initial enumeration guarantees that
evicting these items from an optimal solution may cause only small harm to the optimal
solution value, allowing us to consider the instance as δ-restricted.

In Section 3.2 we show the following bound on the performance guarantee of Algorithm 4,
which uses randomized rounding. The algorithm is parameterized by µ ∈ (0, 0.1) (to be
determined). Suppose we are given a δ-restricted SMKP instance I, such that the unrestricted
bins are partitioned into blocks, i.e., B \Br = B1 ∪ . . .∪Bk, and υ = maxi∈I f({i})− f(∅).

I Lemma 7. For µ ∈ (0, 0.1), Algorithm 4 returns a feasible solution (Sb)b∈B such that
E [f(∪b∈BSb)] ≥ (1− e−1) (1−µ)2

1+µ (1− γ)OPT(I), where

γ = exp
(
−µ

3

16 ·
OPT(I)

υ

)
+ |Br| exp

(
−µ

2

12 ·
1
δ

)
+ 2 ·

k∑
j=1

exp
(
−µ

2

12 |Bj |
)
.

Algorithm 1 gives the pseudocode of our approximation algorithm for general SMKP
instances. The algorithm uses several configuration parameters that will be set in the proof
of Lemma 8.

Algorithm 1 Algorithm for SMKP.

Input :An SMKP instance I = (I, w,B,W, f) and the parameters N, ξ, δ and µ.
1 forall feasible assignments A = (Ab)b∈B such that

∑
b∈B |Ab| ≤ ξ do

2 Let I ′ = (I ′, w,B,W ′, f ′) be the residual instance of I w.r.t (Ab)b∈B and ξ.
3 Run Algorithm 2 with the bins B and capacities (W ′b)b∈B . Let B̃ and (W̃b)b∈B̃ be

the output, and B̃ = ∪kj=0B̃j the partition of B̃ to leveled blocks. Let
Ĩ = (I ′, w, B̃, W̃ , f ′) be the resulting instance.

4 Let ĨR be the δ-restricted SMKP instance of Ĩ with the restricted bins
B̃r = ∪min{N2−1,k}

j=0 B̃j .
5 Solve ĨR using Algorithm 4 with parameter µ, and the partition

B̃ \ B̃r = ∪kj=1B̃j . Denote the returned assignment by (S̃b)b∈B̃ , and let Sb = S̃b

for b ∈ B̃ and Sb = ∅ for b ∈ B \ B̃.
6 If f(∪b∈B(Ab ∪ Sb)) is higher than the value of the current best solution, set

(Ab ∪ Sb)b∈B as the current best solution.
7 end
8 Return the best solution found.

I Lemma 8. For any ε > 0, there are parameters N, ξ, δ, µ such that, for any SMKP instance
I, Algorithm 1 returns a solution of expected value at least (1− e−1 − ε)OPT(I).

Proof. We start by setting the parameter values. The reason for selecting these values will
become clear later. Given a fixed ε ∈ (0, 0.1), there is µ ∈ (0, 0.1) such that (1−µ)2

1+µ ≥ (1− ε2).
By the Monotone Convergence Theorem,

lim
N→∞

2N2 ·
∞∑
t=1

exp
(
−µ

2 ·N t

12

)
=
∞∑
t=1

lim
N→∞

2N2 exp
(
−µ

2 ·N t

12

)
= 0.

ESA 2020

44:8 Aproximation for Monotone Submodular Multiple Knapsack

It follows that there are N > 1
ε2 and δ > 0 such that

N2 exp
(
−µ

2

12 ·
1
δ

)
+ 2N2 ·

∞∑
t=1

exp
(
−µ

2

12N
t

)
<
ε2

2 . (1)

Finally, we select ξ such that ξ ≥ N2

ε2δ and exp
(
−µ

3

16
ξ
5

)
≤ ε2

2 .
Let I = (I, w,B,W, f) be an SMKP instance, and let (A∗b)b∈B be an optimal solution for

I. Assume w.l.o.g that A∗b1
∩ A∗b2

= ∅ for any b1, b2 ∈ B, b1 6= b2. Define A∗ = ∪b∈BA∗b . If
|A∗| ≤ ξ, there is an iteration of Line 1 in which A∗b = Ab for all b ∈ B. Therefore, in this
iteration we have at Line 6 f(∪b∈B(Ab ∪ Sb)) ≥ f(A∗), and the algorithm returns a solution
of value at least f(A∗). Otherwise, by Lemma 3, there is a feasible solution (Ab)b∈B such that
Ab ⊆ A∗b ,

∑
b∈B |A∗b | = ξ and (A∗b \Ab)b∈B is a feasible solution to I ′, the residual instance

of I w.r.t (Ab)b∈B and ξ. It follows that there is an iteration of Line 1 which considers this
solution (Ab)b∈B . We focus on this iteration for the rest of the analysis.

Let A = ∪b∈BAb. If f(A) ≥ (1− e−1)f(A∗) then when the algorithm reaches Line 6 it
holds that f(∪b∈B(Ab ∪ Sb)) ≥ f(A) ≥ (1− e−1)f(A∗); therefore, the algorithm returns a
(1− e−1)-approximation in this case. Henceforth, we assume that f(A) ≤ (1− e−1)f(A∗).
Then,

f ′(∪b∈B(A∗b \Ab)) = f ′(A∗ \A) = f(A∗)− f(A) ≥ f(A)
1− e−1 − f(A) = 1

e− 1f(A). (2)

As (A∗b \Ab)b∈B is a feasible solution for I ′, it holds that OPT(I ′) ≥ f ′(A∗\A). Therefore,
by Lemma 6 and the choice of N , it holds that

OPT(Ĩ) ≥
(

1− 1
N

)
f ′(A∗ \A) ≥ (1− ε2)f ′(A∗ \A), (3)

where I ′ is the instance output by Algorithm 2. Let (Db)b∈B̃ by an optimal solution for Ĩ.
Consider (Dr

b)b∈B̃ where Dr
b = Db \ {i ∈ Db|wi > δ · W̃b} for b ∈ B̃r (the set B̃r is defined

in Line 4) and Dr
b = Db for b ∈ B̃ \ B̃r. It follows that Dr

b is a solution for the δ-restricted
SMKP instance ĨR. As for any b ∈ B̃r, |{i ∈ Db|wi > δ · W̃b}| ≤ 1

δ , we have that

OPT
(
ĨR
)
≥ f ′

(
∪b∈B̃D

r
b

)
≥ OPT

(
Ĩ
)
− N2

δ · ξ
f(A) ≥ (1− ε2)f ′ (A∗ \A)− ε2 · f(A). (4)

The second inequality follows from the definition of residual instance, and the third inequality
from (3) and the choice of ξ. Since f ′(A∗ \ A) ≥ 1

e−1f(A) and ε ∈ (0, 0.1), it follows that
OPT(ĨR) ≥ f(A)

5 .
By Lemma 7, we have that

E
[
f ′(∪b∈B̃S̃b)

]
≥ (1−e−1) (1− µ)2

1 + µ
(1−γ)OPT(ĨR) ≥ (1−e−1)(1−ε2)(1−γ)OPT(ĨR), (5)

where

γ = exp
(
−µ

3

16 ·
OPT(ĨR)
ξ−1f(A)

)
+ |B̃r| exp

(
−µ

2

12 ·
1
δ

)
+ 2 ·

∑k
j=N2 exp

(
−µ

2

12 |B̃j |
)

≤ exp
(
−µ

3

16 ·
ξ
5

)
+N2 exp

(
−µ

2

12 ·
1
δ

)
+ 2 ·N2 ·

∑∞
t=1 exp

(
−µ

2

12N
t
)
≤ ε2. (6)

The first equality uses f ′({i}) ≤ ξ−1f(A) (by the definition of I ′). The first inequality
holds since OPT(ĨR) ≥ f(A)

5 , |B̃r| ≤ N2 and there are at most N2 blocks B̃j of size N t.
The second inequality uses (1) and the choice of ξ. Combining (6) with (5) and (4), we
obtain

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai 44:9

E [f(∪b∈B(Ab ∪ Sb))] ≥ f(A) + E
[
f ′(∪b∈B̃)S̃b)

]
≥ f(A) + (1− e−1)(1− ε2)2OPT(ĨR)

≥f(A) + (1− e−1)(1− ε2)3f ′(A∗ \A)− ε2f(A) ≥ (1− e−1 − ε)f(A∗).

Hence, in this iteration the solution considered in Line 6 has expected value at least
(1− e−1 − ε)f(A∗). This completes the proof of the lemma. J

I Lemma 9. For any constant parameters N , ξ, δ and µ, Algorithm 1 returns a feasible
solution for the input instance in polynomial time.

Proof. We first note that for any fixed parameter values the algorithm has a polynomial
running time. The number of assignments considered in Line 1 can be trivially bounded by
(n ·m)ξ. As Algorithms 2 and 4 are polynomial in their input size, the operations in each
iteration are also done in polynomial time.

For each iteration of Line 1, by Lemma 7, (S̃b)b∈B̃ is a feasible solution to ĨR. Therefore,
for any b ∈ B either w(Sb) = w(∅) ≤ W ′b or w(Sb) = w(S̃b) ≤ W̃b ≤ W ′b, where the last
equality follows from Lemma 6. Therefore, w(Ab ∪ Sb) ≤ w(Ab) + W ′b ≤ Wb. Hence, the
solution considered in each iteration is feasible for the input instance. J

Theorem 1 follows from Lemmas 8 and 9.

3.1 Structuring the Instance
In this section we present Algorithm 2 and prove Lemma 6. Our technique for generating
an N -leveled partition can be viewed as a variant of the linear grouping technique of [8]
which requires the use of non-uniform group sizes (each group of bins then becomes a block).
Given a set of bins B with capacities (Wb)b∈B , we sort the bins in non-increasing order by
capacities. We now use the numbering B = {1, . . . ,m}, where W1 ≥ W2 ≥ . . . ≥ Wm. To
generate an N -leveled partition of the bins and the modified capacities, we define groups (or
blocks) of bins, where each group j consists of Nb

j

N2 c consecutive bins, for j ≥ 0. Starting
from the first bin, we keep generating such groups as long as there are enough bins to form a
group of the desired size. We omit the remaining bins and decrease the capacity of each bin
to the minimal capacity of a bin in its group. We formalize this procedure in Algorithm 2.

Algorithm 2 Structure in Blocks.

Input :A set of bins B, capacities (Wb)b∈B and N .
1 Let B = {1, . . . ,m} where W1 ≥W2 ≥ . . . ≥Wm.
2 Let k = max

{
` ∈ N

∣∣∣ ∑`
r=0N

b r
N2 c ≤ m

}
.

3 Define B̃j =
{
b
∣∣∣ ∑j−1

r=0N
b r
N2 c < b ≤

∑j
r=0N

b r
N2 c

}
for 0 ≤ j ≤ k.

4 Let B̃ = ∪kj=0B̃j , and W̃b = minb′∈B̃j Wb′ for all 0 ≤ j ≤ k and b ∈ B̃j .
5 Return B̃, (W̃b)b∈B̃ and the partition (B̃j)kj=0.

The following standard result for submodular functions is used in the proof of Lemma 6.

I Lemma 10. Let h : 2Ω → R≥0 be a monotone submodular function, and let Si,1, . . . , Si,N ⊆
Ω for 1 ≤ i ≤M . Then for every 1 ≤ i ≤M there is 1 ≤ j∗i ≤ N such that

h

 M⋃
i=1

⋃
1≤j≤N, j 6=j∗

i

Si,j

 ≥ (1− 1
N

)
h

 M⋃
i=1

N⋃
j=1

Si,j

 .

The proof for the Lemma is given in Appendix A.

ESA 2020

44:10 Aproximation for Monotone Submodular Multiple Knapsack

Proof of Lemma 6. By construction, we have that (B̃j)kj=0 is an N -leveled partition of
(W̃b)b∈B̃ and W̃b ≤Wb for any b ∈ B̃. Also, Algorithm 2 has a polynomial running time.

To complete the proof we need to show Property 2 in the lemma. Let I = (I, w,B,W, f)
be an SMKP instance, and let Ĩ = (I, w, B̃, W̃ , f) be the instance with bins and capacities
generated (as output) by Algorithm 2. We need to show that OPT(Ĩ) ≥

(
1− 1

N

)
OPT(I).

Let A∗1, . . . , A∗m be an optimal solution for I, and A∗ = ∪b∈BA∗b . We modify this solution
using a sequence of steps, eventually obtaining a feasible solution for Ĩ. The latter is used to
lower bound OPT(Ĩ). Define B̃k+1 = B \ B̃. We note that B̃k+1 may be empty. We partition
{B̃j | 0 ≤ j ≤ k + 1} into levels and super-blocks. We consider each N2 consecutive blocks
to be a level, and each N consecutive blocks within a level to be a super-block. Formally,
level t is

Lt =
{
j | t ·N2 ≤ j < min{(t+ 1)N2, k + 2}

}
for 0 ≤ t ≤ ` with ` =

⌊
k+1
N2

⌋
. Also, super-block r of level t is

St,r =
{
j | t ·N2 + r ·N ≤ j < t ·N2 + (r + 1) ·N

}
for 0 ≤ r < N and level 0 ≤ t < ` (we do not partition the last level to super-blocks). It
follows that B = ∪`t=0 ∪j∈Lt B̃j and Lt = ∪N−1

r=0 St,r for 0 ≤ t < `. Furthermore, for any
j ∈ Lt, j 6= k + 1 it holds that |B̃j | = N t and |B̃k+1| < N `. Essentially, all the blocks of
level t are of the same size.

We modify A∗1, . . . , A∗m using the following steps. First, in each level (except the last one)
we evict all the bins from a singe super-block. Since there are N super-blocks in each of
these levels, this may decrease the value of the assignment at most by factor 1

N . Then, we
slightly shuffle the content of the bins in all levels (except the last one). In each level, we
place the content of the bins of the last super-block in bins of the evicted super-block in the
same level. As the bins are ordered by capacity, this will keep the assignment feasible with
respect to the original capacities. In the last step, for each level (except level 0) we move the
content of the bins from the first block to the bins of the last super-block in the previous
level (the two sets of bins have the same cardinality), and content of bins from other blocks
(except level 0) to the previous block from the same level. This yields a feasible assignment
for the leveled instance. We formally describe these steps in the following.

Eviction: We first evict a super-block of bins from each level (except the last one). Let
R = ∪b∈L`A∗b be the subset of items assigned to the last level. By Lemma 10, for any
0 ≤ t < ` there is r∗t such that

fR

`−1⋃
t=0

⋃
0≤r<N, r 6=r∗t

⋃
j∈St,r

⋃
b∈B̃j

A∗b

 ≥ (1− 1
N

)
fR

`−1⋃
t=0

N−1⋃
r=0

⋃
j∈St,r

⋃
b∈B̃j

A∗b

=
(

1− 1
N

)
fR(A∗).

Define T1, . . . , Tm by Tb = ∅ for any b ∈
⋃`−1
t=0
⋃

j∈St,r∗
t

B̃j , and Tb = A∗b for any

b ∈ B \
(⋃`−1

t=0
⋃

j∈St,r∗
t

B̃j

)
. Then,

f

(⋃
b∈B

Tb

)
= f(R) + fR

`−1⋃
t=0

⋃
0≤r<N−1, r 6=r∗t

⋃
j∈St,r

⋃
b∈B̃j

A∗b

 ≥ (1− 1
N

)
f(A∗).

It also holds that T1, . . . , Tm is a feasible solution for I.

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai 44:11

Shuffling: We generate a new assignment T̃1, . . . , T̃m such that ∪b∈BT̃b = ∪b∈BTb and the
last super-blocks in each level (except the last one) is empty. This property is obtained by
moving the content of the bins in super-block N − 1 to the bins of super-block r∗t for every
0 ≤ t < `.

We define (T̃b)b∈B as follows. For any 0 ≤ t < `, j ∈ St,r∗t let ϕt :
⋃
j∈St,r∗

t

B̃j →⋃
j∈St,N−1

B̃j be a bijection (since
∣∣∣⋃j∈St,N−1

B̃j

∣∣∣ =
∣∣∣∣⋃j∈St,r∗

t

B̃j

∣∣∣∣ = N ·N t, such a function

exists). For any b ∈
⋃
j∈St,r∗

t

B̃j set T̃b = Tϕt(b). By definition we have ϕt(b) ≥ b; therefore,
in this case

w(T̃b) = w(Tϕt(b)) ≤Wϕt(b) ≤Wb.

For any 0 ≤ t < `, j ∈ St,N−1 and b ∈ B̃j set T̃b = ∅. For any other bin b ∈ B set T̃b = Tb.
It follows that ∪b∈BT̃b = ∪b∈BTb, since Tb = ∅ for every 0 ≤ t < `, j ∈ St,r∗t and b ∈ Bj .

Also, (T̃b)b∈B is a feasible solution for I.

Shifting: In this step we generate the assignment (Ab)b∈B̃ which satisfies the properties in
the lemma. As the bins of the last super-block in each level (except the last one) are vacant
in T̃1, . . . , T̃m, we use them for the content assigned to the first block of the next level. This
can be done since N blocks of level t contain the same number of bins as a single block of
level t+ 1. We also use blocks in levels greater than 0 which are not in the last super-block
to store the content of the next block in the same level.

For any 0 < t ≤ ` and j ∈ Lt, consider a block B̃j . Suppose that j 6= t · N2 and
j /∈ St,N−1 where t 6= `; that is, B̃j is not the first block in the level, and is not in the last
super-block of a level other than the last one. Then, let ψj : B̃j → B̃j−1 be a bijection, and
define Aψt(b) = T̃b for any b ∈ B̃j . If j = t ·N2 (that is, B̃j is the first block in a level), let
ψj : B̃j →

⋃
j′∈St−1,N−1

B̃j′ be a bijection, and define Aψt(b) = T̃b for any b ∈ B̃j . Finally, for
any 0 ≤ j < N2 −N , let ψj : B̃j → B̃j be the identity function and define Aψt(b) = Ab = T̃b
for the single bin b ∈ B̃j . For any bin b ∈ B̃ not handled in this process, set Ab = ∅.

We note that the definition is sound as the ranges of the functions ψj above do not
intersect. Let b ∈ B̃. If Ab = ∅ then w(Ab) ≤ W̃b. Otherwise, if b ∈ B̃j for 0 ≤ j < N2 −N
then w(Ab) = w(T̃b) < Wb ≤ W̃b. Finally, the only option left is that b = ψj′(b′) for some
0 < t ≤ `, j′ ∈ Lt and b′ ∈ B̃j′ , such that j′ 6= t ·N2 and j′ /∈ St,N−1 if t 6= `. By definition,
it holds that b′ ∈ B̃j for some j < j′. Since the bins were ordered by capacity, we have

w(Ab) = w(Aφj′ (b′)) = w(T̃b′) ≤Wb′ ≤ min
b′′∈B̃j

Wb′′ = W̃b.

Thus, the assignment is feasible with respect to the bins B̃ with capacities
(
W̃b

)
b∈B̃ .

It also holds that for any b ∈ B such that T̃b 6= 0 there is b′ ∈ B̃ such that Ab′ = T̃b. There-
fore,

⋃
b∈B̃ Ab =

⋃
b∈B T̃b =

⋃
b∈B Tb. Hence, f(∪b∈B̃Ab) = f(∪b∈BTb) ≥

(
1− 1

N

)
f(A∗).

We conclude that OPT(Ĩ) ≥
(
1− 1

N

)
OPT(I). J

3.2 Solving a Continuous Relaxation and Rounding
In this section we give Algorithm 4 which outputs a solution satisfying Lemma 7. The input for
the algorithm is a δ-restricted SMKP instance along with a partition B \Br = B1 ∪ . . .∪Bk
of the bins, where Bj is a block for all 1 ≤ j ≤ k. Algorithm 4 uses Algorithm 3 as a
subroutine which converts a solution for an auxiliary block-constraint problem into a solution
for δ-restricted SMKP.

ESA 2020

44:12 Aproximation for Monotone Submodular Multiple Knapsack

3.2.1 The Block-Constraint Problem

We now define the block-constraint problem, to be solved for a given instance I of δ-restricted
SMKP, using the partition B \ Br = B1 ∪ . . . ∪ Bk and the parameter µ. The input for
the block-constraint problem is a universe of elements E, a monotone submodular function
g : 2E → R≥0 and a polytope P ⊆ [0, 1]E (see below).

For simplicity, let {Bk+1, . . . , B`} = {{b}| b ∈ Br} be the set of blocks, each consisting
of a single bin. Thus, B = ∪`j=1Bj . Denote the (uniform) capacity of the bins in block Bj
by W ∗j , for 1 ≤ j ≤ `. That is, for any b ∈ Bj it holds that W ∗j = Wb. For 1 ≤ j ≤ k, we say
that an item i ∈ I is j-small if wi ≤ µ ·W ∗j , otherwise i is j-large. Let Ij = {{i}| i is j-small}
for 1 ≤ j ≤ k. For k < j ≤ ` define Ij = {{i} | wi ≤ δW ∗j }.

A j-configuration is a subset of j-large items which can be packed into a single bin in Bj .
That is, C ⊆ I is a j-configuration if every item i ∈ C is j-large and w(C) ≤W ∗j . Let Cj be
the set of all j-configurations for 1 ≤ j ≤ k and Cj = ∅ for k < j ≤ `. As any j-configuration
has at most µ−1 items, it follows that |Cj | ≤ |I|µ

−1 , i.e., the number of configurations is
polynomial in the size of I. Furthermore, for A ⊆ I such that w(A) ≤W ∗j , 1 ≤ j ≤ k, there
are C ∈ Cj and S ⊆ I such that all the items in S are j-small and A = C ∪S. Our algorithm
exploits this property.

Towards solving the block-constraint problem we define a submodular function g over a
new universe of elements. Let E = {(S, j)| S ∈ Cj ∪ Ij , 1 ≤ j ≤ `}. Informally, the element
(S, j) ∈ E represents an assignment of all the items in S to a single bin b ∈ Bj . We now
define g : 2E → R≥0 by g(T) = f

(⋃
(S,j)∈T S

)
. By Claim 2, g is a submodular, monotone

and non-negative function‘.

We define a polytope P for the instance I as follows.

P =

x̄ ∈ [0, 1]E

∣∣∣∣∣∣∣∣
∑
C∈Cj

x̄(C,j) ≤ |Bj | ∀1 ≤ j ≤ k∑
S∈Cj∪Ij

w(S) · x̄(S,j) ≤ |Bj | ·W ∗j ∀1 ≤ j ≤ `

 (7)

The polytope represents a relaxed version of the capacity constraints over the bins. For
each block Bj , 1 ≤ j ≤ k, we only require that the total weight of items assigned to bins in
Bj does not exceed the total capacity of the bins in this block. We also require that the
number of j-configurations selected for Bj is no greater than the number of bins in this block.

Given an instance I of δ-restricted SMKP, along with the partition B \Br = B1∪ . . .∪Bk
and the parameter µ, we use for the block-constraint problem the universe E, the function g
and the polytope P ⊆ [0, 1]E as defined above.

We start by establishing a connection between the solution for the block-constraint
problem for the given instance I and the optimal solution for δ-restricted SMKP on this
instance. For a set T ⊆ E, we use x̄T to denote the vector x̄T ∈ {0, 1}E defined by x̄Te = 1
for e ∈ T , and x̄Te = 0 for e ∈ E \ T . Also, given a polytope Q and η ≥ 0 we use the notation
η ·Q = {ηx̄ | x̄ ∈ Q}.

Our algorithm for solving δ-restricted SMKP on I solves first the block-constraint problem
on this instance and then transforms the solution into a feasible solution for δ-restricted
SMKP. We give the pseudocode for the transformation in Algorithm 3.

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai 44:13

Algorithm 3 Employ a Block-Constraint Solution for SMKP.

Input : A δ-restricted SMKP instance I = (I, w,B,W, f), the partition of bins to
block ∪`j=1Bj and T ⊆ E.

1 Set Ab = ∅ for every b ∈ B.
2 Sort the elements (S, j) in T in decreasing order by the w(S) values.
3 for each (S, j) ∈ T in the sorted order do
4 Set Ab ← Ab ∪ S where b = arg minb∈Bj w(Ab).
5 end
6 Return (Ab)b∈B .

I Lemma 11. Given an instance I of δ-restricted SMKP, consider the universe E and the
polytope P as defined above. Then the following hold:
1. There is T ⊆ E, x̄T ∈ P such that g(T) ≥ OPT(I), where OPT(I) is the optimal solution

value for δ-restricted SMKP on I.
2. Given T ⊆ E such that x̄T ∈ (1−µ) ·P , Algorithm 3 returns in polynomial time a feasible

solution (Ab)b∈B for δ-restricted SMKP instance I satisfying f(∪b∈BAb) = g(T).

Proof. We start by proving part 1. Let (A∗b)b∈B be an optimal solution for the δ-restricted
SMKP instance, and let Lj be the set of all j-large items for 1 ≤ j ≤ k and Lj = ∅ for
k < j ≤ `. Define

T =

 k⋃
j=1
{(A∗b ∩ Lj , j) | b ∈ Bj}

 ∪
⋃̀
j=1

⋃
b∈Bj

{({i}, j) | i ∈ A∗b \ Lj}

 .

It can be easily shown that g(T) = f(∪b∈BA∗b). Furthermore, as (A∗b)b∈B is a feasible
solution, it holds that x̄T ∈ P .

We now prove part 2. Let (Ab)b∈B be the output of Algorithm 3 for the given input. We
first note that ∪b∈BAb = ∪(S,j)∈TS, and thus g(T) = f(∪b∈BAb).

For any b ∈ Br, there is k < j ≤ ` such that Bj = {b}. Therefore Ab = {i|({i}, j) ∈ T},
and since x̄T ∈ (1− µ)P it follows that w(Ab) ≤W ∗j = Wb.

Let 1 ≤ j ≤ k and b ∈ Bj . Assume by negation that w(Ab) > Wb = W ∗j . Let (S, j) ∈ T
be the last element in T such that S 6= ∅ and S was added to Ab in Line 4. We conclude that
w(Ab \ S) > 0, as otherwise w(Ab) = w(S) ≤ Wb, by the definition of E. Therefore there
are at least |Bj | elements (S′, j) ∈ T such that w(S′) ≥ w(S) (else, on the iteration of (S, j)
there must be b ∈ Bj with Ab = ∅). If S ∈ Cj then w(S) > µ ·W ∗j and thus

|{S′ 6= ∅| (S′, j) ∈ T, S′ ∈ Cj}| ≥ |{S′| (S′, j) ∈ T, w(S′) ≥ w(S)}| > |Bj |,

contradicting x̄T ∈ (1− µ)P .
Therefore S /∈ Cj , and we can conclude that S = {i} with wi ≤ µ ·W ∗j . Thus, w(Ab \S) >

(1 − µ) ·W ∗j . Here, S has been allocated to Ab (which is itself a set of minimum weight).
Then, for any b′ ∈ Bj , we have w(Ab′) ≥ w(Ab) > (1− µ) ·W ∗j . Thus,∑

(S′,j)∈T

w(S′) ≥
∑
b′∈Bj

w(Ab′) > |Bj |(1− µ) ·W ∗j ,

contradicting x̄T ∈ (1− µ)P . We conclude that w(Ab) ≤Wb.
Also, by definition, we have that for any b ∈ Br and i ∈ Ab it holds that wi ≤ δWb.

Hence, (Ab)b∈B is a solution to the restricted SMKP instance. J

ESA 2020

44:14 Aproximation for Monotone Submodular Multiple Knapsack

3.2.2 An Algorithm for δ-restricted SMKP
We are now ready to present our algorithm for δ-restricted SMKP. We note that in Line 3 of
Algorithm 4 we use sampling by a solution vector x̄∗, as defined in Section 2.

Algorithm 4 Solve and Round.

Input :A δ-restricted SMKP instance I, a partition to blocks B \Br = ∪jj=kBj , and
a parameter µ > 0.

1 Define E, g and P for the block-constraint problem on I and ∪kj=1Bj .
2 Let G : [0, 1]E → R≥0 be the multilinear extension of g. Find a solution x̄∗ for

maxx̄∈ 1−µ
1+µP

G(x̄) using the continuous greedy of [4].
3 Sample a set T ∼ x̄∗.
4 if T ∈ (1− µ)P then
5 Use Algorithm 3 to convert T into a solution (Ab)b∈B for δ-restricted SMKP on I

and return (Ab)b∈B .
6 else
7 Return (Ab)b∈B with Ab = ∅ for every b ∈ B.
8 end

For the analysis, consider first the running time. We note that, for any λ̄ ∈ RE , a vector
x̄ ∈ 1−µ

1+µP which maximizes x̄ · λ̄ can be found in polynomial time. Therefore, the continuous
greedy in Line 2 runs in polynomial time. Thus, Algorithm 4 has a polynomial running time.

It remains to show that the algorithm returns a solution of expected value as stated
in Lemma 7. The approach we use to prove the statement of the lemma is similar to the
approach taken in [6]. In fact, it is possible to prove a variant of this claim using an approach
of [17]. While eliminating the dependency on υ, this will result in a more involved proof.

Proof of Lemma 7. For any e ∈ E define Xe to be a random variable such that Xe = 1 if
e ∈ T and Xe = 0 otherwise. It follows that (Xe)e∈E are independent Bernoulli random
variables, E[Xe] = x̄∗e and T = {e ∈ E|Xe = 1}.

We first consider blocks k < j ≤ `. Let k < j ≤ ` and Bj = {b}. Since x̄∗ ∈ 1−µ
1+µP , it

follows that E
[∑

(S,j)∈E w(S) ·X(S,j)

]
≤ 1−µ

1+µ ·Wb. Also, w(S,j) ≤ δ ·Wb for every (S, j) ∈ E.
Using Chernoff’s bound (Theorem 3.1 in [13], see also Lemma 15), we have

Pr

 ∑
(S,j)∈T

w(S) > (1− µ)Wb

 ≤ exp
(
−µ

2

3 ·
1− µ
1 + µ

· 1
δ

)
≤ exp

(
−µ

2

12 ·
1
δ

)
, (8)

with the last inequality following from µ ∈ (0, 0.1).
Now, let 1 ≤ j ≤ k. For every (S, j) ∈ E it holds that w(S) ≤W ∗j . Also, since x̄∗ ∈

1−µ
1+µP ,

E
[∑

(S,j)∈E w(S) ·X(S,j)

]
≤ 1−µ

1+µ · |Bj |W
∗
j , and E

[∑
(S,j)∈E: S∈Cj 1 ·X(S,j)

]
≤ 1−µ

1+µ · |Bj |.
Therefore, by Chernoff’s bound (Theorem 3.1 in [13] and Lemma 15), we have

Pr

 ∑
(S,j)∈T

w(S) > (1− µ)|Bj |W ∗j

 ≤ exp
(
−µ

2

3 ·
1− µ
1 + µ

· |Bj |
)
≤ exp

(
−µ

2

12 · |Bj |
)

(9)

Pr

 ∑
(S,j)∈T : S∈Cj

1 > (1− µ)|Bj |

 ≤ exp
(
−µ

2

3 ·
1− µ
1 + µ

· |Bj |
)
≤ exp

(
−µ

2

12 · |Bj |
)
. (10)

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai 44:15

By Lemma 11, maxz̄∈P G(z̄) ≥ OPT(I). Since the second derivatives of G are non-
positive (see [4]) it follows that maxz̄∈ 1−µ

1+µP
G(z̄) ≥ 1−µ

1+µOPT(I). As the continuous greedy of
[4] yields a (1− e−1)-approximation for the problem of maximizing the multilinear extension
subject to a polytope constraint, it follows that

G(x̄∗) ≥ (1− e−1)1− µ
1 + µ

OPT(I). (11)

For any (S, j) ∈ E we have |S| ≤ µ−1, and from the submodularity of f , g({(S, j)})−
g(∅) ≤ µ−1υ (recall that υ is defined in Lemma 7). Therefore, by the concentration bound
of [6] (see Lemma 16), we have

Pr
(
g(T) ≤ (1− e−1) (1− µ)2

1 + µ
OPT(I)

)
≤ Pr (g({e ∈ E|Xe = 1}) ≤ (1− µ)G(x̄∗))

≤ exp
(
−µ

3 ·G(x̄∗)
2υ

)
≤ exp

(
−µ

3(1− e−1)
2υ

1− µ
1 + µ

OPT(I)
)
≤ exp

(
−µ

3 ·OPT(I)
16 · υ

) (12)

The first and third inequality are due to (11).
Let ω be the event x̄T ∈ (1− µ)P and g(T) ≥ (1−µ)2

1+µ (1− e−1)OPT(I). By applying the
union bound over (8), (9), (10) and (12), we have

Pr(ω) ≥ 1−

|Br| exp
(
−µ

2

12
1
δ

)
− 2

k∑
j=1

exp
(
−µ

2

12 |Bj |
)
− exp

(
−µ

3

16
OPT(I)

υ

) = 1−γ.

In case the event ω occurs, the algorithm executes Line 5, and by Lemma 11, f(∪b∈BAb) =
f(T). Hence,

E [f(∪b∈BAb)] = Pr (ω) · E [f(∪b∈BAb)|ω] ≥ (1− γ) (1− µ)2

1 + µ
(1− e−1)OPT(I).

Also, the algorithm either returns an empty solution when Line 7 executes, or Line 5
executes. In the latter case the solution is feasible by Lemma 11. Therefore the algorithm
always returns a feasible solution. J

4 Discussion

In this paper we presented a randomized (1 − e−1 − ε)-approximation for the monotone
submodular multiple knapsack problem. Our algorithm relies on three main building
blocks. The structuring technique (Section 3.1) which converts a general instance to a
leveled instance, the reduction to the block-constraint problem (Section 3.2.1) and a refined
analysis of known algorithms for submodular optimization with a d-dimensional knapsack
constraint (Section 3.2.2). While the structuring technique and the refined analysis seem to
be fairly robust, the reduction to the block-constraint problem proved to be limiting when
generalizations of the problem were considered.

A notable example is the non-monotone submodular multiple knapsack problem, in
which the set function f is non-monotone. Unfortunately, when f is non-monotone the
function g used for solving the block-constraint problem is not submodular. A variant of the
block-constraint problem which does not alter the set function may be used to overcome this
hurdle. However, this variant limits the knapsacks utilization and degrades the approximation
ratio. Our preliminary results for the non-monotone case guarantee an approximation ratio
of 1

2 · e
− 1

2 − ε ≈ 0.303− ε using this approach.

ESA 2020

44:16 Aproximation for Monotone Submodular Multiple Knapsack

Another natural generalization of SMKP is monotone submodular optimization subject
to a multiple knapsack and a matroid constraints, in which the solution (Ab)b∈B must also
satisfy ∪b∈BAb ∈ M for a matoidM. However, the matroid properties are not preserved
throughout the reduction to the block-constraint problem, rendering existing techniques for
submodular optimization with matroid and d-dimensional knapsack constraints [6] ineffective.

On the positive side, we believe that the techniques described in this paper can be
extended to handle the problem for maximizing a monotone submodular function subject to
a multiple knapsack constraint and an additional d-dimensional knapsack constraint, for a
fixed d. We defer the details to the full version of the paper.

References
1 Niv Buchbinder and Moran Feldman. Submodular functions maximization problems. Handbook

of Approximation Algorithms and Metaheuristics, 1:753–788, 2017.
2 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization

with cardinality constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium
on Discrete algorithms, pages 1433–1452. SIAM, 2014.

3 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular set
function subject to a matroid constraint. In International Conference on Integer Programming
and Combinatorial Optimization, pages 182–196. Springer, 2007.

4 Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011.

5 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

6 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding for
matroid polytopes and applications. arXiv preprint, 2009. arXiv:0909.4348.

7 Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding via
exchange properties of combinatorial structures. In 2010 IEEE 51st Annual Symposium on
Foundations of Computer Science, pages 575–584. IEEE, 2010.

8 W Fernandez De La Vega and George S. Lueker. Bin packing can be solved within 1+ ε in
linear time. Combinatorica, 1(4):349–355, 1981.

9 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

10 Uriel Feige and Michel Goemans. Approximating the value of two power proof systems, with
applications to max 2sat and max dicut. In Proceedings Third Israel Symposium on the Theory
of Computing and Systems, pages 182–189. IEEE, 1995.

11 Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm
for submodular maximization. In 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, pages 570–579. IEEE, 2011.

12 Moran Feldman and Seffi Naor. Maximization problems with submodular objective functions.
PhD thesis, Computer Science Department, Technion, 2013.

13 Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent
rounding and its applications to approximation algorithms. Journal of the ACM (JACM),
53(3):324–360, 2006.

14 Klaus Jansen. Parameterized approximation scheme for the multiple knapsack problem. SIAM
Journal on Computing, 39(4):1392–1412, 2010.

15 Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In International
Conference on Current Trends in Theory and Practice of Computer Science, pages 313–324.
Springer, 2012.

16 Samir Khuller, Anna Moss, and Joseph (Seffi) Naor. The budgeted maximum coverage problem.
Information processing letters, 70(1):39–45, 1999.

http://arxiv.org/abs/0909.4348

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai 44:17

17 Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and nonmonotone
submodular maximization with knapsack constraints. Mathematics of Operations Research,
38(4):729–739, 2013.

18 Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing
nonmonotone submodular functions under matroid or knapsack constraints. SIAM Journal on
Discrete Mathematics, 23(4):2053–2078, 2010.

19 George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maximum
of a submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

20 Xiaoming Sun, Jialin Zhang, and Zhijie Zhang. Tight algorithms for the submodular multiple
knapsack problem. arXiv preprint, 2020. arXiv:2003.11450.

21 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32(1):41–43, 2004.

22 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages
67–74, 2008.

23 Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM
Journal on Computing, 42(1):265–304, 2013.

A Basic Properties of Submodular Functions

B Claim 12. Let f : 2I → R≥0 be monotone and submodular function, then for any
A ⊆ B ⊆ I and S ⊆ I it holds that f(A ∪ S)− f(A) ≥ f(B ∪ S)− f(B).

Proof. By the submodularity of f , we have

f(A ∪ S) + f(B) ≥ f(A ∪ S ∪B) + f((A ∪ S) ∩B) ≥ f(B ∪ S) + f(A)

where the second inequality follows from A ⊆ (A ∪ S) ∩B and the monotonicity of f . By
rearranging the terms in the above we get

f(A ∪ S)− f(A) ≥ f(B ∪ S)− f(B)

as required. C

B Claim 13. Let f : 2I → R≥0 be be a non-negative, monotone and submodular function,
and let S ⊆ I. Then fS is a submodular, monotone and non-negative function.

Proof. Let A ⊆ I. As f is monotone, we have

fS(A) = f(S ∪A)− f(S) ≥ 0.

That is, f is non-negative.
By claim 12, for any A ⊆ B ⊆ I and x ∈ I \B it holds that

fS(A ∪ {x})− fS(A) = f(S ∪A ∪ {x})− f(S ∪A)
≥ f(S ∪B ∪ {x})− f(S ∪B) = fS(B ∪ {x})− fS(B).

Therefore, fS is submodular.
Finally, for A ⊆ B ⊆ I, as f is monotone we have that

fS(A) = f(S ∪A)− f(S) ≥ f(S ∪B)− f(S) = fS(B).

Thus, fS is also monotone. C

ESA 2020

http://arxiv.org/abs/2003.11450

44:18 Aproximation for Monotone Submodular Multiple Knapsack

Proof of Claim 2. It is easy to see that g is non-negative, as f is non negative. In addition,
for any two subsets A ⊆ B ⊆ E we have ∪(S,h)∈As ⊆ ∪(S,h)∈Bs. Thus, since f is monotone,
g is monotone as well.

All that is left to prove is that g is submodular. Consider subsets A ⊆ B ⊆ E and
(S, h) ∈ E \B.

g(A ∪ {(S, h)})− g(A) = f(∪(S′,h′)∈AS
′ ∪ S)− f(∪(S′,h′)∈As)

≤ f(∪(S′,h′)∈BS
′ ∪ S)− f(∪(S′,h′)∈BS

′)
= g(B ∪ {(S, h)})− g(B).

The inequality follows from Claim 12 and ∪(S′,h′)∈AS
′ ⊆ ∪(S′,h′)∈BS

′. C

To prove Lemma 10 we first prove a special case of the lemma.

I Lemma 14. Let h : 2Ω → R≥0 be a submodular monotone and non-negative function, and
let S1, . . . , SN ⊆ Ω. Then there is 1 ≤ j∗ ≤ N such that

h

 ⋃
1≤j≤N, j 6=j∗

Sj

 ≥ (1− 1
N

)
h(S1 ∪ . . . ∪ SN).

Proof. As h is submodular and monotone, using Claim 2, we have

h(S1 ∪ . . . ∪ SN)− h(∅) =
N∑
j=1

(h(S1 ∪ . . . ∪ Sj)− h(S1 ∪ . . . ∪ Sj−1))

≥
N∑
j=1

h
 N⋃
j′=1

Sj′

− h
 ⋃

1≤j′≤N,j′ 6=j
Sj′

Therefore there is 1 ≤ j∗ ≤ N such that

h

 N⋃
j=1

Sj

− h
 ⋃

1≤j≤N,j 6=j∗
Sj

 ≤ 1
N

(h(S1 ∪ . . . ∪ SN)− h(∅)) .

By rearranging the terms and using h(∅) ≥ 0 we obtain

h

 ⋃
1≤j≤N,j 6=j∗

Sj

 ≥ (1− 1
N

)
h(S1 ∪ . . . ∪ SN),

as required. J

Proof of Lemma 10. Let h : 2Ω → R+ be a submodular, non-negative and monotone
function, and Si,1, . . . , Si,N ⊆ Ω for every 1 ≤ i ≤M .

Define Ti =
⋃N
j=1 Si,j . Now,

h

 M⋃
i=1

N⋃
j=1

Si,j

− h(∅) =
M∑
i=1

h(⋃i−1
i′=1

Ti′
)(Ti) =

M∑
i=1

h(⋃i−1
i′=1

Ti′
) N⋃

j=1
Si,j

 .

By Lemma 14 for every 1 ≤ i ≤M there is 1 ≤ j∗i ≤ N such that

h(⋃i−1
i′=1

Ti′
) N⋃

1≤j≤N, j 6=j∗
i

Si,j

 ≥ (1− 1
N

)
h(⋃i−1

i′=1
Ti′
) (Ti) .

Y. Fairstein, A. Kulik, J. Naor, D. Raz, and H. Shachnai 44:19

Therefore,

h

 M⋃
i=1

⋃
1≤j≤M, j 6=j∗

i

Si,j

− h(∅) =
M∑
i=1

h(⋃i−1
i′=1

⋃
1≤j≤M, j 6=j∗

i′
Si′,j

) ⋃
1≤j≤M, j 6=j∗

i

Si,j

≥

M∑
i=1

h(⋃i−1
i′=1

Ti′
) ⋃

1≤j≤M, j 6=j∗
i

Si,j

 ≥ (1− 1
N

) M∑
i=1

h(⋃i−1
i′=1

Ti′
) (Ti)

=
(

1− 1
N

)h
 M⋃
i=1

N⋃
j=1

Si,j

− h(∅)

 .

The first inequality follows from hT1(A) ≥ hT2(A) for any T1 ⊆ T2 ⊆ Ω and A ⊆ Ω due to
Claim 2. As h is non-negative, we conclude that

h

 M⋃
i=1

⋃
1≤j≤M, j 6=j∗

i

Si,j

 ≥ (1− 1
N

)
· h

 M⋃
i=1

N⋃
j=1

Si,j

 . J

B Chernoff Bounds

In the analysis of the algorithm we use the following Chernoff-like bounds.

I Lemma 15 (Theorem 3.1 in [13]). Let X =
∑n
i=1Xi · λi where (Xi)ni=1 is a sequence of

independent Bernoulli random variable and λi ∈ [0, 1] for 1 ≤ i ≤ n. Then for any ε ∈ (0, 1)
and η ≥ E[X] it holds that

Pr (X > (1 + ε)η) < exp
(
−ε

2

3 η
)

I Lemma 16 (Theorem 1.3 in [6]). Let I = {1, . . . , n}, υ > 0 and f : 2I → R+ be a monotone
submodular function such that f({i})−f(∅) ≤ υ for any i ∈ I. Let X1, . . . , Xn be independent
random variables and η = E[f({i ∈ I|Xi = 1})]. Then for any ε > 0 it holds that

E[f({i ∈ I|Xi = 1}) ≤ (1− ε)η] ≤ exp
(
−η · ε

2

2υ

)

ESA 2020

Linear Expected Complexity for Directional and
Multiplicative Voronoi Diagrams
Chenglin Fan
Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA
cxf160130@utdallas.edu

Benjamin Raichel
Department of Computer Science, University of Texas at Dallas, Richardson, TX, USA
benjamin.raichel@utdallas.edu

Abstract
While the standard unweighted Voronoi diagram in the plane has linear worst-case complexity,
many of its natural generalizations do not. This paper considers two such previously studied
generalizations, namely multiplicative and semi Voronoi diagrams. These diagrams both have
quadratic worst-case complexity, though here we show that their expected complexity is linear for
certain natural randomized inputs. Specifically, we argue that the expected complexity is linear for:
(1) semi Voronoi diagrams when the visible direction is randomly sampled, and (2) for multiplicative
diagrams when either weights are sampled from a constant-sized set, or the more challenging case
when weights are arbitrary but locations are sampled from a square.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Voronoi Diagrams, Expected Complexity, Computational Geometry

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.45

Related Version https://arxiv.org/abs/2004.09385

Funding Partially supported by NSF CRII Award 1566137 and CAREER Award 1750780.

Acknowledgements The authors want to thank Sariel Har-Peled for useful discussions concerning
the case of sampled site locations. Also, thank you to the reviewers for their helpful comments.

1 Introduction

Given a set of point sites in the plane, the Voronoi diagram is the corresponding partition of
the plane into cells, where each cell is the locus of points in the plane sharing the same closest
site. This fundamental structure has a wide variety of applications. When coupled with
a point location data structure, it can be used to quickly answer nearest neighbor queries.
Other applications include robot motion planning, modeling natural processes in areas such
as biology, chemistry, and physics, and moreover, the dual of the Voronoi diagram is the well
known Delaunay triangulation. See the book [5] for an extensive coverage of the topic.

Many of the varied applications of Voronoi diagrams require generalizing its definition
in one way or another, such as adding weights or otherwise altering the distance function,
moving to higher dimensions, or considering alternative types of sites. While some of these
generalizations retain the highly desirable linear worst-case complexity of the standard
Voronoi diagram, many others unfortunately have quadratic worst-case complexity or more.

Within the field of Computational Geometry, particularly in recent years, there have been
a number of works analyzing the expected complexity of various geometric structures when
the input is assumed to have some form of randomness. Here we continue this line of work,
by studying the expected complexity of two previously considered Voronoi diagram variants.

© Chenglin Fan and Benjamin Raichel;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 45; pp. 45:1–45:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cxf160130@utdallas.edu
mailto:benjamin.raichel@utdallas.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.45
https://arxiv.org/abs/2004.09385
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams

Directional and weighted Voronoi diagrams. A natural generalization to consider is when
each site is only visible to some subset of the plane. Here we are interested in the so called
visual restriction Voronoi diagram (VRVD) [6, 13], where a given site p is only visible to the
subset of points contained in some cone with base point p and angle αp. These diagrams
model scenarios where the site has a restricted field of view, such as may be the case with
various optical sensors or human vision. For example, in a football game, each player has
their own field of view at any given time, and the location of the ball in the VRVD tells us
which player is the closest to the ball among those who can see it. When the visible region
for each site is a half-plane whose boundary passes through the site (i.e., a VRVD where
αp = π/2 for each site p), such diagrams are called semi Voronoi diagrams [10]. Just like
general VRVD’s, semi Voronoi diagrams have Θ(n2) worst-case complexity. Our expected
analysis is shown for the semi Voronoi diagram case, however, we remark a similar analysis
implies the same bounds hold more generally for VRVD’s.

The other generalization we consider is when sites have weights. There are many natural
ways to incorporate weights into the distance function of each site. Three of the most common
are additive [14, 18, 19], power [3], and multiplicative [4] Voronoi diagrams (see also [5]).
(For brevity, throughout we use the prefix multiplicative, rather than the more common
multiplicatively-weighted.) For additive Voronoi diagrams the distance from a point x in the
plane to a given site p is d(x, p) = ||x−p||+αp, for some constant αp, which can vary for each
site. For power diagrams the distance is given by d(x, p) = ||x− p||2 −α2

p. For multiplicative
diagrams the distance is given by d(x, p) = αp · ||x − p||. The worst-case complexity for
additive and power diagrams is only linear [3, 19]. Here our focus is on multiplicative
diagrams, whose worst-case complexity is known to be Θ(n2) [4]. Multiplicative diagrams
are used to model, for example, crystal growth where crystals grow together from a set of
sites at different rates.

Previous expected complexity bounds. There are many previous results on the expected
complexity of various geometric structures under one type of randomness assumption or
another. Here we focus on previous results relating to Voronoi diagrams. For point sites in
Rd, the worst-case complexity of the Voronoi diagram is known to be Θ(ndd/2e), however, if
the sites are sampled uniformly at random from a d-ball or hypercube, for constant d, then
the expected complexity is O(n) [7, 12]. For a set of n point sites on a terrain consisting
of m triangles, Aronov et al. [2] showed that, if the terrain satisfies certain realistic input
assumptions then the worst-case complexity of the geodesic Voronoi diagram is Θ(m+n

√
m).

Under a relaxed set of assumption, Driemel et al. [11] showed that the expected complexity
is only O(n+m), when the sites are sampled uniformly at random from the terrain domain.

Relevant to the current paper, Har-Peled and Raichel [17] showed that, for any set of
point site locations in the plane and any set of weights, if the weights are assigned to the
points according to a random permutation, then the expected complexity of the multiplicative
Voronoi diagram is O(n log2 n). The motivation for this work came from Agarwal et al.[1],
who showed that if one randomly fattens a set of segments in the plane, by taking the
Minkowski sum of each segment with a ball of random radius, then the expected complexity
of the union is near linear, despite having quadratic worst-case complexity. In a follow-up
work to [17], Chang et al.[9] defined the candidate diagram, a generalization of weighted
diagrams to multi-criteria objective functions, and showed that under similar randomized
input assumptions the expected complexity of such diagrams is O(npolylogn).

Our results and significance. Our first result concerns semi Voronoi diagrams, where the
visible region of each site is a half-plane whose bounding line passes through the site, and
where the worst-case complexity is quadratic. For any set of site locations and bounding

C. Fan and B. Raichel 45:3

lines, we show that if the visible side of each site’s bounding line is sampled uniformly at
random, then the expected complexity of the semi Voronoi diagram is linear, and O(n log3 n)
with high probability. To achieve this we argue that our randomness assumption implies that
any point in the plane is likely to be visible by one of its k nearest neighbors, for large enough
k. Thus within each cell of the order-k Voronoi diagram, one can argue the complexity of
semi Voronoi diagram is O(k2), and so summing over all O(nk) cells gives an O(nk3) bound.
This is a variant of the candidate diagram approach introduced in [17]. Unfortunately, in
general this approach requires k to be more than a constant, which will not yield the desired
linear bound. Thus here, in order to get a linear bound, we give a new refined version of this
approach, by carefully allowing k to vary as needed, in the end producing a diagram which
is the union of order-k cells, for various values of k.

The main focus of the paper is the second part concerning multiplicative Voronoi diagrams,
where the distance to each site is the Euclidean distance multiplied by some site-dependent
weight, and where the worst-case complexity is quadratic. We first argue that if the weights
are sampled from a set with constant size, then interestingly a similar refined candidate
diagram approach yields a linear bound. Our main result, however, considers the more
challenging case when no restrictions are made on the weights, but instead the site locations
are sampled uniformly at random from the unit square. For this case we show that in any
grid cell of side length 1/

√
n in the unit square the expected complexity of the multiplicative

diagram is O(1). This implies an O(n) expected bound for the multiplicative diagram over
the whole unit square. This improves over the O(n log2 n) bound of [17] for this case, by
using an interesting new approach which “stretches” sites about a given cell based on their
weights, thus approximately transforming the weighted diagram into an unweighted one with
respect to a given cell. As this main result is technically very challenging, it is placed last.

It is important to note the significance of our bounds being linear. Given a randomness
assumption, one wishes to prove an optimal expected complexity bound, and for the diagrams
we consider linear bounds are immediately optimal. However, even when a linear bound seems
natural, many standard approaches to bounding the expected complexity yield additional
log factors (e.g. [1, 9, 17]). That is, not only are linear bounds desirable, but also they
are nontrivial to obtain. However, when they are obtained, they reveal the true expected
complexity of the structure, free from artifacts of the analysis.
I Remark 1. Our paper focuses on diagram complexity not running time. However, Corollary 4
below shows our approach implies that the semi Voronoi diagram can be computed in
O(n log3 n) expected time in our randomized model, by using the previous quadratic time
algorithm of Fan et al. [13] on appropriate subsets of sites. For the multiplicate Voronoi
diagram, [17] remarked that their approach implied an O(n log3 n) expected time algorithm
in their model, which also covers all multiplicative models considered in the current paper.

2 Preliminaries

The standard Voronoi diagram: Let S = {s1, s2, ..., sn} ⊂ R2 be a set of n point sites
in the plane. Let ‖x− y‖ denote the Euclidean distance from x to y, and for two sites
si, sj ∈ S let β(si, sj) denote their bisector, that is the set of points x in plane such that
‖si − x‖ = ‖sj − x‖. Any site si ∈ S induces a distance function fi(x) = ‖si − x‖ defined
for any point x in the plane. For any subset T ⊆ S, the Voronoi cell of si ∈ T with respect
to T , Vcell(si, T) = {x ∈ R2 | ∀sj ∈ T fi(x) ≤ fj(x)}, is the locus of points in the plane
having si as their closest site from T . We define the Voronoi diagram of T , denoted V(T),
as the partition of the plane into Voronoi cells induced by the minimization diagram (see
[15]) of the set of distance functions {fi | si ∈ T}, that is the projection onto the plane of
the lower envelope of the surfaces defined by these bivariate functions.

ESA 2020

45:4 Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams

One can view the union, U , of the boundaries of the cells in the Voronoi diagram as a
planar graph. Specifically, define a Voronoi vertex as any point in U which is equidistant
to three sites in S (happening at the intersection of bisectors). For simplicity, we make the
general position assumption that no point is equidistant to four or more sites. Furthermore,
define a Voronoi edge as any maximal connected subset of U which does not contain a
Voronoi vertex. (For each edge to have two endpoints we include the “point” at infinity,
i.e., the graph is defined on the stereographic projection of the plane onto the sphere.) The
complexity of the Voronoi diagram is then defined as the total number of Voronoi edges,
vertices, and cells. As the cells are simply connected sets, which are faces of a straight-line
planar graph, the overall complexity is Θ(n).

Order-k Voronoi diagram: Let S be a set of n point sites in the plane. The order-k Voronoi
diagram of S is the partition of the plane into cells, where each cell is the locus of points
having the same set of k nearest sites of S (the ordering of these k sites by distance can vary
within the cell). It is not hard to see that this again defines a straight-line partition of the
plane into cells where the edges on the boundary of a cell are composed of bisector pieces.
The worst-case complexity of this diagram is Θ(k(n− k)) (see [5, Section 6.5]).

We also consider the diagram where every point in a cell not only has the same k nearest
sites, but also the same ordering of distances to these sites. We refer to this as the order-k
sequence Voronoi diagram, known to have O(nk3) worst-case complexity (see Appendix B).

Semi Voronoi diagram: Let S = {s1, s2, ..., sn} be a set of n point sites in the plane, where
for each si there is an associated closed half-plane H(si), whose boundary passes through si.
We use L(si) to denote the bounding line of H(si). For any point x in the plane and any site
si ∈ S, we say that x and si are visible to each other when x ∈ H(si). Given a point x, let
S(x) = {si ∈ S | x ∈ H(si)} denote the set of sites which are visible to x.

For any subset T ⊆ S, define the semi Voronoi cell of si ∈ T with respect to T as,
SVcell(si, T) = {x ∈ H(si) | ∀sj ∈ T ∩ S(x) ‖x− si‖ ≤ ‖x− sj‖}. It is possible that there
are points in the plane which are not visible by any site in S. If desired, this technicality can
be avoided by adding a pair of sites far away from S which combined can see the entire plane.
As before, semi Voronoi cells define a straight-line partition of the plane, where now the
edges on the boundary of a cell are either portions of a bisector or of a half-plane boundary.
In the worst case, the semi Voronoi diagram can have quadratic complexity [13].

Random semi Voronoi diagram: We consider semi Voronoi diagrams where the set of sites
S = {s1, . . . , sn} is allowed to be any fixed set of n points in general position. For each
site si, the line bounding the half-plane of si, L(si), is allowed to be any fixed line in R2

passing through si. Such a line defines two possible visible closed half-spaces. We assume
that independently for each site si, one of these two spaces is sampled uniformly at random.

An alternative natural assumption is that the normal of the half-plane for each site is
sampled uniformly at random from [0, 2π). Note our model is strictly stronger, that is any
bound we prove will imply the same bound for this alternative formulation. This is because
one can think of sampling normals from [0, 2π), as instead first sampling directions for the
bounding lines from [0, π), and then sampling one of the two sides of each line for the normal.

Multiplicative Voronoi diagram: Let S = {s1, s2, ..., sn} be a set of n point sites in the plane,
where for each site si there is an associated weight wi > 0. Any site si ∈ S induces a distance
function fi(x) = wi · ‖si − x‖ defined for any point x in the plane. For any subset T ⊆ S, the

C. Fan and B. Raichel 45:5

Voronoi cell of si ∈ T with respect to T , Vcell(si, T) = {x ∈ R2 | ∀sj ∈ T fi(x) ≤ fj(x)},
is the locus of points in the plane having si as their closest site from T . The multiplicative
Voronoi diagram of T , denotedWV(T), is the partition of the plane into Voronoi cells induced
by the minimization diagram of the distance functions {fi | si ∈ T}.

Note that unlike the standard Voronoi diagram, the bisector of two sites is in general
an Apollonius disk, potentially leading to disconnected cells. Ultimately, the diagram still
defines a planar arrangement and so its complexity, denoted by |WV(S)|, can still be defined
as the number of edges, faces, and vertices of this arrangement. Note the edges are circular
arcs and straight line segments and thus are still constant complexity curves. In the worst
case, the multiplicative Voronoi diagram has Θ(n2) complexity [4].

3 The Expected Complexity of Random Semi Voronoi Diagrams

3.1 The probability of covering the plane

As it is used in our later calculations, we first bound the probability that for a given subset
X of k sites of S that there exists a point in the plane not visible to any site in X.

I Lemma 2. For any set X = {x1, . . . , xk} of k sites Pr
[
(
⋃
xi∈X SVcell(xi, X)) 6= R2] ≤

(k(k + 1) + 2)/2k+1 = O(k2/2k).

Proof. Consider the arrangement of the k bounding lines L(x1), . . . , L(xk). Let F denote
the set of faces in this arrangement (i.e., the connected components of the complement of the
union of lines), and note that |F| ≤ k(k+ 1)/2 + 1 = O(k2). Observe that for any face f ∈ F
and any fixed site xi ∈ X, either every point in f is visible by xi or no point in f is visible by
xi. Moreover, the probability that face f is not visible by site xi is Pr[H(xi) ∩ f = ∅] ≤ 1/2.
Hence the probability that a face f is not visible by any of the k sites is

Pr
[⋃
xi∈X

H(xi) ∩ f = ∅
]
≤ 1/2k.

Hence the probability that at least one face in F is is not visible by any sites in X is

Pr

[(⋃
xi∈X

SVcell(xi, X)

)
6= R2

]
≤
∑
f∈F

Pr

[⋃
xi∈X

H(xi) ∩ f = ∅

]
≤ k(k+1)+2

2k+1 = O

(
k2

2k

)
. J

3.2 A simple near linear bound

Ultimately we can show that the expected complexity of a random semi Voronoi diagram is
linear, however, here we first show that Lemma 2 implies a simple near linear bound which
also holds with high probability. Specifically, we say that a quantity is bounded by O(f(n))
with high probability, if for any constant α there exists a constant β, depending on α, such
that the quantity is at most β · f(n) with probability at least 1− 1/nα.

I Lemma 3. Let S = {s1, . . . , sn} ⊂ R2 be a set of n sites, where each site has a corresponding
line L(si) passing through si. For each si, sample a half-plane H(si) uniformly at random
from the two half-planes whose boundary is L(si). Then the expected complexity of the semi
Voronoi diagram on S is O(n log3 n), and moreover this bound holds with high probability.

ESA 2020

45:6 Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams

Proof. Let k = c logn, for some constant c. Consider the order-k Voronoi diagram of S.
First triangulate this diagram so the boundary of each cell has constant complexity. (Note
triangulating does not asymptotically change the number of cells.) Fix any cell ∆ in this
triangulation, which in turn fixes some (unordered) set X of k-nearest sites. By Lemma 2,

Pr
[(⋃

xi∈X
SVcell(xi, X)

)
6= R2

]
= O(k2/2k) = O((c logn)2/2c logn) = O(1/nc−ε

′
),

for any arbitrarily small value ε′ > 0. Thus with polynomially high probability for every
point in ∆ its closest visible site will be in X. Now let T be the set of all O(k(n − k)) =
O(n logn) triangles in the triangulation of the order-k diagram. Observe that the above high
probability bound applies to any triangle ∆ ∈ T . Thus taking the union bound we have
that with probability at least 1− 1/nc−(1+ε) (where ε > ε′ > 0 is an arbitrarily small value),
simultaneously for every triangle ∆, every point in ∆ will be visible by one of its k closest
sites. Let e denote this event happening (and e denote it not happening). Conditioning
on e happening, there are only O(k) = O(logn) relevant sites which contribute to the semi
Voronoi diagram of any cell ∆. Thus the total complexity of the semi Voronoi diagram
restricted to any cell ∆ is at most O(log2 n), as the semi Voronoi diagram has worst-case
quadratic complexity [13]. (Note that as ∆ is a triangle, we can ignore the added complexity
due to clipping the semi Voronoi diagram of these sites to ∆.) On the other hand, if e
happens, then the worst-case complexity of the entire semi Voronoi diagram is still O(n2).

Now the complexity of the semi Voronoi diagram is bounded by the sum over the cells in
the triangulation of the complexity of the diagram restricted to each cell. Thus the above
already implies that with high probability the complexity of the semi Voronoi diagram is
O
(∑

∆∈T log2 n
)

= O(n log3 n). As for the expected value, by choosing c sufficiently large,

= E
[
|SV(S)|

∣∣ e]Pr[e] + E
[
|SV(S)|

∣∣ e]Pr[e] = O

(∑
∆∈T

log2 n

)
Pr[e] +O(n2) Pr[e]

= O(n log3 n) Pr[e] +O(n2) Pr[e] = O(n log3 n) Pr[e] +O(n2) · (1/nc−(1+ε))

= O(n log3 n) +O(1/nc−(3+ε)) = O(n log3 n). J

The analysis of Lemma 3 immediately implies an algorithm with the same time bounds,
by using the quadratic time algorithm for semi Voronoi diagrams of Fan et al. [13] for the
subset of sites of each order-k cell.

I Corollary 4. Let the input be as in Lemma 3. Then the semi Voronoi diagram can be
computed in O(n log3 n) expected time, and moreover this bound holds with high probability.

Proof. Compute the order-k Voronoi diagram, for k = c logn, where c is the constant
determined in the proof of Lemma 3. Triangulate the diagram. Check if every point of
every triangle is visible by one of its k = Θ(logn) closest sites. If so, then compute the semi
Voronoi diagram of the k nearest sites in each triangle, and clip it to the triangle. If not,
ignore the triangles, and compute the semi Voronoi diagram of all n sites.

For k = Θ(logn), the order-k diagram can be computed in O(n log3 n) time [8]. Tri-
angulating the diagram takes linear time in the complexity of the diagram. By Lemma 3,
with high probability every point of every triangle is visible by one of its k closest sites.
Thus with high probability the running time is O(n log3 n), as computing the semi Voronoi
diagram of the k = Θ(logn) nearest sites in each triangle takes O(log2 n) time per triangle,
and thus O(n log3 n) over all the O(n logn) triangles. If some triangle is not fully visible,
then computing the semi Voronoi diagram of all n sites takes O(n2) time. Thus by the same
expected analysis at the end of the proof of Lemma 3, the expected time is O(n log3 n). J

C. Fan and B. Raichel 45:7

3.3 An optimal linear bound
The previous subsection partitioned the plane based on the order-k Voronoi diagram, for
k = c logn, and then argued that simultaneously for all cells one of the k nearest sites will
be visible. This argument is rather coarse, but instead of using a fixed large value for k,
if one is more careful and allows k to vary, then one can argue the expected complexity is
linear. Note that in the following, rather than using the standard unordered order-k Voronoi
diagram, we use the more refined order-k sequence Voronoi diagram as defined above.

I Theorem 5. Let S = {s1, . . . , sn} ⊂ R2 be a set of n sites, where each site has a
corresponding line L(si) passing through si. For each si, sample a half-plane H(si) uniformly
at random from the set of two half-planes whose boundary is L(si) (i.e., each has 1/2
probability). Then the expected complexity of the semi Voronoi diagram on S is Θ(n).

Proof. Consider the partition of the plane by the first order Voronoi diagram of S, i.e., the
standard Voronoi diagram. We iteratively refine the cells of this partition into higher order
sequence Voronoi diagram cells. At each iteration we have a collection of order-i sequence
Voronoi diagram cells, and for each cell we either mark it final and stop processing, or further
refine the cell into its constituent order-(i+ 1) sequence cells. Specifically, a cell ∆ is marked
final in the ith iteration if every point in ∆ is visible by one of its i nearest sites, or when
i = n and the cell cannot be refined further. The process stops when all cells are marked
final. Below we use F k to denote the set of cells which were marked final in the kth iteration.

Let Ck be the set of all cells of the order-k sequence Voronoi diagram of S. Note that the
order-k sequence Voronoi diagram can be constructed by iteratively refining lower order cells,
and hence any cell seen at any point in the above process is a cell of the order-k sequence
diagram for some value of k. So consider any cell ∆j ∈ Ck of the order-k sequence diagram
of S. Let #(∆j) be the number of order-(k + 1) sequence diagram cells inside ∆j , and let
Xj be the indicator variable for the event that ∆j is refined into its constituent order-(k+ 1)
sequence cells in the kth round of the above iterative process. Note that Pr[Xj = 1] is upper
bounded by the probability that ∆j has not been marked final by the end of the kth round,
which in turn is bounded by Lemma 2. Thus letting Zk+1 be the random variable denoting
the total number of order-(k + 1) sequence cells created in the above process, we have

E
[
Zk+1] = E

 ∑
∆j ∈Ck

#(∆j) ·Xj

 =
∑

∆j ∈Ck

#(∆j) ·E[Xj] = O

(
k2

2k

)
·
∑

∆j ∈Ck

#(∆j) = O

(
nk5

2k

)
,

as
∑

#(∆j) is at most the total number of cells in the order-k sequence Voronoi diagram,
which is bounded by O(nk3) (see Appendix B).

Using the same argument as in Lemma 3, the complexity of the random semi Voronoi
diagram is bounded by

∑n
k=1 |F k| · O(k2). (If k = n then a cell may not be fully visible,

though the bound still applies as the worst-case complexity is O(n2).) Thus by the above,
the expected complexity is

E[|SV(S)|] ≤
n∑
k=1

E
[
|F k|

]
·O(k2) ≤

n∑
k=1

E
[
Zk
]
·O(k2) ≤ O

(
n∑
k=1

nk7

2k

)
= O(n). J

I Remark 6. For simplicity the results above were presented for semi Voronoi diagrams, though
they extend to the more general VRVD case, where the visibility region of si is determined
by a cone with base point si and angle αi, where the orientation of the cone is sampled
uniformly at random. Specifically, the plane can be covered by a set of (2π)/(αi/2) = 4π/αi
cones around si each with angle αi/2. Any one of these smaller cones is completely contained

ESA 2020

45:8 Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams

in the randomly selected αi cone with probability αi/(4π). If the αi are lower bounded by a
constant β, one can then prove a variant of Lemma 2 (and hence Lemma 3 and Theorem 5),
as the arrangement of all these smaller cones still has O(k2) complexity, and the probability a
face is not visible to any site is still exponential in k but with base proportional to 1−β/(4π).

4 The Expected Complexity of Multiplicative Voronoi Diagrams

In this section we consider the expected complexity of multiplicative Voronoi diagrams under
different randomness assumptions. First, by using the approach from the previous section, we
show that for any set of site locations, if each site samples its weight from a set of constant
size c, then the expected complexity is O(nc6). Next, we consider the case when the sites
can have arbitrary weights, but the site locations are sampled uniformly at random from the
unit square. As making no assumptions on the weights makes the problem considerably more
challenging, as a warm-up, we first assume the weights are in an interval [1, c]. In this case,
we consider a 1/

√
n side length grid, and argue that locally in each grid cell the expected

complexity of the multiplicative diagram is O(c4) (inspired by the approach in [11]), and
thus over the entire unit square the complexity is O(nc4). Finally, we remove the bounded
weight assumption, and argue that for any set of weights, the expected complexity is linear
when site locations are sampled uniformly at random from the unit square, by introducing
the notion of “stretched” sites.

4.1 Sampling from a small set of weights
I Lemma 7. Let W = {w1, w2, ..., wc} be a set of non-negative real weights and let S =
{s1, s2, s3, . . . , sn} be a set of point sites in the plane, where each site in S is assigned a
weight independently and uniformly at random from W . Then the expected complexity of the
multiplicative Voronoi diagram of S is O(n · c6).

Proof. Consider the partition of the plane determined by the unweighted first order Voronoi
diagram of S, i.e., the standard Voronoi diagram. Following the strategy of the proof of
Theorem 5, we iteratively refine the cells of this partition into higher order sequence Voronoi
diagram cells, except now a cell ∆ is marked final in the ith iteration if at least one of
its i-nearest sites has weight wm = min{w1, w2, w3, ..., wc}. Analogous to the semi Voronoi
diagram case, with this new definition if a cell ∆ is marked final in the ith iteration then only
its i unweighted nearest sites can contribute to the diagram within ∆. This is because one of
these i nearest sites is both closer and has weight less than or equal to any site outside of
the i nearest sites. Note also that the probability that k sites are all assigned weight larger
than wm is (1− 1/c)k. Using the same notation as in the proof of Theorem 5, we have

E
[
Zk+1] = E

 ∑
∆j∈Ck

#(∆j) ·Xj

 =
∑

∆j∈Ck

#(∆j) ·E[Xj]

= O
(
(1− 1/c)k

)
·
∑

∆j∈Ck

#(∆j) = O
(
nk3(1− 1/c)k

)
.

As the worst-case complexity of the multiplicative Voronoi diagram of k sites is O(k2), overall
the complexity of the multiplicative Voronoi diagram is bounded by

∑n
k=1 |F k| ·O(k2). Thus

by the above, the expected complexity is

E[|WV(S)|] ≤
n∑

k=1

E
[
|F k|

]
·O(k2) ≤

n∑
k=1

E
[
Zk
]
·O(k2) ≤ O

(
n∑

k=1

nk5(1− 1/c)k

)
= O(n · c6),

C. Fan and B. Raichel 45:9

where the last step is obtained by viewing the sum as a power series in x = (1− 1/c),

∑
k>0

k5(1− 1/c)k =
∑
k>0

k5xk =
(
x · d

dx

)∑
k>0

k4xk =
(
x · d

dx

)5∑
k>0

xk =
(
x · d

dx

)5
x

1− x

= (x5 + 26x4 + 66x3 + 26x2 + x)
(1− x)6 = 120c6 − 360c5 + 390c4 − 180c3 + 31c2 − c = O(c6). J

4.2 Sampling site locations with bounded weights
In this section we argue that the expected complexity of the multiplicative Voronoi diagram
is linear when the site locations are uniformly sampled and the weights are in a constant
spread interval. In the next section we remove the bounded weight assumption. Thus the
current section can be viewed as a warm-up, and serves to illustrate the extent to which
assuming bounded weights simplifies the problem. However, as the results of the next section
subsume those here, this section can be safely skipped if desired.

The following fact is used both in the proof of the lemma below and the next section.

I Fact 8. Consider doing m independent experiments, where the probability of success for
each experiment is α. Let X be the total number of times the experiments succeed. Then
E
[
X2] ≤ αm+ α2m2 = E[X] + E[X]2.

Note that the above fact holds since X is a binomial random variable, Bin(α,m), and so
E
[
X2] = Var[X] + E[X]2 = mα(1− α) + (mα)2.

I Lemma 9. Let S = {s1, s2, s3, ..., sn} be a set of point sites in the plane, where for some
value c ≥ 1, each site in S is assigned a weight wi ∈ [1, c]. Suppose that the location of
each site in S is sampled uniformly at random from the unit square U . Then the expected
complexity of the multiplicative Voronoi diagram of S within U is O(n · c4).

Proof. Place a regular grid over U , where grid cells have side length 1/
√
n. Fix any grid

cell � = �x,y, where (x, y) ∈
√
n×
√
n. We now argue that the expected complexity of the

multiplicative Voronoi diagram within � is O(c4), and thus by linearity of expectation, the
expected complexity over all n grid cells in U is O(nc4).

Let ρ be the random variable denoting the unweighted distance of the closest site in S
to the center of the grid cell �, and let Xρ be the random variable denoting the number of
points which contribute to the multiplicative Voronoi diagram in � conditioned on the value
ρ. (For now ignore the contribution of the point at distance exactly ρ.) Observe that any
point in S which contributes to the multiplicative Voronoi diagram within � must lie within
the annulus centered at the center of �, with inner radius ρ and outer radius c(ρ+

√
2/n).

Conditioned on the value ρ, let αρ be the probability for a point to fall in this annulus, and
let Xρ be the binomial random variable Bin(αρ, n) representing the number of points which
fall into this annulus. For now assume ρ ≤ 1/4, in which case the region outside the disk
centered at the center of � and with radius ρ has area at least 3/4. We then have that

E[Xρ] ≤ nαρ ≤ n
(π(c(ρ+

√
2/n))2 − πρ2)
3/4

= O(nc2(ρ2(1− 1/c2) + ρ/
√
n+ 1/n)) = O(c2 + n(cρ)2).

ESA 2020

45:10 Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams

Let Yρ be the random variable denoting the complexity of the multiplicative Voronoi diagram
within � when conditioned on the value ρ. As the worst-case complexity of the multiplicative
Voronoi diagram is quadratic, we have Yρ = O((1 +Xρ)2) = O(1 +Xρ +X2

ρ), where the plus
1 counts the point at distance exactly ρ. Thus using Fact 8, and again assuming ρ ≤ 1/4,

E[Yρ] = O(1+E[Xρ]+E
[
X2
ρ

]
) = O(c2 +n(cρ)2 +(c2 +n(cρ)2)2) = O(c4(1+nρ2 +n2ρ4)).

Now consider the event that ρ ∈ [i/
√
n, (i+ 1)/

√
n] for some integer i. For this to happen,

the open disk with radius i/
√
n centered at the center of � must be empty, and one of the n

points must lie in the annulus with inner radius i/
√
n and outer radius (i+1)/

√
n. Therefore,

Pr
[
ρ ∈ [i/

√
n, (i+ 1)/

√
n]
]
≤ n · (π((i+ 1)/

√
n)2 − π(i/

√
n)2) · (1− π(i/

√
n)2)n−1

= π(2i+ 1) · (1− πi2/n)n−1 ≤ π(2i+ 1)e−πi
2(n−1)/n ≤ π(2i+ 1)e−i

2
.

Furthermore, by the above, when ρ ∈ [i/
√
n, (i+ 1)/

√
n] and ρ ≤ 1/4, we have

E[Yρ] = O(c4(1 + nρ2 + n2ρ4)) = O(c4(1 + (i+ 1)2 + (i+ 1)4)),

and for ρ ≥ 1/4 we have the trivial bound E[Yρ] = O(n2).
Finally, let Y be the random variable denoting the complexity of the multiplicative

Voronoi diagram within �. By the law of total expectation we have,

E[Y] ≤

√n/4−1∑
i=0

Pr
[
ρ ∈

[
i√
n
,

(i+1)√
n

]]
·O(c4(1 + (i+1)2 + (i+1)4))

+

 √
n∑

i=
√
n/4

Pr
[
ρ ∈

[
i√
n
,

(i+1)√
n

]]
·O(n2)

≤

√n/4−1∑
i=0

π(2i+ 1)
ei2

·O(c4(1 + (i+1)2 + (i+1)4))

+

 √
n∑

i=
√
n/4

π(2i+ 1)
ei2

·O(n2)

= O(1) +

√
n/4−1∑
i=0

π(2i+ 1)
ei2

·O(c4(1 + (i+1)2 + (i+1)4))

= O(1) +

√
n/4∑
i=0

2i+ 1
ei2

·O(c4(i+1)4) = O(c4) +O

√n/4∑
i=1

c4i5

ei2

 = O(c4). J

4.3 Sampling sites locations in general
In this section we argue that the expected complexity of the multiplicative Voronoi diagram
is linear when the site locations are uniformly sampled. Here the weights can be any arbitrary
set of positive values. Without loss of generality we can assume the smallest weight is
exactly 1, as dividing all weights by the same positive constant does not change the diagram.
Throughout, m denotes the maximum site weight, hence all weights are in the interval [1,m].

Let σ be an arbitrary point in the unit square. The high level idea is that we want to
apply a transformation to the sites such that the weighted Voronoi diagram around σ can
be interpreted as an unweighted Voronoi diagram. Specifically, for a site s with weight w
and distance d = ||s− σ||, let the stretched site of s with respect to σ, denoted by t, be the
point at Euclidean distance w · d from σ which lies on the ray from σ through s. That is, the
weighted distance from s to σ is the same as the unweighted distance from t to σ.

C. Fan and B. Raichel 45:11

So let σ be an arbitrary fixed point in the unit square, S = {s1, . . . , sn} be a set of sites
with weights {w1, . . . , wn} ⊂ [1,m] whose positions have been uniformly sampled from the
unit square, and let T = {t1, . . . , tn} be the corresponding set of stretched sites.

Let γ =
√

1/(2n). Our goal is to argue that for any arbitrary choice of σ in U the
expected complexity of the multiplicative Voronoi diagram in the ball B(σ, γ) is constant,
i.e., E[|WV(S) ∩B(σ, γ)|] = O(1). Then by the grid argument in the previous section this
immediately implies a linear bound on the expected complexity of the overall diagram in U .
Namely, place a uniform grid over U , where the grid cell side length is 1/

√
n. Then as each

cell is contained in a ball B(σ, γ) for some σ, and there are n cells overall, by the linearity of
expectation the expected complexity of the overall diagram is O(n).

At a high level, the idea is simple. We wish to argue that sites whose stretched location
is far from σ will be blocked from contributing by sites whose stretched location is closer to
σ. However, putting this basic plan into action is tricky and requires handling various edge
cases. In particular, later it will become clear why we need to consider the following cases
for where sites lie relative to σ.
I Definition 10. For a fixed point σ in U , let X be the subset of S which falls in B(σ, 4γ),
i.e., X = S ∩B(σ, 4γ). Let Y be the complement set, i.e., Y = S \X. See Figure 4.1.

X Y

σ γ
4γ

(a) Sets X and Y from Definition 10, and the
grid cell and γ radius ball centered at σ.

rj+2

Rj+2 DjRj+1

rj+1σ rj

(b) Exponentially increasing radii, and rings
Rj+1, Rj+2 around disk Dj , all centered at σ.

Figure 4.1 Pictorial representations of some of the defined quantities from Section 4.3.

I Remark 11. In the following, we typically condition on the set of sites which fall in Y as
being fixed, but not the actual precise locations of those sites. We refer to this as “Fixing
Y ”. Ultimately the statements below hold regardless of what sites actually fall in Y .

Fix Y . Let r1 be the radius such that the expected number of stretched sites from Y that
are contained in B(σ, r1) is n · π(16γ)2. Observe that a site can only be moved further from
σ after stretching, thus r1 ≥ 16γ. (Potentially r1 is significantly larger.) Also, note that as
Y is fixed, the value of r1 is fixed.

For any integer j > 0, let Dj be the disk with radius rj = r1 × 2j−1, centered at σ.
Moreover, define the rings Rj+1 = Dj+1 \Dj , for any j > 0. See Figure 4.1.

ESA 2020

45:12 Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams

I Lemma 12. Consider two sites sj ∈ Y , and si such that either si ∈ Y or si ∈ X with
wi ≤ wj. For any k′ ≥ k ≥ 1, if ti ∈ Dk and tj ∈ Rk′+2, then sj cannot contribute to the
multiplicative Voronoi diagram in B(σ, γ).

Proof. For site si, let di = ||si − σ|| and d′i = wi · di. Similarly define dj and d′j for site sj .
Note that the furthest weighted distance of a point in B(σ, γ) to si is wi · (di + γ), and the
closest weighted distance of a point in B(σ, γ) to sj is wj · (dj − γ). Thus it suffices to argue
wi · (di + γ) < wj · (dj − γ), or equivalently (wi + wj)γ < d′j − d′i. To that end, observe
d′j − d′i ≥ d′j − d′j/2 = d′j/2. Thus we only need to argue (wi + wj)γ < d′j/2.

Case 1, wi ≤ wj : In this case (wi + wj)γ ≤ wj · 2γ < wj · dj/2 = d′j/2.
Case 2, wi > wj : In this case (wi + wj)γ ≤ wi · 2γ < wi · di/2 = d′i/2 ≤ d′j/2. J

Note that a site with weight 1 does not move after stretching. Thus as S always has a
site with weight 1, there must be at least one stretched site in U . Therefore, if we define
Z − 1 to be the smallest value of j such that U ⊆ Dj , then DZ−1 must contain a stretched
site. Thus the above lemma implies any site which contributes to the multiplicative Voronoi
diagram within B(σ, γ) must lie within DZ after being stretched, and so going forward we
only consider stretched sites in DZ .

I Definition 13. Fix Y , and consider any 1 ≤ j ≤ Z − 2. For si ∈ Y , let pi,j denote the
probability that ti is located in Dj . For si ∈ Y , let qi,j denote the probability that si is located
in U \B(σ, 16γ) and ti is located in Rj+2 ∪Rj+1, conditioned on the event that no stretched
sites from Y are located in Dj.1

I Lemma 14. Fix Y . For any 1 ≤ j ≤ Z − 2 and si ∈ Y we have qi,j ≤ 32 · pi,j.

Proof. Note in the following we always take as given that si ∈ Y . Observe that

pi,j = Pr[ti ∈ Dj] = Pr[si ∈ U ∩B(σ, rj/wi)] = area((U ∩B(σ, rj/wi)) \B(σ, 4γ))
area(U \B(σ, 4γ)) .

Then as the location of the sites in Y are independent, for qi,j we have,

qi,j = Pr[(si ∈ U \B(σ, 16γ)) ∩ (ti ∈ Dj+2 \Dj) | ∀sk ∈ Y, tk /∈ Dj]
= Pr[(si ∈ U \B(σ, 16γ)) ∩ (ti ∈ Dj+2 \Dj) | ti /∈ Dj]
= Pr[(si ∈ U \B(σ, 16γ)) ∩ (ti ∈ Dj+2 \Dj)] /Pr[ti /∈ Dj]
= Pr[si ∈ (U ∩B(σ, 4rj/wi)) \ (B(σ, rj/wi) ∪B(σ, 16γ))] /Pr[ti /∈ Dj]
≤ Pr[si ∈ (U ∩B(σ, 4rj/wi)) \B(σ, 16γ)] /Pr[ti /∈ Dj]

= area((U ∩B(σ, 4rj/wi)) \B(σ, 16γ))
area(U \B(σ, 4γ)) ·Pr[ti /∈ Dj]

≤ 16 · area((U ∩B(σ, rj/wi)) \B(σ, 4γ))
area(U \B(σ, 4γ)) ·Pr[ti /∈ Dj]

= 16 · pij
Pr[ti /∈ Dj]

= 16 · pij
1− pij

.

If pij ≤ 1/2, then the above implies qij ≤ 16 · pij/(1− pij) ≤ 32 · pij . On the other hand, if
pij > 1/2, then pij > 1/2 ≥ qij/2. J

I Fact 15. Fix Y. For any 1 ≤ j ≤ Z − 2, consider the event, Cj , that j is the largest index
such that there are no stretched sites from Y located in Dj . We have Pr[Cj] ≤

∏
si∈Y (1−pi,j).

1 Note for j ≤ Z−2, Dj (U , thus the condition that no stretched sites are in Dj has non-zero probability.

C. Fan and B. Raichel 45:13

I Lemma 16. Fix Y. Let ψ be the number of sites that fall outside B(σ, 16γ) and contribute
to the multiplicative Voronoi diagram within B(σ, γ). Then we have

E
[
ψ2] ≤ O(1) + 2

Z−2∑
j=1

(∏
si∈Y

(1− pi,j)
)
·

1 + 3
∑
si∈Y

qi,j +
(∑
si∈Y

qi,j

)2
 .

Proof. For 1 ≤ j ≤ Z − 2, let Cj be the event that j is the largest index such that Dj

contains no stretched sites from Y . (Note for i 6= j, Ci and Cj are disjoint events.) If Cj
occurs then only sites in Rj+1 ∪ Rj+2 can contribute to the weighted diagram in B(σ, γ),
based on Lemma 12. Let yj be the random variable denoting the number of sites such that
si /∈ B(σ, 16γ) and ti ∈ Rj+1 ∪Rj+2. If Cj occurs, then yj is an upper bound on the number
of sites which fall outside B(σ, 16γ) and contribute to the weighted diagram in B(σ, γ). Note
we must also consider the event that Cj does not occur for any j ≥ 1, namely there exist
stretched sites from Y contained in D1. Call this event C0, and let y0 be the random variable
for the number of sites such that si /∈ B(σ, 16γ) and ti ∈ D2. By the law of total expectation,

E
[
ψ2] =

Z−2∑
j=0

(Pr[Cj] ·E
[
(yj)2 | Cj

]
),

where the sum stops at Z− 2 since there always exists a stretched site with weight 1 in DZ−1
(by definition of Z), and so stretched sites outside of DZ can be ignored.

So consider any E
[
(yj)2 | Cj

]
term, for some j > 0. Let Aj be the event that Dj contains

no stretched sites from Y and let Bj be the event that Rj+1 has a stretched site from Y , and
observe that Cj = Aj ∩Bj . The following claim is intuitive, and its proof is in Appendix A.

B Claim 17. E
[
y2
j | Cj

]
≤ 2 E

[
(yj + 1)2 | Aj

]
.

The events, over all si ∈ Y , that si falls outside B(σ, 16γ) while ti is located in Rj+1 ∪Rj+2,
are independent. Moreover, this event for any si ∈ Y , when conditioned on Aj , has probability
qi,j (see Definition 13). Hence conditioned on Aj , the random variable yj has a Poisson
Binomial distribution. Thus we have E[yj | Aj] =

∑
si∈Y (qi,j), and the variance is then

Var[yj |Aj] =
∑
si∈Y (qi,j(1− qi,j)) ≤

∑
si∈Y (qi,j) = E[yj |Aj]. Thus using the above claim,

E
[
(yj)2 | Cj

]
≤ 2 E

[
(yj + 1)2 | Aj

]
= 2 E

[
1 + 2yj + y2

j | Aj
]

= 2(1 + 2 E[yj | Aj] + (Var[yj | Aj] + (E[yj | Aj])2))

≤ 2(1 + 3 E[yj | Aj] + (E[yj | Aj])2) ≤ 2

1 + 3
∑
si∈Y

qi,j +
(∑
si∈Y

qi,j

)2
 .

Suppose that Pr[C0] ·E
[
(y0)2|C0

]
= O(1), then the lemma statement follows. Specifically,

by Fact 15, Pr[Cj] ≤
∏
si∈Y (1− pi,j), for any 1 ≤ j ≤ Z − 2. Thus by the above,

E
[
ψ2] =

Z−2∑
j=0

(Pr[Cj] ·E
[
(yj)2 | Cj

]
)

≤ O(1) + 2
Z−2∑
j=1

(∏
si∈Y

(1− pi,j)
)
·

1 + 3
∑
si∈Y

qi,j +
(∑
si∈Y

qi,j

)2
 .

ESA 2020

45:14 Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams

Q′
1 Q′

2

Q′
3Q′

4

σ

Q4

Q1

Q3

Q2

U

Figure 4.2 The locations of the four defined quarters for each disk, and how they intersect U .

Thus what remains is to show Pr[C0] ·E
[
(y0)2|C0

]
= O(1). First, observe that

Pr[C0] E
[
(y0)2|C0

]
=Pr[C0]

|Y |2∑
k=1

k ·Pr
[
(y0)2 = k|C0

]
=Pr[C0]

|Y |2∑
k=1

k ·Pr
[
((y0)2 = k) ∩ C0

]
Pr[C0]

=
|Y |2∑
k=1

k ·Pr
[
((y0)2 = k) ∩ C0

]
≤
|Y |2∑
k=1

k ·Pr
[
(y0)2 = k

]
= E

[
(y0)2] .

Thus it suffices to argue E
[
(y0)2] = O(1).

For any si ∈ Y , let qi,0 denote the probability that si /∈ B(σ, 16γ) while ti ∈ D2, then
E[y0] =

∑
si∈Y qi,0. Note that as area(B(σ, r2/wi) \ B(σ, 16γ)) ≤ 4 · area(B(σ, r1/wi) \

B(σ, 4γ)) it follows that area((U ∩B(σ, r2/wi)) \B(σ, 16γ)) ≤ 4 · area((U ∩B(σ, r1/wi)) \
B(σ, 4γ)). This implies qi,0 ≤ 4 · pi,1, and hence

∑
si∈Y qi,0 ≤ 4

∑
si∈Y pi,1 = 4 · nπ(16γ)2 =

O(1), by the definition of r1. Thus E[y0] = O(1), and since y0 has a Poisson Binomial
distribution, E

[
(y0)2] = (E[y0])2 + Var[y0] ≤ (E[y0])2 + E[y0] = O(1). J

I Lemma 18. Let Pj =
∑
si∈Y pi,j. Then for any j ≤ Z − 3, we have Pj ≥ Pj−1 + 1.

Proof. Note that by definition, the expected number of stretched sites from Y that are
contained in B(σ, r1) is nπ(16γ)2 > 2, and thus P1 = (

∑
si∈Y pi,1) > 2.

We argue that for any j ≤ Z − 3, that area(U ∩ Dj) ≥ 2 · area(U ∩ Dj−1). To this
end, break Dj into 4 quarters, by cutting it with a vertical and horizontal line through
σ. Let the quarters be labeled Q1, Q2, Q3, and Q4, in clockwise order, starting with the
northwest quarter, see Figure 4.2. Similarly break Dj−1 into quarters, Q′1, Q′2, Q′3, and
Q′4, with the same clockwise labeling order. Recall that by definition Z − 1 is the smallest
j such that U ⊆ Dj . Since σ ∈ U , this implies that for any j ≤ Z − 3 at least one of
the quarters of Dj is fully contained in U , and without loss of generality assume it is Q2.
Note that area(Dj) = 4area(Dj−1), thus this implies that area(U ∩ Q2) = area(Q2) =
2(area(Q′2) + area(Q′4)) ≥ 2(area(U ∩Q′2) + area(U ∩Q′4)). It is easy to argue that since
rj = 2rj−1 that area(U ∩Q1) ≥ 2area(U ∩Q′1) and area(U ∩Q3) ≥ 2area(U ∩Q′3), thus
summing over all quarters area(U ∩Dj) ≥ 2 · area(U ∩Dj−1).

This implies that area(U ∩ B(σ, rj/wi)) ≥ 2 · area(U ∩ B(σ, rj−1/wi)), which in turn
implies area((U ∩B(σ, rj/wi)) \B(σ, 4γ)) ≥ 2 · area((U ∩B(σ, rj−1/wi)) \B(σ, 4γ)). Hence
by Definition 13, pi,j ≥ 2pi,j−1, and therefore Pj ≥ 2Pj−1 ≥ Pj−1 + 1. J

C. Fan and B. Raichel 45:15

I Lemma 19.
Z−2∑
j=1

(∏
si∈Y

(1− pi,j)
)
·

1 + 3
∑
si∈Y

qi,j +
(∑
si∈Y

qi,j

)2
 = O(1).

Proof. We argue that
∑Z−2
j=1

((∏
si∈Y (1− pi,j)

)
·
(∑

si∈Y qi,j
)α) = O(1), where α = 0, 1, or

2, thus implying the lemma statement. By Lemma 14, qi,j ≤ 32 · pi,j , and therefore
Z−2∑
j=1

((∏
si∈Y

(1− pi,j)
)
·

(∑
si∈Y

qi,j

)α)
≤
Z−2∑
j=1

((∏
si∈Y

(1− pi,j)
)
·

(
32
∑
si∈Y

pi,j

)α)

≤ 32α
Z−2∑
j=1

((
e
−
∑

si∈Y
pi,j

)
·

(∑
si∈Y

pi,j

)α)
= 32α

Z−2∑
j=1

((
e−Pj

)
· (Pj)α

)
,

where the last inequality follows as 1− x ≤ e(−x), and the last equality is by the definition
of Pj from the Lemma 18 statement.

Note that by definition, the expected number of stretched sites from Y that are contained
in B(σ, r1) is nπ(16γ)2, and thus P1 = (

∑
si∈Y pi,1) > 2. Moreover, the function xαe−x is

monotonically decreasing for x > 2, and always has value less than 1, for α = 0, 1, or 2.
Thus since by Lemma 18, Pj ≥ Pj−1 + 1 for j ≤ Z − 3, and since PZ−2 ≥ PZ−3, we have,

Z−2∑
j=1

Pαj · e−Pj ≤ 1 +
Z−3∑
j=1

Pαj · e−Pj ≤ 1 +
∞∑
x=2

xα · e−x ≤ 2 +
∫ ∞

2
xα · e−xdx ≤ 4,

for α = 0, 1, or 2. Combining the above two equalities thus yields the lemma statement. J

Now that we have the above lemmas for any fixed Y , we are finally ready to prove our
main lemma (where Y is no longer assumed to be fixed).

I Lemma 20. Let S be a set of n point sites in the plane, with arbitrary positive weights.
Suppose that the location of each site in S is sampled uniformly at random from the unit
square U . Then for any point σ ∈ U , E[|WV(S) ∩B(σ, γ)|] = O(1).

Proof. Let Ψ̂ = S ∩B(σ, 16γ) be the sites which fall in B(σ, 16γ) and let Ψ = S \ Ψ̂ be the
complement set. Let ψ̂, ψ, be the random variables denoting the number of sites respectively
from Ψ̂, Ψ, which contribute to the multiplicative diagram in B(σ, γ).

Recall that the worst-case complexity of the multiplicative diagram is quadratic in the
number of sites. Thus it suffices to bound E

[
(ψ̂ + ψ)2

]
≤ E

[
2(ψ̂2 + ψ2)

]
= 2(E

[
ψ̂2
]

+
E
[
ψ2]). Thus we now show each of the above two expected value terms are constant. First,

note that Lemma 16 and Lemma 19 combined imply that E
[
ψ2] = O(1) (as those lemmas

hold regardless of which sites fall in Y). Thus we only need to bound E
[
ψ̂2
]
. Observe

that clearly |Ψ̂| ≥ ψ̂. To bound |Ψ̂|, observe that area(B(σ, 16γ)) = O(1/n), and thus
E
[
|Ψ̂|
]

= O(1). Moreover, the number of sites which fall into this ball is a binomial random

variable. Thus by Fact 8, E
[
ψ̂2
]
≤ E

[
|Ψ̂|2

]
≤ E

[
|Ψ̂|
]

+ E
[
|Ψ̂|
]2

= O(1). J

Consider placing a uniform grid with side length 1/
√
n over the unit square U . Then

for any grid cell, if we set σ to be the center of the grid cell then B(σ, γ) contains the grid
cell, and hence the above lemma implies the expected complexity in the grid cell is constant.
Thus using linearity of expectation over all n grid cells implies the following main theorem.

I Theorem 21. Let S be a set of n point sites in the plane, with arbitrary positive weights.
Suppose the location of each site in S is sampled uniformly at random from the unit square U .
Then the expected complexity of the multiplicative Voronoi diagram of S within U is O(n).

ESA 2020

45:16 Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams

References

1 Pankaj K. Agarwal, Sariel Har-Peled, Haim Kaplan, and Micha Sharir. Union of random
Minkowski sums and network vulnerability analysis. Discrete & Computational Geometry,
52(3):551–582, 2014.

2 Boris Aronov, Mark de Berg, and Shripad Thite. The complexity of bisectors and Voronoi
diagrams on realistic terrains. In Algorithms - ESA 2008, 16th Annual European Symposium,
Karlsruhe, Germany, September 15-17, 2008. Proceedings, pages 100–111, 2008.

3 Franz Aurenhammer. Power diagrams: Properties, algorithms and applications. SIAM J.
Comput., 16(1):78–96, 1987. doi:10.1137/0216006.

4 Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for constructing the
weighted voronoi diagram in the plane. Pattern Recognition, 17(2):251–257, 1984.

5 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific, 2013.

6 Franz Aurenhammer, Bing Su, Yin-Feng Xu, and Binhai Zhu. A note on visibility-constrained
Voronoi diagrams. Discrete Applied Mathematics, 174:52–56, 2014.

7 Marcin Bienkowski, Valentina Damerow, Friedhelm Meyer auf der Heide, and Christian Sohler.
Average case complexity of Voronoi diagrams of n sites from the unit cube. In (Informal)
Proceedings of the 21st European Workshop on Computational Geometry (EuroCG), pages
167–170, 2005.

8 Timothy M. Chan and Konstantinos Tsakalidis. Optimal deterministic algorithms for 2-d
and 3-d shallow cuttings. Discret. Comput. Geom., 56(4):866–881, 2016. doi:10.1007/
s00454-016-9784-4.

9 Hsien-Chih Chang, Sariel Har-Peled, and Benjamin Raichel. From proximity to utility: A
Voronoi partition of Pareto optima. Discrete & Computational Geometry, 56(3):631–656, 2016.

10 Yongxi Cheng, Bo Li, and Yinfeng Xu. Semi Voronoi diagrams. In Computational Geometry,
Graphs and Applications - 9th International Conference, CGGA 2010, Dalian, China, November
3-6, 2010, Revised Selected Papers, pages 19–26, 2010.

11 Anne Driemel, Sariel Har-Peled, and Benjamin Raichel. On the expected complexity of Voronoi
diagrams on terrains. ACM Trans. Algorithms, 12(3):37:1–37:20, 2016.

12 R. Dwyer. Higher-dimensional Voronoi diagrams in linear expected time. In Proc. 5th Annual
Symposium on Computational Geometry (SOCG), pages 326–333, 1989. doi:10.1145/73833.
73869.

13 Chenglin Fan, Jun Luo, Wencheng Wang, and Binhai Zhu. Voronoi diagram with visual
restriction. Theor. Comput. Sci., 532:31–39, 2014.

14 Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica, 2:153–174, 1987.
doi:10.1007/BF01840357.

15 Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete and Computational
Geometry, Second Edition. Chapman and Hall/CRC, 2004.

16 Sariel Har-Peled, Haim Kaplan, and Micha Sharir. Approximating the k-level in three-
dimensional plane arrangements. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1193–1212, 2016. doi:10.1137/1.
9781611974331.ch83.

17 Sariel Har-Peled and Benjamin Raichel. On the complexity of randomly weighted multiplicative
Voronoi diagrams. Discrete & Computational Geometry, 53(3):547–568, 2015.

18 D. T. Lee and Robert L. (Scot) Drysdale III. Generalization of voronoi diagrams in the plane.
SIAM J. Comput., 10(1):73–87, 1981. doi:10.1137/0210006.

19 Micha Sharir. Intersection and closest-pair problems for a set of planar discs. SIAM J. Comput.,
14(2):448–468, 1985. doi:10.1137/0214034.

https://doi.org/10.1137/0216006
https://doi.org/10.1007/s00454-016-9784-4
https://doi.org/10.1007/s00454-016-9784-4
https://doi.org/10.1145/73833.73869
https://doi.org/10.1145/73833.73869
https://doi.org/10.1007/BF01840357
https://doi.org/10.1137/1.9781611974331.ch83
https://doi.org/10.1137/1.9781611974331.ch83
https://doi.org/10.1137/0210006
https://doi.org/10.1137/0214034

C. Fan and B. Raichel 45:17

A Claim Proof

Here we prove the claim from Lemma 16. Below is the restated claim.

B Claim 17. E
[
y2
j | Cj

]
≤ 2 E

[
(yj + 1)2 | Aj

]
.

Proof. Let yj and Cj = Aj ∩Bj be as defined in the proof of Lemma 16. Throughout j is
fixed and so we drop the j subscripts. Thus we must prove E

[
y2|A ∩B

]
≤ 2 E

[
(y + 1)2|A

]
.

As the conditioning on A appears in all terms, for simplicity of exposition we write that
we want to show E

[
y2|B

]
≤ 2 E

[
(y + 1)2] where the conditioning on A is implicit.

Note that y = y′ + y′′, where y′ is the number of stretched sites falling in Rj+1 and y′′
the number falling in Rj+2. Moreover, (y′ + y′′)2 ≤ 2((y′)2 + (y′′)2).

I Lemma 22. E
[
(y′′)2 | y′ 6= 0

]
≤ E

[
(y′′)2].

Proof. Let α = E
[
(y′′)2 | y′ = 0

]
and β = E

[
(y′′)2 | y′ 6= 0

]
. It is easy to verify that

α = E
[
(y′′)2 | y′ = 0

]
≥ E

[
(y′′)2]. Now, observe that

µ = E
[
(y′′)2] = E

[
(y′′)2 | y′ = 0

]
Pr[y′ = 0] + E

[
y′′2 | y′ 6= 0

]
Pr[y′ 6= 0]

= αPr[y′ = 0] + β(1−Pr[y′ = 0]).

Namely, µ is a convex combination of α and β, and since α ≥ µ, it must be that β ≤ µ, as
claimed. J

As B = (y′ 6= 0), by the above lemma and linearity of expectation we have

E
[
y2 | B

]
≤ 2 E

[
(y′)2 | y′ 6= 0

]
+ 2 E

[
(y′′)2 | y′ 6= 0

]
≤ 2 E

[
(y′)2 | y′ 6= 0

]
+ 2 E

[
(y′′)2] .

Observe that 2 E
[
(y′ + 1)2] + 2 E

[
(y′′)2] ≤ 2 E

[
(y + 1)2]. Thus if we can prove that

E
[
(y′)2 | y′ 6= 0

]
≤ E

[
(y′ + 1)2], then the above implies that E

[
y2 | B

]
≤ 2 E

[
(y + 1)2]

as claimed.
So to prove E

[
(y′)2 | y′ 6= 0

]
≤ E

[
(y′ + 1)2], note that (y′ 6= 0) = ∪iXi, where Xi is the

event that the ith stretched site is in Rj+1. Thus,

E[(y′)2 | y′ 6= 0] =E[(y′)2 | X1] · Pr[X1] + E[(y′)2 | X1 ∩X2] · Pr[X1 ∩X2] + . . .

+ E[y′2 | X1 ∩ . . . ∩Xn−1 ∩Xn] · Pr[X1 ∩ . . . ∩Xn−1 ∩Xn]
+ E[(y′)2 | X1 ∩ . . . ∩Xn] · Pr[X1 ∩ . . . ∩Xn].

Note the last term above is zero and can be ignored. Also note that

Pr[X1] + Pr[X1 ∩X2] + . . .+ Pr[X1 ∩ . . . ∩Xn−1 ∩Xn] + Pr[X1 ∩ . . . ∩Xn] = 1.

Thus the claim follows if we can argue that each expectation in the above sum is upper
bounded by E[(y′ + 1)2]. So consider any term E[(y′)2 | X1 ∩ . . . ∩Xk−1 ∩Xk]. Let z be
the number of sites from {pk+1 . . . pn} falling in Rj+1. Then since the points were sampled
independently we have

E[(y′)2 | X1 ∩ . . . ∩Xk−1 ∩Xk] ≤ E[(z + 1)2 | X1 ∩ . . . ∩Xk−1 ∩Xk]
≤ E[(z + 1)2] ≤ E[(y′ + 1)2]. C

ESA 2020

45:18 Linear Expected Complexity for Directional and Multiplicative Voronoi Diagrams

B Complexity Sketch

Here we give a very brief description of why the order-k sequence Voronoi diagram has
O(nk3) worst-case complexity. First, recall that by standard lifting, the regular order-k
diagram is described by the exact kth level in the arrangement of hyperplanes tangent to the
unit paraboloid. Since we care about the ordering of the k sites, we are instead concerned
with the at most k level. There is a shallow cutting covering the at most k level with O(n/k)
vertical prisms each intersecting O(k) planes [16]. Each prism projects to a triangle in the
plane, and thus within this triangle only O(k) sites (corresponding to the planes intersecting
the prism) are relevant. Note that O(k) sites can define at most O(k4) different orderings as
they define O(k2) bisectors and the the arrangment of these bisectors has O(k4) complexity.
Thus the plane is covered by O(n/k) triangles within which the order-k sequence Voronoi
diagram has O(k4) complexity, and thus in total the complexity is O(nk3).

We remark that for the purposes of this paper an O(nk5) bound would have sufficed,
and is trivial to obtain. Namely, the worst case complexity of the regular order-k diagram is
O(nk), and by the same argument, within each cell there can be at most O(k4) orderings.

Polynomial Time Approximation Schemes for
Clustering in Low Highway Dimension Graphs
Andreas Emil Feldmann
Charles University, Prague, Czech Republic
feldmann.a.e@gmail.com

David Saulpic
LIP6, Sorbonne Université, Paris, France
david.saulpic@lip6.fr

Abstract
We study clustering problems such as k-Median, k-Means, and Facility Location in graphs of low
highway dimension, which is a graph parameter modeling transportation networks. It was previously
shown that approximation schemes for these problems exist, which either run in quasi-polynomial
time (assuming constant highway dimension) [Feldmann et al. SICOMP 2018] or run in FPT time
(parameterized by the number of clusters k, the highway dimension, and the approximation factor)
[Becker et al. ESA 2018, Braverman et al. 2020]. In this paper we show that a polynomial-time
approximation scheme (PTAS) exists (assuming constant highway dimension). We also show that
the considered problems are NP-hard on graphs of highway dimension 1.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Approximation Scheme, Clustering, Highway Dimension

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.46

Related Version A full version of the paper is available at http://arxiv.org/abs/2006.12897.

Funding Andreas Emil Feldmann: Supported by the Czech Science Foundation GAČR (grant #19-
27871X), and by the Center for Foundations of Modern Computer Science (Charles Univ. project
UNCE/SCI/004).

Acknowledgements We thank Vincent Cohen-Addad for helpful discussions.

1 Introduction

Clustering is a standard optimization task that seeks a “good” partition of a metric space,
such that two points that are “close” should be in the same part. A good clustering of
a dataset allows to retrieve and exploit data, and is therefore a common routine in data
analysis. The underlying data can come from various sources and represent many different
objects. In particular, it is often interesting to cluster geographic data. In that case, the
metric space can be given by a transportation network, which can be modeled by graphs
with low highway dimension.

In this article, we study some popular clustering objectives, namely Facility Location,
k-Median, and k-Means, in graphs with constant highway dimension. The two latter
problems seek to find a set S of k points called centers in a metric (V,dist) that minimizes∑
v∈V (minf∈S dist(v, f))p, with p = 1 for k-Median and p = 2 for k-Means. The objective

for Facility Location is slightly different: each point f of the metric space has an opening
cost wf , and the goal is to find a set S that minimizes

∑
f∈S wf +

∑
v∈V minf∈S dist(v, f).

These problems are APX-hard in general metric spaces [4].
To bypass the hardness of approximation known for these problems, researchers have

considered low dimensional input, such as Euclidean spaces of fixed dimension, metrics with
bounded doubling dimension, or with bounded genus. Many algorithmic tools were developed

© Andreas Emil Feldmann and David Saulpic;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 46; pp. 46:1–46:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6229-5332
mailto:feldmann.a.e@gmail.com
https://orcid.org/0000-0003-4208-8541
mailto:david.saulpic@lip6.fr
https://doi.org/10.4230/LIPIcs.ESA.2020.46
http://arxiv.org/abs/2006.12897
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 PTASs for Clustering in Low Highway Dimension Graphs

for that purpose: in their seminal work, Arora et al. [3] gave the first polynomial time
approximation scheme (PTAS) for k-Median in R2, which generalizes to a quasi-polynomial
time approximation scheme (QPTAS) in Rd for fixed d. This result was generalized by
Talwar [20], who gave a QPTAS for metrics with bounded doubling dimension, and more
recently by Cohen-Addad et al. [10], who gave a near-linear time approximation scheme.

In this work we focus on transportation networks, for which it can be argued that metric
spaces with bounded doubling dimension are not a suitable model: for instance, hub-and-
spoke networks seen in air traffic networks do not have low doubling dimension. Therefore
we study graphs with constant highway dimension, which formalize structural properties
of such networks. The following definition is taken from Feldmann et al. [14]. Here the
ball βv(r) of radius r around v ∈ V is the set of all vertices at distance at most r from v.

I Definition 1. The highway dimension of a graph G is the smallest integer h such that, for
some universal constant c > 4, for every r ∈ R+, and every ball βv(cr) of radius cr, there are
at most h vertices in βv(cr) hitting all shortest paths of length more than r that lie in βv(cr).

For this class of graphs, the only known approximation algorithms for clustering that
compute (1 + ε)-approximations for any ε > 0 either run in quasi-polynomial time, i.e.,
QPTASs [14], or with runtime f(h, k, ε) · n for some exponential function f , i.e., paramet-
erized approximation schemes [6, 8]. Thus an open problem is to identify polynomial-time
approximation schemes (PTASs) for clustering in graphs of constant highway dimension.

1.1 Our results
Our main result is a PTAS for clustering problems on graphs of constant highway dimension.
For convenience, we define slightly more general problems than those stated above. The
k-Clusteringq problem is defined as follows. An instance I consists of a metric (V,dist), a
set of facilities (or centers) F ⊆ V , and a demand function χ : V → N0. The goal is to find a
set S ⊆ F with |S| ≤ k minimizing

∑
v∈V χ(v) ·minf∈S dist(v, f)q. We call all vertices v ∈ V

with χ(v) > 0 the clients of I. k-Median and k-Means are special cases of k-Clusteringq,
where q = 1 and q = 2.

The input to the Facility Locationq problem is the same as for k-Clusteringq, but
additionally each facility f ∈ F has an opening cost wf ∈ R+. The goal is to find a set
S ⊆ F minimizing

∑
f∈S wf +

∑
v∈V χ(v) · minf∈S dist(v, f)q. Facility Location is a

special case of Facility Locationq, where q = 1.
Our main theorem is the following, where X = maxv∈V χI(v) is the largest demand (note

that for k-Median, k-Means, or Facility Location we typically have X = 1).

I Theorem 2. For any ε > 0, a (1 + ε)-approximation for k-Clusteringq and Facility
Locationq can be computed in (nX)(hq/ε)O(q) time on graphs of highway dimension h.

In particular, this algorithm is much faster than the quasi-polynomial time approximation
scheme of Feldmann et al. [14] for k-Median or Facility Location. The runtime of
our algorithm also significantly improves over the exponential dependence on k in the
approximation schemes of Becker et al. [6], Braverman et al. [8] for k-Median.

It has so far been open whether these clustering problems are NP-hard on graphs of
constant highway dimension. We complement our main theorem by showing that they are
NP-hard even for the smallest possible highway dimension. This answers an open problem
given in [14]. Here the uniform Facility Locationq problem has unit opening costs for all
facilities.

A. E. Feldmann and D. Saulpic 46:3

I Theorem 3. The k-Clusteringq and uniform Facility Locationq problems are NP-hard
on graphs of highway dimension 1.

1.2 Related work
On clustering problems. The problems we focus on in this article are known to be APX-hard,
even in Euclidean spaces (see e.g. [4]). In general metric spaces, the current best polynomial-
time algorithm for Facility Location achieves a 1.488-approximation [19], while the best
approximation factor is 2.67 for k-Median ([9]) and 6.357 for k-Means [2].

When restricting the class of graphs, a near-linear time approximation scheme for doubling
metrics was developed in [10]; we will discuss the close relations between our work and this
one in Section 1.3. Local search techniques also yield a PTAS in minor-free graphs or with
bounded doubling dimension [11, 15], and a Θ(q)-approximation for the k-Clusteringq
problem in general metric spaces [17].

Another technique for dealing with clustering problems is to compute coresets, a com-
pressed representation of the input. An ε-coreset is a weighted set of points such that for
every set of centers, the cost for the original set of points is within a (1 + ε)-factor of the cost
for the coreset. Braverman et al. [8] recently proved that graphs with highway dimension h
admit coreset of size Õ((k + h)O(1/ε)). This enables to compute a (1 + ε)-approximation by
enumerating all possible solutions of the coreset. However, this coreset does not have small
highway dimension,1 and thus cannot be used to boost our algorithms.

On highway dimension. The highway dimension was originally defined by Abraham et al.
[1], who specifically chose balls of radius 4r in the Definition 1. Since the original definition
in [1], several other definitions have been proposed. In particular, Feldmann et al. [14] proved
that when choosing a radius cr in Definition 1 for any constant c strictly larger than 4, it
is possible to exploit the structure of graphs with constant highway dimension in order to
obtain a QPTAS for problems such as TSP, Facility Location, and Steiner Tree. As
Abraham et al. [1] point out, the choice of the constant is somewhat arbitrary, and we use
the above definition so that we may exploit the structural insights of [14] for our algorithm.
These structural properties were also leveraged by Becker et al. [6] who gave a PTAS for
the Bounded-Capacity Vehicle Routing problem, and a parameterized approximation
scheme for the k-Center problem (which is essentially k-Clusteringq with q =∞) and
k-Median. In the lower bound side, Disser et al. [12] showed that Steiner Tree and TSP
are weakly NP-hard even when the highway dimension is 1, i.e., each of them is NP-hard but
an FPTAS exists for graphs of highway dimension 1.

It is worth mentioning that further definitions of the highway dimension exist (for a
detailed discussion see [7, 14]). In particular, for a more general definition of the highway
dimension than the one of Definition 1, Feldmann [13] gave a parameterized 3/2-approximation
algorithm with runtime 2O(kh logh)nO(1) for k-Center.

1.3 Our techniques
To obtain Theorem 2, we rely on the framework recently developed by Cohen-Addad et al.
[10] for doubling metrics. More precisely, they show that the split-tree decomposition of
Talwar [20] has some interesting properties, and exploit them to design their algorithm.

1 Indeed, a subset of a metric with small highway dimension does not necessarily have small highway
dimension as well: think of a star metric on which the center is removed.

ESA 2020

46:4 PTASs for Clustering in Low Highway Dimension Graphs

Our main contribution is to provide a decomposition with similar properties in graphs with
constant highway dimension. This is done relying on some structural properties of such
graphs presented by Feldmann et al. [14]. We start by giving the outline of the algorithm
from [10], and then explain how to carry the results over to the highway dimension setting.

On doubling metrics. The starting point of many approximation algorithms for doubling
metrics is a decomposition of the metric, as presented in the following lemma.2 A hierarchical
decomposition D of a metric (V,dist) is a set of partitions B0,B1, . . . ,Bλ, where Bi refines Bi+1,
i.e., every part B ∈ Bi is contained in some part of Bi+1. Moreover, in B0 every part contains
a singleton vertex, while Bλ contains only one part, namely V . For a point v ∈ V and a
radius r > 0, we say that the ball βv(r) is cut at level i if i is the largest integer for which
the ball βv(r) is not contained in a single part of Bi. For any subset W ⊆ V we define
λ(W) = dlog2 diam(W)e.

I Lemma 4 (Reformulation of [20, 5] as found in [10]). For any metric (V,dist) of doubling
dimension d and any ρ > 0, there exists a polynomial-time computable randomized hierarchical
decomposition D = {B0, . . . ,Bλ(V)} such that:
1. Scaling probability: for any v ∈ V , radius r, and level i, we have

Pr[D cuts βv(r) at level i] ≤ 2O(d) · r/2i.
2. Portal set: every part B ∈ Bi where Bi ∈ D comes with a set of portals PB ⊆ B that is

a. concise: the size of the portal set is bounded by |PB | ≤ 1/ρd, and
b. precise: for every node u ∈ B there is a portal p ∈ PB with dist(u, p) ≤ ρ2i+1.

We sketch briefly the standard use of this decomposition. For clustering problems, one can
show that there exists a portal-respecting solution with near-optimal cost (see Talwar [20]).
In this structured solution, each client connects to a facility via a portal-respecting path that
enters and leaves any part B of D only through a node of the portal set PB . Those portals
therefore act as separators of the metric. A standard dynamic program approach can then
compute the best portal respecting solution.

To ensure that there is a portal-respecting solution with near-optimal cost, one uses the
preciseness property of the portal set: the distortion of connecting a client c with a facility f
through portals instead of directly is bounded as follows. Let i be the level at which D cuts
c and f , meaning that i is the maximum integer for which c and f lie in different parts
of Bi. At every level j ≤ i, the distortion incurred by using portals is ρ2j . Hence the total
distortion is

∑
j≤i ρ2j = ρ2i+1. Now, property (1) of the decomposition ensures that c and f

are cut at level i with probability O(dist(c, f)/2i). Hence combining those two bounds over
all levels ensures that, in expectation, the distortion between c and f is O(dist(c, f) · ρλ(V)).
Since λ(V) = O(logn), choosing ρ = ε/ logn gives a distortion of O(εdist(c, f)). Summing
over all clients proves that there exists a near-optimal portal-respecting solution.

The issue with this approach is that the number of needed portals is O(logd n), and the
dynamic program has a runtime that is exponential in this number. Thus the time complexity
is quasipolynomial. The novelty of [10] is to show how to reduce the number of portals to a
constant. The idea is to reduce the number of levels on which a client can be cut from its
facility.

2 We remark that in [10] the preciseness of Lemma 4 was expressed akin to the weaker property found in
Lemma 5, which however would not lead to a near-linear time approximation scheme as claimed in [10],
but rather a PTAS as shown in this work. This can however easily be alleviated for [10] by using the
stronger preciseness as stated here in Lemma 4.

A. E. Feldmann and D. Saulpic 46:5

For this, they present a processing step of the instance, that helps deal with clients cut
from their facility at a high level. Roughly speaking, their algorithm computes a constant
factor approximation L, and a client c is called badly-cut if D cuts it from its closest facility
of L at a level larger than log(dist(c, L)/ε). Every badly-cut client is moved to its closest
facility of L. Moreover, every client at distance less than εdist(c, L) of its closest facility of L
can be moved to it as well. It is then shown that this new instance ID has small distortion,
which essentially means that any solution to ID can be converted to a solution of the original
instance I while only losing a (1 + ε)-factor in quality. In this instance ID, all clients are cut
from their closest facility of L at some level between log(ε dist(c, L)) and log(dist(c, L)/ε).
Using this property, it can be shown that c and its closest center in the optimal solution are
also cut at a level in that range. As there are only O(log(1/ε)) levels in this range, by the
previous argument, the number of portals is a constant. (See Section 2 for formal definitions
and lemmas.)

On highway dimension. The above arguments for doubling metrics hold thanks to Lemma 4.
In this work, we show how to construct a similar decomposition for low highway dimension:

I Lemma 5. Given a shortest-path metric (V,dist) of a graph with highway dimension h, a
subset W ⊆ V , and ρ > 0, there exists a polynomial-time computable randomized hierarchical
decomposition D = {B0, . . . ,Bλ(W)} of W such that:
1. Scaling probability: for any v ∈ V , radius r, and level i, we have

Pr[D cuts βv(r) at level i] ≤ σ · r/2i, where σ = (h log(1/ρ))O(1).
2. Interface: for any B ∈ Bi on level i ≥ 1 there exists an interface IB ⊆ V , which is

a. concise: |IB | ≤ (h/ρ)O(1), and
b. precise: for any u, v ∈ B such that u and v are cut by D at level i− 1, there exists

p ∈ IB with dist(u, p) + dist(p, v) ≤ dist(u, v) + 34 · ρ2i.

Our construction relies on the town decomposition from [14], which has the following
properties: for a graph with highway dimension h and a given ρ > 0, every part T of the
decomposition (called a town) has a set XT of hubs with doubling dimension O(h log 1/ρ),
such that for any two vertices u and v in different child towns of T , there is a vertex x ∈ XT

such that dist(u, x) + dist(x, v) ≤ (1 + 2ρ) · dist(u, v) – see Theorem 8 for more details.
This hub set XT is similar to the portal set of Lemma 4, but has some fundamental

differences: the first one is that the decomposition is deterministic, and so it may happen
that a client and its facility are cut at a very high level – something that happens only
with tiny probability in the doubling setting thanks to the scaling probability. Another
main difference is that the size of XT might be unbounded. As a consequence, it cannot be
directly used as a portal set in a dynamic program. To deal with this, we combine the town
decomposition with a hierarchical decomposition of each set XT according to Lemma 4, to
build an interface as stated in Lemma 5.

A further notable difference to portals is that the preciseness property of the resulting
interface is weaker. In particular, while there is a portal close to each vertex of a part,
the hubs can be far from some vertices as long as they lie close to the shortest path to
other vertices, which however can be far (due to Lemma 9). As a consequence no analog
of near-optimal portal-respecting paths exist. Instead, when connecting a client c with a
facility f we need to use the interface point of IB provided by the preciseness property of
Lemma 5 close to the shortest path between c and f , where B contains both c and f . This
shifts the perspective from externally connecting vertices of a part to vertices outside a part,
as done for portals, to internally connecting vertices of parts, as done here.

ESA 2020

46:6 PTASs for Clustering in Low Highway Dimension Graphs

As a consequence, we develop a dynamic program, which follows more or less standard
techniques as for instance given in [3, 18], but needs to handle the weaker preciseness
property of the interface. The main idea is to guess the distances from interface points to
facilities while recursing on the decomposition D of Lemma 5. Due to the shifted perspective
towards internally connecting vertices of parts, the runtime of the dynamic program depends
exponentially on the total number of levels. However, it can be shown that it suffices to
compute a solution on a carefully chosen subset W of the metric for which only a logarithmic
number of levels of the decomposition need to be considered, and thus the runtime is
polynomial.

1.4 Outline
After defining the concepts we use, and stating various structural lemmas in Section 2, we
show how to incorporate our decomposition into the framework of [10]. The proof of Lemma 5
is then presented in Section 3. The formal algorithm is deferred to Section 4. We conclude
the main body of this paper with the hardness proof of Theorem 3 in Section 5.

2 Preliminaries

On doubling metrics. The doubling dimension of a metric is the smallest integer d such
that for any r > 0 and v ∈ V , the ball βv(2r) of radius 2r around v can be covered by at
most 2d balls of half the radius r. A doubling metric is a metric space where the doubling
dimension is bounded. In those spaces, one can show the existence of small nets:

I Definition 6. A δ-net of a metric (V,dist) is a subset of nodes N ⊆ V with the property
that every node in V is at distance at most δ from a net point of N , and each pair of net
points of N are at distance more than δ.

I Lemma 7 ([16]). Let (V,dist) be a metric space with doubling dimension d. If its diameter
is D, and N is a δ-net of V , then |N | ≤ 2d·dlog2(D/δ)e. Moreover, any subset W ⊆ V has
doubling dimension at most 2d.

On highway dimension. We note that for simplicity we will set c = 8 in Definition 1
throughout this paper, even if all claimed results are also true for other values of c. When we
refer to a metric as having highway dimension h, we mean that it is the shortest-path metric
of a graph of highway dimension h. The main result we will use about highway dimension is
existence the of the following decomposition:

I Theorem 8 ([14]). Given a shortest-path metric (V,dist) of highway dimension h, and
ρ > 0, there exists a polynomial-time computable deterministic hierarchical decomposition T ,
called the town decomposition, such that every part T ∈ T , called a town, has a set of hubs3
XT ⊆ T with the following properties:
a. doubling: the doubling dimension of XT is d = O(log(h log(1/ρ))), and
b. precise: for any two vertices u and v in different child parts of T , there is a vertex

x ∈ XT such that dist(u, x) + dist(x, v) ≤ (1 + 2ρ) · dist(u, v).

The town decomposition behaves differently from those in Lemmas 4 and 5 in several
ways. The main properties we will need here are the following.

I Lemma 9 ([14]). For any T ∈ T we have diam(T) < dist(T, V \T). Furthermore, for any
child town T ′ of T we have diam(T ′) ≤ diam(T)/2.

3 called approximate core hubs in [14].

A. E. Feldmann and D. Saulpic 46:7

On how to incorporate our decomposition into the framework of [10]. Assume we are
given an instance I of k-Clusteringq or Facility Locationq on some metric (V,dist),
together with a hierarchical decomposition D of the metric with the properties listed in
Lemma 5. We start by defining the badly cut clients. In the following, we fix an optimal
solution OPT and an approximate solution L, and we define τ(ε, q, σ) = log2(σ(q+1)q/εq+1).

I Definition 10 (badly cut [10]). Let (V,dist) be a metric of an instance I of k-Clusteringq
or Facility Locationq, D be a hierarchical decomposition of the metric with scaling
probability factor σ, and ε > 0. If Lv is the distance from v to the closest facility of an
approximate solution L to I, then a client c is badly cut w.r.t. D if the ball βc(3Lc/ε) is cut
as some level i greater than log2(3Lc/ε) + τ(ε, q, σ).

Similarly, if OPTv is the distance from v to the closest facility of the optimum solution
OPT of I, then a facility f ∈ L is badly cut w.r.t. D if βf (3OPTf) is cut at some level i
greater than log2(3OPTf) + τ(ε, q, σ).

Given an instance I of k-Clusteringq or Facility Locationq and a decomposition D
of the metric, a new instance ID is computed to get rid of badly cut clients. The instance
ID is built from I by moving clients that are badly cut w.r.t. D to their closest facility in
L.4 For any client c of ID we denote by c̃ the original position of this client in I, i.e., if c̃ is
a badly cut client of I then c = L(c̃) and otherwise c = c̃. The set F of potential centers
in unchanged, and thus any solution of I is a solution of ID, and vice versa. Note that ID
does not contain any badly cut client w.r.t. D, and that the definition of ID depends on the
randomness of D.

To describe the properties we obtain for the new instance, given a solution S to any
instance I0 of k-Clusteringq or Facility Locationq, we define costI0(S) =

∑
v∈V χI0(v)·

dist(v, S)q to be the cost incurred by only the distances to the facilities. Given some ε > 0
and the computed instance ID from I, we define

νID = max
solution S

{
costI(S)− (1 + 2ε) costID (S) , (1− 2ε) costID (S)− costI(S)

}
.

If BD denotes the set of badly cut facilities (w.r.t D) of the solution L to I from which
instance ID is constructed, we say that ID has small distortion w.r.t. I if νID ≤ ε costI(L),
and there exists a witness solution Ŝ ⊆ F that contains BD and for which costID(Ŝ) ≤
(1 + O(ε)) costI(OPT) + O(ε) costI(L). Moreover, in the case of Facility Locationq,
Ŝ = OPT ∪BD and

∑
f∈BD wf ≤ ε ·

∑
f∈L wf .

Based on these definitions, we now state the main tool we use from [10], and which
exploits the scaling probability of our decomposition in Lemma 5 to obtain the required
structure.

I Lemma 11 ([10]). Let (V,dist) be a metric, and D be a randomized hierarchical decompos-
ition of (V,dist) with scaling probability factor σ. Let I be an instance of k-Clusteringq or
Facility Locationq on (V,dist), with optimum solution OPT and approximate solution L.
For any (sufficiently small) ε > 0, with probability at least 1− ε (over D), the instance ID
constructed from I and L as descibed above has small distortion with a witness solution Ŝ.
Furthermore, every client c of ID is cut by D from its closest facility in Ŝ at level at most
log2(3Lc̃/ε+ 4OPTc̃) + τ(ε, q, σ), where c̃ is the original position of c in I.

As a consequence of Lemma 11, a dynamic program can compute a solution recursively
on the parts of D in polynomial time, as sketched in Section 1.3 and detailed in Section 4.

4 More concretely, let χI and χID be the demand functions of I and ID, respectively. Initially we let
ID be a copy of I, so that in particular χID = χI . Then, for each client c of I that is badly cut in L
w.r.t. D, if L(c) denotes the closest facility of L to c, in ID we set χID (c) = 0 and increase χID (L(c))
by the value of χI(c) in I.

ESA 2020

46:8 PTASs for Clustering in Low Highway Dimension Graphs

3 Decomposing the graph

Figure 1 A town T and its child towns (black circles). The hubs (crosses) are decomposed by XT

(indicated by different colours). Parts B ∈ Bi+1 (red dashed) are decomposed into parts on level i
(pink dashed). Parts of Bi−1 can lie in different towns (e.g., the child town of T with subtowns in
grey).

This section is dedicated to the proof of Lemma 5. The general idea to construct D is as
follows. For doubling metrics, to decompose a part at level i, it is enough to pick a random
diameter δ ∈ [2i−2, 2i−1) and divide the part into child parts of diameter δ. This is not
doable in the highway dimension setting: if one wishes to decompose a town T , it cannot
divide any of the child towns, since it is not possible to use the approximate core hubs of T
to approximate paths inside one of the child towns. The big picture of our decomposition is
therefore as follow. To decompose a town at level i, we group randomly (as in the doubling
decomposition) the “small” child towns, and put every “big” child town in its own subpart.
As we will see, this turns out to be enough.

In order to decompose a town T , we need the following definitions. For each child town T ′
of T we identify the connecting hub x ∈ XT , which is some fixed closest hub of XT to T ′,
breaking ties arbitrarily. Moreover, given a hierarchical decomposition XT = {U0, . . . ,Uλ(XT)}
ofXT , we define for every i the connecting i-cluster of a child town T ′ of T to be the set U ∈ U`
on level ` = min{i, λ(XT)} containing the connecting hub of T ′. We then follow the steps
below, after choosing µ from the interval (0, 1] uniformly at random (cf. Figure 1):
1. Given a town T ∈ T , we apply Lemma 4 to find a randomized hierarchical decomposition
XT = {U0, . . . ,Uλ(XT)} of the hubs XT of T .

2. Using XT , we define a randomized partial decomposition of T ∩W as follows. For any i
and U ∈ Umin{i,λ(XT)}, let the set AUi ⊆ T ∩W be the union of all T ′ ∩W where T ′ is a
child town of T with the following two properties:
a. U is the connecting i-cluster of T ′, and
b. dist(T ′, V \ T ′) ≤ µ2i.
Hence AUi contains all towns somewhat close to U , and with small diameter due to
Lemma 9. We let ATi be the set containing each non-empty AUi .

3. Now, the hierarchical decomposition D = {B0, . . . ,Bλ(W)} of W can be constructed
inductively as follows. At the highest level λ(W) of D, W is partitioned in a single set:
Bλ(W) = {W}. Now, to decompose a part B ∈ Bi+1 at level i+ 1, we do the following.
Let T ∈ T be the inclusion-wise minimal town for which B ⊆ T . The “small” subtowns
of T lying inside B are grouped according to step (2) (note that dist(T ′, V \ T ′) also
bounds the diameter of T ′ by Lemma 9), and the other ones form individual subparts.
More formally, the set Bi contains every part A ∈ ATi for which A ⊆ B, and also every
set T ′ ∩W , where T ′ is a child town of T for which T ′ ∩W ⊆ B and T ′ ∩W was not
covered by the previously added parts of ATi , i.e., T ′ ∩W ∩A = ∅ for every A ∈ ATi .

A. E. Feldmann and D. Saulpic 46:9

To prove that the constructed decomposition D has the desired properties –i.e. that it
is indeed a hierarchical decomposition, with parts of bounded diameter and small scaling
probability factor –, we begin with some auxiliary lemmas, of which the first one bounds the
distance of a town to its connecting hub.

I Lemma 12. If T ′ is a child town of T with connecting hub x ∈ XT , then dist(x, T ′) ≤
(1 + 2ρ) dist(T ′, V \ T ′).

Proof. Let T ′′ be the closest sibling town to T ′, and let u ∈ T ′ and v ∈ T ′′ be the vertices
defining the distance from T ′ to T ′′, i.e., dist(u, v) = dist(T ′, T ′′) = dist(T ′, V \ T ′). By
Theorem 8, there is a hub y ∈ XT for which dist(u, y) + dist(y, v) ≤ (1 + 2ρ) · dist(u, v) =
(1 + 2ρ) · dist(T ′, V \ T ′). This implies dist(y, T ′) ≤ dist(u, y) ≤ (1 + 2ρ) · dist(T ′, V \ T ′).
Since the connecting hub x of T ′ is at least as close to T ′ as y, the claim follows. J

Based on the above lemma, we next prove a key property that the diameter of any part
of Bi ∈ D is bounded.

I Lemma 13. If ρ ≤ 1/2, then the diameter of any part of Bi ∈ D is less than 2i+4.

Proof. On the highest level λ(W) of D the only part of Bλ(W) is W itself. As λ(W) =
dlog2 diam(W)e we get diam(W) ≤ 2λ(W)+1, as required.

For any level i < λ(W), a set in Bi is equal to a set A ∈ ATi for some town T ∈ T or
it is equal to some set T ′ ∩W for a child town T ′ of T . In the former case, the set A is
equal to a set AUi for some cluster U ∈ U` where ` = min{i, λ(XT)} and U` ∈ XT . The
set AUi contains the union of sets T ′ ∩W for child towns T ′ of T , for which their connecting
hubs lie in U and dist(T ′, V \ T ′) ≤ µ2i ≤ 2i, as µ ≤ 1. Thus from Lemma 12 we get
dist(U, T ′) ≤ (1 + 2ρ)2i, and by Lemma 9 we have diam(T ′) < dist(T ′, V \ T ′) ≤ 2i. The
cluster U has diameter less than 2i+1 by Lemma 4, since it is part of the hierarchical
decomposition XT and lies on level ` ≤ i. Let u and v be the vertices of AUi defining the
diameter of AUi , i.e., dist(u, v) = diam(AUi). We may reach v from u by first crossing the
child town T ′ that u lies in, then passing over to U , then crossing U , after which we pass
over to the child town T ′′ containing v, and finally crossing this child town as well to reach v.
Hence, assuming that ρ ≤ 1/2 the diameter of AUi is bounded by

dist(u, v) ≤ diam(T ′) + dist(U, T ′) + diam(U) + dist(U, T ′′) + diam(T ′′)
< 2 · 2i + 2 · (1 + 2ρ)2i + 2i+1 = (6 + 4ρ)2i ≤ 2i+3

Now consider the other case, when a set B ∈ Bi on level i < λ(W) is equal to some set
T ′ ∩W for a child town T ′ of a town T . For such a child town T ′ there is no enforced upper
bound on the distance to other child towns as before, and thus it is necessary to be more
careful to bound the diameter of the part. Starting with B = Bi, let Bi ⊆ Bi+1 ⊆ . . . ⊆ Bj
be the longest chain of parts of increasing levels that are of the same type as B. More
concretely, for every ` ∈ {i, i+ 1, . . . , j} we have B` ∈ B` and B` is equal to some set T ′` ∩W
for a child town T ′` of the inclusion-wise minimal town T` containing B`+1. Note that in
particular j < λ(W). As we chose the longest such chain, on the next level j + 1 there is
no such set containing Bj , which means that the set Bj+1 ∈ Bj+1 for which Bj ⊆ Bj+1 is
either equal to a set A ∈ ATj+1

j+1 for some town Tj+1, or j + 1 = λ(W). In either case, from
above we get diam(Bj+1) ≤ 2j+4.

Note that for any ` ∈ {i, i + 1, . . . , j − 1} the town T ′` is a descendant town of T ′`+1,
since B`+1 is contained in T ′`+1 and T ′` is a child town of the inclusion-wise minimal town T`
containing B`+1. By Theorem 8 and Lemma 9 we thus get diam(T ′`) ≤ diam(T ′`+1)/2,

ESA 2020

46:10 PTASs for Clustering in Low Highway Dimension Graphs

which implies diam(T ′i) ≤ diam(T ′j)/2j−i. The set B = Bi is contained in T ′i , which means
diam(B) ≤ diam(T ′i). The town Tj is the inclusion-wise minimal town containing Bj+1, while
at the same time the child town T ′j of Tj contains Bj . As Bj ⊆ Bj+1, this means that Bj+1
both contains vertices inside and outside of T ′j , and so dist(T ′j , V \ T ′j) ≤ diam(Bj+1). By
Lemma 9 we know that diam(T ′j) ≤ dist(T ′j , V \T ′j), and putting all these inequalities together
we obtain

diam(B) ≤ diam(T ′i) ≤ diam(T ′j)/2j−i ≤ dist(T ′j , V \ T ′j)/2j−i

≤ diam(Bj+1)/2j−i ≤ 2j+4/2j−i = 2i+4. J

Using Lemma 13 it is not hard to prove the correctness of D, which we turn to next.
All statements marked with “?” are deferred to the full version of the paper, due to space
constraints.

I Lemma 14 (?). The tuple D = {B0, . . . ,Bλ(V)} is a hierarchical decomposition of W .

We now turn to proving the properties of Lemma 5, starting with the scaling probability.

I Lemma 15. The decomposition D has scaling probability factor σ = (h log(1/ρ))O(1).

Proof. To prove the claim, we need to prove that for any v ∈W , radius r, and level i, the
probability that D cuts the ball βv(r) at level i is at most (h log(1/ρ))O(1) · r/2i. If D cuts
βv(r) at level i, it means that βv(r) is fully contained in a part at level i + 1: let T ∈ T
be the inclusion-wise minimal town containing that part. There are two cases to consider:
either βv(r) is cut by “small” parts, i.e. there exist two distinct parts A,A′ ∈ ATi such that
v ∈ A and u ∈ A′ for some u ∈W ∩ βv(r), or not.

We start with the latter case, when βv(r) is not cut by small parts. If D cuts the ball at
level i, there are distinct parts B,B′ ∈ Bi such that v ∈ B and u ∈ B′ for some u ∈W ∩βv(r).
Assume w.l.o.g. that B /∈ ATi (which is possible to assume since βv(r) is not cut by small
parts). By construction of the decomposition, there must be a child town T ′ of T , for
which B = T ′ ∩W and dist(T ′, V \ T ′) > µ2i. Note that r ≥ dist(v, u) ≥ dist(T ′, B′′) ≥
dist(T ′, V \ T ′) ≥ µ2i, and hence µ ≤ r/2i. The decomposition D can therefore only cut
βv(r) on level i if µ < r/2i. Since µ is chosen uniformly at random from the interval (0, 1],
the probability is less than r/2i.

We now turn to the other case, when βv(r) is cut by two small parts A1 and A2. The town
T must have two child towns T1 and T2 for which v ∈ T1 ∩W ⊆ A1 and u ∈ T2 ∩W ⊆ A2.
Let x1 and x2 be the connecting hubs of T1 and T2. The decomposition D cuts v and u on
level i if and only if XT cuts x1 and x2 on level ` = min{i, λ(XT)}. Indeed, let U1 and U2 be
the connecting i-clusters of T1 and T2: then A1 = AiU1

and A2 = AiU2
, with x1 ∈ U1, x2 ∈ U2.

Thus D cuts v and u on level i if and only if U1 6= U2, i.e., if and only if XT cuts x1 and x2
on level ` = min{i, λ(XT)}.

To compute the probability that x1 and x2 are cut, it is necessary to bound the distance
between them. As v ∈ T1 and u ∈ T2 while u ∈ βv(r), for each j ∈ {1, 2} we have
dist(Tj , V \Tj) ≤ dist(T1, T2) ≤ r. By Lemma 12 the distance between Tj and its connecting
hub xj ∈ XT is thus at most (1 + 2ρ)r. Also, by Lemma 9 we have diam(Tj) < dist(Tj , V \
Tj) ≤ r, and we get

dist(x1, x2) ≤ dist(x1, T1) + diam(T1) + dist(T1, T2) + diam(T2) + dist(T2, x2) ≤ (5 + 4ρ)r.

We can reformulate the above as follows: if D cuts the ball βv(r) at level i, and βv(r)
is cut by some “small” parts A1 and A2, then XT cuts the ball βx1((5 + 4ρ)r) on level i,
where x1 is the hub defined for v above. We know that the probability of the latter event

A. E. Feldmann and D. Saulpic 46:11

is at most 2O(d)(5 + 4ρ)r/2i by Lemma 4, where d = O(log(h log(1/ρ))) is the doubling
dimension of XT by Theorem 8. Hence the probability that D cuts the ball βv(r) at level i
is bounded by (h log(1/ρ))O(1) · r/2i. Taking a union bound over the two considered cases
proves the claim. J

To prove the remaining property of Lemma 5 for D, for each B ∈ Bi we need to
choose an interface IB from the whole vertex set V . For this we use a carefully chosen
net (see Definition 6) of the hubs of the inclusion-wise minimal town T containing B, as
formalized in the following lemma.

I Lemma 16. Given B ∈ Bi for some Bi ∈ D and i ≥ 1, let T ∈ T be the inclusion-
wise minimal town containing B. We define the interface IB to be a ρ2i-net of the set
YB = {x ∈ XT | dist(x,B) ≤ (1 + 2ρ) diam(B)}. The interface IB has the conciseness and
preciseness properties of Lemma 5 for ρ ≤ 1/2.

Proof. We first prove that IB is precise. Consider two vertices u, v ∈ B that are cut at
level i− 1 by D. This means there are two distinct parts B′, B′′ ∈ Bi−1 on this level such
that v ∈ B′ and u ∈ B′′. By definition, both B′ and B′′ are unions of sets T ′ ∩W where T ′
is a child town of the inclusion-wise minimal town T containing B. Also B′ ∩ B′′ = ∅ by
Lemma 14. This means that T has two child towns T1 and T2 for which v ∈ T1 ∩W ⊆ B′
and u ∈ T2 ∩W ⊆ B′′. By Theorem 8, there is an approximate core hub x ∈ XT such
that dist(u, x) + dist(x, v) ≤ (1 + 2ρ) dist(u, v). In particular, dist(x,B) ≤ dist(u, x) ≤
(1 + 2ρ) dist(u, v) ≤ (1 + 2ρ) diam(B), as u, v ∈ B. This means that x ∈ YB. Since IB is
a ρ2i-net of YB, there is a hub p ∈ IB for which dist(x, p) ≤ ρ2i. By Lemma 13 we have
dist(u, v) ≤ diam(B) ≤ 2i+4 if ρ ≤ 1/2, and so IB is precise:

dist(u, p) + dist(p, v) ≤ dist(u, x) + 2 · dist(x, p) + dist(x, v)
≤ (1 + 2ρ) dist(u, v) + ρ2i+1 ≤ dist(u, v) + 2ρ · 2i+4 + ρ2i+1 ≤ dist(u, v) + 34 · ρ2i,

To prove conciseness, recall that diam(B) ≤ 2i+4 by Lemma 13, which means that
diam(YB) ≤ diam(B) + 2(1 + 2ρ) diam(B) ≤ 5 · 2i+4 for ρ ≤ 1/2. Since IB is a ρ2i-net
of YB, Lemma 7 implies |IB | ≤ 2d·dlog2(80/ρ)e, where d is the doubling dimension of YB.
Theorem 8 says that XT has doubling dimension O(log(h log(1/ρ))), and as YB ⊆ XT the
same asymptotic bound holds for the doubling dimension d of YB by Lemma 7. Therefore
we get |IB | ≤ (h log(1/ρ))O(log(1/ρ)) = (h/ρ)O(1), which concludes the proof. J

4 The algorithm

Let an instance I of the k-Clusteringq or Facility Locationq problem on a shortest-
path metric (V,dist) of a graph G with highway dimension h, and maximum demand
X = maxv∈V χI(v) be given. The algorithm performs the following steps:

1. compute a town decomposition T together with the hubs for each town as given by
Theorem 8.

2. compute a hierarchical decomposition D according to Lemma 5, while simultaneously
converting I into a coarse instance w.r.t. D, meaning that there is a subset W ⊆ V for
which

the clients and facilities of I are contained in W , i.e., F ∪ {v ∈ V | χI(v) > 0} ⊆W ,
and
every part of D on level at most ξ(W) = bλ(W) − 2 log2(nX/ε)c has at most one
facility, i.e., |B ∩ F | ≤ 1 for every B ∈ Bξ(W).

ESA 2020

46:12 PTASs for Clustering in Low Highway Dimension Graphs

3. compute the instance ID of small distortion as given by Lemma 11.
4. run a dynamic program on ID as given in Section 4.2, to compute an optimum rounded

interface-respecting solution (see Section 4.1 for a formal definition), and output it as a
solution to the input instance.

In a nutshell, the coarseness of the instances guarantees that only a logarithmic number
of levels need to be considered by the dynamic program. This step loses a (1 + ε)-factor
in the solution quality. The dynamic program is only able to compute highly structured
solutions, which are captured by the notion of rounding and interface-respecting. Due to
this, another (1 + ε)-factor in the solution quality is lost. In Section 4.1 we prove that the
output of the dynamic program is a near-optimal solution to the input instance (proving
Theorem 2), and we also detail step (4) of the algorithm. Then in Section 4.2 we describe
the details of the dynamic program.

4.1 Approximating the distances
One caveat of the dynamic program is that the runtime is only polynomial if the the recursion
depth is logarithmic. However when computing our decomposition on the whole metric
(V,dist), the number of levels is λ(V) + 1 = dlog2 diam(V)e+ 1, which can be linear in the
input size. Standard techniques can be used to reduce the number of levels to O(log(n/ε))
when aiming for a (1 + ε)-approximation by preprocessing the input metric. However, for
graphs of bounded highway dimension these general techniques change the hub sets and
we would have to be careful to maintain the properties we need, as given by Theorem 8.
Therefore we adapt the standard techniques to our setting via the notion of coarse instances.

The following lemma shows that we can reduce any instance to a set of coarse ones, for
which, as we will see, our dynamic program only needs to consider the highest 2 log2(nX/ε)
levels.

I Lemma 17 (?). Let I be an instance of k-Clusteringq or Facility Locationq on a
graph G of highway dimension h. There are polynomial-time computable instances I1, . . . , Ib
and respective hierarchical decompositions D1, . . . ,Db with the properties given in Lemma 5
for any ρ ≤ 1/2, such that for each i ∈ {1, . . . , b} the instance Ii is also defined on G and
is coarse w.r.t. Di. Furthermore, if an α-approximation can be computed for each of the
instances I1, . . . , Ib in polynomial time, then for any ε > 0 a (1 +O(ε))α-approximation can
be computed for I in polynomial time.

Lemma 17 implies that if there is a PTAS for coarse instances, we also have a PTAS
in general. Hence from now on we assume that the given instance I is coarse w.r.t. a
hierarchical decomposition D of some subset W of the vertices of the input graph G, where D
has bounded scaling probability factor and concise and precise interface sets in G according
to Lemma 5 (for some value ρ > 0 specified later)

The next step of the algorithm is to compute a new instance ID with small distortion
as given by Lemma 11. Recall that ID is obtained from I by moving badly cut clients to
facilities of L. In particular, the instance ID is also coarse w.r.t. D, which means that we
may run our dynamic program on ID.

The dynamic program exploits the interface sets of D by computing a near-optimum
“interface-respecting” solution to ID, i.e., a solution where clients are connected to facilities
through interface points. Moreover, for the dynamic program to run in polynomial time it can
only estimate the distances between interface points and facilities to a certain precision. In
general, we denote by 〈x〉i = min{(35+δ)ρ2i | δ ∈ N and ρδ2i ≥ x} the value of x rounded to

A. E. Feldmann and D. Saulpic 46:13

the next multiple of ρ2i and shifted by 35ρ2i. We then define the rounded interface-respecting
distance dist′(v, u) from a vertex v to another vertex u as follows. If v and u are not cut at
any level, i.e., v = u, then dist′(v, u) = 0. Otherwise, if i ≥ 1 is the level of D such that there
is a part B ∈ Bi with v, u ∈ B, and D cuts v and u at level i− 1, we let

dist′(v, u) = min
{

dist(v, p) + 〈dist(p, u)〉i | p ∈ IB
}
.

Note that dist′(·, ·) does not necessarily fulfill the triangle inequality, and is also not symmetric.
We therefore need the bounds of the following lemma.

I Lemma 18. For any level i ≥ 1 and vertices v and u that are cut by D on level i−1 we have
dist′(v, u) ≤ dist(v, u) + 70 · ρ2i. Let B ∈ Bj be the part on some level j ≥ i with v, u ∈ B.
For any p ∈ IB we have dist′(v, u) ≤ dist(v, u) + 〈dist(p, u)〉j.

Proof. Let B′ ∈ Bi be the part on level i containing both v and u. By Lemma 5 there
is an interface point p′ ∈ IB′ such that dist(v, p′) + dist(p′, u) ≤ dist(v, u) + 34 · ρ2i. By
definition of the rounding we also have 〈dist(p′, u)〉i ≤ dist(p′, u)+36 ·ρ2i. Hence dist′(v, u) ≤
dist(v, p′) + 〈dist(p′, u)〉i ≤ dist(v, p′) + dist(p′, u) + 36 · ρ2i ≤ dist(v, u) + 70 · ρ2i.

The second part is obvious if j = i from the definition of dist′(v, u). If j ≥ i + 1, we
use the above bound on dist′(v, u) together with the additive shift of the rounding and the
triangle inequality of dist(·, ·) to obtain

dist′(v, u) ≤ dist(v, u) + 70 · ρ2i ≤ dist(v, p) + dist(p, u) + 70 · ρ2j−1

≤ dist(v, p) + 〈dist(p, u)〉j − 35 · ρ2j + 70 · ρ2j−1 = dist(v, p) + 〈dist(p, u)〉j .J

For any non-empty set S of facilities, we define dist′(v, S) = minf∈S{dist′(v, S)}, and
for empty sets we let dist′(v, ∅) = ∞. Analogous to costI0(S), for a solution S to some
instance I0 we also define cost′I0

(S) using dist′(·, ·) as

cost′I0
(S) =

∑
v∈V

χID (v) · dist′(v, S)q.

We show the following lemma, which translates between cost′ID and costI , and is implied
by the preciseness of the interface sets and the fact that ID has small distortion. Recall that
the set of facilities is the same in I and ID, i.e., a solution to one of these instances is also a
solution to the other.

I Lemma 19 (?). Let I be an instance of k-Clusteringq or Facility Locationq with
optimum solution OPT and approximate solution L. Let ID be an instance of small distortion
for some 0 < ε < 1/2, computed from L and a hierarchical decomposition D with precise
interface sets for ρ ≤ εq+4+1/q

280σ(q+1)q according to Lemma 5. For the witness solution Ŝ of ID we
have cost′ID (Ŝ) ≤ (1 +O(ε)) costI(OPT) +O(ε) costI(L). Moreover, for any solution S we
have costI(S) ≤ (1 +O(ε)) cost′ID (S) +O(ε) costI(L).

The next lemma states the properties of the dynamic program that for any coarse
instance I0 computes an optimal rounded interface-respecting solution, which formally is a
subset OPT′ of facilities that minimizes cost′I0

(OPT′) with |OPT′| ≤ k for k-Clusteringq,
while for Facility Locationq it minimizes cost′I0

(OPT′) +
∑
f∈OPT′ wf . This step of the

algorithm exploits the conciseness of the interface sets and the coarseness of the instance to
bound the runtime. We prove the following lemma in Section 4.2.

ESA 2020

46:14 PTASs for Clustering in Low Highway Dimension Graphs

I Lemma 20. Let I0 be an instance of k-Clusteringq or Facility Locationq that for
some ε > 0 is coarse w.r.t. a hierarchical decomposition D with concise interface sets for
some 1/2 ≥ ρ > 0 according to Lemma 5. An optimum rounded interface-respecting solution
for I0 can be computed in (nX/ε)(h/ρ)O(1) time.

We are now ready to put together the above lemmas to prove Theorem 2. Due to space
constraints however, the formal proof is deferred to the full version of the paper.

4.2 The dynamic program (proof of Lemma 20)
We describe the algorithm for k-Clusteringq, and only mention in the end how to modify
the algorithm to compute a solution for Facility Locationq.

The solution is computed by a dynamic program recursing on the decomposition D. Let
W be the vertex set that D decomposes, and which contains all clients and facilities of the
coarse instance I. Roughly speaking, the table of the dynamic program will have an entry
for every part B ∈ Bi of D on all levels i ≥ ξ(W), for which it will estimate the distance
from each interface point on all higher levels j ≥ i+ 1 to the closest facility of the optimum
solution. That is, if B̃ ∈ Bj is a higher-level part for which B ⊆ B̃, then the distances from
all interface points IB̃ to facilities of the solution in B̃ will be estimated.

Here the estimation happens in two ways. First off, the distances to facilities outside
of B have to be guessed. That is, there is an external distance function d+

j that assigns a
distance to each interface point of IB̃, anticipating the distance from such a point to the
closest facility of B̃, if this facility lies outside of B. In order to verify whether the guess was
correct, each entry for a part B on level i also provides an internal distance function d−j ,
which stores the distance from each interface point of IB̃ on level j ≥ i + 1 to the closest
facility, if the facility is guessed to lie inside of B.

The other way in which distances are estimated concerns the preciseness with which
they are stored. The distance functions d+

j and d−j will only take rounded values 〈x〉j where
0 < x ≤ 2j+5, or ∞ if no facility at the appropriate distance exists. In particular, if the
facility of the solution in B̃ that is closest to p ∈ IB̃ lies outside of B then d−j (p) = ∞,
and if it lies inside of B then d+

j (p) = ∞. If there is no facility of the solution in B̃ then
both distance functions d+

j and d−j are set to ∞ for all p ∈ IB̃. Note that this means that
at least one of d+

j (p) and d−j (p) is always set to ∞. Note also that the finite values in the
domains of the distance functions admit to store the rounded distance to any facility in B̃
on level j, since the diameter of B̃ is at most 2j+4 by Lemma 13, and the distance from
any p ∈ IB̃ to B̃ is at most (1 + 2ρ) diam(B̃) by Lemma 16, i.e., for any f ∈ B̃ ∩ F we have
dist(p, f) ≤ (1 + 2ρ)2j+4 ≤ 2j+5 using ρ ≤ 1/2.

Formal definition of the table. Let us denote by IjB the interface set of the part B̃ ∈ Bj
on level j ≥ i+ 1 containing B ∈ Bi, i.e., IjB = IB̃ . Every entry of the dynamic programming
table T is defined by a part B ∈ Bi of D on a level i ∈ {ξ(W), . . . , λ(W)}, and two distance
functions d+

j , d
−
j : IjB → {〈x〉j | 0 < x ≤ 2j+5} ∪ {∞} for each j ∈ {i + 1, . . . , λ(W)},

such that max{d+
j (p), d−j (p)} = ∞ for all p ∈ IjB. Additionally, each entry comes with an

integer k′ ∈ {0, . . . , k}, which is a guess on the number of facilities that the optimum solution
contains in B.

In an entry T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] we store the rounded interface-respecting cost of
connecting the clients of B to facilities that adhere to the distance functions. More concretely,
let S ⊆ F ∩ B be any subset of facilities in B. We say that S is compatible with an entry
T [B, k′, (d+

j , d
−
j)λ(W)

j=i+1] if |S| = k′, and for any j ≥ i+ 1 the values of the distance functions
for every interface point p ∈ IjB are set to either

d−j (p) = 〈dist(p, S)〉j and d+
j (p) =∞, or

d+
j (p) ≤ 〈dist(p, S)〉j and d−j (p) =∞.

A. E. Feldmann and D. Saulpic 46:15

Recall that dist(v, ∅) = ∞, and so the empty set S = ∅ is compatible with an entry
T [B, k′, (d+

j , d
−
j)λ(W)
j=i+1] if k′ = 0, and the values of all internal distance functions are set to∞.

Over all sets S ⊆ F ∩ B compatible with the entry T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] for B ∈ Bi, the
entry should store the minimum value of CB(S), which is defined as

CB(S) =
∑
v∈B

χI0(v) ·min
{

dist′(v, S), min
j≥i+1
p∈Ij

B

{
dist(v, p) + d+

j (p)
}}
.

If there is no compatible set S ⊆ F ∩B for the entry, then T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] =∞.
On the highest level i = λ(W), there are no distance functions to adhere to on levels

j ≥ i+ 1, and thus any set S ⊆ W of facilities is compatible with the entry for B = W

and k′ = |S|. Furthermore, cost′I0
(S) is equal to CW (S), since W contains all clients and

facilities of the coarse instance I0. In particular, the entry of T for which k′ = k and B = W ,
will contain the objective function value of the optimum rounded interface-respecting solution
to I0. Hence if we can compute the table T we can also output the optimum rounded
interface-respecting solution via this entry.

Computing the table. We begin with a part B ∈ Bξ(W) on the lowest considered level ξ(W),
for which we know that B contains at most one facility, as I0 is coarse. If B contains no facility,
then only S = ∅ can be compatible with the entry T [B, k′, (d+

j , d
−
j)λ(W)
j=i+1] and computing the

value of the entry is straightforward given the definition of CB(S), where all incompatible
entries are set to ∞. If B contains one facility f , then any compatible set S is either empty
or only contains f . We can thus check whether either of the two options is compatible with
the entry T [B, k′, (d+

j , d
−
j)λ(W)

j=i+1] by checking if k′ is set to 0 or 1, respectively, and checking
that all values of the internal distance function are set correctly. Thereafter we can again
use the definition of CB(S) to compute the values for both possible sets S and store them in
the respective compatible entries. All incompatible entries are set to ∞.

Now fix a part B ∈ Bi that lies on a level i > ξ(W). We show how to compute all
entries T [B, k′, (d+

j , d
−
j)λ(W)
j=i+1] for all values k′ and distance functions. By induction we have

already computed the correct values of all entries of T for parts B′ ∈ Bi−1 where B′ ⊆ B.
We order these parts arbitrarily, so that B′1, . . . , B′b are the parts of Bi−1 contained in B.
We then define an auxiliary table T̂ that is similar to the table T , but should compute
the best compatible facility set in the union B′≤` =

⋃`
h=1 B

′
h of the first ` subparts of B.

Accordingly, T̂ has an entry for each union of parts B′≤`, each k′ ∈ {0, . . . , k}, and distance
functions d+

j , d
−
j : IjB → {〈x〉j | 0 < x ≤ 2j+5} ∪ {∞} for each j ∈ {i, . . . , λ(W)}, such that

max{d+
j (p), d−j (p)} =∞ for all p ∈ IjB. Here, naturally, IiB = IB, i.e., the entry also takes

the interface set of B into account.
Analogous to before, a set S ⊆ F ∩ B′≤` of facilities in the union is compatible with

an entry T̂ [B′≤`, k′, (d
+
j , d

−
j)λ(W)

j=i] if |S| = k′, and for any j ≥ i the values of the distance
functions for every interface point p ∈ IjB are set to either

d−j (p) = 〈dist(p, S)〉j and d+
j (p) =∞, or

d+
j (p) ≤ 〈dist(p, S)〉j and d−j (p) =∞.

Over all sets S ⊆ F ∩B′≤` compatible with T̂ [B′≤`, k′, (d
+
j , d

−
j)λ(W)

j=i], the entry should store
the minimum value of Ĉ≤`(S), which is defined as

Ĉ≤`(S) =
∑
v∈B′≤`

χI0(v) ·min
{

dist′(v, S), min
j≥i
p∈Ij

B

{
dist(v, p) + d+

j (p)
}}
.

If there is no compatible set S ⊆ F ∩B′≤` for the entry, then T̂ [B′≤`, k′, (d
+
j , d

−
j)λ(W)

j=i] =∞.

ESA 2020

46:16 PTASs for Clustering in Low Highway Dimension Graphs

To compute T using the auxiliary table T̂ , note that since B = B′≤b, any set S ⊆ F ∩B
is compatible with the entry T [B, k′, (d+

j , d
−
j)λ(W)

j=i+1] if and only if it is compatible with a
corresponding entry T̂ [B′≤b, k′, (d

+
j , d

−
j)λ(W)
j=i] for some internal distance function d−i on level i.

Furthermore, if d+
i (p) =∞ for all p ∈ Ii, then CB(S) = Ĉ≤b(S) for such a set S. Therefore

we can easily compute the entry T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] from T̂ by setting

T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] = min
d−

i

{
T̂ [B′≤b, k′, (d+

j , d
−
j)λ(W)

j=i] | ∀p ∈ IiB : d+
i (p) =∞

}
.

Computing the auxiliary table. Also computing an entry of T̂ for B′≤1 is easy using the
entries of T for B′1, since B′1 = B′≤1 and so (taking the index shift of i into account) we have

T̂ [B′≤1, k
′, (d+

j , d
−
j)λ(W)

j=i] = T [B′1, k′, (d+
j , d

−
j)λ(W)

j=i].

To compute entries of T̂ for some B′≤` where ` ≥ 2, we combine entries of table T for B′`
with entries of table T̂ for B′≤`−1. However we will only combine entries with distance
functions that imply compatible solutions. More concretely, we say that distance functions
(d+
j , d

−
j)λ(W)
j=i for B′≤`, (δ+

j , δ
−
j)λ(W)

j=i for B′`, and (β+
j , β

−
j)λ(W)

j=i for B′≤`−1 are consistent if for
every level j ≥ i and p ∈ IjB we have one of
1. d+

j (p) = δ+
j (p) = β+

j (p) and d−j (p) = δ−j (p) = β−j (p) =∞, or
2. d−j (p) = δ−j (p) = β+

j (p) and d+
j (p) = δ+

j (p) = β−j (p) =∞, or
3. d−j (p) = δ+

j (p) = β−j (p) and d+
j (p) = δ−j (p) = β+

j (p) =∞.

The algorithm now considers all sets of consistent distance functions to compute an entry
T̂ [B′≤`, k′, (d

+
j , d

−
j)λ(W)

j=i] for ` ≥ 2 by setting it to

min
{
T [B′`, k′′, (δ+

j , δ
−
j)λ(W)

j=i] + T̂ [B′≤`−1, k
′ − k′′, (β+

j , β
−
j)λ(W)

j=i] |

k′′ ∈ {0, . . . , k′} and (d+
j , d

−
j)λ(W)

j=i , (δ+
j , δ

−
j)λ(W)

j=i , (β+
j , β

−
j)λ(W)

j=i are consistent
}

(1)

We now prove the correctness using two lemmas. The following lemma implies that if we
only consider consistent distance functions to compute entries recursively, then the entries
will store values for compatible solutions.

I Lemma 21. Let (d+
j , d

−
j)λ(W)
j=i for B′≤`, (δ+

j , δ
−
j)λ(W)

j=i for B′`, and (β+
j , β

−
j)λ(W)

j=i for B′≤`−1
be consistent distance functions, and let S1 = B′` ∩ F and S2 = B′≤`−1 ∩ F be facility
sets. If S1 is compatible with entry T [B′`, |S1|, (δ+

j , δ
−
j)λ(W)

j=i] and S2 is compatible with
entry T̂ [B′≤`−1, |S2|, (β+

j , β
−
j)λ(W)

j=i], then the union S = S1 ∪ S2 is compatible with entry
T̂ [B′≤`, |S|, (d

+
j , d

−
j)λ(W)

j=i]. Moreover, Ĉ≤`(S) = CB′
`
(S1) + Ĉ≤`−1(S2).

Proof. To prove compatibility of S with the entry T̂ [B′≤`, |S|, (d
+
j , d

−
j)λ(W)

j=i], it suffices to
show that the distance functions are set correctly. Fix a level j ≥ i and an interface
point p ∈ IjB. There are three cases to consider, according to the definition of consistency
of the distance functions. In the first case, all three internal distance functions are set
to ∞, and all external distance functions are set to the same value. In particular, since
S1 and S2 are compatible with their respective entries, we have d+

j (p) = δ+
j (p) = β+

j (p) ≤
min{〈dist(p, S1)〉j , 〈dist(p, S2)〉j} = 〈dist(p, S)〉j , as S = S1∪S2. In the second case, β−j (p) =
δ+
j (p) = ∞ and so β+

j (p) ≤ 〈dist(p, S2)〉j , since S2 is compatible with its entry, and

A. E. Feldmann and D. Saulpic 46:17

δ−j (p) = 〈dist(p, S1)〉j , since S1 is compatible with its entry. Since we also have β+
j (p) = δ−j (p)

we get 〈dist(p, S1)〉j ≤ 〈dist(p, S2)〉j , and hence 〈dist(p, S)〉j = 〈dist(p, S1)〉j . Consistency
furthermore implies d−j (p) = δ−j (p) = 〈dist(p, S)〉j and d+

j (p) = ∞. The third case is
analogous to the second, and therefore S is compatible with its entry.

For the second part, we consider the contributions of vertices to the terms Ĉ≤`(S), CB′
`
(S1),

and Ĉ≤`−1(S2), and show that they are the same for Ĉ≤`(S) and for CB′
`
(S1) + Ĉ≤`−1(S2).

For this we first fix a vertex v ∈ B′≤`−1, and in the following distinguish the cases where its
contribution to Ĉ≤`−1(S2) and Ĉ≤`(S) is due to a facility or an interface point.

The first case is that dist′(v, S2) ≤ minj≥i, p∈Ij
B
{dist(v, p) +β+

j (p)}, i.e., the contribution
of v to Ĉ`−1(S2) is given by a facility of S2. Note that the consistency of the distance functions
always implies that β+

j (p) = d+
j (p) or d+

j (p) =∞ for any level j ≥ i and interface point p ∈ Ij ,
and so minj≥i, p∈Ij

B
{dist(v, p)+β+

j (p)} ≤ minj≥i, p∈Ij
B
{dist(v, p)+d+

j (p)}. At the same time
dist′(v, S) ≤ dist′(v, S2) as S2 ⊆ S. We hence get that dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p) +

d+
j (p)}, i.e., the contribution of v to Ĉ`(S) is also given by a facility of S in this case. Thus

to show that the contribution of v to Ĉ`−1(S2) and Ĉ`(S) is the same, we need to show that
dist′(v, S) = dist′(v, S2). Note that this is implied if dist′(v, S) ≥ minj≥i, p∈Ij

B
{dist(v, p) +

β+
j (p)}, since we have dist′(v, S) ≤ dist′(v, S2) ≤ minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}. Thus the
following proves the claim, using that the contribution of v to Ĉ`(S) is given by a facility
of S.

B Claim 22. For v ∈ B′≤`−1, if dist′(v, S) ≤ minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)} then we have
dist′(v, S) = dist′(v, S2) or dist′(v, S) ≥ minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}.

Proof. Given dist′(v, S) ≤ minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)}, assume to the contrary that
we have dist′(v, S) < minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} and dist′(v, S) 6= dist′(v, S2), which,
as S = S1 ∪ S2, means dist′(v, S) < dist′(v, S2). The latter inequality implies that the value
of dist′(v, S) is obtained for some facility f ∈ S1 ⊆ B′`. In particular, v ∈ B′≤`−1 and f ∈ B′`
are cut at level i − 1, and so there is an interface point p ∈ IiB such that dist′(v, S) =
dist(v, p) + 〈dist(p, f)〉i, and f is the closest facility to p in S, i.e, 〈dist(p, S)〉i = 〈dist(p, f)〉i.
Using the former of the assumed inequalities we get dist(v, p) + 〈dist(p, f)〉i = dist′(v, S) <
dist(v, p) + β+

i (p), and so we can conclude that 〈dist(p, f)〉i < β+
i (p).

Using the inequality of the premise of the claim, we also get dist(v, p) + 〈dist(p, f)〉i =
dist′(v, S) ≤ dist(v, p) + d+

i (p), i.e. 〈dist(p, f)〉i ≤ d+
i (p). Since S is compatible with entry

T̂ [B′≤`, |S|, (d
+
j , d

−
j)λ(W)

j=i], we have d+
i (p) = ∞ or d+

i (p) ≤ 〈dist(p, S)〉i. In the latter case
we would have d+

i (p) ≤ 〈dist(p, S)〉i = 〈dist(p, f)〉i < β+
i (p), which however cannot happen

if the distance functions are consistent. Thus compatibility of S implies d+
i (p) = ∞ and

d−i (p) = 〈dist(p, f)〉i. In particular, we can conclude that d−i (p) has a finite value (as f
exists) and β+

i (p) differs from d−i (p). This can only mean that the third of the consistency
properties applies to p at level i, and so β−i (p) = d−i (p) = 〈dist(p, f)〉i.

In particular, also β−i (p) has a finite value, and using the compatibility of S2 with entry
T̂ [B′≤`−1, |S2|, (β+

j , β
−
j)λ(W)

j=i], we can conclude that there exists a facility f ′ ∈ S2 ⊆ B′≤`−1
with 〈dist(p, f ′)〉i = β−i (p) = 〈dist(p, f)〉i. Now let j ≤ i be the level for which v ∈ B′≤`−1
and f ′ ∈ B′≤`−1 are cut at level j − 1 by D. Lemma 18 implies dist′(v, f ′) ≤ dist(v, p) +
〈dist(p, f ′)〉i, but then we have

dist′(v, S2) ≤ dist′(v, f ′) ≤ dist(v, p)+〈dist(p, f ′)〉i = dist(v, p)+〈dist(p, f)〉i = dist′(v, S),

which is a contradiction to dist′(v, S) < dist′(v, S2). C

ESA 2020

46:18 PTASs for Clustering in Low Highway Dimension Graphs

The next case we consider is that minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)} < dist′(v, S), i.e.,
the contribution of v to Ĉ`(S) is given by an interface point. As observed before, we
have minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} ≤ minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)} and dist′(v, S) ≤
dist′(v, S2), which implies minj≥i, p∈Ij

B
{dist(v, p) +β+

j (p)} < dist′(v, S2), i.e. in this case the
contribution of v to Ĉ`−1(S2) is also given by an interface point. Note that it also implies
dist′(v, S) > minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}, and thus the following claim shows that the
contribution of v to Ĉ`(S) and Ĉ`−1(S2) is the same.

B Claim 23. For v ∈ B′≤`−1, if dist′(v, S) > minj≥i, p∈Ij
B
{dist(v, p) + β+

j (p)} then we have
minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} = minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)}.

Proof. Given dist′(v, S) > minj≥i, p∈Ij
B
{dist(v, p) + β+

j (p)}, assume to the contrary that
minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} 6= minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)}. As observed before, the
consistency of the distance functions always implies β+

j (p) = d+
j (p) or d+

j (p) =∞, and thus
we must have minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} < minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)}. Let j ≥ i
and p ∈ IjB be the level and interface point for which the minimum of the former term of
this inequality is obtained. The inequality then implies β+

j (p) < d+
j (p) for this particular

point p and level j, which can only be the case if β+
j (p) <∞ and d+

j (p) =∞. The values
of β+

j (p) and d+
j (p) can only differ if the second of the consistency properties applies to p

at level j, and so β+
j (p) = d−j (p). Since β+

j (p) < ∞, the compatibility of S with entry
T̂ [B′≤`, |S|, (d

+
j , d

−
j)λ(W)

j=i], implies β+
j (p) = d−j (p) = 〈dist(p, S)〉j .

Now let f ∈ S ⊆ B′≤` be the facility for which dist′(v, S) = dist′(v, f) (which exists
as d−j (p) <∞). Let j′ ≤ i be the level for which v ∈ B′≤`−1 and f ∈ B′≤` are cut at level j′−1
by D. By Lemma 18 we have dist′(v, f) ≤ dist(v, p) + 〈dist(p, f)〉j , since j′ ≤ j and the part
B ∈ Bi containing v and f is itself contained in some part B̃ ∈ Bj with v, f ∈ B̃ and p ∈ IB̃ .
But then,

dist′(v, S) ≤ dist(v, p) + 〈dist(p, f)〉j = dist(v, p) + 〈dist(p, S)〉j = dist(v, p) + β+
j (p).

However the last term is equal to minj≥i, p∈Ij
B
{dist(v, p)+β+

j (p)}, which gives a contradiction
to our premise dist′(v, S) > minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}. C

So far we considered the case when the contribution of v to Ĉ`−1(S2) is given by a facility,
or when the contribution of v to Ĉ`(S) is given by an interface point. Thus the last case we
consider is when the contribution of v to Ĉ`−1(S2) is given by an interface point, and the contri-
bution of v to Ĉ`(S) is given by a facility, i.e., minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} < dist′(v, S2)
and dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p) + d+

j (p)}. We need to show that dist′(v, S) =
minj≥i, p∈Ij

B
{dist(v, p) +β+

j (p)}. First assume dist′(v, S) > minj≥i, p∈Ij
B
{dist(v, p) +β+

j (p)}.
Due to Claim 23 this would imply dist′(v, S) > minj≥i, p∈Ij

B
{dist(v, p) + d+

j (p)}, which how-
ever contradicts our assumption to the contrary, i.e., that the contribution of v to Ĉ`(S) is
given by a facility. Hence we must instead have dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p)+β+

j (p)}.
According to Claim 22, our assumption that dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p)+d+

j (p)}
implies dist′(v, S) = dist′(v, S2) or dist′(v, S) ≥ minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}. In the
former case, together with our assumption that the contribution of v to Ĉ`−1(S2) is given by
an interface point, we would get dist′(v, S) > minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}, for which we
saw above that this leads to a contradiction via Claim 23. Hence we are left with the other

A. E. Feldmann and D. Saulpic 46:19

implication of Claim 22, i.e., dist′(v, S) ≥ minj≥i, p∈Ij
B
{dist(v, p) + β+

j (p)}. This together
with our conclusion from above, i.e., dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}, means
that the contribution of v to Ĉ`(S) and Ĉ`−1(S2) is the same.

By analogous arguments, the contribution of any v ∈ B′` to CB′
`
(S1) is the same as

its contribution to Ĉ≤`(S). Since B′` and B′≤`−1 partition the set B′≤`, this means that
Ĉ≤`(S) = CB′

`
(S1) + Ĉ≤`−1(S2), as required. J

The next lemma implies that the compatible facility set minimizing Ĉ≤`(S) is considered
as a solution when recursing over consistent distance functions.

I Lemma 24 (?). Let S = B′≤` ∩ F be a facility set of B′≤` that is compatible with entry
T̂ [B′≤`, |S|, (d

+
j , d

−
j)λ(W)
j=i], and let S1 = S∩B′` and S2 = S∩B′≤`−1. Then there exist distance

functions (δ+
j , δ

−
j)λ(W)

j=i for B′`, and (β+
j , β

−
j)λ(W)

j=i for B′≤`−1 such that
(d+
j , d

−
j)λ(W)

j=i , (δ+
j , δ

−
j)λ(W)

j=i , and (β+
j , β

−
j)λ(W)

j=i are consistent, and
the set S1 is compatible with entry T [B′`, |S1|, (δ+

j , δ
−
j)λ(W)

j=i] and S2 is compatible with
entry T̂ [B′≤`−1, |S2|, (β+

j , β
−
j)λ(W)

j=i].

To argue that the algorithm sets the value of T̂ [B′≤`, k′, (d
+
j , d

−
j)λ(W)

j=i] correctly via (1),
consider a set S ⊆ B′≤` that is compatible with this entry and minimizes Ĉ≤`(S). By induction,
Lemma 24 implies T [B′`, |S1|, (δ+

j , δ
−
j)λ(W)

j=i] ≤ CB′
`
(S1) and T̂ [B′≤`−1, |S2|, (β+

j , β
−
j)λ(W)

j=i] ≤
Ĉ≤`−1(S2), where S1 = S ∩ B′` and S2 = S ∩ B′≤`−1. From (1) we therefore obtain
T̂ [B′≤`, |S|, (d

+
j , d

−
j)λ(W)

j=i] ≤ CB′
`
(S1) + Ĉ≤`−1(S2). By Lemma 21 only compatible sets are

stored in an entry by induction, and so the definition of S implies T̂ [B′≤`, |S|, (d
+
j , d

−
j)λ(W)
j=i] =

Ĉ≤`(S), as required.

Bounding the runtime. To bound the size of the tables T and T̂ , note that since there
are λ(W) − ξ(W) + 1 ≤ 2 log2(nX/ε) + 2 considered levels i, and each level Bi of D is a
partition of W where |W | ≤ n, there are at most O(n log(nX/ε)) parts B considered by T
in total. The other table T̂ considers the same number of parts, since a set B′≤` can be
uniquely mapped to the part B′`. The number of possible values for k′ is k + 1 = O(n).
The domain {〈x〉j | 0 < x ≤ 2j+5} ∪ {∞} of a distance function for level j has at most
d2j+5/(ρ2j)e + 1 = O(1/ρ) values, since 〈x〉j rounds a value to a multiple of ρ2j . The
conciseness of the interface sets means that |IjB | ≤ (h/ρ)O(1) according to Lemma 5. Hence
there are at most O(1/ρ)(h/ρ)O(1) = 2(h/ρ)O(1) possible distance functions. Since each entry
of the table stores two distance functions for each of at most 2 log2(nX/ε) + 2 levels, the
total number of entries of T and T̂ is at most

O(n log(nX/ε)) · n · (2(h/ρ)O(1)
)O(log(nX/ε)) = (nX/ε)(h/ρ)O(1)

.

Computing an entry of a table is dominated by (1). Going through all values k′ ≤ n and
all possible consistent distance functions to compute (1), takes n · 2(h/ρ)O(1) time, as there
are 2(h/ρ)O(1) possible distance functions. Hence the total runtime is (nX/ε)(h/ρ)O(1) , proving
Lemma 20.

The Facility Locationq problem. To compute an optimum rounded interface-respecting
solution to Facility Locationq, the tables T and T̂ can ignore the number of open
facilities k′, i.e., they have respective entries T [B, (d+

j , d
−
j)λ(W)

j=i+1] and T̂ [B′≤`, (d
+
j , d

−
j)λ(W)

j=i].

ESA 2020

46:20 PTASs for Clustering in Low Highway Dimension Graphs

Accordingly, compatibility of facility sets with entries is defined as before, but ignoring the
sizes of the sets. The value stored in each entry now also takes the opening costs of facilities
into account. That is, for any set of facilities S ⊆ F ∩B in a part B we define

CB(S) =
∑
v∈B

χI0(v) ·min
{

dist′(v, S), min
j≥i+1
p∈Ij

B

{
dist(v, p) + d+

j (p)
}}

+
∑
f∈S

wf ,

and an entry T [B, (d+
j , d

−
j)λ(W)
j=i+1] stores the minimum value of CB(S) over all sets S compat-

ible with the entry, or ∞ if no such set exists. For S ⊆ F ∩B′≤` in a union of subparts B′≤`
we define

Ĉ≤`(S) =
∑
v∈B′≤`

χI0(v) ·min
{

dist′(v, S), min
j≥i
p∈Ij

B

{
dist(v, p) + d+

j (p)
}}

+
∑
f∈S

wf ,

and an entry T̂ [B′≤`, (d
+
j , d

−
j)λ(W)

j=i] stores the minimum value of Ĉ≤`(S) over all sets S
compatible with the entry, or ∞ if no such set exists.

The entries of the tables can be computed in the same manner as before, but ingoring
the sets sizes. In particular, the most involved recursion becomes

T̂ [B′≤`, (d+
j , d

−
j)λ(W)

j=i] = min
{
T [B′`, (δ+

j , δ
−
j)λ(W)

j=i] + T̂ [B′≤`−1, (β+
j , β

−
j)λ(W)

j=i] |

(d+
j , d

−
j)λ(W)

j=i , (δ+
j , δ

−
j)λ(W)

j=i , (β+
j , β

−
j)λ(W)

j=i are consistent
}
.

Note that if S1 = B′` ∩ F and S2 = B′≤`−1 ∩ F then these two sets are disjoint, and
so
∑
f∈S wf =

∑
f∈S1

wf +
∑
f∈S2

wf for the union S = S1 ∪ S2. Hence when proving
Ĉ≤`(S) = CB′

`
(S1) + Ĉ≤`−1(S2) for Lemma 21, we can ignore the facility opening costs, and

the proof remains the same as before. All other arguments carry over, and thus an optimum
rounded interface-respecting solution for an instance of Facility Locationq can also be
computed in (nX/ε)(h/ρ)O(1) time.

5 Hardness for graphs of highway dimension 1

For both k-Clusteringq and Facility Locationq we present the same reduction from the
NP-hard satisfiability problem (SAT), in which a boolean formula ϕ in conjunctive normal
form is given, and a satisfying assignment of its variables needs to be found.

For a given SAT formula ϕ with k variables and ` clauses we construct a graph Gϕ as
follows. For each variable x we introduce a path Px = (tx, ux, fx) with two edges of length 1
each. The two endpoints tx and fx are facilities of F and the additional vertex ux is a client,
i.e., χ(ux) = 1. For each clause Ci, where i ∈ [`], we introduce a vertex vi and add the
edge vitx for each variable x such that Ci contains x as a positive literal, and we add the
edge vifx for each x for which Ci contains x as a negative literal. Every edge incident to
vi has length (11c)i for the constant c > 4 due to Definition 1, and vi is also a client, i.e.,
χ(vi) = 1. In case of Facility Locationq, every facility f ∈ F has cost wf = 1, i.e., we
construct an instance of the uniform version of the problem.

I Lemma 25. The constructed graph Gϕ has highway dimension 1.

Proof. Fix a scale r > 0 and let i = blog11c(r/5) + 1c. Note that βw(cr) cannot contain
any edge incident to a vertex vj for j ≥ i + 1, since the length of every such edge is
(11c)j ≥ 11cr/5 > 2cr and the diameter of βw(cr) is at most 2cr. Thus if βw(cr) contains a
vertex vj for j ≥ i+ 1, then βw(cr) contains only vj , and there is nothing to prove. Note

A. E. Feldmann and D. Saulpic 46:21

also that any path in βw(cr) that does not use vi has length at most 2 +
∑i−1
j=1(2(11c)j + 2),

since any such path can contain at most two edges incident to a vertex vj and the paths Px
of length 2 are connected only through edges incident to vertices vj . The length of such a
path is thus strictly shorter than

2 + 2
(

(11c)i

11c− 1 − 1
)

+ 2i ≤ 5(11c)i−1 ≤ r,

where the first inequality holds since i ≥ 1 and c > 4. Hence the only paths that need to be
hit by hubs on scale r are those passing through vi, which can clearly be done using only
one hub, namely vi. J

To finish the reduction for k-Clusteringq, we claim that there is a satisfying assignment
for ϕ if and only if there is a solution for Gϕ with cost at most k+

∑`
i=1(11c)iq. If there is a

satisfying assignment for ϕ we open each facility tx for variables x that are set to true, and
we open each facility fx for variables x that are set to false. This opens exactly k facilities
and the cost of the solution is k +

∑`
i=1(11c)iq, since each of the k vertices ux is assigned to

either tx or fx at distance 1, and vertex vi is assigned to a vertex tx or fx at distance (11c)i
that corresponds to a literal of Ci that is true.

Conversely, assume there is a solution to k-Clusteringq of cost at most k+
∑`
i=1(11c)iq

in Gϕ. Note that the minimum distance from any ux to a facility is 1, while the minimum
distance from any vi to a facility is (11c)i. Thus any solution must have cost at least
k +

∑`
i=1(11c)iq, so that the assumed solution must open a facility at minimum distance

for each client of Gϕ. In particular, for each variable x, at least one of the facilities tx and
fx is opened by the solution. Moreover, as only k facilities can be opened and there are k
variables, exactly one of tx and fx is opened for each x. Thus the k-Clusteringq solution
in Gϕ can be interpreted as an assignment for ϕ, where we set a variable x to true if tx is
opened, and we set it to false if fx is opened. Since also for each vi the solution opens a
facility at minimum distance, there must be a variable in Ci that is set so that its literal
in Ci is true, i.e., the assignment satisfies ϕ. Thus due to the above lemma bounding the
highway dimension of Gϕ, we obtain the Theorem 3 for k-Clusteringq.

For Facility Locationq we claim that there is a satisfying assignment for ϕ if and only
if there is a solution for Gϕ of cost at most 2k +

∑`
i=1(11c)iq. In fact the arguments are

exactly the same as for k-Clusteringq above: if there is a satisfying assignment then a
solution for Facility Locationq of cost 2k+

∑`
i=1(11c)iq exists, by opening the k facilities

corresponding to the assignment of cost 1 each. Conversely, any solution has cost at least
k +

∑`
i=1(11c)iq due to the edge lengths, and at least k facilities need to be opened, one for

each variable gadget. This gives a minimum cost of 2k +
∑`
i=1(11c)iq, and any such solution

corresponds to a satisfying assignment of ϕ. This proves Theorem 3 for uniform Facility
Locationq.

References
1 I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway dimension, shortest paths,

and provably efficient algorithms. In SODA, pages 782–793, 2010.
2 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for

k-means and euclidean k-median by primal-dual algorithms. SIAM Journal on Computing,
pages FOCS17–97, 2019.

3 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for euclidean
k-medians and related problems. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, pages 106–113, New York, NY, USA, 1998. ACM.
doi:10.1145/276698.276718.

ESA 2020

https://doi.org/10.1145/276698.276718

46:22 PTASs for Clustering in Low Highway Dimension Graphs

4 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of euclidean k-means. In 31st International Symposium on Compu-
tational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, pages 754–767,
2015.

5 Yair Bartal and Lee-Ad Gottlieb. A linear time approximation scheme for euclidean TSP. In
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2013.

6 A. Becker, P. N. Klein, and D. Saulpic. Polynomial-time approximation schemes for k-center
and bounded-capacity vehicle routing in metrics with bounded highway dimension. In ESA,
pages 8:1–8:15, 2018.

7 J. Blum. Hierarchy of transportation network parameters and hardness results. In IPEC,
pages 4:1–4:15, 2019.

8 Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for
clustering in excluded-minor graphs and beyond. arXiv preprint, 2020. arXiv:2004.07718.

9 Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Srinivasan Aravind, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 737–756, 2015.

10 Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. Near-linear time approxim-
ations schemes for clustering in doubling metrics. In 60th IEEE Annual Symposium on Found-
ations of Computer Science, FOCS, pages 540–559, 2019. doi:10.1109/FOCS.2019.00041.

11 Vincent Cohen-Addad, Philip N Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM Journal on
Computing, 48(2):644–667, 2019.

12 Y. Disser, A. E. Feldmann, M. Klimm, and J. Könemann. Travelling on graphs with small
highway dimension. In Graph-Theoretic Concepts in Computer Science - 45th International
Workshop, WG, volume 11789, pages 175–189. Springer, 2019.

13 A. E. Feldmann. Fixed-parameter approximations for k-center problems in low highway
dimension graphs. Algorithmica, 81(3):1031–1052, 2019.

14 A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post. A (1 + ε)-embedding of low
highway dimension graphs into bounded treewidth graphs. SIAM Journal on Computing,
47(4):1275–1734, 2018.

15 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields
a PTAS for k-means in doubling metrics. SIAM J. Comput., 48(2):452–480, 2019. doi:
10.1137/17M1127181.

16 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals,
and low-distortion embeddings. In Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’03, 2003.

17 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for
facility location. CoRR, abs/0809.2554, 2008. arXiv:0809.2554.

18 Stavros G Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the
euclidean k-median problem. SIAM Journal on Computing, 37(3):757–782, 2007.

19 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf.
Comput., 222:45–58, 2013.

20 K. Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proceedings
of the thirty-sixth annual ACM symposium on Theory of computing, pages 281–290. ACM,
2004. doi:10.1145/1007352.1007399.

http://arxiv.org/abs/2004.07718
https://doi.org/10.1109/FOCS.2019.00041
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181
http://arxiv.org/abs/0809.2554
https://doi.org/10.1145/1007352.1007399

Coresets for the Nearest-Neighbor Rule
Alejandro Flores-Velazco
Department of Computer Science, University of Maryland, College Park, MD, USA
afloresv@cs.umd.edu

David M. Mount
Department of Computer Science and Institute for Advanced Computer Studies,
University of Maryland, College Park, MD, USA
mount@umd.edu

Abstract
Given a training set P of labeled points, the nearest-neighbor rule predicts the class of an unlabeled
query point as the label of its closest point in the set. To improve the time and space complexity of
classification, a natural question is how to reduce the training set without significantly affecting the
accuracy of the nearest-neighbor rule. Nearest-neighbor condensation deals with finding a subset
R ⊆ P such that for every point p ∈ P , p’s nearest-neighbor in R has the same label as p. This
relates to the concept of coresets, which can be broadly defined as subsets of the set, such that an
exact result on the coreset corresponds to an approximate result on the original set. However, the
guarantees of a coreset hold for any query point, and not only for the points of the training set.

This paper introduces the concept of coresets for nearest-neighbor classification. We extend
existing criteria used for condensation, and prove sufficient conditions to correctly classify any
query point when using these subsets. Additionally, we prove that finding such subsets of minimum
cardinality is NP-hard, and propose quadratic-time approximation algorithms with provable upper-
bounds on the size of their selected subsets. Moreover, we show how to improve one of these
algorithms to have subquadratic runtime, being the first of this kind for condensation.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases coresets, nearest-neighbor rule, classification, nearest-neighbor condensation,
training-set reduction, approximate nearest-neighbor, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.47

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.06650.

Supplementary Material Source code is available at https://github.com/afloresv/nnc.

Funding Research partially supported by NSF grant CCF-1618866.

Acknowledgements Thanks to Prof. Emely Arráiz for suggesting the problem of condensation while
the first author was a student at Universidad Simón Bolívar, Venezuela. Thanks to Ahmed Abdelkader
for the helpful discussions and valuable suggestions.

1 Introduction

In non-parametric classification, we are given a training set P consisting of n points in a
metric space (X , d), with domain X and distance function d : X 2 → R+. Additionally, P
is partitioned into a finite set of classes by associating each point p ∈ P with a label l(p),
indicating the class to which it belongs. Given an unlabeled query point q ∈ X , the goal of a
classifier is to predict q’s label using the training set P .

The nearest-neighbor rule is among the best-known classification techniques [19]. It assigns
a query point the label of its closest point in P , according to the metric d. The nearest-neighbor
rule exhibits good classification accuracy both experimentally and theoretically [14,15,36],
but it is often criticized due to its high space and time complexities. Clearly, the training set

© Alejandro Flores-Velazco and David M. Mount;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 47; pp. 47:1–47:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0868-9802
mailto:afloresv@cs.umd.edu
https://orcid.org/0000-0002-3290-8932
mailto:mount@umd.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.47
https://arxiv.org/abs/2002.06650
https://github.com/afloresv/nnc
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Coresets for the Nearest-Neighbor Rule

P must be stored to answer nearest-neighbor queries, and the time required for such queries
depends to a large degree on the size and dimensionality of the data. These drawbacks
inspire the question of whether it is possible replace P with a significantly smaller subset,
without significantly reducing the classification accuracy under the nearest-neighbor rule.
This problem is called nearest-neighbor condensation [22, 25,34,37].

There are obvious parallels between condensation and the concept of coresets in geometric
approximation [1,17,23,33]. Intuitively, a coreset is small subset of the original data, that
well approximates some statistical properties of the original set. Coresets have also been
applied to many problems in machine learning, such as clustering and neural network
compression [8, 11, 18, 29]. This includes recent results on coresets for the SVM classifier [38].

This paper presents the first approach to compute coresets for the nearest-neighbor rule,
leveraging its resemblance to the problem of nearest-neighbor condensation. We also present
one of the first results on practical condensation algorithms with theoretical guarantees.

Preliminaries. Given any point q ∈ X in the metric space, its nearest-neighbor, denoted
nn(q), is the closest point of P according the the distance function d. The distance from q

to its nearest-neighbor is denoted by dnn(q, P), or simply dnn(q) when P is clear. Given a
point p ∈ P from the training set, its nearest-neighbor in P is point p itself. Additionally,
any point of P whose label differs from p’s is called an enemy of p. The closest such point is
called p’s nearest-enemy, and the distance to this point is called p’s nearest-enemy distance.
These are denoted by ne(p) and dne(p, P) (or simply dne(p)), respectively.

Clearly, the size of a coreset for nearest-neighbor classification depends on the spatial
characteristics of the classes in the training set. For example, it is much easier to find a small
coreset for two spatially well separated clusters than for two classes that have a high degree
of overlap. To model the intrinsic complexity of nearest-neighbor classification, we define κ
to be the number of nearest-enemy points of P , i.e., the cardinality of set {ne(p) | p ∈ P}.

Through a suitable uniform scaling, we may assume that the diameter of P (that is,
the maximum distance between any two points in the training set) is 1. The spread of P ,
denoted as ∆, is the ratio between the largest and smallest distances in P . Define the margin
of P , denoted γ, to be the smallest nearest-enemy distance in P . Clearly, 1/γ ≤ ∆.

A metric space (X , d) is said to be doubling [26] if there exist some bounded value λ
such that any metric ball of radius r can be covered with at most λ metric balls of radius
r/2. Its doubling dimension is the base-2 logarithm of λ, denoted as ddim(X) = log λ.
Throughout, we assume that ddim(X) is a constant, which means that multiplicative factors
depending on ddim(X) may be hidden in our asymptotic notation. Many natural metric
spaces of interest are doubling, including d-dimensional Euclidean space whose doubling
dimension is Θ(d). It is well know that for any subset R ⊆ X with some spread ∆R, the size
of R is bounded by |R| ≤ d∆Reddim(X)+1.

Related Work. A subset R ⊆ P is said to be consistent [25] if and only if for every p ∈ P its
nearest-neighbor in R is of the same class as p. Intuitively, R is consistent if and only if all
points of P are correctly classified using the nearest-neighbor rule over R. Formally, the
problem of nearest-neighbor condensation consists of finding a consistent subset of P .

Another criterion used for condensation is known as selectiveness [34]. A subset R ⊆ P is
said to be selective if and only if for all p ∈ P its nearest-neighbor in R is closer to p than
its nearest-enemy in P . Clearly, any selective subset is also consistent. Observe that these
condensation criteria ensure that every point in the training set will be correctly classified
after condensation, but they do not imply the same for arbitrary points in the metric space.

A. Flores-Velazco and D.M. Mount 47:3

(a) Training set (104 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

(b) FCNN (222 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c) VSS (233 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d) RSS (233 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(e) 0.1-RSS (300 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

(f) 0.5-RSS (540 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(g) 1-RSS (846 pts).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(h)
√

2-RSS (1066 pts).

Figure 1 An illustrative example of the subsets selected by different condensation algorithms from
an initial training set P in R2 of 104 points. FCNN, VSS, and RSS, are known algorithms for this
problem, while α-RSS is proposed in this paper, along with new condensation criteria. The subsets
selected by α-RSS depend on the parameter α ≥ 0, here assigned to the values α = {0.1, 0.5, 1,

√
2}.

It is known that the problems of computing consistent and selective subsets of minimum
cardinality are both NP-hard [28,39,40]. An approximation algorithm called NET [22] was
proposed for the problem of finding minimum cardinality consistent subsets, along with
almost matching hardness lower-bounds. The algorithm simply computes a γ-net of P , where
γ is the minimum nearest-enemy distance in P , which clearly results in a consistent subset of
P (also selective). In practice, γ tends to be small, which results in subsets of much higher
cardinality than needed. To overcome this issue, the authors proposed a post-processing
pruning technique to further reduce the selected subset. Even with the extra pruning, NET is
often outperformed on typical data sets by more practical heuristics with respect to runtime
and selection size. More recently, a subexponential-time algorithm was proposed [10] for
finding minimum cardinality consistent subsets of point sets P ⊂ R2 in the plane, along
with other case-specific algorithms for special instances of the problem in R2. On the other
hand, less is known about computing minimum cardinality selective subsets: there is only a
worst-case exponential time algorithm called SNN [34] for computing such optimal subsets.

Most research has focused on proposing practical heuristics to find either consistent or
selective subsets of P (for comprehensive surveys see [27, 37]). CNN (Condensed Nearest-
Neighbor) [25] was the first algorithm proposed to compute consistent subsets. Even though
it has been widely used in the literature, CNN suffers from several drawbacks: its running
time is cubic in the worst-case, and the resulting subset is order-dependent, meaning that
the result is determined by the order in which points are considered by the algorithm.
Alternatives include FCNN (Fast CNN) [3] and MSS (Modified Selective Subset) [7], which
compute consistent and selective subsets respectively. Both algorithms run in O(n2) worst-
case time, and are order-independent. While such heuristics have been extensively studied
experimentally [21], theoretical results are scarce. Recently, it was shown [20] that the size of
the subsets selected by MSS cannot be bounded, while for FCNN it is still unknown whether
is possible to establish any bound. The same paper [20] proposes two new algorithms, namely

ESA 2020

47:4 Coresets for the Nearest-Neighbor Rule

RSS (Relaxed Selective Subset) and VSS (Voronoi Selective Subset), to find selective subsets
of P in O(n2) worst-case time. Both algorithms provide some guarantees on its selection
size in Euclidean space.

Contributions. As mentioned in the previous section, consistency and selectivity imply
correct classification to points of the training set, but not to arbitrary points of the metric
space (This is striking since this is the fundamental purpose of classification!). In this
paper, we introduce the concept of a coreset for classification with the nearest-neighbor rule,
which provides approximate guarantees on correct classification for all query points. We
demonstrate their existence, analyze their size, and discuss their efficient computation.

We say that a subset R ⊆ P is an ε-coreset for the nearest-neighbor rule on P , if and
only if for every query point q ∈ X , the class of its exact nearest-neighbor in R is the same
as the class of some ε-approximate nearest-neighbor of q in P (see Section 2 for definitions).
Recalling the concepts of κ and γ introduced in the preliminaries, here is our main result:

I Theorem 1. Given a training set P in a doubling metric space (X , d), there exist an
ε-coreset for the nearest-neighbor rule of size O(κ log 1

γ (1/ε)ddim(X)+1), and this coreset can
be computed in subquadratic worst-case time.

Here is a summary of our principal results:
We extend the criteria used for nearest-neighbor condensation, and identify sufficient
conditions to guarantee the correct classification of any query point after condensation.
We prove that finding minimum-cardinality subsets with this new criteria is NP-hard.
We provide quadratic-time approximation algorithms with provable upper-bounds on the
sizes of their selected subsets, and we show that the running time of one such algorithm
can be improved to be subquadratic.

Our subquadratic-time algorithm is the first with such worst-case runtime for the problem
of nearest-neighbor condensation.

2 Coreset Characterization

In practice, nearest-neighbors are usually not computed exactly, but rather approximately.
Given an approximation parameter ε ≥ 0, an ε-approximate nearest-neighbor or ε-ANN
query returns any point whose distance from the query point is within a factor of (1 + ε)
times the true nearest-neighbor distance.

Intuitively, a query point should be easier to classify if its nearest-neighbor is significantly
closer than its nearest-enemy. This intuition can be formalized through the concept of the
chromatic density [31] of a query point q ∈ X with respect to a set R ⊆ P , defined as:

δ(q,R) = dne(q,R)
dnn(q,R) − 1. (1)

Clearly, if δ(q,R) > ε then q will be correctly classified1 by an ε-ANN query over R, as all
possible candidates for the approximate nearest-neighbor belong to the same class as q’s true
nearest-neighbor. However, as evidenced in Figures 2a and 2b, one side effect of existing
condensation algorithms is a significant reduction in the chromatic density of query points.
Consequently, we propose new criteria and algorithms that maintain high chromatic densities
after condensation, which are then leveraged to build coresets for the nearest-neighbor rule.

1 By correct classification, we mean that the classification is the same as the classification that results
from applying the nearest-neighbor rule exactly on the entire training set P .

A. Flores-Velazco and D.M. Mount 47:5

(a) FCNN. (b) RSS. (c) 0.1-RSS. (d) 0.5-RSS.

Figure 2 Heatmap of chromatic density values of points in R2 w.r.t. the subsets computed by
different condensation algorithms: FCNN, RSS, and α-RSS (see Figure 1). Yellow • corresponds to
chromatic density values ≥ 0.5, while blue • corresponds to 0. Evidently, α-RSS helps maintaining
high chromatic density values when compared to standard condensation algorithms.

2.1 Approximation-Sensitive Condensation
The decision boundaries of the nearest-neighbor rule (that is, points q such that dne(q, P) =
dnn(q, P)) are naturally characterized by points that separate clusters of points of different
classes. As illustrated in Figures 1b-1d, condensation algorithms tend to select such points.
However, this behavior implies a significant reduction of the chromatic density of query
points that are far from such boundaries (see Figures 2a-2b).

A natural way to define an approximate notion of consistency is to ensure that all points in
P are correctly classified by ANN queries over the condensed subset R. Given a condensation
parameter α ≥ 0, we define a subset R ⊆ P to be:

α-consistent if ∀ p ∈ P, dnn(p,R) < dne(p,R)/(1 + α).

α-selective if ∀ p ∈ P, dnn(p,R) < dne(p, P)/(1 + α).

It is easy to see that the standard forms arise as special cases when α = 0. These new
condensation criteria imply that δ(p,R) > α for every p ∈ P , meaning that p is correctly
classified using an α-ANN query on R. Note that any α-selective subset is also α-consistent.
Such subsets always exist for any α ≥ 0 by taking R = P . Current condensation algorithms
cannot guarantee either α-consistency or α-selectiveness unless α is equal to zero. Therefore,
the central algorithmic challenge is how to efficiently compute such sets whose sizes are
significantly smaller than P . We propose new algorithms to compute such subsets, which
showcase how to maintain high chromatic density values after condensation, as evidenced
in Figures 2c and 2d. This empirical evidence is matched with theoretical guarantees for
α-consistent and α-selective subsets, described in the following section.

2.2 Guarantees on Classification Accuracy
These newly defined criteria for nearest-neighbor condensation enforce lower-bounds on the
chromatic density of any point of P after condensation. However, this doesn’t immediately
imply having similar lower-bounds for unlabeled query points of X . In this section, we prove
useful bounds on the chromatic density of query points, and characterize sufficient conditions
to correctly classify some of these query points after condensation.

Intuitively, the chromatic density determines how easy it is to correctly classify a query
point q ∈ X . We show that the “ease” of classification of q after condensation (i.e., δ(q,R))
depends on both the condensation parameter α, and the chromatic density of q before
condensation (i.e., δ(q, P)). This result is formalized in the following lemma:

ESA 2020

47:6 Coresets for the Nearest-Neighbor Rule

I Lemma 2. Let q ∈ X be a query point, and R an α-consistent subset of P , for α ≥ 0.
Then, q’s chromatic density with respect to R is:

δ(q,R) > αδ(q, P)− 2
δ(q, P) + α+ 3 .

Proof. The proof follows by analyzing q’s nearest-enemy distance in R. To this end, consider
the point p ∈ P that is q’s nearest-neighbor in P . There are two possible cases:

Case 1: If p ∈ R, clearly dnn(q,R) = dnn(q, P). Additionally, it is easy to show that after
condensation, q’s nearest-enemy distance can only increase: i.e., dne(q, P) ≤ dne(q,R).
This implies that δ(q,R) ≥ δ(q, P).

Case 2: If p 6∈ R, we can upper-bound q’s nearest-neighbor distance in R as follows:

Since R is an α-consistent subset of P , we know that there exists a point r ∈ R such that
d(p, r) < dne(p,R)/(1 + α). By the triangle inequality and the definition of nearest-enemy,
dne(p,R) ≤ d(p, ne(q,R)) ≤ d(q, p) + dne(q,R). Additionally, applying the definition of
chromatic density on q and knowing that dne(q, P) ≤ dne(q,R), we have d(q, p) = dnn(q, P) ≤
dnn(q,R) = dne(q,R)/(1 + δ(q, P)). Therefore:

dnn(q,R) ≤ d(q, r) ≤ d(q, p) + d(p, r)

< d(q, p) + d(q, p) + dne(q,R)
1 + α

≤
(

δ(q, P) + α+ 3
(1 + α)(1 + δ(q, P))

)
dne(q,R).

Finally, from the definition of δ(q,R), we have:

δ(q,R) = dne(q,R)
dnn(q,R) − 1 > (1 + α)(1 + δ(q, P))

δ(q, P) + α+ 3 − 1 = α δ(q, P)− 2
δ(q, P) + α+ 3 . J

The above result can be leveraged to define a coreset, in the sense that an exact result on
the coreset corresponds to an approximate result on the original set. As previously defined,
we say that a set R ⊆ P is an ε-coreset for the nearest-neighbor rule on P , if and only if for
every query point q ∈ X , the class of q’s exact nearest-neighbor in R is the same as the class
of any of its ε-approximate nearest-neighbors in P .

I Lemma 3. Any ε-coreset for the nearest-neighbor rule is an α-consistent subset, for α ≥ 0.

Proof. Consider any ε-coreset C ⊆ P for the nearest-neighbor rule on P . Since the ap-
proximation guarantee holds for any point in X , it holds for any p ∈ P \ C. We know p’s
nearest-neighbor in the original set P is p itself, thus making dnn(p, P) zero. This implies that
p must be correctly classified by a nearest-neighbor query on C, that is, dnn(p, C) < dne(p, C),
which is the definition of α-consistency for any α ≥ 0. J

I Theorem 4. Any 2/ε-selective subset is an ε-coreset for the nearest-neighbor rule.

Proof. Let R be an α-selective subset of P , where α = 2/ε. Consider any query point q ∈ X
in the metric space. It suffices to show that its nearest-neighbor in R is of the same class as
any ε-approximate nearest-neighbor in P . To this end, consider q’s chromatic density with
respect to both P and R, denoted as δ(q, P) and δ(q,R), respectively. We identify two cases:

Case 1 (Correct-Classification guarantee): If δ(q, P) ≥ ε.
Consider the bound derived in Lemma 2. Since α ≥ 0, and by our assumption that
δ(q, P) ≥ ε > 0, setting α = 2/ε implies that δ(q,R) > 0. This means that the nearest-
neighbor of q in R belongs to the same class as the nearest-neighbor of q in P . Intuitively,
this guarantees that q is correctly classified by the nearest-neighbor rule in R.

A. Flores-Velazco and D.M. Mount 47:7

Case 2 (ε-Approximation guarantee): If δ(q, P) < ε.
Let p ∈ P be q’s nearest-neighbor in P , thus d(q, p) = dnn(q, P). Since R is α-selective,
there exists a point r ∈ R such that d(p, r) = dnn(p,R) < dne(p, P)/(1 +α). Additionally,
by the triangle inequality and the definition of nearest-enemies, we have

dne(p, P) ≤ d(p,ne(q, P)) ≤ d(p, q) + d(q,ne(q, P)) = dnn(q, P) + dne(q, P).

From the definition of chromatic density, dne(q, P) = (1 + δ(q, P)) dnn(q, P). Together,
these inequalities imply that (1 + α) d(p, r) ≤ (2 + δ(q, P)) dnn(q, P). Therefore:

dnn(q,R) ≤ d(q, r) ≤ d(q, p) + d(p, r) ≤
(

1 + 2 + δ(q, P)
1 + α

)
dnn(q, P).

Now, assuming δ(q, P) < ε and setting α = 2/ε, imply that dnn(q,R) < (1 + ε) dnn(q, P).
Therefore, the nearest-neighbor of q in R is an ε-approximate nearest-neighbor of q in P .

Cases 1 and 2 imply that setting α = 2/ε is sufficient to ensure that the nearest-neighbor rule
classifies any query point q ∈ X with the class of one of its ε-approximate nearest-neighbors
in P . Therefore, R is an ε-coreset for the nearest-neighbor rule on P . J

So far, we have assumed that nearest-neighbor queries over R are computed exactly, as
this is the standard notion of coresets. However, it is reasonable to compute nearest-neighbors
approximately even for R. How should the two approximations be combined to achieve
a desired final degree of accuracy? Consider another approximation parameter ξ, where
0 ≤ ξ < ε. We say that a set R ⊆ P is an (ξ, ε)-coreset for the approximate nearest-neighbor
rule on P , if and only if for every query point q ∈ X , the class of any of q’s ξ-approximate
nearest-neighbor in R is the same as the class of any of its ε-approximate nearest-neighbors
in P . The following result generalizes Theorem 4 to accommodate for ξ-ANN queries after
condensation.

I Theorem 5. Any α-selective subset is an (ξ, ε)-coreset for the approximate nearest-neighbor
rule when α = Ω(1/(ε− ξ)).

Proof. This follows from similar arguments to the ones described in the proof of Theorem 4.
Instead, here we set α = (εξ + 3ξ + 2)/(ε − ξ). Let R be an α-selective subset of P , and
q ∈ X any query point in the metric space, consider the same two cases:

Case 1 (Correct-Classification guarantee): If δ(q, P) ≥ ε.
Consider the bound derived in Lemma 2. By our assumption that δ(q, P) ≥ ε > 0, and
since α ≥ 0, the following inequality holds true:

δ(q,R) > αδ(q, P)− 2
δ(q, P) + α+ 3 ≥

αε− 2
ε+ α+ 3

Based on this, it is easy to see that the assignment of α = (εξ + 3ξ + 2)/(ε− ξ) implies
that δ(q,R) > ξ, meaning that any of q’s ξ-approximate nearest-neighbors in R belong to
the same class as q’s nearest-neighbor in P . Intuitively, this guarantees that q is correctly
classified by the ξ-ANN rule in R.

Case 2 (ε-Approximation guarantee): If δ(q, P) < ε.
The assignment of α implies that dnn(q,R) < 1+ε

1+ξ dnn(q, P). This means that an ξ-ANN
query for q in R, will return one of q’s ε-approximate nearest-neighbors in P .

All together, this implies that R is an (ξ, ε)-coreset for the nearest-neighbor rule on P . J

ESA 2020

47:8 Coresets for the Nearest-Neighbor Rule

In contrast with standard condensation criteria, these new results provide guarantees on
either approximation or the correct classification, of any query point in the metric space.
This is true even for query points that were “hard” to classify with the entire training set,
formally defined as query points with low chromatic density. Consequently, Theorems 4 and 5
show that α must be set to large values if we hope to provide any sort of guarantees for
these query points. However, better results can be achieved by restricting the set of points
that are guaranteed to be correctly classified. This relates to the notion of weak coresets,
which provide approximation guarantees only for a subset of the possible queries. Given
β ≥ 0, we define Qβ as the set of query points in X whose chromatic density with respect
to P is at least β (i.e., Qβ = {q ∈ X | δ(q, P) ≥ β}). The following result describes the
trade-off between α and β to guarantee the correct classification of query points in Qβ after
condensation.

I Theorem 6. Any α-consistent subset is a weak ε-coreset for the nearest-neighbor rule for
queries in Qβ, for β = 2/α. Moreover, all query points in Qβ are correctly classified.

The proof of this theorem is rather simple, and follows the same arguments outlined in
Case 1 of the proof of Theorem 4. Basically, we use Lemma 2 to show that for any query point
q ∈ Qβ , q’s chromatic density after condensation is greater than zero if αβ ≥ 2. Note that ε
plays no role in this result, as the guarantee on query points of Qβ is of correct classification
(i.e., the class of its exact nearest-neighbor in P), rather than an approximation.

The trade-off between α and β is illustrated in Figure 3. From an initial training set
P ⊂ R2 (Figure 3a), we show the regions of R2 that comprise the sets Qβ for β = 2/α,
using α = {0.1, 0.2,

√
2} (Figures 3b-3d). While evidently, increasing α guarantees that

more query points will be correctly classified after condensation, this example demonstrates
a phenomenon commonly observed experimentally: most query points lie far from enemy
points, and thus have high chromatic density with respect to P . Therefore, while Theorem 4
states that α must be set to 2/ε to provide approximation guarantees on all query points,
Theorem 6 shows that much smaller values of α are sufficient to provide guarantees on some
query points, as evidenced in the example in Figure 3.

(a) Training set (200 pts). (b) Q2/α for α = 0.1. (c) Q2/α for α = 0.2. (d) Q2/α for α =
√

2.

Figure 3 Depiction of the Qβ sets for which any α-consistent subset is weak coreset (β = 2/α).
Query points in the yellow • areas are inside Qβ , and thus correctly classified after condensation.
Query points in the blue • areas are not in Qβ , and have no guarantee of correct classification.

These results establish a clear connection between the problem of condensation and that
of finding coresets for the nearest-neighbor rule, and provides a roadmap to prove Theorem 1.
This is the first characterization of sufficient conditions to correctly classify any query point
in X after condensation, and not just the points in P (as the original consistency criteria
implies). In the following section, these existential results are matched with algorithms to
compute α-selective subsets of P of bounded cardinality.

A. Flores-Velazco and D.M. Mount 47:9

3 Coreset Computation

3.1 Hardness Results
Define Min-α-CS to be the problem of computing an α-consistent subset of minimum
cardinality for a given training set P . Similarly, let Min-α-SS be the corresponding opti-
mization problem for α-selective subsets. Following known results from standard conden-
sation [28,39, 40], when α is set to zero, the Min-0-CS and Min-0-SS problems are both
known to be NP-hard. Being special cases of the general problems just defined, this implies
that both Min-α-CS and Min-α-SS are NP-hard.

In this section, we present results related to the hardness of approximation of both
problems, along with simple algorithmic approaches with tight approximation factors.

I Theorem 7. The Min-α-CS problem is NP-hard to approximate in polynomial time within
a factor of 2(ddim(X) log ((1+α)/γ))1−o(1) .

The full proof is omitted, as it follows from a modification of the hardness bounds proof for
the Min-0-CS problem described in [22], which is based on a reduction from the Label Cover
problem. Proving Theorem 7 involves a careful adjustment of the distances in this reduction,
so that all the points in the construction have chromatic density at least α. Consequently,
this implies that the minimum nearest-enemy distance is reduced by a factor of 1/(1 + α),
explaining the resulting bound for Min-α-CS.

The NET algorithm [22] can also be generalized to compute α-consistent subsets of P as
follows. We define α-NET as the algorithm that computes a γ/(1 + α)-net of P , where γ is
the smallest nearest-enemy distance in P . The covering property of nets [24] implies that
the resulting subset is α-consistent, while the packing property suggests that its cardinality
is O

(
((1 + α)/γ)ddim(X)+1), implying a tight approximation to the Min-α-CS problem.

I Theorem 8. The Min-α-SS problem is NP-hard to approximate in polynomial time within
a factor of (1− o(1)) lnn unless NP ⊆ DTIME(nlog logn).

Proof. The result follows from the hardness of another related covering problem: the mi-
nimum dominating set [16,30,32]. We describe a simple L-reduction from any instance of
this problem to an instance of Min-α-SS, which preserves the approximation ratio.

1. Consider any instance of minimum dominating set, consisting of the graph G = (V,E).
2. Generate a new edge-weighted graph G′ as follows:

Create two copies of G, namely Gr = (Vr, Er) and Gb = (Vb, Eb), of red and blue nodes
respectively. Set all edge-weights of Gr and Gb to be 1. Finally, connect each red node vr to
its corresponding blue node vb by an edge {vr, vb} of weight 1+α+ξ for a sufficienly small
constant ξ > 0. Formally, G′ is defined as the edge-weighted graph G′ = (V ′, E′) where
the set of nodes is V ′ = Vr ∪ Vb, the set of edges is E′ = Er ∪Er ∪ {{vr, vb} | v ∈ V }, and
an edge-weight function w : E′ → R+ where w(e) = 1 iff e ∈ Er∪Eb, and w(e) = 1+α+ξ
otherwise.

3. A labeling function l where l(v) = red iff v ∈ Vr, and l(v) = blue iff v ∈ Vb.
4. Compute the shortest-path metric of G′, denoted as dG′ .
5. Solve the Min-α-SS problem for the set V ′, on metric dG′ , and the labels defined by l.

A dominating set of G consists of a subset of nodes D ⊆ V , such that every node
v ∈ V \D is adjacent to a node in D. Given any dominating set D ⊆ V of G, it is easy to
see that the subset R = {vr, vb | v ∈ D} is an α-selective subset of V ′, where |R| = 2|D|.

ESA 2020

47:10 Coresets for the Nearest-Neighbor Rule

Similarly, given an α-selective subset R ⊆ V ′, there is a corresponding dominating set D of
G, where |D| ≤ |R|/2, as D can be either R ∩ Vr or R ∩ Vb. Therefore, Min-α-SS is as hard
to approximate as the minimum dominating set problem. J

There is a clear connection between the Min-α-SS problem and covering problems, in
particular that of finding an optimal hitting set. Given a set of elements U and a family
C of subsets of U , a hitting set of (U,C) is a subset H ⊆ U such that every set in C

contains at least one element of H. Therefore, let Np,α be the set of points of P whose
distance to p is less than dne(p)/(1 + α), then any hitting set of (P, {Np,α | p ∈ P}) is also
an α-selective subset of P , and vice versa. This simple reduction implies a O(n3) worst-case
time O(logn)-approximation algorithm for Min-α-SS, based on the classic greedy algorithm
for set cover [12, 35]. Call this approach α-HSS or α-Hitting Selective Subset. It follows from
Theorem 8 that for training sets in general metric spaces, this is the best approximation
possible under standard complexity assumptions.

While both α-NET and α-HSS compute tight approximations of their corresponding
problems, their performance in practice does not compare to heuristic approaches for standard
condensation (see Section 4 for experimental results). Therefore, in the next section, we
consider one such heuristic and extend it to compute subsets with the newly defined criteria.

3.2 A Practical Algorithm

For standard condensation, the RSS algorithm was recently proposed [20] to compute selective
subsets. It runs in quadratic worst-case time and exhibits good performance in practice.
The selection process of this algorithm is heuristic in nature and can be described as follows:
beginning with an empty set, the points in p ∈ P are examined in increasing order with
respect to their nearest-enemy distance dne(p). The point p is added to the subset R if
dnn(p,R) ≥ dne(p). It is easy to see that the resulting subset is selective.

We define a generalization, called α-RSS, to compute α-selective subsets of P . The
condition to add a point p ∈ P to the selected subset checks if any previously selected
point is closer to p than dne(p)/(1 + α), instead of just dne(p). See Algorithm 1 for a formal
description, and Figure 4 for an illustration. It is easy to see that this algorithm computes an
α-selective subset, while keeping the quadratic time complexity of the original RSS algorithm.

Algorithm 1 α-RSS.

Input: Initial training set P and parameter α ≥ 0
Output: α-selective subset R ⊆ P

1 R← φ

2 Let {pi}ni=1 be the points of P sorted increasingly w.r.t. dne(pi)
3 foreach pi ∈ P , where i = 1 . . . n do
4 if dnn(pi, R) ≥ dne(pi)/(1 + α) then
5 R← R ∪ {pi}

6 return R

Naturally, we want to analyze the number of points this algorithm selects. The remainder
of this section establishes upper-bounds and approximation guarantees of the α-RSS algorithm
for any doubling metric space, with improved results in the Euclidean space. This resolves
the open problem posed in [20] of whether RSS computes an approximation of the Min-0-CS
and Min-0-SS problems.

A. Flores-Velazco and D.M. Mount 47:11

●● ●● ●
● ●● ●

●●

●

●
●

●
● ●

●●
● ●

●
● ●

●
●

●

●
● ●●

●

●●

●

●
●

●

●
●

● ●

●
●

●

●

●

●

●

●●

●

●● ● ●●

● ●
●

●●

●

●

●

●

● ● ●
●

●

●

●

●
●●

● ●
●

●

●

●

●

●

Figure 4 Selection of α-RSS for α=0.5. Faded points are not selected, while selected points are
drawn along with a ball of radius dne(p) (dotted outline) and a ball of radius dne(p)/(1 + α) (solid
outline). A point p is selected if no previously selected point is closer to p than dne(p)/(1 + α).

Size in Doubling spaces. First, we consider the case where the underlying metric space
(X , d) of P is doubling. The following results depend on the doubling dimension ddim(X) of
the metric space (which is assumed to be constant), the margin γ (the smallest nearest-enemy
distance of any point in P), and κ (the number of nearest-enemy points in P).

I Theorem 9. α-RSS computes a tight approximation for the Min-α-CS problem.

Proof. This follows from a direct comparison to the resulting subset of the α-NET algorithm
from the previous section. For any point p selected by α-NET, let Bp,α be the set of points
of P “covered” by p, that is, whose distance to p is at most γ/(1 + α). By the covering
property of ε-nets, this defines a partition on P when considering every point p selected by
α-NET.

Let R be the set of points selected by α-RSS, we analyze the size of Bp,α ∩ R, that is,
for any given Bp,α how many points could have been selected by the α-RSS algorithm. Let
a, b ∈ Bp,α ∩R be any two such points, where without loss of generality, dne(a) ≤ dne(b). By
the selection process of the algorithm, we know that d(a, b) ≥ dne(b)/(1 + α) ≥ γ/(1 + α). A
simple packing argument in doubling metrics implies that |Bp,α∩R| ≤ 2ddim(X)+1. Altogether,
we have that the size of the subset selected by α-RSS is O

(
(2(1 + α)/γ)ddim(X)+1). J

I Theorem 10. α-RSS computes an O (log (min (1 + 2/α, 1/γ)))-factor approximation for
the Min-α-SS problem. For α = Ω(1), this is a constant-factor approximation.

Proof. Let OPTα be the optimum solution to the Min-α-SS problem, i.e., the minimum
cardinality α-selective subset of P . For every point p ∈ OPTα in such solution, define Sp,α to
be the set of points in P “covered” by p, or simply Sp,α = {r ∈ P | d(r, p) < dne(r)/(1 + α)}.
Additionally, let R be the set of points selected by α-RSS, define Rp,σ to be the points selected
by α-RSS which also belong to Sp,α and whose nearest-enemy distance is between σ and 2σ,
for σ ∈ [γ, 1]. That is, Rp,σ = {r ∈ R ∩ Sp,α | dne(r) ∈ [σ, 2σ)}. Clearly, these subsets define
a partitioning of R for all p ∈ OPTα and values of σ = γ 2i for i = {0, 1, 2, . . . , dlog 1

γ e}.

ESA 2020

47:12 Coresets for the Nearest-Neighbor Rule

However, depending on α, some values of σ would yield empty Rp,σ sets. Consider some
point q ∈ Sp,α, we can bound its nearest-enemy distance with respect to the nearest-enemy
distance of point p. In particular, by leveraging simple triangle-inequality arguments, it is
possible to prove that 1+α

2+α dne(p) ≤ dne(q) ≤ 1+α
α dne(p). Therefore, the values of σ for which

Rp,σ sets are not empty, are σ = 2j 1+α
2+α dne(p) for j = {0, . . . , dlog (1 + 2/α)e}.

The proof now follows by bounding the size of Rp,σ which can be achieved by bounding
its spread. Thus, lets consider the smallest and largest pairwise distances among points
in Rp,σ. Take any two points a, b ∈ Rp,σ where without loss of generality, dne(a) ≤ dne(b).
Note that points selected by α-RSS cannot be “too close” to each other; that is, as a and
b were selected by the algorithm, we know that (1 + α) d(a, b) ≥ dne(b) ≥ σ. Therefore,
the smallest pairwise distance in Rp,σ is at least σ/(1 + α). Additionally, by the triangle
inequality, we can bound the maximum pairwise distance using their distance to p as
d(a, b) ≤ d(a, p) + d(p, b) ≤ 4σ/(1 + α). Then, by the packing properties of doubling spaces,
the size of Rp,σ is at most 4ddim(X)+1.

Altogether, for every p ∈ OPTα there are up to dlog (min (1 + 2/α, 1/γ))e non-empty
Rp,σ subsets, each containing at most 4ddim(X)+1 points. In doubling spaces with constant
doubling dimension, the size of these subsets is also constant. J

While these results are meaningful from a theoretical perspective, it is also useful to
establishing bounds in terms of the geometry of the learning space, which is characterized by
the boundaries between points of different classes. Thus, using similar packing arguments as
above, we bound the selection size of the algorithm with respect to κ.

I Theorem 11. α-RSS selects O
(
κ log 1

γ (1 + α)ddim(X)+1
)
points.

Proof. This follows from similar arguments to the ones used to prove Theorem 10, using
an alternative charging scheme for each nearest-enemy point in the training set. Consider
one such point p ∈ {ne(r) | r ∈ P} and a value σ ∈ [γ, 1], we define R′p,σ to be the subset of
points from α-RSS whose nearest-enemy is p, and their nearest-enemy distance is between σ
and 2σ. That is, R′p,σ = {r ∈ R | ne(r) = p ∧ dne(r) ∈ [σ, 2σ)}. These subsets partition R
for all nearest-enemy points of P , and values of σ = γ 2i for i = {0, 1, 2, . . . , dlog 1

γ e}.
For any two points a, b ∈ R′p,σ, the selection criteria of α-RSS implies some separation

between selected points, which can be used to prove that d(a, b) ≥ σ/(1 + α). Additionally,
we know that d(a, b) ≤ d(a, p) + d(p, b) = dne(a) + dne(b) ≤ 4σ. Using a simple packing
argument, we have that |R′p,σ| ≤ d4(1 + α)eddim(X)+1.

Altogether, by counting all sets R′p,σ for each nearest-enemy in the training set and values
of σ, the size of R is upper-bounded by |R| ≤ κ dlog 1/γe d4(1 + α)eddim(X)+1. Based on the
assumption that ddim(X) is constant, this completes the proof. J

As a corollary, this result implies that when α = 2/ε, the α-selective subset computed by
α-RSS contains O

(
κ log 1/γ (1/ε)ddim(X)+1) points. This establishes the size bound on the

ε-coreset given in Theorem 1, which can be computed using the α-RSS algorithm.

Size in Euclidean space. In the case where P ⊂ Rd lies in d-dimensional Euclidean space,
the analysis of α-RSS can be further improved, leading to a constant-factor approximation
of Min-α-SS for any value of α ≥ 0, and reduced dependency on the dimensionality of P .

I Theorem 12. α-RSS computes an O(1)-approximation for the Min-α-SS problem in Rd.

A. Flores-Velazco and D.M. Mount 47:13

Proof. Similar to the proof of Theorem 10, define Rp = Sp,α ∩R as the points selected by
α-RSS that are “covered” by p in the optimum solution OPTα. Consider two such points
a, b ∈ Rp where without loss of generality, dne(a) ≤ dne(b). By the definition of Sp,α we know
that d(a, p) < dne(a)/(1 + α), and similarly with b. Additionally, from the selection of the
algorithm we know that d(a, b) ≥ dne(b)/(1 + α). Overall, these inequalities imply that the
angle ∠apb ≥ π/3. By a simple packing argument, the size of Rp is bounded by the kissing
number in d-dimensional Euclidean space, or simply O((3/π)d−1). Therefore, we have that
|R| ≤

∑
p |Rp| = |OPTα| O((3/π)d−1). Assuming d is constant, this completes the proof. J

Furthermore, a similar constant-factor approximation can be achieved for any training
set P in `p space for p ≥ 3. This follows analogously to the proof of Theorem 12, exploiting
the bounds between `p and `2 metrics, where 1/

√
d ‖v‖p ≤ ‖v‖2 ≤

√
d ‖v‖p. This would

imply that the angle between any two points in α-RSSp is Ω(1/d). Therefore, it shows that
α-RSS achieves an approximation factor of O(dd−1), or simply O(1) for constant dimension.

Similarly to the case of doubling spaces, we also establish upper-bounds in terms of κ
for the selection size of the algorithm in Euclidean space. The following result improves the
exponential dependence on the dimensionality of P (from ddim(Rd) = Θ(d) to d− 1), while
keeping the dependency on the margin γ, which contrast with the approximation factor results.

I Theorem 13. In Euclidean space Rd, α-RSS selects O
(
κ log 1

γ (1 + α)d−1
)
points.

Proof. Let p be any nearest-enemy point of P and σ ∈ [γ, 1], similarly define R′p,σ to be the
set of points selected by α-RSS whose nearest-enemy is p and their nearest-enemy distance
is between σ and bσ, for b = (1+α)2

α(2+α) . Equivalently, these subsets define a partitioning of R
for all nearest-enemy points p and values of σ = γ bk for k = {0, 1, 2, . . . , dlogb 1

γ e}. Thus,
the proof follows from bounding the minimum angle between points in these subsets. For
any two such points pi, pj ∈ R′p,σ, we lower bound the angle ∠pippj . Assume without loss
of generality that dne(pi) ≤ dne(pj). By definition of the partitioning, we also know that
dne(pj) ≤ bσ ≤ b dne(pi). Therefore, altogether we have that dne(pi) ≤ dne(pj) ≤ b dne(pi).

First, consider the set of points whose distance to pi is (1 + α) times their distance to p,
which defines a multiplicative weighted bisector [6] between points p and pi, with weights
equal to 1 and 1/(1 + α) respectively. This is characterized as a d-dimensional ball (see
Figure 5a) with center ci = (pi − p) b + p and radius dne(pi) b/(1 + α). Thus p, pi and ci
are collinear, and the distance between p and ci is d(p, ci) = b dne(pi). In particular, let’s
consider the relation between pj and such bisector. As pj was selected by the algorithm after
pi, we know that (1 + α) d(pj , pi) ≥ dne(pj) where dne(pj) = d(pj , p). Therefore, clearly pj
lies either outside or in the surface of the weighted bisector between p and pi (see Figure 5b).

For angle ∠pippj , we can frame the analysis to the plane defined by p, pi and pj . Let x
and y be two points in this plane, such that they are the intersection points between the
weighted bisector and the balls centered at p of radii dne(pi) and b dne(pi) respectively (see
Figure 5c). By the convexity of the weighted bisector between p and pi, we can say that
∠pippj ≥ min(∠xppi,∠ypcj). Now, consider the triangles 4pxpi and 4pyci. By the careful
selection of b, these triangles are both isosceles and similar. In particular, for 4pxpi the two
sides incident to p have length equal to dne(pi), and the side opposite to p has length equal
to dne(pi)/(1 +α). For 4pyci, the side lengths are b dne(pi) and dne(pi) b/(1 +α). Therefore,
the angle ∠pippj ≥ ∠xppi ≥ 1/(1 + α).

By a simple packing argument based on this minimum angle, we have that the size of
R′p,σ is O((1 + α)d−1). All together, following the defined partitioning, we have that:

|R| =
∑
p

dlogb 1
γ e∑

k=0
|R′p,bk | ≤ κ

⌈
logb

1
γ

⌉
O
(
(1 + α)d−1)

ESA 2020

47:14 Coresets for the Nearest-Neighbor Rule

(a) Multiplicatively
weighted bisectors for
different weights.

(b) Position of point pj w.r.t.
the weighted bisector between
points p and pi.

(c) The intersection points x and y
between the weighted bisector and the
limit balls of Rp,σ.

Figure 5 Construction for the analysis of the minimum angle between two points in R′
p,σ w.r.t.

some nearest-enemy point p ∈ P . Let points pi, pj ∈ R′
p,σ, we analyze the angle ∠pippj .

For constant α and d, the size of α-RSS is O(κ log 1
γ). Moreover, when α is zero α-RSS

selects O(κ cd−1), matching the previously known bound for RSS in Euclidean space. J

3.3 Subquadratic Algorithm
In this section we present a subquadratic implementation for the α-RSS algorithm, which
completes the proof of our main result, Theorem 1. Among algorithms for nearest-neighbor
condensation, FCNN achieves the best worst-case time complexity, running in O(nm) time,
where m = |R| is the size of the selected subset.

The α-RSS algorithm consists of two main stages: computing the nearest-enemy distances
of all points in P (and sorting the points based on these), and the selection process itself.
The first stage requires a total of n nearest-enemy queries, plus additional O(n logn) time for
sorting. The second stage performs n nearest-neighbor queries on the current selected subset
R, which needs to be updated m times. In both cases, using exact nearest-neighbor search
would degenerate into linear search due to the curse of dimensionality. Thus, the first and
second stage of the algorithm would need O(n2) and O(nm) worst-case time respectively.

These bottlenecks can be overcome by leveraging approximate nearest-neighbor techniques.
Clearly, the first stage of the algorithm can be improved by computing nearest-enemy distances
approximately, using as many ANN structures as classes there are in P , which is considered
to be a small constant. Therefore, by also applying a simple brute-force search for nearest-
neighbors in the second stage, result (i) of the next theorem follows immediately. Moreover,
by combining this with standard techniques for static-to-dynamic conversions [9], we have
result (ii) below. Denote this variant of α-RSS as (α, ξ)-RSS, for a parameter ξ ≥ 0.

I Theorem 14. Given a data structure for ξ-ANN searching with construction time tc
and query time tq (which potentially depend on n and ξ), the (α, ξ)-RSS variant can be
implemented with the following worst-case time complexities, where m is the size of the se-
lected subset.
(i) O (tc + n (tq +m+ logn))
(ii) O ((tc + n tq) logn)

More generally, if we are given an additional data structure for dynamic ξ-ANN searching
with construction time t′c, query time t′q, and insertion time t′i, the overall running time
will be O

(
tc + t′c + n (tq + t′q + logn) +mt′i

)
. Indeed, this can be used to obtain (ii) from

the static-to-dynamic conversions [9], which propose an approach to convert static search

A. Flores-Velazco and D.M. Mount 47:15

structures into dynamic ones. These results directly imply implementations of (α, ξ)-RSS
with subquadratic worst-case time complexities, based on ANN techniques [4, 5] for low-
dimensional Euclidean space, and using techniques like LSH [2] that are suitable for ANN in
high-dimensional Hamming and Euclidean spaces. More generally, subquadratic runtimes
can be achieved by leveraging techniques [13] for dynamic ANN search in doubling spaces.

Dealing with uncertainty. Such implementation schemes for α-RSS would incur an approxi-
mation error (of up to 1+ξ) on the computed distances: either only during the first stage if (i)
is implemented, or during both stages if (ii) or the dynamic-structure scheme are implemented.
The uncertainty introduced by these approximate queries, imply that in order to guarantee
finding α-selective subsets, we must modify the condition for adding point during the second
stage of the algorithm. Let dne(p, ξ) denote the ξ-approximate nearest-enemy distance of p
computed in the first stage, and let dnn(p,R, ξ) denote the ξ-approximate nearest-neighbor
distance of p over points of the current subset (computed in the second stage). Then,
(α, ξ)-RSS adds a point p into the subset if (1 + ξ)(1 + α) dnn(p,R, ξ) ≥ dne(p, ξ).

By similar arguments to the ones described in Section 3.2, size guarantees can be extended
to (α, ξ)-RSS. First, the size of the subset selected by (α, ξ)-RSS, in terms of the number of
nearest-enemy points in the set, would be bounded by the size of the subset selected by α̂-RSS
with α̂ = (1 + α)(1 + ξ)2 − 1. Additionally, the approximation factor of (α, ξ)-RSS in both
doubling and Euclidean metric spaces would increase by a factor of O((1 + ξ)2(ddim(X)+1)).

This completes the proof of Theorem 1.

4 Experimental Evaluation

In order to get a clearer impression of the relevance of these results in practice, we performed
experimental trials on several training sets, both synthetically generated and widely used
benchmarks. First, we consider 21 training sets from the UCI Machine Learning Repository2
which are commonly used in the literature to evaluate condensation algorithms [21]. These
consist of a number of points ranging from 150 to 58000, in d-dimensional Euclidean space
with d between 2 and 64, and 2 to 26 classes. We also generated some synthetic training sets,
containing 105 uniformly distributed points, in 2 to 3 dimensions, and 3 classes. All training
sets used in these experimental trials are summarized in Table 1. The implementation of the
algorithms, training sets used, and raw results, are publicly available3.

These experimental trials compare the performance of different condensation algorithms
when applied to vastly different training sets. We use two measures of comparison on these
algorithms: their runtime in the different training sets, and the size of the subset selected.
Clearly, these values might differ greatly on training sets whose size are too distinct. Therefore,
before comparing the raw results, these are normalized. The runtime of an algorithm for a
given training set is normalized by dividing it by n, the size of the training set. The size of
the selected subset is normalized by dividing it by κ, the number of nearest-enemy points in
the training set, which characterizes the complexity of the boundaries between classes.

Algorithm Comparison. The first experiment evaluates the performance of the three algo-
rithms proposed in this paper: α-RSS, α-HSS, and α-NET. The evaluation is carried out by
varying the value of the α parameter from 0 to 1, to understand the impact of increasing

2 https://archive.ics.uci.edu/ml/index.php
3 https://github.com/afloresv/nnc/

ESA 2020

https://archive.ics.uci.edu/ml/index.php
https://github.com/afloresv/nnc/

47:16 Coresets for the Nearest-Neighbor Rule

this parameter. The implementation of α-HSS uses the well-known greedy algorithm for
set cover [12], and solves the problem using the reduction described in Section 3.1. In
the other hand, recall that the original NET algorithm (for α = 0) implements an extra
pruning technique to further reduce the training set after computing the γ-net. To do a fair
comparison between the techniques, we implemented the α-NET algorithm with a modified
version of this pruning techinque that guarantees that the selected subset is still α-selective.

The results show that α-RSS outperforms the other algorithms in terms of running time
by a big margin, and irrespective of the value of α (see Figure 6a). Additionally, the number
of points selected by α-RSS is comparable to α-HSS, which guarantees the best possible
approximation factor in general metrics, while α-NET is significantly outperformed.

(a) Running time. (b) Size of the selected subsets.

Figure 6 Comparison α-RSS, α-NET, and α-HSS, for different values of α.

Subquadratic Approach. Using the same experimental framework, we evaluate performance
of the subquadratic implementation (α, ξ)-RSS described in Section 3.3. In this case, we
change the value of parameter ξ to assess its effect on the running time and selection size
over the algorithm, for two different values of α (see Figure 7). The results show an expected
increase of the number of selected points, while significantly improving its running time.

(a) Running time. (b) Size of the selected subsets.

Figure 7 Evaluating the effect of increasing the parameter ξ on (α, ξ)-RSS for α = {0, 0.2}.

A. Flores-Velazco and D.M. Mount 47:17

Table 1 Training sets used to evaluate the performance of condensation algorithms. Indicates the
number of points n, dimensions d, classes c, nearest-enemy points κ (also in percentage w.r.t. n).

Training set n d c κ (%)
banana 5300 2 2 811 (15.30%)
cleveland 297 13 5 125 (42.09%)
glass 214 9 6 87 (40.65%)
iris 150 4 3 20 (13.33%)

iris2d 150 2 3 13 (8.67%)
letter 20000 16 26 6100 (30.50%)
magic 19020 10 2 5191 (27.29%)
monk 432 6 2 300 (69.44%)

optdigits 5620 64 10 1245 (22.15%)
pageblocks 5472 10 5 429 (7.84%)
penbased 10992 16 10 1352 (12.30%)
pima 768 8 2 293 (38.15%)
ring 7400 20 2 2369 (32.01%)

satimage 6435 36 6 1167 (18.14%)
segmentation 2100 19 7 398 (18.95%)

shuttle 58000 9 7 920 (1.59%)
thyroid 7200 21 3 779 (10.82%)
twonorm 7400 20 2 1298 (17.54%)
wdbc 569 30 2 123 (21.62%)
wine 178 13 3 37 (20.79%)

wisconsin 683 9 2 35 (5.12%)
v-100000-2-3-15 100000 2 3 1909 (1.90%)
v-100000-2-3-5 100000 2 3 788 (0.78%)
v-100000-3-3-15 100000 3 3 7043 (7.04%)
v-100000-3-3-5 100000 3 3 3738 (3.73%)
v-100000-4-3-15 100000 4 3 13027 (13.02%)
v-100000-4-3-5 100000 4 3 10826 (10.82%)
v-100000-5-3-15 100000 5 3 22255 (22.25%)
v-100000-5-3-5 100000 5 3 17705 (17.70%)

References
1 Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric approximation

via coresets. Combinatorial and computational geometry, 52:1–30, 2005.
2 Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor search

in high dimensions. arXiv preprint, 2018. arXiv:1806.09823.
3 Fabrizio Angiulli. Fast nearest neighbor condensation for large data sets classification. IEEE

Transactions on Knowledge and Data Engineering, 19(11):1450–1464, 2007.
4 Sunil Arya, Guilherme D Da Fonseca, and David M Mount. Approximate polytope membership

queries. SIAM Journal on Computing, 47(1):1–51, 2018.
5 Sunil Arya, Theocharis Malamatos, and David M Mount. Space-time tradeoffs for approximate

nearest neighbor searching. Journal of the ACM (JACM), 57(1):1, 2009.
6 Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for constructing the

weighted voronoi diagram in the plane. Pattern Recognition, 17(2):251–257, 1984.
7 Ricardo Barandela, Francesc J Ferri, and J Salvador Sánchez. Decision boundary preserving

prototype selection for nearest neighbor classification. International Journal of Pattern
Recognition and Artificial Intelligence, 19(06):787–806, 2005.

8 Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus. Data-
dependent coresets for compressing neural networks with applications to generalization bounds.
arXiv preprint, 2018. arXiv:1804.05345.

9 Jon Louis Bentley and James B Saxe. Decomposable searching problems I. Static-to-dynamic
transformation. Journal of Algorithms, 1(4):301–358, 1980.

10 Ahmad Biniaz, Sergio Cabello, Paz Carmi, Jean-Lou De Carufel, Anil Maheshwari, Saeed
Mehrabi, and Michiel Smid. On the minimum consistent subset problem. In WADS, 2019.

ESA 2020

http://arxiv.org/abs/1806.09823
http://arxiv.org/abs/1804.05345

47:18 Coresets for the Nearest-Neighbor Rule

11 Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming
coreset constructions. arXiv preprint, 2016. arXiv:1612.00889.

12 Václav Chvatal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 1979.
13 Richard Cole and Lee-Ad Gottlieb. Searching dynamic point sets in spaces with bounded

doubling dimension. In Proceedings of the thirty-eighth annual ACM symposium on Theory of
computing, pages 574–583, 2006.

14 Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE Trans. Inf.
Theor., 1967.

15 Luc Devroye. On the inequality of cover and hart in nearest neighbor discrimination. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 1:75–78, 1981.

16 Uriel Feige. A threshold of ln n for approximating set cover. JACM, 1998.
17 Dan Feldman. Core-sets: Updated survey. In Sampling Techniques for Supervised or Unsuper-

vised Tasks, pages 23–44. Springer, 2020.
18 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering

data. In Proceedings of the forty-third annual ACM symposium on Theory of computing, pages
569–578, 2011.

19 Evelyn Fix and Joseph L. Hodges. Discriminatory analysis, nonparametric discrimination:
Consistency properties. US Air Force School of Aviation Medicine, Technical Report 4(3):477+,
January 1951.

20 Alejandro Flores-Velazco and David M. Mount. Guarantees on nearest-neighbor condensation
heuristics. In Zachary Friggstad and Jean-Lou De Carufel, editors, Proceedings of the 31st
Canadian Conference on Computational Geometry, CCCG 2019, August 8-10, 2019, University
of Alberta, Edmonton, Alberta, Canada, pages 87–93, 2019.

21 Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera. Prototype selection for
nearest neighbor classification: Taxonomy and empirical study. IEEE TPAMI, 2012.

22 Lee-Ad Gottlieb, Aryeh Kontorovich, and Pinhas Nisnevitch. Near-optimal sample compression
for nearest neighbors. In Advances in Neural Information Processing Systems, 2014.

23 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages
291–300, 2004.

24 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics and
their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.

25 Peter Hart. The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theor., 1968.
26 Juha Heinonen. Lectures on analysis on metric spaces. Springer Science & Business Media,

2012.
27 Norbert Jankowski and Marek Grochowski. Comparison of instances selection algorithms I.

Algorithms survey. In Artificial Intelligence and Soft Computing-ICAISC. Springer, 2004.
28 Kamyar Khodamoradi, Ramesh Krishnamurti, and Bodhayan Roy. Consistent subset problem

with two labels. In Conference on Algorithms and Discrete Applied Mathematics, 2018.
29 Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter

pruning for efficient neural networks. arXiv preprint, 2019. arXiv:1911.07412.
30 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization

problems. Journal of the ACM (JACM), 41(5):960–981, 1994.
31 David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. Chromatic

nearest neighbor searching: A query sensitive approach. Computational Geometry, 2000.
32 Azaria Paz and Shlomo Moran. Non deterministic polynomial optimization problems and

their approximations. Theoretical Computer Science, 15(3):251–277, 1981.
33 Jeff M. Phillips. Coresets and sketches, 2016. arXiv:1601.00617.
34 G. L. Ritter, H. B. Woodruff, S. R. Lowry, and T. L. Isenhour. An algorithm for a selective

nearest neighbor decision rule. IEEE Transactions on Information Theory, 1975.
35 Petr Slavík. A tight analysis of the greedy algorithm for set cover. In Proceedings of the

twenty-eighth annual ACM symposium on Theory of Computing, STOC, 1996.

http://arxiv.org/abs/1612.00889
http://arxiv.org/abs/1911.07412
http://arxiv.org/abs/1601.00617

A. Flores-Velazco and D.M. Mount 47:19

36 Charles J Stone. Consistent nonparametric regression. The annals of statistics, pages 595–620,
1977.

37 Godfried Toussaint. Open problems in geometric methods for instance-based learning. In
JCDCG, volume 2866 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/
978-3-540-44400-8_29.

38 Murad Tukan, Cenk Baykal, Dan Feldman, and Daniela Rus. On coresets for support vector
machines. arXiv preprint, 2020. arXiv:2002.06469.

39 Gordon Wilfong. Nearest neighbor problems. In Proceedings of the Seventh Annual Symposium
on Computational Geometry, SoCG, pages 224–233, New York, NY, USA, 1991. ACM.

40 Anastasiya V. Zukhba. NP-completeness of the problem of prototype selection in the nearest
neighbor method. Pattern Recog. Image Anal., 20(4):484–494, 2010.

ESA 2020

https://doi.org/10.1007/978-3-540-44400-8_29
https://doi.org/10.1007/978-3-540-44400-8_29
http://arxiv.org/abs/2002.06469

Kernelization of Whitney Switches
Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
Fedor.Fomin@uib.no

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
Petr.Golovach@uib.no

Abstract
A fundamental theorem of Whitney from 1933 asserts that 2-connected graphs G and H are 2-
isomorphic, or equivalently, their cycle matroids are isomorphic, if and only if G can be transformed
into H by a series of operations called Whitney switches. In this paper we consider the quantitative
question arising from Whitney’s theorem: Given 2-isomorphic graphs, can we transform one into
another by applying at most k Whitney switches? This problem is already NP-complete for cycles,
and we investigate its parameterized complexity. We show that the problem admits a kernel of size
O(k), and thus, is fixed-parameter tractable when parameterized by k.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Whitney switch, 2-isomorphism, Parameterized Complexity, kernelization

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.48

Related Version The full version of the paper is available at https://arxiv.org/abs/2006.13684.

Funding The research leading to these results has received funding from the Research Council of
Norway via the project “MULTIVAL” (grant no. 263317).

Acknowledgements We are grateful to Erlend Raa Vågset for fruitful discussions that initiated the
research resulted in the paper.

1 Introduction

A fundamental result of Whitney from 1933 [35], asserts that every 2-connected graph is
completely characterized, up to a series of Whitney switches (also known as 2-switches), by
its edge set and cycles. This theorem is one of the cornerstones of Matroid Theory, since
it provides an exact characterization of two graphs having isomorphic cycle matroids [32].
In graph drawing and graph embeddings, this theorem (applied to dual graphs) is used to
characterize all drawings of a planar graph [8].

A Whitney switch is an operation, that from a 2-connected graph G, constructs graph
G′ as follows. Let {u, v} be two vertices of G, whose removal separates G into two disjoint
subgraphs G1 and G2. The graph G′ is obtained by flipping the neighbors of u and v in the
set of vertices of G2. In other words, for every vertex w ∈ V (G2), if w was adjacent to u in
G, in graph G′ edge uw is replaced by vw. Similarly, if w was adjacent to v in G, we replace
vw by uw. See Figure 1 for an example.

If we view the graph G as a graph with labelled edges, then a Whitney switch transforms
G into a graph G′ with the same set of labelled edges, however graphs G and G′ are not
necessarily isomorphic. On the other hand, graphs G and G′ have the same set of cycles
in the following sense: a set of (labelled) edges forms a cycle in G if and only if it forms a
cycle in G′. (In other words, the cycle matroids of G and G′ are isomorphic.) Whitney’s

© Fedor V. Fomin and Petr A. Golovach;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 48; pp. 48:1–48:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1955-4612
mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0002-2619-2990
mailto:Petr.Golovach@uib.no
https://doi.org/10.4230/LIPIcs.ESA.2020.48
https://arxiv.org/abs/2006.13684
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Kernelization of Whitney Switches

G2G1 G1u

v

u

v

G G′

G2

Figure 1 G′ is obtained from G by the Whitney switch with respect to the partition of G−{u, v}
into G1 and G2.

theorem claims that the opposite is also true: if there is a cycle-preserving mapping between
graphs G and G′ then one graph can be transformed into another by a sequence of Whitney
switches. To state the theorem of Whitney more precisely, we need to define 2-isomorphisms.

We say that 2-connected graphs G and H are 2-isomorphic if there is a bijection
ϕ : E(G) → E(H) such that ϕ and ϕ−1 preserve cycles, that is, for every cycle C of
G, C is mapped to a cycle of H by ϕ and, symmetrically, every cycle of H is mapped to
a cycle of G by ϕ−1. We refer to ϕ as to 2-isomorphism from G to H. An isomorphism
ψ : V (G)→ V (H) is a ϕ-isomorphism if for every edge uv ∈ E(G), ϕ(uv) = ψ(u)ψ(v), and
G and H are ϕ-isomorphic if there is an isomorphism G to H that is a ϕ-isomorphism. Let us
note that if G is 3-connected and 2-isomorphic to H under ϕ then G and H are ϕ-isomorphic
[29, Lemma 1]. But for 2-connected graphs this is not true. For example, the graphs in
Fig. 1 are not isomorphic but are 2-isomorphic. Moreover, even isomorphic graphs with
2-isomorphism ϕ not always have a ϕ-isomorphism. For example, for the 2-isomorphism ϕ in
Fig. 2 mapping a cycle G into another cycle H (we view these cycles as labelled graphs),
there is no ϕ-isomorphism. (For every ϕ-isomorphism edges ϕ(a) and ϕ(b) should have an
endpoint in common.) On the other hand, graph G′ obtained from G by Whitney switch
(for vertices u and v) is ϕ-isomorphic to H.

a

b

c

d

'(b)

'(c)

'(d)

'
'(a)

G : H :

a b

c

d

G0 :

'

W
hitney

switch

u

u

v

v

u

v

Figure 2 Graph G is not ϕ-isomorphic to H but its Whitney switch G′ is.

I Theorem 1 (Whitney’s theorem [35]). If there is a 2-isomorphism ϕ from graph G to graph
H, then G can be transformed by a sequence of Whitney switches to a graph G′ which is
ϕ-isomorphic to H.

However, Whitney’s theorem does not provide an answer to the following question: Given
a 2-isomorphism ϕ from graph G to graph H, what is the minimum number of Whitney
switches required to transform G to a graph ϕ-isomorphic to H? Truemper in [29] proved
that n− 2 switches always suffices, where n is the number of vertices in G. He also proved

F. V. Fomin and P. A. Golovach 48:3

that this upper bound it tight, that is, there are graphs G and H for which n− 2 switches
are necessary. In this paper we study the algorithmic complexity of the following problem
about Whitney switches.

Input: 2-Isomorphic n-vertex graphs G and H with a 2-isomorphism ϕ : E(G)→
E(H), and a nonnegative integer k.

Task: Decide whether it is possible to obtain from G a graph G′ that ϕ-isomorphic
to H by at most k Whitney switches.

Whitney Switches

The departure point for our study is an easy reduction (Theorem 4) from Sorting by
Reversals that establishes NP-completeness of Whitney Switches even when input
graphs G and H are cycles. Our main algorithmic result is the following theorem (we
postpone the definition of a kernel till Section 2). Informally, it means that the instance of
the problem can be compressed in polynomial time to an equivalent instance with two graphs
on O(k) vertices. It also implies that Whitney Switches is fixed-parameter tractable
parameterized by k.

I Theorem 2. Whitney Switches admits a kernel with O(k) vertices and is solvable in
2O(k log k) · nO(1) time.

While Theorem 2 is not restricted to planar graphs, pipelined with the well-known
connection of planar embeddings and Whitney switches, it can be used to obtain interesting
algorithmic consequences about distance between planar embeddings of a graph. Recall that
graphs G and G∗ are called abstractly dual if there is a bijection π : E(G) → E(G∗) such
that edge set E ⊆ E(G) forms a cycle in G if and only if π(E) is a minimal edge-cut in G∗.
By another classical theorem of Whitney [34], a graph G has a dual graph if and only if G
is planar. Moreover, an embedding of a planar graph into a sphere is uniquely defined by
the planar graph G and edges of the faces, or equivalently, its dual graph G∗. While every
3-connected planar graph has a unique embedding into the sphere, a 2-connected graph can
have several non-equivalent embeddings, and hence several non-isomorphic dual graphs. If
G∗1 and G∗2 are dual graphs of graph G, then G∗1 is 2-isomorphic to G∗2. Then by Theorem 1,
by a sequence of Whitney switches G∗1 can be transformed into G∗2, or equivalently, the
embedding of G corresponding to G∗1 can be transformed to embedding of G corresponding
to G∗2. We refer to the survey of Carsten Thomassen [28, Section 2.2] for more details. By
Theorem 2, we have that given two planar embeddings of a (labelled) 2-connected graph G,
deciding whether one embedding can be transformed into another by making use of at most
k Whitney switches, admits a kernel of size O(k) and is fixed-parameter tractable.

Related work. Whitney’s theorem had a strong impact on the development of modern
graph and matroid theories. While the original proof is long, a number of simpler proofs
are known in the literature. In particular, the work of Truemper in [29], whose proof of
Whitney’s theorem is based on applications of Tutte decomposition [30, 31]. This is also the
approach we adapt in our work.

The well-studied problem similar in spirit to Whitney Switches is the problem of
computing the flip distance for triangulations of a set of points. The parameterized complexity
of this problem was studied in [10, 23]. As we already have mentioned, Whitney Switches
for planar graphs is equivalent to the problem of computing the Whitney switch distance
between planar embeddings. We refer to the survey of Bose and Hurtado [4] for the discussion
of the relations between geometric and graph variants. The problem is known to be NP-
complete [22] and FPT parameterized by the number of flips [19]. For the special case when

ESA 2020

48:4 Kernelization of Whitney Switches

the set of points defines a convex polygon, the problem of computing the flip distance between
triangulations is equivalent to computing the rotation distance between two binary trees.
For that case linear kernels are known [10, 23] but for the general case the existence of a
polynomial kernel is open.

Whitney Switches also can be seen as a reconfiguration problem, study of reconfigura-
tion problems is a popular trend in parameterized complexity, see e.g. [24, 21].

Overview of the proof of Theorem 2. The main tool in the construction of the kernel is
the classical Tutte decompositions [30, 31] We postpone the formal definition till Section 2.
Informally, the Tutte decomposition of a 2-connected graph represents the vertex separators
of size two in a tree-like structure. Each node of this tree represents a part of the graph (or
bag) that is either a 3-connected graph or a cycle, and each edge corresponds to a separator of
size two. Then a 2-isomorphism of G and H allows to establish an isomorphism of the trees
representing the Tutte decompositions of the input graphs. After that, potential Whitney
switches can be divided into two types: the switches with respect to separators corresponding
to the edges of the trees and the switches with respect to separators formed by nonadjacent
vertices of a cycle-bag. The switches of the first type are relatively easy to analyze and we
can identify necessary switches of this type. The “troublemakers” that make the problem
hard are switches of the second type. To deal with them, we use the structural results
about sorting of permutations by reversals of Hannenhalli and Pevzner [17] adapted for our
purposes. This allows us to identify a set of vertices of size O(k) that potentially can be used
for Whitney switches transforming G to H. Given such a set of crucial vertices, we simplify
the structure of the input graphs and then reduce their size.

Organization of the paper. In Section 2, we give basic definitions. In Section 3, we discuss
the Sorting by Reversals problem for permutations that is closely related to Whitney
Switches. Section 4 contains structural results used by our kernelization algorithm, and
in Section 5, we give the algorithm itself. We conclude in Section 6 by discussing further
directions of research. Due to space constraints, the proofs are either omitted or just sketched.
The details are given in the full version of the paper [15].

2 Preliminaries

Graphs. All graphs considered in this paper are finite undirected graphs without loops or
multiple edges, unless it is specified explicitly that we consider directed graphs (in Section 6
we deal with tournaments). We follow the standard graph theoretic notation and terminology
(see, e.g., [13]). For each of the graph problems considered in this paper, we let n = |V (G)|
and m = |E(G)| denote the number of vertices and edges, respectively, of the input graph G
if it does not create confusion. A pair (A,B), where A,B ⊆ V (G), is a separation of G if
A ∪B = V (G), A \B 6= ∅, B \A 6= ∅ and G has no edge uv with u ∈ A \B and v ∈ B \A;
|A∩B| is the order of the separation. If the order is 2, then we say that (A,B) is a Whitney
separation. A set S ⊆ V (G) is a separator of G if there is a separation (A,B) of G with
S = A ∩B.

Whitney switches. It is convenient to define Whitney switches using separations. Let G be
a 2-connected graph. Let also (A,B) be a Whitney separation of G with A∩B = {u, v}. The
Whitney switch operation with respect to (A,B) transforms G as follows: take G[A] and G[B]
and identify the vertex u of G[A] with the vertex v of G[B] and, symmetrically, v of G[A] with

F. V. Fomin and P. A. Golovach 48:5

u of G[B]; if u and v are adjacent in G, then the edges uv of G[A] and G[B] are identified
as well. Let G′ be the obtained graph. We define the mapping σ(A,B) : E(G) → E(G′)
that maps the edges of G[A] and G[B], respectively, to themselves. It is easy to see that
σ(A,B) is a 2-isomorphism of G to G′. Therefore, if ϕ is a 2-isomorphism of G to a graph H,
then ϕ ◦ σ−1

(A,B) is a 2-isomorphism of G′ to H. To simplify notation, we assume, if it does
not create confusion, that the sets of edges of G and G′ are identical and we only change
incidences by switching. In particular, under this assumption, we have that ϕ ◦ σ−1

(A,B) = ϕ.
We also assume that the graphs G and G′ have the same sets of vertices.

Tutte decomposition. Our kernelization algorithm for Whitney Switches is based on
the classical result of Tutte [30, 31] about decomposing of 2-connected graphs via separators
of size two. Following Courcelle [11], we define Tutte decompositions in the terms of tree
decompositions.

A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T)), where T is a tree whose
every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the following
three conditions hold:
(T1)

⋃
t∈V (T) Xt = V (G), that is, every vertex of G is in at least one bag,

(T2) for every uv ∈ E(G), there exists a node t of T such that the bag Xt contains both u
and v,

(T3) for every v ∈ V (G), the set Tv = {t ∈ V (T) | v ∈ Xt}, i.e., the set of nodes whose
corresponding bags contain v, induces a connected subtree of T .

To distinguish between the vertices of the decomposition tree T and the vertices of the graph
G, we will refer to the vertices of T as nodes.

Let T = (T, {Xt}t∈V (T)) be a tree decomposition of G. The torso of Xt for t ∈ V (T) is
the graph obtained from G[Xt] by additionally making adjacent every two distinct vertices
u, v ∈ Xt such that there is t′ ∈ V (T) adjacent to t with u, v ∈ Xt ∩ Xt′ . For adjacent
t, t′ ∈ V (T), Xt∩Xt′ is the adhesion set of the bags Xt and Xt′ and |Xt∩Xt′ | is the adhesion
of the bags. The maximum adhesion of adjacent bags is called the adhesion of the tree
decomposition.

Let G be a 2-connected graph. A tree decomposition T = (T, {Xt}t∈V (T)) is said to be a
Tutte decomposition if T is a tree decomposition of adhesion 2 such that there is a partition
(W2,W≥3) of V (T) such that the following holds:
(T4) |Xt| = 2 for t ∈W2 and |Xt| ≥ 3 for t ∈W≥3,
(T5) the torso of Xt is either a 3-connected graph or a cycle for every t ∈W≥3,
(T6) for every t ∈W2, dT (t) ≥ 2 and t′ ∈W≥3 for each neighbor t′ of t,
(T7) for every t ∈W≥3, t′ ∈W2 for each neighbor t′ of t,
(T8) if t ∈W2 and dT (t) = 2, then for the neighbors t′ and t′′ of t, either the torso of t′ or

the torso of t′′ is a 3-connected graph or the vertices of Xt are adjacent in G.

Notice that the bags Xt for t ∈W2 are distinct separators of G of size two, and Xt ⊆ Xt′

for t ∈W2 and t′ ∈ NT (t). Observe also that if {u, v} is a separator of G of size two, then
either {u, v} = Xt for some t ∈ W2 or u, v ∈ Xt for t ∈ W≥3 such that the torso of Xt is a
cycle and u and v are nonadjacent vertices of the torso.

Combining the results of Tutte [30, 31] and of Hopcroft and Tarjan [18], we state the
following proposition.

I Proposition 3 ([30, 31, 18]). A 2-connected graph G has a unique Tutte decomposition
that can be constructed in linear time.

ESA 2020

48:6 Kernelization of Whitney Switches

Parameterized Complexity and Kernelization. We refer to the books [12, 14, 16] for the
detailed introduction to the field. Here we only give the most basic definitions. In the
Parameterized Complexity theorey, the computational complexity is measured as a function
of the input size n of a problem and an integer parameter k associated with the input. A
parameterized problem is said to be fixed parameter tractable (or FPT) if it can be solved
in time f(k) · nO(1) for some function f . A kernelization algorithm for a parameterized
problem Π is a polynomial algorithm that maps each instance (I, k) of Π to an instance
(I ′, k′) of Π such that (i) (I, k) is a yes-instance of Π if and only if (I ′, k′) is a yes-instance of
Π, and (ii) |I ′|+ k′ is bounded by f(k) for a computable function f . Respectively, (I ′, k′) is
a kernel and f is its size. A kernel is polynomial if f is polynomial. It is common to present
a kernelization algorithm as a series of reduction rules. A reduction rule for a parameterized
problem is an algorithm that takes an instance of the problem and computes in polynomial
time another instance that is more “simple” in a certain way. A reduction rule is safe if the
computed instance is equivalent to the input instance.

3 Sorting by reversals

Sorting by reversals is the classical problem with many applications including bioinformatics.
We refer to the book of Pevzner [25] for the detailed survey of results and applications of this
problem. This problem is also strongly related to Whitney Switches– solving the problem
for two cycles is basically the same as sorting circular permutations by reversals. First we use
this relation to observe the NP-completeness. But we also need to establish some structural
properties of sorting by reversals which will be used in kernelization algorithm.

Let π = (π1, . . . , πn) be a permutation of {1, . . . , n}, that is, a bijective mapping of
{1, . . . , n} to itself. Throughout this section, all considered permutations are permutations
of {1, . . . , n}. For 1 ≤ i ≤ j ≤ n, the reversal ρ(i, j) reverse the order of elements πi, . . . , πj
and transforms π into

ρ(i, j) ◦ π = (π1, . . . , πi−1, πj , πj−1, . . . , πi, πj+1, . . . , πn).

The reversal distance d(π, σ) between two permutations π and σ is the minimum number
of reversals needed to transform π to σ. For a permutation π, d(π) = d(π, ι), where ι is
the identity permutation; note that d(π, σ) = d(σ−1 ◦ π, ι) and this means that computing
the reversal distance can be reduced to sorting a permutation by the minimum number of
reversals.

These definitions can be extended for circular permutations (further, we may refer to
usual permutations as linear to avoid confusion). We say that πc = (π1, . . . , πn) is a circular
permutation if πc is the class of the permutations that can be obtained from the linear
permutation (π1, . . . , πn) by rotations and reflections, that is, all the permutations

(π1, . . . , πn), (πn, π1, . . . , πn−1), . . . , (π2, . . . , πn, π1),

and

(πn, . . . , π1), (π1, πn, . . . , π2), . . . , (πn−1, . . . , π1, πn)

composing one class are identified, meaning that we do not distinguish them when discussing
circular permutations. The circular reversals ρc(i, j) and circular reversal distance dc(πc, σc)
and dc(πc) are defined in the same way as for linear permutations.

F. V. Fomin and P. A. Golovach 48:7

H

e3

e4

e1

e2

e5

e6

e1

e4

e3

e2

e5

e6

e1

e2

e3

e4

e5

e6

e′
1

e′
2

e′
3

e′
4

e′
5

e′
6

G G′

Figure 3 The construction of G′ that is ϕ-isomorphic to H by the Whitney switches corresponding
to the sorting by reversals (3, 4, 1, 2, 5, 6) → (1, 4, 3, 2, 5, 6) → (1, 2, 3, 4, 5, 6); ϕ(ei) = e′i for i ∈
{1, . . . , 6}, the vertices of the separators for the switches are shown in black.

To see the connection between Whitney switches and circular reversals of permutations,
consider a cycle G with the vertices v1, . . . , vn for n ≥ 4 taken in the cycle order and the
edges ei = vi−1vi for i ∈ {1, . . . , r} assuming that v0 = vn. Let 1 ≤ i < j ≤ n be such
that vi and vj are not adjacent. Then the Whitney switch with respect to (A,B), where
A = {v1, . . . , vi} ∪ {vj , . . . , vn} and B = {vi, . . . , vj} is equivalent to applying the reversal
ρc(i + 1, j) to the circular permutation (e1, . . . , en) of the edges of G. Moreover, let H
be a cycle with n vertices and denote by e′1, . . . , e

′
n its edges in the cycle order. Notice

that every bijection ϕ : E(G) → E(H) is a 2-isomorphism of G to H, and G and H are
ϕ-isomorphic if and only if the circular permutation πc = (ϕ−1(e′1), . . . , ϕ−1(e′n)) is the same
as σc = (e1, . . . , en). Clearly, we can assume that πc is a permutation of {1, . . . , n} and σc is
the identity permutation. Then G can be transformed to a graph G′ ϕ-isomorphic to H by
at most k Whitney switches if and only if dc(πc) ≤ k. An example is shown in Fig. 3.

In particular, the above observation implies the hardness of Whitney Switches, because
the computing of the reversal distances is known to be NP-hard. For linear permutations,
this was shown by Caprara in [7]. Then Solomon, Sutcliffe, and Lister [27] proved that it is
NP-complete to decide, given a circular permutation πc and a nonnegative integer k, whether
dc(πc) ≤ k. This brings us to the following result.

I Theorem 4. Whitney Switches is NP-complete even when restricted to cycles.

For our kernelization algorithm, we need some further structural results about reversals
in an optimal sorting sequence.

Let π = (π1, . . . , πn) be a linear permutation. For 1 ≤ i ≤ j ≤ n, we say that (πi, . . . , πj)
is an interval of π. An interval (πi, . . . , πj) is called a block if either i = j or i < j and for
every h ∈ {i+ 1, . . . , j}, |πh−1− πh| = 1, that is, a block is formed by consecutive integers in
π in either the ascending or descending order. An inclusion maximal block is called a strip.
In other words, a strip is an inclusion maximal interval that has no breakpoint, that is, a
pair of elements πh−1, πh with |πh−1 − πh| ≥ 2. It is said that a reversal ρ(p, q) cuts a strip
(πi, . . . , πj) if either i < p ≤ j or i ≤ q < j, that is, the reversals separates elements that are
consecutive in the identity permutation.

It is known that there are cases when every optimal sorting by reversal requires a reversal
that cuts a strip. For example, as was pointed by Hannenhalli and Pevzner in [17], the
permutation (3, 4, 1, 2) requires three reversals that do not cut strips, but the sorting can be
done by two reversals: 1

(3, 4, 1, 2)→ (1, 4, 3, 2)→ (1, 2, 3, 4).

1 This example can be extended for circular permutations: (3, 4, 1, 2, 5, 6) → (1, 4, 3, 2, 5, 6) →
(1, 2, 3, 4, 5, 6).

ESA 2020

48:8 Kernelization of Whitney Switches

However, it was conjectured by Kececioglu and Sankoff [20] that there is an optimal sorting
that does not cut strips other than at their first or last elements. This conjecture was proved
by Hannenhalli and Pevzner in [17]. More precisely, they proved that there is an optimal
sorting that does not cut strips of length at least three.

It is common for bioinformatics applications, to consider signed permutations (see,
e.g., [25]). In a signed permutation −→π = (π1, . . . , πn), each element πi has its sign “−”
or “+”. Then for i, j ∈ {1, . . . , n}, the reversal reverse the sign of each element πi, . . . , πj
besides reversing their order. We generalize this notion and define partially signed circular
permutations, where each element has one of the sings: “−”, “+” or “no sign”. Formally,
a partially signed circular permutation −→π c = (〈π1, s1〉, . . . , 〈πn, sn〉), where (π1, . . . , πn) is
a linear permutation and si ∈ {−1,+1, 0} for i ∈ {1, . . . ,m}, as the class of the linear
permutations that can be obtained from (〈π1, s1〉, . . . , 〈πn, sn〉) by rotations and reflections
such that every reflection reverse signs. For i, j ∈ {1, . . . , n}, the reversal

−→ρ c(i, j) ◦ −→π c = (〈π1, s1〉, . . . , 〈πi−1, si−1〉, 〈πj ,−sj〉, . . . , 〈πi,−si〉, 〈πj+1, sj+1〉 . . . , 〈πn, sn〉)

if i ≤ j, and

−→ρ c(i, j) ◦ −→π c = (〈πn,−sn〉, . . . , 〈πi,−si〉, 〈πj+1, sj+1〉, . . . , 〈πi−1, si−1〉, 〈πj ,−sj〉 . . . , 〈π1,−s1〉)

otherwise.
We say that −→π c is signed if each si is either −1 or +1 and the signed circular identity

permutation is −→ι c = (〈1,+1〉, . . . , 〈n,+1〉). Also a partially signed circular permutation
−→π c = (〈π1, s1〉, . . . , 〈πn, sn〉) agrees in signs with a signed circular permutation −→π ′c =
(〈π1, s

′
1〉, . . . , 〈πn, s′n〉) if si = s′i for i ∈ {1, . . . , n} such that si 6= 0, that is, the zero signs are

replaced by either −1 or +1 in the signed permutation, and Σ(−→π c) is used to denote the set
of all signed circular permutations −→π ′c that agree in signs with −→π c. Then reversal distance−→
d c(−→π c, σc), where −→σ c is a signed circular permutation, is the minimum number or reversal
needed to obtain from −→π c a partially signed circular permutation −→π ′c that agrees in signs
with −→σ c, and

−→
d c(−→π c) =

−→
d c(−→π c,−→ι c). A a sequence of reversals of minimum length that

result in a partially signed circular permutation that agrees in signs with −→ι c is an optimal
sorting sequence.

Let −→π c = (〈π1, s1〉, . . . , 〈πn, sn〉) be a partially signed circular permutation. For 1 ≤ i ≤
j ≤ n, we say that (〈πi, si〉, . . . , 〈πj , sj〉) and (〈πj+1, sj+1〉, . . . , 〈πn, sn〉, 〈π1, s1〉, . . . , 〈πi, si〉)
are intervals of −→π c. An interval is a signed block if it either has size one or for every two
consecutive elements 〈πi−1, si−1〉, 〈πi, si〉, |πi−1 − πi| ≤ 1 and, moreover, if the elements of
the interval are in the increasing order, then all the signs si ∈ {0,+1}, and if they are in the
the decreasing order, then all the signs si ∈ {0,−1}. A signed strip is an inclusion maximal
signed block. A reversal −→ρ c(p, q) cuts an interval if the reversed part includes at least one
element of the interval and excludes at least one element of the interval. We use the result of
Hannenhalli and Pevzner [17] to show the following lemma.

I Lemma 5. For a signed circular permutation −→π c, there is an optimal sorting sequence
such that no reversal in the sequence cuts the interval formed by a signed strip of −→π c of
length at least 5.

Notice that we do not claim that no reversal cuts a strip of length at least 5 that is
obtained by performing the previous reversals; only the long strips of the initial permutation
−→π c are not cut by any reversal in the sorting sequence.

F. V. Fomin and P. A. Golovach 48:9

4 Tutte decomposition and 2-isomorphisms

In this section we provide a number of auxiliary results about 2-isomorphisms and Tutte
decompositions.

We need the following folklore observation about ϕ-isomorphisms that we prove for
completeness. For this, we extend ϕ on sets of edges in standard way, that is, ϕ(A) = {ϕ(e) |
e ∈ A} and ϕ(∅) = ∅.

I Lemma 6. Let G and H be n-vertex 2-connected 2-isomorphic graphs with a 2-isomorphism
ϕ. Then G and H are ϕ-isomorphic if and only if there is a bijective mapping ψ : V (G)→
V (H) such that for every v ∈ V (G), ϕ(EG(v)) = EH(ψ(v)). Moreover, G and H are ϕ-
isomorphic if and only if ϕ bijectively maps the family of the sets of edges {EG(v) | v ∈ V (G)}
to the family {EH(v) | v ∈ V (H)}, and this property can be checked in polynomial time.

By Lemma 6, we can restate the task of Whitney Switches and ask whether it is
possible to obtain a graph G′ by performing at most k Whitney switches starting from G with
the property that the extension of ϕ to the family of sets {EG′(v) | v ∈ V (G′)} bijectively
maps this family to {EH(v) | v ∈ V (H)}.

We use Whitney’s theorem [35](see also [29]).

I Proposition 7 ([35]). Let G and H be n-vertex graphs and let ϕ be a 2-isomorphism of G
to H. Then there is a finite sequence of Whitney switches such that the graph G′ obtained
from G by these switches is ϕ-isomorphic to H.

We also use the property of 3-connected graphs explicitly given by Truemper [29]. It also
can be derived from Proposition 7.

I Proposition 8 ([29]). Let G and H be 3-connected n-vertex graphs and let ϕ be a 2-
isomorphism of G to H. Then G and H are ϕ-isomorphic.

Throughout this section we assume that G and H are n-vertex 2-connected graphs
and let ϕ be a 2-isomorphism of G to H. Let also T (1) = (T (1), {X(1)

t }t∈V (T (1))) and
T (2) = (T (2), {X(2)

t }t∈V (T (2))) be the Tutte decompositions of G and H, respectively, and
denote by (W (h)

2 ,W
(h)
≥3) the partition of V (T (h)) satisfying (T4)–(T8) for h = 1, 2. We use

Lemma 6 and Propositions 7 and 8 to show the following lemmata.

I Lemma 9. There is an isomorphism α of T (1) to T (2) such that
(i) for every t ∈ V (T (1)), |X(1)

t | = |X
(2)
α(t)|, in particular, t ∈W (1)

2 (t ∈W (1)
≥3 , respectively)

if and only if α(t) ∈W (2)
2 (α(t) ∈W (2)

≥3 , respectively),
(ii) for every t ∈ W (1)

≥3 , the torso of X(1)
t is a 3-connected graph (a cycle, respectively) if

and only if the torso of X(2)
α(t) is a 3-connected graph (a cycle, respectively),

(iii) for every t ∈ V (T (1)), ϕ(E(G[X(1)
t]) = E(H[X(2)

α(t)]).

Let F be a 2-connected graph. Let also T = (T, {Xt}t∈V (T)) be the Tutte decomposition
of F and let (W2,W≥3) be the partition of V (T) satisfying (T4)–(T8). We denote by F̂ the
graph obtained from F by making the vertices of Xt adjacent for every t ∈W2. We say that
F̂ is the enhancement of F . Note that T is the Tutte decomposition of F̂ and the torso of
each bag Xt is F̂ [Xt]. Notice also that (A,B) is a Whitney separation of F if and only if
(A,B) is a Whitney separation of F̂ . We also say that F is enhanced if F = F̂ .

To simplify the arguments in our proofs, it is convenient for us to switch from 2-
isomorphisms of graphs to 2-isomorphisms of their enhancements. By Lemma 9, there is
an isomorphism α of T (1) to T (2) satisfying conditions (i) – (ii) of the lemma. We define

ESA 2020

48:10 Kernelization of Whitney Switches

the enhanced mapping ϕ̂ : E(Ĝ)→ E(Ĥ) such that ϕ̂(e) = ϕ(e) for e ∈ E(G), and for each
e ∈ E(Ĝ) \E(G) with its end-vertices in X(1)

t for some t ∈W (1)
2 , we define ϕ̂(e) be the edge

with the end-vertices in X(2)
α(t).

I Lemma 10. The mapping ϕ̂ is a 2-isomorphism of Ĝ to Ĥ. Moreover, a sequence of
Whitney switches makes G ϕ-isomorphic to H if and only if the same sequence makes Ĝ
ϕ̂-isomorphic to Ĥ.

Lemma 10 allows us to consider enhanced graph and this is useful, because we can
strengthen the claim of Lemma 9.

I Lemma 11. Let G and H be enhanced graphs. Then there is an isomorphism α of T (1) to
T (2) such that conditions (i)–(iii) of Lemma 9 are fulfilled and, moreover,
(iv) for every t ∈ V (T (1)), G[X(1)

t] is isomorphic to H[X(2)
α(t)].

Moreover, if G[X(1)
t] is 3-connected, then G[X(1)

t] is ϕ-isomorphic to H[X(2)
α(t)].

For the remaining part of the sections, we assume that G and H are enhanced graphs
and α is the isomorphism of T (1) to T (2) satisfying conditions (i)–(iv) of Lemmas 9 and 11.

Our next aim is to investigate properties of the sequences of Whitney switches that are
used in solutions for Whitney Switches. For a sequence S of Whitney switches such that
the graph G′ obtained from G by applying this sequence is φ-isomorphic to H, we say that
S is an H-sequence. We also say that S is minimum if S has minimum length.

For t ∈ W (1)
≥3 , we say that X(1)

t is ϕ-good if G[X(1)
t] is ϕ-isomorphic to H[X(2)

α(t)], and
X

(1)
t is ϕ-bad otherwise. Notice that if G[X(1)

t] is 3-connected, then X(1)
t is ϕ-good but this

not always so if G[X(1)
t] is a cycle.

e′
16

e′
1

e′
2 e′

3 e′
4 e′

5 e′
6 e′

7

e′
9

e′
10 e′

11

e′
12

e′
13

e′
14

e′
15

e′
17

e′
18

e′
8

G H

e1
e2 e3 e4 e5 e6 e7

e9
e10 e11

e12

e13
e14

e15
e16

e8
e18

e17

Figure 4 An example of a ϕ-good segment; ϕ(ei) = e′i for i ∈ {1, . . . , 18}, the vertices of the
segment are white.

Let t ∈ W (1)
≥3 such that X(1)

t is ϕ-bad. Clearly, G[X(1)
t] is a cycle. Let {t1, . . . , ts} =

N2
T (1)(t) and denote Gt = G[X(1)

t ∪
⋃s
i=1 X

(1)
ti] and Hα(t) = H[X(2)

α(t) ∪
⋃s
i=1 X

(2)
α(ti)]. Let

P = v0 · · · vr be a path in G[X(1)
t] and ei = vi−1vi for i ∈ {1, . . . , r}. We say that P a ϕ-good

segment of X(1)
t if the following holds (see Fig. 4 for an example):

(i) the length of P is at least 5,
(ii) there is a path P ′ = u0 · · ·ur in H[X(2)

α(t)] such that ui−1ui = ϕ(ei) for all i ∈ {1, . . . , r},

(iii) for every i ∈ {1, . . . , r} and for every t′ ∈W (1)
≥3 such that X(1)

t ∩X
(1)
t′ = {vi−1, vi}, X(1)

t′

is ϕ-good,
(iv) for every i ∈ {1, . . . , r − 1}, ϕ(EGt(vi)) = EHα(t)(ui).

For distinct t1, t2 ∈ W (1)
≥3 with a common neighbor in T (1), we say that X(1)

t1 and X(1)
t2

are mutually ϕ-good (see Fig. 5) if they are ϕ-good and G[X(1)
t1 ∪X

(1)
t2] is ϕ-isomorphic to

H[X(2)
α(t1) ∪X

(2)
α(t2)].

F. V. Fomin and P. A. Golovach 48:11

e′
7

e3

G H

e1

e2

e4
e5

e6 e7 e′
2

e′
3

e′
4e′

5

e′
6

e′
1

Figure 5 Mutually ϕ-good bags; ϕ(ei) = e′i for i ∈ {1, . . . , 7}, the vertices of the mutually ϕ-good
bags of G and the corresponding bags of H are white.

We say that an H-sequence is ϕ-good if no Whitney switch of S splits (mutually) ϕ-good
bags and segments. Formally, for every switch with respect to some Whitney separation
(A,B) in S,
(i) X(1)

t ⊆ A or X(1)
t ⊆ B for every ϕ-good bag X(1)

t ,
(ii) V (P) ⊆ A or V (P) ⊆ B for every ϕ-good segment P ,
(iii) X(1)

t1 ∪X
(1)
t2 ⊆ A or X(1)

t1 ∪X
(1)
t2 ⊆ B for every two distinct mutually ϕ-good bags X(1)

t1

and X(1)
t2 .

We prove that it is sufficient to consider ϕ-good H-sequences. The crucial tool for our
kernelization algorithm is the following lemma that is proved by using Lemmata 5 and 11.
In particular, Lemma 5 is crucial for showing that we can avoid splitting ϕ-good segments.

I Lemma 12. There is a minimum H-sequence of Whitney switches S that is ϕ-good.

Let t ∈W (1)
≥3 be such that X(1)

t is ϕ-bad. Denote by t1, . . . , ts 6= t the nodes of N2
T (1)(t).

Let Gt = G[X(1)
t ∪

⋃s
i=1 X

(1)
ti] and Hα(t) = G[X(2)

α(t) ∪
⋃s
i=1 X

(2)
α(ti)]. In words, Gt is the

subgraphs of G induced by the vertices of X(1)
t and the vertices of the bags at distance two

in T (1) from t, and Hα(t) the subgraph of H induced by the vertices of the bags that are
images of the bags composing Gt according to α.

We say that a vertex v ∈ X(1)
t is a crucial breakpoint if ϕ(EGt(v)) 6= EHα(t)(u) for every

u ∈ V (Hα(t)). We denote by b(G) the total number of crucial breakpoints in the ϕ-bad bags
and say that b(G) is the breakpoint number of G. Recall that by our convention, G and H
are enhanced graphs, but we extend this definition for the general case needed in the next
section. For (not necessarily enhanced) 2-isomorphic graphs G and H, and a 2-isomorphism
ϕ, we construct their enhancements Ĝ and Ĥ, and consider the enhanced mapping ϕ̂. Then
b(G) is defined as b(Ĝ).

Observe that if G and H are ϕ-isomorphic, then b(t) = 0 by Lemma 6, but not the other
way around.

We conclude the section by giving a lower bound for the length of an H-sequence.

I Lemma 13. Let S be an H-sequence of Whitney switches. Then b(G)/2 ≤ |S|.

5 Kernelization for Whitney Switches

In this section, we show that Whitney Switches parameterized by k admits a polynomial
kernel. To do it, we obtain a more general result by proving that the problem has a polynomial
kernel when parameterized by the breakpoint number of the first input graph.

ESA 2020

48:12 Kernelization of Whitney Switches

I Theorem 14. Whitney Switches has a kernel such that each graph in the obtained
instance has at most max{52 · b − 36, 3} vertices, where b is the breakpoint number of the
input graph.

Proof sketch. Let (G,H,ϕ, k) be an instance of Whitney Switches, where G and H are
n-vertex 2-connected 2-isomorphic graphs, ϕ : E(G)→ E(H) is a 2-isomorphism, and k is a
nonnegative integer.

First, we use Proposition 3 to construct the Tutte decompositions of G and H. Denote
by T (1) = (T (1), {X(1)

t }t∈V (T (1))) and T (2) = (T (2), {X(2)
t }t∈V (T (2))) the constructed Tutte

decompositions of G and H respectively, and let (W (h)
2 ,W

(h)
≥3) be the partition of V (T (h))

satisfying (T4)–(T8) for h = 1, 2.
In the next step, we construct the isomorphism α : V (T (1))→ V (T (2)) satisfying conditions

(i)–(iii) of Lemma 9. Recall that Lemma 9 claims that such an isomorphism always exists.
Given α, we compute the enhancements Ĝ and Ĥ of G and H respectively, and then

define the enhanced mapping ϕ̂ : E(Ĝ) → E(Ĥ). Note that α satisfies the conditions of
Lemma 11. Observe also that we can verify in polynomial time whether a bag X(1)

t for
t ∈W (1)

≥3 is ϕ-good or not.
To simplify notation, let G := Ĝ, H := Ĥ and ϕ := ϕ̂.
Now we apply a series of reduction rules that are applied for G, H, ϕ, and the Tutte

decompositions of G and H.
The aim of the first rule is to decrease the total size of bags that are ϕ-bad (see Fig. 6

for an example).

e1

Rule

e′
2

e′
3 e′

4
e′

5

e′
6

e′
9

e′
8e′

7

e′
10

e′
13

e′
12

e′
11

H

e′
1

e2
e3 e4

e5

e6

e7
e8e9

e10

e11
e12

e13

G

e1

e′
2

e′
3 e′

4
e′

5

e′
6

e′
9

e′
8e′

7

e′
10

e′
13

e′
12

e′
11

H

e′
1

e2
e3 e4

e5

e6

e7
e8e9

e10

e11
e12

e13

G

Figure 6 An example of an application of Reduction Rule 1; ϕ(ei) = e′i for i ∈ {1, . . . , 13}, the
vertices of the ϕ-good segment in G and the corresponding segment in H are white, and the added
edges are shown by dashed lines.

I Reduction Rule 1. If for t ∈W (1)
≥3 such that X(1)

t is ϕ-bad, there is an inclusion maximal
ϕ-good segment P = v0 · · · vr, then do the following:

find the path P ′ = u0 · · ·ur in H[X(2)
α(t)] composed by the edges ui−1ui = ϕ(vi−1vi) for

i ∈ {1, . . . , r},
add the edge v0vr to G and u0ur to H,
extend ϕ by setting ϕ(v0ur) = u0ur,
recompute the Tutte decompositions of the obtained graphs and the isomorphism α.

F. V. Fomin and P. A. Golovach 48:13

The safeness of the rule is proved by using Lemma 12. The crucial observation is that
there is an optimal sequence of Whitney switches such that every ϕ-good segment remains
in one part of every Whitney separation in the sequence, i.e., they are not split. Reduction
Rule 1 is applied exhaustively while we are able to find ϕ-good segments. To simplify
notation, we use G, H and ϕ to denote the obtained graphs and the obtained 2-isomorphism.
We also keep the notation used for the Tutte decompositions.

Our next reduction rule is used to simplify the structure of ϕ-good bags by turning them
into cliques (see Fig. 7 for an example).

G
Rule

H

G

e1 e2

e3

e4

e′
1 e′

2

e′
3

e5

e′
5

e′
4

e′
1 e′

2

e′
3

e′
4

e′
5

H

e1 e2

e3
e4

e5

Figure 7 An example of an application of Reduction Rule 2; ϕ(ei) = e′i for i ∈ {1, . . . , 5}, the
vertices of the ϕ-good bag of G and the corresponding bag of H are white, and the added edges are
shown by dashed lines.

I Reduction Rule 2. If for t ∈ W
(1)
≥3 such that X(1)

t is a ϕ-good, there are nonadjacent
vertices in X(1)

t , then compute the ϕ-isomorphism ψ of G[X(1)
t] to H[X(2)

α(t)] and for every
nonadjacent u, v ∈ X(1)

t , do the following:
add the edge uv to G and ψ(u)ψ(v) to H,
extend ϕ by setting ϕ(uv) = ψ(u)ψ(v).

The safeness of the rule follows from Lemma 12. We use that there is an optimal sequence
of Whitney switches such that no Whitney separation splits ϕ-good bags. We apply Reduction
Rule 2 for all bags of G that are not cliques. We use the same convention as for the first
rule, and keep the old notation for the obtained graphs, their Tutte decompositions, and the
obtained 2-isomorphism.

The next aim is to reduce the number of mutually ϕ-good bags by “gluing” them into
cliques (see Fig. 8 for an example).

I Reduction Rule 3. For distinct t1, t2 ∈W (1)
≥3 such that X(1)

t1 and X(1)
t2 are mutually ϕ-good,

compute the ϕ-isomorphism ψ of G[X(1)
t1 ∪X

(1)
t2] to H[X(2)

α(t1) ∪X
(2)
α(t2)],

for every u ∈ X(1)
t1 \X

(1)
t2 and every v ∈ X(1)

t2 \X
(1)
t1 , do the following:

add the edge uv to G and ψ(u)ψ(v) to H,
extend ϕ by setting ϕ(uv) = ψ(u)ψ(v),

recompute the Tutte decompositions of the obtained graphs and the isomorphism α.

ESA 2020

48:14 Kernelization of Whitney Switches

Rule

e′
6e11

H

e1 e′
5

e′
7

e′
10

e′
9

e′
8

e′
2
e′

4e′
3

e6e11

G

e1 e5

e7

e10

e9
e8

e2
e4

e3

e′
6e11

H

e1 e′
5

e′
7

e′
10

e′
9

e′
8

e′
2
e′

4e′
3

e6e11

G

e1 e5

e7

e10

e9
e8

e2
e4

e3

Figure 8 An example of an application of Reduction Rule 3; ϕ(ei) = e′i for i ∈ {1, . . . , 11}, the
vertices of the mutually ϕ-good bags of G and the corresponding bags of H are white, and the added
edges are shown by dashed lines.

To show the safeness, we use that, by Lemma 12, we can find an optimal sequence of
Whitney switches such that the corresponding Whitney separations do not split mutually
ϕ-good bags. Reduction Rule 3 is applied exhaustively whenever it is possible. As before, we
do not change the notation for the obtained graphs, their Tutte decompositions, and the
obtained 2-isomorphism.

Our next rule is used to perform the Whitney switches that are unavoidable (see Fig. 9
for an example).

I Reduction Rule 4. If there is t ∈ W (1)
2 such that dT (1)(t) = 2 and for the neighbors t1

and t2 of t, it holds that X(1)
t1 and X(2)

t2 are ϕ-good but not mutually ϕ-good, then do the
following:

find the connected components T1 and T2 of T (1) − t, and construct A =
⋃
t′∈V (T1) X

(1)
t′

and B =
⋃
t′∈V (T2) X

(1)
t′ ,

perform the Whitney switch with respect to the separation (A,B),
set k := k − 1, and if k < 0, then return the trivial no-instance and stop.

Reduction Rule 4 is applied exhaustively whenever it is possible. Note that after applying
this rule, we are able to apply Reduction Rule 3 and we do it.

Suppose that the algorithm did not stop while executing Reduction Rule 4. In the same
way as with previous rules, we maintain the initial notation for the obtained graphs, their
Tutte decompositions, and the obtained 2-isomorphism.

Our final rule deletes simplicial vertices of degree at least 3.

I Reduction Rule 5. If there is a simplicial vertex v ∈ V (G) with dG(v) ≥ 3, then do the
following:

find the vertex u ∈ V (H) such that EH(u) = ϕ(EG(v)),
set G := G− v and H := H − u,
set ϕ := ϕ|E(G)\EG(v).

F. V. Fomin and P. A. Golovach 48:15

Rule

e1

e4

e5

e6

e7

e8

e′
1

e′
4

e′
6

e′
7

e′
8

G

H

e′
5

e2

e3

e′
3

e′
2

e1

e4

e5

e6

e7

e8

e′
1

e′
4

e′
6

e′
7

e′
8

G

H

e′
5

e3

e2

e′
3

e′
2

Figure 9 An example of an application of Reduction Rule 4; ϕ(ei) = e′i for i ∈ {1, . . . , 8}, the
vertices of the switched ϕ-good bags of G and the corresponding bags of H are white.

Reduction Rule 5 is applied exhaustively. Let G, H and ϕ be the resulting graphs. We
also keep the same notation for the Tutte decompositions of G and H and the isomorphism
α following the previous convention. This completes the description of our kernelization
algorithm as the graphs G and H have bounded size. We show that |V (G)| = |V (H)| ≤
max{52 · b(G)− 36, 3}.

It can be shown that Reduction Rules 1–5 do not increase the breakpoint number.
Therefore, for the the obtained instance (G,H,ϕ, k) of Whitney Switches, |V (G)| =
|V (H)| ≤ min{52·b−36, 3}, where b is the breakpoint number of the initial input graph G. J

Theorem 14 together with Lemma 13 imply that Whitney Switches has a polynomial
kernel when parameterized by k. Thus, we can show Theorem 2 that we restate.

I Theorem 2. Whitney Switches admits a kernel with O(k) vertices and is solvable in
2O(k log k) · nO(1) time.

In Corollary 4, we proved that Whitney Switches is NP-hard when the input graphs
are constrained to be cycles. Theorem 14 indicates that it is the presence of bags in the
Tutte decompositions that are cycles of length at least 4 that makes Whitney Switches
difficult, because only such cycles may contain crucial breakpoint. In particular, we can
derive the following straightforward corollary.

I Corollary 15. Let (G,H,ϕ, k) be an instance of Whitney Switches such that b(G) = 0.
Then Whitney Switches for this instance can be solved in polynomial time.

For example, the condition that b(G) = 0 holds when G and H have no induced cycles of
length at least 4, that is, when G and H are chordal graphs.

I Corollary 16. Whitney Switches can be solved in polynomial time on chordal graphs.

6 Conclusion

We proved that Whitney Switches admits a polynomial kernel when parameterized by the
breakpoint number of the input graphs and this implies that the problem has a polynomial
kernel when parameterized by k. More precisely, we obtain a kernel, where the graphs have
O(k) vertices. Using this kernel, we can solve Whitney Switches in 2O(k log k) · nO(1) time.
It is natural to ask whether the problem can be solved in a single-exponential in k time.

ESA 2020

48:16 Kernelization of Whitney Switches

Another interesting direction of research is to investigate approximability for Whitney
Switches. In [3], Berman and Karpinski proved that for every ε > 0, it is NP-hard to
approximate the reversal distance d(π) for a linear permutation π within factor 1237

1236 −ε. This
result can be translated for circular permutations and this allows to obtain inapproximability
lower bound for Whitney Switches on cycles similarly to Corollary 4. From the positive
side, the currently best 1.375-approximation for d(π) was given by Berman, Hannenhalli,
and Karpinski [2]. Due to the close relations between Whitney Switches and the sorting
by reversal problem, it is interesting to check whether the same approximation ratio can be
achieved for Whitney Switches.

In Whitney Switches, we are given two graphs G and H together with a 2-isomorphism
and the task is to decide whether we can apply at most k Whitney switches to obtain a
graph G′ from G such that G′ is ϕ-isomorphic to H. We can relax the task and ask whether
we can obtain G′ that is isomorphic to H, that is, we do not require an isomorphism of G to
H be a ϕ-isomorphism. Formally, we define the following problem.

Input: 2-Isomorphic graphs G and H, and a nonnegative integer k.
Task: Decide whether it is possible to obtain a graph G′ from G by at most k

Whitney switches such that G′ is isomorphic to H.

Unlabeled Whitney Switches

Note that if ϕ is a 2-isomorphism of G to H, then the minimum number of Whitney
switches needed to obtain G′ that is ϕ-isomorphic to H gives an upper bound for the number
of Whitney switches required to obtain from G a graph that isomorphic to G. However,
these values can be arbitrary far apart. Consider two cycles G and H with the same number
of vertices. Clearly, G and H are isomorphic but for a given 2-isomorphism ϕ of G to H, we
may need many Whitney switches to obtain G′ that is ϕ-isomorphic to H and the number
of switches is not bounded by any constant.

Using the result of Solomon, Sutcliffe, and Lister [27], we can show that Unlabeled
Whitney Switches is NP-hard for very restricted instances.

I Proposition 17. Unlabeled Whitney Switches is NP-complete when restricted to
2-connected series-parallel graphs even if the input graphs are given together with their
2-isomorphism.

Proposition 17 lead to the question about the parameterized complexity of Unlabeled
Whitney Switches. In particular, does the problem admit a polynomial kernel when
parameterized by k?

Notice that to deal with Unlabeled Whitney Switches, we should be able to check
whether the input graphs G and H are isomorphic. If we are given a 2-isomorphism ϕ of
G to H, then checking whether G and H are ϕ-isomorphic can be done in polynomial time
by Lemma 6. However, checking whether G and H are isomorphic, even if a 2-isomorphism
ϕ is given, is a complicated task. For example, it can be observed that this is at least as
difficult as solving Graph Isomorphism on tournaments (recall that a tournament is a
directed graph such that for every two distinct vertices u and v, either uv or vu is an arc).
While Graph Isomorphism on tournaments may be easier than the general problem (we
refer to [26, 33] for the details), still it is unknown whether this special case can be solved in
polynomial time and the best known algorithm is the quasi-polynomial algorithm of Babai [1].
Given this observation, it is natural to consider Unlabeled Whitney Switches on graph
classes for which Graph Isomorphism is polynomially solvable. For example, what can be
said about Unlabeled Whitney Switches on planar graphs?

F. V. Fomin and P. A. Golovach 48:17

The relation between Whitney switches and sorting by reversals together with the
reduction in the proof of Proposition 17 indicates that as the first step, it could be reasonable
to investigate the following problem for sequences that generalizes Sorting by Reversals
for permutations. Let π = (π1, . . . , πn) be a sequence of positive integers; note that now
some elements of π may be the same. For 1 ≤ i < j ≤ n, we define the reversal ρ(i, j) in
exactly the same way as for permutations. Then we can define the reversal distance between
two n-element sequences such that the multisets of their elements are the same; we assume
that the distance is +∞ if the multisets of elements are distinct.

Input: Two n-element sequences π and σ of positive integers and a nonnegative
integer k.

Task: Decide whether the reversal distance between π and σ is at most k.

Sequence Reversal Distance

By the result of Caprara in [7], this problem is NP-complete even if the input sequences are
permutations. It is also known that the problem is NP–complete if the input sequences contain
only two distinct elements [9]. The question, whether Sequence Reversal Distance
is FPT when parameterized by k, was explicitly stated in the survey of Bulteau et. al [6]
(in terms of strings) and is open and only some partial results are known [5]. We also can
define the version of Sequence Reversal Distance for circular sequences and ask the
same question about parameterized complexity. Using the idea behind the reduction in the
proof of Proposition 17, it is easy to observe that Unlabeled Whitney Switches on
2-connected series-parallel graphs is at least as hard as the circular variant of Sequence
Reversal Distance.

References
1 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceed-

ings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016. doi:10.1145/2897518.
2897542.

2 Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 1.375-approximation algorithm for
sorting by reversals. In Algorithms - ESA 2002, 10th Annual European Symposium, Rome,
Italy, September 17-21, 2002, Proceedings, volume 2461 of Lecture Notes in Computer Science,
pages 200–210. Springer, 2002. doi:10.1007/3-540-45749-6_21.

3 Piotr Berman and Marek Karpinski. On some tighter inapproximability results (extended
abstract). In Automata, Languages and Programming, 26th International Colloquium, IC-
ALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, volume 1644 of Lecture Notes
in Computer Science, pages 200–209. Springer, 1999. doi:10.1007/3-540-48523-6_17.

4 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Comput. Geom., 42(1):60–80,
2009. doi:10.1016/j.comgeo.2008.04.001.

5 Laurent Bulteau, Guillaume Fertin, and Christian Komusiewicz. (Prefix) reversal distance for
(signed) strings with few blocks or small alphabets. J. Discrete Algorithms, 37:44–55, 2016.
doi:10.1016/j.jda.2016.05.002.

6 Laurent Bulteau, Falk Hüffner, Christian Komusiewicz, and Rolf Niedermeier. Multivariate
algorithmics for NP-hard string problems. Bulletin of the EATCS, 114, 2014. URL: http:
//eatcs.org/beatcs/index.php/beatcs/article/view/310.

7 Alberto Caprara. Sorting by reversals is difficult. In Proceedings of the First Annual Interna-
tional Conference on Research in Computational Molecular Biology, RECOMB 1997, Santa
Fe, NM, USA, January 20-23, 1997, pages 75–83. ACM, 1997. doi:10.1145/267521.267531.

ESA 2020

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1007/3-540-45749-6_21
https://doi.org/10.1007/3-540-48523-6_17
https://doi.org/10.1016/j.comgeo.2008.04.001
https://doi.org/10.1016/j.jda.2016.05.002
http://eatcs.org/beatcs/index.php/beatcs/article/view/310
http://eatcs.org/beatcs/index.php/beatcs/article/view/310
https://doi.org/10.1145/267521.267531

48:18 Kernelization of Whitney Switches

8 Markus Chimani, Petr Hlinený, and Petra Mutzel. Vertex insertion approximates the crossing
number of apex graphs. Eur. J. Comb., 33(3):326–335, 2012. doi:10.1016/j.ejc.2011.09.
009.

9 David A. Christie and Robert W. Irving. Sorting strings by reversals and by transpositions.
SIAM J. Discrete Math., 14(2):193–206, 2001. doi:10.1137/S0895480197331995.

10 Sean Cleary and Katherine St. John. Rotation distance is fixed-parameter tractable. Inform.
Process. Lett., 109(16):918–922, 2009. doi:10.1016/j.ipl.2009.04.023.

11 Bruno Courcelle. The monadic second-order logic of graphs XI: hierarchical decompositions of
connected graphs. Theor. Comput. Sci., 224(1-2):35–58, 1999. doi:10.1016/S0304-3975(98)
00306-5.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

15 Fedor V. Fomin and Petr A. Golovach. Kernelization of whitney switches. CoRR,
abs/2006.13684, 2020. arXiv:2006.13684.

16 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization.
Cambridge University Press, Cambridge, 2019. Theory of parameterized preprocessing.

17 Sridhar Hannenhalli and Pavel A. Pevzner. To cut... or not to cut (applications of comparative
physical maps in molecular evolution). In Proceedings of the Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, 28-30 January 1996, Atlanta, Georgia, USA, pages 304–313.
ACM/SIAM, 1996. URL: http://dl.acm.org/citation.cfm?id=313852.314077.

18 John E. Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973. doi:10.1137/0202012.

19 Iyad A. Kanj, Eric Sedgwick, and Ge Xia. Computing the flip distance between triangulations.
Discrete & Computational Geometry, 58(2):313–344, 2017. doi:10.1007/s00454-017-9867-x.

20 John D. Kececioglu and David Sankoff. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica, 13(1/2):180–210, 1995.
doi:10.1007/BF01188586.

21 Daniel Lokshtanov, Amer E Mouawad, Fahad Panolan, MS Ramanujan, and Saket Saurabh.
Reconfiguration on sparse graphs. Journal of Computer and System Sciences, 95:122–131,
2018.

22 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is
NP-complete. Comput. Geom., 49:17–23, 2015. doi:10.1016/j.comgeo.2014.11.001.

23 Joan M. Lucas. An improved kernel size for rotation distance in binary trees. Inform. Process.
Lett., 110(12-13):481–484, 2010. doi:10.1016/j.ipl.2010.04.022.

24 Amer E. Mouawad, Naomi Nishimura, Venkatesh Raman, Narges Simjour, and Akira Suzuki.
On the parameterized complexity of reconfiguration problems. Algorithmica, 78(1):274–297,
2017. doi:10.1007/s00453-016-0159-2.

25 Pavel A. Pevzner. Computational molecular biology - an algorithmic approach. MIT Press,
2000.

26 Pascal Schweitzer. A polynomial-time randomized reduction from tournament isomorphism
to tournament asymmetry. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages
66:1–66:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.
ICALP.2017.66.

27 Andrew Solomon, Paul J. Sutcliffe, and Raymond Lister. Sorting circular permutations by
reversal. In Algorithms and Data Structures, 8th International Workshop, WADS 2003, Ottawa,
Ontario, Canada, July 30 - August 1, 2003, Proceedings, volume 2748 of Lecture Notes in
Computer Science, pages 319–328. Springer, 2003. doi:10.1007/978-3-540-45078-8_28.

https://doi.org/10.1016/j.ejc.2011.09.009
https://doi.org/10.1016/j.ejc.2011.09.009
https://doi.org/10.1137/S0895480197331995
https://doi.org/10.1016/j.ipl.2009.04.023
https://doi.org/10.1016/S0304-3975(98)00306-5
https://doi.org/10.1016/S0304-3975(98)00306-5
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
http://arxiv.org/abs/2006.13684
http://dl.acm.org/citation.cfm?id=313852.314077
https://doi.org/10.1137/0202012
https://doi.org/10.1007/s00454-017-9867-x
https://doi.org/10.1007/BF01188586
https://doi.org/10.1016/j.comgeo.2014.11.001
https://doi.org/10.1016/j.ipl.2010.04.022
https://doi.org/10.1007/s00453-016-0159-2
https://doi.org/10.4230/LIPIcs.ICALP.2017.66
https://doi.org/10.4230/LIPIcs.ICALP.2017.66
https://doi.org/10.1007/978-3-540-45078-8_28

F. V. Fomin and P. A. Golovach 48:19

28 Carsten Thomassen. Embeddings and minors. In Handbook of combinatorics, Vol. 1, 2, pages
301–349. Elsevier Sci. B. V., Amsterdam, 1995.

29 Klaus Truemper. On whitney’s 2-isomorphism theorem for graphs. Journal of Graph Theory,
4(1):43–49, 1980. doi:10.1002/jgt.3190040106.

30 W. T. Tutte. Connectivity in graphs. Mathematical Expositions, No. 15. University of Toronto
Press, Toronto, Ont.; Oxford University Press, London, 1966.

31 W. T. Tutte. Graph theory, volume 21 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, Cambridge, 2001. With a foreword by Crispin St. J. A. Nash-
Williams, Reprint of the 1984 original.

32 Dirk L. Vertigan and Geoffrey P. Whittle. A 2-isomorphism theorem for hypergraphs. J.
Comb. Theory, Ser. B, 71(2):215–230, 1997. doi:10.1006/jctb.1997.1789.

33 Fabian Wagner. Hardness results for tournament isomorphism and automorphism. In Math-
ematical Foundations of Computer Science 2007, 32nd International Symposium, MFCS 2007,
Ceský Krumlov, Czech Republic, August 26-31, 2007, Proceedings, volume 4708 of Lecture Notes
in Computer Science, pages 572–583. Springer, 2007. doi:10.1007/978-3-540-74456-6_51.

34 Hassler Whitney. Non-separable and planar graphs. Trans. Amer. Math. Soc., 34(2):339–362,
1932. doi:10.2307/1989545.

35 Hassler Whitney. 2-Isomorphic Graphs. Amer. J. Math., 55(1-4):245–254, 1933. doi:10.2307/
2371127.

ESA 2020

https://doi.org/10.1002/jgt.3190040106
https://doi.org/10.1006/jctb.1997.1789
https://doi.org/10.1007/978-3-540-74456-6_51
https://doi.org/10.2307/1989545
https://doi.org/10.2307/2371127
https://doi.org/10.2307/2371127

Subexponential Parameterized Algorithms and
Kernelization on Almost Chordal Graphs
Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
Fedor.Fomin@uib.no

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
Petr.Golovach@uib.no

Abstract

We study algorithmic properties of the graph class Chordal−ke, that is, graphs that can be turned
into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most
k. We discover that a number of fundamental intractable optimization problems being parameterized
by k admit subexponential algorithms on graphs from Chordal− ke. While various parameterized
algorithms on graphs for many structural parameters like vertex cover or treewidth can be found
in the literature, up to the Exponential Time Hypothesis (ETH), the existence of subexponential
parameterized algorithms for most of the structural parameters and optimization problems is highly
unlikely. This is why we find the algorithmic behavior of the “fill-in parameterization” very unusual.

Being intrigued by this behaviour, we identify a large class of optimization problems on
Chordal− ke that admit algorithms with the typical running time 2O(

√
k log k) · nO(1). Examples of

the problems from this class are finding an independent set of maximum weight, finding a feedback
vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum
induced planar subgraph. On the other hand, we show that for some fundamental optimization prob-
lems, like finding an optimal graph coloring or finding a maximum clique, are FPT on Chordal−ke

when parameterized by k but do not admit subexponential in k algorithms unless ETH fails.

Besides subexponential time algorithms, the class of Chordal − ke graphs appears to be
appealing from the perspective of kernelization (with parameter k). While it is possible to show that
most of the weighted variants of optimization problems do not admit polynomial in k kernels on
Chordal− ke graphs, this does not exclude the existence of Turing kernelization and kernelization
for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique
on Chordal− ke graphs. For (unweighted) Independent Set we design polynomial kernels on
two interesting subclasses of Chordal− ke, namely, Interval− ke and Split− ke graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Parameterized complexity, structural parameterization, subexponential
algorithms, kernelization, chordal graphs, fill-in, independent set, clique, coloring

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.49

Related Version The full version of the paper is available at https://arxiv.org/abs/2002.08226.

Funding The research leading to these results has received funding from the Research Council of
Norway via the project “MULTIVAL” (grant no. 263317).

Acknowledgements We thank Torstein Strømme, Daniel Lokshtanov, and Pranabendu Misra for
fruitful discussions on the topic of this paper. We also grateful to Saket Saurabh for helpful
suggestions that allowed us to improve our results.

© Fedor V. Fomin and Petr A. Golovach;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 49; pp. 49:1–49:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1955-4612
mailto:Fedor.Fomin@uib.no
https://orcid.org/0000-0002-2619-2990
mailto:Petr.Golovach@uib.no
https://doi.org/10.4230/LIPIcs.ESA.2020.49
https://arxiv.org/abs/2002.08226
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Subexp Parameterized Algorithms and Kernelization on Almost Chordal Graphs

1 Introduction

Many NP-hard graph optimization problems are solvable in polynomial or even linear
time when the input of the problem is restricted to a special graph class. For example,
the chromatic number of a perfect graph can be computed in polynomial time [34], the
Feedback Vertex Set problem is solvable in polynomial time on chordal graphs [31], and
Hamiltonicity on interval graphs [44]. From the perspective of parameterized complexity,
the natural question here is how stable are these nice algorithmic properties of graph classes
subject to some perturbations. For example, if an input n-vertex graph G is not chordal,
but can be turned into a chordal graph by adding at most k edges, how fast can we solve
Feedback Vertex Set on G? Can we solve the problem in polynomial time for constant
k? Or maybe for k = logn or even for k = poly(logn)? A word of warning is on order
here. Since an algorithm for Feedback Vertex Set of running time 2o(n) will refute the
Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane [37, 38], and because
k ≤

(
n
2
)
, the existence of an algorithm of running time 2k1/2−ε · nO(1) for some ε > 0 (which

is polynomial for k = (logn)2/(1−2ε)) is unlikely. Interestingly, as we shall see, Feedback
Vertex Set (and many other problems) are solvable in time 2k1/2 log k · nO(1).

Leizhen Cai in [11] introduced a convenient notation for “perturbed” graph classes. Let
F be a class of graphs, then F − ke (respectively F − ve) is the class of those graphs that
can be obtained from a member of F by deleting at most k edges (respectively vertices).
Similarly one can define classes F + ke and F + ve. Then for any class F and optimization
problem P that can be solved in polynomial time on F , the natural question is whether P is
fixed-parameter tractable parameterized by k, the “distance” to F .

In this paper we obtain several algorithmic results on the parameterized complexity of
optimization problems on F − ke, where F is the class of chordal graphs. Let us remind that
a graph H is chordal (or triangulated) if every cycle of length at least four has a chord, i.e., an
edge between two nonconsecutive vertices of the cycle. We denote by Chordal−ke the class
of graphs that can be made chordal graph by adding at most k edges. While parameterized
algorithms for some optimization problems on the class of Chordal−ke graphs were studied
(see the section on previous work), our work introduces the first subexponential parameterized
algorithms in this graph class. We prove the following.

Subexponential parameterized algorithms. We discover a large class of optimization prob-
lems on graph class Chordal− ke that are solvable in time 2O(

√
k log k) · nO(1). Examples of

such optimization problems are: the problem of finding an induced d-colorable subgraph of
maximum weight (which generalizes Weighted Independent Set for d = 1 and Weighted
Bipartite Subgraph for d = 2); the problem of finding a maximum weight induced sub-
graph admitting a homomorphism into a fixed graph H; the problem of finding an induced
d-degenerate subgraph of maximum weight and its variants like Weighted Induced Forest
(or, equivalently, Weighted Feedback Vertex Set), Weighted Induced Tree, In-
duced Planar Graph, Weighted Induced Path (Cycle) or Weighted Induced
Cycle Packing; as well as various connectivity variants of these problems like Weighted
Connected Vertex Cover and Weighted Connected Feedback Vertex Set. This
implies that all these problems are solvable in polynomial time for k = (log n

log log n)2. On the
other hand, we refute (subject to ETH) existence of a subexponential time 2o(k) · nO(1)

algorithms on graphs in Chordal− ke for Coloring and Clique. Moreover, our lower
bounds hold for way more restrictive graph class Complete− ke, the graphs within k edges
from a complete graph. We also show that both problems are fixed-parameter tractable
(FPT) (parameterized by k) on Chordal− ke graphs.

F. V. Fomin and P. A. Golovach 49:3

Kernelization. It follows almost directly from the previous work [39, 8] that Weighted
Independent Set, Weighted Vertex Cover, Weighted Bipartite Subgraph,
Weighted Odd Cycle Transversal, Weighted Feedback Vertex Set and
Weighted Clique do not admit a polynomial in k kernel (unless coNP * NP/ poly)
on Complete− ke and hence on Chordal− ke. Interestingly, these lower bounds do not
refute the possibility of polynomial Turing kernelization or kernelization for unweighted
variants of the problems. Indeed, we show that Weighted Clique on Chordal − ke
parameterized by k admits a Turing kernel. For unweighted Independent Set we show that
the problem admits polynomial in k kernel on graph classes Interval− ke and Split− ke
(graphs that can be turned into an interval or split graphs, corrspondingly, by adding at
most k edges).

Previous work. Chordal graphs form an important subclass of perfect graphs. These graphs
were also intensively studied from the algorithmic perspective. We refer to books [9, 33, 58]
for introduction to chordal graphs and their algorithmic properties.

The problem of determining whether a graph G belongs to Chordal−ke, that is checking
whether G can be turned into a chordal graph by adding at most k edges, is known in the
literature as the Minimum Fill-in problem. The name fill-in is due to the fundamental
problem arising in sparse matrix computations which was studied intensively in the past
[52, 55]. The survey of Heggernes [36] gives an overview of techniques and applications of
minimum and minimal triangulations.

Minimum Fill-in (under the name Chordal Graph Completion) was one of the 12
open problems presented at the end of the first edition of Garey and Johnson’s book [30] and
it was proved to be NP-complete by Yannakakis [60]. Kaplan et al. proved that Minimum
Fill-in is fixed parameter tractable by giving an algorithm of running time 16k · nO(1) in
[43]. There was a chain of algorithmic improvements resulting in decreasing the constant in
the base of the exponents [42, 10, 7] resulting with a subexponential algorithm of running
time 2O(

√
k log k) · nO(1) [28]. A significant amount of work in parameterized algorithms is

devoted to recognition problems of classes F − ke, F + ke, F − kv, and F + kv for chordal
graphs and various subclasses of chordal graphs [1, 2, 4, 5, 14, 12, 13, 26, 40, 48, 59].

Parameterized algorithms, mostly for graph coloring problems, were studied on perturbed
chordal graphs and subclasses of this graph class [11, 56]. Among other results, Cai [11]
proved that Coloring (the problem of computing the chromatic number of a graph) is
FPT (parameterized by k) on Split − ke graphs. Marx [47] proved that Coloring is
FPT on Chordal + ke and Interval + ke graphs but is W[1]-hard on Chordal + kv and
Interval + kv graphs. Jansen and Kratsch [41] proved that for every fixed integer d, the
problems d-Coloring and d-List Coloring admit polynomial kernels on the parameterized
graph classes Split + kv, Cochordal + kv, and Cograph + kv.

Liedloff, Montealegre, and Todinca [46] gave a general theorem establishing fixed-
parameter tractability for a large class of optimization problems. Let Cpoly be a class
of graphs having at most poly(n) minimal separators. (Since every chordal graph has at
most n minimal separators, the class of chordal graphs is a subclass of Cpoly.) Let ϕ be a
Counting Monadic Second Order Logic (CMSO) formula, G be a graph, and t ≥ 0 be an
integer. Liedloff, Montealegre, and Todinca proved that on graph class Cpoly +kv, the generic
problem, whose task is to maximize |X| subject to the following constraints: (i) there is a set
F ⊆ V (G) such that X ⊆ F , (ii) the treewidth of G[F] is at most t, and (iii) (G[F], X) |= ϕ,
is solvable in time O(nO(t) · f(t, ϕ, k)), and thus is fixed-parameter tractable parameterized
by k. The problem generalizes many classical algorithmic problems like Independent Set,
Longest Induced Path, Induced Forest, and different packing problems, see [27].

ESA 2020

49:4 Subexp Parameterized Algorithms and Kernelization on Almost Chordal Graphs

Since the class Cpoly + kv contains Chordal− ke, the work of Liedloff et al. [46] yields
that all these problems are fixed-parameter tractable on Chordal−ke graphs parameterized
by k + t+ |ϕ|. However, the theorem of Liedloff et al. cannot be used to derive our results.
First, this theorem provides FPT algorithm only for problems of finding an induced subgraph
of constant treewidth, which is not the case in our situation. Second, even for graphs of
treewidth 0, their technique does not derive parameterized algorithms with subexponential
running times.

Organization of the paper. In Section 2, we introduce basic notation. In Section 3, we
discuss subexponential algorithms on Chordal− ke. Section 4 contains conditional lower
bounds (assuming ETH) for Coloring and Clique on Chordal−ke. Section 5 is devoted to
kernelization. We give lower bounds and construct a polynomial Turing kernel for Weighted
Clique on Chordal − ke, and construct polynomial kernels for Independent Set on
Interval− ke and Split− ke. We conclude in Section 6 with some open problems. Due to
space constraints, we either omit or just sketch the proofs. The details can be found in the
full version of the paper [22].

2 Preliminaries

Graphs. All graphs considered in this paper are assumed to be simple, that is, finite
undirected graphs without loops or multiple edges. We follow the standard graph theoretic
notation and terminology (see, e.g., [19]). For each of the graph problems considered in
this paper, we let n = |V (G)| and m = |E(G)| denote the number of vertices and edges,
respectively, of the input graph G if it does not create confusion.

A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T)), where T is a tree whose
every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the following
three conditions hold: (i)

⋃
t∈V (T) Xt = V (G), (ii) for every uv ∈ E(G), there exists a

node t of T such that bag Xt contains both u and v, and (iii) for every u ∈ V (G), the set
Tu = {t ∈ V (T)|u ∈ Xt}, i.e., the set of nodes whose corresponding bags contain u, induces
a connected subtree of T .

A graph G is chordal (or triangulated) if it does not contain an induced cycle of length
at least four. The intersection graph of a family of intervals of the real line is called an
interval graph; it is also said that G is an interval graph if there is a family of intervals
(called interval model or representation) such that G is isomorphic to the intersection graph
of this family. A graph G is said to be split if its vertex set can be partition into independent
set and a clique. We refer to [9, 33] for detailed introduction to these graph classes. Notice
that interval and split graphs are chordal.

A triangulation (or a chordal complementation) of a graph G is a chordal supergraph
H with V (H) = V (G). The size of the triangulation is |E(H)| − |E(G)|. The fill-in of a
graph G, denoted fill-in(G), is the minimum integer k such that G ∈ Chordal− ke or, in
other words, fill-in is the minimum number of edges whose addition makes the graph chordal.
An interval complementation of a graph G is an interval supergraph H with V (H) = V (G).
Similarly, a split complementation of G is a split supergraph H and a clique complementation
is a complete supergraph with V (H) = V (G). The size of interval (split, clique) completion is
|E(H)|−|E(G)| and we denote the minimum size of an interval (split, clique) complementation
by int-comp(G) (split-comp(G), c-comp(G) respectively). Clearly, G has an interval (split,
clique) complementation of size at most k if and only if G ∈ Interval − ke (Split − ke,
Complete − ke). It is easy to see that c-comp(G) =

(|V (G)|
2
)
− |E(G)|, and it is known

that it is NP-hard to compute fill-in(G) [60] and int-comp(G) [30] and the same holds for
split-comp(G) [50]. We will make use of the following observation.

F. V. Fomin and P. A. Golovach 49:5

I Observation 1. For every graph G, c-comp(G) ≥ int-comp(G) ≥ fill-in(G) and
c-comp(G) ≥ split-comp(G) ≥ fill-in(G).

In particular, this observation implies that complexity lower bounds obtained for graph
problems parameterized by the clique completion size hold for the same problems when
they are parmeterized by the interval or split completion or by the fill-in, and the hardness
for the interval or split completion parameterization implies the hardness for the fill-in
parameterization.

Parameterized Complexity and Kernelization. We refer to the books [16, 20, 25] for the
detailed introduction to the field. In the Parameterized Complexity theorey, the computa-
tional complexity is measured as a function of the input size n of a problem and an integer
parameter k associated with the input. A parameterized problem is said to be fixed parameter
tractable (or FPT) if it can be solved in time f(k) · nO(1) for some function f . Parameterized
complexity theory also provides tools for obtaining complexity lower bounds. Here we use
lower bounds based on Exponential Time Hypothesis (ETH) formulated by Impagliazzo,
Paturi and Zane [37, 38]. In particular, ETH implies that k-Satisfiability with n variables
cannot be solved in time 2o(n)nO(1).

A compression of a parameterized problem Π1 into a (non-parameterized) problem Π2
is a polynomial algorithm that maps each instance (I, k) of Π1 with the input I and the
parameter k to an instance I ′ of Π2 such that (i) (I, k) is a yes-instance of Π1 if and only
if I ′ is a yes-instance of Π2, and (ii) |I ′| is bounded by f(k) for a computable function f .
The output I ′ is also called a compression. The function f is said to be the size of the
compression. A compression is polynomial if f is polynomial. A kernelization algorithm
for a parameterized problem Π is a polynomial algorithm that maps each instance (I, k) of
Π to an instance (I ′, k′) of Π such that (i) (I, k) is a yes-instance of Π if and only if (I ′, k′)
is a yes-instance of Π, and (ii) |I ′| + k′ is bounded by f(k) for a computable function f .
Respectively, (I ′, k′) is a kernel and f is its size. A kernel is polynomial if f is polynomial.

Even if a paramterized problem admits no polynomial kernel up to some complexity
conjectures, sometimes we can reduce it to solving of a polynomial number of instances of
the same problem such that the size of each instance is bounded by a polynomial of the
parameter. Let Π be a parameterized problem and let f : Z+ → Z+ be a computable function.
A Turing kernelization or Turing kernel for Π of size f is an algorithm that decides whether
an instance (I, k) of Π is a yes-instance in time polynomial in |I|+ k, when given access to
an oracle that decides whether (I ′, k′) is a yes-instance of Π in a single step if |I ′|+ k ≤ f(k).

3 Subexponential algorithms for induced d-colorable subgraphs

To construct subexponential algorithms on Chordal− ke, we consider tree decompositions
such that each bag is “almost” a clique.

I Definition 2. Let k be a nonnegative integer. A tree decomposition T = (T, {Xt}t∈V (T))
of a graph G is k-almost chordal if for every t ∈ V (T), c-comp(G[Xt]) ≤ k, that is, every
bag can be converted to a clique by adding at most k edges.

Note that every chordal graph has 0-almost chordal tree decomposition. Given a k-almost
chordal tree decomposition, we are able to construct dynamic programming algorithms
that are subexponential in k for various problems. The crucial property of the graphs in
Chordal−ke is that we are able to construct k-almost chordal tree decompositions for them
in subexponential in k time by making use of the following result of Fomin and Villanger [28].

ESA 2020

49:6 Subexp Parameterized Algorithms and Kernelization on Almost Chordal Graphs

I Proposition 3 ([28]). Deciding whether graph G is in Chordal − ke can be done in
time 2O(

√
k log k) + O(k2nm). Moreover, if G ∈ Chordal − ke, then the corresponding

triangulation can be found in time 2O(
√

k log k) +O(k2nm).

Using Proposition 3 we obtain the following lemma.

I Lemma 4. A k-almost chordal decomposition of a graph G ∈ Chordal− ke with at most
n bags can be constructed in time 2O(

√
k log k) · nO(1).

The crux of our subexponential algorithms is in the following combinatorial lemma.

I Lemma 5. Let d ≥ 1 be an integer. Let G be a graph and let F be a set of induced d-
colorable subgraphs of G. Let U ⊆ V (G) be a set of vertices of G such that c-comp(G[U]) ≤ k,
that is, U can be made a clique by adding at most k edges. Then

for every F ∈ F ,

|U ∩ V (F)| ≤ 3d+
√
d2 + 8dk
2 ,

and
the size of the projection of F on U , that is, the size of the family

S = {S | S = U ∩ V (F) for some F ∈ F}

is at most (1 + 2(
√

1+8k−1)/2 · |U |)d.
Moreover, there is an algorithm that in time 2O(d

√
k) · nO(d) outputs a family of sets S ′ ⊇ S

such that each set from S ′ has at most 3d+
√

d2+8dk
2 vertices, the number of sets in S ′ is

(1 + 2(
√

1+8k−1)/2 · n)d and G[S] is d-colorable for S ∈ S ′.

Proof sketch. We partition U into sets X and Y as follows. Let X be the vertices of U that
have at least one non-neighbor in U . In other words, for every v ∈ X there is u ∈ U that is
not adjacent to v. Two observations about set X will be useful. First, because U , and hence
X, can be turned into a clique by adding at most k edges, we have that |X| ≤ 2k. Second,
the remaining vertices of U , namely, Y = U \X, form a clique. For every set S ∈ S, we
define SX = X ∩ S and SY = Y ∩ S. Note that S = SX ∪ SY .

Because Y is a clique in G, no d-colorable subgraph from F can contain more than d
vertices from Y . Hence, |SY | ≤ d.

Let x = |SX |. Because G[SX] is an induced subgraph of some d-colorable graph F ∈ F ,
we have that G[SX] is d-colorable. On the other hand, since c-comp(G[U]) ≤ k, G[SX] can
be turned into complete graph by adding at most k edges. These two conditions are used to
estimate x. Let us remind that Turán graph is the complete d-partite graph on x vertices
whose partition sets differ in size by at most 1. According to Turán’s theorem, see e.g. [19],
Turán graph has the maximum possible number of edges among all d-colorable graphs. The
number of edges in Turán’s graph is at most 1

2x
2 d−1

d . Thus,(
x

2

)
− k ≤ |E(G[SX])| ≤ 1

2x
2 d− 1

d
and k ≥

(
x

2

)
− 1

2x
2 d− 1

d
= x2 − dx

2d .

Therefore, x ≤ d+
√

d2+8dk
2 . We obtain that |S| = |SX |+ |SY | ≤ x+ d ≤ 3d+

√
d2+8dk
2 , which

implies the first claim of the lemma.
To prove the second claim, let H = G[U]. Observe that the complement H has at most k

edges. Consider Z ⊆ V (H). If |Z| ≤
√

1+8k+1
2 , then the minimum degree δ(H[Z]) ≤

√
1+8k−1

2 .
If |Z| >

√
1+8k+1

2 , then

δ(H[Z]) ≤ 2|E(H[Z])|
|Z|

≤ 4k√
1 + 8k + 1

=
√

8k + 1− 1
2 ,

F. V. Fomin and P. A. Golovach 49:7

that is, the minimum degree of every induced subgraph of H is at most
√

8k+1−1
2 . Therefore,

H is
√

1+8k−1
2 -degenerate. This implies that U has at most 2(

√
1+8k−1)/2 · |U | independent in

G subsets. Therefore, U has at most (1 + 2(
√

1+8k−1)/2 · |U |)d subsets inducing d-colorable
subgraphs. The same observations also allow to construct S ′ in 2O(d

√
k) · nO(d) time. J

Let G be a graph and let F be an induced d-colorable subgraph of G. Informally,
Lemma 5 says that for a given a k-almost chordal tree decomposition, every bag of this tree
decomposition contains roughly O(d+

√
dk) vertices of F . This statement combined with

dynamic programming over the tree decomposition could easily bring us to the algorithm
computing a maximum d-colored subgraph of G in time nO(d+

√
dk). However, this is not

what we are shooting for; such an algorithm is not fixed-parameter tractable with parameter
k. This is where the second part of the lemma becomes extremely helpful. Let us look at the
family of all d-colorable induced subgraphs of G. Then the number of different intersections
of the graphs from this family with a single bag of the tree decomposition is bounded by
2O(d

√
k)nO(d). This allows us to bound the number of “partial solutions” in the dynamic

programming, which in turn brings us to a parameterized subexponential algorithm. As
an example of the applicability of Lemma 5, we give an algorithm for the following generic
problem.

Input: Graph G with weight function w : V (G)→ R.
Task: Find a properly d-colorable induced subgraph H of G of maximum weight∑

v∈V (H) w(v).

Weighted d-colorable Subgraph

For d = 1, this is the problem of finding an independent set of maximum weight, the
Weighted Independent Set problem. For d = 2, this is the problem of finding an induced
bipartite subgraph of maximum weight, Weighted Bipartite Subgraph.

I Theorem 6. Let d ≥ 1 be an integer. For a given graph G with a nice k-almost chordal
tree decomposition with nO(1) bags, the Weighted d-colorable Subgraph problem is
solvable in time 2O(

√
k·d log d) · nO(d).

Proof sketch. Let T = (T, {Xt}t∈V (T)) be a k-almost chordal tree decomposition of G with
|V (T)| = nO(1). We perform dynamic programming over T . Let us note that the width of
the decomposition can be of order of n. As it is standard, we assume that T is rooted at
some node r. For a node t of T , let Vt be the union of all the bags present in the subtree of
T rooted at t, including Xt. For vertex sets X ⊂ X ′ of graph G, we say that a coloring c of
G[X] is extendible to a coloring c′ of G[X ′], if for every x ∈ X, c(v) = c′(v).

For every node t, every S ⊆ Xt such that G[S] is d-colorable, every mapping c : S →
{1, . . . , d} of G[S], we define the following value:

cost[t, S, c] = maximum possible weight of a set Ŝ such that (1)
S ⊆ Ŝ ⊆ Vt, Ŝ ∩Xt = S, and c is a proper coloring of G[S] extendible
to a proper d-coloring of G[Ŝ].

If c is not a proper coloring of G[S] or if no such set Ŝ exists, then we put cost[t, S, c] = −∞.
We also put cost[t, ∅, c] be the maximum possible weight of a set Ŝ such that Ŝ ⊆ Vt,
Ŝ ∩ Xt = ∅, and G[Ŝ] is d-colorable. Our algorithm computes the tables of values of
cost[t, S, c] bottom-up for t ∈ V (T) from the leaves of T . Given the table for the root, it is
straightforward to compute the maximum weight of a d-colorable induced subgraph of G.
The corresponding optimal subgraph can be found by the standard backtracking arguments.

ESA 2020

49:8 Subexp Parameterized Algorithms and Kernelization on Almost Chordal Graphs

The proof of the correctness for this dynamic programming is very similar to the one
provided normally for graphs of bounded treewidth. However, the running time analysis
is based on Lemma 5. The crucial observation that allows us to obtain a subexponential
running time is that the running time of our dynamic programming algorithm, up to some
polynomial multiplicative factor, is dominated by the number of triples [t, S, c]. The number
t is in nO(1). Every set S should induce a d-colorable subgraph, so we can restrict our
attention only to sets of the form Xt ∩ V (F) for some d-colorable graph F . By Lemma 5,
each of these sets is of size at most d+ d+

√
d2+8dk
2 and the total number of such sets S for

each bag Xt is is 2O(d
√

k) · nO(d) and they can be listed in time 2O(d
√

k) · nO(d). Thus, the
number of d-colorings c of each of the sets S is dO(|S|) = dO(d+

√
dk). Hence the total running

time of the dynamic programming is 2O(
√

k·d log d) · nO(d). J

Combining Lemma 4 and Theorem 6, we immediately obtain the following corollary. We
say that A ⊆

(
V (G)

2
)
\ E(G) is a chordal modulator if the graph obtained from G by adding

the edges A is chordal.

I Corollary 7. Weighted d-colorable Subgraph on a graph G ∈ Chordal − ke

is solvable in time 2O(
√

k(log k+d log d)) · nO(d). Moreover, the problem can be solved in
2O(
√

k·d log d) · nO(d) time if a chordal modulator of size at most k is given.

In particular, we derive the following corollary for Weighted Independent Set and
Weighted Bipartite Subgraph and the dual minimization problems. In the Weighted
Vertex Cover, we are given a weighted graph G and the task is to find a vertex cover
of minimum weight, that is, a set of vertices X such that every edge of G has at least one
endpoint in G. Similarly, in the Weighted Odd Cycle Transversal, we are asked to
find a set of vertices of minimum weight such that every cycle of odd length contains at least
one vertex from the set. Clearly the complement of every independent set is a vertex cover,
and the complement of every induced bipartite subgraph is an odd cycle transversal.

I Corollary 8. Weighted Independent Set (Weighted Vertex Cover) and
Weighted Bipartite Subgraph (Weighted Odd Cycle Transversal) on
G ∈ Chordal− ke are solvable in time 2O(

√
k log k) · nO(1). Moreover, the problems can be

solved in 2O(
√

k) · nO(1) time if a chordal modulator of size at most k is given.

The technique developed to prove Theorem 6 could be used to obtain subexponential al-
gorithms for other problems beyond Weighted d-colorable Subgraph. These algorithms
are very similar to the one from Theorem 6 and we mention here only few problems.

A homomorphism G→ H from a graph G to a graph H is a mapping from the vertex set
of G to that of H such that the image of every edge of G is an edge of H. In other words,
a homomorphism G→ H exists if and only if there is a mapping g : V (G)→ V (H), such
that for every edge uv ∈ E(G), we have g(u)g(v) ∈ E(H). Since there is a homomorphism
from G to a complete graph Kd on d vertices if and only if G is d-colorable, the deciding
whether there is a homomorphism from G to H is often referred as the H-coloring. Note that
if G admits an H-coloring, then G is |V (H)|-colorable. The only difference between solving
Weighted H-colorable Subgraph, the problem of finding the maximum weight induced
subgraph admitting a homomorphism to H, with Theorem 6 is that the value cost[t, S, c] in
(1) should be redefined by setting c be a homomorphism to H.

Similar running times could be derived for the variants of Weighted d-colorable
Subgraph where some additional constrains on the properties of the d-colorable induced
subgraph of minimum weight are imposed by some property C. For example, property C could
be that the required subgraph is connected, acyclic, regular, degenerate, etc. As far as the

F. V. Fomin and P. A. Golovach 49:9

information of the partial solution required for property C is characterized by set S ⊆ Vt and
all possible subsets of S or all permutations of S, we can solve the corresponding problem in
time 2O((d

√
k) log(dk)) · nO(d). We summarize these observations within the following theorem.

I Theorem 9. Let d ≥ 1 be an integer and G be a graph from Chordal− ke. Then
Weighted H-colorable Subgraph can be solved in 2O(

√
k(log k+|V (H)| log |V (H)|)) ·

nO(|V (H)|) time,
Weighted d-degenerate Subgraph is solvable in time 2O((d

√
k) log(dk)) · nO(d),

Weighted Induced Forest (Weighted Feedback Vertex Set), Weighted
Induced Tree, Weighted Induced Path (Cycle), and Weighted Induced Cycle
Packing are solvable in 2O(

√
k log k) · nO(1) time.

In some cases, we can obtain a better running time if a chordal modulator of size at most
k is given. For Weighted H-colorable Subgraph, this is done in the same way as for
Weighted d-colorable Subgraph. For some other problems, like Weighted Induced
Forest (Weighted Feedback Vertex Set), this would demand using recent techniques
for dynamic programming on graphs of bounded treewidth for problems with connectivity
contstraints (see [18, 6, 23, 53]) but this goes beyond the scope of our paper.

Another extension of Theorem 6 can be derived from the very recent results of Baste, Sau
and Thilikos [3] about the F-Minor Deletion problem on graphs of bounded treewidth.
Recall that a graph F is a minor of G if a graph isomorphic to F can be obtained from G

by vertex and edge deletions and edge contractions. Respectively, G is said to be F -minor
free if G does not contain F as a minor. For a family of graphs F , G is F -minor free if G is
F -minor free for every F ∈ F . For a family F , the task of F-Minor Deletion is, given
a graph G, to find a minimum set of vertices X such that G − X is F-minor free. Then
F-Minor Deletion is equivalent to F-Minor Free Induced Subgraph, whose task is
to find a maximum F -minor free induced subgraph of G. A family of graphs F is connected
if every F ∈ F is a connected graph. Baste et al. [3] obtained, in particular, the following
result.

I Proposition 10 ([3]). Let F be a finite connected family of graphs. Then F-Minor
Deletion can be solved in time 2O(w log w) · nO(1) on graphs of treewidth at most w.1

It is well-known (see, e.g., the book [51] for the inclusion relations between the classes of
sparse graphs) that if F is a finite family, then there is a positive integer d such that every
F-minor free graph is d-degenerate. This means that for a finite family F , F-minor free
graphs are d-colorable for some constant d that depends on F only. This allows us to use
Lemma 5 and then combine our approach from Theorem 6 with the techniques of Baste et
al. [3]. Using Lemma 10, we obtain the following theorem.

I Theorem 11. Let F be a finite connected family of graphs. Let also G be a from Chordal−
ke. Then F-Minor Deletion (or, equivalently, F-Minor Free Induced Subgraph)
can be solved in time 2O(

√
k log k) · nO(1).

For example, this framework encompasses such problems as Induced Planar Subgraph
or Induced Outerplanar Subgraph whose task is to find a subgraph of maximum size
that is planar or outerplanar, respectively.

With a small adjustment the dynamic programming could be applied to the problems
with specific requirements on the complement of the maximum induced d-colored subgraph.
For example, consider the following problem. A set of vertices S ⊆ V (G) is a connected vertex

1 the constants hidden in the big-O notation depend on F .

ESA 2020

49:10 Subexp Parameterized Algorithms and Kernelization on Almost Chordal Graphs

cover if S is a vertex cover and G[S] is connected. Then in the Weighted Connected
Vertex Cover problem, we are given a graph G with a weight function w : V (G)→ Z+ and
the task is to find a connected vertex cover in G of minimum weight. Similarly, Weighted
Connected Feedback Vertex Set is the problem of finding a connected feedback vertex
set of minimum weight. The complement of every vertex cover is an independent set, that is
a 1-colorable subgraph, and the complement of every feedback vertex set is a forest, hence
2-colorable subgraph. While now the connectivity constraints are not on the maximum
induced subgraph but on its complement our previous arguments can be adapted to handle
these problems.

I Theorem 12. Weighted Connected Vertex Cover and Weighted Connected
Feedback Vertex Set are solvable in time 2O(

√
k log k) · nO(1) on Chordal− ke.

In this section, we discussed optimization problems but, in many cases, similar dynamic
programming can be applied for counting problems. For example, we can compute the
number of (inclusion) maximal independent sets, maximal bipartite subgraphs, minimal
(connected) feedback vertex sets, minimal connected vertex covers in time 2O(

√
k log k) · nO(1)

on Chordal− ke.

4 Beyond induced d-colorable subgraphs

In Section 3, among other algorithms, we gave a subexponential (in k) algorithm on
Chordal − ke graphs that finds a maximum d-colorable subgraph. In particular, this
also implies that for every fixed d, deciding whether a graph from Chordal − ke is d-
colorable, can be done in time subexponential in k. In this section we show that two
fundamental problems, namely, Coloring and Clique, while still being FPT, are unlikely
to be solvable in subexponential parameterized time.

First, we consider the Coloring problem, where the task is for a given graph G and
positive integer `, to decide whether the chromatic number of G is at most `, that is, if
G is `-colorable. Note that ` here is not a fixed constant as in Section 3. Cai [11] proved
that Coloring is FPT (parameterized by k) on Split− ke graphs. The following theorem
generalizes his result by showing that Coloring is FPT on a larger class Chordal− ke.
Our approach is based on the dynamic programming which is similar to the one we used in
Section 3.

I Theorem 13. Coloring can be solved in time 2O(k log k) ·nO(1) on Chordal− ke graphs.

On the other hand, it is unlikely that Coloring can be solved in subexponential in k
time. For this, we show the complexity lower bound based on ETH. In fact, we prove a
stronger claim.

I Theorem 14. Coloring cannot be solved in time 2o(k) · nO(1) on Complete− ke graphs
unless ETH fails.

Next, we consider the Clique problem that asks, given a graph G and a positive integer
`, whether G has a clique of size at least `. We show that Clique is FPT on Chordal− ke
when parameterized by k even for the weighted variant of the problem in Section 5 by
demonstrating that the problem admits a Turing kernel. Here, we give a lower bound.

I Theorem 15. Clique cannot be solved in time 2o(k) · nO(1) on graphs in Complete− ke
unless ETH fails.

F. V. Fomin and P. A. Golovach 49:11

We established that Coloring and Clique do not admit subexponential algorithms on
Complete− ke, when parameterized by k, unless ETH fails. By Observation 1, this yields
that these problems do not admit subexponential algorithms on Chordal− ke as well.

5 Kernelization on Chordal-ke

In this section we discuss kernelization of the problems considered in the previous section.
Jansen and Bodlaender in [39] and Bodlaender, Jansen and Kratsch in [8] proved that

Weighted Independent Set, Weighted Vertex Cover, Weighted Bipartite Sub-
graph, Weighted Odd Cycle Transversal, Weighted Feedback Vertex Set and
Clique do not admit a polynomial kernel parameterized by the size of the minimum vertex
cover of a graph unless coNP ⊆ NP/ poly. It is easy to observe that if G has a vertex cover
of size at most k, then split-comp(G) ≤

(
k
2
)
. Thus, by the results of [8, 39], we obtain the

following proposition.

I Proposition 16. Weighted Independent Set, Weighted Vertex Cover, Weighted
Bipartite Subgraph, Weighted Odd Cycle Transversal, Weighted Feedback
Vertex Set and Clique do not admit a polynomial in k kernel on Split−ke graphs unless
coNP ⊆ NP/ poly.

By Observation 1, these problems parameterized by k have no polynomial kernel on
Chordal− ke as well unless coNP ⊆ NP/poly.

These results do not refute the existence of polynomial Turing kernels. To demonstrate
this, we show that Weighted Clique has such a kernel. The input of Weighted Clique
contains a graph G together with a weight function w : V (G)→ Z+ and a nonnegative integer
W , and the task is to decide whether G has a clique C of weight at least W .

I Theorem 17. Weighted Clique on Chordal− ke parameterized by k admits a Turing
kernel with at most 16k2 vertices with size O(k8).

Proof sketch. Let (G,w,W) be an instance of Weighted Clique. We use the result
of Natanzon, Shamir and Sharan [49] that fill-in admits a polyopt approximation. The
approximation algorithm either correctly reports that fill-in(G) > k or returns a set of
nonedges A ⊆

(
V (G)

2
)
\ E(G) of size at most 8k2 such that the graph G′ obtained by adding

the edges of A is a chordal graph. In the first case, we have that G /∈ Chordal − ke.
Assume that this is not the case. Then we use the well-known property of chordal graphs
(see [32, 57]) that G′ has at most n inclusion-maximal cliques C1, . . . , Cr and they can be
listed in linear time. Now we observe that K is a maximal clique of G if and only if K is a
clique of G[Ci] for some i ∈ {1, . . . , r}. Moreover, every such K contains all the vertices of
Ci that are not vertices of the pairs {u, v} ∈ A with u, v ∈ Ci. Then the problem is reduced
to finding solutions for G[C ′i] for i ∈ {1, . . . , r}, where each C ′i is the subset of Ci containing
the vertices of pairs {u, v} ∈ A with u, v ∈ Ci. Since |C ′i| ≤ 2|A| ≤ 16k2, we obtain the upper
bound on the number of vertices. To compress the weights and obtain the upper bound on
the size, we use the the technique of Frank and Tardos [29], see also [21] for applications of
this technique for kernelization. J

While Proposition 16 rules out the existence of a polynomial kernel for Weighted
Independent Set on Chordal − ke graphs, for unweighted Independent Set the
existence of a polynomial kernel remains open. In what follows, we obtain polynomial kernels
for Independent Set on two interesting subclasses of Chordal−ke, namely Interval−ke
and Split− ke. Let us note that again, by Proposition 16, the Weighted Independent
Set problem admits no polynomial kernel on Split− ke.

ESA 2020

49:12 Subexp Parameterized Algorithms and Kernelization on Almost Chordal Graphs

U r
x2

X x1 x2

U `
x1

Ux1x2

Figure 1 Structure of a maximum independent set in G.

We start with the kernel on Interval − ke graphs. This kernel is the most technical
part of the paper. In order to obtain the required kernel, we show that Independent Set
parameterized by the size of interval completion of the input graph admits a polynomial
compression into the Weighted Independent Set problem. (We state Weighted
Independent Set as a decision problem, whose input contains a graph G with a weight
function w : V (G)→ Z+ and a nonnegative integer W , and the task is to decide whether G
has an independent set S with w(S) ≥W .) Then the standard arguments about polynomial
compression of NP-complete problems, see e.g. [24, Theorem 1.6], yield the polynomial kernel
for Independent Set on Interval− ke graphs.

I Theorem 18. Independent Set on G ∈ Interval − ke admits a compression of size
O(k56) into Weighted Independent Set.

Proof sketch. The proof is long and here we only sketch briefly the main ideas behind the
algorithm. Let G be a graph and let A ⊆

(
V (G)

2
)
\ E(G) be a set of pairs of nonadjacent

vertices such that the graph G′ obtained from G by adding the edges from A becomes interval.
Denote by X the set of end-vertices of the edges of A in G′.

Consider an interval model of G′. For each vertex v ∈ V (G′), let `v and rv be, respectively,
the left and right endpoint of the interval representing v. For each v ∈ V (G′), denote by G`

v

and Gr
v the subgraphs of G′ induced by the sets of vertices U `

v = {u ∈ V (G′) | ru < `v} and
Ur

v = {u ∈ V (G′) | rv < `u} respectively, and for every two distinct u, v ∈ V (G′), let Guv

be the subgraph induced by Uuv = {w ∈ V (G′) | ru < `w ≤ rw < `v} (see Figure 1). For a
graph H, denote by I(H) a maximum independent set of H. Suppose that I is a maximum
independent set of G and let I ∩X = {x1, . . . , xs} with rvi−1 < `vi for i ∈ 2, . . . , s. Then it
is possible to prove that

I ′ = I(G`
x1

) ∪
(s⋃

i=2
I(Gxi−1xi

)
)
∪ I(Gr

xs
)

is a maximum independent set of G.
This allows us to create the following compression of the initial problem to an instance

of Weighted Independent Set. Let F be the set of all induced subgraphs G`
v, Gr

v and
Guv for all u, v ∈ X. Consider the graph G with the set of vertices X ∪ F with the following
adjacencies: for distinct u, v ∈ V (G), u and v are adjacent if and only if one of the following
holds:

u, v ∈ X and xy ∈ E(G),
u ∈ X, v ∈ F and u is adjacent to a vertex of v in G,
u, v ∈ F and the subgraphs u and v have either common or adjacent vertices in G.

We define the weight w(v) for v ∈ V (G) be one if v ∈ X and set w(v) = |I(v)| for v ∈ F .
It can be shown that G has an independent set of size at least W if and only if G has an
independent set of weight at least W .

Unfortunately, the above arguments do not work for the following reason. We based our
construction on the assumption that we know the resulting interval model. But computing
such a model is an NP-hard task. Of course it would suffice even if we had a poly(OPT)

F. V. Fomin and P. A. Golovach 49:13

approximation algorithm for interval completion. That is, an algorithm producing in
polynomial time an edge set A of polynomial in k size whose addition turns the input graph
G into an interval graph. However the existence of such an approximation is a long-standing
open problem. The best known result is the O(logn) approximation algorithm of Rao
and Richa [54] for the minimum number of edges of an interval supergraph of an n-vertex
graphs. While at the end we were able to implement the above idea and obtain the required
compression, the absence of a good approximation makes the proof way more difficult.

Given a graph G, we construct a vertex set X and a set of induced subgraphs F of G−X
such that the graph G defined above have the desired property: G has an independent set of
size at least W if and only if G has an independent set of weight at least W . We start the
construction of X using the algorithm of Natanzon, Shamir and Sharan [49] to approximate
fill-in(G) ≤ int-comp(G). Initially, we set X be the set of vertices that are in the pairs of
nonadjacent vertices returned by the algorithm. Then we apply a series of reduction rules
that either solve the problem, or enhance X by adding vertices, or delete vertices of the
graph. The reduction rules are based on the forbidden induced subgraph characterization
of interval graphs given by Lekkerkerker and Boland [45]. This way we construct X of size
O(k3). Then we construct F of size O(k14) and define G. Here again we use the technique
of Frank and Tardos [29] to compress the weights. J

Since Weighted Independent Set is in NP and, consecutively, has a polynomial
reduction to Independent Set that is NP-complete [30], by applying a standard trick, see
e.g. [24, Theorem 1.6], we obtain the following corollary.

I Corollary 19. Independent Set on G ∈ Interval−ke admits a polynomial kernel when
parameterized by k.

Finally, we show that Independent Set admits a polynomial kernel when parameterized
by the split completion size. For this result, we exploit the result of Hammer and Simeone
in [35] that Split Editing can be solved in polynomial time.

I Theorem 20. Independent Set on Split− ke admits a polynomial kernel with at most
2k2(k + 2) vertices when parameterized by k.

6 Conclusion

In this paper, we initiated the study of parameterized subexponential and kernelization
algorithms on Chordal − ke graphs. The existence of such algorithms makes this graph
class a very interesting object for studies. For other structural parameters, like treewidth or
vertex cover, we have quite good understanding about the complexity of various optimization
problems derived from general meta-theorems like Courcelle’s or Pilipczuk’s theorems [15, 53]
and advanced algorithmic techniques [18, 17, 23]. We believe that further exploration of
the complexity landscape of fill-in parameterization is an interesting research direction. If
an optimization problem is NP-complete on chordal graphs, like Dominating Set, then
on Chordal − ke this problem is in Para-NP. On the other hand, even if a problem is
solvable in polynomial time on chordal graphs, in theory, there is nothing preventing it from
being Para-NP on Chordal− ke. Is there a natural graph problem with this property? For
many problems that are solvable in polynomial time on chordal graphs, we also established
FPT algorithms on Chordal− ke class. This does not exclude a possibility that there are
problems that are not FPT parameterized by k but solvable in polynomial time for every fixed
k. We do not know any such problem (in other words, the problem in class XP) yet. It will

ESA 2020

49:14 Subexp Parameterized Algorithms and Kernelization on Almost Chordal Graphs

be interesting to see, if there is any natural graph problem of such complexity. In addition,
we proved that there are problems that are FPT on Chordal − ke when parameterized
by k and which cannot be solved in subexponential time unless ETH fails. We believe it
would be exciting to obtain a logical characterization of problems that can be solved in
subexponential time on Chordal − ke when parameterized by k, similar to the classical
Courcelle’s theorem [15].

Some concrete open problems. Observe that for our subexponential dynamic programming
algorithms, we only need a k-almost chordal tree decomposition of the input graph, that is,
a decomposition where each bag can be made a clique by adding at most k edges. (Recall
Definition 2.) The maximum of numbers c-comp(G[Xt]) ≤ k can be significantly smaller
than the minimum fill-in of a graph. For graphs in Chordal − ke, we can find fill-in in
a subexponential in k time by the algorithm of Fomin and Villanger [28]. However, we
do not know if it is FPT in k to decide, whether a graph admits a k-almost chordal tree
decomposition. And if yes, can it be done in subexponential time?

By the results of Natanzon, Shamir and Sharan [49], fill-in(G) can be approximated in
polynomial time within a polyopt factor 8 · fill-in(G). Deciding whether fill-in(G) ≤ k can be
done in time 2O(

√
k log k) · nO(1) by the results of Fomin and Villanger [28] (Proposition 3).

Is there a constant-factor approximation FPT algorithm with running time 2O(
√

k) · nO(1)?
The existence of such an algorithm would speed-up our algorithms for several problems. For
example, we would be able to solve Weighted Independent Set in 2O(

√
k) · nO(1) time on

Chordal-ke.
Finally, we proved that Independent Set on Interval − ke and Split − ke admit

polynomial kernels when parameterized by k. We leave open the question whether or not
this problem has a polynomial (Turing) kernel on Chordal− ke.

References
1 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi.

Feedback vertex set inspired kernel for chordal vertex deletion. ACM Trans. Algorithms,
15(1):11:1–11:28, 2019. doi:10.1145/3284356.

2 Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Interval
vertex deletion admits a polynomial kernel. In Proceedings of the 29th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1711–1730. SIAM, 2019. doi:
10.1137/1.9781611975482.103.

3 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 951–970. SIAM, 2020.

4 Stephane Bessy and Anthony Perez. Polynomial kernels for Proper Interval Completion and
related problems. Information and Computation, 231(0):89–108, 2013. doi:10.1016/j.ic.
2013.08.006.

5 Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michal Pilipczuk. Subexponential
parameterized algorithm for interval completion. ACM Trans. Algorithms, 14(3):35:1–35:62,
2018. doi:10.1145/3186896.

6 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

7 Hans L. Bodlaender, Pinar Heggernes, and Yngve Villanger. Faster parameterized algorithms
for minimum fill-in. Algorithmica, 61(4):817–838, 2011. doi:10.1007/s00453-010-9421-1.

8 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by
cross-composition. SIAM J. Discrete Math., 28(1):277–305, 2014. doi:10.1137/120880240.

https://doi.org/10.1145/3284356
https://doi.org/10.1137/1.9781611975482.103
https://doi.org/10.1137/1.9781611975482.103
https://doi.org/10.1016/j.ic.2013.08.006
https://doi.org/10.1016/j.ic.2013.08.006
https://doi.org/10.1145/3186896
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1007/s00453-010-9421-1
https://doi.org/10.1137/120880240

F. V. Fomin and P. A. Golovach 49:15

9 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey. SIAM
Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1999. doi:10.1137/1.9780898719796.

10 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)
00050-6.

11 Leizhen Cai. Parameterized complexity of vertex colouring. Discrete Applied Mathematics,
127(3):415–429, 2003. doi:10.1016/S0166-218X(02)00242-1.

12 Yixin Cao. Linear recognition of almost interval graphs. In Proceedings of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096–1115. SIAM, 2016.

13 Yixin Cao. Unit interval editing is fixed-parameter tractable. Inf. Comput., 253:109–126, 2017.
doi:10.1016/j.ic.2017.01.008.

14 Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Trans.
Algorithms, 11(3):21:1–21:35, 2015. doi:10.1145/2629595.

15 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

16 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

17 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases
of perfect matchings. In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing (STOC), pages 301–310. ACM, 2013.

18 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. In Proceedings of the 52nd Annual Symposium on Foundations of
Computer Science (FOCS), pages 150–159. IEEE, 2011.

19 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

20 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

21 Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels for
weighted problems. J. Comput. Syst. Sci., 84:1–10, 2017. doi:10.1016/j.jcss.2016.06.004.

22 Fedor V. Fomin and Petr A. Golovach. Subexponential parameterized algorithms and kerneliz-
ation on almost chordal graphs. CoRR, abs/2002.08226, 2020. arXiv:2002.08226.

23 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

24 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Theory
of Parameterized Preprocessing. Cambridge University Press, 2018.

25 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization.
Cambridge University Press, Cambridge, 2019. Theory of parameterized preprocessing.

26 Fedor V. Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel for proper interval
vertex deletion. SIAM J. Discrete Math., 27(4):1964–1976, 2013. doi:10.1137/12089051X.

27 Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangulations
and CMSO. SIAM J. Comput., 44(1):54–87, 2015. doi:10.1137/140964801.

28 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for minimum
fill-in. SIAM J. Computing, 42(6):2197–2216, 2013. doi:10.1137/11085390X.

29 András Frank and Éva Tardos. An application of simultaneous Diophantine approximation in
combinatorial optimization. Combinatorica, 7(1):49–65, 1987. doi:10.1007/BF02579200.

30 Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York, 1979.

ESA 2020

https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/S0166-218X(02)00242-1
https://doi.org/10.1016/j.ic.2017.01.008
https://doi.org/10.1145/2629595
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.jcss.2016.06.004
http://arxiv.org/abs/2002.08226
https://doi.org/10.1145/2886094
https://doi.org/10.1137/12089051X
https://doi.org/10.1137/140964801
https://doi.org/10.1137/11085390X
https://doi.org/10.1007/BF02579200

49:16 Subexp Parameterized Algorithms and Kernelization on Almost Chordal Graphs

31 Fanica Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM J. Comput., 1(2):180–187,
1972. doi:10.1137/0201013.

32 Fănică Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. J.
Combinatorial Theory Ser. B, 16:47–56, 1974. doi:10.1016/0095-8956(74)90094-x.

33 Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

34 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin,
second edition, 1993. doi:10.1007/978-3-642-78240-4.

35 Peter L. Hammer and Bruno Simeone. The splittance of a graph. Combinatorica, 1(3):275–284,
1981. doi:10.1007/BF02579333.

36 Pinar Heggernes. Minimal triangulations of graphs: a survey. Discrete Math., 306(3):297–317,
2006. doi:10.1016/j.disc.2005.12.003.

37 Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Proceedings of the 14th
Annual IEEE Conference on Computational Complexity, Atlanta, Georgia, USA, May 4-6,
1999, pages 237–240. IEEE Computer Society, 1999. doi:10.1109/CCC.1999.766282.

38 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity. J. Computer and System Sciences, 63(4):512–530, 2001.

39 Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper
and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263–299, 2013.
doi:10.1007/s00224-012-9393-4.

40 Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex
deletion. SIAM J. Discrete Math., 32(3):2258–2301, 2018. doi:10.1137/17M112035X.

41 Bart MP Jansen and Stefan Kratsch. Data reduction for graph coloring problems. Information
and Computation, 231:70–88, 2013.

42 Haim Kaplan, Ron Shamir, and Robert E. Tarjan. Tractability of parameterized completion
problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput., 28:1906–
1922, May 1999. doi:10.1137/S0097539796303044.

43 Haim Kaplan, Ron Shamir, and Robert Endre Tarjan. Tractability of parameterized completion
problems on chordal and interval graphs: Minimum fill-in and physical mapping. In Proceedings
of the 35th Annual Symposium on Foundations of Computer Science (FOCS), pages 780–791.
IEEE, 1994.

44 J. Mark Keil. Finding hamiltonian circuits in interval graphs. Inf. Process. Lett., 20(4):201–206,
1985. doi:10.1016/0020-0190(85)90050-X.

45 C. G. Lekkerkerker and J. Ch. Boland. Representation of a finite graph by a set of intervals
on the real line. Fund. Math., 51:45–64, 1962/1963. doi:10.4064/fm-51-1-45-64.

46 Mathieu Liedloff, Pedro Montealegre, and Ioan Todinca. Beyond classes of graphs with
"few" minimal separators: FPT results through potential maximal cliques. Algorithmica,
81(3):986–1005, 2019. doi:10.1007/s00453-018-0453-2.

47 Dániel Marx. Parameterized coloring problems on chordal graphs. Theoretical Computer
Science, 351(3):407–424, 2006.

48 Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768, 2010.
doi:10.1007/s00453-008-9233-8.

49 Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approximation algorithm for
the minimum fill-in problem. In Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 41–47. ACM, 1998.
doi:10.1145/276698.276710.

50 Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge
modification problems. Discrete Applied Mathematics, 113(1):109–128, 2001. doi:10.1016/
S0166-218X(00)00391-7.

https://doi.org/10.1137/0201013
https://doi.org/10.1016/0095-8956(74)90094-x
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/BF02579333
https://doi.org/10.1016/j.disc.2005.12.003
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1137/17M112035X
https://doi.org/10.1137/S0097539796303044
https://doi.org/10.1016/0020-0190(85)90050-X
https://doi.org/10.4064/fm-51-1-45-64
https://doi.org/10.1007/s00453-018-0453-2
https://doi.org/10.1007/s00453-008-9233-8
https://doi.org/10.1145/276698.276710
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1016/S0166-218X(00)00391-7

F. V. Fomin and P. A. Golovach 49:17

51 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

52 S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3:119–130, 1961.
53 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:

a logical approach. CoRR, abs/1104.3057, 2011. arXiv:1104.3057.
54 Satish Rao and Andréa W. Richa. New approximation techniques for some linear ordering

problems. SIAM J. Comput., 34(2):388–404, 2004. doi:10.1137/S0097539702413197.
55 D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite

systems of linear equations. In R. C. Read, editor, Graph Theory and Computing, pages
183–217. Academic Press, New York, 1972.

56 Yasuhiko Takenaga and Kenichi Higashide. Vertex coloring of comparability +ke and- −ke

graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
pages 102–112. Springer, 2006.

57 Robert Endre Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J.
Comput., 13(3):566–579, 1984. doi:10.1137/0213035.

58 Lieven Vandenberghe, Martin S Andersen, et al. Chordal graphs and semidefinite optimization.
Foundations and Trends® in Optimization, 1(4):241–433, 2015.

59 Yngve Villanger, Pinar Heggernes, Christophe Paul, and Jan Arne Telle. Interval completion is
fixed parameter tractable. SIAM J. Comput., 38(5):2007–2020, 2009. doi:10.1137/070710913.

60 M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth.,
2:77–79, 1981.

ESA 2020

https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
http://arxiv.org/abs/1104.3057
https://doi.org/10.1137/S0097539702413197
https://doi.org/10.1137/0213035
https://doi.org/10.1137/070710913

On the Complexity of Recovering Incidence
Matrices
Fedor V. Fomin
University of Bergen, Norway
fomin@ii.uib.no

Petr Golovach
University of Bergen, Norway
Petr.Golovach@ii.uib.no

Pranabendu Misra
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
pmisra@mpi-inf.mpg.de

M. S. Ramanujan
University of Warwick, Coventry, UK
R.Maadapuzhi-Sridharan@warwick.ac.uk

Abstract
The incidence matrix of a graph is a fundamental object naturally appearing in many applications,
involving graphs such as social networks, communication networks, or transportation networks.
Often, the data collected about the incidence relations can have some slight noise. In this paper,
we initiate the study of the computational complexity of recovering incidence matrices of graphs
from a binary matrix: given a binary matrix M which can be written as the superposition of two
binary matrices L and S, where S is the incidence matrix of a graph from a specified graph class,
and L is a matrix (i) of small rank or, (ii) of small (Hamming) weight. Further, identify all those
graphs whose incidence matrices form part of such a superposition. Here, L represents the noise in
the input matrix M . Another motivation for this problem comes from the Matroid Minors project
of Geelen, Gerards and Whittle, where perturbed graphic and co-graphic matroids play a prominent
role. There, it is expected that a perturbed binary matroid (or its dual) is presented as L + S where
L is a low rank matrix and S is the incidence matrix of a graph. Here, we address the complexity of
constructing such a decomposition.

When L is of small rank, we show that the problem is NP-complete, but it can be decided in
time (mn)O(r), where m, n are dimensions of M and r is an upper-bound on the rank of L. When L

is of small weight, then the problem is solvable in polynomial time (mn)O(1). Furthermore, in many
applications it is desirable to have the list of all possible solutions for further analysis. We show
that our algorithms naturally extend to enumeration algorithms for the above two problems with
delay (mn)O(r) and (mn)O(1), respectively, between consecutive outputs.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Mathematics of computing → Enumeration

Keywords and phrases Graph Incidence Matrix, Matrix Recovery, Enumeration Algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.50

1 Introduction

Suppose that we are given a large binary data matrix M , and we know that this matrix is of
the form M = L + S, where S is the incidence matrix of an undirected graph and L is a
sparse binary matrix. We assume that the sums are taken over GF(2) and thus 1 + 1 = 0.
See Section 2 for a formal definition of incidence matrices. Now, consider the following two
computational questions.

© Fedor V. Fomin, Petr Golovach, Pranabendu Misra, and M. S. Ramanujan;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 50; pp. 50:1–50:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fomin@ii.uib.no
mailto:Petr.Golovach@ii.uib.no
mailto:pmisra@mpi-inf.mpg.de
mailto:R.Maadapuzhi-Sridharan@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.ESA.2020.50
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 On the Complexity of Recovering Incidence Matrices

Question 1: How efficiently can we recover some incidence matrix S such that M = L+ S

as described above?

Question 2: How efficiently can we recover all possible graphs whose incidence matrices
form part of such a superposition M = L+ S?

Our main motivation for studying these questions comes from the study of perturbed
graphic matroids, which naturally arise in many settings. A prominent example is the
emerging Matroid Minors Project of Geelen, Gerards, and Whittle [5], mirroring the Graph
Minors project. Let us recall that binary matroids are represented by a matrix over GF(2),
and graphic matroids are a sub-class of binary matroids defined by the incidence matrices of
graphs. Then, for each proper minor-closed classM of binary matroids, there exists a non-
negative integer r such that every well-connected matroid M ∈M is either a perturbation
of a graphic matroid or a co-graphic matroid [5]. In other words, either M or M? (the dual
matroid) can be decomposed as L+ S where S is the incidence matrix of a graph and L is
a matrix of rank at most r. Matroid Minors and perturbed matroids are expected to have
important applications in matroid algorithms, similar to the applications of Graph Minors
and H-minor free decompositions in graph algorithms. In the applications of perturbed
binary matroids [6, 4], it is expected that a decomposition of the perturbed matroid M into
L+ S is given as a part of the input. A natural computational question that arises here is
the construction of such a decomposition for a given matroid.

Such a problem can be seen as the problem of the recovery of incidence matrices, which is
a fundamental representation of graphs. Often the data collected about the network incidence
relations contains some slight noise or errors. Our objective is to decompose the data matrix
M into two sparse matrices L and S, where L is a low weight matrix, that is matrix with a
small number of ones, representing the error or noise, and S is the incidence matrix of some
graph from a specified graph class.

Besides applications in matroid minors theory, the problem of superposing binary matrix
M in L+S has strong connections to robust Principal Component Analysis (PCA), a popular
approach to robust subspace learning by the decomposition of the data matrix into low rank
and sparse components. Here we have as data a matrix M , which is the superposition of a
low rank component L and a sparse component S. In particular, this approach to robust
PCA was popularized by Candès et al. [1], Wright et al. [11], and Chandrasekaran et al. [2].
Thus our problem can be seen as a variant of robust PCA for binary matrices, with additional
constraint on sparse component S of being incidence matrix of some graph. Other variants
of robust PCA when the structure of the sparse matrix S is imposed from the structure of
some graph were studied in [10, 12].

In this paper, we initiate the study of the computational complexity of graph recovering
problems and identify several settings which imply efficient algorithms for the questions
stated above. Moreover, we also provide complexity theoretic lower bounds for certain other
settings that preclude polynomial-time solvability of either question. Let us formally describe
our contributions and state our results.

Our contributions. Our first contribution is the formulation of a pair of generic Graph
Recovering problems dealing with two common notions of sparsity for L. Let C be a fixed
class of simple graphs.

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:3

(min-rank, C)-Graph Recovery
Input: An n×m binary matrix M and r ∈ N.
Question: Decide whether M = L+ S, where L is a binary matrix of GF(2)-rank at
most r, S is the incidence matrix of a graph in C and the sums are taken over GF(2).

Let ‖L‖ denote the (Hamming) weight of a matrix L, i.e. the number of non-zero entries
in L.

(min-weight, C)-Graph Recovery
Input: An n×m binary matrix M and r ∈ N.
Question: Decide whether M = L+ S, where L is a binary matrix of weight at most r,
S is the incidence matrix of a graph in C and the sums are taken over GF(2).

Our second contribution is establishing the computational complexity of (min-rank, C)-
Graph Recovery and (min-weight, C)-Graph Recovery for some fundamental graph
classes and obtain the following upper and lower bounds.

(a) We show that if C is one of {simple graphs, acyclic graphs, trees, arboricity-d graphs,
connected graphs}, then (min-rank, C)-Graph Recovery can be solved in time
(mn)O(r).

(b) We show that if C is one of {simple graphs, acyclic graphs, trees, connected graphs},
then (min-weight, C)-Graph Recovery is polynomial-time solvable, i.e., in time
(mn)O(1).

(c) We show that the running time in Result (a) cannot be improved to a purely polynomial
dependence on m and n (as in Result (b)) unless P=NP. Specifically, we show that if C
is any of {simple graphs, acyclic graphs, trees, arboricity-d graphs, connected graphs},
then the (min-rank, C)-Graph Recovery problem is NP-complete.

A key feature of the methodology we introduce to obtain our algorithms is that it not only
answers Question 1 (i.e., the decision problem) for the settings above, it also naturally extends
to an algorithm that addresses the significantly harder Question 2 (i.e., the enumeration of
all solutions) in these settings. Specifically, we show that in the case of Result (a) above,
we can also enumerate all possible solution matrices S (if any exist) with a delay of time
(mn)O(r) between consecutive outputs. Similarly, we show that in the case of Result (b),
we can also enumerate all possible solution matrices S (and equivalently, the corresponding
graphs) with polynomial delay, i.e., a delay of time (mn)O(1) between consecutive outputs.
The importance of enumeration lies in the fact that a solution M = S+L may not be unique,
and further analysis of the list of all solutions is required.

Roadmap of the paper

Following the introduction of the requisite notation, we first describe the methodology behind
our enumeration algorithms, where we reduce the problem of enumerating all solutions to one
of deciding whether a solution exists for appropriate annotated variants of (min-rank, C)-
Graph Recovery and (min-weight, C)-Graph Recovery. We then present our decision
algorithms for the aforementioned annotated problems. The precise formulation of these
problems involves some notation and we do not go into more details here. The algorithms
for the annotated variant of (min-rank, C)-Graph Recovery are centred around a novel
application of Matroid Intersection involving carefully chosen matroids. On the other
hand, the algorithms for (min-weight, C)-Graph Recovery are designed through an

ESA 2020

50:4 On the Complexity of Recovering Incidence Matrices

intricate analysis of the structure of bridges (or cut edges) in graphs and appropriate
repeated reassignments of these to columns of our input matrix in a manner reminiscent
of the “augmenting path” step in maximum matching algorithms. Finally, we give our
NP-completeness result for (min-rank, C)-Graph Recovery.

2 Preliminaries

Matrices and Linear Algebra

For ` ∈ N, we use [`] to denote the set {1, . . . , `}. For a matrix M , we denote the set of
rows of M by rows(M) and the set of column of M by cols(M). For a set P ⊆ cols(M),
we denote by M [P] the submatrix of M induced by the columns in P . Consider the set
V = {v1, v2, . . . , vk} of vectors over F. The vectors in V are said to be linearly dependent
if there exist elements a1, a2, . . . , ak ∈ F, not all zero, such that

∑k
i=1 aivi = 0. Otherwise

these vectors are said to be linearly independent. The rank of a matrix is the cardinality of a
maximum sized set of columns which are linearly independent. The vector space spanned
by V is the set of all linear combinations of vectors in V and is denoted by span(V). The
vector space spanned by the set of columns of a matrix M over the field F is defined as
span(cols(M)) and is denoted by col-span(M). We say a matrix A has dimension n ×m
(or is an n×m matrix) if A has n rows and m columns. In this paper we always view the
elements of a binary matrix as elements of GF(2), the Galois field of two elements. Then the
GF(2)-rank of a binary n ×m matrix A is the minimum r such that A = U · V , where U
and V are n× r and r ×m binary matrices respectively, and arithmetic operations are over
GF(2).

Graphs

For standard graph theoretic terminology and notation, we refer to [3]. For an undirected
graph G, we denote by inc(G), the incidence matrix of G which is the |V (G)| × |E(G)|
binary matrix M with a row for each vertex and a column for each edge such that for every
v ∈ V (G) and e ∈ E(G), M [v, e] = 1 if and only if v is an endpoint of e. When considering
the incidence matrix M of an unspecified graph, we denote by inc−1(M) the graph G where
V (G) = rows(M), E(G) = cols(M) and whose incidence matrix is precisely M . For ` ∈ N,
we denote by K` the complete graph on ` vertices. We assume without loss of generality that
the vertices of K` are labelled 1 to ` and unless otherwise specified, the columns in inc(Kn)
are assumed to be arranged in lexicographically increasing order based on the endpoints of
the corresponding edges.

Matroids

We recall relevant definitions related to matroids. For a broader overview on matroids, we
refer to [9].

I Definition 1. A matroid M is a pair (E, I), where E is a set called the universe or
ground set, and I is a family of subsets of E, called independent sets, with the following
three properties : (i) ∅ ∈ I, (ii) if I ∈ I and I ′ ⊆ I, then I ′ ∈ I, and (iii) if I, J ∈ I and
|I| < |J |, then there is e ∈ J \ I such that I ∪ {e} ∈ I.

Any set F ⊆ E, F /∈ I, is called a dependent set and an inclusion-wise maximal set B such
that B ∈ I is called a basis. The cardinality of a basis in a matroid M is called the rank
of M and is denoted by rank(M). The rank function of M , denoted by rankM () (with the
reference to M omitted when clear from the context), is a function from 2E to N ∪ {0} and
is defined as, rank(S) = maxS′⊆S,S′∈I |S′| for every S ⊆ E.

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:5

I Definition 2. Let A be a matrix over a field F and E be the set of columns of A. The pair
(E, I), where I defined as follows, is a matroid. For every X ⊆ E, X ∈ I if and only if the
columns of A corresponding to X are linearly independent over F. Such matroids are called
linear matroids. If a matroid M can be defined by a matrix A over a field F, then we say
that the matroid is representable over F and A is a linear representation of M .

I Definition 3 (Elongation of matroids). Let M = (E, I) be a matroid and k ∈ N. Suppose
that rank(M) ≤ k ≤ |E|. A k-elongation matroid Mk of M is a matroid with the universe as
E and S ⊆ E is a basis of Mk if and only if, it contains a basis of M and |S| = k.

Observe that the rank of the matroid Mk in the definition above is k.

I Definition 4 (Direct-sum of matroids). Consider a set of ` matroids {Mi = (Ei, Ii) | i ∈ [`]},
where Ei ∩ Ej = ∅ for every i 6= j. The direct-sum of these matroids is the matroid
M = (

⋃
i∈[`] Ei, I) where I ∈ I if and only if I =

⋃
i∈[`] Ii where Ii ∈ Ii for every i ∈ [`].

Given the representations of ` linear matroids over F, it is straightforward to obtain a
representation for their direct-sum over F and this can be done in polynomial time.

For a finite field F, F[X] denotes the ring of polynomials in X over F and F(X) denotes
the field of fractions of F[X]. A vector v over a field F is a tuple of elements from F.

The next two propositions follow from [8].

I Proposition 5 ([8]). Let M be a linear matroid of rank r, over a ground set of size n,
which is representable over a field F. Given k ≥ r, we can compute a representation of the
k-elongation of M , over the field F(X) in O(nrk) field operations over F.

I Proposition 6 ([8]). Given a linear representation of the k-elongation of M over the field
F(X) and a set of columns in the representation matrix, one can test for linear dependence
of this set in polynomial time.

In the Weighted Matroid Intersection problem, the input is a pair of matroids
M1 = (E, I1),M2 = (E, I2) and a weight function w : E → N ∪ {0} and the objective is to
find a maximum-weight common independent set in the two matroids. That is, the goal is
to compute I ∈ I1 ∩ I2 such that Σe∈Iw(e) is maximized. We will use the polynomial-time
algorithm for this problem stated in Proposition 7.

I Proposition 7 ([7]). Given two general matroids M1 and M2 over the element set E, one
can solve Weighted Matroid Intersection in time O(τWnr1.5), where W is the largest weight
assigned to an element, n = |E|, r = min{rank(M1), rank(M2)} and τ is the time required
to test whether a given subset of E is independent in M1 and M2.

Graphic Matroids. These are matroids that arise from graphs in the following way. The
graphic matroid M(G) of an undirected graph G has universe E(G) and a set S ⊆ E(G)
is independent if the subgraph with vertex set V (G) and edge set S is acyclic. Graphic
matroids are representable over every field and a representation of M(G) over GF(2) can
be computed in time polynomial in the size of G [9]. Observe that testing whether a set is
independent in the matroid M(G) can be done in polynomial time if one is given either the
linear representation of the matroid or the graph G.

Transversal Matroids. For a bipartite graph G = (X,Y,E), we can define a matroid M
with universe X, where a set S ⊆ X is independent if there exists a matching in G such that
every vertex in S is an endpoint of a matching edge. We denote this matroid by Tr(G,X).

ESA 2020

50:6 On the Complexity of Recovering Incidence Matrices

Observe that if G is given, then one can use a Maximum Matching algorithm as a subroutine
to determine in polynomial time (in the size of G) whether a given set is independent in
Tr(G,X).

Gammoids. Let D be a digraph and S, T ⊆ V (D). Then a gammoid with respect to D
and S on ground set T is a matroid (T, I), where I is defined as follows. For any T ′ ⊆ T ,
T ′ ∈ I, if and only if there are |T ′| vertex disjoint paths which originate in S and end in T ′.
Observe that if D,S are given, then one can use a Maximum Flow algorithm as a subroutine
to determine in polynomial time (in the size of D) whether a given set is independent in this
gammoid.

I Definition 8. A pair of matroids M1 = (E1, I1),M2 = (E2, I2) are said to be isomorphic
if there is a bijection φ : E1 → E2 such that for every S ⊆ E1, S ∈ I1 if and only if φ(S) ∈ I2
where the function φ is extended in the natural way to subsets of E1. Equivalently, we say
that M1 and M2 are isomorphic under the bijection φ.

3 The enumeration algorithms for (min-rank, C)-Graph Recovery and
(min-weight, C)-Graph Recovery

This section is devoted to our enumeration algorithms. We begin by reducing the enumeration
task to one of deciding an annotated version of the problem at hand.

3.1 Reducing enumeration to decision
Our enumeration strategy is based on first designing an algorithm for the decision version
of an “annotated” version of these problems. In this version, certain columns of the input
matrix M already have their corresponding columns in the hypothetical solution matrix
S (equivalently, in the matrix L) identified and the goal is to check whether this partial
mapping can be extended to a full solution. We now formally define the annotated versions
of these problems.

In the Extended (min-rank, C)-Graph Recovery problem, we are given an n×m binary
matrix M , number r ∈ N, a set CM ⊆ cols(M) and an injective mapping τ : CM → GF(2)n

and the task is to decide whether there exist binary matrices L and S such thatM = L+S, S
is an incidence matrix of a simple graph belonging to the class C, rank(L) ≤ r and moreover,
for every x ∈ CM , S[{x}] = τ(x). Similarly in the Extended (min-weight, C)-Graph Recovery
problem, the input is the same and the the goal is to decide whether there exist binary
matrices L and S such that M = L+S, S is an incidence matrix of a simple graph belonging
to the class C, ‖L‖ ≤ r and for every x ∈ CM , S[{x}] = τ(x).

We remark that if, in an instance (M, r,CM , τ) of either problem, it holds that CM = ∅,
then the corresponding mapping τ : CM → GF(2)n is denoted by τ∅. Moreover, notice
that by setting CM = ∅ and τ = τ∅, we have that (min-rank, C)-Graph Recovery
((min-weight, C)-Graph Recovery) is a special case of Extended (min-rank, C)-Graph
Recovery (respectively, Extended (min-weight, C)-Graph Recovery).

Our enumeration algorithms are based on the following pair of algorithms for Extended
(min-rank, C)-Graph Recovery and Extended (min-weight, C)-Graph Recovery.

I Lemma 9. For every C ∈ {simple graph, forest, connected graph, arboricity-d graph},
there is an algorithm C-D that runs in time (mn)O(r) and correctly decides whether or
not the given input (M, r,CM , τ) is a yes-instance of Extended (min-rank, C)-Graph Recovery.

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:7

Algorithm 1 Algorithm C-E .

1 if CM = [m] then

2 Define the matrix S as S[{x}] = τ(x) for every x ∈ [m].
3 if inc−1(S) ∈ C and rank(M + S) ≤ r then
4 Output S
5 end

6 end
7 return
8 x← minp∈[m]{p /∈ CM}
9 for each y ∈ cols(inc(Kn)) such that τ−1(y) is undefined do

10 if C-D((M, r,CM ∪ {x}, τ ∪ {x 7−→ y})) returns Yes then

11 C-E((M, r,CM ∪ {x}, τ ∪ {x 7−→ y}))

12 end
13 end
14 return

I Lemma 10. For every C ∈ {simple graph, forest, connected graph}, there is an algorithm
C-D′ that runs in time (mn)O(1) and correctly decides whether or not the given input
(M, r,CM , τ) is a yes-instance of Extended (min-weight, C)-Graph Recovery.

We first assume Lemma 9 and Lemma 10, and present our enumeration algorithms
(Theorem 11 and Theorem 12).

I Theorem 11. For every C ∈ {simple graph, forest, connected graph, arboricity-d graph},
there is an algorithm C-E that, on input (M, r,CM , τ), outputs precisely those matrices S
such that M = S + L for some binary matrix L of GF(2)-rank at most r, S is an incidence
matrix of a simple graph in C such that for every x ∈ CM , S[{x}] = τ(x). Moreover, the
delay between successive outputs is (mn)O(r) and each such matrix S is output exactly once.

Proof. The algorithm C-E is described in Algorithm 1. The for loop is executed at most(
n
2
)
times in any single call to the algorithm and the recursive call to C-E is made precisely

when there is at least one solution to be output for a specific extension of CM and τ . This is
witnessed by the positive answer returned by the execution of the decision algorithm C-D.
Finally, since the depth of the recursion is bounded by m, the first part of the lemma follows.
The fact that this algorithm outputs precisely the required matrices (exactly once each) with
delay bounded by (mn)O(r) follows from the correctness and running time bound of the
algorithm C-D in Lemma 9. J

The enumeration algorithm for (min-weight, C)-Graph Recovery is analogous to that
for (min-rank, C)-Graph Recovery (building on Lemma 10 instead of Lemma 9) and so
we only state the theorem, omitting the proof.

I Theorem 12. For every C ∈ {simple graph, forest, connected graph, arboricity-d graph},
there is an algorithm C-E ′ that, on input (M, r,CM , τ), outputs precisely those matrices S
such that M = S + L for some binary matrix L such that ‖L‖ ≤ r, S is an incidence matrix
of a simple graph in C such that for every x ∈ CM , S[{x}] = τ(x). Moreover, the delay
between successive outputs is (mn)O(1) and each such matrix S is output exactly once.

ESA 2020

50:8 On the Complexity of Recovering Incidence Matrices

Notice that in order to enumerate all possible solutions for an instance (M, r) of
(min-rank, C)-Graph Recovery ((min-weight, C)-Graph Recovery), it is sufficient to
execute the enumeration algorithm C-E (respectively, C-E ′) on input (M, r, ∅, τ∅). We next
prove Lemma 9.

3.2 Decision algorithms for Extended (min-rank, C)-Graph Recovery
The goal of this subsection is to prove Lemma 9. We always assume that without loss of
generality, the input M satisfies: m,n ≥ r. Note that since we require that for every x ∈ CM ,
S[{x}] = τ(x), the range of τ can be assumed to be cols(inc(Kn)).

Our algorithms for deciding the Extended (min-rank, C)-Graph Recovery problem
comprise the following two steps, the first of which only relies on S being an incidence matrix
and L being a matrix of rank at most r. The second step depends on the class C under
consideration and we will describe it in detail for each application separately.
1. We show that given M , one can enumerate in time (mn)O(r), a set Qr

M of sufficiently few
sets, each of which contains at most r n-dimensional binary vectors such that for every
L, S such that M = L+ S, rank(L) ≤ r and S is an incidence matrix, there is a Q ∈ Qr

M

whose elements form a basis for col-span(L).
2. We then show that for each class C that we consider, if one is given a basis for the vector

space spanned by the columns of the hypothetical solution matrix L of rank ≤ r, then
it is possible to determine the existence of the required matrix S in polynomial time (in
the size of M) using an appropriate Weighted Matroid Intersection algorithm as a
subroutine.

We begin by formalizing Step 1 of our algorithms.

I Lemma 13. GivenM and r, one can enumerate in time (mn)O(r), a set Qr
M ={Q1, . . . , Q`}

satisfying the following properties: (a) ` = (mn)O(r), (b) each Qi is a set of r n-dimensional
vectors over GF(2), (c) for every pair of matrices L, S such that M = L+S, S is an incidence
matrix and rank(L) ≤ r, there is an i ∈ [`] such that Qi is a basis for col-span(L).

In the rest of this section, for given r and M , we denote by Qr
M the set described in

Lemma 13.

I Definition 14. For an n × m binary matrix M and a set Q ∈
(GF(2)n

≤r

)
, we denote

by GQ
M the bipartite graph (XQ

M = [m], Y Q
M = cols(inc(Kn)), EQ

M) where the edge set EQ
M

is defined as all those pairs (x, y) such that x ∈ [m], y ∈ cols(inc(Kn)) and satisfying
∃q ∈ span(Q) such that M [{x}] = y + q.

Note that in the graph GQ
M , the set Y Q

M contains all columns of the incidence matrix of
every simple graph on n vertices.

I Observation 15. Given M , r and Q, the graph GQ
M can be computed in time 2r ·(m+n)O(1)

and has m+
(

n
2
)
vertices.

The time bound in the above observation comes from the fact that for each x ∈ XQ
M

and y ∈ Y Q
M , deciding whether (x, y) ∈ EQ

M can be done by iterating over all the at most 2r

vectors in span(Q).

I Definition 16. Consider an n ×m binary matrix M , Q ∈
(GF(2)n

≤r

)
, CM ⊆ cols(M) and

an injective mapping τ : CM → GF(2)n. If Z = {(x, τ(x)) | x ∈ CM} is a matching in the
graph GQ

M , then we denote by G̃Q
M the graph obtained from GQ

M by deleting all edges incident

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:9

on the set V (Z) except the edges in Z. Otherwise, we denote by G̃Q
M the graph obtained from

GQ
M by deleting every edge. Then, Tr(GQ

M , Y Q
M , 〈CM , τ〉) denotes the transversal matroid

Tr(G̃Q
M , Y Q

M).

I Definition 17. Let φ : Y Q
M → E(Kn) be the trivial bijection which maps y ∈ Y Q

M to the
corresponding edge of Kn (recall that Y Q

M is precisely the set of columns of the incidence matrix
of Kn). We denote byM(Kn, Y

Q
M) the matroid over the element set Y Q

M which is isomorphic
to the graphic matroid M(Kn) under the bijection φ. We assume that φ is extended in the
natural way to subsets of vertices. That is, for every Y ⊆ Y Q

M , φ(Y) =
⋃

y∈Y φ(y).

I Observation 18. Let φ andM(Kn, Y
Q

M) be as in Definition 17. For every n×m incidence
matrix S, the graph inc−1(S) is isomorphic to the subgraph of Kn with edge set φ(cols(S)).

We are now ready to give our algorithms for each choice of C.

3.2.1 Recovering simple graphs
I Lemma 19. (M, r,CM , τ) is a yes-instance of Extended-(min-rank, simple)-Graph Re-
covery if and only if there is a Q ∈ Qr

M such that the graph GQ
M has a matching saturating

XQ
M and containing the edges {(x, τ(x)) | x ∈ CM}.

Proof. In the forward direction, suppose that M = S + L where inc−1(S) is a simple graph,
rank(L) ≤ r and for every x ∈ CM , S[{x}] = τ(x). By Lemma 13, we know that some
Q ∈ Qr

M is a basis for col-span(L). Consequently, by Definition 14, for each x ∈ [m], there
is an edge in GQ

M between x and S[{x}]. Since no 2 columns in S are identical (inc−1(S)
is a simple graph), this implies a matching saturating XQ

M in GQ
M and extending the set

{(x, τ(x)) | x ∈ CM} as required.
Conversely, suppose that there is a matching C saturating XQ

M in GQ
M and extending the

set {(x, τ(x)) | x ∈ CM}. For each x ∈ XQ
M = [m], we denote by xC the partner of x in C.

By definition, for every x ∈ CM , xC = τ(x). We define S and L as follows. For each x ∈ [m],
set S[{x}] = xC and L[{x}] = M [{x}] + xC . Since S contains only distinct columns and
these are all contained in cols(inc(Kn)), it follows that S is the incidence matrix of a simple
graph. On the other hand, Definition 14 implies that for every x ∈ [m], since (x, xC) ∈ EQ

M ,
it must be the case that L[{x}] = M [{x}] + xC ∈ span(Q). Consequently we have that
col-span(L) ⊆ span(Q) and since |Q| ≤ r, the lemma follows. J

Lemma 13 and Lemma 19 imply our algorithm for Extended-(min-rank, simple)-Graph
Recovery.

I Lemma 20. Extended-(min-rank, simple)-Graph Recovery can be solved in time
(mn)O(r).

Observe that based on Lemma 19, we may conclude that if the given instance is positive,
then there is a solution M = S + L where the columns of S form an independent set of size
m in the transversal matroid Tr(GQ

M , Y Q
M) for some Q ∈ Qr

M . Moreover, there must be such
an independent set saturated by a matching extending {(x, τ(x)) | x ∈ CM}. Consequently,
we have the following observation which forms a critical part of all our algorithms.

I Observation 21. (M, r,CM , τ) is a yes-instance of Extended-(min-rank, simple)-Graph
Recovery if and only if there is a Q ∈ Qr

M such that there is an independent set of size m
in the transversal matroid Tr(GQ

M , Y Q
M , 〈CM , τ〉).

ESA 2020

50:10 On the Complexity of Recovering Incidence Matrices

3.2.2 Recovering acyclic graphs
I Lemma 22. (M, r,CM , τ) is a yes-instance of Extended (min-rank, acyclic)-Graph
Recovery if and only if there is a Q ∈ Qr

M such that there is a common independent set of
size m in the transversal matroid Tr(GQ

M , Y Q
M , 〈CM , τ〉) and the matroidM(Kn, Y

Q
M).

Proof. In the forward direction, suppose that M = S + L where inc−1(S) is a forest, for
every x ∈ CM , S[{x}] = τ(x) and rank(L) ≤ r. By Lemma 13, we know that some Q ∈ Qr

M

is a basis for col-span(L). Moreover, we know that the columns of S form an independent
set in Tr(GQ

M , Y Q
M , 〈CM , τ〉) (by Observation 21). Hence, it is sufficient to show that the

set of columns of S form an independent set of the matroidM(Kn, Y
Q

M). But this follows
from the fact that inc−1(S) is a forest andM(Kn, Y

Q
M) is isomorphic to M(Kn) under φ (see

Definition 17 and Observation 18).
In the converse direction, suppose that for some Q ∈ Qr

M , there is a common independent
set I of size m in the transversal matroid Tr(GQ

M , Y Q
M , 〈CM , τ〉) and the matroidM(Kn, Y

Q
M).

We construct S and L as follows. Pick a matching C in G̃Q
M (see Definition 16) saturating

I and XQ
M . Since |I| = m, such a matching exists. For each x ∈ XQ

M = [m], we denote by
xC the partner of x in C. Notice that by the definition of G̃Q

M , every vertex x ∈ CM has a
unique neighbor, which must be τ(x).

We now define S and L as follows. For each x ∈ [m], set S[{x}] = xC and L[{x}] =
M [{x}] + xC . Since S contains only distinct columns and these are all contained in
cols(inc(Kn)), it follows that S is the incidence matrix of a simple graph. In addition,
for every x ∈ CM , S[{x}] = τ(x) by the definition of S. Moreover, from Observation 18 and
the fact that the set I = {xC |x ∈ [m]} is an independent set inM(Kn, Y

Q
M), we have that

inc−1(S) is isomorphic to the subgraph of Kn induced by the edge set φ(I), which is a forest.
Finally, by the definition of GQ

M , we have that for every x ∈ [m], M [{x}] + xC ∈ span(Q).
Consequently we have that col-span(L) ⊆ span(Q) and since |Q| ≤ r, and the lemma
follows. J

I Lemma 23. Extended (min-rank, acyclic)-Graph Recovery can be solved in time
(mn)O(r).

3.2.3 Recovering Graphs of Fixed Arboricity
In the Arboricity-d Graph Recovery problem, the input is the pair (M, r) and the
goal is to decide whether M = S + L, where H = inc−1(S) has arboricity at most d and
rank(L) ≤ r. Observe that Extended Arboricity-d Graph Recovery is a generalization
of Extended Acyclic Graph Recovery (set d = 1).

I Definition 24. For every d ∈ N, we define the gammoid Gamd(GQ
M , Y Q

M , 〈CM , τ〉) as
follows. Consider the digraph D1 obtained from G̃Q

M by orienting all edges from XQ
M to Y Q

M .
For each y ∈ Y Q

M , construct a directed path Dy
2 = (y, 1), . . . , (y, d). We define the digraph D3

as the graph obtained by identifying each y ∈ Y Q
M in D1 with (y, 1) in Dy

2 . The vertex set of
D3 is now XQ

M ∪ (Y Q
M × [d]). Then, Gamd(GQ

M , Y Q
M , 〈CM , τ〉) is defined as the gammoid with

respect to D3 and XQ
M on ground set Y Q

M × [d].

I Definition 25. For each i ∈ [d], define the matroid J i(Kn, Y
Q

M) as the matroid over
element set Y Q

M × {i} which is isomorphic to M(Kn, Y
Q

M) under the bijection ψi where
ψi(y, i) = y, for each y ∈ Y Q

M . We denote byMd(Kn, Y
Q

M) the direct-sum of the d matroids
{J i(Kn, Y

Q
M) | i ∈ [d]}. We also extend each ψi to sets in the following way: for every

Z1 ⊆ Y Q
M , and Z2 = Z1 × {i}, ψi(Z2) = Z1.

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:11

The following lemma generalizes Lemma 22.

I Lemma 26. (M, r,CM , τ) is a yes-instance of Extended Arboricity-d Graph Re-
covery if and only if there is a Q ∈ Qr

M such that there is a common independent set of
size m in the gammoid Gamd(GQ

M , Y Q
M , 〈CM , τ〉) and the matroidMd(Kn, Y

Q
M).

I Lemma 27. For every fixed constant d, Extended (min-rank, d-arboricity)-Graph Re-
covery can be solved in time (mn)O(r) on input (M, r,CM , τ).

Proof. (Sketch) The crux of this lemma is a proof that (M, r,CM , τ) is a yes-instance of
Extended (min-rank, d-arboricity)-Graph Recovery if and only if there is a Q ∈ Qr

M

such that there is a common independent set of size m in an appropriate defined gammoid
and the matroidMd(Kn, Y

Q
M). J

3.2.4 Recovering connected graphs
Here, we prove an analogous version of Lemma 23 for Extended (min-rank, connected)-
Graph Recovery.

I Lemma 28. Extended (min-rank, connected)-Graph Recovery can be solved in time
(mn)O(r).

Proof. (Sketch) The crux of this lemma is a proof that (M, r,CM , τ) is a yes-instance
of Extended (min-rank, connected)-Graph Recovery if and only if there is a Q ∈
Qr

M such that there is a common independent set of size m in the transversal matroid
Tr(GQ

M , Y Q
M , 〈CM , τ〉) and the m-elongation of the matroid M(Kn, Y

Q
M) (assuming that

m ≥ n− 1, otherwise we have a no-instance). The details of this argument follow along the
same lines as the proof of Lemma 22. The crucial part of this lemma is the choice of the
m-elongation ofM(Kn, Y

Q
M) as the matroid that we intersect with Tr(GQ

M , Y Q
M , 〈CM , τ〉). J

Lemma 9 is now a straightforward consequence of Lemma 20, Lemma 23, Lemma 28, and
Lemma 27.

3.3 Decision algorithms for Extended (min-weight, C)-Graph Recovery
The goal of this subsection is to prove Lemma 10. The proof is involved and has several
stages. In the following, we provide a high level overview of our proof strategy.

Recall that an instance of (min-weight, C)-Graph Recovery is of the form (M,k,CM , τ)
where CM ⊆ cols(M) and τ fixes the mapping of the columns in CM in the solution. When
we just want G to be a simple graph (i.e., C is the class of all simple graphs), a solution
M = L + S minimizing the cost, ‖L‖, can be computed in polynomial time using an
algorithm for Minimum Weight Bipartite Matching, in an auxiliary bipartite graph
which represents the costs of mapping each column of M to a specific edge. The design of
this bipartite graph is similar in spirit to that of the graph in Definition 14. We refer to a
solution M = L+ S minimizing the cost ‖L‖, as a minimum cost solution.

To obtain connected graphs and forests, we build upon this algorithm. We first describe
an algorithm that computes a minimum cost solution M = L0 + S0 along with the graph
G0 and try to reassign columns of M associated with non-bridge edges in G0 to reduce the
number of connected components without increasing the cost of the solution at hand. That
is, we move from one solution to another without increasing the cost but while decreasing
the number of connected components in the graph corresponding to the incidence matrix in
the solution. Note that, we may need to perform a number of reassignments in a sequence

ESA 2020

50:12 On the Complexity of Recovering Incidence Matrices

before the number of connected components is reduced. To determine this sequence of
reassignments, we associate them with paths in an auxiliary digraph, where the nodes are the
edges and non-edges of the current graph, and directed edges indicate feasible reassignments,
or reassignments that convert a bridge in the current graph to a non-bridge. We show that the
current solution minimizes the number of connected components if and only if the auxiliary
digraph has no paths starting from a non-bridge edge and ending at a non-edge. This requires
an intricate analysis of the structure of a solution and how reassignments affect them. This
leads to an iterative algorithm that “remaps” the edges in the graph associated with the
current solution using paths in the auxiliary digraph. When this algorithm terminates, we
obtain a minimum cost solution that minimizes the number of connected components in the
corresponding graph. We then use this algorithm as the starting point for the algorithms to
recover connected graphs and forests. To recover a connected graph, we observe that any
further reassignments to reduce the number of connected components must increase the cost
of the solution. Therefore, we design an iterative algorithm that reassigns non-bridge edges
until every edge is a bridge, or the graph becomes connected. This algorithm can be used to
recover a connected graph, or a forest satisfying the required properties.

3.4 NP-completeness of (min-rank, C)-Graph Recovery
I Theorem 29. (min-rank, C)-Graph Recovery is NP-complete for C ∈ {simple graphs,
acyclic graphs, connected graphs, arboricity-d graphs}.

4 Concluding remarks and future work

In this paper, we have initiated the study of a family of graph recovery problems. In these
problems, the aim is to recover the incidence matrix of a graph (contained in a specific graph
class) from a given binary matrix. The input matrix is assumed to be a perturbation of
an incidence matrix by either a small rank or low weight matrix. We have demonstrated
the rich combinatorial structure possessed by these problems by designing decision and
enumeration algorithms using classic concepts such as matchings and matroids. We leave
open the following concrete questions.

1. Is (min-rank, C)-Graph Recovery fixed-parameter tractable parameterized by r for the
classes we consider? That is, can it be solved in time f(r)(mn)O(1) for some computable
function f?

2. Identify classes C for which (min-rank, C)-Graph Recovery is polynomial-time solvable.
3. Characterize those C for which (min-weight, C)-Graph Recovery is polynomial-time

solvable.

References
1 Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component

analysis? J. ACM, 58(3):11:1–11:37, 2011. doi:10.1145/1970392.1970395.
2 Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, and Alan S. Willsky. Rank-sparsity

incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–596, 2011.
doi:10.1137/090761793.

3 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
Berlin, 3rd edition, 2005.

4 Fedor V Fomin, Petr A Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Covering vectors by spaces in perturbed graphic matroids and their duals. arXiv preprint,
2019. arXiv:1902.06957.

https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1137/090761793
http://arxiv.org/abs/1902.06957

F. V. Fomin, P. Golovach, P. Misra, and M. S. Ramanujan 50:13

5 Jim Geelen, Bert Gerards, and Geoff Whittle. On rota’s conjecture and excluded minors
containing large projective geometries. Journal of Combinatorial Theory, Series B, 96(3):405–
425, 2006.

6 Jim Geelen and Rohan Kapadia. Computing girth and cogirth in perturbed graphic matroids.
Combinatorica, 38(1):167–191, 2018.

7 Chien-Chung Huang, Naonori Kakimura, and Naoyuki Kamiyama. Exact and approximation
algorithms for weighted matroid intersection. In Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, pages 430–444, 2016. doi:10.1137/1.9781611974331.ch32.

8 Daniel Lokshtanov, Pranabendu Misra, Fahad Panolan, and Saket Saurabh. Deterministic
truncation of linear matroids. ACM Trans. Algorithms, 14(2):14:1–14:20, 2018. doi:10.1145/
3170444.

9 James G. Oxley. Matroid theory, volume 21 of Oxford Graduate Texts in Mathematics. Oxford
University Press, 2nd edition, 2010.

10 Nauman Shahid, Nathanael Perraudin, Vassilis Kalofolias, Gilles Puy, and Pierre
Vandergheynst. Fast robust pca on graphs. IEEE Journal of Selected Topics in Signal
Processing, 10(4):740–756, 2016.

11 John Wright, Arvind Ganesh, Shankar R. Rao, YiGang Peng, and Yi Ma. Robust
principal component analysis: Exact recovery of corrupted low-rank matrices via con-
vex optimization. In Proceedings of 23rd Annual Conference on Neural Information
Processing Systems (NIPS), pages 2080–2088. Curran Associates, Inc., 2009. URL:
http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-
recovery-of-corrupted-low-rank-matrices-via-convex-optimization.

12 Mengnan Zhao, M Devrim Kaba, René Vidal, Daniel P Robinson, and Enrique Mallada.
Sparse recovery over graph incidence matrices. In 2018 IEEE Conference on Decision and
Control (CDC), pages 364–371. IEEE, 2018.

ESA 2020

https://doi.org/10.1137/1.9781611974331.ch32
https://doi.org/10.1145/3170444
https://doi.org/10.1145/3170444
http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-recovery-of-corrupted-low-rank-matrices-via-convex-optimization
http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-recovery-of-corrupted-low-rank-matrices-via-convex-optimization

An Algorithmic Meta-Theorem for Graph
Modification to Planarity and FOL
Fedor V. Fomin
Department of Informatics, University of Bergen, Norway
fedor.fomin@ii.uib.no

Petr A. Golovach
Department of Informatics, University of Bergen, Norway
petr.golovach@ii.uib.no

Giannos Stamoulis
Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Greece
Inter-university Postgraduate Programme “Algorithms, Logic, and Discrete Mathematics” (ALMA),
Athens, Greece
giannos95@gmail.com

Dimitrios M. Thilikos
LIRMM, Univ. Montpellier, CNRS, Montpellier, France
sedthilk@thilikos.info

Abstract

In general, a graph modification problem is defined by a graph modification operation � and a target
graph property P. Typically, the modification operation � may be vertex removal, edge removal,
edge contraction, or edge addition and the question is, given a graph G and an integer k, whether it is
possible to transform G to a graph in P after applying k times the operation � on G. This problem
has been extensively studied for particilar instantiations of � and P. In this paper we consider
the general property Pφ of being planar and, moreover, being a model of some First-Order Logic
sentence φ (an FOL-sentence). We call the corresponding meta-problem Graph �-Modification
to Planarity and φ and prove the following algorithmic meta-theorem: there exists a function
f : N2 → N such that, for every � and every FOL sentence φ, the Graph �-Modification
to Planarity and φ is solvable in f(k, |φ|) · n2 time. The proof constitutes a hybrid of two
different classic techniques in graph algorithms. The first is the irrelevant vertex technique that
is typically used in the context of Graph Minors and deals with properties such as planarity or
surface-embeddability (that are not FOL-expressible) and the second is the use of Gaifman’s Locality
Theorem that is the theoretical base for the meta-algorithmic study of FOL-expressible problems.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Graph modification Problems, Algorithmic meta-theorems, First Order Logic,
Irrelevant vertex technique, Planar graphs, Surface embeddable graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.51

Funding The research has been supported by the Research Council of Norway and the French
Ministry of Europe and Foreign Affairs via the Franco-Norwegian project PHC AURORA 2019.
Fedor V. Fomin: Research Council of Norway via the project “MULTIVAL”.
Petr A. Golovach: Research Council of Norway via the project “MULTIVAL”.
Dimitrios M. Thilikos: DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010).

© Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 51; pp. 51:1–51:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fedor.fomin@ii.uib.no
mailto:petr.golovach@ii.uib.no
mailto:giannos95@gmail.com
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.ESA.2020.51
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

1 Introduction

The term algorithmic meta-theorems was coined by Grohe in his seminal exposition in [20] in
order to describe results providing general conditions, typically of logical and/or combinatorial
nature, that automatically guarantee the existence of certain types of algorithms for wide
families of problems. Algorithmic meta-theorems reveal deep relations between logic and
combinatorial structures, which is a fundamental issue of computational complexity. Such
theorems not only yield a better understanding of the scope of general algorithmic techniques
and the limits of tractability but often provide (or induce) a variety of new algorithmic
results. The archetype of algorithmic meta-theorems is Courcelle’s theorem [5,6] stating that
all graph properties expressible in Monadic Second-Order Logic (in short, MSOL-expressible
properties) are fixed-parameter tractable when parameterized by the size of the sentence and
the treewidth of the graph.

Our meta-theorem belongs to the intersection of two algorithmic research directions:
Deciding First-Order Logic properties of sparse graphs and graph planarization algorithms.

FOL-expressible properties on sparse graphs. For graph properties expressible in first-
order logic (in short FOL-expressible properties), a rich family of algorithmic meta-theorems,
were developed within the last decades. Each of these meta-theorems can be stated in the
following form: for a graph class C, deciding FOL-expressible properties is fixed-parameter
tractable on C, i.e. there is an algorithm running in f(|φ|) · nO(1) time where |φ| is the size
of the the input FOL-sentence φ and n is the number of vertices of the input graph. The
starting point in the chain of such meta-theorems is the work of Seese [33] for C being the
class of graphs of bounded degree [33]. The first significant extension of Seese’s theorem was
obtained by Frick and Grohe [16] for the class C of graphs of bounded local treewidth [16].
The class of graphs of bounded local treewidth contains graphs of bounded degree, planar
graphs, graphs of bounded genus, and apex-minor-free graphs. The next step was done
by Flum and Grohe [12], who extended these results up to graph classes excluding some
minor. Dawar, Grohe, and Kreutzer [9] pushed the tractability border up to graphs locally
excluding a minor. Further extension was due to Dvořák, Král, and Thomas, who proved
tractability for the class C of being locally bounded expansion [11]. Finally, Grohe, Kreutzer,
and Siebertz [22] established fixed-parameter tractability for classes that are effectively
nowhere dense. In some sense, the result of Grohe et al. is the culmination of this long line
of meta-theorems, because for somewhere dense graph classes closed under taking subgraphs
deciding first-order properties is unlikely to be fixed-parameter tractable [11,26].

Notice that the above line of results also sheds some light on graph modification problems.
In particular, since many modification operations are FOL-expressible, in some situations
when the target property P is FOL-expressible, the above meta-algorithmic results can be
extended to graph modification problems. As a concrete example, consider the problem
of removing at most k vertices to obtain a graph of degree at most 3. All vertices of the
input graph of degree at least 4 + k should be deleted, so we delete them and adapt the
parameter k accordingly. In the remaining graph all vertices are of degree at most 3 + k and
the property of removing at most k vertices from such a graph to obtain a graph of degree
at most 3 is FOL-expressible. Hence the Seese’s theorem implies that there is an algorithm
of running time f(k) · nO(1) solving this problem. However these theories are not applicable
with instantiations of P, like planarity, that are not FOL-expressible.

F. V. Fomin, P. A. Golovach, G. Stamoulis, and D.M. Thilikos 51:3

Another island of tractability for graph modification problems is provided by Courcelle’s
theorem and similar theorems on graphs of bounded widths. For example, graph modification
problems are fixed-parameter tractable in cases where the target property P is MSOL-
expressible under the additional assumption that the graphs in P have fixed treewidth (or
bounded rankwidth, for MSOL1-properties, see e.g., [7]).

To conclude, according to the current state of the art, all known algorithmic meta-theorems
concerning fixed-parameter tractability of graph modification problems are attainable either
when the target property P is FOL-expressible and the structure is sparse or when P is
MSOL/MSO1-expressible and the structure has bounded tree/rank-width. Interestingly,
planarity is the typical property that escapes the above pattern: it is not FOL-expressible
and it has unbounded treewidth.

Graph planarization. The Planar Vertex Deletion problem is a generalization of
planarity testing. For a given graph G the goal is to find a vertex set of size at most k whose
removal makes the resulting graph planar. Planarity is a nontrivial and hereditary graph
property, hence by the result of Lewis and Yannakakis [27], the decision version of Planar
Vertex Deletion is NP-complete. The parameterized complexity of this problem has been
extensively studied.

The non-uniform fixed-parameter tractability of Planar Vertex Deletion (para-
meterized by k) follows from the deep result of Robertson and Seymour in Graph Minors
theory [32], that every minor-closed graph class can be recognized in polynomial time. Since
the class of graphs that can be made planar by removing at most k vertices is minor-closed,
the result of Robertson and Seymour implies that for Planar Vertex Deletion, for
each k, there exists a (non-uniform) algorithm that in time O(n3) solves Planar Vertex
Deletion. Significant amount of work was involved to improve the enormous constants
hidden in the big-Oh and the polynomial dependence in n. Marx and Schlotter [29] gave
an algorithm that solves the problem in time f(k) · n2, where f is some function of k only.
Kawarabayashi [24] obtained the first linear time algorithm of running time f(k) · n and
Jansen, Lokshtanov, and Saurabh [23] obtained an algorithm of running time O(2O(k log k) ·n).
For the related problem of contracting at most k edges to obtain a planar graph, Planar
Edge Contraction, an f(k) · nO(1) time algorithm was obtained by Golovach, van ’t Hof
and Paulusma [19]. Approximation algorithms for Planar Vertex Deletion and for
Planar Edge Deletion were studied in [2–4].

Our results. Let � be one of the following operations on graphs: Vertex removal, edge
removal, edge contraction, or edge addition. We are interested whether, for a given graph G
and an FOL-sentence φ, it is possible to transform G by applying at most k �-operations,
into a planar graph with the property defined by φ. We refer to this problem as the Graph
�-Modification to Planarity and φ problem. For example, when � is the vertex
removal operation and φ is a tautology, then the problem is Planar Vertex Deletion.
Similarly, Graph �-Modification to Planarity and φ generalizes Planar Edge
Deletion and Planar Edge Contraction. On the other hand, for the special case of
k = 0 this is the problem of deciding FOL-expressible properties on planar graphs.

Examples of first-order expressible properties are deciding whether the input graph G
contains a fixed graph H as a subgraph (H-Subgraph Isomorphism), deciding whether
there is a homomorphism from a fixed graph H to G to (H-Homomorphism), satisfying
degree constraints (the degree of every vertex of the graph should be between a and b for
some constants a and b), excluding a subgraph of constant size or having a dominating

ESA 2020

51:4 An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

set of constant size. Thus Graph �-Modification to Planarity and φ encompasses
the variety of graph modification problems to planar graphs with specific properties. For
example, can we delete k vertices (or edges) such that the obtained graph is planar and each
vertex belongs to a triangle? Reversely, can we delete at most k vertices (or edges) from a
graph such that the resulting graph is a triangle-free planar graph? Can we add (or contract)
at most k edges to such that the resulting graph is 4-regular and planar? Or can we delete
at most k edges resulting in a square-free or claw-free planar graph?

Informally, our main result can be stated as follows.

I Theorem (Informal). Graph �-Modification to Planarity and φ is solvable in
time f(k, φ) · n2, for some function f depending on k and φ only. Thus the problem is
fixed-parameter tractable, when parameterized by k + |φ|.

Our theorem not only implies that Planar Vertex Deletion is fixed-parameter
tractable parameterized by k (proved in [23,29]) and that deciding whether a planar graph
has a first-order logic property φ is fixed-parameter tractable parameterized by |φ| (that
follows from [9, 11, 16, 22]). It also implies a variety of new algorithmic results about
graph modification problems to planar graphs with some specific properties that cannot be
obtained by applying the known results directly. Of course, for some formulas φ, Graph
�-Modification to Planarity and φ can be solved by more simple techniques. For
example, if φ defines a hereditary property characterized by a finite family of forbidden
induced subgraphs F , then deciding, whether it is possible to delete at most k vertices
to obtain a planar F-free graph, can be done by combining the straightforward branching
algorithm and, say, the algorithm of Jansen, Lokshtanov, and Saurabh [23] for Planar
Vertex Deletion. For this, we iteratively find a copy of each F ∈ F and if such a copy
exists we branch on all the possibilities to destroy this copy of F by deleting a vertex. By this
procedure, we obtain a search tree of depth at most k, whose leaves are all F-free induced
subgraphs of the input graph that could be obtained by at most k vertex deletions. Then for
each leaf, we use the planarization algorithm limited by the remaining budget. However, this
does not work for edge modifications, because deleting an edge in order to ensure planarity
may result in creating a copy of a forbidden subgraph. For such type of problems, even
for very “simple” ones, like deleting k edges to obtain a claw-free planar graph, or planar
graph without induced cycles of length 4, our theorem establishes the first fixed-parameter
algorithms. Also our theorem is applicable to the situation when φ defines a hereditary
property that requires an infinite family of forbidden subgraphs for its characterization and
for non-hereditary properties expressible in FOL.

In our paper, we show the result for Graph �-Modification to Planarity and φ,
but further we argue that it can be extended for modification problems to graphs embeddable
to a surface of a given Euler genus.

The price we pay for such generality is the running time. While the polynomial factor in
the running time of our algorithm is comparable with the running time of the algorithm of
Marx and Schlotter [29] for Planar Vertex Deletion, it is worse than the more advanced
algorithms of Kawarabayashi [24] and Jansen et al. [23]. Similarly, the algorithms for deciding
first-order logic properties on graph classes [11,16,22] are faster than our algorithm.

The proof of the main theorem is based on a non-trivial combination of the irrelevant
vertex technique of Robertson and Seymour [30,31] with the Gaifman’s Locality Theorem [17].
While both techniques were widely used, see [1,8,19,21,23,28] and [9,12,16], the combination
of the two techniques requires novel ideas. Following the popular trend in Theoretical
Computer Science, an alternative title for our paper could be “Robertson and Seymour meet
Gaifman”.

F. V. Fomin, P. A. Golovach, G. Stamoulis, and D.M. Thilikos 51:5

Organization of the paper. In Section 2 we give the formal definition of the general Graph
�-Modification to Planarity and φ problem, present the theoretical background around
Gaifman’s Locality Theorem, and give some preliminary definitions and results. In Section 3
we highlight the main ideas behind the proof explain how our arguments can be extended
in cases where the target property is having bounded Euler genus and being a model of an
FOL-sentence φ. Finally, in Section 4 we provide some directions for further research.

2 Problem definition and preliminaries

Before we explain our techniques, we give some necessary definitions. We denote by N the set
of all non-negative integers. Given an n ∈ N, we denote by N≥n the set containing all integers
equal or greater than n. Given two integers x and y we define by [x, y] = {x, x+1, . . . , y−1, y}.
Given an n ∈ N≥1, we also define [n] = [1, n].

All graphs in this paper are undirected, finite, and they do not have loops or multiple
edges. Given a graph G, we denote by V (G) and E(G) the set of its vertices and edges,
respectively. If S ⊆ V (G), then we denote by G \ S the graph obtained by G after removing
from it all vertices in S, together with their incident edges. Also, we denote by G \ v the
graph G \ {v}, for some v ∈ V (G). We also denote by G[S] the graph G \ (V (G) \ S).

2.1 Modifications on graphs

We define OP := {vr, er, ec, ea}, that is the set of graph operations of removing a vertex,
removing an edge, contracting an edge, and adding an edge, respectively. Given an operation
� ∈ OP, a graph G, and a vertex set R ⊆ V (G), we define the application domain of the
operation � as

�〈G,R〉 =

R, if � = vr,
E(G) ∩

(
R
2
)
, if � = er, ec, and(

R
2
)
\ E(G), if � = ea.

Notice that �〈G,R〉 is either a vertex set or a set of subsets of vertices each of size two.
Given a set S ⊆ �〈G,R〉, we define G � S as the graph obtained after applying the

operation � on the elements of S. The vertices of G that are affected by the modification of
G to G� S, denoted by A(S), are the vertices in S, in case � = vr or the endpoints of the
edges of S, in case � ∈ {er, ec, ea}.

Given an FOL-sentence φ and some � ∈ OP , we define the following meta-problem:

Graph �-Modification to Planarity and φ (In short: G�MPφ)
Input: A graph G and a non-negative integer k.
Question: Is there a set S ⊆ �〈G,V (G)〉 of size k such that G� S is a
planar graph and G� S |= φ?

Let (x1, . . . , x`) ∈ N` and f, g : N→ N. We use notation f(n) = Ox1,...,x`
(g(n)) to denote

that there exists a computable function h : N` → N such that f(n) = h(x1, . . . , x`) · g(n).
We are ready to give the formal statement of the main theorem of this paper.

I Theorem 1. There exists a function f : N2 → N such that, for every FOL-sentence φ and
for every � ∈ OP, G�MPφ is solvable in Ok,|φ|(n2) time.

ESA 2020

51:6 An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

2.2 Gaifman’s theorem

For vertices u, v of graph G, we use dG(u, v) to denote the distance between u and v in G.
We also use N (≤r)

G (v) to denote the set of vertices of G at distance at most r from v.

Formulas. In this paper we deal with logic formulas on graphs. In particular we deal with
formulas of first-order logic (FOL) and monadic second-order logic (MSO2). The syntax
of FOL-formulas includes the logical connectives ∨,∧,¬, a set of variables for vertices, the
quantifiers ∀,∃ that are applied to these variables, the predicate u ∼ v, where u and v are
vertex variables and whose interpretation is that u and v are adjacent, and the equality of
variables representing vertices. An MSO2-formula, in addition to the variables for vertices of
FOL-formulas, may also contain variables for subsets of vertices or subsets of edges. The
syntax of MSO2-formulas is obtained after enhancing the syntax of FOL-formulas so to
further allow quantification on subsets of vertices or subsets of edges and introduce the
predicates v ∈ S (resp. e ∈ F) whose interpretation is that the vertex v belongs in the vertex
set S (resp. the edge e belongs in the edge set F).

An FOL-formula φ is in prenex normal form if it is written as φ = Q1x1 . . . Qnxnψ

such that for every i ∈ [n], Qi ∈ {∀,∃} and ψ is a quantifier-free formula on the variables
x1, . . . , xn. Then Q1x1 . . . Qnxn is referred as the prefix of φ. For the rest of the paper, when
we mention the term “FOL-formula”, we mean an FOL-formula on graphs that is in prenex
normal form. Given an FOL-formula φ, we say that a variable x is a free variable in φ if
it does not occur in the prefix of φ. We write φ(x1, . . . , xr) to denote that φ is a formula
with free variables x1, . . . , xr. We call a formula without free variables a sentence. For a
sentence φ and a graph G, we write G |= φ to denote that φ evaluates to true on G. Also,
for a sentence φ we denote its length by |φ|.

Gaifman sentences. Given an FOL-formula ψ(x) with one free variable x, we say that ψ(x)
is r-local if the validity of ψ(x) depends only on the r-neighborhood of x, that is for every
graph G and v ∈ V (G) we have

G |= ψ(v) ⇐⇒ N
(≤r)
G (v) |= ψ(v).

Observe that there exists an FOL-formula δr(x, y) such that for every graph G and v, u ∈
V (G), we have dG(u, v) ≤ r ⇐⇒ G |= δr(v, u) (see [13, Lemma 12.26]).

We say that an FOL-sentence φ is a Gaifman sentence when it is a Boolean combination
of sentences φ1, . . . , φm such that, for every h ∈ [m],

φh = ∃x1 . . . ∃x`h

(∧
1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
, (1)

where `h, rh ≥ 1 and ψh is an rh-local formula with one free variable. We refer to the
variables x1, . . . , x`h

for each h ∈ [m] as the basic variables of φ. Moreover, for every h ∈ [m]
we call φh a basic local sentence of φ and the formula ψh a local formula of φ.

I Proposition 2 (Gaifman’s Theorem [17]). Every FOL-sentence φ is equivalent to a Gaifman
sentence φ′. Furthermore, φ′ can be computed effectively.

F. V. Fomin, P. A. Golovach, G. Stamoulis, and D.M. Thilikos 51:7

2.3 Equivalent formulations
Given a Gaifman sentence φ combined from sentences φ1, . . . , φm and a unary relation
symbol R, we define φ‖R as the sentence that is the same Boolean combination of sentences
φ1‖R, . . . , φm‖R such that, for every h ∈ [m],

φh‖R = ∃x1 . . . ∃x`h

(∧
i∈[`h]

xi ∈ R ∧
∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
, (2)

where `h, rh ≥ 1 and ψh is an rh-local formula with one free variable.
Let (G, k) be an instance of the G�MPφ problem. We may assume, because of Propos-

ition 2, that φ is a Gaifman sentence. We consider an enhanced version of the G�MPφ
problem as follows. Let (G,R, k) be a triple, where G is a graph, R ⊆ V (G), and k ∈ N.
We say that (G,R, k) is a (φ,�)-triple if there exists a set S ⊆ �〈G,R〉 such that |S| ≤ k,
G � S is a planar graph, and G � S |= φ‖R. Also, we say that a set S ⊆ �〈G,V (G)〉 is a
�-planarizer of G if G� S is planar. It is easy to observe that the property that (G,R, k) is
a (φ,�)-triple can be expressed in MSO2. This is easy in case � ∈ {vr, er, ec}. In the case
where � = ea, we observe the following:

I Observation 3. Let � = ea, G be a graph, and S ⊆ 〈G,V (G)〉 where S = {{v1, u1}, . . . ,
{vr, ur}}. Then there exists an MSO2-formula φP,S on structures of the type (G, v1, u1, . . . ,

vr, ur) such that

G� S is a planar graph ⇐⇒ (G, v1, u1, . . . , vr, ur) |= φP,S .

Treewidth. A tree decomposition of a graph G is a pair (T, χ) where T is a tree and
χ : V (T)→ 2V (G) such that
1.
⋃
t∈V (T) χ(t) = V (G);

2. for every edge e of G there is a t ∈ V (T) such that χ(t) contains both endpoints of e and
3. for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T) | v ∈ χ(t)} is connected.
The width of (T, χ) is defined as w(T, χ) := max

{
|χ(t)| − 1

∣∣ t ∈ V (T)
}
. The treewidth of

G is defined as

tw(G) := min
{

w(T, χ)
∣∣ (T, χ) is a tree decomposition of G

}
.

Theorem 1 is a consequence of the following lemma.

I Lemma 4. Given a Gaifman sentence φ and a � ∈ OP, there exists a function f1 : N2 → N,
and an algorithm with the following specifications:

Reduce_Instance(k,G, S,R)
Input: an integer k ∈ N, a graph G, a set R ⊆ V (G), and a set S ⊆ R that is a vr-planarizer
of G of size at most k.
Output: One of the following:
1. if � ∈ {er, ec, ea}: a report that (G, k) is a no-instance of G�MPφ.

if � = vr: a vertex u ∈ S such that S \ {u} is a vr-planarizer of G \ u of size at most
k − 1 and (G, k) and (G \ u, k − 1) are equivalent instances of G�MPφ.

2. a vertex set X ⊆ V (G) and a vertex v ∈ X such that S ⊆ R \ X and (G,R, k) is a
(φ,�)-triple iff (G \ v,R \X, k) is a (φ,�)-triple.

3. a tree decomposition of G of width at most f1(k, |φ|).
Moreover, this algorithm runs in Ok,|φ|(n) steps.

ESA 2020

51:8 An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

Given Lemma 4, Theorem 1 can be proved as follows.

Proof of Theorem 1. Let φ be an FOL-formula. By Proposition 2, φ is equivalent to a
Gaifman sentence φ′. Using the planarization algorithm from [23], we compute, in Ok(n)
steps, a vr-planarizer S of G of size at most k. If � = ea, then S := ∅, while if � ∈ {vr, er, ec},
then if such a set does not exist the we safely return a negative answer (for the case of
� = er, ec, this is due to the fact that if there exists a ec- or an er-planarizer of G of size
at most k then also a vr-planarizer of G of size at most k exists (see [19, Lemma 1])). We
are now in position to apply recursively the algorithm Reduce_Instance(k,G, S,R) of
Lemma 4 until either an answer or the third case appears. In the first case, we either return
a negative answer, if � ∈ {er, ec, ea}, or set (k,G, S,R) := (k − 1, G \ v, S \ v,R) if � = vr,
while in the second case we set (k,G, S,R) := (k,G \ v, S,R \X). In the third case we have
that tw(G) ≤ f1(k, |φ′|). Recall that the property that (G,R, k) is a (φ,�)-triple can be
expressed in MSO2, thus the status of the final equivalent instance (G,R, k) can be evaluated
in Ok,|φ|(n) steps by applying Courcelle’s theorem. As the recursion takes at most n steps,
we obtain the claimed running time. J

3 The algorithm

3.1 Two main lemmata
We now give two lemmata, whose combination gives the proof of Lemma 4. Before we state
them, we give a series of definitions.

Let � ∈ OP, G be a graph, k ∈ N, and let S be a �-planarizer of G. We say that S is
an inclusion-minimal �-planarizer of G if none of its proper subsets is a �-planarizer of G.
Notice that, in the special case where � = ea, the unique inclusion-minimal �-planarizer
of G is the empty set of edges. We say that a set Q ⊆ V (G) is �-planarization irrelevant
if for every inclusion-minimal �-planarizer S of G that has size at most k, it holds that
A(S) ∩Q = ∅.

Partially disk-embedded graphs. We define a closed disk ∆ to be a subset of the plane
homeomorphic to the set {(x, y) | x2 + y2 ≤ 1} and we use bor(∆) to denote its boundary.
We say that a graph G is partially disk-embedded in some closed disk ∆, if there is some
subgraph K of G that is embedded in ∆ such that bor(∆) is a cycle of K and no vertex in
∆ \ bor(∆) is adjacent to a vertex not in ∆. We use the term partially ∆-embedded graph G
to denote that a graph G is partially disk-embedded in some closed disk ∆. We also call
the graph K compass of the partially ∆-embedded graph G and we always assume that we
accompany a partially ∆-embedded graph G together with an embedding of its compass in
∆ that is the set G ∩∆.

Grids and walls. Let k, r ∈ N. The (k × r)-grid is the Cartesian product of two paths on k
and r vertices respectively. An elementary r-wall, for some odd r ≥ 3, is the graph obtained
from a (2r×r)-grid with vertices (x, y), x ∈ [2r]× [r], after the removal of the “vertical” edges
{(x, y), (x, y + 1)} for odd x+ y, and then the removal of all vertices of degree one. Notice
that, as r ≥ 3, an elementary r-wall is a planar graph that has a unique (up to topological
isomorphism) embedding in the plane such that all its finite faces are incident to exactly six
edges. The perimeter of an elementary r-wall is the cycle bounding its infinite face, while
the cycles bounding its finite faces are called bricks. Given an elementary wall W, a vertical
path of W is one whose vertices, in ordering of appearance, are (i, 1), (i, 2), (i + 1, 2), (i +
1, 3), (i, 3), (i, 4), (i+ 1, 4), (i+ 1, 5), (i, 5), . . . , (i, r − 2), (i, r − 1), (i+ 1, r − 1), (i+ 1, r), for

F. V. Fomin, P. A. Golovach, G. Stamoulis, and D.M. Thilikos 51:9

some i ∈ {1, 3, . . . , 2r−1}. Also an horizontal path ofW is the one whose vertices, in ordering
of appearance, are (1, j), (2, j), . . . , (2r, j), for some j ∈ [2, r−1], or (1, 1), (2, 1), . . . , (2r−1, 1)
or (2, r), (2, r), . . . , (2r, r).

Figure 1 An 15-wall and its 7 layers.

An r-wall is any graph W obtained from an elementary r-wall W after subdividing
edges (see Figure 1). We call the vertices that where added after the subdivision operations
subdivision vertices, while we call the rest of the vertices (i.e., those of W) branch vertices.
The perimeter of W , denoted by perim(W), is the cycle of W whose non-subdivision vertices
are the vertices of the perimeter of W . Also, a vertical (resp. horizontal) path of W is a
subdivided vertical (resp. horizontal) path of W .

A subgraph W of a graph G is called a wall of G if W is an r-wall for some odd r ≥ 3
and we refer to r as the height of the wall W .

Let W be a wall of a graph G and K ′ be the connected component of G \ perim(W)
that contains W \ perim(W). The compass of W , denoted by comp(W), is the graph
G[V (K ′) ∪ V (perim(W))]. Observe that W is a subgraph of comp(W) and comp(W) is
connected.

The layers of an r-wall W are recursively defined as follows. The first layer of W is its
perimeter. For i = 2, . . . , (r − 1)/2, the i-th layer of W is the (i− 1)-th layer of the subwall
W ′ obtained from W after removing from W its perimeter and all occurring vertices of
degree one. Notice that each (2r+ 1)-wall has r layers (see Figure 1). The central vertices of
W , denoted by center(W), are the two branch vertices of W that do not belong to any of its
layers.

We are now in position to state the following two lemmata.

I Lemma 5. Given a � ∈ OP, there exist two functions f1, f2 : N2 → N, and an algorithm
with the following specifications:

Find_Area(k, q,G, S)
Input: a k ∈ N, an odd q ∈ N≥1, a graph G, and a set S ⊆ V (G) that is a vr-planarizer of G
of size at most k.
Output: One of the following:

1. if � ∈ {er, ec, ea}: a report that (G, k) is a no-instance of G�MPφ.
if � = vr: a vertex u ∈ S such that S \ u is a vr-planarizer of G \ u of size at most
k − 1 and (G, k) and (G \ u, k − 1) are equivalent instances of G�MPφ.

2. a q-wall W of G and a closed disk ∆ such that
the compass of W has treewidth at most f2(k, q),
G is partially ∆-embedded, where G ∩∆ = comp(W), bor(∆) = perim(W),

ESA 2020

51:10 An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

V (comp(W)) is �-planarization irrelevant, and
NG(S) ∩ V (comp(W)) = ∅, or

3. a tree decomposition of G of width at most f1(k, q).
Moreover, this algorithm runs in Ok,q(n) steps.

By NG(S) we denote the vertices not in S adjacent in G with vertices in S. In the
first possible output of the algorithm of Lemma 5 we have either a negative answer to the
G�MPφ problem or an equivalent instance of G�MPφ with reduced value of k.

The main steps of the proof of Lemma 5 are the following. In case, � = ea we first
check whether G is planar. If not, we report a negative answer, otherwise we find a wall
W in G whose size is a “big-enough” function of k and whose compass has “small-enough”
treewidth using [18, Lemma 4.2]. This wall contains an (also “big-enough”) subwall of W
whose compass is not affected by S. In case � ∈ {vr, er, ec}, we consider the neighbors of S
in the planar graph G′, that is the set N := NG(S). Moreover, we consider a big enough
triangulated grid Γ as a contraction of G′ (using [14, Theorem 3]) and the set NΓ of the
“contraction-heirs” of the vertices of N in Γ. If |NΓ| is “big-enough”, then we prove, using
the main technical result of [10], that some of the vertices of S should be affected by every
possible solution, in case � = vr, or that we have a no-instance, in case � ∈ {er, ec}. If
|NΓ| is “small-enough”, then we can find a “big-enough” wall W in G whose compass is not
affected by S (again using the previously mentioned result of [18]). The proof is completed
by proving that this wall contains some “big-enough” subwall that is not affected by any
inclusion-minimal �-planarizer.

The next lemma deals with the second possible output of the algorithm of Lemma 5 and
contains the “core arguments” of this paper.

I Lemma 6. Given a Gaifman sentence φ and a � ∈ OP, there exists a function f3 : N2 → N
and an algorithm with the following specifications:
Find_Vertex(k,∆, G,R, W̃)
Input: a k ∈ N, a partially ∆-embedded graph G, a set of annotated vertices R ⊆ V (G), and
a q-wall W̃ of G such that

q = f3(k, |φ|).
the compass of W̃ has treewidth at most f2(k, q),
G ∩∆ = comp(W̃), bor(∆) = perim(W̃),
V (comp(W̃)) is �-planarization irrelevant, and

Output: a vertex set X (V (comp(W̃)) and a vertex v ∈ X such that (G,R, k) is a (φ,�)-
triple iff (G \ v,R \X, k) is a (φ,�)-triple.
Moreover, this algorithm runs in Ok,|φ|(n) steps.

Notice that the above algorithm produces a (φ,�)-triple where both R and G are
reduced. To see why Lemma 4 follows from Lemma 5 and Lemma 6, observe that in the
second possible output of the algorithm Find_Area(k, q,G, S) we can call the algorithm
Find_Vertex(k,∆, G,R, W̃), where W̃ := W , which outputs a vertex set X (V (comp(W̃))
and a vertex v ∈ X such that (G,R, k) is a (φ,�)-triple iff (G \ v,R \X, k) is a (φ,�)-triple.
Observe that since NG(S)∩ V (comp(W̃)) = ∅, then S ⊆ R \X. We insist that the algorithm
Find_Vertex(k,∆, G,R, W̃) does not use the fact that NG(S) ∩ V (comp(W̃)) = ∅ but we
use the latter to guarantee that S ⊆ R \X. For the running time of Lemma 4, recall that
the two algorithms of Lemma 5 and Lemma 6 run in Ok,|φ|(n) steps.

F. V. Fomin, P. A. Golovach, G. Stamoulis, and D.M. Thilikos 51:11

3.2 Sketch of the proof of Lemma 6
In order to prove Lemma 6, we first find a collection W of “sufficiently many” subwalls of W̃
each with ρ layers (where ρ is “big-enough”), whose compasses are pairwise vertex-disjoint.

The key idea is to define a “characteristic” of each wall W ∈ W that encodes all possible
ways that a �-planarizer S of G affects comp(W) along with the ways that the fact that
G� S |= φ is certified by a vertex assignment to the basic variables of the Gaifman formula
φ in comp(W). Recall that φ‖R is a Boolean combination of sentences φ1‖R, . . . , φm‖R so
that for every h ∈ [m],

φh‖R = ∃x1 . . . ∃x`h

(∧
i∈[`h]

xi ∈ R ∧
∧

1≤i<j≤`h

d(xi, xj) > 2rh ∧
∧
i∈[`h]

ψh(xi)
)
,

where `h, rh ≥ 1 and ψh is an rh-local formula with one free variable. Notice that φ‖R is
evaluated on annotated graphs of the form (G,R). Clearly, φ‖R is a sentence in Monadic
Second Order Logic, in short, a MSO2-sentence.

As a first step, for every h ∈ [m], W ∈ W, S ⊆ �〈G,R〉 of size at most k, Ih ⊆ [`h], and
t ∈ [ρ], we define:

sig(S,Ih,t)
φh,�

(W) :=

1, if ∃X̃ = {xi | i ∈ Ih} ⊆ V (comp(W (t))� S) ∩R such that X̃

is (|Ih|, rh)-scattered in comp(W (t))� S and G� S |=
∧
x∈X̃ ψh(x),

0, otherwise.

In the above definition, W (t) is the subwall of W that has t layers (which are the last t layers
of W) and the same center as W . Also, a set X of vertices is (α, β)-scattered, if |X| = α

and there are no two vertices in X within distance ≤ 2β. Intuitively, sig(S,Ih,t)
φh,�

(W) = 1 if
the application of the operation � on G as defined by S gives rise to the existence of a
scattered set X̃ in the compass of W (t) so that when the vertices of X̃ are assigned to the
basic variables of φh corresponding to Ih, the local formula ψh is satisfied for each xi ∈ X̃ in
the modified graph.

Next, for every W ∈ W and every S ⊆ �〈G,R〉 of size at most k we define:

msig(S)
φ,�(W) =

(
(sig(S,I1,t)

φ1,�
(W), . . . , sig(S,Im,t)

φm,� (W)) | (I1, . . . , Im, t) ∈ 2[`1] × · · · × 2[`m] × [ρ]
)
.

Clearly, msig(S)
φ,�(W) can be seen as a (2` · ρ)-tuple of binary m-tuples, given that ` :=∑

h∈[m] `h. Let SIG be the set of all such tuples and notice that |SIG| is bounded by some

function of k and |φ| and
{

msig(S)
φ,�(W)

∣∣W ∈ W, S ⊆ �〈G,R〉 of size at most k
}
⊆ SIG.

It is now time to define the characteristic of a wall W ∈ W. We set r := maxh∈[m]{rh}
and d := 2(r + (`+ 1)r + r). We define the (φ,�)-characteristic of W as follows:

(φ,�)-char(W) = {(s, σ, t) ∈ [0, k]× SIG× [d+ 1, ρ] | ∃S ⊆ �〈G,R〉,
|S| = s,

A(S) ⊆ V (comp(W (t−d))) ∩R,
comp(W)� S is planar, and
msig(S)

φ,�(W) = σ}.

Notice that all queries in the definition of (φ,�)-char(W) can be expressed in MSO2. Indeed,
this is easy to see when � ∈ {vr, er, ec}, as in this case the query “comp(W)� S is planar” is
trivially true, since V (comp(W̃)) is �-planarization irrelevant. In the case where � = ea,
the MSO2 expressibility follows from Theorem 3. As each W ∈ W has treewidth bounded
by a function of k and |φ|, it follows by the theorem of Courcelle that (φ,�)-char(W) can be
computed in Ok,|φ|(n) time.

ESA 2020

51:12 An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

We say that two walls are (φ,�)-equivalent if they have the same (φ,�)-characteristic.
Since the collection W contains “sufficiently many” walls, then we can find a collection
W ′ ⊆ W of also “sufficiently many” walls that are pairwise equivalent. We fix a wall
W1 ∈ W ′ and we set X := comp(W (r)

1), where r = maxh∈[m]{rh}, and v ∈ center(W1).
In what follows, we highlight the ideas of the proof of the fact that if (G,R, k) is a (φ,�)-

triple, then (G \ v,R \X, k) is a (φ,�)-triple. We first consider a set S ⊆ �〈G,R〉 of size at
most k that certifies that (G,R, k) is a (φ,�)-triple. Then, we pick a wall W2 ∈ W ′ \ {W1}
whose compass is not affected by S. We are allowed to pick this wall since there are
“sufficiently many” walls equivalent to W1 in W ′. Our strategy is to use the fact that W1
and W2 are (φ,�)-equivalent in order to state a “replacement argument”: we can find a
t ∈ [ρ], such that the subset Sin of S that affects comp(W (t)

1) and the set X of vertices of
comp(W (t)

1) that are assigned to the basic variables of φ in order to certify that G� S |= φ,
can be replaced by their “equivalent” sets S̃ and X̃ in comp(W (t)

2). As a consequence of this,
for every possible solution S and vertex assignment to the basic variables of φ, we can find
both a new solution and a new vertex assignment that “avoid” the “inner part” of W1. This
implies that the validity of any local formula of φ does not depend on the central vertices of
W1. Thus, we can declare one of them “irrelevant” and safely remove it from G, while storing
(by reducing R to R \X) the fact that every possible solution S and vertex assignment to
the basic variables of φ can “avoid” the “inner part” of W1.

To further inspect how this “replacement” is achieved, we need to dive deeper into the
technicalities of the proof (through an intuitive perspective). Given a wall W , we refer to a
wall-annulus of W as the subgraph of W that is obtained from W after removing from W

all its layers, except a fixed number of consecutive layers. We think of every wall W ∈ W as
divided in consecutive wall-annuli of fixed size. Since ρ is “big-enough”, then we can find also
“many enough” such wall-annuli. We denote each one of them by Ai(W). Given a W ∈ W,
every wall-annulus Ai(W) is divided in some regions as depicted in Figure 2.

Figure 2 An example of a wall-annulus Ai(W) of a wall W ∈ W, together with its regions refered
in the proof of Lemma 6.

The regions depicted in purple and green are consisting of r layers of the wall W (recall
that r = maxh∈[m]{rh}). The regions depicted in yellow and orange are “big-enough” so as
to be able to find an also “big-enough” wall-annulus that “avoids” a given vertex assignment
to the basic variables of φ.

Since ρ is “big-enough”, then we can find a wall-annulus Ai(W1) that is not affected
by S. This allows us to partition S in two sets, Sin and Sout in the obvious way. The fact
that W1 and W2 are (φ,�)-equivalent implies the existence of a set S̃ in W2 certifying
that (φ,�)-char(W2) = (φ,�)-char(W1). Thus, by setting S′ := S̃ ∪ Sout, we have that
S′ ⊆ �〈G,R′〉, |S′| = |S|, and G � S′ is planar. The latter is guaranteed by the fact that
V (comp(W̃)) is �-planarization irrelevant, in the case � ∈ {vr , er, ec}, while in the case that

F. V. Fomin, P. A. Golovach, G. Stamoulis, and D.M. Thilikos 51:13

� = ea, the existence of the outer purple buffer of Ai(W1) (resp. Ai(W2)) allows us to treat
Sin (resp. S̃) and Sout separately, while not spoiling planarity. The last part of the proof
requires to prove that G� S |= φ‖R ⇐⇒ G� S′ |= φ‖R′ .

For simplicity, here we only argue why G � S |= φh‖R =⇒ G � S′ |= φh‖R′ holds, as
the arguments in the proof of the inverse direction are completely symmetrical. Therefore,
given an (`h, rh)-scattered set X such that φh is satisfied if the vertices of X are assigned
to the basic variables of φh, we aim to find a t ∈ [ρ] in order to “replace” the vertices in
X ∩ V (comp(W (t)

1)) with a set X̃ of vertices in comp(W (t)
2) such that the resulting vertex

set X ′ is (`h, rh)-scattered and φh is satisfied if the vertices of X ′ are assigned to the basic
variables of φh. Notice that for every h ∈ [m] such that G� S |= φh‖R, these “replacement
arguments” are pairwise independent.

We first deal with the possibility that the given scattered set X intersects some “inner
part” of comp(W2). Thus, in order to “clean” the “inner part” of comp(W2), we find a wall
W3 ∈ W ′ \ {W1,W2} that “avoids” both S and X (for different h ∈ [m], the choice of W3
may coincide). Also, we consider a t̃ ∈ [ρ] corresponding to a layer in the yellow region of
the wall-annulus Ai(W2) such that the annulus of the wall-annulus of Ai(W2) bounded by
the (t − r + 1)-th and t-th layer of W2 is not intersected by X. Then, we “replace” the
vertices of X in comp(W (t̃)

2), call it Xin with an “equivalent” vertex set X̃ in comp(W (t̃)
3)

(notice that this is achieved by arguing for S := ∅ in the notion of (φ,�)-characteristic).
This results to an (`h, rh)-scattered set Y such that Y does not intersect comp(W (t̃)

2) and
G� S |=

∧
x∈Y ψh(x) (see Figure 3).

W2 W3

→

W2 W3

Figure 3 The “cleaning” of the “inner part” of comp(W2). Left: The set A(S) is depicted in cross
vertices, the set X \Xin is depicted in blue, and the set Xin is depicted in red. Right: The set A(S)
is depicted in cross vertices, the set Y \Xin is depicted in blue, and the set X̃ is depicted in red.

Now, we are allowed to pick a t ∈ [ρ] corresponding to an “orange” layer of Ai(W1) such
that the annulus of the wall-annulus of Ai(W1) bounded by the (t′ − r)-th and t′-th layer
of W1 is not intersected by X. If we set Yin to be the set of vertices of Y in comp(W (t′)

1),
then since msig(Sin)

φ,� (W1) = msig(S̃)
φ,�(W2), then there exists a set Ỹ in comp(W (t′)

2) that is
“equivalent” to Yin (see Figure 4).

W2W1

→

W2W1

Figure 4 The last part of the proof. Left: The set A(Sout) is depicted in red cross vertices, the
set A(Sin) is depicted in green cross vertices, the set Y \ Yin is depicted in blue, and the set Yin is
depicted in red. Right: The set A(Sout) is depicted in red cross vertices, the set A(S̃) is depicted in
green cross vertices, the set Y \ Yin is depicted in blue, and the set Ỹ is depicted in red.

ESA 2020

51:14 An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

Therefore, since Ỹ is in the orange region of comp(W2) and Y is “avoiding” comp(W (t̃)
2),

then we can derive that Y and Ỹ are “separated” by a green and a purple region of Ai(W2).
Thus, X ′ := (Y \ Yin) ∪ Ỹ is an (`h, rh)-scattered set of G � S′ that “avoids” comp(W (r)

1).
Moreover, φh is satisfied given that the vertices of X ′ of G � S′ are assigned to the basic
variables of φh. The proof is concluded.

3.3 Extension on graphs of bounded genus
The immediate question is whether our results can be extended to target properties that
are more general than planarity (and still not FOL-expressible). The first candidate is the
�-Modification to g-Euler Genus and φ, where we ask for a set S ⊆ �〈G,V (G)〉
of size k such that G � S has Euler genus at most g. Notice that the property of having
Euler genus at most g is not FOL-expressible. On the positive side, this property is MSO2-
expressible as there is a set Bg of graphs such that G has Euler genus at most g iff none of
the graphs in Bg is a minor of G and minor containment is MSO2-expressible. We next argue
about how to adapt the techniques of this paper in order to prove that this problem can be
solved in Ok,|φ|,g(n2) when � ∈ {vr, er, ec}. For this we first straightforwardly extend the
notions of �-planarization irrelevant vertex set and �-planarizer to the respective notions
of �-g-Euler Genus irrelevant vertex set �-g-euler genus enforcer. Our aim is to prove a
more general version of Lemma 4 where �-planarizer is replaced by �-g-euler genus enforcer.
The Ok,|φ|,g(n2) time algorithm for �-Modification to g-Euler Genus and φ follows
directly from this extended version of Lemma 4 with the same arguments as its planarization
counterpart. The extended version of Lemma 4 in turn is a consequence of the generalized
versions of Lemma 5 and Lemma 6 where �-planarizer is replaced by �-g-euler genus enforcer
and �-planarization irrelevant is replaced by �-g-Euler Genus irrelevant. The generalized
version of Lemma 5 follows as the same arguments also hold on bounded-genus graphs: the
result we use from [18] has a bounded-genus analogue, the results from [14] and [10] hold for
the more general graph class of apex-minor-free graphs. Also the fact that the “big-enough”
q-wall that we find is �-g-Euler Genus irrelevant can be proven using arguments from [25].
Having the extended version of Lemma 5, the proof of the extended version of Lemma 6
is almost identical as we still work inside a disk ∆ where G is partially embedded, so that
local modifications should locally respect planarity. To be precise, the main difference is
that in the definition of d, we now demand that d is also lower bounded by some big-enough
function of the genus which guarantees that local modifications in the disk ∆ do not alter
the genus of the whole graph.

4 Further research directions

In this paper we provide an algorithmic-meta theorem for the graph modifiction problem
where the modification operation is in {vr, er, ec, ea} and the target property is planarity
plus being a model of some FOL-sentence φ. We also argued how to extend this result for
modification operations in {vr, er, ec} for the case where instead of planarity we consider
the class of graphs embeddable in a surface of Euler genus g, for fixed g. The two general
challenges that we distinguish are the following.

Pick a (non-empty) subset O of {vr, er, ec, ea} and define Graph O-Modification
to Planarity and φ in the obvious way, by permitting any modification operation
from O. It is possible (however more technical) to adapt our results for this problem
in the case where ea 6∈ O. However, in the case where ea ∈ O (while |O| > 1) the

F. V. Fomin, P. A. Golovach, G. Stamoulis, and D.M. Thilikos 51:15

problem becomes considerably more complicated as parts of the graph may be relocated
during the modification operation (in fact, from a more general perspective, the same
issue appears for the ea-Modification to g-Euler Genus and φ problem that we
avoided to consider in Subsection 3.3). We believe that this issue can be tackled using
the techniques of [15]. However, the technical details of such an enterprise seem to be
quite involved.
Consider other target properties, alternative to planarity, that are not FOL-expressible. A
natural challenge in this direction is to consider some finite set of graphs H and define the
�-Modification to Excluding H-minors and φ problem where the target property,
apart from being a model of φ, is to exclude every graph in H as a minor. Notice that if H
contains some planar graph, then the yes-instance of the problem has bounded treewidth,
therefore the problem is fixed-parameter tractable due to Courcelle’s Theorem. The result
of this paper can be seen as �-Modification to Excluding {K5,K3,3}-minors and
φ that is the simplest, however essential, version of the general problem. We conjecture
that the same results can be achieved for every H and we believe that the techniques
introduced in this paper can be the starting point of such a project.

References
1 Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket

Saurabh, and Dimitrios M. Thilikos. Tight bounds for linkages in planar graphs. In Luca
Aceto, Monika Henzinger, and Jirí Sgall, editors, Automata, Languages and Programming -
38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings,
Part I, volume 6755 of Lecture Notes in Computer Science, pages 110–121. Springer, 2011.
doi:10.1007/978-3-642-22006-7_10.

2 Chandra Chekuri and Anastasios Sidiropoulos. Approximation algorithms for euler genus and
related problems. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 167–176. IEEE Computer Society,
2013. doi:10.1109/FOCS.2013.26.

3 Julia Chuzhoy. An algorithm for the graph crossing number problem. In Lance Fortnow and
Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 303–312. ACM, 2011. doi:10.1145/
1993636.1993678.

4 Julia Chuzhoy, Yury Makarychev, and Anastasios Sidiropoulos. On graph crossing number
and edge planarization. In Dana Randall, editor, Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,
January 23-25, 2011, pages 1050–1069. SIAM, 2011. doi:10.1137/1.9781611973082.80.

5 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

6 Bruno Courcelle. The monadic second-order logic of graphs III: tree-decompositions, minor
and complexity issues. RAIRO Theor. Informatics Appl., 26:257–286, 1992. doi:10.1051/
ita/1992260302571.

7 Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a conjecture
by seese. J. Comb. Theory, Ser. B, 97(1):91–126, 2007. doi:10.1016/j.jctb.2006.04.003.

8 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. The planar directed
k-vertex-disjoint paths problem is fixed-parameter tractable. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA,
pages 197–206. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.29.

9 Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In 22nd IEEE
Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland,
Proceedings, pages 270–279. IEEE Computer Society, 2007. doi:10.1109/LICS.2007.31.

ESA 2020

https://doi.org/10.1007/978-3-642-22006-7_10
https://doi.org/10.1109/FOCS.2013.26
https://doi.org/10.1145/1993636.1993678
https://doi.org/10.1145/1993636.1993678
https://doi.org/10.1137/1.9781611973082.80
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1016/j.jctb.2006.04.003
https://doi.org/10.1109/FOCS.2013.29
https://doi.org/10.1109/LICS.2007.31

51:16 An Algorithmic Meta-Theorem for Graph Modification to Planarity and FOL

10 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Bidimensional parameters and local treewidth. SIAM J. Discret. Math., 18(3):501–511, 2004.
doi:10.1137/S0895480103433410.

11 Zdenek Dvorák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. J. ACM, 60(5):36:1–36:24, 2013. doi:10.1145/2499483.

12 Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-checking.
SIAM J. Comput., 31(1):113–145, 2001. doi:10.1137/S0097539799360768.

13 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

14 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Contraction obstructions for
treewidth. J. Comb. Theory, Ser. B, 101(5):302–314, 2011. doi:10.1016/j.jctb.2011.02.008.

15 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Modification to planarity is
fixed parameter tractable. In Rolf Niedermeier and Christophe Paul, editors, 36th International
Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019,
Berlin, Germany, volume 126 of LIPIcs, pages 28:1–28:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.28.

16 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable
structures. J. ACM, 48(6):1184–1206, 2001. doi:10.1145/504794.504798.

17 Haim Gaifman. On local and non-local properties. In J. Stern, editor, Proceedings of the
Herbrand Symposium, volume 107 of Studies in Logic and the Foundations of Mathematics,
pages 105–135. Elsevier, 1982. doi:10.1016/S0049-237X(08)71879-2.

18 Petr A. Golovach, Marcin Kaminski, Spyridon Maniatis, and Dimitrios M. Thilikos. The
parameterized complexity of graph cyclability. SIAM J. Discret. Math., 31(1):511–541, 2017.
doi:10.1137/141000014.

19 Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma. Obtaining planarity by contracting
few edges. Theor. Comput. Sci., 476:38–46, 2013. doi:10.1016/j.tcs.2012.12.041.

20 Martin Grohe. Logic, graphs, and algorithms. In Jörg Flum, Erich Grädel, and Thomas
Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas],
volume 2 of Texts in Logic and Games, pages 357–422. Amsterdam University Press, 2008.

21 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Lance Fortnow and Salil P. Vadhan, editors,
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011, pages 479–488. ACM, 2011. doi:10.1145/1993636.1993700.

22 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

23 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130.

24 Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009,
Atlanta, Georgia, USA, pages 639–648. IEEE Computer Society, 2009. doi:10.1109/FOCS.
2009.45.

25 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
Algorithmica, 81(9):3655–3691, 2019. doi:10.1007/s00453-019-00592-7.

26 Stephan Kreutzer. Algorithmic meta-theorems. In Javier Esparza, Christian Michaux, and
Charles Steinhorn, editors, Finite and Algorithmic Model Theory, volume 379 of London
Mathematical Society Lecture Note Series, pages 177–270. Cambridge University Press, 2011.

27 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

https://doi.org/10.1137/S0895480103433410
https://doi.org/10.1145/2499483
https://doi.org/10.1137/S0097539799360768
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.jctb.2011.02.008
https://doi.org/10.4230/LIPIcs.STACS.2019.28
https://doi.org/10.1145/504794.504798
https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.1137/141000014
https://doi.org/10.1016/j.tcs.2012.12.041
https://doi.org/10.1145/1993636.1993700
https://doi.org/10.1145/3051095
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1007/s00453-019-00592-7
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4

F. V. Fomin, P. A. Golovach, G. Stamoulis, and D.M. Thilikos 51:17

28 Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010. doi:10.4086/
toc.2010.v006a005.

29 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

30 Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

31 Neil Robertson and Paul D. Seymour. Graph minors .xiii. the disjoint paths problem. J.
Comb. Theory, Ser. B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

32 Neil Robertson and Paul D. Seymour. Graph minors. XX. wagner’s conjecture. J. Comb.
Theory, Ser. B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

33 Detlef Seese. Linear time computable problems and first-order descriptions. Math. Struct.
Comput. Sci., 6(6):505–526, 1996.

ESA 2020

https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.4086/toc.2010.v006a005
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/j.jctb.2004.08.001

A Constant-Factor Approximation for Directed
Latency in Quasi-Polynomial Time
Zachary Friggstad
Department of Computer Science, University of Alberta, Edmonton, Canada
zacharyf@ualberta.ca

Chaitanya Swamy
Department of Combinatorics and Optimization, University of Waterloo, Canada
cswamy@uwaterloo.ca

Abstract
We consider the directed minimum latency problem (DirLat), wherein we seek a path P visiting all
points (or clients) in a given asymmetric metric starting at a given root node r, so as to minimize the
sum of the client waiting times, where the waiting time of a client v is the length of the r-v portion of
P . We give the first constant-factor approximation guarantee for DirLat, but in quasi-polynomial time.
Previously, a polynomial-time O(logn)-approximation was known [12], and no better approximation
guarantees were known even in quasi-polynomial time.

A key ingredient of our result, and our chief technical contribution, is an extension of a recent
result of [17] showing that the integrality gap of the natural Held-Karp relaxation for asymmetric
TSP-Path (ATSPP) is at most a constant, which itself builds on the breakthrough similar result
established for asymmetric TSP (ATSP) by Svensson et al. [25]. We show that the integrality gap of
the Held-Karp relaxation for ATSPP is bounded by a constant even if the cut requirements of the
LP relaxation are relaxed from x(δin(S)) ≥ 1 to x(δin(S)) ≥ ρ for some constant 1/2 < ρ ≤ 1.

We also give a better approximation guarantee for the minimum total-regret problem, where
the goal is to find a path P that minimizes the total time that nodes spend in excess of their
shortest-path distances from r, which can be cast as a special case of DirLat involving so-called
regret metrics.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation Algorithms, Directed Latency, TSP

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.52

Related Version A full version of the paper is available at https://arxiv.org/abs/1912.06198.

Funding Zachary Friggstad: Supported by the Canada Research Chairs program and an NSERC
Discovery grant.
Chaitanya Swamy: Supported in part by NSERC grant 327620-09 and an NSERC Discovery
Accelerator Supplement Award.

1 Introduction

Vehicle-routing problems form a rich class of combinatorial-optimization problems that find
applications in a wide variety of settings, and have been extensively studied in the Operations
Research and Computer Science communities (see, e.g., [26]). These problems typically
involve designing routes for vehicles to service a given underlying set of clients in the most
time- and/or cost-effective fashion. A fundamental problem in this genre is the minimum
latency problem (MLP), also known as the traveling repairman problem or the delivery man
problem [1, 19, 10, 5], wherein, adopting a client-oriented perspective, we seek a route starting
at a given root node and visiting all client nodes that minimizes the sum of client waiting
times (or equivalently, the average client waiting time).1

1 In contrast, the path-version of TSP can be seen as minimizing the maximum client waiting time.
© Zachary Friggstad and Chaitanya Swamy;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 52; pp. 52:1–52:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zacharyf@ualberta.ca
mailto:cswamy@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ESA.2020.52
https://arxiv.org/abs/1912.06198
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

We investigate directed MLP (DirLat), i.e., MLP in directed (or asymmetric) metrics.
Formally, we are given an asymmetric metric space (V ∪ {r}, c), where V is a set of client
nodes, r is a root or depot node, and c = {cu,v}u,v∈V ∪{r} specifies the asymmetric metric:
in particular, for any u, v, w ∈ V ∪ {r}, we have cu,u = 0, cu,v ≥ 0, and cu,v ≤ cu,w + cw,v.
The goal is to find a Hamiltonian path P starting at the depot r to minimize

∑
v∈V cP (v),

where cP (v) is the cost of the r v subpath of P and is interpreted as the waiting time or
latency of node v. Throughout, we let n denote |V |.

Whereas we have a reasonably good understanding of MLP in undirected (i.e., symmetric)
metrics – a constant-factor approximation is known (see [9] and the references therein) and
recent work has also led to LP-based approaches [7, 22] for the problem – there are significant
gaps in our understanding of directed MLP: the approximation factor has remained stagnant
at O(logn) [12] for close to a decade, and it is not known if logn (or any super-constant
function of n) constitutes a real inapproximability barrier for the problem.

2 Our contributions

Our main contribution is to provide the first constant-factor approximation guarantee for
DirLat, albeit in quasi-polynomial time, i.e., O

(
nO(logn)) time. This provides the first concrete

indication that logn is unlikely to be an inapproximability barrier for DirLat (unless NP
⊆DTIME

[
nO(logn)]).

I Theorem 1. There is an O(1)-approximation for DirLat running in O
(
nO(logn)) time.

Our algorithm is based on a natural time-indexed linear programming (LP) relaxation
that is similar to, and inspired by, the approach taken in [22] for undirected MLP. Roughly
speaking, our LP (LP-Lat) utilizes variables for (v, t) pairs where v ∈ V is a node to be
visited and t is the time they should be visited, and other variables indicating the edges
present on various prefixes of the optimal path. As is typical for minimum-latency problems,
we utilize the LP to find rooted paths of geometrically increasing lengths and stitch them
together. However, with asymmetric metrics, both steps present significant challenges. A
key technical contribution underlying our result is a procedure for achieving the former step,
namely a way of rounding the fractional prefix of the optimal path of length t to obtain a
rooted path of length O(t). We achieve this by generalizing some recent work by [17] on the
integrality gap for asymmetric s-t TSP-path (ATSPP). We show that the integrality gap of a
weakening of the standard LP-relaxation, where we require non-s-t cuts to only be covered
to some extent strictly larger than 1 still remains a constant (see Theorem 2 below).

An interesting special case of DirLat, involves the notion of regret of a client: the regret
of a client v lying on a rooted path P is defined as cP (v) − cr,v; that is, regret measures
the time that node v spends waiting in excess of its its least possible waiting time. The
notion of regret can be seen as a nuanced and better way of measuring the (dis)satisfaction
of a client than the standard measure of simply considering the waiting time of a client.
The latter does not differentiate between clients located at different distances from the
depot and their varying expectations, and fails to take into account that a client closer to
the depot that incurs a larger delay than further-away clients may face a greater level of
dissatisfaction. A natural problem that arises is to find a path that minimizes the total
regret of clients, i.e., to minimize

∑
v∈V (cP (v) − cr,v) (or equivalently, minimize average

client regret). 2 This can be cast as a special case of DirLat by defining the regret distances,

2 Minimizing total regret is harder than MLP in the metric (V, c). While an optimal MLP-solution for the
metric (V, c) clearly yields an optimal solution to the minimum total-regret problem, this translation
does not apply to near-optimal MLP-solutions. However, it is easy to see that an α-approximate solution
to the minimum-total-regret problem is also an α-approximate MLP solution for the metric (V, c).

Z. Friggstad and C. Swamy 52:3

creg
u,v := cr,u + cu,v − cr,v, which form an asymmetric metric that we call the regret metric of

(V, c). We have not attempted to optimize the constant in Theorem 1, but it is rather large;
we provide a substantially improved (and explicit) guarantee for the minimum-total-regret
problem (Theorem 5) when (V, c) is a symmetric metric (i.e. cu,v = cv,u).

Our techniques. As noted above, our algorithm utilizes a natural time-indexed LP-relaxa-
tion for DirLat. Using standard scaling techniques, one may assume all cu,v distances are
integers that are bounded by a polynomial in n (see Appendix A). Let T = n ·maxu,v cuv
and notice that T is bounded by a polynomial in n. Any Hamiltonian path in the metric
(V ∪ {r}, c) has length at most T , so all nodes in the optimum solution are visited by time T .

For a directed graph G = (N,E), and set S ⊆ N , let δin
G (S) := {(u, v) ∈ E : u ∈ N−S, v ∈

S} and δout
G (S) := {(u, v) ∈ E : u ∈ S, v ∈ N − S} denote respectively the edges entering

and leaving S. Define δG(S) := δin
G (S) ∪ δout

G (S). If the graph is clear from the context, we
may omit the subscript G. We often identify an asymmetric metric (V ∪ {r}, c) with the
complete directed graph over nodes V ∪ {r}, with edge costs cu,v for distinct u, v ∈ V ∪ {r}.
For a path P and a node v on P , recall that cP (v) is the cost of the r v subpath of P . We
begin with essentially the same time-indexed LP relaxation used in [22] for the undirected
MLP, specifically (LP3) in their work. For v ∈ V ∪ {r} and t ∈ [T], let xv,t be a variable
indicating that we visit v at time exactly t, and let zuv,t indicate that we finish traversing
edge (u, v) at time exactly t. Define [T] := {0, 1, . . . , T}.

minimize :
∑

v∈V,t∈[T]

t · xv,t (LP-Lat)

subject to :
∑
t∈[T]

xv,t = 1 ∀ v ∈ V (1)

∑
e∈δin(S)

∑
t′≤t

ze,t′ ≥
∑
t′≤t

xv,t′ ∀ v ∈ V, {v} ⊆ S ⊆ V, t ∈ [T] (2)

xv,t =
∑

e∈δin(v)

ze,t ≥
∑

e∈δout(v)

ze,t+ce ∀ v ∈ V, t ∈ [T] (3)

x, z ≥ 0.

(We remark that the zuv,t variables above have a slightly different meaning from [22],
wherein zuv,t indicated that t was traversed by time t. Also, we omit constraints (14) from
[22], which encode that the length-t prefix of the optimal path has length at most t, as one
can easily show they are implied by our slightly different approach.)

It is easy to check that an optimal solution P ∗ naturally corresponds to an integral
solution to (LP-Lat) with the same cost as the latency of P ∗. Constraints (2) admit an
efficient separation oracle simply by checking for each v ∈ V and t ∈ T if the minimum r− v
cut has capacity at least

∑
t′≤t xv,t′ when using a capacity of

∑
t′≤t ze,t′ for each edge e.

Our proof of Theorem 1 proceeds by bucketing clients based on their fractional latencies,
finding low-cost paths for these buckets, and stitching these paths together to form our final
path. Our advantage over [12] comes from the fact that we guess the O(log T) = O(logn)
nodes v∗i appearing at distances roughly 2i along the optimum path P ∗, plus their exact
visiting times, `∗i , along P ∗. We add constraints to (LP-Lat) to reflect these guesses. For
each v∗i , consider the nodes v that are at least, say, 2/3-visited before v∗i but not 2/3-visited
before v∗i−1 is visited: call this the bucket Bi for v∗i . With a bit of modification, the restriction
of (LP-Lat) to the times before `∗i is visited induces an LP solution with cost O(2i) for the
natural ATSPP LP relaxation that covers all v ∈ Bi to an extent of at least 2/3. That is, we
get a solution to the following LP relaxation for ATSPP for ρ = 2/3.

ESA 2020

52:4 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

minimize :
∑
u,v

cu,v · xu,v (LP-ATSPPρ)

subject to : x(δout(v))− x(δin(v)) =

+1 v = s

−1 v = t

0 v 6= s, t

∀ v ∈ V

x(δ(U)) ≥ 2 · ρ ∀ ∅ (U ⊆ V − {s, t}
x ≥ 0.

The integrality gap when ρ = 1 was shown to be constant in [17]. We prove the
following more-general result establishing a constant integrality gap for (LP-ATSPPρ) for
all 1/2 < ρ ≤ 1, which is one of our chief technical results. By an LP-relative α-approximation
algorithm for (LP-ATSPPρ) (or simply LP-relative approximation algorithm), we mean a
polytime algorithm that returns an ATSPP solution of cost at most α ·OPTLP-ATSPPρ .

I Theorem 2. There is an LP-relative ψ
2ρ−1 -approximation algorithm for (LP-ATSPPρ),

where ψ is some absolute constant (i.e., independent of the instance).

We do not compute the exact value of ψ, or attempt to optimize it (favoring simplicity of
presentation instead). It’s precise value depends on the integrality gap for ATSP, which is
known to be bounded by a constant [25, 28].

Using Theorem 2, we can obtain a path Pi for each bucket Bi, of cost O(2i) spanning
the nodes of {r} ∪ Bi. Our final path Q will be the concatenation of these Pi paths. To
obtain Theorem 1, it suffices to show that the latency under Q of each node in Bi is O(2i).
For the latter, while c(Pi) = O(2i), we also need a bound of O(2i) on the cost of stitching
the last node of Pi−1 to the first node after r on Pi. This is where guessing plays the most
prominent role: we show that strengthening the LP with our guess ultimately implies the
new edge used to stitch Pi−1 to Pi also has cost O(2i), as required.

As an aside, complementing Theorem 2, we show that the dependence of the integrality
gap on ρ stated in Theorem 2 is asymptotically correct, and this holds even if we strengthen
(LP-ATSPPρ) to require an in-flow of 1 for each v ∈ V − {s, t} (but still have the relaxed
cut constraints). This generalizes a similar result in [12] showing that the integrality gap of
(LP-ATSPPρ) is unbounded when ρ = 1/2.

I Theorem 3. The integrality gap of (LP-ATSPPρ) is at least 1
2ρ−1 , for every 1/2 < ρ ≤ 1,

and this holds even if we strengthen the LP with the constraints x(δin(v)) = 1 for each
v ∈ V − {s, t}.

Our final result pertains to the minimum total-regret problem, for which we obtain a
much-improved approximation guarantee (compared to Theorem 1). Recall that this is the
special case of DirLat, where the metric is the regret metric of an undirected metric; in the
sequel, we refer to this simply as a regret metric. Our improvement stems from the following
improved and explicit integrality gap for (LP-ATSPPρ) in regret metrics.

I Theorem 4. There is an LP-relative αreg
ρ -approximation algorithm for (LP-ATSPPρ) in

regret metrics, where αreg
ρ := 300

42−12
√

6 ·
1

2ρ−1 ≈
23.8

2ρ−1 .

The proof of the above result is quite different from that of Theorem 2. It exploits
the structure of regret metrics, and leverages and builds upon the insights and machinery
developed in [13, 14] for this class of metrics. Theorem 4 leads to the following explicit
approximation factor for DirLat in regret metrics.

Z. Friggstad and C. Swamy 52:5

I Theorem 5. There is a quasi-polynomial time 397-approximation for DirLat in regret
metrics.

2.1 Related Work
Nagarajan and Ravi first studied DirLat and obtained an approximation guarantee of n1/2+ε

in time nO(1/ε) for any constant ε > 0 [20], which extends easily to an O(α′ · logO(1)(n))-
approximation in quasi-polynomial time where (roughly speaking) α′ is an upper bound on
the integrality gap of the natural Held-Karp LP relaxation for ATSPP. They also showed α′
is bounded by O(

√
n). Friggstad, Salavatipour, and Svitkina improved the approximation

guarantee for DirLat and the upper bound on the integrality gap for ATSPP to O(logn)
[12]. This is currently the best polynomial-time approximation for DirLat and no better
quasi-polynomial time approximation was known before our work. If the metric is symmetric,
constant-factor approximations are know. The first was given by Blum et al. [5], the best
guarantee so far is a 3.59-approximation by Chaudhuri et al. [9].

Chakrabarty and Swamy [7], and Post and Swamy [22] studied LP relaxations for the
undirected minimum latency problem. Using time-indexed LP relaxations, [22] obtain
improved approximations for the multi-depot variant and also recover the 3.59-approximation
for the single-vehicle version using an LP relaxation. Our work builds upon the ideas behind
one of their LP relaxations.

The integrality-gap upper bound for ATSPP has seen various improvements since [12],
which have followed analogous improvements on the integrality gap, denoted αATSP, of the
Held-Karp relaxation for ATSP, its more well-studied cousin. Friggstad et al. [11] show
that the integrality gap is O(logn/ log logn) by building upon ideas introduced in [3] who
proved a similar bound for αATSP. Recently, [17] shows the integrality gap is in fact O(1).
Specifically, they show the gap is at most 4 · αATSP − 3; combined with a breakthrough result
of Svensson, Tarnawski, and Vegh [25], who showed αATSP = O(1), this yields an O(1) upper
bound on the integrality gap for ATSPP. An even more recent development by Traub and
Vygen shows that αATSP ≤ 22 [28], and Traub [27] has shown the integrality gap for ATSPP
is at most 43. The best lower bound known on αATSP is 2 [8].

The notion of regret has been proposed in the vehicle-routing literature (see, e.g., [24, 21])
as a more refined way of measuring client dissatisfaction than simply considering its waiting
time. The underlying motivation is that since the shortest-path distance of a client from the
depot is an inherent lower bound on its waiting time, it is more meaningful to measure the wait-
ing time of a client relative to this lower bound. In symmetric metrics, two main regret-related
problems have been investigated: finding a path (or a fixed number of paths) that minimizes
maximum client regret; and finding the fewest number of bounded-regret paths to visit all
clients. Constant-factor approximation algorithms are known for both problems (see [13]
and the references therein). To our knowledge there is no prior work on finding provably
near-optimal solutions for the total-regret (or equivalently average-regret) objective.

Outline of the paper. Section 3 presents the proofs of Theorems 1 and 5, assuming the
LP-relative approximation algorithms provided by Theorems 2 and 4. Section 4 proves
Theorem 2 and is concluded with the proof of Theorem 3. Finally, the proof of Theorem 4 is
presented in Section 5.

3 An O(1)-Approximation in Quasi-Polynomial Time

In this section, we assume Theorems 2 and 4 and use them to prove Theorems 1 and 5. By
scaling (see Theorem 26 in Appendix A), we may assume distances are integers bounded by a
polynomial in n and that cu,v ≥ 1 for distinct nodes u, v. We also let T = n·maxu,v∈V ∪{r} cu,v,

ESA 2020

52:6 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

which is an upper bound on the cost of any Hamiltonian path. We focus on a fixed optimal
path P ∗. Our algorithm starts by guessing the last node v∗i visited by P ∗ at some time in the
interval [2i, 2i+1) (if any) and its exact distance `∗i ∈ [T] for each 0 ≤ i ≤ log2 T = O(logn).
Let v∗i = ⊥ if no such node exists for this interval. For any i, we then know that no node is
visited at any time in [2i, 2i+1) if v∗i = ⊥ and, if v∗i 6= ⊥, we also know no node is visited at
a time in the interval (`∗i , 2i+1) so we mark these times as forbidden. Let A = {i : v∗i 6= ⊥}
be admissible buckets corresponding to intervals where the optimum visits at least one
node. Let 1/2 < ρ ≤ 1 be a parameter we optimize later.

Algorithm 1 Directed Latency: O(1)-approximation in nO(log n) time.
Input: asymmetric metric (V ∪ {r}, c) with integer distances at most T/n; parameter
ρ ∈ (1/2, 1]; an LP-relative αρ-approximation algorithm Alg for (LP-ATSPPρ).
Output: an r-rooted path P

D1. For every choice (guess) of v∗i ∈ V ∪ {⊥} for each 0 ≤ i ≤ log2 T and `∗i ∈ [T] for each such
i where v∗i 6= ⊥, perform the following steps. Let F = {t ∈ [T] : t ∈ [2i, 2i+1) where v∗i =
⊥ or t ∈ (`∗i , 2i+1) where v∗i 6= ⊥} be the forbidden times for this guess (v∗, `∗) and A = {i ∈
[0, log2 T] : v∗i 6= ⊥} the admissible buckets.
D1.1. Obtain an optimal extreme point solution (x, z) to (LP-Lat) strengthened with the

following additional constraints: 1) xv∗
i
,`∗
i

= 1 for each i ∈ A and 2) xv,t = 0 for each
v ∈ V and t ∈ F . If the LP is infeasible, abort this guess of (v∗, `∗).

D1.2. For each v ∈ V , let t(v) = tρ(v) be the minimum time such that
∑

t≤t(v) xv,t ≥ ρ. For
i ∈ A, let Bi = {v ∈ V : t(v) ∈ [2i, 2i+1)}.

D1.3. For each i ∈ A, use algorithm Alg to obtain an r − v∗i path Pi spanning {r} ∪Bi.
D1.4. Let P v

∗,`∗ be the path obtained by concatenating the paths {Pi}i∈A in increasing order
of i, and shortcutting past repeat occurrences of r.

D2. Return the best path P v
∗,`∗ found over all guesses where the strengthening of (LP-Lat) was

feasible.

Let P ∗ be an optimum solution and consider the iteration where (v∗, `∗) is consistent
with P ∗. Let (x, z) be an optimum LP solution for the strengthening of (LP-Lat) by the
constraints in Step (11). Clearly this strengthened LP is feasible and the value of the solution
(x, z) is at most OPT , the latency of P ∗.

For each v ∈ V , note that t(v) is well-defined by Constraints (1). Ultimately, we will
show the path P v∗,`∗ visits each v ∈ V by time O(t(v)). We begin by showing this suffices
to get a constant-factor approximation.

I Lemma 6. Let P be a path and c ≥ 1 be such that cP (v) ≤ c · t(v) for each v ∈ V . Then
the latency of P is at most c

1−ρ ·OPT .

Proof. Fix some v ∈ V . By definition of t(v), we have
∑
t(v)≤t≤T xv,t ≥ 1 − ρ which

yields t(v) ≤ 1
1−ρ ·

∑
t(v)≤t≤T t(v) · xv,t ≤ 1

1−ρ ·
∑
t∈[T] t · xv,t. It follows that

∑
v cP (v) ≤

c
1−ρ ·OPT . J

3.1 Bounding the Latency of P v∗,`∗

In the remainder of the proof it is convenient to view a “time-expanded” graph GT . The
nodes are pairs (v, t) with v ∈ V ∪ {r} and t ∈ [T] and an edge connects (u, t) to (v, t′) if
cu,v = t′ − t. Observe GT is acyclic. We can then view ze,t as assigning values to edges of
GT : the edge (u, t− cu,v), (v, t) has value z(u,v),t and cost cu,v.

Z. Friggstad and C. Swamy 52:7

We begin with some observations. The constraints of (LP-Lat) mean z constitutes one
unit of (r, 0)-preflow3 in GT (i.e. a preflow with source vertex (r, 0)). Namely, Constraints
(3) ensure preflow is satisfied at every vertex (v, t) of GT apart from the “source” vertex
(r, 0). Let i′ be the greatest index in A. Considering the LP constraints added in Step (11),
we see xv∗

i′
,`∗
i′

= 1 and xv,t = 0 for all t > `∗i′ . Thus, z must be a flow with value 1 in GT
ending at (v∗i′ , `∗i′). Since the support of the flow z is acyclic in GT and since one unit of flow
passes through every (v∗i , `∗i) node in GT for each i ∈ A, no flow skips past node (v∗i , `∗i).
That is, no edge ((u, t), (v, t′)) in GT supports any z-flow if t < `∗i < t′ for some i ∈ A, nor
does any edge ((u, t), (v, t′)) support any z-flow if t = `∗i yet u 6= v∗i or t′ = `∗i yet v 6= v∗i for
some i ∈ A.

Next, we recall a famous splitting-off result by Mader. The following is a slight specializ-
ation of one such result.

I Theorem 7 (Mader [18]). Let D = (V ∪ {s}, A) be a directed, Eulerian multigraph such
that the u− v connectivity for every u, v ∈ V is at least k. Then for every (u, s) ∈ A there
is some (s, v) ∈ A such that in the graph D′ = (V ∪ {s}, A− {(u, s), (s, v)} ∪ {(u, v)}), the
u− v connectivity for every u, v ∈ V is still at least k.

Using this, we show how to compute low-cost paths covering each bucket. Roughly
speaking, we show that (LP-ATSPPρ) restricted to {r} ∪ Bi with start node r and end
node v∗i has cost at most 2i+1. Thus, step 13 would find a path starting at r and covering
all Bi with cost at most αρ · 2i+1 where we recall αρ denotes the approximation factor of the
LP-relative approximation Alg.

I Lemma 8. For each i ∈ A, we can compute a Hamiltonian r − v∗i path Pi in G[{r} ∪Bi]
with cost αρ · 2i+1 in polynomial time.

Proof. Let x′ be a vector over edges of the metric given by x′u,v =
∑
t<2i+1 z(u,v),t for

u, v ∈ V ∪{r}. From the observations above, the restriction of z to edges ((u, t), (v, t′)) where
t < 2i+1 constitutes one unit of flow from (r, 0) to (v∗i , `∗i) in GT , so x′uv is then one unit of
r − v∗i flow in the metric. Further, since the cost of an edge ((u, t − cu,v), (v, t)) is cu,v in
GT , the cost of this flow x′ is exactly `∗i , which is at most 2i+1.

Next we verify x′(δ(S)) ≥ 2 · ρ for each S ⊆ V − {v∗i } with S ∩Bi 6= ∅. Consider some
v ∈ S ∩Bi. Constraint (2), the fact that v ∈ Bi, and the fact that xv,t = 0 for `∗i < t < 2i+1

shows x′(δin(S)) =
∑
e∈δ(S)

∑
t<2i+1 ze,t ≥ ρ. Since x′ is an r − v∗i flow and r, v∗i /∈ S, then

flow conservation shows x′(δ(S)) ≥ 2 · ρ.
Much like in [2] for the Prize-Collecting TSP-Path problem, one can use Theorem 7

to shortcut x′ past nodes not in Bi ∪ {r} to get solution for (LP-ATSPPρ) for in the graph
G[{r} ∪Bi] (with start node s = r and end node t = v∗i), also with cost at most 2i+1. That
is, we may assume x′ is rational as z is a rational vector since it is part of an extreme point
of an LP with rational coefficients. Let ∆ be an integer such that the vector ∆ · x′ is integral.
Consider the graph G′ with nodes V ∪ {r} ∪ {r′} where r′ is a new node. The edges of G′
consist of ∆ · x′uv copies of edge uv for each u, v ∈ V ∪ {r}, and ∆ edges from v∗i to r′ and
also from r′ to r (each having cost 0). Note the r − u connectivity for each u ∈ V is at least
∆ · ρ. Note, the cost of all edges in G′ is at most ∆ · 2i+1.

For each v ∈ V − Bi, we iteratively perform the splitting off procedure from Theorem
7 for s = v. The total cost of the edges does not increase by the triangle inequality (note
the edges that are removed and added all lie in the metric over V ∪ {r}), and the r − u

3 An s-preflow in a digraph (V,E) where s ∈ V is an assignment f : E → R≥0 such that f(δin(v)) ≥
f(δout(v)) for each v ∈ V − {s}. The value of the preflow f is f(δout(s))− f(δin(s)).

ESA 2020

52:8 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

connectivity remains at least ∆ · ρ for each u ∈ Bi. After doing this for each v ∈ V −Bi, we
are left with a multigraph of total edge cost cost no more than the total cost of all edges
in G′. Further, if we remove all v∗i r′ and r′r edges, we still get the connectivity from r to
any other v ∈ Bi is at least ∆ · ρ. If ku,v denotes the number of copies of uv in this new
graph, setting x′′u,v = ku,v/∆ for each (u, v) ∈ G[{r} ∪Bi] yields a feasible LP solution for
(LP-ATSPPρ) in the metric graph over Bi ∪ {r} (with start node r and end node v∗i) with
cost at most 2i+1.

From this, the optimal solution to (LP-ATSPPρ) in G[{r}∪Bi] (starting at r and ending
at v∗i) has value at most 2i+1. So Alg returns a Hamiltonian r − v∗i path Pi in G[{r} ∪Bi]
with cost at most αρ · 2i+1. J

Next we bound the cost of stitching together the paths for the admissible buckets.

I Lemma 9. Let Pi and Pi′ be two paths constructed in Step (13) for consecutive indices
i, i′ ∈ A. Let ui′ be the first node on Pi′ after r and recall v∗i is the last node of Pi. Then
cv∗
i
,ui′ ≤ 2i′+1.

Proof. Note that ui′ ∈ Bi′ means t(ui′) ∈ [2i′ , 2i′+1). Also, xui′ ,t(ui′) > 0 by definition of
t(ui′). All units of z-flow in the acyclic graph GT pass through (v∗i , `∗i) and also through
(v∗i′ , `∗i′). So the restriction of z to edges ((u, t), (v, t′)) in GT with `∗i ≤ t ≤ t′ ≤ `∗i′ constitutes
one unit of (v∗i , `∗i)− (v∗i′ , `∗i′) flow that supports (ui′ , t(ui′)). Therefore, a path decomposition
of this restriction of z includes (ui′ , t(ui′)) on some path. Any such path has cost exactly
`∗i′ − `∗i ≤ 2i′+1. By the triangle inequality, cv∗

i
,ui′ + cui′ ,v∗i′ ≤ 2i′+1. J

Next, we bound the latency of each v ∈ V along the final path P v
∗,`∗ obtained by

concatenating the Pi paths for increasing indices i ∈ A and shortcutting past all but the first
occurrence of r.

I Lemma 10. cPv∗,`∗ (v) ≤ 4(αρ + 1) · t(v) for any v ∈ V .

Proof. Consider any v ∈ V and say it lies on Pi. To reach v along P v∗,`∗ , we traverse paths
Pi′ for i′ < i plus the “stitching” edges v∗i′u∗i′′ for consecutive indices i′, i′′ ∈ A, i′′ ≤ i. By
Lemma 8 and Lemma 9, the latency of v along P v∗,`∗ can be bounded by

∑
i′∈A,i′≤i αρ ·

2i′+1 +
∑
i′∈A,i′≤i 2i′+1 ≤ (αρ + 1) ·

∑i
i′=0 ·2i

′+1 ≤ 4(αρ + 1) · 2i ≤ 4(αρ + 1) · t(v). J

Proof of Theorem 1. We set ρ = 2/3, and note that Theorem 2 yields an LP-relative α2/3-
approximation algorithm, where α2/3 = O(1). The proof of Theorem 1 then follows readily
from Lemmas 6 and 10 and the fact that T is bounded by a polynomial in n. J

We remark that even with the improved bound of α ≤ 22 from [28], our approach yields
an approximation ratio in the thousands. As noted earlier, we obtain a much-better guarantee
for the special case of regret metrics, i.e., the minimum-total-regret problem.

Proof of Theorem 5. First, we note that a worse approximation ratio follows by choosing
ρ = 0.75: this yields an approximation ratio αρ of at most 47.6 for the LP-relative algorithm
in Theorem 4 for regret metrics, which combined with Lemmas 10 and 6 (and choosing ε
sufficiently small in Theorem 26) yields a 778-approximation.

The better guarantee stated in the theorem follows by choosing the best ρ tailored for the
given instance. (Note that there are only polynomially many combinatorially-distinct choices
of ρ, and we can simply try all of these to pick the best ρ.) We analyze this by choosing a
random ρ and bounding the expected latency incurred; this is similar to the use of random
α-points in scheduling algorithms (see, e.g., [23]).

Z. Friggstad and C. Swamy 52:9

For v ∈ V , recall that tρ(v) is the minimum time for
∑
t≤t(v) xv,t ≥ ρ. Define LPv :=∑

t∈[T] txv,t. The key is to realize that
∫ 1

0 tρ(v)dρ = LPv, and leverage this in place of the
coarse bound tρ(v) ≤ LPv

1−ρ used earlier (in Lemma 6). The approximation factor αρ given
by Theorem 4 is of the form c

2ρ−1 , where c = 23.8. We choose a random ρ from (1/2, 1]
according to the density function 8(x− 1/2). The expected latency incurred by a node v is
then at most∫ 1

1/2
4
(c

2ρ− 1 +1
)
tρ(v) ·8(ρ−1/2)dρ ≤ 16c ·

∫ 1

1/2
tρ(v)dρ+16

∫ 1

1/2
tρ(v)dρ ≤ 16(c+1) ·LPv.

Thus, the expected total latency is at most 16(23.8 + 1) ·OPT ≤ 397 ·OPT . J

4 Bounding the Integrality Gap of (LP-ATSPPρ)

Consider nodes V with two distinguished s, t ∈ V (s 6= t) and asymmetric metric distances
cu,v between points of V . We consider (LP-ATSPPρ) for the Asymmetric TSP Path problem
where the goal is to find the cheapest Hamiltonian s − t path. As mentioned earlier, the
integrality gap is unbounded if ρ ≤ 1/2 [12], so we focus on the case 1/2 < ρ ≤ 1. As in [17],
we start with the dual of (LP-ATSPPρ).

maximize : zt − zs +
∑
U

2ρ · yU (DUALρ)

subject to : zv − zu +
∑

U :uv∈δ(U)

yU ≤ cu,v ∀ u, v

y ≥ 0.

Naturally, our proof borrows many steps from Köhne, Traub, and Vygen [17] but there are
additional challenges we have to work through in this more general setting.

For a vector x over the edges E of the directed metric (when viewed as a complete,
directed graph), let supp(x) = {uv ∈ E : xu,v > 0}. Similarly, for a vector y over cuts of the
metric let supp(y) = {∅ (S ⊆ V − {s, t} : yS > 0}. From now on, we focus on the graph
G = (V, supp(x)). The proofs of Propositions 11, 12, and 14 are very similar to proofs in
[17] and are omitted or just sketched in this paper.

I Proposition 11. Given any optimal dual solution (y, z), one can find an optimal dual
solution (y′, z) with supp(y′) being laminar in polynomial time.

In other words, we can modify y to be laminar without changing z using efficient uncrossing
techniques. The proof is exactly the same as the proof in [17] essentially because the set of
feasible solutions to (DUALρ) does not change if we select different values for ρ.

The next proposition is almost identical to one in [17], but we omit the case U = V in the
statement. In fact, the result may not be true for this case U = V , we handle that separately
below.

I Proposition 12. Let x be an optimum primal solution and let and G = (V, supp(x)). For
any U ⊆ V − {s, t} with x(δ(U)) = 2ρ, any topological ordering U1, . . . , U` of the strongly
connected components of G[U] satisfies:

δin(U1) = δin(U),
δout(U`) = δout(U), and
x(δout(Ui)) = x(δin(Ui+1)) for any 1 ≤ i < `.

We sketch the proof of Proposition 12 so the reader is assured it holds, though the proof is
essentially the same.

ESA 2020

52:10 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

Proof sketch. Because U is a tight set, x(δin(U)) = ρ. Further, x(δin(U1)) ≥ ρ. All edges
in supp(x) entering δ(U1) must lie in δin(U) because U1 is the first node in the topological
ordering. Thus, ρ = x(δin(U)) ≥ x(δin(U1)) ≥ ρ, so equality must hold throughout and
δin(U) = δin(U1) as we are working in the support of x. A similar statement shows
δout(U`) = δout(U).

For i > 1 we note δin(Ui) ⊆ δin(U)∪
⋃
j<i δ

out(Uj) simply because the Uj are topologically
ordered. Inductively, we have x(δout(Ui−1)) = ρ and each edge in δin(U) ∪

⋃
j<i−1 δ

out(Uj)
is already proven to lie in δin(Uj′) for some j′ < i. So we see δin(Ui) ⊆ δout(Ui−1) and, thus,

ρ = x(δin(Ui−1)) = x(δout(Ui−1)) ≥ x(δin(Ui)) ≥ ρ.

So, again, equality must hold throughout. J

We use a different observation to address the case U = V that was omitted from
Proposition 12. Intuitively, we show that it is still possible to buy a cheap set of edges to
chain the strongly-connected components of G in sequence but the cost of these edges does
increase relative to OPTLP as ρ→ 1/2.

I Proposition 13. In any topological ordering U1, . . . , U` of the strongly connected components
of G, for each 1 ≤ i < ` there is some edge (u, v) ∈ δout(Ui) ∩ δin(Ui+1) with cu,v ≤

1
2ρ−1 ·

∑
u′,v′∈δout(Ui)∩δin(Ui+1) cu′,v′xu′,v′ .

Proof. This is easy for i = 1 and i = ` − 1. For example, we have x(δin(U2) ≥ ρ and all
edges from δin(U2) lie in δout(U1). Thus, x(δout(U1) ∩ δin(U2)) ≥ ρ so the cheapest edge in
δout(U1)∩ δin(U2) has cost at most 1

ρ ·
∑
uv∈δout(Ui)∩δin(Ui+1)) cu,vxu,v. We finish by observing

1/ρ ≤ 1/(2ρ − 1) as ρ ≤ 1. A similar argument works for i = ` − 1, so we now assume
1 < i < `− 1.

We quickly introduce notation. For an index 1 ≤ j ≤ ` let U≤j = ∪1≤j′≤jUj′ and
U≥j = ∪j≤j′≤`Uj′ . Let δ(X;Y) denote {uv ∈ supp(x) : u ∈ X, v ∈ Y } for X,Y ⊆ V .
With this notation, let a = x(δ(Ui;Ui+1)), b = x(δ(Ui;U≥i+2)), c = x(δ(U≤i−1;Ui+1)), and
d = x(δ(U≤i−1;U≥i+1)). We have a + b + c + d = x(δout(U≤i)) = 1 as δout(U≤i) is the
disjoint union of the sets defining a, b, c, d. On the other hand, ρ ≤ x(δout(Ui)) = a + b

and ρ ≤ x(δin(Ui+1)) = a + c. Therefore, 2ρ − 1 ≤ (a + b) + (a + c) − (a + b + c + d) ≤ a

so x(δout(Ui) ∩ x(δin(Ui)) ≥ 2ρ− 1. So the cheapest edge (u, v) ∈ δout(Ui) ∩ δin(Ui+1) has
cu,v ≤ 1

2ρ−1 ·
∑

(u′,v′)∈δout(Ui)∩δin(Ui+1)) cu′,v′xu′,v′ . J

I Proposition 14. Let G be the support graph of an optimum solution x to (LP-ATSPPρ)
and (y, z) an optimum dual with supp(y) laminar. For any U ∈ supp(y) ∪ {V } and any
u,w ∈ U with w being reachable from u in G[U], there is a v − w path in G[U] that crosses
each set U ′ ∈ supp(y) at most twice for U ′ (U .

Again, the proof is the same as that in [17] which only relies on Proposition 12 for U ∈ supp(y)
(i.e. not on the case U = V that we omitted from the proposition in our setting). We sketch
the argument briefly to ensure the reader this still holds with the omission of U = V from
Proposition 12.

Proof. Consider any u − w path P contained in G[U]. Suppose U ′ ∈ supp(y) is maximal
among all such sets where P re-enters U ′ after it exits U ′. Let a be the first node of P in U ′
and b the last node of P in U ′ (it could be a = u or b = v). Inductively, replace the a− b
portion of P with an a− b path in G[U ′] that enters and leaves every set U ′′ ∈ supp(y) at
most once for U ′′ (U ′. Repeat for all such maximal U ′ ∈ supp(y). J

Z. Friggstad and C. Swamy 52:11

4.1 Constructing the Path
Let OPTLP denote the optimum solution value to (LP-ATSPPρ). Recall we let α denote
an upper bound on the integrality gap of the standard Held-Karp relaxation for ATSP. We
will prove the following lemma later.

I Lemma 15. An optimal dual solution (y, z) with supp(y) being laminar and zs − zt ≤
1

2ρ−1 ·OPTLP can be computed in polynomial time.

Using this, we now turn to the main result of this section. Note, we are choosing simplicity
in presentation over optimizing the constants in the guarantee.

Proof of Theorem 2. Complementary slackness ensures x(δ(U)) = 2ρ for each U ∈ supp(y)
Consider the edge support graph G = (V, supp(x)). Modify G to get an ATSP instance H
by adding a new node v and edges (t, v) with cost OPTLP and (v, s) with cost 0.

It is easy to check that setting

x′u,v =
{

1
ρ if (u, v) ∈ {(t, v), (v, s)}

xu,v
ρ otherwise

yields a feasible solution for the ATSP-Circuit relaxation from [25] in instance H with cost
2
ρOPTLP . Using [25], we can find a circuit W spanning all nodes in H with cost at most
2α
ρ OPTLP in polynomial time. This circuit must use the (t, v) edge at least once as it visits
v. By deleting occurrences of (t, v) and (v, s), we get s − t walks W1, . . . ,Wk in G that
collectively span all nodes in V with

∑
j c(Wj) ≤ 2α

ρ ·OPTLP ≤ 4α ·OPTLP . We also point
out k ≤ 4α because in removing the k edges incident to v to get the walks Wi, we removed a
total edge cost of k · OPTLP from a circuit whose cost is at most 4α · OPTLP , so k ≤ 4α.
The walks W1, . . . ,W` are depicted in the top of Figure 1.

Let U1, . . . , U` be the strongly connected components of the support graph G. For each
Ui, let Wi = {j : Wj visits a node in Ui} and note |Wi| ≤ k. Unlike the case ρ = 1 in [17],
it could be that j /∈ Wi for some Ui and Wj . For each 1 ≤ i ≤ ` and each j ∈ Wi, let Ri,j
denote the restriction of Wj to Ui. Now, if some Wj enters Ui, then once it leaves it cannot
re-enter because Ui is a strongly connected component of G. So Ri,j is a single walk for each
j ∈ Wi. For such (i, j), let uij and vij be the first and last nodes of Wj in Ui.

Order Wi as j1 < j2 < . . . < j|Wi|. By Proposition 14 and the fact each Ui is a strongly
connected component, we can find paths Pi,jm for jm ∈ Wi from vijm to uijm+1

(or ui1 if
m = |Wi|) where Pi,j enters and exits each U ′ ∈ supp(y) with U ′ (Ui at most once and
does not cross any other set in supp(y). Then, for each i we get a circuit Ci spanning all
nodes of Ui by adding the paths Pi,j for j ∈ Wi to the walks Ri,j .

By Proposition 13, for each 1 ≤ i < ` there are edges u′iv′i+1 ∈ δout(Ui) ∩ δin(Ui+1) with
cost at most 1

2ρ−1 times the fractional cost of edges in δout(Ui) ∩ δin(Ui+1). Also, say v′1 = s

and u′` = t. By fully traversing each Ci starting at v′i and then continuing to follow it
again to reach u′i, we get v′i − u′i walks W ′i spanning Ui. The final path P we output is the
concatenation of the walks W ′1,W ′2, . . . ,W ′` . Let S = {v′iu′i+1 : 1 ≤ i < `} be the edges used
to “stitch” these walks W ′i together. The bottom of Figure 1 depicts the final construction
of P .

To bound the cost of P , first observe c(S) ≤ 1
2ρ−1OPTLP as the sets δout(Ui) ∩ δin(Ui+1)

are disjoint for 1 ≤ i < `. To bound the cost of the cycles Ci, we define a modified cost
cyuv =

∑
U :uv∈δ(U) and observe c(Q) = zv − zu + cy(Q) for any u− v path Q (the z-values

for internal nodes of Q cancel).

ESA 2020

52:12 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

s
<latexit sha1_base64="8UDZ6x7JNg5bxqZAo/Ha5+Zxpqk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU1INS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmhD8FZfXiftasW7rlSbN+V6LY+jAOdwAVfgwS3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3PGM8Q==</latexit>

t
<latexit sha1_base64="0iumNtECVzyw+TLVKInewBD4uW4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbTbt2swm7E6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmd3O/88S1EbF6wGnC/YiOlAgFo2ilJg5KZbfiLkDWiZeTMuRoDEpf/WHM0ogrZJIa0/PcBP2MahRM8lmxnxqeUDahI96zVNGIGz9bHDojl1YZkjDWthSShfp7IqORMdMosJ0RxbFZ9ebif14vxbDmZ0IlKXLFlovCVBKMyfxrMhSaM5RTSyjTwt5K2JhqytBmU7QheKsvr5N2teJdV6rNm3K9lsdRgHO4gCvw4BbqcA8NaAEDDs/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3nWM8g==</latexit>

U1
<latexit sha1_base64="csCYYD2O0XIcfN7yAeT34fea/Dc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpoTXwBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5easO5nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qndVrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDUm413</latexit>

U2
<latexit sha1_base64="S+DlupqVLL0s6YPwEXklusZlk2Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD61BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophnU/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+qWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwTO8wpsjnRfn3flYthacfOYU/sD5/AHWH414</latexit>

U3
<latexit sha1_base64="AnbZoZ27DMOvkl3M37Fcqw8A7Ew=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lawR4LXjxWNLXQhrLZbtqlm03YnQil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikbZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK/hiOb+b+4xPXRiTqAScpD2I6VCISjKKV7v1+vV+uuFV3AbJOvJxUIEerX/7qDRKWxVwhk9SYruemGEypRsEkn5V6meEpZWM65F1LFY25CaaLU2fkwioDEiXalkKyUH9PTGlszCQObWdMcWRWvbn4n9fNMGoEU6HSDLliy0VRJgkmZP43GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvNWX10m7VvXq1drdVaXZyOMowhmcwyV4cA1NuIUW+MBgCM/wCm+OdF6cd+dj2Vpw8plT+APn8wfXo415</latexit>

U4
<latexit sha1_base64="FFR0A+aFJ5VnUQbs3nRal5deP7s=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt2GPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmt3O/88S1EbF6xGnC/YiOlAgFo2ilh9agNiiV3Yq7AFknXk7KkKM5KH31hzFLI66QSWpMz3MT9DOqUTDJZ8V+anhC2YSOeM9SRSNu/Gxx6oxcWmVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tO0Ybgrb68TtrVinddqd7Xyo16HkcBzuECrsCDG2jAHTShBQxG8Ayv8OZI58V5dz6WrRtOPnMGf+B8/gDZJ416</latexit>

U5
<latexit sha1_base64="9s0VBbeqCCdBRbavVA1noZGt1RY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV7LHgxWNF0xbaUDbbSbt0swm7G6GU/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nbX1jc2t7cJOcXdv/+CwdHTc1EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6nfmtJ1SaJ/LRjFMMYjqQPOKMGis9+L3rXqnsVtw5yCrxclKGHI1e6avbT1gWozRMUK07npuaYEKV4UzgtNjNNKaUjegAO5ZKGqMOJvNTp+TcKn0SJcqWNGSu/p6Y0FjrcRzazpiaoV72ZuJ/XiczUS2YcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/zyKmlWK95lpXp/Va7X8jgKcApncAEe3EAd7qABPjAYwDO8wpsjnBfn3flYtK45+cwJ/IHz+QPaq417</latexit>

s
<latexit sha1_base64="8UDZ6x7JNg5bxqZAo/Ha5+Zxpqk=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzU1INS2a24C5B14uWkDDkag9JXfxizNEJpmKBa9zw3MX5GleFM4KzYTzUmlE3oCHuWShqh9rPFoTNyaZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmhD8FZfXiftasW7rlSbN+V6LY+jAOdwAVfgwS3U4R4a0AIGCM/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3PGM8Q==</latexit>

t
<latexit sha1_base64="0iumNtECVzyw+TLVKInewBD4uW4=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWML9gPaUDbbTbt2swm7E6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmd3O/88S1EbF6wGnC/YiOlAgFo2ilJg5KZbfiLkDWiZeTMuRoDEpf/WHM0ogrZJIa0/PcBP2MahRM8lmxnxqeUDahI96zVNGIGz9bHDojl1YZkjDWthSShfp7IqORMdMosJ0RxbFZ9ebif14vxbDmZ0IlKXLFlovCVBKMyfxrMhSaM5RTSyjTwt5K2JhqytBmU7QheKsvr5N2teJdV6rNm3K9lsdRgHO4gCvw4BbqcA8NaAEDDs/wCm/Oo/PivDsfy9YNJ585gz9wPn8A3nWM8g==</latexit>

U1
<latexit sha1_base64="csCYYD2O0XIcfN7yAeT34fea/Dc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpoTXwBuWKW3UXIOvEy0kFcjQH5a/+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ4tTZ+TCKkMSxsqWNGSh/p7IaKT1NApsZ0TNWK96c/E/r5easO5nXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qndVrd1fVxr1PI4inME5XIIHN9CAO2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDUm413</latexit>

U2
<latexit sha1_base64="S+DlupqVLL0s6YPwEXklusZlk2Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD61BbVCuuFV3AbJOvJxUIEdzUP7qD2OWRlwhk9SYnucm6GdUo2CSz0r91PCEsgkd8Z6likbc+Nni1Bm5sMqQhLG2pZAs1N8TGY2MmUaB7Ywojs2qNxf/83ophnU/EypJkSu2XBSmkmBM5n+TodCcoZxaQpkW9lbCxlRThjadkg3BW315nbRrVe+qWru/rjTqeRxFOINzuAQPbqABd9CEFjAYwTO8wpsjnRfn3flYthacfOYU/sD5/AHWH414</latexit>

U3
<latexit sha1_base64="AnbZoZ27DMOvkl3M37Fcqw8A7Ew=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lawR4LXjxWNLXQhrLZbtqlm03YnQil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikbZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK/hiOb+b+4xPXRiTqAScpD2I6VCISjKKV7v1+vV+uuFV3AbJOvJxUIEerX/7qDRKWxVwhk9SYruemGEypRsEkn5V6meEpZWM65F1LFY25CaaLU2fkwioDEiXalkKyUH9PTGlszCQObWdMcWRWvbn4n9fNMGoEU6HSDLliy0VRJgkmZP43GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvNWX10m7VvXq1drdVaXZyOMowhmcwyV4cA1NuIUW+MBgCM/wCm+OdF6cd+dj2Vpw8plT+APn8wfXo415</latexit>

U4
<latexit sha1_base64="FFR0A+aFJ5VnUQbs3nRal5deP7s=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt2GPBi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsbm1vbObmGvuH9weHRcOjltmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmt3O/88S1EbF6xGnC/YiOlAgFo2ilh9agNiiV3Yq7AFknXk7KkKM5KH31hzFLI66QSWpMz3MT9DOqUTDJZ8V+anhC2YSOeM9SRSNu/Gxx6oxcWmVIwljbUkgW6u+JjEbGTKPAdkYUx2bVm4v/eb0Uw7qfCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tO0Ybgrb68TtrVinddqd7Xyo16HkcBzuECrsCDG2jAHTShBQxG8Ayv8OZI58V5dz6WrRtOPnMGf+B8/gDZJ416</latexit>

U5
<latexit sha1_base64="9s0VBbeqCCdBRbavVA1noZGt1RY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklV7LHgxWNF0xbaUDbbSbt0swm7G6GU/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nbX1jc2t7cJOcXdv/+CwdHTc1EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6nfmtJ1SaJ/LRjFMMYjqQPOKMGis9+L3rXqnsVtw5yCrxclKGHI1e6avbT1gWozRMUK07npuaYEKV4UzgtNjNNKaUjegAO5ZKGqMOJvNTp+TcKn0SJcqWNGSu/p6Y0FjrcRzazpiaoV72ZuJ/XiczUS2YcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6RRuCt/zyKmlWK95lpXp/Va7X8jgKcApncAEe3EAd7qABPjAYwDO8wpsjnBfn3flYtK45+cwJ/IHz+QPaq417</latexit>

Figure 1
Top: A depiction of s − t walks W1, . . . ,Wk with k = 4 and the strongly-connected components
U1, . . . , U` with ` = 5.
Bottom: The solid edges are the restrictions of the walks Wi to the strongly-connected components:
these are the Ri,j walks. The thin dashed edges in each component are the paths Pi,j that stitch
these Ri,j to form a circuit Ci over the strongly connected component Ui. Finally, the dashed edges
between components are the edges in S obtained from Proposition 13. The final path P is obtained
by visiting the Ui consecutively using these dashed edges, where each visit traverses Ci fully and
then travels to the start of the edge exiting Ui.

By complementary slackness, cu,v = zv − zu + cyuv for each uv ∈ supp(x). Each Ci was
formed by stitching together endpoints of Ri,j using paths Pi,j . Each Pi,j crosses each
U ′ ∈ supp(y), U (Ui at most twice and does not cross any set in supp(y) not contained in
Ui. Further, no two Pi,j , Pi′,j′ paths for i 6= i′ can cross the same U ′ ∈ supp(y) because the
two paths are contained in different components of G.

Each U ′ ∈ supp(y) is crossed by at most k paths of the form Pi,j meaning
∑
i,j c

y(Pi,j) ≤∑
i,j zvij−zuij+2k·

∑
U yU . We also have cy(Ri,j) = zui

j
−zvi

j
+c(Ri,j). Therefore,

∑
i c
y(Ci) =∑

i

∑
j∈Wi,j

cy(Pi,j) + cy(Ri,j) ≤ 2k
∑
U yU +

∑
i,j∈Wi

c(Ri,j) ≤ 2k
∑
U yU +

∑
j c(Wj) (the

z terms for the endpoints of the Ri,j cancel out in the first inequality).
But c(C) = cy(C) for any cycle C because, again, the z-terms cancel out. So

c(P) ≤ c(S) + 2 ·
∑

i
c(Ci) ≤ OPTLP

2ρ−1 + 2
∑k

i=1 c(Wi) + 2k
∑

U
yU

≤ OPTLP
2ρ−1 + 4α ·OPTLP + 2k

∑
U
yU ≤ O(1) · 1

2ρ−1 ·OPTLP + k
ρ

(OPTLP + zs − zt)
≤ O(1)

2ρ−1 ·OPTLP + k
ρ
· (zs − zt).

Here, O(1) refers to some constant that is independent of ρ where we also recall k is bounded
by a constant as well. Using Lemma 15 to bound zs − zt finishes the proof. J

Z. Friggstad and C. Swamy 52:13

4.2 Bounding zs − zt: Proof of Lemma 15
We prove Lemma 15 to finish the proof of Theorem 2. Our approach is more direct than
[17], they used an argument that shifts LP weight around to show that yU > 0 implies U is
not an s− t separator in the support graph G = (V, supp(x)). We establish this fact using
complementary slackness applied to the LP used to find the optimal solution to DUALρ
with minimum possible zs − zt. We comment that their proof could also be adapted to show
what we want, we are presenting this alternative proof because we feel it is more naturally
motivated: we already want to minimize zs − zt among all optimal duals so it is natural to
ask what complementary slackness gives for yU > 0.

Let x be an optimal primal solution to LP-ATSPPρ. Note that if we restricted the
variables of (LP-ATSPPρ) and the constraints of (DUALρ) to supp(x) then x and (y, z)
remains optimal. For any feasible solution (y, z) to (DUALρ), we know zt − zs ≤ OPTLP
because y ≥ 0. So the following LP is bounded. Note, we first solved (LP-ATSPPρ) to
compute OPTLP which is then a fixed value (not a variable) in DUALρ-z below.

maximize : zt − zs (DUALρ-z)

subject to : zt − zs +
∑

∅(U⊆V−{s,t}

2ρ · yU ≥ OPTLP (4)

zv − zu +
∑

U :uv∈δ(U)

yU ≤ cu,v ∀ u, v ∈ supp(x) (5)

y ≥ 0.

The second constraint asserts (y, z) is a feasible solution for (DUALρ), so the first constraint
then asserts it is an optimal solution for DUALρ In fact, in any feasible solution the first
constraint must hold with equality. We prove zs− zt ≤ 1

2ρ−1 ·OPTLP for an optimal solution
(y, z) to (DUALρ-z). With this, we finish the proof of Lemma 15 by simply noting that
Proposition 11 shows we can uncross the support of y while leaving z unchanged.

The LP that is dual to (DUALρ-z) has a variable κ for Constraint (4) of (DUALρ-z)
and new variables x′uv for each instance uv of Constraint (5).

minimize :
∑

uv∈supp(x)

cu,v · x′uv −OPTLP · κ

subject to : x′(δout(v))− x′(δin(v)) =

 1 + κ v = s

−1− κ v = t

0 v 6= s, t

∀ v ∈ V

x′(δ(U)) ≥ 2ρ · κ ∀ ∅ (U ⊆ V − {s, t}
x′, κ ≥ 0.

I Lemma 16. In an optimal solution (y, z) to DUALρ-z, if yU > 0 then there is an s− t
path in the graph G[V − U].

Proof. Let x′ be an optimal solution to the dual of (DUALρ-z). Then yU > 0 implies
x′(δ(U)) = 2ρ · κ so, by flow conservation, x′(δin(U)) = ρ · κ.

On the other hand, x′ constitutes an s− t flow of value 1 + κ. Consider a decomposition
of x′ into paths and cycles. The total weight of paths that do not enter U is at least
1 + κ − ρ · κ = 1 + (1 − ρ) · κ > 0. Thus, there is an s − t path in G that does not pass
through U . J

ESA 2020

52:14 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

Continuing as in [17], let U1, . . . , Uk be the maximal sets in supp(y). In the graph G′
obtained by contracting each Ui, we have by Lemma 16 that for each contracted node Ui
there is an s− t path in G′ that avoids Ui. By a variant of Menger’s Theorem (Lemma 9 in
[17]), there are node-disjoint s− t paths P1, P2 in G′. Consider the edges of P1 and P2 in G.
For any Ui, at most one of P1 or P2 enters (and exits) Ui. Suppose it is the case that one of
them P ∈ {P1, P2} enters Ui. Let u, v be the first and last nodes of P as it passes through
Ui. By Proposition 14, we can find a u − v path in G[Ui] that crosses each U ′ ∈ supp(y)
contained in U at most twice, and does not cross any other set in supp(y). Add these edges
to P .

Do this for each Ui that is entered by some P ∈ {P1, P2}. We get paths P ′1, P ′2 using
only edges in supp(x) that, collectively, cross each set in supp(y) at most twice. Thus,
0 ≤ c(P1) + c(P2) = cy(P1) + cy(P2) + 2 · (zt − zs) ≤ 2 ·

∑
U∈supp(y) yU + 2 · (zt − zs).

Multiplying the terms in this bound by ρ and then subtracting (2ρ− 1) · (zt − zs) from both
sides, we see (2ρ− 1) · (zs − zt) ≤

∑
U∈supp(y) 2ρ · yU + zt − zs = OPTLP . J

4.3 A Bad Example for (LP-ATSPPρ)
We show that the dependence on the factor 1

2ρ−1 in our analysis of the integrality gap of
(LP-ATSPPρ) is asymptotically tight.

Proof of Theorem 3. Consider the following metric depicted in Figure (2), which is inspired
from the example showing the integrality gap is unbounded if ρ = 1/2 from [12]. The solid
edges have cost 0 and the dashed edges have cost 1. The cost of all other edges not depicted
is the shortest path distance in this graph (using a cost of 1 if there is no path in this graph).
The number beside each edge uv indicates the value of xu,v. It can be easily check that this
is a feasible solution for (LP-ATSPPρ) even if we added the constraints x(δin(v)) = 1 for
each v ∈ V − {s, t}. An optimal integral solution must use an edge with cost 1, yet this LP
solution only has cost 2ρ− 1 so the integrality gap of (LP-ATSPPρ) is at least 1

2ρ−1 . J

s t

1/2
<latexit sha1_base64="FkuT5/Tx4iy9U1aN2xvzgnzXuF8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0yqoMeCF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB/+i2itXPNebg6wSPycVyFHvlb+6/YRlMVfIJDWm43spBhOqUTDJp6VuZnhK2YgOeMdSRWNugsn81Ck5s0qfRIm2pZDM1d8TExobM45D2xlTHJplbyb+53UyjG6CiVBphlyxxaIokwQTMvub9IXmDOXYEsq0sLcSNqSaMrTplGwI/vLLq6RZdf1Lt3p/Vam5eRxFOIFTOAcfrqEGd1CHBjAYwDO8wpsjnRfn3flYtBacfOYY/sD5/AFTVY0a</latexit>

1/2
<latexit sha1_base64="FkuT5/Tx4iy9U1aN2xvzgnzXuF8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0yqoMeCF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB/+i2itXPNebg6wSPycVyFHvlb+6/YRlMVfIJDWm43spBhOqUTDJp6VuZnhK2YgOeMdSRWNugsn81Ck5s0qfRIm2pZDM1d8TExobM45D2xlTHJplbyb+53UyjG6CiVBphlyxxaIokwQTMvub9IXmDOXYEsq0sLcSNqSaMrTplGwI/vLLq6RZdf1Lt3p/Vam5eRxFOIFTOAcfrqEGd1CHBjAYwDO8wpsjnRfn3flYtBacfOYY/sD5/AFTVY0a</latexit>

1/2
<latexit sha1_base64="FkuT5/Tx4iy9U1aN2xvzgnzXuF8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0yqoMeCF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB/+i2itXPNebg6wSPycVyFHvlb+6/YRlMVfIJDWm43spBhOqUTDJp6VuZnhK2YgOeMdSRWNugsn81Ck5s0qfRIm2pZDM1d8TExobM45D2xlTHJplbyb+53UyjG6CiVBphlyxxaIokwQTMvub9IXmDOXYEsq0sLcSNqSaMrTplGwI/vLLq6RZdf1Lt3p/Vam5eRxFOIFTOAcfrqEGd1CHBjAYwDO8wpsjnRfn3flYtBacfOYY/sD5/AFTVY0a</latexit>

1/2
<latexit sha1_base64="FkuT5/Tx4iy9U1aN2xvzgnzXuF8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0yqoMeCF48V7Qe0oWy2m3bpZhN2J0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemEph0PO+ncLa+sbmVnG7tLO7t39QPjxqmiTTjDdYIhPdDqnhUijeQIGSt1PNaRxK3gpHtzO/9cS1EYl6xHHKg5gOlIgEo2ilB/+i2itXPNebg6wSPycVyFHvlb+6/YRlMVfIJDWm43spBhOqUTDJp6VuZnhK2YgOeMdSRWNugsn81Ck5s0qfRIm2pZDM1d8TExobM45D2xlTHJplbyb+53UyjG6CiVBphlyxxaIokwQTMvub9IXmDOXYEsq0sLcSNqSaMrTplGwI/vLLq6RZdf1Lt3p/Vam5eRxFOIFTOAcfrqEGd1CHBjAYwDO8wpsjnRfn3flYtBacfOYY/sD5/AFTVY0a</latexit>

1
<latexit sha1_base64="WKHnUFF/rZMskw59TnCBg1IZGV0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0iqoMeCF48t2A9oQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG8/7dgobm1vbO8Xd0t7+weFR+fikpZNMMWyyRCSqE1KNgktsGm4EdlKFNA4FtsPx3dxvP6HSPJEPZpJiENOh5BFn1Fip4ffLFc/1FiDrxM9JBXLU++Wv3iBhWYzSMEG17vpeaoIpVYYzgbNSL9OYUjamQ+xaKmmMOpguDp2RC6sMSJQoW9KQhfp7YkpjrSdxaDtjakZ61ZuL/3ndzES3wZTLNDMo2XJRlAliEjL/mgy4QmbExBLKFLe3EjaiijJjsynZEPzVl9dJq+r6V261cV2puXkcRTiDc7gEH26gBvdQhyYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBdeeMpQ==</latexit>

1
<latexit sha1_base64="WKHnUFF/rZMskw59TnCBg1IZGV0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0iqoMeCF48t2A9oQ9lsJ+3azSbsboRS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8MBVcG8/7dgobm1vbO8Xd0t7+weFR+fikpZNMMWyyRCSqE1KNgktsGm4EdlKFNA4FtsPx3dxvP6HSPJEPZpJiENOh5BFn1Fip4ffLFc/1FiDrxM9JBXLU++Wv3iBhWYzSMEG17vpeaoIpVYYzgbNSL9OYUjamQ+xaKmmMOpguDp2RC6sMSJQoW9KQhfp7YkpjrSdxaDtjakZ61ZuL/3ndzES3wZTLNDMo2XJRlAliEjL/mgy4QmbExBLKFLe3EjaiijJjsynZEPzVl9dJq+r6V261cV2puXkcRTiDc7gEH26gBvdQhyYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBdeeMpQ==</latexit>

1 � ⇢
<latexit sha1_base64="1mCB1wsoxGbOIvTx2HMADmU/Sxs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyGpgh4LXjxWsB/QhrLZbtq1m92wuxFK6H/w4kERr/4fb/4bt2kO2vpg4PHeDDPzwoQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044uZ37nSeqNJPiwUwTGsR4JFjECDZWavsXfTWWg2rNc70caJX4BalBgeag+tUfSpLGVBjCsdY930tMkGFlGOF0VumnmiaYTPCI9iwVOKY6yPJrZ+jMKkMUSWVLGJSrvycyHGs9jUPbGWMz1sveXPzP66UmugkyJpLUUEEWi6KUIyPR/HU0ZIoSw6eWYKKYvRWRMVaYGBtQxYbgL7+8Stp117906/dXtYZbxFGGEziFc/DhGhpwB01oAYFHeIZXeHOk8+K8Ox+L1pJTzBzDHzifP/Ttjqk=</latexit>

1 � ⇢
<latexit sha1_base64="1mCB1wsoxGbOIvTx2HMADmU/Sxs=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyGpgh4LXjxWsB/QhrLZbtq1m92wuxFK6H/w4kERr/4fb/4bt2kO2vpg4PHeDDPzwoQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjtpapIrRFJJeqG2JNORO0ZZjhtJsoiuOQ0044uZ37nSeqNJPiwUwTGsR4JFjECDZWavsXfTWWg2rNc70caJX4BalBgeag+tUfSpLGVBjCsdY930tMkGFlGOF0VumnmiaYTPCI9iwVOKY6yPJrZ+jMKkMUSWVLGJSrvycyHGs9jUPbGWMz1sveXPzP66UmugkyJpLUUEEWi6KUIyPR/HU0ZIoSw6eWYKKYvRWRMVaYGBtQxYbgL7+8Stp117906/dXtYZbxFGGEziFc/DhGhpwB01oAYFHeIZXeHOk8+K8Ox+L1pJTzBzDHzifP/Ttjqk=</latexit>

⇢� 1/2
<latexit sha1_base64="4Zh/LjRO/QEvkenmLAHmkT37klc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBi+tuFfRY8OKxgv2AdinZNNuGZpNtkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/YPyodHTS1TRWiDSC5VO8SaciZowzDDaTtRFMchp61wdDfzW09UaSbFo5kkNIjxQLCIEWys1O6qobzwL6u9csVzvTnQKvFzUoEc9V75q9uXJI2pMIRjrTu+l5ggw8owwum01E01TTAZ4QHtWCpwTHWQze+dojOr9FEklS1h0Fz9PZHhWOtJHNrOGJuhXvZm4n9eJzXRbZAxkaSGCrJYFKUcGYlmz6M+U5QYPrEEE8XsrYgMscLE2IhKNgR/+eVV0qy6/pVbfbiu1Nw8jiKcwCmcgw83UIN7qEMDCHB4hld4c8bOi/PufCxaC04+cwx/4Hz+ANfhjx4=</latexit>

⇢� 1/2
<latexit sha1_base64="4Zh/LjRO/QEvkenmLAHmkT37klc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBi+tuFfRY8OKxgv2AdinZNNuGZpNtkhXK0j/hxYMiXv073vw3pu0etPXBwOO9GWbmhQln2njet1NYW9/Y3Cpul3Z29/YPyodHTS1TRWiDSC5VO8SaciZowzDDaTtRFMchp61wdDfzW09UaSbFo5kkNIjxQLCIEWys1O6qobzwL6u9csVzvTnQKvFzUoEc9V75q9uXJI2pMIRjrTu+l5ggw8owwum01E01TTAZ4QHtWCpwTHWQze+dojOr9FEklS1h0Fz9PZHhWOtJHNrOGJuhXvZm4n9eJzXRbZAxkaSGCrJYFKUcGYlmz6M+U5QYPrEEE8XsrYgMscLE2IhKNgR/+eVV0qy6/pVbfbiu1Nw8jiKcwCmcgw83UIN7qEMDCHB4hld4c8bOi/PufCxaC04+cwx/4Hz+ANfhjx4=</latexit>

Figure 2 The bad integrality gap example for LP-ATSPPρ.

5 An Improved Integrality Gap Bound for (LP-ATSPPρ) in Regret
Metrics

Let V be nodes and s, t ∈ V be the start and end points. Let c be symmetric metric distances
cu,v ≥ 0. For each u, v ∈ V , let cregu,v = cr,u + cu,v − cr,v be the regret metric induced by c. It
is convenient to consider a complete directed graph over V where for distinct u, v ∈ V we
have cu,v = cv,u yet (u, v) and (v, u) are themselves distinct edges: the bidirected variant of
the natural undirected graph associated with (V, c). The following observations about regret
metrics can be found in [13].

Z. Friggstad and C. Swamy 52:15

I Observation 17. If c is a metric (asymmetric or symmetric) then creg is an asymmetric
metric. For any u, v ∈ V and any u − v path P , c(P) = creg(P) + cu,v. For any cycle C,
c(C) = creg(C).

We consider integrality gap bounds for (LP-ATSPPρ) when the metric is a regret metric.
In [14], it was shown the integrality gap bound is 2 in the standard case ρ = 1 and that this
is tight. For the purpose of getting better approximations for DirLat in regret metrics (i.e.
the problem of minimizing the average time a node v waits in excess of their shortest path
distance cr,v from the depot), we give explicit integrality gap bounds for the more general
case 1/2 < ρ ≤ 1.

Note, in the case ρ = 1 that the analysis from [14] produces a stronger result. But the
analysis does not extend in any clear way to the case ρ < 1. We begin by recalling the
following structural result by Bang-Jensen et al about decomposing preflows into branchings
[4], which was made efficient by Gabow [15] (see also [22]).

I Theorem 18 (Bang Jensen et al. [4], Gabow [15], Post and Swamy [22]). Let D = ({r}∪V,A)
be a directed graph and x ∈ QA≥0 be a preflow. Let λv := min{v}⊆S⊆V x(δin(S)) be the r − v
connectivity in D under capacities {xa}a∈A. Let K > 0 be rational. We can obtain out-
branchings B1, . . . , Bq rooted at r, and rational weights γ1, . . . , γq ≥ 0 such that

∑q
i=1 γi =

K,
∑
i:q∈Bi γi ≤ xa for all a ∈ A, and

∑
i:v∈Bi ≥ min{K,λv} for all v ∈ V . Moreover, such

a decomposition can be computed in time that is polynomial in |V | and the bit complexity of
K and x.

We require a definition and results from [13], some of which are adaptations of concepts
in [6].

I Definition 19. Let P be a path starting at s. For each uv ∈ P , say uv is red on P if
there are nodes x, y on the s− u portion of Pi and v − t portion of i, respectively, such that
cr,x ≥ cr,y. For each v ∈ P , let red(v, P) be the maximal subset of red edges of the subpath
of P containing v. Note, red(v, P) could be empty if v is not incident to a red edge. The red
intervals of P are the maximal subpaths of its red edges.

Intuitively, the red edges are part of intervals of P that do not make progress toward reaching
t. Their total creg-costs can be shown to be comparable to their total c-costs, which is
formalized as follows.

I Lemma 20 (Blum et al [6]). For any s− t path P ,
∑
uv red on P cu,v ≤

3
2c

reg(P).

Further, if we were to keep at most one node from each maximal red interval of edges and
shortcut past the other nodes, the resulting path s = v0, v1, . . . , vk = t has cr,vi < cr,vi+1 . So
the union of any collection of paths that are shortcut in such a way forms an acyclic graph.

Now, a solution to (LP-ATSPPρ) can be viewed as a preflow of value 1 rooted at s with
λv ≥ ρ for each v ∈ V − t and λt = 1. From this observation, we round a solution using
techniques from [13]. The full description is in Algorithm 2. Here, 1/2 < δ < ρ is some
parameter we set later to optimize the performance of the algorithm.

I Lemma 21. The paths Pi from Step 2 satisfy
∑
i γi · creg(Pi) ≤ 2 ·OPTLP .

Proof. In [13], it is observed for any s − t path P that creg(P) = c(P) − cs,t and that
c(C) = creg(C) for any cycle C. Thus, as x is an s− t flow with value 1 we have OPTLP =∑
uv c

reg
u,vxu,v = (

∑
uv cu,vxu,v)− cs,t. This can be seen by, say, comparing the creg-cost with

the c-cost of paths and cycles in a path/cycle decomposition of x.

ESA 2020

52:16 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

Algorithm 2 Rounding (LP-ATSPPρ) in regret metrics.
Input: asymmetric metric (V ∪ {r}, creg) obtained from symmetric distances c.
Output: an Hamiltonian s− t-rooted path P .

R1. Solve (LP-ATSPPρ) to get an optimal extreme point solution x with value OPTLP .
R2. Use Theorem 18 to find a convex combination of out-branchings B1, . . . , Bq rooted at s and

weights γ1, . . . , γq ≥ 0 summing to 1 such that t lies on each Bi and each v ∈ V − {s, t} lies
on at least a ρ-fraction of these branchings. Turn each Bi into a s− t path Pi by adding the
reverse (v, u) of each arc (u, v) ∈ Bi that does not appear on the unique s− t path in Bi and
shortcutting the resulting Eulerian s− t walk past repeated nodes.

R3. Define a cut requirement function f : 2V → {0, 1} where f(S) = 1 if
∑

i:red(v,Pi)⊆S
γi < δ for all

v ∈ S. Observe f is downward-monotone: f(S) ≥ f(T) for sets ∅ (S ⊆ T . Use the LP-based
2-approximation in [16] to find a forest of undirected edges F such that |δ(S) ∩ F | ≥ f(S). Let
C be the components of F and let C1, . . . , C|C| be cycles on each component of F obtained by
doubling and shortcutting each tree in F . For each cycle Cj of C, let w ∈ Ci be some witness
node such that

∑
i:red(w,Pi)⊆V

γi ≥ δ. Let W be the set of all witness over all Cj (note, it could
be W ∩ {s, t} 6= ∅). View each Cj as being traversed in some arbitrary direction.

R4. For each Pi, let PWi be the set of all nodes in W ∩ Pi such that all nodes of red(w,Pi) are
contained in the nodes of a single cycle Cj . Shortcut Pi past nodes not in PWi ∪ {s, t} and call
this path P ′i . Note the nodes of P ′i lie in W ∪ {s, t}.

R5. View P ′i with associated weights γi/δ as the path decomposition of an acyclic s− t flow z with
value 1/δ with z(δ(w)) ≥ 1 for each w ∈ W . Further, z(δout(s)) = 1/δ < 2. By integrality of
flows with upper- and lower-bounds on each node, we may decompose z as a convex combination
of integral flows satisfying these bounds such that each flow supported consists of either 1 or 2
paths. Let P be the cheapest path among the flows with only one path in this decomposition.
Note that P is an s− t path spanning all of W .

R6. Complete P into a Hamiltonian s− t path by adding all edges of the cycles Ci and shortcutting
the resulting Eulerian walk.

Each Pi is obtained by adding the reverse of each edge uv of Bi not on the s− t path in Bi
(and then shortcutting the resulting Eulerian walk). Thus, c(Pi) ≤ 2 ·c(Bi)−cs,t so creg(Pi) ≤
2 · (c(Bi)− cs,t). Thus,

∑
i γi · creg(Pi) ≤ 2 ·

∑
i γi · (c(Bi)− cs,t) = (2 ·

∑
i γi · c(Bi))− 2 · cs,t.

Now, the convex combination of the Bi is dominated by x, so
∑
i γi · c(Bi) ≤

∑
e xe · ce.

Finally, as x constitutes one unit of s− t flow, the c-cost of x differs from the creg-cost of x
exactly by cs,t, so we finally see

∑
i γi · creg(Pi) ≤ 2 ·OPTLP . J

The proofs of the following two lemmas proceed in a way that is very similar to related
results [13] (though, their end goal was quite different). We defer their proofs to the end of
this section.

I Lemma 22. In Step 2, the function f is downward-monotone and
∑
jc

reg(Cj)≤ 6
ρ−δOPTLP .

I Lemma 23. The graph over V with edges ∪qi=1P
′
i is an acyclic graph. Further, for each

w ∈W we have
∑
i:w lies on P ′

i
γi ≥ δ. Finally,

∑q
i=1 c

reg(P ′i) ≤ 2 ·OPTLP .

We now describe how to complete the analysis.

I Lemma 24. In Step 5, the flow z has acyclic support, sends 1/δ units of flow from s to t,
and has z(δin(w)) ≥ 1 for each w ∈W . The resulting path P has cost 2

2δ−1 ·OPTLP .

Proof. We have
∑
i γi/δ = 1/δ. As each P ′i is an s − t flow, we have z given by zuv =∑

i:uv∈Pi γi/δ is an s− t flow of value 1/δ. Then by Lemma 23, the support of z is acyclic,
z(δin(w)) ≥ 1 for each w ∈W , and

∑
uv c

reg
u,vzuv ≤ 2

δ ·OPTLP .

Z. Friggstad and C. Swamy 52:17

By integrality of flows with integral lower- and upper-bounds on the flow through each
vertex, z may be decomposed into a convex-combination of integral flows f satisfying the
lower-bound f(δin(w)) ≥ 1 for each w ∈ W and 1 ≤ f(δout(s)) ≤ 2. Furthermore, the
fraction of these flows f with f(δout(s)) = 1 is exactly 2− 1/δ, so the creg-cost of one such
flow is at most 1

2−1/δ
2
δ · OPTLP = 2

2δ−1 · OPTLP . Such a flow f has no cycles because
the support of z is acyclic, so the edges supported by f form an s − t path spanning all
w ∈W . J

The final path is formed from grafting the cycles C1, . . . , C|C| into P , so the above results
yield the following.

I Theorem 25. The final path computed in Step 6 is a Hamiltonian s− t path with creg-cost
at most

(
6
ρ−δ + 2

2δ−1

)
·OPTLP .

Proof. By Lemma 24, the path P is an s − t path spanning W with creg-cost at most
2

2δ−1 ·OPTLP . Each cycle Cj over a component in C contains precisely one node in W , so
the graph P ∪|C|j=1 Cj has an Eulerian s − t walk that visits all nodes. By Lemma 22, the
total creg-cost of all cycles is at most 6

ρ−δ ·OPTLP . The result follows because shortcutting
this Eulerian walk to get a Hamiltonian path does not increase the cost of the walk, by the
triangle inequality. J

By setting δ = (2
√

6−1)·ρ+6−
√

6
10 (which optimizes the parameter), we get our main result

showing the integrality gap is at most 300
42−12

√
6 ·

1
2ρ−1 ≈

23.8
2ρ−1 .

Proof of Lemma 22. That f is downward monotone is direct from the definition. We
construct a vector x′ over edges the undirected complete graph with nodes V with edge
costs c. That is, for each undirected edge uv let x′uv = 1

ρ−δ
∑

i:uv or vu
is red on Pi

γi. We first claim
x′(δ(S)) ≥ f(S) for each ∅ (S ⊆ V . That is, suppose S is such that f(S) = 1 and let
v satisfy

∑
i:red(v,Pi)⊆V γi < δ. Since v lies on a ρ-fraction of paths in total, this means a

(ρ− δ)-fraction of paths Pi have some edge of red(v, Pi) crossing S, as required.
From Lemma 20, the total c-cost of all red edges on Pi is at most 3

2c
reg(Pi). Thus,∑

uv cu,vx
′
uv ≤ 3

2
1
ρ−δOPTLP . From using the LP-based 2-approximation in [16], the c-cost

of the result forest is then at most 3
ρ−δOPTLP . By doubling the edges to get the cycles Cj ,∑

j c(Cj) ≤
6
ρ−δOPTLP . Finally, we chose an arbitrary direction for traversing each Cj but

the creg-cost of a directed cycle is the same as its c-cost, so the result follows. J

Proof of Lemma 23. We claim that we do not keep two nodes from any red interval for
each Pi when we form P ′i . But this is immediate from the fact that no cycle Cj contains two
nodes of W .

By the definition of red intervals, any path P ′ obtained from a path P by shortcutting
past all but one node in each red interval yields has its nodes appearing in strictly distance-
increasing order. So, the P ′i paths all start at the same location, all end at the same location,
and their internal nodes strictly increase in distance from s. So the union of all P ′i is an
acyclic graph.

Now, consider some w ∈W and say it lies on cycle Cj . At least a δ-fraction of paths Pi
spanning w satisfy red(w,Pi) ⊆ Cj because f(V (Cj)) = 0, so each w ∈W lies on at least a
δ-fraction of paths P ′i .

Since P ′i are obtained by shortcutting nodes from Pi,
∑q
i=1 c

reg(P ′i) ≤
∑q
i=1 c

reg(Pi) ≤
2 ·OPTLP by Lemma 21. J

ESA 2020

52:18 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

References
1 F. Afrati, S. Cosmadakis, C. H. Papadimitriou, G. Papageorgiou, and N. Papakostantinou.

The complexity of the traveling repairman problem. Informatique Theorique et Applications,
20(1):79–87, 1986.

2 H. C. An, R. Kleinberg, and D. B. Shmoys. Improving Christofides algorithm for the s-t path
TSP. Journal of the ACM, 62(5):34, 2015.

3 A. Asadpour, M. X. Goemans, A. Madry, S. Oveis Gharan, and A. Saberi. An
O(logn/ log logn)-approximation algorithm for the asymmetric traveling salesman problem.
In In Proceedings of SODA, pages 379–389, 2010.

4 J. Bang-Jensen, A. Frank, and B. Jackson. Preserving and increasing local edge-connectivity
in mixed graphs. SIAM J. Discrete Math., 8(2):155–178, 1995.

5 A. Blum, P. Chalasani, D. Coppersmith, W. R. Pulleyblank, P. Raghavan, and M. Sudan.
The minimum latency problem. In In Proceedings of STOC, pages 163–171, 1994.

6 A. Blum, S. Chawla, D. R. Karger, T. Lane, and A. Meyerson. Approximation algorithms for
orienteering and discount-reward TSP. SIAM J. Comput., 37(2):653–670, 2007.

7 D. Chakrabarty and C. Swamy. Facility location with client latencies: linear-programming
based techniques for minimum latency problems. Math. of Operations Research, 41(3):865–883,
2016.

8 M. Charikar, M. X. Goemans, and H. J. Karloff. On the integrality ratio for the asymmetric
traveling salesman problem. Math. of Operations Research, 31(2):245–252, 2006.

9 K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum latency tours.
In In Proceedings of FOCS, pages 36–45, 2003.

10 M. Fischetti, G. Laporte, and S. Martello. The delivery man problem and cumulative matroids.
Operations Research, 41:1065–1064, 1993.

11 Z. Friggstad, A. Gupta, and M. Singh. An improved integrality gap for asymmetric TSP paths.
Math. of Operations Research, 41(3):745–757, 2016.

12 Z. Friggstad, M. R. Salavatipour, and Z. Svitkina. Asymmetric traveling salesman path and
directed latency problems. SIAM J. Comput, 42(4):1596–1619, 2013.

13 Z. Friggstad and C. Swamy. Approximation algorithms for regret-bounded vehicle routing
and applications to distance-constrained vehicle routing. In In Proceedings of STOC, pages
744–753, 2014.

14 Z. Friggstad and C. Swamy. Compact, provably-good LPs for orienteering and regret-bounded
vehicle routing. In In Proceedings of IPCO, pages 199–211, 2017.

15 H. Gabow. Perfect arborescence packing in preflow mincut graphs. In In Proceedings of SODA,
pages 528–538, 1996.

16 M. X. Goemans and D. P. Williamson. Approximating minimum-cost graph problems with
spanning tree edges. Operations Research Letters, 16:183–189, 1994.

17 A. Köhne, V. Traub, , and J. Vygen. The asymmetric traveling salesman path LP has constant
integrality ratio. In In Proceedings of IPCO, pages 288–298, 2019.

18 W. Mader. Konstruktion aller n-fach kantenzusammenhängenden Digraphen. Europ. J.
Combinatorics, 3:63–67, 1982.

19 E. Minieka. The delivery man problem on a tree network. Annals of Operations Res.,
18:261–266, 1989.

20 V. Nagarajan and R. Ravi. The directed minimum latency problem. In APPROX/RANDOM
2008. Proceedings, Lecture Notes in Computer Science, pages 193–206. Springer, 2008.

21 J. Park and B. Kim. The school bus routing problem: A review. European Journal of
Operational Research, 202(2):311–319, 2010.

22 I. Post and C. Swamy. Linear-programming based techniques for multi-vehicle minimum
latency problems. In Proceedings of SODA, pages 512–531, 2015.

23 M. Skutella. List scheduling in order of α-points on a single machine. Efficient Approximation
and Online Algorithms, 3484:250–291, 2006.

Z. Friggstad and C. Swamy 52:19

24 M. Spada, M. Bierlaire, and T. Liebling. Decision-aiding methodology for the school bus
routing and scheduling problem. Transportation Science, 39(4):477–490, 2005.

25 O. Svensson, J. Tarnawski, and L. Vegh. A constant-factor approximation algorithm for the
asymmetric traveling salesman problem. In In Proceedings of STOC, pages 204–213, 2018.

26 P. Toth and eds D. Vigo. The Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications, Philadelphia, 2002.

27 V. Traub. Approximation Algorithms for Traveling Salesman Problems. PhD thesis, University
of Bonn, 2020. URL: http://hss.ulb.uni-bonn.de/2020/5834/5834.htm.

28 V. Traub and J. Vygen. An improved approximation algorithm for ATSP. In In Proceedings
of STOC, pages 1–13, 2020.

A Reduction to Instances with Polynomially-Bounded Integer
Distances

I Theorem 26. For any constant ε > 0, if there is an α(n)-approximation for instances of
DirLat where each cu,v is a positive integer bounded by a polynomial in n and 1/ε and where
cu,v ≥ 1 for nodes u 6= v, then there is an (α(n) + ε)-approximation for general instances of
DirLat.

Proof. Compute a value ν such that OPT ≤ ν ≤ n2 · OPT where OPT is the optimum
solution to the given DirLat instance. For example, ν could be the smallest value such
that all nodes can be covered by a single walk in the graph Gν = (V + r, Eν) consisting
of directed edges Eν = {uv : cu,v ≤ ν}. This can be checked, for example, by contracting
the strongly-connected components of Gν and checking if topologically sorting the resulting
directed acyclic graph results in a single chain of components with the root in the first
component.

Now, the case OPT = 0 can detected in polynomial time as this is equivalent to checking
if the strongly-connected components of the graph using only distance-0 edges forms a chain.
So we assume OPT > 0, thus ν > 0. We then assume cu,v ≥ ε · ν/n3 by increasing any
distance that is smaller to this amount: the distances remain metric and the latency of any
node on the optimum solution increases by at most n · ν ≤ ε ·OPT/n, so the total latency
increases by at most ε ·OPT .

Next, we may assume all distances satisfy cu,v ≤ (α(n) + 2ε) · ν for the following reason.
Suppose we update each distance cu,v > (α(n) + 2ε) · ν with cu,v = (α(n) + 2ε) · ν. It
is easy to check these updated distances also form a metric. The optimum solution cost
is still OPT because no edge used by the optimum solution has its length shortened (as
ν ≥ OPT). Also, note a solution P with c(P) ≤ (α(n) + ε) · OPT will only use edges uv
where cu,v < (α(n) + 2ε) · ν. So an (α+ ε)-approximation in the metric with these truncated
distances yields an (α+ ε)-approximation for the original distances.

Next, for all u, v ∈ V + r let d′′(u, v) =
⌊
cu,v · n

4

ν·ε

⌋
. Let d′ be the shortest path metric

using edge distances given by d′′. Let OPT ′ denote the optimum solution to DirLat instance
with distances d′. Observe

d′(u, v) ≤ d′′(u, v) ≤ n4

ν · ε
cu,v.

Furthermore, cu,v ≤ (α(n) + 2ε) · ν for each edge uv means d′(u, v) ≤ n4

ε · (α(n) + ε). So all
distances under d′ are polynomially-bounded integers. We also see OPT ′ ≤ n4

ν·ε · OPT by
consider an optimum solution to the original instance, but under the new distances d′.

ESA 2020

http://hss.ulb.uni-bonn.de/2020/5834/5834.htm

52:20 A Constant-Factor Approximation for Directed Latency in Quasi-Polynomial Time

Now consider a solution P with d′(P) ≤ α(n) ·OPT ′. As d′ is a metric, we may assume P
is a Hamiltonian path so P traverses n edges. By replacing each edge in P with its shortest
path using distances d′′, we obtain a walk W with d′′(W) = d′(P) ≤ α(n) ·OPT ′. For each
edge uv, we have d′′(u, v) + 1 ≥ cu,v · n

4

ν·ε . So the cost of W under d can be bounded as
follows where sums over edges in W include as many terms of uv as its multiplicity in W .

c(W) ≤ ε · ν
n4 ·

∑
uv∈W

(d′′(u, v) + 1)

= ε · ν
n4 · (d

′′(W) + |W |)

≤ ε · ν
n4 · (α(n) ·OPT ′ + |W |)

≤ α(n) ·OPT + ε · ν
n2

≤ (α(n) + ε) ·OPT.

The last two bounds use |W | ≤ n · |P | ≤ n2 and ν ≤ n2 ·OPT . J

On Compact RAC Drawings
Henry Förster
Wilhelm-Schickard-Institut für Informatik, University of Tübingen, Germany
foersth@informatik.uni-tuebingen.de

Michael Kaufmann
Wilhelm-Schickard-Institut für Informatik, University of Tübingen, Germany
mk@informatik.uni-tuebingen.de

Abstract
We present new bounds for the required area of Right Angle Crossing (RAC) drawings for complete
graphs, i.e. drawings where any two crossing edges are perpendicular to each other. First, we
improve upon results by Didimo et al. [15] and Di Giacomo et al. [12] by showing how to compute a
RAC drawing with three bends per edge in cubic area. We also show that quadratic area can be
achieved when allowing eight bends per edge in general or with three bends per edge for p-partite
graphs. As a counterpart, we prove that in general quadratic area is not sufficient for RAC drawings
with three bends per edge.

2012 ACM Subject Classification Mathematics of computing → Graphs and surfaces; Theory
of computation → Graph algorithms analysis; Mathematics of computing → Graph algorithms;
Human-centered computing → Graph drawings

Keywords and phrases RAC drawings, visualization of dense graphs, compact drawings

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.53

Acknowledgements We thank Patrizio Angelini for useful discussions and proofreading and the
anonymous referees of an earlier version for helpful comments.

1 Introduction

Graphs that appear in real-world applications are in fact mostly nonplanar. Experiments on
the human perception of graph drawings indicate that two important parameters affecting
readability are angles formed by two edges at their crossing points (the larger the better) [20,
21] as well as the number of bends along an edge (the fewer the better) [24, 25]. The first
theoretical drawing model that has taken these experimental results into account is the
so-called RAC (or right-angle-crossing) drawing introduced in [15]. In some sense, the
RAC model generalizes the popular orthogonal graph drawing model [17]. Formally, a RAC
drawing is a node-link drawing of a graph, in which edges are drawn as polylines so that
the angles formed at the crossing points of two edges are always equal to π/2. Since a RAC
drawing is a geometric embedding, in most studies on RAC drawings the number of bends
per edge has also been taken into account. In the following, we denote a RAC drawing with
at most k bends per edge as a RACk drawing.

Many main research questions of graph drawing have been studied for RAC drawings.
Regarding their density, already Didimo et al. [15] showed that graphs admitting straight-line
RAC drawings have at most 4n−10 edges, which is a tight bound. They also showed that the
density for graphs admitting RAC1 or RAC2 drawings is subquadratic, whereas all graphs
admit a RAC3 drawing. Subsequently, Arikushi et al. [6] showed that graphs admitting a
RAC1 drawing can only have 6.5n− 13 edges, while graphs admitting RAC2 drawings can
have at most 74.2n edges; the former bound for RAC1 drawings was recently improved by
Angelini et al. [2] to 5.5n− 11. The recognition problem for graphs admitting straight-line
RAC drawings is known to be NP-hard [5], even in the case where the resulting drawing must

© Henry Förster and Michael Kaufmann;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 53; pp. 53:1–53:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1441-4189
mailto:foersth@informatik.uni-tuebingen.de
https://orcid.org/0000-0001-9186-3538
mailto:mk@informatik.uni-tuebingen.de
https://doi.org/10.4230/LIPIcs.ESA.2020.53
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 On Compact RAC Drawings

Table 1 Overview of area bounds on RAC drawings of general graphs.

Known Results Our New Results
RAC3: O(n4) [15] RAC3: O(n3)
RAC4: O(n3) [12] RAC3 (p-partite): O(p4n2)

RAC≥ 3: Ω(n2) [15] RAC3: ω(n2)

RAC6: O(n2.75) [26] RAC8: O(n2)

be upward [3] or 1-planar [8]. Note that a k-planar graph is a graph which admits a drawing
where every edge is crossed at most k times. While the recognition of graphs admitting
RAC3 drawings is trivial, the corresponding problem for graphs admitting RAC1 or RAC2
drawings is yet unsettled. Curiously, the maximally dense graphs admitting straight-line
RAC drawings have been shown to be 1-planar [18]. In addition, subclasses of 1-planar
graphs have been investigated: Brandenburg et al. [9] proved that all IC-planar graphs
admit a straight-line RAC drawing, which has been shown to be not true for NIC-planar
graphs [7]. IC-planar and NIC-planar graphs are graphs with a 1-planar drawing where the
set of vertices involved in a crossing shares at most zero and one vertices with the set of
vertices involved in a different crossing, respectively. Di Giacomo et al. [11] and Hong and
Nagamochi [19] studied variants of RAC drawings with restricted vertex positioning in the
straight-line setting. Angelini et al. [3] showed that all graphs of maximum degree three
admit a RAC1 drawing, whereas graphs of maximum degree six admit a RAC2 drawing.

To evaluate the area of RAC drawings, vertices and bends are assumed to be located
on an integer grid. The area of a drawing then is the product of the number of horizontal
and vertical grid lines appearing in a bounding axis-aligned rectangle. It is known that even
planar graphs may still require quadratic area in any straight-line RAC drawing [3]. Recently,
Chaplick et al. [10] showed that NIC planar graphs admit RAC1 drawings in polynomial area,
whereas 1-planar graphs admit RAC2 drawings in polynomial area. The drawing algorithm
by Didimo et al. [15] achieves RAC3 drawings in O(n4) area. Subsequently, Di Giacomo
et al. [12] improved the area to O(n3) for RAC4 drawings and Rahmati and Emami [26]
recently achieved O(n2.75) area for RAC6 drawings. For the closely related family of LAC
graphs (short for large-angle-crossing), in which edges may cross at angles at least π/2− ε for
some small ε > 0, Di Giacomo et al. [12] also showed that the complete graph on n vertices
admits a drawing with one bend per edge in O(n2(cot ε/2)2) area, which can be assumed
to be O(n2) area for fixed values of ε. Note however that for very small values of ε such as
π/180, the multiplicative constant is very large and may therefore be infeasible in practise.
For further results on LAC drawings see also [4, 16].

It is noteworthy that these drawing algorithms only place vertices and bends on an
integer grid while crossings may occur on non-grid points. The positions of crossings are
implicitly defined by the positions of endpoints of the intersecting segments. Since by the
crossing lemma [1, 22] there are Ω(n4) crossings in the complete graph Kn, it is impossible
to achieve an area bound of o(n4) if also the crossings are required to be on the grid. In
the variant where crossings are located on the grid, the algorithm by Didimo et al. [15] for
RAC3 drawings in O(n4) area yields optimal solutions. We emphasize that it is not trivial
to compute RAC drawings with O(n2) area with additional bends as only O(1) bends per
edge can fit in O(n2) area. Finally, tradeoffs between area and planar thickness [14] as well
as number of crossings per edge [13] also have been investigated.

H. Förster and M. Kaufmann 53:3

Figure 1 RAC3 drawing of K5 in 21× 7 area.

We emphasize that we study simple graphs on n vertices, i.e., graphs without self-loops
and parallel edges. The restriction to simple graphs is common in this line of research as
each edge connecting the same vertices must be assigned distinct positions for its bends.
In Section 2, we give new area upper bounds. We prove that every graph admits a RAC3
drawing in O(n3) area improving the known bound by a factor of n. Also, we show that
even O(n2) area can be achieved when eight bends per edge are allowed or when the input
graph is p-partite. Then, in Section 3, we prove that quadratic area cannot be achieved in
general for RAC3 drawings. See also Table 1 for an overview of our new results compared to
results from the literature. We conclude the paper with some open problems.

2 New Area Upper Bounds for RAC Drawings

I Theorem 1.
1. Every n-vertex graph G = (V,E) admits a RAC3 drawing in O(n3) area.
2. Every n-vertex graph G = (V,E) admits a RAC8 drawing in O(n2) area.
3. Every p-partite n-vertex graph G = (V,E) admits a RAC3 drawing in O(p4n2) area.

Proof (of Result 1). Our algorithm is a refinement of the algorithm by Didimo et al. [15].
Note that it is easy to see that the drawings produced by the algorithm in [15] require Θ(n4)
area as two bends for each edge are located on a horizontal line.

For an example of a drawing of K5 refer to Fig. 1. The vertices and the segments incident
to vertices are drawn planar in a disjoint region of quadratic area for each vertex; see the
gray regions in Fig. 1. In contrast to [15], each vertex (except for the outermost two) is
incident to two types of bends (white and black squares in Fig. 1) which lead to vertices with
larger and smaller indices, resp. The remaining two segments of edges use nearly horizontal
or nearly vertical slopes.

We number the vertices arbitrarily from 0 to n−1. We place vertex vi at position (i ·n, 0);
see white disks in Fig. 1. The three bends of edge (vi, vj) with i < j are placed as follows:
Bend ai,j connected to vi is placed at (i · n+ 1, j − i− 1); see white squares in Fig. 1. The
middle bend bi,j is placed at (i · n+ 2, n+ j − i− 2); see gray squares in Fig. 1. Bend ci,j

connected to vj is placed at (j · n− j + i+ 2, n− 2); see black squares in Fig. 1.
It remains to show that the resulting drawing is indeed RAC. Consider the start segments

incident to vertex vi, i.e., segments of types (vi, ai,j) for (vi, vj) ∈ E and (vi, cj,i) for
(vj , vi) ∈ E. Together with vi they form a fan and do not intersect each other as the bend
points of types ai,j and cj,i are distinct. Note that while a0,n−1 is located at (1, n− 2), for
other vertices vi the bend ci−1,i is located at (i · n + 1, n − 2). These fans are drawn in
disjoint start regions (gray shaded areas in Fig. 1); more precisely, the fan of vi is located
within a rectangle ranging from 0 to n− 2 in y-direction and from (i− 1) · n+ 3 to i · n+ 1
in x-direction. Since all segments (bi,j , ci,j) are located above the start regions and because

ESA 2020

53:4 On Compact RAC Drawings

Vertex Area

M
atching

A
rea

(a)

(b)

(c)

Figure 2 (a) RAC8 drawing of K5 in 55× 47 area, (b)–(c) zoom into vertex and matching area.

segments (ai,j , bi,j) are located between x-coordinates i · n+ 1 and i · n+ 2 (i.e., they are
located between two start regions), there are no crossings within start regions. As all crossings
occur between segments of type (ai,j , bi,j) (which have slope n − 1) and (bi,j , ci,j) (which
have slope −1/(n− 1)), all proper crossings are at right angles.

It remains to prove that there are no overlaps. Recall that bend points in each start
region are distinct, hence, we consider only the remaining segments. Segments of edges with
a common endpoint cannot overlap. As the regions containing edges (ai,j , bi,j) and (ak,l, bk,l)
for i 6= k are disjoint, overlaps may only occur at segments (bi,j , ci,j) and (bk,l, ck,l) for some
i 6= k. Since both segments have the same slope and their crossings with the horizontal at
y = n− 2 (dashed in Fig. 1) are distinct (i.e., ci,j and ck,l), they also do not overlap.

As the lowest x- and y-coordinates are both 0 whereas the largest x- and y-coordinates
are (n− 1)n+ 1 and 2n− 3, resp., the area bound follows.

Proof (of Result 2). We describe how to draw Kn for odd n in quadratic area. For even
n, refer to the construction of Kn+1. For an example of a drawing of K5 refer to Fig. 2. We
number the vertices arbitrarily from 0 to n− 1. The general idea is as follows: vertices and
start segments are located in the vertex area such that each start segment bend is connected
to a segment whose slope is slightly less than 1; see Fig. 2b. Edges are treated as two half
edges that are routed to the matching area independently with segments of slopes s and
−1/s. One half edge is routed to the top left half of the matching area (gray bends in Fig. 2a)
and the other half edge is routed to the bottom right half (black bends in Fig. 2a). In the
matching area half edges are matched crossing-free realizing an edge for each pair of vertices;
see Fig. 2c. We point out that in principle each half edge may be routed to either half of the
matching area. When we define the matching of the bends in the matching area, we will
show which half edges have to be routed to which half of the matching area.

We place vertex vi at position (i,−i); see white circles in Fig. 2b. Let ej
i be the j-th half

edge incident to vertex vi for 0 ≤ j < n− 2. We place the bend of ej
i that is closest to vi

at (i+ j + 1, j − i); see white squares in Fig. 2b. Bends incident to the same vertex vi are

H. Förster and M. Kaufmann 53:5

e00

e01

e0n−1

. . .

. . .

. . .

. .
.

e10

e11

e1n−1

en−2
0

en−2
1

en−2
n−1

(a)

1 times
span 1

2 times
span 2

3 times
span 3

4 times
span 4

e00 e01 e02 e03 e04 e10 e11 e12 e13 e14 e20 e21 e22 e23 e24 e30 e31 e32 e33 e34

(b)

Figure 3 (a) Accessability of matching bends in the top left half of the matching area, and
(b) matching assignment for n = 5 used for the drawing in Fig. 2.

located on a diagonal of slope 1 and all start segments of vi are above this diagonal. Since vi

is located below the diagonal of vertex vi−1, start segments do not intersect each other and
all n · (n− 1) start segment bends are within a rectangle of quadratic area tilted by π/4.

We choose s = (2n− 1)/2n achieving the following: If n · (n− 1) bends are located in a
rectangle R as defined by the start segment bends and a segment of slope s is added to each
of these points, the next integer point used by any of those segments is located outside of
R. This procedure “copies” the bends at k · 2n horizontal and k · (2n− 1) vertical distance
for k ∈ Z. A similar property holds for segments of slope −1/s. Further, since s is slightly
less than 1 and start segments are above the line of slope 1 through start segment bends,
those additional segments of slope s do not intersect any start segment; see Fig. 2b. In the
matching area all bends in the top left (bottom right, resp.) half are accessible from the
bottom right (top left, resp.) without intersections; see Fig. 2c.

Next, we define the bend points of half edge ej
i leading from vertex to matching area.

Recall that the bend in the vertex area (white squares in Fig. 2a) is at (i+j+1, j− i). If ej
i is

routed to the top left half of the matching area, we place one bend at (2n+i+j+1, 2n+j−i−1)
(gray squares in Fig. 2a) and enter the matching area with a bend at (4n+ i+ j, j− i−1) (see
gray circles in Fig. 2a). If ej

i is routed to the bottom right half of the matching area, we instead
create a sequence of three bends at (4n+i+j+1, 4n+j−i−2), (10n+i+j−2,−2n+j−i−2)
and (8n+ i+ j−2,−4n+ j− i−1) (see black squares in Fig. 2a) and enter the matching area
with a bend at (6n+ i+ j − 1,−2n+ j − i− 1) (see black circles in Fig. 2a). The leftmost
x-coordinate is 0 (for vertex v0), while the rightmost one is 12n − 5 (for a bend of en−2

n−1).
Conversely, the topmost y-coordinate is 5n− 4 (for a bend of en−2

0) while the bottommost
one is −5n (for a bend of e0

n−1). Hence, the drawing requires (12n− 5)× (10n− 3) area.
It remains to show that matching segments between matching bends are crossing-free.

Consider the accessibility of matching bends from the other half of the matching area: Each
matching bend in the top left half of the matching area is accessible from below the diagonal
of slope −1 passing through it, since from above its incident segment of slope −1/s is forming
an obstacle. A similar statement is true for matching bends in the bottom right half of the
matching area. We can use this observation to define an ordering of the matching bends
based on their accessability. The first accessible matching bend is of half edge e0

0; i.e., incident
to v0, the second is of e0

1; i.e., incident to v1. This pattern continues increasing in i until all
e0

i are encountered; see Fig. 3a. Afterwards, all e1
i are encountered, in increasing order of i.

This pattern repeats increasing in j, until all half edges ej
i are encountered, in increasing

order of i; see Fig. 3a.

ESA 2020

53:6 On Compact RAC Drawings

ej0
ej1

ejn−1

ej0
ej1

ejn−1

ej+1
0

ej+1
1

ej+1
n−1

ej+1
0

ej+1
1

ej+1
n−1

Figure 4 Area for drawing matching segments of half edges ej
i and ej+1

k .

We use the two linear orders of matching bends to define a planar matching between both
halves of the matching area. Note that both linear orders are identical; see Fig. 3b. The
matching that we define has two properties: First, the distance between matched bends in
the linear order is bounded by n− 1. Second, the matching ensures that every pair of vertices
is connected exactly once. We now describe the specific matching: First, we connect the first
matching bend of the bottom right half of the matching area with the second matching bend
of the top left half of the matching area. Then, we connect the next two matching bends of
the bottom right half of the matching area with the following two matching bends of the top
left half of the matching area. We continue this pattern while always increasing the size of the
groups of matched pairs by one which also increases the span of the matching segments, i.e.,
the distance between the connected matching bends in the linear order; see Fig. 3b. Then,
there are exactly k matching segments of span k for all values 1 ≤ k ≤ n− 1. A matching
segment of span k connects a vertex vi whose bend is in the bottom right half of the matching
area with vertex v(i+k)mod n, i.e. with the neighbor whose index is k larger in the cyclic order
of vertices. We prove that every pair of vertices is matched exactly once using that n is odd
and that therefore the distance of vertices in the cyclic order is at most (n− 1)/2. Due to
cyclicity, segments with span n− k > (n− 1)/2 correspond to a connection from vertex vi in
the top left half of the matching area to vertex v(i−(n−k))mod n = v(i+k)mod n, i.e. again to
the neighbor whose index is k larger in the cyclic order of vertices. Hence, for k ≤ (n− 1)/2,
there are k segments of span k and n− k segments of span n− k, which means that in total
n vertices are matched to their neighbors whose indices are k larger. In order to see that all
of them are distinct, we apply a recursive argument: Clearly, this is true for k = 1. Assume
that all matching segments of spans k and n− k had different neighbors, then remove the
matched bends that were matched with span k (n− k, resp.) from the left (right, resp.) end
of the linear order. In total, we remove 2n vertices each from the ends of both linear orders,
i.e., 2k from the left and 2(n− k) from the right, before finding the segments of spans k + 1
and n− (k + 1). Thus, their endpoints differ.

Finally, we show that the matching segments are planar straight-line segments. First
observe that since the span of segments is at most n− 1, half edge ej

i is matched with a half
edge e`

k for ` ∈ {j, j + 1}. Further, notice that the diagonal on which the matching bends of
the j-th half edges in the top left half of the matching area are located is halfway in between
the corresponding diagonals for the matching bends of the j-th and j + 1-th half edges in
the bottom right half; see Fig. 4. We show that the intersection of the line through the bend
of ej+1

0 in the top left half and the bend of ej
0 in the bottom right half of the matching area

crosses the diagonal through the bends of ej
0 and ej

n−1 in the top left half of the matching

H. Förster and M. Kaufmann 53:7

Figure 5 RAC3 drawing of K3,3,3 in 46× 28 area.

area to the right of the bend of ej
n−1; see crosses in Fig. 4. A symmetric property follows for

bottom right half and consequently, segments between the j-th and j + 1-th half edge are
crossing-free. The first line goes through points (4n+ j + 1, j) (bend of ej+1

0 in the top left
half of the matching area) and (6n+ j − 1,−2n+ j − 1) (bend of ej

0 in the bottom right half
of the matching area) and hence has slope −(2n+ 1)/(2n− 2). The second line goes through
point (5n+ j − 1,−n+ j) (bend of ej

n−1 in the top left half of the matching area) and has
slope −1. We compute the two line equations based on the fact that we know a point on
each line and the corresponding slopes:

y = −2n+ 1
2n− 2x+ 8n2 + 4nj + 6n− j + 1

2n− 2 and y = −x+ 4n+ j + 1

and the x-coordinate of the intersection point x = 16/3n+ j − 1/3 that is to the right of the
bend of ej

n−1 in the top left half of the matching area as claimed.

Proof (of Result 3). We describe how to draw K(np)p
, the complete p-partite graph with

np vertices per partition. Refer to Fig. 5 for an example drawing of K3,3,3. If the partitions
have different sizes, we augment the graph to K(np)p

where np is the number of vertices in
the largest partition. Note that np < n and pnp ≥ n. We number the partitions arbitrarily
from 0 to p− 1 and the vertices in each partition from 0 to np − 1. Let vj

i denote the i-th
vertex of the j-th partition.

We position vertex vj
i at (2pnpj + 2npj − j, 2i − j); see white circles in Fig. 5. Edge

(vj
i , v

`
k) with j < ` is drawn with the following three bends:

The bend incident to vertex vj
i is located at (2pnpj + np` + npj + k − i − j + 1, np` −

npj + i+ k − j); see white squares in Fig. 5.
The middle bend is located at (pnp`+ pnpj + np`+ npj + k − i− j + 1, pnp`− pnpj +
np`− npj + i+ k − `); see gray squares in Fig. 5.
The bend incident to vertex v`

k is located at (2pnp` + np` + npj + k − i − ` + 1, np` −
npj + i+ k − `); see black squares in Fig. 5.

ESA 2020

53:8 On Compact RAC Drawings

Figure 6 Detail of the vertex stars of the middle partition in Fig. 5.

The lowest x-coordinate assigned is 0 (for vertices in partition 0), while the highest x-
coordinate assigned is 2p2np − 2np − p + 1 (for vertices in partition p − 1). Conversely,
the lowest y-coordinate is −p + 1 (for vertex vp−1

0) whereas the largest y-coordinate is
p2np + np − p− 1 (for the middle bend of edge (v0

np−1, v
p−1
np−1)). Since pnp ≤ pn, it follows,

that the total area is O(p4n2).
It remains to discuss that the resulting drawing is RAC. First we have a look at the

segments incident to the middle bend (i.e., the segments which are not start segments).
All of these segments have slopes (n− 1)/n (between white and gray squares in Fig. 5) or
−n/(n− 1) (between black and gray squares in Fig. 5). Hence, each pair of these segments
is either parallel or perpendicular.

Next, we show that start segments of different partitions do not intersect; see gray shaded
areas in Fig. 5. To see this, we consider the rightmost bend incident to a vertex of partition
j and the leftmost incident to a vertex of partition ` such that j < `. The rightmost
bend of partition j belongs to edge (vj

0, v
p−1
np−1) and has x-coordinate 2pnpj + pnp + npj − j

whereas the leftmost bend of partition ` belongs to edge (v0
np−1, v

`
0) and has x-coordinate

2pnp`+ np`− np − `+ 2, i.e., at least 2pnpj + 2pnp + npj − j + 1 since ` ≥ j + 1. Hence, the
leftmost bend of partition ` is at least pnp + 1 ≥ n+ 1 units right of the rightmost bend of
partition j. Hence, start segments from different partitions cannot intersect.

In addition, we establish that middle bends are located outside of vertex fans. To see this,
consider the topmost bend of a vertex fan of partition j. This is either yr = pnp+np−npj−j−2
(bend of edge (vj

np−1, v
p−1
np−1)) or y` = npj + 2np − j − 2 (bend of edge (v0

np−1, v
j
np−1)). Since

middle bends appear in groups of n2
p bends, we only consider the lowest of these bends which

is always incident to two vertices va
0 and vb

0 for some partitions a and b such that b > a.
The y-coordinate of this bend is equal to ym = pnp(b− a) + np(b− a)− b. Clearly, ym ≤ yr

is only possible if (b − a) = 1 and b ≥ j + 2 in which case the middle bends are between
two partitions whose start segments are to the right of the start segments of partition j

(and hence the middle bends are to the right as well). Also since (b− a) ≥ 1, it holds that
ym ≥ pnp + np − b and, since b ≤ p − 1, also ym ≥ pnp + np − p + 1. However, even for
j = p− 1 it holds that y` = pnp + np − p− 1 and hence y` < ym.

Next, we show planarity for the start segments. We first observe that each vertex vj
i is

incident to two sets of bends, namely,
those that belong to an edge (v`

k, v
j
i) for some ` < j. These are located on a diagonal

with slope −1 left of the vertex; see black squares in Fig. 5. We will refer to these as the
left bends of the vertex fan.
those that belong to an edge (vj

i , v
`
k) for some ` > j. These are located on a diagonal

with slope 1 right of the vertex; see white squares in Fig. 5. We will refer to these as the
right bends of the vertex fan.

H. Förster and M. Kaufmann 53:9

We will show that vj
i is located on the intersection of the diagonal with slope −1 located

one unit below the diagonal through its left bends and the diagonal with slope 1 located
one unit above the diagonal through its right bends; see dashed diagonals in Fig. 6. Hence,
the start segments do not intersect segments between its start segment bends and the
corresponding middle bends. Also, since the latter “middle” segments have slope (n− 1)/n
or −n/(n− 1) the start segments of vertex vj

i do not intersect middle segments of vertices
vj

i−1 and vj
i+1 (as their middle segments only intersect the diagonal defining the position of

vj
i after moving n or n− 1 units to the left/right).

The diagonal located one unit below the left vertex fan bends passes through the point
p` = (2pnpj + npj + i − j + 1, npj + i − j − 1) (one unit below the bend of edge (v0

0 , v
j
i).

It is easy to verify that (2pnpj + 2npj − j, 2i− j) = (1,−1) · (npj − i− 1) + p`. Similarly,
the diagonal located one unit above the right vertex fan bends passes through the point
pr = (2pnpj+ 2npj+np− i− j+ 1, np + i− j+ 1) (one unit above the bend of edge (vj

i , v
j+1
0).

It holds that (2pnpj + 2npj − j, 2i− j) = (−1,−1) · (np − i+ 1) + pr as required.
Next, we show that the start segments of partition j do not intersect the middle segments

incident to a start segment bend of partition ` 6= j. To do so, we show that the middle segments
of partition ` are located above all start segments. Recall that the topmost y-coordinate of a
right bend in j occurs on edge (vj

np−1, v
p
np−1) and is equal to pnp − npj + 2np − j − 2, and

that the topmost y-coordinate of a left bend in j occurs on edge (v0
np−1, v

j
np−1) and is equal

to npj + 2np − j − 2. Thus, the topmost y-coordinate of any start segment bend is at most
pnp + 2np − j − 2. We consider two cases.

First, consider the case ` > j. Further assume that ` = j+ 1 since the middle segments of
partition `′ > ` are located above those of partition `. As established earlier, the horizontal
distance between the start regions of partitions j and ` is at least pnp + 1. Observe that at
the leftmost x-coordinate of the start region of partition `, we encounter the left bend of
(v0

np−1), v`
0) with y-coordinate np`+np− `− 1 = npj + 2np− j− 2. On the other hand, if we

continue k units in x-direction, we have distance pnp + 1 towards partition j and encounter
a left bend with y-coordinate npj + 2np − j − 2− k. Because the slope of middle segments
incident to left bends is −pnp/(pnp − 1), any such middle segment has y-coordinate at least
(pnp+1+k)· pnp

pnp−1 +npj+2np−j−2−k > pnp+k+npj+2np−j−2−k = pnp+npj+2np−j−2
which is larger than pnp + 2np − j − 2. Hence, such a middle segment is above each start
segment of region j.

Second, assume that ` < j. Here, we can assume that ` = j − 1 by a similar argument as
before. Again, the horizontal distance between the start segment bends of partitions j and ` is
at least pnp +1. At the rightmost x-coordinate that belongs to the start region of partition ` is
the right bend of edge (v`

0, v
p−1
np−1) with y-coordinate pnp−np`+np−`−2 = pnp−npj+2np−

j−1. If we continue k units in negative x-direction, we have a minimum distance of pnp +1+k
towards partition j and encounter a left bend with y-coordinate pnp − npj + 2np − j − 1− k.
Recall that the slope of middle segments incident to such bends is (pnp − 1)/pnp. Note that
such middle segment has y-coordinate at least (pnp+1+k)· pnp−1

pnp
+pnp−npj+2np−j−1−k =

2pnp−npj+2np− j−2+−k/pnp when above a start segment of region j. Since k < jnp, we
have that 2pnp−npj+ 2np− j− 2 +−k/pnp > 2pnp−npj+ 2np− j− 2 +−j/p. In addition,
j ≤ (p−1) and we conclude that 2pnp−npj+2np−j−2+−j/p > pnp +3np−j−2−(p−1)(p)
which is larger than pnp + 2np − j − 2.

We conclude that middle segments of other partitions do not enter the start regions
of other partitions. Finally, we only have to show that no two bends overlap and that no
bend is located on an independent segment. First consider the start segment bends. Since
middle bends are not inside vertex start regions, the only segments to consider here are the

ESA 2020

53:10 On Compact RAC Drawings

middle segments incident to the same partition. These clearly do not overlap any of the
start segment bends since the next grid points are located at least n− 1 = pnp − 1 to the
left/right while there are only at most (p− 1)np = pnp − np bends each using consecutive
x-coordinates.

Since the middle segments only shift the gridlike structure of start segment bends of the
same partition, it follows, that no two bends of the same partition can overlap and that no
bend is located on an independent segment from the same partition. Middle segments of two
different partitions cannot overlap as well, as that would imply that one of the middle edges
would pass through a start segment bend of the other partition. This is not possible since
start segments of different partitions are at least n+ 1 units horizontally apart from each
other while their (consecutively pairwise) vertical distance is one. J

Since k-planar graphs are Θ(
√
k)-vertex colorable [23], we also obtain:

I Corollary 2. Every n-vertex k-planar graph admits a (not necessarily k-planar) RAC3
drawing in O(k2n2) area.

3 An Area Lower Bound for RAC3 Drawings

We show that O(n2) area cannot be achieved for RAC3 drawings in general. We give an
outline of our proof by contradiction: First, we show there are Ω(n2) edges that have Ω(n4)
crossings on two sets Si and Ti of parallel segments of maximum cardinality, where segments
in Si are perpendicular to segments in Ti and may intersect. Moreover, there must exist
Ω(n2) edges with both a segment in Si and in Ti. Then, we derive properties on the length of
the segments in Si and Ti depending on their slope. This allows us to subdivide the drawing
area into a constant number of disjoint regions R, which can contain only one endpoint of
a segment from Si or from Ti of the same edge. We then restrict the possible positions of
vertices incident to such endpoints located in a region R ∈ R. As a result, in Lemma 13, we
obtain that the edges with both a segment from Si and a segment from Ti induce a subgraph
which is p-partite for some p > 1 except for a linear number of so-called complete edges.
Based on this observation, in the proof of Theorem 14, we identify a complete subgraph
which has too few edges with both a segment from Si and from Ti leading to a contradiction.

I Lemma 3. Let Γ be a RAC drawing of Kn with O(1) bends per edge. Then there exist
two sets of parallel edge segments Si and Ti with cardinalities |Si| = Ω(n2) and |Ti| = Ω(n2)
in Γ such that the segments of Si are perpendicular to the segments of Ti.

Proof. We use the following two properties: First, by the crossing lemma, there are Ω(n4)
crossings in any drawing of Kn. Second, all crossings appear between perpendicular edge
segments. We partition the set of segments of the drawing based on their slopes. More
precisely, for some k ∈ N, there are 2(k + 1) sets of edge segments S0, . . . , Sk and T0, . . . , Tk

such that Si and Ti are perpendicular to each other. W.l.o.g. also assume that |Si| ≥ |Ti|
and that |Ti| ≥ |Ti+1|. Since each edge has O(1) bends, there are at most cn2 segments
assigned to either set Si for a constant c. Then, |S0|+

∑k
i=1 |Si| = cn2 or in other words

|S0| = cn2 −
∑k

i=1 |Si|. Hence, we obtain the following relation for the number of crossings:

Ω(n4) ≤ cr(Γ) ≤ |S0||T0|+
k∑

i=1
|Si||Ti| =

(
cn2 −

k∑
i=1
|Si|

)
|T0|+

k∑
i=1
|Si||Ti|

= cn2|T0| −
k∑

i=1
(|T0| − |Ti|)|Si| ≤ cn2|T0|

which implies that |S0| = Ω(n2) and |T0| = Ω(n2). J

H. Förster and M. Kaufmann 53:11

(a) (b) (c) (d) (e)

Figure 7 (a)–(b) Two edges belonging to EST
i , (c) an edge belonging to ES

i , (d) an edge belonging
to ET

i , and, (e) an edge belonging to none of ES
i , ET

i and EST
i . Segments belonging to Si are drawn

bold and solid, segments belonging to Ti bold and dashed.

We show another property of edge sets contributing Ω(n4) crossings. To this end, we
consider all maximal sets of parallel edge segments that are involved in Ω(n4) crossings and
we partition these sets into two families S = {S1, . . . , Sk} and T = {T1, . . . , Tk} such that
the segments in Si and Ti are perpendicular while the segments in Si and Sj ∪ Tj for j 6= i

are not. Observe that in contrast to the proof of Lemma 3, we now only consider segment
sets Si and Ti involved in Ω(n4) crossings. Note that in a drawing with O(1) bends per edge,
k is constant. In the following, we will discuss properties of pairs of sets Si ∈ S and Ti ∈ T .
Let ES

i (ET
i , resp.) denote the set of edges with segments from Si (Ti, resp.) but not from

Ti (Si, resp.), and EST
i the set of edges with segments from both Si and Ti; see Fig. 7 for an

illustration. In addition, let ESX
i,j denote the set of edges with segments from both Si and

from Xj where X ∈ S, T and let ET X
i,j from both Ti and from Xj where X ∈ S, T . Note that

EST
i,i = EST

i . The next lemmas show that there are Si and Ti with |EST
i | = Ω(n2).

I Lemma 4. Let Γ be a RAC drawing of Kn with O(1) bends per edge. Then, there exists
either sets Si ∈ S, Xj ∈ S ∪ T such that |ESX

i,j | = Ω(n2), or sets Ti ∈ T , Xj ∈ S ∪ T such
that |ET X

i,j | = Ω(n2).

Proof. First, if |ESX
i,j | = Ω(n2) for some Si ∈ S and Xj ∈ S ∪ T or if |ET X

i,j | = Ω(n2) for
some Ti ∈ T and Xj ∈ S ∪ T with i 6= j; the lemma holds. Otherwise |ESX

i,j | = o(n2) for all
Si ∈ S and Xj ∈ S ∪ T and |ET X

i,j | = o(n2) for all Ti ∈ T and Xj ∈ S ∪ T with i 6= j. For a
contradiction, also assume that |EST

i | = o(n2) for all 1 ≤ i ≤ k. Hence, EST
i participates

in o(n4) crossings. Also, assume w.l.o.g. that |
⋃k

i=1 E
S
i | ≥ |

⋃k
i=1 E

T
i |. Consider the graph

G′ = Kn \
⋃k

i=1 E
T
i . Since G′ contains

⋃k
i=1 E

S
i , G′ still has Ω(n2) edges by Lemma 3. In Γ,

there exists a valid subdrawing Γ′ of G′. In Γ′, by the crossing lemma, there still must be
Ω(n4) crossings between ES

i and EST
i over all i. However, there are o(n4) crossings in Γ′

from EST
i for 1 ≤ i ≤ k; a contradiction for constant k. J

I Lemma 5. Let Γ be a RAC3 drawing of Kn. Then, |ESX
i,j | = o(n2) for each pair of sets

Si ∈ S, Xj ∈ S ∪ T with i 6= j and |ET X
i,j | = o(n2) for each pair of sets Ti ∈ T , Xj ∈ S ∪ T

with i 6= j.

Proof. Assume w.l.o.g. that |EST
i,j | = Ω(n2). Since only two start segments per vertex can

belong to Si and Tj , respectively, there are Ω(n2) edges in EST
i,j , where the segments from Si

and Tj are not start segments. Let ẼST
i,j denote this set of edges. Consider the start segments

of ẼST
i,j and let Pstart = {P1, . . . , Pr} be a partitioning of the start segments into maximal

sets of parallel segments. Since each vertex can be incident to only two start segments of
the same slope, it follows that |P`| = O(n) for all 1 ≤ ` ≤ r. Hence, there are only O(n2)
intersections between a perpendicular pair of start segments in ẼST

i,j . Similarly, if P` is
perpendicular to Si or Tj , it takes part in only O(n3) intersections.

Consider the subgraph G′ induced by ẼST
i,j . Note that G′ has Ω(n2) edges and hence

by the crossing lemma it must have Ω(n4) crossings. However, as established earlier, the
subdrawing in Γ of G′ only has O(n3) intersections; a contradiction. J

ESA 2020

53:12 On Compact RAC Drawings

p

qh

w

Figure 8 A fine-horizontal grid line (bold) with slope p/q, and its shared points with the coarse
grid (gray lines).

The following lemma summarizes Lemmas 4 and 5.

I Lemma 6. Let Γ be a RAC3 drawing of Kn. Then, there exists a pair of sets Si ∈ S,
Ti ∈ T such that |EST

i | = Ω(n2), for some 1 ≤ i ≤ k; i.e., |EST
i | ≥ cSTn

2 for an appropriate
constant cST and sufficiently large n.

Next, we investigate one pair of perpendicular segment sets Si ∈ S and Ti ∈ T . In the
following analysis and all illustrations, we assume w.l.o.g. that the slope of segments in Si is
positive. First, we show that segments in Si and Ti follow the grid lines of a finer grid that is
tilted w.r.t. the coarse integer grid containing vertices and bends; see Fig. 8. We use this to
show that segments in Si and Ti are long w.r.t. the smaller side of the bounding rectangle.

I Lemma 7. Let Γ be a RAC drawing of Kn with height h and width w and with O(1) bends
per edge. Also, let s = p/q be the slope of segments in Si ∈ S for coprime integers p and q.
Then,
1. max{p, q} ∈ Ω

(√
n4/(w · h)

)
or pq ∈ Ω

(
n4/max{w2, h2}

)
; and

2. p, q ∈ O(min{w, h}).

Proof. Since the endpoints of each segment are grid points, the slope si of segments in Si

and the slope −1/si of segments in Ti are rational numbers. Hence, the intersections between
Si and Ti are located at points with rational coordinates. By scaling the grid appropriately
(i.e., by the factor of p2 + q2), we achieve integer coordinates for the intersections. In other
words, all intersections are located on a fine grid while vertices and bends are on the integer
grid which we call the coarse grid.

More precisely, the fine grid is defined by the fine-horizontal grid lines of slope si and
by the fine-vertical grid lines of slope −1/si each passing through at least two of the h · w
vertices of the coarse grid. Note that by definition all vertices of the coarse grid are also
vertices of the fine grid. Depending on the values of p and q, we observe that fine grid lines
may pass through more than two points of the coarse grid; see Fig. 8. This limits how many
fine grid lines exist. To see this, consider two consecutive fine-horizontal grid lines `1 and
`2. Both lines `i (for i ∈ {1, 2}) can be expressed by a line formula of form y = p/q · x+ bi.
Since each line passes through integer points it holds that bi = 1/q · ci for some ci ∈ Z. More
precisely, since `1 and `2 are consecutive, |c2 − c1| = 1 and the vertical distance between
two consecutive fine-horizontal grid lines is 1/q. In addition, we can compute the horizontal
distance at the same y-coordinate by setting p/q · x1 + b1 = p/q · x2 + b2. Solving this
equation yields |x2 − x1| = q/p · |b2 − b1| = 1/p · |c2 − c1| = 1/p implying that the horizontal
distance between two consecutive fine-horizontal grid lines is 1/p. Analogously, the horizontal
(vertical, resp.) distance between two fine-vertical grid lines is 1/q (1/p, resp.). Thus, there
are at most Θ(max{wp, hq}) fine-horizonal and Θ(max{wq, hp}) fine-vertical grid lines.

H. Förster and M. Kaufmann 53:13

ω(n)

o(n)

(a)

ω(n)

o(n)

O(h)

(b)

Figure 9 Proof of Lemma 8. If the area is ω(n)× o(n), (a) there are o(n) fine-horizontal grid
lines (black), or, (b) fine-horizontal grid lines intersect O(h2) fine-vertical grid lines (gray) each.

These two sets of grid lines intersect in Θ(max{w2pq, whp2, whq2, h2pq}) grid points,
which must be Ω(n4), the required number of crossings. Thus, max{p, q} ∈ Ω

(√
n4/(w · h)

)
or pq ∈ Ω

(
n4/max{w2, h2}

)
which yields Property 1 of the lemma. Since the endpoints of all

segments are located on the coarse grid, both h,w ≥ max{p, q}, which implies Property 2. J

The following lemma refines Lemma 7 for O(n2) area and shows that both width and
height are O(n) while segments in Si and Ti have Ω(n) length.

I Lemma 8. Let Γ be a RAC drawing of Kn with height h and width w and with O(1) bends
per edge in O(n2) area. Also, let p/q be the slope of segments in Si such that p and q are
coprime. Then,
1. h,w ∈ Θ(n), and,
2. max{p, q} ∈ Θ(n).

Proof. Assume for a contradiction that h = o(n), i.e., w = ω(n). By Lemma 7,
1. max{p, q} ∈ Ω

(√
n4/(w · h)

)
= Ω(n) or pq ∈ Ω(n4/max{w2, h2}) = Ω(h2); and

2. p, q ∈ O(min{w, h}) = O(h)
hold. By Property 2, it can only be pq ∈ Ω(h2) but not max{p, q} ∈ Ω(n). Consider the fine
grid as defined in the proof of Lemma 7. First, if the fine-horizontal grid lines are in fact
horizontal (i.e., p = 0), there can only be O(h) fine-horizontal grid lines since the height of
the drawing is O(h); see Fig. 9a. Otherwise, the slope of the fine-horizontal grid lines is not
horizontal. Recall that p, q ∈ O(h) since the height of the drawing is O(h). Since pq = Ω(h2),
p, q ∈ Θ(h). Hence, fine-horizontal grid lines have only length O(h) inside the bounding box
and can only be crossed by O(h2) fine-vertical grid-lines each; see Fig. 9b. Since h = o(n), it
is impossible to achieve Ω(n4) crossings as in total there are only Θ(n2) fine-horizontal grid
lines. Thus, the assumption h = o(n) leads to a contradiction. It follows that h = Θ(w), and
hence, w ∈ Θ(n) and max{p, q} ∈ Θ(n). J

So far, we considered properties of RAC drawings with O(1) bends per edge. The remain-
ing results in this section hold specifically for RAC3 drawings. Next, we explore connections
realizable with edges in EST

i for a pair of perpendicular sets of segments Si ∈ S and Ti ∈ T .
Based on slope pi/qi of segments in Si for coprime integers pi and qi, consider a checkerboard
partitioning of the drawing area into a set of square-shaped disjoint regions Ri of side
length max{pi, qi}/2 each. By Lemma 8, max{pi, qi} ∈ Θ(n) and h,w ∈ Θ(n); and hence
|Ri| = O(1). By the choice of the slope, the length of segments in Si have to be multiples of√
p2

i + q2
i . In particular, each segment in Si has length larger than max{pi, qi}. Due to the

length of segments in Si and the size of regions, we observe the following:

ESA 2020

53:14 On Compact RAC Drawings

Si Ti
u

v

(a)

R

(b)

R

tun+Si
(R)

(c)

Figure 10 (a) An edge (u, v) whose middle segments (bold) belong to perpendicular set of
segments Si ∈ S and Ti ∈ T . The gray bend incident to u (v, resp.) is an Si(Ti, resp.)-endpoint.
(b) A region R with set of bends ep+

Si
(R) (white squares) and set of bends ep−Si

(R) (gray squares).
(c) A region R with set of bends ep+

Si
(R) (white squares), their corresponding Si-segments, and

tun+
Si

(R).

I Observation 9. At most one endpoint of a segment in Si or Ti is in region R ∈ Ri. All
segments of Si or Ti with an endpoint in R cross the boundary of R.

As each vertex can only be endpoint of two segments in Si and of two segments in Ti,
there are only O(n) start segments in Si and Ti , i.e., segments directly incident to a vertex.
Hence, we only consider the bends of edges with both a middle segment in Si and a middle
segment in Ti where middle segments are segments which are not start segments. Refer to
Fig. 10a for an illustration of such an edge. We refer to bends that are endpoints of a middle
segment in Si and of a start segment as Si-endpoints. Analogously, we define Ti-endpoints.

I Observation 10. Let e ∈ E be an edge with two middle segments from Si and Ti. The
corresponding Si- and Ti-endpoints are located in two disjoint regions of Ri.

Based on Observation 10, consider Si- and Ti-endpoints in a region R ∈ Ri independently.
Let epSi(R) (epTi(R)) denote the set of Si-endpoints (Ti-endpoints, resp.) in R. Further,
epSi

(R) can be subdivided into ep+
Si

(R), i.e. the set of Si-endpoints that are the bottom
endpoints of their corresponding Si-segment, and ep−Si

(R), i.e. the set of Si-endpoints that
are the corresponding top endpoints; see Fig. 10b. In other words, the Si-segment incident
to an endpoint in ep+

Si
(R) leaves R in positive y direction. Similarly, we subdivide epTi(R)

into ep+
Ti

(R) and ep−Ti
(R).

The segments in Si and Ti form obstacles for possible connections of Si- and Ti-endpoints
to vertices. As a result, we will identify regions which have a visibility to many of the vertices
connected to one of the sets of endpoints of region R, say ep+

Si
(R), to which we refer as

tunnels. The Si-tunnel tunSi(R) of R is the region bounded by two lines parallel to the
segments in Si enclosing R. Further, tunSi

(R) is split by R into S+
i -tunnel tun+

Si
(R) below

R (see Fig. 10c) and the S−i -tunnel tun−Si
(R) above R. Similarly, we define Ti-tunnels for R.

Next, we define so-called plausible positions for all but o(n) vertices connected to bends
in ep+

Si
(R); the following analysis can be analogously adapted for bends in ep−Si

(R). To
realize those connections, bends have to be connected to some vertices by a start segment.
Consider the set of slopes A = {0, 1/4, 1/2, 3/4, 1, 4/3, 2, 4,∞} and the two slopes s` ∈ A
and sr ∈ A closest to the slope p/q of segments in Si; see Figure 11a. Further, let α` denote
the angle between slopes s` and p/q and αr the angle between slopes sr and p/q. Observe
that 0 < α`, αr < π/4. The choice of slopes in A is arbitrary and is simply used to discretize
the slope p/q with a new slope whose nominator and denominator can be both expressed as
a constant. For a bend b in ep+

Si
(R), we define a region of S+

i -plausible positions by a wedge
opposite to the attached Si-segment delimited by two rays of slopes s` and sr, resp.; see

H. Förster and M. Kaufmann 53:15

b

s`
sr

α`

αr

(a)

R
α`

αr
tun+Si

(R)

(b)

R

αr

αr

tun+Si
(R)

α`

(c)

Figure 11 (a) Wedge of angle α` + αr at bend b ∈ ep+
Si

(R) yielding S+
i -plausible positions for b.

(b)–(c) S+
i -plausible region plaus+

Si
(R) of R, for different slopes of segments in Si.

Fig. 11a. The union of the plausible positions of all bends in ep+
Si

(R) defines the S+
i -plausible

region plaus+
Si

(R) of R and consists of the union of R, tun+
Si

(R) and two attached wedges
of angles α` and αr, resp., on both sides of tun+

Si
(R). Observe these two wedges may be

attached to two adjacent or two opposite corners of R depending on the slope of segments in
Si; see Figs. 11b and 11c. S−i -, T+

i - and T−i -plausible regions are defined analogously.

I Lemma 11. Let Γ be a RAC3 drawing of Kn in O(n2) area and let R be a region such that
w.l.o.g. |ep+

Si
(R)| = Ω(n2). Vertices outside of plaus+

Si
(R) ∪ tun−Si

(R) are directly connected
to only O(n) bends in ep+

Si
(R) in total.

Proof. The segments in Si can only be crossed by segments of Ti. There are at most two
start segments for each vertex that belong to Ti, hence, only two start segments of each
vertex can cross segments of Si. Those can be neglected as they are only O(n) segments
and, in the following, we only consider start segments with different slopes. Consider an
Si-endpoint b and assume that b is connected to vertex v outside of plaus+

Si
(R) ∪ tun−Si

(R).
Assume w.l.o.g. that v is to the left of plaus+

Si
(R) ∪ tun−Si

(R). The segment connecting b
and v has a slope diverging by more than α` from slope p/q. Hence, b may be attached to
a vertex v to the left of plaus+

Si
(R) only if a ray of slope s` with right endpoint b does not

cross any segment in Si with endpoint in ep+
Si

(R). This is true because the segment between
b and v will intersect at least the segments that are also intersected by the ray of slope s`.

Consider the set of Si-endpoints B for which such a crossing-free ray of slope s` exists; see
Fig. 12a. Note that all rays are parallel and do not overlap. Since all possible slopes s` ∈ A
can be expressed as a quotient p`/q` for p`, q` ∈ O(1) and since all rays hit one integer point,
the minimum distance between two such parallel rays is Ω(1). Since R has size O(n)×O(n),
it follows that there are only O(n) parallel rays of slope s` and hence |B| = O(n). J

In the following, we consider a region R and its set of neighbored regions N (R). A
neighbored region R′ ∈ N (R) is a region obtained by shifting R c1q + c2p units along the
x-axis and c1p− c2q units along the y-axis for integers c1, c2; see Fig. 12b. Note that N (R)
contains projections of R ∈ Ri that are not necessarily part of Ri. Region R′ contains
all Ti-endpoints that are reached from Si-endpoints in R by a segment in Si with length
|c1| ·

√
p2 + q2 followed by a segment in Ti of length |c2| ·

√
p2 + q2. Assume w.l.o.g. that

c1, c2 > 0. Then, the edges with S- and T -endpoints in R and R′, resp., will have a bend
in ep+

Si
(R) and ep+

Ti
(R′). The symmetric cases where c1 < 0 or c2 < 0 are analogous. We

say that a vertex v is an R-vertex if it is directly connected to Ω(n) bends in ep+
Si

(R) but
to only o(n) bends in ep+

Ti
(R′). Conversely, we say that v is an R′-vertex if it is directly

connected to Ω(n) bends in ep+
Ti

(R′) but to only o(n) bends in ep+
Si

(R). In the following, we
show that except for O(n) edges, the edges with S- and T -endpoints in neighbored regions

ESA 2020

53:16 On Compact RAC Drawings

R
α`

(a)

α`

αr
tun+Si

(R) α′
r

α′
`

R

R′

tun+Ti
(R′)

c1q c2p

c1p
c2q

(b)

R R′L v

(c)

Figure 12 (a) Rays of slopes s` (arrows) attached to bends visible from outside plaus+
Si

(R) ∪
tun−Si

(R). (b) Illustration of a region R and one of its neighbored regions R′. (c) Illustration of an
L-tunnel L between region R and R′ ∈ N (R) with a vertex v.

induce a bipartite subgraph between R- and R′-vertices. We refer to those exceptional edges
which are either connecting two R- or R′-vertices or have an endpoint which is neither R-
nor R′-vertex as complete edges. Intuitively speaking, a complete edge connects the set of
R- and R′-vertices which are otherwise behaving like the partitions of a bipartite graph. In
particular, every complete edge
(i) is either incident to a vertex which is neither R- nor R′-vertex, or
(ii) has a start segment that connects an R-vertex with a bend in ep+

Ti
(R′), or,

(iii) has a start segment that connects an R′-vertex with a bend in ep+
Si

(R).
We refer to the special endpoint as a complete endpoint. We first show that vertices in
the intersection of tun−Si

(R) and tun−Ti
(R′) can be complete endpoint for only O(n) edges.

Later, we will consider the case where vertices are not located in the intersection of tun−Si
(R)

and tun−Ti
(R′). Consider a vertex v located in the intersection tun−Si

(R) ∩ tun−Ti
(R′) in a

so-called L-tunnel between R and R′. An L-tunnel is a region bounded by edges with S-
and T -endpoints in R and R′, resp., that is open to both R and R′ such that v can see
into regions R and R′; see Fig. 12c. More precisely, an L-tunnel L is an open subregion of
tun−Si

(R) ∩ tun−Ti
(R′) bounded from below by an alternating sequence of Si and Ti segments

between R and R′ and from above by two segments, one from Si and one from Ti, while it is
bounded to the left by the boundary of R and to the right by the boundary of R′.

I Lemma 12. Let Γ be a RAC3 drawing of Kn in O(n2) area, let R be a region such
that w.l.o.g. |ep+

Si
(R)| = Ω(n2) and let R′ ∈ N (R). There are O(n) complete edges with

both a bend in ep+
Si

(R) and in ep+
Ti

(R′) whose complete endpoints are an in L-tunnels in
tun−Si

(R) ∩ tun−Ti
(R′).

Proof. Let v be a complete endpoint in tun−Si
(R)∩ tun−Ti

(R′), hence, it is connected to bends
in ep+

Si
(R) and to bends in ep+

Ti
(R′). Further, assume that v is complete endpoint for at least

two edges; the complete endpoints that we disregard only contribute O(n) edges. Assume
w.l.o.g. that the slope of segments in Si is less than 1. Then, the slope of segments in Ti is
less than −1 and v is located above R′. Let B(v) denote the set of bends that v is connected
to in ep+

Ti
(R′). We further divide B(v) into B−(v) and B+(v), i.e., the set of bends b such

that v is located in the halfplane above and below b’s segment in Ti, resp. We first show,
that each b ∈ B±(v) shares its y-coordinate with no other bend b′ ∈ B±(v). Then, we show
that for two vertices v and v′ in tun−Si

(R) ∩ tun−Ti
(R′), the y-coordinates of bends in B±(v)

and B±(v′) differ. As a result, there are only O(n) bends in R′, which implies that there are
only O(n) complete edges.

H. Förster and M. Kaufmann 53:17

R′

W

b′

v

b

(a)

R′
b

b′
W

v

(b)

R′

v

b

b′ W

(c)

b
b′

W

v

R′

(d)

Figure 13 A bend b incident to a vertex v restricts the position of other bends b′ to a wedge W .

R′

v

(a)

R′
v

(b)

Figure 14 (a) Edges below a vertex v incident to v do not intersect while (b) edges above a
vertex v incident to v pairwise intersect.

Consider a vertex v and a bend b ∈ B(v). First, assume that b ∈ B−(v). Note that since
v is located above R′ in the intersection tun−Si

(R) ∩ tun−Ti
(R′), the segment between b and

v has slope less than −1. Then v can only be incident to another bend b′ ∈ B−(v) whose
Ti-segment is below v only if b′ is located in the wedge W obtained by the elongation of
the Ti-segment of b and the segment between b and v. Otherwise the Ti-segment incident
to b′ would intersect the segment between b and v (see Fig. 13a) or the segment between b′
and v would intersect the Ti-segment incident to b (see Fig. 13b). Since the angle between
the two segments spanning the wedge W from above is less than π, W contains no other
bend with the same y-coordinate as b. Moreover, we observe that the Ti-segments incident
to such bends and consecutive Si-segments do not cross each other (see Fig. 14a) since all
Si-(Ti-, resp.)segments between R and R′ have the same length. Second, consider the case
where b ∈ B+(v). Here, the argumentation is analogous to the previous case (see Figs. 13c
and 13d). Note that in this case, the edges using bends in B+(v) pairwise intersect (see
Fig. 14b). Still segments incident to v have negative slopes.

It remains to consider the dependencies of the neighborhoods of two vertices v and v′
located in tun−Si

(R)∩ tun−Ti
(R′). First, consider the positions of bends in B−(v) and of bends

in B−(v′). There are three possibilities for the relative positioning of v and v′:

1. v and v′ appear in different L-tunnels such that w.l.o.g. the L-tunnel of v′ appears below
the bottommost bend bbot(v) ∈ B−(v). Then v′ appears in the halfplane below the
segment in Ti attached to bbot(v). Even more, the topmost bend btop(v′) ∈ B−(v′) must
be located below v′; see Fig 15a. Hence, the y-coordinates of B−(v) and B−(v′) are
different.

2. v and v′ appear in the same L-tunnel. W.l.o.g. the topmost bend btop(v′) ∈ B−(v′)
will be located in a wedge W below bbot(v) ∈ B−(v) delimited by the elongation of the
Ti-segment through bbot(v) and a horizontal through bbot(v); see Fig. 15b. The horizontal
segment delimits W as by the choice of the size of regions, v′ will be located above R′,
hence it also does not belong to W . Therefore, y-coordinates of B−(v) and B−(v′) differ.

ESA 2020

53:18 On Compact RAC Drawings

R′

v

v′

bbot(v)

btop(v
′)

(a)

v′v

bbot(v)

btop(v
′)

R′

(b)

b1
Z R′

vv′

btop(v
′)

b2

(c)

R′

v

v′

bbot(v
′)

btop(v)

(d)

bbot(v)

btop(v
′)

R′v′
v

(e)

Figure 15 (a)–(c) Bends in B−(v) and bends in B−(v′) have different y-coordinates.
(d)–(e) Bends in B+(v) and bends in B+(v′) have different y-coordinates.

3. v′ is located in between the Ti-segments incident to b1, b2 ∈ B−(v). The bends in B−(v′)
can only be located in a region Z bounded by two lines of the slopes of Si and Ti passing
through b1, the Ti-segment incident to b2, the segment between v and b2 and the boundary
of region R′. All points in this region have smaller y-coordinates than b1 and larger
y-coordinates than b2; see Fig. 15c. Note that the line parallel to segments of Si passing
through b1 is part of the boundary as otherwise the segments incident to b1 and a bend
in B−(v′), resp., would intersect preventing v′ from having segments to bends in R.

Second, consider how the positions of bends in B+(v) and bends in B+(v′) depend on
each other. Here, there are only two possibilities for the relative positioning of v and v′

which are analogous to the Cases 1 and 2 above, see Figs. 15d and 15e.
Note that a bend in

⋃
v B
−(v) and in

⋃
v B

+(v) may share a common y-coordinate.
By the previous analysis, this is the only possibility for two bends in

⋃
v B(v) to share a

y-coordinate. It follows that |
⋃

v B
−(v)| = O(n) and |

⋃
v B

+(v)| = O(n) and hence only a
linear number of complete edges can be realized as claimed. J

Now, we summarize the partial results from Lemmas 11 and 12 to conclude that most
vertices are R- or R′-vertices with only O(n) incident complete edges.

I Lemma 13. Let Γ be a RAC3 drawing of Kn in O(n2) area. Further let R be a region
such that w.l.o.g. |ep+

Si
(R)| = Ω(n2) and let R′ ∈ N (R). Then there exist only O(n) complete

edges that have a bend in ep+
Si

(R) and in ep+
Ti

(R′).

Proof. Assume tun−Si
(R) is delimited by the extension of two segments of Si between R and

R′. Otherwise, R can be restricted to a smaller region that only includes Si-endpoints that
are connected to Ti-endpoints located in R′. Assume that there are ω(n) complete edges
with S- and T -endpoints in R and R′, resp. By Lemma 12, there exist only O(n) complete
edges with S- and T -endpoints in R and R′, resp., whose complete endpoints are located in
tun−Si

(R)∩tun−Ti
(R′). Since tun−Si

(R) is bounded by two segments of Si between R and R′, this
covers all complete endpoints in tun−Si

(R)∩tun−Ti
(R′) and other complete endpoints located in

H. Förster and M. Kaufmann 53:19

tun−Si
(R)∪tun−Ti

(R′) lie outside of plaus+
Si

(R)∪tun−Si
(R) or outside of plaus+

Ti
(R′)∪tun−Ti

(R′).
By Lemma 11, only O(1) vertices outside of plaus+

Si
(R) ∪ tun−Si

(R) can each be connected
to Ω(n) bends of ep+

Si
(R), also only O(1) vertices outside of plaus+

Ti
(R′) ∪ tun−Ti

(R′) can
each be connected to Ω(n) bends of ep+

Ti
(R′). Thus, there must be complete endpoints in

plaus+
Si

(R) ∩ plaus+
Ti

(R′) contradicting plaus+
Si

(R) ∩ plaus+
Ti

(R′) = ∅. J

Lemma 13 shows, that most edges with S- and T -endpoints in R and R′, resp., define a
bipartite subgraph. As a result, edges between R and N (R) define a p-partite subgraph for
some constant p > 1. However, since the drawn graph is complete, all R-vertices have to
define a clique. This will lead to a contradiction in the proof of the main theorem of this
section.

I Theorem 14. There is no RAC3 drawing of Kn in O(n2) area for sufficiently large n.

Proof. Assume there is a RAC3 drawing Γ of Kn in O(n2) area. We show that there is a
complete subgraph G′ with Ω(n) vertices drawn in Γ with only o(n2) edges from EST

i for
all pairs of perpendicular edge segments Si ∈ S and Ti ∈ T . This contradicts the property
from Lemma 6 for the subdrawing of G′. Let cST denote the multiplicative constant from
Lemma 6, i.e. |EST

i | ≥ cSTn
2.

We compute G′ = (V ′, E′) iteratively. We initialize G′ by G. We consider all pairs of
sets of segments Si ∈ S and Ti ∈ T with perpendicular slopes such that |EST

i | ≥ cSTn
2.

There can be only a constant number of pairs of segment sets in S and T of size Ω(n2). For
each such pair, let Ri be a checkerboard partitioning of the drawing area into square-shaped
disjoint regions of side length max{pi, qi}/2 defined by slope pi/qi of Si for coprime integers
pi and qi. We consider all regions R ∈ Ri. Due to the size of regions, there is only a constant
number of regions in Ri. Moreover, the number of neighbored regions R′ ∈ N (R) is constant.
Hence, there is a constant number ncomb of combinations of index i, region R and neighbored
region R′.

We iteratively perform the following procedure while there are at least cST |V ′|2 edges
with a bend in ep+

Si
(R) and a bend in ep±Ti

(R′) for one of ncomb of combinations of index i,
region R and neighbored region R′ where ep±Ti

(R′) is either ep+
Ti

(R′) or ep−Ti
(R′) depending on

the choice of R′. Let VR denote the set of R- and VR′ denote the set of R′-vertices. Assume
w.l.o.g. that |VR| ≥ |VR′ |. By Lemma 13, the vertices that are neither R- nor R′-vertices are
connected to O(n) bends in ep+

Si
(R), ep+

Ti
(R′) or ep−Ti

(R′) in total. More precisely, there are
ccomp|V ′| such bends for an appropriately chosen constant ccomp. Recall that vertices that are
not incident to Ω(n) bends, say at least cR|V ∗| for an appropriately chosen constant cR, in
ep+

Si
(R) and ep+

Ti
(R′) are either R- or R′-vertex for the resulting graph G∗ = (V ∗, V ∗ × V ∗).

By the prior observation, |VR| = Ω(n), more precisely, |VR| ≥ (|V ′| − ccomp|V ′|/cR|V ∗|)/2.
We then continue to consider the complete subgraph induced by VR. Note that since ncomb is
constant, by Lemma 13, this subgraph and the subgraphs in the future iterations contain only
O(n) edges with both a segment in Si and a segment in Ti and bends in ep+

Si
(R) and ep+

Ti
(R′)

or ep−Ti
(R′) for all R′ ∈ N (R) for sufficiently large n. Thus, we set G′ ← (VR, VR × VR) and

continue with the next iteration.
After performing all at most ncomb iterations, there are less than cST |V ′|2 edges with

both a bend in ep+
Si

(R) and a bend in ep+
Ti

(R′) and ep−Ti
(R′) for all combinations of index

i, region R ∈ Ri and neighbored region R′ ∈ N (R). Hence, the resulting subgraph G′ is
drawn with |EST

i | < cST |V ′|2 for each pair of sets of segments Si ∈ S and Ti ∈ T with
perpendicular slopes which contradicts Lemma 6. J

Our proofs explicitly use the assumption of quadratic area (Lemmas 8 to 12) and three
bends per edge (Lemmas 11 to 13). Even for ω(n2) area, our proof does not apply.

ESA 2020

53:20 On Compact RAC Drawings

4 Open Questions

We raise the following open questions:
(i) How many bends are needed for achieving quadratic area RAC drawings? We showed

that three are insufficient and that eight are enough.
(ii) Is cubic area optimal for RAC3 drawings? Our lower bound proof might be extendable.
(iii) Is quadratic area achievable in simple RAC drawings? In simple drawings, every pair of

edges shares at most one point (crossing or endpoint); a property our algorithms do
not guarantee.

References
1 M. Ajtai, V. Chvátal, M. M. Newborn, and E. Szemerédi. Crossing-free subgraphs. In

Theory and practice of combinatorics, volume 60 of North-Holland Math. Stud., pages 9–12.
North-Holland, Amsterdam, 1982.

2 Patrizio Angelini, Michael A. Bekos, Henry Förster, and Michael Kaufmann. On rac drawings
of graphs with one bend per edge. Theoretical Computer Science, 2020. doi:10.1016/j.tcs.
2020.04.018.

3 Patrizio Angelini, Luca Cittadini, Walter Didimo, Fabrizio Frati, Giuseppe Di Battista,
Michael Kaufmann, and Antonios Symvonis. On the perspectives opened by right angle
crossing drawings. J. Graph Algorithms Appl., 15(1):53–78, 2011. doi:10.7155/jgaa.00217.

4 Patrizio Angelini, Giuseppe Di Battista, Walter Didimo, Fabrizio Frati, Seok-Hee Hong,
Michael Kaufmann, Giuseppe Liotta, and Anna Lubiw. Large angle crossing drawings of planar
graphs in subquadratic area. In Alberto Márquez, Pedro Ramos, and Jorge Urrutia, editors,
Computational Geometry - XIV Spanish Meeting on Computational Geometry, EGC 2011,
Dedicated to Ferran Hurtado on the Occasion of His 60th Birthday, volume 7579 of Lecture Notes
in Computer Science, pages 200–209. Springer, 2011. doi:10.1007/978-3-642-34191-5_19.

5 Evmorfia N. Argyriou, Michael A. Bekos, and Antonios Symvonis. The straight-line RAC
drawing problem is np-hard. J. Graph Algorithms Appl., 16(2):569–597, 2012. doi:10.7155/
jgaa.00274.

6 Karin Arikushi, Radoslav Fulek, Balázs Keszegh, Filip Moric, and Csaba D. Tóth. Graphs
that admit right angle crossing drawings. Comput. Geom., 45(4):169–177, 2012. doi:10.1016/
j.comgeo.2011.11.008.

7 Christian Bachmaier, Franz J. Brandenburg, Kathrin Hanauer, Daniel Neuwirth, and Josef
Reislhuber. NIC-planar graphs. Discrete Applied Mathematics, 232:23–40, 2017. doi:10.1016/
j.dam.2017.08.015.

8 Michael A. Bekos, Walter Didimo, Giuseppe Liotta, Saeed Mehrabi, and Fabrizio Montecchiani.
On RAC drawings of 1-planar graphs. Theor. Comput. Sci., 689:48–57, 2017. doi:10.1016/j.
tcs.2017.05.039.

9 Franz J. Brandenburg, Walter Didimo, William S. Evans, Philipp Kindermann, Giuseppe
Liotta, and Fabrizio Montecchiani. Recognizing and drawing IC-planar graphs. Theor. Comput.
Sci., 636:1–16, 2016. doi:10.1016/j.tcs.2016.04.026.

10 Steven Chaplick, Fabian Lipp, Alexander Wolff, and Johannes Zink. Compact drawings of
1-planar graphs with right-angle crossings and few bends. Comput. Geom., 84:50–68, 2019.
doi:10.1016/j.comgeo.2019.07.006.

11 Emilio Di Giacomo, Walter Didimo, Peter Eades, and Giuseppe Liotta. 2-layer right angle
crossing drawings. Algorithmica, 68(4):954–997, 2014. doi:10.1007/s00453-012-9706-7.

12 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer. Area, curve complexity,
and crossing resolution of non-planar graph drawings. Theory Comput. Syst., 49(3):565–575,
2011. doi:10.1007/s00224-010-9275-6.

https://doi.org/10.1016/j.tcs.2020.04.018
https://doi.org/10.1016/j.tcs.2020.04.018
https://doi.org/10.7155/jgaa.00217
https://doi.org/10.1007/978-3-642-34191-5_19
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.1016/j.comgeo.2011.11.008
https://doi.org/10.1016/j.comgeo.2011.11.008
https://doi.org/10.1016/j.dam.2017.08.015
https://doi.org/10.1016/j.dam.2017.08.015
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2016.04.026
https://doi.org/10.1016/j.comgeo.2019.07.006
https://doi.org/10.1007/s00453-012-9706-7
https://doi.org/10.1007/s00224-010-9275-6

H. Förster and M. Kaufmann 53:21

13 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. Area
requirement of graph drawings with few crossings per edge. Comput. Geom., 46(8):909–916,
2013. doi:10.1016/j.comgeo.2013.03.001.

14 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. Area-
thickness trade-offs for straight-line drawings of planar graphs. Comput. J., 60(1):135–142,
2017. doi:10.1093/comjnl/bxw075.

15 Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right angle crossings.
Theor. Comput. Sci., 412(39):5156–5166, 2011. doi:10.1016/j.tcs.2011.05.025.

16 Vida Dujmović, Joachim Gudmundsson, Pat Morin, and Thomas Wolle. Notes on large
angle crossing graphs. Chicago J. Theor. Comput. Sci., 2011, 2011. URL: http://cjtcs.cs.
uchicago.edu/articles/CATS2010/4/contents.html.

17 Christian A. Duncan and Michael T. Goodrich. Planar orthogonal and polyline drawing
algorithms. In Roberto Tamassia, editor, Handbook on Graph Drawing and Visualization,
pages 223–246. Chapman and Hall/CRC, 2013.

18 Peter Eades and Giuseppe Liotta. Right angle crossing graphs and 1-planarity. Discrete
Applied Mathematics, 161(7-8):961–969, 2013. doi:10.1016/j.dam.2012.11.019.

19 Seok-Hee Hong and Hiroshi Nagamochi. Testing full outer-2-planarity in linear time. In
Ernst W. Mayr, editor, Graph-Theoretic Concepts in Computer Science - 41st International
Workshop, WG 2015, volume 9224 of Lecture Notes in Computer Science, pages 406–421.
Springer, 2015. doi:10.1007/978-3-662-53174-7_29.

20 Weidong Huang. Using eye tracking to investigate graph layout effects. In Seok-Hee Hong and
Kwan-Liu Ma, editors, APVIS 2007, 6th International Asia-Pacific Symposium on Visualization
2007, pages 97–100. IEEE Computer Society, 2007. doi:10.1109/APVIS.2007.329282.

21 Weidong Huang, Peter Eades, and Seok-Hee Hong. Larger crossing angles make graphs easier
to read. J. Vis. Lang. Comput., 25(4):452–465, 2014. doi:10.1016/j.jvlc.2014.03.001.

22 Frank Thomson Leighton. Complexity Issues in VLSI. Foundations of Computing Series. MIT
Press, Cambridge, MA, 1983.

23 János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica,
17(3):427–439, 1997. doi:10.1007/BF01215922.

24 Helen C. Purchase. Effective information visualisation: a study of graph drawing aesthetics and
algorithms. Interacting with Computers, 13(2):147–162, 2000. doi:10.1016/S0953-5438(00)
00032-1.

25 Helen C. Purchase, David A. Carrington, and Jo-Anne Allder. Empirical evaluation of
aesthetics-based graph layout. Empirical Software Engineering, 7(3):233–255, 2002.

26 Zahed Rahmati and Fatemeh Emami. RAC drawings in subcubic area. Information Processing
Letters, 159-160:105945, 2020. doi:10.1016/j.ipl.2020.105945.

ESA 2020

https://doi.org/10.1016/j.comgeo.2013.03.001
https://doi.org/10.1093/comjnl/bxw075
https://doi.org/10.1016/j.tcs.2011.05.025
http://cjtcs.cs.uchicago.edu/articles/CATS2010/4/contents.html
http://cjtcs.cs.uchicago.edu/articles/CATS2010/4/contents.html
https://doi.org/10.1016/j.dam.2012.11.019
https://doi.org/10.1007/978-3-662-53174-7_29
https://doi.org/10.1109/APVIS.2007.329282
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1007/BF01215922
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1016/j.ipl.2020.105945

Fast Preprocessing for Optimal Orthogonal Range
Reporting and Range Successor with Applications
to Text Indexing
Younan Gao
Faculty of Computer Science, Dalhousie University, Halifax, Canada
yn803382@dal.ca

Meng He
Faculty of Computer Science, Dalhousie University, Halifax, Canada
mhe@cs.dal.ca

Yakov Nekrich
Department of Computer Science, Michigan Technological University, Houghton, MI, USA
yakov.nekrich@googlemail.com

Abstract
Under the word RAM model, we design three data structures that can be constructed in O(n

√
lgn)

time over n points in an n×n grid. The first data structure is an O(n lgε n)-word structure supporting
orthogonal range reporting in O(lg lgn+ k) time, where k denotes output size and ε is an arbitrarily
small constant. The second is an O(n lg lgn)-word structure supporting orthogonal range successor
in O(lg lgn) time, while the third is an O(n lgε n)-word structure supporting sorted range reporting
in O(lg lgn+ k) time. The query times of these data structures are optimal when the space costs
must be within O(npolylogn) words. Their exact space bounds match those of the best known
results achieving the same query times, and the O(n

√
lgn) construction time beats the previous

bounds on preprocessing. Previously, among 2d range search structures, only the orthogonal range
counting structure of Chan and Pǎtraşcu (SODA 2010) and the linear space, O(lgε n) query time
structure for orthogonal range successor by Belazzougui and Puglisi (SODA 2016) can be built in
the same O(n

√
lgn) time. Hence our work is the first that achieve the same preprocessing time for

optimal orthogonal range reporting and range successor. We also apply our results to improve the
construction time of text indexes.

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Data structures design and analysis

Keywords and phrases orthogonal range search, geometric data structures, orthogonal range report-
ing, orthogonal range successor, sorted range reporting, text indexing, word RAM

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.54

Related Version A full version of the paper is available at http://arxiv.org/abs/2006.11978.

1 Introduction

Two dimensional orthogonal range search problems have been studied intensively in the
communities of computational geometry, data structures and databases. The goal of these
problems is to maintain a set, N , of points on the plane in a data structure such that one
can efficiently compute aggregate information about the points contained in an axis-aligned
query rectangle Q. Among these problems, orthogonal range counting and orthogonal range
reporting are perhaps the most fundamental; the former counts the number of points contained
in N ∩Q while the latter reports them. Another well-known problem is orthogonal range
successor, which asks for the point in N ∩Q with the smallest x- or y-coordinate. Range

© Younan Gao, Meng He, and Yakov Nekrich;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 54; pp. 54:1–54:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yn803382@dal.ca
mailto:mhe@cs.dal.ca
mailto:yakov.nekrich@googlemail.com
https://doi.org/10.4230/LIPIcs.ESA.2020.54
http://arxiv.org/abs/2006.11978
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

counting, reporting and successor have many applications including text indexing [23, 8, 6, 25],
Lempel-Ziv factorization [4] and consensus trees in phylogenetics [18], to name a few. See [22]
for a survey on the connection between text indexing and various range searching techniques.

Most work on orthogonal range searching [13, 17, 11, 28, 32] focuses on achieving the best
tradeoffs between query time and space, and preprocessing time is often neglected. However,
the preprocessing time of a data structure matters when it is used as a building block of an
algorithm processing plain data, as the total running time includes that needed to build the
structure. Furthermore, an orthogonal range search structures with fast construction time
are preferred when preprocessing huge amounts of data, e.g., when used as components of
text indexes built upon large data sets from search engines and bioinformatics applications.
The work of Chan and Pǎtraşcu [12] is the first that breaks the O(n lgn) bound on the
construction time of 2d orthogonal range counting structures; they designed an O(n)-word
structure with O(lgn/lg lgn) query time that can be built in O(n

√
lgn) time. Their ideas

were further extended to design an O(nlg σ/
√

lgn)-time algorithm to build a binary wavelet
trees over a string of length n drawn from [σ] [26, 2]1, which is a key data structure used in
succinct text indexes. More recently, Belazzougui and Puglisi [4] showed how to construct, in
O(n
√

lgn) time, an O(n)-word data structure supporting range successor in O(lgε n) time,
and applied this algorithm to achieve new results on Lempel-Ziv parsing.

The previous work on constructing orthogonal range search structures in O(n
√

lgn) time
focuses on linear space data structures. To achieve optimal query time for 2d orthogonal
range reporting and range successor using near-linear space, however, the best tradeoffs
under the word RAM model requires superlinear space [11, 32]. The increased space costs
are needed to encode more information, posing new challenges to fast construction. We thus
investigate the problem of designing data structures with optimal query times for range
reporting and range successor that can be built in O(n

√
lgn) time, while matching the space

costs of the best known solutions. We also consider a closely related problem called sorted
range reporting [28] to achieve similar goals. In this problem, we report all points in N ∩Q
in a sorted order along either x- or y-axis. The query time should depend on the number of
points actually reported even if the procedure is ended early by user.

Previous Work. The research on 2d orthogonal range reporting has a long history [30, 13,
1, 17, 27, 19, 9, 11]. Researchers have achieved three best tradeoffs between query time and
space costs under the word RAM model; we follow the state of the art and assume that
the input points are in rank space. The solution with optimal query time of O(lg lgn+ k)
and space cost of O(n lgε n) words is due to Alstrup et al. [1], while the best linear-space
solution is designed by Chan et al [11] which answers a query in O((1 + k) lgε n) time, where
k is the output size and ε is an arbitrarily small constant. Chan et al. also proposed an
O(lg lgn)-word structure with O((1 + k) lg lgn) query time and another tradeoff matching
that of Alstrup et al. [1].

The 2d orthogonal range successor problem was also studied extensively. After a series of
work [21, 20, 15, 14, 31], Nekrich and Navarro [28] gave two solutions to this problem; the
first uses O(n) words and answers a query in O(lgε n) time, while the second uses O(n lg lgn)
words to answer a query in O((lg lgn)2) time. Zhou [32] decreased the query time of the latter
to O(lg lgn) without increasing space costs. By definition, a solution to orthogonal range
successor can be used to answer sorted range reporting queries. Furthermore, Nekrich and
Navarro [28] also designed a data structure using O(n lgε n) words to support sorted range

1 In this paper, [σ] denotes {0, 1, . . . , σ − 1}.

Y. Gao, M. He, and Y. Nekrich 54:3

reporting in O(lg lgn+ k) time. Hence, the best three time-space tradeoffs for the original
2d orthogonal range reporting problem has also been achieved for the sorted version. The
optimality of the O(lg lgn+ k) query time for orthogonal range reporting and the O(lg lgn)
query time for orthogonal range successor when no more than O(npolylogn) space can be
used is established by a lower bound on range emptiness [29].

Alstrup et al. [1] claimed that their structure for optimal orthogonal range reporting can
be constructed in O(n lgn) expected time. Even though preprocessing times are not given
in [11, 28, 32], straightforward analyses reveal that the other data structures we surveyed
here can be built in O(n lgn) worst-case time (Bille and Gørtz [6] also claimed that the
preprocessing time of the O(n lg lgn)-word structure of Chan et al. [11] is O(n lgn)). Hence,
when faster preprocessing time is needed in their solution to Lempel-Ziv decomposition,
Belazzougui and Puglisi [4] had to design a new linear-space data structure for orthogonal
range successor with O(n

√
lgn) preprocessing time and O(lgε n) query time. No attempts

have been published to achieve similar preprocessing times for other tradeoffs.

Our Results. Under the word RAM model, we design the following three data structures
that can be constructed in O(n

√
lgn) time over n points in an n× n grid:

An O(n lgε n)-word structure supporting orthogonal range reporting in O(lg lgn+k) time,
where k denotes the output size and ε is an arbitrarily small constant;
An O(n lg lgn)-word structure supporting orthogonal range successor in O(lg lgn) time;
An O(n lgε n)-word structure supporting sorted range reporting in O(lg lgn+ k) time.

The query times of these structures are optimal when space costs must be within
O(npolylogn) words. Their exact space bounds match those of the best known results
achieving the same query times, and the O(n

√
lgn) construction time beats the previous

bounds on preprocessing. Note that even though our third result implies the first one, our
data structure for the first is much simpler. In addition, our results can be used to improve
the construction time of text indexes. For a text string T of length n over alphabet [σ], we
design

A text index of O(n lg σ lgε n) bits that can be constructed in O(n lg σ/
√

lgn) time and can
report the occ occurrences of a pattern of length p in time O(p/logσ n+logσ n lg lgn+occ),
where ε is any small positive constant. This improves one result of Munro et al. [25] who
designed the first text indexes with both sublinear construction time and query time for
small σ; for the same time-space tradeoff, their preprocessing time is O(n lg σ lgε n).
A text index of O(n lg1+ε n) bits for any constant ε > 0 built in O(n

√
lgn) time that

supports position-restricted substring search [23] in O(p/logσ n+ lg p+ lg lg σ+ occ) time.
Previous indexes with similar query performance require O(n lgn) construction time.

Overview of Our Approach. We first discuss why some obvious approaches will not work.
The modern approach of Chan et al [11] for orthogonal range reporting is based on a problem
called ball inheritance which they defined over range trees. This solution is well-known for
its simplicity, and by choosing different parameters in their approach to ball inheritance,
they obtain all three best known tradeoffs. One natural idea is to redesign the structures
stored at range tree nodes to use bit packing to speed up construction. However, even
though we have achieved construction time matching the state of the art for these structures,
it is still not enough to construct the data structures for the tradeoffs of ball inheritance
that we need quickly enough. Another idea is to tune the parameters in the approach
of Belazzougui and Puglisi [4], hoping to obtain the tradeoffs that we aim for, as they
already showed how to construct in O(n

√
lgn) time a linear space, O((k + 1) lgε n) query

ESA 2020

54:4 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

time structure for orthogonal range reporting. Their solution uses many trees grouped into
O(lgε n) levels of granularity. If we borrow ideas from [11] and set parameters to achieve
different tradeoffs, we would use O(1/ε) or O(lg lgn) levels of granularity. However, to return
a point in the answer, their query algorithm would perform operations requiring O(lg lgn)
time at each level of granularity. Thus, at best, the former would give an O(n lgε n)-word
structure with O((k + 1) lg lgn) query time and the latter an O(n lg lgn)-word structure
with O((k+ 1)(lg lgn)2) query time. Either solution is inferior to best known tradeoffs. This
however is fine in the original solution, as the total cost of spending O(lg lgn) time at each
of the O(lgε n) levels is bounded by O(lgε

′
n) for any ε′ > ε.

We thus design new approaches. For optimal orthogonal range reporting, our overall
strategy is to perform two levels of reductions, making it sufficient to solve ball inheritance
in special cases with fast preprocessing time. More specifically, we first use a generalized
wavelet tree and range minimum/maximum structures to reduce the problem in the general
case to the special case in which the points are from a 2

√
lgn×n′ (narrow) grid, where n′ ≤ n.

In this reduction, we need only support ball inheritance over a wavelet tree with high fanout.
We further reduce the problem over points in a narrow grid to that over a (small) grid of
size at most 2

√
lgn × 22

√
lgn. This is done by grouping points and selecting representatives

from each group, so that previous results with slower preprocessing time can be used over a
smaller set of representatives. Finally, over the small grid, we solve ball inheritance when the
coordinates of each point can be encoded in O(

√
lgn) bits. The ball inheritance structures

in both special cases can be built quickly by redesigning components with fast preprocessing,
though the second case requires a twist to the approach of Chan et al [11]. Our solutions to
optimal range successor and sorted range reporting are based on similar strategies, though
we preform more levels of reductions.

In the main body of this paper, we describe our data structures for optimal range reporting
and successor, while those for optimal sorted range reporting are deferred to the full version
of this paper.

2 Preliminaries

In this section, we describe and sometimes extend the previous results used in this paper.
The proofs omitted from this section can be found in the full version of this paper.

Notation. We adopt the word RAM model with word size w = Θ(lgn) bits, where n
denotes the size of the given data. Our complete solutions use several sets of homogeneous
components. We present a lemma to bound the costs of each different type of components,
which is then applied over the entire set of these components to calculate the total cost. The
size, n′, of the data that each component represents may be less than n which is the input
size of the entire problem, so when the cost of constructing the component is bounded by
a function of the form f(n′)/ polylog(n) to take advantage of the word size, we keep both
n′ and n in the lemma statement, as commonly done in previous work on similar topics.
In this case, the construction algorithm usually uses a universal table of o(n) bits, whose
content solely depends on the value of n, and hence can be constructed once in o(n) time
and used for all data structure components of the same type. Thus unless otherwise stated,
these lemmas assume the existence of such a table without stating so explicitly in the lemma
statements, and we define and analyze the table in the proof. This also applies to algorithms
that manipulate sequences of size n′. Occasionally the query algorithms of a data structure
may need a universal table as well, and we explicitly state it if this is the case.

Y. Gao, M. He, and Y. Nekrich 54:5

We say a sequence A ∈ [σ]n is in packed form if the bits of its elements are concatenated
and stored in as few words as possible. Thus, when packed, A occupies dndlg σe/we words.

Generalized Wavelet Trees. Given a sequence A[0..n− 1] drawn from alphabet [σ], a d-ary
generalized wavelet tree [24] Td over A is a balanced tree in which each internal node has
d children, where 2 ≤ d ≤ σ. For simplicity, assume that σ is a power of d. Each node of
Td then represents a range of alphabet symbols defined as follows: At the leaf level, the
i-th leaf from the left represents the integer range [i, i] for each i ∈ [0..σ − 1]. The range
represented by an internal node is the union of the ranges represented by its children. Hence
the root represents [0, σ− 1], and Td is a complete tree having logd σ+ 1 levels. Each node u
is further associated with a subsequence, A(u), of A, in which A(u)[i] stores the i-th entry in
A that is in the range represented by u. Thus the root is associated with the entire sequence
A. To save storage, A[u] is not stored explicitly in [24]. Instead, each internal node u stores
a sequence S(u) of integers in [d], where S(u)[i] = j if A(u)[i] is within the range represented
by the jth child of u. All the S(u)’s built for internal nodes occupy O(n lg σ) bits in total.

Generalized wavelet trees share fundamental ideas with range trees but are more suitable
for compact data structures over sequences which may contain duplicate values. When we
use them in this paper, we sometimes explicitly store A(u) for each node u, and may even
associate with u an additional array I(u) in which I(u)[i] stores the index of A(u)[i] in the
original sequence A. We call A(u) the value array of u, and I(u) the index array. In this
paper, if we construct value and/or index arrays for each node, we explicitly state so. If not,
it implies that we build a wavelet tree in which each node u is associated with S(u) only.
Furthermore, unless otherwise specified, we apply the standard pointer-based implementation
to represent the tree structure of a wavelet tree, which is preprocessed in time linear to the
number of tree nodes such that the lowest common ancestor of any two nodes can be located
in O(1) time [5]. We also number the levels of the tree incrementally starting from the root
level, which is level 0. We have the following two lemmas on constructing wavelet trees:

I Lemma 1. Let A[0..n′−1] be a packed sequence drawn from alphabet [σ] and I[0..n′−1] be
a packed sequence in which I[i] = i for each i ∈ [0..n′ − 1], where n′ ≤ n and σ ≤ 2O(

√
lgn).

Given A and I as input, a d-ary wavelet tree over A with value and index arrays in packed
form can be constructed in O(n′ lg σ(lgn′+lg σ)/lgn+σ) time, where d is an arbitrary power
of 2 with 2 ≤ d ≤ σ. If index arrays are not constructed, the construction time can be lowered
to O(n′ lg2 σ/lgn+ σ); this bound still applies when neither value nor index arrays are built.

I Lemma 2. Let A[0..n− 1] be a sequence drawn from alphabet [σ]. A d-ary wavelet tree
over A with value and index arrays can be built in O(n lg σ/lg d) time where 2 ≤ d ≤ σ.

A sequence A[0..n− 1] drawn from [σ] can be viewed as a point set N = {(A[i], i)|0 ≤
i ≤ n − 1}. Let T be a d-ary wavelet tree constructed over A. Then ball inheritance [11]
can be defined over T which asks for the support of these operations: i) point(v, i), which
returns the point (A(v)[i], I(v)[i]) in N for an arbitrary node v in T and an integer i; and ii)
noderange(c, d, v), which, given a range [c, d] and a node v of T , finds the range [cv, dv] such
that I(v)[i] ∈ [c, d] iff i ∈ [cv, dv]. If we store the value and index arrays explicitly, it is trivial
to support these operations, but the space cost is high. To save space, we only store S(v) for
each node v and design auxiliary structures. The following lemma presents previous results:

I Lemma 3 ([11, Theorem 2.1], [10, Lemma 2.3]). A generalized wavelet tree over a se-
quence A[0..n− 1] drawn from [σ] can be augmented with ball inheritance data structure in
O(n lgnf(σ)) bits to support point in O(g(σ)) time and noderange in O(g(σ)+lg lgn) time,
where (a) f(σ) = O(1) and g(σ) = O(lgε σ); (b) f(σ) = O(lg lg σ) and g(σ) = O(lg lg σ); or
(c) f(σ) = O(lgε σ) and g(σ) = O(1).

ESA 2020

54:6 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

Data Structures for rank and select. Given a sequence A drawn from alphabet [σ], a
rankc(A, i) operation computes the number of elements equal to c in A[0..i], where c ∈ [σ],
while a selectc(A, i) returns the index of the entry of A containing the i-th occurrence of c.
We have the following two lemmas on building rank/select structures.

I Lemma 4. Let A[0..n′ − 1] be a packed sequence drawn from alphabet [σ], where n′ ≤ n

and σ = O(polylogn). A data structure of n′dlg σe+ o(n′ lg σ) bits supporting rank in O(1)
time can be constructed in O(n′ lg2 σ/ lgn+ σ) time.

I Lemma 5 ([2, Lemma 2.1]). Given a packed bit sequence B[0..n− 1], a systematic data
structure occupying o(n) extra bits can be constructed in O(n/ lgn) time, which supports
rank and select in constant time.

In the above lemma, a data structure is systematic if it requires the input data to be
stored verbatim along with the additional information for answering queries. A restricted
version of rank is called partial rank; a partial rank operation, rank′(A, i), computes the
number of elements equal to A[j] in A[0..j]. The following lemma presents a solution to
supporting rank′, which is an easy extension of [3, Lemma 3.5].

I Lemma 6. Given a sequence A[0..n − 1] drawn from alphabet [σ], a data structure of
O(n lg σ) bits can be constructed in O(n+ σ) time, which supports rank′ in constant time.

Range Minimum/Maximum. Given a sequence A of n integers, a range minimum/max-
imum query rmq(i, j)/rMq(i, j) with i ≤ j returns the position of a minimum/maximum
element in the subsequence A[i..j]. Fischer and Heun [16] considered this problem:

I Lemma 7 ([16]). Given an array A of n integers, a data structure of O(n) bits can be
constructed in O(n) time, which answers rmq/rMq in O(1) time without accessing A.

We further build an auxiliary structure upon a packed sequence A under the indexing
model: after the the data structure is built, A itself need not be stored verbatim; to answer a
query, it suffices to provide an operator that can retrieve any element in A.

I Lemma 8. Let A[0..n′ − 1] be a packed sequence drawn from alphabet [σ], where σ ≤
2
√

lgn and n′ ≤ n. There is a data structure using O(n′ lg lgn) extra bits constructed in
O(n′lg σ/lgn) time, which answers rmq/rMq in O(1) time and O(1) accesses to the elements
of A. The query procedure uses a universal table of o(n) bits.

3 Fast Construction of rank′ Query Structures

In this section we focus on how to efficiently construct data structures for rank′ queries
over a sequence A[0..n′ − 1] drawn from alphabet [σ], where n′ ≤ n and σ ≤ 2

√
lgn. This is

needed to solve ball inheritance in a special case. Lemma 4 already solves this problem when
σ ≤ lgn, so we assume lgn < σ ≤ 2

√
lgn in the rest of this section.

In our solution, we conceptually divide sequence A into chunks of length σ. For simplicity,
assume that n′ is a multiple of σ. Let Ak denote the kth chunk, where 0 ≤ k ≤ n′/σ − 1.
For each c ∈ [0, σ − 1], we define the following data structures:

A bitvector Bc = 1rankc(A0,σ)01rankc(A1,σ)0 . . . 1rankc(An′/σ−1,σ)0, which encodes the number
of occurrences of symbol c in each chunk in unary. Bc is represented using Lemma 5 to
support rank and select in constant time.
A sequence Pc[0..n′/σ − 1], in which Pc[i] = rank′(Ai, c) for each i ∈ [0, n′/σ − 1], i.e.,
Pc[i] stores the answer to a partial rank query performed locally within Ai at position c.

Y. Gao, M. He, and Y. Nekrich 54:7

Note that we have one Bc for each alphabet symbol c, while we have one Pc for each
relative position c in the chunks of A. We have the following lemma on supporting queries
using these data structures, with a space analysis.

I Lemma 9. The data structures in this section occupy n′ lg σ + o(n′ lg σ) extra bits and
support rank′ in O(1) time and O(1) accesses to elements of A.

Proof. In Bc, each 1 bit corresponds to an occurrence of symbol c in A, while each 0
corresponds to a chunk. Thus, these bit vectors have n′ 1s and n′/σ × σ = n′ 0s in total.
Therefore, the lengths of all these bit vectors sum up to 2n′. By Lemma 5, o(n′) bits are
needed to augment them to support rank and select. As each chunk has σ elements,
encoding an entry of each Pc requires dlg σe bits. Thus P0, . . . , Pσ−1 occupy n′dlg σe
bits in total. The total space usage of all the data structures in this section is therefore
2n′ + o(n′) + n′dlg σe bits, which is n′ lg σ + o(n′ lg σ) when σ > lgn.

A query rank′(A, j) can be answered as follows:

rank′(A, j) = select0(Bc, t)− (t− 1) + Pτ [t], where τ = j mod σ, t = b j
σ
c, and c = A[j]

As the select query over Bc takes constant time, answering rank′(A, j) requires O(1) time
and a single access to A. J

Next, we consider how to construct the sequences Bc’s efficiently.

I Lemma 10. Bitvectors B0, B1, . . . , Bσ−1 can be constructed in O(n′ lg2 σ/ lgn+ σ) time.

Proof. We first construct a sequence M [0..n′+n′/σ− 1] in which each element is encoded in
dlg σe+ 1 bits. In M , n′ elements are regular elements, and the rest are boundary elements
each of which is an integer whose binary expression simply consists of dlg σe+ 1 0-bits. M
is divided into n′/σ chunks, and each chunks contains σ regular elements followed by a
boundary element. The subsequence of the σ regular elements in the i-th chunk can be
obtained by appending a 1-bit to the end of the binary expression of each element in Ak.

Next we show how to create M efficiently with the help of a universal table U . This
table has an entry for each possible pair (D, t), where D is a sequence of length b = b lgn

2dlgσec
drawn from [σ] and t is an integer in [0, b]. If t = 0, this entry stores a sequence of length b
which is obtained by appending a 1-bit to the end of the binary expression of each element
in D. Otherwise, this entry stores a sequence of length b+ 1 consisting of three sections: the
first section is obtained by appending a 1-bit to the end of the binary expression of each of
the first t elements in D, the second section is a boundary element, and the third section is
obtained by appending a 1-bit to the end of the binary expression of each of the last b− t
elements in D. As there are at most n1/2 possible sequences of length b drawn from σ and t
has b+ 1 possible values, U has at most n1/2(b+ 1) entries. Since each entry is encoded in
at most (b+ 1)(dlg σe+ 1) = O(polylog(n)) bits, U uses o(n) bits. With U , we can scan A
and process b of its elements in constant time; whether or where a boundary element should
be created when processing these b elements can be inferred by keeping track of the number
of elements that we have scanned so far. Note that at most one boundary element will be
created when reading b elements from A, as b < lgn < σ. The time needed to create M is
hence O(n′/b) = O(n′ lg σ/ lgn).

From M we determine the content of B0, B1, . . . , Bσ−1 by constructing a tree T over M
similar to large extent to a binary wavelet tree and associating each node u of T with a
sequence M(u). At the root node r of T , we set M(r) = M , and we perform the following
recursive procedure at any node u at level l of T where l ∈ [0, dlg σe − 1]: We create the left

ESA 2020

54:8 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

child, u0, and the right child, u1, of u, and perform a linear scan of M(u). During the scan,
for each i ∈ [0, |M(u)− 1|], if M(u)[i] is a boundary element, it is appended to both M(u0)
and M(u1). If M(u)[i] is not a boundary element and its lth most significant bit is 0, M(u)[i]
is appended toM(u0). If its lth significant bit is 1, it is appended toM(u1). After generating
the sequences M(u0) and M(u1), we discard the sequence M(u). We finish recursion after
we create dlg σe levels, i.e., we only examine the first dlg σe bits of each element of M to
determine the tree structure. Thus, this tree has σ leaves, and the sequences associated with
the leaves from left to right are named M0, M1, . . . , Mσ−1. They form a partition of M .

To speed up this process, we use a universal table U ′. Recall that b = b lgn
2dlgσec. U

′ has
an entry for each possible pair (E, c), where E is a sequence of length b drawn from universe
[2σ] and c is an integer in [0, dlg σe − 1]. This entry stores a pair of packed sequences E0 and
E1 defined as follows: E0 or E1 stores the boundary elements in E and the regular elements
in E whose c-th most significant bit is 0 or 1, respectively. The elements in E0 retain their
relative order in E, and the same is true with E1. As U ′ has 2b×(dlgσe+1)×dlg σe entries and
each entry stores a pair of packed sequences occupying O(bdlg σe) bits in total, U ′ uses o(n)
bits. By performing table lookups in U ′, we can process M(u) in O(|M(u)| lg σ/ lgn + 1)
time. Note that we assign n′ regular and 2l × n′

σ boundary elements to the nodes at tree
level l. Summing over all O(σ) nodes of the tree, the total time required to construct this
tree is O(

∑dlgσe−1
l=0 ((n′ + 2l × n′

σ) lg σ/ lgn) + σ) = O(n′ lg2 σ/ lgn+ σ).
To construct bitvectors Bc for any 0 ≤ c ≤ σ − 1, a crucial observation is that the i-th

bit in Bc is the same as the least significant bits of the i-th elements of Mc. Thus it takes
O(|Bc|(lg σ + 1)/ lgn + 1) time to compute the content of Bc using bit packing. Bc can
then be represented in O(|Bc|/ lgn + 1) time to support rank and select by Lemma 5.
Summing over all σ bitvectors, the time required to construct B0, B1, . . . , Bσ−1 from
M0,M1, . . . ,Mσ−1 is O(n′ lg σ/ lgn+ σ).

Overall, given A, the construction time of these bit vectors is

O(n′ lg σ/ lgn+ (n′ lg2 σ/ lgn+ σ) + (n′ lg σ/ lgn+ σ)) = O(n′ lg2 σ/ lgn+ σ). J

It remains to show how to build all sequences P0, P1, . . . , Pσ−1 efficiently.

I Lemma 11. Sequences P0, P1, . . . , Pσ−1 can be constructed in O(n′lg2 σ/lgn+ σ) time.

Proof. The construction consists of two phases. In the first phase, we compute the set of pairs
Rk = {(i, rank′(Ak, i))|0 ≤ i ≤ σ − 1} for each chunk Ak. Even though Pi[k] = rank′(Ak, i)
and thus the entries of all the Pi’s have been computed in this phase, the pairs themselves
generated for Ak are not in any order that allows us to directly assign values from these
pairs to entries of Pi’s quickly enough. Thus, in the second phase, we reorganize all n′ pairs
computed from all the chunks, to construct P0, P1, . . . , Pσ−1 efficiently.

We first show how to compute the pair set Rk for each Ak efficiently. Let I[0, σ − 1]
denote a packed sequence such that I[i] = i for each i ∈ [0, σ − 1]. Note that I can be
constructed once in O(σ) time and shared with all chunks. By Lemma 1, a binary wavelet
tree, in which node u is associated with A(u) and I(u) as defined before, over Ak could be
constructed in O(σ lg2 σ/ lgn+ σ) time. However, the second term O(σ), when summed over
all n′/σ chunks, is too expensive to afford. Thus, we modify the structure of a wavelet tree
to decrease this term. In the modified tree, when a node v satisfies |A(v)| ≤ b = b lgn

2dlgσec,
we make v a leaf node without any descendants. With this modification, we observe the
following two properties. First, if a leaf node l satisfies |A(l)| > b, then the tree level of l
must be lg σ and all entries of A(l) store the same symbol. Second, as there are at most
dσ/be nodes at each level, the modified tree has O(σ/b× lg σ) = O(σ lg2 σ/ lgn) nodes. The

Y. Gao, M. He, and Y. Nekrich 54:9

O(σ) term in construction time in Lemma 1 follows from the fact that a wavelet tree has
O(σ) leaves. With fewer leaves, the modified tree can be constructed in O(σ lg2 σ/ lgn) time.
After this tree is constructed, we only keep the sequences A(l) and I(l) for each leaf node l
and call them leaf sequences. We discard the rest of the tree.

To further compute Rk using these leaf sequences, observe that, for any symbol α,
there exists one leaf l such that A(l) contains all the occurrences of α in A. Thus
(I(l)[i], rank′(Ak, I(l)[i])) = (I(l)[i], rank′(A(l), i)) holds, which we can use to reduce the
problem of computing the pairs in Rk to the problem of computing the answer to a partial
rank query at each position of A(l) for each leaf l. Hence for each leaf l, we define a packed
sequence Q(l)[0..|A(l)| − 1] in which Q(l)[i] = rank′(A(l), i) to store these answers. To
construct Q(l) efficiently, we consider two cases. When |A(l)| ≤ b, we apply a universal table
U ′′ to generate Q(l) in constant time. U ′′ has an entry for each possible pair (F, x), where F
is a sequence of length b drawn from universe [σ], and x is an integer in [0, b]. This entry stores
a packed sequence G[0..x] in which G[i] = rank′(F, i). Similar to U in the proof of Lemma 10,
U ′′ uses o(n) bits. When |A(l)| > b, all entries of A(l) store the same symbol. Thus, we have
Q(l)[i] = i for each i ∈ [0, |A(l)| − 1], and hence we can create Q(l) by copying the first |A(l)|
elements from the sequence I which we created before. In either case, Q(l) can be constructed
in O(|A(l)| lg σ/ lgn+ 1) time. Let li denote the (i+ 1)-st leaf visited in a preorder traversal
of the tree, and f the number of leaves. Since

∑f
i=0 |Q(li)| = σ and f = O(σ lg2 σ/ lgn), the

total time required to build Q(l0), Q(l1), . . . , Q(lf−1) is O(σ lg2 σ/ lgn). Then we construct
the concatenated packed sequence Ik = I(l0)I(l1) . . . I(lf−1) and Qk = Q(l0)Q(l1) . . . Q(lf−1).
It requires O(σ lg2 σ/ lgn) time to concatenate these sequences if we process Θ(lgn) bits,
i.e., O(1) words, in constant time by performing bit operations. Since for any i ∈ [0, σ − 1],
(Ik[i], Qk[i]) is a distinct pair in Rk, Ik and Qk store all the pairs in Rk. We perform the
steps in this and the previous paragraphs for all the chunks in A, and the total time spent in
this phase is O(n′lg2 σ/lgn+ σ).

Next we construct P0, P1, . . . , Pσ−1 efficiently using the pairs computed in the previous
phase. We first build in O(n′ lg2 σ/ lgn) time two concatenated packed sequences each of
length n′: I ′ = I0I1 . . . In′/σ−1 and Q = Q0Q1 . . . Qn′/σ−1. Then we construct a binary
wavelet tree over I ′. Each node, u, of the wavelet tree is associated with two sequences,
I ′(v) which contains all the elements of I ′ whose values are within the range represented
by v, retaining their relative order in I ′, and Q(v) in which Q(v)[i] is the element in Q

corresponding to I ′(v)[i]. The wavelet tree construction algorithm of Lemma 1 can be
modified easily to construct this wavelet tree in O(n′ lg2 σ/ lgn+ σ) time. Let l′i denote the
(i+ 1)st leaf of this wavelet tree in preorder. Observe that all the entries in I ′(l′i) store i,
and I ′(l′i)[j] initially came from Aj , i.e., I ′(l′i)[j] corresponds to the ith position in chunk Aj .
Therefore, Q(l′i)[j] = Pi[j], and we have Pi = Q(l′i). The processing time required for this
phase is also O(n′lg2 σ/lgn+σ), which is the same as the bound for the first phase. Therefore,
the total time required to construct all sequences P0, P1, . . . , Pσ−1 is O(n′lg2 σ/lgn+σ). J

Combining Lemmas 4, 9, 10 and 11, we have the following result:

I Lemma 12. Let A[0..n′ − 1] be a packed sequence drawn from alphabet [σ], where n′ ≤ n
and σ = O(2O(

√
lgn)). With the help of a universal table of o(n) bits, a data structure using

n′dlg σe+ o(n′ lg σ) extra bits can be constructed in O(n′lg2 σ/lgn+σ) time to support rank′

queries in O(1) time and O(1) accesses to elements of A.

ESA 2020

54:10 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

4 Fast Construction of Data Structures for Ball Inheritance

We now solve, with fast preprocessing, ball inheritance for the special cases needed later
to match the time and space bounds in parts (b) and (c) of Lemma 3. The omitted proofs
are deferred to the full version of this paper. One strategy is to construct the solution of
Chan et al. [11] by replacing some of their components with those we designed with faster
preprocessing. This yields:

I Lemma 13. Let X[0, n − 1] be a sequence drawn from alphabet [σ] denoting the point
set N = {(X[i], i)|0 ≤ i ≤ n − 1}, where 2

√
lgn ≤ σ ≤ n. A 2

√
lgn-ary wavelet tree over

X occupying O(n lg σ · f(σ) + n lgn) bits can be constructed in O(n lg σ/
√

lgn) time to
support point in O(g(σ)) time and noderange in O(lg lgn+ g(σ)) time, where (a) f(σ) =
O(lg(lg σ/

√
lgn)) and g(σ) = O(lg(lg σ/

√
lgn)); or (b) f(σ) = O(lgε σ) and g(σ) = O(1) for

any constant ε > 0. The noderange query requires a universal table of o(n) bits.

I Lemma 14. Let X[0..n′−1] be a packed sequence drawn from alphabet [σ] and Y [0..n′−1] be
a packed sequence in which Y [i] = i for each i ∈ [0..n′ − 1], where σ = O(2O(

√
lgn)) and n′ =

O(σO(1)). Given X and Y as input, a d-ary wavelet tree over X using O(n′ lg σ lg(lg σ/ lg d)+
σw) bits of space can be constructed in O(n′lg2 σ/lgn+ σ logd σ) time to support point in
O(lg(lg σ/ lg d)) time and noderange in O(lg lg σ) time, where d is a power of 2 upper
bounded by min(σ, 2

√
lgn).

This strategy however cannot achieve, with the preprocessing time as in Lemma 14, part
(c) of Lemma 3 when the coordinates of points can be encoded in O(

√
lgn) bits. For this

special case, we twist the approach of Chan et al.: they only store point coordinates explicitly
at the leaf level of the wavelet tree, while we take advantage of the smaller grid size to store
coordinates at more levels. This allows us to build rank′ structures at fewer levels of the
tree, decreasing the preprocessing time. The details are as follows.

Recall that, when used to represent the given point set N , each node u of the d-ary wavelet
tree T is conceptually associated with an ordered list, N(u), of points whose x-coordinates
are within the range represented by u, and these points are ordered by y-coordinate. Assume
for simplicity that σ is a power of d, and that both 1/ε and τ = logεd σ are integers. We
assign a color to each level of T : Level 0 is assigned color 0, while any other Level l is
assigned color max{c | τ c divides l and 0 ≤ c ≤ 1/ε − 1}. For each node u of T at a level
assigned with color 1/ε− 1, we store the coordinates of the points in N(u) explicitly. For
any other node v (let l be the level l of v and c the color assigned to level l), we do not store
N(v). Instead, for each i ∈ [0, |N(v)|], we store a skipping pointer Sp(v)[i], which stores, at
the closest level l′ satisfying l′ > l and l′ is a multiple of τ c+1, the descendant of v at level
l′ containing point N(v)[i] in its ordered list of points. This descendant is encoded by its
rank among all the descendants of v at level l′ in left-to-right order. We use Lemma 12 to
support O(1)-time rank′ over Sp(v). Then, since both N(u) and N(Sp(u)[i]) order points by
y-coordinate, a rank′(Sp(u), i) query gives the position of the point N(u)[i] in N(Sp(u)[i]).
Thus, to compute point(v, i), we follow skip pointers starting from v by performing rank′,
until we reach a level with color 1/ε− 1, where we retrieve coordinates. With this we have:

I Lemma 15. Let X[0..n′−1] be a packed sequence drawn from alphabet [σ] and Y [0..n′−1] be
a packed sequence in which Y [i] = i for each i ∈ [0..n′ − 1], where σ = O(2O(

√
lgn)) and n′ =

O(σO(1)). Given X and Y as input, a d-ary wavelet tree over X using O(n′ lg σ logεd σ+ σw)
bits for any positive constant ε can be constructed in O(n′lg2 σ/lgn+σ logd σ) time to support
point in O(1) time and noderange in O(lg lg σ) time, where d is a power of 2 upper bounded
by min(σ, 2

√
lgn). The noderange query requires a universal table of o(n) bits.

Y. Gao, M. He, and Y. Nekrich 54:11

5 Optimal Orthogonal Range Reporting with Fast Preprocessing

We now design data structures that support orthogonal range reporting in optimal time and
can be constructed fast. Previously, with a solution to ball inheritance, Chan et al. [11]
was able to design a relatively simple approach achieving three current best tradeoffs for
orthogonal range reporting. However, we have only designed alternative solutions to ball
inheritance with fast construction time in special cases. Therefore, we design a different
data structure with optimal query time for orthogonal range reporting. The strategy is to
use a generalized wavelet tree and our solution to range minimum/maximum (Lemma 8)
to reduce the orthogonal range reporting problem in the general case to the special case
in which the points are from a 2

√
lgn × n′ (narrow) grid. In this reduction, we need only

support ball-inheritance over a wavelet tree with high fanout which is solved by part (b)
of Lemma 13. We further reduce the range reporting problem over points in a narrow grid
to this problem over a (small) grid of size at most 2

√
lgn × 22

√
lgn, to which we can apply

Lemma 15 for ball inheritance. Hence we describe our solutions over a small, narrow and
general grid in this order, as the solution to the next case uses that to the previous.

5.1 Orthogonal Range Reporting in a Small Grid

I Lemma 16. Let N be a set of δ points with distinct y-coordinates in a 2
√

lgn × δ grid
where δ ≤ 22

√
lgn. Given packed sequences X and Y respectively encoding the x- and y-

coordinates of these points where Y [i] = i for any i ∈ [0, δ − 1], a data structure occupying
O(δ lg1/2+ε n + w · 2

√
lgn) bits can be constructed in O(δ +

√
lgn · 2

√
lgn) time to support

orthogonal range reporting over N in O(lg lgn+ occ) time, where ε is an arbitrary positive
constant and occ is the number of reported points.

Proof. We build a binary wavelet tree T over X augmented with support for ball inheritance.
By Lemma 15, T occupies O(δ lg1/2+ε n+w·2

√
lgn) bits and can be built in O(δ+

√
lgn·2

√
lgn)

time. It also supports point in O(1) time and noderange in O(lg lgn) time. For any internal
node v of T , its value array A(v) is built at some point when augmenting T to solve ball
inheritance, though A(v) may be discarded eventually. When A(v) was available, we build
a data structure M(v) to support range minimum and maximum queries over A(v) using
Lemma 8. As T has d

√
lgne non-leaf levels and the total length of the value arrays of the

nodes at each tree level is δ, over all internal nodes, these structures use O(δ
√

lgn lg lgn) bits
in total and the overall construction time is

∑
v O(|A(v)|/

√
lgn+ 1) = O(δ + 2

√
lgn). These

costs are subsumed in the storage and construction costs of T . Recall that A(v) stores the
x-coordinates of the set, N(v), of points from N whose x-coordinates are within the range
represented by v, and the entries of A(v) are ordered by the corresponding y-coordinates of
these points. Thus any entry of A(v) can be retrieved by point in constant time. Therefore,
even after A(v) is discarded, M(v) can still support rmq/rMq over A(v) in O(1) time.

Given a query range Q = [a, b] × [c, d], we first locate the lowest common ancestor u
of la and lb in constant time, where la and lb denote the a-th and b-th leftmost leaves
of T , respectively. Let ul and ur denote the left and right children of u, respectively,
[cl, dl] = noderange(c, d, ul) and [cr, dr] = noderange(c, d, ur). Then Q ∩N = (([a,+∞)×
[cl, dl]) ∩ N(ul)) ∪ (([0, b] × [cr, dr]) ∩ N(ur)). In this way, we reduce a 2-d 4-sided range
reporting in N to 2-d 3-sided range reporting in N(ul) and N(ur). To report points in
([a,+∞)× [cl, dl])∩N(ul), we need only report the points in N(ul)[cl, dl] whose x-coordinates
are at least a. This can be done by performing range maximum queries over A(ul) recursively

ESA 2020

54:12 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

as follows. We perform rMq(cl, dl) to get the index m of the point p that has the maximum x-
coordinate in N(ul)[cl, dl], and retrieve its coordinates (p.x, p.y) by point(ul,m). If p.x ≥ a,
we report p and perform the same process recursively in N(ul)[cl,m−1] and N(ul)[m+ 1, dl].
Otherwise we stop. The points in ([0, b]× [cr, dr]) ∩N(ur)] can be reported in a similar way.
To analyze the query time, observe that we perform noderange twice in O(lg lgn) time. The
recursive procedure is called O(occ) times, and each time it is performed, it uses O(1) time.
All other steps require O(1) time. Therefore, the overall query time is O(lg lgn+ occ). J

5.2 Orthogonal Range Reporting in a Narrow Grid

Our solution for points in a 2
√

lgn × n′ grid for any n′ ≤ n uses the following previous result:

I Lemma 17 ([11, Section 2], [6, Lemma 5]). Given a set, N , of n points in [u]× [u], a data
structure of O(n lg1+ε n) bits can be constructed in O(n lgn) time, which supports orthogonal
range reporting over N in O(lg lg u+ occ) time, where occ is the number of reported points.

The following lemma presents our solution for a narrow grid:

I Lemma 18. Let N be a set of n′ points with distinct y-coordinates in a 2
√

lgn × n′

grid where n′ ≤ n. Given packed sequences X and Y respectively encoding the x- and
y-coordinates of these points where Y [i] = i for any i ∈ [0, n′ − 1], a data structure occupying
O(n′ lg1/2+ε n + w · 2

√
lgn + n′w/2

√
lgn) bits can be constructed in O(n′ +

√
lgn · 2

√
lgn)

time to support orthogonal range reporting over N in O(lg lgn+ occ) time, where ε is an
arbitrary positive constant and occ is the number of reported points.

Proof. Let b = 22
√

lgn. We need only consider the case in which n′ > b as Lemma 16 applies
otherwise. Assume for simplicity that n′ is divisible by b. We divide N into n′/b subsets, and
for each i ∈ [0, n′/b− 1], the ith subset, Ni, contains points in N whose y-coordinates are in
[ib, (i+ 1)b− 1]. Let p be a point in Ni. We call its coordinates (p.x, p.y) global coordinates,
while (p.x′, p.y′) = (p.x, p.y mod b) its local coordinates in Ni; the conversion between global
and local coordinates can be done in constant time. Hence the points in Ni with their local
coordinates can be viewed as a point set in a 2

√
lgn × 22

√
lgn grid, and we apply Lemma 16

to construct an orthogonal range search structure over Ni.
We also define a point set N̂ in a 2

√
lgn×n′/b grid. For each set Ni where i ∈ [0, n′/b−1]

and each j ∈ [0, 2
√

lgn−1], we store a point (j, i) in N̂ iff there exists at least one point in Ni
whose x-coordinate is j. Thus the number of points in N̂ is at most n′/b×2

√
lgn = n′/2

√
lgn.

We apply Lemma 17 to construct an orthogonal range search structure over N̂ . In addition, for
each i ∈ [0, n′/b− 1] and j ∈ [0, 2

√
lgn− 1], we store a list Pi,j storing the local y-coordinates

of the points in Ni whose x-coordinates are equal to j.
Given a query range Q = [x1, x2]× [y1, y2], we first check if by1/bc is equal to by2/bc. If

it is, then the points in the answer to the query reside in the same subset Nby1/bc, and we
can retrieve these points by performing an orthogonal range query in Nby1/bc, which requires
O(lg lgn + occ) time by Lemma 16. Otherwise, we decompose Q into three subranges
Q1 = [x1, x2] × [y1, b(by1/bc + 1) − 1], Q2 = [x1, x2] × [b(by1/bc + 1), bby2/bc − 1] and
Q3 = [x1, x2]× [bby2/bc, y2]. The points in N ∩Q1 and N ∩Q3 are in Nby1/bc and Nby2/bc,
respectively, and by Lemma 16, they can be reported in O(lg lgn+occ1) and O(lg lgn+occ3)
time, respectively, where occ1 = |N ∩Q1| and occ3 = |N ∩Q3|. The points in N ∩Q2 are in
Nby1/bc+1, Nby1/bc+2, . . . , Nby2/bc−1. To retrieve them, we first perform an orthogonal range
query in N̂ with query range Q̂ = [x1, x2] × [by1/bc + 1, by2/bc − 1]. Let (x, y) be a point

Y. Gao, M. He, and Y. Nekrich 54:13

in N̂ ∩ Q̂. The existence of this point means that is at least one point in Ny ∩ Q2 whose
x-coordinates are equal to x; the local y-coordinates of these points are stored in Py,x which
we retrieve and convert to global coordinates. After examining all the points in N̂ ∩ Q̂ and
retrieving their corresponding points in N ∩Q2 in this way, we have computed all the points
in N ∩Q2 in O(lg lgn+ occ2) time where occ2 = |N ∩Q2|. The overall query processing
time is thus O(lg lgn+ occ).

To bound the storage costs, by Lemma 16, the orthogonal range reporting structure
over each Ni uses O(22

√
lgn lg1/2+ε n+w · 2

√
lgn) bits. Thus, the range reporting structures

over N0, N1, . . . , Nn/b−1 occupy O((n′/b)× (22
√

lgn lg1/2+ε n+w ·2
√

lgn)) = O(n′ lg1/2+ε n+
n′w/2

√
lgn). As there are at most n′/2

√
lgn points in N̂ , by Lemma 17, the range reporting

structure for N̂ occupies O(n′ lg1+ε n/2
√

lgn) = o(n′) bits. There are n′ points in all Pi,j ’s
and each of their local y-coordinates can be encoded in lg b = 2

√
lgn bits. In addition, each

Pi,j requires a pointer to encode its memory location, so n′/b× 2
√

lgn = n′/2
√

lgn pointers
are needed. Therefore, the total storage cost of all Pi,j ’s is O(n′w/2

√
lgn + n′

√
lgn). Thus

the space costs of all structures add up to O(n′ lg1/2+ε n+ n′w/2
√

lgn) bits. Note that the
above analysis assumes n′ > b. Otherwise, O(n′ lg1/2+ε n+w · 2

√
lgn) bits are needed, so we

use O(n′ lg1/2+ε n+ w · 2
√

lgn + n′w/2
√

lgn) as the space bound on both cases.
Regarding construction time, when n′ > b, observe that the point sets N0, N1, . . . , Nn′/b−1

and N̂ , as well as the sequences P [i, j] for i = 0, 1, . . . , n′/b−1 and j = 0, 1, . . . , 2
√

lgn−1, can
be computed in O(n′) time. By Lemma 17, The range reporting structure for N̂ can be built
in O(n′/b× lgn) = o(n′) time. Finally, the total construction time of the range reporting
structures for N0, N1, . . . , Nn/b−1 is O(n′/22

√
lgn × (22

√
lgn +

√
lgn × 2

√
lgn)) = O(n′),

which dominates the total preprocessing time of all our data structures. When n′ ≤ b, the
construction time is O(n′ +

√
lgn · 2

√
lgn) by Lemma 16, so we use O(n′ +

√
lgn · 2

√
lgn) as

the upper bound on construction time in both cases. J

5.3 Orthogonal Range Reporting in an n× n Grid
We first describe a solution that is slight more general, which requires the grid to be of size
σ × n with 2

√
lgn ≤ σ ≤ n, as it will be needed for some applications to be described later.

I Lemma 19. Given a sequence X[0, n− 1] drawn from alphabet [σ] denoting the point set
N = {(X[i], i)|0 ≤ i ≤ n− 1}, a data structure of O(n lg1+ε σ + n lgn) bits for any constant
ε > 0 can be constructed in O(nlg σ/

√
lgn) time to support orthogonal range reporting over

N in O(lg lgn+ occ) time, where 2
√

lgn ≤ σ ≤ n and occ is the number of reported points.

Proof. We build a 2
√

lgn-ary wavelet tree T upon X[0, n−1] with support for ball inheritance
using part (b) of Lemma 13. As in the proof of Lemma 16, for each internal node v ∈ T ,
we build a data structure M(v) to support range minimum and maximum queries over its
value array A(v) in constant time using Lemma 8, even A(v) is not be explicitly stored.
Recall that A(v) stores the x-coordinates of the ordered list, N(v), of points from N whose
x-coordinates are within the range represented by v, and these points are ordered by y-
coordinate. Furthermore, v is associated with another sequence S(v) drawn from alphabet
[2
√

lgn], in which S(v)[i] encodes the rank of the child of v that contains N(v)[i] in its ordered
list. Let Ŝ(v) denote the point set {(S(v)[i], i)|0 ≤ i ≤ |S(v)| − 1}, and we use Lemma 18 to
build a structure supporting orthogonal range reporting over Ŝ(v).

ESA 2020

54:14 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

Given a query range Q = [a, b]× [c, d], we first locate the lowest common ancestor u of
la and lb in constant time, where la and lb denote the a-th and b-th leftmost leaves of T ,
respectively. Let ui denote the ith child of u, for any i ∈ [0, 2

√
lgn − 1]. We first locate two

children, ua′ and ub′ , of u that are ancestors of la and lb, respectively. They can be found in
constant time by simple arithmetic as each child of u represents a range of equal size. Then
the answer, Q ∩N , to the query can be partitioned into three point sets A1 = Q ∩N(va′),
A2 = Q ∩ (N(va′+1) ∪N(va′+2) ∪ . . . N(vb′−1)) and A3 = Q ∩N(vb′). With O(lg lgn)-time
support for noderange and constant-time support for point and rmq/rMq, we can use the
algorithm in the proof of Lemma 16 to perform 3-sided range queries over N(v′a) and N(v′b)
to compute A1 ∪A3 in O(lg lgn+ |A1|+ |A3|) time. To compute A2, observe that any entry,
Ŝ(v)[i], can be obtained by replacing the x-coordinate of point N(v)[i] with the rank of the
child whose ordered list contains N(v)[i]. Hence, by performing range reporting over Ŝ to
compute S ∩ ([a′ + 1, b′ − 1]× [cv, dv]), where [cv, dv] = noderange(c, d, v), we can find the
set of points in Ŝ(v) corresponding to the points in A2. For each point returned, we use
point to find its original coordinates in N and return it as part of A2. This process uses
O(lg lgn + |A2|) time. Hence we can compute Q ∩ N as A1 ∪ A2 ∪ A3 in O(lg lgn + occ)
time.

Now we analyze the space costs. T with support for ball inheritance uses O(n lg1+ε σ +
n lgn) bits for any positive ε. For each internal node v, since w = Θ(lgn), the data structure
for range reporting over Ŝ uses O(|S(u)| lg1/2+ε′ n+ 2

√
lgn lgn+ |S(u)| lgn/2

√
lgn) bits for

any positive ε′. This subsumes the cost of storing M(u) which is O(|S(u)| lg lgn) bits. As T
has O(σ/2

√
lgn) internal nodes, the total cost of storing these structures at all internal nodes

is
∑
uO(|S(u)| lg1/2+ε′ n + 2

√
lgn lgn + |S(u)| lgn/2

√
lgn) = O(n lg σ/

√
lgn × lg1/2+ε′ n +

σ lgn) = O(n lg σ lgε
′
n+σ lgn). As lgn ≤ lg2 σ and σ ≤ n, this is bounded by O(n lg1+2ε′ σ).

Setting ε′ = ε/2, the space bound turns to be O(n lg1+ε σ) bits. Overall, the data structures
occupy O(n lg1+ε σ + n lgn) bits.

Finally, we analyze the construction time. As shown in Lemma 13, T with support for
ball inheritance can be constructed in O(n lg σ/

√
lgn) time. For each internal node u of T ,

constructing M(u) and the range reporting structure over Ŝ(v) requires O(|S(u)|+
√

lgn ·
2
√

lgn) time. As T has O(σ/2
√

lgn) internal nodes, these structures over all internal nodes
can be built in

∑
uO(|S(u)|+

√
lgn× 2

√
lgn) = O(n lg σ/

√
lgn+ σ

√
lgn) = O(n lg σ/

√
lgn)

as σ ≤ n. The preprocessing time of all data structures is hence O(n lg σ/
√

lgn). J

Our result on points over an n× n gird immediately follows.

I Theorem 20. Given a set, N , of n points in rank space, a data structure of O(n lg1+ε n)
bits for any constant ε > 0 can be constructed in O(n

√
lgn) time to support orthogonal range

reporting in O(lg lgn+ occ) time, where occ is the number of reported points.

6 Optimal Orthogonal Range Successor with Fast Preprocessing

In this section, we assume that a range successor query asks for the lowest point in the query
rectangle. The following theorem presents our result on fast construction of structures for
optimal range successor; we provide a proof sketch, while leaving the full proof to the full
version of this paper:

I Theorem 21. Given n points in rank space, a data structure of O(n lg lgn) words can be
constructed in O(n

√
lgn) time to support orthogonal range successor in O(lg lgn) time.

Y. Gao, M. He, and Y. Nekrich 54:15

Proof (sketch). Our approach is similar to that in Section 5, but more levels of reductions
are required. Let the sequence X[0, n− 1] denote the point set N = {(X[i], i)|0 ≤ i ≤ n− 1}.
We build a 2

√
lgn-ary wavelet tree T upon X[0, n− 1] with support for ball inheritance using

part (a) of Lemma 13. As shown in the proof of Lemma 19, a query can be answered by
locating the lowest common ancestor, u, of the two leaves corresponding to the end points of
the query x-range, and then performing two 3-sided queries over the point sets represented
by two children of u and one 4-sided query over S(u). For the 3-sided queries, Zhou [32]
already designed an indexing structure, which, with our O(lg lgn)-time support for point
and noderange, can answer a 3-sided query in O(lg lgn) time. The construction time is
linear, but it is fine since T has only O(

√
lgn) levels. The 4-side query over S(u) is a range

successor query over n′ points in a 2
√

lgn × n′ (medium narrow) grid for any n′ ≤ n.
For such a medium narrow grid, we use the sampling strategy in Lemma 18 to reduce the

problem to range successor over a set of n′ points in a 2
√

lgn×n′ grid where n′ ≤ 2×22
√

lgn−1.
The sampling is adjusted, as we need select at most 2

√
lgn sampled points from each subset.

The grid size of 2
√

lgn × n′ with n′ ≤ 2× 22
√

lgn − 1 is the same as that in Lemma 16, so
one may be tempted to apply the same strategy of building a binary wavelet tree to reduce
it to the problem of building index structures for 3-sided queries. However, we found that,
to construct the structure of Zhou [32] over n′ points whose coordinates are encoded in
O(
√

lgn) bits, O(n′ lg lgn/
√

lgn) time is required, which is a factor of lg lgn more than the
preprocessing time of the rmq structure needed in the proof of Lemma 16. This factor comes
from rank reduction in [32], which requires us to sort packed sequences. To overcome this
additional cost, we build a lg1/4 n-ary wavelet tree over the x-coordinates, whose number of
levels is a factor of O(lg lgn) less than that of a binary wavelet tree. As discussed for the
general case, this strategy reduces the current problem to orthogonal range successor over n′
points in an lg1/4 n× n′ (small narrow) grid with n′ ≤ n.

For a small narrow grid, there are two cases. If n′ > lgn, we build a binary wavelet tree
of height O(lg lgn). In the query algorithm, after finding the lowest common ancestor of
the two leaves corresponding to the end points of the query x-range, we do not perform
3-sided queries. Instead, we traverse the two paths leading to these two leaves. This requires
us to traverse down O(lg lgn) levels, and at each level, we perform certain rank/select
operations in constant time, with the right auxiliary structures at each node. No extra
support for ball inheritance is needed as we can simply go down the tree level by level to
map information. Finally, if n′ < lgn, we use sampling to reduce it to even smaller grids of
size at most lg1/4 n× lg3/4 n, over which a query can be answered using a table lookup. J

7 Applications

We now apply our range search structures to the text indexing problem, in which we preprocess
a text string T ∈ [σ]n, where σ ≤ n. Given a pattern string P [0..p − 1], a counting query
computes the number of occurrences of P in T and a listing query reports these occurrences.

Text indexing and searching in sublinear time. When both T and P are given in packed
form, a text index of Munro et al. [25] occupies O(n lg σ) bits, can be built in O(n lg σ/

√
lgn)

time and supports counting queries in O(p/ logσ n+lgn logσ n) time (there are other tradeoffs,
but this is their main result). Thus for small alphabet size which is common in practice, they
achieve both o(n) construction time and o(p) query time, while previous results achieve at
most one of these bounds. To support listing queries, however, they need to increase space
cost to O(n lg σ lgε n) bits and construction time to O(n lg σ lgε n), and then a listing query

ESA 2020

54:16 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

can be answered in O(p/logσ n+logσ n lg lgn+occ). The increase in storage and construction
costs stems from one component they used which is an orthogonal range reporting structure
over t = O(n/r) points in a σO(r) × t grid, for r = c logσ n for any constant c < 1/4. We
can apply Lemma 19 over this point set to decrease the construction time of their index for
listing queries to match that for counting queries:

I Theorem 22. Given a packed text string T of length n over an alphabet of size σ, an
index of O(n lg σ lgε n) bits can be built in O(n lg σ/

√
lgn) time for any positive constant

ε. Given a packed pattern string P of length p, this index supports listing queries in
O(p/logσ n+ logσ n lg lgn+ occ) time where occ is the number of occurrences of P in T .

Position-restricted substring search. In a position-restricted substring search [23], we are
given both a pattern P and two indices 0 ≤ l ≤ r ≤ n− 1, and we report all occurrences of P
in T [l..r]. Makinen and Navarro [23] solves this problem using an index for the original text
indexing problem and a two-dimensional orthogonal range reporting structure. Different text
indexes and range reporting structures yield different tradeoffs. The tradeoff with the fastest
query time supports position-restricted substring search in O(p+ lg lgn+ occ) time, where
occ is the output size, and it uses O(n lg1+ε n) bits and can be constructed in O(n lgn) time.
Again, the construction time of the range reporting structure is the bottleneck, which can be
improved by Theorem 20. We can also use a new text index by Bille et al. [7] to achieve
speedup when P is given as a packed sequence. We have:

I Theorem 23. Given a text T of length n over an alphabet of size σ, an index of O(n lg1+ε n)
bits can be built in O(n

√
lgn) time for any constant 0 < ε < 1/2. Given a packed pattern

string P of length p, this index supports position-restricted substring search in O(p/logσ n+
lg p+ lg lg σ + occ) time, where occ in the size of the output.

References
1 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. New data structures for orthogonal

range searching. In 41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
pages 198–207. IEEE Computer Society, 2000. doi:10.1109/SFCS.2000.892088.

2 Maxim Babenko, Paweł Gawrychowski, Tomasz Kociumaka, and Tatiana Starikovskaya.
Wavelet trees meet suffix trees. In 26th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 572–591. Society for Industrial and Applied Mathematics, 2015.

3 Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Linear-time string
indexing and analysis in small space. ACM Transactions on Algorithms (TALG), 16(2):1–54,
2020.

4 Djamal Belazzougui and Simon J Puglisi. Range predecessor and lempel-ziv parsing. In
27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2053–2071. Society for
Industrial and Applied Mathematics, 2016.

5 Michael A Bender and Martın Farach-Colton. The level ancestor problem simplified. Theoretical
Computer Science, 321(1):5–12, 2004.

6 Philip Bille and Inge Li Gørtz. Substring range reporting. Algorithmica, 69(2):384–396, 2014.
doi:10.1007/s00453-012-9733-4.

7 Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Deterministic indexing for packed
strings. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, pages
6:1–6:11, 2017. doi:10.4230/LIPIcs.CPM.2017.6.

8 Prosenjit Bose, Meng He, Anil Maheshwari, and Pat Morin. Succinct orthogonal range search
structures on a grid with applications to text indexing. In 11th International Symposium on
Algorithms and Data Structures, volume 5664 of Lecture Notes in Computer Science, pages
98–109. Springer, 2009.

https://doi.org/10.1109/SFCS.2000.892088
https://doi.org/10.1007/s00453-012-9733-4
https://doi.org/10.4230/LIPIcs.CPM.2017.6

Y. Gao, M. He, and Y. Nekrich 54:17

9 Timothy M. Chan. Persistent predecessor search and orthogonal point location on the word
RAM. In 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1131–1145, 2011. doi:10.1137/1.9781611973082.85.

10 Timothy M Chan, Meng He, J Ian Munro, and Gelin Zhou. Succinct indices for path minimum,
with applications. Algorithmica, 78(2):453–491, 2017.

11 Timothy M Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on
the ram, revisited. In 27th Symposium on Computational Geometry, pages 1–10. ACM, 2011.

12 Timothy M. Chan and Mihai Pǎtraşcu. Counting inversions, offline orthogonal range counting,
and related problems. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pages 161–173, 2010. doi:10.1137/1.9781611973075.15.

13 Bernard Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM Journal on Computing, 17(3):427–462, 1988. doi:10.1137/0217026.

14 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, M. Sohel Rahman, German Tischler,
and Tomasz Walen. Improved algorithms for the range next value problem and applications.
Theoretical Computer Science, 434:23–34, 2012. doi:10.1016/j.tcs.2012.02.015.

15 Maxime Crochemore, Marcin Kubica, Tomasz Walen, Costas S. Iliopoulos, and M. Sohel
Rahman. Finding patterns in given intervals. Fundamenta Informaticae, 101(3):173–186, 2010.
doi:10.3233/FI-2010-283.

16 Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM Journal on Computing, 40(2):465–492, 2011.

17 Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast algorithms
for multidimensional dominance reporting and counting. In 15th International Symposium
on Algorithms and Computation, volume 3341 of Lecture Notes in Computer Science, pages
558–568. Springer, 2004.

18 Jesper Jansson, Zhaoxian Li, and Wing-Kin Sung. On finding the adams consensus tree.
Information and Computation, 256:334–347, 2017. doi:10.1016/j.ic.2017.08.002.

19 Marek Karpinski and Yakov Nekrich. Space efficient multi-dimensional range reporting. In
15th Annual International Conference on Computing and Combinatorics (COCOON), pages
215–224, 2009. doi:10.1007/978-3-642-02882-3_22.

20 Orgad Keller, Tsvi Kopelowitz, and Moshe Lewenstein. Range non-overlapping indexing and
successive list indexing. In 10th Workshop on Algorithms and Data Structures, Proceedings,
volume 4619 of Lecture Notes in Computer Science, pages 625–636. Springer, 2007. doi:
10.1007/978-3-540-73951-7_54.

21 Hans-Peter Lenhof and Michiel H. M. Smid. Using persistent data structures for adding range
restrictions to searching problems. Informatique Theorique et Applications, 28(1):25–49, 1994.
doi:10.1051/ita/1994280100251.

22 Moshe Lewenstein. Orthogonal range searching for text indexing. In Space-Efficient Data
Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of
His 66th Birthday, pages 267–302, 2013. doi:10.1007/978-3-642-40273-9_18.

23 Veli Mäkinen and Gonzalo Navarro. Position-restricted substring searching. In 7th Latin
American Symposium on Theoretical Informatics, pages 703–714. Springer, 2006.

24 Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended. Theoretical
Computer Science, 387(3):332–347, 2007. doi:10.1016/j.tcs.2007.07.013.

25 J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Text indexing and searching in sublinear
time. In 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, pages
24:1–24:15, 2020. doi:10.4230/LIPIcs.CPM.2020.24.

26 J Ian Munro, Yakov Nekrich, and Jeffrey S Vitter. Fast construction of wavelet trees. Theoretical
Computer Science, 638:91–97, 2016.

27 Yakov Nekrich. A data structure for multi-dimensional range reporting. In 23rd ACM
Symposium on Computational Geometry (SoCG), pages 344–353, 2007. doi:10.1145/1247069.
1247130.

ESA 2020

https://doi.org/10.1137/1.9781611973082.85
https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1137/0217026
https://doi.org/10.1016/j.tcs.2012.02.015
https://doi.org/10.3233/FI-2010-283
https://doi.org/10.1016/j.ic.2017.08.002
https://doi.org/10.1007/978-3-642-02882-3_22
https://doi.org/10.1007/978-3-540-73951-7_54
https://doi.org/10.1007/978-3-540-73951-7_54
https://doi.org/10.1051/ita/1994280100251
https://doi.org/10.1007/978-3-642-40273-9_18
https://doi.org/10.1016/j.tcs.2007.07.013
https://doi.org/10.4230/LIPIcs.CPM.2020.24
https://doi.org/10.1145/1247069.1247130
https://doi.org/10.1145/1247069.1247130

54:18 Fast Preprocessing for Orthogonal Range Reporting and Range Successor

28 Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In 13th Scandinavian Symposium
and Workshops, 2012. Proceedings, pages 271–282, 2012. doi:10.1007/978-3-642-31155-0_
24.

29 Mihai Patrascu and Mikkel Thorup. Time-space trade-offs for predecessor search. In 38th
Annual ACM Symposium on Theory of Computing, 2006, pages 232–240. ACM, 2006. doi:
10.1145/1132516.1132551.

30 Dan E. Willard. On the application of sheared retrieval to orthogonal range queries. In 2nd
Annual ACM SIGACT/SIGGRAPH Symposium on Computational Geometry (SoCG) 1986,
pages 80–89. ACM, 1986. doi:10.1145/10515.10524.

31 Chih-Chiang Yu, Wing-Kai Hon, and Biing-Feng Wang. Improved data structures for the
orthogonal range successor problem. Computational Geometry, 44(3):148–159, 2011. doi:
10.1016/j.comgeo.2010.09.001.

32 Gelin Zhou. Two-dimensional range successor in optimal time and almost linear space.
Information Processing Letters, 116(2):171–174, 2016. doi:10.1016/j.ipl.2015.09.002.

https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1007/978-3-642-31155-0_24
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1145/10515.10524
https://doi.org/10.1016/j.comgeo.2010.09.001
https://doi.org/10.1016/j.comgeo.2010.09.001
https://doi.org/10.1016/j.ipl.2015.09.002

Dual Half-Integrality for Uncrossable Cut Cover
and Its Application to Maximum Half-Integral
Flow
Naveen Garg
Indian Institute of Technology Delhi, India
naveen@cse.iitd.ac.in

Nikhil Kumar
Indian Institute of Technology Delhi, India
nikhil@cse.iitd.ac.in

Abstract
Given an edge weighted graph and a forest F , the 2-edge connectivity augmentation problem is to
pick a minimum weighted set of edges, E′, such that every connected component of E′ ∪ F is 2-edge
connected. Williamson et al. gave a 2-approximation algorithm (WGMV) for this problem using
the primal-dual schema. We show that when edge weights are integral, the WGMV procedure can
be modified to obtain a half-integral dual. The 2-edge connectivity augmentation problem has an
interesting connection to routing flow in graphs where the union of supply and demand is planar.
The half-integrality of the dual leads to a tight 2-approximate max-half-integral-flow min-multicut
theorem.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Combinatorial Optimization, Multicommodity Flow, Network Design

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.55

Funding Naveen Garg: Janaki and K.A. Iyer Chair Professor

1 Introduction

Let G = (V,E) be an undirected graph with integer edge costs c : E → Z+ and let
f : 2V → Z+ be a requirement function on sets of vertices. We wish to find a set of edges, E′
of minimum total cost such that for every set S the number of edges in E′ across S is at least
the requirement of S, ie. f(S). This problem captures many scenarios in network design and
has been the subject of much investigation. The Steiner forest problem, minimum weight
maximum matching and other problems can be modeled by requirement functions which
are proper and 0-1 (see Definition 3) and for such functions Agrawal, Klein, Ravi [1] and
Goemans, Williamson [5] gave a primal-dual algorithm that is a 2-approximation. The key
idea of primal-dual algorithms is to use complementary slackness to guide the construction
of the dual and primal solutions which are within a factor 2 of each other.

To use this approach for the Steiner network design problem where the requirements of
sets are not just 0-1, Williamson et al. [8] extend the primal dual algorithm of GW to the
setting of 0-1 uncrossable requirement functions (see Definition 5); we call this the WGMV
algorithm. The idea was to augment the connectivity of the solution in rounds with each
round augmenting the requirements of unsatisfied sets by 1. The WGMV algorithm for
uncrossable functions also builds a dual solution and while the primal solution constructed
is integral, nothing is known of the integrality of the dual solution. In particular while
for proper functions it is possible to argue that the dual solution constructed by the GW
procedure is half-integral the same is not true for the WGMV procedure for uncrossable
functions as is illustrated by the example in Section 4.1.

© Naveen Garg and Nikhil Kumar;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 55; pp. 55:1–55:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:naveen@cse.iitd.ac.in
mailto:nikhil@cse.iitd.ac.in
https://doi.org/10.4230/LIPIcs.ESA.2020.55
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Dual Half-Integrality for UCC

For weakly supermodular requirement functions (see Definition 4) Jain [6] gave a 2-
approximation algorithm based on iterative rounding. Although this algorithm does not
build a dual solution, the iterative rounding technique saw a lot of interesting applications
and quickly became an integral part of tool-kit of approximation algorithms. This together
with the fact that the dual solution constructed by the WGMV procedure seems useful only
for certifying the approximation guarantee of the procedure, implied that there were no
further results on the nature and properties of the dual solution.

In [2] the authors show that the problem of finding maximum multiflow when the union of
the supply and demand edges forms a planar graph can be reduced to the problem of finding a
large dual solution for a suitable cut-covering problem with uncrossable requirement function.
In addition, a primal solution would correspond to a multicut and a half-integral dual solution
would correspond to a half-integral multiflow. Therefore, a primal solution which is within
twice a half-integral dual solution would imply a 2-approximate max-half-integral-multiflow
min-multicut theorem for such graph classes. In [2] the authors also show instances where
max-half-integral-multiflow min-multicut gap can be arbitrarily close to 2, implying that our
result is best possible.

In this paper we show that a suitable modification to the WGMV procedure does indeed
lead to a half-integral dual solution of value at least half the primal solution.

I Theorem 1. Let G = (V,E) be an undirected graph with edge costs c : E → Z+ and a
uncrossable requirement function f : 2V → {0, 1}. One can find a subset of edges F and
an assignment, y, of non-negative half-integral dual variables to sets such that for all edges
e ∈ E,

∑
S:e∈δ(S) yS ≤ ce and

∑
e∈F ce ≤ 2

∑
S f(s)yS.

To achieve this we need to build an alternate stronger analysis of the 2-approximation of
the WGMV algorithm and these are the main results of this paper. In Section 3 we argue
that the Goemans-Williamson algorithm for proper functions leads to half-integral duals. To
prove the above, we come up with a notion of parity of a node with respect to the current
dual solution. The crux of our argument is to show that all nodes in an active set have
the same parity. We then employ the idea of ensuring that all nodes in an active set have
the same parity to modify the WGMV procedure in Section 6. However our procedure for
ensuring uniform parity entails reducing some edge costs by 1/2. Since this decrease in edge
costs also needs to be bounded by the dual solution we need a stronger guarantee on the
total degree of the active sets in each iteration of the WGMV procedure. We develop this
alternate analysis in Section 5. Finally, Section 7 shows how maximum flow in Seymour
graphs corresponds to building the dual solution for a suitable uncrossable cut cover problem
and lets us claim the following result which is also best possible.

I Theorem 2. Let G+H be planar. There exists a feasible half-integral flow of value F and
a multicut of value C such that C ≤ 2F . Further, such a flow and cut can be computed in
polynomial time.

2 Preliminaries

Given a graph G = (V,E) with edge costs c : E → R+ and a 0-1 requirement function
f : 2V → {0, 1} we are interested in picking a subset of edges E′ of minimum total cost such
that every set with requirement 1 has at least one edge of E′ across it. In other words, for
all S ⊆ V , |δE′(S)| ≥ f(S), where |δE′(S)| is the number of edges in E′ which have exactly
one endpoint in S.

N. Garg and N. Kumar 55:3

I Definition 3. A function f : 2V → {0, 1} is called proper if f(V) = 0, f(S) = f(V − S)
for all S ⊆ V and for any disjoint A,B ⊆ V , f(A ∪B) ≤ max{f(A), f(B)}.

I Definition 4. A function f : 2V → {0, 1} is called weakly supermodular if f(V) =
f(φ) = 0 and for any A,B ⊆ V , f(A)+f(B) ≤ max{f(A∩B)+f(A∪B), f(A\B)+f(B\A)}.

I Definition 5. A function f : 2V → {0, 1} is called uncrossable if f(V) = f(φ) = 0
and for any A,B ⊆ V , if f(A) = f(B) = 1, then either f(A ∩ B) = f(A ∪ B) = 1 or
f(A \B) = f(B \A) = 1.

It is easy to argue that every proper function is also weakly supermodular and every
weakly supermodular function is also uncrossable. In this paper we will only be interested
in uncrossable requirement functions and shall refer to the problem in this setting as the
uncrossable cut cover problem (UCC). The following integer program for UCC is well known.

minimize
∑
e∈E cexe

subject to∑
e∈δ(S) xe ≥ f(S) S ⊆ V

xe ∈ {0, 1} e ∈ E

We can relax the integrality constraint on xe to 0 ≤ xe ≤ 1 to get a linear programming
relaxation of the above. The dual program of the relaxation can be given as:

maximize
∑
S⊆V f(S)y(S)

subject to∑
S:e∈δ(S) yS ≤ ce e ∈ E

yS ≥ 0 S ⊆ V

Williamson et al. [8] gave a primal-dual 2-approximation algorithm for the above integer
program for uncrossable f .

3 Half-integrality of the GW-dual for proper functions

We first argue that the Goemans-Williamson (GW) algorithm - for the case when requirement
functions are proper and edge costs are integral - constructs a half-integral dual whose value
is at least half the primal integral solution.

The GW algorithm proceeds by raising dual variables corresponding to sets of vertices
and picking edges which are tight into the current solution. An edge e is tight when the sum
of dual variables of sets containing exactly one end-point of e equals c(e). The algorithm
raises dual of all minimal sets S such that f(S) = 1 but no edge going across S has been
picked in the current solution. We imagine growing the duals in a continuous manner and
define a notion of time: t = 0 at start of the algorithm and yS increases by δ during [t, t+ δ]
if S is a minimally unsatisfied set at every point of time in [t, t + δ]. If f is proper, these
minimal sets correspond exactly to the connected components formed by the set of tight
edges. Let C be a connected component at time t. If f(C) = 1 then C is active while C is
inactive if f(C) = 0. In each iteration, the GW procedure raises dual variables of all active
sets simultaneously till an edge goes tight. At this point the connected components are
recomputed and the algorithm continues with the next iteration unless all sets are inactive.
Let F be the set of tight edges picked after the first phase. In a second phase, called the
reverse delete, the GW algorithm considers the edges of F in the reverse order in which they
were added to F . If the removal of an edge from F does not violate the requirement function
of any set then the edge is removed.

ESA 2020

55:4 Dual Half-Integrality for UCC

We shall only be concerned with the first phase of the GW algorithm since it is in this
phase that the dual variables, y : 2V → R≥0 are set. Let S = {S : yS > 0} and note that
this family of sets is laminar. For v ∈ S, S ∈ S, we define the parity of v with respect to S as
πv(S) =

{∑
T :v∈T⊆S yT

}
, where {x} denotes the fractional part of x. If S is active at time

t then there exists a vertex v ∈ S which for all times in [0, t] was in an active component; we
call such a vertex an active vertex of set S.

We now argue that the GW procedure ensures that for all S ∈ S, for all u, v ∈ S,
πu(S) = πv(S). We call this quantity the parity of set S, π(S), and show that π(S) ∈ {0, 1/2}.
Let S be formed by the merging of sets S1, S2 at time t. We induct on the iterations of the
GW procedure and assume that all vertices in S1 (respectively S2) have the same parity with
respect to S1 (respectively S2). If S1 is active at time t then π(S1) = πv(S1) = {t} where v
is an active vertex of set S1. Similarly if S2 is active at time t then π(S2) = {t}. Thus if
both S1, S2 are active at time t then π(S1) = π(S2) and hence all vertices of S have the same
parity with respect to S. Let e = (u, v), u ∈ S1, v ∈ S2 be the edge which gets tight when
S1, S2 merge at time t. Since l(e) is integral and

∑
T :u∈T⊆S1

yT +
∑
T :v∈T⊆S2

yT = l(e), we
have that π(S1) = π(S2) ∈ {0, 1/2}.

Suppose only S1 is active at time t. By our induction hypothesis π(S2) ∈ {0, 1/2}.
Once again, since l(e) is integral and

∑
T :u∈T⊆S1

yT +
∑
T :v∈T⊆S2

yT = l(e), we have that
π(S1) = π(S2) which implies that all vertices of S have the same parity with respect to S.

Since π(S), π(S1) ∈ {0, 1/2}, it must be the case that {yS} ∈ {0, 1/2}. Since this is
true for all sets S ∈ S this implies that the duals constructed by the GW procedure are
half-integral.

4 The WGMV algorithm

We now give a brief description of the algorithm in [8]. Given an undirected graph G = (V,E)
with edge costs ce ≥ 0 and a uncrossable function f we wish to find a set of edges F ′ ⊆ E
such that for any S ⊆ V, |F ′ ∩ δ(S)| ≥ f(S). A set S is said to be unsatisfied if f(S) = 1 but
no edge crosses S in the current solution.

The algorithm works in iterations. At the beginning of every iteration the algorithm
computes a collection of minimally unsatisfied sets. Williamson et al.[8] show that minimally
unsatisfied sets are disjoint and can be found in polynomial time (follows easily from
uncrossability). Raise the dual variables corresponding to all minimally unsatisfied sets
simultaneously until some edge is tight (the total dual across it equals its cost). All edges
that go tight are added to a set T . The edges of T are considered in an arbitrary order and
e ∈ T is added to F if it crosses a minimally unsatisfied set. Note that whenever an edge is
added to F the collection of minimally unsatisfied sets is recomputed. The growth phase of
the WGMV procedure stops when all sets are satisfied; let F be the set of edges picked in
this phase.

The edges of F are considered in the reverse order in which they were picked. An edge
e ∈ F is dropped from the solution if its removal keeps the current solution feasible.

At the end of the procedure, we have a set of edges F and a feasible dual solution yS
such that

∑
e∈F cexe ≤ 2

∑
S f(S)yS . By weak duality,

∑
e∈F cexe ≥

∑
S f(S)yS and this

shows that the cost of solution picked by the algorithm is at most twice the optimal.

4.1 Duals constructed by WGMV are not half-integral
In the example in Figure 1, the red edges are not edges of the graph G. For a set S ⊆
V ,f(S) = 1 iff there is exactly one red edge with exactly one end point in S. Thus this
problem corresponds to picking edges so as to augment the red tree into a 2-edge connected

N. Garg and N. Kumar 55:5

Algorithm 1 Primal-Dual Algorithm for uncrossable functions.

1: procedure WGMV(G = (V,E) with cost ce, uncrossable function f)
2: y ← 0, F ← φ

3: while ∃S ⊆ V such that S is not satisfied do
4: Compute C, the collection of minimally unsatisfied sets with respect to F .
5: Increase yC for all C ∈ C simultaneously until some edge e ∈ δ(C), C ∈ C is tight

(ce =
∑
S:e∈δ(S) yS)

6: Add all tight edges to T
7: for all e ∈ T do
8: if ∃C ∈ C, e ∈ δ(C) then
9: F ← F ∪ {e}; Recompute C
10: for all e ∈ F do
11: // Edges of F are considered in the reverse order in which they were added to F
12: if F \ {e} is feasible then
13: F ← F \ {e}
14: return F

graph. It is known that f is uncrossable. In each iteration the WGMV procedure raises dual
variables corresponding to all minimally unsatisfied sets. The edge (c, d) gets tight in the
first iteration. At the end of the first iteration y{e} = 1/2 and so in the second iteration
y{e} increases to 3/4 and y{b, c, d} to 1/4 before edge (b, e) goes tight.

Figure 1 Example showing that the duals constructed by the WGMV procedure are not half-
integral.

5 A stronger analysis of the WGMV algorithm

To analyse the algorithm, Willimason et al.[8] argue that in each iteration the total contribu-
tion of the dual variables to the primal solution is at most twice the increase in the value of the
dual solution. This then, added over all iterations, implies that

∑
e∈F cexe ≤ 2

∑
S f(S)yS .

If in an iteration the dual values of all active sets increases by δ then the contribution of the
dual variables to the primal solution equals δ times the total degree of the active sets in F .
On the other hand the increase in the value of the dual solution is δ times the number of
active sets and hence Williamson et al. argue that in each iteration the average degree of the
active sets in F is at most 2.

Let S be the collection of minimally unsatisfied sets identified during a run of the
algorithm. Note thst we do not claim that yS > 0 for S ∈ S. The uncrossability of f
implies that S is a laminar family. Add V , the set of all vertices, to S and construct a
tree, T = (X,Y), which has vertex set X = {vS |S ∈ S}. vA is the parent of vB iff A is the
minimal set in S containing B.

ESA 2020

55:6 Dual Half-Integrality for UCC

Each set S ∈ S is labelled with the number of the iteration in which S became satisfied;
let l : S → [T] be this function. Let Si be the sets with label at least i; these are the
minimally unsatisfied sets encountered in iterations i or later. Similarly, each edge e ∈ F is
labeled with the number of the iteration in which it became tight. We overload notation and
let l : F → [T] also denote this function. Let F i ⊆ F be edges with label at least i. We note
a few properties of these labels.
1. if B ⊂ A then l(B) ≤ l(A).
2. if e ∈ δF (S) then l(e) ≥ l(S)

Let vB1 , vB2 , . . . vBp be the children of node vA in T (see Figure 2). We number sets so
that l(B1) ≥ l(B2) ≥ · · · ≥ l(Bp). Let pi ∈ [p] be the largest index such that l(Bpi

) ≥ i.
Hence all sets Bj , j ∈ [pi] are in Si. Let Xi

A = A \∪j∈[pi]Bj and Hi
A be a graph whose nodes

correspond to sets Xi
A, B1, . . . , Bpi

and edges correspond to the edges between these sets in
F . Since sets Bj , j ∈ [pi] have label at least i, edges in Hi

A have label at least i and hence
they are in F i.

B Claim 6. Hi
A is a forest.

Proof. For contradiction assume Hi
A has a cycle and consider the edge of the cycle, say

e = (u, v), which was added last to F . We consider two cases.
u ∈ Br and v ∈ Bs, r, s ∈ [pi]. When e was picked, both Br, Bs had another edge in F

across them and were therefore satisfied. Recall that S is the collection of all the minimally
unsatisfied sets encountered during the growth phase of the algorithm. Picking e did not
lead to any unsatisfied set in S getting satisfied and this is a contradiction.

u ∈ Br and v ∈ Xi
A, r ∈ [pi]. No subset of vertices in Xi

A is unsatisfied in the ith (or
any subsequent) iteration. When e was picked, Br had another edge in F across it and was
therefore satisfied. Once again picking e did not lead to any unsatisfied set in S getting
satisfied and this is a contradiction. C

Since Hi
A is a forest on pi + 1 vertices it contains at most pi edges.

I Definition 7. A set A ∈ S is critical in iteration i if Hi
A is a tree of which the node

corresponding to Xi
A, is a leaf.

For a set A ∈ Si, let αi(A) = δF (A) \ ∪S⊂A,S∈SiδF (S). Thus αi(A) is the set of edges of
F which have one endpoint in the set A \ ∪S⊂A,S∈SiS and the other endpoint in V \ A.
Equivalently αi(A) is the subset of edges in δF (A) which are incident on vertices in Xi

A. We
note the following important property of αi(A).

B Claim 8. Let A ∈ Si. The collection of sets
{
αi(S)|S ∈ Si, S ⊆ A

}
forms a partition of

the set δF (A).

Let Ai be the collection of minimally unsatisfied sets whose dual is raised in iteration i
of the WGMV algorithm. These are the active sets in iteration i. Note that
1. Ai ⊆ Si.
2. A set S ∈ S is contained in Si if and only if there exits an A ∈ Ai such that A ⊆ S.
3. If A ∈ Ai then no subset of A is in Si which implies αi(A) = δF (A).

I Lemma 9.
∑
S∈Si

∣∣αi(S)
∣∣ ≤ 2

∣∣Ai∣∣− 2 +
∣∣Ri∣∣ where Ri is the collection of critical sets in

iteration i.

N. Garg and N. Kumar 55:7

Figure 2 Illustrating the notation used. A is a critical set. The thick edges are the edges in Hi
A.

Proof. We show an argument built on redistributing tokens which help us prove the above
lemma. We begin by assigning every node of tree T a number of tokens equal to two less
than twice the number of its children in Si. Thus a node with 1 child in Si gets no tokens.
We also give every node that corresponds to a critical set in iteration i an additional token.
It is easy to see that the total number of tokens distributed initially is 2

∣∣Ai∣∣− 2 +
∣∣Ri∣∣.

vA transfers one token to each edge in Hi
A incident on Xi

A and 2 tokens each to remaining
edges in Hi

A. If vA has pi children in Si and is critical in iteration i, it was assigned 2pi − 1
tokens and these are sufficient to undertake the above assignment. If vA is not critical then
it was assigned 2pi − 2 tokens and again this is sufficient to complete the transfer of tokens
to edges in Hi

A.
For every edge in e ∈ F i there is a unique A ∈ Si such that e is in Hi

A. If e has an
endpoint in Xi

A it is assigned 1 token by vA. Note that this edge contributes 1 to the sum
on the left. The remaining edges of F i are assigned 2 tokens each and this is also their
contribution to the sum on the left. This establishes that the sum on the left equals the
number of tokens assigned to edges which is at most the number of tokens assigned to nodes
which in turn equals the quantity in the right. J

I Lemma 10. If A is critical in iteration i then αi(A) 6= φ.

Proof. Since A is critical, Hi
A is a tree and Xi

A is a leaf node. Let e be the unique edge in
Hi
A incident to Xi

A. Consider the step in the reverse delete phase when edge e was considered
and was retained in F only because its deletion would have caused some set to become
unsatisfied. Let U ⊆ V be the minimal such set and note that e is the only edge in F ′ across
U at this step.

B Claim 11. ∀j ∈ [pi], U ∩Bj = φ or U ∩Bj = Bj .

Proof. For a contradiction assume that for some j ∈ [pi], φ 6= U ∩ Bj ⊂ Bj . Since
f(Bj) = f(U) = 1 by uncrossability either f(Bj ∩ U) = 1 or f(Bj \ U) = 1. In either case,
during the growth phase we must have added an edge, say g, to F between Bj \U and Bj ∩U
in an iteration before Bj became a minimally unsatisfied set. Thus, in the reverse delete
phase when we considered e, edge g was in F and hence e was not the only edge across U .

C

ESA 2020

55:8 Dual Half-Integrality for UCC

If U ∩ A includes some sets Bj , j ∈ [pi] and not the others then the number of edges
across the set U will be more than 1. Thus either ∪j∈pi

Bj ⊆ A ∩ U or ∪j∈[pi]Bj ⊆ A \ U .
Since f(A) = f(U) = 1 by uncrossability we have either f(A ∩ U) = 1 or f(A \ U) = 1. If
∪j∈[pi]Bi ⊆ A ∩ U then f(A \ U) 6= 1 as that would imply a minimal unsatisfied set in Xi

A

which would be a contradiction. Similarly if ∪j∈[pi]Bj ⊆ A \ U then f(A ∩ U) 6= 1. Hence
we need to consider only two cases
1. ∪j∈[pi]Bj ⊆ A ∩ U and f(A ∩ U) = f(A ∪ U) = 1: F should have an edge across the set

A ∪ U . Since the only edge across U goes to A \ U , there should be an edge across A
that is incident to Xi

A.
2. ∪j∈[pi]Bj ⊆ A \ U and f(A \ U) = f(U \ A) = 1: F should have an edge across the set

U \A. Since the only edge across U goes from A ∩ U to A \ U , there should be an edge
across A that is incident to A ∩ U ⊆ Xi

A.
Hence in both cases we conclude that there is an edge across A incident to Xi

A which implies
αi(A) 6= φ. J

I Lemma 12. The total degree (in F) of sets in Ai is at most twice
∣∣Ai∣∣.

Proof. A set in Ai cannot be critical in iteration i. Further for S ∈ Ai,
∣∣αi(S)

∣∣ equals
the degree of S in F . By Lemma 10 if A is critical in iteration i then αi(A) 6= φ. Hence∑
S∈Si

∣∣αi(S)
∣∣ ≥∑S∈Ai |δF (A)|+

∣∣Ri∣∣ where Ri is the collection of critical sets. Applying
Lemma 9, we obtain

∑
S∈Ai |δF (A)| ≤ 2

∣∣Ai∣∣− 2 which proves the lemma. J

6 Modifying WGMV

We now modify the WGMV algorithm so that the duals obtained are half-integral while
ensuring that the primal solution has cost at most twice the dual solution. In doing so we are
guided by the fact that the GW algorithm constructed half-integral duals since the parity of
all vertices in a set was identical. This property does not hold true for the WGMV algorithm
as seen in the example in Figure 1.

As before, let S be the set of minimally unsatisfied sets during a run of the algorithm. Our
modification to the WGMV algorithm involves reducing costs of some edges in δ(S), S ∈ S
by 1/2. Let δ′(S) ⊆ δ(S) denote the subset of edges whose cost was reduced by 1/2 when
considering S. We now define the parity of an edge e with respect to a set S ∈ S, e ∈ δ(S) as

πe(S) =
{∑

e∈δ(T),T⊆S yT + 1
2 |{T ⊆ S|e ∈ δ

′(T)}|
}

where as before {x} denotes the fractional part of x. Our modification to the WGMV
procedure is:

Let S be a set which becomes minimally unsatisfied at time t and let x ∈ S be an
active vertex of set S. Then πx(S) = {t}. For edge e ∈ δ(S), if πe(S) 6= {t} then
decrease ce by 1/2 (note e gets included in δ′(S)).

We decrease the costs of edges in δ(S) in the above manner only when S becomes minimally
unsatisfied and need to argue that the total cost of edges in F can still be bounded by twice
the sum of the dual variables. Our modification allows us the following claim.

B Claim 13. ∀S ∈ S, ∀e, f ∈ δ(S), πe(S) = πf (S)

When we increase dual variables of sets in Ai in iteration i, one or more edges go tight
and these are added to a set T . Let ti be the time at which we stop growing dual variables of
sets in Ai. The edges of T are considered in an arbitrary order and e ∈ T is added to F if it

N. Garg and N. Kumar 55:9

crosses a minimally unsatisfied set. Note that whenever an edge is added to F the collection
of minimally unsatisfied sets is recomputed. Let C be the collection of minimally unsatisfied
sets after all edges in T have been considered. For every S ∈ C and every edge e ∈ δ(S), if
πe(S) 6= {t} then we reduce the cost of edge e by 1/2. All edges that go tight after this step
are included in T and the process repeated until no edge gets added to T . The minimally
unsatisfied sets at this stage are the active sets, Ai+1 for iteration i+ 1.

Algorithm 2 Modification to an iteration of the WGMV algorithm.

1: C is the collection of minimally unsatisfied sets with respect to F .
2: T is the set of tight edges which have not yet been included in F .
3: repeat
4: for all e ∈ T do
5: if ∃C ∈ C, e ∈ δ(C) then
6: F ← F ∪ {e}; compute C
7: T ← φ

8: for all C ∈ C do
9: for all e ∈ δ(C) do
10: if πe(C) 6= {t} then
11: ce ← ce − 1/2
12: if e is tight then
13: T ← T ∪ {e}
14: until T = φ

Let Ci be the collection of sets in S which properly contain a set in Ai and are subsets of
some set in Ai+1. Formally, Ci =

{
S ∈ S|∃A ∈ Ai,∃B ∈ Ai+1, A ⊂ S ⊆ B

}
. Note that

1. Ai+1 \ Ai ⊆ Ci,
2. Ai ∩ Ci = φ,
3. any edge whose cost is reduced by 1/2 in iteration i goes across a set in Ci,
4. Ci ∩ Ci+1 = φ for i ∈ [T − 1]

Before A ∈ Ci was considered in iteration i we would have considered the sets in Si
corresponding to children of node vA in tree T . Let Bj , j ∈ [pi] be these sets and note that
they belong to Ci ∪Ai. For each Bj , j ∈ [pi] we would already have reduced the cost of edges
e ∈ δ(Bj) if πe(Bj) 6=

{
ti
}
. Hence when considering A we would only be reducing the cost

of edges in δ(A) which are incident to A \ ∪j∈[pi]Bj = Xi
A. Thus the edges of F whose cost

is reduced when considering A ∈ Ci are subsets of αi(A), let this subset be βi(A).
After iteration i, (reduced) cost of an edge e is ce −

∑
S:e∈δ(S) yS , where y is the dual

value after iteration i. Note that as the algorithm proceeds, (reduced) cost of edges decrease.
To prove that the modified WGMV procedure gives a 2-approximate solution, we bound the
total reduction in costs of edges in F by twice the total increase in the value of dual variables.
In iteration i, the total reduction in edge costs of F due to increase of dual variables of sets
Ai equals γi

∑
S∈Ai |δF (S)| = γi

∑
S∈Ai

∣∣αi(S)
∣∣, where γi = ti − ti−1 is the increase in the

dual variable of a set in Ai. The other reduction occurs when we reduce by 1/2 the costs of
edges due to parity considerations. The total reduction in the cost of edges of F due to this
reason is at most 1/2

∑
S∈Ci

∣∣βi(S)
∣∣.

To prove the approximation guarantee of WGMV, authors in [8] show that in every
iteration the total reduction in cost of edges in F is at most twice the total increase in dual
values in that iteration. To prove the approximation guarantee of modified WGMV, we need

ESA 2020

55:10 Dual Half-Integrality for UCC

to charge the reduction in edge costs across iterations. To do this, we introduce a procedure
for marking and unmarking sets. All sets are unmarked before the first iteration of the
algorithm. In the first iteration a set A ∈ S is not marked
1. if A is critical or,
2. if node vA exhausts all its tokens and α1(A) = φ

All other sets in S are marked in iteration 1. Let M be the number of sets which are marked.
In iteration i we unmark a set S ∈ Ci if it is critical and βi(S) 6= φ. Let Mi be the

number of sets unmarked in iteration i. In Lemma 16 we argue that we unmark a set only if
it has a mark on it.

I Lemma 14. In any iteration i > 1,

γi
∑
S∈Ai

∣∣αi(S)
∣∣+ (1/2)

∑
s∈Ci

∣∣βi(S)
∣∣−Mi/2 ≤ 2γi(|Ai| − 1)

Proof. Recall Ri is the collection of critical sets in iteration i.

γi
∑
S∈Si

∣∣αi(S)
∣∣ ≥ γi ∑

S∈Ai

∣∣αi(S)
∣∣+ γi

∑
S∈Ci

∣∣αi(S)
∣∣+ γi

∑
S∈Si\Ai∪Ci

∣∣αi(S)
∣∣ (1)

By Lemma 10 we obtain

γi
∑

S∈Si\Ai∪Ci

∣∣αi(S)
∣∣ ≥ γi∣∣Ri \ Ci∣∣ (2)

and the unmarking procedure gives

γi
∑
S∈Ci

∣∣αi(S)
∣∣+Mi/2 ≥ (1/2)

∑
S∈Ci

∣∣βi(S)
∣∣+ γi

∣∣Ri ∩ Ci∣∣ (3)

Inequality 3 holds since
1. if S is not critical it contributes γi

∣∣αi(S)
∣∣ to the left and

∣∣βi(S)
∣∣ to the right and

βi(S) ⊆ αi(S).
2. if S is critical but βi(S) = φ then S contributes γi

∣∣αi(S)
∣∣ to the left and γi to the right

and αi(S) 6= φ.
3. if S is critical and βi(S) 6= φ then S contributes γi

∣∣αi(S)
∣∣+1/2 to the left and (1/2)

∣∣βi(S)
∣∣

+γi to the right. Since φ 6= βi(S) ⊆ αi(S) and γi ≥ 1/2, the contribution to the left is
more than the contribution of S to the right.

Adding inequalities 1, 2 and 3 we get

γi
∑
S∈Si

∣∣αi(S)
∣∣ ≥ γi ∑

S∈Ai

∣∣αi(S)
∣∣+ γi

∑
S∈Ci

∣∣βi(S)
∣∣+ γi

∣∣Ri∣∣−Mi/2 (4)

Inequality 4 when combined with the inequality in Lemma 9 and together with the fact that
γi ≥ 1/2 proves the lemma. J

Iteration 1 differs from other other iterations since we mark sets in this iteration. For
iteration 1 we make the following claim.

I Lemma 15.

γ1
∑
S∈A1

∣∣α1(S)
∣∣+ (1/2)

∑
s∈C1

∣∣α1(S)
∣∣+ (1/2)(M −M1) ≤ 2γ1(|A1| − 1)

N. Garg and N. Kumar 55:11

Proof. Inequalities 1 and 3 remain unchanged for iteration 1 (with 1 replacing i) while
inequality 2 is modified due to the marks placed on sets. A is marked if it is not critical and
α1(A) 6= φ; let m be the number of such sets. This together with Lemma 10 gives

γ1
∑

S∈S1\A1∪C1

∣∣α1(S)
∣∣ ≥ γ1∣∣R1 \ C1

∣∣+m/2 (5)

Adding inequalities 1, 3 (with i = 1) and inequality 5 we get

γ1
∑
S∈S1

∣∣α1(S)
∣∣ ≥ γ1

∑
S∈A1

∣∣α1(S)
∣∣+ γ1

∑
S∈C1

∣∣β1(S)
∣∣+ γ1∣∣R1

∣∣+ (1/2)(m−M1) (6)

Recall that we also mark a set A when node vA does not exhaust all its tokens. Note that
the number of such sets is M −m and hence the inequality on Lemma 9 becomes∑

S∈S1

∣∣α1(S)
∣∣+M −m ≤ 2(

∣∣A1
∣∣− 1) +

∣∣R1
∣∣ (7)

Combining inequality 6 and inequality 7 and using the fact that γi ≥ 1/2 proves the
lemma. J

Summing the inequality in Lemma 15 and Lemma 14 over all iterations gives us

∑
i∈[T]

(
γi
∑
S∈Ai

αi(S) + (1/2)
∑
s∈Ci

βi(S)−Mi/2
)

+M/2 ≤
∑
i∈[T]

2γi(|Ai| − 1)

Since we unmark a set only if it has been marked in iteration 1 (Lemma 16), M ≥
∑
i∈[t] Mi.

Therefore, the total reduction in the cost of the edges of F over all iterations (which is the
total cost of edges in F) is at most the quantity on the left of the above inequality. Hence
the cost of the solution F is at most twice the total dual raised over all iterations and this
completes the proof of Theorem 1.

It remains to show that a set is unmarked only if it has been marked in iteration 1.

I Lemma 16. If A ∈ Ci is critical in iteration i but not marked in iteration 1 then βi(A) = φ.

Proof. Let {Bj |j ∈ [p]} be the sets corresponding to children of vA and X1
A = A \ ∪j∈[p]Bj .

If H1
A has a tree spanning nodes corresponding to sets X1

A, Bj , j ∈ [p], then edges of δ(A)
would have equal parity. If A becomes a minimal unsatisfied set at time t then B1 was active
till time t. Therefore the parity of edges in δ(B1) and hence those of all edges in δ(A) would
equal {t} which would imply βi(A) = φ.

Since A is unmarked either it is critical in iteration 1 or vA exhausts all its tokens and
α1(A) = φ. In the former case we have a tree spanning nodes corresponding to sets X1

A,
Bj , j ∈ [p]. In the latter case if there is no such tree there would be a tree spanning nodes
corresponding to sets Bj , j ∈ [p] and no edge in δF (A) incident to X1

A. Again, this implies
that all edges in δF (A) have equal parity. J

7 Computing half-integral flow in Seymour graphs

In this section, we describe the connection between multicommodity flows/multicuts and
connectivity augmentation problems from [2]. In particular, we will be interested in 2ECAP,
a special case of the UCC problem defined in [2].

ESA 2020

55:12 Dual Half-Integrality for UCC

I Definition 17 (2-edge connectivity Augmentation Problem (2ECAP)). Given an undirected
graph (without loops but possible parallel edges) G = (V,E∪Y) and edge weights w : E → Z≥0
find a minimum weight set of edges E′ ⊆ E such that each connected component of (V,E′∪Y)
is 2-edge connected.

For every S ⊆ V , let f : S → {0, 1} be defined as follows: f(S) = 1 iff exactly one edge of Y
crosses the cut (S, V \ S), otherwise it is zero. 2ECAP can be formulated equivalently as: find
a minimum weight subset of edges E′ ⊆ E such that at least f(S) edges of E′ cross the cut
(S, V \ S). It is well known that f as defined above is uncrossable and hence the WGMV
algorithm can be used to compute a 2-approximate solution.

Now, we define the multicommodity flow problem. Let G = (V,E) be a simple undirected
graph with edge capacities c : E → Z≥0 (called the supply graph) and H = (V, F) be a
simple graph each edge of which corresponds to a commodity and the endpoints of that edge
are the source/sink of that commodity (called the demand graph). Given any G and H,
an instance of sum multicommodity flow asks for a feasible flow of maximum total value
between the end points of demand edges. A minimum multicut is a set of edges of G of
minimum total weight whose removal disconnects endpoints of all the demand edges in G. It
is easy to see that the value of minimum multicut (C) is always greater than the value of
the maximum flow (F). Given a class of instances, the maximum value of the ratio between
C and F is known as the flow-multicut gap for the class. This gap is θ(log k) for general
G,H while it is O(1) for planar G and arbitrary H. There is rich literature on proving
flow-multicut gaps [3, 4, 7].

If we restrict the flow to be integral (resp. half integral), we call the flow-multicut gap as
the integral (resp. half integral) flow-multicut gap. An instance of the multicommodity
flow/multicut problem is called a Seymour instance if the union of the supply and demand
graphs is planar. In [2], the authors establish a flow-multicut gap of at most 2 for Seymour
instances by showing that the problem of computing a multicut in a Seymour instance is
equivalent to solving an appropriate instance of 2ECAP in the planar dual of the supply and
demand graph. Given a planar graph G, let G∗ denotes its planar dual. Formally,

I Lemma 18 ([2]). C is a multicut for the instance (G,H) if and only if C∗ is a feasible
solution to 2ECAP for the instance (V ∗, E∗ ∪ F ∗).

The WGMV algorithm immediately gives a 2-approximation algorithm for multicuts in
Seymour instances. In order to prove the flow-multicut gap, [2] shows that the duals
constructed by the WGMV algorithm correspond to flow paths in G and that this corres-
pondence is value preserving, ie. total flow is equal to the total value of the dual and if the
duals constructed are integral (resp. half integral), then the corresponding flows are integral
(resp. half integral). Formally,

I Lemma 19 ([2]). There exists a flow of value
∑
S⊆V ∗ yS in G.

[2] show how to extract a half-integral flow of value at least half of any given fractional
flow and an integral flow of value at least half any given half integral flow. This shows a
half integral (resp. integral) flow-multicut gap of 4 (resp. 8). Using our modified WGMV
algorithm, we obtain a half integral dual (and hence half integral flow) of value at least
half the cost of the 2ECAP solution and hence the multicut. This gives us a 2 (resp. 4)
approximate half-integral (resp. integral) flow-multicut theorem for Seymour instances.

I Theorem 20. Let G+H be planar. There exists a feasible integral flow of value F and
a multicut of value C such that C ≤ 4F . Further, such a flow and cut can be computed in
polynomial time.

N. Garg and N. Kumar 55:13

[2] shows a class of Seymour instances such that the half-integral flow-multicut gap approaches
2 from below. This, along with our upper bound of 2 proves that Theorem 2 is tight. The
best known lower bound for the integral flow-multicut gap is also 2 and it remains an
interesting open question to determine the exact gap.

References
1 Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation algorithm

for the generalized steiner problem on networks. SIAM J. Comput., 24(3):440–456, 1995.
doi:10.1137/S0097539792236237.

2 Naveen Garg, Nikhil Kumar, and András Sebő. Integer plane multiflow maximisation: Flow-cut
gap and one-quarter-approximation. In International Conference on Integer Programming and
Combinatorial Optimization, pages 144–157. Springer, 2020.

3 Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi)
cut theorems and their applications. SIAM Journal on Computing, 25(2):235–251, 1996.

4 Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation al-
gorithms for integral flow and multicut in trees. Algorithmica, 18(1):3–20, 1997.

5 Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995. doi:10.1137/
S0097539793242618.

6 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

7 Philip Klein, Serge A Plotkin, and Satish Rao. Excluded minors, network decomposition, and
multicommodity flow. In Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, pages 682–690. ACM, 1993.

8 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-
dual approximation algorithm for generalized steiner network problems. Combinatorica,
15(3):435–454, 1995. doi:10.1007/BF01299747.

ESA 2020

https://doi.org/10.1137/S0097539792236237
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1007/s004930170004
https://doi.org/10.1007/BF01299747

An Efficient, Practical Algorithm and
Implementation for Computing Multiplicatively
Weighted Voronoi Diagrams
Martin Held
Universität Salzburg, FB Computerwissenschaften, Austria
held@cs.sbg.ac.at

Stefan de Lorenzo
Universität Salzburg, FB Computerwissenschaften, Austria
slorenzo@cs.sbg.ac.at

Abstract
We present a simple wavefront-like approach for computing multiplicatively weighted Voronoi
diagrams of points and straight-line segments in the Euclidean plane. If the input sites may be
assumed to be randomly weighted points then the use of a so-called overlay arrangement [Har-
Peled&Raichel, Discrete Comput. Geom. 53:547–568, 2015] allows to achieve an expected runtime
complexity of O(n log4 n), while still maintaining the simplicity of our approach. We implemented
the full algorithm for weighted points as input sites, based on CGAL. The results of an experimental
evaluation of our implementation suggest O(n log2 n) as a practical bound on the runtime. Our
algorithm can be extended to handle also additive weights in addition to multiplicative weights, and
it yields a truly simple O(n log n) solution for solving the one-dimensional version of this problem.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Voronoi Diagram, multiplicative weight, additive weight, arc expansion,
overlay arrangement, implementation, experiments, CGAL, exact arithmetic

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.56

Related Version A full version of this paper is available at [9], https://arxiv.org/abs/2006.14298.

Supplementary Material The source code of our implementation is available at GitHub and can be
used freely under the GPL(v3) license: https://github.com/cgalab/wevo.

Funding Work supported by Austrian Science Fund (FWF): Grant P31013-N31.

1 Introduction

The multiplicatively weighted Voronoi diagram (MWVD) was introduced by Boots [4].
Aurenhammer and Edelsbrunner [2] present a worst-case optimal incremental algorithm for
constructing the MWVD of a set of n points in O(n2) time and space. They define spheres on
the bisector circles (that are assumed to be situated in the xy-plane) and convert them into
half-planes in R3 using a spherical inversion. Afterwards, these half-planes are intersected.
Thus, every Voronoi region is associated with a polyhedron. Finally, the intersection of
every such polyhedron with a sphere that corresponds to the xy-plane is inverted back to R2.
We are not aware of an implementation of their algorithm, though. (And it seems difficult
to implement.) In any case, the linear-time repeated searches for weighted nearest points
indicate that its complexity is Θ(n2) even if the combinatorial complexity of the resulting
Voronoi diagram is o(n2). Later Aurenhammer uses divide&conquer to obtain an O(n logn)
time and O(n) space algorithm for the one-dimensional weighted Voronoi diagram [1].

© Martin Held and Stefan de Lorenzo;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 56; pp. 56:1–56:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0728-7545
mailto:held@cs.sbg.ac.at
https://orcid.org/0000-0003-4981-805X
mailto:slorenzo@cs.sbg.ac.at
https://doi.org/10.4230/LIPIcs.ESA.2020.56
https://arxiv.org/abs/2006.14298
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/cgalab/wevo
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Computing Multiplicatively Weighted Voronoi Diagrams

Har-Peled and Raichel [8] show that a bound of O(n log2 n) holds on the expected
combinatorial complexity of a MWVD if all weights are chosen randomly. They sketch how to
compute MWVDs in expected time O(n log3 n). Their approach is also difficult to implement
because it uses the algorithm by Aurenhammer and Edelsbrunner [2] as a subroutine.

Vyatkina and Barequet [13] present a wavefront-based strategy to compute the MWVD
of a set of n lines in the plane in O(n2 logn) time. The Voronoi nodes are computed based
on edge and break-through events. An edge event takes place when an wavefront edge
disappears. A break-through event happens whenever a new wavefront edge appears.

Since the pioneering work of Hoff et al. [10] it has been well known that discretized
versions of Voronoi diagrams can be computed using the GPU framebuffer. More recently,
Bonfiglioli et al. [3] presented a refinement of this rendering-based approach. It is obvious
that their approach could also be extended to computing approximate MWVDs. However,
the output of such an algorithm is just a set of discrete pixels instead of a continuous skeletal
structure. Its precision is limited by the resolution of the framebuffer and by the numerical
precision of the depth buffer.

2 Our Contribution

Our basic algorithm allows us to compute MWVDs in worst-case O(n2 logn) time and O(n2)
space. A refined version makes use of the result by Har-Peled and Raichel [8]: We use their
overlay arrangement to keep the expected runtime complexity bounded by O(n log4 n) if the
point sites are weighted randomly. Hence, for the price of a multiplicative factor of logn we
get an algorithm that is easier to implement. Our experiments suggest that this bound is
too pessimistic in practice and that one can expect the actual runtime to be bounded by
O(n log2 n). However, our experiments also show that one may get a quadratic runtime if
the weights are not chosen randomly. Our algorithm does not require the input sites to have
different multiplicative weights, and it can be extended to additive weights and to (disjoint)
straight-line segments as input sites. Furthermore, it yields a truly simple O(n logn) solution
for computing MWVDs in one dimension, where all input points lie on a line.

Our implementation is based on exact arithmetic and the Computational Geometry
Algorithms Library (CGAL) [12]. It is publicly available on GitHub under https://github.
com/cgalab/wevo. To the best of our knowledge, this is the first full implementation of an
algorithm for computing MWVDs that achieves a decent expected runtime complexity.

3 Preliminaries

Let S := {s1, s2, . . . , sn} denote a set of n distinct weighted points in R2 that are indexed
such that w(si) ≤ w(sj) for 1 ≤ i < j ≤ n, where w(si) ∈ R+ is the weight associated
with si. It is common to regard the weighted distance dw(p, si) from an arbitrary point
p in R2 to si as the standard Euclidean distance d(p, si) from p to si divided by the
weight of si, i.e., dw(p, si) := d(p,si)

w(si) . The (weighted) Voronoi region VRw(si, S) of si
relative to S is the set of all points of the plane such that no site sj in S \ {si} is closer
to p than si, that is, VRw(si, S) :=

{
p ∈ R2 : dw(p, si) ≤ dw(p, sj) for all j ∈ {1, 2, . . . , n}

}
.

Then the multiplicatively weighted Voronoi diagram (MWVD), VDw(S), of S is defined as
VDw(S) :=

⋃
si∈S ∂ VRw(si, S).

A connected component of a Voronoi region is called a face. For two distinct sites si and
sj of S, the bisector bi,j of si and sj models the set of points of the plane that are at the
same weighted distance from si and sj . Hence, a non-empty intersection of two Voronoi

https://github.com/cgalab/wevo
https://github.com/cgalab/wevo

M. Held and S. de Lorenzo 56:3

regions is a subset of the bisector of the two defining sites. Following common terminology,
a connected component of such a set is called a (Voronoi) edge of VDw(S). An end-point
of an edge is called a (Voronoi) node. It is known that the bisector between two unequally
weighted sites forms a circle1. An example of a MWVD is shown in Figure 1.

23
22

21

20

19

16

14

13

10

7

Figure 1 Left: The numbers next to the points indicate their weights and the corresponding
MWVD is shown. Right: Wavefronts (in blue) for equally-spaced points in time.

The wavefront WF(S, t) emanated by S at time t ≥ 0 is the set of all points p of the
plane whose minimal weighted distance from S equals t. More formally,

WF(S, t) :=
{
p ∈ R2 : min

si∈S
dw(p, si) = t

}
.

The wavefront consists of circular arcs which we call wavefront arcs. A common end-point of
two consecutive wavefront arcs is called wavefront vertex; see the blue dots in Figure 1.

4 Offset Circles

For the sake of descriptional simplicity, we start with assuming that no point in the plane has
the same weighted distance to more than three sites of S. For t ≥ 0, the offset circle ci(t) of
the i-th site si is given by a circle centered at si with radius t · w(si). We find it convenient
to regard ci(t) as a function of either time or distance since at time t every point on ci(t) is
at Euclidean distance t ·w(si) from si, i.e., at weighted distance t. We specify a point of ci(t)
relative to si by its polar angle α and its (weighted) polar radius t and denote it by pi(α, t).

For 1 ≤ i < j ≤ n, consider two sites si, sj ∈ S and assume that w(si) 6= w(sj). Then
there exists a unique closed time interval [tminij , tmaxij] during which the respective offset
circles of si, sj intersect. We say that the two offset circles collide at their mutual collision
time tminij , and sj starts to dominate si at the domination time tmaxij . For all other times t
within this interval the two offset circles ci(t) and cj(t) intersect in two disjoint points vli,j(t)
and vri,j(t). These (moving) vertices trace out the bisector between si and sj ; see Figure 2.
Since vli,j(t) and vri,j(t) are defined by the same pair of offset circles we refer to vli,j(t) as the
vertex married to vri,j(t), and vice versa. Every other pair of moving vertices defined by two
different pairs of intersecting offset circles is called unmarried. To simplify the notation, we
will drop the parameter t if we do not need to refer to a specific time. Similarly, we drop the
superscripts l and r if no distinction between married and unmarried vertices is necessary.

1 Apollonius of Perga defined a circle as a set of points that have a specific distance ratio to two foci.

ESA 2020

56:4 Computing Multiplicatively Weighted Voronoi Diagrams

sj

si

sj

si

sj

si

sj

si

Figure 2 Two married vertices (highlighted by the blue dots) trace out the bisector bij (in black).

5 A Simple Event-Based Construction Scheme

In this section we describe a simulation of a propagation of the wavefront WF(S, t) to
compute VDw(S). Since the wavefront is given by a subset of the arcs of the arrangement of
all offset circles, one could attempt to study the evolution of all arcs of that arrangement over
time. However, it is sufficient to restrict our attention to a subset of arcs of that arrangement.
We note that our wavefront can be seen as a kinetic data structure [7].

Clearly, the arc along ci(t) which is inside cj(t) will not belong to WF({si, sj}, t∗) for
any t∗ > t. We will make use of this observation to define inactive and active arcs that are
situated along the offset circles.

I Definition 1 (Active point). A point p on the offset circle ci(t) is called inactive at time
t (relative to S) if there exists j > i, with 1 ≤ i < j ≤ n, such that p lies strictly inside of
cj(t). Otherwise, p is active (relative to S) at time t. A vertex vi,j(t) is an active vertex if
it is an active point on both ci(t) and cj(t) at time t; otherwise, it is an inactive vertex.

I Lemma 2. If pi(α, t) is inactive at time t then pi(α, t′) will be inactive for all times t′ ≥ t.

An inactive point pi(α, t) cannot be part of the wavefront WF(S, t). Lemma 2 ensures
that none of its future incarnations pi(α, t′) can become part of the wavefront WF(S, t′).

I Definition 3 (Active arc). For 1 ≤ i ≤ n and t ≥ 0, an active arc of the offset circle ci(t)
at time t is a maximal connected set of points on ci(t) that are active at time t. The closure
of a maximal connected set of inactive points of ci(t) forms an inactive arc of ci(t) at time t.

Every end-point of an active arc of ci(t) is given by the intersection of ci(t) with some
other offset circle cj(t), i.e., by a moving vertex vi,j(t). This vertex is active, too.

I Definition 4 (Arc arrangement). The arc arrangement (AA) of S at time t, A(S, t), is the
arrangement induced by all active arcs of all offset circles of S at time t.

As time t increases, the offset circles expand. This causes the vertices of A(S, t) to move,
but it will also result in topological changes of the arc arrangement.

I Definition 5 (Collision event). Let pi(α, tminij) = pj(α+π, tminij) be the point of intersection
of the offset circles of si and sj at the collision time tminij , for some fixed angle α. A collision
event occurs between these two offset circles at time tminij if the points pi(α, t) and pj(α+π, t)
have been active for all times 0 ≤ t ≤ tminij .

At the time of a collision a new pair of married vertices vli,j(t) and vri,j(t) is created. Of
course, we have vli,j(tminij) = vri,j(tminij) = pi(α, tminij).

M. Held and S. de Lorenzo 56:5

I Definition 6 (Domination event). Let pi(α, tmaxij) = pj(α, tmaxij) be the point of intersection
of the offset circles of si and sj at the domination time tmaxij , for some fixed angle α. A
domination event occurs between these two offset circles at time tmaxij if the points pi(α, t)
and pj(α, t) have been active for all times 0 ≤ t ≤ tmaxij .

At the time of a domination event the married vertices vli,j(tmaxij) and vri,j(tmaxij) coincide
and are removed.

I Definition 7 (Arc event). An arc event e occurs at time te when an active arc ai shrinks to
zero length because two unmarried vertices vi,j(te) and vi,k(te) meet in a point pe on ci(te).

Lemma 2 implies that pi(α, t) has been active for all times t ≤ te if pi(α, te) = pe. At
the time of an arc event two unmarried vertices trade their places along an offset circle.
Now suppose that the two unmarried vertices vi,j(te) and vi,k(te) meet in a point pe along
ci(te) at the time te of an arc event, thereby causing an active arc of ci(te) to shrink to
zero length. Hence, the offset circles of si, sj and sk intersect at the point pe at time te. If
cj(t) and ck(t) did not intersect for t < te then we also get a collision event between cj(t)
and ck(t) at time te, see Figure 3a. (This configuration can occur for any relative order of
the weights w(si), w(sj), w(sk).) Otherwise, one or both of the married vertices vlj,k(te) and
vrj,k(te) must also coincide with pe. If both coincide with pe then we also get a domination
event between cj(t) and ck(t) at time te and we have w(sj) < w(sk), see Figure 3b. The
scenarios remaining for the case that only one of vlj,k(te) and vrj,k(te) coincides with pe are
detailed in the following lemma.

vi,j vi,k
pe vi,jvi,k

vj,k

(a)

vi,j

vj,k

vi,k
pe

vj,k

(b)

Figure 3 (a) The configuration shortly before (left) and after (right) a collision event as well as
an arc event occur simultaneously at the same point pe. In the left figure the offset arcs at the time
of the event are shown in gray. Arcs and vertices that are on WF({si, sj , sk}, t) are highlighted in
blue. Other active arcs and vertices are depicted by solid orange lines and filled disks, while inactive
arcs and vertices are depicted by dashed orange lines and circles. (b) The configuration shortly
before and after a domination event and an arc event occur simultaneously at the same point pe.

I Lemma 8. Let i < j < k and consider an arc event such that exactly the three vertices
vi,j(te), vi,k(te), and vj,k(te) coincide at time te. Then either

all three vertices were active before the event, see Figure 4a, or
vi,j and vj,k were active and vi,k was inactive before the event, see Figure 4b, or
vi,k and vj,k were active and vi,j was inactive before the event, see Figure 4c.

We now describe an event-handling scheme that allows us to trace out VDw(S) by
simulating the expansion of the arcs of A(S, t) as t increases, see Figure 5. We refer to this
process as arc expansion.

ESA 2020

56:6 Computing Multiplicatively Weighted Voronoi Diagrams

vi,j

vi,k

vj,k

vi,jvi,k

vj,k
vi,j vi,k

vj,k

vi,j

vi,k
vj,k

(a) The two possible configurations shortly before (shown in the left figures) and after (shown in the right
figures) one active arc disappears on ci(t) if no collision or domination event occurs at the same point.
We get the collapse of all three arcs of an active-arc triangle.

vj,kvi,j

vi,k

vj,k vi,j

vi,k

vj,k

vi,k

vi,j

vi,j

vi,k

vj,k

(b) The two possible configurations shortly before (left) and after (right) one active arc disappears on
cj(t) and another active arc appears on ck(t).

vj,kvi,k

vi,j

vj,k vi,k

vi,j

vi,j

vi,k

vj,k

vi,j

vi,k

vj,k

(c) The two possible configurations shortly before (left) and after (right) one active arc disappears on
ck(t) and another active arc appears on cj(t).

Figure 4 The six different configurations that can occur for arc events for 1 ≤ i < j < k ≤ n.

For each site we maintain a search data structure to keep track of all active arcs during
the arc expansion. This active offset oi of si holds the set of all arcs of ci(t) which are active
at time t sorted in counter-clockwise angular order around si, and supports the following
basic operations in time logarithmic in the number of arcs stored:

It supports the insertion and deletion of active arcs as well as the lookup of their
corresponding vertices.
It supports point-location queries, allowing us to identify that active arc within oi which
contains a query point p on ci(t).

Every active offset contains at most 2(n− 1) vertices and, thus, O(n) active arcs. Hence,
each such operation on an active offset takes O(logn) time in the worst case.

Checking and handling the configurations shown in Figures 3a to 4 can be done by using
only basic operations within the respective active offsets. The events themselves are stored
in a priority queue Q ordered by the time of their occurrence. If two events take place
simultaneously at the same point then collision events are prioritized higher than arc events,
and arc events have to be handled before domination events. Four auxiliary operations are
utilized that allow a more compact description of this process. Each one takes O(logn) time.

The collapse-operation takes place from vi,x to vj,k within an active offset ox, with
x ∈ {j, k}, in which vi,x and vj,k bound an active arc ax that is already part of ox; see
Figure 6a. It determines the neighboring active arc a′x of ax that is bounded (on one
side) by vi,x, deletes ax from ox, and replaces vi,x by vj,k in a′x.

M. Held and S. de Lorenzo 56:7

Figure 5 A snapshot of the arc expansion for the input shown in Figure 1. Active arcs that are
currently not part of the wavefront are drawn in orange.

The counterpart of the collapse-operation is the expand-operation; see Figure 6b. It
happens from vj,k to vi,x in which vj,k bounds an active arc a′x within ox. The expansion
will either move along a currently inactive or an already active portion of the offset circle
of sx. In the latter case, vj,k is replaced by vi,x in a′x. In any case, we insert the respective
active arc that is bounded by vi,x and vj,k into ox.
A split-operation involves two active offsets oi and oj as well as a point pe which is
situated within the active arcs ai := (vi,s, vi,e) and aj := (vj,s′ , vj,e′) within oi and oj ,
respectively; see Figure 7a. Two married vertices vli,j and vri,j are created. Afterwards
ai and aj are removed from oi and oj , respectively. Two new active arcs (vi,s, vli,j) and
(vri,j , vi,e) are created and inserted into oi. Furthermore, the three active arcs (vj,e, vri,j),
(vri,j , vli,j), and (vli,j , vj,e) are inserted into oj . If ai and aj were wavefront arcs then the
newly created married vertices coincide with wavefront vertices and the newly inserted
active arcs except (vri,j , vli,j) are marked as wavefront arcs.
During a merge-operation, exactly two offset circles interact; see Figure 7b. The active arcs
ai and aj bounded by the two corresponding married vertices vri,j and vli,j are removed
from oi and oj , respectively. Additionally, the active arcs (vj,s, vri,j) and (vli,j , vj,e) that
were adjacent to aj within oj are removed. Finally, a new active arc a′j := (vj,s, vj,e) is
inserted into oj . If aj was a wavefront arc then a′j is also marked as a wavefront arc.

vj,kvi,k
vj,k vi,k

(a)

vj,k

vi,j

vj,k

vi,j

(b)

Figure 6 (a) A collapse-operation from vi,k to vj,k takes place within ok. (b) An expand-operation
happens within oj from vj,k to vi,j .

Domination events and arc events are easy to detect. The point and time of a collision is
trivial to compute for any pair of offset circles, too. Unfortunately there is no obvious way
to identify those pairs of circles for which this intersection will happen within portions of
these offset circles which will still be active at the time of the collision. Hence, for the rest of

ESA 2020

56:8 Computing Multiplicatively Weighted Voronoi Diagrams

vri,j

vli,j

(a)

vri,j

vli,j

(b)

Figure 7 (a) A split-operation happens when at the time of a collision event. (b) A merge-
operation happens at the time of a domination event.

this section we assume that all collisions among all pairs of offset circles are computed prior
to the actual arc expansion. Lemma 9 verifies that our algorithm correctly simulates the arc
expansion.

I Lemma 9. For time t > 0, the arc arrangement A(S, t) can be obtained from A(S, 0) by
modifying it according to all collision events, domination events and arc events that occur
till time t, in the order in which they appear.

If the maximum weight of all sites is associated with only one site then there will be a
time t when the offset circle of this site dominates all other offset circles, i.e., when WF(S, t)
contains only this offset circle as one active arc. Obviously, at this time no further event can
occur and the arc expansion stops. If multiple sites have the same maximum weight then Q
can only be empty once WF(S, t) contains only one loop of active arcs which all lie on offset
circles of these sites and if all wavefront vertices move along rays to infinity.

I Lemma 10. An active arc or active vertex within an active offset is identified and marked
as a wavefront arc (wavefront vertex, resp.) at time t ≥ 0 if and only if it lies on WF(S, t).

If we allow points in R2 to have the same weighted distance to more than three sites
then we need to modify our strategy. In particular, we need to take care of constellations in
which more than three arc events happen simultaneously at the same point. In such a case
it is necessary to carefully choose the sequence in which the corresponding arc events are
handled. More precisely, an arc event may only be handled (without corrupting the state of
the active offsets) whenever the respective active vertices are considered neighboring within
the active offsets. If the active vertices that participate in an arc event are not currently
neighboring then we can always find an arc event whose active vertices are neighboring that
happens simultaneously at the same location by walking along the corresponding active
offsets. By dealing with the arc events in this specific order, we generate multiple coinciding
Voronoi nodes of degree three. Domination events that occur simultaneously at the same
point pe are processed in increasing order of the weights. Note that this order can already be
established at the time when an event is inserted into Q, at no additional computational cost.
Simultaneous multiple collision events at the same point pe either involve arcs that are not
active or coincide with arc events. These arc events automatically establish a sorted order of
the active arcs around pe, thus allowing us to avoid an explicit (and time-consuming) sorting.

I Lemma 11. During the arc expansion O(n2) collision and domination events are computed.

We know that collision events create and domination events remove active vertices (and
make them inactive for good). A collapse of an entire active-arc triangle causes two vertices
to become inactive. During every other arc event at least one active vertex becomes inactive,

M. Held and S. de Lorenzo 56:9

but at the same time one inactive vertex may become active again. In order to bound the
number of arc events it is essential to determine how many vertices can be active and how
often a vertex can undergo a reactivation, i.e., change its status from inactive to active.
(Note that Lemma 2 is not applicable to a moving vertex since its polar angle does not
stay constant.) We now argue that the total number of reactivations of inactive vertices is
bounded by the number of different vertices that ever were active during the arc expansion.

I Lemma 12. Every reactivation of a moving vertex during an arc event forces another
moving vertex to become inactive and remain inactive for the rest of the arc expansion.

I Lemma 13. Let h be the number of different vertices that ever were active during the arc
expansion. Then O(h) arc events can take place during the arc expansion.

I Theorem 14. The multiplicatively weighted Voronoi diagram VDw(S) of a set S of n
weighted point sites can be computed in O(n2 logn) time and O(n2) space.

Additionally, in the full version [9] we argue that the one-dimensional MWVD can be
computed efficiently using a wavefront-based strategy.

I Theorem 15. The multiplicatively weighted Voronoi diagram VDw(S) of a set S of n
weighted point sites in one dimension can be computed in O(n logn) time and O(n) space.

6 Reducing the Number of Collisions Computed

Experiments quickly indicate that the vast majority of pairwise collisions computed a priori
never ends up on pairs of active arcs. Furthermore, the resulting Voronoi diagrams show
a quadratic combinatorial complexity only for contrived input data. We make use of the
following results to determine all collision events in near-linear expected time. Throughout this
section, we assume that for each site si ∈ S the corresponding weight w(si) is independently
sampled from some probability distribution.

Figure 8 The overlay arrangement is generated by inserting the sites ordered by decreasing
weights.

I Definition 16 (Candidate Set). Consider an arbitrary (but fixed) point q ∈ R2, and let s
be its nearest neighbor in S under the weighted distance. Let s′ ∈ S \ {s} be another site.
Since s is the nearest neighbor of q we know that either s has a higher weight than s′ or a

ESA 2020

56:10 Computing Multiplicatively Weighted Voronoi Diagrams

smaller Euclidean distance to q than s′. Thus, one can define a candidate set for a weighted
nearest neighbor of q which consists of all sites s ∈ S such that all other sites in S either
have a smaller weight or a larger Euclidean distance to q.

I Lemma 17 (Har-Peled and Raichel [8]). For all points q ∈ R2, the candidate set for q
among S is of size O(logn) with high probability.

I Lemma 18 (Har-Peled and Raichel [8]). Let Ki denote the Voronoi cell of si in the un-
weighted Voronoi diagram of the i-th suffix Si := {si, . . . , sn}. Let OA denote the arrangement
formed by the overlay of the regions K1, . . . ,Kn. Then, for every face f of OA, the candidate
set is the same for all points in f .

Figure 8 shows a sample overlay arrangement. Kaplan et al. [11] prove that this overlay
arrangement has an expected complexity of O(n logn). Note that their result is applicable
since inserting the points in sorted order of their randomly chosen weights corresponds to a
randomized insertion. These results allow us to derive better complexity bounds.

I Theorem 19 (Kaplan et al. [11]). The expected combinatorial complexity of the overlay of
the minimization diagrams that arises during a randomized incremental construction of the
lower envelope of n hyperplanes in Rd, for d ≥ 2, is O(nbd/2c), for d even, and O(nbd/2c logn),
for d odd. The bounds for d even and for d = 3 are tight in the worst case.

I Lemma 20. If a collision event occurs between the offset circles of two sites si, sj ∈ S
then there exists at least one candidate set which includes both si and sj.

I Theorem 21. All collision events can be determined in O(n log3 n) expected time by
computing the overlay arrangement OA of a set S of n input sites.

Thus, the number h of vertices created during the arc expansion can be expected to
be bounded by O(n log3 n). Lemma 13 tells us that the number of arc events is in O(h).
Therefore, O(n log3 n) events happen in total.

I Theorem 22. A wavefront-based approach allows to compute the multiplicatively weighted
Voronoi diagram VDw(S) of a set S of n (randomly) weighted point sites in expected
O(n log4 n) time and expected O(n log3 n) space.

7 Extensions

Consider a set S′ of n disjoint weighted straight-line segments in R2. A wavefront propagation
among weighted line segments requires us to refine our notion of “collision”. We call an
intersection of two offset circles a non-piercing collision event if it marks the initial contact
of the two offset circles. That is, it occurs when the first pair of moving vertices appear. We
call an intersection of two offset circles a piercing collision event if it takes place when two
already intersecting offset circles intersect in a third point for the first time; see Figure 9. In
this case, a second pair of moving vertices appear.

Hence, a minor modification of our event-based construction scheme is sufficient to extend
it to weighted straight-line segments; see Figure 10. We only need to check whether a piercing
collision event that happens at a point pe at time te currently is part of WF(S′, te). In such
a case the two new vertices as well as the corresponding active arc between them need to be
flagged as part of WF(S′, te).

An extension to additive weights can be integrated easily into our scheme by simply
giving every offset circle a head-start of wa(si) at time t = 0, where wa(si) ≥ 0 denotes the
real-valued additive weight that is associated with si.

M. Held and S. de Lorenzo 56:11

Figure 9 An example of a non-piercing (left) as well as a piercing collision event (right).

Figure 10 The MWVD of a set of weighted points and weighted straight-line segments together
with a family of wavefronts for equally-spaced points in time.

8 Experimental Evaluation

We implemented our full algorithm for multiplicatively weighted points as input sites2, based
on CGAL and exact arithmetic3. In particular, we use CGAL’s Arrangement_2 package
for computing the overlay arrangement and its Voronoi_diagram_2 package for computing
unweighted Voronoi diagrams. The computation of the MWVD itself utilizes CGAL’s
Exact_circular_kernel_2 package which is based on the Gmpq number type. The obvious
advantage of using exact number types is that events are guaranteed to be processed in the
right order even if they occur nearly simultaneously at nearly the same place. One of the
main drawbacks of exact number types is their memory consumption which is significantly
(and sometimes unpredictably) higher than when standard floating-point numbers are used.

We used our implementation for an experimental evaluation and ran our code on over
8000 inputs ranging from 256 vertices to 500 000 vertices. For all inputs all weights were
chosen uniformly at random from the interval [0, 1]. All tests were carried out with CGAL 5.0
on an Intel Core i9-7900X processor clocked at 3.3 GHz.

2 We do also have a prototype implementation that handles both weighted points and weighted straight-line
segments. It was used to generate Figure 10.

3 We have not spent enough time on fine-tuning an implementation based on conventional floating-point
arithmetic. The obvious crux is that inaccurately determined event times (and locations) may corrupt
the state of the arc arrangement and, thus, cause a variety of errors during the subsequent arc expansion.

ESA 2020

56:12 Computing Multiplicatively Weighted Voronoi Diagrams

102 103 104 105

Input size

40

60

80

100

120

140

R
u
n
ti

m
e/
n

lo
g

2
n

102 103 104 105

Input size

20

40

60

80

100

R
u
n
ti

m
e/
n

lo
g

2
n

(a) Left: The overall runtime results for inputs with randomly generated weights and point coordinates.
Right: The runtime consumed by the computation of the corresponding overlay arrangements. All runtimes
were divided by n log2 n.

102 103 104 105

Input size

40

60

80

100

120

140

R
u
n
ti

m
e/
n

lo
g

2
n

(b) The overall runtime results for inputs with randomly generated weights and vertices of real-world
polygons and polygons of the Salzburg database of polygonal data [5, 6] taken as input points. The
runtimes were divided by n log2 n.

102 103 104 105

Input size

2.0

2.2

2.4

2.6

2.8

3.0

#
E

v
en

ts
/
n

lo
g
n

102 103 104 105

Input size

9

10

11

12

13

#
E

v
en

ts
/
n

(c) The left plot shows the total number of (valid and invalid) collision events (divided by n log n); the
right plot shows the number of arc events (divided by n) processed during the arc expansion. All point
coordinates and weights were generated randomly.

Figure 11 Experimental evaluation.

M. Held and S. de Lorenzo 56:13

In any case, the number of events is smaller than predicted by the theoretical analysis.
This is also reflected by our runtime statistics: In Figures 11a and 11b the runtime that was
consumed by the computation of a MWVD is plotted. We ran our tests on two different
input classes: The point locations were either generated randomly, i.e., they were chosen
according to either a uniform or a normal distribution, or obtained by taking the vertices of
real-world polygons or polygons of the brand-new Salzburg database of polygonal data [5, 6].
Summarizing, our tests suggest an overall runtime of O(n log2 n) for both input classes. In
particular, the actual geometric distribution of the sites does not have a significant impact on
the runtime if the weights are chosen randomly: For real-world, irregularly distributed sites
the runtimes are scattered more wildly than in the case of uniformly distributed sites, but
they do not increase. The numbers of collision events and arc events that occurred during
the arc expansion are plotted in Figure 11c. Our tests suggest that we can expect to see
at most 3n logn collision events and at most most 14n arc events to occur. Note that the
number of arc events forms an upper bound on the number of Voronoi nodes of the final
MWVD. That is, random weights seem to result in a linear combinatorial complexity of the
MWVD.

It is natural to ask how much these results depend on the randomness of the weights. To
probe this question we set up a second series of experiments: We sampled points uniformly
within a square with side-length

√
2 and then tested different weights. Let d(s) be the distance

of the site s ∈ S from the center of the square, and let r(s) be a number uniformly distributed
within the interval [0, 1]. Of course, 0 ≤ d(s) ≤ 1. Then we assign α·d(s)+β·r(s)/(α+β) as weight
to s, with α and β being the same arbitrary but fixed non-negative numbers for all sites of S.
Figure 12 shows the results obtained for the same sets of points and the (α, β)-pairs (1, 0),
(9, 1), (7, 3), (1, 1) and (0, 1). This test makes it evident that the bounds on the complexities
need not hold if the weights are not chosen randomly, even for a uniform distribution of
the sites. Rather, this may lead to a linear number of candidates per candidate set and a
quadratic runtime complexity, as shown in Figure 12.

102 103 104

Input size

0

50

100

150

200

A
v
g
.

ca
n
d
id

a
te

se
t

si
ze

Non-random

9:1

7:3

1:1

Random

102 103 104

Input size

106

107

108

109

1010

R
u
n
ti

m
e

Non-random

9:1

7:3

1:1

Random

Figure 12 The plots show how the average number of candidates (left) and the total runtime
(right) depend on the weights assigned to the sites. Each marker on the x-axes indicates the number
n of input sites uniformly distributed within a square.

ESA 2020

56:14 Computing Multiplicatively Weighted Voronoi Diagrams

9 Conclusion

We present a wavefront-like approach for computing the MWVD of points and straight-line
segments. Results by Kaplan et al. [11] and Har-Peled and Raichel [8] allow to predict an
O(n log4 n) expected time complexity for point sites with random weights. We also discuss a
robust, practical implementation which is based on CGAL and exact arithmetic. Extensive
tests of our code indicate an average runtime of O(n log2 n) if the sites are weighted randomly.
To the best of our knowledge, there does not exist any other code for computing MWVDs
that is comparatively fast. A simple modification of our arc expansion scheme makes it
possible to handle both additive and multiplicative weights simultaneously. Our code is
publicly available on GitHub under https://github.com/cgalab/wevo. Figure 13 shows
several examples of MWVDs computed by our implementation.

Figure 13 Several examples of MWVDs are shown in the top figures. The bottom figures illustrate
a series of uniformly distributed wavefronts that have been derived from the corresponding MWVDs.

References
1 Franz Aurenhammer. The One-Dimensional Weighted Voronoi Diagram. Information Pro-

cessing Letters, 22(3):119–123, 1986. doi:10.1016/0020-0190(86)90055-4.
2 Franz Aurenhammer and Herbert Edelsbrunner. An Optimal Algorithm for Constructing

the Weighted Voronoi Diagram in the Plane. Pattern Recognition, 17(2):251–257, 1984.
doi:10.1016/0031-3203(84)90064-5.

3 Rudi Bonfiglioli, Wouter van Toll, and Roland Geraerts. GPGPU-Accelerated Construction
of High-Resolution Generalized Voronoi Diagrams and Navigation Meshes. In Proceedings
of the Seventh International Conference on Motion in Games, pages 26–30, 2014. doi:
10.1145/2668084.2668093.

4 Barry N. Boots. Weighting Thiessen Polygons. Economic Geography, 56(3):248–259, 1980.
doi:10.2307/142716.

https://github.com/cgalab/wevo
https://doi.org/10.1016/0020-0190(86)90055-4
https://doi.org/10.1016/0031-3203(84)90064-5
https://doi.org/10.1145/2668084.2668093
https://doi.org/10.1145/2668084.2668093
https://doi.org/10.2307/142716

M. Held and S. de Lorenzo 56:15

5 Günther Eder, Martin Held, Steinþór Jasonarson, Philipp Mayer, and Peter Palfrader. On
Generating Polygons: Introducing the Salzburg Database. In Proceedings of the 36th European
Workshop on Computational Geometry, pages 75:1–75:7, March 2020.

6 Computational Geometry and Applications Lab Salzburg. Salzburg Database of Geometric
Inputs. https://sbgdb.cs.sbg.ac.at/, 2020.

7 Leonidas Guibas. Kinetic Data Structures. In Dinesh P. Mehta and Sartaj Sahni, editors,
Handbook of Data Structures and Applications, pages 23.1–23.18. Chapman and Hall/CRC,
2001. ISBN 9781584884354.

8 Sariel Har-Peled and Benjamin Raichel. On the Complexity of Randomly Weighted Mul-
tiplicative Voronoi Diagrams. Discrete & Computational Geometry, 53(3):547–568, 2015.
doi:10.1007/s00454-015-9675-0.

9 Martin Held and Stefan de Lorenzo. An Efficient, Practical Algorithm and Implementation
for Computing Multiplicatively Weighted Voronoi Diagrams, 2020. arXiv:2006.14298.

10 Kenneth E. Hoff III, John Keyser, Ming Lin, Dinesh Manocha, and Tim Culver. Fast
Computation of Generalized Voronoi Diagrams using Graphics Hardware. In Proceedings
of the the 26th Annual International Conference on Computer Graphics and Interactive
Techniques, pages 277–286. ACM Press/Addison-Wesley Publishing Co., 1999. doi:10.1145/
311535.311567.

11 Haim Kaplan, Edgar Ramos, and Micha Sharir. The Overlay of Minimization Diagrams in a
Randomized Incremental Construction. Discrete & Computational Geometry, 45(3):371–382,
2011. doi:10.1007/s00454-010-9324-6.

12 The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.0 edition,
2019. URL: https://doc.cgal.org/5.0/Manual/packages.html.

13 Kira Vyatkina and Gill Barequet. On Multiplicatively Weighted Voronoi Diagrams for
Lines in the Plane. Transactions on Computational Science, 13:44–71, 2011. doi:10.1007/
978-3-642-22619-9_3.

ESA 2020

https://sbgdb.cs.sbg.ac.at/
https://doi.org/10.1007/s00454-015-9675-0
http://arxiv.org/abs/2006.14298
https://doi.org/10.1145/311535.311567
https://doi.org/10.1145/311535.311567
https://doi.org/10.1007/s00454-010-9324-6
https://doc.cgal.org/5.0/Manual/packages.html
https://doi.org/10.1007/978-3-642-22619-9_3
https://doi.org/10.1007/978-3-642-22619-9_3

Fully-Dynamic Coresets
Monika Henzinger
University of Vienna, Faculty of Computer Science, Austria
https://homepage.univie.ac.at/monika.henzinger/
monika.henzinger@univie.ac.at

Sagar Kale
University of Vienna, Faculty of Computer Science, Austria
https://sagark4.github.io/
sagar.kale@univie.ac.at

Abstract

With input sizes becoming massive, coresets – small yet representative summary of the input – are
relevant more than ever. A weighted set Cw that is a subset of the input is an ε-coreset if the cost
of any feasible solution S with respect to Cw is within [1±ε] of the cost of S with respect to the
original input. We give a very general technique to compute coresets in the fully-dynamic setting
where input points can be added or deleted. Given a static (i.e., not dynamic) ε-coreset-construction
algorithm that runs in time t(n, ε, λ) and computes a coreset of size s(n, ε, λ), where n is the number
of input points and 1−λ is the success probability, we give a fully-dynamic algorithm that computes
an ε-coreset with worst-case update time O((logn) · t(s(n, ε/ logn, λ/n), ε/ logn, λ/n)) (this bound
is stated informally), where the success probability is 1−λ. Our technique is a fully-dynamic analog
of the merge-and-reduce technique, which is due to Har-Peled and Mazumdar [17] and is based on a
technique of Bentley and Saxe [3], that applies to the insertion-only setting where points can only
be added. Although, our space usage is O(n), our technique works in the presence of an adaptive
adversary, and we show that Ω(n) space is required when adversary is adaptive.

As a concrete implication of our technique, using the result of Braverman et al. [4], we get fully-
dynamic ε-coreset-construction algorithms for k-median and k-means with worst-case update time
O(ε−2k2 log5 n log3 k) and coreset size O(ε−2k logn log2 k) ignoring log logn and log(1/ε) factors and
assuming that ε = Ω(1/ poly(n)) and λ = Ω(1/ poly(n)) (which are very weak assumptions made only
to make these bounds easy to parse). This results in the first fully-dynamic constant-approximation
algorithms for k-median and k-means with update times O(poly(k, logn, ε−1)). Specifically, the
dependence on k is only quadratic, and the bounds are worst-case. The best previous bound for
both problems was amortized O(n logn) by Cohen-Addad et al. [10] via randomized O(1)-coresets
in O(n) space.

We also show that under the OMv conjecture [18], a fully-dynamic (4 − δ)-approximation
algorithm for k-means must either have an amortized update time of Ω(k1−γ) or amortized query
time of Ω(k2−γ), where γ > 0 is a constant.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Clustering, Coresets, Dynamic Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.57

Related Version A full version of the paper is available at https://arxiv.org/abs/2004.14891.

Funding Monika Henzinger : The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh Framework Programme (FP/2007-
2013) / ERC Grant Agreement no. 340506.
Sagar Kale: Fully supported by Vienna Science and Technology Fund (WWTF) through project
ICT15-003.

© Monika Henzinger and Sagar Kale;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 57; pp. 57:1–57:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5008-6530
https://homepage.univie.ac.at/monika.henzinger/
mailto:monika.henzinger@univie.ac.at
https://sagark4.github.io/
mailto:sagar.kale@univie.ac.at
https://doi.org/10.4230/LIPIcs.ESA.2020.57
https://arxiv.org/abs/2004.14891
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Fully-Dynamic Coresets

1 Introduction

Clustering is an ubiquitous notion that one encounters in computer-science areas such as data
mining, machine learning, image analysis, bioinformatics, data compression, and computer
graphics, and also in the fields of medicine, social science, marketing, etc. Today, when
the input data has become massive, one would rather run an algorithm on a small but
representative summary of the input, and for clustering problems, a coreset serves that
function perfectly. The concept of a coreset was defined first in computational geometry as a
small subset of a point set that approximates the shape of the point set. The word coreset
has now evolved to mean an appropriately weighted subset of the input that approximates
the original input with respect to solving a computational problem.

Let P be a problem for which the input is a weighted subset1 Xw ⊆ U ; think of U as
in a metric space (U, d), so U is unweighted and d is the distance function. Let n := |Xw|
and W :=

∑
x∈Xw

w(x). We also refer to elements of U as points. The goal in the problem
P then is to output S∗ that belongs to the feasible-solution space (or query space) Q
such that the cost c(S∗, Xw) is minimized. For example, in the k-median (respectively,
k-means) problem, Q is the set of all (unweighted) subsets of Xw of cardinality at most
k and c(S,Xw) :=

∑
x∈Xw

w(x) mins∈S d(x, s) (respectively,
∑
x∈Xw

w(x) mins∈S(d(x, s))2).
Then, for the problem P , a weighted set Cw such that Cw ⊆ Xw is an ε-coreset if, for any
feasible solution S ∈ Q, we have that c(S,Xw) ∈ [1±ε]c(S,Cw); we sometimes say that the
quality of coreset Cw is ε. For many problems, fast coreset-construction algorithms exist;
e.g., for k-median and k-means, Õ(nk)-time2 algorithms for computing ε-coresets of size
O(ε−2k polylog(n)) exist.

Throughout the paper, we assume that the cost function c for the problem P is linear :
for any weighted subsets Y 1

w , Y
2
w ⊆ U with disjoint supports and any S ∈ Q, we have that

c(S, Y 1
w ∪ Y 2

w) = c(S, Y 1
w) + c(S, Y 2

w), where the union Y 1
w ∪ Y 2

w is the weighted union. It is
easy to see that k-median and k-means cost functions are linear.

Our goal in this paper is to give dynamic algorithms for computing a coreset. In the
dynamic setting, the input changes over time. A dynamic algorithm is a data structure that
supports three types of operations: Insert(p, w), which inserts a point p with weight w into
Xw; Delete(p), which removes point p from Xw; and Query(), which outputs a coreset of
Xw. Weight updates can be simulated by deleting and re-inserting a given point, or the data
structure may support a separate weight-changing operation. This is known as the fully
dynamic model as opposed to the insertion-only setting where a point can only be inserted.
At any time instant, a coreset is maintained by the algorithm, and the complexity measure of
interest is the update time, i.e., how fast the solution can be updated after receiving a point
update, and also the size of the coreset, which determines the query time. Suppose there is a
dynamic coreset-construction algorithm, say ALGD, for a problem P . Then a solution for
the problem P can be maintained dynamically by running ALGD, and on query, a solution
is computed by querying ALGD and running a static (i.e., not dynamic) algorithm for P on
the returned coreset. In this paper, we give a very general technique on how to maintain a
coreset in the fully-dynamic setting: given a static coreset-construction algorithm for any
problem P , we show how to turn it into a dynamic coreset-construction algorithm for P .

1 When using a set operation such as union or notation such as ⊆ with one or more weighted sets, we
mean it for the underlying unweighted sets. Also, all weights are nonnegative.

2 Logarithmic factors are hidden in the Õ notation.

M. Henzinger and S. Kale 57:3

Intuitively, our technique is to the fully-dynamic setting as the merge-and-reduce technique
is to the insertion-only setting. Themerge-and-reduce technique, which is based on a technique
of Bentley and Saxe [3], is due to Har-Peled and Mazumdar [17] and is a fundamental technique
to obtain an insertion-only coreset-construction algorithm using a static coreset-construction
algorithm, say ALGS , as a black box. Loosely speaking, it is as follows. At any time instant,
the algorithm maintains up to dlogne buckets. For i ∈ {1, 2, . . . , dlogne}, the bucket Bi
has capacity 2i−1, each bucket can be either full, (i.e. at capacity 2i−1) or empty, and each
point goes in exactly one bucket. Then at any time-instant, the current number of points
uniquely determines the states of the buckets. Whenever a point is inserted, the states of the
buckets change like a binary counter. That is, the new point goes into Bi, where Bi is the
smallest-index empty bucket, and all the points in ∪i−1

j=1Bj are moved to Bi (merge). Note
that this creates a full bucket Bi. Then a coreset is computed on Bi by running ALGS on it
(reduce). The overall coreset is then just union of all non-empty buckets.

We show that a similar result can be achieved in the fully-dynamic setting. Our main
result is the following theorem (stated slightly informally).

I Theorem 1. Assume that there is a static coreset construction algorithm for a problem
P with linear cost function that a) runs in time tP (ns, εs, λs,Ws), b) always outputs a
set of cardinality at most sP (εs, λs,Ws) and total weight at most (1+δ)Ws, and c) has the
guarantee that the output is an εs-coreset with probability at least 1−λs, where ns is the
number of integer-weighted input points and Ws is the total weight of points.

Then there is a fully-dynamic coreset-construction algorithm for P that, with rational-
weighted input points, a) always maintains an output set of cardinality at most sP (ε, λ,W),
b) has the guarantee that the output is an ε-coreset with probability at least 1−λ, and c) has
worst-case update time

O

(
(logn) · tP

(
s∗P ,

ε

logn,
λ

n
,W

))
,

where W = O((1+δ)dlogne poly(n)), s∗P = sP

(
ε

logn ,
λ
n ,W

)
, and n is the current number of

points.

We mention below a concrete implication of the above theorem for k-median and k-means
using the result of Braverman et al. [4].

I Theorem 2. For the k-median and k-means problems, there is a fully-dynamic algorithm
that maintains a set of cardinality O(ε−2k(logn log k log(kε−1 logn) + log(1/λ))), that is an
ε-coreset with probability at least 1−λ, and has worst-case update time

O
(
ε−2k2 log5 n log3 k log2(ε−1)(log logn)3) ,

assuming that ε = Ω(1/poly(n)) and λ = Ω(1/ poly(n)). 3

Ignoring log logn and log(1/ε) above, the coreset cardinality is O(ε−2k logn log2 k) and
worst-case update time is O(ε−2k2 log5 n log3 k). It can be easily proved that running an
α-approximation algorithm for k-median on an ε-coreset gives a 2α(1+ε)-approximation
whereas that for k-means gives a 4α(1+ε)-approximation. Any such polynomial-time static
algorithm – say, e.g., (5 + ε′)-approximation algorithm for k-median by Arya et al. [2] and

3 We make these very weak assumptions to simplify some extremely unhandy factors involving ε and λ in
the expression for the update time.

ESA 2020

57:4 Fully-Dynamic Coresets

16-approximation algorithm for k-means by Gupta and Tangwongsan [15] – can be run on
our output coreset in O(poly(k, logn, ε−1)) time to obtain a constant approximation. This is
the first fully-dynamic constant-approximation algorithm for k-median and k-means whose
worst-case time per operation is polynomial in k, logn, and ε−1. The best previous result
was a randomized algorithm with amortized O(n logn) update time and O(n) space by
Cohen-Addad et al. [10].

With a simple reduction, we also show a conditional lower bound on the time per operation
for k-means. The following theorem is proved as Theorem 20 in Section 4.

I Theorem 3. Let γ > 0 be a constant. Under the OMv conjecture [18], for any δ > 0, there
does not exist a fully-dynamic algorithm that maintains a (4− δ)-approximation for k-means
with amortized update time O(k1−γ) and query time O(k2−γ) such that over a polynomial
number of updates, the error probability is at most 1/3.

Our technique

At the core, our technique is simple. We always maintain a balanced binary tree of depth
dlogne containing exactly n leaf nodes (recall that n is the current number of points). Each
node corresponds to a subset of Xw, the current input: each leaf node corresponds to a
singleton (hence n leaf nodes), and an internal node corresponds to the weighted union of the
sets represented by its children. If the cardinality of the union exceeds a certain threshold,
then we use the static coreset-construction algorithm to compute its coreset. The root gives
a coreset of the whole input.

We next explain how we handle updates in this data structure. Point insertions are
straightforward: create a new leaf node and run all the static-algorithm instances at the
nodes on the leaf-to-root path. The way we handle point deletions is similar in spirit to
the way delete-min works in a min-heap data structure: whenever a point at leaf-node `d is
deleted, we swap contents of `d with those of the rightmost leaf-node, say `r, and delete `r,
thus maintaining the balance of the tree. Then we run all the static-algorithm instances at
the nodes on the two affected leaf-to-root paths.

However, there are some complications that require new techniques to make it work in
worst-case time. To maintain guarantees for the output coreset quality and overall success
probability, we need to adapt the parameters εs and λs used for the static algorithm at the
internal nodes. The problem is that both depend on n, which changes over time and thus
might become outdated. To show an amortized update-time bound, we can simply rerun
the static algorithms at all internal nodes whenever n has changed by a constant factor. To
achieve our worst-case bound, we use two refresh pointers that point at leaf nodes, and after
each update operation, we rerun using the new values of εs and λs all the static-algorithm
instances at the nodes on the leaf-to-root path from the leaf nodes pointed to by the refresh
pointers. This keeps the outputs of the static-algorithm instances at the internal nodes
always fresh. After every update, we move these pointers to the right so that they point to
the next leaf nodes.

Further complications are caused by fractional weights at the leaf nodes and fractional
intermediate-output weights. A problem arises when the weights in Xw are fractional, and
the static algorithm expects integer-weighted input [9]. Even if the static algorithm can
handle fractional weights [12, 4], there can be a problem. The output of the static algorithm
at an internal node is the input for the static algorithm at its parent. Naïvely feeding these
output fractional weights directly to the static algorithm at the parent may result in numbers
exponential in n near the root, thus prohibitively increasing the update time. To deal with

M. Henzinger and S. Kale 57:5

these problems, rounding is needed for the input, i.e., at the leaf nodes, as well as for each
intermediate-output at an internal node. Thus, we propose a more sophisticated rounding
scheme and show that the rounding errors accumulated by our rounding are not too high.

We note that our balanced binary-tree data structure may be used to get dynamic
algorithms in the following situations. Let f : Rdim → Rdim be a multi-valued function.
Suppose for any u and v with disjoint supports and for any fu ∈ f(u) and fv ∈ f(v), we
have fu + fv ∈ f(u+ v). Also suppose that f(f(v)) ⊆ f(v) for any v. Now, given input v,
we want to compute some vector in f(v). If there is a static algorithm for this, then using
our technique, we can maintain some vector in f(v) for a dynamically changing vector v.
The allowed dynamic operation on v is “add a to the ith coordinate of v,” where a ∈ R.
The resulting dynamic algorithm is fast if the static algorithm always outputs a “small”
vector; this is true for coresets because coresets are small by nature. Thinking about coresets
in the above language, each point is an identity vector in R|U |+ , and then each weighted
set of points naturally identifies with a vector. An ε-coreset reduces the number of points
drastically. Union of coresets of two disjoint sets is a coreset of the union of those two sets (see
Lemma 5). Although an ε-coreset of an ε-coreset is not an ε-coreset, it is a (2ε+ ε2)-coreset
(see Lemma 6).

Space

In the merge-and-reduce technique, a bucket Bi will not actually contain 2i−1 points but
just a coreset of 2i−1 points that would have been there otherwise at any time instant. Thus,
using space just dlogne times the coreset size for a bucket, one can get a coreset of the whole
input [17]. This makes it also applicable in the more restricted streaming model, where the
input points arrive in a sequence and the goal is to compute a coreset using sublinear space.
In the fully-dynamic setting, deletions also need to be handled, and hence no deterministic
or randomized algorithm against an adaptive adversary that stores only a coreset is possible:
the adversary generating the input could simply ask a query and then delete all points in
the returned coreset. Hence, an algorithm that does not store any information about the
non-coreset points would not be able to maintain a valid coreset. Even though we store
all the points in our fully-dynamic technique, i.e., its space usage is O(n), it works against
an adaptive adversary because we never make any assumption about the next update and
perform each update independently of all previous updates. By a straightforward reduction
from the communication problem of index, we show that Ω(n) space is required in the
presence of an adaptive adversary. The proof of the following theorem appears in Section 4.

I Theorem 4. A fully-dynamic algorithm that obtains any bounded approximation for 1-
median or 1-means that works in the presence of an adaptive adversary and has success
probability 1− 1/(8n2) must use Ω(n) space, where n is the current number of points.

Comparison with the sparsification technique

Our technique is close to the sparsification technique of Eppstein et al. [11] that is used to
speed up dynamic graph algorithms. There, one has to assume that the number of vertices
in the input graph, say nv, does not change, but the edge set changes dynamically, and the
bounds are obtained in terms of nv and m, the current number of edges. Their dynamic
edge-tree structure is based on a fixed vertex-partition tree. In the vertex-partition tree, a
node at level i corresponds to a vertex-set of cardinality nv/2i, and a vertex-set at a node is
a union of its children’s vertex sets (cf. our technique). To start using the edge tree, the
vertex-partition tree has to be built first and hence the knowledge of nv is necessary. Neither

ESA 2020

57:6 Fully-Dynamic Coresets

do we need such a fixed structure nor any information about the number of points. Also,
in the sparsification technique, there is no analog of weight handling/rounding. Another
crucial difference is that they do not use a routine analogous to our refresh-pointers routine
because their internal-node guarantees are always fresh. As we discussed before, these refresh
pointers are critical for us also in making sure that the error introduced by the unavoidable
rounding of output weights of the static-algorithm instances is kept in check.

1.1 Related Work
The most related work is by Cohen-Addad et al. [10] who give an O(1)-coreset for k-median
and k-means in amortized update time of O(n logn).

For k-median and k-means, the first coreset-construction algorithms were by Har-Peled
and Mazumdar [17] for Euclidean metrics and by Chen [9] for general metrics. Improved
algorithms computing smaller coresets were later obtained by Har-Peled and Kushal [16]
and by Feldman and Langberg [12]. The current known best is by Braverman et al. [4]:
O(ε−2k log k logn)-size coresets in Õ(nk) time, who also give an excellent summary of the
literature on coresets that we highly recommend. Note that by merge-and-reduce technique,
each improvement also gave rise to better (insertion-only) streaming coreset constructions.
For k-median and k-means, Frahling and Sohler [14] gave the first coreset-construction
algorithm in the dynamic-streaming setting where points can be added or removed. It uses
space and update time of O(poly(ε−1, logm, log ∆)) for constant k and dim when the points
lie in the discrete Euclidean metric space {1, . . . ,∆}dim; for k-median, this was recently
improved to O(ε−2k poly(dim, log ∆)) space and update time of O(poly(ε−1, k, dim, log ∆))
by Braverman et al. [5]. Coreset constructions with improvements in certain parameters in
the Euclidean settings have been obtained [13, 24].

The k-median and k-means problems have received significant attention in the algorithms
community [8, 20, 19, 7, 2, 23, 21, 15, 22, 1, 6]. The best approximation ratio for k-median
is 2.675 by Byrka et al. [6] and that for k-means is 9 + ε by Ahmadian et al. [1].

2 Preliminaries

Let us fix a problem P with the input Xw, the set of feasible solutions Q, and the linear
cost function c : Q×W → R+, where W is the set of all weighted subsets4 of Xw. All the
numbers encountered are nonnegative.

The computational model

The input set Xw is a weighted set of n points having rational weights whose numerators
and denominators are bounded by O(poly(n)). The algorithm works in the random access
machine model with word size O(logn). Each memory word can be accessed in constant
time. With each update, a new point is inserted, an existing point is deleted, or the weight
of an existing point is modified by adding or subtracting a nonnegative number. The net
weight of each point always stays nonnegative with its numerator and denominator always
bounded by O(poly(n)).

We will prove some basic lemmas about coresets. Using these, we can take weighted
union of two coresets without any loss (Lemma 5) and take a coreset of a coreset without
much loss (Lemma 6).

4 To be precise: denote unweighted version of Xw by X ′, then W is essentially RX
′

+ .

M. Henzinger and S. Kale 57:7

I Lemma 5. If C1
w and C2

w are ε-coresets of X1
w and X2

w, respectively, with respect to a
linear cost function c such that X1

w ∩X2
w = ∅, then C1

w ∪ C2
w is an ε-coreset of X1

w ∪X2
w.

Proof. By linearity of c: for any S ∈ Q,

c(S,X1
w∪X2

w) = c(S,X1
w)+c(S,X2

w) ∈ [1±ε]
(
c(S,C1

w) + c(S,C2
w)
)

= [1±ε]c(S,C1
w∪C2

w) ,

where, recall that, C1
w ∪ C2

w is a weighted union. J

I Lemma 6. If C ′w is an ε-coreset of Cw, and C ′′w is a δ-coreset of C ′w, both with respect to
c, then C ′′w is an (ε+ δ + εδ)-coreset of Cw with respect to c.

Proof. For any S ∈ Q, we have c(S,Cw) ∈ [1±ε]c(S,C ′w) and c(S,C ′w) ∈ [1±δ]c(S,C ′′w). So,

c(S,Cw) > (1−ε)c(S,C ′w) > (1−ε)(1−δ)c(S,C ′′w) > (1− ε− δ − εδ)c(S,C ′′w) ,

and c(S,Cw) 6 (1+ε)c(S,C ′w) 6 (1+ε)(1+δ)c(S,C ′′w) = (1 + ε+ δ + εδ)c(S,C ′′w). J

Let C1
w be an ε-coreset of Cw and C2

w be an ε-coreset of C1
w. Then we say that C1

w and
C2
w are, respectively, 1-level and 2-level ε-coresets of Cw. Extending this notion, we define

an i-level ε-coreset to be an ε-coreset of an (i− 1)-level ε-coreset.

I Lemma 7. If C`w is an `-level ε-coreset of Cw, then C`w is a
(∑`

i=1
(
`
i

)
εi
)
-coreset of Cw.

Proof. The proof is by induction on `. Base case is when ` = 1, and by definition, a 1-level
coreset is an ε-coreset. By induction hypothesis, we have that C`−1

w is a
(∑`−1

i=1
(
`−1
i

)
εi
)
-

coreset of Cw. Now, C`w is an ε-coreset of C`−1
w , hence C`w is an

(
ε+ (1+ε)

∑`−1
i=1
(
`−1
i

)
εi
)
-

coreset of Cw by Lemma 6. Now, use Lemma 8, which appears below, with α = ε to finish
the proof. J

We prove two basic lemmas.

I Lemma 8. For any positive integer ` and α ∈ R+, we have α + (1+α)
∑`−1
i=1
(
`−1
i

)
αi =∑`

i=1
(
`
i

)
αi.

Proof idea. The proof is provided in Appendix A and uses elementary identities involving
binomial coefficients and algebraic manipulations. J

I Lemma 9. For any positive integer ` and α ∈ [0, 1], we have
∑`
i=1
(
`
i

) (
α
2`
)i

6 α.

Proof.
∑`
i=1
(
`
i

) (
α
2`
)i

6
∑`
i=1 `

i αi

2i`i =
∑`
i=1

αi

2i 6
∑`
i=1

α
2i 6 α. J

Now, as a corollary to Lemma 7, we get the following using Lemma 9.

I Corollary 10. If C`w is an `-level (ε/(2`))-coreset of Cw, then C`w is an ε-coreset of Cw.

As we discussed earlier, rounding of the weights at internal nodes is needed in our dynamic
algorithm to achieve the desired worst-case update time. Towards that, we need two lemmas.

In the next lemma, think of a/b as the original weight of the point, c/d as the weight that
we want to approximate a/b with, and D as the cost of this point with respect to a feasible
solution in Q. So the lemma says that by rounding, the cost of the point stays within 1± b/d
of the original cost.

I Lemma 11. For positive integers a, b, and d, let c = bad/bc. Then cD/d ∈ [1± b/d]aD/b
for any nonnegative real D.

ESA 2020

57:8 Fully-Dynamic Coresets

Proof. By the definition of c, we have that c/d 6 a/b 6 c/d+ 1/d, and 1/d 6 a/d because
a > 1; hence a/b > c/d > a/b − a/d, which implies that aD/b > cD/d > aD/b − aD/d =
(1− b/d)aD/b. J

The proof of the following lemma is very similar. Here, think that we approximate the
weight r of a point by brc+ c/d and the cost of the point stays within 1± 1/d of the original
cost.

I Lemma 12. Let r > 1 be a rational number, a and b be positive integers such that
a/b = r − brc, d be any positive integer, and c = bad/bc. Then (brc+ c/d)D ∈ (1± 1/d)rD
for any nonnegative real D.

Proof. By the definition of c and using r > 1, we get that a/b > c/d > a/b− r/d; adding
brc and multiplying by D finishes the proof. J

3 A Dynamic Coreset

We describe our dynamic algorithm for maintaining an ε-coreset for a problem P with query
space Q that uses a static coreset algorithm, say, ALGS .

v1 v3 v2 v4

ALG2
S ALG3

S

v2
1 v2

2

ALG1
S

Output

Figure 1 An ALGS node takes input from two point-nodes. If the union of the sets has cardinality
greater than s′, then the ALGS node computes a coreset of cardinality at most s′ and passes it on
to the point-node above it (its parent). The number of leaf nodes is always n, and the number of
levels is always O(logn), where n is the current number of points.

The main idea is described in Figure 1 using a tree with a special structure. Each node
is of one of the two types: a point-node representing a weighted set of points or an alg-node
representing an instance of ALGS . We sometimes use a point-node to denote the point set it
represents and an alg-node to denote the ALGS instance it represents. Each level contains
either only point-nodes or only alg-nodes. All leaf nodes are point-nodes and represent a
weighted singleton with an input point. Each alg-node gets as input the weighted union of
its children, and its output is represented by its parent node (which is a point-node). When
running ALGS at an alg-node A, if the union of its children has cardinality larger than s′,
then A would compute a coreset of cardinality at most s′ otherwise it would just output the
weighted union. We will later fix this threshold s′ for computing a coreset. An example of

M. Henzinger and S. Kale 57:9

how insertions and deletions are handled is shown in Figure 2 (where all weights are assumed
to be one). For the ease of description, from now onwards, we will think of this tree with
alg-nodes being collapsed into their parent nodes. Then each leaf node would contain a
weighted singleton and each internal node would contain the output of the ALGS instance
run on the weighted union of its children’s sets.

Insert v1

v1

Output
Insert v2

v1 v2

ALG1
S

Output

Insert v3

v1 v3

ALG2
S

v1
2 v2

ALG1
S

Output

Delete v2

v1 v3

ALG1
S

Output

Figure 2 An example of how insertions and deletions are handled. We start with an empty tree.
The first point that is inserted is represented by v1. We use a point and the node that represents it
interchangeably. Then v2 is inserted followed by v3. Next, if v4 is inserted, we get exactly the tree
shown in Figure 1, and if v2 is deleted, then we get the last tree.

We guarantee that the resulting tree then will always be a complete binary tree, i.e.,
every level except possibly the lowest is completely filled, and the nodes at the lowest level
are packed to the left. To describe the updates briefly, let `r denote the rightmost leaf
node at the lowest level; for simplicity, assume that the lowest level is not full. Insertion is
straightforward: the new point goes in a new leaf node to the right of `r. For deletion of a
point at leaf node `d, if `d 6= `r, then we replace contents of `d with those of `r and delete `r.
See Section 3.1 for details of these operations. For weight update, the tree does not change.

I Remark 13. Since a coreset will not be computed until a node has more than s′ points,
the tree can be modified so that each leaf node corresponds to a set of Θ(s′) points. Then
the number of nodes in the tree is Θ(n/s′). This reduces the additional space used for
maintaining this tree. This is important when the number of points is very large. See
Section 3.2 for further details. This is essentially the same idea as used for asymmetric
sparsification in Section 3.4 in Eppstein et al. [11].

We call the leaf nodes at the same level as that of the leftmost leaf node to be at level 0.
We increment these level numbers naturally as we move upwards in the tree. Since we
maintain a complete binary tree, the root, which is at the highest level, is on level dlogne.
After a point insertion, deletion, or weight update, we recompute all the nodes that are
affected by running ALGS from scratch. Once we update a leaf node, all the nodes on its
leaf-to-root path are affected. Since at most two leaf nodes are updated after every point
update, we run at most 2dlogne instances of ALGS . Finally, to reduce the cardinality of
our output coreset, we run another outer instance of ALGS with εs = ε/3 and λs = λ/2
with input as the output of the root. Here, εs and λs are parameters for ALGS as described
below, and our goal is to compute an ε-coreset with probability at least 1−λ. The outer
instance is run after every update.

ESA 2020

57:10 Fully-Dynamic Coresets

The static coreset algorithm ALGS takes as input an integer weighted set of ns points
with total weight Ws and always returns a weighted set of cardinality at most s(εs, λs,Ws);
this set is an εs-coreset with probability at least 1−λs. Let the running time of ALGS

be t(ns, εs, λs,Ws). We assume that the functions t and s are nondecreasing in Ws and
nonincreasing in εs and λs, and also that t is nondecreasing in ns. We call such functions t
and s well-behaved.

We note that t and s implicitly depend on the query space Q as well. In particular,
for k-median and k-means, they depend on k and the dimension or the cardinality of the
universe from which a solution is allowed to be picked. Also, assume that the total weight of
ALGS ’s output is at most 1+δ times the total input weight and it outputs a coreset of points
with integer weights. For the dynamic algorithm, n denotes the current number of points,
and we assume that any input weight is a rational number with numerator and denominator
bounded by nc, for a fixed constant c.

I Theorem 14. Assume that there is a static algorithm ALGS that takes as input an integer-
weighted set of ns points with total weight Ws and always returns an integer-weighted set
of cardinality at most s(εs, λs,Ws) with total weight at most (1+δ)Ws, and this set is an
εs-coreset with probability at least 1−λs. Let the running time of ALGS be t(ns, εs, λs,Ws),
and assume that both s and t are well-behaved. Then there is a fully-dynamic algorithm that,
on rational-weighted input points, always maintains an s

(
ε
3 ,

λ
2 ,Wp

)
-cardinality weighted set.

This set is an ε-coreset with probability at least 1−λ. Its worst-case update time is

O

(
t

(
2s∗, ε

6dlognpe
,
λ

2np
,Wp

)
·
(

1 + log(1+δ) + log ε−1

logn

)
· logn

)
,

where Wp = (1+δ)dlognpenc
′′

p d1/εe, c′′ is a constant, s∗ = s
(

ε
6dlog 2npe ,

λ
4np

,Wp

)
, and 8n/3 6

np 6 8n.

Proof. We first prove that the output of the algorithm is an ε-coreset if every non-outer
ALGS instance outputs an εs-coreset of its input for some εs 6 ε/(6dlogne) and the outer
ALGS instance outputs an (ε/3)-coreset of its input. We prove the following by induction
on level number: every node at level ` contains a (

∑`
i=1
(
`
i

)
εis)-coreset of the leaf nodes

in its subtree. In the base case, a node at level 1 contains an εs-coreset of its input
trivially. An ALGS instance A at level i gets as input two sets, say C ′w and C ′′w, each
of which is a (

∑`−1
i=1
(
`−1
i

)
εis)-coreset for the leaf nodes in their respective nodes’ subtrees.

Hence, C ′w ∪ C ′′w is a (
∑`−1
i=1
(
`−1
i

)
εis)-coreset for leaf nodes in the subtree rooted at A by

Lemma 5. Now, A outputs an εs-coreset of C ′w ∪ C ′′w, hence by Lemma 6, its output is
an (εs + (1+εs)

∑`−1
i=1
(
`−1
i

)
εis)-coreset of the leaf nodes in its subtree, which, by Lemma 8,

means a (
∑`
i=1
(
`
i

)
εis)-coreset. This completes the induction step. Hence, the root node,

which is at level dlogne, contains (
∑dlogne
i=1

(dlogne
i

)
εis)-coreset. Now, since εs 6 ε/(6dlogne),

by Lemma 9, the output at the root is an (ε/3)-coreset. The outer ALGS instance outputs
an (ε/3)-coreset of this, hence, by Lemma 6, the final output is an (2ε/3 + ε2/9)-coreset,
which is an ε-coreset of all points.

Recall that the running time of ALGS is t(ns, εs, λs,Ws) to compute an εs-coreset with
probability at least 1−λs, where ns is the number of points in the input. Our output success
probability will depend on λs, and ε depends on εs as proved in the previous paragraph. We
will need εs 6 ε/(6dlogne) and λs 6 λ/(2n), so these depend on n, which can change a lot
over time. We now show how to maintain these guarantees for εs and λs after each update.

Towards this, we need a little tweak to our algorithm and an additional maintenance
routine that we call the refresher. The algorithm works in phases. The refresher routine
maintains two refresh pointers that always point to consecutive leaf nodes, say r1 and r2.

M. Henzinger and S. Kale 57:11

The refresh pointers are reset after the end of a phase as follows. If the number of leaf nodes
is a power of 2, then r1 and r2 point to the two leftmost leaf nodes, otherwise they point to
the two leftmost leaf nodes at the level above the lowest level. Assume, for completeness,
that the very first phase ends after receiving two points, so the tree is just two leaf nodes
and their parent as the root.

For each subsequent phase, let n0 be the value of n at the beginning of the phase. Each
phase ends after n0/2 updates, and we set np = 4n0. This guarantees that np is greater
than n throughout the whole phase and even the next phase (details appear below). After
receiving an update, we rerun all the ALGS instances on the leaf-to-root path starting at
r1 and r2 (at most 2dlogne such instances). This is the refresher routine. Then we move
the refresh pointers to the next two leaf nodes on the right. If we reach the right end, then
we go to the next level if it exists, otherwise we stop. If we stop, then we achieved the
goal of (re-)running all the ALGS instances that are present at the end of the phase at
least once in this phase (this will become clearer below). After the refresher routine, we
execute the update which affects at most two leaf nodes. We rerun all the ALGS instances
that are affected by this update, again, at most 2dlogne such instances. So in total, at
most 4dlogne of non-outer ALGS instances are run after an update and one outer instance,
which explains the logn factor in the update time. We now explain the parameters used
in the ALGS instances. For all the non-outer ALGS instances, we use εs = ε/(6dlognpe)
and λs = λ/(2np). (This explains the εs and λs parameters of the functions t and s in the
theorem statement.) Note here that the running time of the outer instance is going to be
less than any non-outer instance because t is non-increasing in εs and λs.

As we use np = 4n0 and there could be at most n0/2 insertions in a phase, the final value
of n is at most 3n0/2, and, thus, np is always greater than n. In fact, crucially, np is an upper
bound on n for even the next phase; in the next phase, n 6 n0 + n0/2 + (n0 + n0/2)/2 =
9n0/4 6 np. Also, in the current phase, n0/2 6 n 6 3n0/2, hence 8n/3 6 np 6 8n, as
required (cf. the theorem statement).

We now prove that any non-outer ALGS instance uses εs 6 ε/(6dlogne) and λs 6 λ/(2n)
at any time instant. Let L be the set of leaf nodes at the beginning of the phase; therefore,
|L| = n0. An ALGS instance that exists at the end of the phase is either on the leaf-to-root
path for some leaf in L or it was created/updated in this phase. At the end of the phase, the
refresh pointers will hit all surviving leaf nodes in L; the argument is as follows. Each phase
lasts for n0/2 updates, |L| = n0, and we move the two refresh pointers to the right on next
two leaf nodes after each update. Importantly, new leaf nodes are added only to the right of
the rightmost leaf node at the lowest level, and hence, the refresher routine will have hit all
surviving leaf nodes in L before hitting a newly created leaf node.

This shows that, in any case (being either hit by a point update or by the refresher
routine), each ALGS instance is run with np = 4n0, setting up these instances for the next
phase. This means that at any time instant, each ALGS instance was created/updated in the
current phase or created/updated in the previous phase, thus showing that εs 6 ε/(6dlogne)
and λs 6 λ/(2n) for all ALGS instances at all times.

At any time instant, there are at most n non-outer instances of ALGS , each with success
probability at least 1− λ/(2n), and the outer ALGS instance has success probability at least
1− λ/2. Hence, the final success probability is at least 1−λ by the union bound over these
n+ 1 instances.

ESA 2020

57:12 Fully-Dynamic Coresets

How to handle weights

We will need one further tweak to argue that each weight ever encountered by the algorithm
can be stored using O(1 + log(1+δ) + log(1/ε)/ logn) words, which also explains that factor
in the update time. By assumption, an insertion or weight update comes with a weight that is
a fraction with the numerator and the denominator bounded by nc for some fixed constant c.
After receiving such an update, we approximate the weight by a fraction that has numerator
bounded by nc′

p d1/εe, where c′ = 2c + 1 is also a fixed constant, and the denominator is
equal to nc+1

p d1/εe5. The change in the cost due to this approximation is at most ε/np times
the original cost; hence, by the linearity of the cost function, the output coreset quality is
affected by at most an additive factor of O(ε/n). More formally, the following claim holds
by Lemma 11 and using b/d 6 ε/np below (think of D below as cost).

B Claim 15. Let d = nc+1
p d1/εe. Given a rational number a/b, where a and b are integers,

a 6 ncp and b 6 ncp, let f = dad/be. Then f 6 n2c+1
p d1/εe and (f/d)D ∈ [1±ε/np](a/b)D for

any nonnegative real D.

Recall that due to the refresher routine, at any time instant, the denominator of the weight
at any leaf node can be one of the two: nc+1

p d1/εe or nc+1
pp d1/εe, where npp is the value of np

for the previous phase. When the two children of an internal node use different denominators,
this complicates our rounding scheme. Thus, when taking a union of the children’s sets at an
internal node, for each weight, we make its numerator an integer and the denominator equal
to (npnpp)c+1d1/εe, which is a common multiple of nc+1

p d1/εe and nc+1
pp d1/εe – the only

possible denominators of an input weight after rounding. Next, we run the ALGS instance
with integer weights as given by the numerator, then (implicitly) dividing the output weights
by the denominator (npnpp)c+1d1/εe afterwards. Since each ALGS instance can increase the
total weight by at most a factor of 1+δ, the sum of the numerators of all weights at level i is
always bounded by n(1+δ)i(npnpp)c

′d1/εe. Since i 6 dlogne and npp = Θ(np), there exists
a constant c′′, such that the sum of the numerators of all weights at any level i and all the
possible numerators and denominators are bounded by (1+δ)dlognpenc

′′

p d1/εe =: Wp, and
hence, can be stored in O(1 + log(1+δ) + log(1/ε)/ logn) words as desired (see the beginning
of the paragraph before Claim 15). This also justifies the Ws parameters of the functions t
and s in the theorem statement.

Now we put everything together. The outer ALGS instance outputs a weighted set of
size at most s

(
ε
3 ,

λ
2 ,Wp

)
. This set is an ε-coreset with probability at least 1−λ, which

we proved by a union bound over all ALGS instances. We set s′ = s
(

ε
6dlognpe ,

λ
2np

,Wp

)
,

which is the threshold for computing a coreset at each internal node, i.e., (recall that) if the
number of points at an internal node is greater than s′, then we run ALGS to compute a
coreset. An upper bound on the threshold for the current phase and the previous phase is
s∗ = s

(
ε

6dlog 2npe ,
λ

4np
,Wp

)
because the np value for the previous phase can be at most twice

that of the current phase. Then the worst-case update time is dominated by the non-outer

5 The static algorithm ALGS expects integer-weighted input and outputs integer-weighted points, whereas
our dynamic algorithm handles fractional weights. If fractional weights are naïvely stored in our dynamic
algorithm, then at internal nodes, combining two fractions may result in larger magnitude numbers.
E.g., naïvely handling two points with weights a/b and c/d so as to be used in ALGS results in weights
ad/(bd) and bc/(bd). Thus, at level i, the numerators and denominators may be as large (poly(n))2i

.
Note that some rounding would be needed even if ALGS can handle rational weights, because its output
may be points with rational weights having much larger magnitude; e.g., even if the output magnitude
is about only quadratic in that of the input, the blowup near the root in our dynamic algorithm would
be nth power of the input. In fact, we do this rounding in the proof of Theorem 2.

M. Henzinger and S. Kale 57:13

ALGS instances, each running in time t
(

2s∗, ε
2dlognpe ,

λ
2np

,Wp

)
, and we run O(logn) of

these after receiving an update. An additional factor of 1+log(1+δ)+log(1/ε)/ logn appears
because each weight may need memory worth O(1 + log(1+δ) + log(1/ε)/ logn) words, and
we need constant time to access each memory word. J

Before proving the concrete bounds for k-median and k-means that are stated in Theorem 2,
we prove a weaker theorem that is a direct consequence of Theorem 14 using the static
algorithm of Chen [9].

I Theorem 16. For the k-median and k-means problems, there is a fully-dynamic algorithm
that maintains a set of cardinality O(ε−2k log2(n/ε)(k logn+ log(1/λ))), that is an ε-coreset
with probability at least 1−λ, and has worst-case update time

O

(
ε−2k2 log3 n log2 n

ε
log n

λ

(
k logn+ log n

λ

)
log log n

ε

(
1 + log ε−1

logn

))
.

Ignoring the log logn factors, for λ = Ω(1/poly(n)) and ε = Ω(1/poly(n)), the coreset
cardinality is O(ε−2k2 log3 n), and the worst-case update time is O(ε−2k3 log7 n).

Proof. Chen’s algorithm takes in an integer weighted set and outputs also an integer weighted
set. Its output has the same total weight as the input, so δ = 0 (see Theorem 14). Also,
for Chen’s algorithm, s(εs, λs,Ws) = O(ε−2

s k(k logn+ log(1/λs)) log2 Ws) and the running
time t(ns, εs, λs,Ws) = O(nsk log(1/λs) log logWs) (see Theorems 3.6 and 5.5 in Chen [9]),
which is dominated by the computation of a bicriteria approximation. Note that both s and
t are well-behaved. Using Wp = O(poly(n)/ε),

s∗ = O
(
ε−2k log2 n log2 n

ε

(
k logn+ log n

λ

))
,

and δ = 0 in Theorem 14 gives the desired bounds using the functions t and s above. J

Now we use the result of Braverman et al. [4] to get better bounds as stated in Theorem 2
in the introduction section. Unfortunately, we cannot use Theorem 14 as a complete black
box for this because in this case, on integer weighted input, ALGS does not output an integer
weighted coreset. The proof of the following theorem is thus an extension of the proof of
Theorem 14.

I Theorem 2. For the k-median and k-means problems, there is a fully-dynamic algorithm
that maintains a set of cardinality O(ε−2k(logn log k log(kε−1 logn) + log(1/λ))), that is an
ε-coreset with probability at least 1−λ, and has worst-case update time

O
(
ε−2k2 log5 n log3 k log2(ε−1)(log logn)3) ,

assuming that ε = Ω(1/poly(n)) and λ = Ω(1/ poly(n)).

Proof. Our dynamic algorithm expects to have at its disposal a static algorithm ALGS that
takes integer-weighted input and outputs an integer-weighted coreset. Since the algorithm
of Braverman et al. that we use as ALGS outputs on integer weighted input a coreset with
fractional weights, we need some modifications. Hence, before ALGS is ready to be used in
the dynamic algorithm, we round its output to turn it into integers.

ESA 2020

57:14 Fully-Dynamic Coresets

Weight-Rounding Modifications for ALGS

Let input to ALGS be Yw which is a set of ns points with integer weights w(1), . . . , w(ns).
We run ALGS on the same points with scaled weights s′w(1), . . . , s′w(ns), where s′ is
the desired cardinality of the output coreset (which is the same as the threshold for
computing a coreset at an internal node in this case). We set s′ later in a such a way that
it can be computed by our dynamic algorithm. This step of multiplying input weights by
s′ is done to make sure that each of the fractional weights output by ALGS is at least 1
(see Line 6 of Algorithm 2 in Braverman et al. [4]).
Let the output Cw of ALGS be a weighted set of s′ points with fractional weights
wo(1), . . . , wo(s′). Using the rounding strategy of Lemma 12, round these fractional
weights to have an integer numerator and the denominator equal to d(lognp)/εe to get
weights w̃(1), . . . , w̃(s′), where np is as defined in the proof of Theorem 14. Formally, for
i ∈ {1, . . . , s′}:

w̃(i) = bwo(i)c+

⌊
(wo(i)− bwo(i)c)

⌈
lognp

ε

⌉⌋
⌈

lognp

ε

⌉ .

Since wo(i) > 1, by Lemma 12, for any real D > 0, we have w̃(i)D ∈ [1±ε/ lognp]wo(i)D.
Hence, by the linearity of the cost function, Cw with weights w̃(1)/s′, . . . , w̃(s′)/s′
is an (εs + 2ε/ lognp)-coreset of Yw with weights w(1), . . . , w(ns) if Cw with weights
wo(1), . . . , wo(s′) is an εs-coreset of Yw with weights s′w(1), . . . , s′w(ns). Note that
w̃(i)/s′ can be represented as a fraction with an integer numerator and denominator
equal to s′d(lognp)/εe.
The additive loss of 2ε/ lognp in the coreset quality due to this rounding is tolerable
because every non-outer ALGS instance will be run with εs = O(ε/ lognp)6. Hence, the
coreset quality at internal nodes will always be O(εs + ε/ lognp) = O(ε/ logn), as desired.
This rounding ensures that on integer-weighted input with total weight W , the output
weights of ALGS are fractions with integer numerator bounded by (1+δ)Ws′d(lognp)/εe
and integer denominator equal to s′d(lognp)/εe. Here, 1+δ is the factor by which ALGS

can increase the total weight.

To handle rational weights in the dynamic algorithm, we first proceed as described in the
paragraph on how to handle weights in the proof of Theorem 14. Recall that we assume that
each insertion or weight update by the adversary comes with a weight that is a fraction with
the numerator and the denominator bounded by nc for some fixed constant c, and we set
c′ = 2c+1. Also, each leaf node was created/updated in the current phase or created/updated
in the previous phase and thus uses the value either np or npp, where npp is the value of np
for the previous phase. We then showed the following. At any time instant, the weight of
the point at a leaf node is rounded in such a way that the numerator is bounded by nc′

p d1/εe
and the denominator is equal to nc+1

p d1/εe, or the numerator is bounded by nc′

ppd1/εe and
the denominator is equal to nc+1

pp d1/εe. Due to this rounding, the output coreset quality is
affected by at most an additive factor of max{2ε/np, 2ε/npp} = O(ε/n). We now prove the
following more general statement towards the current proof.

6 If we go for smaller additive loss, say ε/np, the denominators of resulting numbers due to this rounding
would become exponential in np. And if we go for a larger additive loss, it would worsen the coreset
quality at non-outer instances to ω(ε/ lognp) resulting in the quality of the output coreset worse than ε.

M. Henzinger and S. Kale 57:15

I Lemma 17. At any time instant, every weight at a node at level i has an integer numerator
and a denominator that is a factor of (npnpp)c+1d1/εe(s′ps′ppd(lognp)/εed(lognpp)/εe)i =:
D(i), where s′p and s′pp are values of the threshold s′ in the current and the previous phase,
respectively.

Proof. We prove this statement by induction over the sequence of nodes updated by the
algorithm.

In the base case, the first ever node update will be due to creation of a leaf node, and the
weight will have denominator nc+1

p d1/εe. Next we discuss the induction step. Let the update
be on a node at level i, so we run the modified ALGS instance with all weights having a
denominator that is a factor of D(i−1), which is true by induction hypothesis. Then, since
the modified ALGS adds a factor of s′pd(lognp)/εe to the denominator, all resulting output
weights have a denominator that is a factor of D(i−1)s′pd(lognp)/εe, which is a factor of
D(i). This finishes the induction step for the case when the node update is not the last of
the phase. When the node being updated is the last of the phase, we have to be careful. In
this case, we need to show that for all weights in all nodes, npp or s′pp do not appear in the
denominator, as this will set these denominators for the next phase. Towards this, we need
the following claim.

B Claim 18. Let u be a node at level i. Fix a time instant. Suppose, in the current phase,
all nodes in the subtree rooted at u were updated and u was updated after the update of the
last-updated leaf node in the subtree. Then the denominator of the weights at u is a factor
of nc+1

p d1/εe(s′pd(lognp)/εe)i at the fixed time instant.

We omit the proof of this claim as it can be proved easily by induction on the level number
at any fixed time instant.

After the last node update of the phase, every node in the tree has been updated in the
current phase and the premise of Claim 18 holds due to the refresher routine. Hence, by
Claim 18, after the last node update of the phase, i.e., just before the new phase begins, all
denominators at level i are a factor of nc+1

p d1/εe(s′pd(lognp)/εe)i. Since np and s′p of this
phase will become npp and s′pp in the next phase, the induction hypothesis stays true for the
next phase as well. This finishes the proof of Lemma 17. J

Since an ALGS instance may increase the total weight by at most a factor of 1+δ, the
sum of the numerators of weights at any level i is at most

np(1+δ)i(npnpp)c
′
⌈

1
ε

⌉(
s′ps
′
pp

⌈
lognp
ε

⌉⌈
lognpp
ε

⌉)i
;

this can be seen by an easy induction on the level number. Using this bound, we set the
threshold s′ in a way similar to that in the proof of Theorem 14: we set

s′p = s

(
ε

6dlognpe
,
λ

2np
,Wp

)
,

where

Wp = (1+δ)dlognpenc1
p

(
k

⌈
lognp
ε

⌉)c2dlognpe

,

and c1 and c2 are chosen to be large enough constants so thatWp upper bounds the sum of the
numerators of all weights at any level. From now onwards, we assume that λ = Ω(1/ poly(n)).
For ALGS , the function s is s(εs, λs,Ws) = O(ε−2

s k(log k logWs + log(1/λs))) and δ = O(ε).

ESA 2020

57:16 Fully-Dynamic Coresets

Then, using npp = Θ(np), we get that both s′p and s′pp are O
((
k
⌈

lognp

ε

⌉)c3)
, where c3 is a

fixed constant (so, independent of c1 and c2). Observe that Wp and thus s′p are determined
by the phase and hence can be computed by our algorithm. More concretely, we get that
both s′p and s′pp are

O

(
ε−2k log3 n log k log k logn

ε

)
.

All possible numerators and denominators encountered by the algorithm are bounded by

N := O

(
poly(n)

(
k logn
ε

)O(logn)
)
,

so, can be stored in m := (logN)/ logn = O(log((k logn)/ε)) words.
The running time of ALGS is t(ns, εs, λs,Ws) = O(nsk log(1/λs) log logWs), which,

similar to Chen’s algorithm, is dominated by computation of a bicriteria approximation. At
a non-outer ALGS instance, ns = O(s′p), εs = O(ε/ lognp), λs = O(λ/np), and Ws 6 Wp.
With every update, O(logn) instances of ALGS are run, and an additional m factor appears
because a weight may need up to m words. Hence, the worst-case update time assuming
ε = Ω(1/poly(n)) and λ = Ω(1/ poly(n)) is

O

(
t

(
s′p,

ε

logn,
λ

n
,Wp

)
m logn

)
= O

(
ε−2k2 log5 n log k log2

(
k logn
ε

)
log log

(
k logn
ε

))
and a looser, easier to parse, bound is O

(
ε−2k2 log5 n log3 k log2(1/ε)(log logn)3). The

output coreset cardinality is

s

(
ε

3 ,
λ

2 ,Wp

)
= O

(
ε−2k

(
logn log k log

(
k logn
ε

)
+ log 1

λ

))
.

This finishes the proof of Theorem 2. J

3.1 The Binary-Tree Structure
We describe the tree structure in more detail, especially, how insertions and deletions are
handled. We always maintain a complete binary tree, in which every level except possibly the
lowest is completely filled, and the nodes in the lowest level are packed to the left. We also
maintain the property that each internal node has exactly two children. Our data structure
behaves somewhat like a heap, though a crucial difference is that we do not have keys. This
structure supports insertion and deletion of a leaf node. Insertion of a new leaf-node ` works
as follows.

If the current number of leaf nodes is a power of 2, then let v be the leftmost leaf node,
Else let v be the leftmost leaf node in the level above the lowest level.
Let p be v’s parent.
Create a new node u.
Make p to be u’s parent; u replaces v, so if v was p’s right (respectively, left) child, then
u is now p’s right (respectively, left) child.
Make v to be u’s left child and ` to be u’s right child. This way, ` the rightmost leaf node
at the lowest level.

Deletion of a leaf-node ` works as follows. Let v be the rightmost leaf node at the lowest
level, p be v’s parent, and v′ be v’s sibling. Replace `’s contents by v’s contents and replace
p’s contents by the contents of v′. Delete v and v′.

M. Henzinger and S. Kale 57:17

3.2 Reducing the Number of Nodes
The tree can be modified to have each leaf node correspond to a set of Θ(s′) points to reduce
the additional space used for maintaining this tree (pointers and such). Recall that s′ is the
threshold for computing a coreset. To reduce the number of nodes in the tree this way, we
maintain the invariant that each leaf node, except possibly one, contains a set of size s` with
s′/2 6 s` 6 s′. To maintain this invariant, we use a pointer ps that points to a leaf node
with less than s′/2 elements if such a leaf node exists.

Whenever a point is inserted, we add it to the leaf node, say `e pointed to by ps. If `e
now contains at least s′/2 points, then we make ps a null pointer. If ps was a null pointer
already, then we create a new leaf node, say `n, insert the new point in `n, and make ps
point to `n. The new leaf node `n is inserted in the tree as described in Section 3.1.

Whenever a point is deleted, we check if the leaf node, say `d that contains it now contains
less than s′/2 points. If `d contains less than s′/2 points, and ps points to some leaf node,
say `e, then we move points in `d into `e and delete `d. (Deletion of a leaf node is handled as
described in Section 3.1.) If ps does not point to any leaf node, then we make it point to `d.

As usual, we recompute all nodes on the affected leaf-to-root path.

4 Lower Bounds

In this section, we show lower bounds. We first see a space lower bound and then a conditional
lower bound on the time per operation.

4.1 Space Lower Bound
We show a simple and very general space lower bound. Consider any problem that on
input X has to output a feasible solution that is a subset of X. Moreover, if X non-empty,
then all feasible solutions are also non-empty. Call such a problem compliant. Clearly,
computing any bounded approximation for k-median and k-means and the problem of
constructing any coreset with bounded quality are compliant. To get a linear space lower
bound for fully-dynamic algorithms that solve a compliant problem, we use the communication
problem of index. In indexN , Alice’s input is an N -bit string and Bob’s input is an index
I ∈ {1, 2, . . . , N}. Alice sends one message to Bob, and he needs to correctly output the bit
at position I. By a well-known communication complexity lower bound, Alice must send
a message of size (1 −H2(3/4))N > 2N/11 bits so that Bob can correctly output with a
success probability of 3/4; here H2 is the binary entropy function.

I Theorem 19. A fully-dynamic algorithm for a compliant problem that works in the presence
of an adaptive adversary and has success probability 1− 1/(8n2) must use space Ω(n), where
n is the current input size.

Proof. We describe the reduction for any compliant problem in a metric space, such as
1-median or 1-means, but it can be naturally generalized to any compliant problem. Alice
defines

X = {j : jth bit in her string = 1} ,

and distance between any two points of X to be 1. She runs the fully-dynamic algorithm on
X and sends the memory snapshot to Bob. Bob queries for a solution and if X is nonempty,
a nonempty solution S1 would be returned. He deletes the points in S1 and queries again to
get S2, and so on until ∅ is returned. There would be at most N such queries. Note that

ESA 2020

57:18 Fully-Dynamic Coresets

this works because the algorithm works under an adaptive adversary. If one of the S`s in
this process contains I, which is Bob’s input for the index problem, then Bob outputs 1, else
he outputs 0. In the worst case, Bob makes N queries, where query number i would have
failure probability at most 1/(8(N − i + 1)2). So overall failure probability by the union
bound is at most

N∑
i=1

1
8(N − i+ 1)2 6

1
8

∞∑
i=1

1
i2

= 1
8
π2

6 6
1
4 .

Alice communicated as many bits as the space usage of the dynamic algorithm. Then, by the
indexN lower bound, the space usage of the algorithm is at least 2N/11 > 2n/11 bits. J

4.2 Conditional Lower Bounds on the Time Per Operation
Now, we show conditional lower bounds on the time per update and query for fully-dynamic
k-means algorithms. They are based on the OMv-conjecture [18]: You are given an N ×N
Boolean matrix M that can be preprocessed in polynomial time. Then, an online sequence
of N -dimensional Boolean vectors v1, . . . , vN is presented and the task is to compute each
Mvi (using Boolean matrix-vector multiplication) before seeing the next vector vi+1. The
conjecture is that finding all the N answers takes time Ω(N3−γ) for any constant γ > 0.
In [18] also the following OuMv problem was presented: You are given an N ×N Boolean
matrix M that can be preprocessed in polynomial time and an online sequence of Boolean
vector pairs (u1, v1), . . . , (uN , vN) with the goal to compute each (ui)TMvi (using Boolean
matrix-vector multiplication) before seeing the next vector pair (ui+1, vi+1). Under the OMv
conjecture, finding N answers for the OuMv problem such that the error probability is at
most 1/3 takes time Ω(N3−γ) for any constant γ > 0. We will show a reduction from the
latter problem to prove the following result.

I Theorem 20. Let γ > 0 be a constant. Under the OMv conjecture, for any δ > 0, there
does not exist a fully-dynamic algorithm that maintains a (4− δ)-approximation for k-means
with amortized update time O(k1−γ) and query time O(k2−γ) such that over a polynomial
number of updates the error probability is at most 1/3.

Proof. For the ease of presentation, we assume that k is even; if k is odd, the construction
can be easily adapted. We set N = k/2. Given an OuMv instance with N ×N matrix M ,
we construct the following metric space with distance function d from it:

The metric space U consists of 4N points numbered from 1 to 4N . For any 1 6 i < j 6 N

and N + 1 6 i < j 6 2N , the distance d(i, j) = 2. Furthermore, for 1 6 i 6 N and
N + 1 6 j 6 2N , the distance d(i, j) = 1 if Mi,j−N = 1, and d(i, j) = 2 otherwise.
Additionally, all 2N points 2N + 1, . . . , 4N are at distance 100 from each other and from all
the other points.

We use a k-means data structure to solve a uTMv computation as follows: Initially the set
X is empty. When given a vector pair (u, v), let p be the number of ones in v and in u. Note
that p 6 2N . We insert the points i such that ui = 1 and the points j such that vj−N = 1
into X and additionally 2N + 1− p of the points ` with ` > 2N . Thus |X| = 2N + 1 = k+ 1.
Then we ask a k-means query. Afterwards, we delete the inserted points.

If uTMv = 1, then there exist indices i and j such that ui = 1,Mi,j = 1, and vj = 1.
Consider the optimal solution that consists of all points in X except for point i. Note that
the cost of this solution for the k-means problem is 1.

M. Henzinger and S. Kale 57:19

If uTMv = 0, then any optimal solution must also consist of 2N + 1− p of the points
` with ` > 2N , and all but one of the other points in X. But as none of the points in X
has distance smaller than 2 to any other point in X, the cost of the solution is at least 4 for
k-means. Thus, any (4− δ)-approximation for k-means can distinguish between the cases
uTMv = 1 and uTMv = 0. Hence, the OMv conjecture implies that it takes at least time
Ω(N2−γ) time to execute the above 2N update operations and 1 query operation. This
implies the claimed lower bound. J

References

1 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for
k-means and euclidean k-median by primal-dual algorithms. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 61–72. IEEE Computer Society, 2017.

2 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
J. Comput., 33(3):544–562, 2004.

3 Jon Louis Bentley and James B. Saxe. Decomposable searching problems I: Static-to-dynamic
transformation. J. Algorithms, pages 301–358, 1980.

4 Vladimir Braverman, Dan Feldman, and Harry Lang. New Frameworks for Offline and
Streaming Coreset Constructions. arXiv e-prints, 2016. arXiv:1612.00889.

5 Vladimir Braverman, Gereon Frahling, Harry Lang, Christian Sohler, and Lin F. Yang.
Clustering high dimensional dynamic data streams. In Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 576–585, International Convention Centre, Sydney, Australia, August 06–11 2017.
PMLR.

6 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median and positive correlation in budgeted optimization.
ACM Trans. Algorithms, 13(2):23:1–23:31, 2017.

7 Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location
problems. SIAM J. Comput., 34(4):803–824, 2005.

8 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149,
2002.

9 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009. doi:10.1137/
070699007.

10 Vincent Cohen-Addad, Niklas Oskar D Hjuler, Nikos Parotsidis, David Saulpic, and Chris
Schwiegelshohn. Fully dynamic consistent facility location. In Advances in Neural Information
Processing Systems 32, pages 3255–3265. Curran Associates, Inc., 2019. URL: http://papers.
nips.cc/paper/8588-fully-dynamic-consistent-facility-location.pdf.

11 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification—a
technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.

12 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6-8 June 2011, pages 569–578, 2011.

13 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, pages 1434–1453. SIAM, 2013.

ESA 2020

http://arxiv.org/abs/1612.00889
https://doi.org/10.1137/070699007
https://doi.org/10.1137/070699007
http://papers.nips.cc/paper/8588-fully-dynamic-consistent-facility-location.pdf
http://papers.nips.cc/paper/8588-fully-dynamic-consistent-facility-location.pdf

57:20 Fully-Dynamic Coresets

14 Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22-24, 2005, pages 209–217. ACM, 2005.

15 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for
facility location, 2008. arXiv:0809.2554.

16 Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering.
Discret. Comput. Geom., 37(1):3–19, 2007.

17 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’04,
page 291–300. Association for Computing Machinery, 2004.

18 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Symposium on Theory of Computing (STOC), pages 21–30, 2015.
doi:10.1145/2746539.2746609.

19 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In Proceedings on 34th Annual ACM Symposium on Theory of Computing,
May 19-21, 2002, Montréal, Québec, Canada, pages 731–740. ACM, 2002.

20 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM,
48(2):274–296, 2001.

21 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Comput.
Geom., 28(2-3):89–112, 2004.

22 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J.
Comput., 45(2):530–547, 2016.

23 Ramgopal R. Mettu and C. Greg Plaxton. Optimal time bounds for approximate clustering.
Mach. Learn., 56(1-3):35–60, 2004.

24 Christian Sohler and David P. Woodruff. Strong coresets for k-median and subspace approx-
imation: Goodbye dimension. In 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 802–813. IEEE Computer
Society, 2018.

A Proof of Lemma 8

I Lemma 8. For any positive integer ` and α ∈ R+, we have

α+ (1 + α)
`−1∑
i=1

(
`− 1
i

)
αi =

∑̀
i=1

(
`

i

)
αi .

Proof.

α+ (1 + α)
`−1∑
i=1

(
`− 1
i

)
αi = α+

`−1∑
i=1

(
`− 1
i

)
αi +

`−1∑
i=1

(
`− 1
i

)
αi+1

=
(
`− 1

0

)
α+

`−1∑
i=1

(
`− 1
i

)
αi +

`−1∑
i=1

(
`− 1
i

)
αi+1

using the fact
(
`− 1

0

)
= 1

=
(
`− 1

0

)
α+

`−1∑
i=1

(
`− 1
i

)
αi +

∑̀
i=2

(
`− 1
i− 1

)
αi

change of index in the second summation

http://arxiv.org/abs/0809.2554
https://doi.org/10.1145/2746539.2746609

M. Henzinger and S. Kale 57:21

=
`−1∑
i=1

(
`− 1
i

)
αi +

∑̀
i=1

(
`− 1
i− 1

)
αi

incorporating first term in second summation

=
∑̀
i=1

(
`− 1
i

)
αi +

∑̀
i=1

(
`− 1
i− 1

)
αi

using the fact
(
`− 1
`

)
= 0

=
∑̀
i=1

((
`− 1
i

)
+
(
`− 1
i− 1

))
αi

=
∑̀
i=1

(
`

i

)
αi ,

where we use
(
`
i

)
=
(
`−1
i

)
+
(
`−1
i−1
)
in the last step. J

ESA 2020

Dynamic Matching Algorithms in Practice
Monika Henzinger
University of Vienna, Faculty of Computer Science, Austria
monika.henzinger@univie.ac.at

Shahbaz Khan
Department of Computer Science, University of Helsinki, Finland
shahbaz.khan@helsinki.fi

Richard Paul
University of Vienna, Faculty of Computer Science, Austria
richard.paul@univie.ac.at

Christian Schulz
University of Vienna, Faculty of Computer Science, Austria
christian.schulz@univie.ac.at

Abstract
In recent years, significant advances have been made in the design and analysis of fully dynamic
maximal matching algorithms. However, these theoretical results have received very little attention
from the practical perspective. Few of the algorithms are implemented and tested on real datasets,
and their practical potential is far from understood. In this paper, we attempt to bridge the gap
between theory and practice that is currently observed for the fully dynamic maximal matching
problem. We engineer several algorithms and empirically study those algorithms on an extensive set
of dynamic instances.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Matching, Dynamic Matching, Blossom Algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.58

Supplementary Material Source code and instances are available at https://github.com/
schulzchristian/DynMatch.

Funding The research leading to these results has received funding from the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) /ERC
grant agreement No. 340506.

1 Introduction

The matching problem is one of the most prominently studied combinatorial graph problems
having a variety of practical applications. A matchingM of a graph G = (V,E) is a subset
of edges such that no two elements of M have a common end point. Many applications
require matchings with certain properties, like being maximal (no edge can be added toM
without violating the matching property) or having maximum cardinality. These problems
can be solved in polynomial time. For example, Micali and Vazirani [31] compute a maximum
cardinality matching in O(m

√
n) time. For the weighted case, the fastest algorithm is by

Galil et. al [19] requiring O(mn logn) time which improves the O(n3) time algorithm [18]
for sparse graphs.

However, often the underlying graphs change over time, e.g., edges are inserted or deleted
in the graph as the time progresses. For example, new relations between objects of a network
may be created or removed over time (for example [30]). Even though the matching problem
can be solved in polynomial time, computing a new matching from scratch every time the
graph changes is an expensive task on huge networks, as this ignores the previously computed

© Monika Henzinger, Shahbaz Khan, Richard Paul, and Christian Schulz;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 58; pp. 58:1–58:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5008-6530
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0001-9352-0088
mailto:shahbaz.khan@helsinki.fi
https://orcid.org/0000-0002-7433-0075
mailto:richard.paul@univie.ac.at
https://orcid.org/0000-0002-2823-3506
mailto:christian.schulz@univie.ac.at
https://doi.org/10.4230/LIPIcs.ESA.2020.58
https://github.com/schulzchristian/DynMatch
https://github.com/schulzchristian/DynMatch
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Dynamic Matching Algorithms in Practice

information on the given instance. Hence, in the recent years significant advances have been
made in the design and analysis of fully dynamic maximal matching algorithms. These
theoretical algorithmic ideas have received very little attention from the practical perspective.
Only a few of the dynamic algorithms are implemented and tested on real datasets, and
hence their practical potential is far from being understood.

Contribution and Outline. In this paper, we start to bridge the gap between theory and
practice that is currently observed for the fully dynamic maximal matching problem. We
engineer several dynamic maximal matching algorithms as well as an algorithm that is
able to maintain the maximum matching. To this end, we look at an algorithm due to
Baswana, Gupta and Sen [4], which performs edge updates in O(

√
n) time and maintains a

2-approximate maximum matching, the algorithm of Neiman and Solomon [33], which takes
O(
√
n+m) time to maintain a 3/2-approximate maximum matching, as well as two novel

dynamic algorithms: a random walk-based algorithm as well as a dynamic algorithm that
searches for augmenting paths using a (depth bounded) blossom algorithm. Without depth
bound, the latter algorithm is able to maintain a maximum matching. We perform extensive
experiments comparing the performance of these algorithms on the real-world and artificially
generated instances. Experiments indicate that maintaining optimum matchings can be
done much more efficiently than the naive algorithm that recomputes maximum matchings
from scratch (more than an order of magnitude faster). Second, all non-optimum dynamic
algorithms that we consider in this work are able to maintain near-optimum matchings in
practice while being multiple orders of magnitudes faster than the naive optimum dynamic
algorithm.

2 Preliminaries

2.1 Basic Concepts
Let G = (V = {0, . . . , n− 1}, E) be an undirected graph without parallel edges and self-loops.
We set n = |V |, and m = |E|, N(v) := {u : {v, u} ∈ E} denotes the neighbors of v. The
degree of a vertex v is d(v) := |N(v)|. A matchingM⊆ E in a graph is a set of edges without
common vertices. The cardinality or size of a matching is simply the cardinality of the edge
subsetM. We call a matching maximal, if there is no edge in E that can be added toM. A
maximum cardinality matching Mopt is a matching that contains the largest possible number
of edges of all matchings. An α-approximate maximum matching is a matching, that contains
at least |Mopt|

α edges. A vertex is called free or unmatched if it is not incident to an edge of the
matching. Otherwise, we call it unfree or matched. For a matched vertex u with {u, v} ∈ M,
we call vertex v the mate of u, which we denote as mate(u) = v. For an unmatched vertex u,
we define mate(u) = ⊥. An augmenting path is defined as a cycle-free path in the graph G,
that starts and ends on a free vertex and where edges fromM alternate with edges from
E \M. The trivial augmenting path is a single edge, that has both its endpoints unmatched.
Throughout this paper, we call such an edge a free edge. If we take an augmenting path
and resolve it by matching every unmatched edge and unmatching every matched edge, we
increase the cardinality of the matching by one. Any matching without augmenting paths is a
maximum matching [5] and any matching with no augmenting paths of length at most 2k− 3
is a (k/(k − 1))-approximate maximum matching [23]. Hence, a maximal matching having
no augmenting paths of length one (or free edges) is a 2-approximate maximum matching.
Throughout the paper, we omit the inverse Ackermann function from complexity statements.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:3

Our focus in this paper are fully dynamic graphs, where the number of vertices is fixed,
but edges can be added and removed. All the algorithms evaluated can handle edge insertions
as well as edge deletions. In the following, ∆ denotes the maximum degree that can be found
in any state of the dynamic graph.

2.2 Related Work
Computing large or maximum matchings in graphs is a well researched topic. Edmonds [17]
gave an algorithm that can compute a maximum cardinality matching in a static graph
in time O(mn2). This result was later improved to O(mn0.5) by Micali and Vazirani [31].
Recently, algorithms use simple data reductions rules such as [25] to speed up computations,
or shrink-trees instead of blossoms [16] to speed up computations in static graphs. In practice,
these algorithms can still be time consuming for many applications involving large graphs.
Hence, several near linear time approximation algorithms exist in practice such as the local
max algorithm [11], the path growing algorithm [15] and the global paths algorithm [28]. As
the focus of this work are dynamic graphs, we refer the reader to the quite extensive related
work section of [16] for more recent static matching algorithms.

In the dynamic setting, the maximum matching problem has been prominently studied
ensuring α-approximate guarantees. A major exception is the randomized algorithm by
Sankowski [36] which maintains a maximum matching in O(n1.495) update time. One can
trivially maintain a maximal (2-approximate) matching in O(n) update time by resolving
all trivial augmenting paths of length one. Ivković and Llyod [24] designed the first fully
dynamic algorithm to improve this bound to O((n + m)

√
2/2) update time. Later, Onak

and Rubinfeld [34] presented a randomized algorithm for maintaining a O(1)-approximate
matching in a dynamic graph that takes O(log2 n) expected amortized time for each edge
update. This result led to a flurry of results in this area. Baswana, Gupta and Sen [4] improved
the approximation ratio of [34] from O(1) to 2 and the amortized update time to O(logn).
Further, Solomon [38] improved the update time of [4] from amortized O(logn) to constant.
However, the first deterministic data structure improving [24] was given by Bhattacharya
et al. [8] maintaining (3 + ε) approximate matching in Õ(min(

√
n,m1/3/ε2)) amortized

update time, which was further improved to (2 + ε) requiring O(logn/ε2) update time by
Bhattacharya et al. [9]. Recently, Bhattacharya et al. [7] achieved the first O(1) amortized
update time for a deterministic algorithm but for a weaker approximation guarantee of O(1).
For worst-case bounds, the best results are by Gupta and Peng [21] requiring O(

√
m/ε) update

time for (1 + ε) approximation, Neiman and Solomon [33] requiring O(
√
m) update time for

3/2 approximation, Bernstein and Stein [6] requiring m1/4/ε2.5 for (3/2 + ε) approximation.
Recently, Charikar and Solomon [12], and Arar et al. [2] (using [10]), independently presented
the first algorithms requiring O(poly logn) worst-case update time both maintaining (2 + ε)
approximation. Recently, Grandoni et al. [20] gave an incremental matching algorithm that
achieves a (1 + ε)-approximate matching in constant deterministic amortized time. Despite
this variety of different algorithms, to the best of our knowledge, there has been no effort
made so far, to engineer and evaluate these algorithms on real-world instances.

3 Algorithms

We now present the fully dynamic algorithms for the maximal matching problem under
consideration. We implemented and tested a variety of simple, combinatorial algorithms that
seemed likely to work well in practice. We begin with random walk based dynamic algorithms,
followed by dynamic algorithms based on (bounded) augmenting path search and finally

ESA 2020

58:4 Dynamic Matching Algorithms in Practice

review the algorithms by Baswana, Gupta and Sen [4] and Neiman and Solomon [33]. All of
the algorithms are fully dynamic. Throughout this section, we provide a brief description
of these algorithms and their implementation. In each case, we explain how we handle
initialization, edge insertions and edge deletions separately.

3.1 Random Walk-based Algorithms

In general finding long augmenting paths in networks is an expensive step. The main idea of
the random walk based methods proposed in this section is to use random walks in order
to detect augmenting paths, and hence to improve the size of the matching. We start by
explaining the general idea to use random walks for finding augmenting paths and then
explain how we handle edge insertions and deletions.

3.1.1 Random Walks For Augmenting Paths

The algorithm works as follows: we start at a free vertex u and randomly choose a neighbour
w of u. If this neighbour is free, then we match the edge (u,w) and our random walk
stops. If w is matched, we unmatch (w,mate(w)) and match (u,w). Note that u 6= mate(w)
since u is free in the beginning and therefore mate(u) = ⊥, but mate(mate(w)) = w and
w 6= ⊥. Afterwards, the previous mate of w is free. Hence, we continue our random walk at
this vertex. Our random walk performs O(1

ε) steps (see below). Here, ε basically controls
the quality of the matching (see below). Since picking a random neighbor can be done in
constant time, the overall time for the random walk update algorithm is O(1

ε). Note that the
length of the random walk is a natural parameter of the algorithm that we will investigate in
the experimental evaluation.

Also note that if the algorithm does not end by matching two free vertices, the matching
may not be maximal even if it was initially – this can be the case if the vertex freed last
is incident to a free vertex. There are multiple possibilities to fix this. Our default is to
undo all changes that have been done in this case. The overall running time of a random
walk is then O(1/ε). Another possibility is ∆-settling: The algorithm tries to settle visited
vertices. The algorithm scans through their neighbors to find a free vertex and stops if once
it was successful or the number of steps exceeds 1/ε. If the random walk was not successful,
the algorithm tries to match the last vertex touched by the random walk by scanning its
neighbors instead of undoing all changes. This also ensures that the matching is maximal
but requires O(∆) additional time per visited vertex. The running time of the ∆-settling
random walk is then O(∆/ε).

We now explain how we perform edge insertions and deletions.

Edge Insertion. Our algorithm handles edge insertions as follows: when inserting an edge
(u, v), if both the endpoints are free, we match it. Note that the simple algorithms stops
here if at least one of the endpoints is not free. The random walk based algorithms try to
improve insertion by doing the following: If both endpoints are matched, thus prohibiting to
match the inserted edge, we do nothing. If only one of the endpoints is matched, w.l.o.g let
this be u, we unmatch u and w := mate(u) and match (u, v). We then start a random walk
as described above to find augmenting paths from w. If the random walk is unsuccessful to
further increase the size of the matching, we undo all changes and restore the matching to
the state before we unmatched u and w.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:5

Edge Deletion. Deleting a matched edge (u, v) leaves the two endpoints u and v free. If
possible, our algorithm matches them in O(∆) time by scanning their neighbors in order to
maintain a maximal matching. If u and v cannot be matched and the matching before edge
deletion was maximal, then the matching remains maximal. However, a free vertex may be a
starting point for an augmenting path of arbitrary length. Hence, we start a random walk as
described above from u if it is free and do the same for v.

3.1.2 Analysis
The algorithm can maintain a (1 + ε)-approximation, if the random walks are of appropriate
length and repeated sufficiently often. More precisely, if the algorithm uses random paths of
length 2/ε− 1 and the process is repeated until successful or ∆2/ε−1 logn times, then with
high probability the matching is a (1 + ε) approximation of the maximum matching (at each
point in time).

I Lemma 1. The random walk based algorithm maintains a (1 + ε)-approximate maximum
matching if the length of the walk is 2/ε− 1 and the walks are repeated ∆2/ε−1 logn times.

Proof. If no augmenting path of length ≤ 2/ε− 1 exists, then the matching is a (1/ε+1
1/ε) =

(1 + ε)-approximate maximum matching. To see this, rewrite the length of the path to
2(1/ε+ 1)− 3 and set k = 1/ε+ 1 in the approximation lemma above. If there is such a path
from a free node, then the probability of finding it is ≥ (1

∆)2/ε−1 since one possibility is the
that random walker makes the “correct” decision at every vertex of the path. The probability
that λ random walks of length 2/ε− 1 do not find an augmenting path of length 2/ε− 1 is
≤ (1− 1

∆2/ε−1)λ ≤ e−
1

∆2/ε−1 ·λ. Thus for λ ≥ ∆2/ε−1 logn the probability is ≤ 1/n. J

Parallelization. Note that multiple repetitions of the random walks can be easily parallelized
as they are completely independent if changes are made thread-local. If one random walker
finds an augmenting path, it is accepted and the other random walkers can be stopped.

3.2 Blossom-based (Optimum) Algorithms
Note that the random walk algorithm also yields a static (1 + ε)-approximate maximum
matching algorithm: use a simple greedy algorithm as initialization and then run the random
walks as stated above from the remaining free nodes. However, the amount of repetitions to
achieve the approximation is fairly high. Simply, running a modified BFS to find augmenting
paths bounded in depth by 2/ε− 1 from a free node has a theoretically faster running time
O(∆2/ε−1) per free node. Note however that the theoretical bound for the dynamic random
walk algorithm is fairly pessimistic: our algorithm stops as soon as one augmenting path has
been found – this path can also be shorter or in practice there may be multiple possibilities
for augmenting paths so that the probability of finding it increases. So the natural question
arises, whether a bounded augmenting path search is superior over random walk based
methods stated above. Hence, we propose the following dynamic algorithms for the dynamic
matching problem.

In most implementations (such as Boost [37]) finding an augmenting path starting from
a free node takes Ω(n+m) running time due to initialization of the data structures of the
modified BFS. These data structures are initialized every time an augmenting path search
is started. Hence, the observed performance of Edmonds blossom algorithm to find an
optimum matching in libraries such as Boost is Θ(n(n+m)) if no algorithm to initialize the
matching is used and O(F (n + m)) if some greedy algorithm is used as initialization and

ESA 2020

58:6 Dynamic Matching Algorithms in Practice

F is the number of remaining free nodes after greedy initialization. The later is the reason
why in practice greedy initialization strategies generally help to find optimum matchings.
However, finding an augmenting path can easily be implemented such that it a) stops as
soon as an augmenting path is found, and b) has running time Θ(n′ +m′), where n′ and m′
refers to the number of nodes and edges touched by the augmenting path search modified
BFS [39, 29]. The first augmenting path search needs time O(n+m) to initialize the typical
data structures. All searches then do book keeping of the changes they made in the data
structures and undo them afterwards. Note that this clearly changes the behaviour of the
algorithm in practice: if there are many short augmenting paths the algorithm will run much
faster than Θ(n(n+m)). The implementation does not change the worst-case complexity,
but improves the best case to O(m) [29]. In fact, in our experience the static version of our
implementation scales close to linear in m in practice (as there are many short augmenting
paths in real world instances). In the following, we always use this variant of augmenting
path search and each of the dynamic operations does book keeping to be able to quickly
search for augmenting paths.

Edge Insertion. Let (u, v) be the inserted edge. If u and v are free, then we match that
edge directly. Otherwise, we start an augmenting path search from u if u is free and from v

if v is free. If both u and v are not free, then we perform a breadth first search from u to
find a free node reachable via an alternating path. From this node we start an augmenting
path search. Note that an augmenting path must use (u, v) as both connected components
did not contain an augmenting path with the component before as the algorithm maintains
a maximum matching. Also note that the last case will be an expensive step in practice as
the algorithm tries to maintain a maximum matching, newly inserted edges will often not
result in a new augmenting path and hence the augmenting path search takes Θ(n+m) time.
Without the third case of the algorithm, we call it unsafe. That is in case both u and v are
not free, the unsafe configuration of the algorithm does nothing.

Not using the unsafe option, the algorithm maintains a maximum matching. This is due
to the fact that if the graph did not contain an augmenting path before insertion, the only
way we can create one is due to the insertion of the new edge. The first and second case are
obvious. In the third case, after finding a single free node, the augmenting path search must
use the newly inserted edge (u, v) (which is not matched, but both endpoints are non-free).
Hence, it is sufficient to find a single free node. After running the augmenting path search,
the matching size has either increased by one, or there was no augmenting path. Hence,
the matching must be maximum. Lastly, note that the third case is only necessary if both
endpoints of the inserted edge are in different connected components.

Note that when considering insertions only, the algorithm is more expensive than just
running the static algorithm. This is due to the fact that the static algorithm runs an
augmenting path search from each free node once, while our dynamic algorithm does try to
find augmenting paths every time we insert an edge (since the graph may have changed at
other places not close to the inserted edge). The overall worst case complexity in this case is
O(m(n+m)) compared to O(n(n+m)) for the static algorithm. In our experiments, this
effect is especially noticeable if we start a search from a node where a previous augmenting
path search has been unsuccessful.

Hence, besides using the unsafe option which drops the property that the matching is
maximum, we propose the following optimization called lazy augmenting path search. Here,
we start an augmenting path search from u and v only if at least m′/2 edges have been
inserted or deleted since the last augmenting path search from u or v or no augmenting path

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:7

search has been started. Note that this effectively amortizes the cost for the augmenting
path search, yielding amortized constant time per edge. Our experiments indicate that this
speeds up the overall time of the algorithm drastically, while being only slightly worse than
the optimum algorithm. Our third optimization limits the search depth of the augmenting
path search to 2/ε − 1. This ensures that there is no augmenting path of length 2/ε − 1
and hence is a deterministic (1 + ε)-approximate matching algorithm (if the deletion part
algorithm ensures this as well, and the algorithm is run with the safe option). Note that
the worst case complexity of the optimum version of the insertion operation is O(n+m),
but in practice augmenting paths (if present) are much shorter. The bounded version of our
algorithm has, however, worse case complexity of O(∆2/ε−1).

Edge Deletion. Let (u, v) be the deleted edge. After the deletion we start an augmenting
path search from any free endpoint u or v. Depending on the configuration of the algorithm
this either does a full run for an augmenting path or stops when the augmenting path search
reached depth 2/ε− 1. In the first case, this guarantees that the matching is maximum if it
was maximum before and in the latter case, our algorithm maintains an (1 + ε) approximate
maximum matching. If case we use lazy augmenting path search, we start an (depth bounded)
augmenting path search from u and v only if at least m′/2 edges have been inserted or
deleted since the last augmenting path search from u or v. Otherwise, we limit augmenting
path search from u and v to augmenting paths of length min(3, 2/ε− 1).

3.3 Baswana, Gupta and Sen Algorithm
Baswana, Gupta and Sen (BGS) presented an randomized algorithm in [4], that maintains a
maximal matching in a dynamic graph in amortized O(

√
n) update time with high probability.

They also present a multi-level variant that runs in O(logn) amortized time. To be self
contained, we briefly review the main concepts of the algorithm and follow their description
closely.

Levels and Ownership of Edges. The algorithm uses the concept of ownership for edges.
More precisely, based upon the number of edges that a vertex owns, the algorithm partitions
the set of vertices into two levels 0 and 1. An edge is always owned by at least one of its
endpoints. If both endpoints are at level 0, then both vertices own the edge. If only one
endpoint is at level 1, then this endpoint owns the edge. If both endpoints are at level 1,
then exactly one endpoint, namely the first mentioned vertex owns the edge. If a new edge
(u, v) with level(u) = level(v) = 1 is inserted, it will therefore be owned by the vertex u.

Algorithm 1 Random-Settle(u): find a random edge (u, v) from the set of owned edges of u,
matches it and returns the previous mate of v.
Let (u, v) be a uniformly randomly selected edge from Ou
forall (v, w) ∈ Ou do

remove (v, w) from Ow
if v is matched then

x← mate(v); M ←M \ {(v, x)}
else

x← NULL
M ←M ∪ {(u, v)}, level(u)← 1, level(v)← 1
return z

ESA 2020

58:8 Dynamic Matching Algorithms in Practice

The set Ou denotes the set of edges owned by a vertex u. The level of an edge is defined
by level(e = {u, v}) = max(level(u), level(v)). BGS maintains the following invariants: (1)
Every vertex on level 1 is matched. (2) Every free vertex on level 0 has all neighbours
matched. (3) Every vertex on level 0 owns less then

√
n edges (at any moment of time). (4)

Both endpoints of each matched edge are on same level.

Edge Insertion. Let (u, v) be the edge being inserted. If either u or v are at level 1, then
there is no violation of any invariant. The algorithm adds (u, v) to Ou if level(u) = 1 and
to Ov otherwise. If both endpoints of (u, v) are at level 0, then the algorithm proceeds as
follows: If both endpoints are free, the edge is added to the matching. Adding the edge (u, v)
to the sets Ou and Ov increases the number of edges owned by u and v. If at least one set
Ou or Ov exceeds the threshold of

√
n in size, the vertex with the higher number of owned

edges will be repaired. Let u be that vertex. Repairing a vertex u is done by calling the
procedure Random-Settle on u. As a result, u moves to level 1 and gets matched to some
vertex y selected randomly uniformly from the set of owned edges Ou. The vertex y is also
moved to level 1 to satisfy invariant 4. If w and x were the earlier mates of u and y at level
0, respectively, then matching u and y has rendered w and x free. The algorithm tries to
settle each of those by scanning their set of owned edges for free vertices.

Edge Deletion. Let (u, v) be an edge that is deleted. If the edge has not been matched,
then after removing the edge from the graph all invariants still hold. If it has been matched,
then u and v are now free. Therefore, the first invariant may be violated. If (u, v) is at level
0, then the algorithm tries to settle both endpoints by scanning their sets of owned edges.
If (u, v) is at level 1, then u the algorithm does the following: First, u disowns all its edges
whose other endpoint is at level 1. If Ou is still greater than or equal to

√
n, then u stays at

level 1 and executes Random-Settle(u). If u owns less than
√
n edges, it moves to level 0

and tries to settle it by scanning its set of owned edges. The transition of u from level 1 to 0
leads to an increase in the number of edges owned by each of its neighbors at level 0. This
may violate the size constraint of owned edges for those neighbors. Hence, the algorithm calls
Random-Settle for each neighbor that violates the constraint, which moves it to level 1.

3.4 Neiman and Solomon Algorithm
In contrast to the BGS algorithm [4], which is randomized, Neiman and Solomon (NS) [33]
present a deterministic algorithm for maintaining a maximal matching in a dynamic graph.
Their approach guarantees, that the maintained matching is a 3/2-approximate maximum
matching and that update time is O(

√
m) in worst case, where m denotes the number of edges

present in the graph in the moment of the update. NS maintains the following invariants:
There are no augmenting paths of length ≤ 3, ensuring 3/2-approx matching. All free vertices
have degree at most

√
2n+ 2m.

I Lemma 2 ([33]). Any free vertex of degree larger than
√
m can always be matched, so as

to generate a free vertex with degree less than
√
m. This can be achieved in O(

√
m) time.

Edge Insertion. Let (u, v) be the edge being inserted. If both the endpoints are free, the
edge is simply added to the matching. Also, if both endpoints are matched it does not entail
any further processing. However, if exactly one endpoint of the edge, say u, is matched,
they try to remove a possible augmenting path of length 3 as follows. The neighbours of
the mate of u say u′ = mate(u), are scanned for a free vertex, say x. If such a free vertex
exists, an augmenting path of length 3 has been found, which is augmented increasing the
matching size.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:9

Edge Deletion. Let (u, v) be the edge being deleted. If the edge was unmatched, its deletion
cannot create any new augmenting paths. However, if it was a matched edge, both the
endpoints become free after the edge deletion. First, the algorithm checks for both freed
vertices whether they have free neighbours and if so matches the freed vertices with those
free neighbours. Now, in order to eliminate augmenting paths of length 3 starting from a free
vertex, say u, all neighbours w of u are scanned checking if mate(w) has a free neighbour.
By providing appropriate data structures, this can be done in O(

√
n) time. If an augmenting

path has been found, it is augmented increasing the size of the matching by one. If no
augmenting path has been found, vertex u remains free, but only if its degree is at most√

2m. If the degree of u exceeds
√

2m, using Lemma 2 a surrogate can be found in O(
√
m).

The overall update time of the algorithm is bound by the bounded degree of all free vertices,
making any linear search through the neighbourhood N(u) of a vertex u cost at most
O(
√
n+m). Bounding the degree can further be achieved in O(

√
m) time using Lemma 2.

4 Experimental Evaluation

Implementation and System

We implemented the algorithms described in the previous section. The codes are written in
C++ and have been compiled using g++-7.3.0 with flags -O3. All codes are sequential. We
plan to further improve the codes and then to release them to make it available to a larger
audience. Our experiments are conducted on one core of a machine with AMD Opteron
Processors 6174 with 2.2GHz and 256GB of RAM. Dynamic Graph Data Structure: our
algorithms use the following dynamic graph data structure. For each node v, we maintain a
vector Lv of adjacent nodes, and a hash table Hv that maps a vertex u that is incident to v
to its position in Lv. This data structure allows for expected constant time insertion and
deletion as well as a constant time operation to select a random neighbor of v. The deletion
operation on (v, u) is implemented as follows: get the position of u in Lv via a lookup in
Hv(u). Swap the element in Lv with the last element w in the vector and update the position
of w in Hv. Finally, pop the last element (now u) from Lv and delete its entry from Hv.

Instances and Methodology

By default we perform ten repetitions per instance. We measure the total time taken
to compute all edge insertions and deletions and generally use the geometric mean when
averaging over different instances in order to give every instance a comparable influence on
the final result. In order to compare different algorithms, we use performance profiles [14].
These plots relate the matching size / running time of all algorithms to the corresponding
matching size / running time produced / consumed by each algorithm. More precisely, the
y-axis shows #{objective ≥ τ ∗best}/#instances, where objective corresponds to the result of
an algorithm on an instance and best refers to the best result of any algorithm shown within
the plot. When we look at running time, the y-axis shows #{t≤ fastest/τ}/#instances (as a
function of the parameter τ), where t corresponds to the time of an algorithm on an instance
and fastest refers to the time of the fastest algorithm on that instance. The parameter τ ≤ 1
in this equation is plotted on the x-axis. For each algorithm, this yields a non-decreasing,
piecewise constant function. Thus, if we are interested in the number of instances where an
algorithm is the best/fastest, we only need to look at τ = 1.

ESA 2020

58:10 Dynamic Matching Algorithms in Practice

Instances
We evaluate our algorithms on a number of large graphs. These graphs are collected from
[3, 13, 27, 26, 35]. Table 3 summarizes the main properties of the benchmark set. Our
benchmark set includes a number of graphs from numeric simulations as well as complex
networks. These include static graphs as well as real dynamic graphs. As our algorithms do
only handle undirected graphs, we consider all input graphs to be undirected by ignoring
edge directions and we remove self-loops and parallel edges. We perform two different types
of experiments. First, we use the algorithms using insertions only, i.e. we start with an
empty graph and insert all edges of the static graph in a random order. We do this with
all graphs from Table 3. Second, we use real dynamic instances from Table 4. Most of
these instances, however, only feature insertions (with the exception being dewiki and
wiki-simple-en which have both real insert and real delete operations). Hence, we perform
additional experiments with fully dynamic graphs from these inputs, by undoing x percent
of the update operations performed last.

4.1 Random Walk and Blossom-based Algorithms
In this section, we use our algorithms with random insertions only. More precisely, we
use the static graphs from Table 3. For each experiment, we start with an empty graph
and insert edges of the static input in random order until all edges are insert all edges are
inserted compare the result of our dynamic algorithms the maximum matching on the final
graph Edmond [17].

Random Walk-Based Algorithms. We start with random walk-based algorithms. Prelimin-
ary experiments have shown that decreasing ε is more effective in getting better solutions than
performing more repeated random walks at the start node. Hence, we exclude algorithms that
perform multiple repetitions of random walks per insert operation here from the evaluation
and focus on the different values of ε. We vary ε ∈ {0.1, 0.25, 0.5, 1, 2}. Recall that the path
length of a single random walk is then bounded by 2/ε− 1. If all paths of that length were
explored, the algorithms would be guaranteed to give a (1 + ε)-approximation. Figure 1 sum-
marizes the result. It is not surprising that the algorithm needs more running time for smaller
ε, but also yields better results with increasing path lengths. On average, the algorithm is
2.4%, 3.2%, 4.2%, 5.5%, 11.5% percent away from the optimum for ε = 0.1, 0.25, 0.5, 1, 2
respectively. Thus, even though the algorithms are not guaranteed to explore all paths of
length 2/ε − 1, they achieve in practice an approximation that is much better than the
theoretical bound for algorithms that explore all such paths. The strongest configuration
(ε = 0.1) is at most 1% away from the optimum matching size in 50% of the cases. Note that
the random walk algorithm does not achieve the guarantee of 1% approximation as claimed
by Lemma 1 since we did not perform the vast amount of repetitions necessary to get the
result in expectation – instead we performed a single repetition of the random walker for
each insertion. As excepted the running time does increase with decreasing ε. However, due
to random walks that can finish early because they managed to match an edge, the effect is
less visible than theory expects. The running time increase over the random walk using ε = 2
(which is essentially a random walker not allowed to move, and hence boils down to the very
simple greedy algorithm), is 12%, 17%, 21%, 27% for ε = 1, 0.5, 0.25, 0.1, respectively.

Enabling ∆-settling generally improves the result. On average, the random walk with
∆-settling is now 1.1%, 1.4%, 1.8%, 2.2%, 3.7% away from the optimum matching for
ε = 0.1, 0.25, 0.5, 1, 2, respectively. On average in our experiments using ∆-settling has a
negligible impact on running time. Hence, we recommend to use ∆-settling when using
random walk-based algorithms and do so in the following unless otherwise mentioned.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

re
l.

in

st
an

ce
s

≥
τ

op
t

τ

 Quality Random Walks

Opt
Random Walk ε=0.1

Random Walk ε=0.25
Random Walk ε=0.5

Random Walk ε=1
Random Walk ε=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.975 0.98 0.985 0.99 0.995 1

re
l.

in

st
an

ce
s

≥
τ

op
t

τ

 Quality Blossom-Based

Opt
Unsafe Dyn Opt

Unsafe Dyn Opt+LP
Unsafe Dyn Opt ε=0.1

Unsafe Dyn Opt+LP ε=0.1
Unsafe Dyn Opt ε=0.25

Unsafe Dyn Opt+LP ε=0.25

Figure 1 Performance profile for matching size |M| for Random Walk and for Unsafe Dyn Opt.

(Optimum) Blossom-Based Algorithms. We now consider dynamic blossom-based al-
gorithms from Section 3.2. We start this section with the version of the algorithm that
maintains the optimum matching, and compare it to the naive dynamic optimum matching
algorithm that recomputes a maximum matching from scratch each time an edge is inserted.
Since the running time of the naive optimum algorithm is fairly excessive, we run it only
on the graphs of our benchmark set having less than 25k nodes. First of all, our dynamic
algorithm that maintains the optimum matching is more than an order of magnitude faster
than the naive optimum algorithm (roughly a factor 12). We expect that the difference will
be even more pronounced if even larger graphs are used. Running our dynamic optimum
algorithm with the unsafe option indeed significantly speeds up the algorithm – the lazy
augmenting path search configuration is more than two orders of magnitude over the safe
version of our algorithm (roughly a factor 115). The improvements in running time stem

ESA 2020

58:12 Dynamic Matching Algorithms in Practice

from the fact that our algorithms try to maintain a very large matching. Hence, the case
that is executed by the safe option often does not find an augmenting path which implies
that the augmenting path search has to look at the overall network and hence reaches its
worst-case complexity. Of course, the unsafe option does not have a guarantee on optimality
anymore. In our experiments, the unsafe option computes matchings that are 0.02% worse
than the optimum on average. We conclude that the algorithm maintains near-optimum
matchings while being three orders of magnitude faster than the naive optimum dynamic
algorithm. Henceforth, we only consider the unsafe version of our algorithm.

We now switch our set of graphs back to all of our benchmark graphs from Table 3. Using
lazy augmenting path search in the unsafe algorithm additionally speedups up computations.
Unsafe+LP is on average 20.5 faster than the unsafe algorithm without lazy augmenting
path search – again at the cost of solution quality. The algorithm is already only 30% slower
than running the static algorithm a single time on the final graph that contains all edges. On
the other hand, the unsafe dynamic algorithm using lazy augmenting path search computes
0.6% worse matchings that the unsafe algorithm without lazy augmenting path search.

Lastly, we focus on the third variation of the algorithm, which is to bound the depth of
the augmenting path search to that is done during update operations. The depth is bounded
to 2/ε− 1 so that given ε and running the safe option of the algorithm would maintain a
1 + ε approximate matching. We, however, only consider the unsafe version of the algorithm.
We use same values of ε = 0.1, 0.25, 0.5, 1 as in the random walk-based algorithms section,
but do not consider ε = 2, since this is again essentially the very simple greedy algorithm.
Moreover, we run the algorithm with and without the lazy augmenting path search.

First of all, running without lazy augmenting path search, the algorithm indeed maintains
the approximation guarantee. On average, the algorithm is 0.1%, 0.4%, 1.5% and 3.6%
worse than the optimum algorithm for ε = 0.1, 0.25, 0.5, 1, respectively. Using the lazy
augmenting path search, speeds up to algorithm by a factor of 5.52, 2.65, 2.03, 1.76 for
ε = 0.1, 0.25, 0.5, 1, respectively. With lazy augmenting path search, the algorithm is 0.6%,
1.00%, 2.2%, 4.3% worse than the optimum for ε = 0.1, 0.25, 0.5, 1, respectively (and hence
still achieves the approximation guarantee). The algorithm using ε = 0.1 is only 0.2% worse
than the algorithm not bounding the depth. However, the algorithm is also not much faster.
On average, bounding the search depth with ε = 0.1 improves running time by 6%. Figure 1
shows a summarizing performance profile.

4.2 Comparison of Algorithms
Dynamic Sequences from Static Graphs. We now compare all of the different non-optimal
algorithms against each other for the insertion-only case. For random-walks, we always enable
∆-settling, for blossom-based algorithm always use the unsafe option and with and without
lazy augmenting path search. Table 1 shows average results for matching size and running
time after all edges and operations have been performed. Figure 2 shows performance profiles
for running time and for matching size.

First of all, both the blossom-based (with lazy augmenting path search) and random
walk-based algorithms dominate the algorithms by Neiman Solomon and Baswana Gupta Sen
(BGS). The algorithms find consistently larger matchings and do so in less time. However,
note that the real-world instances we look at rarely have nodes with more than

√
n neighbors,

so that the BGS algorithm is roughly similar to the simple greedy algorithm. We also try to
use c ·

√
n as a threshold for different values of c, but this always resulted in worse matching

sizes.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

re
l.
 #

 i
n
s
ta

n
c
e
s
 ≥

 τ
 o

p
t

τ

 Quality

Opt
Unsafe Dyn Opt+LP ε=0.1

Unsafe Dyn Opt+LP ε=0.25
Random Walk Δ ε=0.1

Random Walk Δ ε=0.25
Neiman Solomon

BGS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

re
l.
 #

 i
n
s
ta

n
c
e
s
 t

A
 <

 f
a
s
te

s
t
a
lg

o
/τ

τ

Time

Unsafe Dyn Opt+LP ε=0.1
Unsafe Dyn Opt+LP ε=0.25

Random Walk Δ ε=0.1
Random Walk Δ ε=0.25

Neiman Solomon
BGS

Figure 2 Performance profile for matching size |M| and time for all algorithms. In all cases, if
an algorithm has a curve closer to the upper left corner, then the algorithm is better.

In general, performance differences in running time are not very big (except if we don’t
use lazy augmenting path search in the blossom-based algorithms). Secondly, for the same
values of ε the blossom-based algorithms compute slightly better results than their random
walk-based counter parts. This is not surprising as the blossom-based algorithms explore
larger subgraphs for each edge that has been inserted. We conclude here that both types of
algorithms are feasible in practice and have an advantage in solution quality over Neiman
Solomon and Baswana Gupta Sen on graphs with random insertions. Moreover, both of
these algorithm yield a clear trade-off between running time and solution quality via the ε
parameter. On the other hand, all of the algorithms considered here are roughly five orders
of magnitude faster than the naive dynamic optimum algorithm (only considering instances
having less than 25k nodes) and except Baswana Gupta Sen, all of these algorithms are
within a 4% range of the optimum matching size.

ESA 2020

58:14 Dynamic Matching Algorithms in Practice

Real-World Dynamic Instances. We now switch to the real-world dynamic instances. As
already mentioned, most of these instances are insertion-only. Hence, we perform additional
experiments with fully dynamic graphs from these inputs, by undoing x percent of the update
operations performed last (call them Ox). More precisely, we perform the operations in Ox
in reverse order. More precisely, if an edge operation was an insertion in Ox, we perform a
delete operation and if it was a delete operation we insert it. As before, we compute the
update on the graph after each removal/insertion. The connection to practice in this case,
is that with undoing operations, we want to restore a previous state. Table 2 summarizes
the results of the experiment and Figure 3 compares the algorithms on the two real-world
dynamic graphs dewiki and wiki_simple_en. Overall, the situation is similar to experiments
with random insertions that we have seen before. The random walk with ∆-settling and
ε = 0.5 dominates Baswana, Gupta, Sen and Neiman Solomon in terms of running time and
matching size for every number of undo operations. The blossom-based algorithm with lazy
path search, however, yields smaller matchings if no operations are undone. We believe that
this is due to the edges not being inserted randomly and hence the lazy augmenting path
search heuristic is less effective, and misses augmenting paths that have been created over
time. If operations are undone, the blossom-based algorithms outperform Neiman Solomon
in terms of matching size, but are also considerably slower as the deletion operations search
for augmenting paths of lengths three (except for ε = 1). The blossom-based algorithm
without lazy augmenting path search get very close to the optimum solutions. The best
algorithm here is blossom-based algorithm without lazy augmenting path search for ε = 1/3.
On average, it computes solutions that are < 0.6% away from the optimum (for every amount
of undo operations done).

In general, all algorithms improve quality relative to the optimum matching size, if we
undo operations. This is due to the fact that the matching may have changed over time
and hence new (short) augmenting paths may be found. In case of random-walks this is
also simply due to the fact that additional work is performed and the likelihood to find
an augmenting path is increased by running additional random walks. Summing up, all
of the algorithms, except Baswana, Gupta, Sen, compute/maintain very large matchings.
Blossom-based and random walk-based algorithm are highly flexible and are able to trade
solution quality for time. Overall, random walk-based algorithms seem to be the method of
choice in practice.

Table 1 Random insertions from static graphs: mean of the matching size relative to optimum after
all operations have been done as well as mean increase in running time over Random Walk,∆,ε = 0.25.

algorithm mean |M| / |Mopt| rel. time

BGS 0.885 32%
Neiman Solomon 0.964 28%
Unsafe Dyn Opt+LP ε = 0.1 0.994 27%
Unsafe Dyn Opt+LP ε = 0.25 0.990 11%
Unsafe Dyn Opt ε = 0.1 0.999 613%
Unsafe Dyn Opt ε = 0.25 0.996 192%
Unsafe Dyn Opt ε = 0.5 0.985 101%
Unsafe Dyn Opt ε = 1 0.964 67%
Random Walk,∆ ε = 0.1 0.989 5%
Random Walk,∆ ε = 0.25 0.986 1

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:15

Table 2 Real-world dynamic instances: mean of the matching size relative to optimum after all
operations have been done as well as the mean increase in running time over Random Walk,∆,ε = 0.5.

undo op 0 5% 10% 25%

algorithm mean |M| / |Mopt|

BGS 0.845 0.847 0.848 0.851
Neiman Solomon 0.968 0.971 0.973 0.976
Unsafe Dyn Opt+LP ε = 0.1 0.947 0.985 0.990 0.996
Unsafe Dyn Opt+LP ε = 0.25 0.942 0.982 0.988 0.993
Unsafe Dyn Opt ε = 0.33 0.994 0.996 0.997 0.998
Unsafe Dyn Opt ε = 0.5 0.988 0.991 0.992 0.994
Unsafe Dyn Opt ε = 1 0.968 0.971 0.973 0.976
Random Walk,∆ ε = 0.1 0.982 0.984 0.985 0.986
Random Walk,∆ ε = 0.25 0.981 0.983 0.984 0.985
Random Walk,∆ ε = 0.5 0.978 0.980 0.981 0.982

algorithm rel. time

BGS 4% 14% 13% 18%
Neiman Solomon 64% 82% 92% 112%
Unsafe Dyn Opt+LP ε = 0.1 82% 306% 383% 633%
Unsafe Dyn Opt+LP ε = 0.25 23% 149% 200% 346%
Unsafe Dyn Opt ε = 0.33 1 551% 1 551% 1 598% 1814%
Unsafe Dyn Opt ε = 0.5 679% 682% 713% 800%
Unsafe Dyn Opt ε = 1 210% 212% 223% 250%
Random Walk,∆ ε = 0.1 25% 26% 24% 24%
Random Walk,∆ ε = 0.25 10% 11% 9% 11%
Random Walk,∆ ε = 0.5 1 1 1 1

5 Conclusion

We looked at several dynamic matching algorithms including Baswana, Gupta and Sen [4],
Neiman and Solomon [33], as well as random walk-based algorithms and blossom-based
algorithms. We performed extensive experiments comparing the performance of these
algorithms on the real-world and artificially generated instances. In terms of results, first we
have shown that maintaining optimum matchings can be done much more efficiently than
the naive algorithm that recomputes maximum matchings from scratch. Second, we have
seen that all non-optimum dynamic algorithms that we considered in this work are able to
maintain near-optimum matchings in practice while being multiple orders of magnitudes
faster than the naive optimum dynamic algorithm. In practice, random walk-based algorithms
with ∆-settling will be the method of choice.

In future work, it may be interesting to transfer results to the weighted case, and to
combine our algorithms with simple data reductions rules such as [25]. It could be interesting
to use these dynamic matching algorithms to derive dynamic multilevel algorithms for
example for graph partitioning [32, 1]. Another direction will be to explore the parallelization
potential of random walk-based algorithms. Lastly, it may be interesting to incorporate
dynamic transitive closure algorithms (e.g. [22]) into the delete operation of the dynamic
optimum matching algorithm to further reduce the number of augmenting path searches.

ESA 2020

58:16 Dynamic Matching Algorithms in Practice

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

0 400 000 000

|M
|
/
|M

| B
G

S

ops

dewiki

Unsafe Dyn ε=0.3
Unsafe Dyn ε=0.5

Random Walk Δ ε=0.1
Random Walk Δ ε=0.5

Neiman Solomon

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

0 800 000

|M
|
/
|M

| B
G

S

ops

wiki simple en

Unsafe Dyn ε=0.3
Unsafe Dyn ε=0.5

Random Walk Δ ε=0.1
Random Walk Δ ε=0.5

Neiman Solomon

Figure 3 Matching size over time compared to Baswana, Gupta, Sen on the two real dynamic
instances dewiki and wiki_simple_en.

References
1 Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. High-quality shared-memory

graph partitioning. In Marco Aldinucci, Luca Padovani, and Massimo Torquati, editors, Euro-
Par 2018: Parallel Processing - 24th International Conference on Parallel and Distributed
Computing, Turin, Italy, August 27-31, 2018, Proceedings, volume 11014 of Lecture Notes in
Computer Science, pages 659–671. Springer, 2018. doi:10.1007/978-3-319-96983-1_47.

2 Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic matching:
Reducing integral algorithms to approximately-maximal fractional algorithms. In 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2018, pages 7:1–7:16,
2018.

3 D. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. Benchmarking
for Graph Clustering and Partitioning. In Encyclopedia of Social Network Analysis and Mining.
Springer, 2014.

https://doi.org/10.1007/978-3-319-96983-1_47

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:17

4 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
O(logn) update time. SIAM J. Comput., 44(1):88–113, 2015.

5 Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences,
43(9):842–844, 1957. doi:10.1073/pnas.43.9.842.

6 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proceedings of the 27th Symposium on Discrete Algorithms SODA, pages 692–711.
SIAM, 2016. doi:10.1137/1.9781611974331.ch50.

7 Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic fully
dynamic approximate vertex cover and fractional matching in O(1) amortized update time.
In 19th International Conf. on Integer Programming and Combinatorial Optimization IPCO,
pages 86–98, 2017.

8 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. SIAM J. Comput., 47(3):859–887, 2018.

9 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approx-
imation algorithms for fully dynamic matching. In Proceedings of the 48th Annual Symposium
on Theory of Computing, pages 398–411. ACM, 2016.

10 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate
maximum matching and minimum vertex cover in O(log3 n) worst case update time. In
Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms SODA, pages 470–489. SIAM, 2017.

11 Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari Sitchinava. Efficient
parallel and external matching. In Euro-Par 2013, volume 8097 of LNCS, pages 659–670.
Springer, 2013. doi:10.1007/978-3-642-40047-6_66.

12 Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking the
polynomial worst-case time barrier. In 45th International Colloquium on Automata, Languages,
and Programming ICALP, pages 33:1–33:14, 2018.

13 T. Davis. The University of Florida Sparse Matrix Collection, http://www.cise.ufl.
edu/research/sparse/matrices, 2008. URL: http://www.cise.ufl.edu/research/sparse/
matrices/.

14 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91(2):201–213, 2002. doi:10.1007/s101070100263.

15 D. Drake and S. Hougardy. A Simple Approximation Algorithm for the Weighted Matching
Problem. Information Processing Letters, 85:211–213, 2003.

16 Andre Droschinsky, Petra Mutzel, and Erik Thordsen. Shrinking trees not blossoms: A recursive
maximum matching approach. In Proceedings of the Symposium on Algorithm Engineering and
Experiments, ALENEX 2020, pages 146–160. SIAM, 2020. doi:10.1137/1.9781611976007.12.

17 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

18 Harold Neil Gabow. Implementation of Algorithms for Maximum Matching on Nonbipartite
Graphs. PhD thesis, Stanford University, Stanford, CA, USA, 1974.

19 Zvi Galil, Silvio Micali, and Harold N. Gabow. An O(|E||V| log |V|) algorithm for finding
a maximal weighted matching in general graphs. SIAM Journal Computing, 15(1):120–130,
1986.

20 Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay
Solomon. (1 + ε)-approximate incremental matching in constant deterministic amortized time.
In Proceedings of the 20th Symposium on Discrete Algorithms, pages 1886–1898. SIAM, 2019.
doi:10.1137/1.9781611975482.114.

21 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 54th
Symposium on Foundations of Computer Science, FOCS, pages 548–557. IEEE Computer
Society, 2013. doi:10.1109/FOCS.2013.65.

ESA 2020

https://doi.org/10.1073/pnas.43.9.842
https://doi.org/10.1137/1.9781611974331.ch50
https://doi.org/10.1007/978-3-642-40047-6_66
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
https://doi.org/10.1007/s101070100263
https://doi.org/10.1137/1.9781611976007.12
https://doi.org/10.1137/1.9781611975482.114
https://doi.org/10.1109/FOCS.2013.65

58:18 Dynamic Matching Algorithms in Practice

22 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Faster fully dynamic transitive
closure in practice. In Simone Faro and Domenico Cantone, editors, 18th International
Symposium on Experimental Algorithms, SEA 2020, June 16-18, 2020, Catania, Italy, volume
160 of LIPIcs, pages 14:1–14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.SEA.2020.14.

23 J. E. Hopcroft and R. M. Karp. A n5/2 algorithm for maximum matchings in bipartite. In
12th Annual Symposium on Switching and Automata Theory (SWAT), pages 122–125, 1971.
doi:10.1109/SWAT.1971.1.

24 Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In 19th
International Workshop Graph-Theoretic Concepts in Computer Science, volume 790 of LNCS,
pages 99–111, 1993.

25 Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche. Data
reduction for maximum matching on real-world graphs: Theory and experiments. In 26th
European Symposium on Algorithms ESA, volume 112 of LIPIcs, pages 53:1–53:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.53.

26 Jérôme Kunegis. KONECT: the koblenz network collection. In Leslie Carr, Alberto H. F.
Laender, Bernadette Farias Lóscio, Irwin King, Marcus Fontoura, Denny Vrandecic, Lora
Aroyo, José Palazzo M. de Oliveira, Fernanda Lima, and Erik Wilde, editors, 22nd World Wide
Web Conference, WWW ’13, pages 1343–1350. International World Wide Web Conferences
Steering Committee / ACM, 2013. doi:10.1145/2487788.2488173.

27 J. Lescovec. Stanford Network Analysis Package (SNAP). http://snap.stanford.edu/index.
html.

28 J. Maue and P. Sanders. Engineering Algorithms for Approximate Weighted Matching. In
Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), volume 4525 of
LNCS, pages 242–255. Springer, 2007. doi:10.1007/978-3-540-72845-0_19.

29 Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and Geometric Com-
puting. Cambridge University Press, 1999. URL: http://www.mpi-sb.mpg.de/%7Emehlhorn/
LEDAbook.html.

30 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords and
generalized on-line matching. In 46th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 264–273. IEEE Computer Society, 2005. doi:10.1109/SFCS.2005.12.

31 Silvio Micali and Vijay V. Vazirani. An O(
√

|V ||E|) algorithm for finding maximum matching
in general graphs. In 21st Symposium on Foundations of Computer Science, pages 17–27.
IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.12.

32 Orlando Moreira, Merten Popp, and Christian Schulz. Evolutionary multi-level acyclic graph
partitioning. In Hernán E. Aguirre and Keiki Takadama, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018,
pages 332–339. ACM, 2018. doi:10.1145/3205455.3205464.

33 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Trans. Algorithms, 12(1):7:1–7:15, 2016.

34 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex cover.
In STOC, pages 457–464, 2010. doi:10.1145/1806689.1806753.

35 Julia Preusse, Jérôme Kunegis, Matthias Thimm, Thomas Gottron, and Steffen Staab. Struc-
tural dynamics of knowledge networks. In Proc. Int. Conf. on Weblogs and Social Media,
2013.

36 Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In SODA, pages 118–126,
2007. doi:10.1145/1283383.1283397.

37 Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library - User
Guide and Reference Manual. C++ in-depth series. Pearson / Prentice Hall, 2002.

38 Shay Solomon. Fully dynamic maximal matching in constant update time. In 57th Symposium
on Foundations of Computer Science FOCS, pages 325–334, 2016.

39 Robert Endre Tarjan. Data structures and network algorithms, volume 44 of CBMS-NSF re-
gional conference series in applied mathematics. SIAM, 1983. doi:10.1137/1.9781611970265.

https://doi.org/10.4230/LIPIcs.SEA.2020.14
https://doi.org/10.1109/SWAT.1971.1
https://doi.org/10.4230/LIPIcs.ESA.2018.53
https://doi.org/10.1145/2487788.2488173
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html
https://doi.org/10.1007/978-3-540-72845-0_19
http://www.mpi-sb.mpg.de/%7Emehlhorn/LEDAbook.html
http://www.mpi-sb.mpg.de/%7Emehlhorn/LEDAbook.html
https://doi.org/10.1109/SFCS.2005.12
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1145/3205455.3205464
https://doi.org/10.1145/1806689.1806753
https://doi.org/10.1145/1283383.1283397
https://doi.org/10.1137/1.9781611970265

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:19

A Instances

Table 3 Basic properties of the benchmark set of static graphs obtained from [3, 13, 27].

graph n m graph n m

144 144 649 1 074 393 eu-2005 862 664 16 138 468
3elt 4 720 13 722 fe_4elt2 11 143 32 818
4elt 15 606 45 878 fe_body 45 087 163 734
598a 110 971 741 934 fe_ocean 143 437 409 593
add20 2 395 7 462 fe_pwt 36 519 144 794
add32 4 960 9 462 fe_rotor 99 617 662 431
amazon-2008 735 323 3 523 472 fe_sphere 16 386 49 152
as-22july06 22 963 48 436 fe_tooth 78 136 452 591
as-skitter 554 930 5 797 663 finan512 74 752 261 120
auto 448 695 3 314 611 in-2004 1 382 908 13 591 473
bcsstk29 13 992 302 748 loc-brightkite_edges 56 739 212 945
bcsstk30 28 924 1 007 284 loc-gowalla_edges 196 591 950 327
bcsstk31 35 588 572 914 m14b 214 765 1 679 018
bcsstk32 44 609 985 046 memplus 17 758 54 196
bcsstk33 8 738 291 583 p2p-Gnutella04 6 405 29 215
brack2 62 631 366 559 PGPgiantcompo 10 680 24 316
citationCiteseer 268 495 1 156 647 rgg_n_2_15_s0 32 768 160 240
cnr-2000 325 557 2 738 969 soc-Slashdot0902 28 550 379 445
coAuthorsCiteseer 227 320 814 134 t60k 60 005 89 440
coAuthorsDBLP 299 067 977 676 uk 4 824 6 837
coPapersCiteseer 434 102 16 036 720 vibrobox 12 328 165 250
coPapersDBLP 540 486 15 245 729 wave 156 317 1 059 331
crack 10 240 30 380 web-Google 356 648 2 093 324
cs4 22 499 43 858 whitaker3 9 800 28 989
cti 16 840 48 232 wiki-Talk 232 314 1 458 806
data 2 851 15 093 wing 62 032 121 544
email-EuAll 16 805 60 260 wing_nodal 10 937 75 488
enron 69 244 254 449 wordassociation-2011 10 617 63 788

ESA 2020

58:20 Dynamic Matching Algorithms in Practice

Table 4 Basic properties of the benchmark set of dynamic graphs with number of update
operations O. Most of the graphs only feature insertions. The only two exceptions are marked with
a *. All of these graphs have been obtained from the KONECT graph database [35].

graph n O

amazon-ratings 2 146 058 5 838 041
citeulike_ui 731 770 2 411 819
dewiki∗ 2 166 670 86 337 879
dnc-temporalGraph 2 030 39 264
facebook-wosn-wall 46 953 876 993
flickr-growth 2 302 926 33 140 017
haggle 275 28 244
lastfm_band 174 078 19 150 868
lkml-reply 63 400 1 096 440
movielens10m 69 879 10 000 054
munmun_digg 30 399 87 627
proper_loans 89 270 3 394 979
sociopatterns-infections 411 17 298
stackexchange-stackoverflow 545 197 1 301 942
topology 34 762 171 403
wikipedia-growth 1 870 710 39 953 145
wiki_simple_en∗ 100 313 1 627 472
youtube-u-growth 3 223 590 9 375 374

Finding All Global Minimum Cuts in Practice
Monika Henzinger
University of Vienna, Faculty of Computer Science, Austria
monika.henzinger@univie.ac.at

Alexander Noe
University of Vienna, Faculty of Computer Science, Austria
alexander.noe@univie.ac.at

Christian Schulz
University of Vienna, Faculty of Computer Science, Austria
christian.schulz@univie.ac.at

Darren Strash
Hamilton College, Department of Computer Science, Clinton, NY, USA
dstrash@hamilton.edu

Abstract
We present a practically efficient algorithm that finds all global minimum cuts in huge undirected
graphs. Our algorithm uses a multitude of kernelization rules to reduce the graph to a small
equivalent instance and then finds all minimum cuts using an optimized version of the algorithm of
Nagamochi, Nakao and Ibaraki. In shared memory we are able to find all minimum cuts of graphs
with up to billions of edges and millions of minimum cuts in a few minutes. We also give a new
linear time algorithm to find the most balanced minimum cuts given as input the representation of
all minimum cuts.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems;
Mathematics of computing → Graph algorithms; Mathematics of computing → Network flows

Keywords and phrases Minimum Cut, Graph Algorithm, Algorithm Engineering, Cut Enumeration,
Balanced Cut, Global Minimum Cut, Large-scale Graph Analysis

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.59

Supplementary Material https://github.com/VieCut/VieCut

Funding The research leading to these results has received funding from the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) /ERC
grant agreement No. 340506.
Partially supported by DFG grant SCHU 2567/1-2.

1 Introduction

We consider the problem of finding all minimum cuts of an undirected network where edges
are weighted by positive integers. A minimum cut in a graph is a partition of the vertices
into two sets so that the total weight of edges crossing the boundary between the blocks is
minimized. The problem of finding all minimum cuts has applications in many fields. In
particular, minimum cuts in similarity graphs can be used to find clusters [57, 25]. As the
minimum cut is often highly skewed, a variety of techniques to find more balanced bipartitions
with small cuts were developed [16, 24, 53]. However, these balanced variations of the problem
are generally NP-complete. In contrast to that, we find all minimum cuts in practice in a
similar timescale than finding an arbitrary minimum cut and can thus output the minimum
cut that is least skewed. In community detection, the absence of a small cut inside a cluster
can indicate a likely community in a social network [10]. Other applications for finding all
minimum cuts can be found in network reliability [34, 51], where a minimum cut in a network

© Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 59; pp. 59:1–59:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5008-6530
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0002-4711-3323
mailto:alexander.noe@univie.ac.at
https://orcid.org/0000-0002-2823-3506
mailto:christian.schulz@univie.ac.at
https://orcid.org/0000-0001-7095-8749
mailto:dstrash@hamilton.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.59
https://github.com/VieCut/VieCut
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Finding All Global Minimum Cuts in Practice

has the highest risk to disconnect the network; in VLSI design [40] and graph drawing [32],
in which minimum cuts are used to separate the network; and finding all minimum cuts is
an important subproblem for edge-connectivity augmentation algorithms [19, 47].

The problem of finding all minimum cuts is closely related to the (global) minimum cut
problem, which aims to find some minimum cut in the graph. The classical algorithm of
Gomory and Hu [23] solves the minimum cut problem by solving n minimum-s-t cut problems.
Using the push-relabel algorithm [22] this results in a total running time of O

(
n2m log n2

m

)
.

Nagamochi et al. [43, 46] give an algorithm for the minimum cut problem, which is based on
edge contractions instead of maximum flows. Their algorithm has a worst case running time
of O

(
nm+ n2 logn

)
but performs far better in practice on many graph classes [12, 31, 28].

Henzinger et al. [26] give a fast shared-memory parallel algorithm for the minimum cut
problem based on their algorithm which finds a minimum cut very fast in practice.

Even though a graph can have up to
(
n
2
)
minimum cuts [33], there is a compact repres-

entation of all minimum cuts of a graph called cactus graph with O(n) vertices and edges. A
cactus graph is a graph in which each edge belongs to at most one simple cycle. Karzanov and
Timofeev [36] give the first polynomial time algorithm to construct the cactus representation
for all minimum cuts. Picard and Queyranne [50] show that all minimum cuts separating
two specified vertices can be found from a maximum flow between them. Thus, similar to
the classical algorithm of Gomory and Hu [23] for the minimum cut problem, we can find
all minimum cuts in n− 1 maximum flow computations. The algorithm of Karzanov and
Timofeev [36] combines all those minimum cuts into a cactus graph representing all minimum
cuts. Nagamochi and Kameda [44] give a representation of all minimum cuts separating
two vertices s and t in a so-called (s, t)-cactus representation. Based on this (s, t)-cactus
representation, Nagamochi et al. [45] give an algorithm that finds all minimum cuts and
gives the minimum cut cactus in O

(
nm+ n2 logn+ n∗m logn

)
, where n∗ is the number of

vertices in the cactus.
Karger and Stein [35] give a randomized algorithm to find all minimum cuts inO

(
n2 log3 n

)
time by contracting random edges. Based on the algorithm of Karzanov and Timofeev [36]
and its parallel variant given by Naor and Vazirani [48] they show how to give the cactus
representation of the graph in the same asymptotic time. Ghaffari et al. [20] recently
gave an algorithm that finds all non-trivial minimum cuts of a simple unweighted graph
in O

(
m log2 n

)
time. Using the techniques of Karger and Stein the algorithm can trivially

give the cactus representation of all minimum cuts in O
(
n2 logn

)
. While there are multiple

implementations of the algorithm of Karger and Stein [12, 21, 28] for the minimum cut
problem, to the best of our knowledge there are no published implementations of either of
the algorithms to find the cactus graph representing all minimum cuts (with or without data
reduction techniques).

In the last two decades significant advances in FPT algorithms have been made: an NP-
hard graph problem is fixed-parameter tractable (FPT) if large inputs can be solved efficiently
and provably optimally, as long as some problem parameter is small. This has resulted in
an algorithmic toolbox that are by now well-established. Few of the new techniques are
implemented and tested on real datasets, and their practical potential is far from understood.
However, recently the engineering part in area has gained some momentum. There are
several experimental studies in the area that take up ideas from FPT or kernelization
theory, e.g. for independent sets (or equivalently vertex cover) [2, 11, 14, 41, 29, 30], for
cut tree construction[3], for treewidth computations [7, 54, 39], for the feedback vertex set
problem [37, 18], for the dominating set problem [1], for the minimum cut [26, 28], for the
multiterminal cut problem [27], for the maximum cut problem [17] and for the cluster editing
problem [8]. Recently, this type of data reduction techniques is also applied for problem in P
such as matching [38].

M. Henzinger, A. Noe, C. Schulz, and D. Strash 59:3

Our Results

We give an algorithm that finds all minimum cuts on very large graphs. Our algorithm
is based on the recursive algorithm of Nagamochi et al. [45]. We combine the algorithm
with a multitude of techniques to find edges that can be contracted without affecting any
minimum cut in the graph. Some of these techniques are adapted from techniques for the
global minimum cut problem [49, 46]. Using these and newly developed reductions we are
able to decrease the running time by up to multiple orders of magnitude compared to the
algorithm of Nagamochi et al. [45] and are thus able to find all minimum cuts on graphs with
up to billions of edges in a few minutes. Based on the cactus representation of all minimum
cuts, we are able to find the most balanced minimum cut in time linear to the size of the
cactus. As our techniques are able to find the most balanced minimum cut (and all others
too) of graphs with billions of edges in mere minutes, this allows the use of minimum cuts as
a subroutine in sophisticated data mining and graph analysis tools.

2 Basic Concepts

LetG = (V,E, c) be a weighted undirected simple graph with vertex set V , edge set E ⊂ V ×V
and non-negative edge weights c : E → N. We extend c to a set of edges E′ ⊆ E by summing
the weights of the edges; that is, let c(E′) :=

∑
e=(u,v)∈E′ c(u, v) and let c(u) denote the

sum of weights of all edges incident to vertex v. Let n = |V | be the number of vertices
and m = |E| be the number of edges in G. The neighborhood N(v) of a vertex v is the set
of vertices adjacent to v. The weighted degree of a vertex is the sum of the weights of its
incident edges. For brevity, we simply call this the degree of the vertex. For a set of vertices
A ⊆ V , we denote by E[A] := {(u, v) ∈ E | u ∈ A, v ∈ V \A}; that is, the set of edges in E
that start in A and end in its complement. A cut (A, V \A) is a partitioning of the vertex
set V into two non-empty partitions A and V \A, each being called a side of the cut. The
capacity or weight of a cut (A, V \A) is c(A) =

∑
(u,v)∈E[A] c(u, v). A minimum cut is a cut

(A, V \ A) that has smallest capacity c(A) among all cuts in G. We use λ(G) (or simply
λ, when its meaning is clear) to denote the value of the minimum cut over all A ⊂ V . For
two vertices s and t, we denote λ(G, s, t) as the capacity of the smallest cut of G, where s
and t are on different sides of the cut. λ(G, s, t) is also known as the minimum s-t-cut of
the graph. If all edges have weight 1, λ(G, s, t) is also called the connectivity of vertices s
and t. The connectivity λ(G, e) of an edge e = (s, t) is defined as λ(G, s, t), the connectivity
of its incident vertices. At any point in the execution of a minimum cut algorithm, λ̂(G)
(or simply λ̂) denotes the smallest upper bound of the minimum cut that the algorithm
discovered until that point. For a vertex u ∈ V with minimum vertex degree, the size of
the trivial cut ({u}, V \ {u}) is equal to the vertex degree of u. Many algorithms tackling
the minimum cut problem use graph contraction. Given an edge e = (u, v) ∈ E, we define
G/(u, v) (or G/e) to be the graph after contracting edge (u, v). In the contracted graph, we
delete vertex v and all edges incident to this vertex. For each edge (v, w) ∈ E, we add an
edge (u,w) with c(u,w) = c(v, w) to G or, if the edge already exists, we give it the edge
weight c(u,w) + c(v, w).

A graph with n vertices can have up to Ω(n2) minimum cuts [33]. To see that this bound
is tight, consider an unweighted cycle with n vertices. Each set of 2 edges in this cycle is a
minimum cut of G. This yields a total of

(
n
2
)
minimum cuts. However, all minimum cuts

can be represented by a cactus graph CG with up to 2n vertices and O(n) edges [45]. A
cactus graph is a connected graph, in which any two simple cycles have at most one vertex
in common. In a cactus graph, each edge belongs to at most one simple cycle.

ESA 2020

59:4 Finding All Global Minimum Cuts in Practice

To represent all minimum cuts of a graph G in an edge-weighted cactus graph CG =
(V (CG), E(CG)), each vertex of CG represents a possibly empty set of vertices of G and each
vertex in G belongs to the set of one vertex in CG. Let Π be a function that assigns to each
vertex of CG it set of vertices of G. Then every cut (S, V (CG)\S) corresponds to a minimum
cut (A, V \A) in G where A = ∪x∈SΠ(x). In CG, all edges that do not belong to a cycle have
weight λ and all cycle edges have weight λ

2 . A minimum cut in CG consists of either one tree
edge or two edges of the same cycle. We denote by n∗ the number of vertices in CG and m∗
the number of edges in CG. The weight c(v) of a vertex v ∈ CG is equal to the number of
vertices in G that are assigned to v.

3 Algorithm Description

Our algorithm combines a variety of techniques and algorithms in order to find all minimum
cuts in a graph. The algorithm is based on the contractions of edges which cannot be part of
a minimum cut. Thus, we first show that an edge e that is not part of any minimum cut in
graph G can be contracted and all minimum cuts of G remain in the resulting graph G/e.

I Lemma 1 ([35]). If an edge e = (u, v) is not part of any minimum cut in graph G, all
minimum cuts of G remain in the resulting graph G/e.

Proof. Let (A,B) be an arbitrary minimum cut of G. For an edge e = (u, v), which is not
part of any minimum cut, we know that e 6∈ E[A], so either u and v are both in vertex set A
or both in vertex set B. This is still the case in G/e. Thus, the edge e can be contracted
even if we aim to find every minimum cut of G. J

Lemma 1 is very useful to reduce the size of the graph by a multitude of techniques
to identify such edges. We first give a short overview of our algorithm and then explain
the techniques in more detail. First, we use the shared-memory parallel heuristic minimum
cut algorithm VieCut [28] in order to find an upper bound λ̂ for the minimum cut which
is very likely to be the correct value. VieCut is a multilevel algorithm that uses the label
propagation algorithm to contract heavily connected clusters. Having a tight bound for the
minimum cut allows the contraction of many edges, as multiple reduction techniques depend
on the value of the minimum cut. We adapt contraction techniques originally developed by
Nagamochi et al. [43, 46] and Padberg et al. [49] to the problem of finding all minimum cuts.
Section 3.1 explains these contraction routines. On the resulting graph we find all minimum
cuts using an optimized variant of the algorithm of Nagamochi, Nakao and Ibaraki [45] and
return the cactus graph which represents them all. A short description of the algorithm and
an explanation of our engineering effort are given in Section 3.2. Afterwards, in Section 3.3
we show how we combine the parts into a fast algorithm to find all minimum cuts of large
networks.

3.1 Edge Contraction
As shown in Lemma 1, edges that are not part of any minimum cut can be safely contracted.
We build a set of techniques that aim to find contractible edges and run these in alternating
order until neither of them finds any more contractible edges. We now give a short introduction
to these.

For efficiency, we perform contractions in bulk. If our algorithm finds an edge that can be
contracted, we merge the incident vertices in a thread-safe union-find data structure [5]. After
each run of a contraction technique that finds contractible edges, we create the contracted

M. Henzinger, A. Noe, C. Schulz, and D. Strash 59:5

4 4 2

2

2

Figure 1 Contraction: (1) HeavyEdge, (2) ImbalancedVertex, (3) ImbalancedTriangle, (4)
HeavyNeighborhood.

graph using a shared-memory parallel hash table [42]. In this contracted graph, each set of
vertices of the original graph is merged into a single node. The contraction of this vertex set
is equivalent to contracting a spanning tree of the set. After contraction we check whether a
vertex in the contracted graph has degree < λ̂. If it does, we found a cut of smaller value
and update λ̂ to this value.

3.1.1 Connectivity-based Contraction
The connectivity of an edge e = (s, t) is the weight of the minimum cut that separates s
and t, i.e. the minimum s-t-cut. For an edge that has connectivity > λ̂, we thus know that
there is no cut separating s and t (i.e. no cut that contains e) that has value ≤ λ̂. Thus,
we know that there cannot be a minimum cut that contains e, as λ̂ is by definition at least
as large as λ. However, solving the minimum s-t-cut problem takes significant time, so
computing the connectivity of each edge does not scale to large networks. Hence, as part
of their algorithm for the global minimum cut problem, Nagamochi et al. [43, 46] give an
algorithm that computes a lower bound q(e) for the connectivity of every edge e of G in a
total running time of O(m+ n logn). Each of the edges whose connectivity lower bound is
already larger than λ̂ can be contracted as it cannot be part of any minimum cut. Their
algorithm builds edge-disjoint maximum spanning forests and contracts all edges that are
not in the first λ− 1 spanning forests, as those connect vertices that have connectivity at
least λ [26]. This is possible as the incident vertices of any such edge e are connected in each
of the first λ− 1 spanning forests and by e and thus have a connectivity of at least λ. In
other words, there can not be any cut smaller than λ which contains e.

Henzinger et al. [26] give a fast shared-memory parallel variant of their algorithm. As
both of these algorithms only aim to find a single minimum cut, they also contract edges
that have connectivity equal to λ̂, as they only want to see whether there is a cut better than
the best cut known previously. As we want to find all minimum cuts, we can only contract
edges whose connectivity is strictly larger than λ̂. Nagamochi et al. could prove that at least
one edge has value λ̂ in their routine and can thus be contracted. We do not have such a
guarantee when trying to find edges that have connectivity > λ̂. Consider for example an
unweighted tree, whose minimum cut has a value of 1 and each edge has connectivity 1 as
well.

3.1.2 Local Contraction Criteria
Padberg and Rinaldi [49] give a set of local reduction routines which determine whether an
edge can be contracted without affecting the minimum cut. Their reductions routines were
shown to be very useful in order to find a minimum cut fast in practice [12, 31, 28]. We
adapt the routines originally developed for the minimum cut problem so that they hold for

ESA 2020

59:6 Finding All Global Minimum Cuts in Practice

the problem of for finding all minimum cuts. Thus, we have to make sure that we do not
contract cuts of value λ̂, as they might be minimal and additionally make sure that we do
not contract edges incident to vertices that could have a trivial minimum cut, i.e. a minimum
cut, where one side contains only a single vertex. Figure 1 depicts the contraction routines
and Lemma 2 gives a more formal definition of them.

I Lemma 2. For an edge e = (u, v) ∈ E, e is not part of any minimum cut, if e fulfills at
least one of the following criteria. Thus, all minimum cuts of G are still present in G/e and
e can be contracted.
1. HeavyEdge: c(e) > λ̂

2. ImbalancedVertex:
c(v) < 2c(e) and c(v) > λ̂, or
c(u) < 2c(e) and c(u) > λ̂

3. ImbalancedTriangle:
∃w ∈ V with
c(v) < 2{c(v, w) + c(e)} and c(v) > λ̂, and
c(u) < 2{c(u,w) + c(e)} and c(u) > λ̂

4. HeavyNeighborhood:
c(e) +

∑
w∈V min{c(v, w), c(u,w)} > λ̂

Proof.
1. If c(e) > λ̂, every cut that contains e has capacity > λ̂. Thus it can not be a minimal cut.
2. Without loss of generality let v be the vertex in question. The condition c(v) < 2c(e)

means that e is heavier than all other edges incident to v combined. Thus, for any
non-trivial cut that contains e, we can find a lighter cut by replacing e with all other
incident edges to v, i.e. moving v to the other side of the cut. As this is not true for the
trivial minimum cut (v, V \ v), we cannot contract an edge incident to a vertex that has
weight ≤ λ̂.

3. This condition is similar to (2). Let there be a triangle u, v, w in the graph in which it
holds for both u and v that the two incident triangle edges are heavier than the sum
of all other incident edges. Then, every cut that separates u and v can be improved by
moving u and v into the same side. As the cut could have vertex w on either side, both
vertices need to fulfill this condition. To make sure that we do not contract any trivial
minimum cut, we check that both v and u have weight > λ̂ and thus can not represent a
trivial minimum cut.

4. In this condition we check the whole shared neighborhood of vertices u and v. Every cut
that separates u and v must contain e and for each shared neighbor w at least one of the
edges connecting them to w. Thus, we sum over the lighter edge connecting them to the
shared neighbors and have a lower bound of the minimum cut that separates u and v. If
this is heavier than λ̂, we know that no minimum cut separates u and v. J

The conditions HeavyEdge and ImbalancedVertex can both be checked for the whole
graph in a single run in linear time. While we can check condition ImbalancedTriangle
when summing up the lighter incident edges for condition HeavyNeighborhood, exhaustively
checking all triangles incurs a strictly worse than linear runtime, as a graph can have up to
Θ(m3/2) triangles [52]. Thus, we only perform linear-time runs as developed by Chekuri et al.
[12] by marking the neighborhood of u and v while we check the conditions and do not
perform the test on marked vertices.

M. Henzinger, A. Noe, C. Schulz, and D. Strash 59:7

3.1.3 Vertices with one Neighbor
Over the run of the algorithm, we occasionally encounter vertices that have only a single
neighbor. Let v be this vertex with one neighbor and e = (v, w) be the only incident edge. As
we update λ̂ to the minimum degree whenever we perform a bulk edge contraction, c(e) ≥ λ̂:
for an edge whose weight is > λ̂, condition HeavyEdge will contract it. For an edge whose
weight is λ̂, the edge represents a trivial minimum cut iff λ̂ = λ. This is the only minimum
cut that contains e, as every non-trivial cut containing e has higher weight. Thus, we can
contract e for now and remember that it was contracted. If λ̂ is decreased, we can forget
about these vertices as the cuts are not minimal. When we are finished, we can re-insert
all contracted vertices that have a trivial minimum cut. We perform this reinsertion in a
bottom-up fashion (i.e. in reverse order to how they were contracted), as the neighbor w
could be contracted in a later contraction.

3.2 Finding all Minimum Cuts
We apply the reductions in the previous section exhaustively until they are not able to
find a significant number of edges to contract. On the remaining graph we aim to find the
cactus representation of all minimum cuts. Our algorithm for this purpose is based on the
algorithm of Nagamochi, Nakao and Ibaraki [45]. While there is a multitude of algorithms
for the problem of finding all minimum cuts, to the best of our knowledge there are no
implementations accessible to the public and there is no practical experimentation on finding
all minimum cuts. We base our algorithm on the algorithm of Nagamochi, Nakao and
Ibaraki [45], as their algorithm allows us to run the reduction routines previously detailed in
between recursion steps.

We give a quick sketch of their algorithm, for details we refer the reader to [45]. To
find all minimum cuts in graph G, the algorithm chooses an edge e = (s, t) in G and uses
a maximum flow f to find the minimum s-t-cut λ(s, t). If λ(s, t) > λ there is no minimum
cut that separates s and t and thus e can be contracted. If λ(s, t) = λ, the edge is part of
at least one minimum cut. They show that the strongly connected components (V1, . . . , Vk)
of the residual graph Gf represent all minimum cuts that contain e (and potentially some
more). For each connected component Vi, they build a graph Ci, in which all other connected
components are contracted into a single vertex. We recurse on these component subgraphs
and afterwards combine the minimum cut cactus graphs of the recursive calls to a cactus
representation for G.

The combination of the cactus graphs begins by building a cactus graph C representing
the set of strongly connected components, in which each Vi is represented by a single vertex
vi. Each cactus Ci is then merged with C by replacing vi with Ci. For details we refer the
reader to [45].

As the contraction routines in Section 3.1 usually mark a large amount of edges that
can be contracted in bulk, we represent the graph in the compressed sparse row format [56].
This allows for fast and memory-efficient accesses to vertices and edges, however, we need
to completely rebuild the graph in each bulk contraction and also keep vertex information
about the whole graph hierarchy to be able to see which vertices in the original graph are
encompassed in a vertex in a coarser vertex and to be able to re-introduce the cactus edges
that were removed. While this is efficient for the bulk contractions performed in the previous
section, in this section we often perform single-edge contractions or contract a small block
of vertices. For fast running times these operations should not incur a complete rebuild of
the graph data structure. We therefore use a mutable adjacency list data structure where

ESA 2020

59:8 Finding All Global Minimum Cuts in Practice

each vertex is represented by a dynamic array of edges to neighboring vertices. Each edge
stores its weight, target and the ID of its reverse edge (as we look at undirected graphs).
This allows us to contract edges and small blocks in time corresponding to the sum of vertex
degrees. For each vertex in the original graph, we store information which vertex currently
encompasses it and every vertex keeps a list of currently encompassed vertices of the original
graph. This information is updated during each edge contraction. Inside this algorithm
we re-run the contraction routines of Section 3.1. As they incur some computational cost
and the graph does not change too much over different recursion steps, we only run the
contraction routines every 10 recursion steps.

3.2.1 Edge Selection
The recursive algorithm of Nagamochi, Nakao and Ibaraki [45] selects an arbitrary edge for
the maximum flow problem in each recursion step. If this edge has connectivity equal to the
minimum cut, we create a recursive subproblem for each connected component of the residual
graph. In order to reduce the graph size - and thus the amount of work necessary - quickly,
we aim to select edges in which the largest connected component of the residual graph is as
small as possible. The edge selection strategy Heavy searches for the highest degree vertex v
and chooses the edge from v to its highest degree neighbor. The strategy WeightedHeavy
does the same, but uses the vertices whose weighted degree is highest. The idea is that an
edge between high-degree vertices is most likely ’central’ to the graph and thus manages to
separate sizable chunks from the graph. The edge selection strategy Central aims to find a
central edge more directly: we aim to find two vertices u and v with a high distance and take
the central edge in their shortest paths. We find those vertices by performing a breadth-first
search from a random vertex w, afterwards performing a breadth-first search from the vertex
encountered last. We then take the central edge in the shortest path (as defined from the
second breadth-first search) from the two vertices encountered last in the two breadth-first
searches. The edge selection strategy Random picks a random edge.

3.2.2 Degree-two Reductions
Over the course of this recursive contraction-based algorithm, we routinely encounter vertices
with just two neighbors. Let v be the vertex in question, which is connected to u0 by edge e0
and to u1 by edge e1. We look at four cases, each looking at whether the weight of e0 being
equal to the weight of e1 and c(v) being equal to λ, both conditions that can be checked in
constant time. In three out of four cases, we are able to contract an incident edge.

c(e0) 6= c(e1) and c(v) > λ: Without loss of generality let e0 be the heavier edge. As
c(v) > λ, the trivial cut ({v}, V \ {v}) is not a minimum cut. As by definition no cut in G is
smaller than λ, λ(u0, u1) ≥ λ. Thus, excluding the path through v, they have a connectivity
of ≥ λ− c(e1) and any cut containing e0 has weight ≥ λ− c(e1) + c(e0) > λ and can thus
not be minimal. We therefore know that e0 is not part of any minimum cuts and can be
contracted according to Lemma 1.

c(e0) 6= c(e1) and c(v) = λ: Without loss of generality let e0 be the heavier edge.
Analogously to the previous case we can show that no nontrivial cut contains e0. In this case,
where c(v) = λ, the trivial cut ({v}, V \ {v}) is minimal and therefore should be represented
in the cactus graph. For all other minimum cuts that contain e1, we know that v and u0 will
be in the same block (as c(e0) > c(e1)). Thus, v will be represented in the cactus as a leaf
incident to u0. We contract e0 calling the resulting vertex u∗ and store which vertices of
the original graph are represented by v. Then we recurse. On return from the recursion we
check which cactus vertex now encompasses u∗ and add an edge from this vertex to a newly
added vertex representing all vertices encompassed by v.

M. Henzinger, A. Noe, C. Schulz, and D. Strash 59:9

Algorithm 1 Algorithm to find all minimum cuts.

1: procedure FindAllMincuts(G = (V,E))
2: λ̂← VieCut(G) [28]
3: while not converged do
4: (G,D1, λ̂)← contract degree-one vertices(G, λ̂)
5: (G, λ̂)← connectivity-based contraction(G, λ̂)
6: (G, λ̂)← local contraction(G, λ̂)
7: λ← FindMinimumCutValue(G)
8: C ← RecursiveAllMincuts(G,λ) ([45])
9: C ← reinsert vertices(C,D1)
10: return (C, λ)

c(e0) = c(e1) and c(v) > λ: in this case we are not able to contract any edges without
further connectivity information.

c(e0) = c(e1) and c(v) = λ: as c(v) = λ, the trivial cut ({v}, V \ {v}) is minimal. If
there are other minimum cuts that contain either e0 or e1 (e.g. that separate u0 and u1), we
know that by replacing e0 with e1 (or vice-versa) the cut remains minimal. Such a minimum
cut exists iff λ(u0, u1) = λ. We contract e0 and remember this decision. As e1 is still in
the graph (merged with (u0, u1)), we are able to find each cut that separates u0 and u1. If
none exists, λ(u0, u1) > λ and u0 and u1 will be contracted into a single vertex later in the
algorithm. When leaving the recursion, we can thus re-introduce vertex v as a leaf connected
to the vertex encompassing u0 and u1. If u0 and u1 are in different vertices after leaving the
recursion, there is at least one nontrivial cut that contains e1. We thus re-introduce v as a
cycle vertex connected to u0 and u1, each with weight λ

2 , and subtract λ
2 from c(u0, u1).

In three out of the four cases presented here, we are able to contract an edge incident to
a degree-two vertex. We can check these conditions in total time O(n) for the whole graph.
Over the course of the algorithm, we perform edge contractions and thus routinely encounter
vertices whose neighborhood has been contracted and thus have a degree of two. Thus, these
reductions are able to reduce the size of the graph significantly even if the initial graph is
rather dense and does not have a lot of low degree vertices.

3.3 Putting it all together
Algorithm 1 gives an overview over our algorithm to find all minimum cuts. Over the course
of the algorithm we keep an upper bound λ̂ for the minimum cut, initially set to the result of
the inexact variant of the VieCut minimum cut algorithm [28]. While the VieCut algorithm
also offers an exact version [26], we use the inexact version, as it is considerably faster
and gives a low upper bound for the minimum cut, usually equal to the minimum cut. As
described in Section 3.1, we use this bound to contract degree-one vertices, high-connectivity
edges and edges whose local neighborhood guarantees that they are not part of any minimum
cut. We repeat this process until it is converged, as an edge contraction can cause other
edges in the neighborhood to also become safely contractible. As this process often incurs a
long tail of single edge contractions, we stop if the number of vertices was decreased by less
than 1% over a run of all contraction routines.

We then use the minimum cut algorithm of Nagamochi, Ono and Ibaraki [43, 46] on the
remaining graph, as the following steps need the correct minimum cut. To find all minimum
cuts in the contracted graph, we call our optimized version of the algorithm of Nagamochi et al.
[45], as sketched in Section 3.2, and afterwards re-insert all minimum cut edges that were

ESA 2020

59:10 Finding All Global Minimum Cuts in Practice

previously deleted. Before each recursive call of the algorithm of Nagamochi et al. [45], we
contract edges incident to degree-one and eligible degree-two vertices. Every 10 recursion
levels we additionally check for connectivity-based edge contractions and local contractions.

3.4 Shared-Memory Parallelism
Algorithm 1 employs shared-memory parallelism in every step. When we run the algorithm in
parallel, we use the parallel variant of VieCut [28]. Local contraction and marking of degree
one vertices are parallelized using OpenMP [13]. For the first round of connectivity-based
contraction, we use the parallel connectivity certificate used in the shared-memory parallel
minimum cut algorithm by Henzinger et al. [26]. This connectivity certificate is essentially
a parallel version of the connectivity certificate of Nagamochi et al. [43, 46], in which the
processors divide the work of computing the connectivity bounds for all edges of the graph. In
subsequent iterations every processor runs an independent run of the connectivity certificate
of Nagamochi et al. on the whole graph starting from different random vertices in the graph.
As the connectivity bounds given by the algorithm heavily depend on the starting vertex, this
allows us to find significantly more contractible edges per round than running the connectivity
certificate only once.

We use the shared-memory parallel minimum cut algorithm of Henzinger et al. [26] to find
the exact minimum cut of the graph. The algorithm of Nagamochi et al. [45] is not shared-
memory parallel, however we usually manage to contract the graph to a size proportional to
the minimum cut cactus before calling them. Unfortunately it is not beneficial to perform the
recursive calls embarrassingly parallel, as in almost all cases one of the connected components
of the residual graph contains the vast majority of vertices and thus also has the overwhelming
majority of work.

4 Applications

We can use the minimum cut cactus CG to find a minimum cut fulfilling certain balance
criteria, such as a most balanced minimum cut, e.g. a minimum cut (A, V \A) that maximizes
min(|A|, |V \A|). Note that this is not equal to the most balanced s-t-cut problem, which
is NP hard [9]. Following that we show how to modify the algorithm to find the optimal
minimum cut for other optimization functions.

One can find a most balanced minimum cut trivially in time O
(
(n∗)3), as one can

enumerate all O
(
(n∗)2) minimum cuts [33] and add up the number of vertices of the original

graph G on either side. We now show how to find a most balanced minimum cut of a graph
G in O(n∗ +m∗) time, given the minimum cut cactus graph CG.

For every cut (A, V \A), we define the balance b(A) (or b(V \A)) of the cut as the number
of vertices of the original graph encompassed in the lighter side of the cut. Recall that for any
node v ∈ VG, c(v) is the number of vertices of G represented by v. For a leaf v ∈ VG, we set
its weight w(v) = c(v) and set the balance b(v) to be the minimum of w(v) and n−w(v). We
root CG in an arbitrary vertex and depending on that root define w(v) as the sum of vertex
weights in the subcactus rooted in v; and b(v) accordingly. For a cycle C = {c1, . . . , ci}, we
define b(cj , . . . , ck mod i) with 0 ≥ j ≥ k analogously as the balance of the minimum cut
splitting the cycle so that the sub-cacti rooted in cj , . . . , ck mod i are on one side of the cut
and the rest are on the other side (see blue line in Figure 2 for an example).

Let TG be the tree representation of CG where each cycle in CG is contracted into a single
vertex. We perform a depth-first search on TG rooted on an arbitrary vertex and check the
balance of every cut in TG when backtracking.

M. Henzinger, A. Noe, C. Schulz, and D. Strash 59:11

...

...

...

Q2

Q1

Figure 2 Cycle check in balanced cut algorithm.

As CG is not necessarily a tree, we might encounter cycles and we explain next how
to extend the depth first search to handle such cycles. Let C = {c0, . . . , ci−1} be a cycle
and c0 be the vertex encountered first by the DFS. Due to the cactus graph structure of
CG, the depth-first search backtracks from a vertex vcy in TG that represents C only after
all subtrees rooted in C are explored. Thus, we know the weight of all subtrees rooted in
vertices c1, . . . , ci−1 when backtracking. The weight of c0 is equal to n minus the sum of
these sub-cactus weights.

Examining all cuts in the cycle would take i3 time, but as we only want to find the most
balanced cut, we can check only a subset of them, as shown in Algorithm 2. Q1 and Q2 are
queues, thus elements are ordered and the following operations are supported: queue adds an
element to the back of the queue, called the tail of the queue, dequeue removes the element
at the front of the queue, called the head of the queue. We implicitly use the fact that queues
can only be appended to, thus an element q was added to the queue after all elements that
are closer to the head of the queue and before all elements that are closer to its tail.

Algorithm 2 Algorithm to find most balanced cut in cycle {c0, . . . , ci−1}.

1: procedure BalanceInCycle(G = (V,E), C = {c1, . . . , ci})
2: bOPT ← 0
3: Q1 = Queue({})
4: Q2 = Queue({c0, c1, . . . , ci−1})
5: while c0 not Q1.head() for second time do
6: bOPT ← checkBalance(Q1, Q2)
7: if w(Q1) > w(Q2) then
8: Q2.queue(Q1.dequeue())
9: else
10: Q1.queue(Q2.dequeue())
11: return bOPT

The weight of a queue w(Q) is denoted as the weight of its contents. For queue Q =
{cj mod i, . . . , ck mod i} with 0 ≤ j ≤ k, we use the notation wj mod i,k mod i to denote the
weight of Q and wj mod i,k mod i as the weight of the queue that contains all cycle vertices
not in Q.

In every step of the algorithm, the cut represented by the current state of the queues
consists of the two edges connecting the queue heads to the tails of the respective other
queue. Initially Q1 is empty and Q2 contains all elements, in order from c0 to ci−1. In every

ESA 2020

59:12 Finding All Global Minimum Cuts in Practice

step of the algorithm, we dequeue one element and queue it in the other queue. Thus, at
every step each cycle vertex is in exactly one queue. When we check the balance of a cut,
we compute the weight of each queue at the current point in time; and update bOPT , the
best balance found so far, if (Q1, Q2) is more balanced. As we only move one cycle vertex
in each step, we can check the balance of an adjacent cut in constant time by adding and
subtracting the weight of the moved vertex to the weights of each set.

I Lemma 3. Algorithm 2 terminates after O(i) steps.

Proof. In each step of Algorithm 2, one queue head is moved to the other queue. The
algorithm terminates when c0 is the head of Q1 for the second time. In the first step, c0 is
moved to Q1, as the empty queue Q1 is the lighter one. The algorithm terminates after c0
then performs a full round through both queues and is the head of Q1 again. At termination,
c0 was thus moved a total of three times, twice from Q2 to Q1 and once the other way. As
no element can ’overtake’ c0 in the queues, every vertex will be moved at most three times.
Thus, we enter the loop at most 3i times, each time only using a constant amount of time. J

In Algorithm 2, we only check the balance of a subset of cuts represented by edges in the
cycle C. Lemma 5 shows that none of the disregarded cuts can have balance better than
bOPT and we thus find the most balanced minimum cut. We call a cut disregarded if its
balance was never checked (Line 6), and considered otherwise. In order to prove correctness
of Algorithm 2, we first show the following Lemma:

I Lemma 4. Each vertex in the cycle is dequeued from Q1 at least once in the algorithm.

Proof. The algorithm terminates when c0 is the head of Q1 for the second time. For this, it
needs to be moved from Q2 to Q1 twice. As we queue elements to the back of a queue, all
vertices are dequeued from Q2 before c0 is dequeued from it for the second time. In order
for c0 to become the head of Q1 again, all elements that were added beforehand need to be
dequeued from Q1. J

I Lemma 5. Algorithm 2 finds the most balanced minimum cut represented by cycle C.

Proof. We now prove for each cl ∈ C that all disregarded cuts containing the cycle edge
separating cl from c(l−1) mod i are not more balanced than the most balanced cut found so
far. As no disregarded cut can be more balanced than the most balanced cut considered in
the algorithm, the output of the algorithm is the most balanced minimum cut; or one of
them if multiple cuts of equal balance exist.

cl

cl−1 mod i

ck+1 mod i

ck mod i
cj mod i

cj+1 mod i
Q1

Figure 3 State of Q1 at time tl (cut in blue). Cut in red denotes cut considered at time t∗.

M. Henzinger, A. Noe, C. Schulz, and D. Strash 59:13

Let tl be the time that cl becomes the head of Q1 for the first time. Figure 3 shows
the state of Q1 at that point in time. Let ck mod i be the tail of Q1 at time tl for some
integer k. Right before tl, cl−1 mod i was head of the heavier queue Q1 and thus dequeued,
i.e. Q1 = {cl−1 mod i, . . . , ck mod i} has weight wl−1 mod i,k mod i ≥ wl−1 mod i,k mod i and cl is
now head of Q1.

From this point tl the algorithm considers cuts that separate cl from cl−1 mod i. While
Q1 is not heavier than Q2, we add more elements to the tail of Q1 (and check the respective
cuts) until Q1 is the heavier queue. Let t∗ be the time when this happens and cj mod i with
j ≥ k be the tail of Q1 at this point. Note that at time t∗, cl is about to be dequeued from
Q1. The red cut in Figure 3 shows the cut at time t∗, where wcl,cj mod i

> wcl,cj mod i
.

We now prove that all cuts in which cl is the head of Q1 and its tail is not between
ck mod i and cj mod i cannot be more balanced than the most balanced cut considered so far.

For all cuts where cl is head of Q1 and Q1 also contains cj+1 mod i, Q1 is heavier
than wl,j mod i, as it contains all elements in cl, . . . , cj mod i plus at least one more. As
wl,j mod i > wl,j mod i, i.e. Q1 is already heavier when cj mod i is its tail, all of these cuts are
less balanced than ({cl, . . . , cj mod i}, C\{cl, . . . , cj mod i}).

For the cuts in which ck mod i is in Q2, i.e. Q1 is lighter than at time tl, we need to
distinguish two cases, depending on whether wl,k mod i is larger than wl,k mod i or not.

If wl,k mod i ≤ wl,k mod i, all cuts in which cl is the head of Q1 and ck mod i is in Q2 are
less balanced than ({cl, . . . , ck mod i}, C\{cl, . . . , ck mod i}), as Q1 is lighter than it is at tl,
where it was already not the heavier queue.

If wl,k mod i > wl,k mod i, there might be cuts in which cl is the head of Q1 that are more
balanced than ({cl, . . . , ck mod i}, C\{cl, . . . , ck mod i}) in which Q1 is lighter than at time tl.
Thus, consider time t′ when ck mod i was added to Q1. Such a time must exist, since Q1
is initially empty. As ck mod i is already the tail of Q1 at time tl, t′ < tl. At that time Q1
contained cl−1 mod i, . . . , ck−1 mod i and potentially more vertices.

Still, wl−1 mod i,k−1 mod i ≤ wl−1 mod i,k−1 mod i, as otherwise ck mod i would not have
been added to Q1. Obviously wl−1 mod i,k−1 mod i > wl,k−1 mod i, as Q1 is even lighter when
cl−1 mod i is dequeued. As wl−1 mod i,k−1 mod i is already not heavier than its complement,
({cl, . . . , ck−1 mod i}, C\{cl, . . . , ck−1 mod i}) is more imbalanced than the cut examined just
before time t′. Thus, all cuts where cl is the head of Q1 and ck−1 mod i is in Q2 are even
more imbalanced, as Q1 is even lighter.

Coming back to the outline shown in Figure 3, we showed that for all cuts in which cl
is head of Q1 and Q1 is lighter than at time tl (left of blue cut) and all cuts where Q1 is
heavier than at time t∗ (below red cut) can be safely disregarded, as a more balanced cut
than any of them was considered at some point between t′ and t∗. The algorithm considers
next all cuts with cl as head of Q1 and the tail of Q1 between ck mod i and cj mod i. Thus,
the algorithm will return a cut that is at least as balanced as the most balanced cut that
separates cl and cl−1 mod i. This is true for every cycle vertex vl ∈ C, which concludes the
proof. J

This allows us to perform the depth-first search and find the most balanced minimum
cut in CG in time O(n∗ +m∗). This algorithm can be adapted to find the minimum cut
of any other optimization function of a cut that only depends on the (weight of the) edges
on the cut and the (weight of the) vertices on either side of the cut. In order to retain the
linear running time of the algorithm, the function needs to be evaluable in constant time
on a neighboring cut. For example, we can find the minimum cut of lowest conductance.
The conductance of a cut (S, V \ S) is defined as λ(S,(V \S))

min(a(S),a(V \S)) , where a(S) is the sum of
degrees for all vertices in set S. Note that this is not the minimum conductance cut problem,

ESA 2020

59:14 Finding All Global Minimum Cuts in Practice

which is NP-hard [4], as we only look at the minimum cuts. To find the minimum cut of
lowest conductance, we set the weight of a vertex vCG

∈ CG to the sum of vertex degrees
encompassed in vCG

. Otherwise the algorithm remains the same.

5 Experiments and Results

We now perform an experimental evaluation of the proposed algorithms. This is done in
the following order: first analyze the impact of algorithmic components on our minimum
cut algorithm in a non-parallel setting, i.e. we compare different variants for edge selection
and see the impact of the various optimizations detailed in this work. Afterwards, we report
parallel speedup on a variety of large graphs.

Experimental Setup and Methodology

We implemented the algorithms using C++-17 and compiled all code using g++ version 8.3.0
with full optimization (-O3). Our experiments are conducted on a machine with two Intel
Xeon Gold 6130 processors with 2.1GHz with 16 CPU cores each and 256 GB RAM in total.
We perform five repetitions per instance and report average running time. In this section we
first describe our experimental methodology. Afterwards, we evaluate different algorithmic
choices in our algorithm and then we compare our algorithm to the state of the art. When
we report a mean result we give the geometric mean as problems differ significantly in cut
size and time. Our code is freely available under the permissive MIT license 1.

Instances

We use a variety of graphs from the 10th DIMACS Implementation challenge [6] and the
SuiteSparse Matrix Collection [15]. These are social graphs, web graphs, co-purchase matrices,
cooperation networks and some generated instances. Table 2 shows a set of smaller instances
and Table 3 shows a set of larger and harder to solve instances. All instances are undirected.
If the original graph is directed, we generate an undirected graph by removing edge directions
and then removing duplicate edges. If a network has multiple connected components, we run
on the largest.

As most large real-world networks have cuts of size 1, finding all minimum cuts becomes
essentially the same as finding all bridges, which can be solved in linear time using depth-first
search [55]. However, usually there is usually one huge block that is connected by minimum
cuts to a set of small and medium size blocks. Thus, we use our algorithm to generate a
more balanced set of instances. We find all minimum cuts and contract each edge that does
not connect two vertices of the largest block. Thus, the remaining graph only contains the
huge block and is guaranteed to have a minimum cut value > λ. We use this method to
generate multiple graphs with different minimum cuts for each instance.

5.1 Edge Selection
Figure 4 shows the results for the graphs in Table 2. We compute the cactus graph
representing all minimum cuts using the edge selection variants Random, Central, Heavy and
HeavyWeighted, as detailed in Section 3.2. As we want a majority of the running time in
the recursive algorithm of Nagamochi et al. [45], where we actually select edges, we run a
variant of our algorithm that only contracts edges using connectivity-based contraction and
then runs the algorithm of Nagamochi et al. [45].

1 https://github.com/VieCut/VieCut

https://github.com/VieCut/VieCut

M. Henzinger, A. Noe, C. Schulz, and D. Strash 59:15

0 50 100 150 200 250
Best time [in s]

1.0

1.5

2.0

2.5

3.0

3.5

Sl
ow

do
wn

 to
 fa

st
es

t v
ar

ia
nt

Random
HeavyWeighted
Heavy
Central

Figure 4 Effect of edge selection strategies.

We can see that in the graphs which cannot be contracted quickly, Random is significantly
slower than all other variants. On cnr-2000, Random takes over 700 seconds in average,
whereas all other variants finish in approximately 200 seconds. This happens independently
of the random seed used, there is no large deviation in the running time on any of the graphs.
On almost all graphs, the variants Heavy and HeavyWeighted are within 3% of each other,
which is not surprising, as the variants are almost identical. While it optimizes for ’edge
centrality’ very directly, Central has two iterations of breadth-first search in each edge
selection and thus a sizable overhead. For this reason it is usually 5− 15% slower than Heavy
and is not the fastest algorithm on any graph. On graphs with large n∗, all three variants
manage to shrink the graph significantly faster than Random.

On graphs with a low value of n∗, we can see that Random is slightly faster than the
other variants. There is no significant difference in the shrinking of the graph, as almost all
selected edges have connectivity larger than λ and thus only trigger a single edge contraction
anyway. Thus, not spending the extra work of finding a “good” edge results in a slightly
lower running time. In the following we will use variant Heavy, which is the only variant
that is never more than 30% slower than the fastest variant on any graph.

5.2 Optimization
We now examine the effect of the different optimizations. For this purpose, we benchmarks
different variants on a variety of graphs. We hereby compare the following variants that
build on one another: as a baseline, BasicCactus runs the algorithm of Nagamochi, Nakao
and Ibaraki [45] on the input graph. +Connectivity additionally runs VieCut [28] to find
an upper bound for the minimum cut and uses this to contract high-connectivity edges
as described in Section 3.1.1. In addition to this, +LocalContract also contracts edges
whose neighborhood guarantees that they are not part of any minimum cut, as described in
Section 3.1.2 and Lemma 2. +DegreeOne runs also the last remaining contraction routine from
Algorithm 1, contraction and re-insertion of degree-one vertices as described in Section 3.1.3.

+C&LInCactus additionally runs high-connectivity and local contraction in every tenth
recursion step. +D1InCactus additionally contracts and re-inserts degree-one vertices in
every recursion step. FullAlgorithm also runs the degree-two contraction as described in
Section 3.2.2. We compare these variants on the graphs in Tables 2 and 3. We use a timeout
of 30 minutes on these graphs. If the baseline algorithm does not finish in the allotted time,
we report speedup to the timeout, so a lower bound for the actual speedup.

Figure 5a shows the speedup of all variants to the baseline variant BasicCactus on all
graphs in Table 2. We can see that already just adding +Connectivity gives a speedup
of more than an order of magnitude for each of the graphs in the dataset. Most of the

ESA 2020

59:16 Finding All Global Minimum Cuts in Practice

0 5 10 15 20 25 30
instances

Timeout
1

10

100

1000

10000
Sp

ee
du

p
to

 B
as

icC
ac

tu
s

BasicCactus
+Connectivity
+LocalContract
+DegreeOne
+C&LInCactus
+D1InCactus
+D2InCactus

(a) Speedup to BasicC on small graphs (Table 2)

0 5 10 15 20 25 30
instances

Timeout
1

10

100

1000

10000

Sp
ee

du
p

to
 +

Co
nn

ec
tiv

ity

+Connectivity
+LocalContract
+DegreeOne
+C&LInCactus
+D1InCactus
+D2InCactus

(b) Speedup to +Conn on large graphs (Table 3)

Figure 5 Speedup to respective basic version.

other optimizations manage to improve the running time of at least some instances by a
large margin. Especially +DegreeOne, which is the first contraction for edges that are in a
minimum cut, has speedups of multiple orders of magnitude in some instances. This is the
case as minimum cut edges that are incident to a degree-one vertex previously incur a flow
problem on the whole graph each. However, it is very easy to see that the edge will be part of
exactly one minimum cut, thus we can contract and re-insert it in constant time. Especially
in graphs whose minimum cut is 1, all edges can be quickly contracted, as they will either be
incident to a degree-one vertex or be quickly certified to have a connectivity value of > 1.

While rerunning Connectivity and LocalContract inside of the recursive algorithm of
Nagamochi et al. [45] does usually not yield a large speedup, many graphs develop degree-one
vertices by having their whole neighborhood contracted. Thus, +D1InCactus has a significant
speedup for most graphs in which n∗ is sufficiently large. FullAlgorithm has an even larger
speedup on these graphs, even when the minimum cut is significantly higher than 2, as there
are often cascading effects where the contraction of an edge incident to a degree-two vertex
often lowers the degree of neighboring vertices to two.

Figure 5b shows the speedup of all variants. As variant BasicCactus is not able to solve
any of these instances in 30 minutes, we use +Connectivity as a baseline. The results are
similar to Figure 5a, but we can see even clearer how useful the contraction of degree-two
vertices is in finding all minimum cuts: FullAlgorithm often has a speedup of more than an
order of magnitude to all other variants and is the only variant that never times out.

5.3 Shared-memory Parallelism
Table 1 shows the average running times of our algorithm both sequential and with 16 threads
on huge social and web graphs. Each of these graphs has more than a billion of edges and
more than a million vertices in the cactus graph depicting all minimum cuts. On these graphs
we have a parallel speedup factor of 5.7x to 9.1x using 16 threads. On all of these graphs,
a large part of the running time is spent in the first iteration of the kernelization routines,
which already manages to contract most dense blocks in the graph. Thus, all subsequent
operations can be performed on significantly smaller problems and are therefore much faster.

Table 1 Huge social and web graphs. n∗ denotes number of vertices in cactus graph, max n and
max m denote size of smaller block in most balanced cut.

Name n m n∗ λ max. n max. m seq. t par. t

friendster 65.6M 1.81B 13.99M 1 897 1 793 1266.35s 138.34s
twitter7 41.7M 1.20B 1.93M 1 47 1 893 524.86s 72.51s

uk-2007-05 104.3M 3.29B 9.66M 1 49 984 13.8M 229.18s 40.16s

M. Henzinger, A. Noe, C. Schulz, and D. Strash 59:17

6 Conclusion

We engineered an algorithm to find all minimum cuts in large undirected graphs. Our
algorithm combines multiple kernelization routines with an engineered version of the algorithm
of Nagamochi, Nakao and Ibaraki [45] to find all minimum cuts of the reduced graph. Our
experiments show that our algorithm can find all minimum cuts of huge social networks with
up to billions of edges and millions of minimum cuts in a few minutes on shared memory.
We found that especially the contraction of high-connectivity edges and efficient handling of
low-degree vertices can give huge speedups. Additionally we give a linear time algorithm to
find the most balanced minimum cut given the cactus graph representation of all minimum
cuts. Future work includes finding near-minimum cuts.

References
1 Faisal N. Abu-Khzam, Shaowei Cai, Judith Egan, Peter Shaw, and Kai Wang. Turbo-

charging dominating set with an FPT subroutine: Further improvements and experi-
mental analysis. In Proc. 14th Annual Conference on Theory and Applications of Mod-
els of Computation (TAMC 2017), volume 10185 of LNCS, pages 59–70. Springer, 2017.
doi:10.1007/978-3-319-55911-7_5.

2 Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT algorithms in practice:
A case study of vertex cover. Theor. Comput. Sci., 609, Part 1:211–225, 2016. doi:10.1016/
j.tcs.2015.09.023.

3 Takuya Akiba, Yoichi Iwata, Yosuke Sameshima, Naoto Mizuno, and Yosuke Yano. Cut tree
construction from massive graphs. In Proc. 16th International Conference on Data Mining
(ICDM 2016), pages 775–780, 2016. doi:10.1109/ICDM.2016.0089.

4 Reid Andersen and Kevin J Lang. An algorithm for improving graph partitions. In Proc. 19th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 651–660. SIAM, 2008. URL:
https://dl.acm.org/doi/10.5555/1347082.1347154.

5 Richard J Anderson and Heather Woll. Wait-free parallel algorithms for the union-find problem.
In Proc. 23rd ACM Symposium on Theory of Computing, STOC ’91, pages 370–380. ACM,
1991. doi:10.1145/103418.103458.

6 David A Bader, Henning Meyerhenke, Peter Sanders, Christian Schulz, Andrea Kappes, and
Dorothea Wagner. Benchmarking for graph clustering and partitioning. Encyclopedia of Social
Network Analysis and Mining, pages 73–82, 2014. doi:10.1007/978-1-4614-7163-9_23-1.

7 Max Bannach and Sebastian Berndt. Practical access to dynamic programming on tree
decompositions. In Proc. 26th European Symposium on Algorithms (ESA’18), volume 112
of LIPIcs, pages 6:1–6:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.ESA.2018.6.

8 Sebastian Böcker, Sebastian Briesemeister, and Gunnar W. Klau. Exact algorithms for cluster
editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2011. doi:10.1007/
s00453-009-9339-7.

9 Paul Bonsma. Most balanced minimum cuts. Discrete Appl. Math., 158(4):261–276, February
2010. doi:10.1016/j.dam.2009.09.010.

10 Deng Cai, Zheng Shao, Xiaofei He, Xifeng Yan, and Jiawei Han. Mining hidden community
in heterogeneous social networks. In Proc. 3rd International Workshop on Link Discovery
(LinkKDD ’05), pages 58–65. ACM, 2005. doi:10.1145/1134271.1134280.

11 Lijun Chang, Wei Li, and Wenjie Zhang. Computing a near-maximum independent set in
linear time by reducing-peeling. In Proc. 2017 ACM International Conference on Management
of Data (SIGMOD ’17), pages 1181–1196. ACM, 2017. doi:10.1145/3035918.3035939.

12 Chandra S. Chekuri, Andrew V. Goldberg, David R. Karger, Matthew S. Levine, and Cliff
Stein. Experimental study of minimum cut algorithms. In Proc. 8th Symposium on Discrete
Algorithms (SODA ’97), pages 324–333. SIAM, 1997. URL: https://dl.acm.org/doi/10.
5555/314161.314315.

ESA 2020

https://doi.org/10.1007/978-3-319-55911-7_5
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1109/ICDM.2016.0089
https://dl.acm.org/doi/10.5555/1347082.1347154
https://doi.org/10.1145/103418.103458
https://doi.org/10.1007/978-1-4614-7163-9_23-1
https://doi.org/10.4230/LIPIcs.ESA.2018.6
https://doi.org/10.4230/LIPIcs.ESA.2018.6
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1016/j.dam.2009.09.010
https://doi.org/10.1145/1134271.1134280
https://doi.org/10.1145/3035918.3035939
https://dl.acm.org/doi/10.5555/314161.314315
https://dl.acm.org/doi/10.5555/314161.314315

59:18 Finding All Global Minimum Cuts in Practice

13 Leonardo Dagum and Ramesh Menon. OpenMP: An industry standard API for shared-
memory programming. IEEE Computational Science and Engineering, 5(1):46–55, 1998.
doi:10.1109/99.660313.

14 Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F.
Werneck. Accelerating local search for the maximum independent set problem. In Proc. 15th
International Symposium on Experimental Algorithms (SEA 2016), volume 9685 of LNCS,
pages 118–133. Springer, 2016. doi:10.1007/978-3-319-38851-9_9.

15 Timothy A Davis and Yifan Hu. The University of Florida sparse matrix collection. ACM
Trans. Mathematical Software (TOMS), 38(1):1, 2011. doi:10.1145/2049662.2049663.

16 Chris HQ Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D Simon. A min-max
cut algorithm for graph partitioning and data clustering. In Proc. 2001 IEEE International
Conference on Data Mining (ICDM 2001), pages 107–114. IEEE, 2001. doi:10.1109/ICDM.
2001.989507.

17 Damir Ferizovic, Demian Hespe, Sebastian Lamm, Matthias Mnich, Christian Schulz, and
Darren Strash. Engineering kernelization for maximum cut. In Proc. 22nd Symposium
on Algorithm Engineering and Experiments (ALENEX 2020), pages 27–41. SIAM, 2020.
doi:10.1137/1.9781611976007.3.

18 Rudolf Fleischer, Xi Wu, and Liwei Yuan. Experimental study of FPT algorithms for the direc-
ted feedback vertex set problem. In Proc. 17th European Symposium on Algorithms (ESA 2009),
volume 5757 of LNCS, pages 611–622. Springer, 2009. doi:10.1007/978-3-642-04128-0_55.

19 Harold N Gabow. Applications of a poset representation to edge connectivity and graph
rigidity. In Proc. 32nd Symposium of Foundations of Computer Science (FOCS ’91), pages
812–821. IEEE, 1991. doi:10.1109/SFCS.1991.185453.

20 Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge con-
nectivity via random 2-out contractions. In Proc. 2020 ACM-SIAM Symposium on Discrete
Algorithms (SODA 2020), pages 1260–1279. SIAM, 2020. doi:10.1137/1.9781611975994.77.

21 Lukas Gianinazzi, Pavel Kalvoda, Alessandro De Palma, Maciej Besta, and Torsten Hoefler.
Communication-avoiding parallel minimum cuts and connected components. In Proc. 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages
219–232. ACM, 2018. doi:10.1145/3200691.3178504.

22 Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

23 Ralph E. Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961. doi:10.1137/0109047.

24 Lars Hagen and Andrew B Kahng. New spectral methods for ratio cut partitioning and
clustering. IEEE Trans. on Computer-aided Design of Integrated Circuits and Systems,
11(9):1074–1085, 1992. doi:10.1109/43.159993.

25 Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity. Information
Processing Letters, 76(4-6):175–181, 2000. doi:10.1016/S0020-0190(00)00142-3.

26 Monika Henzinger, Alexander Noe, and Christian Schulz. Shared-memory exact minimum cuts.
In Proc. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS
2019), pages 13–22. IEEE, 2019. doi:10.1109/IPDPS.2019.00013.

27 Monika Henzinger, Alexander Noe, and Christian Schulz. Shared-memory branch-and-reduce
for multiterminal cuts. In Proc. 22nd Symposium on Algorithm Engineering and Experiments
(ALENEX 2020), pages 42–55. SIAM, 2020. doi:10.1137/1.9781611976007.4.

28 Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Practical minimum
cut algorithms. ACM Journal of Experimental Algorithmics, 23, 2018. doi:10.1145/3274662.

29 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. We got you covered:
The winning solver from the PACE 2019 challenge, vertex cover track. In Proc. SIAM
Workshop on Combinatorial Scientific Computing 2020 (CSC20), pages 1–11. SIAM, 2020.
doi:10.1137/1.9781611976229.1.

30 Demian Hespe, Christian Schulz, and Darren Strash. Scalable kernelization for maximum inde-
pendent sets. In Proc. 20th Workshop on Algorithm Engineering and Experiments (ALENEX
2018), pages 223–237, 2018. doi:10.1137/1.9781611975055.19.

https://doi.org/10.1109/99.660313
https://doi.org/10.1007/978-3-319-38851-9_9
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/ICDM.2001.989507
https://doi.org/10.1109/ICDM.2001.989507
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1007/978-3-642-04128-0_55
https://doi.org/10.1109/SFCS.1991.185453
https://doi.org/10.1137/1.9781611975994.77
https://doi.org/10.1145/3200691.3178504
https://doi.org/10.1145/48014.61051
https://doi.org/10.1137/0109047
https://doi.org/10.1109/43.159993
https://doi.org/10.1016/S0020-0190(00)00142-3
https://doi.org/10.1109/IPDPS.2019.00013
https://doi.org/10.1137/1.9781611976007.4
https://doi.org/10.1145/3274662
https://doi.org/10.1137/1.9781611976229.1
https://doi.org/10.1137/1.9781611975055.19

M. Henzinger, A. Noe, C. Schulz, and D. Strash 59:19

31 Michael Jünger, Giovanni Rinaldi, and Stefan Thienel. Practical performance of efficient
minimum cut algorithms. Algorithmica, 26(1):172–195, 2000. doi:10.1007/s004539910009.

32 Goossen Kant. Algorithms for drawing planar graphs. PhD thesis, Utrecht University, 1993.
URL: https://www.persistent-identifier.nl/urn:nbn:nl:ui:10-1874-842.

33 David R Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–76, 2000.
doi:10.1145/331605.331608.

34 David R. Karger. A randomized fully polynomial time approximation scheme for the all-
terminal network reliability problem. SIAM Review, 43(3):499–522, 2001. doi:10.1137/
S0036144501387141.

35 David R Karger and Clifford Stein. A new approach to the minimum cut problem. Journal of
the ACM, 43(4):601–640, 1996. doi:10.1145/234533.234534.

36 Alexander V Karzanov and Eugeniy A Timofeev. Efficient algorithm for finding all minimal
edge cuts of a nonoriented graph. Cybernetics and Systems Analysis, 22(2):156–162, 1986.
doi:10.1007/BF01074775.

37 Krzysztof Kiljan and Marcin Pilipczuk. Experimental evaluation of parameterized algorithms
for feedback vertex set. In Proc. 17th International Symposium on Experimental Algorithms
(SEA 2018), volume 103 of LIPIcs, pages 12:1–12:12, 2018. doi:10.4230/LIPIcs.SEA.2018.12.

38 Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche. Data
reduction for maximum matching on real-world graphs: Theory and experiments. In Proc.
26th European Symposium on Algorithms (ESA 2018), volume 112 of LIPIcs, pages 53:1–53:13,
2018. doi:10.4230/LIPIcs.ESA.2018.53.

39 Arie MCA Koster, Hans L Bodlaender, and Stan PM Van Hoesel. Treewidth: com-
putational experiments. Electronic Notes in Discrete Mathematics, 8:54–57, 2001. doi:
10.1016/S1571-0653(05)80078-2.

40 Balakrishnan Krishnamurthy. An improved min-cut algorithm for partitioning VLSI networks.
IEEE Trans. on Computers, 33(5):438–446, 1984. doi:10.1109/TC.1984.1676460.

41 Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo Zhang.
Exactly solving the maximum weight independent set problem on large real-world graphs.
In Proc. 21st Workshop on Algorithm Engineering and Experiments (ALENEX 2019), pages
144–158. SIAM, 2019. doi:10.1137/1.9781611975499.12.

42 Tobias Maier, Peter Sanders, and Roman Dementiev. Concurrent hash tables: Fast and
general(?)! ACM Trans. Parallel Comput., 5(4), 2019. doi:10.1145/3309206.

43 Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs
and capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66, 1992. doi:
10.1137/0405004.

44 Hiroshi Nagamochi and Tiko Kameda. Canonical cactus representation for minimum cuts.
Japan Journal of Industrial and Applied Mathematics, 11(3):343–361, 1994. doi:10.1007/
BF03167227.

45 Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide Ibaraki. A fast algorithm for cactus
representations of minimum cuts. Japan Journal of Industrial and Applied Mathematics,
17(2):245–264, 2000. doi:10.1007/BF03167346.

46 Hiroshi Nagamochi, Tadashi Ono, and Toshihide Ibaraki. Implementing an efficient minimum
capacity cut algorithm. Math. Prog., 67(1):325–341, 1994. doi:10.1007/BF01582226.

47 Dalit Naor, Dan Gusfield, and Charles Martel. A fast algorithm for optimally increasing
the edge connectivity. SIAM Journal on Computing, 26(4):1139–1165, 1997. doi:10.1137/
S0097539792234226.

48 Dalit Naor and Vijay V Vazirani. Representing and enumerating edge connectivity cuts in
RNC. In Proc. 2nd Workshop on Algorithms and Data Structures (WADS 1991), volume 519
of LNCS, pages 273–285. Springer, 1991. doi:10.1007/BFb0028269.

49 Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems. SIAM Review, 33(1):60–100, 1991.
doi:10.1137/1033004.

ESA 2020

https://doi.org/10.1007/s004539910009
https://www.persistent-identifier.nl/urn:nbn:nl:ui:10-1874-842
https://doi.org/10.1145/331605.331608
https://doi.org/10.1137/S0036144501387141
https://doi.org/10.1137/S0036144501387141
https://doi.org/10.1145/234533.234534
https://doi.org/10.1007/BF01074775
https://doi.org/10.4230/LIPIcs.SEA.2018.12
https://doi.org/10.4230/LIPIcs.ESA.2018.53
https://doi.org/10.1016/S1571-0653(05)80078-2
https://doi.org/10.1016/S1571-0653(05)80078-2
https://doi.org/10.1109/TC.1984.1676460
https://doi.org/10.1137/1.9781611975499.12
https://doi.org/10.1145/3309206
https://doi.org/10.1137/0405004
https://doi.org/10.1137/0405004
https://doi.org/10.1007/BF03167227
https://doi.org/10.1007/BF03167227
https://doi.org/10.1007/BF03167346
https://doi.org/10.1007/BF01582226
https://doi.org/10.1137/S0097539792234226
https://doi.org/10.1137/S0097539792234226
https://doi.org/10.1007/BFb0028269
https://doi.org/10.1137/1033004

59:20 Finding All Global Minimum Cuts in Practice

50 Jean-Claude Picard and Maurice Queyranne. On the structure of all minimum cuts in a
network and applications. In Combinatorial Optimization II, pages 8–16. Springer, 1980.
doi:10.1007/BFb0120902.

51 Aparna Ramanathan and Charles J Colbourn. Counting almost minimum cutsets with
reliability applications. Mathematical Programming, 39(3):253–261, 1987. doi:10.1007/
BF02592076.

52 Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in large
graphs, an experimental study. In Proc. 4th International Workshop on Experimental and
Efficient Algorithms (WEA 2005), volume 3503 of LNCS, pages 606–609. Springer, 2005.
doi:10.1007/11427186_5.

53 Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000. doi:10.1109/34.868688.

54 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. In Proc. 25th
European Symposium on Algorithms (ESA 2017), volume 87 of LIPIcs, pages 68:1–68:13, 2017.
doi:10.4230/LIPIcs.ESA.2017.68.

55 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

56 Reginald P Tewarson. Sparse matrices. Academic Press, 1973.
57 Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data clustering:

Theory and its application to image segmentation. IEEE Trans. on Pattern Analysis and
Machine Intelligence, pages 1101–1113, 1993. doi:10.1109/34.244673.

A Graph Instances

Table 2 Set of small graphs.

Name n m λ n∗

amazon 64 813 153 973 1 10 068
auto 448 695 3.31M 4 43

448 529 3.31M 5 102
448 037 3.31M 6 557
444 947 3.29M 7 1 128
437 975 3.24M 8 2 792
418 547 3.10M 9 5 814

caidaRouterLevel 190 914 607 610 1 49 940
cfd2 123 440 1.48M 7 15

citationCiteseer 268 495 1.16M 1 43 031
223 587 1.11M 2 33 423
162 464 862 237 3 23 373
109 522 435 571 4 16 670
73 595 225 089 5 11 878
50 145 125 580 6 8 770

cnr-2000 325 557 2.74M 1 87 720
192 573 2.25M 2 33 745
130 710 1.94M 3 11 604
110 109 1.83M 4 9 256
94 664 1.77M 5 4 262
87 113 1.70M 6 5 796
78 142 1.62M 7 3 213
73 070 1.57M 8 2 449

coAuthorsDBLP 299 067 977 676 1 45 242
cs4 22 499 43 858 2 2

delaunay_n17 131 072 393 176 3 1 484
fe_ocean 143 437 409 593 1 40

kron-logn16 55 319 2.46M 1 6 325
luxembourg 114 599 239 332 1 23 077

vibrobox 12 328 165 250 8 625
wikipedia 35 579 495 357 1 2 172

Table 3 Set of large graphs.

Name n m λ n∗

amazon-2008 735 323 3.52M 1 82 520
649 187 3.42M 2 50 611
551 882 3.18M 3 35 752
373 622 2.12M 5 19 813
145 625 582 314 10 64 657

coPapersCiteseer 434 102 16.0M 1 6 372
424 213 16.0M 2 7 529
409 647 15.9M 3 7 495
379 723 15.5M 5 6 515
310 496 13.9M 10 4 579

eu-2005 862 664 16.1M 1 52 232
806 896 16.1M 2 42 151
738 453 15.7M 3 21 265
671 434 13.9M 5 18 722
552 566 11.0M 10 23 798

hollywood-2009 1.07M 56.3M 1 11 923
1.06M 56.2M 2 17 386
1.03M 55.9M 3 21 890
942 687 49.2M 5 22 199
700 630 16.8M 10 19 265

in-2004 1.35M 13.1M 1 278 092
909 203 11.7M 2 89 895
720 446 9.2M 3 45 289
564 109 7.7M 5 33 428
289 715 5.1M 10 12 947

uk-2002 18.4M 261.6M 1 2.5M
15.4M 254.0M 2 1.4M
13.1M 236.3M 3 938 319
10.6M 207.6M 5 431 140
7.6M 162.1M 10 298 716

657 247 26.2M 50 24 139
124 816 8.2M 100 3 863

https://doi.org/10.1007/BFb0120902
https://doi.org/10.1007/BF02592076
https://doi.org/10.1007/BF02592076
https://doi.org/10.1007/11427186_5
https://doi.org/10.1109/34.868688
https://doi.org/10.4230/LIPIcs.ESA.2017.68
https://doi.org/10.1137/0201010
https://doi.org/10.1109/34.244673

Approximate Turing Kernelization for Problems
Parameterized by Treewidth
Eva-Maria C. Hols
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
eva-maria.hols@fkie.fraunhofer.de

Stefan Kratsch
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
kratsch@informatik.hu-berlin.de

Astrid Pieterse
Department of Computer Science, Humboldt-Universität zu Berlin, Germany
astrid.pieterse@informatik.hu-berlin.de

Abstract
We extend the notion of lossy kernelization, introduced by Lokshtanov et al. [STOC 2017], to
approximate Turing kernelization. An α-approximate Turing kernel for a parameterized optimization
problem is a polynomial-time algorithm that, when given access to an oracle that outputs c-
approximate solutions in O(1) time, obtains an α · c-approximate solution to the considered problem,
using calls to the oracle of size at most f(k) for some function f that only depends on the parameter.

Using this definition, we show that Independent Set parameterized by treewidth ` has a (1+ε)-
approximate Turing kernel with O(`2

ε
) vertices, answering an open question posed by Lokshtanov et

al. [STOC 2017]. Furthermore, we give (1 + ε)-approximate Turing kernels for the following graph
problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint
Triangle Packing and Connected Vertex Cover.

We generalize the result for Independent Set and Vertex Cover, by showing that all graph
problems that we will call friendly admit (1 + ε)-approximate Turing kernels of polynomial size
when parameterized by treewidth. We use this to obtain approximate Turing kernels for Vertex-
Disjoint H-packing for connected graphs H, Clique Cover, Feedback Vertex Set and Edge
Dominating Set.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Approximation, Turing kernelization, Graph problems, Treewidth

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.60

Related Version A full version of the paper [24] is available at https://arxiv.org/abs/2004.12683.

Funding Eva-Maria C. Hols and Astrid Pieterse: Supported by DFG Emmy Noether-grant (KR
4286/1).

1 Introduction

Many important computational problems are NP-hard and, thus, they do not have efficient
algorithms unless P = NP. At the same time, it is well known that efficient preprocessing can
greatly speed up (exponential-time) algorithms for solving NP-hard problems. The notion of
a kernelization from parameterized complexity has allowed a rigorous and systematic study
of this important paradigm. The central idea is to relate the effectiveness of preprocessing to
the structure of the input instances, as quantified by suitable parameters.

A parameterized problem consists of any (classical) problem together with a choice of one
or more parameters; we use (x, k) to denote an instance with input data x and parameter k.
A kernelization is an efficient algorithm that on input of (x, k) returns an equivalent instance

© Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 60; pp. 60:1–60:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2832-0722
mailto:eva-maria.hols@fkie.fraunhofer.de
https://orcid.org/0000-0002-0193-7239
mailto:kratsch@informatik.hu-berlin.de
https://orcid.org/0000-0003-3721-6721
mailto:astrid.pieterse@informatik.hu-berlin.de
https://doi.org/10.4230/LIPIcs.ESA.2020.60
https://arxiv.org/abs/2004.12683
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Approximate Turing Kernelization for Problems Parameterized by Treewidth

(x′, k′) of size upper bounded by f(k), where f is a computable function. For a polynomial
kernelization we require that the size bound f(k) is polynomially bounded in k. The study of
which parameterized problems admit (polynomial) kernelizations has turned into a very active
research area within parameterized complexity (see, e.g., [1, 5, 7, 8, 16, 23, 27, 28, 29, 31, 35]
and the recent book [17]). An important catalyst for this development lies in the ability
to prove lower bounds for kernelizations, e.g., to conditionally rule out polynomial kernels
for a problem, which was initiated through work of Bodlaender et al. [4] and Fortnow and
Santhanam [18].

Unfortunately, the lower bound tools have also revealed that many fundamental para-
meterized problems do not admit polynomial kernelizations (unless NP ⊆ coNP/poly and
the polynomial hierarchy collapses). These include a variety of problems like Connected
Vertex Cover [12], Disjoint Cycle Packing [6], Multicut [11], and k-Path [4] para-
meterized by solution size, but also essentially any NP-hard problem parameterized by width
parameters such as treewidth. This has motivated the study of relaxed forms of kernelization,
notably Turing kernelization [3] and lossy (or approximate) kernelization [30].

Given an input (x, k), a Turing kernelization may create |x|O(1) many instances of size at
most f(k) each, and the answer for (x, k) may depend on solutions for all those instances.
This is best formalized as an efficient algorithm that solves (x, k) while being allowed to
ask questions of size at most f(k) to an oracle. A priori, this is much more powerful than
regular kernelization, which creates only a single output instance. Nevertheless, there are
only few polynomial Turing kernelizations known for problems without (regular) polynomial
kernelization (e.g., [3, 26, 25, 34]). Moreover, a hardness-based approach of Hermelin et
al. [22] gives evidence that many problems are unlikely to admit polynomial Turing kernels.

More recently, Lokshtanov et al. [30] proposed a framework dedicated to the study of
lossy kernelization. This relaxes the task of the kernelization by no longer requiring that
an optimal solution to the output (x′, k′) yields an optimal solution for (x, k). Instead, for
an α-approximate kernelization any c-approximate solution to (x′, k′) can be lifted to an
α · c-approximate solution for (x, k). Amongst others, they show that Connected Vertex
Cover and Disjoint Cycle Packing admit approximate kernelizations. In contrast, they
were able to show, e.g., that k-Path has no α-approximate kernelization for any α ≥ 1
(unless NP ⊆ coNP/poly). Subsequent works have shown approximate kernelizations for other
problems [13, 14, 32], in particular, further problems with connectivity constraints, which
are often an obstruction for the existence of polynomial kernelizations.

Lokshtanov et al. [30] ask whether Independent Set parameterized by treewidth admits
a polynomial-size approximate Turing kernelization with constant approximation ratio. In
the present work, we answer this question affirmatively and in fact provide an efficient
polynomial size approximate Turing kernelization scheme (EPSATKS). Moreover, extending
the ideas for Independent Set, we provide similar results for a variety of other problems.

Our results. We prove that there is an EPSATKS for a wide variety of graph problems when
parameterized by treewidth. The simplest problems we consider are the Vertex Cover and
Independent Set problem. Observe that both problems parameterized by treewidth can
be shown to be MK[2]-hard, by a simple reduction from CNF-Sat with unbounded clause
size.1 As such, for both problems we indeed do not expect polynomial Turing kernels [22].
We show that Vertex Cover has a (1 + ε)-approximate Turing kernel with O(`ε) vertices,
and Independent Set has a kernel with O(`

2

ε) vertices.

1 A variant of the well-known NP-hardness proof of Independent Set (or Vertex Cover) suffices,
where we add two vertices vx and vx̄ for each variable x and connect them. Add a clique for each clause,
that has a vertex u` for each literal ` in the clause. Connect u` to vx if ` = ¬x, connect u` to vx̄ if
` = x. Observe that the treewidth is bounded by twice the number of variables.

E. C. Hols, S. Kratsch, and A. Pieterse 60:3

Both approximate Turing kernels follow a similar strategy, based on using separators
(originating from the tree decomposition) that separate a piece from the rest of the graph,
such that the solution size in this piece is appropriately bounded. For this reason, we
formulate a set of conditions on a graph problem and we call graph problems that satisfy
these conditions friendly. We then show that all friendly graph optimization problems have
polynomial-size (1 + ε)-approximate Turing kernels for all ε > 0, when parameterized by
treewidth. Precise bounds on the size of the obtained approximate Turing kernels depend on
properties of the considered problem, such as the smallest-known (approximate) kernel when
parameterized by solution size plus treewidth. In particular, applying the general result for
Vertex Cover indeed shows that it has an EPSATKS of size O(`ε). Using this general
technique, we obtain approximate Turing kernels for Clique Cover, Vertex-Disjoint
H-Packing for connected graphs H, Feedback Vertex Set, and Edge Dominating
Set.

Finally, we prove that Edge Clique Cover and Edge-Disjoint Triangle Packing
have an EPSATKS and show that Connected Vertex Cover has a polynomial-size
(1 + ε)-approximate Turing kernel. These problems do not satisfy our definition of a friendly
problem and require a more problem-specific approach. In particular, for Connected
Vertex Cover we will need to consider subconnected tree decompositions [19] and carefully
bound the size difference between locally optimal connected vertex covers, and intersections
of (global) connected vertex covers with parts of the graph.

Overview. We start in Section 3 by illustrating the general technique using the Vertex
Cover problem as an example. We continue by giving the approximate Turing kernels
for Edge Clique Cover, Connected Vertex Cover, and Edge-Disjoint Triangle
Packing. In Section 4 we state and prove our general theorem and then show that it
allows us to give approximate Turing kernels for a number of different graph problems. For
statements marked with a F, the (full) proof can be found in the full version of the paper [24].

2 Preliminaries

We use N to denote the non-negative integers. Let [n] be defined as the set containing the
integers 1 to n. We assume that all graphs are simple and undirected, unless mentioned
otherwise. A graph G has vertex set V (G) and edge set E(G). For v ∈ V (G) we let dG(v)
denote the degree of v. For X ⊆ V (G), we use G[X] to denote the graph induced by vertex
set X, we use G−X to denote G[V (G) \X]. For F ⊆ E(G), we use G \ F to denote the
graph resulting from deleting all edges in F from G.

We say that a set X ⊆ V (G) separates vertex sets A ⊆ V (G) and B ⊆ V (G) if every
path from some vertex in A to some vertex in B contains a vertex in X.

Treewidth. Recall the definition of treewidth.

I Definition 1 ([10]). A tree decomposition of a graph G is a tuple T = (T, {Xt}t∈V (T)),
where T is a tree in which each node t ∈ V (T) has an assigned set of vertices Xt ⊆ V (G),
also referred to as the bag of node t, such that the following three conditions hold:⋃

t∈V (T) Xt = V (G), and
for every edge {u, v} ∈ E(G) there exists t ∈ V (T) such that u, v ∈ Xt, and
for all v ∈ V (G) the set Tv := {t ∈ V (T) | v ∈ Xt} induces a connected subtree of T .

The width of a tree decomposition of G is the size of its largest bag minus one. The treewidth
of G is the minimum width of any tree decomposition of G.

ESA 2020

60:4 Approximate Turing Kernelization for Problems Parameterized by Treewidth

In the remainder of the paper, we will always assume that a tree decomposition is given
on input, as treewidth is NP-hard to compute. If it is not, we may use the result below
to obtain an approximation of the treewidth and a corresponding tree decomposition in
polynomial time. Doing so will weaken any given size bounds in the paper, as it is not a
constant-factor approximation. The theorem below is part of [15, Theorem 6.4].

I Theorem 2 ([15, Theorem 6.4]). There exists a polynomial time algorithm that finds a tree
decomposition of width at most O(

√
log tw(G) · tw(G)) for a general graph G.

Let T = (T, {Xt}t∈V (T)) be a tree decomposition. Let t ∈ V (T), we use Vt to denote the
set of vertices from G that are contained in some bag of a node in the subtree of T that is
rooted at t. It is well-known that for all t ∈ V (T), the set Xt separates Vt from the rest
of the graph. A rooted tree decomposition with root r is said to be nice if it satisfies the
following properties (cf. [10]).
(i) Xr = ∅ and Xt = ∅ for every leaf t of T .
(ii) Every other node is of one of the following three types:

The node t ∈ V (T) has exactly two children t1 and t2, and Xt = Xt1 = Xt2 . We
call such a node a join node, or
the node t ∈ V (T) has exactly one child t1, and there exist v ∈ V (G) such that
Xt = Xt1 ∪ {v} (in this case t is an introduce node) or such that Xt1 = Xt ∪ {v} (in
which case t is a forget node).

One can show that a tree decomposition of a graph G of width ` can be transformed in
polynomial time into a nice tree decomposition of the same width and with O(`|V (G)|)
nodes, see for example [10].

To deal with the Connected Vertex Cover problem we need the tree decomposition
to preserve certain connectivity properties. Let a subconnected tree decomposition [19] be a
tree decomposition where G[Vt] is connected for all t ∈ V (T). We observe the following.

I Theorem 3 (cf. [19, Theorem 1]). There is an O(n`3)-algorithm that, given a nice tree
decomposition on n nodes of width ` of a connected graph G, returns an O(n · `)-node
subconnected tree decomposition of G, of width at most ` such that each node in T has at
most 2`+ 2 children.

Proof. Without the additional bound on the degrees of nodes in T , the result is immediate
from [19, Theorem 1]. We obtain a subconnected tree decomposition by only executing
Phase 1 of Algorithm make-it-connected in [19]. Is is shown in [19, Claim 1] that this
procedure results in a tree decomposition of width ` that is subconnected. It remains to
analyze the maximum node degree. The only relevant step of the algorithm is the application
of the split operation on nodes t from the original tree. Observe that every node in the
original tree is visited at most once, and newly introduced nodes are never split. If t has
parent s, the split operation only modifies the degree of s, and any newly introduced nodes.
The newly introduced nodes will have degree at most dT (t). In particular, if s had degree
a before the split operation on t, it will have degree a− 1 + p after the split operation,
where p is the number of connected components of G[Vt]. We will show that the number of
connected components of G[Vt] is bounded by |Xt| if G is a connected graph. We do this by
showing that each connected component contains at least one vertex from Xt. Suppose not.
Let C be such a component. But since C ∩Xt = ∅, and Xt is a separator in G, it follows
that there are no connections from C to G[V (G) \ Vt]. If Vt = V (G), then G[Vt] is connected
and we are done, otherwise, vertices in V (G) \ Vt are not connected to C in G, contradicting
that G is connected. Thus, p ≤ |Xt| ≤ `+ 1. Since in a nice tree decomposition every node
has only two children, in the worst case split is applied to both these children. Thus, every
node in T has degree at most 2`+ 2. J

E. C. Hols, S. Kratsch, and A. Pieterse 60:5

Approximation, Kernelization, and Turing Kernelization. We recall the framework for
approximate kernelization by Lokshtanov et al. [30] following Fomin et al. [17]. We then
introduce suitable definitions for approximate Turing kernelization.

I Definition 4 ([17]). A parameterized optimization problem Q is a computable function

Q : Σ∗ × N× Σ∗ → R ∪ {±∞}.

The instances of a parameterized optimization problem are pairs (I, k) where k is the parameter.
A solution to (I, k) is simply a string s ∈ Σ∗, such that |s| ≤ |I|+ k. The value of a solution
s is given by Q(I, k, s). Using this, we may define the optimal value for the problem as

OPTQ(I, k) = min{Q(I, k, s) | s ∈ Σ∗, |s| ≤ |I|+ k},

for minimization problems and as

OPTQ(I, k) = max{Q(I, k, s) | s ∈ Σ∗, |s| ≤ |I|+ k},

for maximization problems.

An optimization problem P : Σ∗ × Σ∗ → R ∪ {±∞} is defined similarly, but without the
parameter. In both cases we will say that s is a solution for instance I, if its value is not ∞
(or −∞, in case of maximization problems).

We say that an algorithm for a (regular) minimization problem P is a c-approximation
algorithm if for all inputs x it returns a solution s such that the value of s is at most
c · OPTP(x). Similarly, for a maximization problem we require that s has value at least
1
cOPTP(x).

When a problem is parameterized by the value of the optimal solution, the definitions
of parameterized optimization problems and lossy kernels will cause problems. As such, we
use the following interpretation [30, p.229]. Given an optimization problem P that we want
to parameterize by a sum of (potentially multiple) parameters, one of which is the solution
value, we define the following corresponding parameterized optimization problem:

P⊥(I, k, s) := min{P(I, s), k + 1}.

In cases where we consider P parameterized by the treewidth of the input graph, we simply
use

P⊥(I, k, s) := P(I, s).

I Definition 5 (α-Approximate kernelization [17]). Let α ≥ 1 be a real number, let g be a
computable function and let Q be a parameterized optimization problem. An α-approximate
kernelization A of size g for Q is a pair of polynomial-time algorithms. The first one is called
the reduction algorithm and computes a map RA : Σ∗ × N → Σ∗ × N. Given as input an
instance (I, k) of Q, the reduction algorithm computes another instance (I ′, k′) = RA(I, k)
such that |I ′|, k′ ≤ g(k).

The second is called the solution-lifting algorithm. This algorithm takes as input an
instance (I, k) ∈ Σ∗ × N of Q, together with (I ′, k′) := RA(I, k) and a solution s′ to (I ′, k′).
In time polynomial in |I|+ |I ′|+ k + k′ + |s|, it outputs a solution s to (I, k) such that if Q
is a minimization problem, then

Q(I, k, s)
OPTQ(I, k) ≤ α ·

Q(I ′, k′, s′)
OPTQ(I ′, k′) .

For maximization problems we require
Q(I, k, s)

OPTQ(I, k) ≥
1
α
· Q(I ′, k′, s′)

OPTQ(I ′, k′) .

ESA 2020

60:6 Approximate Turing Kernelization for Problems Parameterized by Treewidth

We say that a problem admits a Polynomial Size Approximate Kernelization Scheme
(PSAKS) [30] if it admits an α-approximate polynomial kernel for all α > 1.

We recall the definition of a Turing kernel, so that we can show how to naturally generalize
the notion of approximate kernelization to Turing kernels.

I Definition 6 (Turing kernelization [17]). Let Q be a parameterized problem and let f : N→ N
be a computable function. A Turing kernelization for Q of size f is an algorithm that decides
whether a given instance (x, k) ∈ Σ∗×N belongs to Q in time polynomial in |x|+k, when given
access to an oracle that decides membership of Q for any instance (x′, k′) with |x′|, k′ ≤ f(k)
in a single step.

In the following definition, we combine the notions of lossy kernelization and Turing
kernelization into one, as follows.

I Definition 7 (Approximate Turing kernelization). Let α ≥ 1 be a real number, let f be a
computable function and let Q be a parameterized optimization problem. An α-approximate
Turing kernel of size f for Q is an algorithm that, when given access to an oracle that
computes a c-approximate solution for instances of Q in a single step, satisfies the following.

It runs in time polynomial in |I|+ k, and
given instance (I, k), outputs a solution s such that Q(I, k, s) ≤ α · c ·OPTQ(I, k) if Q
is a minimization problem and Q(I, k, s) · α · c ≥ OPTQ(I, k) is Q is a minimization
problem, and
it only uses oracle-queries of size bounded by f(k).

Note that, in the definition above, the algorithm does not depend on c, just like in lossy
kernelization. We say that a parameterized optimization problem Q has an EPSATKS
when it has a polynomial-size (1 + ε)-approximate Turing kernel for every ε > 0, of size
f(ε) · poly(k) where f is a function that depends only on ε.

3 Approximate Turing kernels for specific problems

In this section we will give approximate Turing kernels for a number of graph problems
parameterized by treewidth. We start by discussing the Vertex Cover problem, since the
approximate Turing kernels for all other problems will follow the same overall structure.

3.1 Vertex Cover
In this section we discuss an approximate Turing kernel for Vertex Cover parameterized
by treewidth `. The overall idea will be to use the treewidth decomposition of the graph,
and find a subtree rooted at a node t such that G[Vt \Xt] has a large (but not too large)
vertex cover. A vertex cover of the entire graph will then be obtained by taking a vertex
cover of G[Vt \Xt], adding all vertices in Xt, and recursing on the graph that remains after
removing Vt. This produces a correct vertex cover because Xt is a separator in the graph.
Furthermore, taking all of Xt into the vertex cover is not problematic as Xt is ensured to be
comparatively small. To obtain a vertex cover of G[Vt \Xt], we will use the following lemma.

I Lemma 8 (F). Let G be a graph with OPTVC(G) ≤ k. Then there is a polynomial-time
algorithm returning vertex cover of G of size at most c ·OPTVC(G), when given access to
c-approximate oracle that solves vertex cover on graphs with at most O(k) vertices.

E. C. Hols, S. Kratsch, and A. Pieterse 60:7

Proof sketch. First apply the LP-based kernel [9] for Vertex Cover parameterized by
solution size to (G, k). This gives an instance G′ with at most 2k vertices. We can then
apply the oracle to obtain a c-approximate vertex cover of G′. We show in the complete
proof that it is straightforward to lift this solution to a c-approximate vertex cover of the
original graph G, concluding the proof. J

Using this, we can now give the (1 + ε)-approximate Turing kernel for Vertex Cover.
While the theorem statement requires ε ≤ 1, this does not really impose a restriction: if ε > 1
one may simply reset it to be 1. It simply shows that the bounds do not continue improving
indefinitely as ε grows larger than 1. Note however that Vertex Cover is 2-approximable
in polynomial time, such that choosing ε larger than one is likely not useful.

I Theorem 9. For every 0 < ε ≤ 1, Vertex Cover parameterized by treewidth ` has a
(1 + ε)-approximate Turing kernel with O(`ε) vertices.

Proof. Consider Algorithm 1, we use the well-known 2-approximation algorithm for Vertex
Cover. First of all, we show how to do Step 8 of the algorithm efficiently.

Algorithm 1 An approximate Turing kernel for Vertex Cover.

1: procedure ApproxVC(G, T , ε)
2: Turn T into a nice tree decomposition of G
3: Obtain a 2-approximate solution S̃ for VC in G
4: if |S̃| ≤ 8(`+1)

ε then
5: Determine a c-approximate solution S to VC in G using Lemma 8
6: return S

7: else
8: Find t ∈ V (T) s.t. (`+1)

ε ≤ OPTVC(G[Vt \Xt]) ≤ 8(`+1)
ε

9: Determine a c-approximate solution St to VC in G[Vt \Xt] using Lemma 8
10: G′ ← G− Vt
11: Let T ′ be T after removing the subtree rooted at t and all vertices in Xt

12: S′ ← ApproxVC(G′, T ′, ε)
13: return St ∪Xt ∪ S′
14: end if
15: end procedure

B Claim. There is a polynomial-time algorithm that, given graph G such that OPTVC(G) ≥
(`+1)
ε , with a nice tree decomposition T of width at most `, outputs a node t ∈ V (T) such

that (`+1)
ε ≤ OPTVC(G[Vt \Xt]) ≤ 8(`+1)

ε .

Proof. Let T be a nice tree decomposition with root r. We start from t := r, maintaining
that OPTVC(G[Vt \Xt]) ≥ `+1

ε . Note that this is initially true since Gr = G.
Check whether the 2-approximation returns a vertex cover of size at most 8(`+1)

ε for
G[Vt \Xt]. If yes, we are done. If not, then OPTVC(G[Vt \Xt]) > 4(`+1)

ε . We show that t
has a child on which we will recurse. We do a case distinction on the type of node of t.

t is a leaf node. In this case, |Vt \ Xt| = 0, contradicting that OPTVC(G[Vt \ Xt]) >
4(`+1)
ε ≥ 0.

t is a forget or introduce node. This implies t has one child t1 and the size of Vt \Xt

and Vt1 \Xt1 differs by at most one. Therefore, OPTVC(G[Vt1 \Xt1]) ≥ OPTVC(G[Vt \
Xt])− 1 ≥ OPTVC(G[Vt \Xt])/2.

ESA 2020

60:8 Approximate Turing Kernelization for Problems Parameterized by Treewidth

t is a join node with children t1 and t2. Observe that G[Vt \Xt] is the disjoint union
of the graphs G[Vt1 \Xt1] and G[Vt2 \Xt2] (note Xt = Xt1 = Xt2). As such, for one of
the two children, without loss of generality let this be t1, running the 2-approximation
algorithm for vertex cover returns a value of at least OPTVC(G[Vt \Xt])/2, meaning that
OPTVC(G[Vt1 \Xt1]) ≥ OPTVC(G[Vt \Xt])/4.

Thus, there is a child t1 such that OPTVC(G[Vt1 \ Xt1]) ≥ OPTVC(G[Vt \ Xt])/4 ≥ `+1
ε .

Continue with t := t1. C

We will now show the correctness of the algorithm by induction on |V (G)|. Let G be a
graph with nice tree decomposition T . If the algorithm returns a Vertex Cover in Step 5,
the result is immediate. If not, then it follows that the algorithm returns in Step 13, and that
OPTVC(G) > 4(`+1)

ε . The algorithm then returns a vertex cover St for G[Vt \Xt] together
with Xt and a vertex cover S′ = ApproxVC(G′, T ′, ε) in the remainder of the graph. It is
easy to see that the returned set is indeed a vertex cover of the graph. Furthermore, one
may verify that the oracle is only used for graphs with at most O(`ε) vertices. It remains to
verify the approximation ratio. Recall that G′ := G− Vt. Then

|St|+ |S′|+ |Xt| ≤ c ·OPTVC(G[Vt \Xt]) + c · (1 + ε) ·OPTVC(G′) + `+ 1
≤ c · (1 + ε) ·OPTVC(G[Vt \Xt]) + c · (1 + ε) ·OPTVC(G′)
≤ c · (1 + ε) ·OPTVC(G). J

3.2 Edge Clique Cover
In this section, we obtain an approximate Turing kernel for Edge Clique Cover, which is
defined as follows.

Edge Clique Cover (ECC) Parameter: `
Input: A graph G with tree decomposition T of width `.
Output: The minimum value for k ∈ N such that there exists a family S of subsets of
V (G) such that |S| ≤ k, G[C] is a clique for all C ∈ S, and for all {u, v} ∈ E(G) there
exists C ∈ S such that u, v ∈ S?

To obtain an approximate Turing kernel, we will separate suitably-sized subtrees from the
graph using the tree decomposition, as we did in the approximate Turing kernel for Vertex
Cover. To show that this results in the desired approximation bound, we will need the
following lemma. It basically shows that if we find a node t of the tree decomposition such
that Xt is “small” compared to OPT(Vt), we will be able to combine an edge clique cover in
G[Vt] with one in G− (Vt \Xt) to obtain a clique cover of the entire graph that is not too
far from optimal.

I Lemma 10. Let G be a graph, let X1, X2 ⊆ V (G) such that X1 ∪ X2 = V (G) and
X = X1 ∩X2 separates X1 from X2 in G. Then

OPTECC(G) ≥ OPTECC(G[X1]) + OPTECC(G[X2])−
(
|X|
2

)
.

Proof. Let S be an edge clique cover of G. We show how to obtain clique covers S1 and S2
for G[X1] and G[X2] such that |S1|+ |S2| ≤ |S|+

(|X|
2
)
. First define

S′1 := {C | C ∩ (X1 \X) 6= ∅, C ∈ S} ∪ {C | C ⊆ X,C ∈ S},

E. C. Hols, S. Kratsch, and A. Pieterse 60:9

similarly, define

S′2 := {C | C ∩ (X2 \X) 6= ∅, C ∈ S}.

For j ∈ [2], define Sj := S′j ∪S′′j , where S′′j := {{u, v} ∈ E(G[X]) | {u, v} not covered by S′j}.
We start by showing that Sj is an edge clique cover of G[Xj] for i ∈ [2]. First of all, we

will verify that C ⊆ Xj and that C forms a clique in G[Xj] for all C ∈ Sj . For C ∈ S′′j this
is trivial, for C ∈ S′j , observe that C is a clique in G and any clique in G containing a vertex
from Xj \X cannot contain a vertex from V (G) \Xj , since X is a separator. Thus C ⊆ Xj .
The fact that C is a clique in G[Xj] is immediate from C being a clique in G.

It remains to show that Sj covers all edges in G[Xj]. Let {u, v} ∈ E(G[Xj]). If u, v ∈ X,
then the edge is covered by definition. Without loss of generality, suppose u ∈ Xj \ X.
Let C ∈ S be a clique that covered edge {u, v}. Then clearly u ∈ C ∩ (Xj \X) and thus
C ∩ (Xj \X) 6= ∅, implying C ∈ Sj . Thus, the edge {u, v} is indeed covered by Sj .

It remains to show that |S1|+ |S2| ≤ |S|+
(|X|

2
)
. Start by observing that |S′1|+ |S′2| ≤ |S|,

since a clique cannot contain both a vertex from X1 \ X and X2 \ X. Since every edge
{u, v} ∈ E(G[X]) is covered by S, it is easy to observe from the definition that {u, v} is
covered by S′1 or S′2. As such, S′′1 ∩ S′′2 = ∅. Since G[X] has at most

(|X|
2
)
edges, it follows

that |S′′1 |+ |S′′2 | ≤
(|X|

2
)
and indeed |S1|+ |S2| ≤ |S′1|+ |S′′1 |+ |S′2|+ |S′′2 | ≤ |S|+

(|X|
2
)
. J

Before giving the approximate Turing kernel, we show that there exists a node t in the
tree decomposition such that the size of the subtree rooted at t falls within certain size
bounds. We use this to split off subtrees, similar to the strategy we used for Vertex Cover
earlier.

I Lemma 11 (F). There is a polynomial-time algorithm that, given a graph G with |V (G)| ≥
2 1+ε

ε (`+ 1)4, a nice tree decomposition T of width `, and ε > 0, outputs a node t ∈ V (T)
such that 2 1+ε

ε (`+ 1)4 ≤ |Vt \Xt| ≤ 4 1+ε
ε (`+ 1)4.

Using the lemma above, we can now give the approximate Turing kernel for Edge Clique
Cover.

I Theorem 12. For every 0 < ε ≤ 1, Edge Clique Cover parameterized by treewidth `
has a (1 + ε)-approximate Turing kernel with O(`

4

ε) vertices.

Proof. Consider Algorithm 2, we show that it is a (1+ε)-approximate Turing kernel for ECC.
Observe that Step 2 can be done efficiently while maintaining a valid tree decomposition, as
one may simply restrict the bags of the decomposition to the relevant connected component
of G. It is easy to verify that the procedure runs in polynomial time, using that |Vt \Xt| is
always non-empty and thus the recursive call is on a strictly smaller graph. Finally, we can
verify the size-bound, as the oracle is only applied to G if |V (G)| ≤ O(`

4

ε) or to G[Vt] when
|Vt \Xt| ≤ O(`

4

ε), implying that |Vt| ≤ |Vt \Xt|+ `+ 1 = O(`
4

ε).
We continue by showing that Algorithm 2 returns an edge clique cover of G. If the

algorithm returns in Step 6, this is immediate. Otherwise, observe that since Xt separates
Vt and V (G′) in G, it follows that any edge in G is in E(G[Vt]) or in E(G′). Thus, such an
edge is covered by St or S′, implying that S = St ∪ S′ is an edge clique cover of G. We now
bound |St|+ |S′|, to show that the algorithm indeed approximates the optimum ECC.

|St|+ |S′| ≤ c ·OPTECC(G[Vt]) + |S′|
= c · (1 + ε) ·OPTECC(G[Vt])− c · ε ·OPTECC(G[Vt]) + |S′|

ESA 2020

60:10 Approximate Turing Kernelization for Problems Parameterized by Treewidth

Algorithm 2 An approximate Turing Kernel for Edge Clique Cover.

1: procedure ApproxECC(G, T , ε)
2: If G is not connected, split G into its connected components and treat them separately.
3: Turn T into a nice tree decomposition.
4: if |V (G)| ≤ 2(1+ε)

ε (`+ 1)4 then
5: Apply the c-approximate oracle to obtain an ECC S of G
6: return S

7: else
8: Find t ∈ V (T) s.t. 2 (1+ε)

ε (`+ 1)4 ≤ |Vt \Xt| ≤ 4(1+ε)
ε (`+ 1)4 (by Lemma 11)

9: Determine a c-approximate solution St to ECC in G[Vt] using the oracle
10: G′ ← G− (Vt \Xt)
11: Let T ′ be T after removing the subtree rooted at t except for t
12: S′ ← ApproxECC(G′, T ′, ε)
13: return St ∪ S′
14: end if
15: end procedure

Observe that every clique covers at most
(
`+1

2
)
edges, since it has at most `+ 1 vertices, since

the treewidth of G is bounded by `. Thus OPTECC(G[Vt]) ≥ |E(G[Vt])|/
(
`+1

2
)
.

≤ c · (1 + ε) ·OPTECC(G[Vt])− c · ε · |E(G[Vt])|/
(
`+ 1

2

)
+ |S′|

Observe that Vt \Xt cannot contain vertices that are isolated in G[Vt], since G is connected
and Xt separates Vt from the remainder of G. Thus, |E(G[Vt])| ≥ |Vt \Xt|/2.

≤ c · (1 + ε) ·OPTECC(G[Vt])− c · ε ·
|Vt \Xt|
2(`+ 1)2 + |S′|

≤ c · (1 + ε) ·OPTECC(G[Vt])− c · (1 + ε) · (`+ 1)2 + |S′|

using `+ 1 ≥ |Xt|

≤ c · (1 + ε) ·OPTECC(G[Vt])− c · (1 + ε) ·
(
|Xt|

2

)
+ |S′|

≤ c · (1 + ε) · (OPTECC(G[Vt]) + OPTECC(G′)−
(
|Xt|

2

)
)

By Lemma 10

≤ c · (1 + ε) ·OPTECC(G). J

3.3 Edge-Disjoint Triangle Packing
In this section we give an approximate Turing kernel for the Edge-Disjoint Triangle
Packing problem, defined as follows.

Edge-Disjoint Triangle Packing (ETP) Parameter: `
Input: A graph G with tree decomposition T of width `.
Output: The maximum value for k ∈ N such that there exists a family S of size-3
subsets of V (G) such that |S| ≥ k, G[X] is a triangle for all X ∈ S, and X and Y are
edge-disjoint for all X,Y ∈ S?

E. C. Hols, S. Kratsch, and A. Pieterse 60:11

Observe that the problem has a 3-approximation by taking any maximal edge-disjoint triangle
packing S, which can be greedily constructed. This packing then uses 3|S| edges. If there is
a solution S′ with |S′| > 3|S|, then there is a triangle in S′ that contains no edge covered by
S, contradicting that S is maximal. We now give the approximate Turing kernel.

I Theorem 13. For every 0 ≤ ε ≤ 1, Edge-Disjoint Triangle Packing parameterized
by treewidth `, has a (1 + ε)-approximate Turing kernel with O(`

2

ε) vertices.

Proof. We will use the following claim.

B Claim 14 (F). Let G be a graph with OPTETP(G) ≤ k. There is a polynomial-time
algorithm that when given access to a c-approximate oracle, outputs a c-approximate solution
for G using calls to the oracle with at most O(k) vertices.

We now describe the algorithm. Start by computing a 3-approximate solution S̃ to Edge-
Disjoint Triangle Packing in G. If |S̃| ≤ 18 (`+1)2

ε , we obtain an approximate solution
to triangle packing using Claim 14.

Otherwise, for t ∈ V (T) define Gt as G[Vt] \ E(G[Xt]), i.e., the graph G[Vt] from which
the edges between vertices in Xt have been removed. We show how to find t ∈ T such that

(`+ 1)2

ε
≤ OPTETP(Gt) ≤ 18(`+ 1)2

ε
,

together with an approximate solution St in Gt. Start with t := r, observe that initially
OPTETP(Gt) > 18(`+1)2

ε since Gr = G and OPTETP(Gt) ≥ |S̃|. So suppose we are at some
node t with OPTETP(Gt) ≥ (`+1)2

ε . Compute a 3-approximate solution in Gt. If this solution
has value at most 6(`+1)2

ε , we obtain an approximate solution St to triangle packing in Gt
using Claim 14. Otherwise, we will recurse on a child t1 of t for which OPTETP(Gt1) ≥ (`+1)2

ε ,
we show how to find such a child by doing a case distinction on the type of node of t.

t is a leaf node. This is a contradiction with the assumption that OPTETP(Gt) > 6 (`+1)2

ε ,
since Gt is empty.
t has exactly one child t1 and Xt = Xt1∪{v} for some v ∈ V (G). This means in particular
that Gt1 = Gt − {v}. Furthermore, we can show that v is isolated in Gt. After all, there
are no edges between vertices in Xt and v by definition of Gt. Furthermore, there are
no edges between v and vertices not in Xt, by correctness of the tree decomposition.
Therefore, trivially, OPTETP(Gt) = OPTETP(Gt1) and we continue with t← t1.
t has exactly one child t1 and Xt = Xt1 \ {v} for some v ∈ V (G). In this case Gt1 can be
obtained byGt by removing all edges between vertices in v and vertices inXt. This removes
at most (`+1) edges from the graph, and thus OPTETP(Gt1) ≥ OPTETP(Gt)−` ≥ (`+1)2

ε ,
and we continue with t← t1.
t is a join node with children t1 and t2. Observe that Xt separates Gt and that
OPTETP(Gt) = OPTETP(Gt1) + OPTETP(Gt2). As such, there is a child of Gt, w.l.o.g.
let this be t1, such that OPTETP(Gt1) ≥ OPTETP(Gt)/2 ≥ 3(`+1)2

ε . Using the 3-
approximation on both children, find a child where the returned solution size is at least
3(`+1)2

3ε = (`+1)2

ε . Continue with this child.
Using t and the obtained solution St in Gt, we now do the following. Let G′ := G− (Vt \Xt).
Obtain a solution S′ in G′ using the algorithm above on the smaller graph G′. Output
S := St ∪ S′. Since G′ and Gt are edge-disjoint subgraphs of G, it is easy to observe that S
is an edge-disjoint triangle packing in G.

ESA 2020

60:12 Approximate Turing Kernelization for Problems Parameterized by Treewidth

It remains to show that S has the desired size. Observe that the size of an edge-disjoint
triangle packing in G can be bounded by considering the triangles whose edges are in Gt,
those whose edges are in G′, and those with at least one edge with both endpoints in Xt.
Using that there are at most

(
Xt
2
)
edges between vertices in Xt, we get

OPTETP(G) ≤ OPTETP(Gt) + OPTETP(G′) +
(
Xt

2

)
≤ (1 + ε)OPTETP(Gt) + OPTETP(G′)
≤ c · (1 + ε)|St|+ c · (1 + ε)|S′|
≤ c · (1 + ε)|S|. J

The strategy used to obtain a kernel for Edge-Disjoint Triangle Packing can be
generalized to packing larger cliques, as long as these problems have polynomial kernels
when parameterized by solution size. Generalizing to the more general question of packing
edge-disjoint copies of some other graph H may be more difficult. In this case, there can be
copies of H that have vertices in both sides of the graph after removing the edges within a
separator, and one needs to be careful to not discard too many of these.

3.4 Connected Vertex Cover
The Connected Vertex Cover (CVC) problem asks, given a graph G and tree decom-
position T , for the minimum size of a vertex cover S in G such that G[S] is connected. It is
known that CVC has a (1 + ε)-approximate kernel of polynomial size [30].

I Theorem 15 ([30]). Connected Vertex Cover parameterized by solution size k admits
a strict time efficient PSAKS with O(kd

α
α−1 e + k2) vertices.

To obtain an approximate Turing kernel, we will use a similar strategy to the Turing
kernel for Vertex Cover described in Theorem 9. However, the connectivity constraint
makes this kernel somewhat more complicated. We deal with this by changing the procedure
in two places. First of all, we will use a subconnected tree decomposition, to ensure that
G[Vt] is connected for any node t. We will then again find a subtree with a suitably-sized
solution. In this case however, we will contract the separator between the subtree and the
rest of the graph to a single vertex. The next lemma shows that this does not reduce the
connected vertex cover size in the subtree by more than twice the size of the separator.

I Lemma 16. Let G be a connected graph and let X ⊆ V (G). Given a connected vertex
cover S of GX where GX is obtained from X by identifying all vertices from X into a single
vertex z, there is a polynomial-time algorithm that finds a connected vertex cover S′ of size
at most |S|+ 2|X| of G.

Proof. Let S be a connected vertex cover of GX . Let S′′ := S ∪X \ {z}. Observe that S′′
is a vertex cover of G, such that every connected component of G[S′′] contains at least one
vertex from X; thus, there are at most |X| connected components. If G[S′′] is connected, we
are done. Otherwise, we show that there is a single vertex v ∈ V (G) such that G[S′′ ∪ {v}]
has strictly fewer connected components than G[S′′]. It is then straightforward to obtain S′
by repeatedly adding such a vertex, until G[S′′] is connected. For any vertex u ∈ S′′ define
Cu as the connected component of vertex u in G[S′′].

Let x and x′ be in two distinct components in G[S′′], consider the shortest path P from
x to x′ in G. Refer to Figure 1 for a sketch of the situation. By this definition, Cx 6= Cx′ .
Let y be the first vertex in P such that y ∈ S′′ but y /∈ Cx, let y′ be the vertex on P before

E. C. Hols, S. Kratsch, and A. Pieterse 60:13

Xx

x′y
y′′ y′

Figure 1 A graph with a vertex cover S′′ (indicated in white) that is connected when all vertices
in X are identified into a single vertex. Shown are x, x′,y,y′,y′′, and P (indicated in bold) as used
in the proof of Lemma 16.

y, observe that y′ /∈ S′′ since otherwise y′ ∈ S′′ and y′ /∈ Cx which is a contradiction with
the fact that y is the first such vertex in P . Let y′′ be the vertex on the path before y′, such
that P = (x, . . . , y′′, y′, y, . . . , x′), where possibly x = y′′ or y = x′. Observe that y′′ ∈ S′′
as otherwise edge {y′′, y′} is not covered, and therefore y′′ ∈ Cx since y is the first vertex
on P that is in S′′ but not in Cx. Therefore, adding vertex y′ to S′′ will merge connected
components Cx and Cy, such that the number of connected components in G[S′′ ∪ {y′}] is
strictly smaller than the number of connected components in G[S′′]. In total, we add less
than |X| vertices to S′′ obtain a connected vertex cover S′ and thus |S′| ≤ |S|+ |X|. J

We now prove the main result of this section.

I Theorem 17. For every 0 < ε ≤ 1, Connected Vertex Cover parameterized by

treewidth ` has a (1 + ε)-approximate Turing Kernel with O(
(
`2

ε

)⌈ 3+ε
ε

⌉
) vertices.

Proof. We will use the PSAKS for Connected Vertex Cover from Theorem 15. Recall
that such a PSAKS consists of a reduction algorithm RA together with a solution lifting
algorithm SA. We will use the following claim.

B Claim 18. Given 0 < δ ≤ 1 and a connected graph G with tree decomposition of width
`, there is a polynomial-time algorithm to determine a d-approximate solution for CVC or
correctly decide that OPTCVC(G) > 100`2

δ , when given access to a c-approximate CVC-oracle

that allows calls using graphs with at most O(
(
`2

δ

)⌈ 1+δ
δ

⌉
) vertices, where d = min(c ·(1+δ), 2).

Proof. Using the fact that CVC is 2-approximable in polynomial time [33], obtain a 2-
approximate solution S̃ in G. If |S̃| > 200`2/δ, return no and halt. Otherwise, continue

by running RA on (G, |S̃|) to obtain (G′, k′). Observe that G′ has at most O(
(
`2

δ

)⌈ 1+δ
δ

⌉
)

many vertices. Apply the c-approximate oracle on G′ to obtain CVC S′ in G′. Obtain an
approximate solution S in G by using the solution lifting algorithm on G′ and S′. Output the
smallest solution of S and S̃, let this be Ŝ. We show that this has the desired approximation
factor, which requires an argument since the PSAKS works for CVC⊥ instead of CVC (recall
CVC⊥(G, k, S) = min{k + 1,CVC(G,S)}). Observe that |Ŝ| ≤ |S̃|, by definition. Therefore,
|Ŝ| ≤ CVC⊥(G, |S̃|, S). Thus

|Ŝ|
OPTCVC(G) ≤

CVC⊥(G, |S̃|, S)
OPTCVC(G) ≤ CVC⊥(G, |S̃|, S)

OPTCVC⊥(G, |S̃|)
.

By correctness of the solution lifting algorithm, we get

CVC⊥(G, |S̃|, S)
OPTCVC⊥(G, |S̃|)

≤ (1 + δ) CVC
⊥(G′, k′, S′)

OPTCVC⊥(G′, k′) ≤ (1 + δ) |S′|
OPTCVC(G′) ≤ c · (1 + δ),

by correctness of the oracle. C

ESA 2020

60:14 Approximate Turing Kernelization for Problems Parameterized by Treewidth

Algorithm. The algorithm now proceeds as follows. Our goal is to find a subtree of T for
which on the one hand, the local optimum CVC is small enough to find an approximate
solution using Claim 18, but also large enough to be able to (among other things) add the
entire set Xt to the solution, without introducing a too large error. Let δ := ε/3.

For any vertex t ∈ V (T), let Gt be the graph given by G[Vt] after identifying all vertices
from Xt into a single vertex zt. Apply Claim 18 to G, if it returns an approximate connected
vertex cover of G, we are done. Otherwise, OPTCVC(G) > 100`2

δ . We now aim to find a
vertex t such that Claim 18 returns an approximate solution in Gt of size at least 10`

δ .

B Claim 19. There is a polynomial-time algorithm that, given G with tree decomposition
T of width ` such that OPTCVC(G) > 100`2

δ , finds t ∈ V (T) for which Claim 18 returns an
approximate solution St with |St| ≥ 10`

δ , using calls to a c-approximate oracle of size at most

O(
(
`2

δ

)⌈ 1+δ
δ

⌉
).

Proof. Start with t := r, note that since OPTCVC(G) > 100`2

δ and Gr = G, we have that
OPTCVC(Gr) > 100`2

δ , where r is the root of T . We search through the graph maintaining
OPTCVC(Gt) > 100`2

δ . Let t1, . . . , tm be the children of t, recall that we may assume
m ≤ 2`+ 2 by Theorem 3. For each ti, apply Claim 18. Consider the following possibilities.

There exists i ∈ [m] such that the claim determines OPTCVC(Gti) > 100`2

δ , in this case,
recurse with this ti.
There exists i ∈ [m] such that the claim returns a min{2, (1 + δ) · c}-approximate solution
Sti of size at least 10`

δ for CVC. In this case, return t := ti.
Otherwise. Thus, for every i ∈ [m], the algorithm returns a connected vertex cover Si of
size at most 10`

δ for CVC in Gti . Obtain a connected vertex cover S′i of G[Vti] of size at
most |Si|+ 2(`+ 1) using Lemma 16. We will argue that in this case CV C(Gt) < 55`2

δ ,
which is a contradiction. We obtain a connected vertex cover of Gt as follows. Let
Ŝt :=

⋃
i∈[m](S′i) ∪ {zt}. Observe that Ŝt has size at most (2`+ 2) · 13`

δ + 1 ≤ 55`2

δ . It is
easy to observe that Ŝt is indeed a connected vertex cover of Gt.

Observe that from the steps above, we always get a connected vertex cover St of Gt, that is
a (1 + δ) · c-approximation of OPTCVC(Gt) and has size at least 10`

δ . C

Using Claim 19, we obtain a node t and a connected vertex cover St of Gt, that is a
min{(1 + δ) · c, 2}-approximation of OPTCVC(Gt) and has size at least 10`

δ . Use Lemma 16
to obtain a connected vertex cover S′t of G[Vt] of size at most |St|+ 2(`+ 1), containing Xt.

We now obtain graph G′ by removing all vertices in Vt \Xt from G and then contracting
all vertices in Xt to a single vertex zt. Let T ′ to be a tree decomposition of G′, one may
obtain T ′ by replacing occurrences of vertices in Vt by zt in T . Since G′ is strictly smaller
than G, we may use the algorithm described above to obtain a c · (1+ε)-approximate solution
S′ for OPTCVC(G′), using T ′. Output S := S′ ∪ S′t \ {zt}.

Correctness. We start by showing that S is a connected vertex cover. Verify that it is
indeed a vertex cover of G: any edge within G′ is covered as S′ ⊆ S, any edge in Gt is
covered since S′t ⊆ S and any other edge has at least one endpoint in Xt ⊆ S and is thereby
covered. It remains to verify that G[S] is connected. Clearly, G[Vt ∩ S] is connected since it
corresponds to G[S′t]. Let G̃ := G− (Vt \Xt). We show that every connected component of
G̃[S] contains at least one vertex from Xt, such that the entire graph is connected as Xt ⊆ S
and the vertices in Xt are in the same connected component as observed earlier. Suppose
not, let C be such a component not containing any vertex in Xt. Consider G′[S′]. Observe
that C is also a connected component of G′[S′]. Furthermore, vertex zt is not adjacent to

E. C. Hols, S. Kratsch, and A. Pieterse 60:15

any vertex in C, as otherwise there is an edge from some vertex in C to some vertex in Xt in
G̃, since Xt ⊆ S this contradicts that C contains no vertex from Xt. Since G′ is connected
however, zt has an incident edge {zt, u} for some u ∈ V (G′) and thus u ∈ S′ or zt ∈ S′. In
both cases there is a vertex in S′ that is not in connected component C, a contradiction with
the assumption that S′ is a connected vertex cover of G′.

We now show that we indeed achieve the desired approximation factor.

B Claim 20. |S| ≤ c · (1 + ε) ·OPTCVC(G)

Proof. Let S∗ be a minimum connected vertex cover of G. Assume for now |S∗∩V (Gt)| ≥ 4/δ.

|S| ≤ |S′t|+ |S′|
≤ |St|+ 2(`+ 1) + c · (1 + ε)OPTCVC(G′)

Using |St| ≥ 10`
δ

≤ |St|+
δ

2 |St|+ c · (1 + ε)OPTCVC(G′)

≤ c · (1 + δ)(1 + δ/2)OPTCVC(Gt) + c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|
≤ c · (1 + δ)(1 + δ/2)|(S∗ ∩ V (Gt)) ∪ {zt}|+ c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|
≤ c · (1 + δ)(1 + δ/2)(|S∗ ∩ V (Gt)|+ 1) + c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|

By assuming |S∗ ∩ V (Gt)| ≥ 4/δ, and then using δ = ε/3

≤ c · (1 + δ)(1 + δ/2)(1 + δ/4)(|S∗ ∩ V (Gt)|) + c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|
≤ c · (1 + ε)(|S∗ ∩ V (Gt)|) + c · (1 + ε)|(S∗ ∩ V (G′)) ∪ {zt}|

Observe that since Gt and G′ are non-empty, S∗ must contain a vertex from Xt

≤ c · (1 + ε)|S∗| = c · (1 + ε) ·OPTCVC(G).

It remains to observe that |S∗ ∩ V (Gt)| ≥ 4/δ is a reasonable assumption. Suppose not, then
OPTCVC(Gt) ≤ |S∗ ∩ V (Gt)|+ 1 ≤ 4/δ + 1. However, St ≥ 10`

δ ≥ 2 ·OPTCVC(Gt), meaning
that St is not a 2-approximation in Gt, which is a contradiction. C

Having shown the correctness of the procedure, it remains to argue the size of this Turing
kernel. Observe that the oracle is only used when applying Claim 18. As such, we may

bound the size of the kernel by O(
(
`2

δ

)⌈ 1+δ
δ

⌉
) = O(

(
`2

ε

)⌈ 3+ε
ε

⌉
), recall that δ = ε

3 . J

4 Meta result

In this section we will describe a wide range of graph problems for which approximate Turing
kernels can be obtained. The problems we will consider satisfy certain additional constraints,
such that the general strategy already described for the Vertex Cover problem can be
applied. Informally speaking, we need the following requirements. First of all, the problems
should behave nicely with respect to taking the disjoint union of graphs. Secondly, we want
to look at what happens for induced subgraphs. We will only consider problems whose value
cannot increase when taking an induced subgraph. Furthermore, we restrict how much the
optimal value can decrease when taking an induced subgraph. Finally, we require existence of
a PSAKS and an approximation algorithm for the problem. We use the following definitions.

ESA 2020

60:16 Approximate Turing Kernelization for Problems Parameterized by Treewidth

IDefinition 21. Let ϕ : R×N→ R be a function. A ϕ-approximation algorithm for a problem
P is a polynomial-time algorithm that, given an instance G with tree decomposition T of width
`, outputs a solution S such that (for minimization problems) P(G,S) ≤ ϕ(OPTP(G), `),
and (for maximization problems) ϕ(P(G,S), `) ≥ OPTP(G).

I Definition 22. Let P be an optimization problem whose input is a graph. We will say that
it is friendly if it satisfies the following conditions.
1. For all graphs G, G1, and G2 such that G is the disjoint union of graphs G1 and G2,

OPTP(G) = OPTP(G1) + OPTP(G2). In particular, if S1 is a solution for G1 and S2
is a solution for G2, then S1 ∪ S2 is a solution for G and

P(G,S1 ∪ S2) = P(G1, S1) + P(G2, S2).

In the other direction, given solution S in G it can efficiently be split into solutions S1 in
G1 and S2 in G2 satisfying the above. For consistency, we require that the size of the
optimal solution in the empty graph is zero.

2. There exists a non-decreasing polynomial function f such that for all graphs G, for all
X ⊆ V (G):

OPTP(G) ≤ OPTP(G−X) + f(|X|), and OPTP(G−X) ≤ OPTP(G).

In particular, for minimization problems there is a polynomial-time algorithm A that,
given a solution S′ in G −X, outputs a solution S for G such that P(G,S) ≤ P(G −
X,S′) + f(|X|). For maximization problems we require that any solution S for G−X is
also a solution for G and P(G,S) = P(G−X,S).

3. P⊥ parameterized by k + `, where k is the solution value and ` is the treewidth, has a
(1 + δ)-approximate kernel for all δ > 0, that has h(δ, k + `) vertices for some function h
that is polynomial in its second parameter.

4. P has a ϕ-approximation algorithm for some polynomial function ϕ such that α ·ϕ(k, `) <
ϕ(α · k, `) for all α > 1, and ϕ is non-decreasing in its first parameter.

Observe that many well-known vertex subset problems fit in this framework. As an example,
let us verify them for the Vertex Cover problem. The first point is immediate. For
the second point, let A(G,X, S) output S′ := S ∪X. Verify that indeed this satisfies the
conditions with f(|X|) = |X|. The third point follows with some extra work from the fact
that Vertex Cover has a kernel with 2k vertices, this kernel can then be shown to be 1-
approximate. For the last point, it is well-known that Vertex Cover has a 2-approximation
algorithm.

I Lemma 23 (F). Let P be a friendly graph optimization problem. There is a polynomial-
time algorithm B with access to a c-approximate oracle. It takes as input a graph G with
nice tree decomposition T of width ` and a number 0 < δ ≤ 1, and outputs either

a node t such that OPTP(G[Vt \Xt]) ≥ f(`+1)
δ together with a (c · (1 + δ))-approximate

solution St to P in G[Vt \Xt], or
a c · (1 + δ)-approximate solution for G,

using calls to the oracle on graphs with at most h(δ, ϕ(k, `) + `) vertices, where k = 2f(`+1)
δ +

f(1).

We will prove the result separately for maximization and minimization problems (see [24,
Lemma 25] for the minimization case).

E. C. Hols, S. Kratsch, and A. Pieterse 60:17

Proof of Lemma 23: Maximization problems. Let r be the root of T , and observe that
G = G[Vr \Xr] since Xr = ∅. Let k := 2f(`+1)

δ + f(1). Compute a ϕ-approximate solution S̃
in G. We do a case distinction on the value of this solution.

If P(G, S̃) ≤ k, then apply the PSAKS with approximation ratio 1+δ to (G,ϕ(k, `)+`) and
obtain instance (G′, k′) with at most h(δ, ϕ(k, `) + `) vertices. Obtain solution S′ by applying
the c-approximate oracle on G′. Apply the solution lifting algorithm to S′ to obtain a solution
S for G. We start by showing that S is the desired approximate solution. Clearly, P(G′, S′) ≥
1
c · OPTP(G′) by correctness of the oracle. If P(G′, S′) > k′, then P⊥(G′, k′, S′) = k′ + 1
and thus P⊥(G′, k′, S′) ≥ OPTP⊥(G′, k′). Otherwise, we have P⊥(G′, k′, S′) = P(G′, S′) ≥
1
c · OPTP(G′) ≥ 1

c · OPTP⊥(G′, k′). From the properties of the solution lifting algorithm,
it now follows that P⊥(G,ϕ(k, `) + `, S) ≥ 1

c(1+δ) OPTP⊥(G,ϕ(k, `) + `). Observe that
since P(G, S̃) ≤ k and ϕ non-decreasing in its first parameter, we get that OPTP(G) ≤
ϕ(P(G, S̃), `) ≤ ϕ(k, `) and thereby OPTP(G) = OPTP⊥(G,ϕ(k, `) + `). It follows that
P(G,S) ≥ P⊥(G,ϕ(k, `) + `, S) ≥ 1

c(1+δ) OPTP⊥(G,ϕ(k, `) + `) = 1
c(δ+1) OPTP(G).

Suppose P(G, S̃) > k. For every node t ∈ T , compute a ϕ-approximate solution S̃t
for graph G[Vt \ Xt]. We start by showing how to find a node t ∈ V (T) such that both
P(G[Vt \ Xt], S̃t) ≤ k, and OPTP(G[Vt \ Xt]) ≥ f(`+1)

δ . Start by observing that for the
leaf vertices, it holds that P(G[Vt \ Xt], S̃t) = 0 ≤ k. On the other hand, for the root,
we found that P(G[Vr \ Xr], S̃r) = P(G, S̃) > k. As such, we can find a node p such
that P(G[Vp \Xp], S̃p) > k, while for all of its children t it holds that P(G[Vt \Xt], S̃t) ≤
k. We show that one of the children of p has the desired properties. The result that
P(G[Vt \Xt], S̃t) ≤ k for all children of p is immediate. On the other hand, observe that
OPTP(G[Vp \ Xp]) ≥ P(G[Vp \ Xp], S̃p) ≥ k ≥ 2f(`+1)

δ , by assumption. We do a case
distinction on the type of node that p is in the nice tree decomposition.

p is an introduce or forget node. In this case, p has exactly one child t and Vt\Xt = Vp\Xp,
or Vt \ Xt = (Vp \ Xp) \ {v} for some v ∈ V (G). Since P is friendly, we get that
OPTP(G[Vt \Xt]) ≥ OPTP(G[Vp \Xp])− f(1) ≥ f(`+1)

δ .
p is a join node. In this case, p has exactly two children t1 and t2 and G[Vp \ Xp]
is the disjoint union of G[Vt1 \ Xt1] and G[Vt2 \ Xt2]. Obtain S1 and S2 such that
S̃p = S1∪S2 and S1 is a solution in G[Vt1 \Xt1], S2 in G[Vt2 \Xt2], and P(G[Vp\Xp], S̃p) =
P(G[Vt1 \Xt1], S1) + P(G[Vt2 \Xt2], S2). This can be done since P is friendly.
Therefore, there is i ∈ [2] such that OPTP(G[Vti \Xti]) ≥ P(G[Vti \Xti], Si) ≥ P(G[Vp \
Xp], S̃p)/2 ≥ f(`+1)

δ .
So, we have obtained a node t such that P(G[Vt\Xt], S̃t) ≤ k, and OPTP(G[Vt\Xt]) ≥ f(`+1)

δ .
We now show how to obtain St. Apply the PSAKS with ratio 1 + δ to (G[Vt \Xt], ϕ(k, `) + `)
and obtain instance (G′, k′). Apply the c-approximate oracle on G′ to obtain a solution
S′′. Apply the solution lifting algorithm to S′′ to obtain solution St in G[Vt \Xt]. With
similar arguments as before, St is a c(1 + δ)-approximate solution in G[Vt \Xt]. Output t
and St. J

The next theorem gives a polynomial-size (1+ε)-approximate Turing kernel with parameter
treewidth for any friendly optimization problem P . The Turing kernel follows the same ideas
as the Turing kernels presented earlier in this paper, using Lemma 23 to find a node in the
tree decomposition where we can split the graph.

I Theorem 24 (F). Let P be a friendly optimization problem on graphs. Then P paramet-
erized by treewidth has a (1 + ε)-approximate Turing kernel with h(ε3 , ϕ(6f(`+1)

ε + f(1), `) + `)
vertices, for all 0 < ε ≤ 1.

ESA 2020

60:18 Approximate Turing Kernelization for Problems Parameterized by Treewidth

While the description of the Turing kernel is mostly the same for maximization and minimiz-
ation problems, the correctness proof will differ quite significantly. Therefore, these cases will
be proven separately, the proof for minimization problems can be found in the full version of
the paper.

Proof of Theorem 24: Maximization problems. Let P be a friendly maximization problem.
We show that Algorithm 3 is the desired approximate Turing kernel, where we letA(G,Xt, S

′∪
St) return S′ ∪ St.

Algorithm 3 An approximate Turing kernel for friendly optimization problems P.

1: procedure ApproxP(G, T , ε)
2: Turn T into a nice tree decomposition
3: Apply Lemma 23 for δ := ε/3
4: if this outputs an approximate solution S for G then
5: return S

6: else // We obtained t ∈ V (T), c(1 + δ)-approximate solution St for P in G[Vt \Xt]
such that OPTP(G[Vt \Xt]) ≥ f(`+1)

δ

7: Let G′ := G− Vt.
8: Obtain T ′ from T by removing the subtree rooted at t and all vertices in Xt

9: Let S′ := ApproxP(G′, T ′, ε)
10: return S := A(G,Xt, S

′ ∪ St)
11: end if
12: end procedure

It is easy to see that since P is friendly, the algorithm indeed returns a correct solution
for P in G, it remains to prove the size bound.

OPTP(G) ≤ OPTP(G−Xt) + f(`+ 1)
= OPTP(G− Vt) + OPTP(G[Vt \Xt]) + f(`+ 1)
≤ OPTP(G− Vt) + (1 + δ) ·OPTP(G[Vt \Xt])
≤ c · (1 + ε) · P(G− Vt, S′) + c · (1 + δ)2 · P(G[Vt \Xt], St)
≤ c · (1 + ε) · (P(G− Vt, S′) + P(G[Vt \Xt], St))
= c · (1 + ε) · (P(G−Xt, S

′ ∪ St)) = c · (1 + ε) · (P(G,S′ ∪ St)). J

4.1 Consequences

We show that a number of considered problems are friendly in the next lemma.

I Lemma 25. The following problems are friendly (with respect to the following bounds).
Independent Set with f(x) = x, h(δ,m) = (m+ 1)2, ϕ(s, `) = (`+ 1) · s.
Vertex-Disjoint H-packing for connected graphs H, with |V (H)| constant, with
f(x) = x, h(δ, k) = O(k|V (H)|−1), ϕ(s, `) = |V (H)| · s.
Vertex Cover with f(x) = x, h(δ, k) = 2k, ϕ(s, `) = 2s.
Clique Cover with f(x) = x, h(δ,m) = m(m+ 1), ϕ(s, `) = (`+ 1) · s
Feedback Vertex Set with f(x) = x, h(δ, k) = 4k2, ϕ(s, `) = 2s.
Edge Dominating Set with f(x) = x, h(δ, k) = 4k2 + 4k, ϕ(s, `) = 2s.

E. C. Hols, S. Kratsch, and A. Pieterse 60:19

Proof.
Independent Set. Clearly, if G is the disjoint union of two graphs G1 and G2, then the union

of an independent set in G1 and an independent set in G2 forms an independent set in G.
Conversely, restricting an independent set in G to V (G1) (respectively V (G2)) results in
an independent set in G1 (respectively, G2). Furthermore, if X is a subset of G it is easy
to verify that OPTIS(G) ≤ OPTIS(G−X) + |X| and that OPTIS(G−X) ≤ OPTIS(G)
as any independent set in G−X is an independent set in G. The PSAKS parameterized
by m := k+ ` is as follows. It is known that any graph of treewidth ` has an independent
set of size at least |V (G)|/(`+ 1). This can be seen from the fact that such graphs are
`-degenerate, meaning that there is an order of the vertices v1, . . . , vn such that vi has
degree at most ` in G[v1, . . . , vi]. As such, an independent set of size |V (G)|/(`+ 1) can
be greedily constructed.
Thus, if |V (G)| > (m+ 1)2, we simply let G′ be the graph consisting of an independent
set of size m + 1. The solution lifting algorithm can then simply find a size-(m + 1)
independent set and output it. This is always an optimal solution for P⊥, since it does
not distinguish between solutions of size larger than m. Otherwise, we obtain that
|V (G)| ≤ (m+ 1)2 and the PSAKS will not modify G. In both cases, we output a graph
on at most (m+ 1)2 vertices.
It remains to show that there is an approximation algorithm, the idea is equivalent to
the PSAKS. Return an independent set in G of size at least |V (G)|/(`+ 1). Then indeed
ϕ(|V (G)|/(`+ 1), `) = |V (G)| ≥ OPTIS(G).

Vertex-Disjoint H-Packing. Requirements 1 and 2 are easily verified for f(|X|) = |X|, as
any vertex in X could be contained in at most one graph in any copy of H.
A simple approximation algorithm for Vertex-Disjoint H-Packing is to simply return
any maximal H-packing S. We show that |S| ≥ 1

|V (H)|OPTP(G), such that this is an
ϕ-approximation algorithm with ϕ(s, `) = |V (H)| ·s. Suppose there is an optimal solution
S∗ with |S∗| > |V (H)| · |S|. Since the copies of H in S are vertex-disjoint, S uses exactly
|V (H)| · |S| vertices. Since S∗ contains more than |V (H)| · |S| elements, it follows that
there is s ∈ S∗ that uses no vertices used by S, contradicting that S is maximal.
The existence of a PSAKS is shown in [24, Lemma 31, Appendix A].

Vertex Cover. Requirements 1 and 2 are easily verified for vertex cover, let algorithm A
simply output the union of the given solution with set X. As (implicitly) observed in the
proof of Lemma 8, Vertex Cover has a 1-approximate kernel of size 2k. Furthermore,
it is well-known to be 2-approximable.

Clique Cover. Requirement 1 is easy to verify. We show Requirement 2. Let X ⊆ V (G). Let
S be a clique cover of G, it is easy to see that {s\X | s ∈ S} is a clique cover of G−X, of
size at most |S|. Therefore, OPTP(G) ≥ OPTP(G−X). Furthermore, let algorithm A
when given G, clique cover S of G−X and X output the clique cover S ∪ {{x} | x ∈ X}.
Then this is a clique cover of G and it has size at most |S|+ |X| ≤ |S|+ f(|X|).
To show Requirement 3, we obtain a 1-approximate kernel for Clique Cover in a
somewhat similar way as for Independent Set. Observe that any n-vertex graph with
treewidth ` has a minimum clique cover of size at least n

`+1 . So, given G and parameter
m := k + `, if n > m(m + 1) ≥ k · (` + 1), we know for sure that G does not have a
minimum clique cover of size k. The reduction algorithm reduces G to an independent
set of size m + 1. The solution lifting algorithm (irrespective of the solution given for
G′) outputs V (G). Otherwise, if n ≤ m(m + 1) we simply let G be the output of the
reduction algorithm. Since the graph does not change, the solution lifting algorithm
simply outputs the solution it is given. In both cases, the reduced instance has size at
most m(m+ 1).

ESA 2020

60:20 Approximate Turing Kernelization for Problems Parameterized by Treewidth

It remains to verify that there is a ϕ-approximation algorithm for Clique Cover. Given
a graph G of treewidth `, we simply output {{v} | v ∈ V (G)}. Clearly, this is a valid
clique cover of G of size |V (G)|. Observe that since G has treewidth `, G contains no
cliques of size larger than `+ 1, thus any clique in the optimal clique cover of G covers at
most `+ 1 vertices. As such, the optimal solution contains at least |V (G)|

`+1 cliques, and
thus |S| ≤ (`+ 1)OPTP(G).

Feedback Vertex Set. Requirements 1 and 2 are straightforward to verify. The problem
has a 1-approximate kernel with 4k2 vertices and therefore a PSAKS by [24, Lemma 29,
Appendix A], showing Requirement 3. It is also known that the Feedback Vertex Set
problem has a 2-approximation algorithm [2], showing Requirement 4.

Edge Dominating Set. Requirement 1 is again straightforward. For the second requirement,
let G be a graph and letX ⊆ V (G). We start by showing that OPTP(G) ≥ OPTP(G−X).
Let S be an edge-dominating set in G. We obtain an edge-dominating set S′ for
G − X as follows. Initialize S′ as the set of edges with both endpoints in V (G) \ X,
so S′ := {e ∈ S | e ∩ X = ∅}. For every edge {x, v} ∈ S with x ∈ X, v /∈ X, choose
one arbitrary edge {u, v} ∈ E(G−X) and add {u, v} to S′. If no such edge exists, do
nothing. Clearly, |S′| ≤ |S|. Furthermore, we show that S′ is indeed an edge dominating
set. Suppose for contradiction that e = {u, v} is not dominated in G − X by S′. Let
{w, v} ∈ S be the edge dominating {u, v} in G. Then, since {w, v} /∈ S′, we have w ∈ X.
But then some edge with endpoint v was added to S′, a contradiction.
We continue by showing that OPTP(G) ≤ OPTP(G−X) + |X| and that algorithm A
exists. Let S be a solution for G − X, then algorithm A will output S together with
one edge {x, v} ∈ E(G) for all x ∈ X. In the case that x ∈ X is isolated in G, no
edge is added for this vertex. By this definition, the output has size at most |S|+ |X|.
Furthermore, any edge with vertices in V (G−X) is dominated by S. Any edge with at
least one endpoint in X is dominated by the additional edges.
Edge Dominating Set has a kernel that outputs a graph G′ of size at most 4k2 + 4k
such that G′ is an induced subgraph of G and any size-k edge dominating set in G′ is
also an edge dominating set in G [21]. We can see that this is a 1-approximate kernel.
Let the solution lifting algorithm simply output the solution for G′ as a solution for G.
Since any solution of size at most k in G′ is a solution in G, and obviously any solution
in G is a solution for G′, it is clear that OPTP⊥(G′, k) = OPTP⊥(G, k). As such, the
approximation ratio is preserved by the solution lifting algorithm.
It is known that even the weighted version of Edge Dominating Set can be 2-
approximated [20], such that the problem has a ϕ-approximation for ϕ(s, `) = 2s. J

As an immediate consequence of Lemma 25 and Theorem 24, we obtain approximate
Turing kernels for a large number of graph problems. These results are summarized in the
corollary below, the size bounds are obtained by substituting the relevant bounds given by
Lemma 25 into Theorem 24.

I Corollary 26. The following problems have a polynomial (1 + ε)-approximate Turing kernel
for all 0 < ε ≤ 1, of the given size (in number of vertices), when parameterized by treewidth `.

Independent Set, of size O(`
4

ε2).
Vertex-Disjoint H-packing for connected graphs H, of size O((`ε)|V (H)|−1).
Vertex Cover of size O(`ε).
Clique Cover of size O(`

4

ε2).
Feedback Vertex Set of size O((`ε)2).
Edge Dominating Set of size O((`ε)2).

E. C. Hols, S. Kratsch, and A. Pieterse 60:21

We observe that the bounds for Independent Set and Clique Cover can be improved
to O(`

2

ε) by a more careful analysis. Instead of using that the problem is friendly and
applying Lemma 23, one may simply find t such that the number of vertices in G[Vt \Xt] is
between (`+1)2

δ and 10(`+1)2

δ , and use that an optimal solution has size at least |V (G)|/(`+ 1)
for graphs of treewidth `. There is no need to apply a kernelization in this case.

5 Conclusion

In this paper we have provided approximate Turing kernels for various graph problems when
parameterized by treewidth. Furthermore, we give a general result that can be used to obtain
approximate Turing kernels for all friendly graph problems parameterized by treewidth.

While the notion of being friendly captures many known graph problems, some interesting
problems do not fit this definition. In particular, it is not clear whether the Dominating Set
problem has a polynomial-size constant-factor approximate Turing kernel when parameterized
by treewidth. We leave this as an open problem.

References
1 Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Interval vertex

deletion admits a polynomial kernel. In Timothy M. Chan, editor, Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 1711–1730. SIAM, 2019. doi:10.1137/1.9781611975482.103.

2 Ann Becker and Dan Geiger. Optimization of pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artificial Intelligence,
83(1):167–188, 1996. doi:10.1016/0004-3702(95)00004-6.

3 Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh,
and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees with many leaves.
ACM Trans. Algorithms, 8(4):38:1–38:19, 2012. doi:10.1145/2344422.2344428.

4 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. doi:
10.1016/j.jcss.2009.04.001.

5 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016. doi:
10.1145/2973749.

6 Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles
and disjoint paths. Theor. Comput. Sci., 412(35):4570–4578, 2011. doi:10.1016/j.tcs.2011.
04.039.

7 Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A polynomial kernel for diamond-
free editing. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual
European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland,
volume 112 of LIPIcs, pages 10:1–10:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.ESA.2018.10.

8 Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dusan Knop, and Peter Zeman. Ker-
nelization of graph hamiltonicity: Proper h-graphs. In Zachary Friggstad, Jörg-Rüdiger
Sack, and Mohammad R. Salavatipour, editors, Algorithms and Data Structures - 16th
International Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019, Proceed-
ings, volume 11646 of Lecture Notes in Computer Science, pages 296–310. Springer, 2019.
doi:10.1007/978-3-030-24766-9_22.

9 Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. In Peter Widmayer, Gabriele Neyer, and Stephan Eidenbenz, editors, Graph-
Theoretic Concepts in Computer Science, pages 313–324, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

ESA 2020

https://doi.org/10.1137/1.9781611975482.103
https://doi.org/10.1016/0004-3702(95)00004-6
https://doi.org/10.1145/2344422.2344428
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1145/2973749
https://doi.org/10.1145/2973749
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.1016/j.tcs.2011.04.039
https://doi.org/10.4230/LIPIcs.ESA.2018.10
https://doi.org/10.1007/978-3-030-24766-9_22

60:22 Approximate Turing Kernelization for Problems Parameterized by Treewidth

10 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström.
Clique cover and graph separation: New incompressibility results. ACM Trans. Comput.
Theory, 6(2):6:1–6:19, 2014. doi:10.1145/2594439.

12 Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through
colors and IDs. ACM Trans. Algorithms, 11(2):13:1–13:20, 2014. doi:10.1145/2650261.

13 Eduard Eiben, Danny Hermelin, and M. S. Ramanujan. Lossy kernels for hitting subgraphs.
In Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors, 42nd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21-
25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages 67:1–67:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.MFCS.2017.67.

14 Eduard Eiben, Mithilesh Kumar, Amer E. Mouawad, Fahad Panolan, and Sebastian Siebertz.
Lossy kernels for connected dominating set on sparse graphs. SIAM J. Discrete Math.,
33(3):1743–1771, 2019. doi:10.1137/18M1172508.

15 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008.
doi:10.1137/05064299X.

16 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-deletion:
Approximation, kernelization and optimal FPT algorithms. In 53rd Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23,
2012, pages 470–479. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.62.

17 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

18 Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct pcps
for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:10.1016/j.jcss.2010.06.007.

19 Pierre Fraigniaud and Nicolas Nisse. Connected treewidth and connected graph searching.
In LATIN 2006: Theoretical Informatics, 7th Latin American Symposium, Valdivia, Chile,
March 20-24, 2006, Proceedings, pages 479–490, 2006. doi:10.1007/11682462_45.

20 Toshihiro Fujito and Hiroshi Nagamochi. A 2-approximation algorithm for the minimum
weight edge dominating set problem. Discrete Applied Mathematics, 118(3):199–207, 2002.
doi:10.1016/S0166-218X(00)00383-8.

21 Torben Hagerup. Kernels for edge dominating set: Simpler or smaller. In Mathem-
atical Foundations of Computer Science 2012 - 37th International Symposium, MFCS
2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, pages 491–502, 2012. doi:
10.1007/978-3-642-32589-2_44.

22 Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and Xi Wu. A
completeness theory for polynomial (turing) kernelization. Algorithmica, 71(3):702–730, 2015.
doi:10.1007/s00453-014-9910-8.

23 Eva-Maria C. Hols and Stefan Kratsch. On kernelization for edge dominating set under
structural parameters. In Rolf Niedermeier and Christophe Paul, editors, 36th International
Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019,
Berlin, Germany, volume 126 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.STACS.2019.36.

24 Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Approximate turing kernelization for
problems parameterized by treewidth. CoRR, abs/2004.12683, 2020. arXiv:2004.12683v1.

25 Bart M. P. Jansen. Turing kernelization for finding long paths and cycles in restricted graph
classes. J. Comput. Syst. Sci., 85:18–37, 2017. doi:10.1016/j.jcss.2016.10.008.

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2594439
https://doi.org/10.1145/2650261
https://doi.org/10.4230/LIPIcs.MFCS.2017.67
https://doi.org/10.1137/18M1172508
https://doi.org/10.1137/05064299X
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1016/j.jcss.2010.06.007
https://doi.org/10.1007/11682462_45
https://doi.org/10.1016/S0166-218X(00)00383-8
https://doi.org/10.1007/978-3-642-32589-2_44
https://doi.org/10.1007/978-3-642-32589-2_44
https://doi.org/10.1007/s00453-014-9910-8
https://doi.org/10.4230/LIPIcs.STACS.2019.36
http://arxiv.org/abs/2004.12683v1
https://doi.org/10.1016/j.jcss.2016.10.008

E. C. Hols, S. Kratsch, and A. Pieterse 60:23

26 Bart M. P. Jansen and Dániel Marx. Characterizing the easy-to-find subgraphs from the
viewpoint of polynomial-time algorithms, kernels, and turing kernels. In Piotr Indyk, editor,
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 616–629. SIAM, 2015. doi:
10.1137/1.9781611973730.42.

27 Bart M. P. Jansen and Astrid Pieterse. Polynomial kernels for hitting forbidden minors under
structural parameterizations. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors,
26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,
Finland, volume 112 of LIPIcs, pages 48:1–48:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.48.

28 Bart M. P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen. A deterministic polyno-
mial kernel for odd cycle transversal and vertex multiway cut in planar graphs. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume
126 of LIPIcs, pages 39:1–39:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.STACS.2019.39.

29 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450–459. IEEE Computer
Society, 2012. doi:10.1109/FOCS.2012.46.

30 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 224–237, 2017. doi:10.1145/3055399.
3055456.

31 Rolf Niedermeier and Christophe Paul, editors. 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume
126 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: http://www.
dagstuhl.de/dagpub/978-3-95977-100-9.

32 M. S. Ramanujan. An approximate kernel for connected feedback vertex set. In Michael A.
Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium
on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144
of LIPIcs, pages 77:1–77:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ESA.2019.77.

33 Carla D. Savage. Depth-first search and the vertex cover problem. Inf. Process. Lett.,
14(5):233–237, 1982. doi:10.1016/0020-0190(82)90022-9.

34 Stéphan Thomassé, Nicolas Trotignon, and Kristina Vuskovic. A polynomial turing-kernel
for weighted independent set in bull-free graphs. Algorithmica, 77(3):619–641, 2017. doi:
10.1007/s00453-015-0083-x.

35 Jouke Witteveen, Ralph Bottesch, and Leen Torenvliet. A hierarchy of polynomial kernels.
In Barbara Catania, Rastislav Královic, Jerzy R. Nawrocki, and Giovanni Pighizzini, editors,
SOFSEM 2019: Theory and Practice of Computer Science - 45th International Conference
on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia,
January 27-30, 2019, Proceedings, volume 11376 of Lecture Notes in Computer Science, pages
504–518. Springer, 2019. doi:10.1007/978-3-030-10801-4_39.

ESA 2020

https://doi.org/10.1137/1.9781611973730.42
https://doi.org/10.1137/1.9781611973730.42
https://doi.org/10.4230/LIPIcs.ESA.2018.48
https://doi.org/10.4230/LIPIcs.STACS.2019.39
https://doi.org/10.1109/FOCS.2012.46
https://doi.org/10.1145/3055399.3055456
https://doi.org/10.1145/3055399.3055456
http://www.dagstuhl.de/dagpub/978-3-95977-100-9
http://www.dagstuhl.de/dagpub/978-3-95977-100-9
https://doi.org/10.4230/LIPIcs.ESA.2019.77
https://doi.org/10.4230/LIPIcs.ESA.2019.77
https://doi.org/10.1016/0020-0190(82)90022-9
https://doi.org/10.1007/s00453-015-0083-x
https://doi.org/10.1007/s00453-015-0083-x
https://doi.org/10.1007/978-3-030-10801-4_39

The Fine-Grained Complexity of Median and
Center String Problems Under Edit Distance
Gary Hoppenworth
Department of Computer Science, University of Central Florida, Orlando, FL, USA
gary.hoppenworth@gmail.com

Jason W. Bentley
Department of Mathematics, University of Central Florida, Orlando, FL, USA
jason.bentley@ucf.edu

Daniel Gibney
Department of Computer Science, University of Central Florida, Orlando, FL,USA
https://www.cs.ucf.edu/~dgibney/
daniel.j.gibney@gmail.com

Sharma V. Thankachan
Department of Computer Science, University of Central Florida, Orlando, FL, USA
http://www.cs.ucf.edu/~sharma/
sharma.thankachan@ucf.edu

Abstract
We present the first fine-grained complexity results on two classic problems on strings. The first one
is the k-Median-Edit-Distance problem, where the input is a collection of k strings, each of length
at most n, and the task is to find a new string that minimizes the sum of the edit distances from
itself to all other strings in the input. Arising frequently in computational biology, this problem
provides an important generalization of edit distance to multiple strings and is similar to the multiple
sequence alignment problem in bioinformatics. We demonstrate that for any ε > 0 and k ≥ 2, an
O(nk−ε) time solution for the k-Median-Edit-Distance problem over an alphabet of size O(k) refutes
the Strong Exponential Time Hypothesis (SETH). This provides the first matching conditional lower
bound for the O(nk) time algorithm established in 1975 by Sankoff.

The second problem we study is the k-Center-Edit-Distance problem. Here also, the input is a
collection of k strings, each of length at most n. The task is to find a new string that minimizes
the maximum edit distance from itself to any other string in the input. We prove that the same
conditional lower bound as before holds. Our results also imply new conditional lower bounds for
the k-Tree-Alignment and the k-Bottleneck-Tree-Alignment problems studied in phylogenetics.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Edit Distance, Median String, Center String, SETH

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.61

Funding Supported in part by the U.S. National Science Foundation (NSF) under CCF-1703489.

1 Introduction

Recent years have seen a remarkable increase in our understanding of the hardness of
problems in the complexity class P . By establishing conditional lower bounds based on
popular conjectures, researchers have been able to identify which problems are unlikely
to yield algorithms significantly faster than what is known, at least not without solving
other long-standing open questions. We contribute to this growing body of research here
by establishing tight conditional hardness results for the k-Median-Edit-Distance problem.
This generalizes the seminal work by Backurs and Indyk in STOC 2015, which showed that
conditioned on the Strong Exponential Time Hypothesis (SETH), there does not exist a
strongly subquadratic algorithm for computing the edit distance between two strings [10].

© Gary Hoppenworth, Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 61; pp. 61:1–61:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gary.hoppenworth@gmail.com
mailto:jason.bentley@ucf.edu
https://www.cs.ucf.edu/~dgibney/
mailto:daniel.j.gibney@gmail.com
http://www.cs.ucf.edu/~sharma/
mailto:sharma.thankachan@ucf.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.61
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 The Fine-Grained Complexity of Median and Center String Problems Under Edits

I Problem 1 (k-Median-Edit-Distance). Given a set S of k strings, each of length at most n,
find a string s∗ (called a median string) that minimizes the sum of edit distances from the
strings in S to s∗. This sum is called the median edit distance.

When k = 2 this problem is equivalent to the well-known edit distance problem, whose
famous dynamic programming solution was first given in 1965 by Vintsyuk [44]. An algorithm
for solving this problem on k strings in time O(nk) was then given by Sankoff in 1975 [41] in
the more general context of tree alignment (mutation trees). Since Sankoff’s solution, no
algorithms with significantly better time complexity have been developed. This is despite the
problem being of practical importance as well as the subject of extensive study [29, 30, 33, 38].
Compelling reasons for this were finally given 25 years later by Higuera and Casacuberta in
2000 who showed the NP-completeness of the problem over unbounded alphabets [20]. This
result was later strengthened to finite alphabets in [42] and then even to binary alphabets in
[39]. In [39] it was also shown that the problem is W[1]-hard in k. This last result implies it
is highly unlikely to find an algorithm with time complexity of the form f(k) ·NO(1), where
N is the sum of the lengths of the k strings. None of these hardness results, however, rule
out the possibility of algorithms where the time complexity is of the form O(nk−ε). Nearly
five decades after its creation, this paper gives a convincing argument as to why a significant
improvement over Sankoff’s algorithm is unlikely. Specifically, we show that an O(nk−ε) time
algorithm for any ε > 0 would refute SETH. We also prove that the same lower bound holds
for a related problem known as the k-Center-Edit-Distance.

I Problem 2 (k-Center-Edit-Distance). Given a set S of k strings, each of length at most n,
find a string s∗ (called a center string) that minimizes the maximum of edit distances from
the strings in S to s∗. The maximum edit distance from s∗ to any string in S is called the
center edit distance.

Like k-Median-Edit-Distance, the k-Center-Edit-Distance problem is known to be NP-
complete and W[1]-hard in k [39]. Additionally, k-Center-Edit-Distance has been shown to
have an O(n2k) time solution [39]. However, ours are the first fine-grained complexity results
for both these problems. Finally, we note that our results imply similar conditional lower
bounds for two classic tree alignment problems from phylogenetics called k-Tree-Alignment
and k-Bottleneck-Tree-Alignment [18, 28, 43, 45]. The k-Tree-Alignment (resp. k-Bottleneck-
Tree-Alignment) problem is defined as follows: given a tree T with k leaves where each leaf
is labeled with a string of length n, find an assignment of strings to all internal vertices of T
such that the sum (resp. max) of edit distances between adjacent strings/vertices over all
edges is minimal. Note that the median (resp. center) edit distance problem on k strings
is a special case of the k-Tree-Alignment (resp. k-Bottleneck-Tree-Alignment) problem,
specifically when the tree has only one internal vertex.

1.1 Related Work
Recent progress in the field of fine-grained complexity has given us conditional hardness
results for many popular problems. The list of problems includes those related to graphs,
computational geometry, and strings [1, 3, 4, 6, 7, 8, 10, 15, 17, 19, 21, 24, 23, 31, 32].
Reductions based on SETH, such as the one considered here, tend to have a very similar
structure. The Orthogonal Vectors problem [46] is typically used as an intermediate step in
the reduction. The proof we provide here works off a generalized variant of the Orthogonal
Vectors problem as used in [2]. Our work contributes to a growing list of conditional lower
bounds for string problems which we describe in more detail below.

G. Hoppenworth, J.W. Bentley, D. Gibney, and S. V. Thankachan 61:3

Along with the SETH-based lower bound for edit distance by Backurs and Indyk in [10],
there has been a number of newly appearing conditional lower bounds for string related
problems [9, 12, 14, 16]. Bringmann and Künnemann created a framework by which any
string problem which allowed for a particular gadget construction has similar SETH-based
lower bounds proven for it [13]. This framework includes the problems of the longest common
subsequence, dynamic time warping, and edit distance under a binary alphabet (less than
the four symbols used in the original reduction by Backurs and Indyk). Further work to
extend these types of lower bounds to more than two strings was undertaken in [2], where it
was shown that an algorithm which could find the longest common subsequence on k strings
in time O(nk−ε) for any ε > 0 would refute SETH. The study of conditional hardness of
problems on k strings also includes [22], where the longest common increasing subsequence
on k strings, k-LCIS, was studied. Likewise in [7] the local alignment problem on k strings
under sum of pairs was considered. In both of the last two works mentioned, it was shown
that an O(nk−ε) algorithm would refute SETH.

Another notable achievement in this direction is in [5], where it was shown that it is
possible to weaken the assumptions used to achieve many of these results. They showed
that under much weaker conjectures than SETH regarding circuit complexity, many of the
same hardness results still hold. In fact, for any problem where the gadgetry of Bringmann
and Künnemann can be applied, having a strongly sub-quadratic time algorithm would have
drastic implications for our ability to solve satisfiability problems on Boolean circuits much
more complex than those required for 3-SAT. Furthermore, their work also demonstrated that
if one could shave off arbitrarily large logarithmic factors, it would have drastic implications
in the field of circuit complexity. In this same work, they showed that their reduction from
branching programs to string problems can be adapted to k-LCS, implying circuit-based
hardness results apply for LCS on k strings.

There exists a close relationship between LCS and edit distance on two strings. Namely,
on two strings of lengths n and m, the edit distance with only the insertion and deletion
operations is equal to n + m − 2`, where ` is the length of the strings’ longest common
subsequence. For more than two strings, such a clear relationship (in terms of just lengths
and number of edits) seems unlikely. In fact, there exist collections of k strings where the
lengths of the longest common subsequences are equal, but the median edit distances are
not, e.g., with k = 3 and n ≥ 1, the sets {an, an, bn} and {an, bn, cn} both have a longest
common subsequence of length zero, while the first has median edit distance n and the
second has median edit distance 2n. Because of this, it seems difficult to parlay the hardness
results proven for k-LCS into hardness results for k-Median-Edit-Distance, even under only
insertions and deletions. Hence, the hardness of k-Median-Edit-Distance was left open. On
the other hand, a 2-approximation for k-Median-Edit-Distance can be easily obtained in
O(k2n2) time: simply choose the string within the collection that minimizes the sum of edit
distances from itself to the other strings.

The problem of finding the center string of a set of k strings, the string which minimizes
the maximum distance from itself to any string in the set, has more often been studied under
the Hamming distance metric than the edit distance metric. In this context the problem is
typically called the closest string problem [25, 27, 35, 36]. The problem under the Hamming
distance metric is NP-complete [34], whereas the median version under Hamming distance
can be easily solved in polynomial time. In the cases where this problem has been studied
under the edit distance metric, it has made use of a parameter d, the maximum distance any
solution is allowed to have from an input string. The problem is fixed parameter tractable in
d, which is the basis of many solutions [11, 26, 37].

ESA 2020

61:4 The Fine-Grained Complexity of Median and Center String Problems Under Edits

2 Hardness for k-Median-Edit-Distance

Our reduction will be from the k-Most-Orthogonal-Vectors problem, which was first intro-
duced in [2]. It was shown that if it could be solved in O(nk−ε) time for some constant ε > 0,
it would imply new upper bounds for MAX-CNF-SAT that would violate SETH.

I Problem 3 (k-Most-Orthogonal-Vectors). Given k ≥ 2 sets S1, S2, . . . , Sk each containing n
binary vectors v ∈ {0, 1}d, and an integer r < d, are there k vectors v1, v2, . . . , vk with vi ∈ Si

such that their inner product, defined as
∑d

h=1
∏

t∈[1,k] vt[h], is at most r? A collection of
vectors that satisfies this property will be called r-far, and otherwise called r-close.

Modifying the Vectors. In our reduction we apply a modification to the vectors in our
input sets S1, S2, . . . , Sk. We prepend (r + 1) 0’s to each vector v ∈ S1 and (r + 1) 1’s to
each vector v ∈ Si where i > 1. Every vector is now of dimension d+ r + 1 ≤ 2d and the
k-Most-Orthogonal-Vectors problem is identical on the original and modified sets.

2.1 Technical Overview
Given sets S1, S2, . . . , Sk of binary vectors, we will design strings T1, T2, . . . , Tk such that if
there exists a collection of r-far vectors in the input, then their median edit distance will be
at most a constant E−. Otherwise, if there does not exist any collection of r-far vectors in
the input, their median edit distance will be equal to E+, where E− < E+. Our strings will
be constructed in three levels of increasing scope: coordinate level, vector level, and set level.
We use EDIT(x1, x2, . . . , xk) to denote the median edit distance of k strings x1, x2, . . . , xk.

Coordinate Level: Given k bits b1, b2, . . . , bk, we construct coordinate gadget strings
CGi(bi) that can distinguish between the case when b1b2 · · · bk = 0 and b1b2 · · · bk = 1.
Specifically, we will show that there exist constants C− and C+ with C− < C+ such
that if b1b2 · · · bk = 0, then EDIT(CG1(b1),CG2(b2), . . . ,CGk(bk)) = C−, and else if
b1b2 · · · bk = 1, then EDIT(CG1(b1),CG2(b2), . . . ,CGk(bk)) = C+.
Vector Level: Given vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1, we construct vector gadget
strings VGi(vi) for i ∈ [2, k] and a slightly more complicated decision gadget string
DG1(v1) out of our coordinate gadgets. Together these gadgets can determine if the k
vectors are r-far or not. Specifically, we will show that if v1, v2, . . . , vk are r-far, then
EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≤ D− and else if v1, v2, . . . , vk are r-close, then
EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) = D+, where D+ and D− < D+ are constants.
Our construction here is a generalization of the work in [10] to k strings.
Set Level: In the set level step of the reduction, we will build our final strings
T1, T2, . . . , Tk by concatenating our vector level gadgets and adding special $i symbols. Our
final strings will be designed so that if there is an r-far collection of vectors v1, v2, . . . , vk

with vi ∈ Si, then the corresponding gadgets DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)
will align in an optimal edit sequence of our strings. These vector gadgets will have
a lower median edit distance, resulting in EDIT(T1, T2, . . . , Tk) ≤ E−. Otherwise,
EDIT(T1, T2, . . . , Tk) = E+, where E− < E+.

We now present a definition and an associated fact.

I Definition 4 (Alignment). Given a particular edit sequence (a sequence of insertions,
substitutions, and deletions) on strings x1, x2, . . . , xk, we say symbol α in xi is aligned with
symbol β in another string xj if neither α nor β is deleted but are instead preserved or
substituted to correspond to the same symbol. We say a substring s of xi is aligned with
substring t of xj, if there exists a pair of aligned characters in s and t.

G. Hoppenworth, J.W. Bentley, D. Gibney, and S. V. Thankachan 61:5

The following observation will be used implicitly throughout.

I Fact 5 (No criss-crossed alignments). Consider an edit sequence on a set of strings containing
strings x and y. Let i1 < j1 and i2 < j2 be indices on these strings. If x[i1] is aligned with
y[j2], then x[i2] cannot be aligned with y[j1].

2.2 Coordinate level reduction
For i ∈ [1, k], we define coordinate gadget strings CGi over the alphabet Σ = {21, 22, . . . , 2k, 3,
4}. Let `1 = 10k2. For bits b1, b2, . . . , bk ∈ {0, 1}, we define

CGi(bi) := fi(bi) ◦ 4`1 ◦ gi(bi) ◦ 4`1 ◦ hi(bi) for i ∈ [1, k], where

fi(bi) =

2k−1

i+1 if bi = 1, i < k

2k−1
1 if bi = 1, i = k

2k−1
i if bi = 0

gi(bi) =

{
3k−1 if bi = 1
2k−1

i if bi = 0
hi(bi) =

{
2k

i if bi = 1
©k

j=12j if bi = 0

We present the following examples on k = 3 to aid in the understanding of our CGi(bi).

b1, b2, b3 f1(b1), f2(b2), f3(b3) g1(b1), g2(b2), g3(b3) h1(b1), h2(b2), h3(b3) EDIT(CG1(b1), ·, ·)
1, 1, 1 2222, 2323, 2121 33, 33, 33 212121, 222222, 232323 4 + 0 + 6 = 10
0, 1, 1 2121, 2323, 2121 2121, 33, 33 212223, 222222, 232323 2 + 2 + 4 = 8
0, 0, 0 2121, 2222, 2323 2121, 2222, 2323 212223, 212223, 212223 4 + 4 + 0 = 8

I Lemma 6. Let C− = 2(k − 1)2 and let C+ = C− + (k − 1) = (2k − 1)(k − 1). Then

EDIT(CG1(b1),CG2(b2), . . . ,CGk(bk)) =
{
C+ if b1b2 · · · bk = 1
C− otherwise

Proof. For the remainder of this proof, let π = b1 + b2 + · · ·+ bk ∈ [0, k].

B Claim 7. The median edit distance of our fi gadgets is

EDIT(f1(b1), . . . , fk(bk)) =
{

(k − 1)2 if π = 0 or k
(k − 1)(k − 2) otherwise

B Claim 8. The median edit distance of our gi gadgets is

EDIT(g1(b1), . . . , gk(bk)) =
{

(k − 1)2 if π = 0
(k − 1)(k − π) otherwise

B Claim 9. The median edit distance of our hi gadgets is EDIT(h1(b1), . . . , hk(bk)) = (k−1)π.

We have chosen `1 to be sufficiently large that all fi, gi, and hi gadgets align only with
gadgets of their own type. Therefore,

EDIT(CG1(b1), . . . ,CGk(bk)) =

(k − 1)2 + (k − 1)2 + 0 π = 0
(k − 1)(k − 2) + (k − 1)(k − π) + (k − 1)π 0 < π < k

(k − 1)2 + 0 + (k − 1)k π = k

A simple calculation will show that EDIT(CG1(b1), . . . ,CGk(bk)) is C− when π < k (and
hence b1b2 · · · bk = 0) and is C+ when π = k (and hence b1b2 · · · bk = 1). J

ESA 2020

61:6 The Fine-Grained Complexity of Median and Center String Problems Under Edits

2.3 Vector level reduction
At this step of the reduction we are given binary vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1 and
we want to determine whether or not they are r-far. We accomplish this by constructing
vector level gadgets that will have a “lower” median edit distance if the vectors are r-far.
Let integer parameters `2 = 10d`1 and `3 = (10`2)2. For vectors v1, v2, . . . , vk, we define

VGi(vi) := 6`3 ◦Mi(vi) ◦ 6`3 where Mi(vi) :=©j∈[1,d+r+1](5`2 ◦ CGi(vi[j]) ◦ 5`2)

Observe that the vector gadget of a vector vi is just the concatenation of the coordinate
gadgets corresponding to each coordinate in vi, along with some additional padding symbols.
It follows that the median edit distance of VG1(v1),VG2(v2), . . . ,VGk(vk) will be proportional
to the inner product of v1, v2, . . . , vk. This is promising because we can now argue about
whether or not v1, v2, . . . , vk are r-far based on the median edit distance of the VGi(vi)’s (a
“lower” distance implies the vectors are r-far and a “higher” distance implies the vectors are
r-close). Unfortunately, vectors with a very large inner product will result in a large median
edit distance, which could interfere with our ability to detect r-far vectors in the next step
of our reduction. What is desired here is to have vector level gadgets with a fixed “higher”
median edit distance when the vectors are r-close. We achieve this by replacing VG1(v1)
with a decision gadget DG1(v1) that will ensure that no matter how large the inner product
of a collection of r-close vectors, the median edit distance of their corresponding gadgets will
be a constant D+. For vector v1, we define

DG1(v1) := 7`3 ◦M1(v1) ◦ 6`3 ◦M1(θ) ◦ 7`3 , θ ∈ {0, 1}d+r+1 and θ[i] =

{
1 i ≤ r + 1
0 else

The key properties of our vector level gadgets are captured in Lemma 10 and Lemma 11.
In both proofs we let m = |Mi| = (d + r + 1)(2`2 + 2`1 + 3k − 2), and we define D− =
2`3 +m+ (d+ 1)C− + rC+ and D+ = D− + (k − 1).

I Lemma 10. For any given r-far vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1,
EDIT(DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)) ≤ D−.

Proof. To upper bound the median edit distance of our k strings by D−, we must give a
complete edit sequence of our strings that requires D− or fewer edits. Let v1, v2, . . . , vk be
r-far vectors. We decide to align VG2(v2),VG3(v3), . . . ,VGk(vk) with the 7`3 ◦M1(v1) ◦ 6`3

substring of DG1(v1) as in Figure 1.

Mi(v)i i

M1(v)1 M1()

Figure 1 An optimal alignment of DG1(v1),VG2(v2), . . . ,VGk(vk) when v1, v2, . . . , vk are r-far.

First we delete M1(θ) ◦ 7`3 from DG1(v1) in m+ `3 edits. Then we substitute all the 7
symbols in the 7`3 prefix of DG1(v1) to 6 symbols in `3 edits. Finally, we must edit substrings
M1(v1),M2(v2), . . . ,Mk(vk) to be the same. Each Mi(vi) contains d + r + 1 coordinate
gadgets, and for j ∈ [1, d+ r + 1], we choose to align the jth leftmost coordinate gadgets of
all Mi(vi) for i ∈ [1, k]. Note that the inner product of v1, v2, . . . , vk is less than or equal to

G. Hoppenworth, J.W. Bentley, D. Gibney, and S. V. Thankachan 61:7

r because the vectors are r-far. It follows that we will have no more than r alignments of
coordinate gadgets with cost C+ and at least d+1 alignments with cost C− (recall Lemma 6).
Then EDIT(M1(v1),M2(v2), . . . ,Mk(vk)) ≤ (d + 1)C− + rC+. The total number of edits
performed in this edit sequence is at most 2`3 +m+ (d+ 1)C− + rC+ = D−. J

We note that if v1, v2, . . . , vk are r-close and as a result have an inner product greater
than r, the optimal edit sequence of DG1(v1),VG2(v2), . . . ,VGk(vk) will align strings
VG2(v2),VG3(v3), . . . ,VGk(vk) with the 6`3 ◦M1(θ) ◦ 7`3 substring of DG1(v1) as in Fig. 2.

Mi(v)i i

M1(v)1 M1()

Figure 2 An optimal alignment of DG1(v1),VG2(v2), . . . ,VGk(vk) when v1, v2, . . . , vk are r-close.

I Lemma 11. For any given r-close vectors v1, v2, . . . , vk ∈ {0, 1}d+r+1,
EDIT(DG1(v1),VG2(v2),VG3(v3), . . . ,VGk(vk)) = D+.

Proof. The proof of Lemma 11 is a straightforward generalization of the vector gadget proof
in [10] to k strings. In the course of this proof we will make use of the fact that for any subset
xi1 , xi2 , . . . , xij

of strings x1, x2, . . . , xk, EDIT(xi1 , xi2 , . . . , xij
) ≤ EDIT(x1, x2, . . . , xk).

B Claim 12. EDIT(DG1(v1),VG2(v2),VG3(v3) . . . ,VGk(vk)) ≤ D+

Subproof. Note that the inner product of θ, v2, v3, . . . , vk is equal to r+1 by the definition of θ
and our modifications to the input vectors. Then we can align VG2(v2),VG3(v3), . . . ,VGk(vk)
with the 6`3 ◦M1(θ) ◦ 7`3 substring of DG1(v1) in a manner analogous to our edit sequence
in Lemma 10. C

Now we “just” need to prove that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+. We
proceed by cases on the alignments of the Mi(vi) substrings.

B Claim 13. EDIT(DG1(v1),VG2(v2),VG3(v3) . . . ,VGk(vk)) ≥ D+

Subproof. We have the following cases to consider.
Case 1: The Mi(vi) substring of some VGi(vi) gadget with i > 1 has alignments with
both substrings 7`3 ◦M1(v1) and M1(θ) ◦ 7`3 of DG1(v1). In this case, the cost induced
by the symbols in the 7`3 prefix and suffix of DG1(v1) and the 6`3 substring of DG1(v1)
is `3 each, so EDIT(VGi(vi),DG1(v1)) ≥ 3`3 > D+. Our lower bound is satisfied. Note
that since the inequality is strict, this case will not occur in an optimal edit sequence.
Case 2: The Mi(vi) substring of some VGi(vi) gadget with i > 1 does not have any
alignments with the 7`3 ◦M1(v1) substring of DG1(v1).
Case 2.1: The Mj(vj) substring of some VGj(vj) gadget with j > 1 does not have any
alignments with substring M1(θ) ◦ 7`3 of DG1(v1). We will consider
EDIT(VGi(vi),VGj(vj),DG1(v1)), which is the same as EDIT(VGi(vi),DG1(v1)) when
i = j. The Mi(vi) substring of VGi(vi) has no alignments with the 7`3 ◦M1(v1) substring
of DG1(v1). Therefore at least D1 = `3 + m edits need to be performed between the
6`3 prefix of VGi(vi) and the 7`3 ◦ M1(v1) prefix of VG1(v1). Likewise, the Mj(vj)
substring of VGj(vj) has no alignments with the M1(θ) ◦ 7`3 substring of DG1(v1), and
so at least D1 edits need to be performed between the 6`3 suffix of VGj(vj) and the
M1(θ) ◦ 7`3 suffix of DG1(v1). The above edit costs are disjoint, and it follows that
EDIT(VGi(vi),VGj(vj),DG1(v1)) ≥ 2D1 > D+. Our lower bound is satisfied.

ESA 2020

61:8 The Fine-Grained Complexity of Median and Center String Problems Under Edits

Case 2.2: We consider the complement of Case 2.1: the Mi(vi) substrings of all VGi(vi)
gadgets with i > 1 have alignments with the substring M1(θ) ◦ 7`3 of DG1(v1). By our
analysis in Case 1, we may now assume that the Mi(vi) substrings of all VGi(vi) gadgets
with i > 1 do not have alignments with the 7`3 ◦M1(v1) substring of DG1(v1). Then
by our argument in Case 2.1, at least D1 edits must be performed on the 6`3 prefix of
VGi(vi) and the 7`3 ◦M1(v1) prefix of VG1(v1). Additionally, note that all VGi(vi) share
the suffix 6`3 , whereas DG1(v1) has suffix 7`3 . It follows that at least D2 = `3 edits
are needed to edit DG1(v1),VG2(v2), . . . ,VGk(vk) to have the same suffix. Furthermore,
these edits are disjoint from the D1 edits performed on the prefixes of DG1(v1) and the
VGi(vi). We have shown that at least D1 + D2 = 2`3 + m edits are required to align
DG1(v1),VG2(v2), . . . ,VGk(vk). Now all we must do is lower bound the edits internal
to our Mi(vi) substrings. Recall that our Mi(vi) substrings are composed of d+ r + 1
coordinate gadgets CGi(vi[j]).

Case 2.2.1: There is some VGi(vi) gadget with i > 1 such that there are some
j, ` ∈ [1, d+ r + 1] with j 6= ` such that the jth leftmost coordinate gadget of Mi(vi)
is aligned with the `th leftmost coordinate gadget of the M1(θ) in VG1(v1). Then we
incur an edit cost of at least 2`2 from the 5 symbols between the coordinate gadgets.
It follows that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D1 + D2 + 2`2 > D+. Our
lower bound is satisfied.
Case 2.2.2: We now consider the complement of Case 2.2.1. For all i ∈ [1, d+ r + 1],
the ith leftmost coordinate gadget of Mj(vj) for all j > 1 is either aligned with the
ith leftmost coordinate gadget of M1(θ) or it’s not aligned with any coordinate gadget
of M1(θ).

∗ For all i ∈ [1, d + r + 1] we analyze the edit costs of the ith leftmost coordinate
gadgets in M1(θ),M2(v2), . . . ,Mk(vk). If the ith leftmost coordinate gadgets of all
Mj(vj) for j > 1 are aligned with the ith leftmost coordinate gadget ofM1(θ). Then
by the transitivity of the alignment relation, we have that the ith coordinate gadgets
of M1(θ),M2(v2), . . . ,Mk(vk) are aligned. By our analysis of the coordinate gadgets
in Lemma 6, this alignment of coordinate gadgets will incur cost at least C− if
θ[i]v2[i]v3[i] . . . vk[i] = 0, and else incur cost at least C+ if θ[i]v2[i]v3[i] . . . vk[i] = 1.

∗ Else for someMj(vj) with j > 1, the ith leftmost coordinate gadget CGj(vj [i]) is not
aligned with any coordinate gadget of M1(θ), then it incurs cost |CGj(vj [i])| ≥ C+.

Combining our case analysis for all d + r + 1 coordinate gadgets, we see that they
collectively incur a cost of at least D3 = (r + 1)C+ + dC−, since the inner product of
vectors θ, v2, v3, . . . , vk is r + 1 (follows from our modification of the input vectors and
our definition of θ). Then D1 +D2 +D3 = D+, and since the edits from D1, D2, and D3
are all necessarily disjoint, we have that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+.

Case 3: The Mi(vi) substring of some VGi(vi) with i > 1 does not have alignments with
the M1(θ) ◦ 7`3 substring of DG1(v1). This case is symmetric to Case 2, with the only
difference being that we have substring M1(v1) as opposed to M1(θ). Since we assumed
that v1, v2, . . . , vk are r-close and hence have an inner product greater than or equal to
r + 1, it must be the case that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+.

We have shown in every case that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) ≥ D+, so we
conclude that EDIT(DG1(v1),VG2(v2), . . . ,VGk(vk)) = D+. C

This completes the proof of Lemma 11. J

G. Hoppenworth, J.W. Bentley, D. Gibney, and S. V. Thankachan 61:9

2.4 Set level reduction
In this step of the reduction we will construct our final strings T1, T2, . . . , Tk that can detect
r-far vectors in our input sets S1, S2, . . . , Sk. We will accomplish this by embedding in string
Ti the vector level gadgets of the vectors belonging to set Si for i ∈ [1, k]. Then if an r-far
collection of vectors exists, we can align their corresponding vector gadgets and give our
strings T1, T2, . . . , Tk a “lower” median edit distance.

We will construct our final strings in several steps. We start by padding our vector level
gadgets to discourage them from aligning with more than one vector level gadget in any given
string. We define integer parameter `4 = 10000k4d`3, and we add a new padding symbol 8
to our alphabet. For all v ∈ {0, 1}d+r+1, let

DG′1(v) := 8`4 ◦DG1(v) ◦ 8`4 and VG′i(v) := 8`4 ◦VGi(v) ◦ 8`4 for i ∈ [1, k]

We now concatenate our vector level gadgets DG′1 and VG′i. Define

P1 :=©v∈S1 DG′1(v) and Pi :=©v∈Si
VG′i(v) for i ∈ [2, k]

Strings P1, P2, . . . , Pk now contain all the vectors from our input sets. However, they
are not sufficient to complete the reduction. To solve k-Most-Orthogonal-Vectors we must
be able to check all nk collections of vectors in S1 × S2 × · · · × Sk for r-far-ness. Likewise,
we must be able to align all nk corresponding vector level gadgets in our final strings. In
P1, P2, . . . , Pk this is not always possible without incurring a large additional edit cost. For
example, there is no optimal edit sequence of P1, P2, . . . , Pk that aligns the leftmost vector
level gadget of a string Pi with the rightmost vector level gadget of another string Pj – the
number of insertions or deletions necessary would be too high.

Our strings P1, P2, . . . , Pk are rigid, but we can give them the freedom to slide around by
making the lengths of all strings distinct. Specifically, we will add a varying number of vector
level gadgets to each string so that Pi+1 will have more vector level gadgets than Pi for all
i ∈ [1, k− 1]. We define the dummy vector φ to be a vector of all ones of length d+ r+ 1. Let

L1 := VG′1(φ)(50k+1)n ◦DG′1(φ)50kn

Li := VG′i(φ)(100k+i)n

and
and

R1 := DG′1(φ)50kn ◦VG′1(φ)(50k+1)n

Ri := VG′i(φ)(100k+i)n for i ∈ [2, k]

Strings Li and Ri will pad the left side and the right side of our Pi.

P ′i := Li ◦ Pi ◦Ri for i ∈ [1, k]

Observe that string P ′i+1 has 2nmore (dummy) vector level gadgets than P ′i for i ∈ [1, k−1].
This gives P ′1, P ′2, . . . , P ′k a pyramid-like shape as in Figure 3. We will see that this allows
the sort of sliding between strings necessary to complete our reduction.

$1

$2

$3

$4

$1

$2

$3

$4

Figure 3 Final strings T1, T2, . . . , Tk when k = 5 shown from top to bottom. The vector gadgets
corresponding to vectors from our input sets are shown in black, whereas the vector gadgets
corresponding to dummy vectors φ are shown in gray. The special $i symbols are shown in white.

However, because our strings P ′1, P ′2, . . . , P ′k are of different lengths, any complete edit
sequence will require inserting or deleting vector level gadgets. This is problematic because
it is difficult to reason about the edit costs of our vector level gadgets if they are inserted or

ESA 2020

61:10 The Fine-Grained Complexity of Median and Center String Problems Under Edits

deleted in the optimal edit sequence. To solve this problem we add special $i symbols to our
strings. We will see that the $i symbols “absorb” all the edits needed to make the lengths
of the final strings equal and that no vector level gadgets will be inserted or deleted in the
optimal edit sequence. We add $1, $2, . . . , $k−1 to our alphabet, and we let `5 = 1000kn`4.
Define

Ti := $`5
i ◦ P

′
i ◦ $`5

i for i ∈ [1, k − 1] and Tk := P ′k

This completes the construction of our final strings T1, T2, . . . , Tk. The length of each string
as well as the time for their construction is O(ndO(1)). Their properties are summarized in
Lemma 14 and Lemma 15 (proofs are deferred to Section 2.5 and Section 2.6, respectively).

I Lemma 14. For any given sets S1, . . . , Sk such that there is some collection v1, v2, . . . , vk

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) ≤ E−, where
E− = D− + (100kn+ n− 1)D+ + 101k(k − 1)(2k − 1)(d+ r + 1)n+ 2(k − 1)`5.

I Lemma 15. For any given sets S1, S2, . . . , Sk such that there is no collection v1, v2, . . . , vk

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) = E+, where E+ =
E− + (k − 1).

I Theorem 16. If there is an ε > 0, an integer k ≥ 2, and an algorithm that can solve
k-Median-Edit-Distance on strings, each of length at most n, over an alphabet of size O(k)
in O(nk−ε) time, then SETH is false.

Proof. Follows from Lemma 14 and Lemma 15. J

2.5 Proof of Lemma 14
Statement: For any given sets S1, S2, . . . , Sk such that there is some collection v1, v2, . . . , vk

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) ≤ E−, where
E− = D− + (100kn+ n− 1)D+ + 101k(k − 1)(2k − 1)(d+ r + 1)n+ 2(k − 1)`5.

To upper bound the median edit distance of T1, T2, . . . , Tk by E−, we must give an edit
sequence of at most E− edits. Initially, we will only edit the substrings P ′1, P ′2, . . . , P ′k and
thus exclude the $i symbols from consideration. We start by aligning the vector level gadgets.

Vector Level Gadget Alignment. We have assumed vectors v1, v2, . . . , vk are r-far, and we
choose to align their corresponding vector level gadgets DG1(v1),VG2(v2), . . . ,VGk(vk). We
then align the rest of our vector level gadgets using the following rules:
1. Each vector level gadget in Ti aligns to exactly one vector level gadget in Tj for j > i.
2. If two vector level gadgets are adjacent in Ti, then they will be aligned to adjacent vector

level gadgets in Tj for j > i.

Feasibility. We must demonstrate that this alignment is always achievable no matter how
the vector level gadgets of v1, v2, . . . , vk are embedded in strings T1, T2, . . . , Tk. Recall that
the vector level gadgets corresponding to vectors from our input sets are located in substrings
Pi of Ti for all i ∈ [1, k]. Our construction gives paddings Li+1 and Ri+1 exactly n more
dummy vector level gadgets than Li and Ri respectively for i ∈ [1, k − 1]. It follows that
even if the leftmost (resp. rightmost) vector level gadget in Pi is aligned with the rightmost
(resp. leftmost) vector level gadget in Pi+1, the rules above remain satisfied.

G. Hoppenworth, J.W. Bentley, D. Gibney, and S. V. Thankachan 61:11

Edit Cost for Vector Level Gadgets. There are 100kn+ n decision gadgets DG1 in T1, so
our edit sequence will yield 100kn+ n alignments of DG1,VG2, . . . ,VGk, of which at least
one such alignment will have cost D− and the rest at most D+. This gives an edit cost of at
most E−1 = D−+ (100kn+n− 1)D+. At this point, all vector level gadgets in P1, P2, . . . , Pk

have been edited (refer to Figure 4).

gadgets

gadgets gadgetsgadgets

Figure 4 Strings P ′1 and P ′2. All vector gadgets in P2 align with decision gadgets DG1 in P ′1.

Then there are exactly 2(50k + 1)n alignments of VG1(φ),VG2(φ), . . . ,VGk(φ) gadgets,
and for all i ∈ [2, k] there are exactly 2n alignments containing precisely the gadgets
VGi(φ),VGi+1(φ), . . . ,VGk(φ). We will count the minimal number of edits needed to make
these dummy vector gadgets identical. Let Fi = (d+ r + 1)(2k − 1)(k − i).

B Claim 17. For all i ∈ [1, k], EDIT(VGi(φ),VGi+1(φ), . . . ,VGk(φ)) = Fi.

Proof. Each dummy vector gadget VGj(φ) is composed of d+ r+ 1 coordinate gadgets. Each
alignment of the coordinate gadgets CGi(1),CGi+1(1), . . . ,CGk(1) will incur (2k − 1)(k − i)
total edits, with (k − 1)(k − i) edits from f gadgets and k(k − i) edits from h gadgets. C

Denote the sum of the internal edit costs of all alignments of VGi,VGi+1, . . . ,VGk gadgets
for i ∈ [1, k] by

E−2 = 2(50k + 1)n · F1 +
∑

i∈[2,k]

2n · Fi = 101k(k − 1)(2k − 1)(d+ r + 1)n

This completes our edits on all vector level gadgets.

Total Edit Cost. All substrings P ′1, P ′2, . . . , P ′k have been edited to P ∗1 , P ∗2 , . . . , P ∗k , respect-
ively, so that P ∗i is a substring of P ∗j for all i < j. We will now edit the $i symbols in order
to complete the edit sequence of T1, T2, . . . , Tk. In particular, we will edit all k strings to
be equal to P ∗k by substituting and deleting $i symbols. For the ith string, we will perform
substitutions on |P ∗k |−|P ∗i | of the $i symbols in Ti and delete the remaining $i symbols. Since
we substitute or delete every $i symbol, this will incur an edit cost of E−3 = 2(k − 1)`5. The
total number of edits performed in our edit sequence is no more than E−1 + E−2 + E−3 = E−.
This completes the proof.

2.6 Proof of Lemma 15
Statement: For any given sets S1, S2, . . . , Sk such that there is no collection v1, v2, . . . , vk

of r-far vectors with vi ∈ Si for i ∈ [1, k], EDIT(T1, T2, . . . , Tk) = E+ = E− + (k − 1).

B Claim 18. EDIT(T1, T2, . . . , Tk) ≤ E+

Proof. We can achieve this upper bound by giving an edit sequence identical to the edit
sequence in Lemma 14. Note that the only difference now is that there is no longer an r-far
collection of vectors, so the edit cost of D− in Lemma 14 is now D+. This yields a complete
edit sequence with E− + (D+ −D−) = E+ edits, so our inequality holds. C

ESA 2020

61:12 The Fine-Grained Complexity of Median and Center String Problems Under Edits

We must now prove that EDIT(T1, T2, . . . , Tk) ≥ E+. Our lower bound on the number
of edits comes from two disjoint sources: the edits incurred by the $i symbols and the edits
incurred by alignments between vector level gadgets.

B Claim 19. The $i symbols for i ∈ [1, k − 1] incur a cost of at least E+
1 = 2(k − 1)`5 edits

in a complete edit sequence of T1, T2, . . . , Tk.

Proof. First note that symbols $i for i ∈ [1, k − 1] have E+
1 = 2(k − 1)`5 occurrences in

T1, T2, . . . , Tk. We will show that each of these $i symbols incurs one edit and that this edit
is disjoint from the edits of any other $j symbol. If a $i symbol is deleted or substituted, then
it certainly incurs one edit. Furthermore, these deletions and substitutions are necessarily
disjoint. Otherwise, suppose that a $i symbol is not substituted or deleted, but remains
unmodified in the edit sequence. Then because there are no $i symbols in string Tk, we must
incur at least one edit in Tk. This edit must be disjoint from any other edits incurred by
other $i symbols. C

Now we will reason about the lower bound on the edits incurred by vector level gadgets
by considering every possible configuration of alignments between vector level gadgets. In
order to do this, we define a graph G whose vertices correspond to vector level gadgets.
More specifically, for the jth leftmost vector level gadget in Ti, we add a vertex xj

i to G for
i ∈ [1, k]. Thus vertices x1

i , x
2
i , . . . , x

(200k+2i+1)n
i correspond to the 2(100k + i)n+ n vector

level gadgets in Ti from left to right. Now for a particular edit sequence, we define G to have
an unordered edge (xj1

i1
, xj2

i2
) if the j1th vector level gadget of Ti1 is aligned with the j2th

vector level gadget of Ti2 in the edit sequence. Also, we say that xj1
i1

and xj2
i2

are from the
same row if i1 = i2.

Every edit sequence now corresponds to a graph G. This graph can be decomposed
into a set of connected components C. For a component c ∈ C, we define #(c, i) as the
number of vertices belonging to string Ti in c. We say that width(c) of a component c
is maxi∈[1,k] #(c, i). We let |c| denote the number of vertices in a component c. We now
partition C into the following sets:
C1 is the set of all components c with width(c) > 1
C2 is the set of all components c with width(c) = 1 and #(c, k) = 0
C3 is the set of all components c with width(c) = 1 and #(c, k) = 1

We now lower bound the edit costs of components in C1, C2, and C3. Let Q = 10kd`3.

I Lemma 20. Every component c in C1 incurs at least Q · width(c) edits.

Proof. Because our component c is connected, the case illustrated in Figure 5 must occur at
least width(c)− 1 times. Then at least 2`4(width(c)− 1) edits must be performed on the
padding 8 symbols between the vector level gadgets of c. Observe that because `4 > Q, this
cost is greater than Q ·width(c). These edits are disjoint from the edits of the $i symbols. J

Figure 5 Case: one vector gadget in a string Ti is aligned with two vector gadgets in a string Tj .
This alignment requires 2`4 edits of 8 symbols.

I Lemma 21. Every component c in C2 incurs at least Q edits.

G. Hoppenworth, J.W. Bentley, D. Gibney, and S. V. Thankachan 61:13

Proof. By definition, the vector level gadgets in component c have no alignments with
any vector level gadget VGk in Tk. It follows that we incur a cost of at least |VGk | > Q.
Furthermore, this edit cost is disjoint from the E+

1 edit cost of our $i symbols because there
are no $i symbols in Tk. J

We have given lower bounds for the edit costs of every component in C1 and C2, and these
edit costs are disjoint by nature. Now we bound the costs of every component in C3. It will
be useful to partition the components in C3 into the following sets:
C3.1 is the set of all components c containing a vertex corresponding to a DG1 gadget
C3.2 is the remaining components in C3.

I Lemma 22. All components c in C3.1 incur an edit cost of D+.

Proof. Our proof makes use of the following claim.

B Claim 23. No optimal edit sequence aligns a decision gadget DG1 with any $i symbol.

Subproof. Suppose some decision gadget DG1 is aligned with a $i symbol in string Ti

for some i ∈ [2, k − 1]. We will show that this incurs an edit cost greater than our
upper bound E+ established in Claim 18, implying this cannot occur in an optimal edit
sequence. We may assume w.l.o.g. that DG1 is aligned with a $i symbol on the left side
of Ti. It follows that the substring VG′1(φ)(50k+1)n of T1 must occur to the left of the
alignment, and the substring P ′i of Ti must occur to the right of the alignment (see Figure
4). Then this alignment of T1 and Ti has a combined length greater than or equal to
|VG′1(φ)(50k+1)n|+ |P ′i |. We observe that |VG′1(φ)(50k+1)n| > 100kn`4 and |P ′i | > 400kn`4,
so our alignment of T1 and Ti has a combined length greater than 500kn`4. On the other
hand, |Tk| = (202k + 1)n|VG′k | < 203kn(3`3 + 2`4). Our alignment of T1 and Ti must be
edited to have the same length as Tk in every complete edit sequence, so it follows that
EDIT(T1, Ti, Tk) > 500kn`4− 203kn(3`3 + 2`4) = kn(94`4− 609`3) > 1000k4dn`3. Then our
edit sequence requires 1000k4dn`3 + E+

1 > E+ edits, so this alignment cannot occur in an
optimal edit sequence. C

Let c be a component in C3.1. Suppose #(c, i) = 0 for some i ∈ [2, k − 1]. Then by
definition, our gadgets in c have no alignments with any vector level gadget in Ti. It follows
that we must perform at least |VGi | > D+ edits among the vector gadgets in c. This is
because the vector gadgets in c are either aligned with no symbols in Ti and therefore require
at least |VGi | insertions or deletions in c to make all strings the same length, or the vector
gadgets in c are aligned exclusively with 8 symbols in Ti and therefore require at least |VGi |
substitutions to make them the same. Note that the vector gadgets in c cannot be aligned
with any $i symbols in Ti by Claim 23. This is key for proving that these edits are disjoint
from the E−1 cost of editing the $i symbols.

Now consider the case that #(c, i) 6= 0 for all i ∈ [2, k− 1]. Then we have that #(c, i) = 1
for all i ∈ [1, k], and by our analysis in Lemma 14, the edit cost of aligning the k vector level
gadgets is at least D+. J

I Lemma 24. Let c be a component in C3.2 and let λ = |c|, then the edit cost incurred by
the vector gadgets in c is (d+ r + 1)(2k − 1)(λ− 1).

Proof. Here we make use of the following claim, which has proof similar to Claim 23.

B Claim 25. Let vi ∈ Si for some i ∈ [2, k], then no optimal edit sequence aligns the vector
gadget VGi(vi) in Ti with a $1 symbol in T1, nor a dummy vector gadget VG1(φ) in T1.

ESA 2020

61:14 The Fine-Grained Complexity of Median and Center String Problems Under Edits

Subproof. Suppose some vector gadget VGi(vi) in string Ti with i ∈ [2, k] and vi ∈ Si is
aligned with a dummy vector gadget VG1(θ) in string T1. We will show that this incurs an
edit cost greater than our upper bound E+, implying this cannot occur in an optimal edit
sequence. We may assume w.l.o.g. that VGi(vi) is aligned with a VG1(θ) gadget on the left
side of T1. It follows that the substring Li of Ti must occur to the left of the alignment and
the substring DG′1(φ)50kn ◦ P1 ◦R1 of T1 must occur to the right of the alignment. Then we
can consider this alignment of Ti and T1 to have a combined length greater than or equal to
|Li|+ |DG′1(φ)50kn ◦ P1 ◦R1|.

We observe that |Li| > 200kn`4 and |DG′1(φ)50kn ◦P1 ◦R1| > 400kn`4, so our alignment
of Ti and T1 has a combined length greater than 600kn`4. On the other hand, |Tk| =
(202k + 1)n|VG′k | < 203kn(3`3 + 2`4).

Our alignment of Ti and T1 must be edited to have the same length as Tk in every
complete edit sequence, so it follows that EDIT(T1, Ti, Tk) > 600kn`4 − 203kn(3`3 + 2`4) =
kn(194`4 − 609`3) > 1000k4dn`3. Then our edit sequence requires 1000k4dn`3 + E+

1 > E+

edits, so this alignment cannot occur in an optimal edit sequence. It follows that VGi(vi) in
Ti cannot align with a VG1(θ) gadget (and by extension a $1 symbol) in T1. C

Let c be in C3.2. Suppose there is some vi ∈ Si for i ∈ [2, k] such that vector gadget
VGi(vi) corresponds to a vertex in component c. Then the gadgets in our component cannot
align with any decision gadgets DG1, vector gadgets VG1(φ), or $1 symbols in T1. It follows
that we must perform at least |VGi | > (d+ r + 1)(2k − 1)(λ− 1) insertions in Ti. Else, all
vertices in component c correspond only to vector gadgets VGi(φ) for i ∈ [1, k]. By a similar
argument as in Claim 17, the edit cost of component c is (d+ r + 1)(2k − 1)(λ− 1). J

We have lower bounded the edit cost of all components in C1, C2, and C3. Now we must
combine our component level arguments to obtain an overall lower bound on the edit cost.
Let W =

∑
c∈C1∪C2

width(c). Then we know that the components in C1 ∪ C2 incur a cost of
at least E+

2 = WQ edits by Lemma 20 and Lemma 21.
We now lower bound the total number of edits from components in C3. Note that

components in C3.1 incur a much higher cost than components in C3.2. Then to lower bound
the edits in C3, we must assume the least possible number of components in C3.1. There are
(100k + 1)n decision gadgets DG1 in our final strings and at most W decision gadgets in
components in C1 ∪ C2, so there must be at least Z1 = (100k + 1)n−W components in C3.1.
Note that if W ≥ (100k+ 1)n, then E+

1 +E+
2 ≥ E+, so we may assume Z1 is positive. Then

components from C3.1 incur a cost of at least E+
3 = Z1D

+ by Lemma 22.
There are at most V0 = kW vertices in components in C1 ∪ C2, and there are at most

V1 = kZ1 vertices in C3.1. Furthermore, there are k(201k + 2)n vertices in our graph G. It
follows that there must be at least V2 = k(201k + 2)n− V1 − V0 = k(101k + 1)n vertices in
all components in C3.2.

Because our edit cost lower bound for every component in C3.2 is linear in the component
size, we have the following.

B Claim 26. Suppose there are Z components in C3.2 and a total of V vertices in all
components in C3.2. Then the components in C3.2 incur (d+ r + 1)(2k − 1)(V − Z) edits.

Proof. By Lemma 24, each component of size λ in C3.2 incurs cost (d+ r+ 1)(2k− 1)(λ− 1).
Let zi denote the size of the ith component in C3.2 for i ∈ [1, Z]. Then we may sum the edit
costs of all components in C3.2:∑

i∈[1,Z]

(d+ r + 1)(2k − 1)(zi − 1) = (d+ r + 1)(2k − 1)(V − Z)

where zi > 0 for i ∈ [1, Z] and z1 + z2 + · · ·+ zZ = V . C

G. Hoppenworth, J.W. Bentley, D. Gibney, and S. V. Thankachan 61:15

Claim 26 proves that the edit cost of all the components in C3.2 decreases with the number
of components Z. Then to achieve our lower bound we must upper bound the number of
components in C3.2. There are exactly (202k + 1)n vector level gadgets in Tk, so there can
be at most Z2 = (202k + 1)n − Z1 components in C3.2. It follows that the total edit cost
contributed by the components of C3.2 is at least E+

4 = (d+ r + 1)(2k − 1)(V2 − Z2).
Then since the edit costs contributed by E+

1 , E
+
2 , E

+
3 , and E+

4 are disjoint, we achieve a
lower bound EDIT(T1, T2, . . . , Tk) ≥ E+

1 +E+
2 +E+

3 +E+
4 . Straightforward calculation will

show that E+
1 +E+

2 +E+
3 +E+

4 ≥ E+ for all W > 0. It follows that EDIT(T1, . . . , Tk) = E+.

3 Reduction from k-Median-Edit-Distance to k-Center-Edit-Distance

We now provide a simple, yet previously unknown reduction from k-Median-Edit-Distance to
k-Center-Edit-Distance. Given a set of strings X = {x1, x2, . . . , xk}, each of length at most
n over an alphabet Σ, we define another set of strings Y = {y1, y2, . . . , yk} over an alphabet
Σ′ = Σ ∪ {$} (where $ 6∈ Σ) as follows (fix ` = k2n):

y1 = x1 ◦ $` ◦ x2 ◦ $` ◦ · · · ◦ $` ◦ xk−1 ◦ $` ◦ xk

y2 = x2 ◦ $` ◦ x3 ◦ $` ◦ · · · ◦ $` ◦ xk ◦ $` ◦ x1

...
yk = xk ◦ $` ◦ x1 ◦ $` ◦ · · · ◦ $` ◦ xk−2 ◦ $` ◦ xk−1

Let CENTER-EDIT(y1, y2, . . . , yk) denote the center edit distance of strings y1, y2, . . . , yk.
We will prove the following, which will complete the reduction.

I Lemma 27. EDIT(x1, x2, . . . , xk) = CENTER-EDIT(y1, y2, . . . , yk)

Proof. Suppose that EDIT(x1, x2, . . . , xk) = E, and there is an optimal edit sequence on
x1, x2, . . . , xk that performs Ei edits on xi for i ∈ [1, k]. It follows that E1 +E2 +· · ·+Ek = E.

B Claim 28. EDIT(y1, y2, . . . , yk) = kE

Subproof. It can be seen that EDIT(y1, y2, . . . , yk) ≤ kE since we may align all $ symbols
in the yi in zero edits, and then we have k alignments of x1, x2, . . . , xk substrings, each
incurring E edits, for a total of kE edits.

Now note that no optimal edit sequence of y1, y2, . . . , yk will delete an entire series of $
symbols because it would incur cost ` greater than kE, our upper bound. It follows that for
all i 6= j the hth leftmost series of $ symbols in yi is aligned with the hth leftmost series of $
symbols in yj for h ∈ {1, . . . , k − 1}. Then the $ alignments “lock” the xi substrings into
place so that we have k alignments of x1, x2, . . . , xk substrings, and because no xi contains
the $ symbol, it follows that each alignment of the xi incurs cost greater than or equal to E.
Then EDIT(y1, y2, . . . , yk) ≥ kE. C

We now have that EDIT(y1, y2, . . . , yk) = kE. Furthermore, there is an optimal edit
sequence that performs exactly E edits on every string in y1, y2, . . . , yk. This can be seen
because in every alignment of substrings x1, x2, . . . , xk in our edit sequence of y1, y2, . . . , yk, we
may choose to perform Ei edits on each xi. Then there exists an optimal edit sequence where
for every string yi with i ∈ [1, k], we perform Ei +Ei+1 + · · ·+Ek +E1 +E2 + · · ·+Ei−1 = E

edits on yi.
It follows that CENTER-EDIT(y1, y2, . . . , yk) ≤ E. Furthermore, suppose that

CENTER-EDIT(y1, y2, . . . , yk) < E. Then EDIT(y1, y2, . . . , yk) < kE, a contradiction. We
conclude that CENTER-EDIT(y1, y2, . . . , yk) = E and our reduction is complete. Note that
for all i ∈ [1, k], |yi| = (k − 1)k2n+ kn = O(n). J

ESA 2020

61:16 The Fine-Grained Complexity of Median and Center String Problems Under Edits

Lemma 27 directly implies the following result.

I Theorem 29. If there is an ε > 0, a constant k ≥ 2, and an algorithm that can solve
k-Center-Edit-Distance on strings, each of length at most n, over an alphabet of size O(k)
in O(nk−ε) time, then SETH is false.

4 Discussion

Based on SETH, we have shown conditional hardness results for median string, center string,
tree alignment, and bottleneck tree alignment problems, all under edit distance. These
results suggest that the algorithms for the median string and tree-alignment problems are
optimal (up to logarithmic factors). However, for the center string and bottleneck tree
alignment problem, they leave an intriguing gap between the best known upper bounds. For
center string (or the star instance of the bottleneck tree alignment) the best known dynamic
programming algorithm works in time O(n2k) [40], and as far as the authors know, no such
algorithm exists for bottleneck tree alignment on more general trees. We conclude by asking:
is an O(nk) algorithm waiting to be found for these problems, or does there exist a more
efficient reduction which can prove that an O(n2k−ε) algorithm is highly improbable?

References
1 Amir Abboud, Arturs Backurs, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and

Or Zamir. Subtree isomorphism revisited. ACM Trans. Algorithms, 14(3):27:1–27:23, 2018.
doi:10.1145/3093239.

2 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hardness results for
LCS and other sequence similarity measures. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 59–78,
2015. doi:10.1109/FOCS.2015.14.

3 Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. Seth-based lower bounds
for subset sum and bicriteria path. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9,
2019, pages 41–57, 2019. doi:10.1137/1.9781611975482.3.

4 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equivalences
between graph centrality problems, APSP and diameter. In Piotr Indyk, editor, Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 1681–1697. SIAM, 2015. doi:10.1137/1.
9781611973730.112.

5 Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a
lower bound made. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 375–388, 2016.
doi:10.1145/2897518.2897653.

6 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443, 2014.
doi:10.1109/FOCS.2014.53.

7 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster align-
ment of sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias,
editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in
Computer Science, pages 39–51. Springer, 2014. doi:10.1007/978-3-662-43948-7_4.

https://doi.org/10.1145/3093239
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1137/1.9781611975482.3
https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1137/1.9781611973730.112
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1007/978-3-662-43948-7_4

G. Hoppenworth, J.W. Bentley, D. Gibney, and S. V. Thankachan 61:17

8 Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles and
basing hardness on an extremely popular conjecture. SIAM J. Comput., 47(3):1098–1122,
2018. doi:10.1137/15M1050987.

9 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match?
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-
11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 457–466, 2016.
doi:10.1109/FOCS.2016.56.

10 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1137/
15M1053128.

11 Christina Boucher and Mohamed Omar. On the hardness of counting and sampling center
strings. IEEE/ACM Trans. Comput. Biology Bioinform., 9(6):1843–1846, 2012. doi:10.1109/
TCBB.2012.84.

12 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly sub-
quadratic algorithms unless SETH fails. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 661–670,
2014. doi:10.1109/FOCS.2014.76.

13 Karl Bringmann and Marvin Künnemann. Quadratic conditional lower bounds for string
problems and dynamic time warping. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 79–97, 2015.
doi:10.1109/FOCS.2015.15.

14 Karl Bringmann and Marvin Künnemann. Multivariate fine-grained complexity of longest
common subsequence. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
1216–1235, 2018. doi:10.1137/1.9781611975031.79.

15 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3sum via additive combinatorics.
In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 31–40. ACM, 2015. doi:10.1145/2746539.2746568.

16 Yi-Jun Chang. Hardness of RNA folding problem with four symbols. Theor. Comput. Sci.,
757:11–26, 2019. doi:10.1016/j.tcs.2018.07.010.

17 Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 21–40, 2019. doi:10.1137/1.9781611975482.2.

18 Yen Hung Chen and Chuan Yi Tang. On the bottleneck tree alignment problems. Inf. Sci.,
180(11):2134–2141, 2010. doi:10.1016/j.ins.2010.02.008.

19 Raphaël Clifford, Allan Grønlund, Kasper Green Larsen, and Tatiana Starikovskaya. Upper
and lower bounds for dynamic data structures on strings. In Rolf Niedermeier and Brigitte
Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 22:1–22:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.22.

20 Colin de la Higuera and Francisco Casacuberta. Topology of strings: Median string is np-
complete. Theor. Comput. Sci., 230(1-2):39–48, 2000. doi:10.1016/S0304-3975(97)00240-5.

21 Erik D. Demaine, Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Virginia Vassilevska
Williams. Fine-grained I/O complexity via reductions: New lower bounds, faster algorithms,
and a time hierarchy. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer
Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94
of LIPIcs, pages 34:1–34:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:
10.4230/LIPIcs.ITCS.2018.34.

22 Lech Duraj, Marvin Künnemann, and Adam Polak. Tight conditional lower bounds for
longest common increasing subsequence. Algorithmica, 81(10):3968–3992, 2019. doi:10.1007/
s00453-018-0485-7.

ESA 2020

https://doi.org/10.1137/15M1050987
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1109/TCBB.2012.84
https://doi.org/10.1109/TCBB.2012.84
https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1137/1.9781611975031.79
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1016/j.tcs.2018.07.010
https://doi.org/10.1137/1.9781611975482.2
https://doi.org/10.1016/j.ins.2010.02.008
https://doi.org/10.4230/LIPIcs.STACS.2018.22
https://doi.org/10.1016/S0304-3975(97)00240-5
https://doi.org/10.4230/LIPIcs.ITCS.2018.34
https://doi.org/10.4230/LIPIcs.ITCS.2018.34
https://doi.org/10.1007/s00453-018-0485-7
https://doi.org/10.1007/s00453-018-0485-7

61:18 The Fine-Grained Complexity of Median and Center String Problems Under Edits

23 Massimo Equi, Roberto Grossi, Veli Mäkinen, and Alexandru I. Tomescu. On the complexity
of string matching for graphs. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
55:1–55:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ICALP.2019.55.

24 Isaac Goldstein, Moshe Lewenstein, and Ely Porat. On the hardness of set disjointness
and set intersection with bounded universe. In Pinyan Lu and Guochuan Zhang, editors,
30th International Symposium on Algorithms and Computation, ISAAC 2019, December
8-11, 2019, Shanghai University of Finance and Economics, Shanghai, China, volume 149
of LIPIcs, pages 7:1–7:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ISAAC.2019.7.

25 Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms for
CLOSEST STRING and related problems. Algorithmica, 37(1):25–42, 2003. doi:10.1007/
s00453-003-1028-3.

26 Franziska Hufsky, Léon Kuchenbecker, Katharina Jahn, Jens Stoye, and Sebastian Böcker.
Swiftly computing center strings. In Algorithms in Bioinformatics, 10th International Workshop,
WABI 2010, Liverpool, UK, September 6-8, 2010. Proceedings, pages 325–336, 2010. doi:
10.1007/978-3-642-15294-8_27.

27 Franziska Hufsky, Léon Kuchenbecker, Katharina Jahn, Jens Stoye, and Sebastian Böcker.
Swiftly computing center strings. BMC Bioinformatics, 12:106, 2011. doi:10.1186/
1471-2105-12-106.

28 Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees - an alternative to tree
edit. In Maxime Crochemore and Dan Gusfield, editors, Combinatorial Pattern Matching,
5th Annual Symposium, CPM 94, Asilomar, California, USA, June 5-8, 1994, Proceedings,
volume 807 of Lecture Notes in Computer Science, pages 75–86. Springer, 1994. doi:10.1007/
3-540-58094-8_7.

29 Xiaoyi Jiang, Horst Bunke, and Janos Csirik. Median strings: A review. In Data Mining in
Time Series Databases, pages 173–192. World Scientific, 2004.

30 Teuvo Kohonen. Median strings. Pattern Recognition Letters, 3(5):309–313, 1985. doi:
10.1016/0167-8655(85)90061-3.

31 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1272–1287, 2016. doi:10.1137/
1.9781611974331.ch89.

32 Robert Krauthgamer and Ohad Trabelsi. Conditional lower bounds for all-pairs max-flow.
ACM Trans. Algorithms, 14(4):42:1–42:15, 2018. doi:10.1145/3212510.

33 Ferenc Kruzslicz. Improved greedy algorithm for computing approximate median strings. Acta
Cybern., 14(2):331–339, 1999. URL: http://www.inf.u-szeged.hu/actacybernetica/edb/
vol14n2/Kruzslicz_1999_ActaCybernetica.xml.

34 J. Kevin Lanctôt, Ming Li, Bin Ma, Shaojiu Wang, and Louxin Zhang. Distinguishing string
selection problems. Inf. Comput., 185(1):41–55, 2003. doi:10.1016/S0890-5401(03)00057-9.

35 Ming Li, Bin Ma, and Lusheng Wang. On the closest string and substring problems. J. ACM,
49(2):157–171, 2002. doi:10.1145/506147.506150.

36 Bin Ma and Xiaoming Sun. More efficient algorithms for closest string and substring problems.
SIAM J. Comput., 39(4):1432–1443, 2009. doi:10.1137/080739069.

37 Hiromitsu Maji and Taisuke Izumi. Listing center strings under the edit distance metric.
In Combinatorial Optimization and Applications - 9th International Conference, COCOA
2015, Houston, TX, USA, December 18-20, 2015, Proceedings, pages 771–782, 2015. doi:
10.1007/978-3-319-26626-8_57.

https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
https://doi.org/10.4230/LIPIcs.ISAAC.2019.7
https://doi.org/10.4230/LIPIcs.ISAAC.2019.7
https://doi.org/10.1007/s00453-003-1028-3
https://doi.org/10.1007/s00453-003-1028-3
https://doi.org/10.1007/978-3-642-15294-8_27
https://doi.org/10.1007/978-3-642-15294-8_27
https://doi.org/10.1186/1471-2105-12-106
https://doi.org/10.1186/1471-2105-12-106
https://doi.org/10.1007/3-540-58094-8_7
https://doi.org/10.1007/3-540-58094-8_7
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1016/0167-8655(85)90061-3
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1145/3212510
http://www.inf.u-szeged.hu/actacybernetica/edb/vol14n2/Kruzslicz_1999_ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol14n2/Kruzslicz_1999_ActaCybernetica.xml
https://doi.org/10.1016/S0890-5401(03)00057-9
https://doi.org/10.1145/506147.506150
https://doi.org/10.1137/080739069
https://doi.org/10.1007/978-3-319-26626-8_57
https://doi.org/10.1007/978-3-319-26626-8_57

G. Hoppenworth, J.W. Bentley, D. Gibney, and S. V. Thankachan 61:19

38 Carlos D. Martínez-Hinarejos, Alfons Juan, Francisco Casacuberta, and Ramón Alberto
Mollineda. Reducing the computational cost of computing approximated median strings. In
Terry Caelli, Adnan Amin, Robert P. W. Duin, Mohamed S. Kamel, and Dick de Ridder, editors,
Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshops
SSPR 2002 and SPR 2002, Windsor, Ontario, Canada, August 6-9, 2002, Proceedings, volume
2396 of Lecture Notes in Computer Science, pages 47–55. Springer, 2002. doi:10.1007/
3-540-70659-3_4.

39 François Nicolas and Eric Rivals. Hardness results for the center and median string problems
under the weighted and unweighted edit distances. J. Discrete Algorithms, 3(2-4):390–415,
2005. doi:10.1016/j.jda.2004.08.015.

40 R. Ravi and John D. Kececioglu. Approximation algorithms for multiple sequence alignment
under a fixed evolutionary tree. Discrete Applied Mathematics, 88(1-3):355–366, 1998. doi:
10.1016/S0166-218X(98)00079-1.

41 David Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics,
28(1):35–42, 1975.

42 Jeong Seop Sim and Kunsoo Park. The consensus string problem for a metric is np-complete.
J. Discrete Algorithms, 1(1):111–117, 2003. doi:10.1016/S1570-8667(03)00011-X.

43 Andrés Varón and Ward C. Wheeler. The tree alignment problem. BMC Bioinformatics,
13:293, 2012. doi:10.1186/1471-2105-13-293.

44 T. K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):52–57,
1968. Russian Kibernetika 4(1):81-88 (1968).

45 Lusheng Wang and Dan Gusfield. Improved approximation algorithms for tree alignment. J.
Algorithms, 25(2):255–273, 1997. doi:10.1006/jagm.1997.0882.

46 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

ESA 2020

https://doi.org/10.1007/3-540-70659-3_4
https://doi.org/10.1007/3-540-70659-3_4
https://doi.org/10.1016/j.jda.2004.08.015
https://doi.org/10.1016/S0166-218X(98)00079-1
https://doi.org/10.1016/S0166-218X(98)00079-1
https://doi.org/10.1016/S1570-8667(03)00011-X
https://doi.org/10.1186/1471-2105-13-293
https://doi.org/10.1006/jagm.1997.0882
https://doi.org/10.1016/j.tcs.2005.09.023

Capacitated Sum-Of-Radii Clustering: An FPT
Approximation
Tanmay Inamdar
Department of Computer Science, University of Iowa, Iowa City, IA, USA
tanmay-inamdar@uiowa.edu

Kasturi Varadarajan
Department of Computer Science, University of Iowa, Iowa City, IA, USA
kasturi-varadarajan@uiowa.edu

Abstract
In sum of radii clustering, the input consists of a finite set of points in a metric space. The problem
asks to place a set of k balls centered at a subset of the points such that every point is covered by
some ball, and the objective is to minimize the sum of radii of these balls. In the capacitated version
of the problem, we want to assign each point to a ball containing it, such that no ball is assigned more
than U points, where U denotes the capacity of the points. While constant approximations are known
for the uncapacitated version of the problem, there is no work on the capacitated version. We make
progress on this problem by obtaining a constant approximation using a Fixed Parameter Tractable
(FPT) algorithm. In particular, the running time of the algorithm is of the form 2O(k2) · nO(1). As a
warm-up for this result, we also give a constant approximation for the uncapacitated sum of radii
clustering problem with matroid constraints, thus obtaining the first FPT approximation for this
problem.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Sum-of-radii Clustering, Capacitated Clustering

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.62

Funding This research is partially supported by the National Science Foundation under Grant
CCF-1615845.

1 Introduction

Clustering problems have received a great deal of attention in theoretical as well as practical
research. Different ways of modeling a clustering problem have been proposed. A common
way to model clustering problems is to assume that the data is represented as a set of points
in a finite metric space, and the distance between a pair of points is a measure of similarity
between the corresponding data points. Now, we want to partition the set of input points,
such that the points belonging to each group are more similar to each other than the points
outside the group. In the following, we focus on a particular set of three related clustering
objective functions – k-center, k-median, and sum of radii clustering. We first describe the
general setup.

Let P be a set of n input points in a metric space, and let d be the corresponding distance
function. Let k denote the number of desired clusters, where k is a parameter of the problem.
We want to find a set C ⊆ P of at most k centers, such that a certain clustering objective
function σ(C,P) is minimized. In the k-center problem, the objective function is the largest
distance of a point to its nearest center; whereas in the k-median problem, it is the sum of
all such distances.

© Tanmay Inamdar and Kasturi Varadarajan;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 62; pp. 62:1–62:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tanmay-inamdar@uiowa.edu
mailto:kasturi-varadarajan@uiowa.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.62
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 Capacitated Sum-Of-Radii Clustering: An FPT Approximation

Now we describe the closely related sum of radii objective. For any c ∈ P , and ρ ≥ 0, let
B(c, ρ) = {p ∈ P : d(c, p) ≤ ρ} denote the ball of radius ρ centered at c. In the sum of radii
objective, we want to additionally compute a radius assignment r : C → R+, such that the
corresponding set of balls B = {B(c, r(c)) : c ∈ C} covers the entire set of points P . The
objective is to minimize the sum of radii of the balls, i.e.,

∑
c∈C r(c).

The sum of radii problem was studied by Charikar and Panigrahy [8], who gave a constant
approximation. This result is obtained by first obtaining a constant approximation via the
primal-dual technique to a closely related problem, which is the Lagrangian relaxation of
the original sum of radii problem. Subsequently, Behsaz and Salavatipour [4] improved the
approximation ratio in a restricted setting, and Gibson et al. [14] gave a (1+ε)-approximation
in quasi-polynomial time. In light of the latter result, the problem is likely not APX-hard,
under standard complexity theoretic assumptions. There has also been significant work
on certain generalizations of this problem. More general objective functions, such as the
sum of α’th powers of the radii for a fixed α ≥ 1, and more general constraints, such as
multi-covering of points, have been addressed, but these generalizations are outside the scope
of this article.

Constant approximations are also known for the metric k-center and k-median problems,
and unlike the sum of radii clustering problem, these problems are known to be APX-hard
– see [15, 17, 5] and the references therein for these results. We now focus on a particular
generalization of clustering problems which is the focus of this work.

1.1 Capacitated Clustering

A commonly considered generalization of clustering problems is the capacitated clustering,
which models the situation where a center is able to provide a certain service to a specific
number of points, which are sometimes referred to as clients in this context. In the uniform
capacitated clustering problem, we are given an integer 1 ≤ U ≤ n, which represents the
capacity of any chosen center. Now, we also want to assign each point to a chosen center,
such that no center is assigned more than U points. Here, we also require that, if a point p is
assigned to a center c, then it is also covered by the ball placed at c. In a generalization called
the non-uniform version of the problems, different centers may have different capacities.

The capacitated sum of radii problem has not yet been considered in the literature.
Known techniques do not seem to extend to the capacitated sum of radii problem. Firstly,
it can be easily shown that the standard Linear Programming (LP) relaxation has large
integrality gap. Furthermore, it is not clear whether it is possible to strengthen this LP
by imposing additional constraints implied by the problem structure, as done in [2] for
capacitated facility location. Another piece of evidence is a hardness result from [3] for a
closely related problem, which can be modified to rule out an o(logn)-approximation in
polynomial time, if we want to minimize the sum of α-th powers of radii, where α > 1. While
this hardness result does not rule out an O(1) approximation in polynomial time for α = 1,
it does tell us that such a result would need to exploit rather special properties that hold in
the α = 1 case.

Before describing our results, we review the work on the capacitated versions of the
k-center and k-median problems, and look at possible approaches that have been successful
for these problems.

T. Inamdar and K. Varadarajan 62:3

Related Work

The capacitated versions of the k-center and k-median problems can be defined analogously.
These problems have received a great attention from the researchers. Constant approximations
for the capacitated k-center are known [18], even for the non-uniform version. On the
other hand, obtaining a constant approximation for the capacitated k-median problem
has been a long-standing open problem in approximation algorithms. Researchers have
explored different approaches for tackling this problem, in particular, relaxing some of
the requirements of traditional approximation algorithms. One such relaxation allows for
bi-criteria approximations – constant approximations have been obtained by violating the
capacities by a small factor ([7, 10, 6, 13]), or by violating the k-constraint (the number of
medians) by a constant factor ([20, 21]).

Yet another recent approach relaxes the requirement that the algorithm run in polynomial
time. An algorithm with the running time of f(p) · nO(1) is known as a Fixed Parameter
Tractable (FPT) algorithm, where p is a parameter of the problem. Note that, although the
running time may depend exponentially (or worse) on the parameter p, the dependence on n,
the input size, is strictly polynomial. In the context of capacitated clustering, such an FPT
algorithm parameterized by k, the number of clusters, may be acceptable, if k is a small
constant. Adamczyk et al. [1] give a (7 + ε)-approximation for the (uniform/non-uniform)
capacitated k-median problem in kO(k) · nO(1) time. They use an approximate solution for
the uncapacitated k-median problem to convert the given instance into a simpler instance
that has more structure, at an expense of a small constant factor loss in the approximation
guarantee. Then, they obtain a near-optimal solution for this simpler instance in FPT time.
Cohen-Addad and Li [11] improved the approximation guarantee to 3 + ε, again using a
similar FPT running time. Their algorithm is based on a coreset construction, and they
obtain a constant approximation for this smaller coreset in FPT time. They also obtain an
(1 + ε)-approximation in Euclidean metrics. These results are complemented by Adamczyk
et al. [1], who observe that one cannot hope to obtain an exact FPT algorithm even for the
uncapacitated k-median problem. Parameterized algorithms and complexity is a large and
active domain of research, and we direct the reader to a textbook such as [12] for a more
detailed background.

1.2 Our Results and Techniques

Our main result is a 28-approximation for the uniform capacitated sum of radii problem,
that runs in 2O(k2) · nO(1) time. This result is in a similar vein as the aforementioned
results ([1, 11]) for the capacitated k-median problem. Adapting techniques they develop for
capacitated k-median, we can obtain an FPT approximation for capacitated sum of radii in
metrics of constant doubling dimension. However, for general metrics, we have not been able
to adapt their approach. Therefore, we develop a novel algorithm, which we discuss at a
high level below.

Fix an optimal solution to the problem. First we discretize the optimal solution by
rounding the radii up to a power of 1 + ε for a fixed ε > 0, and now suppose that this
discretized solution exactly ki balls of radius ri, where each ri is a power of (1 + ε). We show
that this first step can be implemented in FPT time. Therefore, we can assume henceforth
that we know the “radius profile” of the optimal solution. Our main algorithm proceeds
in multiple levels. Roughly speaking, the goal of the algorithm at a particular level i is
to guess the approximate locations of the ki optimal balls of radius ri. However, the size
of the search space for this guessing is too large to ultimately obtain an FPT algorithm.

ESA 2020

62:4 Capacitated Sum-Of-Radii Clustering: An FPT Approximation

Therefore, we employ a certain greedy strategy to guess some balls not chosen in the optimal
solution. This allows us to bound the size of the search space, while simultaneously allowing
us to argue that an appropriate capacity reassignment is possible if our algorithm misses the
approximate location of an optimal ball.

Sum of Radii with a Matroid Constraint

Although the high-level idea of our algorithm is relatively simple, the technical arguments to
establish that such a capacity reassignment is possible are quite sophisticated and involved.
Therefore, we first consider a related, but simpler, problem as a warm-up. The natural
candidate is the uncapacitated version (for which constant approximations are known in
polynomial time [8]), but we consider a more general version, which replaces the k-constraint
by a more general matroid constraint.

A matroid M, on the set of given points P , is the pair (P, I), where I is a collection
of subsets of P with the following properties: (i) A ∈ I implies that ∀B ⊆ A, B ∈ I, (ii)
If A,B ∈ I with |B| < |A|, then there exists a p ∈ A \ B, such that B ∪ {p} ∈ I. If a set
C belongs to I, then C is said to be independent in the corresponding matroid M. One
consequence of this definition is that all inclusion-wise maximal independent sets of a matroid
M have equal size, and they are called the bases ofM.

In the Matroid Sum of Radii problem, a feasible solution consists of a set of centers
C, and a radius assignment r : C → R+ such that the resulting set of balls covers P .
Furthermore, we also require that C be an independent set according to a given matroidM.
The objective of the problem is to minimize the sum of radii. We assume that we have an
oracle access to an algorithm AM that answers in polynomial time, whether a candidate set
of centers is independent in the matroidM. For many “natural” matroids, the definition
of an independent set is simple, and thus the oracle can be simulated in a straightforward
manner.

We give a (9 + ε)-approximation for this problem in bO(b) · nO(1) time, where b is the size
of a basis of the matroidM. At a high level, our strategy is similar to our main result for
the capacitated sum of radii problem. However, unlike the capacitated version, here we can
always find the approximate locations of the optimal centers, which simplifies the algorithm
and its analysis. Although this result is not the main contribution of our work, it provides a
good vantage point to understand our result for capacitated sum-of-radii clustering.

We note that constant approximations are known for the matroid versions of k-center
and k-median [9, 19]. These problems were originally motivated from the so-called red-blue
median problem [16], where the centers come in one of the two types: red and blue, and we
are required to select at most kr red centers and kb blue centers to minimize the k-median
objective. The matroid formalization captures this scenario as well as its generalization for
arbitrary number of types. In particular, the special case of one color corresponds to the
k-constraint in the uncapacitated setting.

2 Sum of Radii with a Matroid Constraint

In this problem, we are given a finite metric space (P, d), and a matroidM = (P, I) on the
set of points P . We want to place a set of balls to cover the points in P , while minimizing the
sum of radii of the balls. Furthermore, it is required that the set of centers is an independent
set in the given matroid.

Formally, we want to find a set of centers that forms an independent set, i.e., C ∈ I
and assign radii r : C → R+, such that P ⊆

⋃
c∈C B(c, r(c)). The objective is to minimize∑

c∈C rc, over all such feasible solutions.

T. Inamdar and K. Varadarajan 62:5

Fix an optimal solution (C∗, r∗), and let k = |C∗|. Note that C∗ is an independent set in
M. First, we guess the value of k by iteratively trying k′ = 1, 2, . . . , b, and returning the
solution with smallest cost. Here, b denotes the size of any base in M. For a particular
value k′, the algorithm runs in k′O(k′) · nO(1) time. Note that the overall running time of this
algorithm is

∑b
k′=1 k

′O(k′) · nO(1) = bO(b)nO(1). From now on, we will focus on the iteration
where k′ = k.

Before discussing our main algorithm, we discuss K-Center(U, r), which is an important
subroutine. Here, U ⊆ P is a set of points to be covered, and r ≥ 0 denotes the target
radius. It is a simple iterative procedure that selects an as-yet uncovered point p, and marks
all points in its 2r-neighborhood as covered. It also adds p to the set of centers Q, and
this iterative procedure continues until all points in U are marked as covered. This is a
well-known 2-approximation algorithm for the k-center problem, and is summarized in the
following lemma.

I Lemma 1. Let U ⊆ P be a subset of points, and suppose there exists a set C ⊆ P

of k centers such that maxu∈U d(u,C) ≤ r. Then, the set of centers Q returned by K-
Center(U, r′) for any value r′ ≥ r satisfies: (i) |Q| ≤ k, and (ii) max

u∈U
d(u,Q) ≤ 2r′.

Algorithm 1 K-Center(U, r).

1: Initially, all points in U are marked as uncovered, Q← ∅
2: while there exists an uncovered point in U do
3: Let p ∈ U be an uncovered point, add p to Q
4: Mark all points in B(p, 2r) as covered
5: return Q

Preprocessing

First, we discretize the possible choices of radii in the following way. Let ε > 0 be a constant,
and let R denote the smallest power of 1 + ε larger than the maximum radius of any optimal
ball – note that we can “guess” the value of R in polynomial time. Furthermore, for any ball
with radius smaller than εR

k , we round its radius up to εR
k , and the total increase over at

most k such balls is at most εR, which is at most ε times the optimal cost. Now, we round
up radii of all balls to the next larger power of (1 + ε). Note that the resulting solution is
within a factor of (1 + ε)2 from the cost of the optimal solution. Furthermore, there are
t = log1+ε

R
Rε
k

= O(1
ε log k

ε) distinct values of radii. Since ε is fixed, t = O(log k). From
now onwards, we will slightly abuse the terminology, and use the terms “optimal solution”,
“optimal ball” etc. to refer to the corresponding entities in the optimal solution modified in
this manner.

Define r1 = R, r2 = R
1+ε , . . . , rt = R

(1+ε)t−1 , where rt+1 <
Rε
k ≤ rt. Suppose for every

1 ≤ i ≤ t, the optimal solution uses exactly 0 ≤ ki ≤ k balls of radius ri. Note that∑t
i=1 ki = k. Let O =

⋃t
i=1Oi be the set of balls in the optimal solution, where Oi ⊆ Oi is

the subset of balls of radius ri. Let C∗ ⊆ P denote the set of centers, and let C∗i ⊆ C∗ denote
the set of centers of the balls in Oi. For a particular value of i, we define O<i =

⋃i−1
j=1Oj ,

and the subsets O≤i,O>i,O≥i (resp. C∗≤i etc.) are defined similarly.
First, we guess the “radius profile” of the optimal solution. There are O(log k) classes

of radii, and for each class ri, 0 ≤ ki ≤ k. Therefore, the number of overall choices for the
radius profile can be upper bounded by kO(log k) � kO(k).

ESA 2020

62:6 Capacitated Sum-Of-Radii Clustering: An FPT Approximation

Algorithm 2 MatroidSoR(B, i).

. 1 ≤ i ≤ t + 1 is the current level – we want to guess at most ki centers for balls of
radius 4ri
. B is the set of balls fixed at earlier levels 1 through i− 1

1: Ui ← P \
(⋃

B∈B B
)

. Set of points not covered by balls in B
2: if i = t+ 1 and Ui = ∅ then . All points are covered at level ≤ t
3: D ← Disjointify(B) . Procedure Disjointify is described before Observation 3 in text
4: for every non-empty subset D′ ⊆ D do
5: if balls returned by MatroidIndependentSet(D′,D) cover all points then
6: output MatroidIndependentSet(D′,D) and halt
7: else if i = t+ 1 and Ui 6= ∅ then . Not all points are covered by balls at level ≤ t
8: return . B is a wrong guess
9: Pi ← K-Center(Ui, ri) . Pi is the potential set of centers at level i

10: if |Pi| > k then . Ui cannot be covered by at most k balls of radius ri
11: return . B is a wrong guess
12: else
13: For every Ci ⊆ Pi of size at most ki, call MatroidSoR(B ∪ B(Ci), i+ 1)

. B(Ci) := {B(c, 4ri) : c ∈ Ci}

Algorithm

Having guessed the radius profile (k1, k2, . . . , kt), our algorithm invokes MatroidSoR(∅, 1)
(see Algorithm 2). The procedure MatroidSoR(B, i) is recursive, and proceeds in multiple
levels. Fix 1 ≤ i ≤ t, which denotes the current level. We are given a set of balls B selected
at higher levels, i.e., levels 1 through i− 1. For 1 ≤ j ≤ i− 1, we let Cj denote the set of
centers of balls in B of level j. We know that |Cj | ≤ kj , and each c ∈ Cj has a ball of radius
4rj around it. Now, we want to find a set of at most ki centers to place balls of radius 4ri at
this level.

Let us now see how the algorithm MatroidSoR(B, i) places these balls at level i. We find
Ui, the set of points not covered by any ball in B. We then use algorithm K-Center(Ui, ri)
to find a solution to cover the points in Ui using balls of radius 2ri. We will later prove in
Lemma 2 that if the set of balls B added to the solution so far is “correct” (formalized in
the Lemma), then the solution Pi returned by the K-center algorithm contains at most k
centers. Therefore, if |Pi| > k, we conclude that the set of balls B added to the solution so
far is incorrect, and we stop.

Now, suppose |Pi| ≤ k. Then, we enumerate every subset Ci ⊆ Pi of size at most ki,
and recurse on each subset. Note that the number of subsets can be upper bounded by∑ki
i=0
(
k
ki

)
≤ kO(ki). Assuming the set B is “correct”, one of these kO(ki) recursive calls is

also “correct”. Now we formalize this notion in the following Lemma.

I Lemma 2. At any level 1 ≤ i ≤ t, in one of the recursive calls to MatroidSoR(B, i),
for any optimal center c∗j ∈ C∗j with 1 ≤ j < i, one of the following holds:
1. There exists c ∈ C` with ` ≤ j, and B(c∗j , rj) ⊆ B(c, 4r`), OR
2. B(c∗j , rj) is completely covered by balls in B of level 1 through j − 1. In this case, there

exists a center c ∈ C` with ` < j, such that d(c∗j , c) ≤ 4r`.

Proof. We prove this claim inductively.

Base case. This corresponds to i = 2. We want to show that, there exists a set B of balls
chosen at level 1, such that, at the start of the algorithm MatroidSoR(B, 2), every ball
B(c∗1, r1) ∈ O1 is contained in some ball in B.

T. Inamdar and K. Varadarajan 62:7

For the base case, consider the situation at the start of the algorithm, after we invoke
MatroidSoR(∅, 1). Note that U1 = P . Note that the optimal solution covers P using k
balls of radius at most r1. Consider the set P1 of points returned by K-Center(U1, r1).
Using Lemma 1, we have that |P1| ≤ k, and for any c∗1 ∈ C∗1 , there is some ϕ(c∗1) := c ∈ P1
with d(c∗1, c) ≤ 2r1. Let C1 = {ϕ(c∗1) | c∗1 ∈ C∗1}. Clearly, |C1| ≤ |C∗1 | = k1, and for any
c∗1 ∈ C∗1 , B(c∗1, r1) ⊆ B(ϕ(c∗1), 4r1). Thus, the recursive call MatroidSoR(B(C1), 2) satisfies
the required properties.

Inductive hypothesis. Now we assume that the claim holds inductively at the start of
iteration i, and prove that it also holds at level i+ 1 in one of the recursive calls. That is,
fix a recursive call MatroidSoR(B, i), where B is a set of balls chosen at levels 1 through
i− 1, such that, any ball B∗ ∈ O<i is covered by a ball in B, as guaranteed by the induction
hypothesis. Now, let U∗i be the set of points not covered by any such optimal ball (from
O<i). Note that inductive hypothesis implies that Ui ⊆ U∗i , which implies that Ui can be
covered using at most k balls of radius at most ri. Now, Lemma 1 implies that the set Pi of
points returned by K-Center(Ui, ri) has size at most k.

We will define a mapping ϕ : C∗i → Pi∪{⊥} that specifies a center in Pi whose ball covers
B(c∗i , ri), if any. Now, consider an optimal center c∗i ∈ C∗i , that has a ball B∗ = B(c∗i , ri)
centered at it. We consider two different cases.

Case 1. If there exists a point p ∈ B∗∩Ui, then using Lemma 1, there exists a center c ∈ Pi
returned by K-Center(Ui, ri), such that d(c, p) ≤ 2ri. Since d(c∗i , c) ≤ d(c∗i , p)+d(p, c) ≤ 3ri,
B(c∗i , ri) ⊆ B(c, 4ri). In this case, we define ϕ(c∗i) = c.

Case 2. Otherwise, B∗ ∩ Ui = ∅, which implies that all points in B∗ are covered by the
balls in B of levels 1 through i− 1. In particular c∗i is also covered by a ball B(c, 4r`), where
` < i. In this case, we set ϕ(c∗i) = ⊥.

Note that the two cases correspond to the two criteria in the statement of the lemma.
Furthermore, if ϕ(c∗i) = ⊥, then B(c∗i , ri) is covered by one or more balls in B of levels 1
through i− 1, i.e., we do not require a ball at level i to cover this ball. Otherwise, ϕ(c∗i) ∈ Pi,
and B(c∗i , ri) ⊆ B(ϕ(c∗i), 4ri). Let Ci := {c ∈ Pi : ϕ−1(c) 6= ∅}. Since |C∗i | = ki, |Ci| ≤ ki,
and the recursive call corresponding to MatroidSoR(B ∪ B(Ci), i+ 1) satisfies the required
properties, recalling that B(Ci) := {B(c, 4ri) : c ∈ Ci}. J

Now, let us discuss the algorithm at level i = t+ 1. Note that Lemma 2 implies that, all
points must be covered at level t + 1 in one of the recursive calls. Therefore, if Ut+1 6= ∅,
then we conclude that the set of balls B is incorrect.

Henceforth, let B denote the set of balls at level t + 1 guaranteed by Lemma 2, and
focus on the call MatroidSoR(B, t+ 1). Note that B covers all points, which implies that
Ut+1 is empty. We now call the procedure Disjointify(B), which we describe now. In this
procedure, we assign each point in P to the largest ball in B that covers it, breaking ties
arbitrarily. Let Dj(c) denote the set of points assigned to a particular ball B(c, 4rj) ∈ B.
Note that Dj(c) ⊆ B(c, 4rj); however the inclusion may be strict. In particular, it may be
the case that c 6∈ Dj(c), or Dj(c) may even be empty.

Let D be the resulting collection of sets in B that are made disjoint in this manner. In
order to distinguish the resulting disjoint sets from the original set of balls, we refer to them
as clusters. The following observations follow from the definition of B and the description of
Disjointify.

I Observation 3.
1. The clusters in D partition P .
2. If an optimal center c∗i ∈ C∗i is contained in a cluster D`(c) ∈ D, then ` ≤ i.

ESA 2020

62:8 Capacitated Sum-Of-Radii Clustering: An FPT Approximation

Next, for every non-empty subset D′ ⊆ D, we call MatroidIndependentSet(D′,D).
In this algorithm, we define a matroidM(D′,D) – see Algorithm 3 for the definition. It is
easy to see that for any D′ ⊆ D, thatM(D′,D) is a (partition) matroid on P . We then find
a common maximum independent set C in both matroidsM andM(D′,D). Then, if c ∈ C
is contained in a cluster of level i in D, then we place a ball of radius 9ri around it. Next, we
prove that, for at least one subset D′ ⊆ D, the algorithm MatroidIndependentSet(D′,D)
finds a set of balls that covers the entire point set P .

Algorithm 3 MatroidIndependentSet(D′,D).

1: Define a new matroidM(D′,D) = (P, I(D′)), where a set C ⊆ P is independent in I(D′)
iff it contains at most one point from each cluster in D′, and no points from cluster in
D \ D′

2: The weight of an independent set is equal to its size
3: Solve the maximum-weight matroid intersection problem for matroidsM andM(D′,D)

to find an independent set C ⊆ P
4: For every c ∈ C, place a ball of radius 9ri, if c is covered by a level i cluster in D
5: return the resulting set of balls placed around each center in C

To this end, let D∗ ⊆ D denote the subset of clusters that contain at least one optimal
center. This implies that clusters in D \ D∗ contain no optimal center. In the following
claim, we focus on the call MatroidIndependentSet(D∗,D), and show that the set of
balls found in this call covers P .

I Lemma 4. The set of balls computed by MatroidIndependentSet(D∗,D) covers the
entire set of points. Furthermore, the cost of this set of balls is upper bounded by 9 times the
cost of B.

Proof. From every cluster in D∗, pick an arbitrary optimal center, and let the resulting set
be Ĉ∗. Since Ĉ∗ ⊆ C∗, it is an independent set inM. Furthermore, it contains exactly one
point from each cluster in D∗, and no point from any cluster in D \ D∗. Therefore, Ĉ∗ is
independent in the matroidM(D∗,D).

Let C denote the maximum weight independent subset computed in
MatroidIndependentSet(D∗,D). Thus |C| ≥ |Ĉ∗|. As C is independent inM(D∗,D),
this implies that C (like Ĉ∗) contains exactly one point from each cluster in D∗.

We prove that the set of balls, centered at C, computed at the end of
MatroidIndependentSet(D∗,D), covers all points of P . Fix a point p ∈ P , and suppose it
is covered by an optimal ball B(c∗j , rj). From Observation 3, there exists a cluster D`(c) ∈ D∗
of level ` ≤ j such that c∗j ∈ D`(c). Therefore, d(p, c) ≤ rj + 4r` ≤ 5r`. From the previous
paragraph, there exists a center c′ ∈ C ∩D`(c). Note that d(c, c′) ≤ 4r`. This implies that,
d(p, c′) ≤ d(p, c) + d(c, c′) ≤ 5r` + 4r` = 9r`. Thus, p is covered by the ball of radius 9r`
centered at c′.

Finally, note that for every cluster in D∗ of level i, we place at most one ball of radius
9ri. Therefore, the cost of the balls thus computed can be bounded by 9 times the cost of
balls in B. J

I Theorem 5. For any fixed ε ≥ 0, there exists a (9 +O(ε))-approximation algorithm to the
Matroid Sum-of-radii problem that runs in bO(b) · nO(1) time, where b denotes the size of a
base in the given matroid.

T. Inamdar and K. Varadarajan 62:9

Proof. We focus on a particular value of k′, and show that the algorithm runs in k′O(k′) ·nO(1)

time. Then, the running time guarantee follows, since
∑b
k′=1 k

′O(k′) = bO(b), as previously
discussed.

There are k′O(log k′) choices for guessing the “radius profile”, and one of these choices
corresponds to that of the modified optimal solution. Now fix this choice of the radius
profile. At any level 1 ≤ i ≤ t, there are at most k′O(ki) recursive calls to the algorithm
at level i + 1. Therefore, the number of recursive calls at level t + 1 can be bounded by
k′
∑t

i=1
O(ki) = k′O(k′). At level t+ 1, we call MatroidIndependentSet(D′,D) for every

non-empty D′ ⊆ D. Thus, there are at most 2|D| ≤ 2k′ calls to MatroidIndependentSet,
and each matroid intersection problem can be solved in polynomial time, given access to the
oracle forM. Therefore, the algorithm terminates in k′O(k′) · nO(1) time.

Now, consider the iteration when k′ = k, and when we correctly guess the radius profile
corresponding to the optimal solution. From Lemma 4, one of the calls to MatroidInde-
pendentSet computes a solution that covers all the points, and the cost of this solution can
be upper bound by 9 times the cost of the radius profile. Therefore, the cost of this solution
can be upper bounded by 9 +O(ε) times the cost of the original optimal solution. J

3 Uniform Capacitated Sum of Radii

Problem Definition

In this problem, we are given a finite metric space (P, d). We are also given a positive integer
U , which denotes the capacity. We want to place a set of k balls B, and assign each point of
P to a ball containing it, such that no ball is assigned more than U points. Furthermore, we
want to minimize the sum of radii of the balls in B.

More formally, a feasible solution to the problem consists of a set of centers C ⊆ P of size
at most k, and a radius assignment r : C → R+. Let B be the set of resulting balls. Note that
the centers of balls in B are distinct. The solution also consists of an assignment µ : P → B,
such that p is contained in the ball µ(p), and |µ−1(B)| ≤ U for every B ∈ B. Finally, the
objective is find such a feasible solution that minimizes the sum of radii:

∑
B(c,r)∈B r.

Notation

Let P ′ ⊆ P be a subset of points, and let B′ be some non-empty set of balls. Then, an
assignment µ : P ′ → B′ is said to be a valid assignment, if it satisfies the following two
properties: (i) for every p ∈ P ′, p ∈ µ(p), and (ii) |µ−1(B)| ≤ U for any ball B ∈ B′. In the
following discussion, we will allow B′ to contain concentric balls and even be a multi-set.
But for simplicity of exposition, we will refer to a multi-set (resp. a multi-subset thereof)
as simply a set (resp. a subset). Note that the definition of a valid assignment is consistent
even if B is such a set of balls, by treating each copy of a ball in B as a distinct object.

Fix an optimal solution and the corresponding optimal assignment. We preprocess this
solution in order to discretize the set of radii, exactly as done in the previous section. After
this discretization, we assume that the solution uses exactly ki balls of radius ri, where
i ≤ i ≤ t, and t = O(log k). Henceforth we will refer to the optimal solution modified in this
manner. As in the previous section, let O denote the set of optimal balls, and C∗ ⊆ P be
the set of optimal centers. The subsets Oi,O≤i etc. of the optimal balls O, and the subsets
C∗i , C

∗
≤i etc. of the optimal centers are also defined as in the previous section. Furthermore,

let µ∗ : P → O be the optimal assignment. Note that µ∗ is a valid assignment by definition.

ESA 2020

62:10 Capacitated Sum-Of-Radii Clustering: An FPT Approximation

Algorithm

Our algorithm invokes CapacitatedSoR(∅, 1). Now we describe CapacitatedSoR(B, i)
(Algorithm 4), which is recursive and proceeds in multiple levels. At a particular level
1 ≤ i ≤ t, we determine the set of balls of level i in the solution. At the start of the algorithm
at level i, we are given a (multi-)set B of balls chosen earlier. B consists of balls of level
1 through i − 1. Before we discuss the algorithm in iteration i, let us define some more
notation.

Suppose a ball centered at c was added to B at level j < i – its radius was 6rj when it was
added to B. At every subsequent iteration j + 1 ≤ ` < i, we expand its radius by an additive
2r` factor. Thus, at the beginning of iteration i, the radius of this ball is 6rj +

∑i−1
`=j+1 2r`.

Now, in iteration i, we will consider two versions of any ball in B – expanded and unexpanded.
Consider a ball in B, with center c, added during iteration j < i. At the beginning of iteration
i, this ball has radius 6rj +

∑i−1
`=j+1 2r`; we refer to this as the unexpanded version. On the

other hand, the expanded version has radius equal to 6rj +
∑i
`=j+1 2r`, which we denote by

Eij(c). Note that the expanded version Eij(c) is larger than its corresponding version Bij(c)
by an additive +2ri factor. Therefore, if B∗ = B(c∗i , ri) has a non-empty intersection with
Bij(c), then B∗ ⊆ Eij(c).

Let B′ ⊆ B be any subset of balls chosen so far, and let B′ = B \ B′. Let E(B′) denote
the set of expanded versions of balls in B′. Finally, we define

I(B′) :=

(⋂

E∈E(B′) E
)
\
(⋃

B∈B′ B
)

if B′ 6= ∅

P \
(⋃

B∈B B
)

if B′ = ∅

That is, if B′ is non-empty, then I(B′) is exactly the set of points that belong to the common
intersection of the expanded versions of balls in B′, but not in any of the unexpanded versions
of balls in B′. If B′ is empty, then I(B′) is the set of points that does not belong to any
unexpanded ball in B. Note that if B′ ⊆ B is exactly the subset of balls that have non-empty
intersection with an optimal ball B(c∗i , ri), then B(c∗i , ri) ⊆ I(B′).

Let us return to the discussion of CapacitatedSoR(B, i). For each subset B′ ⊆ B, we
call Greedy(B′,B, ri) (Algorithm 5). This Algorithm computes a set Pi(B′) of at most 4k
centers chosen in a certain “greedy” manner. This is the set of potential centers from the
region I(B′) for placing balls of level i. The algorithm ensures that the distance between
any two centers in Pi(B) is greater than 4ri. Furthermore, if Pi(B′) < 4k, then each point in
I(B′) is within distance 4ri of some point in Pi(B′). We repeat this process for every subset
B′ of B (including ∅).

We will first argue in Lemma 6 that, in some recursive call to the algorithm at level
i = t+ 1, the set of balls B computed captures the optimal solution in an appropriate way.
Having shown that this happens, the invocation of PostProcess(B) (Algorithm 7) will
appropriately modify the set of balls B and return a feasible solution. We will discuss the
algorithm PostProcess and its analysis later.

I Lemma 6. Fix a level 1 ≤ i ≤ t+1. In one of the recursive calls to CapacitatedSoR(B, i),
there exists an assignment that maps each point p ∈ µ−1

∗ (O<i) to a ball in B containing p,
such that the number of points assigned to each ball does not exceed U .

Proof. We prove this lemma inductively.

T. Inamdar and K. Varadarajan 62:11

Algorithm 4 CapacitatedSoR(B, i).

1: if i = t+ 1 then
2: if PostProcess(B) 6= fail then
3: return B(R) returned by PostProcess(B) and halt
4: else
5: For every B′ ⊆ B, let Pi(B′)← Greedy(B′,B, ri)
6: Let Pi ←

⋃
B′⊆B Pi(B′)

7: for every multi-subset Ci ⊆ Pi of size at most ki do
8: Expand every ball in B by an additive 2ri factor
9: CapacitatedSoR(B ∪ B(Ci), i+ 1) . B(Ci) := {B(c, 6ri) : c ∈ Ci}

Algorithm 5 Greedy(B′,B, r).

1: Let T ← I(B′); start with all points of T as unmarked
2: P (B′)← ∅
3: while |P (B′)| < 4k and there is an unmarked point in T do
4: p ∈ T be an unmarked point with maximum number of unmarked points in B(p, r)∩T
5: Add p to P (B′); mark all points in B(p, 4r) ∩ T
6: return P (B′)

Base case

This corresponds to the start of the calls CapacitatedSor(·, i), where i = 2. To this end,
consider the invocation of the algorithm at the earlier level, i.e., CapacitatedSor(∅, 1).
Note that since B = ∅, B′ = ∅, and there is only one call Greedy(∅, ∅, r1). Note that the
optimal solution uses k1 + k2 + . . .+ kt ≤ k balls of radius at most r1 in order to cover the
entire set of points P = I(B′). Recall that the set of centers P1(∅) = P1 returned by the
Greedy algorithm has the property that any two centers in P1(∅) are at least 4r1 away from
each other. Therefore, P1(∅) contains at most one point from each optimal ball, and thus
|P1(∅)| ≤ k. It follows that for any optimal center c∗1 ∈ C∗1 , there is a center c ∈ P1, such
that d(c∗1, c) ≤ 4r1. That is, for every optimal ball B∗ = B(c∗1, r1) ∈ O1, there exists c ∈ P1,
such that B∗ ⊆ B(c, 5r1). We let ϕ(B∗) := c (select a nearest c form c∗1 there are multiple
such c ∈ P1). Let C1 ⊆ P1 be the multi-set that is the image of the mapping ϕ : O1 → P1,
where the multiplicity of each c ∈ C1 is equal to |ϕ−1(c)|. Therefore, for each B∗ ∈ O1 the
points in µ−1

∗ (B∗) can be reassigned to a unique ball in B(C1) centered at ϕ(B∗) ∈ C1. This
completes the proof for the base case.

Note that we were able to “guess” the locations of the optimal centers approximately
in the base case. However, we cannot accomplish this in the subsequent levels, because
some optimal balls may be contained in larger optimal balls. This is what complicates the
algorithm and its analysis. Nevertheless, we will argue that we can find an appropriate set of
substitute centers whenever necessary that will facilitate the reassignment process.

Inductive hypothesis

Suppose during some invocation of the algorithm CapacitatedSoR(B, i) at level i, we have
a set of balls B of levels 1 ≤ j < i, such that the set of points µ−1

∗ (O<i) can be assigned
to the balls in B. Let us also suppose that we have a mapping ϕ : O<i → C<i, where C<i
denotes the set of centers of balls in B.

ESA 2020

62:12 Capacitated Sum-Of-Radii Clustering: An FPT Approximation

Inductive Step

We first sketch the high level idea. Here, we will extend ϕ to include Oi, i.e., we will map
every optimal ball in Oi to a center in Pi; where Pi is the set of centers computed in lines
5 and 6 of Algorithm 4. Now, let Ci ⊆ Pi be the image of ϕ(Oi), where the multiplicty of
each c ∈ Pi is set to be |ϕ−1(c)|. Note that |Ci| = |Oi| = ki. Having found such a mapping,
we will consider an optimal ball B∗i = B(c∗i , ri) ∈ Oi, and reassign points in µ−1

∗ (B∗i) to the
balls in B ∪ B(Ci). We will use the ball ϕ(B∗i) to show that this reassignment can be done
without violating the capacities. Doing this for every optimal ball in Oi, we will show that
all points in µ−1

∗ (O≤i) are assigned to balls in B ∪ B(Ci). Now we discuss the details of this
inductive argument.

For any B∗ = B(c∗i , ri) ∈ Oi, if there is c ∈ Pi such that B∗ ⊆ B(c, 6ri), then we set
ϕ(B∗i) = c (choosing a nearest such c from c∗, if there are multiple such c∗ ∈ Pi). Let
O1
i ⊆ Oi be the subset that is mapped in such way, and let C1

i ⊆ Pi be its image (with
multiplicity ϕ−1(c) for every c ∈ C1

i). Note that all the points assigned a ball B∗i ∈ O1
i , are

also contained in the ball B(c, 6ri), where c = ϕ(B∗i). Therefore, we can reassign points in
µ−1
∗ (B∗i) to the ball B(c, 6ri).
Now, let O2

i := Oi \ O1
i be the set of optimal balls not mapped so far. We will map each

ball in O2
i to a unique center in Pi \ C1

i , and use this mapping to compute the required
reassignment. We describe the assignment in the following mapping procedure – note that
this is used only in the analysis.

Algorithm 6 Mapping procedure.

1: Suppose all balls in O2
i are unmapped at the beginning; let C2

i ← ∅
2: for each subset B′ ⊆ B in an arbitrary order do
3: Let O2

i (B′) ⊆ O2
i be the subset of unmapped balls contained in I(B′)

. Unmapped balls in O2
i are the balls that have not yet been mapped using ϕ in an earlier

iteration.
4: Let Fi(B′) ⊆ Pi(B′) include every point that:

(i) belongs to C1
i , or (ii) is chosen as a center of a ball in B, or

(iii) is within 2ri from some center in C2
i , or

(iv) is within ri + rj from some center in C∗j , where j ≥ i, or
(v) belongs to C∗<i.

5: Extend ϕ to O2
i (B′) by arbitrarily mapping each ball in O2

i (B′) to a unique center in
Pi(B′) \ Fi(B′).

6: Let C2
i (B′) be the image of O2

i (B′), under the above mapping ϕ.
7: Mark all balls in O2

i (B′) as mapped, and add C2
i (B′) to C2

i .

B Claim 7. For any B′ ⊆ B, if O2
i (B′) 6= ∅, then |O2

i (B′)| ≤ |Pi(B′) \ Fi(B′)|. That is, there
are enough centers available in Pi(B′) \ Fi(B′) to be mapped in Line 5.

Proof. Since O2
i (B′) 6= ∅, let B(c∗i , ri) ∈ O2

i (B′). Note that c∗i ∈ I(B′), and B(c∗i , ri) ⊆ I(B′).
Consider the call Greedy(B′,B, ri). We first claim that the while loop ends with

|Pi(B′)| = 4k. Suppose for the contradiction that the while loop ends because all points in
Pi(B′) are marked. Let c be the point added to Pi(B′) when c∗i is marked. Then, d(c∗i , c) ≤ 4ri.
Thus, B(c∗i , ri) ⊆ B(c, 6ri), which implies that B(c∗i , ri) ∈ O1

i . This is a contradiction, since
B(c∗i , ri) ∈ O2

i .
Now we claim that |Fi(B′)| ≤ 3k, by considering each of the five conditions (Fi(·) stands

for centers forbidden due to one of the five conditions). Conditions (i) and (ii) include at
most

∑i−1
j=1 kj , and at most ki points respectively. Therefore, k is an upper bound for points

satisfying conditions (i) and (ii).

T. Inamdar and K. Varadarajan 62:13

We now claim that ki is also an upper bound for points satisfying condition (iii). To this
end, we claim that for c ∈ C2

i , there is at most one c ∈ Pi(B′) such that d(c, c′) ≤ 2ri. Suppose
that there are two distinct such points c1, c2 ∈ Pi(B′). Then, d(c1, c2) ≤ d(c, c1) + d(c, c2) ≤
4ri. This is a contradiction, since the distance between any two points in Pi(B′) is greater
than 4ri. Finally, since |C2

i | ≤ k, k is also an upper bound on the centers excluded due to
condition (iii).

A similar proof also shows that for any fixed c∗j ∈ C∗j with j ≥ i, there is at most one
c ∈ Pi(B′) with d(c∗j , c) ≤ ri + rj . Therefore,

∑t
j=i kj is an upper bound for points satisfying

condition (iv).
∑i−1
j=1 kj is an upper bound on condition (v). Therefore, k is an upper bound

on conditions (iv) and (v) together.
Putting everything together, |Fi(B′)| ≤ 3k, which implies that |Pi(B′) \ Fi(B′)| ≥ k.

Therefore, each ball in O2
i (B′) can be mapped to a unique point in |Pi(B′)|. C

The next claim is used later to argue that the reassignment can be done using the mapping
ϕ constructed in this manner.

B Claim 8. Fix B′ ⊆ B and a ball B∗ = B(c∗i , ri) ∈ O2
i (B′). If ϕ(B∗) = c, then

|B(c, ri) ∩ I(B′)| ≥ |B∗| ≥ |µ−1
∗ (B∗)|.

Proof. We first claim that no point in B∗ is marked in Greedy(B′,B, ri). Otherwise,
let c′ ∈ I(B∗) be the point added to Pi(B′) when a point p ∈ B∗ was marked. Then,
d(c′, c∗i) ≤ d(c′, p) + d(p, c∗i) ≤ 5ri, which implies that B∗ ⊆ B(c′, 6ri), which implies
that B(c∗i , ri) ∈ O1

i . This is a contradiction, since B(c∗i , ri) ∈ O2
i . Therefore no point in

B∗ ∩ I(B′) = B∗ is marked until the end of the while loop.
Now, consider the beginning of the iteration when c was added to Pi(B′). At this point,

c∗i is also a candidate. Since c is chosen over c∗i , it implies that |B(c, ri) ∩ I(B′)| ≥ |B∗| ≥
|µ−1
∗ (B∗)|, where the last inequality holds by definition. C

We use this claim to show that we can reassign points from µ−1
∗ (O2

i) to balls in B∪B(Ci),
where Ci = C1

i ∪ C2
i . Recall that we have already reassigned points µ−1

∗ (O1
i) to C1

i .
Now let us consider the optimal balls in O2

i in the same order in which they were mapped
in Algorithm 6. Consider an optimal ball B∗ = B(c∗i , ri), and suppose it was mapped in
the iteration corresponding to B′ ⊆ B. That is, B∗ ∈ O2

i (B′). Let c = ϕ(B∗). Because of
condition (v), there is no optimal center c∗j ∈ C∗j with j ≥ i, such that B(c∗j , rj)∩B(c, ri) 6= ∅.
Therefore, all points in B = B(c, ri) are assigned to balls in O<i in the optimal assignment
µ∗. Furthermore, because of condition (iv), there is no other center c′ ∈ C2

i within distance
2ri from c, which implies that points in B have not been currently assigned to a ball in
B(Ci). Therefore, by the inductive hypothesis, these points are assigned to balls in B.

Now we reassign m points from the set B ∩ I(B′) to the ball B(c, 6ri), where m =
min{U, |B∩I(B′)|}. These points are originally assigned to balls in B. As they are contained
in I(B′), no such point belongs to a ball in B \ B′, by the definition of I(B′). Thus, these
points are assigned to balls in B′. Their reassignment to B(c, 6ri) collectively frees up m
units of capacity from balls in B′. Note that B∗ is also completely contained in I(B′), and
m ≥ |µ−1

∗ (B∗)| by Claim 8. Therefore, we can use the freed capacity of balls in B′ to assign
points in µ−1

∗ (B∗).
We perform this reassignment process for each ball in O2

i . Therefore, at the end, every
point in µ−1

∗ (O≤i) is assigned to a ball in B ∪B(Ci). This finishes the proof of Lemma 6. J

ESA 2020

62:14 Capacitated Sum-Of-Radii Clustering: An FPT Approximation

Using Lemma 6 at level t+ 1, we know that there exists a recursive call to
CapacitatedSoR(B, t+ 1), such that the set of points in µ−1

∗ (O) = P can be assigned to
the balls in B without violating capacities. Fix such a recursive call. With this, let us define
C1 =

⋃t
i=1 C

1
i , and C2 =

⋃t
i=1 C

2
i , and let C = C1 ∪ C2. Note that there may be several

concentric balls in B. We want to move the concentric balls to “nearby” unique centers
in order to obtain a feasible solution. The following observations, which follow from the
description of the mapping procedure (see Algorithm 6), will aid us in doing this.

I Observation 9.
1. For any c ∈ C1

i , define R∗(c) to be the set of optimal centers of the balls in ϕ−1(c).
(A) The sets {R∗(c)}c∈C1 are pairwise disjoint, i.e., for distinct c1, c2 ∈ C1, we have that
R∗(c1) ∩R∗(c2) = ∅.
(B) R∗(c) ⊆ B(c, 5ri) for any c ∈ C1

i .
2. For any c ∈ C2, define R∗(c) := {c}

(A) |ϕ−1(c)| = 1 for all c ∈ C2

(B) C2 ∩ C∗ = ∅, and
(C) C2 ∩ C1 = ∅.

3. Items 1 and 2 imply that the sets {R∗(c)}c∈C are pairwise disjoint.

Proof. For item 1.A, note that ϕ : O → C is a many-to-one function, and that every ball in
O has a distinct center. Item 1.B follows from the definition of ϕ.

Claims in item 2 follow from the definition of set of forbidden centers Fi(B′) in the
mapping procedure (see line 4). J

Now we are ready to show that, when PostProcess(B) (Algorithm 7) is called from
CapacitatedSoR(B, t+1), where B is the set of balls guaranteed by Lemma 6, it successfully
returns a feasible solution.

Algorithm 7 PostProcess(B).

1: For every 1 ≤ i ≤ t, and every c ∈ Ci, find a set R(c) ⊆ B(c, 5ri) where |R(c)| equals the
multiplicity of c in Ci and the sets R(c) are pairwise disjoint for all c ∈ C
This can be solved using a max-flow problem

2: if such a collection of sets R(c) does not exist: return fail
3: Let R =

⋃
c∈C R(c), and let B(R) := {B(c, α · ri) : c ∈ R}

. α is defined below in the proof of Lemma 10
4: Check whether there exists a feasible assignment from P to the balls in B(R)

This can be solved using a max-flow problem
5: if a feasible assignment exists: return B(R); else: return fail

I Lemma 10. PostProcess(B) succeeds in finding a set of balls B(R), and there is a
feasible assignment µ′ : P → B(R).

Proof. From Lemma 6, there exists a feasible assignment µ : P → B, however there may be
concentric balls in the set B. However, Observation 9 implies that the sets R∗(c) are pairwise
disjoint for c ∈ C, and that R∗(c) ⊆ B(c, 5ri) for a center c ∈ Ci. Therefore, in line 1 of
Algorithm PostProcess(B), we can successfully find the sets R(c) as claimed. Note that
R(c) ⊆ B(c, 5ri).

T. Inamdar and K. Varadarajan 62:15

From Lemma 6, for any B = B(c, 6ri) ∈ B, µ−1(B) ⊆ Eti (c). Note that the radius of
the expanded version of the ball Eti (c) is equal to 6ri +

∑t
`=i+1 2r` ≤ α′ · ri, for some α′.

Therefore, for any point p ∈ µ−1(B), and any c′ ∈ R(c), we have that d(p, c′) ≤ 5ri + α′ri =
(α′ + 5)ri = αri

1. This implies that, in line 4 of the Algorithm 7, we can find such a feasible
assignment µ′. J

I Lemma 11. CapacitatedSoR(∅, 1) runs in 2O(k2) · nO(1) time.

Proof. Fix a level 1 ≤ i ≤ t, and consider CapacitatedSoR(B, i). At the beginning of the
algorithm, |B| ≤ k, therefore the number of subsets can be upper bound by 2k, which implies
that |Pi| ≤ 4k · 2k. Now, let k′i ≤ ki denote the size of the set Ci without multiplicities.

Therefore, there are
ki∑
k′
i
=1

(
4k · 2k

k′i

)
=
(
4k · 2k

)O(ki) = 2O(k·ki) number of choices for selecting

the set Ci (without multiplicities). For a fixed choice of Ci, there are at most (ki)k
′
i = kO(ki)

choices for placing one or more copies at each location in Ci. We make a recursive call for
each such choice of the multi-set Ci. The overall number of recursive calls to level i+ 1 can
be upper bounded by kO(ki) · 2O(k·ki) = 2O(k·ki).

Let T (i) denote the running time of the algorithm at level i. Then, we have the following
recurrence relation: T (i) = 2O(k·ki) · T (i+ 1) + 2O(k·ki) · nO(1).

Furthermore, T (t + 1) = nO(1), since PostProcess runs in time polynomial in n. This
recurrence solves to T (1) = 2O(k2) · nO(1), where we use the fact that

∑t
i=1 ki = k. J

I Theorem 12. There exists a 28-approximation for the Capacitated Sum of Radii problem
that runs in 2O(k2) · nO(1) time.s

Proof. There are O(n2) choices for guessing the maximum radius, and kO(log k) choices
for guessing the radius profile of the optimal solution. Note that we lose a factor of
(1 + ε)2 in the latter step. Now, fix the correct value of maximum radius and the radius
profile that corresponds to the modified optimal solution. By Lemma 11, the algorithm
CapacitatedSoR(∅, 1) runs in 2O(k2) · nO(1) time for any fixed choice of the radius profile.

Furthermore, By Lemma 10, there exists a recurse call at level t+1, that returns a feasible
solution. Finally, for any 1 ≤ i ≤ t we use ki balls of radius αri in this solution, whereas
the optimal solution uses ki balls of radius ri. Therefore, the approximation guarantee is at
most (1 + ε)2 · α, where α is as in Lemma 10. Choosing ε ≈ 0.267, the above quantity can be
upper bounded by 28. J

4 Conclusion

We obtain constant approximations for the uniform capacitated sum of radii problem in FPT
time. It is unclear whether a similar result can be obtained in polynomial time. Finally,
obtaining a constant approximation for the matroid version of the problem in polynomial
time remains open.

1 It can be shown that α = 2+11·ε(1+ε)
ε(1+ε) .

ESA 2020

62:16 Capacitated Sum-Of-Radii Clustering: An FPT Approximation

References
1 Marek Adamczyk, Jaroslaw Byrka, Jan Marcinkowski, Syed M. Meesum, and Michal Wlodar-

czyk. Constant-factor FPT approximation for capacitated k-median. In 27th Annual European
Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany.,
pages 1:1–1:14, 2019. doi:10.4230/LIPIcs.ESA.2019.1.

2 Hyung-Chan An, Mohit Singh, and Ola Svensson. Lp-based algorithms for capacitated facility
location. SIAM J. Comput., 46(1):272–306, 2017. doi:10.1137/151002320.

3 Sayan Bandyapadhyay, Santanu Bhowmick, Tanmay Inamdar, and Kasturi R. Varadarajan.
Capacitated covering problems in geometric spaces. In Bettina Speckmann and Csaba D.
Tóth, editors, 34th International Symposium on Computational Geometry, SoCG 2018, June
11-14, 2018, Budapest, Hungary, volume 99 of LIPIcs, pages 7:1–7:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.SoCG.2018.7.

4 Babak Behsaz and Mohammad R. Salavatipour. On minimum sum of radii and diameters
clustering. Algorithmica, 73(1):143–165, 2015. doi:10.1007/s00453-014-9907-3.

5 Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms, 13(2):23:1–23:31, 2017.

6 Jaroslaw Byrka, Bartosz Rybicki, and Sumedha Uniyal. An approximation algorithm for
uniform capacitated k-median problem with 1 + ε capacity violation. In Quentin Louveaux
and Martin Skutella, editors, Integer Programming and Combinatorial Optimization - 18th
International Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings, volume
9682 of Lecture Notes in Computer Science, pages 262–274. Springer, 2016. doi:10.1007/
978-3-319-33461-5_22.

7 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149,
2002. doi:10.1006/jcss.2002.1882.

8 Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters. J.
Comput. Syst. Sci., 68(2):417–441, 2004. doi:10.1016/j.jcss.2003.07.014.

9 Danny Z Chen, Jian Li, Hongyu Liang, and Haitao Wang. Matroid and knapsack center
problems. Algorithmica, 75(1):27–52, 2016.

10 Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform capacities. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2005, Vancouver, British Columbia, Canada, January 23-25, 2005, pages 952–958. SIAM,
2005. URL: http://dl.acm.org/citation.cfm?id=1070432.1070569.

11 Vincent Cohen-Addad and Jason Li. On the fixed-parameter tractability of capacitated
clustering. In 46th International Colloquium on Automata, Languages, and Programming,
ICALP 2019, July 9-12, 2019, Patras, Greece., pages 41:1–41:14, 2019. doi:10.4230/LIPIcs.
ICALP.2019.41.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 H. Gökalp Demirci and Shi Li. Constant approximation for capacitated k-median with
(1+epsilon)-capacity violation. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 73:1–73:14, 2016.
doi:10.4230/LIPIcs.ICALP.2016.73.

14 Matt Gibson, Gaurav Kanade, Erik Krohn, Imran A. Pirwani, and Kasturi R. Varadarajan.
On metric clustering to minimize the sum of radii. Algorithmica, 57(3):484–498, 2010. doi:
10.1007/s00453-009-9282-7.

15 Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

16 MohammadTaghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. Budgeted red-blue median
and its generalizations. In European Symposium on Algorithms, pages 314–325. Springer, 2010.

https://doi.org/10.4230/LIPIcs.ESA.2019.1
https://doi.org/10.1137/151002320
https://doi.org/10.4230/LIPIcs.SoCG.2018.7
https://doi.org/10.1007/s00453-014-9907-3
https://doi.org/10.1007/978-3-319-33461-5_22
https://doi.org/10.1007/978-3-319-33461-5_22
https://doi.org/10.1006/jcss.2002.1882
https://doi.org/10.1016/j.jcss.2003.07.014
http://dl.acm.org/citation.cfm?id=1070432.1070569
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.4230/LIPIcs.ICALP.2019.41
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.ICALP.2016.73
https://doi.org/10.1007/s00453-009-9282-7
https://doi.org/10.1007/s00453-009-9282-7

T. Inamdar and K. Varadarajan 62:17

17 Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem.
Mathematics of operations research, 10(2):180–184, 1985.

18 Samir Khuller and Yoram J Sussmann. The capacitated k-center problem. SIAM Journal on
Discrete Mathematics, 13(3):403–418, 2000.

19 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median
and k-means with outliers via iterative rounding. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 646–659, 2018.

20 Shi Li. Approximating capacitated k-median with (1 + ε)k open facilities. In Proceedings of the
Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arling-
ton, VA, USA, January 10-12, 2016, pages 786–796, 2016. doi:10.1137/1.9781611974331.
ch56.

21 Shi Li. On uniform capacitated k-median beyond the natural LP relaxation. ACM Trans.
Algorithms, 13(2):22:1–22:18, 2017. doi:10.1145/2983633.

ESA 2020

https://doi.org/10.1137/1.9781611974331.ch56
https://doi.org/10.1137/1.9781611974331.ch56
https://doi.org/10.1145/2983633

Optimal Polynomial-Time Compression for
Boolean Max CSP
Bart M. P. Jansen
Eindhoven University of Technology, The Netherlands
b.m.p.jansen@tue.nl

Michał Włodarczyk
Eindhoven University of Technology, The Netherlands
m.wlodarczyk@tue.nl

Abstract
In the Boolean maximum constraint satisfaction problem – Max CSP(Γ) – one is given a collection
of weighted applications of constraints from a finite constraint language Γ, over a common set
of variables, and the goal is to assign Boolean values to the variables so that the total weight
of satisfied constraints is maximized. There exists a concise dichotomy theorem providing a criterion
on Γ for the problem to be polynomial-time solvable and stating that otherwise it becomes NP-hard.
We study the NP-hard cases through the lens of kernelization and provide a complete characterization
of Max CSP(Γ) with respect to the optimal compression size. Namely, we prove that Max CSP(Γ)
parameterized by the number of variables n is either polynomial-time solvable, or there exists
an integer d ≥ 2 depending on Γ, such that:
1. An instance of Max CSP(Γ) can be compressed into an equivalent instance with O(nd log n)

bits in polynomial time,
2. Max CSP(Γ) does not admit such a compression to O(nd−ε) bits unless NP ⊆ co-NP/poly.

Our reductions are based on interpreting constraints as multilinear polynomials combined with
the framework of constraint implementations. As another application of our reductions, we reveal
tight connections between optimal running times for solving Max CSP(Γ). More precisely, we show
that obtaining a running time of the form O(2(1−ε)n) for particular classes of Max CSPs is as hard
as breaching this barrier for Max d-SAT for some d.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases constraint satisfaction problem, kernelization, exponential time algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.63

Related Version A full version of the paper is available at https://arxiv.org/abs/2002.03443.

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803421,
ReduceSearch).
Michał Włodarczyk: The author was supported by the Foundation for Polish Science (FNP).

1 Introduction

Background and motivation. The framework of constraint satisfaction problems (CSPs)
allows the computational complexity of a large class of problems to be studied through
a common lens [11]. A typical instance of such a problem asks whether it is possible to
assign each of the variables x1, . . . , xn a value from a finite domain D, such that a given list
of constraint applications is satisfied. A constraint is applied to a fixed number of variables,
and indicates which combinations of values are legal. In the Max CSP problem, the goal is
to maximize the number of satisfied constraints. See Section 2 for formal definitions.

© Bart M.P. Jansen and Michał Włodarczyk;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 63; pp. 63:1–63:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8204-1268
mailto:b.m.p.jansen@tue.nl
https://orcid.org/0000-0003-0968-8414
mailto:m.wlodarczyk@tue.nl
https://doi.org/10.4230/LIPIcs.ESA.2020.63
https://arxiv.org/abs/2002.03443
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Optimal Polynomial-Time Compression for Boolean Max CSP

The investigation of CSPs has led to deep theorems characterizing the complexity of a CSP
based on the type of constraints allowed in the instance [7, 24]. For example, the long-
awaited CSP dichotomy theorem [6, 35] provides a criterion separating the NP-complete from
the polynomial-time solvable CSPs; the work of Khanna, Sudan, Trevisan, and Williamson
characterizes how well the maximization version of a Boolean CSP can be approximated [21]
(see [13, 20] for larger domains; see [12, 27] for optimal approximation factors); and Cai and
Chen [8] present a dichotomy that separates CSPs for which the number of complex-weighted
solutions can be counted in polynomial time, from those where the problem is #P-hard.

In this work we analyze the complexity of constraint satisfaction in an algorithmic regime
that is currently far from understood: polynomial-time compression and kernelization [15].
Here, the goal is to analyze how much (in terms of the number of variables n) an instance can be
compressed by a polynomial-time algorithm without changing the answer, and to understand
how the compressibility depends on the type of available constraints. A compression is
a polynomial-time algorithm that reduces instances of one problem to equivalent, small
instances of a potentially different problem; a kernelization compresses to an instance
of the same problem (see Section 2.4). A kernelization of small size allows an instance to be
stored, manipulated, and solved more efficiently. It is therefore of interest to find the smallest
possible kernelizations. Since every kernelization yields a compression, one can prove lower
bounds on the size of kernelizations by establishing lower bounds on compressions.

In recent years, there have been a number of advances in the understanding of compress-
ibility of CSPs [9, 14, 18, 25]. A foundational result by Dell and van Melkebeek [14] states
that for d ≥ 3, CNF-SAT with clauses of size at most d (d-CNF-SAT) parameterized by
the number of variables n admits no (polynomial-time) compression of size O(nd−ε) for
any ε > 0, unless NP ⊆ co-NP/poly (which is known to imply a collapse of the polynomial
hierarchy [34]). As an instance of d-CNF-SAT can trivially be compressed to O(nd) bits
via a bitstring that encodes for each of the O(nd) possible clauses whether or not it is present
in the instance, the d-CNF-SAT problem does not admit any non-trivial compression. The
situation is different for the related problem d-Not-All-Equal SAT (d-NAE-SAT), which
is the variant where a clause is satisfied when its literals do not all evaluate to the same
value. Jansen and Pieterse showed [17, 18] that for d ≥ 3, the d-NAE-SAT problem has
a compression of size O(nd−1 logn), but not of size O(nd−1−ε) unless NP ⊆ co-NP/poly.
This example shows that the type of constraints affects the compressibility of a CSP.

The notion of a constraint language is used to rigorously analyze how the complexity
of a CSP depends on the type of constraints. In this work, we will only consider CSPs over
the Boolean domain: we work exclusively with Boolean constraints and constraint languages.
A constraint is therefore a function of the form f : {0, 1}k → {0, 1}, where k ≥ 1 is the arity
of the constraint, also denoted as ar(f). A constraint language Γ is a finite set of constraints.
The input of the corresponding decision problem, denoted CSP(Γ), consists of a set of con-
straint applications of the form f(xj1 , . . . , xjar(f)) = 1 over n common variables, where f is
some constraint from Γ. The question is whether there is an assignment {x1, . . . , xn} → {0, 1}
satisfying all the constraint applications.

In this terminology, Chen, Jansen, and Pieterse [9] characterized for all (Boolean) con-
straint languages Γ consisting of constraints of arity at most three, what the optimal
compression size is for CSP(Γ). Lagerkvist and Wahlström [25] gave universal-algebraic
conditions on Γ which ensure that CSP(Γ) has a compression of size O(n logn), and a char-
acterization is known of the constraint languages Γsym consisting entirely of symmetric
functions for which CSP(Γsym) has a compression of near-linear size [9, §5]. Hence there is
some understanding of the optimal compressibility of CSP(Γ).

B.M.P. Jansen and M. Włodarczyk 63:3

However, when we move from the question of whether all constraints can be satisfied
to the task of maximizing the number of satisfied constraints (Max CSP), the situation
is much less understood. To the best of our knowledge, no non-trivial compressions are
known for any Max CSP(Γ), and no compression lower bounds are known for Max
CSP(Γ) other than those already implied from CSP(Γ). In this paper, we therefore analyze
the compressibility of Max CSP(Γ).

Before presenting our results, we briefly summarize the main algorithmic approach for
compressing CSP(Γ) and illustrate why it fails completely for Max CSP. Consider for
example 3-NAE-SAT. The number of constraint applications in an n-variable instance of this
problem can be reduced to O(n2) without changing the solution space, which allows it to be
encoded in O(n2 logn) bits. The sparsification to O(n2) constraint applications is achieved by
a linear-algebraic approach. Note that a not-all-equal constraint on variables (x, y, z) ∈ {0, 1}3
is satisfied if and only if x+ y + z − xy − xz − yz − 1 = 0. Observe that if p1(x1, . . . , xn) =
0, . . . , pm(x1, . . . , xn) = 0 are polynomial equalities which are satisfied by an assignment
to x1, . . . , xn, then also

∑m
i=1 αi · pi(x1, . . . , xn) = 0 holds for any linear combination as

determined by α1, . . . , αm. To sparsify a 3-NAE-SAT instance with this insight, proceed
as follows. Transform each constraint ci into an equality pi(x1, . . . , xn) = 0 for a degree-2
polynomial pi, substituting 1 − v for negated variables ¬v in the constraint. This yields
a system of equations of degree-2 polynomials in n variables, which have O(n2) distinct
monomials. The rank of a corresponding vector space is therefore O(n2), which yields
a basis of O(n2) equalities such that all others can be expressed as their linear combinations.
All constraints not corresponding to an element of this basis can be safely omitted from
an instance of 3-NAE-SAT, since they will be automatically satisfied by any assignment that
satisfies all basis constraints. This yields the claimed sparsification of O(n2) constraints.
Note, however, that this approach fails completely for the variant Max 3-NAE-SAT: if
an assignment does not satisfy all constraints of the basis, this does not give any satisfaction
guarantees on the linearly-dependent constraints. Hence the sparsification approach for
CSP(Γ) is not applicable for Max CSP(Γ).

Our results. We provide a new route to compression for Max CSP(Γ), and prove that
the resulting compressions are essentially optimal for all constraint languages Γ, assuming
NP 6⊆ co-NP/poly. Our results characterize the optimal compressibility of all Boolean Max
CSPs in terms of degrees of characteristic polynomials, and uncover a wide range of Max
CSP(Γ) problems that admit a non-trivial compression. For a Boolean function f : {0, 1}k →
{0, 1}, its characteristic polynomial is the unique k-variate multilinear polynomial Pf (x)
over R that agrees with f on all x ∈ {0, 1}k. The fact that this representation is unique is
well-known (cf. [29]). For a constraint language Γ, define deg(Γ) = maxf∈Γ deg(Pf). We
prove that deg(Γ) characterizes the compressibility of Max CSP(Γ).

To state our results precisely, we have to address a feature of the problem that is particular
to the maximization variant: repetitions of constraint applications. While such repetitions
are irrelevant in the CSP setting when all constraint applications have to be satisfied, they
become relevant when maximizing the number of satisfied constraint applications. The
standard approach in the Max CSP literature is therefore to give each constraint application
a positive integer weight value [11, 21]. The decision problem Max CSP(Γ) then takes as
input a system of Γ-constraint applications with weights from N, and a threshold value t,
and asks whether there is an assignment such that the weight of the satisfied constraint
applications is at least t.

ESA 2020

63:4 Optimal Polynomial-Time Compression for Boolean Max CSP

Let Γ be a (finite, Boolean) constraint language.1 Our main positive result is the following.

I Theorem 1.1. Max CSP(Γ) parameterized by the number of variables n, with positive
integer weights bounded by nO(1), admits a compression of size O

(
ndeg(Γ) logn

)
.

In fact, we are even able to reduce any instance of Max CSP(Γ) to an equivalent instance
of the same problem, having O

(
ndeg(Γ)) weighted constraint applications. We prove matching

lower bounds whenever Max CSP(Γ) is NP-complete. It is known [10, 11, 21] that for
inputs with positive integer weights, Max CSP(Γ) is polynomial-time solvable if Γ is 0-valid,
1-valid, or 2-monotone (see Section 2.1), and NP-complete otherwise.

I Theorem 1.2. If Γ is not 0-valid, 1-valid, or 2-monotone, then assuming NP 6⊆ co-NP/poly,
Max CSP(Γ) parameterized by the number of variables n, with positive integer weights
bounded by nO(1), does not admit a compression of size O

(
ndeg(Γ)−ε

)
for any ε > 0.

Our results uncover an interesting contrast in compressibility between decision CSPs
and maximization CSPs. While both involve the analysis of the degrees of polynomials,
the type of polynomials which is used differs, leading to differences in compressibility.
For example, while d-NAE-SAT has a compression of size O(nd−1 logn) for all d ≥ 3,
the corresponding Max d-NAE-SAT problem with weights of absolute value nO(1) has
a compression of size O(nd−1 logn) for odd d ≥ 3, but no compression of size O(nd−ε) for
even d. Another example is d-Exact SAT, where we require exactly one literal in each
clause to be true. Whereas d-Exact SAT admits a compression of size O(n logn) for every
fixed d [9], we show that Max d-Exact SAT cannot be compressed to O(nd−ε) bits.

Techniques. On a high level, our results are obtained by combining two ingredients: (1)
a characterization of the complexity of a constraint language as deg(Γ), via the degree
of the characteristic polynomials, and (2) reductions between different problems Max
CSP(Γ) and Max CSP(Γ′) by implementing constraints of one language by combinations
of constraints from the other. While both ingredients have been used in isolation [10, 11,
21, 26, 33], their combination is novel and is the key to understanding compressibility. To
comprehend how characteristic polynomials help to compress an instance of Max CSP(Γ),
observe that since the characteristic polynomial gives 1 when a constraint is satisfied and 0
otherwise, the total value of satisfied constraint applications can be written as a weighted
sum of applications of characteristic polynomials. If deg(Γ) = k, then this weighted sum
contains O(nk) distinct monomials. An instance can therefore be compressed by expanding
this weighted sum, and storing the coefficient of each monomial. If all weights in the input
instance are bounded by nO(1), each coefficient will have value nO(1) and can therefore be
encoded in O(logn) bits.

Our lower bounds are obtained by parameterized reductions between Max CSPs in
which the number of variables does not grow significantly. By a careful analysis of the terms
of the characteristic polynomial, we show that if deg(Γ) = deg(Γ′), then constraint applic-
ations from Γ can effectively be simulated by combinations of constraints from Γ′. Here,
we use the framework of implementations from an earlier work [21]. Since the characteristic
polynomial of d-CNF clauses has degree d, this yields a reduction from d-CNF-SAT to
Max CSP(Γ) for deg(Γ) = d that preserves the asymptotic size of the variable set, therefore
transferring the cited lower bound for d-CNF-SAT [14] to Max CSP(Γ). A similar reduction
is also used for our positive results, to turn the monomial-based compression sketched above
into a self-reduction which outputs an instance of the original problem.

1 While some recent work on sparsification for CSPs allows infinite constraint languages Γ [18], they are
not interesting from our perspective as deg(Γ) = +∞.

B.M.P. Jansen and M. Włodarczyk 63:5

Consequences for exponential-time algorithms. The framework we develop for paramet-
erized reductions among Max CSPs also has consequences for exponential-time algorithms,
which we believe to be of independent interest. The Max 3-SAT Hypothesis [26] states
that Max 3-CNF-SAT with n variables cannot be solved in time O(2(1−ε)n) for any ε > 0
(cf. [1, 5]). Our reductions imply that this hypothesis is equivalent to the version where Max
3-CNF-SAT is replaced by Max CSP(Γ) for any constraint language Γ with deg(Γ) = 3 in
which negated literals can be expressed (§2.2). In particular, the Max 3-SAT hypothesis is
equivalent to the statement that Max E3-Lin cannot be solved in time O(2(1−ε)n). What is
more, for any k ≥ 2, our reductions uncover an equivalence class of NP-hard problems whose
optimal exponential-time running times coincide with the one for Max k-SAT.

Related work. Representations of Boolean functions by characteristic polynomials have
been studied frequently in the literature [3, 4, 26, 28, 29, 31, 32] revealing, e.g., a relation
between the degree of the representation and the decision tree complexity [29]. Algorithms for
CSPs via their characteristic polynomials were first given by Williams [33]. He used the split-
and-list technique to give accelerated exponential-time algorithms for Max 2-SAT and Max
CSP(Γ) for deg(Γ) = 2. In recent work, Lincoln, Williams, and Vassilevska Williams [26] give
an exponential-time split-and-list reduction from Max CSP(Γ) for deg(Γ) = k to detecting
an `-hyperclique in a k-uniform hypergraph, for ` > k, in support of the (k, `)-Hyperclique
Hypothesis, which states that detecting such a hyperclique in an n-vertex input requires
time n`−o(1) on a Word-RAM with O(logn)-bit words. If this hypothesis fails for some k
and `, their reduction implies that each Max CSP(Γ) problem with deg(Γ) = k can be
solved in time O(2(1−ε)n) for some ε > 0. Their reductions run in exponential time and are
very different from ours.

Alon et al. [2] used a different representation of Boolean functions as polynomials in
the work on Max r-SAT parameterized above the guarantee. Here, the goal is to find
an assignment satisfying at least ((2r − 1)m+ k)/2r clauses, where m is the total number
of clauses and k is the parameter. They have shown that the problem is FPT and admits
a polynomial kernel.

Organization. We begin with Section 2 containing the necessary definitions and properties
of CSPs, including the implementation framework. In Section 3 we explain the idea of rep-
resenting constraints by polynomials and provide an algebraic background for our reductions.
It is followed by Section 4, where the notion of a reduction between constraint systems
is formalized, and the main reductions are presented. It serves as a toolbox for proving
the main results for compression (Section 5) and exponential-time algorithms (Section 6).
The proofs of statements indicated with (F) can be found in the full version [19].

2 Preliminaries

For a set S and integer d ≥ 0, let
(

S
d

)
be the set of all size-d subsets of S. We use [n]

as a shorthand for {1, . . . , n}. A k-ary constraint is a function f : {0, 1}k → {0, 1}. We
refer to k as the arity of f , denoted ar(f). We always assume that the domain is Boolean.
A constraint f is satisfied by an input s ∈ {0, 1}k if f(s) = 1. A constraint language
(sometimes called constraint family) Γ is a finite collection of constraints {f1, f2, . . . , f`},
potentially with different arities. A constraint application, of a k-ary constraint f to a set
of n Boolean variables, is a triple 〈f, (i1, i2, . . . ik), w〉, where the indices ij ∈ [n] select k
of the n Boolean variables to whom the constraint is applied, and w is a weight, described
formally below. The variables can be repeated in a single application.

ESA 2020

63:6 Optimal Polynomial-Time Compression for Boolean Max CSP

I Definition 2.1. A constraint system is a pair CS(Γ,W), where Γ is a constraint language
and W (for weight range) is either Z or N. An instance (or formula) of CS(Γ,W) is a set
of constraint applications from Γ over a common set of variables, each application having
a weight from W.

We denote the number of constraint applications in a formula Φ by |Φ| and the sum
of absolute values of all weights in Φ by ||Φ||. For an assignment x, that is, a mapping
from the set of variables to {0, 1}, the integer Φ(x) is the sum of weights of the constraint
applications satisfied by x.

In the decision problem Max CSP(Γ,W, c) we are given a formula Φ from CS(Γ,W)
over n variables such that ||Φ|| ≤ nc, together with the integer t, and we ask if there is
an assignment x such that Φ(x) ≥ t. We specify the constant c to be accurate about
the specific decision problems for which we show hardness results (the formal definitions of
parameterized problems and compression are given in Section 2.4). When it does not lead to
confusion, e.g., when some property holds for all c, we refer to this family of problems shortly
as Max CSP(Γ,W). Whenever we use the O-notation, we do it with respect to a fixed
problem, that is, we treat Γ and c as constants. The most commonly studied case is expressed
by W = N [13, 21, 27], where the weights can be interpreted as repetitions of constraint
applications. It is important to make this distinction because it can be the case that Max
CSP(Γ,N) is polynomially solvable whereas Max CSP(Γ,Z) is NP-hard [20]. Although our
main reduction framework works for W = Z, we are able to transfer the compression lower
bounds to the case W = N as long as Max CSP(Γ,N) is NP-hard.

Another decision problem that is related to constraint systems is Exact CSP(Γ,W),
where we ask whether there is an assignment for which the satisfied weights sum up exactly
to a given integer [26, 33]. Even though we focus on the maximization variant, we formulate
our reductions so that they could be employed for other problems over constraint systems or
larger weight domains.

2.1 Types of constraints
We start by formally defining the most important constraints and constraint properties.
They allow us to formulate the dichotomy theorem for Max CSP. We use the Boolean notation
for negation, i.e., ¬x = 1− x for x ∈ {0, 1}.

A constraint is trivial if it is either always 1 or always 0 regardless of the arguments.
The unary constraints T and F are given by T (x) = x and F (x) = ¬x.
ORk and ANDk are k-ary constraints, such that ORk(x1, . . . , xk) =

∨k
i=1 xi and ana-

logously ANDk(x1, . . . , xk) =
∧k

i=1 xi. The Not-All-Equal constraint is defined as
NAEk(x1, . . . , xk) = ORk(x1, . . . , xk) ∧ORk(¬x1, . . . ,¬xk).
XORk is a k-ary constraint defined as XORk(x1, . . . , xk) = x1 + . . . + xk mod 2. We
abbreviate XOR = XOR2.
A constraint f is 0-valid (resp. 1-valid) if f(0, 0, . . . , 0) = 1 (resp. f(1, 1, . . . , 1) = 1).
A constraint f is 2-monotone if f(x1, x2, . . . , xk) = (xi1 ∧ xi2 ∧ · · · ∧ xip

)∨ (¬xj1 ∧¬xj2 ∧
· · · ∧ ¬xjq), for some p, q ≥ 0, (p, q) 6= (0, 0), i.e., f is equivalent to a DNF-formula with
at most two terms: one containing only positive literals and the other containing only
negative literals.
A constraint f is C-closed (complementation-closed) if for every assignment x ∈ {0, 1}ar(f),
f(x) = f(x̄), where x̄ stands for the bit-wise complement of x.
A constraint f is symmetric if for any two assignments x1, x2 ∈ {0, 1}ar(f) having the same
number of ones, it holds that f(x1) = f(x2).

B.M.P. Jansen and M. Włodarczyk 63:7

A constraint language Γ is called 0-valid, 1-valid, 2-monotone, C-closed, or symmetric,
if all non-trivial constraints in Γ satisfy the respective property. We call Γ non-trivial if
it contains at least one non-trivial constraint. This regime is convenient for formulating
the fundamental dichotomy theorem for Boolean Max CSP. For our purposes it is only
important that APX-hardness entails NP-hardness.

I Theorem 2.2 ([21, Theorem 2.11], cf. [10]). Max CSP(Γ,N) is solvable in polynomial
time if Γ is either 0-valid, 1-valid, or 2-monotone. Otherwise, the problem is APX-hard.

2.2 Closures of constraint languages
In some CSPs we are allowed to write constraint applications containing constants or negations
of variables, which makes them more convenient to process. We formalize these properties
with the notion of a language closure.

I Definition 2.3. Let f be a k-ary constraint and let g be a d-ary constraint. We say that
g is expressible by f with constants if the identity g(x1, x2, . . . , xd) = f(ξ1, ξ2, . . . , ξk) holds
for a tuple (ξ1, ξ2, . . . , ξk), where each ξj is either a variable xi for some i ∈ [d] or one
of the constants 0, 1.

We say that g is expressible by f with literals if such an identity holds for a tuple
(ξ1, ξ2, . . . , ξk), where each ξj is a literal: either a variable xi or its negation ¬xi for i ∈ [d].

For a constraint language Γ we introduce the following closures:
the language ΓT,F contains all functions expressible by f ∈ Γ with constants,
the language ΓLIT contains all functions expressible by f ∈ Γ with literals,
the language ΓNEG is the negation-wise closure of Γ, i.e., ΓNEG =

⋃
f∈Γ{f,¬f}.

It is easy to see that the closures satisfy (ΓT,F)T,F = ΓT,F , (ΓLIT)LIT = ΓLIT ,
(ΓNEG)NEG = ΓNEG. We will be particularly interested in those constraint languages
in which negated literals can be expressed, as in, e.g., d-CNF-SAT or d-NAE-SAT. These
are the languages that satisfy Γ = ΓLIT . Below we present examples on how to express
important CSPs using our definitions.

d-CNF-SAT = CSP(Γd-SAT) for Γd-SAT = {ORd}LIT ,
d-NAE-SAT = CSP({NAEd}LIT),
Max Ed-Lin = Max CSP({XORd}NEG,N),
Max Cut = Max CSP({XOR},N),
Max DiCut = Max CSP({f},N) for f(x1, x2) = x1 ∧ ¬x2.

2.3 Constraint implementations
We describe the technique behind Theorem 2.2 [21]. The idea is to implement a constraint
f by a collection of other constraints, so that satisfying f is equivalent to maximizing
the number of satisfied constraints in that collection. It allows us to express formulas from
Max CSP(Γ1,N) by those from Max CSP(Γ2,N), as long as constraints in Γ1 can be
implemented by those in Γ2.

The caveat is that each implementation may introduce new auxiliary variables whereas for
our purposes we need reductions that increase the number of variables only by a multiplicative
constant. Therefore the reductions by Khanna et al. [21] do not transfer compressibility
bounds; we will use the implementations in a different way. On the other hand, our reductions
do not preserve approximation factors.

ESA 2020

63:8 Optimal Polynomial-Time Compression for Boolean Max CSP

I Definition 2.4 ([21, Definition 3.1]). A collection of unit-weighted constraint applications
C1, C2, . . . Cm over a set of variables x = {x1, x2, . . . , xp} called primary variables and
y = {y1, y2, . . . , yq} called auxiliary variables, is an α-implementation of a constraint f(x)
for a positive integer α if the following conditions hold.

1. Any assignment to x and y satisfies at most α constraint applications from C1, C2, . . . Cm.
2. ∀x such that f(x) = 1, ∃y such that exactly α constraint applications are satisfied.
3. ∀x, y such that f(x) = 0, at most α − 1 constraint applications are satisfied.

An α-implementation is called strict if for every assignment of the primary variables x
such that f(x) = 0, there exists an assignment of the auxiliary variables y such that exactly
α − 1 constraint applications are satisfied.

We say that a constraint language Γ implements a constraint f if there exists an α-
implementation of f using constraints of Γ for some constant α. We use Γ =⇒ f to denote
that Γ implements f and Γ s=⇒ f when Γ strictly implements f . The above notation is also
extended to allow the target to be a family of constraints. The following lemma encapsulates
a toolbox of implementations which we will rely on.

I Lemma 2.5. If Γ is a non-trivial constraint language such that
1. Γ is C-closed and not 0-valid (or equivalently not 1-valid), then Γ =⇒ XOR,
2. Γ is neither 0-valid, 1-valid, nor C-closed, then Γ =⇒ {T, F},
3. Γ is neither 0-valid, 1-valid, nor 2-monotone, then Γ =⇒ XOR.

In order to prove it, we need to refer to several statements from [21], beginning from the
transitivity of strict implementations. Then we restate three lemmas that imply points (1, 2)
directly, and point (3) is obtained via transitivity.

I Lemma 2.6 ([21, Lemma 3.5]). If Γ1
s=⇒ Γ2 and Γ2

s=⇒ Γ3, then Γ1
s=⇒ Γ3.

I Lemma 2.7 ([21, Lemma 4.5]). Let f be a non-trivial constraint which is C-closed and is
not 0-valid (or equivalently not 1-valid). Then {f} s=⇒ XOR.

I Lemma 2.8 ([21, Lemma 4.6]). Let f0, f1, and g be non-trivial constraints, possibly identical,
which are not 0-valid, not 1-valid, and not C-closed, respectively. Then {f0, f1, g}

s=⇒ {T, F}.

I Lemma 2.9 ([21, Lemma 4.11]). Let f be a constraint which is not 2-monotone. Then
{f, T, F} s=⇒ XOR.

Proof of Lemma 2.5. Claims (1, 2) follow from Lemmas 2.7 and 2.8, respectively. To see
claim (3), first observe that if Γ is C-closed, then we can again use Lemma 2.7. Otherwise,
by Lemma 2.8 we have Γ s=⇒ {T, F}. Next, we take advantage of transitivity (Lemma 2.6)
and implement XOR with Lemma 2.9. J

2.4 Parameterized complexity
A parameterized problem is a decision problem in which every input has an associated positive
integer parameter that captures its complexity in some well-defined way. In our study
of CSPs we use the number of variables as the parameter, but other choices have been
considered [16, 22, 23]. For a parameterized problem A ⊆ Σ∗×N, a decision problem B ⊆ Σ∗,
and a function f : N → N, a compression of A into B of size f is an algorithm that, on
input (x, k) ∈ Σ∗ ×N, takes time polynomial in |x|+ k and outputs an instance y ∈ Σ∗ such
that (x, k) ∈ A if and only if y ∈ B, and such that |y| ≤ f(k). A kernelization algorithm
of size f for problem A reduces any instance (x, k) to an f(k)-sized equivalent instance
of the same problem in polynomial time.

B.M.P. Jansen and M. Włodarczyk 63:9

3 Characteristic polynomials

In this section we provide the technique necessary for expressing one constraint system
by another without introducing too many auxiliary variables. This insight is based on
interpreting constraints as multilinear polynomials.

I Definition 3.1. For a k-ary constraint f : {0, 1}k → {0, 1} its characteristic polynomial Pf

is the unique k-ary multilinear polynomial over R satisfying f(x) = Pf (x) for any x ∈ {0, 1}k.

It is easy to construct Pf . First define Ps(x1, x2, . . . , xk) =
∏k

i=1R
s
i (xi) for a vector

s ∈ {0, 1}k, where Rs
i (x) = x if si = 1 and Rs

i (x) = 1− x otherwise. Formally, Ps is given by
the sequence of coefficients obtained by expanding all parentheses; they are all integers. It
holds that Ps(s) = 1, while Ps(x) = 0 for any x 6= s. For a constraint f its characteristic
polynomial is given as Pf (x1, x2, . . . , xk) =

∑
s: f(s)=1 Ps(x1, x2, . . . , xk). It is known that no

other multilinear polynomial can take identical values on {0, 1}k [29, 33]. This also means
we can interchangeably analyze polynomials as formal objects and as functions on {0, 1}k.

I Observation 3.2. The coefficients of any characteristic polynomial Pf are integers.

Let deg(f) = deg(Pf) and deg(Γ) = maxf∈Γ deg(f). For a k-ary constraint f we refer to
the coefficient at the unique k-ary monomial in Pf as the leading coefficient. The leading
coefficient is non-zero if and only if deg(Pf) = k. If g is expressible by f with literals,
then we can obtain Pg from Pf by replacing each literal with negation ¬xi by 1− xi and
expanding the parentheses within monomials. If g is expressible by f with constants, then
we just substitute 0 or 1 for particular variables and remove monomials containing 0. These
transformations imply deg(ΓT,F) = deg(ΓLIT) = deg(ΓNEG) = deg(Γ).

As an example, consider Max 3-NAE-SAT. The function NAE3(x1, x2, x3) has the degree-
2 characteristic polynomial x1 + x2 + x3 − x1x2 − x1x3 − x2x3, which allows us to construct
a compression for Max 3-NAE-SAT of size O(n2 logn) by summing coefficients at all O(n2)
monomials. On the other hand, OR2(x1, x2) = x1 + x2 − x1x2 = NAE3(x1, x2, 0), which
indicates that solving Max 3-NAE-SAT should not be easier than Max 2-CNF-SAT. We
will formalize these arguments in the next section.

We show that the set of characteristic polynomials of all constraints expressible by f
with constants spans the linear space of multilinear polynomials over Q with degrees at most
deg(f). We first prove that this set contains polynomials of all degrees up to deg(f) and
then use them to express a basis of the linear space.

I Lemma 3.3 (F). Let f be a k-ary constraint. For any 1 ≤ d ≤ deg(f) there exists a d-ary
constraint g expressible by f with constants, such that its characteristic polynomial Pg has
degree exactly d, i.e., its leading coefficient is non-zero.

I Lemma 3.4. Let f be a non-trivial constraint and P be a multilinear polynomial over Q
on ` variables of degree 0 ≤ d ≤ deg(f). There exists a sequence of constraint applications
〈fi, (j1

i , . . . , j
ar(fi)
i), αi〉Mi=1 on ` variables, where each constraint fi is expressible by f with

constants, and αi ∈ Q, such that the following polynomial identity holds.

P (x1, . . . , x`) =
M∑

i=1
αi · Pfi

(xj1
i
, . . . , x

j
ar(fi)
i

).

ESA 2020

63:10 Optimal Polynomial-Time Compression for Boolean Max CSP

Before proving this claim, let us demonstrate it on a less obvious example than the one
from above with NAE3 and OR2. Let P (x1, x2, x3) be the characteristic polynomial of the con-
straint OR3(x1, x2,¬x3), derived using the method described below Definition 3.1:

P (x1, x2, x3) = x1x2x3 + (1− x1)x2x3 + x1(1− x2)x3 + x1x2(1− x3)
+ (1− x1)x2(1− x3) + x1(1− x2)(1− x3) + (1− x1)(1− x2)(1− x3)
= 1− x3 + x1x3 + x2x3 − x1x2x3.

We will represent it with characteristic polynomials from {EX3}T,F , where EX3(x1, x2, x3) = 1
if and only if exactly one variable is 1. Its characteristic polynomial Q is given as:

Q(x1, x2, x3) = x1(1− x2)(1− x3) + (1− x1)x2(1− x3) + (1− x1)(1− x2)x3

= x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3 + 3x1x2x3.

We can express P as the following linear combination where, e.g., Q(x1, x2, 0) is the charac-
teristic polynomial for EX3(x1, x2, 0), which is a binary constraint expressible by EX3 with
constants:

P (x1, x2, x3) =− 1
3Q(x1, x2, x3) + 1

3Q(x1, x2, 0)− 1
6Q(x1, x3, 0)− 1

6Q(x2, x3, 0)

+ 1
6Q(x1, 0, 0) + 1

6Q(x2, 0, 0)− 1
3Q(x3, 0, 0) +Q(1, 0, 0).

Proof of Lemma 3.4. We proceed by induction over the degree of P . Since f is non-trivial,
it admits a satisfying assignment sT . If P is constant, then P (x) = α · f(sT) for some
α ∈ Q. Suppose now d = deg(P) ≥ 1. For each S ∈

([`]
d

)
let αS denote the (potentially

zero) coefficient in P at the monomial
∏

i∈S xi. By Lemma 3.3 there is a d-ary constraint
fd, which is expressible by f with constants and deg(Pfd

) = d. Let βd denote the leading
coefficient of Pfd

. The polynomial

P ′(x1, . . . , x`) = P (x1, . . . , x`)−
∑

{i1,...,id}=S∈([`]
d)

i1<...<id

αS

βd
· Pfd

(xi1 , . . . , xid
)

has no monomials of degree d, since each term in the sum subtracts exactly one of them.
The polynomial P ′ has degree at most d− 1, so we can apply the induction hypothesis to it
and represent P ′ as a linear combination of characteristic polynomials of constraints from
{f}T,F . We obtain the claim by adding these polynomials to the sum above. J

Since fi and Pfi coincide as functions on {0, 1}ar(fi), Lemma 3.4 allows us to represent
any constraint of degree at most deg(f) as a linear combination of constraints from {f}T,F .

I Proposition 3.5. Let g, f be constraints, such that f is non-trivial and deg(g) ≤ deg(f).
There exists a sequence of constraint applications 〈fi, (j1

i , . . . , j
ar(fi)
i), αi〉Mi=1 on ar(g) vari-

ables, where each constraint fi is expressible by f with constants, and αi ∈ Q, such that
g(x1, . . . , xar(g)) =

∑M
i=1 αi · fi(xj1

i
, . . . , x

j
ar(fi)
i

) for all Boolean assignments.

This resembles the idea of implementation, where we additionally equip constraints with
(potentially negative) rational weights, but does not require introducing new variables.

B.M.P. Jansen and M. Włodarczyk 63:11

4 Reductions between constraint systems

We first formalize our notion of reduction. The objects we work with are constraint systems
and the reductions between them imply analogous relations between the associated decision
problems. The reduction is crafted in such a way that it preserves the numbers of variables
and constraints up to a constant factor, and the total weight up to a polynomial factor.

I Definition 4.1. A linear transformation from a constraint system CS(Γ1,W1) to an-
other constraint system CS(Γ2,W2) is a polynomial-time procedure that given a formula Φ1
of CS(Γ1,W1) over n1 variables and integer t1, returns a formula Φ2 ∈ CS(Γ2,W2) over n2
variables and integer t2, so that the following conditions hold:
1. n2 = O(n1),
2. |Φ2| = O(|Φ1|+ n1),
3. ||Φ2|| ≤ ||Φ1|| · nO(1)

1 ,
4. ∃xΦ1(x) = t1 ⇐⇒ ∃yΦ2(y) = t2,
5. ∃xΦ1(x) ≥ t1 ⇐⇒ ∃yΦ2(y) ≥ t2.

If there exists a linear transformation from CS(Γ1,W1) to CS(Γ2,W2), we write concisely
CS(Γ1,W1) ≤LIN CS(Γ2,W2). If (1) can be replaced with the stronger condition n2 =
n1 +O(1), we call the transformation additive and write CS(Γ1,W1) ≤ADD CS(Γ2,W2).

Before moving forward, let us explain the importance of linear and additive transforma-
tions. We formulate two claims, which follow from the properties in Definition 4.1.

I Proposition 4.2. If CS(Γ1,W1) ≤LIN CS(Γ2,W2) and Max CSP(Γ2,W2, c) admits
a compression of size O(nd), then Max CSP(Γ1,W1, c−O(1)) also admits a compression
of size O(nd).

I Proposition 4.3. If CS(Γ1,W1) ≤ADD CS(Γ2,W2) and Max CSP(Γ2,W2, c) admits
an algorithm with running time T (n), then Max CSP(Γ1,W1, c−O(1)) admits an algorithm
with running time T (n+O(1)).

In particular, additive transformations preserve running times of the form 2(1−ε)nnO(1).

I Lemma 4.4 (F). Linear transformations (resp. additive transformations) are transitive.

We continue with two simple additive transformations, which will allow us to use negations
of constraints as an alternative to setting negative weights.

I Lemma 4.5 (F). For every constraint language Γ we have
1. CS(ΓNEG,Z) ≤ADD CS(Γ,Z),
2. CS(ΓNEG,Z) ≤ADD CS(ΓNEG,N).

The rest of this section contains four lemmas that form a chain of reductions from
CS(Γ1,Z) to CS(Γ2,N), which is valid as long as deg(Γ1) ≤ deg(Γ2) and Max CSP(Γ2,N)
is NP-hard. First, we translate Proposition 3.5 into the language of additive transformations.
In the proof we justify that one can replace rational coefficients with integer ones.

I Lemma 4.6 (F). Let Γ1,Γ2 be non-trivial constraint languages satisfying deg(Γ1) ≤
deg(Γ2). Then CS(Γ1,Z) ≤ADD CS(ΓT,F

2 ,Z).

Now, we formalize an intuitive notation for combining formulas. Consider two formulas
Φ1,Φ2 over the sets of variables V1, V2, respectively, which might have a non-empty inter-
section. We define the sum of these formulas, Φ1 + Φ2, over the set of variables V1 ∪ V2 by

ESA 2020

63:12 Optimal Polynomial-Time Compression for Boolean Max CSP

taking the union of their sets of constraint applications and merging pairs of applications
that share the same constraint and the same tuple of variables, i.e., replacing the pair with
a single application with a weight being the sum of the respective weights. For an integer α,
the formula α · Φ has the same constraint applications as Φ, with weights multiplied by α.

I Lemma 4.7. Let Γ be a non-trivial constraint language, which is neither 0-valid nor 1-valid.
Then CS(ΓT,F ,Z) ≤ADD CS(Γ,Z).

Proof. Given a formula Φ ∈ CS(ΓT,F ,Z), we add two auxiliary variables xT , xF and we trans-
late each constraint application 〈f̂ , (j1, . . . , jk), w〉, where f̂ is expressible by f ∈ Γ with
constants, into an application of f by replacing constants 0, 1 with variables xT , xF . Let us
refer to this formula as Φ1 ∈ CS(Γ,Z) and note that |Φ1| = |Φ| and ||Φ1|| = ||Φ||.

In the next step, we will use implementations to impose particular conditions on xT , xF .
We refer to xT , xF and all the new variables introduced within the implementations as
auxiliary. Let a = O(1) denote their number. In the new formula we assume that the first
n variables x1, . . . , xn are the primary variables and xn+1, . . . , xn+A are auxiliary. For
x ∈ {0, 1}n+A let x|n stand for the projection on the first n coordinates.

Assume first that Γ is not C-closed. Then by Lemma 2.5, point (2), we know that
Γ α1-implements function T and α2-implements function F for some integers α1, α2. Let
α = α1 +α2. We implement constraint applications T (xT) and F (xF), that is, we construct
formulas ΦT ,ΦF ∈ CS(Γ,N) over the set of auxiliary variables, such that satisfying α

constraint applications in ΦT + ΦF is only possible when xT = 1 and xF = 0. Let W =
2·||Φ||+1. We define Φ2 = Φ1+W ·ΦT +W ·ΦF , that is, we copy all the constraint applications
from Φ1 and add the applications from ΦT + ΦF with weights multiplied by W . Recall that
we have (−||Φ||) ≤ Φ(x) ≤ ||Φ|| for all x. By the definition of implementation, any assignment
to Φ2 which does not satisfy xT = 1 or xF = 0 has value at most (α −1)·W+||Φ|| < αW−||Φ||.
If the assignment x satisfies xT = 1, xF = 0, it holds that Φ2(x) = α W+Φ(x|n) ≥ α W−||Φ||.

Now, if Γ is C-closed, then by Lemma 2.5, point (1), Γ α-implements function XOR
for some constant α. We implement XOR(xT , xF), that is, we construct formula ΦXOR ∈
CS(Γ,N) over the set of auxiliary variables, such that satisfying α constraint applications in
ΦXOR is only possible when XOR(xT , xF) = 1. As before, we define Φ2 = Φ1 +W · ΦXOR,
whereW = 2 · ||Φ||+1. Any assignment to Φ2 which does not satisfy XOR(xT , xF) has value
at most (α − 1) ·W + ||Φ|| < α W − ||Φ||. For an assignment x satisfying xT = 1, xF = 0, it
holds that Φ2(x) = α W+Φ(x|n) ≥ α W−||Φ||. It might also be the case that xT = 0, xF = 1.
Then, by C-closedness we have Φ2(x) = Φ2(x̄) = α W + Φ(x̄|n) ≥ α W − ||Φ||, where x̄ is
the bit-wise complement of x.

We summarize the transformation properties for both considered cases: the new number
of variables is n + O(1), |Φ2| = |Φ| + O(1), and ||Φ2|| = ||Φ|| · O(1). If t < −||Φ||, then
we know that all assignments x satisfy Φ(x) > t and in such case we could return an empty
formula over a singleton variable set (so the only possible value is 0) and set threshold
t′ = −1: this is an equivalent instance. To see properties (4, 5) observe that, assuming
t ≥ −||Φ||, Φ(x) = t (resp. Φ(x) ≥ t) holds for some assignment x iff. Φ2(y) = t′ (resp.
Φ2(y) ≥ t′) holds for some assignment y, where t′ = α W + t. J

I Corollary 4.8. Let Γ1,Γ2 be non-trivial constraint languages such that deg(Γ1) ≤ deg(Γ2)
and Γ2 is neither 0-valid nor 1-valid. Then CS(Γ1,Z) ≤ADD CS(Γ2,Z).

So far we have established a relation between Γ1 and Γ2, which allows us to transform one
constraint system to another by adding only a constant number of new variables. However,
it works only when we allow negative weights. The next two lemmas explain how to get
rid of them, so that the hardness results can be applied to the natural setting with only
non-negative weights.

B.M.P. Jansen and M. Włodarczyk 63:13

I Lemma 4.9 (F). If Γ is a non-trivial constraint language, then CS(Γ,Z) ≤ADD

CS(ΓLIT ,N).

I Lemma 4.10 (F). Suppose non-trivial Γ is neither 0-valid, 1-valid, nor 2-monotone. Then
CS(ΓLIT ,N) ≤LIN CS(Γ,N).

In the proof of Lemma 4.9 we increase weights of all the constraint applications at once, in
such a way that it changes each value of Φ(x) by the same quantity. The proof of Lemma 4.10
is similar in spirit to that of Lemma 4.7, but this time the implementation framework is used
to implement a negated copy of each variable. As all the transformation above are linear,
by transitivity we can summarize them into the following statement connecting constraint
languages of the same degree.

I Corollary 4.11. Let Γ1,Γ2 be non-trivial constraint languages such that deg(Γ1) ≤ deg(Γ2)
and Γ2 is neither 0-valid, 1-valid, nor 2-monotone. Then CS(Γ1,Z) ≤LIN CS(Γ2,N).

5 Consequences for compression

Having an upper bound on deg(Γ) already provides compression for Max CSP(Γ,Z, c),
since we can represent all constraint applications as polynomials, sum the coefficients at all
O
(
ndeg(Γ)) monomials, and store the weights in O(logn) bits. Corollary 4.11 transforms the

monomial-representation back into a small equivalent instance of Max CSP(Γ).

I Theorem 5.1 (Formalization of Theorem 1.1). Max CSP(Γ,N, c) parameterized by the num-
ber of variables n admits a compression of size O(nd logn) for all c, where d = deg(Γ). Fur-
thermore, there is a polynomial-time algorithm that reduces any instance of Max CSP(Γ,N, c)
to an equivalent instance of Max CSP(Γ,N, c+O(1)) of size O(nd logn). The analogous
statements for Max CSP(Γ,Z, c) also hold.

Proof. If Γ is either trivial, 0-valid, 1-valid, or 2-monotone, then Max CSP(Γ,N, c) can be
solved in polynomial time, so the compression is trivial. Suppose that it does not have any
of these properties. We will prove both claims by compressing a formula Φ1 ∈ CS(Γ,Z) on n
variables into a formula Φ2 ∈ CS(Γ,N) satisfying |Φ2| = O(nd).

First we interpret each constraint application in Φ1 as a polynomial of degree at most
d. After summing these terms, we obtain a polynomial P with O(nd) monomials, each
associated with an integer weight of absolute value bounded by ||Φ1||. A monomial Πk

i=1xi is
the characteristic polynomial for the constraint ANDk(x1, . . . , xk), therefore P can be treated
as a formula of CS(Γd-AND,Z) for Γd-AND being the language consisting of functions ANDk

for all k ≤ d. Since deg(Γd-AND) = d, we can apply Corollary 4.11 to obtain an equivalent
formula Φ2 ∈ CS(Γ,N) on O(n) variables, such that |Φ2| = |Φ1| · O(1) +O(n) = O(nd) and
||Φ2|| = ||Φ1|| · nO(1), so each weight can be stored in O(logn) bits. J

The self-reduction in Theorem 5.1 is almost, but not quite, a kernelization: the formal
decision problem we reduce to is not the same as the original one, due to the increase in weight
values. Our lower bounds are based on reducing Max d-CNF-SAT to Max CSP(Γ,N) for
deg(Γ) = d. For d ≥ 3 it is known that even the non-maximization variant d-CNF-SAT
does not admit a compression of size O

(
nd−ε

)
[14]. However, the 2-CNF-SAT problem is

solvable in polynomial time and only its maximization version becomes NP-hard. We first
note that Max 2-CNF-SAT also cannot have any non-trivial compression.

I Lemma 5.2 (F). Max CSP(Γ2-SAT,N, 3) does not admit a compression of size O
(
n2−ε

)
for any ε > 0, unless NP ⊆ co-NP/poly.

ESA 2020

63:14 Optimal Polynomial-Time Compression for Boolean Max CSP

I Theorem 5.3 (Formalization of Theorem 1.2). Let non-trivial Γ be neither 0-valid, 1-valid,
nor 2-monotone, and let d = deg(Γ). Then there is a constant c such that Max CSP(Γ,N, c)
does not admit a compression of size O

(
nd−ε

)
for any ε > 0, unless NP ⊆ co-NP/poly.

Proof. First observe that a characteristic polynomial of a constraint with d = 1 is linear.
Since this polynomial is 0/1-valued, it can depend only on one variable, which means that
the constraint is 2-monotone. Hence we can assume that d ≥ 2.

We know that there is a constant cd so that Max CSP(Γd-SAT,N, cd) does not admit
compression of size O

(
nd−ε

)
unless NP ⊆ co-NP/poly: for d = 2 it is due to Lemma 5.2 and

for d ≥ 3 it follows from the lower bound for the non-maximization variant of d-CNF-SAT [14].
As noted in Proposition 4.2, if we had such a compression for Max CSP(Γ,N, c) with
sufficiently large c, then by Corollary 4.11 it would transfer to Max CSP(Γd-SAT,N, cd). J

Applications to specific CSPs. Having established both the lower and the upper bound,
we can refer to deg(Γ) as the optimal compression exponent for Max CSP(Γ,N). We are now
equipped with a handy but powerful tool for determining the optimal compressibility of Max
CSP(Γ,N) as this task reduces to computing the degrees of characteristic polynomials in Γ.

As an example, we apply this technique to compute the optimal compression exponent to
the following three problems, which are all NP-hard for k ≥ 2:

Max k-NAE-SAT = Max CSP({NAEk}LIT ,N),
Max Ek-Lin = Max CSP({XOR}NEG,N),
Max k-Exact-SAT = Max CSP({EXk}LIT ,N), where EXk(x1, . . . , xk) = 1 if and
only if there is exactly one 1 in (x1, . . . , xk).

Since deg(ΓLIT) = deg(ΓNEG) = deg(Γ) it suffices to analyze the characteristic polynomials
for functions NAEk, XORk, and EXk. Let ei(x1, . . . , xk) denote i-th elementary symmetric
polynomial, i.e., the sum of all degree-i monomials on k variables.

NAEk(x1, . . . , xk) =
∑k−1

i=1 (−1)i−1ei(x1, . . . , xk) for odd k,
NAEk(x1, . . . , xk) =

∑k
i=1(−1)i−1ei(x1, . . . , xk) for even k,

XORk(x1, . . . , xk) =
∑k

i=1(−2)i−1ei(x1, . . . , xk) for all k,
EXk(x1, . . . , xk) =

∑k
i=1 i · (−1)i−1ei(x1, . . . , xk) for all k.

It is easy to check these formulas using the binomial theorem. We present the argument
for XORk as an example. Suppose the number of 1s in the vector (x1, . . . , xk) is `. Then
ei(x1, . . . , xk) equals

(
`
i

)
for i ≤ ` and 0 for i > `. The formula for XORk(x1, . . . , xk) becomes∑`

i=1(−2)i−1(`
i

)
= (− 1

2) ·
(∑`

i=0(−2)i
(

`
i

)
− 1
)

= (− 1
2) · ((−1)` − 1) which is 1 for odd `

and 0 for even `, as expected. By these identities we deduce that the optimal compression
exponent for Max k-NAE-SAT is k in the even case, k− 1 in the odd case, and the optimal
compression exponent for both Max Ek-Lin and Max k-Exact-SAT is k.

An example of a non-symmetric constraint with a non-trivial upper bound on its degree
is fk, with ar(fk) = 3k, defined recursively: f0(x) = x, and

fk(x1, . . . x3k) = NAE3
(
fk−1(x1, . . . x3k−1), fk−1(x3k−1+1, . . . x2·3k−1), fk−1(x2·3k−1+1, . . . x3k)

)
.

Because deg(NAE3) = 2, we have deg(fk) = 2k = ar(fk)log3(2) [29].
It is tempting to seek a concise characterization of Γ for which one can obtain a non-trivial

bound on deg(Γ) and therefore a non-trivial compression for Max CSP(Γ,N), where by
non-trivial we mean a bound of the form deg(f) ≤ ar(f)− 1 for functions depending on all
the coordinates. By generalizing the argument for NAEk, it can be shown that deg(f) ≤

B.M.P. Jansen and M. Włodarczyk 63:15

ar(f)− 1 when the number of vectors that satisfy f and have an even number of 1s, is equal
to the number of satisfying vectors with an odd number of 1s. Unfortunately, as far as we are
aware no characterization is known describing all Γ with a non-trivial bound on deg(Γ),
not even for symmetric polynomials induced by symmetric constraints. There exist some
interesting partial results though, e.g., that if the number of variables k is a prime minus
one then the degree is always k, and in general deg(f) ≥ k −O(k0.548) [32]. On the other
hand, there are infinitely many symmetric functions for which deg(f) = ar(f) − 3 [32].
When it comes to non-symmetric functions, there exist infinitely many examples with
deg(f) ≤ log(ar(f)) [30], which is asymptotically the lowest upper bound possible [29].

Compression lower bound for negative weights. For the sake of completeness, we show
that Max CSP(Γ,Z) admits an analogous classification as Max CSP(Γ,,N) that is, whenever
Max CSP(Γ,Z) is NP-hard, then the upper bound from Theorem 5.1 is essentially tight.
The dichotomy theorem for W = Z can be stated in a simpler manner, as the problem
becomes NP-hard whenever deg(Γ) ≥ 2 [20] and the case deg(Γ) = 1 reduces to linear
function maximization. This dichotomy will follow also from the reduction below. First,
we show that we can drop the assumption on the language being non 0-valid/1-valid in
Corollary 4.8.

I Lemma 5.4. Let Γ1,Γ2 be non-trivial constraint languages such that deg(Γ1) ≤ deg(Γ2).
Then CS(Γ1,Z) ≤ADD CS(Γ2,Z).

Proof. Since f and ¬f cannot be 0-valid (or 1-valid) at the same time, the language ΓNEG
2 is

neither 0-valid nor 1-valid. As we also have deg(Γ2) = deg(ΓNEG
2), we can apply Corollary 4.8

to Γ1 and ΓNEG
2 , obtaining CS(Γ1,Z) ≤ADD CS(ΓNEG

2 ,Z). By Lemma 4.5, point (1), we
get CS(ΓNEG

2 ,Z) ≤ADD CS(Γ2,Z), which proves the claim. J

I Theorem 5.5. Let non-trivial Γ be such that d = deg(Γ) ≥ 2. Then there is a constant c
such that Max CSP(Γ,Z, c) does not admit a compression of size O

(
nd−ε

)
for any ε > 0,

unless NP ⊆ co-NP/poly.

Proof. From Lemma 5.4 we know that CS(Γd-SAT,Z)≤ADD CS(Γ,Z). Therefore anO
(
nd−ε

)
-

size compression for Max CSP(Γ,Z, c) with sufficiently large c entails the same for Max
CSP(Γd-SAT,Z, c−O(1)), which implies NP ⊆ co-NP/poly (Lemma 5.2 for d = 2 and [14]
for d ≥ 3). J

6 Consequences for exponential-time algorithms

As mentioned before, our framework of reductions can be used to preserve the exponential
running time as well. Namely, if CS(Γ1,W1) ≤ADD CS(Γ2,W2), then an algorithm for
Max CSP(Γ2,W2, c) with running time T (n) entails an algorithm for Max CSP(Γ2,W2, c−
O(1)) with running time T (n + O(1)). All the constructed transformations, except from
CS(ΓLIT ,N) ≤LIN CS(Γ,N) (Lemma 4.10), are additive and in particular they work as long
as negative weights are allowed. Alternatively, we can take advantage of other properties
of particular constraint languages to remove the negative weights.

I Lemma 6.1. Let d = deg(Γ) ≥ 2. Then CS(Γd-SAT,N) ≤ADD CS(Γ,Z) ≤ADD

CS(Γd-SAT,N), that is, these constraint systems are equivalent with respect to the relation
≤ADD.

ESA 2020

63:16 Optimal Polynomial-Time Compression for Boolean Max CSP

Proof. We take advantage of the fact that Γd-SAT can express negated literals, i.e.,
(Γd-SAT)LIT = Γd-SAT. We have the following cycle of reductions.

CS(Γd-SAT,Z) ≤ADD CS(Γd-SAT,N) Lemma 4.9 for (Γd-SAT)LIT = Γd-SAT

≤ADD CS(Γ,Z) Lemma 5.4
≤ADD CS(Γd-SAT,Z) Lemma 5.4 J

I Theorem 6.2. For each d ≥ 2 and any constant α > 1 either all the following problems
admit an αnnO(1) algorithm for all c, or none of them do:
1. Max CSP(Γd-SAT,N, c),
2. Max CSP(Γ,Z, c) for any Γ with deg(Γ) = d,
3. Max CSP(Γ,N, c) for any Γ with deg(Γ) = d such that ΓNEG = Γ or ΓLIT = Γ.

Proof. As noted in Proposition 4.3, if CS(Γ1,W1) ≤ADD CS(Γ2,W2) and
Max CSP(Γ2,W2, c) admits an algorithm with running time αnnO(1), then the same
holds for Max CSP(Γ1,W1, c−O(1)). The equivalency between (1) and (2) has been proven
in Lemma 6.1. Since (2) is more general than (3), it suffices to reduce (2) into (3). Lemma 4.5,
point (2), provides the reduction CS(Γ,Z) ≤ADD CS(ΓNEG,N) for the case ΓNEG = Γ and
Lemma 4.9 provides the reduction CS(Γ,Z) ≤ADD CS(ΓLIT ,N) for the case ΓLIT = Γ. J

First corollary of this theorem is that problems of form Max CSP(Γ,Z) are divided into
equivalence classes with respect to the optimal running time. In particular, solving any Max
CSP(Γ,Z) with deg(Γ) ≥ 3 in time O(2(1−ε)n) for any ε > 0 contradicts the Max 3-SAT
Hypothesis. Also, the hypothesis remains equivalent if we replace Max 3-CNF-SAT
with Max 3-Lin SAT or Max 3-Exact SAT with only positive weights, because their
constraint languages satisfy ΓNEG = Γ and ΓLIT = Γ, respectively. Another corollary is that
improving the running time O

(
2 ω n

3
)
for Max Cut or Max DiCut with integer weights or

Max 3-NAE-SAT with positive weights would imply an analogous breakthrough for Max
2-CNF-SAT.

Alman and Williams [1] have noted that it is not known how to improve the running time
for Max 3-CNF-SAT, even for instances with a linear number of clauses. They have therefore
formulated a stronger hypothesis. The Sparse Max 3-SAT Hypothesis states that there
exists c > 0 such that Max 3-CNF-SAT with cn clauses does not admit an O(2(1−ε)n)-time
algorithm for any ε > 0. Similarly, their Sparse Max 2-SAT Hypothesis states that one
cannot beat running time O

(
2 ω n

3
)
for Max 2-CNF-SAT with cn clauses. Observe that our

reductions preserve the property of having O(n) different constraint applications (condition
(2) in Definition 4.1). Therefore as long as we allow negative weights at constraint applications,
we can replace Max 2-CNF-SAT (resp. Max 3-CNF-SAT) in this hypothesis with Max
CSP(Γ,Z) for any constraint language Γ of degree 2 (resp. 3) to obtain an equivalent
statement.

7 Conclusions and open problems

We have provided a complete characterization of the optimal compression for Max CSP(Γ) in
the case of a Boolean domain. A natural question arises about larger domains. Our approach
does not transfer even to the case with a domain of size 3, since there is no unique way to
represent functions {0, 1, 2}k → {0, 1} as polynomials. One may consider, e.g., embedding to
a Boolean domain or using non-multilinear polynomials, but it is not clear which approach
leads to the optimal degree and how to find accompanying lower bounds.

B.M.P. Jansen and M. Włodarczyk 63:17

On the exponential-time front, we have shown that Max d-CNF-SAT is as hard as any
Max CSP of degree d as long as negative weights are allowed. Although we were able to get
rid of the latter assumption in several cases, there is still a gap in this classification: does
improving the running time for any degree-d Max CSP(Γ,N) imply an improvement for
Max d-CNF-SAT?

References

1 Josh Alman and Virginia Vassilevska Williams. OV Graphs Are (Probably) Hard Instances. In
Thomas Vidick, editor, Proceedings of the 11th Innovations in Theoretical Computer Science
Conference, ITCS 2020, volume 151 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 83:1–83:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ITCS.2020.83.

2 Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving MAX-r-
SAT above a tight lower bound. Algorithmica, 61(3):638–655, 2011.

3 David A. Mix Barrington, Richard Beigel, and Steven Rudich. Representing Boolean functions
as polynomials modulo composite numbers. Computational Complexity, 4(4):367–382, 1994.
doi:10.1007/BF01263424.

4 Richard Beigel. The polynomial method in circuit complexity. In Proceedings of the Eighth
Annual Structure in Complexity Theory Conference, pages 82–95. IEEE Computer Society,
1993. doi:10.1109/SCT.1993.336538.

5 Karl Bringmann, Nick Fischer, and Marvin Künnemann. A Fine-Grained Analogue of
Schaefer’s Theorem in P: Dichotomy of Existsk-Forall-Quantified First-Order Graph Properties.
In Amir Shpilka, editor, Proceedings of the 34th Computational Complexity Conference,
CCC 2019, volume 137 of Leibniz International Proceedings in Informatics (LIPIcs), pages
31:1–31:27, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CCC.2019.31.

6 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans, editor,
Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, pages 319–330. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.37.

7 Andrei A. Bulatov, Martin Grohe, Phokion G. Kolaitis, and Andrei A. Krokhin, editors. The
Constraint Satisfaction Problem: Complexity and Approximability, 25.10. - 30.10.2009, volume
09441 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany, 2009. URL: http://drops.dagstuhl.de/portals/09441/.

8 Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. J. ACM,
64(3):19:1–19:39, 2017. doi:10.1145/2822891.

9 Hubie Chen, Bart M. P. Jansen, and Astrid Pieterse. Best-case and worst-case sparsifiability
of Boolean CSPs. Algorithmica, 2020. Online first. doi:10.1007/s00453-019-00660-y.

10 Nadia Creignou. A dichotomy theorem for maximum generalized satisfiability problems. J.
Comput. Syst. Sci., 51(3):511–522, 1995. doi:10.1006/jcss.1995.1087.

11 Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of Boolean
constraint satisfaction problems, volume 7 of SIAM monographs on discrete mathematics and
applications. SIAM, 2001. doi:10.1137/1.9780898718546.

12 Víctor Dalmau, Andrei A. Krokhin, and Rajsekar Manokaran. Towards a characterization
of constant-factor approximable finite-valued CSPs. J. Comput. Syst. Sci., 97:14–27, 2018.
doi:10.1016/j.jcss.2018.03.003.

13 Vladimir Deineko, Peter Jonsson, Mikael Klasson, and Andrei Krokhin. The approximability
of MAX CSP with fixed-value constraints. J. ACM, 55(4), September 2008. doi:10.1145/
1391289.1391290.

14 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. J. ACM, 61(4):23:1–23:27, 2014. doi:10.1145/2629620.

ESA 2020

https://doi.org/10.4230/LIPIcs.ITCS.2020.83
https://doi.org/10.1007/BF01263424
https://doi.org/10.1109/SCT.1993.336538
https://doi.org/10.4230/LIPIcs.CCC.2019.31
https://doi.org/10.1109/FOCS.2017.37
http://drops.dagstuhl.de/portals/09441/
https://doi.org/10.1145/2822891
https://doi.org/10.1007/s00453-019-00660-y
https://doi.org/10.1006/jcss.1995.1087
https://doi.org/10.1137/1.9780898718546
https://doi.org/10.1016/j.jcss.2018.03.003
https://doi.org/10.1145/1391289.1391290
https://doi.org/10.1145/1391289.1391290
https://doi.org/10.1145/2629620

63:18 Optimal Polynomial-Time Compression for Boolean Max CSP

15 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

16 Gregory Z. Gutin and Anders Yeo. Parameterized constraint satisfaction problems: a survey.
In Andrei A. Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem:
Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 179–203. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/DFU.Vol7.15301.7.

17 Bart M. P. Jansen and Astrid Pieterse. Sparsification upper and lower bounds for
graph problems and not-all-equal SAT. Algorithmica, 79(1):3–28, 2017. doi:10.1007/
s00453-016-0189-9.

18 Bart M. P. Jansen and Astrid Pieterse. Optimal sparsification for some binary CSPs using
low-degree polynomials. TOCT, 11(4):28:1–28:26, 2019. doi:10.1145/3349618.

19 Bart M. P. Jansen and Michal Wlodarczyk. Optimal polynomial-time compression for Boolean
Max CSP. CoRR, abs/2002.03443, 2020. arXiv:2002.03443.

20 Peter Jonsson and Andrei A. Krokhin. Maximum H-colourable subdigraphs and constraint
optimization with arbitrary weights. J. Comput. Syst. Sci., 73(5):691–702, 2007. doi:
10.1016/j.jcss.2007.02.001.

21 Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The approximability
of constraint satisfaction problems. SIAM J. Comput., 30(6):1863–1920, 2000. doi:10.1137/
S0097539799349948.

22 Stefan Kratsch, Dániel Marx, and Magnus Wahlström. Parameterized Complexity and
Kernelizability of Max Ones and Exact Ones Problems. TOCT, 8(1):1:1–1:28, 2016. doi:
10.1145/2858787.

23 Stefan Kratsch and Magnus Wahlström. Preprocessing of Min Ones problems: A dichotomy.
In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and
Paul G. Spirakis, editors, Proceedings of the 37th International Colloquium on Automata,
Languages and Programming, ICALP 2010, volume 6198 of Lecture Notes in Computer Science,
pages 653–665. Springer, 2010. doi:10.1007/978-3-642-14165-2_55.

24 Andrei A. Krokhin and Stanislav Zivny, editors. The Constraint Satisfaction Problem: Complex-
ity and Approximability, volume 7 of Dagstuhl Follow-Ups. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. URL: http://www.dagstuhl.de/dagpub/978-3-95977-003-3.

25 Victor Lagerkvist and Magnus Wahlström. Kernelization of constraint satisfaction problems:
A study through universal algebra. In J. Christopher Beck, editor, Proceedings of the 23rd
International Conference on Principles and Practice of Constraint Programming, CP 2017,
volume 10416 of Lecture Notes in Computer Science, pages 157–171. Springer, 2017. doi:
10.1007/978-3-319-66158-2_11.

26 Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. Tight hardness for shortest
cycles and paths in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, SODA ’18, pages 1236–1252, USA, 2018.
Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611975031.80.

27 Konstantin Makarychev and Yury Makarychev. Approximation Algorithms for CSPs. In Andrei
Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction Problem: Complexity and
Approximability, volume 7 of Dagstuhl Follow-Ups, pages 287–325. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:10.4230/DFU.Vol7.15301.287.

28 M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.
29 Noam Nisan and Mario Szegedy. On the degree of Boolean functions as real polynomials.

Computational Complexity, 4:301–313, 1994. doi:10.1007/BF01263419.
30 Hans Ulrich Simon. A tight Ω(log log n)-bound on the time for parallel RAM’s to compute

nondegenerated boolean functions. Information and Control, 55(1-3):102–106, 1982. doi:
10.1016/S0019-9958(82)90477-6.

31 Gábor Tardos and David A. Mix Barrington. A lower bound on the mod 6 degree of the OR
function. Computational Complexity, 7(2):99–108, 1998. doi:10.1007/PL00001597.

https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.4230/DFU.Vol7.15301.7
https://doi.org/10.1007/s00453-016-0189-9
https://doi.org/10.1007/s00453-016-0189-9
https://doi.org/10.1145/3349618
http://arxiv.org/abs/2002.03443
https://doi.org/10.1016/j.jcss.2007.02.001
https://doi.org/10.1016/j.jcss.2007.02.001
https://doi.org/10.1137/S0097539799349948
https://doi.org/10.1137/S0097539799349948
https://doi.org/10.1145/2858787
https://doi.org/10.1145/2858787
https://doi.org/10.1007/978-3-642-14165-2_55
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
https://doi.org/10.1007/978-3-319-66158-2_11
https://doi.org/10.1007/978-3-319-66158-2_11
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.4230/DFU.Vol7.15301.287
https://doi.org/10.1007/BF01263419
https://doi.org/10.1016/S0019-9958(82)90477-6
https://doi.org/10.1016/S0019-9958(82)90477-6
https://doi.org/10.1007/PL00001597

B.M.P. Jansen and M. Włodarczyk 63:19

32 Joachim von Zur Gathen and James R. Roche. Polynomials with two values. Combinatorica,
17(3):345–362, September 1997. doi:10.1007/BF01215917.

33 R. Ryan Williams. Algorithms and Resource Requirements for Fundamental Problems. PhD
thesis, Carnegie Mellon University, USA, 2007. AAI3274191.

34 Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes. Theor.
Comput. Sci., 26:287–300, 1983. doi:10.1016/0304-3975(83)90020-8.

35 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. In Chris Umans, editor, Proceeings of
the 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages
331–342. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.38.

ESA 2020

https://doi.org/10.1007/BF01215917
https://doi.org/10.1016/0304-3975(83)90020-8
https://doi.org/10.1109/FOCS.2017.38

A Linear Fixed Parameter Tractable Algorithm for
Connected Pathwidth
Mamadou Moustapha Kanté
Université Clermont Auvergne, LIMOS, CNRS, Aubière, France
mamadou.kante@uca.fr

Christophe Paul
LIRMM, Université de Montpellier, CNRS, France
christophe.paul@lirmm.fr

Dimitrios M. Thilikos
LIRMM, Université de Montpellier, CNRS, France
sedthilk@thilikos.info

Abstract
The graph parameter of pathwidth can be seen as a measure of the topological resemblance of a
graph to a path. A popular definition of pathwidth is given in terms of node search where we
are given a system of tunnels (represented by a graph) that is contaminated by some infectious
substance and we are looking for a search strategy that, at each step, either places a searcher on a
vertex or removes a searcher from a vertex and where an edge is cleaned when both endpoints are
simultaneously occupied by searchers. It was proved that the minimum number of searchers required
for a successful cleaning strategy is equal to the pathwidth of the graph plus one. Two desired
characteristics for a cleaning strategy is to be monotone (no recontamination occurs) and connected
(clean territories always remain connected). Under these two demands, the number of searchers is
equivalent to a variant of pathwidth called connected pathwidth. We prove that connected pathwidth
is fixed parameter tractable, in particular we design a 2O(k2) · n time algorithm that checks whether
the connected pathwidth of G is at most k. This resolves an open question by [Dereniowski, Osula,
and Rzążewski, Finding small-width connected path-decompositions in polynomial time. Theor.
Comput. Sci., 794:85–100, 2019]. For our algorithm, we enrich the typical sequence technique
that is able to deal with the connectivity demand. Typical sequences have been introduced in
[Bodlaender and Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of
graphs. J. Algorithms, 21(2):358–402, 1996] for the design of linear parameterized algorithms for
treewidth and pathwidth. While this technique has been later applied to other parameters, none of
its advancements was able to deal with the connectivity demand, as it is a “global” demand that
concerns an unbounded number of parts of the graph of unbounded size. The proposed extension is
based on an encoding of the connectivity property that is quite versatile and may be adapted so
to deliver linear parameterized algorithms for the connected variants of other width parameters as
well. An immediate consequence of our result is a 2O(k2) · n time algorithm for the monotone and
connected version of the edge search number.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathemat-
ics of computing → Graph theory; Theory of computation → Fixed parameter tractability

Keywords and phrases Graph decompositions, Parameterized algorithms, Typical sequences, Path-
width, Graph searching

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.64

Related Version A full version of this extended abstract is available at [26], https://arxiv.org/
abs/2004.11937.

Funding Mamadou Moustapha Kanté: DEMOGRAPH (ANR-16-CE40-0028) and ASSK (ANR-18-
CE40-0025-01).
Christophe Paul: DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010).
Dimitrios M. Thilikos: DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010).

© Mamadou Moustapha Kanté, Christophe Paul, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 64; pp. 64:1–64:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1838-7744
mailto:mamadou.kante@uca.fr
https://orcid.org/0000-0001-6519-975X
mailto:christophe.paul@lirmm.fr
https://orcid.org/0000-0003-0470-1800
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.ESA.2020.64
https://arxiv.org/abs/2004.11937
https://arxiv.org/abs/2004.11937
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

1 Introduction

Pathwidth. A path-decomposition of a graph G = (V,E) is a sequence Q = 〈B1, . . . , Bq〉 of
vertex sets, called bags of Q, such that
1.

⋃
i∈{1,...,q}Bi = V,

2. every edge e ∈ E is a subset of some member of Q, and
3. the trace of every vertex v ∈ V, that is the set {i | v ∈ Bi}, is a set of consecutive integers.
The width of a path-decomposition is max{|Bi| − 1 | i ∈ {1, . . . , q}} and the pathwidth of a
graph G, denoted by pw(G), is the minimum width of a path-decomposition of G.

The above definition appeared for the first time in [36]. Pathwidth can be seen as a
measure of the topological resemblance of a graph to a path. Pathwidth, along with its
tree-analogue treewidth, have been used as key combinatorial tools in the Graph Minors series
of Robertson and Seymour [37] and they are omnipresent in both structural and algorithmic
graph theory.

Deciding whether the pathwidth of a graph is at most k is an NP-complete problem [2].
This motivated the problem of the existence, or not, of a parameterized algorithm for this
problem, and algorithm running in f(k) ·nO(1) time algorithm. An affirmative answer to this
question was directly implied as a consequence of the algorithmic and combinatorial results
of the Graph Minors series and the fact that, for every k, the class of graphs with pathwidth
at most k is closed under taking of minors1. On the negative side, this implication was purely
existential. The challenge of constructing an f(k) · nO(1) time algorithm for pathwidth (as
well as for treewidth) was a consequence of the classic result of Bodlaender and Kloks in [8]
(see also [15, 30]). The main result in [8] implies a 2O(k3) · n time algorithm. This was later
improved to one running in 2O(k2) · n time by Fürer in [20]).

Graph searching. In a graph searching game, the opponents are a group of searchers and
an evading fugitive. The opponents move in turns in a graph. The objective of the searchers
is to deploy a strategy of moves that leads to the capture of the fugitive. At each step of
the node searching game, the searchers may either place a searcher at a vertex or remove a
searcher from a vertex. The fugitive resides in the edges of the graph and is lucky, invisible,
fast, and agile. The capture of the fugitive occurs when searchers occupy both endpoints of
the edge where he currently resides. A node searching strategy is a sequence of moves of the
searchers that can guarantee the eventual capture of the fugitive.2 The cost of a searching
strategy is the maximum number of searchers simultaneously present in the graph during
the deployment of the strategy. The node search number of a graph G, denoted by ns(G), is
defined as the minimum cost of a node searching strategy. Node searching was defined by
Kirousis and Papadimitriou in [29] who proved that the game is equivalent to its monotone
variant where search strategies are monotone in the sense that they prevent the fugitive from
pervading again areas from where he had been expelled. This result along with the results
in [27,28,31], imply that, for every graph G, ns(G) = pw(G) + 1.

The connectivity issue. In several applications of graph searching it is important to
guarantee secure communication channels between the searchers so that they can safely
exchange information. This issue was treated for the first time in the area of distributed

1 A graph H is a minor of a graph G if H can be obtained by some subgraph of G by contracting edges.
2 An equivalent setting of graph searching is to see G as a system of pipelines or corridors that is

contaminated by some poisonous gas or some highly infectious substance. The searchers can be seen as
cleaners that deploy a decontamination strategy [13, 19]. The fact that the fugitive is invisible, fast,
lucky, and agile permits us to see him as being omnipresent in any edge that has not yet been cleaned.

M.M. Kanté, C. Paul, and D.M. Thilikos 64:3

x

y

Figure 1 A graph G of connected pathwidth 2 with a subgraph of connected pathwidth 3.

computing, in particular in [4], where the authors considered the problem of capturing an
intruder by mobile agents (acting for example as antivirus programs). As agents deploy
their cleaning strategy, they must guarantee that, at each moment of the search, the cleaned
territories remain connected, so to permit the safe exchange of information between the
coordinating agents.

The systematic study of connected graph searching was initiated in [3, 5]. When, in node
searching, we demand that the search strategies are monotone and connected, we define
monotone connected node search number, denoted by mcns(G). The graph decomposition
counterpart of this parameter was introduced by Dereniowski in [16]. He defined the
connected pathwidth of a connected graph, denoted by cpw(G), by considering connected
path-decompositions Q = {B1, . . . , Bq} where the following additional property is satisfied:

I For every i ∈ {1, . . . , q}, the subgraph of G induced by
⋃
h∈{1,...,i}Bh is connected.

As noticed in [16], for every connected graph G, mcns(G) = cpw(G) + 1 (see also [1]). Notice
that the above demand results to a break of symmetry: the fact that 〈B1, . . . , Bq〉 is a
connected path-decomposition does not imply that the same holds for 〈Bq, . . . , B1〉 (while
this is always the case for conventional path-decompositions). This sense of direction seems
to be the source of all combinatorial particularities (and challenges) of connected pathwidth.

Computing connected pathwidth. It is easy to see that checking whether cpw(G) ≤ k

is an NP-complete problem: if we define G∗ as the graph obtained from G after adding a
new vertex adjacent with all the vertices of G, then observe that pw(G) = cpw(G∗) − 1.
This motivates the question on the parameterized complexity of the problem. The first
progress in this direction was done recently in [17] by Dereniowski, Osula, and Rzążewski
who gave an f(k) · nO(k2) time algorithm. In [17, Conjecture 1], they conjectured that there
is a fixed parameter algorithm checking whether cpw(G) ≤ k. The general question on the
parameterized complexity of the connected variants of graph search was raised as an open
question by Fedor V. Fomin during the GRASTA 2017 workshop [18].

A somehow dissuasive fact towards a parameterized algorithm for connected pathwidth
is that connected pathwdith is not closed under minors and therefore it does not fit in the
powerful algorithmic framework of Graph Minors (which is the case with pathwidth). The
removal of an edge may increase the parameter. For instance, the connected pathwidth of
the graph in Figure 1 has connected pathwidth 2 while if we remove the edge {x, y} its
connected pathwidth increases to 3. On the positive side, connected pathwidth is closed
under contractions (see e.g., [1]), i.e, its value does not increase when we contract edges and,
moreover, the yes-instances of the problem have bounded pathwidth, therefore they also have
bounded treewidth. Based on these observations, the existence of a parameterized algorithm
would be implied if we can prove that, for any k, the set Zk of contraction-minimal3 graphs
with connected pathwidth more than k is finite: as contraction containment can be expressed

3 For instance, the graph G \ {x, y} from Figure 1 belongs in Z2.

ESA 2020

64:4 A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

in MSO logic, one should just apply Courcelle’s theorem [14] to check whether some graph
of Zk is a contraction of G. The hurdle in this direction is that we have no idea whether Zk
is finite or not. The alternative pathway is to try to devise a linear parameterized algorithm
by applying the algorithmic techniques that are already known for pathwidth.

The typical sequence technique. The main result of [8] was an algorithm that, given
a path-decomposition Q of G of width at most k and an integer w, outputs, if exists, a
path-decomposition of G of width at most w, in 2O(k(w+log k)) · n time. In this algorithm
Bodlaender and Kloks introduced the celebrated typical sequence technique, a refined dynamic
programming technique that encodes partial path/tree decompositions as a system of suitably
compressed sequences of integers, able to encode all possible path-decompositions of width
at most w (see also [15,30]). This technique was later extended/adapted for the design of
parametrized algorithms for numerous graph parameters such as branchwidth [9], linear-
width [10], cutwidth [39], carving-width [38], modified cutwidth, and others [6,7,40]. In [6] this
technique was viewed as a result of un-nondeterminization: a stepwise evolution of a trivial
hypothetical non-deterministic algorithm towards a deterministic parameterized algorithm.
A considerable generalization of the characteristic sequence technique was proposed in the
PhD thesis of Soares [32] where this technique was implemented under the powerful meta-
algorithmic framework of q-branched Φ-width. Non-trivial extensions of the typical sequence
technique where proposed for devising parameterized algorithms for parameters on matroids
such as matroid pathwidth [23], matroid branchwidth [25], as well as all the parameters on
graphs or hypergraphs that can be expressed by them. Very recently Bodlaender, Jaffke,
and Telle in [7] suggested refinements of the typical sequence technique that enabled the
polynomial time computation of several width parameters on directed graphs. Finally,
Bojańczyk and Pilipczuk suggested an alternative approach to the typical sequence technique,
based on MSO transductions between decompositions [11].

Unfortunately, the above mentioned state of the art on the typical sequence technique is
unable to encompass connected pathwidth. A reason for this is that the connectivity demand
is a “global property” applying to every prefix of the path-decomposition which correspond
to an unbounded number of subgraphs of arbitrary size.

Our result. In this paper we resolve affirmatively the conjecture that checking whether
cpw(G) ≤ k is fixed parameter tractable. Our main result is the following.

I Theorem 1. One may construct an algorithm that given an n-vertex connected graph G,
a path-decomposition Q = 〈B1, . . . , Bq〉 of G of width at most k and an integer w, outputs
a connected path-decomposition of G of width at most w or reports correctly that such an
algorithm does not exist in 2O(k(w+log k)) · n time.

To design an algorithm checking whether cpw(G) ≤ k we first use the algorithms of [8]
and [20], to build, if exists, a path decomposition of G of width at most k, in 2O(k2) · n time.
In case of a negative answer we know than cpw(G) > k, otherwise we apply the algorithm
of Theorem 1. The overall running time is dominated by the algorithm of Fürer in [20]
which is 2O(k2) · n.

Our techniques. We now give a brief description of our techniques by focusing on the
novel issues that we introduce. This description demands some familiarity with the typical
sequence technique. Otherwise, the reader can go directly to the next section.

M.M. Kanté, C. Paul, and D.M. Thilikos 64:5

Let Q = 〈B1, . . . , Bq〉 be a (nice) path-decomposition of G of width at most k. For every
i ∈ [q], we let Gi = (Gi, Bi) be the boundaried graph where Gi = G[

⋃
h∈{1,...,i}Bh]. We

follow standard dynamic programming over a path-decomposition that consists in computing
a representation of the set of partial solutions associated to Gi, which in our case are
connected path-decompositions of Gi of width at most w. The challenge is how to handle in
a compact way the connectivity requirement of a path-decomposition of a graph that can be
of arbitrarily large size.

A connected path-decomposition P = 〈A1, . . . , A`〉 of Gi is represented by means of a
(Gi,P)-encoding sequence S = 〈s1, . . . , s`〉. For every j ∈ [`], the element sj of the sequence S
is a triple (bd(sj), cc(sj),val(sj)) where: bd(si) = Aj ∩Bi; val(sj) = |Aj \Bi|; and cc(sj)
is the projection of the connected components of Gji = Gi[

⋃
h∈{1,...,j}Ah] onto the subset

of boundary vertices Bi ∩ V (Gji). To compress a (Gi,P)-encoding sequence S, we identify a
subset bp(S) of indexes, called breakpoints, such that j ∈ bp(S) if bd(sj−1) 6= bd(sj) (type-1)
or cc(sj−1) 6= cc(sj) (type-2) or j is an index belonging to a typical sequence of the integer
sequence 〈val(sb), . . . ,val(sc−1)〉 where b, c ∈ [`] are consecutive type-1 or 2- breakpoints.
We define rep(S) as the induced subsequence S[bp(S)].

The novelty in this representation is the cc(·) component which is a near-partition of
the subset Bi ∩ V (Gji) of boundary vertices. The critical observation is that for every
j ∈ [`− 1], cc(sj+1) is coarser than cc(sj). This, together with the known results on typical
sequences, allows us to prove that the size of rep(S) is O(kw) and that the number of
representative sequences is 2O(k(w+log k)). Finally, as in the typical sequence technique, we
define a domination relation over the set of representative sequences. The DP algorithm
over the path-decomposition Q consists then in computing a domination set Dw(Gi+1) of
the representative sequences of Gi+1 from a domination set Dw(Gi) of the representative
sequences of Gi.

The above scheme extends the current state of the art on typical sequences as it further
incorporates the encoding of the connectivity property. While this is indeed a “global
property”, it appears that its evolution with respect to the bags of the decomposition can be
controlled by the second component of our encoding and this is done in terms of a sequence
of a gradually coarsening partitions. This establishes a dynamic programming framework
that can potentially be applied on the connected versions of most of the parameters where
the typical sequence technique was used so far. Moreover, it may be the starting point of the
algorithmic study of parameters where other, alternative to connectivity, global properties
are imposed to the corresponding decompositions.

Consequences in connected graph searching. The original version of graph searching was
the edge searching variant, defined 4 by Parsons [33,34], where the only differences with node
searching is that a searcher can additionally slide along an edge and sliding is the only way to
clean an edge. The corresponding search number is called edge search number and is denoted
by es(G). If we additionally demand that the searching strategy is connected and monotone,
then we define the monotone connected edge search number denoted by mces(G). As proved

4 An equivalent model was proposed independently by Petrov [35]. The models of Parsons and Petrov
where different but also equivalent, as proved by Golovach in [21,22]. The model of Parsons was inspired
by an earlier paper by Breisch [12], titled “An intuitive approach to speleotopology”, where the aim
was to rescue an (unlucky) speleologist lost in a system of caves. Notice that “unluckiness” cancels the
speleologist’s will of being rescued as, from the searchers’ point of view, it imposes on him/her the status
of an “evading entity”. As a matter of fact, the connectivity issue appears even in the first inspiring
model of the search game. In a more realistic scenario, the searchers cannot “teleport” themselves to
non-adjacent territories of the caves while this was indeed permitted in the original setting of Parsons.

ESA 2020

64:6 A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

in [29], es(G) = pw(Gv), where Gv is the graph obtained if we subdivide twice each edge of
G. Applying the same reduction as in [29] for the monotone and connected setting, one can
prove that mces(G) = cpw(Gv). As we already mentioned, mcns(G) = cpw(Gv) + 1. These
two reductions imply that the result of Theorem 1 holds also for mcns and mces, i.e., the
search numbers for the monotone and connected versions of both node and edge searching.

2 Preliminaries and definitions

2.1 Basic concepts
Sets and near-partitions. For an integer `, we denote by [`] the set {1, . . . , `}. Let S be a
finite set. A near-partition Q of S is a family of subsets {X1, . . . , Xk} (with k ≤ |S|+ 1) of
subsets of S, called blocks, such that

⋃
i∈[k] Xi = S and for every 1 ≤ i < j ≤ k, Xi ∩Xj = ∅.

Observe that a near-partition may contain several copies of the empty set. A partition of
S is a near-partition with the additional constraint that if it contains the empty set, then
this is the unique block. Let Q be a near-partition of a set S and Q′ be a near-partition of a
set S′ such that S ⊆ S′. We say that Q is thinner than Q′, or that Q′ is coarser than Q,
which we denote Q v Q′, if for every block X of Q, there exists a block X ′ of Q′ such that
X ⊆ X ′. For a near-partition Q = {X1, . . . , X`} of S and a subset S′ ⊆ S, we define the
projection of Q onto S′ as the near-partition Q|S′ = {X1 ∩ S′, . . . , X` ∩ S′}. Observe that
if Q is a partition, then Q|S′ may not be a partition: if several blocks of Q are subsets of
S \ S′, then Q|S′ contains several copies of the emptyset.

Sequences. Let S be a set. A sequence of elements of S, denoted by α = 〈a1, . . . , a`〉, is
a subset of S equipped with a total ordering: for 1 6 i < j 6 `, ai occurs before aj in the
sequence α. The length of a sequence is the number of elements that it contains. Let X ⊆ [`]
be a subset of indexes of α. We define the subsequence of α induced by X as the sequence
α[X] on the subset {ai | i ∈ X} such that, for i, j ∈ X, ai occurs before aj in α[X] if and
only if i < j.

The duplication of the element aj , with j ∈ [`], in the sequence α = 〈a, . . . , a`〉 yields the
sequence α′ = 〈a1, . . . , aj , aj , . . . , a`〉 of length ` + 1. A sequence β is an extension of the
sequence α if it is either α or it results from a series of duplications on α. We define the set
of extensions of α as: Ext(α) = {α∗ | α∗ is an extension of α}.

Let α = 〈a1, . . . , a`〉 be a sequence and α∗ = 〈a1, . . . , ap〉 be an extension of α. If p ≤ `+k,
then α∗ results from a series of at most k duplications and we say that α∗ is a (≤ k)-extension
of α. With the definition of an extension, every element of α∗ is a copy of some element of
α. We define the extension surjection as a surjective function δα∗→α : [p]→ [`] such that if
δα∗→α(j) = i then a∗j = ai. An extension surjection δα∗→α is a certificate that α∗ ∈ Ext(α).
Finally, we observe that if α∗ ∈ Ext(α), then α is an induced subsequence of α∗. Moreover,
if α∗ ∈ Ext(α) and β ∈ Ext(α∗), then β is an extension of α.

Graphs and boundaried graphs. Given a graph G = (V,E) and a vertex set S ⊆ V (G),
we denote by G[S] the subgraph of G that is induced by the vertices of S, i.e., the graph
(S, {e ∈ E | e ⊆ S}). Also, if x ∈ V , we define G \ x = G[V \ {x}]. The neighborhood of a
vertex v in G is the set of vertices that are adjacent to v in G and is denoted by NG(v).

A boundaried graph is a pair G = (G,B) such that G is a graph over a vertex set V
and B ⊆ V is a subset of distinguished vertices, called boundary vertices. We say that a
boundaried graph G = (G,B) is connected if either G is connected and B = ∅ or, in case
B 6= ∅, every connected component C of G contains some boundary vertex, that is C ∩B 6= ∅.

M.M. Kanté, C. Paul, and D.M. Thilikos 64:7

1

3

5

7

9

ai

1 3 5 7 9 11 13 15 17 19 21
i

Figure 2 The black bullets forms the typical sequence Tseq(α) = 〈4, 7, 3, 9, 1, 8, 3, 6〉 of the
sequence α = 〈4,6, 5, 7, 3, 5,7, 9, 4, 6, 3, 1, 4, 7,8, 5, 6, 3,4, 4, 5, 6〉 of black and gray diamonds.

The definition of a connected path-decomposition also naturally extends to boundaried
graphs as follows.

I Definition 2. Let P = 〈A1, . . . , A`〉 be a path-decomposition of the boundaried graph
G = (G,B). Then P is connected if, for every i ∈ [`], the boundaried graph (Gi, Vi ∩B) is
connected, where Vi =

⋃
h∈[i] Ah and Gi = G[Vi].

2.2 Integer sequences
Let us recall the notion of typical sequences introduced by Bodlaender and Kloks [8] (see
also [15,30]).

I Definition 3. Let α = 〈a1, . . . , a`〉 be an integer sequence. The typical sequence Tseq(α)
is obtained after iterating the following operations, until none is possible anymore:

if for some i ∈ [`− 1], ai = ai+1, then remove ai+1 from α;
if there exists i, j ∈ [`] such that i 6 j − 2 and ∀h, i < h < j, ai ≤ ah ≤ aj or ∀h,
i < h < j, ai ≥ ah ≥ aj, then remove the subsequence 〈ai+1, . . . , aj−1〉 from α.

As a typical sequence Tseq(α) = 〈b1, . . . , bi, . . . , br〉 is a subsequence of α, it follows that,
for every i ∈ [r], there exists ji ∈ [`] such that bi = aji

. Herefater every such index ji is
called a tip of the sequence α.

If α and β are two integer sequences of same length `, we say that α ≤ β if for every
j ∈ [`], aj ≤ bj .

I Definition 4. Let α and β be two integer sequences. Then α � β if there are α∗ ∈ Ext(α)
and β∗ ∈ Ext(β) such that α∗ ≤ β∗. Whenever α � β and β � α, we say that α and β are
equivalent which is denoted by α ≡ β.

We extend the definition of the ≤-relation and �-relation on integer sequences to sequences
of integer sequences. Let P = 〈L1, . . . , , Lr〉 and Q = 〈K1, . . . ,Kr〉 be two sequences of integer
sequences such that for every i ∈ [r], Li and Ki have the same length. We say that P ≤ Q if
for every i ∈ [r], Li ≤ Ki. The set of extensions of P is Ext(P) = {〈L′1, . . . , L′r〉 | i ∈ [r], L′i ∈
Ext(Li)}. Finally we say that P � Q if there exist P′ ∈ Ext(P) and Q′ ∈ Ext(Q) such that
P′ ≤ Q′. If P � Q and Q � P, then we say that P ≡ Q. The relation ≡ is an equivalence
relation.

2.3 Boundaried sequences
We now define the main notion that will allow us to represent and manipulate (connected)
path-decompositions of a boundaried graph G = (G,B) (see Subsection 3.1).

ESA 2020

64:8 A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

I Definition 5 (B-boundaried sequence). Let B be a finite set. A B-boundaried sequence is
a sequence S = 〈s1, . . . , s`〉 such that for every j ∈ [`], sj = (bd(sj), cc(sj),val(sj)) is defined
as follows:

bd(sj) ⊆ B with the property that for every x ∈ B, the indices j ∈ [l] such that x ∈ bd(sj)
are consecutive;
cc(sj) is a near-partition of

⋃
i≤j bd(si) ⊆ B with the property that for every j < `,

cc(sj) v cc(sj+1);
val(sj) is a positive integer.

The width of S is defined as width(S) = maxj∈`(|bd(sj)|+ val(sj)).

I Definition 6 (Connected B-boundaried sequence). Let S = 〈s1, . . . , s`〉 be a B-boundaried
sequence for some finite set B. We say that S is connected if for every i ∈ [`], cc(si) is a
partition of

⋃
i≤j bd(si) ⊆ B.

Observe that if S = 〈s1, . . . , s`〉 is a connected B-boundaried sequence and if there exists
some i ∈ [`] such that cc(si) = {∅}, then, for every j ≤ i, bd(sj) = ∅ and cc(sj) = {∅}.

I Definition 7 (Breakpoints). Let S = 〈s1, . . . , sj , . . . , s`〉 be a B-boundaried sequence for
some finite set B. Then the index j, with 1 ≤ j ≤ `, is a breakpoint of:

type-1 if j = 1 or bd(sj) 6= bd(sj−1) or j = `;
type-2 if it is not a type-1 breakpoint and cc(sj) 6= cc(sj−1);
type-3 if it is not a type-1 nor a type-2 and j is a tip of the integer sequence 〈val(slj), . . . ,
val(srj−1)〉 where lj and rj are respectively the largest and smallest type-1 or type-2
breakpoints such that lj < j < rj.

Let bp(S) be the set of breakpoints of S and bpt(S) be the set of type-t breakpoints of S, for
t ∈ {1, 2, 3}. The representative sequence rep(S) of S is defined as S[bp(S)].

.

x

y

2

x

y

z

2

si
x

y

z

4

x

y

z

6

x

y

z

3

x

y

z

3

sj
x

y

z

4

x

y

z

5

x

y

z

3

x

y

z

4

x

y

z

2

x

y

z

3

y

z

2

sk

Figure 3 The part 〈si−1, . . . sk〉 of a B-boundaried sequence S for some set B ⊇ {x, y, z}. A
bullet • at some index j represents an element of

⋃
h<j

bd(sh). Observe that at index k, x is indeed
represented by a black bullet. For the index i, we have bd(si) = {x, y, z}, cc(si) = {{x, y}, {z, •}}
and val(si) = 2. At every position j, only named elements belong to bd(sj). The red squares mark
the type-1 breakpoints: at position i, element z is new, while at position k, element x is forgotten.
The blue diamond at index j marks a type-2 breakpoint which corresponds to the merge of two
parts of cc(si+4) into a single part. Finally, the grey bullets type-3 breakpoints corresponding to
tips of the integer sequences 〈val(si), . . .val(sj−1)〉 and 〈val(sj), . . .val(sk−1)〉.

Figure 3 illustrates the notions of B-boundaried sequence and breakpoints. Observe that
rep(S) can be computed from the B-boundaried sequence S as in Definition 3 and is uniquely
defined. The set of representative B-boundaried sequences of width at most w is defined as

Repw(B) = {rep(S) | S is a B-boundaried sequence of width ≤ w}.

I Definition 8 (B-boundary model). Let S = 〈s1, . . . , sj , . . . , s`〉 be a B-boundaried sequence.
For every j ∈ [`], we set ṡj = (bd(sj), cc(sj), t(sj)) with t(sj) = 1 if j ∈ bp1(S), t(sj) = 2 if
j ∈ bp2(S) and t(sj) = 0 otherwise. The B-boundary model of S, denoted by model(S), is
the subsequence of Ṡ = 〈ṡ1, . . . , ṡj , . . . , ṡ`〉 induced by bp1(S) ∪ bp2(S).

M.M. Kanté, C. Paul, and D.M. Thilikos 64:9

I Lemma 9. Let S be a B-boundaried sequence. If S∗ ∈ Ext(S), then model(S∗) = model(S).

As in [8, 24], we will bound the number of representatives of B-boundaried sequences.
For doing so, we bound the number of B-boundaried models and then use [8, Lemma 3.5]
which gives an upper bound on the number of typical sequences. Taking into account the fact
that there are O(|B|) breakpoints and |B|O(k) different coarsening scenarios for the encoded
near-partitions, we prove the following bound.

I Lemma 10. Let B be a set of size k. Then, |Repw(B)| = 2O(k(w+log k).

Notice that the notion of a B-boundary model corresponds to the one of interval model
in [8]. Besides the B-boundary model of a sequence S, we introduce the profile of S, which
corresponds to the concept of list representation in [8].

I Definition 11 (Profile). Let S be a B-boundaried sequence of length ` and let 1 = j1 <

· · · < ji < · · · < jr = ` be the subset of indices of [`] that belong to bp1(S) ∪ bp2(S). Then
we set profile(S) = 〈L1, . . . , Lr〉 with, for i ∈ [r], Lj = 〈val(sji

), . . . ,val(sji+1−1)〉.

We introduce the domination relation over B-boundaried sequences. This allows us to
compare B-boundaried sequences having the same model by means of their B-profiles.

I Definition 12 (Domination relation). Let S = 〈s1, . . . , sj , . . . , s`〉 and T = 〈t1, . . . , tj , . . . , t`〉
be two B-boundaried sequences such that model(S) = model(T). If profile(S) ≤ profile(T), then
we write S ≤ T. And, we say that S dominates T, denoted by S � T, if profile(S) � profile(T).
If we have profile(S) � profile(T) and profile(T) � profile(S), then we say that S and T are
equivalent, which is denoted by S ≡ T.

I Lemma 13. Let S be a B-boundaried sequence. Then,
1. rep(S) ≡ S,
2. if S∗ ∈ Ext(S), then S∗ ≡ S,
3. S � T if and only if rep(S) � rep(T).
4. If T is a B-boundaried sequence such that S � T, then there exist an extension S∗ of S

and an extension T∗ of T such that S∗ ≤ T∗.
5. The relation � is transitive, and ≡ is an equivalence relation (refering to boundary

sequences).

2.4 Operations on B-boundaried sequences
Given a finite set B, we define two operations on B-boundaried sequences that will be later
used in the DP algorithm. The projection of a B-boundaried sequence S onto B′ (B aims
at changing the status of a boundary element from B \B′ to the status of a non-boundary
element. The second operation deals with the insertion in a B-boundaried sequence of a new
boundary element x with respect to a subset X ⊆ B.

2.4.1 Projection of B-boundaried sequences
I Definition 14 (Projection). Let S = 〈s1, . . . , si, . . . , s`〉 be a B-boundaried sequence. For
a subset B′ ⊆ B, the projection of S onto B′ is the B′-boundaried sequence S|B′ =
〈s1|B′ , . . . , si|B′ , . . . , s`|B′〉 such that for every i ∈ [`]:

bd(si|B′) = bd(si) ∩B′;
cc(si|B′) = cc(si)|B′ ;
val(si|B′) = val(si) + |bd(si) \B′|.

ESA 2020

64:10 A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

We observe that though the B-boundaried sequence S is connected, its projection S|B′
onto B′ ⊆ B may not be connected. This is the case if for some j ∈ [`], the partition cc(sj)
contains several blocks and at least one of them is a subset of B \ B′. Notice that the
projection operation does not change the width of a sequence.

I Lemma 15. Let B be a finite set and B′ (B. If S∗ is an extension of a B-boundaried
sequence S, then S∗|B′ is an extension of S|B′ .

I Lemma 16. Let B be a finite set and B′ ⊆ B. If S and T are B-boundaried sequences
such that S ≤ T, then S|B′ ≤ T|B′ .

Using Lemma 15 and Lemma 16, we prove the following:

I Lemma 17. Let B be a finite set and B′ ⊆ B. If S and T are B-boundaried sequences
such that and S � T, then S|B′ � T|B′ .

2.4.2 Insertion into a B-boundaried sequence
Let S = 〈s1, . . . , s`〉 be a B-boundaried sequence and let X be a subset of B. An insertion
position is a pair of indices (fx, lx) such that 1 ≤ fx ≤ lx ≤ `. An insertion position is valid
with respect to X in S if X ⊆

⋃
fx≤j≤lx bd(sj).

I Definition 18. Let S = 〈s1, . . . , s`〉 be a B-boundaried sequence and (fx, lx) be a valid
insertion position with respect to X ⊆ B. Then Sx = Ins(S, x,X, fx, lx) = 〈sx1 , . . . , sx` 〉 is the
(B ∪ {x})-boundaried sequence such that for every j ∈ [`]:

if j < fx, then bd(sxj) = bd(sj); cc(sxj) = cc(sj) and val(sxj) = val(sj).
if fx ≤ j ≤ lx, then bd(sxj) = bd(sj) ∪ {x}; cc(sxj) is obtained by adding a new block {x}
to cc(sj) and then merging that new block with all the blocks of cc(sj) that contain an
element of X (if any); val(sxj) = val(sj).
and otherwise, bd(sxj) = bd(sj); cc(sxj) is obtained by adding a new block {x} to cc(sj)
and then merging that new block with all the blocks of cc(sj) that contain an element of
X (if any); val(sxj) = val(sj).

We can show that if T is an extension of S, then, to every valid insertion position (fx, lx)
with respect to some subset X ⊆ B in S, one can associate a valid insertion position (f∗x , l∗x)
with respect to X in T. The reverse is not true as illustrated by Figure 4.

S
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

T t5 t11t10t1 t2 t3 t4 t6 t7 t8 t9 t12 t13

δT→S(·)

x

Figure 4 Let T be a 2-extension of the B-boundaried sequence S. Suppose that (5, 10) is a
valid insertion position with respect to some set X ⊆ B in T. Observe that as 4 = δT→S(5) and
9 = δT→S(10), (4, 9) is also a valid insertion position with respect to some for X ⊆ B in S. However,
Ins(T, x,X, 5, 10) is not a 2-extension of Ins(S, x,X, 4, 9).

However the next two lemmas provides an alternative by means of 2-extensions of S. The
idea of the proof of Lemma 20 is illustrated by Figure 5.

M.M. Kanté, C. Paul, and D.M. Thilikos 64:11

I Lemma 19. Let B and B′ be finite sets with B = B′ \ {x} for some x ∈ B′. Let S and
T be B-boundaried sequences such that S ≤ T. If (fx, lx) is a valid insertion position with
respect to a subset X ⊆ B in T, then (fx, lx) is a valid insertion position with respect to X
in S and Ins(S, x,X, fx, lx) ≤ Ins(T, x,X, fx, lx).

I Lemma 20. Let B and B′ be finite sets with B = B′ \{x} for some x ∈ B′. Let S and T be
B-boundaried sequences such that S � T. If (f∗x , l∗x) is a valid insertion position with respect
to a subset X ⊆ B in T, then there is a valid insertion position (f ′x, l′x) in a (≤ 2)-extension
R of S such that Ins(R, x,X, f ′x, l′x) � Ins(T, x,X, f∗x , l∗x).

S
fx lx

R
f ′ f ′x l′x l′

T
f∗ f∗x l∗x l∗

δT→S(·)

δR→S(·)

δT→R(·)
x

x

Figure 5 Let the B-boundaried sequence T be an extension of S that is certified by the surjective
function δT→S(·) such that f∗x 6= f∗, l∗x 6= l∗ and f∗ = min{h ∈ [r] | δT→S(h) = fx}, l∗ = max{h ∈
[r] | δT→S(h) = lx}, δT→S(f∗x) = fx and δT→S(l∗x) = lx. The B-boundaried sequence R is a 2-
extension of S certified by the surjective function δR→S(·) such that δR→S(f ′) = fx, δR→S(f ′x) = fx,
δR→S(l∗x) = lx and δR→S(l′) = lx. The fact that T is an extension of R can be certified by the surjective
function δT→R(·) such that δT→R(f∗) = f ′, δT→R(f∗x) = f ′x, δT→T(l∗x) = l′x and δT→R(l∗) = l′.

3 Computing the connected pathwidth

A (connected) path-decomposition P = 〈A1, . . . , A`〉 of a graph G is nice if |A1| = 1 and
∀i ∈ [p], |Ai−1 M Ai| = 1. A bag Ai, for 1 < 1 ≤ `, is called an introduce bag if Ai (Ai−1 and
a forget bag otherwise. As we will show, connected B-boundaried sequences are combinatorial
objects designed in order to encode connected path-decompositions. Our algorithm is based
on two routines. Forget Routine processes the forget bags by performing a projection
operation on the B-boundaried sequences associated to those bags, while Insertion Routine
handles the insertion bags by performing an insertion operation in the associated boundaried
sequences.

3.1 Encoding a connected path-decomposition
I Definition 21 ((G,P)-encoding sequence). Let P = 〈A1, . . . , A`〉 be a path-decomposition
of the boundaried graph G = (G,B). A B-boundaried sequence S = 〈s1, . . . , sj , . . . , s`〉 is a
(G,P)-encoding sequence, if for every j ∈ [`]:

bd(sj) = Aj ∩B: the set of boundary vertices of (G,B) belonging to the bag Aj;
cc(sj) = {V (C) ∩B | C is a connected component of Gj};
val(sj) = |Aj \B|: the number of non-boundary vertices in the bag Aj.

It is worth to observe that cc(sj) is, in general, not a partition of Aj (see Figure 3).
Also, notice that if Gj is connected and B ∩ Vj = ∅, then cc(sj) = {∅}. Notice that if P is a
connected path-decomposition, then S is a connected B-boundaried sequence.

ESA 2020

64:12 A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

I Definition 22. Let G = (G,B) be a connected boundaried graph and S a B-boundaried
sequence. We say that S is realizable in G if there is an extension S∗ of S that is the
(G,P)-encoding sequence of some connected path-decomposition P of G.

Let us observe that if a B-boundaried sequence S is realizable, then S is connected. The
set of representative B-boundaried sequences of a connected boundaried graph G = (G,B) of
width ≤ w is defined as:

Repw(G) = {rep(S) | S of width ≤ w is realizable in G = (G,B)}.

To compute the connected pathwidth of a graph, rather than computing Repw(G), we com-
pute a subset Dw(G) ⊆ Repw(G), called domination set, such that for every representative
B-boundaried sequence S ∈ Repw(G), there exists a representative B-boundaried sequence
R ∈ Dw(G) where R � S. Observe that a connected boundaried graph G = (G,B) has
connected pathwidth at most w if and only if Dw+1(G) 6= ∅.

3.2 Forget Routine
Let G = (G,B) be a boundaried graph. If x ∈ B is a boundary vertex, we denote by
Bx = B \ {x}. We define Gx = (G,Bx), that is, while the graph G is left unchanged, we
remove x from the set of boundary vertices. Forget Routine is described in Algorithm 1. Its
correctness is proved in two steps. We first establish the completeness of the algorithm that is:
for every connected path-decomposition P of Gx, there exists some B-boundaried sequence
S ∈ Dw(G) such that rep(S|B\{x}) � rep(T) where T is the (Gx,P)-encoding sequence. For
the soundness of the routine we prove that for every B-boundaried sequence S ∈ Dw(G),
rep(S|B\{x}) ∈ Dw(Gx) if S|B\{x} is connected. The proofs of completeness and soundness
rely both on Lemma 17. The time complexity is dominated by the bound on the number of
representatives, given by Lemma 10.

Algorithm 1 Forget Routine.
Input: A boundaried graph G = (G,B), a vertex x ∈ B, and Dw(G).
Output: Dw(Gx), a domination set of Repw(Gx).

1 Dw(Gx)← ∅;
2 foreach S ∈ Dw(G) do
3 if S|B\{x} is connected, then add rep(S|B\{x}) to Dw(Gx) ;
4 end
5 return Dw(Gx).

I Theorem 23. Algorithm 1 computes Dw(Gx) in 2O(k(w+log k))-time, where k = |B|.

3.3 Insertion Routine
Let G = (G,B) be a boundaried graph with G = (V,E). For a subset X ⊆ B, we set
Gx = (V ∪ {x}, E ∪ {xy | y ∈ X}) and Gx = (Gx, Bx) where Bx = B ∪ {x}. Algorithm 2 is
describing Insertion Routine (notations of Figure 5 are used in the pseudo-code). To prove
its correctness, we proceed in two steps. We first establish the completeness of the algorithm:
for every connected path-decomposition Px of Gx, the (Gx,Px)-encoding sequence T x is
dominated by some Bx-boundaried sequence Sx that can be computed from a B-boundaried
sequence S belonging to Dw(G). Then we argue about the soundness of Insertion Routine

M.M. Kanté, C. Paul, and D.M. Thilikos 64:13

Algorithm 2 Insertion Routine.
Input: A boundaried graph G = (G,B), a subset X (B, and Dw(G).
Output: Dw(Gx), a domination set of Repw(Gx).

1 Dw(Gx)← ∅;
2 foreach S = 〈s1, . . . , s`〉 ∈ Dw(G) do
3 foreach fx, lx ∈ [`] such that X ⊆

⋃
fx≤j≤lx

bd(sj) do
4 foreach (≤ 2)-extension R of S duplicating none, one or both of sfx and slx do
5 let `′ be the length of R;
6 set f ′x = max{j ∈ [`′] | δR→S(j) = fx} and l′x = min{j ∈ [`′] | δR→S(j) = lx};
7 set Sx = Ins(R, x,X, f ′x, l′x);
8 (observe that by construction (f ′x, l′x) is valid with respect to X in R);
9 if width(Sx) ≤ w, then add rep(Sx) to Dw(Gx);

10 end
11 end
12 end
13 return Dw(Gx).

that is: if Sx is generated from a B-boundaried S ∈ Dw(G), then rep(Sx) belongs to Dw(Gx).
The proofs of completeness and soundness rely both on Lemma 19, and Lemma 20. As for
Forget Routine, the time complexity follows from Lemma 10.

I Theorem 24. Algorithm 2 computes Dw(Gx) in 2O(k(w+log k))-time, where k = |B|.

3.4 The dynamic programming algorithm
We are now in position to prove Theorem 1. We are given a nice path-decompositon
Q = 〈B1, . . . , Bq〉 of G of width at most k and for each i ∈ [q], we consider the boundaried
graphs Gi = (G[Vi], Bi), where Vi =

⋃
1≤h≤iBh. We have a way to compute Dw(Gi+1) from

Dw(Gi), in 2O(k2) · n time, using the algorithms of Theorem 23 or Theorem 24 depending
on whether Bi is an insertion or a forget bag. We next describe the set Dw+1(G1). For
this, we take the representative set Repw+1(G1) that consists for the following four possible
connected B1-boundaried sequences:

S1 = 〈({x}, {{x}}, 0)〉,
S2 = 〈(∅, {∅}, 0), ({x}, {{x}}, 0)〉,
S3 = 〈(∅, {∅}, 0), ({x}, {{x}}, 0), (∅, {{x}}, 0)〉, and
S4 = 〈({x}, {{x}}, 0), (∅, {{x}}, 0)〉.

As already noticed cpw(G) ≤ k if and only if Dw+1(Gq) 6= ∅. This completes proof of the
decision version of Theorem 1. In [8, Section 6] Bodlaender and Kloks explained how to turn
their decision algorithm for pathwidth and treewidth to one that is able to construct, in case
of a positive answer, the corresponding decomposition. It is straightforward to see that the
modification of [8, Section 6] that transforms the decision algorithm for pathwidth to one
that also constructs the corresponding path-decomposition also applies to our algorithm for
connected pathwidth. This completes the proof of Theorem 1.

If we now use the result of Fürer [20] for constructing a path-decomposition of width
at most k in 2O(k2) · n time and taking into account that pw(G) ≤ cpw(G), we have the
following.

I Theorem 25. One may construct an algorithm that, given an n-connected graph G and a
non-negative integer k, either outputs a connected path-decomposition of G of width at most
k or correctly reports that such a decomposition does not exist in 2O(k2) · n time.

ESA 2020

64:14 A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

References
1 Isolde Adler, Christophe Paul, and Dimitrios M. Thilikos. Connected search for a lazy robber.

In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS, volume 150 of Leibniz International Proceedings in Informatics,
pages 7:1–7:14, 2019. doi:10.4230/LIPIcs.FSTTCS.2019.7.

2 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

3 Lali Barrière, Paola Flocchini, Fedor V. Fomin, Pierre Fraigniaud, Nicolas Nisse, Nicola Santoro,
and Dimitrios M. Thilikos. Connected graph searching. Information and Computation, 219:1–
16, 2012. doi:10.1016/j.ic.2012.08.004.

4 Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Capture of an intruder
by mobile agents. In 14th Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA, pages 200–209. ACM, 2002. doi:10.1145/564870.564906.

5 Lali Barrière, Pierre Fraigniaud, Nicola Santoro, and Dimitrios M. Thilikos. Searching is
not jumping. In 29th International Workshop on Graph-Theoretic Concepts in Computer
Science, WG, volume 2880 of Lecture Notes in Computer Science, pages 34–45, 2003. doi:
10.1007/978-3-540-39890-5_4.

6 Hans L. Bodlaender, Michael R. Fellows, and Dimitrios M. Thilikos. Derivation of algorithms
for cutwidth and related graph layout parameters. Journal of Computer and System Sciences,
75(4):231–244, 2009. doi:10.1016/j.jcss.2008.10.003.

7 Hans L. Bodlaender, Lars Jaffke, and Jan Arne Telle. Typical sequences revisited - computing
width parameters of graphs. In 37th International Symposium on Theoretical Aspects of
Computer Science, STACS, volume 154 of Leibniz International Proceedings in Informatics,
pages 57:1–57:16, 2020. doi:10.4230/LIPIcs.STACS.2020.57.

8 Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996. doi:10.1006/jagm.
1996.0049.

9 Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time algorithms for
branchwidth. In 24th International Colloquium on Automata, Languages and Programming,
ICALP, volume 1256 of Lecture Notes in Computer Science, pages 627–637, 1997. doi:
10.1007/3-540-63165-8_217.

10 Hans L. Bodlaender and Dimitrios M. Thilikos. Computing small search numbers in
linear time. In First International Workshop on Parameterized and Exact Computa-
tion, IWPEC, volume 3162 of Lecture Notes in Computer Science, pages 37–48, 2004.
doi:10.1007/978-3-540-28639-4_4.

11 Mikołaj Bojańczyk and Michal Pilipczuk. Optimizing tree decompositions in MSO. In 34th
Symposium on Theoretical Aspects of Computer Science, STACS, volume 66 of Leibniz
International Proceedings in Informatics, pages 15:1–15:13, 2017. doi:10.4230/LIPIcs.STACS.
2017.15.

12 R. Breisch. An intuitive approach to speleotopology. Southwestern Cavers (A publication of
the Southwestern Region of the National Speleological Society), VI(5):72–78, 1967.

13 Gary Chartrand, Ping Zhang, Teresa W. Haynes, Michael A. Henning, Fred R. McMorris, and
Robert C. Brigham. Graphical measurement. In Handbook of Graph Theory, pages 872–951.
Chapman & Hall / Taylor & Francis, 2003. doi:10.1201/9780203490204.ch9.

14 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

15 Bruno Courcelle and Jens Lagergren. Equivalent definitions of recognizability for sets of graphs
of bounded tree-width. Mathematical Structure for Computer Sciecnce, 6(2):141–165, 1996.
doi:10.1017/S096012950000092X.

16 Dariusz Dereniowski. From pathwidth to connected pathwidth. SIAM Journal on Discrete
Mathematics, 26(4):1709–1732, 2012. doi:10.1137/110826424.

https://doi.org/10.4230/LIPIcs.FSTTCS.2019.7
https://doi.org/10.1016/j.ic.2012.08.004
https://doi.org/10.1145/564870.564906
https://doi.org/10.1007/978-3-540-39890-5_4
https://doi.org/10.1007/978-3-540-39890-5_4
https://doi.org/10.1016/j.jcss.2008.10.003
https://doi.org/10.4230/LIPIcs.STACS.2020.57
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1006/jagm.1996.0049
https://doi.org/10.1007/3-540-63165-8_217
https://doi.org/10.1007/3-540-63165-8_217
https://doi.org/10.1007/978-3-540-28639-4_4
https://doi.org/10.4230/LIPIcs.STACS.2017.15
https://doi.org/10.4230/LIPIcs.STACS.2017.15
https://doi.org/10.1201/9780203490204.ch9
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1017/S096012950000092X
https://doi.org/10.1137/110826424

M.M. Kanté, C. Paul, and D.M. Thilikos 64:15

17 Dariusz Dereniowski, Dorota Osula, and Paweł Rzążewski. Finding small-width connected
path decompositions in polynomial time. Theoretical Computer Science, 794:85–100, 2019.
doi:10.1016/j.tcs.2019.03.039.

18 Fedor V. Fomin. Complexity of connected search when the number of searchers is small.
Open Problems of GRASTA 2017: The 6th Workshop on GRAph Searching, Theory and
Applications, 2017.

19 Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed graph
searching. Theoretical Computer Science, 399(3):236–245, 2008. doi:10.1016/j.tcs.2008.
02.040.

20 Martin Fürer. Faster computation of path-width. In 27th International Workshop on Com-
binatorial Algorithms, IWOCA, Lecture Notes in Computer Science, pages 385–396, 2016.
doi:10.1007/978-3-319-44543-4_30.

21 P. A. Golovach. Equivalence of two formalizations of a search problem on a graph (Russian).
Vestnik Leningrad. Univ. Mat. Mekh. Astronom., vyp. 1:10–14, 122, 1989. translation in Vestnik
Leningrad Univ. Math. 22 (1989), no. 1, 13–19.

22 Petr A. Golovach (П. А. Головач). A topological invariant in pursuit problems, (Об
одном топологическом инварианте в задачах преследования). Differentsialânye Urav-
neniya (Differential Equations), (Дифференц. уравнения), 25(6):923–929, 1989. URL:
http://mi.mathnet.ru/de6861.

23 Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Constructive algorithm for path-width of
matroids. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
1695–1704, 2016. doi:10.1137/1.9781611974331.ch116.

24 Jisu Jeong, Eun Jung Kim, and Sang-il Oum. The “art of trellis decoding” is fixed-parameter
tractable. IEEE Transactions on Information Theory, 63(11):7178–7205, 2017. doi:10.1109/
TIT.2017.2740283.

25 Jisu Jeong, Eun Jung Kim, and Sang-il Oum. Finding branch-decompositions of matroids,
hypergraphs, and more. In 45th International Colloquium on Automata, Languages, and
Programming, ICALP, volume 107 of Leibniz International Proceedings in Informatics, pages
80:1–80:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.80.

26 Mamadou Moustapha Kanté, Christophe Paul, and Dimitrios M. Thilikos. A linear fixed
parameter tractable algorithm for connected pathwidth. CoRR, abs/2004.11937, 2020. arXiv:
2004.11937.

27 Nancy G. Kinnersley. The vertex separation number of a graph equals its path-width.
Information Processing Letters, 42(6):345–350, 1992. doi:10.1016/0020-0190(92)90234-M.

28 Lefteris M. Kirousis and Christos H. Papadimitriou. Interval graphs and seatching. Discrete
Mathematics, 55(2):181–184, 1985. doi:10.1016/0012-365X(85)90046-9.

29 Lefteris M. Kirousis and Christos H. Papadimitriou. Searching and pebbling. Theoretical
Computer Science, 47(3):205–218, 1986. doi:10.1016/0304-3975(86)90146-5.

30 Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite congruence.
In 18th International Colloquium on Automata, Languages and Programming, ICALP, volume
510 of Lecture Notes in Computer Science, pages 532–543, 1991. doi:10.1007/3-540-54233-7_
161.

31 Rolf H. Möhring. Graph problems related to gate matrix layout and PLA folding. In
Computational graph theory, volume 7 of Comput. Suppl., pages 17–51. Springer, 1990.

32 Ronan Pardo Soares. Pursuit-Evasion, Decompositions and Convexity on Graphs. Theses,
Université Nice Sophia Antipolis, November 2013. URL: https://tel.archives-ouvertes.
fr/tel-00908227.

33 Torrence D. Parsons. Pursuit-evasion in a graph. In International Conference on Theory and
applications of graphs, volume 642 of Lecture Notes in Mathematics, pages 426–441. Springer,
1978.

34 Torrence D. Parsons. The search number of a connected graph. In 9th Southeastern Conference
on Combinatorics, Graph Theory and Computing, volume XXI of Congress. Numer., XXI,
pages 549–554. Utilitas Math., 1978.

ESA 2020

https://doi.org/10.1016/j.tcs.2019.03.039
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwiWrP77jfXoAhXFiVwKHW3gAQ4QFjABegQIBRAB&url=http%3A%2F%2Ffiles.thilikos.info%2Fdata%2Fconferences%2FGRASTA2017%2Fopen_problems%2FGRASTA2017-open_problems.pdf&usg=AOvVaw1lbev892ugbeQtQhMWUwdO
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwiWrP77jfXoAhXFiVwKHW3gAQ4QFjABegQIBRAB&url=http%3A%2F%2Ffiles.thilikos.info%2Fdata%2Fconferences%2FGRASTA2017%2Fopen_problems%2FGRASTA2017-open_problems.pdf&usg=AOvVaw1lbev892ugbeQtQhMWUwdO
https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1016/j.tcs.2008.02.040
https://doi.org/10.1007/978-3-319-44543-4_30
http://mi.mathnet.ru/de6861
https://doi.org/10.1137/1.9781611974331.ch116
https://doi.org/10.1109/TIT.2017.2740283
https://doi.org/10.1109/TIT.2017.2740283
https://doi.org/10.4230/LIPIcs.ICALP.2018.80
http://arxiv.org/abs/2004.11937
http://arxiv.org/abs/2004.11937
https://doi.org/10.1016/0020-0190(92)90234-M
https://doi.org/10.1016/0012-365X(85)90046-9
https://doi.org/10.1016/0304-3975(86)90146-5
https://doi.org/10.1007/3-540-54233-7_161
https://doi.org/10.1007/3-540-54233-7_161
https://tel.archives-ouvertes.fr/tel-00908227
https://tel.archives-ouvertes.fr/tel-00908227

64:16 A Linear Fixed Parameter Tractable Algorithm for Connected Pathwidth

35 Nikolai N. Petrov (Н. Н. Петров). A problem of pursuit in the absence of information
on the pursued, (Задачи преследования при отсутствии информации об убегающем).
Differentsial’nye Uravneniya (Differential Equations), (Дифференц. уравнения), 18(8):1345–
1352, 1468, 1982. URL: http://mi.mathnet.ru/de4628.

36 Neil Robertson and Paul D. Seymour. Graph minors. I. excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5.

37 Neil Robertson and Paul D. Seymour. Graph minors. XX. wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

38 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Constructive linear time algo-
rithms for small cutwidth and carving-width. In 11th International Conference on Algorithms
and Computation, ISAAC, volume 1969 of Lecture Notes in Computer Science, pages 192–203,
2000. doi:10.1007/3-540-40996-3_17.

39 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. Journal of Algorithms, 56(1):1–24, 2005. doi:10.1016/j.jalgor.
2004.12.001.

40 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: algorithms
for partial w-trees of bounded degree. Journal of Algorithms, 56(1):25–49, 2005. doi:
10.1016/j.jalgor.2004.12.003.

http://mi.mathnet.ru/de4628
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1007/3-540-40996-3_17
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.001
https://doi.org/10.1016/j.jalgor.2004.12.003
https://doi.org/10.1016/j.jalgor.2004.12.003

Exploiting c-Closure in Kernelization Algorithms
for Graph Problems
Tomohiro Koana
Technische Universität Berlin, Algorithmics and Computational Complexity, Germany
tomohiro.koana@tu-berlin.de

Christian Komusiewicz
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Germany
komusiewicz@informatik.uni-marburg.de

Frank Sommer
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Germany
fsommer@informatik.uni-marburg.de

Abstract
A graph is c-closed if every pair of vertices with at least c common neighbors is adjacent. The c-closure
of a graph G is the smallest number c such that G is c-closed. Fox et al. [SIAM J. Comput. ’20]
defined c-closure and investigated it in the context of clique enumeration. We show that c-closure can
be applied in kernelization algorithms for several classic graph problems. We show that Dominating
Set admits a kernel of size kO(c), that Induced Matching admits a kernel with O(c7k8) vertices,
and that Irredundant Set admits a kernel with O(c5/2k3) vertices. Our kernelization exploits the
fact that c-closed graphs have polynomially-bounded Ramsey numbers, as we show.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Fixed-parameter tractability, kernelization, c-closure, Dominating Set, In-
duced Matching, Irredundant Set, Ramsey numbers

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.65

Related Version A continously updated version of the paper is available at https://arxiv.org/
abs/2005.03986.

Funding Tomohiro Koana: Supported by the Deutsche Forschungsgemeinschaft (DFG), project
FPTinP, NI 369/19.
Frank Sommer : Supported by the Deutsche Forschungsgemeinschaft (DFG), project MAGZ,
KO 3669/4-1.

Acknowledgements This work was started at the research retreat of the TU Berlin Algorithms and
Computational Complexity group held in September 2019 at Schloss Neuhausen (Prignitz).

1 Introduction

Parameterized complexity [10, 15] aims at understanding which properties of input data
can be used in the design of efficient algorithms for problems that are hard in general. The
properties of input data are encapsulated in the notion of a parameter, a numerical value
that can be attributed to each input instance I. For a given hard problem and parameter k,
the first aim is to find a fixed-parameter algorithm, an algorithm that solves the problem
in f(k) · |I|O(1) time. Such an algorithm is efficient when f grows moderately and k takes on
small values. A second aim is to provide a kernelization. This is an algorithm that given
any instance (I, k) of a parameterized problem computes in polynomial time an equivalent
instance of size g(k). If g grows not too much and k takes on small values, then a kernelization

© Tomohiro Koana, Christian Komusiewicz, and Frank Sommer;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 65; pp. 65:1–65:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8684-0611
mailto:tomohiro.koana@tu-berlin.de
https://orcid.org/0000-0003-0829-7032
mailto:komusiewicz@informatik.uni-marburg.de
https://orcid.org/0000-0003-4034-525X
mailto:fsommer@informatik.uni-marburg.de
https://doi.org/10.4230/LIPIcs.ESA.2020.65
https://arxiv.org/abs/2005.03986
https://arxiv.org/abs/2005.03986
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 Exploiting c-Closure in Kernelization Algorithms for Graph Problems

Table 1 A comparison of the c-closure with the number n of vertices, number m of edges, and
the maximum degree ∆ in social and biological networks.

Instance name n m ∆ c

adjnoun-adjacency 112 425 49 14
arenas-jazz 198 2742 100 42
ca-netscience 379 914 34 5
bio-celegans 453 2025 237 26
bio-diseasome 516 1188 50 9
soc-wiki-Vote 889 2914 102 18
arenas-email 1133 5451 71 19
bio-yeast 1458 1948 56 8
ca-CSphd 1882 1740 46 3
soc-hamsterster 2426 16630 273 77
ca-GrQc 4158 13422 81 43
soc-advogato 5167 39432 807 218
bio-dmela 7393 25569 190 72
ca-HepPh 11204 117619 491 90
ca-AstroPh 17903 196972 504 61
soc-brightkite 56739 212945 1134 184

provably shrinks large input instances and thus gives a guarantee for the efficacy of data
reduction rules. A central part of the design of good parameterized algorithms is thus the
identification of suitable parameters.

A good parameter should have the following advantageous traits. Ideally, it should be
easy to understand and compute.1 It should take on small values in real-world input data. It
should describe input properties that are not captured by other parameters. Finally, many
problems should be amenable to parameterization using this parameter. In other words, the
parameter should help when designing fixed-parameter algorithms or kernelizations.

Fox et al. [19] recently introduced the graph parameter c-closure which describes a
structural feature of many real-world graphs: When two vertices have many common
neighbors, it is likely that they are adjacent. More precisely, the c-closure of a graph is
defined as follows.

I Definition 1.1 ([19]). A graph G = (V,E) is c-closed if every pair of vertices u ∈ V

and v ∈ V with at least c common neighbors is adjacent. The c-closure of a graph is the
smallest number c such that G is c-closed.

The parameter has many of the desirable traits mentioned above: It is easy to understand
and easy to compute. Moreover, social networks are c-closed for relatively small values
of c [19] (see also Table 1). In addition, the c-closure of a graph gives a new class of graphs
which are not captured by other measures. This follows from the observation that every
complete graph is 1-closed. Hence, a graph can have bounded c-closure but, for example,
unbounded degeneracy and thus unbounded treewidth. Conversely, the graph consisting
of two vertices u and v and many vertex-disjoint u-v-paths of length two is 2-degenerate,

1 This cannot always be guaranteed. For example, the important parameter treewidth is hard to compute
and not as easily understood as simpler parameters.

T. Koana, C. Komusiewicz, and F. Sommer 65:3

has treewidth two, and unbounded c-closure. Generally, one may observe that c-closure
is different from many common parameterizations which measure, in different ways, the
sparseness of the input graph. In this sense, the structure described by the c-closure is novel.
The aim of this work is to show that c-closure also has the final, most important trait: it
helps when designing fixed-parameter algorithms.

Fox et al. [19] applied c-closure to the enumeration of maximal cliques, showing that
a c-closed graph may have at most 3(c−1)/3 · n2 maximal cliques. In combination with
known clique enumeration algorithms this implies that all maximal cliques of a graph can be
enumerated in O∗(3c/3) time. We are not aware of any further fixed-parameter algorithms
that make use of the c-closure parameter.

An easy example for how parameterization by c-closure helps can be seen for the Inde-
pendent Set problem. In Independent Set we are given an undirected graph G = (V,E)
and an integer k and want to determine whether G contains a set of k vertices that are
pairwise nonadjacent. Independent Set is W[1]-hard when parameterized by k [15, 10].
When one uses the maximum degree of G as an additional parameter, then Independent
Set has a trivial kernelization: Any graph with at least (∆ + 1)k vertices has an independent
set of size at least k. With the following data reduction rule, we can obtain a kernelization
for the combination of c and k.

I Reduction Rule 1.2. If G contains a vertex v of degree at least (c− 1)(k − 1) + 1, then
remove v from G.

To see that Reduction Rule 1.2 is correct, we need to show that the resulting graph G′ has
an independent set I of size k if and only if the original graph G has one. The nontrivial
direction to show is that if G has an independent set I of size k, then so does G′. Since this
clearly holds for v /∈ I, we assume that v ∈ I. To replace v by some other vertex, we make
use of the c-closure: Every vertex u in I \ {v} has at most c− 1 neighbors in common with v
since u and v are nonadjacent. Thus, at most (c− 1)(k− 1) neighbors of v are also neighbors
of some vertex in I \ {v}. Consequently, some neighbor w of v has no neighbors in I \ {v}
and, therefore, (I \ {v}) ∪ {w} is an independent set of size k in G′.

Applying Reduction Rule 1.2 exhaustively results in an instance with maximum degree
less than ck which, due to the discussion above, directly gives the following.

I Proposition 1.3. Independent Set admits a kernel with at most ck2 vertices.

Motivated by this simple result for a famous graph problem, we study how c-closure can be
useful for further classic graph problems when they are parameterized by a combination of c
and the solution size parameter k. We obtain the following positive results. In Section 4,
we show that Dominating Set admits a kernel of size kO(c) computable in O∗(2c) time
and show that this kernelization is asymptotically optimal with respect to the dependence of
the exponent on c. Our results also hold for the more general Threshold Dominating
Set problem where each vertex needs to be dominated r times. In Section 5, we show that
Induced Matching admits a kernel with O(c7k8) vertices by means of LP relaxation of
Vertex Cover. Finally in Section 6, we show that Irredundant Set admits a kernel
with O(c5/2k3) vertices. All kernelizations exploit a bound on Ramsey numbers for c-closed
graphs, which we prove in Section 3. This bound is – in contrast to Ramsey numbers of
general graphs – polynomial in the size of a sought clique and independent set. We believe
that this bound on the Ramsey numbers is of independent interest and that it provides a
useful tool in the design of fixed-parameter algorithms for more problems on c-closed graphs.

ESA 2020

65:4 Exploiting c-Closure in Kernelization Algorithms for Graph Problems

2 Preliminaries

For m ≤ n ∈ N, we write [m,n] to denote the set {m,m + 1, . . . , n} and [n] for [1, n].
For a graph G, we denote its vertex set and edge set by V (G) and E(G), respectively.
Let X,Y ⊆ V (G) be vertex subsets. We use G[X] to denote the subgraph induced by X.
We also use G[X,Y] := (X ∪ Y, {xy ∈ E(G) | x ∈ X, y ∈ Y }) to denote the bipartite
subgraph induced by X,Y for X ∩ Y = ∅. We let G − X denote the graph obtained by
removing vertices in X. We denote by NG(X) := {y ∈ V (G) \ X | xy ∈ E(G), x ∈ X}
and NG[X] := NG(X) ∪X, the open and closed neighborhood of X, respectively. For all
these notations, when X is a singleton {x} we may write x instead of {x}. Let v ∈ V (G).
We denote the degree of v by degG(v). We call v isolated if degG(v) = 0 and non-isolated
otherwise. We also say that v is a leaf vertex if degG(v) = 1 and a non-leaf vertex if
degG(v) ≥ 2. Moreover, we say that v is simplicial if NG(v) is a clique. The maximum
and minimum degree of G are ∆G := maxv∈V (G) degG(v) and δG := minv∈V (G) degG(v),
respectively. The degeneracy of G is dG := maxS⊆V (G) δG[S]. We say that G is c-closed for
c = max({0} ∪ {|NG(u) ∩ NG(v)| | uv /∈ E(G)}) + 1. In particular, any cluster graph (a
disjoint union of complete graphs) is 1-closed. We drop the subscript ·G when it is clear from
context. A graph G has girth g if the shortest cycle in G has length g.

In this paper, we investigate the parameterized complexity of various problems whose
input comprises of a graph G and an integer k. A problem is fixed-parameter tractable if
it can be solved in f(k) · nO(1) time where n := |V (G)| and f is some computable function.
Instances (G, k) and (G′, k′) are equivalent if (G, k) is a Yes-instance if and only if (G′, k′) is a
Yes-instance. A kernelization algorithm is a polynomial-time algorithm which transforms an
instance (G, k) into an equivalent instance (G′, k′) such that |V (G′)|+ k′ ≤ g(k), where g is
some computable function. It is well-known that a problem is fixed-parameter tractable if and
only if it admits a kernelization algorithm. Our kernelization algorithms consist of a sequence
of reduction rules. Given an instance (G, k), a reduction rule computes an instance (G′, k′).
We will develop kernelization algorithms for c-closed graphs. For our purposes, we say that a
reduction rule is correct if the input instance (G, k) for a c-closed graph G is equivalent to
the resulting instance (G′, k′) and G′ is also c-closed. For more information on parameterized
complexity, we refer to the standard monographs [10, 15].

We will make use of the following observations throughout this work.

I Observation 2.1. If G is c-closed, then G− v is also c-closed for any v ∈ V (G).

I Observation 2.2. Let C be a maximal clique in a c-closed graph G. Then |C ∩N(v)| < c

for every v ∈ V (G) \ C.

I Observation 2.3. Let G be a c-closed graph and let C be a
clique of size at most c− 1 in G or
a maximal clique in G.

Then, the graph G′ obtained by attaching a simplicial vertex v to C (that is, NG′(v) = C)
is c-closed.

Some proofs are deferred to a full version of this work.

3 On Ramsey Numbers of c-Closed Graphs

Ramsey’s theorem states that there is a function R such that any graph G with at least R(a, b)
vertices contains a clique of size a or an independent set of size b, for any a, b ∈ N. The
numbers R(a, b) are referred to as Ramsey numbers. It is known that R(t, t) > 2t/2 for

T. Koana, C. Komusiewicz, and F. Sommer 65:5

any t ≥ 3 [17, 23] and hence R(t, t) grows exponentially with t. Here, we show that the
Ramsey number R(a, b) is actually polynomial in a and b in c-closed graphs. Let Rc(a, b) :=
(c− 1) ·

(
b−1

2
)

+ (a− 1)(b− 1) + 1.

I Lemma 3.1. Any c-closed graph G on at least Rc(a, b) vertices contains a clique of size a
or an independent set of size b.

Proof. Assume to the contrary that G has no clique of size a and no independent set of
size b. Let I = {v1, . . . , v|I|} be a maximum independent set of G. Also let Ci be the set
of vertices adjacent to vi (including vi) and nonadjacent to any other vertex in I (that
is, Ci = N [vi] \ N(I \ {vi})) for each i ∈ [|I|]. Suppose that there exist u 6= u′ ∈ Ci
with uu′ /∈ E(G). Then, (I \ {vi}) ∪ {u, u′} is an independent set of size |I| + 1, which
contradicts the choice of I. Hence, we see that Ci is a clique. Note that every vertex of G is
adjacent to some vertex in I due to the maximality of I. It follows that

|V (G)| ≤
∑
i∈[|I|]

|Ci|+
∑

i<j∈[|I|]

|N(vi) ∩N(vj)|.

Note that |Ci| ≤ a − 1 for each i ∈ [|I|] and |N(vi) ∩ N(vj)| ≤ c − 1 for i < j ∈ [|I|] by
the c-closure of G. Since |I| < b, we have a contradiction on |V (G)|. J

The bound in Lemma 3.1 is essentially tight: Consider a graph G consisting of a disjoint
union of b− 1 complete graphs, each of order a− 1. Note that G is c-closed for any c ∈ N
and that G has no clique of size a or independent set of size b. Thus, we have a tight bound
for c = 1. This example also suggests that the bound in Lemma 3.1 cannot be asymptotically
improved for a ≥ cb.

4 (Threshold) Dominating Set

In this section we show that Threshold Dominating Set admits a kernel with kO(cr)

vertices. The problem is defined as follows.

Threshold Dominating Set
Input: A graph G and r, k ∈ N.
Question: Is there a vertex set D ⊆ V (G) such that |D| ≤ k and each vertex v ∈ V (G)

is dominated by D at least r times, that is, |N [v] ∩D| ≥ r?

Dominating Set is the special case of Threshold Dominating Set when r = 1.
Dominating Set is W[2]-hard when parameterized by k even in bipartite or split

graphs [30]. Furthermore, Dominating Set was shown to remain NP-hard on graphs with
girth at least t for any constant t [2]. Hence, Dominating Set is NP-hard even on 2-closed
graphs.

There are several fixed-parameter tractability results in restricted graph classes: When
the graph G contains no induced C3 or C4, Dominating Set admits a kernel of O(k3)
vertices and Threshold Dominating Set is fixed-parameter tractable [30]. Furthermore,
Dominating Set in d-degenerate graphs can be solved in kO(dk)n time [3]. This result was
extended to an algorithm with running time O∗(kO(dkr)) for Threshold Dominating Set
in d-degenerate graphs [21].

When the graph G does not contain the complete bipartite graph Ki,j for fixed j ≤ i as
a (not necessarily induced) subgraph, Dominating Set admits a kernel of O((j + 1)i+1ki

2)
vertices which can be computed in O(ni) time [29]. Since d-degenerate graphs do not contain

ESA 2020

65:6 Exploiting c-Closure in Kernelization Algorithms for Graph Problems

a Kd+1,d+1 as a subgraph, Dominating Set admits a kernelization of O(k(d+1)2) vertices
computable in O∗(2d) time [29]. This kernel size is essentially optimal since Dominating
Set in d-degenerate graphs admits no kernel of size O(k(d−3)(d−1)−ε) for any ε > 0 unless
NP ⊆ coNP/poly [11]. When G does not contain the complete bipartite graph Kt,t as a
(not necessarily induced) subgraph, Dominating Set can be solved in 2O(tk2(4k)t) time [31].
Since each d-degenerate graph does not contain a Kd+1,d+1 as a subgraph, this extends the
result of [3]. None of the above kernelizations and fixed-parameter algorithms implies a
tractability result on c-closed graphs, since the respective structural restrictions on G all
exclude cliques of some size. Moreover, since any graph without induced C3 or C4 is 2-closed,
our results extend the kernelization algorithms for these graphs to a more general class of
graphs.

To obtain a kernel for Threshold Dominating Set in c-closed graphs we first provide
a kernelization for a more general, colored variant defined as follows. The input graph is a
bw-graph, where the vertex set V (G) is partitioned into black vertices B and white verticesW .
We only require to dominate black vertices r times. The problem is defined as follows.

BW-Threshold Dominating Set
Input: A bw-graph G and r, k ∈ N.
Question: Does G contain a bw-threshold dominating set D ⊆ V (G), that is, a set

such that |N [v] ∩D| ≥ r for each vertex v ∈ B, of size at most k?

Clearly, each instance (G, k) of Threshold Dominating Set is equivalent to the
instance (G, k) of BW-Threshold Dominating Set where each vertex is black.

4.1 Polynomial Kernel in c-closed Graphs
We first develop a kernelization algorithm for BW-Threshold Dominating Set and then
we will remove colors at the end. Before we present our reduction rules, we prove the following
lemma, which will simplify some proofs later in this section.

I Lemma 4.1. Let (G, k) be a Yes-instance of BW-Threshold Dominating Set and let v
be a simplicial vertex with at least r neighbors. Then, there exists a bw-threshold dominating
set D of size at most k such that v /∈ D.

Proof. Suppose that G has a bw-threshold dominating set D of size at most k. We are
immediately done if v /∈ D, so we can assume that v ∈ D. If N [v] ⊆ D, then D \ {v} is a
bw-threshold dominating set of size at most k. Otherwise, there is a vertex u ∈ N(v) \D
and (D \ {v}) ∪ {u} is a bw-threshold dominating set of size at most k not containing v. J

We first aim to bound the number of black vertices. Our first reduction rule exploits the
fact that any bw-threshold dominating set includes at least r vertices in C, where C is a
maximal clique containing sufficiently many black vertices.

I Reduction Rule 4.2. Let C be a maximal clique containing at least ck black vertices.
Then,
1. add a vertex u and add an edge uv for each v ∈ C,
2. color u black, and
3. color all the vertices in C white.

Note that Reduction Rule 4.2 does not add new maximal cliques. Hence, Reduction
Rule 4.2 can be applied exhaustively in O∗(3c/3) time, because all maximal cliques can be
enumerated in O∗(3c/3) time [19].

T. Koana, C. Komusiewicz, and F. Sommer 65:7

I Lemma 4.3. Reduction Rule 4.2 is correct.

Proof. Let D be a bw-threshold dominating set of G of size at most k. We claim that
|D ∩ C| ≥ r. Assume to the contrary that |D ∩ C| ≤ r − 1. By Observation 2.2, each vertex
inD\C dominates at most c−1 vertices in C. Since C contains at least ck black vertices, there
is a black vertex in C that is not dominated r times by D, a contradiction. Thus, |D∩C| ≥ r.
Let G′ be the graph obtained as a result of Reduction Rule 4.2. Since uv ∈ E(G) for
each v ∈ C, we see that |NG′(u) ∩D| ≥ r and thus D is also a bw-threshold dominating set
of the graph G′. The other direction of the equivalence follows from Lemma 4.1. Finally,
note that Reduction Rule 4.2 maintains the c-closure by Observation 2.3. J

We will assume henceforth that Reduction Rule 4.2 has been applied exhaustively. Recall
that each c-closed graph on at least Rc(a, b) = (c − 1)

(
b−1

2
)

+ (a − 1)(b − 1) + 1 vertices
contains a clique of size a or an independent set of size b by Lemma 3.1. Since G does not
contain any black clique of size at least ck, each subgraph of G with at least ρ := Rc(ck, k+1)
black vertices contains an independent set of at least k+ 1 black vertices. We take advantage
of this observation in the following two reduction rules.

I Reduction Rule 4.4. Suppose that r ≤ c − 1. We define Reduction Rule 4.4.i for each
i ∈ [1, c− r] as follows: Let C be a clique of size exactly c− i and let P := B ∩ {v ∈ V (G) |
C ⊆ N(v)} be the set of common black neighbors of C. If |P | > ki−1ρ, then
1. add a vertex u and add an edge uv for each v ∈ C,
2. color u black, and
3. color all the vertices in C and P white.
Apply Reduction Rule 4.4.i in increasing order of i.

Since |P | > ki−1ρ, the common black neighbors P of C include an independent set I of
size k + 1. To apply Reduction Rule 4.4.i exhaustively, we consider each pair of vertices v, v′
from V and then we consider each clique in the common neighborhood N(v) ∩ N(v′).
Since |N(v) ∩N(v′)| < c, Reduction Rule 4.4 can be applied exhaustively in O∗(2c) time.

I Lemma 4.5. Reduction Rule 4.4 is correct.

Proof. Let C be a clique of size exactly c − i which has more than ki−1ρ common black
neighbors P . We prove the following claim for increasing i ∈ [1, c− r].

B Claim. If Reduction Rule 4.4.j has been applied exhaustively for each j ∈ [i− 1], then
any bw-threshold dominating set D of size at most k includes at least r vertices of C.

Proof. Suppose that i = 1. We assume to the contrary that |D∩C| ≤ r−1. Recall that there
is no clique of at least ck black vertices by Reduction Rule 4.2. Since |P | > ρ, we see from
Lemma 3.1 that P contains an independent set I of at least k + 1 vertices. By pigeon-hole
principle, there exists a vertex w ∈ D \ C which is adjacent to at least two vertices x and y
in I. Hence, x and y have at least c common neighbors C ∪ {w}, contradicting the c-closure
of G. It follows that D contains at least r vertices of C.

Suppose that i ∈ [2, c − r]. Again we assume to the contrary that |D ∩ C| ≤ r − 1.
Since |P | > ki−1ρ, there exists a vertex w ∈ D \ C that dominates at least ki−2ρ vertices
of P . Observe that w and each vertex in C have at least ki−2ρ > c common neighbors in P .
Hence, we have vw ∈ E(G) for each v ∈ C. Thus, C ∪ {w} is a clique of size c− i+ 1 with
at least ki−2ρ common black neighbors. However, this contradicts the fact that Reduction
Rule 4.4.(i− 1) has been applied exhaustively. Therefore, we obtain |D ∩ C| ≥ r. C

ESA 2020

65:8 Exploiting c-Closure in Kernelization Algorithms for Graph Problems

Let G′ be the graph obtained as a result of Reduction Rule 4.4. By the above claim, any
bw-threshold dominating set in G is also a bw-threshold dominating set in G′. The other
direction follows from Lemma 4.1. Finally, note that G′ is c-closed by Observation 2.3. J

I Reduction Rule 4.6. Suppose that r ≥ c. Let C be a clique of size exactly c− 1 and let
P := B ∩ {v ∈ V (G) | C ⊆ N(v)} be the set of common black neighbors of C. If |P | > ρ,
then return No.

I Lemma 4.7. Reduction Rule 4.6 is correct.

Proof. Suppose that G has a bw-threshold dominating set D of size at most k. We show that
for each clique C of size c− 1, there are at most ρ common black neighbors. Assume to the
contrary that |P | > ρ for P := B ∩ {v ∈ V (G) | C ⊆ N(v)}. Then, there is an independent
set I ⊆ P of size k + 1 by Lemma 3.1. Since r ≥ c, there are two vertices x, y ∈ I that are
adjacent to a vertex v ∈ D \C. Now, we have a contradiction to the c-closure of G, because x
and y have |C ∪ {v}| = c neighbors. J

Note that Reduction Rule 4.6 also can be applied exhaustively in O∗(2c) time. Hereafter, we
will assume that Reduction Rules 4.4 and 4.6 have been applied exhaustively. In the next
lemma, we show that the number of black neighbors is upper-bounded for each vertex.

I Lemma 4.8. Each vertex has at most kc−1ρ black neighbors for any Yes-instance (G, k).

Proof. First, suppose that r ≤ c − 1. To prove the lemma, we prove the following more
general claim:

B Claim. Let i ∈ [r] and let C be a clique of size exactly i with the set P of common black
neighbors. Then, |P | ≤ kc−iρ.

Proof. We prove the claim by induction on decreasing i. By Reduction Rule 4.4, the claim
holds for the base case i = r. Suppose that i < r. Since |C| = i ≤ r− 1, for any bw-threshold
dominating set D of size at most k, there is a vertex v ∈ D \C that dominates at least |P |/k
vertices of P . As |P |/k > c, the set C ∪ {v} is a clique with |P |/k common black neighbors.
By induction hypothesis, we obtain |P |/k ≤ kc−i−1ρ and equivalently, |P | ≤ kc−iρ. C

Observe that the lemma follows from the above claim for i = 1. Using Reduction Rule 4.6,
the lemma can be proven analogously for the case r ≥ c as well. J

By Lemma 4.8, there are at most kcρ black vertices for any Yes-instance (G, k):

I Reduction Rule 4.9. If G contains more than kcρ black vertices, then return No.

To compute a kernel it remains to upper-bound the number of white vertices in G.

I Reduction Rule 4.10. Let w be a white vertex in G. If there exist at least r ver-
tices v1, . . . , vr such that N(w) ∩B ⊆ N [vi] ∩B for each i ∈ [r], then remove w.

It is easy to see that Reduction Rule 4.10 can be applied exhaustively in polynomial time.

I Lemma 4.11. Reduction Rule 4.10 is correct.

Proof. Let G′ := G − w. Suppose that G has a bw-threshold dominating set D of size
at most k. If w /∈ D, then D is also a bw-threshold dominating set of G′. Hence, we
can assume that w ∈ D. If vi ∈ D for all i ∈ [r], then D \ {w} is a bw-threshold
dominating set for G and hence also for G′. Otherwise, there exists some i ∈ [r] with vi /∈ D.
Since N(w) ∩B ⊆ N [vi] ∩B, the set (D \ {w}) ∪ {vi} is a bw-threshold dominating set of
size at most k of G and G′. The other direction follows trivially. Since Reduction Rule 4.10
only deletes white vertices the c-closure is maintained. J

T. Koana, C. Komusiewicz, and F. Sommer 65:9

In the following, we will assume that Reduction Rule 4.10 has been applied exhaustively.
Now, we obtain a bound on the number of white vertices in G.

I Lemma 4.12. The graph G contains O(c|B|2 + |B|r−1) white vertices.

Proof. Since Reduction Rule 4.10 has been applied exhaustively, G contains at most r white
vertices w such that N(w) ⊆W . Hence, it remains to bound the number of white vertices
with at least one black neighbor. Observe that by the c-closure of G, there are O(c |B|2)
white vertices that are neighbors of two nonadjacent vertices u, v ∈ B.

Note that for all remaining white vertices w, the set Bw := N(w) ∩B of black neighbors
is a clique. Since Reduction Rule 4.10 has been applied exhaustively, we have |Bw| < r.
Moreover, for each clique C ⊆ B of size i ∈ [r − 1], there are at most r − i white vertices
with Bw = C. Thus, the number of white vertices w such that Bw is a clique is

r−1∑
i=1

i |B|r−i = |B|(|B|
r − 1)

(|B| − 1)2 − |B|
|B| − 1r ∈ O(|B|r−1).

Overall, there are O(c |B|2 + |B|r−1) white vertices. J

Recall that there are kcρ ∈ O(ckc+2) black vertices by Reduction Rule 4.9. Hence, the
overall number of vertices is O(c3k2c+4 + cr−1k(c+2)(r−1)), resulting in the following theorem:

I Theorem 4.13. BW-Threshold Dominating Set has a kernel with kO(cr) vertices
computable in O∗(2c) time.

To obtain a kernel for Threshold Dominating Set, it remains to show that any
BW-Threshold Dominating Set instance can be transformed into an equivalent instance
of Threshold Dominating Set.

I Theorem 4.14. Threshold Dominating Set has a kernel with kO(cr) vertices computable
in O∗(2c) time.

Proof. To obtain an kO(cr)-vertex kernel for Threshold Dominating Set, we first con-
struct an equivalent instance (G, k) of BW-Threshold Dominating Set using The-
orem 4.13. Then, we transform (G, k) into an equivalent instance (G′, k′) of Threshold
Dominating Set in kO(cr)-closed graphs as follows.

We start with a copy of G. We add a clique Q := {w1, . . . , wr+1} of r + 1 vertices. Then,
for each white vertex w we add edges ww1, . . . , wwr. Then, we remove all vertex colors. We
call the resulting graph G′. Let C = {w1, . . . wr} and let k′ = k + r. We show that (G, k) is
a Yes-instance if and only if (G′, k′) is a Yes-instance.

Let D be a bw-threshold dominating set of G. By construction, D ∪ C is a threshold
dominating set of size at most k′ of G′. Conversely, suppose that G′ has a threshold
dominating set D′ of size at most k′. By Lemma 4.1, we can assume that wr+1 /∈ D′.
Since degG′(wr+1) = r, it holds that NG′(wr+1) = C ⊆ D′. Hence, all white vertices of G
are dominated r times by C in G′. Thus, D := D′ \ C is a bw-threshold dominating set of
size at most k for G. J

Since the kernelization does not change the parameter r, it also gives a kernelization for
Dominating Set.

I Corollary 4.15. Dominating Set has a kernel with kO(c) vertices which is computable in
O∗(2c) time.

ESA 2020

65:10 Exploiting c-Closure in Kernelization Algorithms for Graph Problems

To complement this result, we show that there is no kernel for Dominating Set
significantly smaller than that of Corollary 4.15 under a widely believed assumption.

I Theorem 4.16. For c ≥ 3, Dominating Set has no kernel of size O(kc−1−ε) unless
coNP ⊆ NP/poly.

Proof. We will show the theorem by a reduction from λ-Hitting Set.

λ-Hitting Set
Input: A set family F over an universe U , where each S ∈ F has size λ, and

k ∈ N.
Question: Is there a subset X ⊆ U of size at most k such that for each S ∈ F we

have X ∩ S 6= ∅?

For any λ ≥ 2, λ-Hitting Set does not have a kernel of size O(kλ−ε) unless coNP ⊆
NP/poly [13, 14]. Let (U,F , k) be an instance of λ-Hitting Set. We will construct a λ+ 1-
closed graph G as follows: The vertex set V (G) is U ∪F . We add edges such that U forms a
clique in G. We also add an edge between u ∈ U and S ∈ F if and only if u ∈ S. Finally, we
set k′ = k. Since degG(S) = λ for each S ∈ F the graph G is λ+ 1-closed.

By construction, each hitting set X of size at most k is also a dominating set of size
at most k of G. For the converse direction, we may assume by Lemma 4.1 that there is a
dominating set D of size at most k for G not containing any vertex from F . Thus, D is also
a hitting set of (U,F , k).

Observe that our reduction preserves the parameter (that is, k = k′). Thus, it follows from
the result of Hermelin and Wu [22] that if Dominating Set admits a kernel of size O(kλ−1−ε)
for some ε > 0, then λ-Hitting Set admits a kernel of size O(kλ−ε), implying that coNP ⊆
NP/poly [13, 14]. J

We also obtain an algorithm for Threshold Dominating Set which is faster than
brute-force search on the kernel of Theorem 4.14 and an improved kernel on bipartite graphs.

I Theorem 4.17. Threshold Dominating Set can be solved in O∗(3c/3 + (ck)O(rk)) time
and Dominating Set can be solved in O∗((ck)O(k)) time.

I Theorem 4.18. Dominating Set in bipartite graphs has a kernel with O(c3k4) vertices.

5 Induced Matching

In this section, we develop kernelizations for Induced Matching in c-closed graphs.

Induced Matching
Input: A graph G and k ∈ N.
Question: Is there a set M of at least k edges such that endpoints of distinct edges

in M are pairwise nonadjacent?

Induced Matching is W[1]-hard when parameterized by k, even in bipartite graphs [26].
In terms of kernelizations, Induced Matching admits a kernel with O(∆2k) vertices [26]
and O(kd) vertices [18, 24]. The latter kernelization result is essentially tight: Unless coNP
⊆ NP/poly, Induced Matching has no kernel of size O(kd−3−ε) for any ε > 0 [11]. Despite
the lower bound in degenerate graphs, we discover in this section that Induced Matching
in c-closed graphs has a polynomial kernel when parameterized by k + c.

T. Koana, C. Komusiewicz, and F. Sommer 65:11

5.1 Ramsey-like Bounds for Induced Matchings
Dabrowski et al. [12] derived fixed-parameter tractability for Induced Matching in
(Ka,Kb,b)-free graphs. At the heart of their algorithm lies a Ramsey-type result for in-
duced matchings: For a, b ∈ N, there exists an integer Qa,b such that any bipartite graph
with a matching of size at least Qa,b contains a biclique Ka,a or an induced matching of size b.
In this subsection, we present analogous results for c-closed graphs where the number Qa,b is
polynomial in a and b. We begin with two preliminary lemmas.

I Lemma 5.1. Any graph G with a matching M of size at least 2∆b has an induced matching
of size b.

Proof. We prove by induction on b. The lemma clearly holds for the base case b = 0. For b > 0,
let uv be a matched edge in M and let G′ := G−N [{u, v}]. Since |N [{u, v}]| ≤ 2∆G, there
is a matching of size at least 2∆Gb− 2∆G ≥ 2∆G′(b− 1) in G′. Consequently, there is an
induced matching M ′ of size b− 1 in G′ by induction hypothesis. Thus, G has an induced
matching M ′ ∪ {uv} of size b. J

I Lemma 5.2. Suppose that G is a c-closed bipartite graph. If there are at least 2b vertices
of degree at least cb, then G contains an induced matching of size at least b.

Proof. Let A,B be a bipartition of G. Without loss of generality, assume that A contains a
set A′ of exactly b vertices of degree at least cb. Since G is c-closed, |N(v) ∩N(v′)| < c for
all v, v′ ∈ A′. It follows that each v ∈ A′ has a neighbor u ∈ N(v) such that u /∈ N(v′) for
all v′ ∈ A′ \ {v}. Thus, G contains an induced matching of size b. J

In the following lemma, we obtain a Ramsey-type result for induced matchings in c-closed
bipartite graphs.

I Lemma 5.3. Let Qc(b) := 2cb2 +2b ∈ O(cb2). Let G be a c-closed bipartite graph. If G has
a matching M of size at least Qc(b), then G contains an induced matching of size at least b.

Proof. If there are at least 2b vertices of degree at least cb in G, then Lemma 5.2 yields an
induced matching of size b. Thus, we can assume that |S| < 2b for the set S of vertices of
degree at least cb. Observe that G − S has a matching of size 2cb2 and that ∆G−S ≤ cb.
Thus, G− S has an induced matching of size b by Lemma 5.1. J

We extend Lemma 5.3 to non-bipartite c-closed graphs in the subsequent two lemmas.
Recall that each c-closed graph G with at least Rc(a, b) ∈ O(cb2 + ab) vertices contains
a clique of a vertices or an independent set of b vertices by Lemma 3.1. Our proofs for
Lemmas 5.4 and 5.5 put Lemmas 3.1 and 5.3 together.

I Lemma 5.4. Let Q′c(a, b) := Rc(a,Qc(b)) ∈ O(cab2 + c3b4). Any c-closed graph G with an
independent set I of size at least Q′c(a, b) and a matching M saturating I contains a clique
of size a or an induced matching of size b.

Proof. Suppose that G contains no clique of size a. We show that there is an induced
matching of size b in G. Let H := V (M) \ I be the set of vertices matched to I in M .
Since |H| ≥ Rc(a,Qc(b)), it follows from Lemma 3.1 that there is an independent set H ′ ⊆ H
of size at least Qc(b) in G′. Let I ′ ⊆ I be the set of vertices matched to H ′ in M . Then,
there is an induced matching of size at least b in G[H ′ ∪ I ′] by Lemma 5.3. Thus, G contains
an induced matching of size b. J

ESA 2020

65:12 Exploiting c-Closure in Kernelization Algorithms for Graph Problems

I Lemma 5.5. Let Q′′c (a, b) := Rc(a,Q′c(b)) ∈ O(c3a2b4 + c7b8). Any c-closed graph G with
a matching M of size at least Q′′c (a, b) contains a clique of size a or an induced matching of
size b.

Proof. Suppose that G contains no clique of size a. We will show that there is an induced
matching of size b in G. Let I and H be disjoint vertex sets such that I and H consist of
distinct endpoints of each edge in M . Since |I| ≥ Rc(a,Q′c(b)), it follows from Lemma 3.1
that there is an independent set I ′ ⊆ I of size Q′c(b). Let H ′ ⊆ H be the set of vertices
matched to I ′ and let G′ := G[H ′ ∪ I ′]. Since I is an independent set of size at least Q′c(b),
it follows from Lemma 5.3 that there is an induced matching M ′ of size at least b in G′.
Consequently, G contains an induced matching of size b. J

5.2 Polynomial Kernel in c-closed Graphs
In this subsection, we prove that Induced Matching in c-closed graphs admits a kernel
with O(c7k8) vertices. Our kernelization is based on Lemmas 5.4 and 5.5. To utilize these
lemmas, we start with a reduction rule that destroys large cliques.

I Reduction Rule 5.6. Let v ∈ V (G) and let Mv be a maximum matching in G[N(v)].
If |Mv| ≥ 2ck, then remove v.

I Lemma 5.7. Reduction Rule 5.6 is correct.

Proof. Let v ∈ V (G), let Mv be a maximum matching in G[NG(v)] of size at least 2ck,
and let G′ := G − v. Suppose that G has an induced matching M of size at least k. We
show that G′ contains an induced matching of size at least k as well. We are done if M
does not use v, because M is also an induced matching in G′. So we can assume that M
uses v. Let v1v2, . . . , v2k−1v2k be k edges of M such that v2k = v. By the definition of
induced matching, vi /∈ NG(v) holds for each i ∈ [2k − 2]. Thus, the c-closure of G yields
that |NG(v) ∩NG(vi)| < c for each i ∈ [2k − 2]. Since Mv is of size at least 2ck, there is an
edge e in Mv neither whose endpoint is adjacent to any vertex vi for i ∈ [2k− 2]. Hence, the
edges v1v2, . . . , v2k−3v2k−2, e form an induced matching of size k in G′. The other direction
follows trivially. Note that the c-closure is maintained by Observation 2.1. J

Henceforth, we assume that Reduction Rule 5.6 has been applied for each vertex. In the
next lemma, we verify that there is no large clique.

I Lemma 5.8. There is no clique of size 4ck + 1 in G.

Proof. Suppose that G contains a clique C of size at least 4ck + 1 and let v ∈ C. Note
that C ⊆ N [v]. LetMv be a maximummatching inG[N(v)]. Also, letN1

v ⊆ N(v) be the set of
vertices incident withMv and letN0

v := N(v)\N1
v . SinceMv is a maximummatching,N0

v is an
independent set in G[N(v)]. Thus, C includes at most one vertex of N0

v , that is, |C∩N0
v | ≤ 1.

Moreover, it follows from Reduction Rule 5.6 that |Mv| ≤ 2ck − 1 and hence |N1
v | ≤ 4ck − 2.

Now, we have a contradiction because |C| = |C ∩N0
v |+ |C ∩N1

v |+ 1 ≤ 4ck. J

Once we show that the graph has a sufficiently large matching, Lemma 5.5 tells us that we
can find a sufficiently large induced matching as well. Note, however, that a graph may not
have a sufficiently large matching, even if it contains sufficiently many vertices (consider a
star K1,n with n leaves). Our way around this obstruction is the LP (Linear Programming)
relaxation of Vertex Cover (henceforth, we will abbreviate it as VCLP). It is well-known
in the theory of kernelization that VCLP almost trivially yields a linear-vertex kernel for

T. Koana, C. Komusiewicz, and F. Sommer 65:13

Vertex Cover [7] due to the Nemhauser-Trotter theorem [28]. Here, we will exploit VCLP
to ensure that after we apply some reduction rules, either the size of G is upper-bounded
or the minimum vertex cover size (or equivalently the maximum matching size) of G is
sufficiently large.

Recall that Vertex Cover can be formulated as an integer linear program as follows,
using a variable xv for each v ∈ V (G):

min
∑

v∈V (G)

xv subject to xu + xv ≥ 1 ∀uv ∈ E(G),
xv ∈ {0, 1} ∀v ∈ V (G).

In VCLP, the last integral constraint is relaxed to 0 ≤ xv ≤ 1 for each v ∈ V (G). It is known
that VCLP admits a half-integral optimal solution (that is, xv ∈ {0, 1/2, 1} for each v ∈ V (G))
and such a solution can be computed in O(m

√
n) time via a reduction to Maximum

Matching (see, for instance, [4] or [10, Section 2.5]). Suppose that we have a half-integral
optimal solution (xv)v∈V (G). Let V0 := {v ∈ V (G) | xv = 0}, V1 := {v ∈ V (G) | xv = 1},
and V1/2 := {v ∈ V (G) | xv = 1/2}.

We will bound the sizes of V0, V1, and V1/2 in the upcoming rules. We begin with V1/2.
We use the bound Q′′c as specified in Lemma 5.5.

I Reduction Rule 5.9. If |V1/2| ≥ 3Q′′c (4ck + 1, k), then return Yes.

To show the correctness, we will use the fact that V C +MM ≥ 2LP for any graph G [20,
Lemma 2.1]. Here, V C, MM , and LP refer to the minimum vertex cover size, the maximum
matching size, and the optimal VCLP cost of G.

I Lemma 5.10. Reduction Rule 5.9 is correct.

Proof. Observe that the optimal cost of VCLP for G[V1/2] is |V1/2|/2. Let X be a minimum
vertex cover and M be a maximum matching in G[V1/2]. Then, it follows that |X|+ |M | ≥
|V1/2| [20, Lemma 2.1]. Since V (M) is a vertex cover in G[V1/2], we also have 2|M | ≥ |X|.
Thus, |M | ≥ |V1/2|/3 ≥ Q′′c (4ck, k). Recall that there is no clique of size 4ck+1 by Lemma 5.8.
Hence, Lemma 5.5 yields that G contains an induced matching of size at least k. J

We next upper-bound the size of V1. See Lemma 5.4 for the definition of Q′c.

I Reduction Rule 5.11. If |V1| ≥ Q′c(4ck + 1, k), then return Yes.

To prove the correctness of Reduction Rule 5.11, let us introduce the notion of crowns [9].
For a graph G, a crown is an ordered pair (I,H) of vertex sets of G with the following
properties:
1. I 6= ∅ is an independent set in G,
2. H = N(I), and
3. there is a matching saturating H in G[H, I].
Crowns are closely related to VCLP – in fact, (V0, V1) is a crown [1, 8].

I Lemma 5.12. Reduction Rule 5.11 is correct.

Proof. Since (V0, V1) is a crown in G, there is a matching M saturating V1 in G[V0, V1]. By
definition, I := V0 ∩ V (M) is an independent set of size |V1| ≥ Q′c(4ck + 1, k) in G. Now, it
follows from Lemma 5.4 that G[I ∪ V1] contains an induced matching of size k. J

To deal with V0, we introduce some additional rules which may add or remove vertices.
Let us start with a simple rule. Basically, if there are multiple leaf vertices with the same
neighborhood, then only one of them is relevant.

ESA 2020

65:14 Exploiting c-Closure in Kernelization Algorithms for Graph Problems

I Reduction Rule 5.13. If v1 ∈ V1 has more than one leaf neighbor, then remove all but
one of them.

The correctness of Reduction Rule 5.13 is obvious and thus we omit the proof.

I Reduction Rule 5.14. Let v0 ∈ V0 and let v1 ∈ V1. If NG[v0] ⊆ NG[v1] and there is no
leaf vertex attached to v1, then attach a leaf vertex ` to v1.

I Lemma 5.15. Reduction Rule 5.14 is correct.

Proof. Let G′ be the graph obtained by adding a leaf vertex ` to v1. The forward direction
is trivial. For the other direction, note that any induced matching M ′ in G′ is an induced
matching in G if M ′ does not include v1`. Hence, it suffices to show that if there is an
induced matching M ′ in G′ such that |M ′| ≥ k and v1` ∈ M ′, then there is an induced
matching of size k in G as well. By the definition of induced matching, M ′ \ {v1`} includes
no edge incident with a neighbor of v1. Since NG[v0] ⊆ NG[v1], the same holds for v0.
Thus, (M ′ \ {v1`}) ∪ {v0v1} is an induced matching of size at least k in G.

For c > 1, Reduction Rule 5.14 maintains the c-closure by Observation 2.3. Note that
Induced Matching can be solved in linear time when G is 1-closed: Since G is a disjoint
union of complete graphs, (G, k) is a Yes-instance if and only if G contains at least k cliques
of size at least two. J

I Reduction Rule 5.16. Let v0 ∈ V0 be a non-leaf vertex. If each vertex v1 ∈ NG(v0) has a
leaf neighbor, then remove v0.

I Lemma 5.17. Reduction Rule 5.16 is correct.

Proof. Let G′ = G − v0. Suppose that G has an induced matching M of size at least k.
If M does not use v0 we are done. So assume that M includes v0v1 for v1 ∈ NG(v0). Since
there is a leaf vertex ` attached to v1, the set (M \ {v0v1}) ∪ {v1`} is an induced matching
of size at least k in G′. The other direction follows trivially. The c-closure is maintained by
Observation 2.1. J

I Theorem 5.18. Induced Matching has a kernel with O(c7k8) vertices.

Proof. We apply Reduction Rules 5.6, 5.9, 5.11, 5.13, 5.14 and 5.16 exhaustively. We also
remove all isolated vertices. It is easy to verify that all these rules can be exhaustively
applied in polynomial time.

Note that |V1/2| ∈ O(c7k8) and |V1| ∈ O(c3k4) by Reduction Rules 5.9 and 5.11. We
show that |V0| ∈ O(c|V1|2) = O(c7k8). Note that there are at most |V1| leaf vertices in V0
by Reduction Rule 5.13. All other vertices in V0 are adjacent to at least two nonadjacent
vertices in V1: If there exists a vertex v0 ∈ V0 such that NG(v0) is a clique of size at least
two, then Reduction Rule 5.14 adds a leaf vertex to each vertex in NG(v0) and Reduction
Rule 5.16 removes v0. Since G is c-closed, there are c

(|V1|
2
)
non-leaf vertices in V0. It follows

that |V0| < |V1|+ c
(|V1|

2
)
∈ O(c7k8). J

We also obtain smaller kernels in bipartite graphs. Our kernelization is based on the
following lemma, proven by a meet-in-the-middle approach on vertex degrees. Interestingly,
this lemma will also play a central role in the kernelization for Irredundant Set in
Section 6.

I Lemma 5.19. Any bipartite graph G with at least 6∆3/2b+ 2∆b non-isolated vertices has
an induced matching of size b.

I Theorem 5.20. Induced Matching in bipartite graphs has a kernel with O(∆3/2k)
vertices and a kernel with O(c3/2k5/2) vertices.

T. Koana, C. Komusiewicz, and F. Sommer 65:15

6 Irredundant Set

A vertex set S ⊆ V (G) is irredundant if there is a private neighbor for each vertex v in S.
Here, a private neighbor of v ∈ S is a vertex v′ ∈ N [v] (possibly v′ = v) such that v′ /∈ N(u)
for each u ∈ S \ {v}.

Irredundant Set
Input: A graph G and k ∈ N.
Question: Is there an irredundant set S of at least k vertices in G?

Irredundant Set is W[1]-hard in general [16] but it admits a kernel with at most (d+1)k
vertices in d-degenerate graphs. This is because any d-degenerate graph on at least (d+ 1)k
vertices contains an independent set and thus an irredundant set of at least k vertices. In
this section, we show that Irredundant Set admits a kernel with O(c5/2k3) vertices. Our
kernelization relies on the Ramsey bound (Lemma 3.1) and the bound on induced matchings
(Lemma 5.19). We show that the following reduction rule suffices to obtain a polynomial
kernel.

I Reduction Rule 6.1. If u, v ∈ V (G) are simplicial vertices such that NG[u] = NG[v], then
remove v.

I Lemma 6.2. Reduction Rule 6.1 is correct.

Proof. Let u, v ∈ V (G) be vertices such that NG[u] = NG[v]. Let G′ be the graph obtained
by removing v as specified in Reduction Rule 6.1. Suppose that (G, k) is a Yes-instance with
a solution S. It must hold that u /∈ S or v /∈ S by the definition of irredundant sets. Without
loss of generality, assume that v /∈ S. If v is a private neighbor of w ∈ S (possibly w = u),
then u is also a private neighbor of w. Thus, (G′, k) is also a Yes-instance. The other
direction follows trivially. The c-closure is maintained by Observation 2.1. J

We prove that Reduction Rule 6.1 yields a kernelization of the claimed size.

I Theorem 6.3. Irredundant Set in c-closed graphs has a kernel with O(c5/2k3) vertices.

Proof. We assume that Reduction Rule 6.1 has been applied exhaustively.
To simplify notation, let α′ := 6c3/2k+2ck+1 ∈ O(c3/2k) and α := Rc(α′, k) ∈ O(c3/2k2).

We claim that any instance (G, k) with at least Rc(cα+ 1, k) ∈ O(c5/2k3) vertices is a Yes-
instance. By Lemma 3.1, G has a clique of size cα+ 1 or an independent set of size k. Since
any independent set is also an irredundant set, (G, k) is a Yes-instance when G contains an
independent set of size k. Thus, we assume that there is no independent set of size k in G.

It remains to show that if G has a maximal clique C of size greater than cα, then (G, k)
is a Yes-instance. Let C ′ = {v ∈ C | NG(v) \ C 6= ∅} be the set of vertices in C that have
at least one neighbor outside C. There exists at most one vertex v with NG[v] = C by
Reduction Rule 6.1 and thus |C ′| ≥ |C| − 1 ≥ cα. Let G′ = G− (C \ C ′). That is, G′ is a
graph obtained by removing a vertex adjacent to all vertices in C, if such a vertex exists.
For each i ∈ [α], we will choose vertices xi ∈ C ′ and yi ∈ NG′(C ′) as follows: Let xi be
an arbitrary vertex in C ′ \

⋃
j∈[i−1] NG′(yj) and let yi be an arbitrary vertex in NG′(xi).

Note that C ′ \
⋃
j∈[i−1] NG′(yj) 6= ∅ for each i ∈ [α], because |C ′| ≥ cα and yj has less

than c neighbors in C ′ for all j ∈ [i− 1] by Observation 2.2.
Since G has no independent set of size k, Lemma 3.1 gives us a clique of size α′

among y1, . . . , yα. Without loss of generality, let Y = {y1, . . . , yα′} be a clique of size α′ and
let X = {x1, . . . , xα′}. For X ′ = X \ {x1} and Y ′ = Y \ {y1}, we prove that the bipartite
graph G[X ′, Y ′] has an induced matching of size k, using Lemma 5.19. First we show
that ∆G[X′,Y ′] < c. All vertices in Y ′ have less than c neighbors in X ′ by Observation 2.2.

ESA 2020

65:16 Exploiting c-Closure in Kernelization Algorithms for Graph Problems

By the choice of xi and yi, we have xi /∈ NG(y1) for all i ∈ [2, α′]. It follows from the c-closure
of G that xi has less than c neighbors in Y ′ for each i ∈ [2, α′]. Thus, we have ∆G[X′,Y ′] < c.
Note that we choose xi and yi such that there is an edge xiyi ∈ E(G) for each i ∈ [2, α′]. So
G[X ′, Y ′] has no isolated vertices. Therefore, it follows from Lemma 5.19 that there is an
induced matching {xi1yi1 , . . . , xikyik} of size k in G[X ′, Y ′]. Now, the set {xi1 , . . . , xik} is
an irredundant set in G, where yij is a private neighbor of xij for each j ∈ [k]. J

7 Conclusion

We have demonstrated that the c-closure of a graph can be exploited in the design of
parameterized algorithms for well-studied graph problems. We believe that the c-closure
could become a standard secondary parameter just as the maximum degree ∆ or the
degeneracy d of the input graph and that studying problems with respect to this parameter
may often lead to useful tractability results. In essence, whenever one obtains a fixed-
parameter algorithm that uses ∆ as one of its parameters, one should ask whether ∆ can
be replaced by the c-closure of the input graph. As concrete applications of the c-closure
parameterization, one could consider further graph problems that are hard with respect to
the solution size. For example, is Perfect Code [6] fixed-parameter tractable with respect
to c + k where k is the size of the code and does it admit a polynomial kernelization for
this parameter? Further problems to investigate could be r-Regular Induced Subgraph
which is W[1]-hard when parameterized by the subgraph size [27] or cardinality constrained
optimization problems in graphs such as computing a maximum cut where the number of
vertices in one part is constrained to be k [5]. These problems are often fixed-parameter
tractable for the combination of the cardinality constraint k and the maximum degree ∆ [5, 25].
Which of these problems is also fixed-parameter tractable for the combination of k and c?
For answering such questions, the Ramsey bound of Lemma 3.1 could prove useful.

References
1 Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and W. Henry Suters. Crown

structures for vertex cover kernelization. Theory of Computing Systems, 41(3):411–430, 2007.
2 Vladimir E. Alekseev, Dmitry V. Korobitsyn, and Vadim V. Lozin. Boundary classes of graphs

for the dominating set problem. Discrete Mathematics, 285(1-3):1–6, 2004.
3 Noga Alon and Shai Gutner. Linear time algorithms for finding a dominating set of fixed size

in degenerated graphs. Algorithmica, 54(4):544–556, 2009.
4 Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the weighted

vertex cover problem. In Proceedings of the 9th International Workshop Graph-Theoretic
Concepts in Computer Science (WG ’83), pages 17–28. Universitätsverlag Rudolf Trauner,
Linz, 1983.

5 Leizhen Cai. Parameterized complexity of cardinality constrained optimization problems. The
Computer Journal, 51(1):102–121, 2008.

6 Marco Cesati. Perfect code is W[1]-complete. Information Processing Letters, 81(3):163–168,
2002.

7 Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. Journal of Algorithms, 41(2):280–301, 2001.

8 Miroslav Chlebík and Janka Chlebíková. Crown reductions for the minimum weighted vertex
cover problem. Discrete Applied Mathematics, 156(3):292–312, 2008.

9 Benny Chor, Mike Fellows, and David W. Juedes. Linear kernels in linear time, or how to save
k colors in O(n2) steps. In Proceedings of the 30th International Workshop Graph-Theoretic
Concepts in Computer Science (WG ’04), volume 3353 of Lecture Notes in Computer Science,
pages 257–269. Springer, 2004.

T. Koana, C. Komusiewicz, and F. Sommer 65:17

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

11 Marek Cygan, Fabrizio Grandoni, and Danny Hermelin. Tight kernel bounds for problems on
graphs with small degeneracy. ACM Transactions on Algorithms, 13(3):43:1–43:22, 2017.

12 Konrad Dabrowski, Marc Demange, and Vadim V. Lozin. New results on maximum induced
matchings in bipartite graphs and beyond. Theoretical Computer Science, 478:33–40, 2013.

13 Holger Dell and Dániel Marx. Kernelization of packing problems. In Proceedings of the 23rd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’12), pages 68–81. SIAM,
2012.

14 Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. Journal of the ACM, 61(4):23:1–23:27, 2014.

15 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013.

16 Rodney G. Downey, Michael R. Fellows, and Venkatesh Raman. The complexity of irredundant
sets parameterized by size. Discrete Applied Mathematics, 100(3):155–167, 2000.

17 Paul Erdös. Some remarks on the theory of graphs. Bulletin of the American Mathematical
Society, 53(4):292–294, 1947.

18 Rok Erman, Łukasz Kowalik, Matjaž Krnc, and Tomasz Waleń. Improved induced matchings
in sparse graphs. Discrete Applied Mathematics, 158(18):1994–2003, 2010.

19 Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding cliques in
social networks: A new distribution-free model. SIAM Journal on Computing, 49(2):448–464,
2020.

20 Shivam Garg and Geevarghese Philip. Raising the bar for vertex cover: Fixed-parameter
tractability above a higher guarantee. In Proceedings of the 27th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA ’16), pages 1152–1166. SIAM, 2016.

21 Petr A. Golovach and Yngve Villanger. Parameterized complexity for domination problems
on degenerate graphs. In Proceedings of the 34th International Workshop Graph-Theoretic
Concepts in Computer Science (WG ’08), volume 5344 of Lecture Notes in Computer Science,
pages 195–205, 2008.

22 Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial lower
bounds for kernelization. In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’12), pages 104–113. SIAM, 2012.

23 Stasys Jukna. Extremal Combinatorics - With Applications in Computer Science. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2011.

24 Iyad A. Kanj, Michael J. Pelsmajer, Marcus Schaefer, and Ge Xia. On the induced matching
problem. Journal of Computer and System Sciences, 77(6):1058–1070, 2011.

25 Christian Komusiewicz and Manuel Sorge. An algorithmic framework for fixed-cardinality op-
timization in sparse graphs applied to dense subgraph problems. Discrete Applied Mathematics,
193:145–161, 2015.

26 Hannes Moser and Somnath Sikdar. The parameterized complexity of the induced matching
problem. Discrete Applied Mathematics, 157(4):715–727, 2009.

27 Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular induced
subgraphs. Journal of Discrete Algorithms, 7(2):181–190, 2009.

28 George L. Nemhauser and Leslie E. Trotter. Vertex packings: Structural properties and
algorithms. Mathematical Programming, 8:232–248, 1975.

29 Geevarghese Philip, Venkatesh Raman, and Somnath Sikdar. Polynomial kernels for dominating
set in graphs of bounded degeneracy and beyond. ACM Transactions on Algorithms, 9(1):11:1–
11:23, 2012.

30 Venkatesh Raman and Saket Saurabh. Short cycles make W-hard problems hard: FPT
algorithms for W-hard problems in graphs with no short cycles. Algorithmica, 52(2):203–225,
2008.

31 Jan Arne Telle and Yngve Villanger. FPT algorithms for domination in biclique-free graphs.
In Proceedings of the 20th Annual European Symposium on Algorithms (ESA ’12), volume
7501 of Lecture Notes in Computer Science, pages 802–812. Springer, 2012.

ESA 2020

Many Visits TSP Revisited
Łukasz Kowalik
Institute of Informatics, University of Warsaw, Poland
https://www.mimuw.edu.pl/~kowalik/
kowalik@mimuw.edu.pl

Shaohua Li
Institute of Informatics, University of Warsaw, Poland
shaohua.li@mimuw.edu.pl

Wojciech Nadara
Institute of Informatics, University of Warsaw, Poland
w.nadara@mimuw.edu.pl

Marcin Smulewicz
Institute of Informatics, University of Warsaw, Poland
m.smulewicz@mimuw.edu.pl

Magnus Wahlström
Royal Holloway, University of London, UK
Magnus.Wahlstrom@rhul.ac.uk

Abstract
We study the Many Visits TSP problem, where given a number k(v) for each of n cities and
pairwise (possibly asymmetric) integer distances, one has to find an optimal tour that visits each
city v exactly k(v) times. The currently fastest algorithm is due to Berger, Kozma, Mnich and
Vincze [SODA 2019, TALG 2020] and runs in time and space O∗(5n). They also show a polynomial
space algorithm running in time O(16n+o(n)). In this work, we show three main results:

A randomized polynomial space algorithm in time O∗(2nD), where D is the maximum distance
between two cities. By using standard methods, this results in a (1 + ε)-approximation in time
O∗(2nε−1). Improving the constant 2 in these results would be a major breakthrough, as it
would result in improving the O∗(2n)-time algorithm for Directed Hamiltonian Cycle, which
is a 50 years old open problem.
A tight analysis of Berger et al.’s exponential space algorithm, resulting in an O∗(4n) running
time bound.
A new polynomial space algorithm, running in time O(7.88n).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases many visits traveling salesman problem, exponential algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.66

Funding This workshop was supported by a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 714704 (PI: Marcin Pilipczuk).
Łukasz Kowalik: Supported by ERC Starting Grant TOTAL (Grant Agreement No 677651).
Shaohua Li: Supported by ERC Starting Grant CUTACOMBS (Grant Agreement No 714704).
Wojciech Nadara: Supported by ERC Starting Grant CUTACOMBS (Grant Agreement No 714704).
Marcin Smulewicz: Supported by ERC Starting Grant TOTAL (Grant Agreement No 677651).

Acknowledgements The research leading to the results presented in this paper was partially carried
out during the Parameterized Algorithms Retreat of the University of Warsaw, PARUW 2020, held
in Krynica-Zdrój in February 2020.

© Łukasz Kowalik, Shaohua Li, Wojciech Nadara, Marcin Smulewicz, and Magnus Wahlström;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 66; pp. 66:1–66:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7546-2969
https://www.mimuw.edu.pl/~kowalik/
mailto:kowalik@mimuw.edu.pl
mailto:shaohua.li@mimuw.edu.pl
mailto:w.nadara@mimuw.edu.pl
mailto:m.smulewicz@mimuw.edu.pl
mailto:Magnus.Wahlstrom@rhul.ac.uk
https://doi.org/10.4230/LIPIcs.ESA.2020.66
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 Many Visits TSP Revisited

1 Introduction

In the Many Visits TSP (MVTSP) we are given a set V of n vertices, with pairwise
distances (or costs) d : V 2 → Z≥0 ∪ {∞}. We are also given a function k : V → Z+. A
valid tour of length ` is a sequence of vertices (x1, . . . , x`), where ` =

∑
v∈V k(v), such

that each v ∈ V appears in the sequence exactly k(v) times. The cost of the tour is∑`−1
i=1 d(xi, xi+1) + d(x`, x1). Our goal is to find a valid tour with minimum cost.
Many Visits TSP is a natural generalization of the classical (asymmetric) Traveling

Salesman Problem (TSP), which corresponds to the case when k(v) = 1 for every
vertex v. Similarly as its special case, MVTSP arises with a variety of applications, including
scheduling [24, 17, 6, 27, 12], computational geometry [20] and parameterized complexity [21].

1.1 Related work
The standard dynamic programming for TSP of Bellman [1], Held and Karp [16] running
in time O∗(2n) can be easily generalized to MVTSP resulting in an algorithm with the
running time of O∗(

∏
v∈V (k(v) + 1)), as noted by Psaraftis [24]. A breakthrough came in

the work of Cosmadakis and Papadimitriou [7] who presented an algorithm running in time
2O(n logn) +O(n3 log `) and space 2O(n logn), thus essentially removing the dependence on
the function k from the bound (the log ` factor can be actually skipped if we support the
original algorithm with a today’s state-of-the-art minimum cost flow algorithm). This may
be surprising since the length of the output sequence is `. However, beginning from the work
of Cosmadakis and Papadimitriou we consider MVTSP with compressed output, namely the
output is a multiplicity function which encodes the number of times every edge is visited by
the tour. By using a standard Eulerian tour algorithm we can compute an explicit tour from
this output.

The crux of the approach of Cosmadakis and Papadimitriou [7] was an observation that
every solution can be decomposed to a minimal connected spanning Eulerian subgraph
(which enforces connectivity of the solution) and a subgraph satisfying appropriate degree
constraints (which completes the tour so that the numbers of visits agree). Moreover, once
we guess the degree sequence δ of the Eulerian subgraph, our task splits into two separate
tasks: finding a cheapest minimal connected Eulerian subgraph consistent with δ (which is
computationally hard) and finding a cheapest subgraph satisfying the degree constraints
(which can by solved in polynomial time by a reduction to minimum cost flow).

Yet another breakthrough came only recently, namely Berger, Kozma, Mnich and Vincze [3,
2] improved the running time to O∗(5n). Their main contribution is an idea that it is more
convenient to use outbranchings (i.e. spanning trees oriented out of the root) to force
connectivity of the solution. The result of Berger et al. is the first algorithm for MVTSP
which is optimal assuming Exponential Time Hypothesis (ETH) [18], i.e., there is no algorithm
in time 2o(n), unless ETH fails. Moreover, by applying the divide and conquer approach
of Gurevich and Shelah [15] they design a polynomial space algorithm, running in time
O(16n+o(n)).

1.2 Our results
In this work, we take the next step in exploration of the Many Visits TSP problem: we
aim at algorithms which are optimal at a more fine grained level, namely with running
times of the form O(cn), such that an improvement to O((c − ε)n) for any ε > 0 meets a
kind of natural barrier, for example contradicts the Strong Exponential Time Hypothesis
(SETH) [19] or the Set Cover Conjecture (SCC) [8]. Our main result is the following theorem.

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:3

I Theorem 1.1. There is a randomized algorithm that solves Many Visits TSP in time
O∗(2nD) and polynomial space, where D = max{d(u, v) : u, v ∈ V, d(u, v) 6= ∞}. The
algorithm returns a minimum weight solution with constant probability.

The natural barrier in this case is connected with Directed Hamiltonicity, the
problem of determining if a directed graph contains a Hamiltonian cycle. Indeed, this is
a special case of Many Visits TSP with D = 1, so an improvement to O∗(1.99nD) in
Theorem 1.1 would result in an algorithm in time O∗(1.99n) for Directed Hamiltonicity.
While it is not known whether such an algorithm contradicts SETH or SCC, the question
about its existence is a major open problem which in the last 58 years has seen some progress
only for special graph classes, like bipartite graphs [4, 9].

At the technical level, Theorem 1.1 uses the so-called algebraic approach and relies on two
key insights. The first one is to enforce connectivity not by guessing a spanning connected
subgraph as in the previous works, but by applying the Cut and Count approach of Cygan et
al [10]. The second insight is to satisfy the degree constraints using the Tutte matrix [26, 22].

By using standard rounding techniques, we are able to make the algorithm from Theo-
rem 1.1 somewhat useful even if the maximum distance D is large. Namely, we prove the
following.

I Theorem 1.2. For any ε > 0 there is a randomized (1 + ε)-approximation algorithm that
solves Many Visits TSP in O∗(2nε−1) time and polynomial space.

In Theorems 1.1 and 1.2 the better exponential dependence in the running time was
achieved at the cost of sacrificing an O(D) factor in the running time, or the optimality of
the solution. What if we do not want to sacrifice anything? While we are not able to get a
O∗(2n) algorithm yet, we are able to report a progress compared to the algorithm of Berger
et al. in time O∗(5n). In fact we do not show a new algorithm but we provide a refined
analysis of the previous one. The new analysis is tight (up to a polynomial factor).

I Theorem 1.3. There is an algorithm that solves Many Visits TSP in time and space
O∗(4n).

In short, Berger et al.’s polyspace O∗(16n+o(n)) time algorithm iterates through all O(4n)
degree sequences of an outbranching, finds the cheapest outbranching for each sequence
in time O(4n+o(n)), and completes it to satisfy the degree constraints using a polynomial
time flow computation. Note that it is hard to speed up the cheapest outbranching routine,
because for the sequence of n− 1 ones and one zero we get essentially the TSP, for which
the best known polynomial space algorithm takes time O(4n+o(n)) [15]. However, we are
still able to get a significant speed up of their algorithm, roughly, by using a more powerful
minimum cost flow network, which allows for computing the cheapest outbranchings in
smaller subgraphs.

I Theorem 1.4. There is an algorithm that solves Many Visits TSP in time O∗(7.88n)
and polynomial space.

Organization of the paper. In Section 3 we show that, essentially, using a polynomial time
preprocessing step we can reduce an instance of Many Visits TSP to an equivalent one
but with demands k bounded by O(n2). This reduction is a crucial prerequisite for Section 4
where we prove Theorem 1.1. Next, in Section 5 we prove Theorem 1.3 and in Section 6 we
prove Theorem 1.4. We note that in these two sections we do not need the reduction from
Section 3, however, in practice, applying it should speed-up the flow computations used in
both algorithms described there. Finally, in Section 7 we show Theorem 1.2 and we discuss
further research in Section 8.

ESA 2020

66:4 Many Visits TSP Revisited

2 Preliminaries

We use Iverson bracket, i.e., if α is a logical proposition, then the expression [α] evaluates to
1 when α is true and 0 otherwise.

For two integer-valued functions f, g on the same domain D, we write f ≤ g when
f(x) ≤ g(x) for every x ∈ D. Similarly, f + g (resp. f − g) denote the pointwise sum
(difference) of f and g. This generalizes to functions on different domains Df , Dg by
extending the functions to Df ∪Dg so that the values outside the original domain are 0.

For a cost function d : V 2 → Z≥0 ∪ {∞}, and a multiplicity function m : V 2 → Z≥0 we
denote the cost of m as d(m) =

∑
u,v∈V 2 d(u, v)m(u, v).

Multisets. Recall that a multiset A can be identified by its multiplicity function mA : U →
Z≥0, where U is a set. We write e ∈ A when e ∈ U and mA(e) > 0. Consider two multisets
A and B. We write A ⊆ B when for every e ∈ A we have e ∈ B and mA(e) ≤ mB(e). Also,
A = B when A ⊆ B and B ⊆ A. Assume w.l.o.g. that mA and mB have the same domain
U . Operations on multisets are defined by the corresponding multiplicities as follows: for
every e ∈ U , we have mA∪B(e) = max{mA(e),mB(e)}, mA∩B(e) = min{mA(e),mB(e)},
mA\B(e) = max{mA(e) −mB(e), 0}, mA4B(e) = m(A\B)∪(B\A) = |mA(e) −mB(e)|. This
notation extends to the situation when A or B is a set, by using the indicator function
mA(e) = [e ∈ A].

Directed graphs. Directed graphs (also called digraphs) in this paper can have multiple
edges and multiple loops, so sets E(G) will in fact be multisets. We call a directed graph
simple if it has no multiple edges or loops. We call it weakly simple if it has no multiple
edges or multiple loops (but single loops are allowed). For a digraph G by G↓ we denote
the support of G, i.e., the weakly simple digraph on the vertex set V (G) such that E(G↓) =
{(u, v) | G has an edge from u to v}.

Given a digraph G = (V,E) we define its multiplicity function mG : V 2 → Z≥0 as the
multiplicity function of its edge multiset, i.e., for any pair u, v ∈ V , we put mG(u, v) =
mE((u, v)). Conversely, for a function m : V 2 → Z≥0 we define the thick graph Gm = (V,E)
so that mG = m. Abusing notation slightly, we will identify m and Gm, e.g., we can say that
m is strongly connected, contains a subgraph, etc.

We call a directed graph connected if the underlying undirected graph is connected.
Similarly, a connected component of a digraph G is a subgraph of G induced by a vertex set
of a connected component of the underlying undirected graph.

For a graph G (directed or undirected) and a subset X ⊆ V (G), by G[X] we denote the
subgraph induced by X.

Solutions. The following observation follows easily from known properties of Eulerian
digraphs.

I Observation 2.1. Many Visits TSP has a tour of cost c if and only if there is a
multiplicity function mG : V 2 → Z≥0 of cost c such that (i) for every v ∈ V ,

∑
w∈V m(v, w) =∑

w∈V m(w, v) = k(v) and (ii) m contains a spanning connected subgraph.

Thanks to Observation 2.1, in the remainder of this paper we refer to multiplicity functions
as solutions of MVTSP (and some related problems which we are going to define). By
standard arguments, the multiplicity function can be transformed to a tour in time O(`).
Moreover, Grigoriev and Van de Klundert [14] describe an algorithm which transforms it to
a compressed representation of the tour in time O(n4 log `).

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:5

Out-trees. An out-tree is the digraph obtained from a rooted tree by orienting all edges away
from the root. If an out-tree T is a subgraph of a directed graph G and additionally T spans
the whole vertex set V (G) we call T an outbranching. The sequence {outdegT (v)}v∈V (T) is
called the outdegree sequence of T . Consider a set of vertices X ⊆ V , |X| ≥ 2.

I Lemma 2.2 (Berger et al. [3], Lemma 2.4). A sequence of nonnegative integers {dv}v∈X
is an outdegree sequence of an out-tree spanning X and rooted at r ∈ X if and only if (i)
dr ≥ 1 and (ii)

∑
v∈X dv = |X| − 1.

A sequence {dv}v∈X that satisfies (i) and (ii) will be called an out-tree sequence rooted at
r, or outbranching sequence rooted at r when additionally X = V . A δ-out-tree means any
subtree spanning X with outdegree sequence δ.

3 Reduction to small demands

Consider the following problem, for a family of simple digraphs F .

Fixed Degree F-Subgraph
Input: d : V 2 → Z≥0 ∪ {∞}, in, out : V → Z≥0
Question: Find a function m : V 2 → Z≥0 such that
(i) Gm contains a member of F as a spanning subgraph,
(ii) for every v ∈ V we have in(v) = indegGm(v) and out(v) = outdegGm(v), and
so as to minimize the value of d(m) =

∑
v,w∈V d(v, w)m(v, w).

In this paper, we will consider two versions of the problem: when F is the family of all
oriented trees, called Fixed Degree Connected Subgraph, and when F is the family of
all out-trees with a fixed root r, called Fixed Degree Subgraph With Outbranching.
The role of F is to force connectivity of the instance. Other choices for F can also be
interesting, for example Cosmadakis and Papadimitriou [7] consider the family of minimal
Eulerian digraphs.

The goal of this section is to show that, essentially, using a polynomial time preprocessing
step we can reduce an instance of Fixed Degree F-Subgraph to an equivalent one but
with demands in, out bounded by O(n2).

When considering the instance of Fixed Degree F-Subgraph we will use the notation
n = |V | and ` =

∑
v∈V in(v). (Clearly, we can assume that also ` =

∑
v∈V out(v), for

otherwise there is no solution.)
Observe that if the image of d is {0,+∞} we get the natural unweighted version, where we

are given a graph with edge set d−1(0) and the goal is to decide if one can choose multiplicities
of the edges so that the resulting digraph contains a member of F and its in- and outdegrees
match the demands of in and out.

The following observation follows by standard properties of Eulerian cycles in digraphs
and the fact that every strongly connected graph contains an outbranching rooted at arbitrary
vertex.

I Observation 3.1. Many Visits TSP is a special case of both Fixed Degree Connected
Subgraph and Fixed Degree Subgraph With Outbranching with in(v) = out(v) =
k(v) for every vertex v ∈ V .

In the following lemma, we consider the relaxed problem Fixed Degree Subgraph,
defined exactly as Fixed Degree F-Subgraph, but dropping the constraint that solutions
must contain a member of F . In what follows, sn(F) = maxG∈F,|V (G)|=n |E(G)|. (Note
that in applications we consider in this work F is a family of oriented spanning trees, so
sn(F) = n− 1.)

ESA 2020

66:6 Many Visits TSP Revisited

I Lemma 3.2. Fix an input instance d : V 2 → Z≥0 ∪ {∞}, in, out : V 2 → Z≥0. For every
optimal solution r of Fixed Degree Subgraph there is an optimal solution c′ of Fixed
Degree F-Subgraph such that for every u, v ∈ V

|r(u, v)− c′(u, v)| ≤ s|V |(F).

Before we proceed to a formal proof of Lemma 3.2, let us sketch an intuition behind it.
We pick an optimal solution c of Fixed Degree F-Subgraph and let B ∈ F be a spanning
subgraph in Gc. The symmetric difference between E(Gr) and E(Gc) can be decomposed
into “alternating” cycles. It suffices to alternate |E(B) \E(Gr)| ≤ sn(F) of them to enforce
containing B. If we alternated all the cycles, we would get the cost of exactly d(c), but
because of the optimality of r, alternating any of the cycles does not decrease the cost of the
solution. Hence alternating a subset of them cannot make the cost bigger than d(c).

Proof. Let c be an arbitrary optimal solution of Fixed Degree F-Subgraph and let B
be an arbitrary graph from F which is a spanning subgraph of Gc. Our plan is to build an
optimal solution c′ of Fixed Degree F-Subgraph which contains B and does not differ
too much from r.

Define multisets Ac = E(Gc) \ E(Gr), Ar = E(Gr) \ E(Gc) and A = Ac ∪ Ar =
E(Gc)4E(Gr). In what follows, by an alternating cycle we mean an even cardinality set of
edges

{(v0, v1), (v2, v1), (v2, v3), (v4, v3) . . . , (v2`−2, v2`−1), (v0, v2`−1)},

where edges come alternately from Ac and Ar. Note that an alternating cycle is not really a
directed cycle, it is just an orientation of a simple undirected cycle.

Note that for every vertex v ∈ V , among the edges in A that enter (resp. leave) v
the number of edges from Ac is the same as the number of edges from Ar (counted with
corresponding multiplicities), since both c and r satisfy the degree constraints for the same
instance. It follows that A can be decomposed into a multiset C of alternating simple cycles,
i.e.,

mA =
∑
C∈C

mC ,

where mC : V 2 → Z≥0 and for each pair u, v ∈ V we have mC(u, v) = [(u, v) ∈ C] ·mC(C).
To clarify, we note that the sum above is over all cycles in C, and not over all copies of cycles.

Denote B+ = E(B) \E(Gr). Since B+ ⊆ Ac, for each e ∈ B+, there is at least one cycle
in C that contains e. We choose an arbitrary such cycle and we denote it by Ce. (Note that
it may happen that Ce = Ce′ for two different edges e, e′ ∈ B+.) Let C+ = {Ce | e ∈ B+}.
Then we define c′, by putting for every u, v ∈ V

c′(u, v) = r(u, v) + (−1)[(u,v)∈Ar]
∑
C∈C+

[(u, v) ∈ C]. (1)

In other words, c′ is obtained from r by iterating over all cycles in C ∈ C+, and adding
one copy of each edge of C ∩Ac and removing one copy of each edge of C ∩Ar.

Let us show that Gc′ contains B. This is trivial for every e ∈ B+. When e ∈ E(B)∩E(Gr),
consider two cases. If e 6∈ Ar, then c′(e) ≥ r(e), so e ∈ Gc′ . If e ∈ Ar, mA(e) = r(e)− c(e).
Then c′(e) = r(e)−

∑
C∈C+ [(u, v) ∈ C] ≥ r(e)−mA(e) = c(e) ≥ 1, where the last inequality

follows since B ⊆ Gc.

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:7

To see that c′ satisfies the degree constraints, recall that r does so, and note that if in (1)
we consider only the summands corresponding to a single cycle C ∈ C+, then for every vertex
we either add one outgoing edge and remove one outgoing edge, or add one ingoing edge and
remove one ingoing edge, or we do not change the set of edges incident to it.

For a cycle C ∈ C let δ(C) = d(Ac ∩ C)− d(Ar ∩ C). Observe that for every cycle C ∈ C
we have δ(C) ≥ 0, for otherwise E(Gr) \ (C ∩Ar) ∪ (C ∩Ac) contradicts the optimality of r.
It follows that

d(c′) = d(r) +
∑
C∈C+

δ(C) ≤ d(r) +
∑
C∈C

δ(C) = d(c). (2)

Hence, since c is optimal solution of Fixed Degree F-Subgraph, we get that c′ is optimal
solution of Fixed Degree F-Subgraph as well. Moreover, by (1), for every u, v ∈ V ,

|c′(u, v)− r(u, v)| ≤ |C+| ≤ |B| ≤ s|V |(F). (3)

This ends the proof. J

As noted in [7, 2], Fixed Degree Subgraph can be solved by a reduction to minimum
cost flow. By applying Orlin’s algorithm [23] we get the following.
I Observation 3.3 (Folklore, [7, 2]). Fixed Degree Subgraph can be solved in time
O(n3 logn).
I Theorem 3.4 (Kernelization). There is a polynomial time algorithm which, given an instance
I = (d, in, out) of Fixed Degree F-Subgraph, outputs an instance I ′ = (d, in′, out′) of the
same problem and a function f : V 2 → Z≥0 such that
(i) in′(v), out′(v) = O(n · sn(F)) for every vertex v,
(ii) if m∗ is an optimal solution for I ′, then f +m∗ is an optimal solution for I.

The algorithm does not need to know F , just the value of sn(F).
Proof. Our algorithm begins by finding an optimal solution r of Fixed Degree Subgraph
using Observation 3.3.

Define f0 : V 2 → Z≥0, where for every v, w ∈ V we put f0(v, w) = max{r(v, w) −
sn(F), 0}. By Lemma 3.2, there exists an optimal solution c′ for instance I such that c′ ≥ f0.
Now define f : V 2 → Z≥0, where for every v, w ∈ V we put f(v, w) = max{f0(v, w)− 1, 0}.
Finally, we put in′(v) = in(v) −

∑
w∈V f(w, v) and out′(v) = out(v) −

∑
w∈V f(v, w). The

algorithm outputs I ′ = (d, in′, out′) and f . In what follows, we show that the output has the
desired properties.

For the property (i), consider any vertex v ∈ V and observe that
∑
w∈V f(v, w) ≥∑

w∈V (f0(v, w)−1) ≥
∑
w∈V (r(v, w)−sn(F)−1). Since r is a feasible solution of I, we have

out(v) =
∑
w∈V r(v, w). It follows that out′(v) ≤ n(1 + sn(F)) = O(n · sn(F)) as required.

The argument for in′(v) is symmetric.
Now we focus on (ii). Let m∗ be an optimal solution for I ′. It is easy to check that

f +m∗ satisfies the degree constraints for the instance I. Also, since m∗ contains a subgraph
from F , then f +m∗ contains the same subgraph. It follows that f +m∗ is a feasible solution
of I. It suffices to show that f +m∗ is an optimal solution for I.

Denote r = c′ − f . Consider any pair v, w ∈ V such that c′(v, w) ≥ 1. We claim that
f(v, w) ≤ c′(v, w) − 1. Indeed, if f0(v, w) = 0 then f(v, w) = 0 ≤ c′(v, w) − 1, and if
f0(v, w) ≥ 1 then f(v, w) = f0(v, w) − 1 ≤ c′(v, w) − 1. It follows that r(v, w) ≥ 1. In
particular, since c′ contains a subgraph from F , then also r contains the same subgraph. It
follows that r is a feasible solution for I ′ (the degree constraints are easy to check). Hence,
d(m∗) ≤ d(r). It follows that d(f +m∗) ≤ d(r + f) = d(c′), so f +m∗ is indeed an optimal
solution for I. J

ESA 2020

66:8 Many Visits TSP Revisited

4 The small costs case in time O∗(2nD)

In this section we establish Theorem 1.1. We do it in a bottom-up fashion, starting with a
simplified core problem, and next generalizing the solution in a few steps.

4.1 Unweighted decision version with small degree demands
Consider the following problem.

Decision Unweighted Fixed Degree Connected Subgraph
Input: a digraph G = (V,E), in, out : V → Z≥0
Question: Is there a function m : V 2 → Z≥0 such that G↓m is a connected subgraph of
G and for every v ∈ V we have in(v) = indegGm(v) and out(v) = outdegGm(v)?

Note that Decision Unweighted Fixed Degree Connected Subgraph generalizes
the directed Hamiltonian cycle problem, which is known to be solvable in O∗(2n) time and
polynomial space. In this section we show that this running time can be obtained for the
more general problem as well, though we need to allow some randomization.

I Theorem 4.1. There is a randomized algorithm which solves an instance I = (in, out) of
Decision Unweighted Fixed Degree Connected Subgraph in time O∗(2n poly(M))
and polynomial space, where M = maxv max{in(v), out(v)}. The algorithm is Monte Carlo
with one-sided error, i.e., the positive answer is always correct and the negative answer is
correct with probability at least p, for any constant p < 1.

Our strategy will be to reduce our problem to detecting a perfect matching in a bipartite
graph with an additional connectivity constraint.

We define a bipartite graph BG = (O, I,E(BG)) as follows. Let I = {vI1 , . . . , vIin(v) | v ∈
V (H)}, O = {vO1 , . . . , vOout(v) | v ∈ V (H)}, and E(BG) = {uOi vIj | (u, v) ∈ E(G)}.

I Observation 4.2. |I| = |O| = O(nM) and |E(BG)| ≤ E(G)M2 = O(n2M2).

For an undirected graph H by PM(H) we denote the set of perfect matchings in H. We
say that a matching M in BG is connected when for every cut (X,V \X) with ∅ 6= X (V

the matching M contains an edge uOi vIj such that u ∈ X and v ∈ V \ X or v ∈ X and
u ∈ V \X.

For a matching M in BG we define a contraction of M as function m : V 2 → Z≥0
such that m(u, v) = |{uOi vIj ∈ M | i ∈ [out(u)], j ∈ [in(v)]}|. In other words Gm is
obtained from M by (1) orienting every edge from O to I and (2) identifying all vertices in
{vI1 , . . . , vIin(v)} ∪ {v

O
1 , . . . , v

O
out(v)} for every v ∈ V , and keeping the multiple edges and loops.

I Lemma 4.3. (G, in, out) is a yes-instance of Decision Unweighted Fixed Degree
Connected Subgraph iff graph BG contains a connected perfect matching.

Proof. Let M be a connected perfect matching in BG and let m be its contraction. We
claim that m is a solution of (G, in, out). By the definition of BG, G↓m is a subgraph of G.
Since M is connected, Gm is connected as well, and so is G↓m. Moreover, since M is a perfect
matching in(v) = indegGm(v) and out(v) = outdegGm(v) for every vertex v.

For the other direction, let m be a solution for (G, in, out). For every v ∈ V , there are
exactly out(v) edges leaving v in Gm. Let us denote them eOv,1, . . . , e

O
v,out(v). Similarly, let us

denote all the edges entering v by eIv,1, . . . , eIv,in(v). Then we define M as the set of edges of
the form uOi v

I
j such that Gm contains an edge e = eOu,i = eIv,j . The fact that M is a perfect

matching is clear from the construction. Also, M is connected, for otherwise Gm is not
connected. J

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:9

From now on, let B = (O, I,E(B)) be an arbitrary subgraph of BG. Define the following
multivariate polynomial over GF(2t), for an integer t to be specified later.

R =
∑

M∈PM(B)
M is connected

∏
e∈M

xe (4)

I Lemma 4.4. R is not the zero polynomial if and only if B contains a connected perfect
matching.

Proof. It is clear that if R is non-zero then B contains a connected perfect matching. For
the reverse implication it suffices to notice that every summand in R has a different set of
variables, so it does not cancel out with other summands over GF(2t). J

Our strategy is to test whether R is non-zero by means of DeMillo–Lipton–Schwartz–Zippel
Lemma, which we recall below.

I Lemma 4.5 (DeMillo and Lipton [11], Schwartz [25], Zippel [28]). Let P (x1, x2, . . . , xm) be
a nonzero polynomial of degree at most d over a field F and let S be a finite subset of F.
Then, the probability that P evaluates to zero on a random element (a1, a2, . . . , am) ∈ Sm is
bounded by d/|S|.

By Lemmas 4.4 and 4.5, the task reduces to evaluating R fast. To this end, we will define
a different polynomial P which is easier to evaluate and turns out to be equal to R over
GF(2t).

Consider a subset X ⊆ V . Let IX = {vIi ∈ I | v ∈ X, i = 1, . . . , in(v)} and OX =
{vOi ∈ O | v ∈ X, i = 1, . . . , out(v)}. Abusing the notation slightly, we will denote B[X] =
B[IX ∪OX]. Define the following polynomial.

PX =
∑

M∈PM(B[X])

∏
e∈M

xe (5)

In what follows, v∗ is an arbitrary but fixed vertex of V . Define yet another polynomial.

P =
∑
X⊆V
v∗∈X

PXPV \X . (6)

I Lemma 4.6. P = R.

Proof. For a matching M in B we say that a set X ⊆ V is consistent with M when M does
not contain an edge uOi vIj such that u ∈ X and v ∈ V \X or v ∈ X and u ∈ V \X. The
family of all subsets of V that are consistent with M will be denoted by C(M). Then we can
rewrite P as follows.

P =
∑
X⊆V
v∗∈X

∑
M1∈PM(B[X])

∑
M2∈PM(B[V \X])

∏
e∈M1∪M2

xe [definition]

=
∑

M∈PM(B)

∑
X∈C(M)
v∗∈X

∏
e∈M

xe [group by M = M1]M2]

=
∑

M∈PM(B)

|{X ∈ C(M) | v∗ ∈ X}|
∏
e∈M

xe [trivial]

ESA 2020

66:10 Many Visits TSP Revisited

Let us consider a perfect matching M ∈ PM(B) and the corresponding contraction m.
Observe that the number of sets that are consistent with M and contain a vertex v∗ is equal
to 2cc(M)−1, where cc(M) is the number of connected components of Gm. Indeed, when
X is consistent with M , then for every connected component Q of Gm, either V (Q) ⊆ X

or V (Q) ⊆ V \ X. For the component that contains v∗ the choice is fixed, while every
choice for the remaining components defines a set consistent with M . It follows that when
M is not connected cc(M) ≥ 2, and the value of 2cc(M)−1 is equal to 0 in GF(2t), so the
corresponding summand vanishes. On the other hand, if M is connected, the corresponding
summand equals just

∏
e∈M xe and it does not cancel out with another summand because

the monomial has a unique set of variables. It follows that P = R. J

I Lemma 4.7 (Tutte, Lovász [26, 22]). For an arbitrary set X ⊆ V , the polynomial PX can
be evaluated using poly(n+M) field operations.

Proof. Compute the determinant of the corresponding Tutte matrix of dimension |O|×|I|. J

Let us now fix our field, namely t = d1 + logn + logMe. Since arithmetic operations
in GF(2t) can be performed in time O(t log2 t) = O(log(n + M) log2 log(n + m)), by the
definition of P and Lemma 4.7 we get the following corollary.

I Corollary 4.8. P can be evaluated in time 2n poly(n+M).

I Lemma 4.9. There is a randomized algorithm which decides if B contains a connected per-
fect matching in time O∗(2n poly(M)) and polynomial space, where M =
maxv max{in(v), out(v)}. The algorithm is Monte Carlo with one-sided error, i.e., the
positive answer is always correct and the negative answer is correct with probability at least
p, for any constant p < 1.

Proof. The algorithm evaluates polynomial P using Corollary 4.8 substituting a random
element of GF(2t) for each variable, and reports “yes” when the evaluation is nonzero and
“no” otherwise. If it reported “yes”, then P was a non-zero polynomial and by Lemma 4.4 the
answer is correct. Assume it reported ’no’ for a yes-instance. By Lemma 4.4 P is non-zero.
Since degP = |I| ≤ nM , by Lemma 4.5 the probability that P evaluated to 0 is bounded by
degP/2t ≤ 1/2 and we can make this probability arbitrarily small by repeating the whole
algorithm a number of times, and reporting “yes” if at least one evaluation was nonzero. The
claim follows. J

Theorem 4.1 follows immediately from Lemma 4.3 and Lemma 4.9 applied to BG.

4.2 Finding the solution
I Lemma 4.10. There is a randomized algorithm which, given a yes-instance of Decision
Unweighted Fixed Degree Connected Subgraph, always returns the corresponding
solution m in expected time O∗(2n poly(M)). The time can be made deterministic at the cost
of introducing arbitrarily small probability of failure.

In order to prove Lemma 4.10 we cast the problem in the setting of inclusion oracles from
the work of Björklund et al. [5]. Consider a universe U and an (unknown) family of witnesses
F ⊆ 2U . An inclusion oracle is a procedure which, given a query set Y ⊆ U , answers (either
YES or NO) whether there exists at least one witness W ∈ F such that W ⊆ Y . Björklund
et al. prove the following.

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:11

I Theorem 4.11 ([5]). There exists an algorithm that extracts a witness of size k in F using
in expectation at most O(k log |U |) queries to a randomized inclusion oracle that has no false
positives but may output a false negative with probability at most p ≤ 1

4 .

Proof of Lemma 4.10. Let U = E(BG) and let F be the family of all connected perfect
matchings in BG. Note that |U | = O(n2M2) and witnesses in F have all size |I| = O(nM).
Then, Lemma 4.9 provides a randomized inclusion oracle and we can apply Theorem 4.11. (If
one insists on deterministic, and not expected, running time, it suffices to chose a sufficiently
large constant r and stop the algorithm if it exceeds the expected running time at least r
times – by Markov’s inequality, this happens with probability at most 1/r.) J

4.3 Proof of Theorem 1.1
In the lemma below we will adapt the construction from Section 4.1 to the weighted case in
a standard way, by introducing a new variable tracking the weight.

I Lemma 4.12. There is a randomized algorithm which solves an instance I = (d, in, out, w)
of Fixed Degree Connected Subgraph in time O∗(2nD poly(M)) and polynomial space,
whereM = maxv max{in(v), out(v)} and D is the maximum integer value of d. The algorithm
returns a minimum weight solution with probability at least p, for any constant p < 1.

Proof. Define G = (V,E) where E = {(u, v) ∈ V 2 | d(u, v) ∈ Z≥0}. Let R′ be the
polynomial obtained from R by replacing every variable xe for e = uOi v

I
j ∈ E(BG) by

the product xe · yd(u,v), where y is a new variable. Proceed similarly with P , obtaining
P ′. By Lemma 4.4, P ′ = R′. Decompose R′ as R′ =

∑|I|·D
i=0 R′iy

i, where R′i, for every
i = 0, . . . , |I| ·D, is a polynomial in variables {xe}e∈E(BG). The monomials in R′i enumerate
all matchings M such that the contraction m of M has weight d(m) = i. By the construction
in the proof of Lemma 4.3 R′i is non-zero if and only if instance I has a solution of weight i.
Using Lagrange interpolation, we can recover the value of each R′i for random values of the
variables {xe}e∈E(BG) (the values are the same for all the polynomials). The interpolation
algorithm requires |I| ·D = O(nMD) evaluations of R′. Since R′ = P ′, by Lemma 4.8 each
of them takes 2n poly(n+M)) time. Our algorithm reports the minimum w such that R′w
evaluated to a non-zero element of GF(2t), or +∞ if no such w exists. The solution of weight
w is then found using Lemma 4.10. The event that the optimum value w∗ is not reported
means that R′w∗ is a non-zero polynomial that evaluated to 0 at the randomly chosen values.
By Lemma 4.5 this happens with probability at most degP/2t ≤ 1/2, and one can make
this probability arbitrarily small by standard methods. J

Theorem 1.1 follows now immediately by applying Theorem 3.4 which reduces the
general problem to the M = O(n2) case and solving the resulting instance by Lemma 4.12.
Theorem 1.1 says in particular that if finite weights are bounded by a polynomial in n then
we can solve Many Visits TSP in time O∗(2n) and polynomial space by a randomized
algorithm with no false positives and with false negatives with arbitrarily small constant
probability.

5 The general case

In this section we prove Theorem 1.3, i.e., we show an algorithm solving Many Visits
TSP in time O∗(4n). In fact, we do not introduce a new algorithm, but we consider an
algorithm by Berger et al. (Algorithm 5 in [3]) and we provide a refined analysis, resulting in
an improved running time bound O∗(4n), which is tight up to a polynomial factor.

ESA 2020

66:12 Many Visits TSP Revisited

Let us recall the algorithm of Berger et al., in a slightly changed notation. In fact,
they solve a slightly more general problem, namely Fixed Degree Subgraph With
Outbranching. Let I = (d, in, out, r) be an instance of this problem, i.e., we want to find
a solution m : V 2 → Z≥0 that satisfies the degree constraints specified by in and out and
contains an outbranching rooted at r. In what follows we assume V = {1, . . . , n} and r = 1.

Consider an outbranching sequence {δv}v∈V rooted at r = 1. In what follows, all
outbranching sequences will be rooted at 1, so we skip specifying the root. Let Tδ be a
minimum cost outbranching among all outbranchings with outdegree sequence δ and let
rδ be an optimum solution of Fixed Degree Subgraph for instance (d, in′, out′) where
out′ = out − outdegT and in′ = in − indegT . Berger et al. note that then mδ = mTδ + rδ
is a feasible solution for instance I of Fixed Degree Subgraph With Outbranching,
and moreover it has minimum cost among all solutions that contain an outbranching with
outdegree sequence δ. Since rδ can be found in polynomial time by Observation 3.3, in order
to solve instance I it suffices to find outbranchings Tδ for all outbranching sequences δ and
return the solution mδ of minimum cost. Hence, Theorem 1.3 boils down to proving the
following lemma.

I Lemma 5.1. There is an algorithm which, for every outbranching sequence δ, finds a
minimum cost outbranching among all outbranchings with outdegree sequence δ and runs in
time O∗(4n).

We prove Lemma 5.1 by using dynamic programming (DP). However, it will be conve-
nient to present the DP as a recursive function BestOutbranching with two parameters,
S ⊆ V and {δv}v∈S (see Algorithm 1). It is assumed that 1 ∈ S. We will show that
BestOutbranching(S, δ) returns a minimum cost out-tree among all out-trees with outde-
gree sequence δ that are rooted at 1 and span S. Our algorithm runs BestOutbranching
for S = V and all outbranching sequences δ : V → Z≥0. Whenever BestOutbranching
returns a solution for an input (S, δ), it is memoized (say, in an efficient dictionary), so
that when BestOutbranching is called with parameters (S, δ) again, the output can be
retrieved in polynomial time.

Algorithm 1 A pseudocode of the algorithm from Lemma 5.1.

function BestOutbranching(S, δ)
vfirst ← min{v ∈ S | δv = 0}
if |S| = 2 then return {(1, vfirst)}.
else

minCost←∞
for w ∈ S do

if (δw ≥ 1 ∧ w 6= 1) ∨ (δw ≥ 2 ∧ w = 1) then
S′ ← S \ {vfirst}
δ′ ← δ|S′
δ′w ← δ′w − 1
Rw ← BestOutbranching(S′, δ′) ∪ {(w, vfirst)}
if d(Rw) < minCost then

minCost← d(Rw)
best← Rwreturn best

Let us define lastRmvd(S) := max({0, 1, 2, . . . , n} \ S) and bad(S, δ) := {v ∈ S | v <
lastRmvd(S)∧ δv = 0}. Let us call (S, δ) a reachable state if it meets the following conditions:
(i) δ1 ≥ 1
(ii)

∑
v∈S δv = |S| − 1

(iii) |bad(S, δ)| ≤ 1

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:13

I Lemma 5.2. If function BestOutbranching is given a reachable state as input then all
recursively called BestOutbranching will also be given only reachable states.

Proof. Let us fix a reachable state (S, δ) for |S| > 2 and consider the associated value vfirst
from the algorithm. Denote S′ = S \ {vfirst}. Clearly, it suffices to show that all pairs (S′, δ′)
created in the for loop are reachable states. First, let us argue that bad(S′, δ) = ∅. There
are two cases:

Assume |bad(S, δ)| = 0. In this case vfirst > lastRmvd(S) so lastRmvd(S′) = vfirst. Then,
bad(S′, δ) = {v ∈ S′ | v < lastRmvd(S′) ∧ δv = 0} = {v ∈ S | v < vfirst ∧ δv = 0} = ∅.
Assume |bad(S, δ)| = 1. Then, (1) lastRmvd(S′) = lastRmvd(S) because lastRmvd(S) >
vfirst and (2) bad(S, δ) = {vfirst}. It follows that bad(S′, δ) (1)= {v ∈ S′ | v < lastRmvd(S) ∧
δv = 0} = bad(S, δ) \ {vfirst}

(2)= ∅.
Let us consider the recursive call of BestOutbranching for a particular w. The sequence
δ′|S′ differs from δ only at w, so bad(S′, δ′) ⊆ {w} ∪ bad(S′, δ) = {w}. This means that
condition (iii) from the definition of a reachable state holds for (S′, δ′). Since (S, δ) is
reachable, δ1 ≥ 1. Then either w 6= 1 and δ′1 = δ1 ≥ 1 or w = 1 and δ′1 = δ1 − 1 ≥ 1, where
the last inequality holds thanks to the condition in the if statement in Algorithm 1. In both
cases, (i) holds for (S′, δ′). Finally, (ii) is immediate by the definition of δ′. It follows that
(S′, δ′) is a reachable state, as required. J

I Lemma 5.3. If the function BestOutbranching is given a reachable state (S, δ), it
returns a cheapest out-tree T rooted at vertex 1, spanning S and with outdegree sequence δ.

Proof. We will use induction on |S|.
In the base case |S| = 2, there is only one outbranching spanning S rooted at 1, namely

{(1, vfirst)} and it is indeed returned by the algorithm.
In the inductive step assume |S| > 2. By conditions (i) and (ii) in the definition of

a reachable state and Lemma 2.2, there is at least one out-tree rooted at 1, spanning S,
and with outdegree sequence δ. Let T be a cheapest out-tree among all such out-trees.
Vertex vfirst is a leaf of T , since δvfirst = 0. At some point w in the for loop in Algorithm 1
is equal to the parent w∗ of vfirst in T . Then, T \ {(w∗, vfirst)} is an out-tree rooted at 1,
spanning S′, and with outdegree sequence δ′. Since (S′, δ′) is a reachable state by Lemma 5.2,
by the inductive hypothesis we know that a cheapest such out-tree T ′ will be returned
by BestOutbranching(S′, δ′). In particular, it means that d(T ′) ≤ d(T \ {(w∗, vfirst)}).
Denote Rw∗ = T ′ ∪ {(w∗, vfirst)}. Then, d(Rw∗) = d(T ′) + d(w∗, vfirst) ≤ d(T \ {(w∗, vfirst)}) +
d(w∗, vfirst) = d(T). It follows that BestOutbranching returns a set of edges best of cost
at most d(T). However best = Rw for a vertex w and by applying the induction hypothesis
it is easy to see that Rw is an out-tree rooted at 1, spanning S with outdegree sequence δ.
The claim follows. J

I Lemma 5.4. There are O∗(4n) reachable states.

Proof. Any sequence of n nonnegative integers that sums up to at most n− 1 will be called
an extended sequence. It is well known that there are exactly

(2n−1
n

)
< 22n−1 = O(4n) such

sequences. To see this consider sequences of n− 1 balls and n barriers and bijectively map
them to the sequences of n numbers by counting balls between barriers and discarding the
balls after the last barrier.

Let us fix an extended sequence δ̄ = {δ̄v}v∈V , and denote s̄ := n − (1 +
∑n
i=1 δ̄i). We

claim that there are only O(n) reachable states (S, δ) such that δ̄|S = δ and δ̄|V \S = 0.
Consider any such pair (S, δ). Let (v1, v2, . . . , vk) be the vertices of {v ∈ V | δ̄v = 0} sorted

ESA 2020

66:14 Many Visits TSP Revisited

in increasing order. By the definition of a reachable state we know that |S| = 1 +
∑n
i=1 δ̄i, so

s̄ = |{1, 2, . . . , n}\S|. By (ii), for at least one vertex v ∈ S we have δ̄v = δv = 0, so k ≥ s̄+ 1.
Let us assume that k ≥ s̄ + 2 and lastRmvd(S) ≥ vs̄+2. Then, {v1, v2, . . . , vs̄+1} ∩ S ⊆
bad(S, δ). Since vs̄+2 ≤ lastRmvd(S) 6∈ S, at most s̄ − 1 elements from {v1, v2, . . . , vs̄+1}
are outside S, so |bad(S, δ)| ≥ (s̄ + 1) − (s̄ − 1) = 2. This is a contradiction with (S, δ)
being a reachable state, which proves that k ≤ s̄ + 1 or lastRmvd(S) < vs̄+2. In any case,
{1, 2, . . . , n} \ S ⊆ {v1, . . . , vs̄+1}. There are s̄+ 1 = O(n) ways to choose s̄ elements to the
set {1, 2, . . . , n}\S from {v1, . . . , vs̄+1}, so equivalently there are O(n) sets S such that (S, δ)
is a reachable state, δ̄|S = δ and δ̄|V \S = 0.

Every reachable state (S, δ) has the corresponding extended sequence {δ̄}v∈V defined by
δ̄|S = δ and δ̄|V \S = 0. Since there are O(4n) extended sequences, and each of them has
O(n) corresponding reachable states there are O(4n) · O(n) = O∗(4n) reachable states in
total. J

We are ready to prove Lemma 5.1. Recall that our algorithm runs
BestOutbranching(V, δ) for all outbranching sequences δ and uses memoization to avoid
repeated computation. We claim that for any outbranching sequence δ, the pair (V, δ) is a
reachable state. Indeed, conditions (i) and (ii) hold since δ is an outbranching sequence. By
definition, lastRmvd(V) = 0, so bad(V, δ) = ∅ which implies (iii). Hence by Lemma 5.3 the
algorithm is correct. By Lemma 5.2 the running time can be bounded by the number of
reachable states times a polynomial, which is O∗(4n) by Lemma 5.4. This ends the proof of
Lemma 5.1 and hence also Theorem 1.3, as discussed in the beginning of this section.

6 Polynomial space

In this section we show Theorem 1.4, that is, we solve Many Visits TSP in O∗(7.88n)
time and polynomial space. Berger et al. [2] solved this problem in O(16n+o(n)) time and
polynomial space, with the key ingredient being the following.

I Lemma 6.1 (Berger et al. [2]). There is a polynomial space algorithm running in time
O(4n+o(n)) which, given an outdegree sequence {δv}v∈V , a cost function d : V 2 → Z≥0, and
a root r ∈ V computes the cheapest outbranching rooted at r with the required outdegrees.

More precisely, the O(16n+o(n))-time algorithm consists of the following steps:
(i) Enumerate all O(4n) outbranching sequences
(ii) For each outbranching sequence compute the cheapest outbranching with required

degrees using Lemma 6.1 in time O(4n+o(n))
(iii) For each of these outbranchings complete it to a solution of the original Many Visits

TSP instance with an optimal solution of Fixed Degree Subgraph on the residual
degree sequences (in polynomial time, by Observation 3.3).

The intuition behind our approach is as follows. We iterate over all subsets of vertices R.
Here, R represents our guess of the set of inner vertices of an outbranching in an optimal
solution. Then we perform (i) and (ii) in the smaller subgraph induced by R. Finally, we
replace (iii) by a more powerful flow-based algorithm which connects the vertices in V \R to
R, and at the same time computes a feasible solution of Fixed Degree Subgraph on the
residual degree sequences, so that the total cost is minimized. Let r = |R|. Clearly, when r
is a small fraction of n, we get significant savings in the running time. The closer r/n is to 1
the smaller are the savings, but also the smaller is the number

(
n
r

)
of sets R to examine.

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:15

In fact, the real algorithm is slightly more complicated. Namely, we fix an integer
parameter K, and then R corresponds to the set of vertices left from an outbranching in an
optimal solution after K iterations of removing all leaves. The running time of our algorithm
depends on K, because the algorithm actually guesses the layers of leaves in each iteration.
The space complexity is polynomial and does not depend on K. In the end of this section,
we show that our running time bound is minimized when K = 4.

6.1 Our algorithm

Similarly as in Section 5, we solve the more general Fixed Degree Subgraph With
Outbranching: for a given instance I = (d, in, out, root) we want to find a solution
m : V 2 → Z≥0 that satisfies the degree constraints specified by in and out and contains an
outbranching rooted at root.

Let T be an arbitrary outbranching. We define a sequence L1(T), L2(T), . . . of subsets of
V (T) as follows. For i ≥ 1 let Li(T) be the set of leaves of T \ (L1(T)∪L2(T)∪ . . .∪Li−1(T))
if |V (T) \ (L1(T) ∪ . . . ∪ Li−1(T))| > 1, and otherwise Li = ∅. The sets Li(T) will be called
leaf layers. Denote Ri(T) = V \ (L1(T) ∪ · · · ∪ Li(T)) for any i ≥ 1.

I Lemma 6.2. For every i ≥ 1 we have root ∈ Ri(T) \ Li+1(T), |Li(T)| ≥ |Li+1(T)| and
|Li+1| ≤ n−|Ri(T)|

i .

Proof. In this proof we skip the “(T)” in Li and Ri because there is no ambiguity. Assume
root ∈ Li for some i ≥ 1. It means that root is a leaf in T \ (L1 ∪ L2 ∪ . . . ∪ Li−1). Then
V \ (L1 ∪ L2 ∪ . . . ∪ Li−1) = {root} and Li = ∅, a contradiction. Hence root 6∈ Li for all
i ≥ 1, and in consequence root ∈ Ri for all i ≥ 1. However, root ∈ Ri+1(T) implies that
root 6∈ Li+1(T), hence root ∈ Ri \ Li+1.

If |V \ (L1 ∪ . . .∪Li)| > 1, then Li+1 is the set of leaves of the out-tree T \ (L1 ∪ . . .∪Li),
which is contained in the set of parents of vertices in Li. Since every vertex in Li has
exactly one parent, |Li| ≥ |Li+1|. If |V \ (L1 ∪ . . . ∪ Li)| ≤ 1 then Li+1 = ∅ and clearly
|Li| ≥ |Li+1| = 0.

Finally, since for every j < i we have |Lj | ≥ |Li| we get n−|Ri| = |L1|+ . . .+ |Li| ≥ i|Li|.
It follows that |Li+1| ≤ |Li| ≤ n−|Ri|

i , as required. J

Pseudocode of our algorithm is presented as Algorithm 2.

Algorithm 2 A pseudocode of the algorithm from Section 6.1.

1: function Solve(G, out, in, d, root)
2: best←∞
3: for R,LK+1, δ do
4: TR ← cheapest δ-out-tree spanning R rooted at root (Lemma 6.1)
5: out′ ← out− outdegTR

6: in′ ← in− indegTR

7: for L1, . . . , LK do
8: F ← CreateNetwork(G,R, out′, in′, d, L1, . . . , LK)
9: f ←MinCostMaxFlow(F)

10: if |f | =
∑

v∈V (G) out′(v) and cost(f) + d(TR) < best then
11: best← cost(f) + d(TR)

return best

ESA 2020

66:16 Many Visits TSP Revisited

For clarity, in the pseudocode we skipped some constraints that we enforce on the sets Li
and sequence δ. We state them below.
(C1) LK+1 ⊆ R ⊆ V, root ∈ R \ LK+1, |LK+1| ≤ n−|R|

K

(C2) {δv}v∈R is a rooted out-tree sequence, i.e., for all v ∈ R we have δv ∈ Z≥0,
∑
v∈R δ(v) =

|R| − 1; also δroot ≥ 1 if |R| ≥ 2 and δroot = 0 if |R| = 1.
(C3) for every v ∈ LK+1 we have δv = 0 and for every v ∈ R \ (LK+1 ∪ {root}) we have

δv ≥ 1
(C4) L1] L2] · · ·] LK = V \R
(C5) |Li| ≥ |Li+1| for i = 1, . . . ,K.
It is clear that all these possibilities can be enumerated in time proportional to their total
number times O(n).

Let us provide some further intuition about Algorithm 2. Consider an optimum solution
m of I and any outbranching B in m rooted at root. In Algorithm 2, for any i = 1, . . .K + 1,
the set Li is a guess of the leaf layer Li(B), while R is a guess of V \ (L1(B) ∪ · · · ∪ LK(B)).
Finally, δ is a guess of the outdegree sequence of the out-tree B[R].

In Line 8 we create a flow network, and in line 9 a minimum cost maximum flow is found
in polynomial time. In the next section we discuss the flow network and properties of the
flow.

6.2 The flow
In this section we consider a run of Algorithm 2, and in particular we assume that the variables
R, δ, L1, . . . , LK+1 have been assigned accordingly. The function CreateNetwork in our
algorithm builds a flow network F = (V (F), E(F), cap, cost), where E(F) is a set of directed
edges and cap and cost are functions from edges to integers denoting capacities and costs of
corresponding edges. As usual, the function cost extends to flow functions in a natural way, i.e.,
cost(f) =

∑
e∈E(F) f(e)cost(e). We let V (F) = {s, t}∪{vI , vO | v ∈ V (G)}∪{vC | v ∈ V \R},

where s and t denote the source and the sink of F .
We put following edges into E(F):
(s, vO), where cap(s, vO) = out′(v), cost(s, vO) = 0 for every v ∈ V (G)
(vI , t), where cap(vI , t) = in′(v), cost(vI , t) = 0 for every v ∈ R
(vI , t), where cap(vI , t) = in′(v)− 1, cost(vI , t) = 0 for every v /∈ R
(vC , t), where cap(vC , t) = 1, cost(vC , t) = 0 for every v /∈ R
(uO, vI), where cap(uO, vI) =∞, cost(uO, vI) = d(u, v) for every (u, v) ∈ E(G)
(uO, vC), where cap(uO, vC) =∞, cost(uO, vC) = d(u, v) for every v ∈ Li, u ∈ R∪Li+1 ∪
. . . ∪ LK , (u, v) ∈ E(G).

We will say that F has a full flow if it has a flow f with value |f | =
∑
v∈V out′(v). By the

construction of F , then all edges leaving source are saturated, i.e., carry flow equal to their
capacity. Since

∑
v∈V out′(v) =

∑
v∈V in′(v), also all edges that enter the sink are saturated.

Essentially, the network above results from extending the standard network used to get
Observation 3.3 by vertices vC . The flow between {vO | v ∈ V } and {vI | v ∈ V } ∪ {vC | v ∈
V \R} represents the resulting solution. In a full flow the edges leaving vC are saturated,
so a unit of flow enters every vertex vC , which results in connecting v in the solution to a
higher layer or to R. Thanks to that the solution resulting from adding the out-tree TR to
the solution extracted from f contains an outbranching.

I Lemma 6.3. If f is a full flow of minimum cost in F then there exists a solution of I with
cost cost(f) + d(TR). Moreover, the solution can be extracted from f in polynomial time.

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:17

Proof. By standard arguments, since all capacities in F are integer, we infer that there is
an integral flow of minimum cost (and it can be found in polynomial time), so we assume
w.l.o.g. that f is integral.

Let b : V 2 → {0, 1} denote a function such that b(u, v) = [(u, v) ∈ TR]. Now we construct
a solution m : V 2 → Z≥0 of I.

m(u, v) =
{
f(uO, vI) + b(u, v) if v ∈ R
f(uO, vI) + f(uO, vC) if v 6∈ R.

In other words, m describes how many times edge (u, v) was used by the out-tree TR and
flow f in total. Let us verify that m is a feasible solution for I. The degree constraints are
easy to verify, so we are left with showing that m contains an outbranching rooted at root.
To this end it suffices to show that every vertex v is reachable from root in Gm. Clearly,
this holds for vertices in R, thanks to the out-tree TR. Pick an arbitrary vertex v 6∈ R.
Then v ∈ Li for some i = 1, . . . ,K. We know that f(vC , t) = 1, so there exists u such that
f(uO, vC) = 1. Therefore, v is connected in Gm to a vertex from R ∪ Li+1 ∪ . . . LK . Since v
in Gm has an in-neighbor either in R or in a layer with a higher index, we can conclude that
there is a path in Gm from R to v. Hence m indeed contains the required outbranching.

Finally, it can be easily checked that d(m) = cost(f) + d(TR), what concludes this
proof. J

Let m be a feasible solution for I. Let R, Li for i = 1, . . . ,K + 1 be sets of vertices
and δ an out-tree sequence on R, as in Algorithm 2. We say that m is compliant with R,
L1, . . . , LK+1 and δ whenm contains an outbranching T rooted at root such that RK(T) = R,
Li(T) = Li for i = 1, . . . ,K + 1 and δ is equal to the outdegree sequence of T [R].

I Lemma 6.4. Assume that there exists a solution m of I that is compliant with R,
L1, . . . , LK+1 and δ. Then F has a full flow f such that cost(f) + d(TR) ≤ d(m).

Proof. Let T be an outbranching inm which certifies thatm is compliant with R,L1,. . . ,LK+1
and δ. Let p : V 2 → {0, 1} be a function such that for every u, v ∈ V we have p(u, v) =
[(u, v) ∈ T].

We set f(s, u) = cap(s, u) for all edges (s, u) ∈ E(F) and f(u, t) = cap(u, t) for all edges
(u, t) ∈ E(F). If v ∈ V \ R then we set f(uO, vC) = p(u, v). For all u, v ∈ V (G) we set
f(uO, vI) = m(u, v) − p(u, v). It can be easily checked that such function f is a full flow
and cost(f) = d(m) − d(T [R]). However, since T [R] is a δ-out-tree rooted at root and TR
is a cheapest such out-tree, d(TR) ≤ d(T [R]). It follows that cost(f) ≤ d(m) − d(TR), so
cost(f) + d(TR) ≤ d(m) as required. J

Consider a minimum cost full flow f ′ in F that is found by Algorithm 2 for a choice of
R,L1, . . . , LK+1, δ. The claim above implies that cost(f ′) + d(TR) ≤ d(m). However, notice
that we do not claim that cost(f ′) is the cost of optimal completion of TR consistent with all
guesses, as the intuitions we described earlier might suggest. It could be the case that in the
solution resulting from f ′, a vertex which was guessed to belong to Li does not have any
out-neighbor that was guessed to belong to Li−1, which would mean that this vertex should
be in an earlier layer. However, that is not an issue for the extraction of the global optimum
solution of I, because we may get only better solutions than the optimum completion for
that particular guess.

ESA 2020

66:18 Many Visits TSP Revisited

6.3 Correctness
I Lemma 6.5. Function Solve returns the cost of an optimal solution of I.

Proof. From Lemma 6.3 we infer that Solve returns the cost of a feasible solution of I. It
remains to show that it returns a value that is smaller or equal to the cost of an optimal
solution of I. To this end, letm be an arbitrary optimal solution of I and let T be an arbitrary
outbranching rooted at root in Gm. Let R = RK(T), Li = Li(T) for i = 1, . . . ,K + 1 and
let δ be the outdegree sequence of T [R].

Let us verify that R,L1, . . . , LK+1 and δ satisfy constraints (C1)–(C5). We get (C1) and
(C5) by Lemma 6.2. (C2) follows from the definition of δ. For (C3), consider two cases.
If |R| > 1, then LK+1 is the set of leaves in R and hence indeed for every v ∈ LK+1 we
have δv = 0 and for every v ∈ R \ (LK+1 ∪ {root}) we have δv ≥ 1. When |R| ≤ 1, we
have LK+1 = ∅ and since root ∈ R by Lemma 6.2, R = {root}. Then both sets LK+1 and
R \ (LK+1 ∪ {root}) are empty, so (C3) trivially holds. Finally, (C4) follows by the definition
of leaf layers.

Since R,L1, . . . , LK+1 and δ satisfy constraints (C1)–(C5), then Solve reaches this
particular evaluation of the variables R,L1, . . . , LK+1 and δ. Then, based on Lemma 6.4,
the network F has a full flow f such that cost(f) + d(TR) ≤ d(m), and it follows that Solve
returns a value best ≤ cost(f) + d(TR) ≤ d(m), as required. J

Obviously, Solve can be easily adapted to return a solution of I with the cost it returns,
but we have not taken this into account in Algorithm 2 for the sake of its readability.

6.4 Running time
Having a correct algorithm solving Fixed Degree Subgraph With Outbranching in
polynomial space, let us analyze its complexity depending on K.

Let us denote r = |R| and c = |LK+1|. Recall that 1 ≤ r ≤ n and 0 ≤ c ≤ bn−rK c.
If we fix r and c, then there are

(
n−1
r−1
)
guesses for R (it has to contain root) and at most(

r−1
c

)
guesses for LK+1. Let us bound the number of guesses for δ. By (C2) and (C3),∑

v∈R δv = r − 1, and δv = 0 iff v ∈ LK+1 so essentially we put r − 1 balls into r − c bins
that must be nonempty, which is

(
r−2
c−1
)
by standard combinatorics. In the special case c = 0

there is one choice for δ, where δroot = 0.
In total, there are at most

(
n
r

)(
r
c

)2 guesses for all R,LK+1, δ simultaneously. For each of
these guesses, using Lemma 6.1 function Solve calculates an optimal δ-out-tree spanning R,
which takes time O(4n+o(n)). It follows that that part takes time O∗(

∑
r

(
n
r

)
4r+o(r)

∑
c

(
r
c

)2).
Then, Solve guesses a partition of V \R into L1, . . . , LK in at most Kn−r ways. For each
such guess, Solve spends polynomial time, so that part takes O∗(

∑
r

(
n
r

)
Kn−r∑

c

(
r
c

)2)
time. Hence the total running time can be bounded by

O∗
(

2o(n)
n∑
r=1

bn−rK c∑
c=0

(
n

r

)
(Kn−r + 4r)

(
r

c

)2

︸ ︷︷ ︸
ξ(r,c)

)
.

Since there are polynomially many guesses for r and c, we can actually replace sums with
maxima in the expression above and focus on the expression ξ(r, c) =

(
n
r

)
(Kn−r + 4r)

(
r
c

)2.
We will heavily use the well-known bound

(
n
αn

)
< 2h(α)n, where h(α) = −α log2 α− (1−

α) log2(1 − α) is the binary entropy function (see e.g. [13]). For readability, let us denote
f(α) = 2h(α) and let us point out that f is increasing on the interval [0, 1

2] and decreasing on
the interval [1

2 , 1]. Let us denote β := r
n . We are going to distinguish two cases here.

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:19

1. n−r
K ≥ r

2
This inequality can be rephrased as r ≤ 2

K+2n, which is equivalent to β ≤ 2
K+2 . We

will use here a trivial bound
(
r
c

)
≤ 2r. Then, ξ(r, c) ≤ f(β)n((K1−β)n + 4βn)4βn =

(f(β)K1−β4β)n + (f(β)42β)n

2. n−r
K < r

2

In that case we know that maxb
n−r
K c

c=0
(
r
c

)2 is attained when c = bn−rK c and for that
particular value of c we can use the following bound.(

r

c

)2
=
(

r
bn−rK c
r · r

)2
= O∗

(
f

(bn−rK c
r

)2r)
= O∗

(
f

(n−r
K

r

)2r)
=

= O∗
(
f

(
1− β
Kβ

)2βn
)

In the third equality above we used fact that f is increasing on the interval [0, 1
2]. To

sum up, in this case,

ξ(r, c) = O∗
((

f(β)K1−βf

(
1− β
Kβ

)2β
)n

+
(
f(β)4βf

(
1− β
Kβ

)2β
)n)

.

Our numerical analysis shows that it is optimal to choose K = 4. For that particular
value of K, the first case applies if and only if β ≤ 1

3 . Then,

ξ(r, c) = (4f(β))n + (42βf(β))n = O((4f(β))n) = O((4f(1
3))n) = O(7.56n).

Let us now investigate the second case, when β > 1
3 . For 1

3 < β < 1
2 the summand(

f(β)41−βf
(

1−β
4β

)2β
)n

dominates, and for β ≥ 1
2 the summand

(
f(β)4βf

(
1−β
4β

)2β
)n

dominates. We have numerically verified that

f(β)41−βf

(
1− β

4β

)2β
≤ 7.68 for β ∈ (1

3 ,
1
2)

and

f(β)4βf
(

1− β
4β

)2β
≤ 7.871 for β ∈ [1

2 , 1].

Hence, we can conclude that for K = 4 and our algorithm runs in time O∗(7.871n+o(n)) =
O(7.88n) and in polynomial space. This concludes the proof of Theorem 1.4.

7 (1 + ε)-approximation

In this section we show theorem 1.2, i.e. we present an algorithm for Many Visits TSP
which finds a (1 + ε)-approximation in O∗

(2n
ε

)
time and polynomial space.

To achieve this we consider a more general problem, namely Fixed Degree Connected
Subgraph. The main idea is to round weights of edges of the given instance, so that we can
use the algorithm for polynomially bounded weights from Lemma 4.12 which is an analog of
theorem 1.1 for Fixed Degree Connected Subgraph.

Let us first consider the case with degrees bounded by a polynomial.

ESA 2020

66:20 Many Visits TSP Revisited

I Lemma 7.1. For given ε > 0 and an instance I = (d, in, out) of Fixed Degree Con-
nected Subgraph such that in(v), out(v) ≤ O(n2) for every vertex v there exists an
algorithm finding a (1 + ε)-approximate solution in O∗

(2n
ε

)
time and polynomial space.

Proof. Let us denote the optimal solution for I by OPT. First, our algorithm guesses the
most expensive edge used by OPT. Let us denote its cost by E, in particular

E ≤ d(OPT). (1)

Let us denote by C the universal constant such that in(v), out(v) ≤ Cn2 for every vertex
v and let us round d in the following way

d′(u, v) :=
{ ⌈

Cn3

εE d(u, v)
⌉

if d(u, v) ≤ E
∞ if d(u, v) > E

(2)

If d′(u, v) is finite then it is bounded by
⌈
Cn3

εE E
⌉

=
⌈
Cn3

ε

⌉
. Our algorithm simply returns

the optimal solution for instance I ′ = (d′, in, out) which can be found in O∗
(2n
ε

)
time using

the algorithm from Lemma 4.12 with D =
⌈
Cn3

ε

⌉
. Let us denote this solution by ALG. Now

we only need to prove that ALG is a (1 + ε)-approximation for the original instance I. We
know that ALG is an optimal solution for I ′, in particular

d′(ALG) ≤ d′(OPT). (3)

For every v we have out(v) ≤ Cn2, so∑
(u,v)∈V 2

OPT(u, v) =
∑
u∈V

out(u) ≤ n · Cn2. (4)

The following chain of inequalities finishes the proof.

d(ALG)
(2)
≤ εE

Cn3 d
′(ALG)

(3)
≤ εE

Cn3 d
′(OPT)

(2)
≤ εE

Cn3

∑
(u,v)∈V 2

OPT(u, v)
(
d(u, v)Cn3

εE
+ 1
)

=

= d(OPT) + εE

Cn3

∑
(u,v)∈V 2

OPT(u, v)
(4)
≤ d(OPT) + εE

Cn3Cn
3

(1)
≤ (1 + ε)d(OPT) J

Now we can generalize the algorithm from Lemma 7.1 by using it as a black box for the
general case.

I Lemma 7.2. For a given ε > 0 and an instance I = (d, in, out) of Fixed Degree
Connected Subgraph there exists an algorithm finding a (1 + ε)-approximate solution in
O∗
(2n
ε

)
time and polynomial space.

Proof. First let us use the algorithm from Theorem 3.4 which outputs an instance I ′ =
(d, in′, out′) of Fixed Degree Connected Subgraph and a function f : V 2 → Z≥0. Let
us denote the optimal solution for I ′ by OPT′. By Theorem 3.4 the optimal solution for
I equals OPT′ + f . Moreover, we know that in′, out′(v) ≤ O(n2) for every vertex v. In
particular we can use algorithm from Lemma 7.1 to get a solution ALG′ for instance I ′ such
that d(ALG′) ≤ (1 + ε)d(OPT′). Our algorithm simply returns solution ALG′ + f , which
is a solution for I because ALG is connected and f increases degrees exactly by difference
between I and I ′. To prove ALG′ + f is (1 + ε)-approximation we just need to observe that

d(ALG′ + f) ≤ (1 + ε)d(OPT′) + d(f) ≤ (1 + ε)d(OPT′ + f). J

Fixed Degree Connected Subgraph is a generalization of Many Visits TSP so
the algorithm from Lemma 7.2 proves Theorem 1.2.

Ł. Kowalik, S. Li, W. Nadara, M. Smulewicz, and M. Wahlström 66:21

8 Further Research

Since TSP is solvable in time O∗(2n) and exponential space [1, 16] and time O(4n+o(n))
and polynomial space [15], the main remaining question is whether these bounds can be
achieved for Many Visits TSP avoiding in the running time bound the linear dependence
on maximum distance D. Another interesting goal is a deterministic version of Theorem 4.1.

References
1 Richard Bellman. Dynamic programming treatment of the travelling salesman problem. J.

ACM, 9(1):61–63, January 1962. doi:10.1145/321105.321111.
2 André Berger, László Kozma, Matthias Mnich, and Roland Vincze. Time- and space-optimal

algorithms for the many-visits TSP. CoRR, abs/1804.06361, 2018. arXiv:1804.06361.
3 André Berger, László Kozma, Matthias Mnich, and Roland Vincze. A time- and space-optimal

algorithm for the many-visits TSP. In Timothy M. Chan, editor, Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019, pages 1770–1782. SIAM, 2019. doi:10.1137/1.9781611975482.106.

4 Andreas Björklund, Petteri Kaski, and Ioannis Koutis. Directed Hamiltonicity and out-
branchings via generalized Laplacians. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn,
and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages, and
Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 91:1–91:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2017.91.

5 Andreas Björklund, Petteri Kaski, and Lukasz Kowalik. Fast witness extraction using a
decision oracle. In ESA, volume 8737 of Lecture Notes in Computer Science, pages 149–160.
Springer, 2014.

6 Nadia Brauner, Yves Crama, Alexander Grigoriev, and Joris Van de Klundert. A framework
for the complexity of high-multiplicity scheduling problems. J. Comb. Optim., 9:313–323, May
2005. doi:10.1007/s10878-005-1414-7.

7 Stavros S. Cosmadakis and Christos H. Papadimitriou. The traveling salesman problem with
many visits to few cities. SIAM J. Comput., 13(1):99–108, 1984.

8 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as
CNF-SAT. ACM Trans. Algorithms, 12(3), May 2016. doi:10.1145/2925416.

9 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast Hamiltonicity checking via bases of
perfect matchings. J. ACM, 65(3), March 2018. doi:10.1145/3148227.

10 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. In FOCS, pages 150–159. IEEE Computer Society, 2011.

11 R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Inf.
Process. Lett., 7:193–195, 1978.

12 Hamilton Emmons and Kamlesh Mathur. Lot sizing in a no-wait flow shop. Operations
Research Letters - ORL, 17:159–164, May 1995. doi:10.1016/0167-6377(95)00008-8.

13 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010.

14 Alexander Grigoriev and Joris Van de Klundert. On the high multiplicity traveling salesman
problem. Discrete Optimization, 3:50–62, March 2006. doi:10.1016/j.disopt.2005.11.002.

15 Yuri Gurevich and Saharon Shelah. Expected computation time for Hamiltonian path problem.
SIAM J. Comput., 16(3):486–502, June 1987. doi:10.1137/0216034.

16 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing problems.
In Proceedings of the 1961 16th ACM National Meeting, ACM ’61, page 71.201–71.204, New
York, NY, USA, 1961. Association for Computing Machinery. doi:10.1145/800029.808532.

ESA 2020

https://doi.org/10.1145/321105.321111
http://arxiv.org/abs/1804.06361
https://doi.org/10.1137/1.9781611975482.106
https://doi.org/10.4230/LIPIcs.ICALP.2017.91
https://doi.org/10.1007/s10878-005-1414-7
https://doi.org/10.1145/2925416
https://doi.org/10.1145/3148227
https://doi.org/10.1016/0167-6377(95)00008-8
https://doi.org/10.1016/j.disopt.2005.11.002
https://doi.org/10.1137/0216034
https://doi.org/10.1145/800029.808532

66:22 Many Visits TSP Revisited

17 Dorit S. Hochbaum and Ron Shamir. Strongly polynomial algorithms for the high multiplicity
scheduling problem. Oper. Res., 39:648–653, 1991.

18 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

19 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

20 László Kozma and Tobias Mömke. Maximum scatter TSP in doubling metrics. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, page
143–153, USA, 2017. Society for Industrial and Applied Mathematics.

21 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. In Algorithms – ESA
2010, volume 64, pages 549–560, September 2010. doi:10.1007/978-3-642-15775-2_47.

22 László Lovász. On determinants, matchings and random algorithms. In FCT, volume 79,
pages 565–574, January 1979.

23 James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Oper. Res.,
41(2):338–350, 1993. doi:10.1287/opre.41.2.338.

24 Harilaos N. Psaraftis. A dynamic programming approach for sequencing groups of identical
jobs. Operations Research, 28(6):1347–1359, 1980.

25 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

26 W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society,
s1-22(2):107–111, April 1947. doi:10.1112/jlms/s1-22.2.107.

27 Jack A. A. van der Veen and Shuzhong Zhang. Low-complexity algorithms for sequencing
jobs with a fixed number of job-classes. Comput. Oper. Res., 23(11):1059–1067, November
1996. doi:10.1016/0305-0548(96)00016-0.

28 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proc. International
Symposium on Symbolic and Algebraic Computation, volume 72 of LNCS, pages 216–226, 1979.

https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/978-3-642-15775-2_47
https://doi.org/10.1287/opre.41.2.338
https://doi.org/10.1145/322217.322225
https://doi.org/10.1112/jlms/s1-22.2.107
https://doi.org/10.1016/0305-0548(96)00016-0

Light Euclidean Spanners with Steiner Points
Hung Le
University of Victoria, Canada
University of Massachusetts, Amherst, MA, USA
hungle@uvic.ca

Shay Solomon
Tel-Aviv University, Israel
solo.shay@gmail.com

Abstract
The FOCS’19 paper of Le and Solomon [59], culminating a long line of research on Euclidean
spanners, proves that the lightness (normalized weight) of the greedy (1 + ε)-spanner in Rd is Õ(ε−d)
for any d = O(1) and any ε = Ω(n− 1

d−1) (where Õ hides polylogarithmic factors of 1
ε
), and also

shows the existence of point sets in Rd for which any (1 + ε)-spanner must have lightness Ω(ε−d).1

Given this tight bound on the lightness, a natural arising question is whether a better lightness
bound can be achieved using Steiner points.

Our first result is a construction of Steiner spanners in R2 with lightness O(ε−1 log ∆), where
∆ is the spread of the point set.2 In the regime of ∆ � 21/ε, this provides an improvement over
the lightness bound of [59]; this regime of parameters is of practical interest, as point sets arising
in real-life applications (e.g., for various random distributions) have polynomially bounded spread,
while in spanner applications ε often controls the precision, and it sometimes needs to be much
smaller than O(1/ logn). Moreover, for spread polynomially bounded in 1/ε, this upper bound
provides a quadratic improvement over the non-Steiner bound of [59], We then demonstrate that
such a light spanner can be constructed in Oε(n) time for polynomially bounded spread, where
Oε hides a factor of poly(1

ε
). Finally, we extend the construction to higher dimensions, proving a

lightness upper bound of Õ(ε−(d+1)/2 + ε−2 log ∆) for any 3 ≤ d = O(1) and any ε = Ω(n− 1
d−1).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Euclidean spanners, Steiner spanners, light spanners

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.67

Funding Hung Le: Supported by a PIMS postdoctoral fellowship and an NSERC grant.
Shay Solomon: Partially supported by the Israel Science Foundation grant No.1991/19 and by Len
Blavatnik and the Blavatnik Family foundation.

Acknowledgements Shay Solomon is grateful to Michael Elkin, Ofer Neiman and Michiel Smid for
fruitful discussions.

1 Introduction

A t-spanner for a set P of points in the d-dimensional Euclidean space Rd is a geometric
graph that preserves all the pairwise Euclidean distances between points in P to within a
factor of t, called the stretch factor ; by geometric graph we mean a weighted graph in which
the vertices correspond to points in Rd and the edge weights are the Euclidean distances
between the corresponding points. The study of Euclidean spanners dates back to the seminal
work of Chew [27, 28] from 1986, which presented a spanner with constant stretch and O(n)
edges for any set of n points in R2. In the three following decades, Euclidean spanners

1 The lightness of a spanner is the ratio of its weight and the MST weight.
2 The spread ∆ = ∆(P) of a point set P in Rd is the ratio of the largest to the smallest pairwise distance.

© Hung Le and Shay Solomon;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 67; pp. 67:1–67:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hungle@uvic.ca
mailto:solo.shay@gmail.com
https://doi.org/10.4230/LIPIcs.ESA.2020.67
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Light Euclidean Spanners with Steiner Points

have evolved into an important subarea of Discrete and Computational Geometry, having
found applications in many different areas, such as approximation algorithms [65], geometric
distance oracles [42, 45, 44, 43], and network design [52, 60]; see the book by Narasimhan and
Smid “Geometric Spanner Networks” [61] for an excellent account on Euclidean spanners and
some of their applications. Numerous constructions of Euclidean spanners in two and higher
dimensions were introduced over the years, such as Yao graphs [70], Θ-graphs [29, 54, 55, 66],
the (path-)greedy spanner [4, 23, 61] and the gap-greedy spanner [67, 6] – unveiling an
abundance of techniques, tools and insights along the way; refer to the book of [61] for more
spanner constructions.

In addition to low stretch, many applications require that the spanner would be sparse,
in the unweighted and/or weighted sense. The sparsity (respectively, lightness) of a spanner
is the ratio of its size (respectively, weight) to the size (resp., weight) of a spanning tree
(resp., MST), providing a normalized notion of size (resp., weight), which should ideally be
O(1). For any dimension d = O(1), spanners with constant sparsity are known since the 80s
[70, 29, 54, 55, 66, 4, 67, 6]; also, it is known since the early 90s that the greedy spanner
has constant lightness [4]. The constant bounds on the sparsity and lightness depend on
both ε and d. In some applications, ε must be a very small sub-constant parameter, so as to
achieve the highest possible precision and minimize potential errors, and in some situations ε
may be as small as n−c for some constant 0 < c < 1. Consequently, besides the theoretical
appeal, achieving the precise dependencies on ε and d in the sparsity and lightness bounds is
of practical importance.

Culminating a long line of work, in FOCS’19 Le and Solomon [59] showed that the
precise dependencies on ε in the sparsity and lightness bounds are Θ(ε1−d) and Θ̃(ε−d),
respectively, for any d = O(1) and any ε = Ω(n−

1
d−1); throughout we shall use Õ, Ω̃, Θ̃ to

hide polylogarithmic factors of 1
ε . The lower bounds of [59] are proved for the d-dimensional

sphere, for d = O(1). On the upper bound side, sparsity O(ε1−d) is achieved by a number of
classic constructions such as Yao graphs [70], Θ-graphs [29, 54, 55, 66], the (path-)greedy
spanner [4, 23, 61] and the gap-greedy spanner [67, 6], and the argument underlying all
these upper bounds is basic and simple. On the other hand, constant lightness upper
bound (regardless of the dependency on ε and d) is achieved only by the greedy algorithm
[4, 31, 32, 65, 61, 41, 13, 59], and all known arguments for constant lightness are highly
nontrivial, even for d = 2; in fact, the proofs in [4, 31, 32, 65] have missing details. The first
complete proof was given in the book of [61], in a 60-page chapter, where it is shown that
the greedy (1 + ε)-spanner has lightness O(ε−2d), which improved the dependencies on ε and
d given in all previous work. In SODA’19, Borradaile, Le and Wulff-Nilsen [13] presented a
shorter and arguably simpler alternative proof that applies to the wider family of doubling
metrics, which improves the ε dependency provided in FOCS’15 by Gottlieb [41] for doubling
metrics, but is inferior to the lightness bound of O(ε−2d) by [61].3 Finally, the lightness
bound of Õ(ε−d) of [59] was proved via a tour-de-force argument; interestingly, the proof for
d = 2 is much more intricate than for higher dimensions d ≥ 3.

Le and Solomon [59] showed that, counter-intuitively, one can use Steiner points to bypass
the sparsity lower bound of Euclidean spanners. Specifically, in this way they reduced the
sparsity upper bound almost quadratically to Õ(ε(1−d)/2), and also provided a matching

3 The doubling dimension of a metric space (X, δ) is the smallest value d such that every ball B in the
metric space can be covered by at most 2d balls of half the radius of B. This notion generalizes the
Euclidean dimension, since the doubling dimension of the Euclidean space Rd is Θ(d). A metric space
is called doubling if its doubling dimension is constant.

H. Le and S. Solomon 67:3

lower bound for d = 2. Their lower bound for sparsity is derived from a lightness lower
bound; specifically, they first prove that, for a set of points evenly spaced on the boundary
of the unit square, with distances Θ(

√
ε) between neighboring points, any Steiner (1 + ε)-

spanner must incur lightness Ω̃(1
ε), and then they translated the lightness lower bound into a

sparsity lower bound of Ω̃(
√

1/ε). Whether or not Steiner points can be used to reduce the
lightness remained open in [59], but this should not come as a surprise.4 First, bounding the
lightness of spanners is inherently more difficult than bounding their sparsity – this is true
for both Euclidean spaces and doubling metrics, as well as other graph families including
general weighted graphs [4, 31, 32, 65, 61, 41, 13, 59, 26, 39, 33]. Second, constructing
Steiner trees and spanners with asymptotically improved bounds is inherently more difficult
than constructing their non-Steiner counterparts [34, 35, 68, 57, 11, 58]. In our particular
case, while the classic sparsity upper bound for non-Steiner Euclidean spanners is simple, its
improved counterpart for Steiner spanners by [59] requires a number of nontrivial insights and
is rather intricate. On the other hand, the lightness upper bound of [59] uses a tour-de-force
argument, and as mentioned already this is true even for d = 2. Consequently, obtaining an
improved lightness bound using Steiner points seems currently out of reach, at least until an
inherently simpler proof to [59] for non-Steiner lightness is found (if one exists).

1.1 Our Contribution

In this paper, we explore the power of Steiner points in reducing lightness for Euclidean
spaces of bounded spread ∆.5 Point sets of bounded spread have been studied extensively
for Euclidean spanners and related geometric objects [9, 53, 30, 51, 17, 16, 36, 64, 1, 2, 5,
49, 50, 19, 62, 63, 18, 69, 21]. The motivation for studying point sets of bounded spread is
three-fold.
1. Such point sets arise naturally in practice, and are thus important in their own right;

indeed, for many random distributions, the spread is polynomial in the number of points
– in expectation and with high probability. In particular, it is known that for n-point
sets drawn uniformly at random from the unit square, the expected spread is Θ(n),
and the expected spread in the unit d-dimensional hypercube is n2/d for any d = O(1).
Researchers have studied random distributions of point sets, in part to explain the success
of solving various geometric optimization problems in practice [9, 53, 30], and there are
many results on spanners for random point sets [24, 7, 37, 10, 38, 14, 61, 69, 15, 21, 8, 56].
Of course, the family of bounded spread point sets is much wider than that of random
point sets.

2. Euclidean spanners can be constructed in (deterministic) O(n) time in such point sets [20],
while there is no o(n logn)-time algorithm for constructing Euclidean spanners in arbitrary
point sets. (The result of [20] extends to other geometric objects, such as WSPD and
compressed quadtrees, and some of the aforementioned references (e.g., [50, 17]) build
on this result to achieve faster algorithms for other geometric problems for point sets of
polynomially bounded spread.)

3. The case of bounded spread is sometimes used as a stepping stone towards the general
case; see, e.g., [40, 47, 46, 21, 22, 3, 59].

4 The lightness of Steiner spanners can be defined with respect to the SMT (Steiner minimum tree)
weight, but we can also stick to the original definition, since the SMT and MST weights differ by a
constant factor smaller than 2.

5 The spread of a Euclidean space is the ratio of the maximum to minimum pairwise distances in it.

ESA 2020

67:4 Light Euclidean Spanners with Steiner Points

As mentioned above, Le and Solomon [59] showed that for a set of points evenly spaced
on the boundary of the unit square, with distances Θ(

√
ε) between neighboring points, any

Steiner (1 + ε)-spanner must incur lightness Ω̃(1
ε). Note that the spread of this point set is

1√
ε
. The non-Steiner upper bound for d = 2 by [59] is Õ(ε−2). A natural arising question is

whether one can improve the lightness upper bound of Õ(ε−2) using Steiner points, ideally
quaratically, for point sets of bounded spread. We answer this question in the affirmative.

I Theorem 1. Any point set P in R2 of spread ∆ admits a Steiner (1 + ε)-spanner of
lightness O(log ∆

ε).

Recalling that the lower bound of Ω̃(1
ε) by [59] applies to a point set of spread 1√

ε
, the

lightness upper bound provided by Theorem 1 is therefore tight (up to polylogarithmic
factors in 1

ε) for point sets of spread poly(1
ε). Moreover, this upper bound improves the

general upper bound of Õ(ε−2) from [59] in the regime log ∆ � ε−1, i.e., when ∆ � 21/ε.
For spread polynomial in n, we get an improvement over [59] as long as ε� 1

logn . Of course,
the improvement gets more significant as ε decays – in the most extreme situation ε is inverse
polynomial in n, and then the improvement over [59] is polynomial in n even when ∆ is
exponential in n.

Our second result is that a Steiner spanner with near-optimal lightness can be constructed
in linear time, when the spread ∆ is polynomial in n.

I Theorem 2. For any point set P in R2 of spread ∆ = O(nc), for any c = O(1), a Steiner
(1 + ε)-spanner of lightness O(log ∆

ε) can be constructed in Oε(n) time, where Oε(.) hides a
factor of poly(1

ε).

Higher dimensions
The lower bound of [58] states that any (non-Steiner) (1 + ε)-spanner must incur lightness
Ω(ε−d), for any d = O(1). We show that, similarly to the 2-dimensional case, one can improve
the lightness almost quadratically using Steiner points, for point sets of bounded spread.

I Theorem 3. For any d ≥ 3, any point set P in Rd of spread ∆ admits a Steiner (1 + ε)-
spanner of lightness Õ(ε−(d+1)/2 + ε−2 log ∆).

Interestingly, the dependence on the spread in the lightness bound provided by Theorem
3 does not grow with the dimension, hence the improvement over the non-Steiner bound gets
more significant as the dimension grows, provided of course that the spread is not too large.

1.2 Proof Overview
Proof of Theorem 1
We partition the set of pairs of points into m = O(log ∆) subsets {P1, . . . ,Pm} where Pi
contains pairs of distances in [2i−1, 2i). The objective is to show that one can preserve
distances between all pairs in Pi to within a factor of (1 + ε) using a Steiner spanner Si of
weight O(w(MST)

ε); by taking the union of all such spanners, we obtain a Steiner spanner
with the required lightness.

Let Li = 2i. A natural idea to preserve distances in Pi is to (a) find an (εLi)-net Ni6 of
P and (b) add to the spanner edges between any two net points p and q such that (u, v) ∈ Pi
and there is a pair (u, v) in Pi such that u and v are covered by (i.e., within distance εLi

6 A subset of points N ⊆ P is an r-net if every point in P is within distance r from (or covered by) some
point in N and pairwise distances between points in N are larger than r.

H. Le and S. Solomon 67:5

from) p and q, respectively. The stretch will be in check because u and v are at distance
roughly O(ε)||u, v|| from their net points and thus, the additive stretch between u and v is
O(ε)||u, v||. For lightness, we can show that the number of net points |Ni| = O(w(MST)

εLi
), and

using a (nontrivial) packing argument, there are about Ni
ε edges of length O(Li) added in

step (b). Thus, the total weight of the spanner is O(w(MST)
ε2), which is bigger than our aimed

lightness bound by a factor of 1
ε .

To shave the factor of 1
ε , we employ two ideas. First, we take Ni to be a

√
εLi-net of P .

In this way |Ni| = O(w(MST)√
ε

). By applying the 2-dimensional Steiner spanner construction
of [59] as a blackbox, we obtain a Steiner spanner with only |Ni|√

ε
edges of length O(Li) that

approximates distances between points in Ni; we have thus reduced the weight bound to
O(w(MST)

ε), as required. The problem now is with the stretch guarantee: Preserving distances
between the points in Ni is no longer sufficient. Indeed, for every pair (u, v) ∈ Pi, the
distance between u and v to the nearest net points is O(

√
ε)||u, v||, hence the resulting stretch

is (1 +O(
√
ε))||u, v||. We overcome this hurdle by introducing a novel construction of single-

source spanners, which generalize Steiner shallow-light trees of Solomon [68]. Specifically, we
open the black-box of [59] and observe that every time we want to preserve the distance from
(some) Steiner point s to a net-point p ∈ Ni, instead of connecting s to p by a straight line of
weight O(Li), we can use a single-source spanner (rooted at s) of weight O(Li) to preserve
distances (up to a (1 + ε) factor) from s to every point within distances O(

√
εLi) from p. As

a result, our Steiner spanner can preserve distances between any two points (u, v) ∈ Pi to
within a factor of (1 + ε), where u ∈ B(p,O(

√
εLi)), v ∈ B(q,O(

√
εLi)), and p, q are their

nearest net points.

Proof of Theorem 3
By extending the construction in Theorem 1, we can construct a Steiner spanner with
lightness Õ(ε−(d+1)/2 log ∆) as follows: for each Pi, we construct an εLi-net Ni and then
apply the construction of [59] as a black box to obtain a Steiner spanner Si for Ni with
weight Õ(ε−(d−1)/2|Ni|Li). The stretch will be in check since Ni is an εLi-net. Since
|Ni| = O(w(MST)

εLi
), w(Si) = Õ(ε−(d+1)/2w(MST)). The union of Steiner spanners Si for all

i ∈ [1,m] has weight Õ(ε−(d+1)/2 log ∆)w(MST). Note when d ≥ 3, we can not take Ni as a√
εLi-net since the construction of single-source spanners with O(Li) weight in the proof of

Theorem 1 only works when d = 2.
Most of our effort is to further refine the result in a way that log ∆ term is multiplied only by

ε−2 and not by the term that depends on d. We first reduce to the problem of approximating
distances between pairs (of endpoints) in a family of edge sets E = {E1, . . . , Em} with
m = O(log ∆), where edges of Ei have length (roughly) in the interval (1

2εi ,
1
εi] and edges in

E1 have length in [1, 1
ε). Let Li = 1

εi . For a technical reason, we will subdivide edges of
MST by using a set of Steiner points K so that each new edge has length in (1/2, 1].

We construct a Steiner spanner for edges in E using a charging cover tree T : T has depth
m + 1, level i of T is associated with an εLi-cover7 of P ∪ K, and leaves (at level 0) of
T are points in P ∪K. For each cover Ni at level i of T , we construct a graph Hi where
V (Hi) = Ni and there is an edge (u, v) between u, v ∈ Ni if there is a corresponding edge in
Ei whose endpoints are covered by u and v, respectively. Graph Hi is used to distinguish
between low degree points, whose degree in Hi is O(1

ε), and high degree points, whose degree

7 A subset of points N ⊆ P is an r-cover if every point in P is within distance r from some point in N .

ESA 2020

67:6 Light Euclidean Spanners with Steiner Points

in Hi is Ω(1
ε). T will have two charging properties: (1) every point p ∈ Ni has at least

εLi uncharged descendants and (2) at every level i, one can charge up to εLi
2 uncharged

descendants of high degree points. Note that, once an uncharged point is charged at level i,
it will be marked as charged at higher levels; initially at level 0, every point is uncharged.

We then use a charging cover tree T to guide the Steiner spanner construction. Specifically,
at level i, we add all edges incident to low degree points to the spanner and we can show
that the total weight of all these edges over all levels is at most O(w(MST) log ∆

ε2). For high
degree points, we apply the construction of Le and Solomon [59] to obtain a Steiner spanner
Si, and we charge the weight of Si to Liε

2 uncharged descendants of each high degree point.
This charging is possible by the charging property (2) of T . We then show that each point
in K ∪ P is charged a weight at most Õ(ε−(d+1)/2). Thus, the total weight of the Steiner
spanners (for high degree points) at all levels is Õ(ε−(d+1)/2)w(MST).

Our construction of a charging cover tree is inspired by the construction of a hierarchy
of clusters in the iterative clustering technique. The technique was initially developed by
Chechick and Wulff-Nilsen [25] to construct light spanners for general graphs, and then was
adapted to many other different settings [25, 12, 13, 59, 58]. Our construction is directly
inspired by the construction of Borradaile et al. [13] in the doubling dimension setting.
However, our construction is much simpler. Specifically, we are able to decouple the Steiner
spanner construction from the charging cover tree construction. We refer readers to Section 5
for more details.

2 Preliminaries

Let P be a point set of n points in Rd. We denote by ||p, q|| the Euclidean distance between
two points p, q ∈ Rd. Let B(p, r) = {x ∈ Rd, ||p, x|| ≤ r} be the ball of radius r centered at
p. Given a point p and a set of point Q on the plane, we define the distance between p and
Q, denoted by d(p,Q), to be infx∈Q ||p, x||.

An r-cover of P is a subset of points N ⊆ P such that for every point x ∈ P , there is at
least one point p ∈ N such that ||p, x|| ≤ r; we say x is covered by p. When the value of r is
clear from the context, we simply call N a cover of P . A subset of point N ⊆ P is called an
r-net if N is an r-cover of P and also an r-packing of P , i.e., for every two points p 6= q ∈ N ,
||p, q|| > r.

Let G be a graph with weight function w on the edges. We denote the vertex set and
edge set of G by V (G) and E(G), respectively. Let dG(p, q) be the distance between two
vertices p, q of G. We denote by G[X] the subgraph induced by a subset of vertices X.

G is geometric in Rd if each vertex of G corresponds to a point p ∈ Rd and for every
edge (p, q), w(p, q) = ||p, q||. In this case, we use points to refer to vertices of G. We say
that a geometric graph G is a (1 + ε)-spanner of P if V (G) = P and for every two points
p 6= q ∈ P , dG(p, q) ≤ (1 + ε)||p, q||. We say that G is a Steiner (1 + ε)-spanner for P if
P ⊆ V (G) and for every two points p 6= q ∈ P , dG(p, q) ≤ (1 + ε)||p, q||. Points in V (G) \ P
are called Steiner points. Note that distances between Steiner points may not be preserved
in a Steiner (1 + ε)-spanner.

3 Steiner Spanners on the Plane

We focus on constructing a Steiner spanner with good lightness; the fast construction is in
Section 4. We will use the following geometric Steiner shallow-light tree (SLT) construction
by Solomon [68].

H. Le and S. Solomon 67:7

I Lemma 4. Let L be a line segment of length
√
ε and p be a point on the plane such that

d(p, L) = 1. For any point set X ∈ L, there is a geometric graph H of weight Θ(1) such that
dH(p, x) ≤ (1 + ε)||p, x|| for any point x ∈ X.

We will use single-source spanners (defined below) as a black box in our construction.

I Definition 5 (Single-source spanners). Given a point p (source), a set of points X on the
plane and a connected geometric graph SX spanning X, a single source (1 + ε)-spanner w.r.t.
(p,X, SX) is a graph H such that for every x ∈ X: ||p, x|| ≤ dH∪SX (p, x) ≤ (1 + ε)||p, x||.

Our starting point is the construction of a single source spanner from a point p to point set X
enclosed in a circle C of radius

√
ε such that d(p, C) = 1. We show that, if SX approximately

preserves the distances between pairs of points in X up to a (1 + gε) factor for any constant
g, it is possible to construct a single-source spanner with weight O(1). It is not so hard to
see that if Steiner points are not allowed, a lower bound of weight Ω(1√

ε
) holds here.

I Lemma 6. Let X be a set of points in a circle C of radius
√
ε on the plane and a point p

of distance 1 from C. Let SX be a (1 + gε)-spanner of X for any constant g. Then there is a
single-source (1 + 13ε)-spanner H w.r.t. (p,X, SX) of weight O(1) when g � 1

ε .

Proof. Let c be a center of C. W.l.o.g, we assume that pc is parallel to y-axis. Let Q be the
axis-aligned smallest square bounding C. Observe that the side length of Q is at mos 2

√
ε.

Place a 2√
ε
× 2√

ε
grid W on Q, so that every cell of W is a square of side length ε. Observe

that:

w(W) ≤ ε · 4
ε

= O(1)

We extend W to W1 by connecting an (arbitrary) corner of each grid cell to an arbitrary
point of X in the cell. Observe that: w(W1) = O(W) = O(1). Let P be the set of grid
points on the side, say L, of Q that is closer to p (than the opposite side). We apply the
construction in Lemma 4 to p and L to obtain a geometric graph K. Let H = W1 ∪K. Since
w(K) = O(1) by Lemma 4, it holds that w(H) = O(1).

It remains to show the stretch bound. Let x be any point of X and v be the point in the
same cell with x that is connected to a corner, say z of grid W . We will show below that:

dW∪K(z, p) ≤ (1 + 3ε)||p, z|| (1)

If Equation 1 holds, it would imply:

dSX∪H(x, p) ≤ dSX (x, v) + dH(v, p) ≤ (1 + gε)
√

2ε+ dH(v, p)

≤ (1 + gε)
√

2ε+ dH(z, v) + dH(z, p)
g�1/ε
≤ 2

√
2ε+

√
2ε+ dW∪K(z, p)

Eq. 1
≤ (1 + 3ε)||p, z||+ 3

√
2ε
||x,z||≤

√
2ε

≤ (1 + 3ε)(||p, x||+
√

2ε) + 3
√

2ε

≤ (1 + 3ε)||p, x||+ 7
√

2ε ≤ (1 + 13ε)||p, x|| since ||p, x|| ≥ 1

Thus, it remains to prove Equation 1. To this end, let y be the projection of z on L.
(Point y is also a grid point; see Figure 1) Let y′, z′ be projections of y and z on the
line containing pc, respectively. Let u be the intersection of pz and yy′. Observe that
||p, y|| ≤ (1 + ε) ≤ (1 + ε)||p, u||. Thus,

||p, y||+ ||y, z|| ≤ (1 + ε)||p, u||+ ||y, z|| ≤ (1 + ε)||p, u||+ ||u, z|| ≤ (1 + ε)||p, z|| (2)

ESA 2020

67:8 Light Euclidean Spanners with Steiner Points

r

Q

L

p

x
v

z

K

Q

L

p

z

K

yy'

z'

c

u

Figure 1 (Left) A single source spanner from p to a set of points enclosed by a circle of radius
√
ε.

One point in each non-empty cell is connected to a corner by a thick edge. (Right) An illustration
for analyzing the stretch of pz.

Since dW (z, y) = ||z, y|| and dK(y, p) = (1 + ε)||p, y|| by Lemma 4, we have:

dW∪K(z, p) ≤ (1 + ε)(||z, y||+ ||p, y||)
Eq. 2
≤ (1 + ε)(1 + ε)||p, z|| ≤ (1 + 3ε)||p, z|| (3)

which implies Equation 1. J

We obtain the following corollary of Lemma 6.

I Corollary 7. Let X be a set of points in a circle C of radius
√
εL on the plane and a point

p of distance L/h from C for some constant h ≥ 1. Let SX be a (1 + gε)-spanner of X for
any constant g. Then there is a single-source (1 + 13ε)-spanner H w.r.t. (p,X, SX) of weight
O(hL) when g � 1

ε .

Proof. We scale the space by L/h. In the scaled space, C has radius h
√
ε and d(p, C) = 1.

Let C1, C2, . . . , Cm, where m = O(h2), be circles of radius
√
ε covering C; such a set of circles

can be constructed greedily. We apply Lemma 6 to p and each Ci to construct a single-source
(1+13ε)-spanner Hi from p to each Ci. The final spanner is H = ∪mi=1Hi that has total weight
O(h2) in the scaled metric. Thus, in the original metric, w(H) = O(h2L/h) = O(hL). J

We are now ready to prove Theorem 1.

Proof of Theorem 1. Assume that the minimum pairwise distance is 1. Let P =
(
P
2
)
be

all pairs of points. Partition P into O(log ∆) sets P1,P2, . . . ,Pdlog ∆e where Pi is the set of
pairs (x, y) such that ||x, y|| ∈ [2i−1, 2i).

For a fixed i, we claim that there is a geometric graph Hi such that for every two distinct
points (x, y) ∈ Pi, dH1∪...∪Hi(x, y) ≤ (1 + ε)||x, y|| and that w(Hi) = O(1

ε)w(MST). Thus,
H1 ∪ . . . ∪Hdlog ∆e is a Steiner spanner with weight O(log ∆

ε)w(MST).

H. Le and S. Solomon 67:9

Ha

Ha

Hb

(a) (b)

Li
8

⩾

B

Hb

Li
8

εLi r

p

y

x

v
z

Li𝛩()

Figure 2 (a) Square B is divided into O(1) horizontal and vertical bands of width Li/8 each. (b)
The Steiner spanner construction for two non-adjacent horizontal bands Ha and Hb. The dashed
cone represents a single-source spanner from r to circle B(p,

√
εLi).

We now focus on constructing Hi. Let Si−1 = H1 ∪H2 . . . ∪Hi−1. We will construct a
spanner with stretch (1 + cε) for some constant c. By induction, we can assume that:

dSi−1(p, q) ≤ (1 + cε)||p, q|| (4)

for any pair (p, q) ∈ P1 ∪ . . . ∪ Pi−1.
Let Li = 2i and Ni be a (

√
εLi)-net of P . For each point x, let Ni(x) be the net point

that covers x: the distance from x to Ni(x) is at most
√
εLi.

B Claim 8. |Ni| = O(w(MST)
Li
√
ε

).

Proof. Consider the circle B(p,
√
εLi) centered at p; B(p,

√
εLi) contains a segment of length

Ω(
√
εLi) of the MST, which is not contained in any other circle. Thus, the claim holds. C

Next, we consider the smallest axis-aligned square Q bounding the point set. In the
following, we divide Q into a set of (overlapping) sub-squares B of side length Θ(Li) each.
This way, for any pair (x, y) ∈ Pi (of distance at most Li), there is a sub-square entirely
containing Ni(x), Ni(y), and the balls of radius O(

√
εLi) around the two net points.

Constructing B. We first divide Q into subsquares of side length 5Li each8. For each
subsquare B, we extend its borders equally to four directions by an amount of 2Li in
each direction. After this extension, B has side length 9Li.

B Claim 9. Every point in Q belongs to at most 4 subsquares in B. Furthermore, for each
pair (x, y) ∈ Pi, there is a subsquare B ∈ B such that B(Ni(x),

√
εLi), B(Ni(y),

√
εLi) are

entirely contained in B.

Proof. Let B be a subsquare in B containing one of the endpoints of (x, y), say x, before
extension. Then, after extension, B will contain both x, y since ||x, y|| ≤ Li, and furthermore,
x and y are at least Li away from the boundary since we extended B by 2Li in each direction.
Thus, points in B(Ni(x),

√
εLi) (B(Ni(y),

√
εLi)) will be at most 2

√
εLi < Li from x (y)

when ε� 1. C

8 We assume that the side length of Q is divisible by 5Li; otherwise, we can extend Q in such a way.

ESA 2020

67:10 Light Euclidean Spanners with Steiner Points

Consider a subsquare B ∈ B. Let NB = Ni ∩ B. By abusing notation, we denote by
Pi ∩B all the pairs in B of Pi. We will show that:

B Claim 10. There is a Steiner spanner SB of weight at most O(|NB |Li/
√
ε) such that for

any pair of points (x, y) ∈ Pi ∩B, it holds that:

dSB∪Si−1(x, y) ≤ (1 + cε)||x, y||

for some big enough constant c.

Proof. We divide B into O(1) horizontal (vertical) bands of length (width) Li/8 so that for
any two points x, y ∈ Pi ∩ B, Ni(x) and Ni(y) are in two non-adjacent horizontal bands
and/or vertical bands (see Figure 2). These bands exist since

||Ni(x), Ni(y)|| ≥ ||x, y|| − 2
√
εLi ≥ Li/2− 2

√
εLi ≥ Li/4

Now for each pair of non-adjacent horizontal bands Ha and Hb, d(Ha, Hb) ≥ Li
8 . Draw a

bisecting segment (touching two sides of B) between Ha and Hb and place O(1√
ε
) equally-

spaced Steiner points, say R, on the bisecting line in a way that the distance between any
two nearby Steiner points is Li

√
ε (see Figure 2(a)). For each point r ∈ R, and each net point

pi ∈ NB ∩ (Ha ∪Hb), we apply the construction of Corollary 7 to r, the set of endpoints of
Pi inclosed in circle B(pi,

√
εLi) and Si−1; let Sa,b(pi) be the obtained geometric graph (see

Figure 2(b)). Note that d(r,B(pi,
√
εLi)) = Ω(Li). Thus, by Corollary 7, w(Sa,b(pi)) = O(Li)

and that:

dSi−1∪Sa,b(pi)(r, q) ≤ (1 + 13ε)||r, q|| (5)

for any q ∈ B(pi,
√
εLi) ∩ P . Let Sa,b(r) = ∪pi∈NB∩(Ha∪Hb)Sa,b(pi). It holds that

w(Sa,b(r)) ≤ O(Li)|NB ∩ (Ha ∪Hb)|.

Let Sa,b = ∪r∈RSa,b(r). Then, we have:

w(Sa,b) ≤ O(Li · |R| · |NB ∩ (Ha ∪Hb)|) = O(Li√
ε
|NB ∩ (Ha ∪Hb)|) (6)

We apply the same construction for every pair of non-adjacent vertical bands. We then let
SB be the union of all Sa,b for every pair of non-adjacent horizontal/vertical bands Ha, Hb.
It holds that:

w(SB) = O(Li · |R| · |NB |) = O(Li|NB |√
ε

) (7)

since there are only O(1) pairs of bands. To bound the stretch, let (x, y) be a pair in Pi
whose endpoints are in B. W.l.o.g, assume that Ha, Hb are two non-adjacent horizontal
bands that contain Ni(x) and Ni(y), respectively. Let v be the intersection of segment xy
and the bisecting line L of Ha, Hb (see Figure 2(b)). Let r ∈ R be the closest Steiner point
to v in L and z be the projection of r on xy. Observe that ||z, x||, ||z, y|| ≥ Li

16 − ||z, v|| ≥
Li/16−

√
εLi ≥ Li/32 when ε� 1. We have:

||r, x||+ ||r, y|| =
√
||x, z||2 + ||r, z||2 +

√
||y, z||2 + ||r, z||2

≤ ||x, z||

√
1 + εL2

i

||x, z||2
+ ||y, z||

√
1 + εL2

i

||y, z||2
since ||r, z|| ≤

√
εLi

≤ ||x, z||
√

1 + 1024ε+ ||y, z||
√

1 + 1024ε since ||x, z||, ||y, z|| ≥ Li/32
≤ ||x, z||(1 + 512ε) + ||y, z||(1 + 512ε) = (1 + 512ε)||x, y||

H. Le and S. Solomon 67:11

Thus, by Equation 5, we have:

dSB∪Si−1(x, y) ≤ (1 + 13ε)(||r, x||+ ||r, y||) = (1 + 13ε)(1 + 512ε)||x, y|| = (1 +O(ε))||x, y||

Thus, the stretch is (1 + cε) for a sufficiently big constant c. C

Let Hi = ∪B∈BSB . Since each net point belongs to at most 4 subsquares in B by Claim 9,
and w(Hi) ≤ O(|Ni|Li√

ε
) by Claim 10, it holds that:

w(Hi) = O(Li√
ε

w(MST)
Li
√
ε

) = O(w(MST)
ε

) (8)

by Claim 8 as desired. J

4 A Linear Time Construction

In this section, we assume that ∆ = O(nc) for some constant c, and ε is a constant. We use
the same model of computation used by Chan [20]: the real-RAM model with Θ(logn) word
size and floor function. We will use Oε notation to hide a polynomial factor of 1

ε . Chan [20]
showed that:

I Theorem 11 (Step 4 in [20]). Given a poin set P ∈ Rd with spread ∆ = O(nc) for constant
d and c, a (1 + ε)-spanner of P can be constructed in Oε(P) time.

We will use a construction of an r-net for a point set P for any r in time O(n). Such a
construction was implicit in the work of Har-Peled [48] which was made explicit by Har-Peled
and Raichel (Lemma 2.3 [50]).

I Lemma 12 (Lemma 2.3 and Corollary 2.4 [50]). Given r ≥ 1 and an n-point set P in Rd,
an r-net N of P can be constructed in O(n) time. Furthermore, for each net point p, one
can compute all the points covered by p in total O(n) time.

We first show that the spanner in Corollary 7 can be implemented in Oε(|X|) time.

B Claim 13. The single-source spanner H in Corollary 7 can be found in Oε(|X|) time.

Proof. First, we observe that the single source spanner in Lemma 6 can be constructed in
time Oε(|X|). This is because the grid W has size Oε(1) and the SLT tree from p to (a set
of O(1√

ε
) grid points on) L can be constructed in Oε(1) time. The single-source spanner in

Corollary 7 uses a constant number of constructions construction in Lemma 6. Thus, the
total running time is Oε(|X|). C

Proof of Theorem 2. Our implementation will follow the construction in Section 3 ; we will
reuse notation in that section as well. Let K be a (1 + ε)-spanner H for P constructed in
time O(n) by Theorem 11. In our fast construction algorithm, instead of considering all
pairs of points P =

(
P
2
)
, we only consider the pairs corresponding to edges of H; there are

O(n) such pairs. Our algorithm has four steps:

Step 1. Partition pairs of endpoints in E(H) into at most O(log(∆)) sets P1, . . . ,Pdlog ∆e
where Pi is the set of pairs (x, y) such that ||x, y|| ∈ [2i−1, 2i). Let Li = 2i. This step
can be implemented in time O(|E(H)|) = Oε(n). The following steps are applied to each
i ∈ [1, dlog ∆e]. Let Pi be the set of endpoints of Pi. We observe that:

n∑
i=1
|Pi| ≤ 2

n∑
i=1
|Pi| = 2|E(H)| = O(n) (9)

ESA 2020

67:12 Light Euclidean Spanners with Steiner Points

Step 2. Construct a (
√
εLi)-net Ni for Pi in O(|Pi|) time using the algorithm in Lemma 12.

Step 3. Compute a bounding square Q and divide it into (overlapping) subsquares
of length Θ(Li) each. Let B be the set of subsquares that contain at least one point
participating in the pairs Pi. Since there are only O(|Pi|) non-empty subsquares, B can
be computed in time O(|Pi|) by iterating over each point and check (in O(1) time) which
subsquare the point falls into. Here we use the fact that each floor operation takes O(1)
time.
Step 4. For each subsquare B ∈ B, we divide it into O(1) horizontal bands and vertical
bands of length Li/8. For each pair of non-adjacent (horizontal) bands Ha, Hb, construct
a set of O(1√

ε
) Steiner points on the bisecting line between Ha and Hb as in Section 3.

For each Steiner point r and each net point p ∈ Ni ∩ (Ha ∩Hb), we apply Corollary 7 to
construct a single source spanner from r to a set of points B(p,

√
εLi) ∩ Pi; this step can

be implemented in time Oε(|B(p,
√
εLi)∩Pi|) by Claim 13. By Claim 9, the construction

in this step can be implemented in Oε(|Pi|) time. Our final spanner is the union of all
single source spanners in all subsquares in B.

The running time needed to implement Steps 2 to 4 is Oε(
∑
i=1 |Pi|) = Oε(n) by

Equation 9. The same analysis in Section 3 gives O(log ∆
ε) lightness. For stretch, we observe

that the stretch of the spanner for each edge of H is (1 +O(ε)). Thus, the stretch for every
pair of points in P is (1 + ε)(1 + O(ε)) = (1 + O(ε)). We can recover stretch (1 + ε′) by
setting ε′ = ε

c where c is the constant behind big-O. J

5 Steiner Spanners in High Dimension

In this section, we a light Steiner spanner for a point set P ∈ Rd with spread ∆ as in
Theorem 3. We rescale the metric so that every edge in

(
P
2
)
has weight at least 1

ε . Let MST
be the minimum spanning tree of P . We subdivide each MST edge of length > 1, by placing
Steiner points greedily, in a way that each new edge has length at least 1/2 and at most 1.
Let K be the set of Steiner points. We observe that:

w(MST) = Θ(|P |+ |K|) (10)

Let δ > 1 be some parameter and Li = δ
εi . Let Eδ = {E1, . . . , Em} be the set of edges such

that

Ei = {e|e ∈
(
P

2

)
∧ w(e) ∈ (Li/2, Li]} (11)

where m = dlog 1
ε
(∆/(εδ))e ≤ dlog 1

ε
∆e + 1. If an edge e ∈ Ei for some Ei ∈ Eδ, we will

abuse notation by saying that e ∈ Eδ. The main focus of this section is to show that:

I Lemma 14. There is a Steiner spanner that preserves distances between the endpoints of
edges in Eδ with weight Õ(ε−(d+1)/2 + (δ + ε−2) log 1

ε
∆)w(MST).

We will show below that Lemma 14 implies Theorem 3.

Proof of Theorem 3. We assume that 1
ε is a power of 2. We partition the interval [1, ε) into

J = log2(1
ε) intervals [1, 2), . . . , [2J−1, 2J). For each fixed j ∈ [1, J], let δi = 2j , and Eδj be

the set of edges with δ = δj in the definition of Eδ. Recall that we scale the metric so that
every edge in

(
P
2
)
has weight at least 1

ε . Thus,
(
P
2
)

= ∪Jj=1Eδj
Observe that δj ≤ 1

ε for all j ∈ [1, J]. By Lemma 14, there exists a Steiner spanner Sj
with weight Õ(ε−(d+1)/2 + (ε−2 log 1

ε
∆)w(MST) preseving distances between endpoints of

edges in Eδj up to a (1 + ε) factor. Then S = ∪Ji=1Sj is a Steiner (1 + ε)-spanner with weight
Õ(ε−(d+1)/2 + ε−2 log ∆)w(MST). J

H. Le and S. Solomon 67:13

We now focus on constructing a Steiner spanner in Lemma 14. We will use the following
Steiner spanner construction as a black box.

I Theorem 15 (Theorem 1.3 [59]). For a given point set P , there is a Steiner (1+ε)-spanner,
denoted by STP(P), with Õ(ε−(d−1)/2)|P | edges that preserves pairwise distances of points in
P up to a (1 + ε) factor.

We will rely on a cover tree to construct a Steiner spanner. Let c be a sufficiently big
constant chosen later (c = 20).

I Definition 16 (Cover tree). A cover T for point set P ∪K with (m+ 1) levels has each
node associated with a point of P such that (a) level-0 of T is the point set P ∪K, (b) level-i
of T is associated with a (cεLi)-cover Ni of P and (c) Nm ⊆ Nm−1 ⊆ . . . ⊆ N0.

A point p may appear in many levels of a cover tree T . To avoid confusion, we denote
by (p, i) the copy of p at level i, and we still call (p, i) a point of P ∪K. For each point
(p, i), we denote by child(p, i) and desc(p, i) the set of children and descendants of (p, i) in T ,
respectively. Note that desc(p, i) includes (p, i).

We will construct the Steiner spanner level by level, starting from level 1. At every level,
we will add a certain set of edges to Esp. We then charge the weight of a subset of the edges
to a subset of uncharged points of P ∪K; initially, every point of P ∪K is uncharged. To
decide which uncharged points we will charge to at level i, we consider a geometric graph Hi

where V (Hi) = Ni and there is an edge between two points (p, i) 6= (q, i) (of weight ||p, q||) in
Hi if there exists at least one e ∈ Ei between two descendants of (p, i) and (q, i), respectively.
We say a cover point (p, i) has high degree if its degree in Hi is at least 4c

ε . At level i, we only
charge to uncharged points which are descendants of high degree cover points. The intuition
is that high cover points have many descendants. This leads to a notion of a charging cover
tree. We call a cover tree a charging cover tree for Eδ if for all level i ≥ 1,
(1) Each point (p, i) has at least εLi descendants that are uncharged at level less than i.
(2) Up to εLi/2 uncharged descendant of each high-degree cover point (p, i) can be charged

at level i. No descendant of low-degree points is charged at level i.

We show how to construct a charging cover tree in Appendix 5.4. We now show that
given a charging cover tree, we can construct a Steiner spanner with the lightness bound in
Lemma 14. Let T be such a charging cover tree. We define a set of edges ET as follows:

ET = {(p, q)|(p ∈ child(q, i) ∨ q ∈ child(p, i)) for some i} (12)

We abuse notation by denoting ET the graph induced by the set of edges in ET .

B Claim 17. w(ET) = O(δ+ ε−1 log 1
ε

∆)w(MST)) and for any p and every x 6= y ∈ desc(p, i),
dET (x, y) ≤ 4cεLi.

Proof. Edges in ET can be partitioned according to levels where an edge is at level i if it
connects a point (p, i) and its parent. Observe that at level 0, the total edge weight is at most
cδ times the number of points and hence, the total weight is O(δ|K ∪ P |) = O(δw(MST)) by
Equation 10. At higher level, we observe that the total weight of edges of ET at level i ≥ 1 is
at most Li|Ni|, and that Ni ≤ |K∪P ||εLi| since each point (p, i) has |desc(p, i)| ≥ εLi by property
(1) of the charging tree. Thus, the total weight of edges Et at level at least 1 is at most:

m∑
i=1

|K ∪ P |
ε

= m
|K ∪ P |

ε
= O(ε−1 log 1

ε
∆|K ∪ P |) = O(ε−1 log 1

ε
∆)w(MST)

ESA 2020

67:14 Light Euclidean Spanners with Steiner Points

This implies the weight bound of ET . We now bound the distance between x 6= y ∈ desc(p, i).
Let x = v0, v1, . . . , vk = p be the (unique) path from x to p. By construction, ||vi−1, vi|| ≤
vivi+1
ε for i ∈ [1, k − 1]. This implies:

dET (x, p) = ||p, vk−1||
k−1∑
i=0

εi ≤ ||p, vk−1||
1− ε ≤ 2||p, vk−1|| = 2cεLi

when ε ≤ 1
2 . Similarly, dET (y, p) ≤ 2cεLi and hence dET (x, y) ≤ 4cεLi. C

Claim 17 implies that the descendants of any level i node in a charging cover tree form a
subgraph of diameter at most O(cεLi). Let Esp be the set of edges that will be our final
spanner. Initially, Esp = ET ∪MST. We will abuse notation by denoting Esp the graph
induced by edge set Esp.

5.1 Spanner construction at level i

Recall that Hi is a geometric graph where V (Hi) = Ni and there is an edge between two
points (p, i) 6= (q, i) in Hi if there exists at least one e ∈ Ei between two descendants of (p, i)
and (q, i), respectively. Recall that a high degree point (p, i) has at least 4c

ε neighbors in Hi.
We proceed in two steps.

Step 1. For every low degee point (p, i), we add all incident edges of (p, i) in Hi to Esp.
Step 2. Let Q be the set of high degree points in Ni. We add to Esp the set of edges
of STP(Q). We take from each high degree cover point (p, i) exactly εLi/2 uncharged
descendants and let X be the set of these uncharged points. We charge the cost of STP(Q)
equally to all points in X and mark them charged. This charging is possible by property
(2) of T .

5.2 Bounding the stretch
We will show that the stretch is (1 + (48c+ 1)ε). We can recover stretch (1 + ε′) by setting
ε′ = ε

48c+1 .
Observe by construction that for every edge e ∈ Hi, the stretch of e in Esp is at most

(1 + ε). Recall that for every edge (u, v) ∈ Ei, there is an edge (p, q) ∈ E(Hi) such that
u ∈ desc(p, i), v ∈ desc(q, i). By Claim 17, there is a path between u and v in Esp of length
at most dEsp(p, q) + 8cεLi. By triangle inequality, ||p, q|| − 2cεLi ≤ ||u, v|| ≤ ||p, q||+ 2cεLi.
Thus, we have:

dEsp(u, v)
||u, v||

≤
dEsp(p, q) + 8cεL2

||p, q|| − 2cεLi
=
dEsp(p, q)
||p, q||

+
(dEsp(p, q) + 4||p, q||)2cεLi
||p, q||(||p, q|| − 2cεLi)

≤
dEsp(p, q)
||p, q||

+ 12cεLi
||p, q|| − 2cεLi

since dEsp(p, q) ≤ 2||p, q||

≤
dEsp(p, q)
||p, q||

+ 48cε ≤ 1 + (48c+ 1)ε

The penultimate inequality follows from the fact that

||p, q|| − 2cεLi ≥ ||u, v|| − 4cεLi ≥ Li/2− 4cεLi ≥ Li/4

when ε� 1
c .

H. Le and S. Solomon 67:15

5.3 Bounding w(Esp)

Observe that the total number of low degree points in Ni is at most |K∪P |εLi
since each low

degree point has at least εLi (uncharged) descendants by property (1) of charging tree T . By
triangle inequality, each edge of Hi has weight at most Li + 2cεLi ≤ 3Li when ε < 1

c . Thus,
the total weight of edges added to Esp in Step 1 is bounded by:

3Li · 4c
ε
|{p|p ∈ Ni and p has low degree}| = O(Li

ε

|K ∪ P |
εLi

) = O(1
ε2

)w(MST)

by Equation 10. Thus, the total weight of the edges added to Esp in Step 1 over m levels is
O(ε−2 log 1

ε
∆)w(MST). Note here that m ≤ dlog 1

ε
∆e+ 1.

We now bound the total weight of the edges added to Esp in Step 2 over m levels.
Since each edge of Hi has weight at most 3Li, each edge of STP(Q) has weight a most
(1 + ε)3Li ≤ 6Li. By Theorem 15,

w(STP(Q)) = Õ(ε−(d−1)/2)|Q|6Li = Õ(ε−(d−1)/2+o(1))|Q|Li
Thus, in Step 2, each uncharged point is charged at most:

Õ(ε−(d−1)/2)|Q|Li
|Q|εLi/2

= Õ(ε−(d+1)/2) (13)

This implies the total weight of the edges added to Esp in Step 2 over all levels is
Õ(ε−(d+1)/2)(|P ∪K|) = Õ(ε−(d+1)/2)w(MST). Together with Claim 17, we conclude that:

w(Esp) = Õ(ε−(d+1)/2 + (δ + ε−2) log 1
ε

∆)w(MST)

This completes the proof of Lemma 14.

5.4 Constructing a Charging Cover Tree
The main difficulty is to guarantee property (1) in constructing a charging cover tree; for
property (2) at each level i, we simply charge to exactly εLi/2 uncharged descendants of
each high degree cover point.

A natural idea is to guarantee that each cover point has 1
ε children. Then inductively,

if each child of a cover point (p, i) has at least εLi−1/2 uncharged descendants after the
charging at level i− 1, we can hope that p has at least 1

ε εLi−1 = εLi uncharged descendants.
There are two issues with this idea: (a) if at least one child, say (q, i− 1), of (p, i) has high
degree in the graph Hi−1, up to εLi−1/2 uncharged points in desc(q, i− 1) were charged at
level i− 1 by property (2), and thus, (q, i− 1) only contributes εLi−1

2 uncharged descendants
to (p, i); and (b) there may not be enough cover points at level i− 1 close to p as these points
and their descendants must be within distance cεLi from p.

In our construction, we resolve both issues by picking a cover point in a way that the
total number of uncharged descendants of its children is at least εLi. We do so by having a
more accurate way to track the number of uncharged descendants of a cover point, instead
of simply relying on the lower bound εLi of uncharged descendants. Specifically, denote by
D(X) the diameter of a point set X. We will construct a charging cover tree in a way that
the following invariant is maintained at all levels.

Strong Charging Invariant: (SCI)
Each point (p, i) has at least max(εLi,D(desc(p, i))+1) uncharged descendants (before
the charging happened at level i).

Clearly, SCI implies property (1) of T . We begin by constructing the level-1 cover. Recall
that MST edges have weight at most 1 and at least 1

2 , and that δ ≥ 1.

ESA 2020

67:16 Light Euclidean Spanners with Steiner Points

Level 1
We construct level-1 cover points N1 by greedily breaking MST edges into subtrees of diameter
at least δ and at most 3δ + 2 ≤ 5δ. Let X be such a subtree of MST with diameter dX ; X
will have at least δ points since MST edge has weight at most 1. We pick any point, say
p ∈ X, to be a level-1 cover point, and make other points in X become p’s children; p will
have at least δ children (uncharged at level 0). Recall that εL1 = δ. Since each MST edge
has weight at most 1, the number of descendants of (p, 1) is at least:

dX + 1 ≥ max(εL1,D(desc(p, 1)) + 1)

Thus, SCI holds for this level.

Level i + 1
Recall Hi is a graph with vertex set Ni. We construct a cover Ni+1 in three steps A, B
and C.

Step A. For each high degree point p (with at least 4c
ε unmarked neighbors in Hi), we

pick p to Ni+1 andmake its unmarked neighbors become its children. We then mark p
and all of its neighbors. For each remaining unmarked high degree point x in Hi, at least
one of its neighbors, say q, must be marked before. We make x become a child of q’s
parent.

The intuition of the construction in Step A is that (p, i+1) picked at this step has at least 4c
ε

children. Since at least (εLi)/2 descendants of each child of (p, i) remain uncharged after level
i, the total number of uncharged descendants of (p, i+ 1) is 4c

ε
εLi
2 = 2cLi = 2cεLi+1 > εLi+1.

Furthermore, since every high degree point is marked in this step, points in subsequent steps
have low degree and hence no uncharged descendant of these points is charged at level i by
property (2) of charging cover trees.

Let W be the set of remaining points in Ni. We construct a forest F from W as follows.
The vertex set of F is W , and there is an edge between two vertices p, q of F if there is an
MST edge, called the source of the edge, connecting a point in desc(p) and a point in desc(q).
We set the weight of each edge in F to be the weight of the source edge. Note that F is not
a geometric graph. We observe that:

I Observation 18. For every connected component C ∈ F , there must be a point p ∈ C and
a point q marked in Step A such that there is an MST edge between a descendant of (p, i)
and a descendant of (p, i), except when there is no point marked in Step A (and F is a tree
in this case).

Proof. The observation follows from the fact that MST spans P ∪K. J

We define the weight on each vertex p of F to be w(p) = D(desc(p, i)), and the vertex-
weight of a path P , denoted by vw(P), of F to be the total weight of vertices on the path.
We define the absolute weight of P , denoted by aw(P), to be the total vertex and edge weight
of P . Since each MST edge has weight at most 1 and each vertex has weight at least 1,

aw(P) ≤ 2vw(P) (14)

The vertex-diameter of a subtree C, denoted by VD(C), of F is defined to be the vertex-
weight of the path of maximum vertex-weight in the subtree. The absolute diameter of C,
denoted by AD(C), is defined similarly but w.r.t absolute weight.

H. Le and S. Solomon 67:17

Step B. For each component C of F of vertex-diameter at least Li, we greedily break
C into sub-trees of vertex-diameter at least Li and at most 3Li. For each subtree of
C, choose an arbitrary point p to be a level-(i+ 1) cover point and make other points
become p’s children.
Step C. For each component C of F of vertex-diameter at most Li, by Observation 18,
there must be at least one MST connecting a point in desc(u, i) for some u ∈ C to a point
in desc(v, i) for some point v marked in Step 1. We make all points in C become children
of v’s parent.

The following claim implies that Ni+1 is a (cεLi+1)-cover.

B Claim 19. For each point (p, i+ 1), D(desc(p, i+ 1)) ≤ cεLi+1 for c = 20.

Proof. Note that for each point (q, i), 1 ≤ D(desc(q, i)) ≤ 2cεLi since every point in desc(q, i)
is within distance cεLi from q.

First, consider the case that (p, i+ 1) is chosen in Step B. Then p and its children belong
to a subtree C of F of vertex-diameter at most 3Li. by Equation 14, AD(C) ≤ 2 · 3Li = 6Li.
Thus, for a point p ∈ Ni+1 selected in Step B, D(desc(p, i+ 1)) ≤ AD(C) ≤ 6Li.

We now consider the case where (p, i+ 1) is chosen in Step A. (There is no cover point at
level (i+ 1) selected in Step C.) Recall that each edge of Hi has length at most Li + 2cεLi
by the triangle inequality. Observe that after Step 1, for any (q, i) ∈ child(p, i+ 1), the hop
distance in Hi between (p, i) and (q, i) is at most 2, hence ||p, q|| ≤ 2(Li+2cεLi) = 2Li+4cεLi.
That implies, after Step A,

||p, x|| ≤ (2Li + 4cεLi) + cεLi = 2Li + 5cεLi for any x ∈ desc(p, i+ 1) (15)

In Step C, we add more points belonging to subtrees of F to child(p, i+ 1). Let C be any
of these subtrees. Since VD(C) ≤ Li, AD(C) ≤ 2Li. By construction, there exists a point
(v, i) ∈ C and a point (u, i) ∈ child(p, i+1) such that there is an MST edge e connecting a point
in desc(v, i) and a point in desc(u, i). Thus, the augmentation in Step C increases the distance
from p to the furthest point of desc(p, i+ 1) by at most w(e) + AD(C) ≤ 1 + 2Li ≤ 3Li.
This implies:

D(desc(p, i+ 1)) ≤ 2(2Li + 5cεLi + 3Li) ≤ 20Li

when ε < 1
c . C

To complete the proof of Lemma 14, it remains to show SCI for level (i+ 1).

B Claim 20. Each point (p, i+ 1) has at least max(εLi+1,D(desc(p, i+ 1) + 1) uncharged
descendants.

Proof. We first consider the case (p, i+ 1) is picked in Step B. Let X be the subtree of F
that p belongs to. Let P be a path of X of maximum absolute weight. By definition on
absolute weight, aw(P) ≥ D(desc(p, i+ 1)). Since MST has length at most 1, we have:∑

q∈P
D(desc(q, i)) + |E(P)| ≥ aw(P) ≥ D(desc(p, i+ 1))

By SCI for level i, we conclude that the number of uncharged descendants of (p, i+ 1) is at
least:∑

q∈P
(D(desc(q, i)) + 1) ≥ (

∑
q∈P

D(desc(q, i)) + |E(P)|) + 1 ≥ D(desc(p, i+ 1))) + 1

ESA 2020

67:18 Light Euclidean Spanners with Steiner Points

To show that X has at least εLi+1 uncharged descendants, we observe by construction that X
has a path Q with vw(Q) ≥ Li. By definition of vertex-weight, vw(Q) =

∑
q∈Q D(desc(q, i)).

Thus, the total number of uncharged descendants of all q ∈ Q by SCI is at least:∑
q∈Q

(D(desc(q, i)) + 1) >
∑
q∈Q

D(desc(q, i)) ≥ Li = εLi+1

Thus, (p, i+ 1) has at least max(εLi+1,D(desc(p, i+ 1)) + 1) uncharged descendants.
It remains to consider the case (p, i+ 1) is picked in Step A. By construction, (p, i+ 1)

has at least 4c
ε children, and each has at least εLi−1/2 uncharged descendants by property

(2) of a charging cover tree. Note that D(desc(p, i+ 1)) ≤ cεLi+1 = cLi by Claim 19. Thus,
(p, i+ 1) has at least:

4c
ε

εLi
2 = 2cLi ≥ max(εLi+1,D(desc(p, i+ 1))) + cLi > max(εLi+1,D(desc(p, i+ 1)) + 1)

uncharged descendants as desired. C

References
1 M. A. Abam and S. Har-Peled. New constructions of sspds and their applications. In

Proceedings of the 26th Annual Symposium on Computational Geometry, SoCG ‘10, page
192–200, 2010. doi:10.1145/1810959.1810993.

2 P. K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao. Faster algorithms for
the geometric transportation problem. In 33rd International Symposium on Computational
Geometry, volume 77 of SoCG ‘17, pages 7:1–7:16, 2017. doi:10.4230/LIPIcs.SoCG.2017.7.

3 Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen.
Constructing light spanners deterministically in near-linear time. In Michael A. Bender, Ola
Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms,
ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages
4:1–4:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

4 I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete Computational Geometry, 9(1):81–100, 1993. doi:10.1007/BF02189308.

5 B Aronov, M. Berg, O. Cheong, J. Gudmundsson, H. Haverkort, and A. Vigneron. Sparse geo-
metric graphs with small dilation. In International Symposium on Algorithms and Computation,
ISAAC ‘05, pages 50–59, 2005. doi:10.1007/11602613_7.

6 S. Arya and M. H. M. Smid. Efficient construction of a bounded degree spanner with low
weight. Algorithmica, 17(1):33–54, 1997.

7 Sunil Arya, David M. Mount, and Michiel H. M. Smid. Randomized and deterministic
algorithms for geometric spanners of small diameter. In 35th Annual Symposium on Foundations
of Computer Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages 703–712.
IEEE Computer Society, 1994.

8 Gali Bar-On and Paz Carmi. \delta -greedy t-spanner. In Faith Ellen, Antonina Kolokolova, and
Jörg-Rüdiger Sack, editors, Algorithms and Data Structures - 15th International Symposium,
WADS 2017, St. John’s, NL, Canada, July 31 - August 2, 2017, Proceedings, volume 10389 of
Lecture Notes in Computer Science, pages 85–96. Springer, 2017.

9 J. Beardwood, J. H. Halton, and J. M. Hammersley. The shortest path through many
points. Mathematical Proceedings of the Cambridge Philosophical Society, 55(4):299–327, 1959.
doi:10.1017/s0305004100034095.

10 Marc Benkert, Alexander Wolff, Florian Widmann, and Takeshi Shirabe. The minimum
manhattan network problem: Approximations and exact solutions. Comput. Geom., 35(3):188–
208, 2006.

https://doi.org/10.1145/1810959.1810993
https://doi.org/10.4230/LIPIcs.SoCG.2017.7
https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/11602613_7
https://doi.org/10.1017/s0305004100034095

H. Le and S. Solomon 67:19

11 G. Bodwin and V. V. Williams. Better distance preservers and additive spanners. In Proceedings
of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16,
pages 855–872, 2016.

12 G. Borradaile, H. Le, and C. Wulff-Nilsen. Minor-free graphs have light spanners. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science, FOCS ’17, pages 767–778,
2017. doi:10.1109/FOCS.2017.76.

13 G. Borradaile, H. Le, and C. Wulff-Nilsen. Greedy spanners are optimal in doubling metrics.
In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ‘19,
pages 2371–2379, 2019. doi:10.1137/1.9781611975482.145.

14 Prosenjit Bose, Paz Carmi, Mathieu Couture, Michiel H. M. Smid, and Daming Xu. On a
family of strong geometric spanners that admit local routing strategies. In Frank K. H. A.
Dehne, Jörg-Rüdiger Sack, and Norbert Zeh, editors, Algorithms and Data Structures, 10th
International Workshop, WADS 2007, Halifax, Canada, August 15-17, 2007, Proceedings,
volume 4619 of Lecture Notes in Computer Science, pages 300–311. Springer, 2007.

15 Prosenjit Bose, Luc Devroye, Maarten Löffler, Jack Snoeyink, and Vishal Verma. Almost all
delaunay triangulations have stretch factor greater than pi/2. Comput. Geom., 44(2):121–127,
2011.

16 K. Buchin. Delaunay triangulations in linear time? (part I). arXiv preprint, 2008. arXiv:
arXiv:0812.0387.

17 K. Buchin and W. Mulzer. Linear-time delaunay triangulations simplified. In 25th European
Workshop on Computational Geometry, EuroCG ’09, pages 235–238, 2009.

18 M. Bundefineddoiu, J. Chuzhoy, P. Indyk, and A. Sidiropoulos. Low-distortion embeddings of
general metrics into the line. In Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, STOC ‘05, page 225–233, 2005. doi:10.1145/1060590.1060624.

19 T. Carpenter, F. V. Fomin, D. Lokshtanov, S. Saurabh, and A. Sidiropoulos. Algorithms
for low-distortion embeddings into arbitrary 1-dimensional spaces. In 34th International
Symposium on Computational Geometry, SoCG ‘2018, pages 21:1–21:14, 2018. doi:10.4230/
LIPIcs.SoCG.2018.21.

20 T. Chan. Well-separated pair decomposition in linear time? Information Processing Letters,
107(5):138–141, 2008. doi:10.1016/j.ipl.2008.02.008.

21 T.-H. H. Chan, M. Li, L. Ning, and S. Solomon. New doubling spanners: Better and simpler.
SIAM Journal on Computing, 44(1):37–53, 2015. doi:10.1137/130930984.

22 T.-H. Hubert Chan, Anupam Gupta, Bruce M. Maggs, and Shuheng Zhou. On hierarchical
routing in doubling metrics. ACM Trans. Algorithms, 12(4):55:1–55:22, 2016. Preliminary
version appeared in SODA 2005.

23 B. Chandra, G. Das, G. Narasimhan, and J. Soares. New sparseness results on graph spanners.
In Proceedings of the Eighth Annual Symposium on Computational Geometry, 1992.

24 Barun Chandra. Constructing sparse spanners for most graphs in higher dimensions. Inf.
Process. Lett., 51(6):289–294, 1994.

25 S. Chechik and C. Wulff-Nilsen. Near-optimal light spanners. In Proceedings of the 27th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’16, pages 883–892, 2016.

26 Shiri Chechik and Christian Wulff-Nilsen. Near-optimal light spanners. ACM Trans. Algorithms,
14(3):33:1–33:15, 2018. preliminary version published in SODA 2016. doi:10.1145/3199607.

27 L. P. Chew. There is a planar graph almost as good as the complete graph. In Proceedings of
the Second Annual Symposium on Computational Geometry, SCG ‘86, pages 169–177, 1986.

28 L. P. Chew. There are planar graphs almost as good as the complete graph. Journal of
Computer and System Sciences, 39(2):205–219, 1989.

29 K. Clarkson. Approximation algorithms for shortest path motion planning. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ‘87, pages 56–65,
1987.

ESA 2020

https://doi.org/10.1109/FOCS.2017.76
https://doi.org/10.1137/1.9781611975482.145
http://arxiv.org/abs/arXiv:0812.0387
http://arxiv.org/abs/arXiv:0812.0387
https://doi.org/10.1145/1060590.1060624
https://doi.org/10.4230/LIPIcs.SoCG.2018.21
https://doi.org/10.4230/LIPIcs.SoCG.2018.21
https://doi.org/10.1016/j.ipl.2008.02.008
https://doi.org/10.1137/130930984
https://doi.org/10.1145/3199607

67:20 Light Euclidean Spanners with Steiner Points

30 V. Cohen-Addad and C. Mathieu. Effectiveness of local search for geometric optimization. In
31st International Symposium on Computational Geometry, volume 35 of SoCG ‘2015, pages
329–343, 2015. doi:10.4230/LIPIcs.SOCG.2015.329.

31 G. Das, P. Heffernan, and G. Narasimhan. Optimally sparse spanners in 3-dimensional
euclidean space. In Proceedings of the 9th Annual Symposium on Computational Geometry,
SCG ’93, pages 53–62, 1993.

32 G. Das, G. Narasimhan, and J. Salowe. A new way to weigh malnourished euclidean graphs.
In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95,
pages 215–222, 1995.

33 Michael Elkin, Ofer Neiman, and Shay Solomon. Light spanners. SIAM J. Discret. Math.,
29(3):1312–1321, 2015. preliminary version published in ICALP 2014.

34 Michael Elkin and Shay Solomon. Narrow-shallow-low-light trees with and without steiner
points. SIAM J. Discret. Math., 25(1):181–210, 2011. preliminary version published in ESA
2009.

35 Michael Elkin and Shay Solomon. Steiner shallow-light trees are exponentially lighter than
spanning ones. SIAM J. Comput., 44(4):996–1025, 2015. preliminary version published in
FOCS 2011. doi:10.1137/13094791X.

36 J. Erickson. Dense point sets have sparse delaunay triangulations or “... but not too nasty”.
Discrete & Computational Geometry, 33(1):83–115, 2004. doi:10.1007/s00454-004-1089-3.

37 Mohammad Farshi and Joachim Gudmundsson. Experimental study of geometric t-spanners.
In Gerth Stølting Brodal and Stefano Leonardi, editors, Algorithms - ESA 2005, 13th Annual
European Symposium, Palma de Mallorca, Spain, October 3-6, 2005, Proceedings, volume 3669
of Lecture Notes in Computer Science, pages 556–567. Springer, 2005.

38 Mohammad Farshi and Joachim Gudmundsson. Experimental study of geometric t-spanners:
A running time comparison. In Camil Demetrescu, editor, Experimental Algorithms, 6th
International Workshop, WEA 2007, Rome, Italy, June 6-8, 2007, Proceedings, volume 4525
of Lecture Notes in Computer Science, pages 270–284. Springer, 2007.

39 Arnold Filtser and Ofer Neiman. Light spanners for high dimensional norms via stochastic
decompositions. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22,
2018, Helsinki, Finland, pages 29:1–29:15, 2018. doi:10.4230/LIPIcs.ESA.2018.29.

40 J. Gao, L. J. Guibas, and A. Nguyen. Deformable spanners and applications. Computational
Geometry, 35(1):2–19, 2006. doi:10.1016/j.comgeo.2005.10.001.

41 Lee-Ad Gottlieb. A light metric spanner. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 759–772,
2015. doi:10.1109/FOCS.2015.52.

42 J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Approximate distance
oracles for geometric graphs. In Proc. of 13th SODA, pages 828–837, 2002.

43 J. Gudmundsson, C. Levcopoulos, G. Narasimhan, and M. H. M. Smid. Approximate distance
oracles for geometric spanners. ACM Transactions on Algorithms, 4(1), 2008.

44 J. Gudmundsson, G. Narasimhan, and M. H. M. Smid. Fast pruning of geometric spanners.
In Proc. of 22nd STACS, pages 508–520, 2005.

45 Joachim Gudmundsson, Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid.
Approximate distance oracles revisited. In Proc. of 13th ISAAC, pages 357–368, 2002.

46 Joachim Gudmundsson, Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid.
Approximate distance oracles for geometric spanners. ACM Trans. Algorithms, 4(1):10:1–10:34,
2008.

47 Joachim Gudmundsson, Giri Narasimhan, and Michiel H. M. Smid. Fast pruning of geometric
spanners. In Volker Diekert and Bruno Durand, editors, STACS 2005, 22nd Annual Symposium
on Theoretical Aspects of Computer Science, Stuttgart, Germany, February 24-26, 2005,
Proceedings, volume 3404 of Lecture Notes in Computer Science, pages 508–520. Springer,
2005.

https://doi.org/10.4230/LIPIcs.SOCG.2015.329
https://doi.org/10.1137/13094791X
https://doi.org/10.1007/s00454-004-1089-3
https://doi.org/10.4230/LIPIcs.ESA.2018.29
https://doi.org/10.1016/j.comgeo.2005.10.001
https://doi.org/10.1109/FOCS.2015.52

H. Le and S. Solomon 67:21

48 S. Har-Peled. Clustering motion. Discrete and Computational Geometry, 31(4):545–565, 2004.
doi:10.1007/s00454-004-2822-7.

49 S. Har-peled. Geometric Approximation Algorithms. American Mathematical Society, 2011.
doi:10.5555/2031416.

50 S. Har-Peled and B. Raichel. Net and prune: A linear time algorithm for euclidean distance
problems. Journal of the ACM, 62(6):1–35, 2015. doi:10.1145/2831230.

51 S. Har-Peled and B. Sadri. How fast is the k-means method? In Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ‘05, page 877–885, 2006.

52 Y. Hassin and D. Peleg. Sparse communication networks and efficient routing in the plane. In
Proc. of 19th PODC, pages 41–50, 2000.

53 R. M. Karp. Probabilistic analysis of partitioning algorithms for the traveling-salesman
problem in the plane. Mathematics of Operations Research, 2(3):209–224, 1977. doi:10.1287/
moor.2.3.209.

54 J. M. Keil. Approximating the complete euclidean graph. In Proceedings of the first Scand-
inavian Workshop on Algorithm Theory, SWAT ‘88, pages 208–213, 1988.

55 J. M. Keil and C. A. Gutwin. Classes of graphs which approximate the complete Euclidean
graph. Discrete and Computational Geometry, 7(1):13–28, 1992.

56 Michael Kerber and Arnur Nigmetov. Metric spaces with expensive distances. CoRR,
abs/1901.08805, 2019. arXiv:1901.08805.

57 P. N. Klein. Subset spanner for planar graphs, with application to subset TSP. In Proceedings
of the 38th Annual ACM Symposium on Theory of Computing, STOC ’06, pages 749–756,
2006. doi:10.1145/1132516.1132620.

58 Hung Le. A PTAS for subset TSP in minor-free graphs. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 2279–2298, 2020. Full version: arxiv:1804.01588. doi:10.1137/1.9781611975994.140.

59 Hung Le and Shay Solomon. Truly optimal euclidean spanners. In 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA,
November 9-12, 2019, pages 1078–1100, 2019. Full version at arXiv:1904.12042. doi:
10.1109/FOCS.2019.00069.

60 Y. Mansour and D. Peleg. An approximation algorithm for min-cost network design. DIMACS
Series in Discr. Math and TCS, 53:97–106, 2000.

61 G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press,
2007.

62 A. Nayyeri and B. Raichel. Reality distortion: Exact and approximate algorithms for embedding
into the line. In Proceedings of the 56th Annual Symposium on Foundations of Computer
Science, FOCS ‘15, page 729–747, 2015. doi:10.1109/FOCS.2015.50.

63 A. Nayyeri and B. Raichel. A treehouse with custom windows: Minimum distortion embeddings
into bounded treewidth graphs. In Proceedings of the 28 th Annual ACM-SIAM Symposium
on Discrete Algorithm, SODA ‘17, page 724–736, 2017. doi:10.1137/1.9781611974782.46.

64 A. Nayyeri and B. Raichel. Viewing the rings of a tree: Minimum distortion embeddings
into trees. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ‘19, pages 2380–2399, 2019. doi:10.1137/1.9781611975482.146.

65 S. B. Rao and W. D. Smith. Approximating geometrical graphs via “spanners” and “ban-
yans”. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
STOC ’98, pages 540–550, 1998. Full version at http://graphics.stanford.edu/courses
/cs468-06-winter/Papers/rs-tsp.pdf. doi:10.1145/276698.276868.

66 J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph. In
Proceedings of the 3rd Canadian Conference on Computational Geometry, CCCG ‘91, page
207–210, 1991.

67 Jeffrey S. Salowe. On euclidean spanner graphs with small degree. In Proceedings of the Eighth
Annual Symposium on Computational Geometry, Berlin, Germany, June 10-12, 1992, pages
186–191, 1992.

ESA 2020

https://doi.org/10.1007/s00454-004-2822-7
https://doi.org/10.5555/2031416
https://doi.org/10.1145/2831230
https://doi.org/10.1287/moor.2.3.209
https://doi.org/10.1287/moor.2.3.209
http://arxiv.org/abs/1901.08805
https://doi.org/10.1145/1132516.1132620
https://arxiv.org/abs/1804.01588
https://doi.org/10.1137/1.9781611975994.140
https://arxiv.org/abs/1904.12042
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.1109/FOCS.2019.00069
https://doi.org/10.1109/FOCS.2015.50
https://doi.org/10.1137/1.9781611974782.46
https://doi.org/10.1137/1.9781611975482.146
http://graphics.stanford.edu/courses/cs468-06-winter/Papers/rs-tsp.pdf
http://graphics.stanford.edu/courses/cs468-06-winter/Papers/rs-tsp.pdf
https://doi.org/10.1145/276698.276868

67:22 Light Euclidean Spanners with Steiner Points

68 S. Solomon. Euclidean Steiner shallow-light trees. Journal of Computational Geometry, 6(2),
2015. preliminary version published in SoCG 2014. doi:10.20382/JOCG.V6I2A7.

69 S. Solomon and M. Elkin. Balancing degree, diameter and weight in euclidean spanners. In
Proceedings of the 18th Annual European Symposium on Algorithms, ESA ‘10, pages 48–59,
2010. doi:10.1007/978-3-642-15775-2_5.

70 A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related
problems. SIAM Journal on Computing, 11(4):721–736, 1982.

https://doi.org/10.20382/JOCG.V6I2A7
https://doi.org/10.1007/978-3-642-15775-2_5

Settling the Relationship Between Wilber’s
Bounds for Dynamic Optimality
Victor Lecomte
Columbia University, New York, NY, USA
vl2414@columbia.edu

Omri Weinstein
Columbia University, New York, NY, USA
omri@cs.columbia.edu

Abstract
In FOCS 1986, Wilber proposed two combinatorial lower bounds on the operational cost of any
binary search tree (BST) for a given access sequence X ∈ [n]m. Both bounds play a central role
in the ongoing pursuit of the dynamic optimality conjecture (Sleator and Tarjan, 1985), but their
relationship remained unknown for more than three decades. We show that Wilber’s Funnel bound
dominates his Alternation bound for all X, and give a tight Θ(lg lgn) separation for some X,
answering Wilber’s conjecture and an open problem of Iacono, Demaine et. al. The main ingredient
of the proof is a new symmetric characterization of Wilber’s Funnel bound, which proves that it is
invariant under rotations of X. We use this characterization to provide initial indication that the
Funnel bound matches the Independent Rectangle bound (Demaine et al., 2009), by proving that
when the Funnel bound is constant, IRB is linear. To the best of our knowledge, our results provide
the first progress on Wilber’s conjecture that the Funnel bound is dynamically optimal (1986).

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases data structures, binary search trees, dynamic optimality, lower bounds

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.68

Related Version A full version of the paper is available on arXiv [10] at https://arxiv.org/abs/
1912.02858. This conference version doesn’t contain the last section, which relates the Funnel bound
to the Independent Rectangle bound. The versions are otherwise identical.

Funding Victor Lecomte: Research supported by a fellowship of the Belgian American Educational
Foundation.
Omri Weinstein: Research supported by NSF CAREER award CCF-1844887.

Acknowledgements We want to thank the anonymous reviewers for their enthusiastic feedback and
the numerous typos they spotted.

1 Introduction

The dynamic optimality conjecture of Sleator and Tarjan [14] postulates the existence of
an instance optimal binary search tree algorithm (BST), namely, an online self-adjusting
BST whose running time1 matches the best possible running time in hindsight for any
fixed sequence of queries. More formally, letting T (X) denote the operational time of a
BST algorithm T on a sequence X = (x1, . . . , xm) ∈ [n]m of keys to be searched, the
conjecture says that there is an online BST T such that ∀X, T (X) ≤ O(OPT(X)), where
OPT(X) := minT ′ T ′(X) denotes the optimal offline cost for X. Such instance optimal
algorithms are generally impossible, as an offline algorithm that sees the input X in advance

1 i.e. the number of pointer movements and tree rotations performed by the BST

© Victor Lecomte and Omri Weinstein;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 68; pp. 68:1–68:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vl2414@columbia.edu
mailto:omri@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.68
https://arxiv.org/abs/1912.02858
https://arxiv.org/abs/1912.02858
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

can simply “store the answers” and output them in O(1) per operation, which is why worst-
case analysis is the typical benchmark for online algorithms. Nevertheless, in the BST model,
where the competing class of algorithms are self-adjusting binary search trees, instance
optimality is an intriguing possibility. After 35 years of active research, two BST algorithms
are still conjectured to be constant-competitive: The first one is the celebrated splay tree
of [14], the second one is the more recent GreedyFuture algorithm [12, 5, 13]. However,
optimality of both splay trees and GreedyFuture was proven only in special cases, and they
are not known to be o(lg n)-competitive for general access sequences X (note that every
balanced BST is trivially O(lg n)-competitive). The best provable result to date on the
algorithmic side is an O(lg lg n)-competitive BST, the Tango Tree ([5] and its subsequent
variants [15, 2]).

The ongoing pursuit of dynamically-optimal BSTs motivated the development of lower
bounds on the cost of the offline solution OPT(X), attempting to capture the “correct”
complexity measure of a fixed access sequence X in the BST model, and thereby providing a
concrete benchmark for competitive analysis. Indeed, one defining feature of the dynamic
optimality problem (and the reason why it is a viable possibility) is the existence of nontrivial
lower bounds on OPT(X) for individual fixed access sequences X, as opposed to distributional
lower bounds. 2 These lower bounds are all derived from a natural geometric interpretation
of the access sequence X = x1, . . . , xm as a point set on the plane, mapping the ith access xi

to point (xi, i) ([5, 8], see Figure 1). The earliest lower bounds on OPT(X) were proposed in
an influential paper of Wilber [16], and are the main subject of this paper.

X = (4, 1, 3, 5, 4, 2) −→

keys

time

(4, 1)
(1, 2)

(3, 3)
(5, 4)

(4, 5)
(2, 6)

GX

Figure 1 Transforming X into its geometric view GX .

The Alternation bound

Wilber’s first lower bound, the Alternation bound AltT (X), counts the total number of
left/right alternations obtained by searching the keys X = (x1, . . . , xm) on a fixed (static)
binary search tree T , where alternations are summed up over all nodes v ∈ T of the “reference
tree” T (see Figure 2 and the formal definition in Section 2). Thus, the Alternation bound is
actually a family of lower bounds, optimized by the choice of the reference tree T , and we
henceforth define Alt(X) := maxT AltT (X). This lower bound played a key role in the design
and analysis of Tango trees and their variants [6, 15], whose operational cost is in fact shown
to be O(lg lg n) ·AltT (X) ≤ O(lg lg n) ·OPT(X) (when setting the reference tree T to be the
canonical balanced BST on [n]). Unfortunately, this bound is not tight, as we show that
there are access sequences X̃ for which AltT (X̃) ≤ O(OPT(X̃)/ lg lg n) simultaneously for all

2 For example, Wilber’s Alternation bound can be used to show that the “bit-reversal” access sequence
obtained by reversing the binary representation of the monotone sequence {1, 2, 3, . . . , n} has cost Ω(lgn)
per operation [16].

V. Lecomte and O. Weinstein 68:3

choices of reference trees T (previously, this was known only for any fixed T [8]), and hence
the combined bound Alt(X) does not capture dynamic optimality in general. Nevertheless,
the algorithmic interpretation of the Alternation bound is an interesting proof-of-concept of
how lower bounds can lead to new and interesting online BST algorithms.

u

v w

x1

2 3

4 5

L R

L R L R

L R

reference tree T
Node Link used by each access Group by letter #

u R, L, L, R, R, L [R], [L, L], [R, R], [L] 4
v L, R, R [L], [R, R] 2
w L, R, L [L], [R], [L] 3
x R, L [R], [L] 2

Total 11

Figure 2 For access sequence X = (4, 1, 3, 5, 4, 2) and reference tree T , AltT (X) = 11.

The Funnel bound

The definition of Wilber’s second bound, the Funnel bound, is less intuitive (and as such,
was much less understood prior to this work). Let GX be the set of m points in the plane
given by the map xi 7→ (xi, i). The funnel of a point p ∈ GX is the set of “orthogonally
visible” points below p, i.e. points q such that the axis-aligned rectangle with corners at p

and q contains no other points (see Figure 3). For each p, look at the points in the funnel of
p sorted by y coordinate, and count the number of alternations from the left to the right of
P that occur. Call this f(p); this is p’s contribution to the lower bound. Summing this value
for all p ∈ GX gives the lower bound Funnel(X) :=

∑
p∈GX

f(p). An algorithmic view of this
bound is as follows: consider the algorithm that simply brings each xi to the root by a series
of single rotations. Then f(p) for p = (xi, i) is exactly the number of turns on the path from
the root to xi right before it is accessed [1, 8]. This view emphasizes the amortized nature of
the funnel bound: at any point, there could be linearly many keys in the tree that are only
one turn away from the root, so one can only hope to achieve this bound in some amortized
fashion. This partially explains why Wilber’s second bound has been so elusive to analyze
(more on this interpretation can be found in the recent work of [11]).

Wilber conjectured that Funnel(X) ≥ Ω(Alt(X)) for every access sequence X, and that
the Funnel bound is in fact dynamically optimal, i.e., that Funnel(X) = Θ(OPT(X)) ∀X.
These conjectures were echoed multiple times in the long line of research spanning dynamic
optimality (see e.g., [5, 8, 4, 9]). Very recently, Levy and Tarjan [11] gave a compelling
intuitive explanation for why Funnel(X) is related to the amortized analysis of splay trees
(see Section 4). Despite all this, the Funnel bound remained elusive and no progress was
made on Wilber’s conjectures for nearly 40 years (To the best of our knowledge, the only
properties that were previously known about the Funnel bound is that it is optimal in the
“key-independent” setting [7] and “approximately monotone” [11], both are prerequisites for
dynamic optimality.)

ESA 2020

68:4 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

L

L
L

R

R

p

the funnel of p has 5 points (highlighted)
Sorted by increasing y-coordinate: L, R, R, L, L.
This forms 3 groups [L], [R, R], [L, L], so f(p) = 3.

Figure 3 Computing f(p) for p = (4, 9) in the geometric view of X = (4, 6, 3, 5, 1, 7, 2, 4, 6, 3).
Notice how the funnel points form a staircase-like front on either side of p.

Our main contribution affirmatively answers Wilber’s first question, and settles the
relationship between the Alternation bound and the Funnel bound:

I Theorem 1 (Funnel dominates Alt). For every access sequence X without repeats3 and for
every tree T , AltT (X) ≤ O(Funnel(X) + m).

I Theorem 2 (Tight separation). There is an access sequence X̃ for which Funnel(X̃) ≥
Ω(lg lg n) · (AltT (X̃) + m) simultaneously for all trees T .

The latter separation is tight up to constant factors, since Tango trees imply that
OPT(X) ≤ O(lg lg n) · Alt(X). An interesting corollary of Theorem 2 is that the analysis of
Tango trees cannot be improved by choosing any reference tree, answering an open question of
Iacono [8]. (One attractive idea is to choose a random reference tree instead of the canonical
balanced BST, but Theorem 2 shows that this will not help in general.)

A symmetric characterization of the Funnel bound

The geometric equivalence of dynamic optimality (through “arborally satisfied” rectangles
[5]) makes it clear that OPT(X) is invariant under geometric transformations of the access
sequence X. Indeed, a fundamental barrier in understanding the Funnel bound and its claim
to optimality is that it was unclear whether Wilber’s bounds were invariant under rotations
of the access sequence X. Demaine et al. explicitly pointed out this challenge:

“It is also unclear how [Wilber’s] bounds are affected by 90-degree rotations of the point
set representing the access sequence and, for the Funnel bound, by flips. Computer
search reveals many examples where the bounds change slightly, and proving that
they change by only a constant factor seems daunting.” [5]

This shows that exact symmetry of Funnel(X) is hopeless, and can only hold in some
“amortized” sense. Indeed, the heart of our paper, which is also a key ingredient in the
proof of Theorem 1, is a new symmetric characterization of the Funnel bound, which proves

3 As explained at the beginning of Section 2, it is fine for our purposes to focus on access sequences where
each value appears only once.

V. Lecomte and O. Weinstein 68:5

that, up to a ±O(m) additive term, it is indeed invariant to rotations. More formally, we
show that for any access sequence X, Funnel(X) is asymptotically equal to the number of
occurrences in GX of a configuration of 4 points that we call a z-rectangle4 (see Figure 4).

3

z-rectangle
7

wrong
7

wrong

Figure 4 A z-rectangle is a configuration of 4 points. Its interior must be empty, and the relative
order of the four points matters.

A crucial difference between z-rectangles and the notion of independent rectangles [5] is
that the latter have to satisfy additional independence constaints across several rectangles,
whereas z-rectangles have no “global” constraints whatsoever. In other words, z-rectangles
are a local feature of the access sequence, in the sense that their existence and contribution
to the lower bound are unaffected by other z-rectangles and by points outside of it. We
believe this key property will make the analysis of online BST algorithms more tractable, as
it gives a simpler competitive benchmark. We next describe an initial step in this direction.

Towards dynamic optimality of the Funnel Bound

One consequence of the simplicity of the z-rectangle characterization of the Funnel bound
is that it makes it easier to compare it both to other BST lower bounds and to candidate
algorithms for dynamic optimality. As a proof of concept, we show that when there is only
a constant number of z-rectangle in GX , then IRB (X) is linear, where IRB is one of the
terms in the Independent Rectangle bound IRB(X) := IRB (X) + IRB (X), which is known
to dominate both of Wilber’s bounds [5] (we define IRB (X) in the last section of the full
version [10]). More formally,

I Theorem 3. If GX contains O(1) z-rectangles, then IRB (X) ≤ O(m).

We remark that the proof of this theorem already introduces a nontrivial charging argu-
ment that could (hopefully) be generalized to prove that Funnel matches IRB, as conjectured
by previous works [8].

Techniques

At a very high level, the main ideas in Theorem 1 are to use the self-reducible structure of
the Alternation bound, and to show that interleaving two access sequences XL and XR on
disjoint ranges is a super-additive operation, i.e., it increases the overall value of Funnel(X)
to more than the sum of its parts Funnel(XL) + Funnel(XR). This argument involves both
X and its reverse (flip), hence our new symmetric characterization of the Funnel bound
(through z-rectangles) is key to the proof. The main idea behind Theorem 2 is to form hard
sequences over geometrically-spaced sets of keys {i + 1, i + 2, i + 4, i + 8, . . .}, each of which
can “force” AltT to pick a very lopsided reference tree T . Those sequences can then be

4 We thank an anonymous reviewer for informing us that z-rectangles have been discussed in the past
under the name “pinwheel configuration”, though (to the best of their knowledge) never in writing.

ESA 2020

68:6 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

concatenated together so that the average value of AltT is provably low whichever T was
picked. Finally, the key idea in Theorem 3 is to study the consequences of the absence of
z-rectangles on the combinatorial structure of point set GX , and use this to bound the value
of IRB (X) by a charging argument.

Remark on independent work

In a concurrent and independent work, Chalermsook, Chuzhoy and Saranurak [3] obtain
a (weaker) Θ(lg lg n/ lg lg lg n) separation between Alt and Funnel, in the same spirit as the
tight separation we give in Theorem 2. Our works are otherwise unrelated.

2 Preliminaries

To make our definitions and proofs easier, we will work directly in the geometric representation
of access sequences as (finite) sets of points in the plane R2.

I Definition 4 (geometric view). Any access sequence X = (x1, . . . , xm) ∈ [n]m can be
represented as the set of points GX = {(xi, i) | i ∈ [n]}, where the x-axis represents the key
and the y-axis represents time (see Figure 1).

By construction, in GX , no two points share the same y-coordinate. We will say such a
set has “distinct y-coordinates”. In addition, we note that it is fine to restrict our attention
to sequences X without repeated values.5 The geometric view GX of such sequences also
has no two points with the same x-coordinate. We will say that such a set has “distinct x-
and y-coordinates”.

I Definition 5 (x- and y-coordinates). For a point p ∈ R2, we will denote its x- and y-
coordinates as p.x and p.y. Similarly, we define P.x = {p.x | p ∈ P} and P.y = {p.y | p ∈ P}.

We start by defining the mixing value of two sets: a notion of how much two sets of
numbers are interleaved. It will be useful in defining both the Alternation bound and the
Funnel bound. We define it in a few steps.

I Definition 6 (mixing string). Given two disjoint finite sets of real numbers L, R, let
mix(L, R) be the string in {L, R}∗ that is obtained by taking the union L ∪R in increasing
order and replacing each element from L by L and each element from R by R. For example,
mix({2, 3, 8}, {1, 5}) = RLLRL.

I Definition 7 (number of blocks). Given a string s ∈ {L, R}∗, we define blocks(s) as the
number of contiguous blocks of the same symbol in s. Formally,

blocks(s) :=
{

0 if s is empty
1 + #{i | si 6= si+1} otherwise.

For example, blocks(LLLRLL) = 3. Note that if we insert characters into s, blocks(s) can
only increase.

I Definition 8 (mixing value). Let mixValue(L, R) := blocks(mix(L, R)) (see Figure 5).

The mixing value has some convenient properties, which we will use later:

5 Indeed, Appendix E in [4] gives a simple operation that transforms any sequence X into a sequence
split(X) without repeats such that OPT(split(X)) = Θ(OPT(X)). Thus if we found a tight lower bound
L(X) for sequences without repeats, a tight lower bound for general X could be obtained as L(split(X)).

V. Lecomte and O. Weinstein 68:7

1 3 6

4 7 8

L

R

Figure 5 A visualization of mixValue({1, 3, 6}, {4, 7, 8}) = 4.

I Fact 9 (properties of mixValue). Function mixValue(L, R) is:
(a) symmetric: mixValue(L, R) = mixValue(R, L);
(b) monotone: if L1 ⊆ L2 and R1 ⊆ R2, then mixValue(L1, R1) ≤ mixValue(L2, R2);
(c) subadditive under concatenation: if L1, R1 ⊆ (−∞, x] and L2, R2 ⊆ [x, +∞), then

mixValue(L1 ∪ L2, R1 ∪R2) ≤ mixValue(L1, R1) + mixValue(L2, R2).
Finally, mixValue(L, R) ≤ 2 ·min(|L|, |R|) + 1.

We now give precise definitions of Wilber’s two bounds.6

I Definition 10 (Alternation bound). Let P be a point set with distinct y-coordinates, and
let T be a binary tree in which leaves are labeled with elements of P.x in increasing order,
and each non-leaf node has two children.

We define AltT (P) using the recursive structure of T . If T is a single node, let AltT (P) :=
0. Otherwise, let TL and TR be the left and right subtrees at the root. Partition P into two
sets PL := {p ∈ P | p.x ∈ TL} and PR := {p ∈ P | p.x ∈ TR}. Define quantity

a(P, T) := mixValue(PL.y, PR.y),

which describes how much PL and PR are interleaved in time. Then

AltT (P) := a(P, T) + AltTL(PL) + AltTR(PR). (1)

In addition, for an access sequence X, let AltT (X) := AltT (GX).

I Definition 11 (axis-aligned rectangle delimited two points). Given two points p and q with
distinct x- and y- coordinates, let �pq be the smallest axis-aligned rectangle that contains
both p and q. Formally,

�pq := [min(p.x, q.x), max(p.x, q.x)]× [min(p.y, q.y), max(p.y, q.y)].

I Definition 12 (empty rectangles). Let P be a point set. Given p, q ∈ P , we say �pq is
empty7 in P if P ∩�pq = {p, q} (see Figure 6).

For the next definitions, it is helpful to refer back to Figure 3. In particular, FL(P, p) and
FR(P, p) (the left and right funnel) correspond to the points marked with L and R.

I Definition 13 (left and right funnel). Let P be a point set. For each p ∈ P , we say that
access q ∈ P is in the left (resp. right) funnel of p within P if q is to the lower left (resp.
lower right) of p and �pq is empty. Formally, let

FL(P, p) := {q ∈ P | q.y < p.y ∧ q.x < p.x ∧ P ∩�pq = {p, q}}

6 These definitions may differ by a constant factor or an additive ±O(m) from the definitions the reader
has seen before. We will ignore such differences, because the cost of a BST also varies by ±O(m)
depending on the definition, and the interesting regime is when OPT(X) = ω(m).

7 This corresponds to the notion of “unsatisfied rectangle” in [5].

ESA 2020

68:8 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

p

q

r

s

�pq is empty �rs is not empty

Figure 6 Some axis-aligned rectangles.

and

FR(P, p) := {q ∈ P | q.y < p.y ∧ q.x > p.x ∧ P ∩�pq = {p, q}}.

We will collectively call FL(P, p) ∪ FR(P, p) the funnel of p within P .

I Definition 14 (Funnel bound). Let P be a point set with distinct y-coordinates. For each
p ∈ P , define quantity

f(P, p) := mixValue(FL(P, p).y, FR(P, p).y),

which describes how much the left and right funnel of p are interleaved in time. Then

Funnel(P) :=
∑
p∈P

f(P, p).

In addition, for an access sequence X, let Funnel(X) := Funnel(GX).

3 The Funnel bound dominates the Alternation bound

We prove that Funnel dominates Alt in two parts: in Section 3.1 we show that Alt(X)
is dominated by the sum Funnel(X) + Funnel(X), where X is the reverse of X, then in
Section 3.2 we prove that Funnel(X) ≈ Funnel(X) using our new characterization of Funnel
by z-rectangles.

3.1 Upper-bounding the Alternation bound by a sum of two Funnel
bounds

I Definition 15 (time reversal). The time reversal of a point p ∈ R2 is p := (p.x,−p.y).8
The time reversal of a point set P is P := {p | p ∈ P} (see Figure 7).

p

p

P P

Figure 7 A point set and its time reversal.

We first prove the following lemma.

8 The notation is inspired from the notion of complex conjugate, which is also a vertical flip.

V. Lecomte and O. Weinstein 68:9

I Lemma 16. Let P be a point set with distinct y-coordinates, and let T be a tree that
satisfies the conditions of Definition 10. Then Funnel(P) + Funnel(P) ≥ AltT (P).

Even though the formal proof of this lemma is a relatively involved case analysis, it is easy
to understand geometrically. The key observation is the following. Consider two sequences
XL and XR on disjoint ranges, and interleave to form a single sequence X. Then the more
times we switch from elements of XL to elements of XR, the bigger Funnel(X) + Funnel(X) is
going to be.

To see this, let’s look at the geometric view of X (see Figure 8). Let p and q be two
consecutive points on the XL side that are separated by a streak of points from XR (i.e. all
accesses between p and q vertically are from XR). First, assume p.x > q.x. Then q is in the
left funnel of p, and at least of the points on the XR between p and q must be in the right
funnel of p, which forms a completely new group of funnel points compared to what p had
in XL. This means that the contribution of p to Funnel(X) is at least one higher than its
contribution to Funnel(XL).

p

q

from XL from XR

L

L
R

p

q

L

L
R

R

R
p

q

completely
new group of
funnel points

geometric view of X funnel of p in GXL funnel of p in GX

(before interleaving) (after interleaving)

Figure 8 Interleaving sequences XL = (3, 5, 2, 4, 1) and XR = (8, 6, 9, 7) into X =
(3, 8, 5, 2, 6, 9, 7, 4, 1). The contribution of p to Funnel(XL) is 3, while the contribution of p to
Funnel(X) is 4.

What if p.x < q.x instead? Then it turns out that an analogous argument can be made
on q if we take the time reversal of X. That is, the contribution of q to Funnel(X) is at least
one higher than its contribution to Funnel(XL). Indeed, if we flip the point set vertically,
then p and q exchange roles, which means p.x > q.x once again.

To conclude, it remains to observe that the a(P, p) term in the recursive definition of
AltT (X) is precisely a measure of how much the subsequences XL and XR corresponding to
the left and right subtree at the root of T are interleaved. So we can apply the argument
above by induction to show that Funnel(X) + Funnel(X) ≥ AltT (X). We now reluctantly
move to the formal proof.

Proof of Lemma 16. We prove this by induction on T . The base case is T made of a single
node. In this case, AltT (P) = 0 by definition, so the inequality trivially holds.

Now consider a general tree T , and define TL, TR, PL and PR as in Definition 10. Note
that each leaf of T has a label in P.x and TL and TR must each have at least one leaf, so PL

and PR are not empty. Let’s apply the induction hypothesis on (PL, TL) and (PR, TR). This
means that

ESA 2020

68:10 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

Funnel(PL) + Funnel(PL) ≥ AltTL(PL)
Funnel(PR) + Funnel(PR) ≥ AltTR(PR).

Thus we find that

AltT (P) = a(P, T) + AltTL(PL) + AltTR(PR) (by definition)
≤ a(P, T) + Funnel(PL) + Funnel(PL) + Funnel(PR) + Funnel(PR) (2)

B Claim 17. If p ∈ PL, then

f(P, p) ≥ f(PL, p) and f(P , p) ≥ f(PL, p);

and if p ∈ PR, then

f(P, p) ≥ f(PR, p) and f(P , p) ≥ f(PR, p).

Proof. We will deal with the first case (the other three cases are symmetric). The key is that
PL and PR operate on disjoint ranges of x-coordinates.

The left funnel of p within PL is identical to its left funnel within P , since all elements of
PR are to the right of p. Formally, FL(PL, p) = FL(P, p).
All points q that were in the right funnel of p within PL will still be part of the right
funnel of p within P . Indeed, the only way for them to stop being funnel points would be
to add accesses inside the rectangle delimited by p and q. This doesn’t happen because
all points in PR are strictly to the right of all points in PL. Formally, FR(PL, p) ⊆ FR(P, p).

Therefore, mix(FL(PL, p).y, FR(PL, p).y) is a subsequence of mix(FL(P, p).y, FR(P, p).y), which
means that

f(PL, p) = blocks(mix(FL(PL, p), FR(PL, p))) ≤ blocks(mix(FL(P, p), FR(P, p))) = f(P, p).

C

Summing up f(P, p) and f(P , p) over all points p ∈ P , we obtain

Funnel(P) =
∑
p∈P

f(P, p) ≥
∑
p∈PL

f(PL, p) +
∑
p∈PR

f(PR, p) = Funnel(PL) + Funnel(PR)

Funnel(P) =
∑
p∈P

f(P , p) ≥
∑
p∈PL

f(PL, p) +
∑
p∈PR

f(PR, p) = Funnel(PL) + Funnel(PR).
(3)

This, combined with (2), gives

Funnel(P) + Funnel(P) ≥ Funnel(PL) + Funnel(PR) + Funnel(PL) + Funnel(PR)
≥ AltT (P)− a(P, T)

This falls a(P, T) short of our goal (which makes sense, since we haven’t used the interleaving
of PL and PR yet). To fix this, we will show the following claim.

B Claim 18. Consider the following properties defined over a point p ∈ P :
(a) p ∈ TL and f(P, p) ≥ f(PL, p) + 1;
(b) p ∈ TL and f(P , p) ≥ f(PL, p) + 1;
(c) p ∈ TR and f(P, p) ≥ f(PR, p) + 1;
(d) p ∈ TR and f(P , p) ≥ f(PR, p) + 1.

V. Lecomte and O. Weinstein 68:11

The sum of the number of points in P having each property (a)–(d) is at least a(P, T).

Proof. Let’s number the points of P by increasing y-coordinate (i.e. in chronological order)
as p1, . . . , pm. Recall that a(P, T) = mixValue(PL.y, PR.y). Also, PL and PR are non-empty,
so a(P, T) ≥ 2. This means that as we go through the points p1, . . . , pm, we switch
a(P, T)− 1 ≥ 1 times between points of PL and points of PR.

Therefore, there are exactly a(P, T)− 2 pairs of indices (i, j) with i + 1 < j such that
case 1: pi, pj ∈ PL but pi+1, . . . , pj−1 ∈ PR, or
case 2: pi, pj ∈ PR but pi+1, . . . , pj−1 ∈ PL,

which “straddle accesses of the opposite side”. Also, there is an index i∗ > 1 (the “first
element of the side that starts appearing later”) such that

case 3: pi∗ ∈ PL but p1, . . . , pi∗−1 ∈ PR, or
case 4: pi∗ ∈ PR but p1, . . . , pi∗−1 ∈ PL

and similarly, there is an index j∗ < m (the “last element of the side that finishes appearing
earlier”) such that

case 5: pj∗ ∈ PL but pj∗+1, . . . , pm ∈ PR, or
case 6: pj∗ ∈ PR but pj∗+1, . . . , pm ∈ PL.

This makes for a total of a(P, T)− 2 + 1 + 1 = a(P, T) occurrences of one of the six cases.
We will show that each of them leads to a point p satisfying one of the properties (a)–(d).
More precisely, we claim that:

case 1 implies pj has property (a) or pi has property (b);
case 2 implies pj has property (c) or pi has property (d);
case 3 implies pi∗ has property (a);
case 4 implies pi∗ has property (c);
case 5 implies pj∗ has property (b);
case 6 implies pj∗ has property (d).

We will show this for case 1 and case 3. The other four cases are analogous. To treat
case 1, let’s separate into more cases.9

If pi.x < pj .x, then pi is in the left funnel of pj within both P and PL. But within P , pj−1
would be an additional right funnel point. Since it has a higher index than pi, this would
add at least 1 to f(P, pj) compared to f(PL, pj). In other words, f(P, pj) ≥ f(PL, pj) + 1
(scenario (a)).
If pi.x > pj .x, then we can use the same argument as above on P and PL by swapping i

and j, obtaining f(P , pi) ≥ f(PL, pi) + 1 (scenario (b)).
If pi.x = pj .x, then both funnels of pj within PL are completely empty, which means that
f(PL, pj) = 0, while the right funnel of pj in P would contain at least pj−1. Therefore,
f(P, pj) = 1 ≥ f(PL, pj) + 1 (scenario (a)).

To treat case 3, it suffices to observe that both funnels of pi∗ within PL would be completely
empty (for lack of lower points), so f(PL, pi∗) = 0, while in P the right funnel of xi∗ would
contain at least pi∗−1. Therefore, f(P, pi∗) ≥ 1 = f(PL, pi∗) + 1 (scenario (a)). C

Now, if we sum up f(P, p) and f(P , p) over all points p as we did in (3), but this time
also apply Claim 18, we obtain that

Funnel(P) + Funnel(P) ≥ Funnel(PL) + Funnel(PR) + Funnel(PL) + Funnel(PR) + a(P, T).

Combined with (2), this gives the desired result and concludes the inductive step. J

9 We wish we were joking.

ESA 2020

68:12 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

3.2 Characterizing the Funnel bound using z-rectangles
Lemma 16 asserts that all possible Alternation bounds for all choices of reference trees
T , are simultaneously upper-bounded by the sum of two specific Funnel bounds. While
this is already a nontrivial bound, Funnel(P) and Funnel(P) could in principle be wildly
different, and it is therefore more compelling to show that the single quantity Funnel(P)
already provides an upper bound. (It is curious that the symmetry properties of the Funnel
bound, which are a necessary precondition for dynamic optimality, already enter the picture
in determining the relationship between Wilber’s bounds.)

To achieve this, we need to think about how geometric transformations affect the value of
the Funnel bound. It is clear from the definition that Funnel(P) is unaffected by a horizontal
flip. Indeed, the left funnel would become the right funnel and vice versa, so this wouldn’t
affect the number of times we switch between the two: the quantity f(P, p) would remain
the same for each p (see Figure 9).

L

L
L

R

R

p

←→

R

R
R

L

L

p

Figure 9 Flipping the geometric view horizontally conserves the contribution f(P, p) of each
point: the only change is that the labels of the funnel points flip between L and R.

On the other hand, it is far from obvious that the Funnel bound is unaffected by a vertical
flip. Because of the time reversal, the notion of funnel changes completely. And indeed, the
precise value will change, as is shown in Figure 10.

0
1

2

0
1

1

Funnel(P) = 0 + 1 + 2 = 3 Funnel(P) = 0 + 1 + 1 = 2

Figure 10 A minimal example such that Funnel(P) 6= Funnel(P) is P = {(1, 1), (3, 2), (2, 3)}.
Each access p is labeled with its contribution f(P, p) (left) or f(P , p) (right).

Nevertheless, we will show that for any point set P with distinct x- and y-coordinates,
Funnel(P) and Funnel(P) are equal up to an additive O(m). We do this by introducing a
new characterization of the Funnel bound that is naturally invariant under 90° rotations of
the point set. This new characterization is the number of z-rectangles.

I Definition 19 (z-rectangle). Let P be a point set. We call tuple (p, q, r, s) ∈ P 4 a z-rectangle
of P if the following conditions hold:
(a) q.x < p.x < r.x < s.x;
(b) r.y < q.y < s.y < p.y;
(c) P ∩ [q.x, s.x]× [r.y, p.y] = {p, q, r, s}.

V. Lecomte and O. Weinstein 68:13

p

q

r

s

Figure 11 A z-rectangle. The relative order of points p, q, r, s horizontally and vertically matters.

In other words, a z-rectangle is a subsequence of 4 accesses with key values in relative order
3, 1, 4, 2 and such that the axis-aligned rectangle that they span is empty (see Figure 11 for
an example). We define the corresponding quantity, which we will prove is equivalent to the
Funnel bound.

I Definition 20 (z-rectangle bound). For any point set P with distinct x- and y-coordinates,10
let

zRects(P) := |{(p, q, r, s) | (p, q, r, s) is a z-rectangle of P}|.

First, we formally state the rotation-invariance of z-rectangles.

I Definition 21 (counter-clockwise 90° rotation). For a point p ∈ R2, let p⊥ := (−p.y, p.x).
Analogously, for a point set P , let P⊥ := {p⊥ | p ∈ P}.

I Lemma 22. For any point set P , zRects(P) = zRects(P⊥).

Proof. Each z-rectangle of P induces a z-rectangle in P⊥ and vice-versa: z-rectangle (p, q, r, s)
in P becomes z-rectangle (s⊥, p⊥, q⊥, r⊥) in P⊥ (the reader is encouraged to physically rotate
the page containing figure 11 in order to convince themselves of this fact). Therefore, P and
P⊥ have the same number of z-rectangles. J

The relation between Funnel(P) and zRects(P) is proved in the following two lemmas.

I Lemma 23. zRects(P) ≥ Funnel(P)/2−O(m).

I Lemma 24. Funnel(P) ≥ 2 · zRects(P).

We will use the fact that P has distinct x- and y- coordinates.

Proof of Lemma 23. We will show that for each p ∈ P , the funnel of p induces at least
bf(P, p)/2c − 1 different z-rectangles of the form (p, ·, ·, ·). Summing this up for each p then
completes the proof.

Let’s assume f(P, p) ≥ 4; otherwise the claim holds vacuously. Let’s number the points
in FL(P, p)∪FR(P, p) (the funnel of p) by increasing y-coordinate as a1, a2, . . . , al. Note that
l may be greater than f(P, p), because a sequence of funnel points that are all on the same
side of p counts only for 1 in f(P, p).

10 If the x- and y-coordinates are not distinct, zRects(P) may give absurd results. For example, if we start
with any P and add a duplicate point (x, y + ε) for every point (x, y) of P (with ε small enough), then
zRects(P) will drop to 0.

ESA 2020

68:14 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

We will call (i, j) ∈ [l]2 a left-straddling pair if i + 1 < j, ai.x > p.x and aj .x > p.x,
but for all i < k < j, ak.x < p.x. That is, ai and aj are to the right of p but all funnel
points between them in order of height are to the left of p. Because funnel points alternate
f(P, p)− 1 times between the left and the right of p, there must be at least bf(P, p)/2c − 1
left-straddling pairs.

We claim that if (i, j) is a left-straddling pair, then (p, ai+1, ai, aj) is a z-rectangle. Since
all left-straddling pairs have distinct i, this produces bf(P, p)/2c − 1 distinct z-rectangles.

First, we verify that p, ai+1, ai, aj have the correct relative positions. The order in y-
coordinate is correct by definition of the numbering a1, . . . , ak. For the order in x-coordinates,
we know that ai+1 is to the left of p and ai, aj are to its right, so we only need to verify
that ai.x < aj .x. This is true because ai is in the funnel of p, so �pai must be empty. If
ai.x > aj .x, then aj would be in �pai.

What we still need to prove is that rectangle [ai+1.x, aj .x]× [ai.y, p.y] is empty (except
for points p, ai+1, ai, aj themselves). First, since ai, ai+1 and aj in the funnel of p, we know
that �pai, �pai+1 and �paj are empty. This covers the zones pictured in Figure 12.

p

ai+1

ai

aj

Figure 12 Proposed z-rectangle (p, ai+1, ai, aj) with empty rectangles �pai, �pai+1 and �paj

highlighted. If in addition we can prove that �aiai+1 and �aiaj are empty, then this is a valid
z-rectangle.

Finally, we will prove that �aiai+1 and �aiaj are empty, which covers the missing parts.
Assume �aiai+1 is not empty, and let b be the highest point of P in it (except for ai+1).
We have already shown that �pai and �pai+1 are empty, so �pb must be empty. This
means that b must be in the funnel of p. But ai.y < b.y < ai+1.y, so this contradicts the
numbering by increasing y-coordinate.
Assume �aiaj is not empty, and let b be the highest point of P in it (except for aj). We
have already shown that �pai and �paj are empty, so �pb must be empty. This means
that b must be in the (right) funnel of p. But this contradicts our assumption that all
funnel points between ai and aj in y-coordinate must be to the left of p.

Since points p, ai+1, ai, aj and [ai+1.x, aj .x] × [ai.y, p.y] is empty, (p, ai+1, ai, aj) is a z-
rectangle. This completes the proof of Lemma 23. J

Proof of Lemma 24. Essentially, the reason why this is true is because all z-rectangles must
be exactly of the form described in the previous proof. We will prove something slightly
weaker which still reaches the desired result. We will group the z-rectangles by their top
point and show that if P has k rectangles of the form (p, ·, ·, ·), then f(P, p) ≥ 2k.

Fix p, and sort the k z-rectangles by the increasing y-coordinate of their bottom point
r. Name their points (p, q1, r1, s1) to (p, qk, rk, sk). First, we will show that there can be no
ties. Indeed, if ri.y = rj .y then ri = rj . Also, when the p and r (top and bottom) points
of a z-rectangle are fixed, then the other two points q and s are uniquely determined as
the rightmost point in (−∞, p.x] × [r.x, p.x] and the leftmost point in [r.x,∞) × [r.x, p.x],
respectively.

We will now prove that

q1.y < s1.y < q2.y < s2.y < · · · < qk.y < sk.y. (4)

V. Lecomte and O. Weinstein 68:15

The qi.y < si.y inequalities are true by the definition of a z-rectangle, so we only need
to prove si.y < qi+1.y. To do this, consider two consecutive z-rectangles (p, qi, ri, si) and
(p, qi+1, ri+1, si+1) (see Figure 13). Since ri.y < ri+1.y, si can’t be strictly to the right of
ri+1, because otherwise ri+1 would be inside z-rectangle (p, qi, ri, si). In turn, this means that
si can’t be strictly higher than ri+1 because otherwise it would be inside �pri+1. Therefore,
we have si.y ≤ ri+1.y < qi+1.y.

p

qi

qi+1

ri

ri+1si

si+1

could be the same point

Figure 13 The only possible relative position of two z-rectangle with the same top point p.

Points q1, s1, . . . , qk, sk are all in the funnel of p by the definition of z-rectangle. Therefore,
Equation (4) reveals 2k funnel points that alternate from the left to the right side of p with
increasing y-coordinates. Thus mix(FL(P, p).y, FR(P, p).y) contains a subsequence LRLR · · · LR
of length 2k, and

f(P, p) = blocks(mix(FL(P, p).y, FR(P, p).y)) ≥ blocks(LRLR · · · LR︸ ︷︷ ︸
length 2k

) = 2k.

Summing this up for each p completes the proof. J

I Corollary 25. Funnel(P) ≥ Funnel(P)−O(m).

Proof. By the left-right symmetry of Funnel(·), we know that Funnel(P) = Funnel(P⊥⊥),
where P⊥⊥ is P rotated by 180°. Therefore,

Funnel(P) ≥ 2 · zRects(P) (Lemma 24)
= 2 · zRects(P⊥⊥) (Lemma 22)
≥ Funnel(P⊥⊥)−O(m) (Lemma 23)
= Funnel(P)−O(m). J

We can now finally prove Theorem 1.

Proof of Theorem 1. By Lemma 16, AltT (P) ≤ Funnel(P)+Funnel(P). Combining this with
Corollary 25, we obtain AltT (P) ≤ Funnel(P)+(Funnel(P)+O(m)) ≤ O(Funnel(P)+m). J

4 Separation between the Alternation bound and the Funnel bound

We will now define an access sequence X̃ such that the Alternation bound is too low for all
reference trees T simultaneously. More precisely, we will define an access sequence X̃ ∈ [n]m
such that AltT (X̃) = O(m) for all trees T while on the other hand OPT(X̃) and Funnel(X̃)
are Θ(m lg lg n). This lg lg n factor is the biggest possible separation: indeed, Tango trees
show that for a balanced tree T , AltT (X) is always within O(lg lg n) of OPT(X).

To define X̃, we will need the notion of a bit-reversal sequence. This is a permutation
that in a sense looks “maximally shuffled” to a binary search tree.

ESA 2020

68:16 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

I Definition 26. Let k be a positive integer and let K = 2k. Then let bitReversalk ∈
{0, · · · , K − 1}K be the sequence where bitReversalki is the number obtained by taking the
binary representation of i− 1, padding it with leading zeroes to reach length k, flipping it,
then converting this back to a number.

It is easiest to understand through an example. Take k = 2, then bitReversal2 is obtained
this way:

(0, 1, 2, 3) to binary−−−−−−→ (00, 01, 10, 11) flip−−→ (00, 10, 01, 11) from binary−−−−−−−→ (0, 2, 1, 3).

The reason why we use this sequence is the following well-known fact.

I Fact 27. Let T be the complete binary tree of height k which has K leaves labeled 0 through
K − 1. Then AltT (bitReversalk) = kK = K lg K.

Proof. Because of the way bitReversalk is defined, for each node u ∈ T , the keys that are
accessed below u as the sequence is processed constantly alternate from u’s left subtree to
u’s right subtree. So the contribution of u is exactly the number of keys of its subtree. This
way, every key is counted once at each of the k = lg K levels, so the total is K lg K. J

We can now define our access sequence as follows. Let n := 2K = 22k , and let

Si := (i + 2bitReversalk
1 , i + 2bitReversalk

2 , . . . , i + 2bitReversalk
K).

Then, denoting concatenation by ◦, we define

X̃ := S0 ◦ · · · ◦ S0︸ ︷︷ ︸
n times

◦S1 ◦ · · · ◦ S1︸ ︷︷ ︸
n times

◦ · · · ◦ Sn/2 ◦ · · · ◦ Sn/2︸ ︷︷ ︸
n times

.

The range of X̃ is [n] and its length is m = (n
2 + 1) · n ·K = Θ(n2 lg n). See Figure 14 for an

example with k = 2. We will prove that for all T , AltT (X̃) ≤ O(m) while on the other hand
Funnel(X̃) ≥ Ω(m lg lg n).

I Lemma 28. For any T , AltT (X̃) ≤ O(m).

I Lemma 29. Funnel(X̃) ≥ Ω(m lg lg n).

The combination of Lemma 28 and Lemma 29 shows the separation claimed in Theorem 2.
Before we move to the proofs of those lemmas, let’s go over some intuition for the proof of
Lemma 28, which is the more complicated one.

First, note that the only reason we use bitReversalk in X̃ is to make Funnel(X̃) large.
Replacing bitReversalk by any other permutation of {0, . . . , K − 1} would not affect the
proof of Lemma 28 in any way because that proof only looks at the set of keys that are hit
by each of the parts S0, . . . , Sn/2.

The general intuition of the proof of Lemma 28 is that while one tree could give a high
lower bound for one of the sequences Si, no tree can give a high lower bound on average
over all Si. The reason is that, given the geometric spacing of each Si, any way to split an
interval of keys into two will typically (on average over i) leave almost all the keys of Si in
either the left or the right part (Claim 31). Therefore, it is impossible to split the keys into
subtrees in a way that would ensure a high number of alternations.

V. Lecomte and O. Weinstein 68:17

S0

...
...

S0

S1

...
...

S1

...
...

Sn/2

...
...

Sn/2

Figure 14 A schematic view of sequence X̃ for k = 2. Each part Si is made of K = 2k = 4
accesses. There are n = 2K = 16 distinct keys and the length of X̃ is m = (16/2 + 1)nK = 576.

Proof of Lemma 28. The first step of the proof is to decompose X̃ into substrings S0◦· · ·◦S0
through Sn/2 ◦ · · · ◦ Sn/2, and then bound the sum of their Alternation bounds. Let’s denote
those substrings as S0 ∗ n, S1 ∗ n, . . . , Sn/2 ∗ n. Because of the subadditivity of mixValue
under concatenation (Fact 9), we have

AltT (X̃) ≤
n/2∑
i=0

AltT (Si ∗ n). (5)

Note that we don’t want to decompose X̃ down to the Si’s themselves: every time we
split it, our analysis loses up to an additive O(n) in precision. Intuitively, this O(n) is due
to a “warmup” cost which we might or might not incur at the beginning of each substring,
depending on which parts of the tree were last visited. With our decomposition into n

substrings, that’s an extra O(n2) cost, which is okay since it is small compared to the total
length of the sequence Θ(n2 log n). In fact, this is precisely why we repeated each Si several
times: if we had defined X̃ as S0 ◦ S1 ◦ · · · ◦ Sn/2 instead, this O(n2) would have been large
compared to the length of the sequence Θ(n log n).11

We will upper-bound the sum
∑

i AltT (Si ∗ n) by induction on the recursive definition of
AltT (·). Concretely, let T ∗ be a subtree of T , and let TL

∗, TR
∗ be the left and right subtrees

of T ∗. Let s, sL and sR be the number of keys in T ∗, TL
∗ and TR

∗ (note that s = sL + sR).
For each i, let P ∗i be the subset of P (Si ∗ n) corresponding to keys in T ∗, and let P ∗i,L, P ∗i,R
be the same for TL

∗ and TR
∗. We will prove the following claim by induction:

11The astute reader will notice that we could have repeated each Si only Θ(n/ logn) times instead of n
times. But we are not limited in terms of the length of X̃, so it was (notationally) simpler to repeat
them n times.

ESA 2020

68:18 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

B Claim 30. For some constant C > 0,

n/2∑
i=0

AltT ∗(P ∗i) ≤ (s− 1)(n/2 + 1) + 2Cns lg s.

The base case is when T ∗ is a single node. Then AltT ∗(Si ∗ n) = 0 for all i, while s = 1,
so the result holds. To deal with the inductive step, we will need make a few tools first. By
definition of the Alternation bound (Definition 10), for each i we have

AltT ∗(P ∗i) = a(P ∗i , T ∗) + AltTL
∗(P ∗i,L) + AltTR

∗(P ∗i,R). (6)

The challenging part is how to deal with a(P ∗i , T ∗). By Fact 9, we have

a(P ∗i , T ∗) = mixValue(P ∗i,L.y, P ∗i,R.y) ≤ 2 ·min(|P ∗i,L|, |P ∗i,R|) + 1.

Summing this up over all i, we get

n/2∑
i=0

a(P ∗i , T ∗) ≤
n/2∑
i=0

(2 ·min(|P ∗i,L|, |P ∗i,R|) + 1) = (n/2 + 1) + 2 ·
n/2∑
i=0

min(|P ∗i,L|, |P ∗i,R|). (7)

B Claim 31. For some constant C > 0,

n/2∑
i=0

min(|P ∗i,L|, |P ∗i,R|) ≤ Cn ·

sL lg s
sL

if sL ≤ sR, and

sR lg s
sR

if sR ≤ sL.

This left-right symmetry is very surprising given that the sequences Si themselves are not
left-right symmetric. But it will be very convenient.

Proof. To simplify the notation, let’s say that the keys in TL
∗ are in range [a, b] and the keys

in TR
∗ are in range [b, c], for some real numbers a, b, c with b− a = sL and c− b = sR.12

For each i, let Vi = {i + 20, . . . , i + 2K−1} be the set of values that are hit by sequence
Si. Then |P ∗i,L| (resp. |P ∗i,L|) is exactly n times the number of elements of Vi that are in [a, b]
(resp. [b, c]). Let’s name this number of keys li (resp. ri). We will instead prove that

n/2∑
i=0

min(li, ri) ≤ O

(
sL lg s

sL

)
if sL ≤ sR, and (8)

n/2∑
i=0

min(li, ri) ≤ O

(
sR lg s

sR

)
if sR ≤ sL. (9)

Once this is proved, C can be set to the maximum of the two constants hidden inside the
O(·)s. Those constants might be different since the reasonings leading to (8) and (9) are
completely different.

We first make a general observation. Look at set Vi = {i+20, . . . , i+2j , . . . , } in increasing
order. Note that after i + 2j , all further elements are spaced by at least 2j . In order for
min(li, ri) to be non-zero, we need to have at least two elements of Si in [a, c]: specifically,
one in [a, b] and one in [b, c]. But this means that i + 2j+1 ∈ [a, c] isn’t acceptable for j > lg s:

12We can for example fix a to the first key of TL
∗ minus 1

2 , b to the last key of TL
∗ plus 1

2 , and c to the
last key of TR

∗ plus 1
2 .

V. Lecomte and O. Weinstein 68:19

indeed, the closest other point in Si is more than s away, so it must be outside of [a, c].
Therefore, in bounding

∑
min(li, ri), it is fine to imagine that the elements i + 2j+1 for

j > lg s simply do not exist.
Let us now prove (8). Assume sL ≤ sR. We split into two cases:
“Far” case: i < a− sL. Since i is further from [a, b] than its size sL, this means that [a, b]
can only contain at most one point from Si. So li ≤ 1. Besides, that (potential) single
point must have j ≤ 1 + lg s (see above) and j ≥ lg sL (because we have i + 2j ≥ a). And
of course, we have in addition that i + 2j ∈ [a, b]. Therefore, this limits the number of
possible values of i to at most sL(2 + lg s− lg sL), and since li ≤ 1, this also limits the
total contribution to

∑
min(li, ri).

“Close to right” case: i ≥ a− sL. Then we also have i ≥ b− 2sL. Since we need li 6= 0 to
have some contribution, we must have i < b, so the total number of possible values of i is
limited to 2sL. Let’s consider the values of j such that i + 2j can lie in [b, c], the right
part. We already know that j ≤ 1 + lg s, but we have no lower limit, as i could be very
close to b. However, values of j much smaller than lg sL will be only for the few values of
i close enough to b.
More precisely, we study the contribution of each j to

∑
ri into two groups:

j ≥ lg sL: there are 2 + lg s− lg sL such values j, and there are 2sL possible values of i,
so the total contribution is at most 2sL(2 + lg s− lg sL).
j < lg sL: as j decreases, the number of acceptable values of i decreases exponentially.
The number of values of i for which i + 2j ∈ [b, c] for j ≤ lg sL − l is at most sL/2l.
Therefore, the overal contribution is at most sL + sL/2 + · · · ≤ 2sL.

All those quantities are upper bounded by O(sL(1 + lg(s/sL))), which under the assumption
sL ≤ sR, is also bounded by O(sL lg(s/sL)).

We now prove (9) in a very similar way. Assume sL ≤ sR.
“Far” case: i < b−sR. The argument is analogous to the “far” case for (8), but considering
ri this time. We obtain a contribution of at most sR(2 + lg s− lg sR).
“Close to right” case: i ≥ b− sR. The argument is analogous to the “close to right” case
for (8), but with a distance of sR instead of 2sL this time. We obtain contributions of at
most sR(2 + lg s− lg sR) and 2sR for the two subcases.

All those quantities are upper bounded by O(sR(1 + lg(s/sR))), which under the assumption
sR ≤ sL, is also bounded by O(sR lg(s/sR)). C

We are now ready to finish the induction step.

Proof of Claim 30. We define C to be the same as in Claim 31. We have
n/2∑
i=0

AltT ∗(P ∗i) =
n/2∑
i=0

(
a(P ∗i , T ∗) + AltTL

∗(P ∗i,L) + AltTR
∗(P ∗i,R)

)
(by (6))

≤

(
n/2∑
i=0

a(P ∗i , T ∗)

)
+ (sL − 1)(n/2 + 1) + 2CnsL lg sL + (sR − 1)(n/2 + 1) + 2CnsR lg sR

(inductive hypothesis)

≤ (n/2 + 1) + 2 ·
n/2∑
i=0

min(|P ∗i,L|, |P ∗i,R|)

+ (sL − 1)(n/2 + 1) + 2CnsL lg sL + (sR − 1)(n/2 + 1) + 2CnsR lg sR (by (7))

≤ (s− 1)(n/2 + 1) + 2Cn(sL lg sL + sR lg sR) + 2 ·
n/2∑
i=0

min(|P ∗i,L|, |P ∗i,R|) (s = sL + sR)

ESA 2020

68:20 Settling the Relationship Between Wilber’s Bounds for Dynamic Optimality

All we need to show is that

Cn(sL lg sL + sR lg sR) +
n/2∑
i=0

min(|P ∗i,L|, |P ∗i,R|) ≤ Cn(s lg s).

Let’s assume that sL ≤ sR (the other case is identical). Then by Claim 31,

Cn(sL lg sL + sR lg sR) +
n/2∑
i=0

min(|P ∗i,L|, |P ∗i,R|) ≤ Cn(sL lg sL + sR lg sR) + CnsL lg s

sL

≤ Cn(sL lg s + sR lg sR)
≤ Cn(sL lg s + sR lg s)
= Cns lg s.

This completes the proof of Claim 30. C

Applying Claim 30 to the full tree T , which has n keys, we get

AltT (X̃) ≤
n/2∑
i=0

AltT ∗(Si ∗ n) (by (5))

≤ (n− 1)(n/2 + 1) + 2Cn2 lg n (Claim 30)
≤ O(n2 lg n)
= O(m). J

We now move to the proof of Lemma 29, which is much simpler.

Proof of Lemma 29. From the definition of Funnel(·) (Definition 14), it is easy to see that
for any two sequences S and T , Funnel(S ◦T) ≥ Funnel(S)+Funnel(T). Indeed concatenating
S and T does not affect the funnel of each point in S, and can only add points to the funnel
of each point in T . Therefore,

Funnel(X̃) ≥ n

n/2∑
i=0

Funnel(Si). (10)

Since Funnel(·) only depends on the relative order of the keys in the access sequence, not
on their exact value, we have Funnel(Si) = Funnel(bitReversalk) for each i. Besides, defining
T to be the complete binary search tree of height k as in Fact 27, we have

Funnel(bitReversalk) ≥ Ω(AltT (bitReversalk))−K (by Theorem 1)
≥ Ω(K lg K)−K (by Fact 27)
≥ Ω(K lg K).

Combined with (10), this gives Funnel(X̃) ≥ n · (n/2 + 1) · Ω(K lg K) ≥ Ω(m lg K) =
Ω(m lg lg n). J

Due to space constraints, the last (short) section, which relates the Funnel bound to the
Independent Rectangle bound, is deferred to the full version.

V. Lecomte and O. Weinstein 68:21

References
1 Brian Allen and Ian Munro. Self-organizing binary search trees. J. ACM, 25(4):526–535,

October 1978. doi:10.1145/322092.322094.
2 Prosenjit Bose, Karim Douïeb, Vida Dujmovic, and Rolf Fagerberg. An O(log log n)-

competitive binary search tree with optimal worst-case access times. In Algorithm Theory -
SWAT 2010, 12th Scandinavian Symposium and Workshops on Algorithm Theory, Bergen, Nor-
way, June 21-23, 2010. Proceedings, pages 38–49, 2010. doi:10.1007/978-3-642-13731-0_5.

3 Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak. Pinning down the strong
wilber 1 bound for binary search trees. CoRR, abs/1912.02900, 2019. arXiv:1912.02900.

4 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Pattern-avoiding access in binary search trees. In Venkatesan Guruswami, editor,
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,
CA, USA, 17-20 October, 2015, pages 410–423. IEEE Computer Society, 2015. doi:10.1109/
FOCS.2015.32.

5 Erik D. Demaine, Dion Harmon, John Iacono, Daniel M. Kane, and Mihai Patrascu. The
geometry of binary search trees. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 496–505,
2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496825.

6 Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Patrascu. Dynamic optimality -
almost. SIAM J. Comput., 37(1):240–251, 2007. doi:10.1137/S0097539705447347.

7 John Iacono. Key-independent optimality. Algorithmica, 42(1):3–10, 2005. doi:10.1007/
s00453-004-1136-8.

8 John Iacono. In pursuit of the dynamic optimality conjecture. In Space-Efficient Data
Structures, Streams, and Algorithms - Papers in Honor of J. Ian Munro on the Occasion of
His 66th Birthday, pages 236–250, 2013. doi:10.1007/978-3-642-40273-9_16.

9 László Kozma and Thatchaphol Saranurak. Smooth heaps and a dual view of self-adjusting
data structures. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 801–814, 2018.
doi:10.1145/3188745.3188864.

10 Victor Lecomte and Omri Weinstein. Settling the relationship between wilber’s bounds for
dynamic optimality. CoRR, abs/1912.02858, 2019. arXiv:1912.02858.

11 Caleb C. Levy and Robert E. Tarjan. A new path from splay to dynamic optimality. In
Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
1311–1330. SIAM, 2019. doi:10.1137/1.9781611975482.80.

12 Joan Marie Lucas. Canonical forms for competitive binary search tree algorithms. Rutgers
University, Department of Computer Science, Laboratory for Computer Science Research,
1988.

13 J. Ian Munro. On the competitiveness of linear search. In Mike Paterson, editor, Algorithms -
ESA 2000, 8th Annual European Symposium, Saarbrücken, Germany, September 5-8, 2000,
Proceedings, volume 1879 of Lecture Notes in Computer Science, pages 338–345. Springer,
2000. doi:10.1007/3-540-45253-2_31.

14 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, July 1985. doi:10.1145/3828.3835.

15 Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator. O(log log n)-
competitive dynamic binary search trees. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, pages 374–383, Philadelphia, PA, USA, 2006.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=1109557.1109600.

16 R. Wilber. Lower bounds for accessing binary search trees with rotations. SIAM J. Comput.,
18(1):56–67, February 1989. doi:10.1137/0218004.

ESA 2020

https://doi.org/10.1145/322092.322094
https://doi.org/10.1007/978-3-642-13731-0_5
http://arxiv.org/abs/1912.02900
https://doi.org/10.1109/FOCS.2015.32
https://doi.org/10.1109/FOCS.2015.32
http://dl.acm.org/citation.cfm?id=1496770.1496825
https://doi.org/10.1137/S0097539705447347
https://doi.org/10.1007/s00453-004-1136-8
https://doi.org/10.1007/s00453-004-1136-8
https://doi.org/10.1007/978-3-642-40273-9_16
https://doi.org/10.1145/3188745.3188864
http://arxiv.org/abs/1912.02858
https://doi.org/10.1137/1.9781611975482.80
https://doi.org/10.1007/3-540-45253-2_31
https://doi.org/10.1145/3828.3835
http://dl.acm.org/citation.cfm?id=1109557.1109600
http://dl.acm.org/citation.cfm?id=1109557.1109600
https://doi.org/10.1137/0218004

On the Computational Complexity of Linear
Discrepancy
Lily Li
Department of Computer Science, University of Toronto, Canada
xinyuan@cs.toronto.edu

Aleksandar Nikolov
Department of Computer Science, University of Toronto, Canada
anikolov@cs.toronto.edu

Abstract
Many problems in computer science and applied mathematics require rounding a vector w of
fractional values lying in the interval [0, 1] to a binary vector x so that, for a given matrix A, Ax is
as close to Aw as possible. For example, this problem arises in LP rounding algorithms used to
approximate NP-hard optimization problems and in the design of uniformly distributed point sets
for numerical integration. For a given matrix A, the worst-case error over all choices of w incurred
by the best possible rounding is measured by the linear discrepancy of A, a quantity studied in
discrepancy theory, and introduced by Lovasz, Spencer, and Vesztergombi (EJC, 1986).

We initiate the study of the computational complexity of linear discrepancy. Our investigation
proceeds in two directions: (1) proving hardness results and (2) finding both exact and approximate
algorithms to evaluate the linear discrepancy of certain matrices. For (1), we show that linear
discrepancy is NP-hard. Thus we do not expect to find an efficient exact algorithm for the general
case. Restricting our attention to matrices with a constant number of rows, we present a poly-time
exact algorithm for matrices consisting of a single row and matrices with a constant number of rows
and entries of bounded magnitude. We also present an exponential-time approximation algorithm for
general matrices, and an algorithm that approximates linear discrepancy to within an exponential
factor.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases discrepancy theory, linear discrepancy, rounding, NP-hardness

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.69

Funding This research was supported by an NSERC Discovery Grant (application number RGPIN-
2016-06333).

1 Notation

Below bold-face capital letters such as A denote matrices; Ai,j is the entry in the ith row
and jth column of the matrix A. Bold-face lowercase letters such as x denote vectors; xi
is the ith entry of the vector x. We denote the all ones vector by 1. Whenever we write
i ∈ [n], we mean i ∈ {1, 2, ..., n}. For simplicity of exposition, assume that A ∈ Qm×n in the
following sections. We will explicitly indicate other uses of A.

2 Introduction

A number of questions in mathematics and computer science can be reduced to the following
basic rounding question: given a vector w ∈ [0, 1]n, and an m× n matrix A, find an integer
vector x ∈ [0, 1]n such that Ax is as close as possible to Aw. For example, many NP-hard
optimization problems can be modeled as an integer program

© Lily Li and Aleksandar Nikolov;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 69; pp. 69:1–69:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xinyuan@cs.toronto.edu
mailto:anikolov@cs.toronto.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.69
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 On the Computational Complexity of Linear Discrepancy

min c>x
s.t. Ax ≥ b

x ∈ {0, 1}n

This integer program can be relaxed to a linear program by replacing the integer variables
x ∈ {0, 1}n with real-valued variables w ∈ [0, 1]n. A powerful method in approximation
algorithms is to solve this linear programming relaxation to get an optimal w, and then round
w to an integer solution x which is feasible (i.e., Ax ≥ b), and has objective value not much
bigger than c>w. Often, a useful intermediate step is to guarantee that x is approximately
optimal, i.e., that the coordinates of b−Ax are bounded from above. This approximately
feasible solution can then, hopefully, be turned into a truly feasible one with a small loss in
the objective value. This method was used, for example, by Rothvoss [18], and Rothvoss and
Hoberg [12] to give the best known approximation algorithm for the bin packing problem.

Another example is provided by the problem of constructing uniformly distributed points,
or, more generally, points that are well-distributed with respect to some measure. Variants
of this problem date back to work by Weyl, van der Corput, van Aardenne-Ehrenfest, and
Roth, and have important applications to such fields as numerical integration; see the book
of Matoušek [15] for references and an introduction to the area. In the classical setting, the
problem is to find, for any positive integer n, a set of n points P in [0, 1]d, so as to minimize
the quantity

sup
R∈Rd

||R ∩ P | − nλd(R)|,

where Rd is the set of all axis-aligned boxes contained in [0, 1]d, and λd is the Lebesgue
measure on Rd. The quantity above is known as the (unnormalized) discrepancy of P . Note
that if we sample a random point uniformly from P , then it would land in R with probability
|R∩P |
n ; on the other hand, if we sample a random point uniformly from [0, 1]d, then it would

land in R with probability λd(R). The problem of minimizing the discrepancy of P is then
equivalent to finding a distribution that is uniform over n points that “looks the same” as
the continuous uniform distribution to all boxes R.

The discrepancy minimization problem can be modeled by the rounding problem with
which we started our discussion. To that end, we can discretize the domain [0, 1]d to a finite
set X of size N , and let A be the incidence matrix of sets induced by axis-aligned boxes, i.e.,
each row of A is associated with a box R, and equals the indicator vector of R∩X. If we also
let w = n

N 1, where 1 is the all-ones vector, then, for a sufficiently fine discretization, each
coordinate of Aw is a close approximation of nλd(R). The problem of finding an n-point set
P of minimum discrepancy then becomes essentially equivalent to minimizing ‖Ax−Aw‖∞
over x ∈ {0, 1}N , where ‖ · ‖∞ is the standard `∞ norm. In particular, given x, we can take
P to consist of the points in X for which the corresponding coordinate in x is set to 1. Then,
since [0, 1]d ∈ Rd, we have ||P | − n| ≤ ‖Ax −Aw‖∞, and we can remove or add at most
‖Ax−Aw‖∞ to P to make it exactly of size n. The discrepancy of P is then bounded by
2‖Ax−Aw‖∞ plus the additional error incurred by the discretization of [0, 1]d.

These two examples motivate the definition of linear discrepancy, initially introduced by
Lovász, Spencer, and Vesztergombi [14]. The smallest possible error for rounding w with
respect to A is

lindisc(A,w) = min
x∈{0,1}n

‖A (w− x)‖∞.

L. Li and A. Nikolov 69:3

This is the linear discrepancy of A with respect to w. The linear discrepancy of A is defined
as as the worse case over all w ∈ [0, 1]n, i.e.,

lindisc(A) = max
w∈[0,1]n

lindisc(A,w). (1)

It will be useful to consider a maximizer of equation (1) i.e. w∗ ∈ [0, 1]n such that
lindisc(A,w∗) = lindisc(A). We call w∗ a deep-hole of A. Every A has at least one
deep-hole, since linear discrepancy is a continuous function over the compact set [0, 1]n.

The special case of lindisc(A,w) when w = 1
21 is especially well studied. When A is the

indicator matrix of a collection S of m subsets of a universe X, lindisc(A, 1
21) measures to

what extent it is possible to choose a subset S of X that contains approximately half the
elements of each set. This is a rescaling of the well-known combinatorial discrepancy of S,
defined as

disc(S) = min
χ:X→{−1,+1}

max
S∈S

∣∣∣∣∣∑
s∈S

χ(s)

∣∣∣∣∣
It is straightforward to check that, by a change of variables, disc(S) = 2 · lindisc(A, 1

21) where,
again, A is the incidence matrix of S. This definition can be extended to arbitrary matrices
A as disc(A) = 2 · lindisc(A, 1

21). Combinatorial discrepancy has been widely studied in
combinatorics and computer science, see [4, 8, 15].

Sometimes disc(A) can be small “by accident”, thus it is useful to define a more robust
discrepancy variant.1 The hereditary discrepancy of A is the maximum discrepancy over all
sub-matrices, i.e.,

herdisc(A) = max
B

disc(B), (2)

where B ranges over submatrices of A.
A fundamental theorem by Lovász, Spencer, and Vesztergombi shows that linear discrep-

ancy can be bounded above by twice the hereditary discrepancy.

I Theorem 1 (Lovász et al. 1986, [14]). lindisc(A) ≤ 2 · herdisc(A).

A number of the applications of combinatorial discrepancy use this basic theorem. In
particular, it is common to give an upper bound on the hereditary discrepancy, and from
that deduce an upper bound on the linear discrepancy. For example, this strategy was used
to give approximation algorithms for bin packing [18, 12], and broadcast scheduling [3],
and to design point sets well distributed with respect to arbitrary Borel measures [17, 1].
However, linear discrepancy can be much smaller (by a factor of at least 2n) than hereditary
discrepancy,2 so hereditary discrepancy lower bounds do not translate to linear discrepancy,
and, in general, linear discrepancy lower bounds appear to be challenging. Arguably, a better
understanding of linear discrepancy itself would allow proving more and tighter results, in
comparison with going through hereditary discrepancy. For example, it is likely that new

1 Consider any matrix B ∈ Rm×n and let A ∈ Rm×2n be the concatenation of two copies of B side by side.
Regardless of the discrepancy of B, disc(A) = 0 since there exists x ∈ {−1, 1}n such that ‖Ax‖∞ = 0,
namely

xᵀ = [−1, ...,−1︸ ︷︷ ︸
n

, 1, ..., 1︸ ︷︷ ︸
n

].

2 Whether this remains true if the matrix A has bounded entries is a tantalizing open question.

ESA 2020

69:4 On the Computational Complexity of Linear Discrepancy

analytic tools to estimate linear discrepancy would allow progress on questions in geometric
discrepancy theory, as well as questions about the integrality gaps of linear programming
relaxations of important optimization problems, such as the bin packing problem.

A sequence of recent works has shed light on the computational complexity of combinatorial
and hereditary discrepancy. It is now known that combinatorial discrepancy does not allow
efficient approximation algorithms, even in a weak sense (assuming P 6= NP)[6], while
hereditary discrepancy is NP-hard to approximate better than a factor of 2 [2], and can
be approximated within poly-logarithmic factors [16]. Despite being the tool most directly
relevant to many applications of discrepancy, however, essentially nothing is known about the
computational complexity of linear discrepancy itself. In this paper, we initiate the study of
linear discrepancy from a computational viewpoint, and give both the first hardness results,
as well as the first exact and approximate algorithms for it.

Before stating our results, it is worth mentioning that linear discrepancy can also be seen
as an analogue of the covering radius in lattice theory. Let Λ ⊂ Rn be a lattice, i.e. discrete
additive subgroup of Rn, and let us choose b1, . . . ,bn to be a basis of Λ. Let B be a matrix
with the bi as its columns. The covering radius of Λ in the `p-norm is defined as

ρ(Λ) = max
y∈Rn

min
z∈Λ
‖y− z‖p = max

w∈Rn
min
x∈Zn

‖B · (w− x)‖p = max
w∈[0,1]n

min
x∈Zn

‖B · (w− x)‖p, (3)

and is independent of the basis. This definition is equivalent to the the definition of lindisc(A),
except that the minimum is over Zn rather than {0, 1}n. Haviv and Regev showed that the
covering radius problem (CRP) in the `p-norm is Π2-hard to approximate within some fixed
constant for all large enough p [11], and Guruswami, Micciancio, and Regev showed it can
be approximated within a factor of 2O(n logn/ log logn) for the case of p = 2 [10].

2.1 Our Results
Let us start with the simple observation that, when A is a single row matrix, deciding
lindisc(A, t1) = 0 is the NP-hard Subset Sum problem with target sum t

∑n
j=1A1,j , and is,

therefore, NP-hard. This does not show, however, that computing lindisc(A) is NP-hard. In
this work we show the following hardness result for linear discrepancy.

I Theorem 2. The Linear Discrepancy problem of deciding, given an m× n matrix A with
rational entries, and a rational number t, whether lindisc(A) ≤ t, is NP-hard and is contained
in the class Π2.

We present algorithms for computing linear discrepancy exactly when the matrix A has
a constant number of rows. We start with a result for a single row matrix.

I Theorem 3. For any matrix A ∈ Q1×n, lindisc(A) can be computed in time O(n logn).

Note that this stands in contrast to the observation above that computing lindisc(A,w)
is hard even for a single-row matrix A. In addition to the theorem above, we also give a
corresponding rounding result, showing that any w ∈ Qn can be efficiently rounded to within
error bounded by the linear discrepancy in the case of single row matrices.

I Theorem 4. For any matrix A ∈ Q1×n and any w ∈ ([0, 1] ∩ Q)n, we can find an
x ∈ {0, 1}n such that ‖A(w− x)‖∞ ≤ lindisc(A) in time O(n logn).

This result stands in contrast with the hardness of the subset sum problem, which easily
implies that it is NP-hard to round w to within error lindisc(A,w) even when A is a single
row matrix.

L. Li and A. Nikolov 69:5

We can extend Theorem 3 to the case of matrices with a bounded number of rows, with
the additional assumption that the entries of A are bounded. Removing this additional
assumption is a fascinating open question.

I Theorem 5. For any matrix A ∈ Zd×n where d is some fixed constant and maxi,j |Ai,j | ≤ δ,
lindisc(A) can be computed in time O

(
d(nδ)d2+d

)
.

We further present an approximation algorithm for linear discrepancy.

I Theorem 6. For any matrix A ∈ Qm×n, lindisc(A) can be approximated in polynomial
time within a factor of 2n+1.

3 Hardness Result

In this section, we show that linear discrepancy (LDS) is NP-Hard by reducing from mono-
tone not-all-equal 3-SAT (MNAE3SAT) [9] to each. The decision problem version of linear
discrepancy we consider is defined below.

[MNAE3SAT] Monotone Not-All-Equal 3-SAT
Let U be a collection of variables {u1, ..., un} and C be a 3-CNF with clauses {C1, ..., Cm}
such that Ci = ti,1 ∨ ti,2 ∨ ti,3 for positive literals ti,j .
Question: Does there exist a truth assignment τ : U → {T,F} such that C is satisfied
and each clause has at least one true and one false literal?

[LDS] Linear Discrepancy
Let A ∈ Qm×n be a matrix and t ≥ 0 a rational value.
Question: Is lindisc(A) ≤ t?

3.1 Linear Discrepancy

Before we show that linear discrepancy is hard, we will show that the value of lindisc(A)
can be expressed using a polynomial number of bits in the bit complexity of a matrix for
rational matrices. Due to space constraints, the proof can be found in Section A.1.

I Lemma 7. For any matrix A ∈ Qm×n, there exists a deep hole for A with bit complexity
polynomial in n and the bit complexity of A, and, therefore, lindisc(A) can be written in
number of bits polynimial in n and the bit complexity of A.

Proof of Theorem 2. Note first that the fact that LDS is contained in Π2 is a straightforward
consequence of Lemma 7: the “for-all” quantifier is over potential deep holes w ∈ [0, 1]n of
the appropriate polynomially bounded bit complexity, and the “exists” quantifier is over
x ∈ {0, 1}n.

Next we prove hardness. Let 3-CNF C be a MNAE3SAT instance as described above. The
corresponding LDS instance will be the incidence matrix A ∈ {0, 1}m×n of C: column aj of
A corresponds to variable uj and row ri of A corresponds to clause Ci, and Ai,j = 1 if and
only if variable uj appears in clause Ci. Let the target t in the LDS problem be 3

2 − ε for
ε > 0 to be determined later.

ESA 2020

69:6 On the Computational Complexity of Linear Discrepancy

Consider first that case that C is a NO-instance of MNAE3SAT i.e. for every truth
assignments τ , there exists a clause Ci whose literals all get the same truth assignment. Each
x ∈ {0, 1}n corresponds to a truth assignment. If xi = 1 (resp. xi = 0) then ui is true (resp.
ui is false). Let Cj be the clause whose literals have the same truth value. Then

lindisc(A) ≥ lindisc(A, (1/2) · 1) ≥
∣∣∣∣rj (1

2 · 1− x
)∣∣∣∣ = 3

2 >
3
2 − ε,

so A is a NO-instance of LDS.
Consider next the case that C is a YES-instance of MNAE3SAT, and let τ be a satisfying

assignment. Suppose w∗ ∈ [0, 1]n is a deep-hole of A. If w∗i = 1
2 for all i ∈ [n] then

lindisc(A) = lindisc(A, (1/2) · 1) = disc(A) ≤
∥∥∥∥A

(
1
2 · 1− x∗

)∥∥∥∥
∞

= 1
2

since every clause has exactly two elements with the same truth value. Thus A is a YES-
instance of LDS as long as we choose ε ≤ 1. Suppose then that w∗ 6= 1

21, and let ε be a lower
bound on the smallest non-zero gap between w∗i and 1/2 i.e. for all w∗i 6= 1

2 ,∣∣∣∣w∗i − 1
2

∣∣∣∣ ≥ ε.
By Lemma 7, which implies that w∗ has polynomial bit complexity, we know that we can
choose such an ε of polynomial bit complexity. We will show that lindisc(A,w∗) ≤ 3

2 − ε by
constructing a colouring x∗. Let

x∗i =
{

rd(w∗i) if w∗i 6= 1
2

τ(ui) otherwise

where rd(w∗i) is w∗i rounded to the closest integer and ui is the variable corresponding to
column i. Let r be a row of matrix A with non-zero entries in columns i, j, and k. We bound
the discrepancy of row r based on the number of rounded variables Rv among {xi, xj , xk}.
Rv = 0: Since none of the variables are rounded, w∗i = w∗j = w∗k = 1

2 and

|r (x∗ −w∗)| =
∣∣∣∣(x∗i − 1

2

)
+
(
x∗j −

1
2

)
+
(
x∗k −

1
2

)∣∣∣∣ = 1
2

since τ is a satisfying assignment.
Rv = 1: W.l.o.g assume that that x∗i is the rounded value and w∗j = w∗k = 1

2 . Then

|r (x∗ −w∗)| =
∣∣∣∣(x∗i − w∗i) +

(
x∗j −

1
2

)
+
(
x∗k −

1
2

)∣∣∣∣ ≤ (1
2 − ε

)
+ 1 = 3

2 − ε.

Rv = 2: W.l.o.g assume that x∗i and x∗j are the rounded values and w∗k = 1
2 . Then

|r (x∗ −w∗)| =
∣∣∣∣(x∗i − w∗i) +

(
x∗j − w∗j

)
+
(
x∗k −

1
2

)∣∣∣∣ ≤ 2 ·
(

1
2 − ε

)
+ 1

2 = 3
2 − 2ε.

Rv = 3: All three values are rounded so

|r (x∗ −w∗)| =
∣∣(x∗i − w∗i) +

(
x∗j − w∗j

)
+ (x∗k − w∗k)

∣∣ ≤ 3 ·
(

1
2 − ε

)
= 3

2 − 3ε.

Since r was an arbitrary row of A, lindisc(A) = lindisc(A,w∗) ≤ 3
2 − ε as required. This

completes the reduction. J

L. Li and A. Nikolov 69:7

4 Algorithms for Linear Discrepancy

In the following we consider restrictions and variants of linear discrepancy for which we
are able to give poly-time algorithms. The first subsection considers matrices with a single
row. The second subsection considers matrices A ∈ Zd×n with constant d and entry of
largest magnitude δ. In that case, we compute lindisc(A) in time O

(
d(2nδ)d2

)
. The third

subsection presents a poly-time 2n approximation to lindisc(A) for A ∈ Qm×n.

4.1 Linear Discrepancy of a Row Matrix
We begin by developing some intuition for the linear discrepancy of a one-row matrix,
A = [a1, ..., an]. For now, let us make the simplifying assumption that the entries of A are
non-negative and sorted in decreasing order. Define the subset sums of A to be the multi-set
S(A) = {s1, ..., s2n} where each si = Ax for exactly one x ∈ {0, 1}n. Enumerate the element
of S(A) in non-decreasing order, i.e. si ≤ si+1. If `A = 2 · lindisc(A), then `A is the width
of the largest gap between consecutive entries in S(A).

Suppose Ai = [a1, ..., ai]. Let us consider how S(Ai) and lindisc(Ai) change for the first
couple of values of i. Clearly, S(A1) = [0, a1] and lindisc(A1) = a1

2 . S(A2) is the disjoint
union of S(A1) and S(A1) shifted to the right by a2. Since a1 ≥ a2, S(A2) = [0, a2, a1, a1+a2]
where the largest gap is of size max(a2, a1 − a2). See Figure 1. In general, the entries of
S(Ai) consists of two copies of S(Ai−1) with one shifted to the right by ai. The gaps
in S(Ai) are gaps previously in S(Ai−1) or between an element of S(Ai−1) and one in
{ai + s : s ∈ S(Ai−1)}.

0 a1

a1 + a20 a2 a1

Figure 1 Obtaining S(A2) from S(A1) when a1 ≥ a2.

A similar structure occurs for general matrices with real valued entries with two caveats:
(1) the previous interval is shifted left or right depending on the sign of the current entry
(negative and positive respectively) and (2) the smallest entry of S(A) is not zero but the
sum of the negative entries in A.

I Lemma 8. Suppose Ak−1 = [a1, ..., ak−1] with entries in R and |ai| ≥ |ai+1|. Let the
largest gap in S(Ak−1) be of size `k−1. Then, for Ak = [a1, ..., ak−1, ak] where |ak| ≤ |ai| for
all i ∈ [k − 1], the largest gap in S(Ak) is of size max(|ak|, `k−1 − |ak|).

Proof. Again, it is important to remember that the entries of S(Ak) are exactly those in
S(Ak−1) along with those in {ak + s : s ∈ S(Ak−1)}. Let ` = max(|ak|, `k−1 − |ak|).

We first show that 2 · lindisc(Ak) ≤ ` by showing that gaps between consecutive entries
in S(Ak) have size at most `. If (sj , sj+1) is a consecutive pair in S(Ak−1) such that
sj+1− sj > `, then sj and sj+1 are no longer consecutive in S(Ak), since sj ≤ sj +ak ≤ sj+1

ESA 2020

69:8 On the Computational Complexity of Linear Discrepancy

if ak > 0 and sj ≤ sj+1 +ak ≤ sj+1 if ak < 0. See Figure 2. Then, the gap given by any such
pair gets split into gaps of size at most max{|ak|, sj+1 − sj − |ak|} ≤ `, where the inequality
holds because sj+1 − sj ≤ `k−1. It follows that the size of each gap in S(Ak) is at most `.

sj sj+1

ak

sj sj+1sj + ak

ak

sj sj+1sj+1 + ak

0

Figure 2 All consecutive pairs in S(Ak−1) of size greater than |ak| will be divided into two or
more consecutive pairs in S(Ak). The red interval indicates what happens when ak > 0. The blue
interval indicates what happens when ak < 0.

Next we will show that 2 · lindisc(Ak) ≥ ` by producing a pair of consecutive entries in
S(Ak) which achieves gap `. Suppose ` = |ak|. Recall that s0 is the smallest subset sum of
all entries in Ak, which equals the sum of all negative entries in Ak. Then it is easy to check
that s1 equals s0 + |ak|, where we recall that ak is the entry in Ak with minimum absolute
value. Therefore, (s0, s0 + |ak|) is a consecutive pair in S(Ak). This means that if ` = |ak|,
then we are done, as we have produced a pair with gap `.

When ` = `k−1 − |ak| > |ak|, we split our analysis into two cases: (1) ak > 0 and (2)
ak < 0.

In the former case, let (sj∗ , sj∗+1) be a consecutive pair in S(Ak−1) that achieves gap `k−1
and suppose, towards a contradiction, that sj∗ + ak and sj∗+1 do not appear consecutively
in S(Ak). Then there must be some s ∈ S(Ak) such that sj∗ + ak < s < sj∗+1. Note that s
cannot be an element of S(Ak−1) since sj∗ and sj∗+1 are consecutive in S(Ak−1), so s− ak
must be an element of S(Ak−1). However, since s > sj∗ + ak, we have s− ak > sj∗ . This is
a contradiction since sj∗ and sj∗+1 are consecutive entries in S(Ak−1). See Figure 3. Thus
(sj∗ + ak, sj∗+1) must be a consecutive pair in S(Ak).

`k−1

sj∗ sj∗ + ak sj∗+1ss− ak

Figure 3 Suppose ak < `k−1 − ak and there exists s ∈ S(Ak) such that sj∗ + ak < s < sj∗+1.

The latter case, when ak < 0, is similar. Again there exists a pair of consecutive entries
(sj∗ , sj∗+1) in S(Ak−1) which achieves gap `k−1. Suppose, towards contradiction, that sj∗
and sj∗+1 − |ak| do not appear consecutively in S(Ak). Then there must be some s ∈ S(Ak)
such that sj∗ < s < sj∗+1 − |ak|. Again, s cannot be an element of S(Ak−1) since sj∗ and
sj∗+1 are consecutive in S(Ak−1), so s+ |ak| must be an element of S(Ak−1). However since
s < sj∗+1 − |ak|, we have s+ |ak| < sj∗+1. This is a contradiction since sj∗ and sj∗+1 are
consecutive entries in S(Ak−1). J

L. Li and A. Nikolov 69:9

Lemma 8 has the following curious corollary.

I Corollary 9. Let A = [a1, ..., an] and A′ = [|a1|, ..., |an|]. Then lindisc(A) = lindisc(A′).

Lemma 8 and Corollary 9 suggest an algorithm: replace the entries of A by their
magnitudes. Sort A. Consider each entry in turn and update the largest gap accordingly.
See Algorithm 1.

Proof of Theorem 3. By Corollary 9 it is sufficient to consider row matrices with non-
negative entries. Suppose that A = [a1, ..., an] is such a matrix with entries sorted in
decreasing order. Algorithm 1 correctly outputs the linear discrepancy for matrices with a
single entry. Let Ai = [a1, ..., ai]. Lemma 8 gives us a recursive method for computing the
largest gap in S(Ai+1) from the largest gap in S(Ai). Since lindisc(A) is half the size of the
largest gap in S(A), Algorithm 8 output lindisc(A) as required. J

Algorithm 1 Linear discrepancy of row matrix.

Input: Matrix A ∈ Q1×n.
Output: lindisc(A).

1 for i from 1 to n do
2 A[i]← |ai|
3 sort A in decreasing order
4 `← a1
5 for i from 2 to n do
6 `← max(ai, `− ai)
7 return `

2

Thus, for any row matrix A with n elements, we can find lindisc(A) in time O(n logn).

4.1.1 One Row Linear Discrepancy Rounding
Let lindisc(A) = `. By the definition of linear discrepancy, for every w ∈ [0, 1]n there exists
an x ∈ {0, 1}n such that ‖A(w − x)‖∞ ≤ `. In-fact, if w is not a deep-hole, there exists
an x which satisfies ‖A(w − x)‖∞ < `. However it is not obvious that finding such an x
can be done efficiently i.e. in polynomial time with respect to the bit complexity of A and
n. By reducing from the subset-sum problem, we observe that it is difficult to compute
lindisc(A,w) let alone find an x which minimizes ‖A(w− x)‖∞ ≤ `.

Proof of Theorem 4. To begin, let A = [a1, ..., an] for positive ai in non-increasing order.
We will consider A with arbitrary entries at the end. Let w = Aw. As before, let S(A) =
[s0, ..., s2n−1] be the subset-sums of A where each si = Ax for an x ∈ {0, 1}n and si ≤ si+1
for all i. Recall that 2 · lindisc(A) is the largest gap between any two consecutive entries in
S(A). Our algorithm will find a pair of subset sums containing w. If we can show that the
size of the interval between these two subset sums is no more than the gap between some
two consecutive entries in S(A), then the closest subset sum to w among these two will be
within lindisc(A) of w.

Just as in Algorithm 1, we refine the interval between two subset sums containing
w by incrementally adding the entries of A in decreasing order. Initially our interval is
g0 = [0,

∑n
i=1 ai]. We maintain the invariants: (1) w ∈ gi for all i, and (2) the end-points of

gi are subset sums.

ESA 2020

69:10 On the Computational Complexity of Linear Discrepancy

Suppose w ∈ gi = [u, v] and we are considering ai. If u+ai > w then set v ← min(v, u+ai).
Otherwise let u← u+ ai. Algorithm 2 computes this interval and the associated vectors u
and v representing its endpoints.

Consider the values of u and v at the end of the algorithm. We claim that the final
interval [u, v] is at most the width of some gap between two consecutive terms in S(A), the
array of all subset sums of A. Notice u = a1u1 + · · · + anun where u = [u1, ..., un] is an
endpoint of the interval once Algorithm 2 completes.

We partition u into maximal blocks where all entries in the same block have the same
value i.e. [u1, u2, ..., u`1], ..., [u`r+1, u`r+2, ..., un] such that u`i+1 = u`i+2 = · · · = u`i+1 for
i = 0, 1, ..., r − 1 where `0 = 0.

We claim that Algorithm 2 outputs an interval containing w whose width is at most the
distance between some two consecutive entries in S(A). The proof is by induction on r,
the number of blocks. In the base case, r = 1 and there is only one block. Thus u = 0 or
u =

∑
ai. In the case where u = 0, we must have ai > w for all i ∈ [n], and v = an. Thus

w ∈ [0, an] with consecutive elements 0 and an of S(A). In the latter case when u =
∑
ai,

we can output w since it is already a subset sum.
Suppose next that the claim holds for all matrices where the algorithm outputs a vector

u with k blocks, and we will show that it still holds for a matrix A whose output u has
k + 1 blocks. Let u′ = [u1, ..., u`k+1] and v′ = [v1, ..., v`k+1] be the final vectors after running
the algorithm on A′ = [a1, ..., a`k+1]. Further let u′ =

∑`k+1
i=1 aiui and v′ =

∑`k+1
i=1 aivi. By

the induction hypothesis, the width of [u′, v′] is at most the distance between some two
consecutive elements in the list of subset sums of A′. The last block of u is [u`k+1+1, ..., un].
The entries of this block are either all zeros or all ones. Consider each case in-turn.

First suppose u`k+1+1 = · · · = un = 0. Since none of the ai for i = `k+1 + 1, ..., n
were added to u, it must be the case that u′ + ai > w for all such i. Thus the interval
[u, v] = [u′,min (v′, u′ + an)] has width at most an. Since 0 and an are consecutive in S(A),
as |an| is the entry with the smallest magnitude in A, the output interval satisfies our
requirements.

Next suppose u`k+1+1 = · · · = un = 1. It must be the case that u = u′+a`k+1+1+· · ·+an ≤
w. Observe that a`k+1 is in the kth block and so u`k+1 = 0. Let [u′′, v′′] be our interval
after processing the k − 1st block i.e. u′′ =

∑`k

i=1 aiui and v′′ =
∑`k

i=1 aivi. Notice that
since none of the entries in the kth block were added to u′′, we must have u′′ + ai > w

for all i = `k + 1, ..., `k+1. In such cases, we always update v′′ ← min(v′′, u′′ + ai) after
each such i, thus the interval [u′, v′] has width at most a`k+1 . Thus it suffices to show that
a`k+1+1+· · ·+an and a`k+1 are consecutive in S(A). First note that a`k+1+1+· · ·+an ≤ a`k+1

since u′ + a`k+1+1 + · · · + an ≤ w ≤ v′ ≤ u′ + a`k+1 . The two subset sums then are also
consecutive, since ai > a`k+1 for all i < `k+1.

Now consider the case where A can have both positive and negative entries. Without loss
of generality we can assume that none of the entries are zero. Let A− = {ai ∈ A : ai < 0}
and A+ = {ai ∈ A : ai > 0}. It suffices to set u0 =

∑
a∈A− a and v0 =

∑
a∈A+

a and let u
and v be the indicator vectors of A− and A+ respectively. The remainder of the algorithm
is identical except that the matrix should be sorted in decreasing order of magnitude and
every time an element ai ∈ A− is added to u, its entry in u should be set to zero. J

4.2 Constant Rows with Bounded Matrix Entries
Let A ∈ Zd×n with maxi,j |Ai,j | ≤ δ. Let Z = A[0, 1]d be the zonotope of A and let
T = [−nδ, nδ]d ∩ Zd be the set of all integer lattice points of Z. The following algorithm
computes lindisc(A) in polynomial time with respect to n for fixed d and δ. The algorithm
makes use of Lemma 11, which is proved in the Appendix.

L. Li and A. Nikolov 69:11

Algorithm 2 Finding a close subset sum to Aw.

Input: A vector w ∈ [0, 1]n and a row matrix A = [a1, ..., an] of positive integers
sorted in increasing order.

Output: A vector x ∈ {0, 1}n such that ‖A(w− x)‖∞ ≤ lindisc(A).
1 A← sort-decreasing(A)
2 u← zeros(n)
3 v← ones(n)
4 w ← Aw, u← Au, v ← Av
5 return v if w == v

6 for k = 1..n do
7 if u+ ak > w then
8 v ← min (v, u+ ak)
9 if v == u+ ak then

10 v← copy(u)
11 v[k]← 1

12 else
13 u← u+ ak
14 u[k]← 1

15 return u if u is closer to w else v

Proof of Theorem 5. For every one of the (2nδ+1)d integral points b ∈ T , compute whether
Ax = b for some x ∈ {0, 1}n using dynamic programming. This procedure generalizes
dynamic programming algorithms for knapsack and subset sum and will be outlined in
the following. Let a1, ...,an be the columns of A. Construct a matrix M with dimensions
[−nδ, nδ]d × n. Cell (v, i) of M contains the indicator [M(v− ai, i− 1) ∨M(v, i− 1)]; this
corresponds to a linear combination of the first i− 1 columns of A which adds up to v− ai
or a linear combination of the first i− 1 columns which adds up to v. The first column of M
is the indicator vector for {a1}. Computing the entries of M takes time O(2nδ)d+1. M(b, n)
indicates the feasibility of Ax = b. Computing this for all b takes time O(2nδ)d+1. Let
S ⊆ T be the set of points b in Z such that Ax = b for some x ∈ {0, 1}n, and set |S| = N .

Apply Lemma 11 to the points of S in `∞-norm. The output is some radius r and
point x∗ such that the `∞-ball centered at x∗ with radius r is the largest such ball with
center inside the convex hull of S not containing any points of S. Note that r is in-fact the
linear discrepancy of A. Since r and x∗ can be computed in time O(Nd), lindisc(A) can be
computed in time O(2nδ)d2+d. J

4.3 Poly-time Approximation Algorithm

Next, we prove Theorem 6 present a 2n-approximation algorithm for linear discrepancy.
Recall that rd(w) is the function which rounds each coordinate of w to its nearest integer
(with ties broken arbitrarily). Let the operator norms of a matrix A be:

‖A‖p→q = max
x∈Rn\{0}

‖Ax‖q
‖x‖p

.

ESA 2020

69:12 On the Computational Complexity of Linear Discrepancy

Note that

lindisc(A) ≤ max
w∈[0,1]n

‖A(w− rd(w))‖∞ ≤
1
2 max

z∈[−1,1]n
‖Az‖∞ = 1

2‖A‖∞→∞.

To bound lindisc(A) from below, we show that ‖A‖∞→∞ ≤ 2n+1 · lindisc(A). This
completes the proof of the theorem, since ‖A‖∞→∞ equals the largest `1 norm of any row of
A, and can be computed in polynomial time.

Let us try to interpret the statement ‖A‖∞→∞ ≤ 2n+1 · lindisc(A). Note that ‖Az‖∞ is
equal to the Minkowski P-norm ‖z‖P for P = {x : ‖Ax‖∞ ≤ 1} i.e. ‖z‖P = inf{t ≥ 0 : z ∈
tP} so

‖A‖∞→∞ = max
z∈[−1,1]n

‖Az‖∞ = max
z∈[−1,1]n

‖z‖P .

By interpreting z as the difference of two vectors x,x′ ∈ [0, 1]n we have that

‖A‖∞→∞ = max
z∈[−1,1]n

‖z‖P = max
x,x′∈[0,1]n

‖x− x′‖P .

It is an easy, and well-known fact that lindisc(A) is the smallest t such that [0, 1]n ⊆⋃
x∈{0,1}n(x + P); see [15]. We then just need to show that the diameter of the unit hyper-

cube with respect to the Minkowski P-norm is no more than this scale-factor t times O(2n).
We prove the following more general statement.

I Lemma 10. Let K be a convex symmetric polytope and S ⊂ Rn be convex. Suppose there
exist N elements x1, ..., xN ∈ S such that

S ⊆
⋃
xi

xi + tK.

Then maxx,x′∈S‖x− x′‖K ≤ 2tN .

Proof. Fix any two points x and x′ in S. Let Pi be the polytope xi + tK. Since S is convex,
the line segment λx+ (1− λ)x′ for λ ∈ [0, 1] is in S. Therefore λx+ (1− λ)x′ intersects a
sequence of polytopes Pk1 , ...,Pkr with centres xk1 , ..., xkr , such that any two consequtive
polytopes in the sequence intersect. Since the polytopes are convex, we can assume that they
appear in the sequence at most once, so r ≤ N . By the triangle inequality we have

‖x− x′‖K = ‖(x− xk1) + (xk1 − xk2) + · · ·+ (xkr
− x′)‖K

≤ ‖x− xk1‖K + ‖xk1 − xk2‖K + · · ·+ ‖xkr − x′‖K
≤ t+ 2t(N − 1) + t = 2tN

where the last inequality follows as x ∈ Pk1 , x′ ∈ Pkr , and ‖xki − xki+1‖K ≤ 2t. J

Proof of Theorem 6. In Lemma 10, set K to be the parallelepiped defined by A, S = [0, 1]n,
t = lindisc(A), and {x1, ..., xN} = {0, 1}n. J

5 Open Problems

Because of the similarity between the closest vector problem and linear discrepancy, we
suspect that linear discrepancy is also Π2-complete, and the hardness result of Theorem
2 is, in this sense, not tight. Further, Haviv and Regev also showed that CRP is Π2-hard
to approximate to with-in a factor of 3

2 , and we conjecture that a similar hardness of
approximation result should hold for linear discrepancy.

L. Li and A. Nikolov 69:13

We suspect that the algorithm used to prove Theorem 3 can be generalized to matrices
A ∈ Qd×n with running time Õ(nd). This would be a substantial improvement on the
O
(
d(nδ)d2

)
running time algorithm used to prove Theorem 5, and would be independent of

the magnitude of the largest entry of A.
It is also interesting to extend the largest empty ball algorithm from Lemma 11 to other

`p norms, or even arbitrary norms, given appropriate access to the norm ball. Currently, this
seems rather difficult as Voronoi diagrams with respect to the `p-norm for p ∈ (2,∞) are
poorly behaved. For the standard `2-norm Voronoi diagram in Rd, it is the case that d+ 1
affinely independent vertices are equidistant to exactly one point. This is no longer the case
even in R3 for `4-norm [13]. In particular, there exists a set of four vertices such that the
intersection of their pair-wise bisectors has size three. The situation is even worse for general
strictly convex norms. There exists such norms where the pair-wise bisectors of a set of four
points in R3 can have arbitrarily many intersections.

We currently also have no evidence that the approximation factor in Theorem 6 is tight.
One possibility is that there exists an approximation preserving reduction from the closest
vector problem in lattices to linear discrepancy. This would show that one cannot expect
a significant improvement to Theorem 6 without also improving the best polynomial time
approximation to the covering radius, which is currently also exponential in the dimension n.
On the other hand, we also conjecture that the approximation factor in Theorem 6 can be
taken to be a function of min{m,n}, or even of the rank of the matrix A.

References
1 Christoph Aistleitner, Dmitriy Bilyk, and Aleksandar Nikolov. Tusnády’s problem, the

transference principle, and non-uniform qmc sampling. In Art B. Owen and Peter W. Glynn,
editors, Monte Carlo and Quasi-Monte Carlo Methods, pages 169–180. Springer International
Publishing, 2016.

2 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ε)-sat is np-hard. SIAM Journal
on Computing, 46(5):1554–1573, 2017.

3 Nikhil Bansal, Ravishankar Krishnaswamy, and Viswanath Nagarajan. Better scalable algo-
rithms for broadcast scheduling. ACM Trans. Algorithms, 11(1):3:1–3:24, 2014.

4 József Beck and Vera T Sós. Discrepancy theory. In Handbook of combinatorics (vol. 2), pages
1405–1446. MIT Press, 1996.

5 Jean-Daniel Boissonnat, Micha Sharir, Boaz Tagansky, and Mariette Yvinec. Voronoi diagrams
in higher dimensions under certain polyhedral distance functions. Discrete & Computational
Geometry, 19(4):485–519, 1998. doi:10.1007/PL00009366.

6 Moses Charikar, Alantha Newman, and Aleksandar Nikolov. Tight hardness results for
minimizing discrepancy. In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete Algorithms, pages 1607–1614. Society for Industrial and Applied Mathematics,
2011.

7 Bernard Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete &
Computational Geometry, 10(4):377–409, 1993.

8 Bernard Chazelle. The discrepancy method: randomness and complexity. Cambridge University
Press, 2001.

9 E Mark Gold. Complexity of automaton identification from given data. Information and
control, 37(3):302–320, 1978.

10 Venkatesan Guruswami, Daniele Micciancio, and Oded Regev. The complexity of the covering
radius problem. Computational Complexity, 14(2):90–121, 2005.

ESA 2020

https://doi.org/10.1007/PL00009366

69:14 On the Computational Complexity of Linear Discrepancy

11 Ishay Haviv and Oded Regev. Hardness of the covering radius problem on lattices. In
Computational Complexity, 2006. CCC 2006. Twenty-First Annual IEEE Conference on, pages
14–pp. IEEE, 2006.

12 Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin packing.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2616–2625. SIAM, 2017.

13 Christian Icking, Rolf Klein, Ngoc-Minh Lé, and Lihong Ma. Convex distance functions in
3-space are different. Fundamenta Informaticae, 22(4):331–352, 1995.

14 László Lovász, Joel Spencer, and Katalin Vesztergombi. Discrepancy of set-systems and
matrices. European Journal of Combinatorics, 7(2):151–160, 1986.

15 Jiri Matousek. Geometric discrepancy: An illustrated guide. Springer, 1999.
16 Jiří Matoušek, Aleksandar Nikolov, and Kunal Talwar. Factorization Norms and Hereditary

Discrepancy. International Mathematics Research Notices, 2020(3):751–780, March 2018.
doi:10.1093/imrn/rny033.

17 A. Nikolov. Tighter bounds for the discrepancy of boxes and polytopes. Mathematika,
63(3):1091–1113, 2017. doi:10.1112/S0025579317000250.

18 Thomas Rothvoß. Approximating bin packing within o (log opt* log log opt) bins. In
Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages
20–29. IEEE, 2013.

19 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
20 Godfried T Toussaint. Computing largest empty circles with location constraints. International

journal of computer & information sciences, 12(5):347–358, 1983.

A Appendix

A.1 Bit Complexity of Linear Discrepancy
Proof of Lemma 7. Let ri for i ∈ [m] be the rows of A, lindisc(A) = λA, and w∗ be a
deep-hole of A. For every x ∈ {0, 1}n there exists an i ∈ [m] and σ ∈ {−1, 1} such that
σri(w∗−x) ≥ λA. Let bx = σri and consider the following linear program over the variables
w ∈ Rn and λ ∈ R:

Maximize: λ
Subject to: bx(w− x) ≥ λ for all x ∈ {0, 1}n

0 ≤ w ≤ 1

Let λ∗ be the optimum value of this linear program. First note that λA ≤ λ∗ since (w∗, λ)
satisfies the constraints. Next we show that λA ≥ λ∗. Suppose, towards contradiction, that
λA < λ∗. Then there exists w′ ∈ [0, 1]n such that

‖A(w′ − x)‖∞ ≥ bx(w′ − x) ≥ λ∗ > λA

for every x ∈ {0, 1}n. Since λA = lindisc(A), we cannot have lindisc(A,w′) > λA. Thus
λ∗ = lindisc(A). Since this LP has n variables, the number of bits required to express the
linear discrepancy and some deep-hole w∗ of A are polynomial in n and the bit complexity
of the largest entry of A [19]. J

A.2 Largest Empty Ball Problem
Let V be a set of n points in the plane and let ch(V) denote the convex hull of V . The
largest empty circle problem, denoted LEC, takes V and outputs both a radius r and point
x∗ ∈ ch(V) such that the circle centered at x∗ with radius r is the largest empty circle
not containing any point of V . We generalize this problem to other norms and to higher

https://doi.org/10.1093/imrn/rny033
https://doi.org/10.1112/S0025579317000250

L. Li and A. Nikolov 69:15

dimensions as follows: V is a set of n points in Rd, and the goal is to compute a point x∗ in
ch(V) such that x∗ + rB does not contain any point of V , where B is the unit ball of either
the `d2 or the `d∞ norm. In the following we present an algorithm which solves this largest
empty ball (LEB) problem.

I Lemma 11 (LEC in Higher Dimensions). Let V be a set of n points in Rd for some fixed
constant d. The LEB of V , in both `2- and `∞-norms, can be computed in time O(nd).

Proof. We use the following terminology. Define a face F of the Voronoi diagram vd(V) of
V to be a subset of Rd such that, for some S ⊆ V , and every x ∈ F , S are the points in V
closest to x. In particular, this means that any x ∈ F is equidistant from all points in S.

The algorithm of Toussaint [20] computes the LEB of n points V in the plane with respect
to the `2-norm as follows,
1. Compute vd(V). Note that vd(V) is the union of Voronoi faces of dimension k, the set

of which we denote vdk(V), over all k = 0, ..., d− 1.
2. Compute the convex hull of V , denoted ch(V). Let h be the number of facets of ch(V).
3. Preprocess the points of ch(V) so that queries of the form “Is a point x in ch(V)?”

can be answered in time O(log h). For every v ∈ vd0(V), determine if v ∈ ch(V). Let
C1 = {v ∈ vd0(V) : v ∈ ch(V)}.

4. Determine the intersection points of faces in vdk(V) with faces of ch(V) of co-dimension
k, for pairs of such faces that intersect at a unique point. Let C2 be the set of all such
intersection points.

5. For all points v ∈ C1 ∪ C2, find the largest empty circle centered at v. Output a v which
maximizes this radius.

We find the analogue of each step for points in Rd with respect to the `2-norm, and then
adapt the algorithm to the `∞-norm.

In the following let N = ndd/2e. The complexity, i.e. total number of faces of every
dimension, of the `2-Voronoi diagram in Rd for fixed d is O(N) and can be computed in time
O(N + n logn) by a classic result of Chazelle [7]. The complexity of ch(V) is O(N) and can
also be computed in time O(N + n logn).

To determine the set C1 of Voronoi intersection points inside the convex hull, we let
H be the set of bounding hyperplanes of ch(V). Assume, without loss of generality, that
ch(V) contains the origin, and, for each H ∈ H, let H− be the half-space with H as its
boundary containing the origin. Then ch(V) =

⋂
H∈HH

−. We simply test, for each Voronoi
intersection point v, whether v ∈ H− for each H ∈ H, in total time O(N). Since there are
at most O(N) Voronoi intersection points, we can find C1 in time O(N2).

To determine the set C2 of all unique intersection points of k-faces of vdk(V) and faces
of ch(V) of co-dimension k will require solving several linear systems. Note that the points
in each face F in vdk(V) satisfy d − k equality constraints 〈a1,x〉 = b1, 〈ak,x〉 = bk for
linearly independent vectors a1, ...ak ∈ Rd. Similarly, the points in each face of co-dimension
k of ch(V) satisfy k linearly independent equality constraints. Since there are at most
O(2dN) = O(N) faces of ch(V), there are at most that many faces of ch(V) of co-dimension
k. We can then go over all Voronoi faces F of dimension k, and all faces G of ch(V) of
co-dimension k, and solve the corresponding system of (d− k) + k = d linear equations. If
the system has a unique solution, we check if that solution is in F ∩G, and, if so, we add it
to C2. Thus, for constant d, the size of C2 and the time to compute it are bounded bounded
above by O(N · 2dN) = O(N2).

In total there are at most O(N +N2) points in C1 ∪ C2 which can be computed in time
O(N2). Thus solving the largest empty ball problem in dimension d for constant d takes
time O(nd).

ESA 2020

69:16 On the Computational Complexity of Linear Discrepancy

Next we consider the largest empty ball problem in `∞-norm. The convex hull remains the
same, so we just have to consider the Voronoi diagram with respect to the `∞-norm. Again,
constructing the Voronoi diagram can be done in expected time O(ndd/2e logd−1 n) using the
randomized algorithm of Boissonnat et al. [5]. Next we consider the number of intersections
between the Voronoi diagram and the convex hull. First note that Voronoi diagrams with
respect to the `∞-norm need not consist of only hyperplanes and their intersections. Indeed,
in Rd, for two points with the same y-coordinate, there exists regions with affine dimension
two which are equidistant to both points. To remedy this, we assume that no two points
in V have the same i-th coordinate, for any i ∈ [d]. This is without loss of generality, by
perturbing the points in V slightly. It remains to consider the complexity of each bisector in
`∞-norm. By Claim 12, in constant dimension d, each such bisector can have at most O(d2)
facets. Therefore, the complexity of any face of the Voronoi diagram, being the intersection
of at most d bisectors, is bounded by a function of d. Thus the bounds of the `2-norm
algorithm still hold, up to constant factors that depend on d. J

B Claim 12 (Bound on Number of Facets of `∞ Bisectors). Let u,v ∈ Rd be such that assume
that ui 6= vi for all i ∈ [d]. Then the bisector {x : ‖x−u‖∞ = ‖x− v‖∞} has at most O(d2)
facets.

Proof. Let x be a point in the bisector at `∞ distance r from u and v. Pick coordinates i
and j and signs σ and τ in {−1,+1} such that

σi(xi − ui) = τj(xj − vj) = r. (4)

Moreover, let us make this choice so that either i 6= j or σi 6= τi. This is always possible,
since, otherwise, the assumption on u and v is violated. Then, (4) defines a hyperplane in Rd,
namely Hi,j,σ,τ = {x : σixi − τjxj = σiui − τjvj}. Note that there are at most

(2d
2
)
∈ O(d2)

such hyperplanes, and each x in the bisector lies in at at least one of them. Moreover, a
point x in Hi,j,σ,τ lies in the bisector if and only if it satisfies the inequalities

|xk − uk| ≤ σi(xi − ui) ∀k ∈ [d],
|xk − vk| ≤ τj(xj − vj) ∀k ∈ [d].

Thus, the bisector is the union of (d− 1)-dimensional convex polyhedra, one per each of the
O(d2) hyperplanes Hi,j,σ,τ . C

Augmenting the Algebraic Connectivity of Graphs
Bogdan-Adrian Manghiuc
School of Informatics, University of Edinburgh, UK
b.a.manghiuc@sms.ed.ac.uk

Pan Peng
Department of Computer Science, University of Sheffield, UK
p.peng@sheffield.ac.uk

He Sun
School of Informatics, University of Edinburgh, UK
h.sun@ed.ac.uk

Abstract
For any undirected graph G = (V,E) and a set EW of candidate edges with E ∩ EW = ∅, the
(k, γ)-spectral augmentability problem is to find a set F of k edges from EW with appropriate
weighting, such that the algebraic connectivity of the resulting graph H = (V,E ∪ F) is least γ.
Because of a tight connection between the algebraic connectivity and many other graph parameters,
including the graph’s conductance and the mixing time of random walks in a graph, maximising the
resulting graph’s algebraic connectivity by adding a small number of edges has been studied over
the past 15 years, and has many practical applications in network optimisation.

In this work we present an approximate and efficient algorithm for the (k, γ)-spectral augment-
ability problem, and our algorithm runs in almost-linear time under a wide regime of parameters.
Our main algorithm is based on the following two novel techniques developed in the paper, which
might have applications beyond the (k, γ)-spectral augmentability problem:

We present a fast algorithm for solving a feasibility version of an SDP for the algebraic connectivity
maximisation problem from [16]. Our algorithm is based on the classic primal-dual framework
for solving SDP, which in turn uses the multiplicative weight update algorithm. We present a
novel approach of unifying SDP constraints of different matrix and vector variables and give a
good separation oracle accordingly.
We present an efficient algorithm for the subgraph sparsification problem, and for a wide range
of parameters our algorithm runs in almost-linear time, in contrast to the previously best known
algorithm running in at least Ω(n2mk) time [22]. Our analysis shows how the randomised BSS
framework can be generalised in the setting of subgraph sparsification, and how the potential
functions can be applied to approximately keep track of different subspaces.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Graph sparsification, Algebraic connectivity, Semidefinite programming

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.70

Related Version The full version of the paper is available at https://arxiv.org/abs/2006.14449.

Funding He Sun: Support by an EPSRC Early Career Fellowship (EP/T00729X/1).

1 Introduction

Graph expansion is the metric quantifying how well vertices are connected in a graph, and has
applications in many important problems of computer science: in complexity theory, graphs
with good expansion are used to construct error-correcting codes [38, 42] and pseudorandom
generators [18]; in network design, expander graphs have been applied in constructing super
concentrators [40]; in probability theory, graph expansion is closely related to the behaviours
of random walks in a graph [29, 37]. On the other side, as most graphs occurring in practice
might not be expander graphs and a subset of vertices of low expansion is usually viewed as the

© Bogdan-Adrian Manghiuc, Pan Peng, and He Sun;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 70; pp. 70:1–70:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.a.manghiuc@sms.ed.ac.uk
https://orcid.org/0000-0003-2700-5699
mailto:p.peng@sheffield.ac.uk
mailto:h.sun@ed.ac.uk
https://doi.org/10.4230/LIPIcs.ESA.2020.70
https://arxiv.org/abs/2006.14449
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 Augmenting the Algebraic Connectivity of Graphs

bottleneck of a graph, finding the set of vertices with minimum expansion has many practical
applications including image segmentation [27], community detection [31, 36], ranking web
pages, among many others. Because of these, both the approximation algorithms for the
graph expansion problem and the computational complexity of the problem itself have been
extensively studied over the past three decades.

In this paper we study the following graph expansion optimisation problem: given an
undirected and weighted graph G = (V,E,w), a set EW of candidate edges, and a parameter
k ∈ N as input, we are interested in (i) finding a set F ⊆ EW of k edges and their weights
such that the resulting graph H = (V,E ∪ F,w′) with weight function1 w′ : E ∪ F → R≥0
has good expansion, or (ii) showing that it’s impossible to significantly improve the graph’s
expansion by adding k edges from EW . Despite sharing many similarities with the sparest
cut problem, our proposed problem has many of its own applications: for example, assume
that the underlying graph G is a practical traffic or communication network and, due to
physical constraints, only certain links can be used to improve the network’s connectivity.
For any given k and a set of feasible links, finding the best k links to optimise the network’s
connectivity is exactly the objective of our graph expansion optimisation problem.

To formalise the problem, we follow the work of [15, 16, 22] and define the algebraic
connectivity of G by the second smallest eigenvalue λ2(LG) of the Laplacian matrix LG of
G defined by LG , DG − AG, where DG is the diagonal matrix consisting of the degrees
of the vertices and AG is the adjacency matrix of G. Given an undirected and weighted
graph G = (V,E,w) with n vertices, O(n) edges2, a set EW of candidate edges defined on
V satisfying EW ∩ E = ∅ and a parameter k, we say that G is (k, γ)-spectrally-augmentable
with respect to W = (V,EW), if there is F ⊆ EW with |F | = k together with edge weights
{we}e∈F such that H = (V,E ∪ F,w) satisfies λ2(LH) ≥ γ. The main result of our work
is an almost-linear time3 algorithm that either (i) finds a set of O(k) edges from EW if
G is (k, γ)-spectrally augmentable for some γ ≥ ∆ · n−1/q, or (ii) returns “no” if G is
not (O(kq), O(∆ · n−2/q))-spectrally augmentable, where ∆ is an upper bound of both the
maximum degree of G and W , and q ≥ 10 is an arbitrary integer. The formal description of
our result is as follows:

I Theorem 1. Let G = (V,E,w) be a base graph with n vertices, O(n) edges, and weight
function w : E → R≥0, and let W = (V,EW) be the candidate graph of m edges such that
the maximum degrees of G and W is at most ∆. Then, there is an algorithm such that for
any integer k ≥ 1 and q ≥ 10, the following statements hold:

if G is
(
k,∆ · n−1/q)-spectrally-augmentable with respect to W , then the algorithm finds

a set F ⊆ EW of edges and a set of edge weights {w(e) : e ∈ F} such that |F | = O(qk),∑
e∈F w(e) ≤ O(k), and the resulting graph H = (V,E∪F) satisfies that λ2(LH) ≥ cλ2

?∆,
for some constant c > 0, where λ? ·∆ is the optimum solution4.

1 We remark that the weight function w′ needs to satisfy that w′(e) = w(e) for any edge e ∈ E.
2 Since a spectral sparsifier of G with O(n) edges preserves the eigenvalues of the Laplacian matrix of G,
we assume that G has O(n) edges throughout the paper. Otherwise one can always run the algorithm
in [25] to get a linear-sized spectral sparsifier of G and use this sparsifier as the input of our problem.
Therefore, the number of edges in G will not be mentioned in our paper to simplify the notation.

3 We say that a graph algorithm runs in almost-linear time if the algorithm’s runtime is O((m+ n)1+c)
for an arbitrary small constant c, where n and m are the number of vertices and edges of G, respectively.
Similarly, we say that a graph algorithm runs in nearly-linear time if the algorithm’s runtine is
O((m+ n) · logc(n)) for some constant c.

4 Note that since G is (k, n−1/q · ∆)-spectrally-augmentable with respect to W , it always holds that
λ? ≥ n−1/q.

B.-A. Manghiuc, P. Peng, and H. Sun 70:3

if G is not
(
O(kq), O(∆ · n−2/q)

)
-spectrally-augmentable with respect to W , then the

algorithm rejects the input G,W .
Moreover, the algorithm runs in Õ

(
min

{
qnω+O(1/q), q(m+ n)nO(1/q)k2}) time. Here, the

Õ(.) notation hides poly logn factors, and ω is the constant for matrix multiplication.

We remark that the most typical application of our problem is the scenario in which only
a low number of edges are needed such that the resulting graph enjoys good expansion, and
these correspond to the regime of k = no(1) and λ? ∈ (n−1/q, O(1)) [34], under which our
algorithm runs in almost-linear time and achieves an Ω(λ?)-approximation. In particular,
when it is possible to augment G to be an expander graph, i.e. λ? = Θ(1), our algorithm
achieves a constant-factor approximation. Our algorithm runs much faster than the previously
best-known algorithm for a similar problem that runs in at least Ω

(
n2mk

)
time [22], though

their algorithm solves the more general problem: for any instance G,W, k, if the optimum
solution is λ?∆, i.e., G is (k, λ?∆)-spectrally-augmentable with respect to W , for any
λ? ∈ [0, 1), then their algorithm finds a graph H = (V,E ∪ F) with λ2(LH) ≥ cλ2

?∆ such
that |F | = O(k) and the total sum of weights of edges in F is at most k. Our algorithm can
only find a graph H when λ? ∈ (n−1/q, 1).

To give an overview of the proof technique for Theorem 1, notice that our problem is
closely linked to the algebraic connectivity maximisation problem studied in [16], which looks
for k edges from the candidate set to maximise λ2(LH) of the resulting graph H. It is
known that the algebraic connectivity maximisation problem is NP-hard [30], and Ghosh
and Boyd [16] show that this problem can be formulated as an SDP, which we call the
GB-SDP. Inspired by this, we study the following P-SDP, which is the feasibility version of
the GB-SDP parameterised by some γ. Here, P⊥ is the projection on the space orthogonal to
1 , (1, . . . , 1)ᵀ, i.e., P⊥ = I − 1

n11ᵀ.

P-SDP(G,W, k, γ)

λ ≥ γ

LG +
∑
e∈EW

weLe � λ∆P⊥

k −
∑
e∈EW

we ≥ 0

1− we ≥ 0, ∀e ∈ EW
we ≥ 0, ∀e ∈ EW
γ ≥ 0.

Notice that, if G is (k, γ∆)-spectrally-augmentable with respect to W , then there is a
set F of k edges such that, by setting we = 1 if e ∈ F and we = 0 otherwise, it holds that
LG +

∑
e∈EW

Le � γ∆P⊥. Therefore, there is a feasible solution of P-SDP(G,W, k, γ). Our
algorithmic result for solving the P-SDP is summarised as follows:

I Theorem 2. Let δ′ > 0 be any constant. There exists an algorithm running in Õ((m+n)/γ2)
time that either finds a solution to P-SDP(G,W, k, (1 − δ′)γ) or certifies that there is no
feasible solutions for P-SDP(G,W, k, γ).

Since the solution to the P-SDP only guarantees that the total weights of the selected
edges are at most k if G is (k, γ∆)-spectrally augmentable, following [22] we use a subgraph
sparsification algorithm to round our SDP solution, such that there are only O(k) edges
selected in the end. To give a high-level overview of this rounding step, we redefine the
set EW of candidate edges, and assume that EW consists of the edges whose weight from
the P-SDP solution is non-zero. Therefore, our objective is to find O(k) edges from EW
and new weights, which form an edge set F , such that the Laplacian matrix LH of the

ESA 2020

70:4 Augmenting the Algebraic Connectivity of Graphs

resulting graph H = (V,E ∪ F) is close to LG+W . That is, the subgraph sparsification
problem asks for a sparse representation of G+W while keeping the entire base graph G
in the resulting representation. Our improved algorithm shows that, as long as k = no(1),
a subgraph sparsifier can be computed in almost-linear time5. Our result on subgraph
sparsification will be formally described in Theorem 9.

1.1 Our techniques
In this section we will explain the techniques used to design the fast algorithm for the P-SDP,
and an almost-linear time algorithm for subgraph sparsification.

Faster algorithm for solving the P-SDP. Our efficient SDP solver is based on the primal-
dual framework developed in [5], which has been used in many other works [19, 33]. In this
primal-dual framework, we will work on both the original SDP P-SDP(G,W, k, γ) and its
dual D-SDP(G,W, k, γ) that is defined as follows:

D-SDP(G,W, k, γ)

Z • LG + kv +
∑
e∈EW

βe < γ

Z •∆P⊥ = 1
Z • Le ≤ v + βe, ∀e ∈ EW

Z � 0
βe ≥ 0, ∀e ∈ EW
v ≥ 0.

We then apply the matrix multiplicative weight update (MWU) algorithm. Formally
speaking, starting with some initial embedding X(1), for each t ≥ 1 our algorithm iteratively
uses a carefully constructed oracle Oracle for D-SDP(G,W, k, γ) to check whether the
current embedding X(t) is good or not:

If X(t) satisfies some condition, denoted by C
(
X(t)), then the oracle fails and this implies

that we can find a feasible solution from X(t) to D-SDP(G,W, k, γ). This implies that
the primal SDP P-SDP(G,W, k, γ) has no feasible solution, which certifies that G is not
(k, γ)-spectrally-augmentable with respect to W .
If X(t) does not satisfy the condition C

(
X(t)), then the oracle does not fail, which certifies

that the current solution from X(t) is not feasible for D-SDP(G,W, k, γ), and will output
a set of numbers

(
λ(t), w(t)) for updating the embedding.

The procedure above will be iterated for T times, for some T depending on the oracle and the
approximate parameter δ′ > 0: if the oracle fails in any iteration, then P-SDP is infeasible;
otherwise, the oracle does not fail for all T iterations and we find a feasible solution to
P-SDP(G,W, k, (1− δ′)γ).

The main challenge for applying the above framework in our setting is to construct
the Oracle and deal with the complicated constraints in our SDPs, which include both
matrix inequality constraint and vector inequality constraints of different variables. To work
with these constraints, our strategy is to unify them through a diagonal block matrix X,
and through this we turn all individual constraints into a single matrix constraint. The
embedding in each iteration is constructed in nearly-linear time in n+m by the definition

5 We remark that, when k = Θ(n), our problem can be solved directly by using a spectral sparsifier W̃ of
the graph W with O(n) edges, which can be computed in nearly-linear time. This will imply that the
two Laplacians L

G+W̃
= LG + L

W̃
and LG+W = LG + LW are close.

B.-A. Manghiuc, P. Peng, and H. Sun 70:5

of the embedding. To construct the Oracle, we carefully design the condition C(X) with
the intuition that if the candidate solution corresponding to X has a relatively small dual
objective value, then a re-scaling of X gives a feasible solution to D-SDP. Then we use a case
analysis to show that if C(X) is not satisfied, we can very efficiently find updating numbers
(λ(t), w(t)) by distinguishing edges satisfying one constraint (in D-SDP) from those that do
not satisfy it and assigning different weights w(t) to them accordingly.

Faster algorithm for subgraph sparsification. The second component behind proving our
main result is an efficient algorithm for the subgraph sparsification problem. Our algorithm
is inspired by the the original deterministic algorithm for subgraph sparsification [22] and
the almost-linear time algorithm for constructing linear-sized spectral sparsifiers [26]. In
particular, both algorithms follow the BSS framework, and proceed in iterations: it is shown
that, with the careful choice of barrier values uj and `j in each iteration j and the associated
potential functions, one or more vectors can be selected in each iteration and the final barrier
values can be used to bound the approximation ratio of the constructed sparsifier.

However, in contrast to most algorithms for linear-sized spectral sparsifiers [4, 25, 26],
both the barrier values and the potential functions in [22] are employed for a slightly different
purpose. In particular, instead of expecting the final constructed ellipsoid to be close to
a sphere, the final constructed ellipsoid for subgraph sparsification could be still very far
from being a sphere, since the total number of added edges is O(k). Because of this, the two
potential functions in [22] are used to quantify the contribution of the added vectors towards
two different subspaces: one fixed k-dimensional subspace denoted by S, and one variable
space defined with respect to the currently constructed matrix. Based on analysing two
different subspaces for every added vector, which is computationally expensive, the algorithm
in [22] ensures that the added vectors will significantly benefit the “worst subspace”, the
subspace in Rn that limits the approximation ratio of the final constructed sparsifier.

Because of these different roles of the potential functions in [22] and [6, 26], when applying
the randomised BSS framework [26] for the subgraph sparsification problem, more technical
issues need to take into account: (1) Since [22] crucially depends on some projection matrix
denoted by PS , of which the exact computation is expensive, to obtain an efficient algorithm
for subgraph sparsification one needs to obtain some projection matrix close to PS and such
a projection matrix can be computed efficiently. (2) Since the upper and lower potential
functions keep track of different subspaces whose dimensions are of different orders in most
regimes, analysing the impact of multiple added vectors to the potential functions are
significantly more challenging than [26].

To address the first issue, we show that the problem of computing an approximate
projection close to PS while preserving relevant proprieties can be reduced to the generalised
eigenvalue problem, which in turn can be efficiently approximated by a recent algorithm [2].
For the second issue, we meticulously bound the intrinsic dimension of the matrix corres-
ponding to the multiple added vectors, and by a more refined matrix analysis than [26]
we show that the potential functions and the relative effective resistances decease in each
iteration. We highlight that developing a fast procedure to computing all the quantities that
involve a fixed projection matrix and analysing the impact of multiple added vectors with
respect to two different subspaces constitute the most challenging part of the design of our
algorithm.

Finally, we remark that, although the almost-linear time algorithm [26] has been improved
by the subsequent paper [25], it looks more challenging to adapt the technique developed in
[25] for the setting of subgraph sparsification. In particular, since the two potential functions

ESA 2020

70:6 Augmenting the Algebraic Connectivity of Graphs

in [25] are used to analyse the same space Rn, it is shown in [25] that it suffices to analyse
the one-sided case through a one-sided oracle. However, the two potential functions defined
in our paper are used to analyse two different subspaces, and it remains unclear whether we
can reduce our problem to the one-sided case. We will leave this for future work.

1.2 Other related work
Spielman and Teng [39] present the first algorithm for constructing spectral sparsifiers: for
any parameter ε ∈ (0, 1), and any undirected graph G of n vertices and m edges, they prove
that a spectral sparsifier of G with Õ

(
n/ε2) edges exists, and can be constructed in Õ

(
m/ε2)

time. Since then, there has been extensive studies on different variants of spectral sparsifiers
and their efficient constructions in various settings. In addition to several results on several
constructions of linear-sized spectral sparsifiers mentioned above, there are many studies on
constructing spectral sparsifiers in streaming and dynamic settings [1, 20, 21]. The subgraph
sparsification problem has many applications, including constructing precondtioners and
nearly-optimal ultrasparsifiers [22, 35], optimal approximate matrix product [11], and some
network optimisation problems [28]. Our work is also related to a sequence of research on
network design, in which the goal is to find minimum cost subgraphs under some “connectivity
constraints”. Typical examples include constraints on vertex connectivity [8, 9, 10, 14, 23, 24],
shortest path distances [12, 13], and spectral information [3, 7, 17, 32].

2 A fast SDP solver

We use the primal-dual framework introduced in [5] to solve the SDP P-SDP(G,W, k, γ) and
prove Theorem 2. The framework is based on the matrix multiplicative weight update (MWU)
algorithm on both the primal SDP P-SDP(G,W, k, γ) and its dual D-SDP(G,W, k, γ).

Notation. For any given vector β, we use Diag(β) to denote the diagonal matrix such
that each diagonal entry [Diag(β)]ii = βi. Given matrix Z, scalar v and vector β, we use
Diag(Z, v, β) to denote the diagonal 3-block matrix with blocks Z, v and Diag(β). We use
IV and IEW

to denote the identity matrices on vertex set V and edge set EW with |EW | = m,
respectively. We further define

E , Diag(∆ · IV ,m, IEW
), Π , Diag(P⊥, 1, IEW

), (1)
N , Diag(∆ · P⊥,m, IEW

) = E1/2ΠE1/2.

For any given parameter λ and vector w, we define V (λ,w) , λ, A(λ,w) , LG +∑
e∈EW

weLe − λ∆P⊥, and B(λ,w) , k −
∑
e∈EW

we. Let c = c(λ,w) ∈ Rm denote the
vector with ce = 1− we for each e ∈ EW , and C = C(λ,w) = Diag(c(λ,w)) be the diagonal
m×m matrix with the diagonal entry 1− we corresponding to edge e. Then we define

M(λ,w) , Diag (A(λ,w), B(λ,w), C(λ,w)) =

A(λ,w) 0 0
0 B(λ,w) 0
0 0 C(λ,w)

 . (2)

I Definition 3. An (`, ρ)-oracle for D-SDP(G,W, k, γ) is an algorithm that on input 〈Z, v, β〉
with Diag(Z, v, β) •N = 1, either fails or outputs (λ,w) with λ ≥ 0, w ∈ Rm≥0 that satisfies

V (λ,w) ≥ γ, A(λ,w) • Z +B(λ,w) · v + c(λ,w) · β ≥ 0, −`N �M(λ,w) � ρN.

B.-A. Manghiuc, P. Peng, and H. Sun 70:7

I Fact 4. If an (`, ρ)-oracle for D-SDP(G,W, k, γ) does not fail on input 〈Z, v, β〉 with
Diag(Z, v, β) •N = 1, then 〈Z, v, β〉 is infeasible for D-SDP(G,W, k, γ).

In order to apply the MWU algorithm, in the following we use Uε(A) to denote the matrix

Uε(A) , E−1/2(1− ε)E−1/2AE−1/2
E−1/2

Π • (1− ε)E−1/2AE−1/2 ,

where E and Π are matrices defined in (1).

2.1 The MWU algorithm
In the framework of MWU for solving our SDP, we sequentially produce candidate dual
solutions 〈Z(t), v(t), β(t)〉 such that Diag(Z(t), v(t), β(t))•N = 1 for any t. Specifically, for any
given k, γ, we start with a solution Z(1) = 1

∆(n−1)I, v
(1) = 2

n−1 and β(1)
e = 0 for any e ∈ EW .

At each iteration t, we invoke a good separation oracle that takes Diag(Z(t), v(t), β(t)) as
input, and either guarantees that Diag(Z(t), v(t), β(t)) is already good for dual SDP (and
thus certifies infeasibility of primal SDP), or outputs (λ(t), w(t)) certifying the infeasibility of
Diag(Z(t), v(t), β(t)).

If
(
λ(t), w(t)) is returned by the oracle, then the algorithm updates the next candidate

solution based on X(t) = Uε

(
1
2ρ
∑t−1
s=1M

(s)
)
, where M (s) , M

(
λ(s), w(s)) is as defined

before and ε is a parameter of the algorithm. By definition, we have that X(t) • N = 1.
Moreover, since M (t) can be viewed as a 3-block diagonal matrix with diagonal entries
A(t), B(t), C(t), we have that exp(M (t)) = Diag

(
exp

(
A(t)) , exp

(
B(t)) , exp

(
C(t))) . There-

fore, we can decompose X(t) as

X(t) = Diag
(
Z(t), v(t), β(t)

)
.

Note that X(t) •N = 1 is equivalent to

∆ · Z(t) • P⊥ +m · v(t) +
∑
e∈EW

β(t)
e = 1.

The following theorem guarantees that, after a small number of iterations, the algorithm
either finds a good enough dual solution, or a feasible solution to the primal SDP.

I Theorem 5. Let Oracle be an (`, ρ)-oracle for D-SDP(G,W, k, γ), and let δ > 0. Let N ,
X(t), and M (t) be defined as above, for any t ≥ 1. Let ε = min{1/2, δ/2`}. Suppose that
Oracle does not fail for T rounds, where

T = O

(
ρ logn
δε

)
≤ max

{
O

(
ρ logn
δ

)
, O

(
ρ` logn
δ2

)}
,

then (λ̄− 3δ, w̄ − δ) is a feasible solution to P-SDP(G,W, k, γ − 3δ), where λ̄ , 1
T

∑T
t=1 λ

(t)

and w̄ , 1
T

∑T
t=1 w

(t).

Approximate computation. By applying the Johnson-Linderstrauss (JL) dimensionality
reduction to the embedding corresponding to Uε, we can approximate X(t+1) by X̃(t+1)

while preserving the relevant properties. Specifically, let Ũε be a randomised approximation
to Uε from applying the JL Lemma, and we compute in nearly-linear time the matrix
X̃(t+1) = Ũε

(
1
2ρ
∑t−1
s=1M

(s)
)
and decompose it into 3 blocks:

X̃(t+1) = Diag
(
Z̃(t+1), ṽ(t+1),Diag

(
β̃(t+1)

))
.

ESA 2020

70:8 Augmenting the Algebraic Connectivity of Graphs

Moreover, X̃(t+1) • LH well approximates X(t+1) • LH for any graph H, which suffices for
our oracle. Hence, we assume that the oracle receives X̃(t+1) as input instead of X(t+1). We
defer the formal lemma we are using to the full version.

2.2 The oracle
In this subsection, we will present and analyse the oracle for our SDP D-SDP(G,W, k, γ),
which is presented in Algorithm 1. For the simplicity of presentation, we abuse notation and
use X = Diag(Z, v, β) to denote the input to the oracle, although it should be clear that
the input is the approximate embedding X̃ = Diag(Z̃, ṽ,Diag(β̃)) of X.

Algorithm 1 Oracle for SDP D-SDP(G,W, k, γ).

Require: Candidate solution 〈Z, v, β〉 with ∆ ·Z •P⊥+m · v+
∑
e∈EW

βe = 1, target value
γ

1: Let B := {e : v + βe < Le • Z}, Γ :=
∑
e∈B(Le • Z − v − βe), and T := Z •∆P⊥.

2: Let Ttol := LG • Z + kv +
∑
e∈EW

βe.
3: if Γ ≤ Tγ − Ttol then
4: Output “fail”. . In this case, 〈Z, v, β〉 is “good” enough
5: else if Ttol > γm− γ

∑
e∈EW

Z • Le then
6: return we = γ, and λ = γ.
7: else
8: return we = 1 for e ∈ B, we = 0 for e ∈ EW \B and λ = γ

To analyse the oracle, we prove the following technical lemma. First of all, we show that
if the Oracle fails, then we can find a dual feasible solution for D-SDP(G,W, k, γ).

I Lemma 6. Let 〈Z, v, β〉 be a candidate solution. Suppose that for B , {e : v + βe −
Le • Z < 0}, T , Z • ∆P⊥ and Ttol , LG • Z + kv +

∑
e∈EW

βe, then it holds that
Γ ,

∑
e∈B(Le • Z − v − βe) ≤ Tγ − Ttol. Moreover, by setting Z ′ = Z

T , v
′ = v

T , and β
′
e = βe

T

if e ∈ EW \ B and β′e = Le•Z−v
T if e ∈ B, we have that 〈Z ′, v′, β′〉 is a dual feasible for

D-SDP(G,W, k, γ).

Secondly, we show that, if Oracle does not fail, then it returns (λ,w) that satisfies the
properties of (`, ρ)-oracle for D-SDP(G,W, k, γ) for appropriate `, ρ.

I Lemma 7. When Oracle described in the algorithm does not fail, it returns a vector w and
value λ such that V (λ,w) ≥ γ, and for the matrixM(λ,w)=Diag(A(λ,w), B(λ,w), C(λ,w)),
A(λ,w) • Z +B(λ,w) · v + C(λ,w) · β ≥ 0. Moreover, it holds that −N �M(λ,w) � 3N .

Combining these two lemmas together, we obtain the following theorem which summarise
the performance of Algorithm 1.

I Theorem 8. On input X̃(t), there exists an algorithm Oracle that runs in Õ(n + m)
time and is an (`, ρ)-oracle for SDP D-SDP(G,W, k, γ), where ` = 1 and ρ = 3.

2.3 Proof of Theorem 2
Now we are ready to prove Theorem 2.

Proof of Theorem 2. Let δ′ > 0 be any constant. We specify δ = δ′γ
3 in our MWU algorithm,

which is described in the previous subsections. We set ρ = 3 and ` = 1, and let

T , O

(
ρ` logn
δ2

)
= O

(
logn

(δ′)2γ2

)
= O

(
logn
γ2

)
.

B.-A. Manghiuc, P. Peng, and H. Sun 70:9

In the MWU algorithm, if the Oracle fails in the t-th iteration for some 1 ≤ t ≤ T , then
the corresponding embedding X̃(t) = Diag(Z̃(t), ṽ(t),Diag(β(t))) provides a good enough
solution: the precondition of Lemma 6 is satisfied, which further implies that X̃(t) can be
turned into a dual feasible solution with objective at most γ, i.e., we find a solution to
D-SDP(G,W, k, γ). Therefore, the primal SDP P-SDP(G,W, k, γ) is infeasible. Otherwise,
we know that the Oracle does not fail for T iterations; by Theorem 5 and Lemma 7, it
holds that for λ̄ , 1

T

∑T
t=1 λ

(t), w̄ , 1
T

∑T
t=1 w

(t), (λ̄ − 3δ, w̄ − δ) is a feasible solution for
P-SDP(G,W, k, γ − 3δ) = P-SDP(G,W, k, γ − δ′γ).

Now we analyse the algorithm’s runtime. By Theorem 8 and the approximate computation
of X(t+1), each iteration can be implemented in Õ(n + m) time. Thus, in Õ((n + m)/γ2)
time, we either find a solution to our SDP with objective value at least (1 − δ′)γ for any
constant γ′ > 0, or we certify that the P-SDP(G,W, k, γ) is infeasible (in case the Oracle
fails). J

3 Algorithm for subgraph sparsification

Now we give an overview of our efficient algorithm for constructing subgraph sparsifiers. Recall
that, for any k ∈ N, parameter κ ≥ 1, and two weighted graphs G = (V,E) andW = (V,EW),
the subgraph sparsification problem is to find a set F ⊆ EW of |F | = O(k) edges with weights
{we}e∈F , such that the resulting graph H = (V,E +F) is a κ-approximation of G+W , i.e.,

LG+W � LG +
∑
e∈F

webeb
ᵀ
e � κ · LG+W . (3)

To construct the required edge set F , we apply the standard reduction for constructing graph
sparsifiers by setting ve , L

†/2
G+W be for every e ∈ EW , and (3) is equivalent to

Iim(LG+W) � L
†/2
G+WLGL

†/2
G+W +

∑
e∈F

wevev
ᵀ
e � κ · Iim(LG+W),

where Iim(LG+W) is the identity on im(LG+W). Our main result is summarised as follows:

I Theorem 9. Let ε and q be arbitrary constants such that ε ≤ 1/20 and q ≥ 10. Then,
there is a randomised algorithm such that, for any two graphs G = (V,E) and W = (V,EW)
defined on the same vertex set as input, by defining X =

(
L
†/2
G+WLGL

†/2
G+W

) ∣∣∣
Im(LG+W)

and

M , (
∑m
i=1 viv

ᵀ
i) |Im(LG+W) where every vi is of the form L

†/2
G+W be for some edge e ∈ EW ,

the algorithm outputs a set of non-negative coefficients {ci}mi=1 with |{ci | ci 6= 0}| = K for
some K = O

(
qk/ε2) such that it holds for some constant C that

C · (1−O(ε)) ·min{1,K/T} · λk+1(X) · I � X +
m∑
i=1

civiv
ᵀ
i � (1 +O(ε)) · I, (4)

where T ,
⌈
tr
(
M
)⌉
. Moreover, if we assume that every vi is associated with some cost

denoted by costi such that
∑m
i=1 costi = 1, then with constant probability the coefficients

{ci}mi=1 returned by the algorithm satisfy
∑m
i=1 ci · costi ≤ O(1/ε2) · min{1, k/T}. The

algorithm runs in time

Õ

(
min

{
nω,

mk + nk2√
λk+1(X)

}
+ q · nO(1/q)

(
mn2/q

ε2+2/q + min
{
nω,mk + nk2 + kω

})/
ε5

)
.

Without loss of generality, we assume that M is a full-rank matrix, which can be
achieved by adding n self-loops each of small weight γ = Θ(1/poly(n)), so that with constant
probability these self-loops will not be sampled by the algorithm.

ESA 2020

70:10 Augmenting the Algebraic Connectivity of Graphs

Iteration j Iteration j + 1 Final iteration τ

Figure 1 Illustration of the BSS framework: the light grey and orange balls in iteration j represent
the spheres uj · I and `j · I, and the cyan ellipsoid sandwiched between the two balls corresponds to
the constructed ellipsoid in iteration j. After each iteration j, the algorithm increases the value of
`j and uj by some δ`,j and δu,j so that the invariant (5) holds in iteration j + 1. This process is
repeated for τ iterations, so that the final constructed ellipsoid is close to be a sphere.

3.1 Overview of our algorithm
The BSS framework. At a high level, our algorithm follows the BSS framework for construct-
ing spectral sparsifiers [6]. The BSS algorithm proceeds by iterations: in each iteration j the
algorithm chooses one or more vectors, denoted by vj1 , . . . , vjk

, and adds ∆j =
∑k
i=1 cji

vji
vᵀji

to the currently constructed matrix by setting Aj = Aj−1 + ∆j , where cj1 , . . . , cjk
are scaling

factors, and A0 = 0 initially. Moreover, two barrier values, the upper barrier uj and the
lower barrier `j , are maintained such that the constructed ellipsoid Ellip(Aj) is sandwiched
between the outer sphere uj · I and the inner sphere `j · I for any iteration j. To ensure this,
all the previous analysis uses a potential function Φ(Aj , uj , `j) defined by

Φ (Aj , uj , `j) = tr[f(ujI −Aj)] + tr[f(Aj − `jI)]

for some function f , and a bounded value of Φ (Aj , uj , `j) implies that

`j · I ≺ Aj ≺ uj · I. (5)

After each iteration, the two barrier values `j and uj are increased properly by setting
uj+1 = uj + δu,j and `j+1 = `j + δ`,j for some positive values δu,j and δ`,j . The careful
choice of δu,j and δ`,j ensures that after τ iterations Ellip(Aτ) is close to being a sphere,
which implies that Aτ is a spectral sparsifier of `τ · I, see Figure 1 for illustration.

The BSS framework for subgraph sparsification. The BSS framework ensures that, when
starting with the zero matrix, after choosing O(n) vectors, the final constructed matrix
is close to I. However, applying the BSS framework to construct a subgraph sparsifier is
significantly more challenging due to the following two reasons:

Instead of starting with the zero matrix, we need to start with some non-zero matrix
A0 = X, and the number of added vectors is K = O(k), which could be much smaller
than n. This implies that the ellipsoid corresponding to the final constructed matrix
could be still very far from being a sphere.
Because of this and every rank-one update has different contribution towards each
direction in Rn, to “optimise” the contribution of O(k) rank-one updates we have to
ensure that the added vectors will significantly benefit the “worst subspace”, the subspace
in Rn that limits the approximation ratio of the final constructed sparsifier.

To address these two challenges, in the celebrated paper Kolla et al. [22] propose to keep
track of the algorithm’s progress with respect to two subspaces, each of which is measured
by some potential function. Specifically, in each iteration j they define Aj , X +

∑
i civiv

ᵀ
i ,

B.-A. Manghiuc, P. Peng, and H. Sun 70:11

where
∑
i civiv

ᵀ
i is the sum of currently picked rank-one matrices after reweighting during

the first j iterations. For the upper barrier value uj in iteration j, they define the upper
potential function

Φuj (Aj) , tr
(
PL(Aj) (ujI −Aj)PL(Aj)

)†
,

where L(Aj) is the T -dimensional subspace of Aj spanned by the T largest eigenvectors of
Aj and PL(Aj) is the projection onto that subspace. Notice that Φuj (Aj) is defined with
respect to a variable space L(Aj) that changes after every rank-one update, in order to upper
bound the maximum eigenvalue of the final constructed matrix in the entire space. Similarly,
for the same matrix Aj and lower barrier `j in iteration j, they define the lower potential
function by

Φ`j
(Bj) , tr (PS(Bj − `jI)PS)† ,

where PS is the orthogonal projection onto S, the subspace generated by the bottom k eigen-
vectors of X, and the matrix Bj is defined by Bj = Z(Aj−X)Z, for Z = (PS(I −X)PS)†/2 .
Since the total number of chosen vectors is K = O(k), instead of expecting the final construc-
ted matrix Aτ approximating the identity matrix, the objective of the subgraph sparsification
is to find coefficients {ci} with K = O(k) non-zeros such that the following two conditions
hold for some positive constants θmin, θmax:

it holds that X +
∑m
i=1 civiv

ᵀ
i � θmaxI, and

it holds that
∑m
i=1 ciZviv

ᵀ
i Z � θminPS .

Informally, the first condition above states that the length of any axis of Ellip(Aj) is up-
per bounded, and the second condition ensures that the final matrix Aτ has significant
contribution towards the bottom k eigenspace X. In other words, instead of ensuring
`j · I ≺ Aj ≺ uj · I, Φuj (Aj) and Φ`j

(Bj) are used to “quantify” the shapes of the two
ellipsoids with different dimensions:

The function Φuj (Aj) studies the ellipsoid Aj projected onto its own top eigenspaces, the
subspace that changes after each iteration;
The function Φ`j

(Bj) studies Aj −X projected onto the bottom k eigenspace of X, the
subspace that remains fixed during the entire BSS process.

Proving the existence of some vector in each iteration so that the algorithm will make
progress is much more involved, and constitutes one of the key lemmas used in [22] for
constructing a subgraph sparsifier. However, the subgraph sparsification algorithm in [22]
requires the computation of the projection matrices PL(Aj) in each iteration. Because of this,
the algorithm presented in [22] runs in Ω

(
n2mk

)
time.

Our approach. At a very high level, our algorithm and its analysis can be viewed as a
neat combination of the algorithm presented in [26] and the algorithm presented in [22].
Specifically, for any iteration j with the constructed matrix Aj , we set Bj , Z(Aj −X)Z,
where Z , (PV(I −X)PV)†/2 , and define the two potential functions by

Φuj (Aj) , tr
(
PL(Aj) (ujI −Aj)PL(Aj)

)†q
,

and

Φ`j
(Bj) , tr (PV(Bj − `jI)PV)†q

for some fixed projection matrix PV , projecting on a k-dimensional subspace S′. Similar
with [26], with the help of the q-th power in the definition of Φuj (Aj) and Φ`j

(Bj) we show
that the eigenvalues of our constructed matrices Aj and Bj are never very close to the

ESA 2020

70:12 Augmenting the Algebraic Connectivity of Graphs

two barrier values uj and `j . Moreover, although the top T -eigenspace of the currently
constructed matrix Aj changes after every rank-one update, multiple vectors can still be
selected according to some probability distribution in each iteration.

However, when combining the randomised BSS framework [26] with the algorithm presen-
ted in [22], we have to take many challenging technical issues into account. In particular,
we need to address the following issues: (1) Both the algorithm and its analysis in [22]
crucially depend on the projection matrix PS , of which the exact computation is expensive.
Therefore, in order to obtain an efficient algorithm for subgraph sparsification, one needs
to obtain some projection matrix close to PS and such projection matrix can be computed
efficiently. (2) As indicated by our definition of Φ`j

(Bj) above, developing a fast subgraph
sparsification algorithm would require efficient approximation of polynomials of the matrix
(PV(Bj − `jI)PV)q. In comparison with [26], the fixed projection matrix PV sandwiched
between two consecutive (Bj − `jI) makes computing the required quantities much more
challenging.

To address these issues, we prove that there is a k-dimensional subspace S′ close to S,
and all of our required quantities that involve the projection onto S′, denoted by PV , can
be computed efficiently. Moreover, we prove that the quality of our constructed subgraph
sparsifer based on the “approximate projection” PV is the same as the one constructed by
[22], in which the “optimal projection” PS is needed. Our result regarding the approximate
subspace S′ is summarised as follows:

I Lemma 10. There is an algorithm that computes a matrix V = L−1/2V for matrix V in

t10 , min
{
O(nω), Õ

(
mk+nk2√
λk+1(X)

)}
time, such that with constant probability the following

two properties hold: (1) PV = V V ᵀ is a projection matrix on a k-dimensional subspace S′ of
Rn; (2) For any u ∈ Rn satisfying uᵀV = 0, we have that

uᵀXu

uᵀu
≥ λk+1(X)

2 .

We highlight that, in comparison to [26], in our setting the upper and lower potential functions
keep track of two different subspaces whose dimensions are of different orders in most regimes,
i.e., k versus T , and this makes our analysis much more involved than [26]. On the other
side, we also show that the algorithm in [26] can be viewed as a special case of our algorithm,
and from this aspect our algorithm presents a general framework for constructing spectral
sparsifiers and subgraph sparsifiers.

3.2 Description of our algorithm
Our algorithm proceeds in iterations in which multiple vectors are sampled with different
probabilities. In each iteration j, Aj is updated by setting Aj+1 = Aj + ∆j , where ∆j

is the sum of the sampled rank-one matrices with reweighting. To compensate for this
change, the two barriers uj and `j are increased by δu,j and δ`,j . The algorithm terminates
when the difference of the barriers is greater than α, defined by α , 4k/Λ. Specifically, in
the initialisation step, the algorithm sets A0 , X,u0 , 2 + λmax(X), `0 , −2k/Λ, where
Λ , max{k, T}. In each iteration j, the algorithm keeps track of the currently constructed
matrix Aj and hence, also of the matrix Bj , Z(Aj−X)Z, where Z , (PV(I−X)PV)†/2 for
some fixed projection matrix PV . Intuitively, the projection matrix PV used here is close to
PS , but can be approximated more efficiently than computing PS precisely. In each iteration
j, the algorithm starts by computing the relative effective resistances, which are defined as

B.-A. Manghiuc, P. Peng, and H. Sun 70:13

Ri(Aj , Bj , uj , `j) , vᵀi (ujI −Aj)−1
vi + vᵀi Z (PV(Bj − `jI)PV)† Zvi,

for all vectors vi. Then, the algorithm computes the number of vectors Nj that will be
sampled, which can be written as

Nj ,

(
ε

4ρj
· λmin

[
(ujI −Aj)−1M

]
·
λmax

(
(ujI −Aj)−1M

)
tr
[
(ujI −Aj)−1M

])2ε/q

· ρj

·min
{

1
λmax

(
(ujI −Aj)−1M

) , 1
λmax (PV(Bj − `jI)PV)†

}
,

where

ρj ,
m∑
t=1

Rt(Aj , Bj , uj , `j) = tr
[
(ujI −Aj)−1M

]
+ tr [PV(Bj − `jI)PV]† .

Next, the algorithm samples Nj vectors such that every vi is sampled with probability
proportional to Ri(Aj , Bj , uj , `j), i.e., the sampling probability of every vi is defined by

p(vi) ,
Ri(Aj , Bj , uj , `j)∑m
t=1Rt(Aj , Bj , uj , `j)

.

For every sampled vi, the algorithm scales it to

wi ,
√

ε

q ·Ri(A,B, u, `)
· vi,

and gradually adds wiwᵀ
i to Aj . After each rank-one update, the algorithm increases the

barrier values by the average increases

δu,j ,
(1 + 3ε) · ε
q · ρj

and δ`,j ,
(1− 3ε) · ε
q · ρj

,

and checks whether the terminating condition of the algorithm is satisfied. Note that between
two consecutive iterations j and j + 1 of the algorithm, the two barriers uj and `j are
increased by δu,j , Nj · δu,j and δ`,j , Nj · δ`,j , respectively.

The formal description of our algorithm is presented in Algorithm 2. We remark that,
in contrast to the algorithm for constructing a spectral sparsifier [26], the total number of
vectors needed in the final iteration j could be much smaller than O(Nj). This is why our
algorithm performs a sanity check in Line 15 after every rank-1 update wiwᵀ

i .

3.3 Proof sketch of Theorem 9
In this subsection we give an overview of the main techniques used for proving Theorem 9.
We refer the reader to the full version of our paper for a more detailed discussion.

Approximation Guarantee

Firstly, we will focus on showing that, at the end of Algorithm 2, (4) holds. The result is
summarised in the following lemma, whose proof will be left for the end of this subsection.

ESA 2020

70:14 Augmenting the Algebraic Connectivity of Graphs

Algorithm 2 Algorithm for constructing subgraph spectral sparsifiers.

Require: ε ≤ 1/20, q ≥ 10
1: u0 = 2 + λmax(X), `0 = −2k/Λ . Here u0 and `0 are the initial barrier values
2: û = u0 and ̂̀= `0 . Here û and ̂̀ are the current barrier values
3: j = 0 . j will be the index of the current iteration
4: A0 = X, B0 = 0
5: while û− ̂̀> α+ u0 − `0 do . Start of iteration j
6: Compute Rt(Aj , Bj , `j , uj) and hence p(vt) for all vectors vt
7: Compute Nj
8: Sample Nj vectors v1, . . . vNj

according to p
9: Set Wj ← 0
10: for every subphase i = 1 . . . Nj do . Start of subphase i
11: wi ←

√
ε

q·Ri(Aj ,Bj ,uj ,`j) · vi
12: Wj ←Wj + wiw

ᵀ
i

13: û← û+ δu,j
14: ̂̀← ̂̀+ δ`,j
15: if û− ̂̀> α+ u0 − `0 then
16: Stop at the current subphase . End of subphase i
17: Aj+1 ← Aj +Wj

18: Bj+1 ← Z(Aj+1 −X)Z
19: j = j + 1 . End of iteration j
20: Return M = Aj

I Lemma 11. The condition number of the returned matrix Aτ after τ iterations is at most
1 +O(ε) ·max{1, T/k}. Moreover, it holds that

λmin (Aτ) ≥ c · (1−O(ε)) · λk+1(X) min{1, k/T},

for some constant c.

The above result is based on the following technical lemma:

I Lemma 12. For all iterations j, the following invariant is preserved by Algorithm 2

Aj ≺ (1− η)uj · I and PVBjPV � (`j + |`j |η)PV ,

for some parameter η = O
(
ε2+2/q

n2/q

)
.

In order to prove Lemma 12, we need to develop a sequence of results. For the moment, we
fix an iteration j. Recall that in this iteration the algorithm samples Nj vectors independently
from {vi}mi=1 such that each sampled vector vi is further scaled to wi. Moreover, the algorithm
keeps track of the matrix

Wj ,
Nj∑
i=1

wiw
ᵀ
i .

Our choice of Nj ensures that, with high probability, the matrix Wj has bounded eigenvalues
with respect to the matrix Aj .

B.-A. Manghiuc, P. Peng, and H. Sun 70:15

I Lemma 13. Assume that the number of samples satisfies

Nj ≤

(
ε

4ρj
· λmin

[
(ujI −Aj)−1M

]
·
λmax

(
(ujI −Aj)−1M

)
tr
[
(ujI −Aj)−1M

])2ε/q

·ρj ·
1

λmax
(
(ujI −Aj)−1M

) .
Then it holds that

P
[
0 �Wj �

1
2(ujI −Aj)

]
≥ 1− ε

2n.

Notice that if Wj � 1
2 (ujI −Aj), Wj ’s contribution towards the direction of Aj ’s eigenvector

associating with its largest eigenvalue is upper bounded. Thus, conditioned on this event, we
can control better the eigenvalues of the resulting matrix Aj+1 = Aj + Wj . Formally, we
show the following result:

I Lemma 14. It holds that

E
[
Φuj+1(Aj+1)

∣∣0 �Wj �
1
2(ujI −Aj)

]
≤ Φuj (Aj) and

E
[
Φ`j+1(Bj+1)

∣∣0 �Wj �
1
2(ujI −Aj)

]
≤ Φ`j

(Bj).

Finally, we show that the careful choice of Nj ensures that a sufficiently large number of
vectors are sampled in each iteration. This implies that the total number of iterations
executed by the algorithm cannot be too large. The result is summarised below:

I Lemma 15. With probability at least 4/5, Algorithm 2 finishes in at most

τ ≤ 80q
3ε2 ·

1
cN
· Λ(1+2ε)/q

iterations, where cN = Ω
(

(1/(poly(n))2ε/q
)
.

We are now ready to prove the main technical lemma.

Proof of Lemma 12. By Lemma 13, Lemma 15 and the union bound, with probability at
least 3/4, all matrices picked in

τ ≤ 80q
3ε2 ·

1
cN
· Λ(1+2ε)/q ≤ 80q

3ε2 · n
c/q

iterations, for some small constant c < q, satisfy Wj � 1
2 (ujI − Aj) for all iterations j.

Therefore, by Lemma 14 and conditioning on the event that ∀i : Wi � 1/2 · (uiI − Ai) we
have that

E
[
Φuj (Aj)

∣∣∀i : Wi � (1/2) · (uiI −Ai)
]
≤ Φu0(A0) ≤ T

2q

and

E
[
Φ`j (Bj)

∣∣∀i : Wi � (1/2) · (uiI −Ai)
]
≤ Φ`0(B0) ≤ k ·

(
Λ
2k

)q
.

By Markov’s inequality, it holds with high probability that

(Φuj (Aj))1/q = O
(
T 1/q · τ1/q

)
and

(
Φ`j

(Bj)
)1/q = O

(
k1/q · Λ

k
· τ1/q

)
.

ESA 2020

70:16 Augmenting the Algebraic Connectivity of Graphs

For any eigenvalue of Aj , say λi, we have

(uj − λi)−q ≤ (uj − λmax(Aj))−q <
n∑

t=n−T+1
(uj − λt(Aj))−q = Φuj (Aj).

Therefore, it holds that

λi < uj − (Φuj (Aj))−1/q ≤ uj −O
(

1
T 1/q ·

1
τ1/q

)
≤ uj −O

(
2

T 1/q ·
(

ε2

qnc/q

)1/q)
.

Since uj is O(1/ε2) and T ≤ n, we can choose η = O
(
ε2+2/q

n2/q

)
such that Aj ≺ (1− η)ujI.

The second statement can be shown in a similar way, i.e., we show that for any nonzero
eigenvalue λi of Bj , it holds that λi ≥ `j +

(
Φ`j

(Bj)
)−1/q. Hence

λi ≥ `j + Ω
(

1
k1/q ·

k

Λ ·
(

ε2

qnc/q

)1/q)
.

Since |`j | = O
(
k
Λ · 1/ε

)
and k ≤ n, we can choose η = O

(
ε2+2/q

n2/q

)
such that PVBjPV �

(`j + |`j |η)PV . J

Proof sketch of Lemma 11. Notice that it holds for any iteration j that

δu,j − δ`,j
δu,j

= 6ε
1 + 3ε ,

which implies that

δu,j = 1 + 3ε
6ε

(
δu,j − δ`,j

)
≥ 1

6ε
(
δu,j − δ`,j

)
.

Let uτ and `τ be the barrier values when the algorithm terminates, and our goal is to show
that

uτ
`τ

=
(

1− uτ − `τ
uτ

)−1
= 1 +O(ε) ·max{1, T/k},

which suffices to prove that

uτ − `τ
uτ

= O(ε) ·max{1, T/k}.

By definition, we know that

uτ − `τ
uτ

≤ u0 − `0 + α

u0 + (6ε)−1α
≤ 3 + 6k/Λ

2 + (6ε)−14k/Λ ≤ O(ε) ·max{1, T/k},

where the last inequality holds by the definition of Λ. Similar with [22], in the full version of
the paper we prove that

λmin (AK) ≥ θminλk+1(X)/2(
(λk+1(X)/2)1/2 + θ

1/2
min + θ

1/2
max

)2 .

assuming that λmax(Aτ) ≤ θmax and λmin
(
BK
∣∣
S′

)
≥ θmin. By setting θmin = `τ and

θmax = uτ , the inequality above implies the second statement of the lemma. J

B.-A. Manghiuc, P. Peng, and H. Sun 70:17

The results for the total number of edges (vectors) sampled as well as the assigned costs
are summarised below. Due to space constraints, we defer the proofs to the full version of
the paper.

I Lemma 16. With probability at least 3/4, Algorithm 2 terminates after choosing at most

K = 20 · q k
3 · ε2

vectors.

I Lemma 17. It holds with constant probability that
∑m
i=1 ci · costi = O(1/ε2) ·min{1, k/T}.

Runtime analysis

Now we discuss a fast approximation of the quantities needed for our subgraph sparsification
algorithm. We fix an arbitrary iteration j, and drop this subscript for simplicity. A careful
inspection tells us that the efficiency of our algorithm is based on the fast approximation of
the following quantities:
1. vᵀi Z (PV (B − `I)PV)† Zvi
2. λmax (PV(B − `I)PV)†

3. λmin
[
(uI −A)−1M

]
4. λmax

[
(uI −A)−1M

]
5. tr

[
(uI −A)−1M

]
6. vᵀi (uI −A)−1

vi
These are precisely the nontrivial quantities required to compute the values N and
Ri(A,B, u, `) for all vectors vi. As previously mentioned, for the first two items we use the
approximate projection PV instead of the actual projection PS on the bottom k eigenspace
of X. This is done in order to overcome the expensive exact computation of PS . We also
remark that, while PV = V V ᵀ for some unitary matrix V is used in our previous analysis,
we do not need to compute the matrices V or PV explicitly. Instead, it suffices to compute
the matrix V , L

−1/2
G+WV in order to approximate our required quantities (1), (2). The fast

computation of V builds upon the work of [2] and our result is summarised in Lemma 10.
Once we have access to the matrix V, we can efficiently approximate the above quantities

(1)–(6). The techniques we used are inspired from the previous work [4, 26]. However, the
presence of the matrix M as well as the projection PV make the computations nontrivial and
require extra work. We summarise our results bellow and refer the reader to the full version
of the paper for the details of each individual approximation.

I Lemma 18. Let j be an arbitrary iteration of Algorithm 2. We can approximately compute
the quantities (1)–(6), for all vectors vi in time

titeration = Õ

((
mn2/q

ε2+2/q + min
{
nω,mk + nk2 + kω

})
/ε3
)
.

The running time of Algorithm 2 is analysed in the next lemma.

I Lemma 19. Assuming Algorithm 2 finishes in τ = O
(
q · nO(1/q)/ε2) iterations, then the

total running time is

talg = Õ

(
min

{
nω,

mk + nk2√
λk+1(X)

}
+ q · nO(1/q)

(
mn2/q

ε2+2/q
+ min

{
nω,mk + nk2 + kω

})
/ε5

)
.

ESA 2020

70:18 Augmenting the Algebraic Connectivity of Graphs

Proof. By Lemma 10, we can compute the matrix V in time t10 =min
{
O(nω),Õ

(
mk+nk2√
λk+1(X)

)}
.

This is computed only once and will be used throughout every iteration.
By Lemma 18, the running time in each iteration is

titeration = Õ

((
mn2/q

ε2+2/q + min
{
nω,mk + nk2 + kω

})
/ε3
)
.

Thus, the algorithm’s overall running time is

talg , t10 + τ · titeration

= Õ

(
min

{
nω,

mk + nk2√
λk+1(X)

}
+ q · nO(1/q)

(
mn2/q

ε2+2/q
+ min

{
nω,mk + nk2 + kω

})
/ε5

)
.

J

4 Proof of the main theorem

Finally we apply our fast SDP solver and the subgraph sparsification algorithm to design an
algorithm for the spectral-augmentability problem, and prove Theorem 1. We first give an
overview of the main algorithm: for any input G = (V,E), the set EW of candidate edges,
and parameter k, our algorithm applies the doubling technique to enumerate all the possible
γ under which the input instance is (k, γ)-spectrally augmentable: starting with the initial
γ, which is set to be 1/n1/q and increases by a factor of 2 each time, the algorithm runs
the SDP solver, a subgraph sparsification algorithm, and a Laplacian solver to verify the
algebraic connectivity of the output of our subgraph sparsification algorithm. The algorithm
terminates if the algebraic connectivity is greater than some threshold at some iteration, or
it is below the initial threshold. See Algorithm 3 for formal description.

The following lemma will be used in our analysis.

I Lemma 20. Let γ > 0. If G = (V,E) is (k, γ∆)-spectrally-augmentable with respect to
W = (V,EW), then the SDP solver finds a feasible solution (λ̂, w) to P-SDP(G,W, k, (1−δ′)γ),
and the subgraph sparsification algorithm with input G,EW , k, ε, q and weights {we : e ∈
E∪EW } will find a graph H = (V,E∪F) with F ⊆ EW , λ2(LH) ≥ c1γ2 ·∆, |F | ≤ O(qk/ε2)
and total new weights of edges in F at most O(k/ε2).

Proof. If G is (k, γ∆)-spectrally-augmentable with respect to W , then there exists a
feasible solution to P-SDP(G,W, k, γ) and our SDP solver will find a solution (λ̂, w) to
P-SDP(G,W, k, (1− δ′)γ), for any constant δ′ > 0. Note that λ̂ ≥ (1− δ′)γ. Now we use the
subgraph sparsification algorithm to sparsify the SDP solution.

We apply Theorem 9 to graphs G,W , by setting V = im(LG+W) = ker(LG+W)⊥,
X =

(
L
†/2
G+WLGL

†/2
G+W

)
|V

and Ye = we

(
L
†/2
G+WLeL

†/2
G+W

)
|V
, and M =

∑
e∈EW

Ye, K =

O(qk/ε2), λ∗ = λk+1(X) and coste = we∑
f∈EW

wf
. Note that T = dtr(M)e ≤ k. This is true

since
∑
e∈EW

we ≤ k , L†/2G+WLeL
†/2
G+W � I, L†/2G+WLeL

†/2
G+W is a rank one matrix and has

trace at most 1. We get a set of coefficients {ce} supported on at most K edges, such that

C(1−O(ε)) ·min{1,K/T} · λk+1(X) ≤ λmin

(
X +

∑
e∈EW

ceYe

)

≤ λmax

(
X +

∑
e∈EW

ceYe

)
≤ 1 +O(ε).

B.-A. Manghiuc, P. Peng, and H. Sun 70:19

Algorithm 3 Algorithm for augmenting the algebraic connectivity.

Require: the base graph G = (V,E), and the set EW of m edges defined on V , and k ∈ Z+.
1: γ0 ← 1/n

1
q ;

2: γ ← γ0;
3: α← 0;
4: F ← ∅; . the set of edges added to G
5: while γ < 1 do
6: γ ← 2 · γ, and run the SDP solver from Theorem 2 for P-SDP(G,W, k, γ)
7: if the solver certifies that P-SDP(G,W, k, γ) is infeasible then
8: if α = 0 then
9: Abort and output Reject.
10: else
11: return graph H = (V,E(G) ∪ F). . λ2(LH) ≥ c1α2∆
12: else the solver finds a feasible solution for P-SDP(G,W, k, 0.9γ) with weights
{we}e∈EW

13: α← γ

14: Let H = (V,E(G) ∪ F) be the output of our subgraph sparsification algorithm
with edge weights {we}e∈EW

, q, k and a sufficiently small constant ε.
15: η2 ← a 1.1-approximation of λ2(LH) . apply the Laplacian solver to compute η2
16: if η2 ≤ O

(
∆ · n−2/q) then

17: Abort and output Reject.

From the above and the fact that T ≤ k, K = O(qk/ε2), we have that

λ2

(
LG +

∑
e

ceweLe

)
≥ C(1−O(ε)) ·min{1,K/T} · λk+1(X) · λ2

(
LG +

∑
e

weLe

)

≥ C ′ · λk+2(LG)
4∆ · λ̂ ·∆

= C ′

4 · λ̂ · λk+2(LG)

for some constant C ′ > 0, where the last inequality follows from the fact that

λi(X) = λi

((
L
†/2
G+WLGL

†/2
G+W

) ∣∣∣
V

)
≥ λi+1(LG)

4D ,

for any i ≥ 1.

B Claim 21. It holds that λk+2(LG) ≥ λOPT, the maximum algebraic connectivity of adding
a subset set of k edges from EW to G.

Proof. Let LR be the Laplacian matrix of the graph which is formed by the optimum solution
R. Then dim ker(LR) ≥ n−k as rank(LR) ≤ |E| ≤ k. Consider the space S spanned by all the
eigenvectors of LG corresponding to λ2(LG), . . . , λk+2(LG). Since dim(S)+dim ker(LR) > n,
there exists a unit vector v ∈ ker(LR) ∩ dim(S) such that v⊥1, and

v(LG + LR)vᵀ ≤ λk+2(LG) + 0 = λk+2(LG).

This further implies that λOPT = λ2(LG + LR) ≤ λk+2(LG). C

ESA 2020

70:20 Augmenting the Algebraic Connectivity of Graphs

Therefore, if we let F = {e : e ∈ EW , ce > 0} and set the edge weights to be {ce ·we : e ∈
F}, then the resulting graph H = (V,E + F) with the corresponding weights satisfies that

λ2(LH) = λ2

(
LG +

∑
e

ceweLe

)
≥ c · γ · λOPT ≥ c · γ2∆

for some constant c > 0, where the last inequality follows from the assumption G is (k, γ∆)-
spectrally-augmentable with respect to W and thus λOPT ≥ γ∆. Since∑

e∈EW

coste · ce ≤ O(1/ε2) min{1,K/T} = O(1/ε2),

the total weights of added edges become

∑
e∈EW

cewe =
(∑
e∈EW

we

)
·

(∑
e∈EW

coste · ce

)
O(1/ε2) · k = O(k/ε2). J

Finally, we are ready to prove the main theorem of the paper.

Proof of Theorem 1. Let G and W be the input to Algorithm 3. Note that the algorithm
only returns a subgraph H with λ2(LH) ≥ c1γ2

0∆, and H contains at most K = O(kq) edges
from EW . Hence, if G is not (O(kq), c1γ2

0∆)-spectrally-augmentable with respect to W , then
the algorithm will reject the input instance.

Without loss of generality, in the following analysis we assume that G is (k, λ?∆)-
augmentable for some λ? > γ0, where λ?∆ is the optimum solution. In this case, by the
geometric search over γ in the algorithm, when γ ∈ (λ?

2 , λ?), the SDP solver will find a feasible
solution for P-SDP(G,W, k, 0.9γ) and the graph H returned by the subgraph sparsification
algorithm with input G,W, q, k and constant ε satisfies that λ2(LH) ≥ c1γ2∆ ≥ c′1λ2

?∆. If
γ ≥ λ?, then the algorithm will either return the graph H that we constructed corresponding
to the value γ ∈ (λ?

2 , λ?), or finds a graph H with λ2(LH) ≥ c1γ2∆ ≥ c′1λ2
?∆. By Lemma 20,

the number of added edges and the total sum of their weights are O(qk) and O(k), respectively.
Furthermore, since λ? ≥ γ0, it only takes O(logn) iterations to reach γ with γ ∈ (λ?

2 , λ?).
In each iteration, by Theorem 2, the running time for solving P-SDP(G,W, k, 0.9γ) for γ ≥ γ0
is Õ(m + n)/γ2) = Õ((m + n)nO(1/q)); by Theorem 9, the time for applying subgraph
sparsification with input G,W and constant ε is Õ(min

{
qnω+O(1/q), q(m+ n)nO(1/q)k2}).

For the latter, we note that whenever we apply the subgraph sparsification from Theorem 9,
the corresponding matrix X satisfies that

λk+1(X) ≥ λk+2(LG)
4∆ ≥ λOPT

4∆ = λ?∆
4∆ ≥ γ0∆

4∆ = Ω
(
n−1/q

)
and thus we obtain the claimed runtime. Furthermore, we can compute an estimate η2 of
λ2(LH) by the algorithm given in [41], which takes Õ(|E(H)|+n) = Õ(n+k) time. Thus, the
total running time is Õ

(
min

{
qnω+O(1/q), q(m+ n)nO(1/q)k2}). This completes the proof of

the theorem. J

B.-A. Manghiuc, P. Peng, and H. Sun 70:21

References
1 Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On

fully dynamic graph sparsifiers. In 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’16), pages 335–344, 2016.

2 Zeyuan Allen-Zhu and Yuanzhi Li. Doubly accelerated methods for faster CCA and generalized
eigendecomposition. In 34th International Conference on Machine Learning (ICML’17), pages
98–106, 2017.

3 Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal design of
experiments via regret minimization. In 34th International Conference on Machine Learn-
ing (ICML’17), pages 126–135, 2017.

4 Zeyuan Allen-Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and regret
minimization beyond multiplicative updates. In 47th Annual ACM Symposium on Theory of
Computing (STOC’15), pages 237–245, 2015.

5 Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. Journal of the ACM, 63(2):12, 2016.

6 Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsifiers.
SIAM Journal on Computing, 41(6):1704–1721, 2012.

7 Stephen Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing Markov chain on a graph. SIAM
review, 46(4):667–689, 2004.

8 Tanmoy Chakraborty, Julia Chuzhoy, and Sanjeev Khanna. Network design for vertex
connectivity. In 40th Annual ACM Symposium on Theory of Computing (STOC’08), pages
167–176, 2008.

9 Joseph Cheriyan and László A Végh. Approximating minimum-cost k-node connected sub-
graphs via independence-free graphs. SIAM Journal on Computing, 43(4):1342–1362, 2014.

10 Julia Chuzhoy and Sanjeev Khanna. An O(k3 logn)-approximation algorithm for vertex-
connectivity survivable network design. In 50th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’09), pages 437–441, 2009.

11 Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix
product in terms of stable rank. In 43rd International Colloquium on Automata, Languages,
and Programming (ICALP’16), pages 1–14, 2016.

12 Michael Dinitz and Zeyu Zhang. Approximating low-stretch spanners. In 27th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’16), pages 821–840, 2016.

13 Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance. In
31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99), pages 750–759, 1999.

14 Jittat Fakcharoenphol and Bundit Laekhanukit. An O(log2 k)-approximation algorithm for the
k-vertex connected spanning subgraph problem. SIAM Journal on Computing, 41(5):1095–1109,
2012.

15 Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal,
23(2):298–305, 1973.

16 Arpita Ghosh and Stephen Boyd. Growing well-connected graphs. In Proceedings of the 45th
IEEE Conference on Decision and Control, pages 6605–6611, 2006.

17 Arpita Ghosh, Stephen Boyd, and Amin Saberi. Minimizing effective resistance of a graph.
SIAM review, 50(1):37–66, 2008.

18 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In 26th Annual ACM Symposium on Theory of Computing (STOC’94), pages
356–364, 1994.

19 Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP= PSPACE. Journal
of the ACM (JACM), 58(6):30, 2011.

20 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford. Single
pass spectral sparsification in dynamic streams. SIAM Journal on Computing, 46(1):456–477,
2017.

ESA 2020

70:22 Augmenting the Algebraic Connectivity of Graphs

21 Jonathan A Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting.
Theory of Computing Systems, 53(2):243–262, 2013.

22 Alexandra Kolla, Yury Makarychev, Amin Saberi, and Shang-Hua Teng. Subgraph sparsi-
fication and nearly optimal ultrasparsifiers. In 42nd Annual ACM Symposium on Theory of
Computing (STOC’10), pages 57–66, 2010.

23 Guy Kortsarz, Robert Krauthgamer, and James R Lee. Hardness of approximation for
vertex-connectivity network design problems. SIAM Journal on Computing, 33(3):704–720,
2004.

24 Bundit Laekhanukit. Parameters of two-prover-one-round game and the hardness of connectiv-
ity problems. In 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14),
pages 1626–1643, 2014.

25 Yin Tat Lee and He Sun. An SDP-based algorithm for linear-sized spectral sparsification. In
49th Annual ACM Symposium on Theory of Computing (STOC’17), pages 678–687, 2017.

26 Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear
time. SIAM Journal on Computing, 47(6):2315–2336, 2018.

27 Marina Meila and Jianbo Shi. Learning segmentation by random walks. In Advances in Neural
Information Processing Systems, pages 873–879, 2001.

28 William M Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C Snoeren, and George
Porter. Expanding across time to deliver bandwidth efficiency and low latency. Proceedings
of the 17th ACM/USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2020.

29 Milena Mihail. Conductance and convergence of Markov chains-a combinatorial treatment of
expanders. In 30th Annual IEEE Symposium on Foundations of Computer Science (FOCS’89),
pages 526–531, 1989.

30 Damon Mosk-Aoyama. Maximum algebraic connectivity augmentation is NP-hard. Operations
Research Letters, 36(6):677–679, 2008.

31 Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. Advances in neural information processing systems, 2:849–856, 2002.

32 Aleksandar Nikolov, Mohit Singh, and Uthaipon Tao Tantipongpipat. Proportional volume
sampling and approximation algorithms for a-optimal design. In 30th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’19), pages 1369–1386, 2019.

33 Lorenzo Orecchia and Nisheeth K Vishnoi. Towards an sdp-based approach to spectral
methods: A nearly-linear-time algorithm for graph partitioning and decomposition. In 22th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’11), pages 532–545, 2011.

34 Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In 25th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA’14), pages 1256–1266, 2014. doi:
10.1137/1.9781611973402.93.

35 Richard Peng. Algorithm Design Using Spectral Graph Theory. PhD Thesis, 2013. doi:
10.1184/R1/6714635.v1.

36 Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered graphs: Spectral clustering
works! SIAM Journal on Computing, 46(2):710–743, 2017.

37 Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing markov chains. Inf. Comput., 82(1):93–133, 1989.

38 Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans. Information Theory,
42(6):1710–1722, 1996.

39 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981–1025, 2011.

40 Leslie G. Valiant. Graph-theoretic properties in computational complexity. J. Comput. Syst.
Sci., 13(3):278–285, 1976.

41 Nisheeth K. Vishnoi. Lx = b. Foundations and Trends in Theoretical Computer Science,
8(1-2):1–141, 2013.

42 Gilles Zémor. On expander codes. IEEE Trans. Information Theory, 47(2):835–837, 2001.

https://doi.org/10.1137/1.9781611973402.93
https://doi.org/10.1137/1.9781611973402.93
https://doi.org/10.1184/R1/6714635.v1
https://doi.org/10.1184/R1/6714635.v1

Chordless Cycle Packing Is Fixed-Parameter
Tractable
Dániel Marx
CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
marx@cispa.saarland

Abstract
A chordless cycle or hole in a graph G is an induced cycle of length at least 4. In the Hole Packing
problem, a graph G and an integer k is given, and the task is to find (if exists) a set of k pairwise
vertex-disjoint chordless cycles. Our main result is showing that Hole Packing is fixed-parameter
tractable (FPT), that is, can be solved in time f(k)nO(1) for some function f depending only on k.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Graph algorithms analysis

Keywords and phrases chordal graphs, packing, fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.71

Funding Supported by the European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH.

Acknowledgements The author is very grateful to O-joung Kwon and Eun Jung Kim for helpful
comments on the manuscript.

1 Introduction

The area of graph modification problems contains algorithmic tasks of the following form:
given a graph G, find the minimum number of allowed editing operations to make the graph
belong to a certain target graph class G. For example, if we allow only vertex deletions and
the target graph class is the set of edgeless graphs, forests, directed acyclic graphs, bipartite
graphs, then we get well-known Vertex Cover, Feedback Vertex Set, Directed
Feedback Vertex Set, Bipartite Deletion problems, respectively. Most of the natural
graph modification problems are NP-hard [21, 30, 31]. However, there is a large literature on
the fixed-parameter tractability of graph modification problems (see, e.g., [4, 8, 12,13,15]).
Several problems of this form are known to be solvable in time f(k)nO(1), where k is the
number of editing operations allowed (e.g., maximum number of vertices to be deleted) and
f is a computable function depending only on k [9].

Let us consider the G Vertex Deletion problem where, given a graph G and an integer
k, the task is to delete k vertices to make the graph belong to class G. If G is closed under
taking induced subgraphs, then there is a (finite or infinite) set F of obstructions such that a
graph is in G if and only if it does not have an induced subgraph isomorphic to a member of
F . Then G Vertex Deletion can be equivalently expressed as finding k vertices that cover
every induced copy of a member of F . For many natural graph properties, the obstruction
set F contains graphs that are simple to describe. For example, the problems Vertex
Cover, Feedback Vertex Set, Directed Feedback Vertex Set, and Bipartite
Deletion correspond to covering every edge, undirected cycle, directed cycle, and odd cycle,
respectively.

Given the interpretation of G Vertex Deletion as covering objects from the obstruction
set F , there is natural dual problem: in the F Packing problem a graph G and an integer k
are given, the task is to find k vertex-disjoint induced subgraphs isomorphic to members of F .

© Dániel Marx;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 71; pp. 71:1–71:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marx@cispa.saarland
https://doi.org/10.4230/LIPIcs.ESA.2020.71
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 Chordless Cycle Packing Is Fixed-Parameter Tractable

In many cases, packing problems seem to be harder than the corresponding covering problems.
First of all, if the graph class G is recognizable in polynomial-time, then the covering problem
can be solved in nO(k) time by brute force, while there is no such immediate argument for the
packing problem, even when the class F consists of very simple objects, such as cycles. For
example, Directed Feedback Vertex Set is FPT [6], while the dual problem Directed
Cycle Packing is W[1]-hard [28] and it requires a highly nontrivial result to show that it is
polynomial-time solvable for fixed k [25]. Even when both problems are FPT, the techniques
behind the algorithms could be significantly different. Bipartite Deletion has a very
elegant elementary FPT algorithm using iterative compression [26], while the fixed-parameter
tractability of the dual problem Odd Cycle Packing required the use of sophisticated
techniques, including the introduction of odd minors [18, 19]. Another aspect from which
the packing problem proved to be more difficult is the existence of polynomial kernels. For
example, Feedback Vertex set (that is, covering cycles) admits a polynomial kernel [29],
while the dual problem of finding k vertex-disjoint cycles does not have a polynomial kernel,
under the standard complexity assumption NP 6⊆ coNP/poly [3].

There is a natural combinatorial question connecting the covering and packing problems.
A classic result of Erdős and Pósa [11] shows that if the maximum number of vertex-disjoint
cycles in graph G is k, then every cycle of G can be covered by O(k log k) vertices. A
similar question can be asked about other obstructions, connecting the packing and covering
problems: if the maximum number of disjoint obstructions from the set F is at most k,
then is it true that every obstruction can be covered by f(k) vertices for some function
f? A positive answer is known for example when F is the set of edges (easy), undirected
cycles going through a set S [17, 23], or directed cycles [25], but it is known that no such
Erdős-Pósa property holds for odd cycles [24]. Let us observe that, as the cases of odd
cycles and directed cycles show, even when the covering problem is FPT, the existence of
the Erdős-Pósa property does not give a good prediction on the fixed-parameter tractability
of the packing problem.

Chordal graphs. After this general introduction, let us turn our attention to chordal graphs,
the main topic of the current paper. A chordless cycle or hole in a graph G is an induced
cycle of length at least 4 (for brevity, we will use the term “hole” throughout the paper). A
graph is chordal if it does not contain any hole. Chordal graphs form a well-known class of
perfect graphs and it is known that a graph is chordal if and only if it can be represented as
the intersection graph of a set of subtrees of a tree [14]. Chordal graphs can be recognized in
linear time [27]. In the Chordal Vertex Deletion problem, a graph G and an integer k
are given, and the task is to find a set S of at most k vertices such that G− S is chordal.
While the problem can be solved in time nO(k) by trying every subset of size at most k and
then testing for chordality, it is also known to be FPT.

I Theorem 1 ([1, 5, 16,22]). Chordal Vertex Deletion is FPT.

Kim and Kwon gave a constructive proof showing that holes have the Erdős-Pósa property.

I Theorem 2 (Kim and Kwon [20]). There is a polynomial-time algorithm that, given a graph
G and integer k, produces either
1. a set of k + 1 disjoint holes, or
2. a set of O(k2 log k) vertices covering every hole.
Our main result concerns the Hole Packing problem, where given a graph G and an integer
k, the task is to find a set of k pairwise vertex-disjoint holes.

I Theorem 3 (Main Result). Hole Packing is FPT.

D. Marx 71:3

Let us remark that it is known that Chordal Vertex Deletion admits a polynomial
kernel [1,16], while an easy reduction gives negative evidence for Hole Packing. Bodlaender
et al. [3] showed that the problem of finding k pairwise vertex-disjoint cycles does not admit
a polynomial kernel under the complexity assumption NP 6⊆ coNP/poly. If we subdivide
every edge of a simple graph, then every cycle has length at least 6, which means that the
holes of the new graph are in one-to-one correspondence with the cycles of the original graph.
Therefore, the result of Bodlaender et al. [3] immediately implies that Hole Packing has
no polynomial kernel, assuming NP 6⊆ coNP/poly. This can be seen as an indication that the
dual problem Hole Packing is more challenging than Chordal Vertex Deletion, and
it can be expected that more involved algorithmic ideas are needed for this problem.

Our techniques. To explain the main ideas and challenges behind the algorithm of The-
orem 3, let us briefly overview the Chordal Vertex Deletion algorithm of Marx [22]; our
algorithm mirrors the technical ideas from that result up to a certain point, but then it needs
to deviate from it significantly. When solving Chordal Vertex Deletion, the standard
technique of iterative compression [26] allows us to assume that we know a set W of k + 1
vertices such that G−W is chordal and furthermore we can assume that the solution S of
size k we are looking for is disjoint from W . If the size of the largest clique in G−W can be
bounded by a function of k, then the treewidth of the chordal graph G−W and hence also
the treewidth of the slightly larger (not necessarily chordal) G can be bounded by a function
of k. In this case, the problem can be solved on the graph G using standard algorithmic
techniques on graphs of bounded treewidth, for example, using Courcelle’s Theorem [7].

If G−W has a large clique K, then, intuitively, we want to argue that a large part of the
clique is not really important for the problem. More formally, we want to identify a vertex
v ∈ K such that removing k from G does not make the problem any easier. We say that v is
irrelevant if for every set of S of size at most k disjoint from W , if there is a hole in G− S,
then there is a hole in G− (S ∪ {v}) as well. The algorithm of Marx [22] marks a certain
number of vertices in K as important and then it is argued that every other vertex v ∈ K is
irrelevant in this sense. The proof is mostly a rerouting argument: if there is a hole going
through v in G− S, then it has to be shown that the hole can be modified to avoid v.

To solve the Hole Packing problem, let us observe that Theorem 2 allows us to assume
that we have a set W of O(k2 log k) vertices such that G−W is chordal: if the algorithm of
Theorem 2 terminates with Outcome 1, then we are done. If G−W has maximum clique size
bounded by function of k, then G has bounded treewidth and we can use standard techniques
to find a set of k vertex-disjoint holes. Thus our goal again is to argue that we can find an
irrelevant vertex v in a large clique K. But now our notion of irrelevant vertex is different:
for Chordal Vertex Deletion, a vertex needed to be irrelevant with respect to a deletion
set S of at most k vertices, while for Hole Packing, vertex v needs to be irrelevant with
respect to a set of k − 1 holes. Formally, now we can say that v is irrelevant if whenever G
has a set H of k disjoint holes, then there is such a set avoiding v. The set W splits H into
at most k induced paths. Therefore, we again need a rerouting argument: the induced path
going through v needs to be rerouted to avoid the other at most |W | − 1 induced paths.

Rerouting a path to avoid a bounded number of induced paths seems to be a significantly
more challenging task compared to avoiding a bounded number of vertices: the paths can
be arbitrarily long and we cannot bound the number of vertices they contain. However, it
is useful to observe that an induced path can contain at most two vertices from a clique.
Therefore, looking locally at a clique, avoiding a bounded number of induced paths is not
all that different from avoiding a bounded number of vertices. Indeed, it seems that we can

ESA 2020

71:4 Chordless Cycle Packing Is Fixed-Parameter Tractable

reuse many of the technical ideas from [22] to Hole Packing (we found it convenient to use
somewhat different notation and streamlined some of the proofs, but we face essentially the
same difficulties and similar arguments are needed). However, we did not manage to fully
translate the approach to Hole Packing and to reduce the maximum clique size of G−W
(and hence the treewidth of G) to be bounded by a function of k. There is a particular
situation where no vertex of a large clique can be declared irrelevant under our definition;
Section 5 describes an example.

The first part of our algorithm uses these irrelevant vertex arguments to find a bounded-
treewidth subgraph of G that contains the solution, except a few vertices of the solution that
appear in a very specific situation (Section 3). This part of the proof uses ideas similar to the
Chordal Vertex Deletion algorithm of [22], with appropriate modifications to account
for induced paths. The main technical novelty of the paper appears in the way the problem
is treated after this step. We find a way of encoding the problem in a bounded-treewidth
labeled graph; however, for this to work, we need to leave the setting of the Hole Packing
problem and introduce a technical variant of the problem which we call Special Hole
Packing (Section 4). This problem involves finding k pairwise disjoint holes subject to
certain technical conditions on the labels of vertices used by the holes. We show that when
we move to this problem, then the large cliques can be reduced. Essentially, if there is
a vertex v in a large clique K, then we look at the subtree intersection representation of
the chordal graph G−W , and replace the subtree Tv representing v with a set of vertices
representing the leaves of Tv. Applying this operation to every vertex of every large clique
results in a graph with bounded treewidth. An appropriate choice of labeling, provided by
the Color Coding [2] method, ensures that the reduction results in an instance of Special
Hole Packing whose solution gives a solution to the original problem.

2 Preliminaries

We use standard graph-theoretic notation, see e.g. [10]. For background on parameterized
algorithms, see [9]. In this section, we only discuss notation and basic results related to
treewidth and chordal graphs.

Treewidth. A tree decomposition of a graph G is a pair (T,B) in which T is a tree and
B = {Bt | t ∈ V (T)} is a family of subsets of V (G) such that
1.

⋃
t∈V (T) Bi = V (G);

2. for each edge e = uv ∈ E(G), there exists an t ∈ V (T) such that both u and v belong to
Bt; and

3. the set of nodes {t ∈ V (T) | v ∈ Bt} forms a connected subtree of T for every v ∈ V (G).
To distinguish between vertices of the original graph G and vertices of T in the tree
decomposition, we call vertices of T nodes and their corresponding Bi’s bags. The width of
the tree decomposition is the maximum size of a bag in B minus 1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all possible tree decompositions of G.

Sentences in Monadic Second Order Logic of Graphs (MSO) contain quantifiers, logical
connectives (¬, ∨, and ∧), vertex variables, vertex set variables, binary relations ∈ and =,
and the atomic formula E(u, v) expressing that u and v are adjacent. Courcelle’s Theorem
states that if a graph property can be described in this language, then this description can
be turned into an algorithm:

D. Marx 71:5

I Theorem 4 (Courcelle [7]). If a graph property can be described as a formula φ in the
Monadic Second Order Logic of Graphs, then it can be recognized in time f(|φ|, tw(G)) ·
(|E(G)|+ |V (G)|) if a given graph G has this property.

Courcelle’s Theorem works also in the more general setting of relational structures. For our
purposes, it will be sufficient to know that the result can be extended in such a way that the
input graph G comes with a labeling λ : V (G)→ [c] of the vertices and the formula φ may
contain unary predicates C1(v), . . . , Cc(v), stating that vertex v has a label.

Chordal graphs. A chordless cycle or hole in a graph G is an induced cycle of length at
least 4. A graph is chordal if it does not contain any hole. It is well known that a graph
is chordal if and only if it can be represented as the intersection graph of subtrees of a
tree. That is, every chordal graph G can be represented by a tree T and a subtree Tv of T
corresponding to every v ∈ V (G) such that u, v ∈ V (G) are adjacent if and only if Tu and Tv
share at least one node in T . Equivalently, a graph G is chordal if and only if it has a tree
decomposition (T,B) where every bag Bt induces a clique G[Bt] for every t ∈ V (T). Such a
tree decomposition is also called a clique tree decomposition. We will use the well-known
fact that if K is a clique in the chordal graph, then the clique tree decomposition contains a
node t with K ⊆ Bt.

The following lemma is straightforward:

I Lemma 5. Let x and y be two nonadjacent neighbors of v and let P be an x − y path
whose internal vertices are not in the closed neighborhood of v. Then the graph induced by
V (P) ∪ {v} contains a hole.

Induced paths. Suppose that H is a collection of holes in a graph G and W is a set of
vertices that intersects each hole in H. Then W splits each hole in H into some number of
induced paths, that is, what remains from H is a collection of at most |W | induced paths.
This motivates the following definition.

I Definition 6. A set X of vertices of a graph G is a k-IP set if it has partition (X1, . . . , Xk′)
into k′ ≤ k classes such that each G[Xi] is an induced path (possibly of length 0, i.e., consisting
only of a single vertex).

Note that this definition allows the existence of arbitrary edges between Xi and Xj for i 6= j.
The first basic observation is that such a set has small intersection with a clique.

I Lemma 7. Let X be a k-IP set in a graph G and let K be a clique in G. Then X contains
at most 2k vertices of K.

Proof. Let (X1, . . . , Xk′) be a partition of X into induced paths. It is clear that an induced
path can contain at most two vertices of the clique K, hence |X ∩K| ≤ 2k′ ≤ 2k. J

The second observation is that a k-IP set can enter only a bounded number of components
after the removal of a clique (or, more generally, if the neighborhood of each resulting
component is a clique).

I Lemma 8. Let X be a k-IP set in graph G and let Y be a set of vertices such that it is
true for every component C of G− Y that the neighborhood of C in Y is a clique. Then X
intersects at most 2k components of G− Y .

ESA 2020

71:6 Chordless Cycle Packing Is Fixed-Parameter Tractable

Proof. Let (X1, . . . , Xk′) be a partition of X into induced paths. We claim that each Xi

can intersect at most two components of G− Y . If Xi intersects three components, then it
is true for some component C that the induced path G[Pi] enters C from Y and then later
leaves C to Y . But the neighborhood of C in Y is a clique, contradicting the assumption
that G[Xi] is an induced path. Thus in total X can intersect at most 2k′ ≤ 2k components
of G− Y . J

3 Part 1: Treewidth reduction (almost)

Given an instance (G, k) of Hole Packing, an application of Theorem 2 gives us a set W of
O(k2 log k) vertices such that G−W is chordal. The main result of this section is a marking
procedure (Lemma 9) that identifies a bounded-treewidth part of the graph that almost
contains the solution. As G−W is chordal, every hole in G contains at least one vertex of
W . A special hole is a hole that contains exactly one vertex of W . The special vertices of a
special hole H going through w ∈W are the two neighbors of w in H. Note that, as every
hole has length at least 4, the two special vertices of a special hole are not adjacent.

I Lemma 9. Let G be graph and W be a set of vertices such that G−W is chordal, and let
k be an integer. In polynomial time, we can find a set S ⊆ V (G) \W of vertices such that
the following holds:
1. If G has a set of k pairwise disjoint holes, then there is such a set H where every vertex

of every hole is in S ∪W , except possibly some of the special vertices of the special holes.
2. The maximum clique size in G[S] is 12(|W |+ 2)4.
The proof of Lemma 9 starts with S = V (G) \W and if G[S] contains a large clique K,
then it tries to identify a vertex v ∈ K that can be excluded from S without violating
Requirement 1. Towards this goal, the following lemma either finds a collection of paths that
are useful for creating holes going through K (Outcome 1), or marks a bounded-sized set M
of vertices that are somehow important in the clique and a path reaching the clique at a
vertex of K \M can be rerouted to reach the clique at some other vertex (Outcome 2).

I Lemma 10. Let K be a clique in a chordal graph G, A be a set of vertices, and k be
an integer. There is a polynomial-time algorithm that produces one of the following two
outcomes:
1. A collections P of paths such that

every path in P is a path of length at least one from A to K with exactly one vertex in
A,
the first endpoints of the paths in P form an independent set of A, and
if X is a k-IP set, then at least two of the paths in P are disjoint from X.

2. A subset M of K having size at most (2k + 1)(4k + 2) such that following holds: if P
is a path of length at least one from a ∈ A to v ∈ K \M having exactly one vertex in
A, and X is a k-IP set disjoint from V (P), then there is a path P ′ from vertex a ∈ A to
a vertex of K such that P ′ is disjoint from X ∪ {v} and moreover V (P ′) \ V (P) ⊆ K.
(Note that path P ′ can have length 0 and may contain more than one vertex from A.)

Proof. Let us consider a subtree representation of the chordal graph G over the tree T .
For every node x ∈ V (T), let us denote by bag Bx the set of those vertices whose subtrees
contain x. Let U be the set of nodes y for which |By ∩K| > 2k + 1. It is easy to see that U
induces a connected subtree of T . Let subtrees T1, . . . , Tc be the components of T − U and
let Ci contain those vertices of G whose subtrees are completely contained in the subtree Ti.
Every Ti has a unique node wi that is adjacent to U . Let us observe that the neighborhood

D. Marx 71:7

of every Ci is a clique: if a vertex v has a neighbor in Ci, but it is not itself in Ci, then the
subtree Tv has to contain a node of Ti and a node not in Ti. This is only possible if the
subtree Tv contains node wi and such vertices v form a clique.

For every 1 ≤ i ≤ c, let Mi ⊆ K be defined the following way. If for a vertex v ∈ K,
there is a path P iv of length at least one from a vertex of A to v such that P iv has exactly
one vertex in A and every vertex of P iv except v is in Ci, then we put v into Mi. For the rest
of the proof, let us fix such a path P iv for every vertex v ∈Mi. Let us observe that if v ∈Mi,
then the subtree of v contains a node of Ti and a node of U , hence it contains the node wi.
As wi 6∈ U by definition, there are at most 2k + 1 vertices of K whose subtree contains wi
and |Mi| ≤ 2k + 1 follows.

Let M =
⋃c
i=1 Mi. We consider two cases. If |M | > (2k + 1)(4k + 1), then we claim the

set of paths required by Outcome 1 exist. In this case, a simple greedy selection argument
shows the existence of a subset of t = 4k + 2 paths P i1v1

, . . . , P itvt of the paths defined above
such that the integers i1, . . . , it and the vertices v1, . . . , vt are all distinct. That is, if
we have already selected j ≤ 4k + 1 of these paths, then they together can block at most
(2k + 1)j ≤ (2k + 1)(4k + 1) vertices of M , hence we can add one more path P ij+1

vj+1 to our
collection. We claim that these paths satisfy the requirements. Path P ijvj starts in a vertex
of A ∩ Cij , whose subtree is fully contained in Tij . As i1, . . . , it are distinct integers, the
start vertices of these paths are independent vertices of A, as required. Let now X be a k-IP.
By Lemma 7, X contains at most 2k vertices of K, thus it can intersect at most 2k of the
vertices v1, . . . , vh. By Lemma 8, X can intersect at most 2k of the sets Ci1 , . . . , Cih : recall
that the neighborhood of each Cj is a clique. In summary, X contain at most 2k of vi1 , . . . ,
vit and intersects at most 2k of Cit , . . . , Cit , hence there are at least two values of j for
which X is disjoint from P

ij
vj , as required.

The second case is when |M | ≤ (2k + 1)(4k + 2). In this case, we show that M satisfies
the requirements of Outcome 2. Let P = p1, . . . , p` be a path as in the statement of the
lemma with ` ≥ 2, p1 = a ∈ A, and p` = v ∈ K \M and suppose that V (P) is disjoint from
a k-IP set X. If p`′ ∈ K for some 1 ≤ `′ < `, then the subpath P ′ of P from a to p`′ satisfies
the requirements (this includes the case when a ∈ K; Outcome 2 allows that P ′ has length
0). If p`′ has more than 2k + 1 neighbors in K for some 1 ≤ `′ < `, then p`′ has a neighbor
v′ ∈ K \ (X ∪ {v}) (as |X ∩ K| ≤ 2k by Lemma 5). Then the path P ′ = p1, . . . , p`′ , v

′

satisfies the requirements. Suppose therefore that each vertex p`′ with `′ ∈ [` − 1] has at
most 2k + 1 neighbors in K. This implies that the subtrees corresponding to these vertices
do not intersect U and it follows that all these vertices are in the same set Ci. Now the path
P shows that v ∈Mi ⊆M , a contradiction. J

There is a particularly problematic special case that we handle in a separate lemma.
It concerns the case when a hole contains a single vertex v from a clique K and the two
neighbors of v are in W . It may seem like an easy, degenerate case (after all, rerouting
to avoid v means finding another common neighbor of the two neighbors of w in W), but
actually it is relatively complicated to find a replacement of v without introducing unwanted
adjacencies.

I Lemma 11. Let G be a graph with two vertices wx and wy such that G − {wx, wy} is
chordal, let K be a clique in G− {wx, wy}, and let k be an integer. In polynomial time, we
can find a set M ⊆ K of at most (2k + 4)(2k + 1) vertices such that the following holds: If
X is a k-IP set, and H is a hole disjoint from X and with V (H) ∩W = {wx, wy} such that
H has a vertex v ∈ K \M adjacent to both wx and wy, then there is a hole H ′ disjoint from
X ∪ {v}.

ESA 2020

71:8 Chordless Cycle Packing Is Fixed-Parameter Tractable

Proof. Let us consider a subtree representation of the chordal graph G over the tree T .
For every node x ∈ V (T), let us denote by bag Bx the set of those vertices whose subtrees
contain x. Let us assume that T is a rooted at a node r and that subtree Tu for every u ∈ K
contains r. For a node x of T , let us define Cx ⊆ V (G) \ {w1, w2} the following way: a vertex
u is in Cx if the subtree Tu of u is fully contained in the subtree of T rooted at x. Observe
that the neighborhood of Cx (in G− {w1, w2}) is a clique: if u has a neighbor in Cx, but is
not itself in Cx, then Tu has to contain the parent node of x.

We say that path P is a good path if it is either a path of length 0 consisting a single
vertex adjacent to both wx and wy, or a path of length at least 1 where the unique vertex
adjacent to wx is one of the endpoints, and the unique vertex adjacent to wy is the other
endpoint. Observe that if P1 and P2 are two good paths that have no adjacent vertices, then
P1, P2, wx, wy together form a hole of length at least 4.

Let Z be the set of nodes of T with the following property: a node x is in Z if G[Cx]
contains a good path. By definition, Z induces a subtree of T rooted at r: if a node is in Z,
then all its ancestors are also in Z. Let `1, . . . , `t be the leaves of Z.

Let us consider first the case when T [Z] has at least 2k + 5 leaves. We claim that in this
case returning M = ∅ is a valid answer. As the sets C`1 , . . . , C`t are disjoint, nonadjacent,
and the neighborhood of each of them is a clique, Lemma 8 implies that the (k + 1)-IP set
X ∪ {v} can intersect at most 2k + 3 of the sets C`1 , . . . , C`t . This means that there are at
least two such sets that are disjoint from X; assume, without loss of generality that X ∪ {v}
is disjoint from C`1 and C`2 . By assumption, there are two good paths Pi for i = 1, 2 such
that Pi is in G[C`i]. As there are no edges between P1 and P2, we have that P1, P2, wx, wy
together form a hole H ′ that is disjoint from X ∪ {v}.

Assume therefore that t ≤ 2k + 4. We construct M using the following procedure. For
every x ∈ Z, let Mx contain the vertices u ∈ K with the property that u is adjacent to both
w1 and w2, and moreover Tu does not contain x. Observe that Mx ⊆My if x is an ancestor
of y. Set M = ∅ initially. Let us consider the nodes of Z in a top down order, i.e., in a
nondecreasing ordering by the distance from the root r. When considering x ∈ Z, extend
M using vertices of Mx until either |M ∩Mx| ≥ 2k + 1 or Mx ⊆ M . This completes the
definition of M .

We claim that |M | ≤ (2k + 4)(2k + 1). Let the weight hx be the number of vertices
added to M when considering node x. We claim that the total weight of a node x and all its
ancestors is at most (2k + 1). To prove this, consider a node x such that the total weight
of its proper ancestors is h < 2k + 1, but h + hx > 2k + 1. Observe that the h vertices
added to M by the proper ancestors all appear in Mx and hence we should have added only
2k + 1− h < hx new vertices of Mx when considering node x, a contradiction. In particular,
the statement holds for the leaves of G[Z], hence it follows that the total weight (i.e., the
size of M) is at most t(2k + 1) ≤ (2k + 4)(2k + 1).

It remains to show that M satisfies the statement of the lemma. Observe that if we
remove v, wx, wy from the hole H, then what remains is a good path P . Let us choose x to
be node of T such that Cx contains P and x has maximum distance to the root r. This means
that the bag Bx contains a vertex of P , which also implies that Tv cannot contain x, that
is, v ∈ Mx. If |Mx| ≤ 2k + 1, then the construction of M ensures Mx ⊆ M , contradicting
v ∈ K \M . If |Mx| ≥ 2k + 2, then by Lemma 7, Mx contains a vertex v′ disjoint from the
k-IP set X and different from v. As P is in Cx and v′ ∈Mx, vertex v′ is not adjacent to any
vertex of P . Thus replacing v with v′ in the hole H results in a hole H ′ that is disjoint from
X ∪ {v}. J

We are now ready to prove the main result of the section, Lemma 9.

D. Marx 71:9

Proof (of Lemma 9). The set S = V (G) \W trivially satisfies Requirement 1. We show
that if S satisfies Requirement 1 and has a large clique violating Requirement 2, then
we can remove a vertex from S in a way that Requirement 1 remains satisfied. After
repeated applications of this argument, we eventually arrive to a set S that satisfies both
Requirements 1 and 2.

Suppose that S satisfies Requirement 1, but G[S] has a clique K of size greater than
12(|W |+ 2)4 (as G[S] is chordal, such a clique can be found in polynomial time). We define a
set M ⊆ K by invoking the procedure of Lemma 10 with different values for the parameters
(G,K,A, k) and then argue that removing from S any vertex v ∈ K \M does not violate
Requirement 1. We need some definitions first. For w ∈W , let Aw be the neighborhood of w
in S. For w1, w2 ∈W , let Aw1,w2 = Aw1 ∩Aw2 and Aw1,w2 = Aw1 \Aw2 . Let Kw1 = K∩Aw1 ,
Kw1 = K \Aw1 , Kw1,w2 = K ∩Aw1,w2 , and Kw1,w2 = K ∩Aw1,w2 .

The set M is the defined the following way. We invoke the algorithm of Lemma 10 with
various graphs and sets as listed below.
1. For every w ∈W , we invoke the procedure with (G[S],Kw, Aw, |W |+ 1) and we let Pw

be the set of paths in case of Outcome 1 and Mw be the resulting set in case of Outcome
2.

2. For every w1, w2 ∈ W with w1 6= w2, we invoke the procedure with (G[S \ Aw2],Kw2 ,

Aw1,w2 , |W |+ 1) and we let Pw1,w2 be the set of paths in case of Outcome 1 and Mw1,w2

be the resulting set in case of Outcome 2.
The setM is defined to be the union of all these setsMw andMw1,w2 (for all the values w and
(w1, w2) for which the algorithm of Lemma 10 terminated with Outcome 2). Additionally,
for every distinct w1, w2 ∈W , we extend M the following way:
1. We put arbitrarily 2|W |+ 1 vertices of Kw1,w2 into M or all such vertices, if fewer than

2|W |+ 1 such vertices exist.
2. We put arbitrarily 2|W |+ 1 vertices of Kw1,w2 into M or all such v
3. We extend M with the set returned by the algorithm of Lemma 11 for G[S ∪ {w1, w2}],

the clique K, and k = |W |.

To bound the size of M , let us observe that we invoke the algorithm of Lemma 10 exactly
|W |+ |W |(|W |−1) times, each time with parameter k = |W |+1. As each call returns a set of
size at most (2k + 1)(4k + 2), the total number of vertices in M obtained this way is at most
8(|W |+ 2)4. Additionally, we include at most |W |2(2(2|W |+ 1) + (2|W |+ 4)(2|W |+ 1)) ≤
4(|W |+ 2)4 vertices into M , resulting in at most 12(|W |+ 2)4 vertices in total. We assumed
that K has size greater than 12(|W |+ 2)4, hence there exists at least one vertex in K \M .

The rest of the proof is devoted to showing that Requirement 1 remains satisfied after
removing a vertex v ∈ K \M from S. If G has no k pairwise disjoint holes, then there is
nothing to show; otherwise, as let us fix a collection H of k pairwise disjoint holes such that
every vertex of these holes is in S ∪W , except possibly some of the special vertices. Let us
choose H such that the total number of vertices used from W is minimized.

If no hole goes through vertex v, then we are done. Otherwise, let H ∈ H be the hole
containing v. We may assume that v is not a special endpoint of H, otherwise S \ {v} still
satisfies Requirement 1. Let X be the union of the vertices in V (G) \W used by the holes in
H \ {H}. It is clear that X is a |W |-IP set: each hole uses at least one vertex of W and the
vertices of W split these holes into a collection of at most |W | induced paths. It also follows
that X ∪ {v} is a (|W |+ 1)-IP set.

As G−W is chordal, H contains at least one vertex of W . The following claim shows
that in the definition of M above, the set Mw was defined for every vertex w ∈ V (H) ∩W
(and the same is true for Mw,w′ for any w

′ ∈W).

ESA 2020

71:10 Chordless Cycle Packing Is Fixed-Parameter Tractable

B Claim 12. For every w ∈ V (H) ∩W ,
1. the set Mw is defined,
2. the set Mw,w′ is defined for every w′ ∈W with w′ 6= w.

Proof. If Mw was not defined, then the algorithm of Lemma 10 terminated with Outcome 1
on input (G[S],Kw, Aw, |W |+ 1), resulting in a set Pw of paths satisfying the requirements
of Outcome 1. This means that there are two paths P1, P2 ∈ Pw of length at least one that
are disjoint from the (|W | + 1)-IP set X ∪ {v}. For i = 1, 2, let ai ∈ Aw and zi ∈ K be
the endpoints of Pi. Now z1 and z2 either coincide or are adjacent in the clique K, thus
concatenating them gives a walk that contains an a1−a2 simple path P . From the conditions
on P1 and P2, we also know that a1 and a2 are independent and the internal vertices of P
are not in Aw, that is, not adjacent to w. Thus Lemma 5 shows that w and P form a hole
H ′ of length at least 4 disjoint from X ∪{v} and fully contained in S ∪W . Replacing H with
H ′ in H would give a collection of k holes satisfying Requirement 1, even if v is removed
from S, what we wanted to show.

In an analogous way, we can show that if the algorithm of Lemma 10 terminated with
Outcome 1 on input (G[S \Aw′],Kw′ , Aw,w′ , |W |+ 1), then there is a path of length at least
2 connecting two independent vertices of Aw,w′ in G[S \Aw] that is disjoint from X ∪ {v},
forming a hole with w. This proves the second statement. C

The set V (H) \W induces a set of at least one and at most |W | induced paths in G−W
(a path can consists of only a single vertex). Let P be the subpath of H that contains v.
Fixing an orientation of H, let wx, wy ∈ W be the previous and next vertices of H (note
that |V (H) ∩W | = 1 if and only if wx = wy). We try to reroute P to obtain a path P ′ that
avoids v. Then we replace P with P ′ in the hole H and try to obtain a hole H ′ that avoids
v, showing that there is a collection of k disjoint holes that satisfies Requirement 1 even if v
is removed from S. For this, we need to ensure that the new path P ′ is independent from
the rest of H in a certain way. Thus there are two challenges here: finding the rerouted path
P ′ that avoids v and ensuring that replacing P with P ′ results in hole.

The rest of the proof depends on the size V (H) ∩W . The most generic case is when
V (H)∩W has at least 3 vertices. In this case, we can use that H visits a third vertex wz ∈ H
different wx, wy and P is not adjacent to P ; then it is sufficient to ensure that P ′ is also not
adjacent to wy. The case |V (H) ∩W | = 2 is similar, but then we need different arguments
to ensure that H ′ is a hole. In the case |V (H) ∩W | = 1, an additional complication is that
wx = wy, hence the endpoints of P ′ need to be nonadjacent.

Case A: |V (H) ∩W | ≥ 3. Then wx 6= wy and there is at least one other wz ∈ V (H) ∩W
different from wx and wy. Our goal is to show that there is an Awx,wz −Awy,wz path P ′ in
G[S \Awz] that is disjoint from X ∪ {v}. Assuming there is such a path P ′, let u1 and u2
be the two neighbors of wz on the hole H (note that u1, u2 6∈ P). Replacing P with P ′ in
the hole H shows that that there is a u1 − u2 walk whose internal vertices are not adjacent
to wz (here we use that the endpoints of P ′ are adjacent to wx and wy, respectively, and
the vertices of P ′ are not adjacent to wz). Thus by Lemma 5, there is a hole disjoint from
X ∪ {v}.

The path P ′ is constructed as follows. We will construct two paths P ′x and P ′y in G[S\Awz]
such that P ′x and P ′y are Awx,wz −Kwz and Awy,wz −Kwz paths, respectively, and they are
both disjoint from X ∪ {v}. As any two vertices of Kwz are adjacent, the concatenation of
the two paths gives a walk that can be simplified to the required path P ′.

D. Marx 71:11

The path P can be split into a path Px going from a vertex vx ∈ Awx,wz to v, and into
a path Py going from a vertex vy ∈ Awy,wz to v (now one or both of these paths can be of
length 0). We show how to construct P ′x; the construction of P ′y is analogous. If Px has
length at least one, then we use that, by Claim 12, Outcome 2 was the result of applying
Lemma 10 when defining Mwx,wz . As Px is a path from vx to v ∈ Kwz \M ⊆ Kwz \Mwx,wz

and it is disjoint from X, Outcome 2 guarantees the existence of a path P ′x from vx to Kwz

that is disjoint from X ∪ {v}. If Px has length 0, then vx = v is in Kwx,wz . When defining
the set M , we tried to put 2|W |+ 1 vertices of Kwx,wz into M . As v was not put into this
set, we have that M contains 2|W |+ 1 other vertices of Kwx,wz . As the |W |-IP set X can
contain at most 2|W | vertices of Kwz (Lemma 7), there is a vertex v′ ∈ Kwx,wz \X different
from v. Now the path P ′x of length 0 consisting of only v′ satisfies the requirements. Path
P ′y can be obtained in a similar way, completing our proof for the existence of the path P ′.

Case B: |V (H) ∩W | = 2. In this case, H −W consists of either only the path P , or
two paths P and P ∗. Note that if H −W consists of only P , then the two vertices in
wx, wy ∈ V (H) ∩W are adjacent and P has length at least two. Let us first handle the case
when P has length 0, i.e., it consist of a single vertex v adjacent to both wx and wy. Then
the fact that M includes the set returned by Lemma 11 for graph G[S ∪ {wx, wy}], clique K,
k = |W | implies that there is a hole H ′ disjoint from the |W |-IP set X and from v.

In the following, we assume that P has length at least 1 (which in particular implies that
P has no vertex adjacent to both wx and wy). If P ∗ exists, then we claim that no vertex
of P ∗ is adjacent to a vertex u ∈ K \ (X ∪Kwx,wy). Otherwise, without loss of generality,
assume that u is not adjacent to wx (the other case being symmetric). Let vx be an endpoint
of P adjacent to wx, and consider the subpath Q of P from v to vx. Let v∗x be an endpoint of
P ∗ adjacent to wx and consider the subpath Q∗ of P ∗ from v∗x to a vertex u∗ that is adjacent
to u. Now vx and v∗x are nonadjacent neighbors of wx (because the paths P and P ∗ are not
adjacent) and the walk Q∗u∗uvQ goes from v∗x to vx. Note that no internal vertex of this
walk is adjacent to wx (as we assumed that this is true for u). Therefore, there is a hole H ′
that is disjoint from the holes in H \ {H} (the only vertex possibly used by H ′ that is not
used by H is u ∈ K \X) and uses only one vertex of W , contradicting the minimal choice
of H.

If P has length at least 1, then it has an endpoint vx ∈ Awx,wy and an endpoint
vy ∈ Awy,wx . Then we proceed very similarly to Case A above. The path P can be split
into a path Px going from vertex vx ∈ Awx,wy to v, and into a path Py going from vertex
vy ∈ Awy,wy to v (one, but not both, of these paths can be of length 0). We construct
two paths P ′x and P ′y in G such that P ′x and P ′y are Awx,wy − K and Awy,wx − K paths,
respectively, and they are both disjoint from X ∪ {v}. If Px has length at least 1, then the
definition of Mwx obtained by Outcome 2 of Lemma 10 (which exists by Claim 12) shows
that a path P ′x disjoint from X ∪{v} exists, and moreover any vertex of P ′x not in V (Px) is in
Kwx . If Px is only a single vertex, vx = v and the definition of M includes at least 2|W |+ 1
vertices from Kwx,wy and there exists a vertex v′ ∈ Kwx,wy \ (X ∪ {v}). Path P ′y can be
constructed similarly. Putting together these two paths gives an Awx,wy −Awy,wx walk Q.
Observe that no vertex of Q is in Awx,wy : there is no such vertex in V (Px) ∪ V (Py) and the
new vertices we may introduce when defining P ′x or P ′y came from Kwy or from Kwx , hence
they cannot be in Awx,wy either. Therefore, walk Q has a simple Awx,wy −Awy,wx subpath
P ′ of length at least 1 whose internal vertices are disjoint from Awx and Awy . As P ′ was
constructed in such a way that any vertex of it not in V (P) is in the clique K \ (X ∪Kwx,wy),
our claim in the previous paragraph shows that P ∗ (if exists) is not adjacent to P ′. Thus
replacing wxPwy with wxP ′wy in the hole H shows the existence of a hole H ′ disjoint from
X ∪ {v}.

ESA 2020

71:12 Chordless Cycle Packing Is Fixed-Parameter Tractable

Case C: |V (H)∩W | = 1. Let V (H)∩W = {w}. We again proceed similarly as in Case A,
but we use the fact v is not a special endpoint of H, that is, v is not an endpoint of P . The
path P can be split into a path Px going from a vertex vx ∈ Aw to v, and into a path Py
going from a vertex vy ∈ Aw to v; both paths have length at least 1 (as v is not a special
endpoint) and vx and vy are not adjacent. We will construct a vx−K path P ′x and a vy −K
path P ′y in G that are disjoint from X ∪ {v} and moreover vx and vy are the only vertices of
Aw on these paths. To construct P ′x, consider the set Mw, which was defined by Outcome 2
of Lemma 10 applied on (G[S],Kw, Aw, |W |+ 1) (by Claim 12, the set Mw is defined). As
Px has length at least 1 and v 6∈ Aw, the assumption v 6∈ K \Mw implies that there is a path
P ′x from vx to a vertex of K that is disjoint from X ∪ {v} and has exactly one vertex in Aw
(namely, vx). Moreover, any vertex of P ′x not in V (Px) is in Kw, it follows that vx is the only
vertex of P ′x in Aw, as required. Path P ′y can be constructed in a similar way. Then P ′x and
P ′y show that existence of a path P ′ from vx to vy with no internal vertices in Aw. Finally,
Lemma 5 applied on w and P ′ shows the existence of a hole H ′ disjoint from X ∪ {v}. J

4 Part 2: Special Hole Packing

Lemma 9 did not manage to fully reduce the treewidth of the Hole Packing instance. To
proceed, we introduce a generalization Hole Packing and show that in this generalization
it is possible to encode the original instance of Hole Packing in a way that the treewidth
is reduced to a function of size of the chordal deletion set W given in the input.

We define the Special Hole Packing problem the following way. The input is a
vertex-labeled graph G and two integers ` ≤ k. The possible labels of the vertices are 0,
i, or i∗ for i ∈ [`] (i.e., there are 2` + 1 different labels). The task is to find k pairwise
vertex-disjoint holes H1, . . . , Hk with the following additional conditions. For ` < i ≤ k,
every vertex of Hi should have label 0. For i ∈ [`], hole Hi should have exactly one vertex vi
with label i and every other vertex of Hi has label 0. Moreover, if v′i, v′′i are the neighbors of
vi in Hi, then there should exist a v′i − v′′i path Pi whose internal vertices have label i∗.

Using Courcelle’s Theorem (Theorem 4), it is not difficult to show that Special Hole
Packing is FPT with combined parameters k and the treewidth of G: it is routine to
describe the problem in Monadic Second Order Logic. A tedious but standard dynamic
programming algorithm can also show that running time 2poly(k+tw(G)) · n is also possible.

I Lemma 13. Special Hole Packing is FPT parameterized by k + tw(G).

The final part of the proof is to reduce Hole Packing to Special Hole Packing on a
bounded treewidth graph. The main idea is the following. We first use Lemma 9 to mark a
set S of vertices in the chordal graph G −W . We can assume that if a vertex v is not in
S ∪W , then it may only be used as a special vertex of a special hole. We treat such vertices
v as follows. Suppose that v is adjacent to wi and represented by a subtree Tv in the clique
tree decomposition of G−W . Let a1, . . . , at be the leaves of Tv. Then we “blow up” v: we
remove it and for each aj , we introduce a new vertex vj that is adjacent to wi and whose
representation in the clique tree decomposition is just the single node aj . We perform this
step for every v 6∈ S ∪W . Using easy transformations of the clique tree, we can ensure that
every node of the clique tree is the leaf of at most one subtree, hence we add at most one new
vertex at each node. This ensures that the resulting modified graph has bounded treewidth.

There are at least two obvious problems with this transformation. First, vertex v is
replaced by multiple vertices v1, . . . , vt and the solution may use more than one of them,
effectively using v in more than one hole. However, we can use the Color Coding [2] technique

D. Marx 71:13

in a straightforward way to enforce that each vertex is used only in one hole as special vertex.
The second problem is that the transformation loses information about adjacency. Suppose
that we find a solution that contains a special hole Hi that consists of vertex wi and a path
P , where path P connects a newly introduced vertex vj with a vertex u (that is not adjacent
to vj). Now the orginial vertex v could be adjacent to u in the original graph, hence replacing
vj with v may not give a hole in the original graph. This is the point where the required
path Pi on vertices with label i∗ comes into play: we introduce these vertices in a way that
forces the vj − u path to “go away” from the tree Tv, making sure that it ends at a vertex u
that is not a neighbor of v. More precisely, we introduce a tree-like “scaffolding” with label
i∗ and then we break this scaffolding in a way that potential paths of label i∗ can touch only
the leaves of every such tree Tv.

We state the main result of the section as the fixed-parameter tractability of Hole
Packing parameterized by the size of a chordal deletion set given in the input.

I Lemma 14. Given a graph G, integer k, and vertex set W ⊆ V (G) such that G−W is
chordal, the Hole Packing instance (G, k) can be solved in time f(|W |)nO(1).

Proof. Let S be the set given by Lemma 9 and let us fix a hypothetical solution H of k
holes such that every vertex of every hole is in S ∪W , except perhaps some of the special
vertices. If w1, . . . , w` are distinct vertices from W , then we say that H is consistent with
the tuple (w1, . . . , w`) if each wi for i ∈ [`] is in a special hole and no other vertex of W is in
a special hole; in particular, this implies that there are exactly ` special holes. The algorithm
first guesses a tuple (w1, . . . , w`) with which H is consistent (as the order of the wi’s do not
matter, we have 2|W | different possibilities). In the following, let Hi ∈ H be the special hole
going through wi (note that each special hole uses exactly one vertex of W hence the Hi’s
are distinct).

Let λ : V (G)\ (W ∪S)→ [`] be an arbitrary labeling and let Xi be the set of vertices with
label i. We say that H is consistent with (λ;w1, . . . , w`) if it is consistent with (w1, . . . , w`)
and moreover the special endpoints of Hi are in Xi ∪ S. Observe that this definition puts a
requirement on the labeling of at most 2` vertices. Thus we can use Color Coding [2]: by
going through a 2`-perfect family of hash functions of size 2O(`) · n, we can assume that we
have a fixed (λ;w1, . . . , w`) with which the hypothetical solution H is consistent.

Given G and (λ;w1, . . . , w`), our goal is to obtain a labeled bounded-treewidth graph G′
and invoke the algorithm of Lemma 13 for Special Hole Packing on (G′, k). To define
G′, let us fix a clique tree decomposition of the chordal graph G−W . It will be convenient
to assume the following extra properties of the clique tree decomposition:
(P1) Every tree Tx has at least two vertices.
(P2) The maximum degree of T is at most 3.
(P3) If u and v are adjacent in T and one of them has degree 3, then Bu = Bv.
(P4) Every leaf of every subtree Tx is in a degree-2 node of T .
(P5) Every node of u is the leaf of at most one subtree Tx.
Property (P1) can be achieved by attaching a new leaf to each node u, having the same bag
Bu. Properties (P2) and (P3) can be achieved by replacing each node u of degree d ≥ 3 with
a binary tree having d leaves and each node having the same bag Bu. Then the neighbors
of u can be connected to the leaves of this tree. This replacement also ensures that every
leaf of every subtree Tx is in a node with degree at most 2. Therefore, Property (P4) can
be achieved simply by attaching a new node with empty bag to each leaf node of T (to
avoid that some Tx has a leaf in a degree-1 node). Property (P5) can be achieved by an
appropriate sequence of subdivisions at each edge of T .

ESA 2020

71:14 Chordless Cycle Packing Is Fixed-Parameter Tractable

To construct G′, let us start with G[S ∪W], let us assign label i to wi and label 0 to
every other vertex. For every i ∈ [`], we proceed the following way. We will add new vertices
to G′ and the way we are describing these new vertices is by adding new subtrees to the
clique tree decomposition of G−W (which defines how these new vertices are adjacent to
the vertices not in W) and explicitly specifying how the new vertices are adjacent to W .
Note that G′ −W will be a chordal graph defined by this clique tree decomposition. First,
for every edge uv of T , we introduce a new vertex with label i∗ whose subtree consists of
nodes u and v. Next, for every vertex x ∈ Xi that is adjacent to wi, and for every leaf u of
Tx, we do the following. By (P1), subtree Tu has at least two vertices, thus u has a unique
neighbor v that is in Tx. We remove the vertex with label i∗ whose subtree consists of {u, v}
and introduce a new vertex with label 0 that is adjacent to wi and whose subtree consists of
only {u}. This completes the description of G′.

We claim that G′ has treewidth at most 12(|W |+2)2 +4|W |. The graph G[S] is a chordal
graph with maximum clique size 12(|W |+ 2)4, hence each bag contains at most that many
vertices. For every i, we introduce at most 3 new vertices with label i∗ in each bag (as
(P2) requires that every node of T have degree at most 3). Furthermore, as each node of T
contains the leaf of at most one subtree Tx by (P5), we may introduce at most one new vertex
with label 0 in each bag. Therefore, G′−W has a clique tree decomposition where every bag
has size at most 12(|W |+ 2)2 + 3|W |+ 1. This means that G′ −W has treewidth at most
12(|W |+ 2)2 + 3|W | and hence G′ has treewidth at most 12(|W |+ 2)2 + 4|W |. Therefore,
by Lemma 13, we can solve Special Hole Packing for (G′, k) in time f(|W |) · nO(1).
The following claim shows that in case we find a solution to this Special Hole Packing
instance, then it allows us to find k disjoint holes in G.

B Claim 15. Given a solution for the Special Hole Packing instance (G′, k), we can
construct in polynomial time a set of k pairwise vertex-disjoint holes in G.

Proof. Let H ′1, . . . , H ′k be the solution of the Special Hole Packing instance (G′, k). We
show first that for i > `, hole H ′i in G′ is a hole in G as well. Recall that for i > `, hole H ′i
contains only vertices of label 0. The only potential problem is that H ′i contains a vertex x∗
that do not appear in G, but was added during the construction of G′. But recall that every
such vertex x∗ was defined by introducing a subtree Tx∗ containing only a single node u of T
and x∗ was also made adjacent to a single wj for some j ∈ [`]. Thus the neighbors of x∗ is
wj plus a clique, which means that any hole going through x∗ has to go through wj as well.
As wj is the only vertex with label j, we have that H ′j has to contain it and hence hole H ′i
for i > ` does not contain wj . This shows that H ′i is a hole in G as well.

Consider now the hole H ′i for some i ∈ [`] and the path Pi that connect neighbors x, y
of wi in H ′i and whose internal vertices are labeled i∗. This hole may contain vertices not
present in G, but the argument in the previous paragraph shows that there are at most two
such vertices: x and y. We show that if these vertices are not present in G, then they can be
replaced by vertices in Xi, resulting in a hole Hi of G.

As x and y are not adjacent, there is a path p1p2 . . . pt in T with t ≥ 1 such that p1 is
the only vertex of the path in Tx and pt is the only vertex of the path in Ty. For every
j ∈ [t− 1], the construction of G′ involved introducing an i∗-labeled vertex zj whose subtree
is exactly {pj , pj+1}. It is clear that the path Pi consists of the vertices x, z1, . . . , zt, y:
there is no other way of connecting x and y with a simple path whose internal vertices have
label i∗. If x is not a vertex of G, then x was introduced in the construction of G′ because
there is a vertex x0 ∈ Xi that is adjacent to wi and p1 is the leaf of the subtree Tx0 ; let us
replace x with x0 in the hole H ′i. Similarly, if y is not part of G, then y can be replaced by a
vertex y0 ∈ Xi that is adjacent to wi and whose subtree Ty0 contains pt. We have to verify

D. Marx 71:15

that the hole Hi obtained by replacing x with x0 and/or y with y0 is indeed a hole. First,
V (Tx) ⊆ V (Tx0) (as Tx contains only node p1), hence x0 is adjacent to every neighbor of
x. Therefore, we only need to verify that no unwanted new edge appears in Hi after the
replacement. The crucial point here is that p2 is not in Tx0 : in that case, we would have
removed vertex z1 during the construction of G′. Thus p1 is the only node of Tx0 on the
path p1, . . . , pt. Similarly, if y is replaced by y0, then pt is the only node of Ty0 on this path.
It is easy to see that the subtree of every vertex of V (H ′i) \ {wi} contains a node from this
path and therefore if, e.g., x0 is adjacent to such a vertex, then already x was adjacent to
that. Thus after the replacements, we indeed obtain a hole Hi in G. Performing this step for
every i ∈ [`] gives a set H1, . . . , H`, H ′`+1, . . . , H ′k of holes. The disjointness of these holes
follow from the disjointness of H ′1, . . . , H ′k and from the fact that V (Hi) \ V (H ′i) is in Xi,
and these vertices cannot be used by any hole other than Hi. C

Conversely, the (contraposition of the) following claim shows that if the answer to the
Special Hole Packing instance is no, then we know that there is no set of disjoint holes
consistent with our current choice of (λ;w1, . . . , w`).

B Claim 16. If G has a set H of pairwise disjoint holes consistent with (λ;w1, . . . , w`), then
Special Hole Packing for (G′, k) has a solution.

Proof. Let H1, . . . , Hk be disjoint holes in G such that Hi for i ∈ [`] is a special hole going
through vertex wi. For special hole Hi where vertices x and y are the neighbors of wi, we
define the gap size of Hi to be the distance of Tx and Ty in T . As x and y are not adjacent,
the gap size is positive. Let us choose H1, . . . , Hk such that the sum of gap sizes is minimum
possible.

For i > `, the vertices of Hi are contained in S∪W , hence they are also holes in G′ as well
with every vertex having label 0. Consider now the special hole Hi for i ∈ [`] and suppose it
has the form wixx

′Py′y where P is an x′ − y′ path (with x′ = y′ if Hi has length 4).
As x and y are not adjacent, there is a path p1p2 . . . pt in T with t ≥ 1 such that p1 is the

only vertex of the path in Tx and pt is the only vertex of the path in Ty. Observe that this
means that the gap size of Hi is exactly t− 1. It easy to see that every bag Bpi for i ∈ [t]
contains at least one vertex of the path P . By (P4), the leaves are in degree-2 nodes, hence
there is a unique vertex p0 before p1 and a unique vertex pt+1 after pt. For every j ∈ [t− 1],
the construction of G′ involved introducing an i∗-labeled vertex zj whose subtree is exactly
{pj , pj+1}. We argue that none of these vertices zj were removed during the construction
of G′. Recall that zj was removed if there was a vertex q ∈ Xi that is adjacent to wi and
either Tq has a leaf in pj+1 and Tq contains pj , or Tq has a leaf in pj and Tq contains pj+1.
We show that if a zj was removed during the construction of G′, then Hi can be replaced
with another hole that has strictly smaller gap size and is still disjoint from the rest of the
holes. This would contradict the minimality of the choice of H.

Let α be the largest integer ≤ t such that there is a vertex in x∗ ∈ Xi ∪ {x} whose
subtree has a leaf in pα and contains pα−1. Vertex x shows that α is well-defined and at
least 1. Furthermore, vertex y shows that α cannot be t: by (P5), node pt is the leaf of
only Ty and this subtree does not contain pt−1. Let β ≥ α be the smallest integer such that
there is a vertex in y∗ ∈ Xi ∪ {y} whose subtree has a leaf in pβ and contains pβ+1. Vertex
y shows that β is well-defined and β ≤ t. Furthermore, we have that β 6= α, as otherwise
both x∗ and y∗ would have a leaf at the same node (and they are distinct vertices). Now
β > α implies that x∗ and y∗ are not adjacent. It can be also observed that vertex zj with
α ≤ j ≤ β − 1 was not removed: removing it because of a subtree with leaf in pj+1 and
containing pj would contradict the maximality of α; removing it because of a subtree with

ESA 2020

71:16 Chordless Cycle Packing Is Fixed-Parameter Tractable

leaf in pj and containing pj+1 would violate the minimality of β. Therefore, if α = 1 and
β = t, then none of z1, . . . , zt−1 was removed, what we wanted to show. Otherwise, there is
an x∗ − y∗ path whose internal vertices are in V (P) (as every bag Bpα , . . . , Bpβ contains
a vertex of P). Then Lemma 5 implies that there is a hole H∗i going through x∗, wi, and
y∗. This hole is disjoint from the other holes in H \ {Hi}: vertices in V (H∗i) \ V (Hi) are
from Xi, and consistency of H with (λ;w1, . . . , w`) means that only Hi could use vertices
from Xi. Now the gap size of H∗i is β − α < t− 1, strictly smaller than the gap size of Hi,
contradicting the minimal choice of H. This completes the proof that all of the vertices z1,
. . . , zt−1 are in G′.

Let us show now the existence of a hole H ′i required by the Special Hole Packing
problem. If x, y ∈ S, then they are present in G′ with label 0, hence Hi is a hole in G′

with every vertex except wi having label 0. Then Pi = xz1 . . . zt−1y is a path with internal
vertices labeled i∗, as required. Otherwise, suppose that x 6∈ S. As H is consistent with
(λ;w1, . . . , w`), this is only possible if x ∈ Xi. As x is adjacent to wi and p1 is a leaf of Tx,
we have introduced a vertex x∗ that is adjacent to wi and whose subtree consists of only p1.
Let us observe that x∗ is adjacent to x′: this follows from the fact that the induced path
xx′Py′y connects x and y, hence the subtree Tx′ should contain a node of the component
of T − V (Tx) that contains Ty. As V (Tx∗) ⊆ V (Tx), vertex x∗ cannot be adjacent to any
vertex that is not a neighbor of x. Let us replace x with x∗; in a similar way, if y 6∈ S, then
we can replace it with an appropriate vertex y∗ that is adjacent to wi and y′. Then the
resulting hole H ′i is a hole in G′ where every vertex except wi has label 0. Furthermore, the
two neighbors of wi in H ′i can be connected by a path Pi whose internal vertices are z1, . . . ,
zt−1, as required in the definition of Special Hole Packing. C

In summary, we can solve Hole Packing the following way. We enumerate every
possibility for (w1, . . . , w`) and every mapping λ in a 2`-perfect family of hash functions.
For each choice of (λ;w1, . . . , w`), we construct the graph G′ and solve the Special Hole
Packing instance (G′, k) using the algorithm of Lemma 13. If it returns a solution, then
Claim 15 allows us to turn this into a solution of Hole Packing. The correctness of the
algorithm follows from the fact if there is a set H of k pairwise disjoint holes, then at some
point we reach a tuple (λ;w1, . . . , w`) with which H is consistent. At this point, Claim 16
shows that the Special Hole Packing instance (G′, k) has a solution, and hence our
algorithm indeed returns a solution for Hole Packing. J

To prove our main result Theorem 3, let us invoke the algorithm of Theorem 2 on the
Hole Packing instance (G, k). If it returns a set of k + 1 disjoint holes, then we are done.
Otherwise, we can assume that we have a set W of O(k2 log k) vertices such that G−W is
chordal. Then we can use Lemma 14 to solve the problem in time f(|W |)nO(1) = f ′(k)nO(1).

5 A difficult situation

The set S computed by Lemma 9 does not necessarily cover the special vertices of the special
holes. If we could ensure that set S covers every vertex of the solution, then we could
immediately apply Courcelle’s Theorem and we would not need the arguments in Section 4.
This raises the question whether we could improve the proof of Lemma 9 in such a way.

Of course, a solution can use at most 2k vertices from a clique, so a large clique certainly
has a vertex v not needed for a solution. Therefore, technically speaking, we can prove a
variant of Lemma 9 without the extra condition for the special vertices: using our algorithm
for Hole Packing, we can find a set k disjoint holes and we can set S to be the vertices of
these holes. A better question is whether we can prove the inductive rerouting argument in
the proof of Lemma 9 without the extra provision for the special vertices. Notice that the

D. Marx 71:17

proof of Lemma 9 shows the following: if a hole of the solution goes through a vertex v 6∈ S
of a large clique, then we can reroute that hole without modifying any of the other holes.
Therefore, the question is whether we can find a vertex in a large clique that is irrelevant for
the existence of a hole, even after the deletion of a set of other holes.

I Question 17. Let G be a graph and W a set of vertices such that G−W is chordal and
let K be a clique in G−W . We say that v ∈ K is irrelevant if whenever H is a collection of
disjoint holes1 in G such that G−(

⋃
H∈H V (H)) contains a hole, then G−(

⋃
H∈H V (H)∪{v})

contains a hole as well. Is there a function f such that every clique K of G−W having size
at least f(|W |) contains an irrelevant vertex?

We construct a simple example that gives a negative answer to this question. Therefore,
when trying to declare a vertex v as irrelevant, we cannot argue just by rerouting the hole
going through v in the solution: we may need to reroute some other holes of the solution as
well. This shows that a version of Lemma 9 without the provision for the special vertices
would require a proof of very different flavor.

We define first a chordal graph G0 the following way. Let the tree T contain nodes x0,
. . . , xn+1 forming a path and let yi be a degree-1 neighbor of xi for i ∈ [n]. We define
chordal graph G0 as the intersection graph of subtrees of T :

For i ∈ [n], vertex ai ∈ V (G0) corresponds to a subtree with nodes {xi−1, xi, xi+1, yi}.
For 3 ≤ i ≤ n−2, vertex bi ∈ V (G0) corresponds to a subtree with nodes

⋃
j∈[n]{xj , yj}\

{yi}.
For i ∈ [n], vertex ci ∈ V (G0) corresponds to a subtree with node {yi}.

Observe that the ai’s form a path P , the bi’s form a clique K and the ci’s form an independent
set I. Graph G is defined by adding three new vertices w1, w2, w3 to G0, making w1 and w2
adjacent to I, and making w3 adjacent to K ∪ I.

Let us choose an arbitrary 3 ≤ i ≤ n−2. Consider the holes H1 = w1c1a1a2 . . . ai−1ci−1w1
and H2 = w2ci+1ai+1ai+2 . . . ancnw2. We claim that H3 = w3ciaibiw3 is the only hole in
G− (V (H1) ∪ V (H2)), showing that bi is not an irrelevant vertex. As G− {w1, w2, w3} is
chordal, such a hole has to go through a w3 and then contain two nonadjacent neighbors
of w3. As K is a clique, this means that hole H contains cj for some j ∈ [n]. Consider the
neighbor of cj in H different from w3. This vertex cannot be from K (as it cannot be a
neighbor of w3), hence aj is the only possible neighbor of cj . Hole H1 uses the vertices a1,
. . . , ai−1, while hole H2 uses the vertices ai+1, . . . , an, which leaves only ai, and i = j follows.
Therefore, hole H contains vertices w3ciai, which can be completed to a hole only by vertex
bi (the only vertex of K not adjacent to ci), as claimed. As this argument holds for every
3 ≤ i ≤ n − 2, none of the n − 4 vertices of the clique K are irrelevant. The construction
is valid for arbitrary large n and we have |W | = 3, which rules out the possibility that the
function f of Question 17 depending only on |W | exists.

References
1 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi.

Feedback vertex set inspired kernel for chordal vertex deletion. ACM Trans. Algorithms,
15(1):11:1–11:28, 2019. doi:10.1145/3284356.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

1 Note that H can contain at most |W | holes.

ESA 2020

https://doi.org/10.1145/3284356
https://doi.org/10.1145/210332.210337

71:18 Chordless Cycle Packing Is Fixed-Parameter Tractable

3 Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernel bounds for path and
cycle problems. Theor. Comput. Sci., 511:117–136, 2013. doi:10.1016/j.tcs.2012.09.006.

4 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

5 Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica,
75(1):118–137, 2016. doi:10.1007/s00453-015-0014-x.

6 Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A fixed-parameter
algorithm for the directed feedback vertex set problem. J. ACM, 55(5):21:1–21:19, 2008.
doi:10.1145/1411509.1411511.

7 Bruno Courcelle. Graph rewriting: an algebraic and logic approach. In Handbook of theoretical
computer science, Vol. B, pages 193–242. Elsevier, Amsterdam, 1990.

8 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey
of parameterized algorithms and the complexity of edge modification. CoRR, abs/2001.06867,
2020. arXiv:2001.06867.

9 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

10 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

11 P. Erdős and L. Pósa. On independent circuits contained in a graph. Canad. J. Math.,
17:347–352, 1965.

12 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. On the parameterized complexity
of graph modification to first-order logic properties. Theory Comput. Syst., 64(2):251–271,
2020. doi:10.1007/s00224-019-09938-8.

13 Fedor V. Fomin, Saket Saurabh, and Neeldhara Misra. Graph modification problems:
A modern perspective. In Jianxin Wang and Chee-Keng Yap, editors, Frontiers in Al-
gorithmics - 9th International Workshop, FAW 2015, Guilin, China, July 3-5, 2015, Pro-
ceedings, volume 9130 of Lecture Notes in Computer Science, pages 3–6. Springer, 2015.
doi:10.1007/978-3-319-19647-3_1.

14 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New
York, 1980.

15 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica, 39(4):321–347, 2004.
doi:10.1007/s00453-004-1090-5.

16 Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex
deletion. SIAM J. Discrete Math., 32(3):2258–2301, 2018. doi:10.1137/17M112035X.

17 Naonori Kakimura, Ken-ichi Kawarabayashi, and Dániel Marx. Packing cycles through
prescribed vertices. J. Comb. Theory, Ser. B, 101(5):378–381, 2011. doi:10.1016/j.jctb.
2011.03.004.

18 Ken-ichi Kawarabayashi and Bruce A. Reed. Odd cycle packing. In Leonard J. Schulman,
editor, Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 695–704. ACM, 2010. doi:10.1145/
1806689.1806785.

19 Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The graph minor algorithm with
parity conditions. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 27–36.
IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.52.

20 Eun Jung Kim and O-joung Kwon. Erdős-pósa property of chordless cycles and its applications.
In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
1665–1684. SIAM, 2018. doi:10.1137/1.9781611975031.109.

https://doi.org/10.1016/j.tcs.2012.09.006
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/s00453-015-0014-x
https://doi.org/10.1145/1411509.1411511
http://arxiv.org/abs/2001.06867
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00224-019-09938-8
https://doi.org/10.1007/978-3-319-19647-3_1
https://doi.org/10.1007/s00453-004-1090-5
https://doi.org/10.1137/17M112035X
https://doi.org/10.1016/j.jctb.2011.03.004
https://doi.org/10.1016/j.jctb.2011.03.004
https://doi.org/10.1145/1806689.1806785
https://doi.org/10.1145/1806689.1806785
https://doi.org/10.1109/FOCS.2011.52
https://doi.org/10.1137/1.9781611975031.109

D. Marx 71:19

21 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

22 Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768, 2010.
doi:10.1007/s00453-008-9233-8.

23 M. Pontecorvi and Paul Wollan. Disjoint cycles intersecting a set of vertices. J. Comb. Theory,
Ser. B, 102(5):1134–1141, 2012. doi:10.1016/j.jctb.2012.05.004.

24 Bruce A. Reed. Mangoes and blueberries. Combinatorica, 19(2):267–296, 1999. doi:10.1007/
s004930050056.

25 Bruce A. Reed, Neil Robertson, Paul D. Seymour, and Robin Thomas. Packing directed
circuits. Combinatorica, 16(4):535–554, 1996. doi:10.1007/BF01271272.

26 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res.
Lett., 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

27 Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM J. Comput., 5(2):266–283, 1976. doi:10.1137/0205021.

28 Aleksandrs Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM J. Discrete Math., 24(1):146–157, 2010. doi:10.1137/070697781.

29 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1–
32:8, 2010. doi:10.1145/1721837.1721848.

30 Mihalis Yannakakis. Edge-deletion problems. SIAM J. Comput., 10(2):297–309, 1981. doi:
10.1137/0210021.

31 Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Comput., 10(2):310–
327, 1981. doi:10.1137/0210022.

ESA 2020

https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/s00453-008-9233-8
https://doi.org/10.1016/j.jctb.2012.05.004
https://doi.org/10.1007/s004930050056
https://doi.org/10.1007/s004930050056
https://doi.org/10.1007/BF01271272
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1137/0205021
https://doi.org/10.1137/070697781
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1137/0210021
https://doi.org/10.1137/0210021
https://doi.org/10.1137/0210022

Incompressibility of H-Free Edge Modification
Problems: Towards a Dichotomy
Dániel Marx
CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
marx@cispa.saarland

R. B. Sandeep
Department of Computer Science and Engineering, Indian Institute of Technology Dharwad, India
sandeeprb@iitdh.ac.in

Abstract
Given a graph G and an integer k, the H-free Edge Editing problem is to find whether there exist
at most k pairs of vertices in G such that changing the adjacency of the pairs in G results in a graph
without any induced copy of H. The existence of polynomial kernels for H-free Edge Editing
(that is, whether it is possible to reduce the size of the instance to kO(1) in polynomial time) received
significant attention in the parameterized complexity literature. Nontrivial polynomial kernels are
known to exist for some graphs H with at most 4 vertices (e.g., path on 3 or 4 vertices, diamond,
paw), but starting from 5 vertices, polynomial kernels are known only if H is either complete or
empty. This suggests the conjecture that there is no other H with at least 5 vertices were H-free
Edge Editing admits a polynomial kernel. Towards this goal, we obtain a set H of nine 5-vertex
graphs such that if for every H ∈ H, H-free Edge Editing is incompressible and the complexity
assumption NP 6⊆ coNP/poly holds, then H-free Edge Editing is incompressible for every graph
H with at least five vertices that is neither complete nor empty. That is, proving incompressibility
for these nine graphs would give a complete classification of the kernelization complexity of H-free
Edge Editing for every H with at least 5 vertices.

We obtain similar result also for H-free Edge Deletion. Here the picture is more complicated
due to the existence of another infinite family of graphs H where the problem is trivial (graphs
with exactly one edge). We obtain a larger set H of nineteen graphs whose incompressibility would
give a complete classification of the kernelization complexity of H-free Edge Deletion for every
graph H with at least 5 vertices. Analogous results follow also for the H-free Edge Completion
problem by simple complementation.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases incompressibility, edge modification problems, H-free graphs

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.72

Related Version A full version of the paper is available at https://arxiv.org/abs/2004.11761.

Funding Research supported by the European Research Council (ERC) grant SYSTEMATIC-
GRAPH: “Systematic mapping of the complexity landscape of hard algorithmic graph problems”,
reference 725978.
R. B. Sandeep: Partially supported by SERB Grant SRG/2019/002276: “Complexity Dichotomies
for Graph Modification Problems”.

1 Introduction

In a typical graph modification problem, the input is a graph G and an integer k, and the
task is to make at most k allowed editing operations on G to make it belong to a certain
graph class or satisfy a certain property. For example, Vertex Cover (remove k vertices
to make the graph edgeless), Feedback Vertex Set (remove k vertices to make the graph
acyclic), Odd Cycle Transversal (remove k edges/vertices to make the graph bipartite),

© Dániel Marx and R.B. Sandeep;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 72; pp. 72:1–72:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marx@cispa.saarland
mailto:sandeeprb@iitdh.ac.in
https://doi.org/10.4230/LIPIcs.ESA.2020.72
https://arxiv.org/abs/2004.11761
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

and Minimum Fill-in (add k edges to make the graph chordal) are particularly well-studied
members of this problem family. Most natural graph modification problems are known to
be NP-hard, in fact, there are general hardness results proving hardness for many problems
[19, 21, 22]. On the other hand, most of these problems are fixed-parameter tractable (FPT)
parameterized by k: it can be solved in time f(k)nO(1), where f is a computable function
depending only on k [3, 8, 17, 18]. Looking at the parameterized complexity literature, one
can observe that, even though there are certain recurring approaches and techniques, these
FPT results are highly problem specific, and often rely on a very detailed understanding of
the graph classes at hand.

A class of problems that can be treated somewhat more uniformly is H-free Edge
Editing. This is a separate problem for every fixed graph H: given a graph G and an
integer k, the task is to find whether there exist at most k pairs of vertices in G such that
changing the adjacency of the pairs in G results in a graph without any induced copy of H.
Aravind et al. [2] proved that H-free Edge Editing is NP-hard for every graph H with
at least 3 vertices. However, a simple application of the technique of bounded-depth search
trees shows that H-free Edge Editing is FPT parameterized by k for every fixed H [3].

Graph modification problems were explored also from the viewpoint of polynomial
kernelization: is there a polynomial-time preprocessing algorithm that does not necessarily
solve the problem, but at least reduces the size of the an instance to be bounded by a
polynomial of k? The existence of a polynomial kernelization immediately implies that the
problem is FPT (after the preprocessing, one can solve the reduced instance by brute force
or any exact method). Therefore, one can view polynomial kernelization as a special type
of FPT result that tries to formalize the question whether the problem can be efficiently
preprocessed in a way that helps exhaustive search methods. There is a wide literature on
algorithms for kernelization (see, e.g., [14]). Conversely, incompressibility results can show,
typically under the complexity assumption NP 6⊆ coNP/poly, that a parameterized problem
has no polynomial kernelization.

Most of the highly nontrivial FPT algorithms for graph modification problems do not
give kernelization results and, in many cases, it required significant amount of additional
work to obtain kernelization algorithms. In particular, the FPT algorithm for H-free Edge
Editing based on the technique of bounded-depth search trees does not give polynomial
kernels. For the specific case when H = Kr is a complete graph, it is easy to see that there
is a solution using only deletions. Now the problem essentially becomes a Hitting Set
problem with sets of bounded size: we have to select at least one edge from the edge set of
each copy of Kr. Therefore, known kernelization results for Hitting Set can be used to
show that Kr-free Edge Editing has a polynomial kernel for every fixed r. A similar
argument works if H is an empty graph on r vertices.

Besides cliques and empty graphs, it is known for certain graphs H of at most 4 vertices
(diamond [5, 9], path [6, 15, 16], paw [7, 13], and their complements) that H-free Edge
Editing has a polynomial kernel, but these algorithms use very specific arguments exploiting
the structure of H-free graphs. As there is a very deep known structure theory of claw-free
(i.e, K1,3-free) graphs, it might be possible to obtain a polynomial kernel for Claw-free
Edge Editing, but this is currently a major open question [4, 10, 12]. However, besides
cliques and empty graphs, no H with at least 5 vertices is known where H-free Edge
Editing has a polynomial kernel and there is no obvious candidate H for which one would
expect a kernel. This suggests the following conjecture:

I Conjecture 1. If H is a graph with at least 5 vertices, then H-free Edge Editing has
a polynomial kernel if and only if H is a complete or empty graph.

D. Marx and R. B. Sandeep 72:3

We are not able to resolve this conjecture, but make substantial progress towards it by
showing that only a finite number of key cases needs to be understood. Our main result for
H-free Edge Editing is the following.

I Theorem 1. There exists a set HE of nine graphs, each with five vertices such that if
H-free Edge Editing is incompressible for every H ∈ HE, then for a graph H with at least
five vertices H-free Edge Editing is incompressible if and only if H is neither complete
nor empty, where the incompressibility assumes NP 6⊆ coNP/poly.

The set HE of nine graphs are shown in Figure 1a. Note that a simple reduction by
complementation shows that H-free Edge Editing and H-free Edge Editing have
the same complexity. Therefore, for each of these nine graphs, we could put either it or
its complement into the set HE . As it will be apparent later, we made significant efforts
to reduce the size of HE as much as possible. However, the known techniques for proving
incompressibility do not seem to work for these graphs. Let us observe that most of these
graphs are very close to the known cases that admit a polynomial kernel: for example, they
can be seen as a path, paw, or diamond with an extra isolated vertex or with an extra
degree-1 vertex attached. Thus resolving the kernelization complexity of H-free Edge
Editing for any of these remaining graphs seems to be a particularly good research question:
either one needs to extend in a nontrivial way the known kernelization results, or a significant
new ideas are needed for proving hardness.

The reader might not be convinced of the validity of Conjecture 1 and may wonder about
the value of Theorem 1 when the conjecture is false. However, we can argue that Theorem 1
is meaningful even in this case. It shows that if there is any H violating Conjecture 1, then
one of the 9 graphs in HE also violates it. That is, if we believe that there are kernelization
results violating the conjecture, then we should focus on the 9 graphs in HE , as these are the
easiest cases where we may have a kernelization result. In other words, Theorem 1 precisely
shows the frontier where new algorithmic results are most likely to exist.

H-free Edge Deletion is the variant of H-free Edge Editing where only edge
removal is allowed. For the same fixed graph H, it seems that H-free Edge Deletion
should be a simpler problem than H-free Edge Editing, but we want to emphasize that
H-free Edge Deletion is not a special case of H-free Edge Editing. There is no
known general reduction from the former to the latter, although the technique of completion
enforcers (see Section 5 and [4]) can be used for many specific graphs H. There is a known
case where H-free Edge Deletion seems to be strictly easier: if H has at most one edge,
then there is only one way of destroying a copy of an induced H by edge removal, making
the problem polynomial-time solvable. Aravind et al. [1] showed that having at most one
edge is the only condition that makes H-free Edge Deletion polynomial-time solvable:
if H has at least two edges, then the problem is NP-hard. Therefore, the counterpart of
Conjecture 1 for H-free Edge Deletion should take this case also into account.

I Conjecture 2. If H is a graph with at least 5 vertices, then H-free Edge Deletion
has a polynomial kernel if and only if H is a complete graph or has at most one edge.

Working toward this conjecture, we show that only a finite number of cases needs to be
shown incompressible.

I Theorem 2. There exists a set HD of nineteen graphs, each with either five or six vertices
such that if H-free Edge Deletion is incompressible for every H ∈ HD then for a graph
H with at least five vertices, H-free Edge Deletion is incompressible if and only if H

is a graph with at least two edges but not complete, where the incompressibility assumes
NP 6⊆ coNP/poly.

ESA 2020

72:4 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

H H # H H # H H

1 4 7

2 5 8

3 6 9 same

(a) The set H of graphs.

A A # A A # A A

1 4 same 7

2 5 same 8

3 6 9

(b) The set A of graphs.

D D # B B # B B

1 1 3

2 2

(c) The sets D and B of graphs.

Figure 1

(a) P3. (b) P3. (c) P4. (d) claw. (e) claw.

(f) paw. (g) paw. (h) diamond. (i) diamond. (j) 2K2. (k) C4.

Figure 2 All non-empty and non-complete graphs with at most four vertices.

The set HD contains the graphs in set HE , as well their complements. This seems reasonable
and hard to avoid: if we do not have an incompressibility result for H-free Edge Editing
for some H ∈ HE , then it is unlikely that we can find such a result for H-free Edge
Deletion (even though, as discussed above, there is no formal justification for this). Together
with these 17 graphs (note that H9 is the same as its complement), we need to include into

D. Marx and R. B. Sandeep 72:5

HD the two graphs D1 and D2 shown in Figure 1c. In the case of editing, we can prove
incompressibility for these two graphs by a reduction from H-free Edge Editing where H

is the graph with 5 vertices and one edge. However, H-free Edge Deletion for this H is
polynomial-time solvable.

Finally, let us consider the H-free Edge Completion problem, where we have to make
G induced H-free by adding at most k edges. As H-free Edge Completion is essentially
the same problem as H-free Edge Deletion, we can obtain a counterpart of Theorem 2
by simple complementation:

I Theorem 3. There exists a set HC of nineteen graphs, each with either five or six vertices
such that if H-free Edge Completion is incompressible for every H ∈ HC then for a
graph H with at least five vertices, H-free Edge Completion is incompressible if and
only if H is a graph with at least two nonedges but not empty, where the incompressibility
assumes NP 6⊆ coNP/poly.

Our techniques. We crucially use two earlier results. First, Cai and Cai [4] proved that
H-free Edge Editing is incompressible (assuming NP 6⊆ coNP/poly) when H or H is a
cycle or a path of length at least 4, or 3-connected but not complete. While these result
handle many graphs and prove to be very useful for our proofs, they do not come close to a
complete classification. Second, we use a key tool in the polynomial-time dichotomy result of
Aravind et al. [1]: if V` is the set of lowest degree vertices of H, then (H − V`)-free Edge
Editing can be reduced to H-free Edge Editing. The same statement holds for the set
Vh of highest degree vertices.

Our proofs of Theorems 1–3 introduce new incompressibility results and new reductions,
which we put together to obtain an almost complete classification by a graph-theoretic
analysis. Additionally, to make the arguments simpler, we handle small graphs by an
exhaustive computer search. In the following, we highlight some of the main ideas that
appear in the paper.

Analysis of graphs. Our goal is to prove Theorem 1 by induction on the size of H.
First we handle the case when H is regular: we show that this typically implies that
either H or H is 3-connected, and the result of Cai and Cai [4] can be used. If H is not
regular, then the graphs H − V` and H − Vh are nonempty and have stricly fewer vertices
than H. If one of them, say H − V`, has at least 5 vertices and is neither complete nor
empty, then the induction hypothesis gives an incompressibility result for (H − V`)-free
Edge Editing, which gives an incompressibility result for H-free Edge Editing by
the reduction of Aravind et al. [1]. Therefore, we only need to handle those graphs H

where it is true for both H−V` and H−Vh that they are either small, complete, or empty.
But we can obtain a good structural understanding of H in each of these cases, which
allows us to show that either H or H is 3-connected, or H has some very well defined
structure. With these arguments, we can reduce the problem to the incompressibility of
H-free Edge Editing for a few dozen specific graphs H and for a few well-structured
infinite families (such as K2,t).
For H-free Edge Deletion, we have the additional complication that one or both
of H − V` and H − Vh can be near-empty (i.e., has exactly one edge), which is not an
incompressible case for this problem. We need additional case analysis to cover such
graphs, but the spirit of the proof remains the same.
Computer search. Our analysis of graphs becomes considerably simpler if we assume
that H is not too small. In this case, we can assume that at least one of H − V` and
H − Vh is a complete or empty graph of certain minimum size, which is a very helpful

ESA 2020

72:6 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

starting point for proving the 3-connectivity of H or H̄, respectively. Therefore, we
handle every graph with at most 9 vertices using an exhaustive computer search and
assume in the proof that H has at least 10 vertices. The list provided by McKay [20]
shows that there are 288266 different graphs with at most 9 vertices, which is feasible
for a computer search. In principle, it would be possible to extend our case analysis to
avoid this computer search, but it would significantly complicate the proof and is not
clear what additional insight it would give.
Reductions. We investigate different reductions that allow us to reduce H ′-free Edge
Editing to H-free Edge Editing when H ′ is an induced subgraph of H satisfying
certain conditions. With extensive use of such reductions, we can reduce the remaining
cases of H-free Edge Editing that needs to be handled to a smaller finite set.
Incompressibility results. We carefully revisit the proof of Cai and Cai [4] showing
the incompressibility of H-free Edge Editing when H is 3-connected, and observe
that, with additional ideas, it can be made to work also for certain 2-connected graphs
that are not 3-connected (the set A of graphs shown in Figure 1b and the set B of graphs
shown in Figure 1c). This allows us to handle every graph, except those finite sets that
are mentioned in Theorems 1–3. A key step in many of these incompressibility results
is to establish first incompressibility for the Restricted H-free Edge Deletion
problem, which is the generalization of H-free Edge Deletion where some of the
edges of G are marked as forbidden in the input, and the solution is not allowed to delete
forbidden edges. Then we use deletion and completion enforcer gadgets specific to H to
reduce Restricted H-free Edge Deletion to H-free Edge Editing.

The paper is organized as follows. Preliminaries are in Section 2. Section 3 presents the
churning procedure, our main technical tool in the analysis of graphs, and shows that it
reduces the problem to a finite number of graphs, plus a few well-defined infinite families.
Section 4 presents reductions (old and new) that allow us to further reduce the number of
graphs we need to handle. Finally, in Setion 5, we give new incompressibility results, showing
that only the cases stated in Theorems 1–3 need to be proved incompressible to complete
the exploration of the complexity landscape of the problems. All proofs have been moved to
a full version of the paper due to space constraints.

2 Preliminaries

Graph-theoretic notation and terminology. For a graph G, V (G) and E(G) denote the set
of vertices and the set of edges of G respectively. For a set V ′ ⊆ V (G), G− V ′ denotes the
graph obtained by removing all vertices in V ′ and their incident edges from G. For a set F

of pairs of vertices and a graph G, G4F denotes the graph G′ such that V (G′) = V (G) and
E(G′) = {(u, v) | ((u, v) ∈ E(G) and (u, v) /∈ F) or (u, v ∈ V (G), (u, v) /∈ E(G), and (u, v) ∈
F)}. Whenever we say that a set of (non)edges F is a solution of an instance (G, k) of a
problem, we refers to a subset of F containing all (non)edges where both the end vertices
are in V (G). A graph is empty if it does not have any edges. A graph is near-empty if it
has exactly one edge. A graph is complete if it has no nonedges. A component of a graph
is a largest component if it has maximum number of vertices among all components of the
graph. Similarly, a component of a graph is a smallest component if it has minimum number
of vertices among all components of the graph. For a graph H which is not complete, the
vertex connectivity of H is the minimum integer c such that there exists a set S ⊆ V (H)
such that |S| = c and H − S is disconnected. For a graph H with vertex connectivity 1, a
vertex v in H is known as a cut vertex if H − v is disconnected. A graph is k-connected, if

D. Marx and R. B. Sandeep 72:7

the vertex connectivity of it is at least k. An induced subgraph H ′ of H is known as a 2-
connected component if H ′ is a maximal 2-connected induced subgraph of H. The adjectives
“largest” and “smallest” can be applied to 2-connected components as done for components.
A twin-star graph T`1,`2 for `1, `2 ≥ 0 is defined as the tree with two adjacent vertices u and
v such that |N(u) \ {v}| = `1, |N(v) \ {u}| = `2, and every vertex in N(u) ∪N(v) \ {u, v}
has degree 1. A graph G is H-free if G does not contain any induced copy of H. For two
graphs G1 and G2, the disjoint union of G1 and G2 denoted by G1 ∪G2 (or G2 ∪G1) is the
graph G such that V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪E(G2). For two graphs G1
and G2, the join of G1 and G2 denoted by G1 �G2 (or G2 �G1), is the graph G such that
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {(x, y) |x ∈ V (G1), y ∈ V (G2)}. A
complete graph, a cycle, and a path with t vertices are denoted by Kt, Ct, and Pt respectively.
By Kt − e, we denote the graph obtained by deleting an edge from a complete graph on t

vertices. We call a graph non-regular if it is not regular. A modular decomposition M of a
graph G is a partitioning of its vertices into maximal sets, known as modules, such that for
every set M ∈M, every vertex in M has the same neighborhood outside M . LetM′ ⊆M.
Let V ′ =

⋃
M∈M′ M . Then we say thatM′ corresponds to V ′. For a set S of graphs, by S

we denote the set of complements of graphs in S. Figure 2 shows all graphs with at most
four vertices which are neither empty nor complete.

For t ≥ 3, let Jt be the graph obtained from K2 � tK1 and C4 by identifying an edge of
C4 with the edge between the highest degree vertices in K2� tK1. Let Qt be the graph graph
obtained from K2,t, for some t ≥ 3, by adding a path of length three between the highest
degree vertices in K2,t. Let H, A, D, B, S denote the graphs (H, A, D, B, S respectively)
shown in Figures 1a, 1b, 1c, and 3a. Let F be the union of graphs in the classes of graphs
shown in column F of Figure 3b. The graphs in S and F are handled in Section 4 and the
graphs in A and B are handled in Section 5. For all these classes of graphs, we use subscripts
to identify each graph/graph class. For example H1 is P3 ∪ 2K1 and F1 is the class of graphs
K1,t. Let W be the set H ∪H ∪A ∪A ∪D ∪ D ∪ B ∪ B ∪ S ∪ S ∪ F ∪ F . We observe that
W =W.

Parameterized problems and transformations. A parameterized problem is a classical
problem with an additional integer input known as the parameter. A parameterized problem
admits a polynomial kernel if there is a polynomial-time algorithm which takes as input an
instance (I, k) of the problem and outputs an instance (I ′, k′) of the same problem, where
|I ′|, k′ ≤ p(k), where p(k) is a polynomial in k, such that (I, k) is a yes-instance if and only
if (I ′, k′) is a yes-instance. A parameterized problem is incompressible if it does not admit a
polynomial kernel. A Polynomial Parameter Transformation (PPT) from one parameterized
problem Q to another parameterized problem Q′ is a polynomial-time algorithm which takes
as input an instance (I, k) of Q and produces an instance (I ′, k′) of Q′ such that (I, k) is
a yes-instance of Q if and only if (I ′, k′) is a yes-instance of Q′, and k′ ≤ p(k), for some
polynomial p(.). It is known that if there is a PPT from Q to Q′, then if Q is incompressible,
then so is Q′. We refer to the book [11] for various concepts in parameterized algorithms
and complexity.

The parameterized problems we deal with in this paper are listed below.

H-free Edge Editing: Given a graph G and an integer k, do there exist at most
k edges such that editing (adding or deleting) them in G results in an H-free graph?
Parameter: k

ESA 2020

72:8 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

H-free Edge Deletion: Given a graph G and an integer k, do there exist at most k

edges such that, deleting them from G results in an H-free graph? Parameter: k

H-free Edge Completion: Given a graph G and an integer k, do there exist at most
k edges such that, adding them in G results in an H-free graph? Parameter: k

Basic results. Proposition 4 follows from the observations that (G, k) is a yes-instance of
H-free Edge Editing(Deletion) if and only if (G, k) is a yes-instance of H-free Edge
Editing(Completion). It enables us to focus only on H-free Edge Editing and H-free
Edge Deletion.

I Proposition 4 (folklore). Let H be any graph. Then H-free Edge Deletion is incom-
pressible if and only if H-free Edge Completion is incompressible. Similarly, H-free
Edge Editing is incompressible if and only if H-free Edge Editing is incompressible.

For graphs H and H ′, by “H simulates H ′” and by “H ′ is simulated by H”, we mean
that, there is a PPT from H ′-free Edge Editing to H-free Edge Editing, there is
a PPT from H ′-free Edge Deletion to H-free Edge Deletion, and there is a PPT
from H ′-free Edge Completion to H-free Edge Completion. We observe that this
is transitive, i.e., if H simulates H ′ and H ′ simulates H ′′, then H simulates H ′′. A set of
graphs H is called a base for a set G of graphs if for every graph H ∈ G there is a graph
H ′ ∈ H such that H simulates H ′. The objective of the rest of the paper is to find, for each
of the problems, a base H ∪ X for all graphs with at least five vertices, except the trivial
cases, such that the following conditions are satisfied: (i) H is finite and the incompressibility
is not known for any graph in it; (ii) for every graph in X , the problem is known to be
incompressible.

Proposition 4 implies Corollary 5 and Proposition 6 can be deduced directly from the
definitions.

I Corollary 5. Let H and H ′ be graphs such that H simulates H ′. Then H simulates H ′.

I Proposition 6. Let H be a base for a set G of graphs. Assume that for every graph H ′ ∈ H,
H ′-free Edge Editing (Deletion) is incompressible. Then for every graph H ∈ G,
H-free Edge Editing (Deletion) is incompressible.

Intuitively, if H ′ is an induced subgraph of H, then H-free Edge Editing (Deletion)
seems harder than H ′-free Edge Editing (Deletion). However, there is no general argu-
ment why this should be true: there does not seem to be a completely general reduction that
would reduce H ′-free Edge Editing (Deletion) to H-free Edge Editing (Deletion).
There is, however, a fairly natural idea for trying to do such a reduction: we extend the graph
by attaching copies of H −H ′ at every place where a copy of H ′ can potentially appear. The
following construction is essentially the same as the main construction used in [2].

I Construction 1 (see [2]). Let (G′, k, H, V ′) be an input to the construction, where G′ and
H are graphs, k is a positive integer and V ′ is a subset of vertices of H. We construct a
graph G from G′ as follows. For every injective function f : V ′ −→ V (G′), do the following:

Introduce k + 1 sets of vertices V1, V2, . . . , Vk+1, each of size |V (H) \ V ′| , and k + 1
bijective functions gi : V (H) −→ (f(V ′) ∪ Vi), for 1 ≤ i ≤ k + 1, such that gi(v′) = f(v′)
for every v′ ∈ V ′;

D. Marx and R. B. Sandeep 72:9

For each set Vi, introduce an edge set Ei ={(u, v) |u∈(f(V ′)∪Vi), v∈Vi, (g−1
i (u), g−1

i (v))∈
E(H)}.

This completes the construction. Let the constructed graph be G.

For convenience, we call every set Vi of vertices introduced in the construction as a
satellite and the vertices in it as satellite vertices. This reduction works correctly in one
direction: it ensures that the operations that make the new graph G H-free should ensure
that the copy of G′ inside G is H ′-free.

I Proposition 7 (see Lemma 2.6 in [2]). Let G be obtained by Construction 1 on the input
(G′, k, H, V ′), where G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H). Then, if
(G, k) is a yes-instance of H-free Edge Editing (Deletion), then (G′, k) is a yes-instance
of H ′-free Edge Editing (Deletion), where H ′ is H[V ′].

However, the other direction of the correctness of the reduction does not hold in general (this
is easy to see for example for H = K1,2 and H ′ = K2). As we shall see, there are particular
cases where we can prove the converse of Proposition 7, for example, when H −H ′ consists
of exactly the highest- or lowest-degree vertices. Application of such arguments will be our
main tool in reducing the complexity of H-free Edge Editing (Deletion) to simpler
cases. Propositions 8 to 11 summarize the major results on the incompressibility of H-free
edge modification problems known so far.

I Proposition 8 ([4]). Assuming NP 6⊆ coNP/poly, H-free Edge Editing, H-free Edge
Deletion, and H-free Edge Completion are incompressible if H is either of the following
graphs.
(i) C` for any ` ≥ 4;
(ii) P` for any ` ≥ 5;
(iii) 2K2.

We observe that Proposition 8(iii) follows from Proposition 8(i) and Proposition 4.

I Proposition 9 ([4]). Assuming NP 6⊆ coNP/poly, for 3-connected graphs H, H-free Edge
Editing and H-free Edge Deletion are incompressible if H is not complete and H-free
Edge Completion is incompressible if H has at least two nonedges.

I Proposition 10 ([4], folklore). If H is a complete or empty graph, then H-free Edge
Editing admits polynomial kernelization. If H is complete or has at most one edge then
H-free Edge Deletion admits polynomial kernelization. If H is an empty graph or has
at most one nonedge then H-free Edge Completion admits polynomial kernelization.

I Proposition 11. H-free Edge Editing, H-free Edge Deletion, and H-free Edge
Completion admit polynomial kernels when H is a P3 [6, 15], P4 [16], paw [7, 13], or a
diamond [5, 9].

3 Churning

In this section, we introduce and analyze the churning procedure. The main result of the
section is that assuming incompressibility for the class W of graphs defined in the previous
section explains incompressibility for every graph with at least five vertices, except the trivial
cases. Recall that W is not finite, as it contains the infinite families shown in Figure 3b. In
Sections 4 and 5, we will further reduce W to a finite set.

ESA 2020

72:10 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

S S # S S # S S # S S

1 10 19 28

2 11 20 29

3 12 same 21 30

4 13 22 31

5 14 23 32

6 15 24 same 33

7 16 25 34

8 17 26 35

9 18 27 36

(a) The set S of graphs.

F F Comment # F F Comment

1 K2,t Kt ∪K2 4 ≤ t 6 (Kt − e) ∪K2 (Kt − e) ∪K2 4 ≤ t

2 K1,t Kt ∪K1 5 ≤ t 7 K1,t ∪K2 K1,t ∪K2 4 ≤ t

3 K2 � tK1 Kt ∪ 2K1 4 ≤ t 8 (Kt − e) ∪K1 (Kt − e) ∪K1 6 ≤ t

4 Tt,1 Tt,1 4 ≤ t 9 Jt Jt 3 ≤ t

5 (Kt − e) ∪ 2K1 (Kt − e) ∪ 2K1 4 ≤ t 10 Qt Qt 3 ≤ t

(b) The set F of infinite sets of graphs.

Figure 3

I Lemma 12. If H-free Edge Editing is incompressible for every H ∈ W, then H-free
Edge Editing is incompressible for every H having at least five vertices but is neither
complete nor empty, where the incompressibility assumes NP 6⊆ coNP/poly.

I Lemma 13. If H-free Edge Deletion is incompressible for every H ∈ W, then H-
free Edge Deletion is incompressible for every H having at least five vertices and at least
two edges but not complete, where the incompressibility assumes NP 6⊆ coNP/poly.

Corollary 14 follows from Lemma 13, Proposition 4 and from the fact that W =W.

I Corollary 14. If H-free Edge Completion is incompressible for every H ∈ W, then
H-free Edge Completion is incompressible for every H having at least five vertices and
at least two nonedges but not empty, where the incompressibility assumes NP 6⊆ coNP/poly.

D. Marx and R. B. Sandeep 72:11

By XE we denote the set of all graphs (and their complements) listed in Proposition 8,
Proposition 9, and Theorem 18 for which the incompressibility is known (assuming NP 6⊆
coNP/poly) for H-free Edge Editing. By YE , we denote the set of all graphs (and their
complements) listed in Proposition 10 and 11 for which there exist polynomial kernels for
H-free Edge Editing; additionally, we include into YE the claw and its complement (as
we do not want to conjecture the incompressibility for these cases). Similarly, we define the
set XD of “hard” and the set YD of “nonhard” cases for H-free Edge Deletion. More
formally,

XD = {C`, C` for all ` ≥ 4,

P`, P` for all ` ≥ 5,

H such that H is regular but is neither complete nor empty,
H such that either H is 3-connected but not complete
or H is 3-connected with at least two nonedges}

XE = XD ∪ {H such that H has at most one edge and at least five vertices}
YE = {Kt, Kt for all t ≥ 1,

P3, P3, P4,

diamond,diamond,paw,paw, claw, claw}
YD = YE ∪ {H such that H has at most one edge and at least five vertices}

Additionally we define Y ′ = {P3, P3, P4, claw, claw,paw,paw,diamond,diamond}. We
observe that Y ′ ⊆ YE ∩ YD and the set of graphs with at most four vertices is a subset
of XE ∪ YE and XD ∪ YD. Further, we observe that near-empty graphs with at least five
vertices are in YD but their complements are 3-connected and are in XD. We also note that
both these graphs and their complements are in XE .

The main technical result of the section is the following lemma. It states that if a graph
is not in the set YD of “easy” graphs, then it simulates a “hard” graph in XD or W (and
there is a similar result for XE and YE).

I Lemma 15. If H /∈ YD, then H simulates a graph in XD ∪ W. If H /∈ YE, then H

simulates a graph in XE ∪W.

In the rest of the paper, integer ` and set V` denote the lowest degree and the set of lowest
degree vertices in H respectively; integer h and set Vh denote the highest degree and the set
of highest degree vertices in H respectively; and set Vm denotes the set V (H) \ (V` ∪ Vh).
By h∗ we denote the degree of vertices of Vh in H, i.e., h∗ = |V (H)| − h− 1.

Now we introduce a procedure (Churn) which is similar to the one used to obtain
dichotomy results on the polynomial-time solvable and NP-hard cases of these problems
(see Section 5 in [2]). The basic observation is that H can simulate the graphs H − V` and
H − Vh. This follows from proving that Construction 1 gives a PPT in these cases.

I Proposition 16 (Corollary 2.9 in [2]). Let H ′ be H − V` or H − Vh. Then H simulates H ′.

To deal with both H-free Edge Editing and H-free Edge Deletion in a uniform
way, we define X = XE and Y = YD. We observe that X ∪ Y = X ∪ Y and X ∪ Y =
XE ∪ YE = XD ∪ YD.

ESA 2020

72:12 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

Churn(H):
Step 1: If H is regular, then return H.
Step 2: If H − V` /∈ Y, then return Churn(H − V`).
Step 3: If H − Vh /∈ Y, then return Churn(H − Vh).
Step 4: Return H.

Proposition 16 implies Corollary 17.

I Corollary 17. Let H ′ be the output of Churn(H). Then H simulates H ′.

We prove Lemma 15 by analyzing Churn() and showing that the graph returned by it
always satisfies the requirements of the lemma. The procedure first handles the case when
H is regular. In Section 3.1, we show that if H is regular, then it is safe to return H, as it
is already in XD ⊆ XE . If H is not regular, then H − V` and H − Vh are both defined. If
one of these two graphs is not in Y, then Proposition 16 allows us to proceed by recursion
on that graph. Step 4 is reached when both H − V` and H − Vh are in Y. However, at this
point the conditions on H − V` and H − Vh give us important structural information about
the graph H, which can be exploited to show that it is in XD ∪W. Recall that Y is the
union of complete, empty, near-empty, and the finite graphs in Y ′. This means we can split
the problem into 4 · 4 different cases, with very strict structural restrictions on H in each
case. These cases are analysed in a sequence of lemmas/corollaries (Lemma 19 to Lemma 34
in Sections 3.2–3.5).

3.1 Regular graphs
In this section, we handle the case when H is regular.

I Theorem 18. Let H be a regular graph. Then H-free Edge Deletion, H-free Edge
Completion, and H-free Edge Editing are incompressible if and only if H is neither
complete nor empty, where the incompressibility assumes NP 6⊆ coNP/poly.

3.2 Small graphs
If both H − V` and H − Vh are in the in the finite set Y ′ of graphs, then H has bounded
size. An exhaustive computer search showed the correctness of the procedure in this case.

I Lemma 19. Let H /∈ X ∪Y be such that both H −V` and H −Vh are in Y ′. Then H ∈ W.

3.3 Cliques and empty graphs
In this section, we consider the cases when both H − V` and H − Vh are cliques or empty
graphs. In this case, the structure of H is very limited. In principle, we need to consider
four cases separately depending on the type of H − V` and H − Vh. However, a simple
complementation argument shows that the case when both of them are cliques is equivalent
to the case when both of them are empty.

I Lemma 20. Let H /∈ X ∪ Y be such that both H − V` and H − Vh are complete graphs.
Then H ∈ W.

Corollaries in this section and in Sections 3.4 and 3.5 use the facts that various sets we
consider are self-complementary, i.e., X ∪ Y = X ∪ Y,W =W,Y ′ = Y ′.

D. Marx and R. B. Sandeep 72:13

I Corollary 21. Let H /∈ X ∪ Y be such that both H − V` and H − Vh are empty graphs.
Then H ∈ W.

I Lemma 22. Let H /∈ X ∪ Y be such that H − V` is a complete graph and H − Vh is an
empty graph. Then H ∈ W.

Our last case is when H − V` is empty and H − Vh is complete. Let us observe that this
case does not follow from Lemma 22 by complementation. If V` and Vh are the lowest- and
highest-degree vertices in H, then V` = Vh, Vh = V` and hence H − V` is empty and H − Vh

is a clique, that is, we have the same condition as for H. Fortunately, this last case is very
simple to handle.

I Lemma 23. There exists no graph H /∈ X ∪ Y such that H − V` is an empty graph and
H − Vh is a complete graph.

3.4 Cliques/empty graphs plus small graphs
Next we consider the cases when one of H − V` or H − Vh is a clique or an empty graph,
while the other is a graph from the finite set Y ′. Assuming that H is not too small, this
means that H is essentially a clique or an empty graph, and intuitively it should follow that
H or H is 3-connected, respectively. However, this requires a detailed proof considering
several cases.

I Lemma 24. Let H /∈ X ∪ Y be such that H − V` ∈ Y ′ and H − Vh is a complete graph.
Then H ∈ W.

I Corollary 25. Let H /∈ X ∪ Y be such that H − V` is an empty graph and H − Vh ∈ Y ′.
Then H ∈ W.

I Lemma 26. Let H /∈ X ∪ Y be such that H − V` ∈ Y ′ and H − Vh is an empty graph.
Then H ∈ W.

I Corollary 27. Let H /∈ X ∪ Y be such that H − V` is a complete graph and H − Vh ∈ Y ′.
Then H ∈ W.

3.5 Near-empty graphs
Finally, we consider the cases when one of H − V` or H −Hh is near empty. These cases are
similar to the corresponding ones for empty graphs, but more technical and a higher number
of corner cases need to be handled. Let us remark that this part of the proof is needed only
for the H-free Edge Deletion problem: near-empty graphs are not in YE , hence if our
goal is to prove Theorem 1 for H-free Edge Editing, then the churning procedure can
recurse on such graphs.

I Lemma 28. Let H /∈ X ∪ Y be such that H − V` is a complete graph and H − Vh is a
near-empty graph. Then H ∈ W.

I Lemma 29. There exists no H /∈ X ∪ Y such that H − V` is a near-empty graph and
H − Vh is a complete graph.

I Lemma 30. Let H /∈ X ∪Y such that H−V` is an empty graph and H−Vh is a near-empty
graph. Then H ∈ W.

I Lemma 31. Let H /∈ X ∪ Y such that H − V` is a near-empty graph and H − Vh is an
empty graph. Then H ∈ W.

ESA 2020

72:14 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

I Lemma 32. Let H /∈ X ∪ Y be such that both H − V` and H − Vh are near-empty graphs.
Then H ∈ W.

I Lemma 33. Let H /∈ X ∪ Y be such that H − V` is a near-empty graph and H − Vh ∈ Y ′.
Then H ∈ W.

I Lemma 34. Let H /∈ X ∪ Y be such that H − V` ∈ Y ′ and H − Vh is a near-empty graph.
Then H ∈ W.

4 Reductions

Recall that we defined W = H ∪H ∪A ∪A ∪D ∪D ∪ B ∪ B ∪ S ∪ S ∪ F ∪ F and Section 3
reduced our main questions to assuming incompressibility for the set W. In this section, we
further refine the result and show that incompressibility needs to be assumed only for the
finite set W ′ = H∪H∪A∪A∪B ∪D. That is, we recall and introduce some further simple
reductions and use them to prove that every graph in W \W ′ simulates a graph in W ′ ∪XD.
To begin with, we observe that deleting the lowest degree vertices in the graphs in B ∪ D
results in 3-connected graphs which are not complete. Then by Proposition 16, we have:

I Proposition 35. If H ∈ B∪D, then H-free Edge Editing and H-free Edge Deletion
are incompressible, assuming NP 6⊆ coNP/poly.

The following reductions are based on Construction 1 and a few other similar constructions.

4.1 Reductions based on Construction 1
The following lemma can be proved using a straight-forward application of Construction 1.

I Lemma 36. Let H be J ∪Kt, for some graph J and integer t ≥ 1, where the Kt is induced
by V`. Let V ′ be V (H) \ {v}, where v is any vertex in the Kt. Let H ′ be H[V ′]. Then H

simulates H ′. In particular, H simulates J ∪K1.

I Corollary 37.
(i) Let H be Kt ∪K2, for t ≥ 4 (∈ F1). Then H simulates Kt ∪K1 (∈ {H5} ∪ F2).
(ii) Let H be (Kt − e) ∪ K2, for t ≥ 4 (∈ F6). Then H simulates (Kt − e) ∪ K1 (∈
{H8, D2} ∪ F8).

Next we consider the removal of a path of degree-2 vertices. We can prove the correctness
of the reduction only under a certain uniqueness condition on the path.

I Lemma 38. Let H be a graph with minimum degree two and let p ≥ 2 be an integer such
that there is a unique induced path P of length p with the property that all the internal vertices
of the path are having degree exactly two in H. Let H ′ be obtained from H by removing all
internal vertices of P . Then H simulates H ′.

I Corollary 39. Let H be Jt, for some t ≥ 3 (∈ F9). Then H simulates K2 � tK1 (∈
{H3} ∪ F3).

I Corollary 40. Let H be Qt, for some t ≥ 3 (∈ F10). Then H simulates K2,t (∈ {S1}∪F1).

I Corollary 41. (i) S5 simulates C4.
(ii) S9 simulates H4.
(iii) Let H be S15. Then H simulates H9 ∪K1. Further H simulates H9 (Proposition 16).
(iv) S22 simulates diamond ∪K2 (∈ F6).

D. Marx and R. B. Sandeep 72:15

Lemma 42 essentially says the following: If H has vertex connectivity 1 and has a unique
smallest 2-connected component which is a “leaf” in the tree formed by the 2-connected
components, then H simulates a graph obtained by removing all vertices in the 2-connected
component except the cut vertex.

I Lemma 42. Let H be a graph with vertex connectivity 1 and be not a complete graph. Let
C be the set of all 2-connected components of H having exactly one cut vertex of H. Assume
that there exists a unique smallest (among C) 2-connected component J in C. Let v be the
cut vertex of H in J . Let H ′ be H − {J \ {v}}. Then H ′ is simulated by H.

I Corollary 43.

(i) S20 simulates K2,4 (∈ F1). (ii) S27 simulates (K5 − e) ∪K2 (∈ F6).

I Lemma 44. Let H be S35. Then H simulates a 3-connected graph, which is not complete
(∈ XD).

4.2 Reductions based on Construction 2
The following is a simplified version of Construction 1.

I Construction 2. Let (G′, k, `) be an input to the construction, where G′ is a graph and k

and ` are positive integers. For every set S of ` vertices in G′ introduce a clique C of k + 1
vertices and make all the vertices in C adjacent to all the vertices in S.

As before, we call every clique C introduced during the construction as a satellite and
the vertices in it as satellite vertices. Lemma 45 can be proved using a straight-forward
application of Construction 2. It says that if H satisfies some properties, then H simulates
H ′ where H ′ is obtained by removing one vertex from each module of H contained within V`.

I Lemma 45. Let H be a non-regular graph such that the following conditions hold true:
(i) 1 ≤ ` ≤ 2, |V (H)| ≥ 5;
(ii) V` is an independent set, Vh ∪ Vm induces a connected graph, and every vertex in Vh is

adjacent to at least one vertex in V`;
(iii) Every vertex in Vm has at least ` + 1 neighbors outside Vm or there exists no pair u, v

of adjacent vertices in Vm such that N(u) \ {v} = N(v) \ {u}.
Consider a modular decomposition M of H. Let M′ ⊆ M corresponds to V`. Let H ′

be the graph obtained from H by removing one vertex from each module in M′. Then H

simulates H ′.

The following corollary lists many graphs that can be handled by Lemma 45.

I Corollary 46.

(i) S7 simulates H9.
(ii) S8 simulates A1.
(iii) S10 simulates C4.
(iv) S11 simulates H7.
(v) S12 simulates S2.
(vi) S13 simulates S3.
(vii) S14 simulates B1.

(viii) S18 simulates A1.
(ix) S19 simulates S3.
(x) S21 simulates H4.
(xi) S23 simulates A7.
(xii) S24 simulates S7.
(xiii) S25 simulates H1.
(xiv) S26 simulates S8.

(xv) S28 simulates A9.
(xvi) S29 simulates S17.
(xvii) S30 simulates S19.
(xviii) S32 simulates S16.
(xix) S33 simulates K1,4 ∪K2 ∈ F7.
(xx) S34 simulates K1,5 ∪K2 ∈ F7.
(xxi) S36 simulates S14.

ESA 2020

72:16 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

The following three corollaries are obtained by application of Lemma 45: they show that
in certain families of graphs, every member simulates the simplest member. Corollary 47
deals with star graphs (K1,t). For every graph H in this class, V` is a single module of the
graph and H simulates a graph H ′, where H ′ is obtained by removing one vertex from V`.
Corollary 48 handles K2 � sK1, where V` forms a single module of the graph. As in the
previous case, H ′ is obtained by removing one vertex from V`. Corollary 49 deals with the
set of twin-star graphs (Tt1,t2). For every graph H in this class, there are two modules of
H in V` : t1 vertices adjacent to one vertex in H − V` and t2 vertices adjacent to the other
vertex in H − V`. Then H simulates a graph H ′, where H ′ is obtained by removing one
vertex each from the two modules.

I Corollary 47 (see Lemma 6.4 in [2] for a partial result). Let H be K1,t, for any t ≥ 5 (∈ F2).
Let H ′ be K1,t−1. Then H simulates H ′. Furthermore, H simulates H5 (K1,4).

I Corollary 48 (see Lemma 4.5 in [1] for a partial result). Let H be K2 � sK1, for any s ≥ 4
(∈ F3) and let H ′ be K2 � (s− 1)K1. Then H simulates H ′. Furthermore, H simulates H3
(K2 � 3K1).

I Corollary 49 (see Lemma 6.6 in [2] for a partial result). Let H be a twin-star graph Tt1,t2 ,
such that t1, t2 ≥ 1. Let H ′ be Tt1−1,t2−1. Then H simulates H ′. In particular, if H is Tt,1,
for some t ≥ 4 (∈ F4), then H simulates K1,t (∈ {H5} ∪ F2).

I Lemma 50. K2,3 (= S1) simulates C4.

4.3 Reductions based on Construction 3

Now we give another construction that will be used in a few reductions.

I Construction 3. Let (G′, k, t) be an input to the construction, where G′ is a graph and
k and t are positive integers. For every set S of t vertices in G′ introduce an independent
set IS of k + 2 vertices such that every vertex in IS is adjacent to every vertex in G′ except
those in S. Let

⋃
S⊆V (G′),|S|=t IS = I. Let the resultant graph be G.

I Lemma 51. Let H be a graph such that Vh forms a clique and for every pair of vertices
u, v ∈ Vh, H −u is isomorphic to H − v. Further assume that there exists no independent set
S of size s ≥ 2 where each vertex in S has degree at least h− s + 1 in H. Then H simulates
H − u, where u is any vertex in Vh.

Additional results used by Corollary 52 are shown in parenthesis.

I Corollary 52.

(i) S2 simulates H7.
(ii) S3 simulates H6.
(iii) S16 simulates S3 (Proposition 16).

(iv) S17 simulates H1 (Proposition 16).

(v) S31 simulates S3 (Proposition 16)

I Lemma 53. Let H be (Kt − e) ∪K1 for t ≥ 6 (F8). Let H ′ be Kt−2 ∪K1 (∈ {H5} ∪ F2).
Then H simulates H ′.

D. Marx and R. B. Sandeep 72:17

4.4 Other reductions
To resolve graphs in F7 (= K1,t ∪K2), we resort to a known reduction. There is a PPT in [2]
from H ′-free Edge Editing to H-free Edge Editing, where H ′ is a largest component
in H. It is a composition of two reductions: one from H ′-free Edge Editing to H ′′-free
Edge Editing and another from H ′′-free Edge Editing to H-free Edge Editing,
where H ′′ is the union of all components in H isomorphic to H ′. The first reduction uses a
simple construction (take a disjoint union of the input graph and join of k + 1 copies of H ′)
and the second reduction uses Construction 1.

I Proposition 54 (see Lemma 3.5 in [2]). Let H ′ be a largest component of H. Then H

simulates H ′.

I Corollary 55. Let H be K1,t∪K2, for t ≥ 4 (∈ F7). Then H simulates K1,t (∈ {H5}∪F2).

The following statement consider reduction that involve the removal of independent
vertices.

I Lemma 56. Let H be J ∪ tK1, for any t ≥ 2 such that J has no component which is a
clique. Let H ′ be J ∪ (t− 1)K1. Then H simulates H ′. In particular, H simulates J ∪K1.

I Corollary 57.
(i) S4 simulates H2.
(ii) S6 simulates H6.
(iii) Let H be (Kt − e) ∪ 2K1, for t ≥ 4 (∈ F5). Then H simulates (Kt − e) ∪ K1

(∈ {H8, D2} ∪ F8).

Summary of results in this section handling graphs in S and F are given in Figure 4a
and 4b respectively. Lemma 58 follows from Corollary 5, Proposition 35, the transitivity of
PPTs, and other results in this section (see Figures 4a and 4b) for details.

I Lemma 58. Let H ∈ W \W ′. Then H simulates a graph in W ′ ∪ XD.

5 Incompressibility results for the graphs in A and B

In this section, we prove that for every graph H ∈ A ∪A, all three problems H-free Edge
Editing, H-free Edge Deletion, and H-free Edge Completion are incompressible,
assuming NP 6⊆ coNP/poly. With the same assumption, we prove that H-free Edge Dele-
tion is incompressible for every graph H ∈ B; Proposition 4 then implies incompressibility
of H-free Edge Completion for every H ∈ B.

I Theorem 59. Assuming NP 6⊆ coNP/poly:
(i) Let H ∈ A. Then H-free Edge Editing is incompressible.
(ii) Let H ∈ A ∪A ∪ B. Then H-free Edge Deletion is incompressible.
(iii) Let H ∈ A ∪A ∪ B. Then H-free Edge Completion is incompressible.

We apply the technique used by Cai and Cai [4] by which they obtained a complete
dichotomy on the incompressibility of H-free edge modification problems on 3-connected
graphs H. We will give a self-contained summary of their proof technique, with only a few
references to proofs of formal statements. The reader is referred to [4] for a more detailed
exposition of terminology and concepts discussed in this section.

The first step in the proof is to establish incompressibility for the restricted versions of
H-free Edge Deletion and H-free Edge Completion, where only allowed edges can
be deleted/added. Then deletion and completion enforcer gadgets can be used to reduce

ESA 2020

72:18 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

H Simulates By H Simulates By H Simulates By

S1 C4 Lemma 50 S13 S3 Corollary 46 S25 H1 Corollary 46

S2 H7 Corollary 52 S14 B1 Corollary 46 S26 S8 Corollary 46

S3 H6 Corollary 52 S15 H9 Corollary 41 S27 a graph in F6 Corollary 43

S4 H2 Corollary 57 S16 S3 Corollary 52 S28 A9 Corollary 46

S5 C4 Corollary 41 S17 H1 Corollary 52 S29 S17 Corollary 46

S6 H6 Corollary 57 S18 A1 Corollary 46 S30 S19 Corollary 46

S7 H9 Corollary 46 S19 S3 Corollary 46 S31 S3 Corollary 52

S8 A1 Corollary 46 S20 a graph in F1 Corollary 43 S32 S16 Corollary 46

S9 H4 Corollary 41 S21 H4 Corollary 46 S33 a graph in F7 Corollary 46

S10 C4 Corollary 46 S22 a graph in F6 Corollary 41 S34 a graph in F7 Corollary 46

S11 H7 Corollary 46 S23 A7 Corollary 46 S35 a graph in XD Lemma 44

S12 S2 Corollary 46 S24 S7 Corollary 46 S36 S14 Corollary 46

(a) Summary of results in Section 4 handling graphs in S.

H ∈ Simulates a graph in By H ∈ Simulates a graph in By

F1 {H5} ∪ F2 Corollary 37 F6 {H8, D2} ∪ F8 Corollary 37

F2 {H5} Corollary 47 F7 {H5} ∪ F2 Corollary 55

F3 {H3} Corollary 48 F8 {H5} ∪ F2 Lemma 53

F4 {H5} ∪ F2 Corollary 49 F9 {H3} ∪ F3 Corollary 39

F5 {H8, D2} ∪ F8 Corollary 57 F10 {S1} ∪ F1 Corollary 40

(b) Summary of results in Section 4 handling graphs in F .

Figure 4

the restricted problems to the original versions. Cai and Cai [4] presented constructions
that were proved to work correctly when H is 3-connected. We show, by careful inspection,
that the same technique works for certain graphs H that are not 3-connected. For certain
graphs H, we can prove incompressibility of the restricted problem, but enforcer gadgets of
the required form provably do not exist. In these cases, we use ad hoc ideas to reduce the
restricted version to the original one. In yet further cases, we need even trickier reductions,
where we reduce H ′-free Edge Deletion to H-free Edge Deletion for some H ′ 6= H.

5.1 Incompressibility results for the restricted problems
A graph is called edge-restricted if a subset of its edges are marked as forbidden. All edges
other than forbidden are allowed. A graph is called nonedge-restricted if a subset of its
nonedges are marked as forbidden. All nonedges other than forbidden are allowed.

Restricted H-free Edge Deletion: Given a graph G, an integer k, and a set R of
edges of G, do there exist at most k edges disjoint from R such that deleting them from
G results in an H-free graph? Parameter: k

Restricted H-free Edge Completion: Given a graph G, an integer k, and a set R

of nonedges of G, do there exist at most k nonedges disjoint from R such that adding
them in G results in an H-free graph? Parameter: k

D. Marx and R. B. Sandeep 72:19

Propagational formula satisfiability. A ternary Boolean function f(x, y, z) (where x, y, and
z are either Boolean variables or constants 0 or 1) is propagational if f(1, 0, 0) = 0, f(0, 0, 0) =
f(1, 0, 1) = f(1, 1, 0) = f(1, 1, 1) = 1. This has the meaning: if x is true then either y is true
or z is true.

Propagational-f Satisfiability: Given a conjunctive formula ϕ of a propagational
ternary function f with distinct variables in each clause of ϕ, find whether there exists a
satisfying truth assignment with weight at most k. The parameter we consider is k.

I Proposition 60 (Theorem 3.4 in [4]). For any propagational ternary Boolean function
f , Propagational-f Satisfiability on 3-regular conjunctive formulas (every variable
appears exactly three times) admits no polynomial kernel, assuming NP 6⊆ coNP/poly.

Satisfaction-testing components. For H-free Edge Deletion, a satisfaction-testing
component SD(x, y, z) is a constant-size edge-restricted H-free graph with exactly three
allowed edges {x, y, z} such that there is a propagational Boolean function f(x, y, z) such
that f(x, y, z) = 1 if and only if the graph obtained from SD(x, y, z) by deleting edges in
{x, y, z} with value 1 is H-free. For H-free Edge Completion, a satisfaction-testing
component SC(x, y, z) is a constant-size nonedge-restricted H-free graph with exactly three
allowed nonedges {x, y, z} such that there is a propagational Boolean function f(x, y, z) such
that f(x, y, z) = 1 if and only if the graph obtained from SC(x, y, z) by adding edges in
{x, y, z} with value 1 is H-free.

There is an easy construction (Lemma 4.3 in [4]) showing that SD(x, y, z) exists for every
connected graph H with at least four vertices but not complete and SC{x, y, z} exists for
every connected graph with at least four vertices and at least two nonedges. The construction
for this is as follows. SD{x, y, z}: Let x be a nonedge, and y and z be two edges in H. Then
H + x is a SD(x, y, z) where x, y, z are the only allowed edges. SC{x, y, z}: Let x be an edge,
and y and z be two nonedges in H. Then H − x is a SC(x, y, z) where x, y, z are the only
allowed nonedges.

Truth-setting components. For H-free Edge Deletion, a truth-setting component
(TD(u)) is a constant-sized, edge-restricted H-free graph such that it contains at least three
allowed edges x, y, z without a common vertex and admits exactly two deletion sets ∅ and
the set of all allowed edges. For H-free Edge Completion, a truth-setting component
(TC(u)) is a constant-sized, nonedge-restricted H-free graph such that it contains at least
three allowed nonedges x, y, z without a common vertex and admits exactly two completion
sets ∅ and the set of all allowed nonedges.

There is a construction given in [4] for TD(u) and TC(u) when H is 3-connected but not
complete. The constructions are given below.

Construction of TD(u): Let e′, e be a nonedge and an edge sharing no common vertex in
H. Let the basic unit U = H + e′ and set all edges except e and e′ in U as forbidden. Let p

be the number of vertices in H. Take p copies U1, U2, . . . , Up of U . Identify the edge e of Ui

with the edge e′ of Ui+1 to form a chain of U ’s. This is a basic chain B(u). Let us call the
unidentified edge e′ of U1 as the left-most allowed edge of B(u) and unidentified edge of Up

as the right-most allowed edge of B(u). Take three basic chains B0, B1, and B2. Attach them
in a cyclic fashion: Identify the right-most allowed edge of Bi with the left-most allowed
edge of Bi+1, where indices are taken mod 3. This is the claimed truth-setting component
TD(u). Let us call the allowed edges thus identified as variable edges. We note that there are
exactly three variable edges in TD(u).

ESA 2020

72:20 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

It is easy to see that, for every H, there are only two possible deletion sets in TD(u):
the empty set and the set of all allowed edges. To see this, observe that if we remove any
of the allowed edges, then it creates a copy of H in one of the units, forcing us to remove
the next allowed edge as well. However, it is not clear if these two deletion sets really make
the graph H free. As Cai and Cai [4] show, this construction for TD(u) works correctly for
3-connected graphs H: Since the “cycle” of basic units is long enough, every subgraph having
vertices from different basic units and having at most |V (H)| vertices has vertex connectivity
at most 2. In general, the construction may not give correct truth-setting components for
2-connected graphs H. But, as we shall see later, by carefully choosing e and e′ in these
constructions, we can obtain truth-setting components for many 2-connected graphs H.

Construction of TC(u): Let e′, e be a nonedge and an edge sharing no common vertex in
H. Let the basic unit U = H−e and set all nonedges except e and e′ in U as forbidden. Let p

be the number of vertices in H. Take p copies U1, U2, . . . , Up of U . Identify the nonedge e of
Ui with the nonedge e′ of Ui+1 to form a chain of U ’s. This is a basic chain B(u). Let us call
the unidentified nonedge e′ of U1 as the left-most allowed nonedge of B(u) and unidentified
nonedge of Up as the right-most allowed nonedge of B(u). Take three basic chains B0, B1,

and B2. Attach them in a cyclic fashion: Identify the right-most allowed nonedge of Bi with
the left-most allowed nonedge of Bi+1, where indices are taken mod 3. This is the claimed
truth-setting component TC(u). Let us call the allowed nonedges thus identified as variable
nonedges. We note that there are exactly three variable nonedges in TC(u). Similarly to
TD(u), we can argue that for any H, there are only two potential completion sets (the empty
set and the set of all allowed nonedges), and for 3-connected H, these two sets are indeed
completion sets.

The following is the construction used in the reduction from Propagational-f Satis-
fiability to Restricted H-free Edge Deletion (Completion).

I Construction 4. Let (ϕ, k, H) be an input to the construction, where ϕ is a 3-regular
conjunctive formula on a propagational ternary Boolean function f , and k is a positive integer.
The construction gives a graph Gϕ, an integer k′, and a set of restricted (non)edges in Gϕ.

For every clause in ϕ, introduce a satisfaction-testing component SD(x, y, z) (SC(x, y, z))
for H-free Edge Deletion (Completion).
If c ∈ {x, y, z} is 1, then the corresponding allowed (non)edge is deleted(added) and if
c = 0 then the corresponding allowed (non)edge is set as forbidden.
For every variable u in f , introduce a truth-setting component TD(u) (TC(u)) for H-free
Edge Deletion (Completion)
For every variable u, identify each of the variable (non)edges in TD(u) (TC(u)) with an
allowed (non)edge in a satisfaction-testing component corresponds to a different clause in
which u appears – since ϕ is 3-regular, u appears in exactly three clauses.

Let the graph obtained be Gϕ and let k′ = 3|V (H)|k. For the deletion problem the set R

of forbidden edges is all the edges in Gϕ except the allowed edges in the units. For the
completion problem, the set R of forbidden nonedges contains every nonedge of Gϕ except
the allowed nonedges in the units.

Let H be a graph and (ϕ, k) be an instance of a Propagational-f Satisfiability
problem. Let (Gϕ, k′, R) be the output of the Construction 4 applied on (ϕ, k, H). The
construction works correctly in one direction: If (Gϕ, k′, R) is a yes-instance of Restricted
H-free Edge Deletion (Completion), then (ϕ, k) is a yes-instance of Propagational-f
Satisfiability. To see this, let F be a solution of (Gϕ, k′, R). By the definition of TD(u)
(TC(u)), if an allowed (non)edge is in F then so is every allowed (non)edge in it. Therefore,

D. Marx and R. B. Sandeep 72:21

since |F | ≤ k′ = 3k|V (H)| and every truth-setting component has exactly 3|V (H)| many
allowed (non)edges, only at most k (non)edges of satisfaction-testing components are in F .
By the definition of SD(x, y, z) (SC(x, y, z)), if x ∈ F then either y or z is in F , otherwise
there is an induced H in Gϕ + F . Therefore, setting the variables to 1 corresponding to the
(non)edges, which are part of F , in satisfaction-testing components, we obtain that (ϕ, k) is a
yes-instance of Propagational-f Satisfiability. Thus we have the following Proposition.

I Proposition 61 (see Lemma 5.1 in [4]). Let (ϕ, k) be an instance of Propagational-f
Satisfiability. For a graph H, let (Gϕ, k′, R) be obtained by applying Construction 4 on
(ϕ, k, H). Then, if (Gϕ, k′, R) is a yes-instance of Restricted H-free Edge Deletion
(Completion) then (ϕ, k) is a yes-instance of Propagational-f Satisfiability.

We remark that the proof of Proposition 61 works even if we use a gadget for the
truth-setting component which satisfies only a weak property: it has at most two deletion
(completion) sets, the ∅ and the set of all allowed (non)edges. As we have seen, the
construction of TD(u) and TC(u) discussed above satisfies this weak property. To prove
the other direction, one needs to show that there is no induced H in the “vicinity” of a
satisfaction-testing component after deleting (adding) the (non)edges corresponding to the
variables being set to 1 in ϕ. This can be done very easily for 3-connected graphs H. Proving
this direction for 2-connected graphs H (if provable) requires careful structural analysis of
the constructed graph Gϕ. In Figure 5, we give various gadgets required for the proofs of
this section. We use unit as a general term to refer to a satisfaction-testing component or a
basic unit.

I Lemma 62. Let H ∈ {A1, A2, A3, A3, A4, A5, A7, A9}. Then Restricted H-free Edge
Deletion is incompressible, assuming NP 6⊆ coNP/poly.

The following corollary follows from the fact that there is no subgraph isomorphic to a
C4 where all edges are allowed in the graph Gϕ constructed in the proof of Lemma 62 for
Restricted H-free Edge Deletion, when H is a A1. We will be using this result later
to handle A7.

I Corollary 63. Let H be A1. Then, assuming NP 6⊆ coNP/poly, Restricted H-free
Edge Deletion is incompressible even if input graphs does not contain a subgraph (not
necessarily induced) isomorphic to H where all the side-edges of the diamond (a side-edge
of a diamond is an edge incident to a degree-2 vertex in the diamond) in the subgraph are
allowed.

I Lemma 64. Let H ∈ {A2, A7, A8, A9, B1, B2, B3}. Then Restricted H-free Edge
Completion is incompressible, assuming NP 6⊆ coNP/poly.

5.2 Using enforcers to reduce to the unrestricted problems
If we want to reduce Restricted H-free Edge Deletion to H-free Edge Deletion,
then there is a fairly natural idea to try: for each restricted edge e′ = x′y′, we introduce a
copy of H on set U of new vertices and identify x′y′ with xy, where x, y ∈ U are nonadjacent
vertices. Now U induces a copy of H plus an extra edge, but as soon as e′ is deleted, it
becomes a copy of H, effectively preventing the deletion of e′.

There are two problems with this approach. First, the solution could delete other edges
from the new copy of H, and then it is not necessarily true that the removal of e′ automatically
creates an induced copy of H. However, this problem is easy to avoid by repeating this

ESA 2020

72:22 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

Graph Deletion Completion

S(x, y, z) Basic unit Enforcer S(x, y, z) Basic unit Enforcer

A1

A2

A3

A3

A4

A5

A6

A7

A8

A9

B1

B2

B3

Figure 5 Various gadgets used in the proofs of this section. In a satisfaction-testing component
SD(x, y, z) (SC(x, y, z)), x is the darkened (non)edge added(deleted) in H to obtain the gadget,
and y and z are the other two darkened (non)edges. Both the allowed (non)edges in basic units
are darkened. The distinguished edge in a deletion enforcer and the distinguished nonedge in a
completion enforcer are darkened.

D. Marx and R. B. Sandeep 72:23

gadget construction k + 1 times: a solution of size at most k cannot interfere with all k + 1
gadgets. The second problem is more serious: it is possible that attaching the new vertices
creates a copy of H, even when e is not deleted. For certain graphs H, with a careful choice
of x and y we can ensure that this does not happen: no induced copy of H can go through
the separator x, y.

An H-free deletion enforcer (X, e) consists of an H-free graph X and a distinguished
edge e in X such that (a) X − e contains an induced H, and (b) for any graph G vertex
disjoint with X, and any edge e′ of G, all induced copies of H in the graph obtained by
attaching X to G through identifying e with e′ reside entirely inside G. Similarly, an H-free
completion enforcer (X, e) consists of an H-free graph X and a distinguished nonedge e such
that (a) X + e contains an induced H, and (b) for any graph G vertex disjoint with X, and
any nonedge e′ in G, all induced copies of H in the graph obtained by attaching X to G

through identifying e with e′ reside entirely inside G. It can be shown that if we can come up
with enforcer gadgets satisfying these conditions, then the ideas sketched above can be made
to work, and we obtain a reduction from the restricted problem to the unrestricted version.

I Proposition 65 (See Lemma 6.5 in [4]). For a graph H:
(i) If Restricted H-free Edge Deletion is incompressible and there exists an H-free

deletion enforcer, then H-free Edge Deletion is incompressible.
(ii) If Restricted H-free Edge Completion is incompressible and there exists an

H-free completion enforcer, then H-free Edge Completion is incompressible.
(iii) If H-free Edge Deletion is incompressible and there exists an H-free completion

enforcer, then H-free Edge Editing is incompressible.

In the rest of the section, we establish the existence of enforcer gadgets for certain graphs
H.

I Lemma 66. Let H ∈ {A1, A2, A3, A3, A4, A5}. Then the gadget X with a distinguished
edge e shown in the corresponding cell in the column “Enforcer” (under Deletion) in
Figure 5 is an H-free deletion enforcer.

I Lemma 67. Let H ∈ {A1, A2, A3, A4, A5, A6, A7, A8, A9, B1, B2, B3}. Then the gadget X

with a distinguished nonedge e shown in the corresponding cell in the column “Enforcer”
(under Completion) in Figure 5 is an H-free completion enforcer.

I Lemma 68. Let H ∈ {A1, A2, A3, A3, A4, A5}. Then H-free Edge Deletion and
H-free Edge Editing are incompressible, assuming NP 6⊆ coNP/poly.

Similarly, we can prove Lemma 69. The cases of H being A4 or A5 follows from the fact
that H and H are isomorphic (see Proposition 4).

I Lemma 69. Let H ∈ {A2, A4, A5, A7, A8, A9, B1, B2, B3}. Then H-free Edge Comple-
tion is incompressible, assuming NP 6⊆ coNP/poly.

5.3 Further tricky reductions
There are graphs for which we can show that no completion/deletion enforcers, as defined
in the previous section, exist (this can be checked by going through every pair x, y of
(non)adjacent vertices). For some of these graphs, we can find a different way of enforcing
that certain edges are forbidden; typically, we introduce some vertices that are used globally
by every enforcer gadget. Furthermore, there are graphs H, where we were unable to obtain
a reduction from Restricted H-free Edge Deletion (Completion), but could choose
an induced subgraphs H ′ ⊆ H and obtain a reduction from Restricted H ′-free Edge
Deletion (Completion), whose incompressibility was established earlier.

ESA 2020

72:24 Incompressibility of H-Free Edge Modification Problems: Towards a Dichotomy

I Lemma 70. Assuming NP 6⊆ coNP/poly, H-free Edge Editing and H-free Edge
Deletion are incompressible, when H ∈ {A6, A7, A8, A9} and H-free Edge Completion
is incompressible when H ∈ {A1, A6}.

Now, Theorem 59(i) follows from Lemma 68, Lemma 70, and Proposition 4. Similarly,
Theorem 59(ii) follows from Lemma 68, 70, 69, and Proposition 4. Theorem 59(iii) follows
from Theorem 59(ii) and Proposition 4. Theorem 1 follows from Lemma 12, 58, Theorem 59(i),
and Proposition 6. Similarly, Theorem 2 follows from Lemma 13, 58, Theorem 59(ii), and
Proposition 6.

References
1 N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Parameterized lower bounds and

dichotomy results for the NP-completeness of H-free edge modification problems. In Proc.
LATIN 2016, pages 82–95, 2016. doi:10.1007/978-3-662-49529-2_7.

2 N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Dichotomy results on the hardness
of H-free edge modification problems. SIAM J. Discrete Math., 31(1):542–561, 2017. doi:
10.1137/16M1055797.

3 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996. doi:10.1016/0020-0190(96)00050-6.

4 Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Algorithmica,
71(3):731–757, 2015. doi:10.1007/s00453-014-9937-x.

5 Yufei Cai. Polynomial kernelisation of H-free edge modification problems. Mphil thesis,
Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Hong Kong SAR, China, 2012.

6 Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012. doi:10.1007/s00453-011-9595-1.

7 Yixin Cao, Yuping Ke, and Hanchun Yuan. Polynomial kernels for paw-free edge modification
problems. In Proc. TAMC 2020, pages –, 2020.

8 Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica,
75(1):118–137, 2016. doi:10.1007/s00453-015-0014-x.

9 Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A polynomial kernel for diamond-free
editing. In Proc. ESA 2018, pages 10:1–10:13, 2018. doi:10.4230/LIPIcs.ESA.2018.10.

10 Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr A. Golovach. A survey
of parameterized algorithms and the complexity of edge modification. arXiv, 2020. arXiv:
2001.06867.

11 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

12 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, Erik Jan van Leeuwen, and Marcin Wrochna.
Polynomial kernelization for removing induced claws and diamonds. Theory Comput. Syst.,
60(4):615–636, 2017. doi:10.1007/s00224-016-9689-x.

13 Eduard Eiben, William Lochet, and Saket Saurabh. A polynomial kernel for paw-free editing.
arXiv, 2019. arXiv:1911.03683.

14 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization:
Theory of Parameterized Preprocessing. Cambridge University Press, 2019. doi:10.1017/
9781107415157.

15 Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clustering:
Fixed-parameter algorithms for clique generation. In Proc CIAC 2003, pages 108–119, 2003.
doi:10.1007/3-540-44849-7_17.

16 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-)existence
of polynomial kernels for P`-free edge modification problems. Algorithmica, 65(4):900–926,
2013. doi:10.1007/s00453-012-9619-5.

https://doi.org/10.1007/978-3-662-49529-2_7
https://doi.org/10.1137/16M1055797
https://doi.org/10.1137/16M1055797
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1007/s00453-014-9937-x
https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1007/s00453-015-0014-x
https://doi.org/10.4230/LIPIcs.ESA.2018.10
http://arxiv.org/abs/2001.06867
http://arxiv.org/abs/2001.06867
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00224-016-9689-x
http://arxiv.org/abs/1911.03683
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1007/3-540-44849-7_17
https://doi.org/10.1007/s00453-012-9619-5

D. Marx and R. B. Sandeep 72:25

17 Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke. Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput.
Syst. Sci., 72(8):1386–1396, 2006. doi:10.1016/j.jcss.2006.02.001.

18 Ken-ichi Kawarabayashi and Bruce A. Reed. Computing crossing number in linear time. In
Proc. STOC 2007, pages 382–390. ACM, 2007. doi:10.1145/1250790.1250848.

19 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-Complete. J. Comput. Syst. Sci., 20(2):219–230, 1980. doi:10.1016/0022-0000(80)
90060-4.

20 Brendan McKay. Graphs, (accessed June 11, 2017). https://users.cecs.anu.edu.au/ bdm/data/-
graphs.html.

21 Mihalis Yannakakis. Edge-deletion problems. SIAM J. Comput., 10(2):297–309, 1981. doi:
10.1137/0210021.

22 Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Comput., 10(2):310–
327, 1981. doi:10.1137/0210022.

ESA 2020

https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1137/0210021
https://doi.org/10.1137/0210021
https://doi.org/10.1137/0210022

Approximating k-Connected m-Dominating Sets
Zeev Nutov
The Open University of Israel, Raanana, Israel
nutov@openu.ac.il

Abstract
A subset S of nodes in a graph G is a k-connected m-dominating set ((k, m)-cds) if the
subgraph G[S] induced by S is k-connected and every v ∈ V \ S has at least m neighbors in S.
In the k-Connected m-Dominating Set ((k,m)-CDS) problem the goal is to find a minimum
weight (k,m)-cds in a node-weighted graph. For m ≥ k we obtain the following approximation
ratios. For general graphs our ratio O(k lnn) improves the previous best ratio O(k2 lnn) of [26]
and matches the best known ratio for unit weights of [34]. For unit disk graphs we improve the
ratio O(k ln k) of [26] to min

{
m

m−k
, k2/3} ·O(ln2 k) – this is the first sublinear ratio for the problem,

and the first polylogarithmic ratio O(ln2 k)/ε when m ≥ (1 + ε)k; furthermore, we obtain ratio
min

{
m

m−k
,
√
k
}
· O(ln2 k) for uniform weights. These results are obtained by showing the same

ratios for the Subset k-Connectivity problem when the set of terminals is an m-dominating set.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases k-connected graph, m-dominating set, approximation algorithm, rooted
subset k-connectivity, subset k-connectivity

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.73

Acknowledgements I thank an anonymous referee for many useful comments.

1 Introduction

All graphs in this paper are assumed to be simple, unless stated otherwise. A (simple)
graph is k-connected if it has k pairwise internally node disjoint paths between every pair
of its nodes; in this case the graph has at least k + 1 nodes. A subset S of nodes in a
graph G is a k-connected set if the subgraph G[S] induced by S is k-connected; S is an
m-dominating set if every v ∈ V \S has at least m neighbors in S. If S is both k-connected
and m-dominating set then S is a k-connected m-dominating set, or (k, m)-cds for
short. A graph is a unit disk graph if its nodes can be located in the Euclidean plane such
that there is an edge between u and v iff the Euclidean distance between u and v is at most 1.
We consider the following problem for m ≥ k both in general graphs and in unit disk graphs.

k-Connected m-Dominating Set ((k,m)-CDS)
Input: A graph G = (V,E) with node weights {wv : v ∈ V } and integers k,m.
Output: A minimum weight (k,m)-cds S ⊆ V .

The problem generalizes several classic problems including Set-Cover (k = 0,m = 1),
Set-Multicover (k = 0), and Connected Dominating Set (k = m = 1). The
Connected Dominating Set problem is closely related to the Node Weighted Steiner
Tree problem, and both problems admit a tight ratio O(logn) [16, 12, 13]. In unit disk
graphs, the problem is NP-hard [5], admits a PTAS for unit weights [3], and ratio 3+2.5ρ+ε for
arbitrary weights [33, 35], where ρ is the ratio for the edge-weighted Steiner Tree problem
in general graphs. The (k,m)-CDS problem models (fault tolerant) virtual backbones in
networks [7, 6], and it was studied extensively, c.f. [1, 3, 10, 12, 13, 21, 32, 26, 33, 31, 34, 35, 36]
for the case m ≥ k and [2, 29] for the case k = 2,m = 1. For further motivation and history

© Zeev Nutov;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 73; pp. 73:1–73:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nutov@openu.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2020.73
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Approximating k-Connected m-Dominating Sets

survey we refer the reader to recent papers of Zhang, Zhou, Mo, and Du [31] and of Fukunaga
[10], where they obtained in unit disk graphs ratios O(k3 ln k) and O(k2 ln k), respectively.
This was improved to O(k ln k) in [26], where is also given ratio O(k2 lnn) in general graphs.

Our main results is:

I Theorem 1. (k,m)-CDS with m ≥ k admits the following approximation ratios:
O(k lnn) in general graphs.
min

{
m

m−k , k
2/3
}
·O(ln2 k) in unit disk graphs.

min
{

m
m−k ,

√
k
}
·O(ln2 k) in unit disk graphs with unit weights.

For general graphs our ratio O(k lnn) improves the previous ratio O(k2 lnn) of [26] and
matches (while using totally different techniques) the best known ratio for unit weights of
Zhang et. al. [34]. For unit disk graphs our ratio min

{
k

m−k , k
2/3
}
·O(ln2 k) improves the

previous best ratio O(k ln k) of [26]; this is the first sublinear ratio for the problem, and for
any constant ε > 0 and m = k(1 + ε) the first polylogarithmic ratio O(ln2 k)/ε.

Let us say that a graph with a set T of terminals and a root r ∈ T is k-(T, r)-connected
if it has k internally node disjoint rt-paths for every t ∈ T \ {r}. Similarly, a graph is
k-T -connected if it has k internally node disjoint st-paths for every s, t ∈ T . A reason why
the case m ≥ k is easier than the case m < k is given in the following statement (a proof can
be found in many papers, c.f. [31, 10, 26]).

I Lemma 2. Let T be a k-dominating set in a graph H = (U,F). If H is k-(T, r)-connected
then H is k-(U, r)-connected; if H is k-T -connected then H is k-connected.

The above lemma implies that in the case m ≥ k (k,m)-CDS has the property that
the union T ∪ S of a partial solution T that is just m-dominating and a node set S such
that G[T ∪ S] is T -k-connected, is a feasible solution – this enables to construct the solution
iteratively. Specifically, most algorithms for the case m ≥ k start by computing just an
m-dominating set T ; the best ratios for m-Dominating Set are ln(∆ +m) in general graphs
[8] and O(1) in unit disk graphs [10], where ∆ is the maximum degree in G. By invoking
just these ratios, Lemma 2 enables to reduce (k,m)-CDS with m ≥ k to following (node
weighted) problem:

Subset k-Connectivity
Input: A graph G = (V,E) with node-weights {wv : v ∈ V }, a set T ⊆ V of terminals,
and an integer k.
Output: A minimum weight k-T -connected subgraph of G.

The ratios for this problem are usually expressed in terms of the best known ratio β for
the following problem (in both problems we assume w.l.o.g. that wv = 0 for all v ∈ T):

Rooted Subset k-Connectivity
Input: A graph G = (V,E) with node-weights {wv : v ∈ V }, a set T ⊆ V of terminals, a
root node r ∈ T , and an integer k.
Output: A minimum weight k-(T, r)-connected subgraph of G.

We refer the reader to recent surveys [28, 27] on approximation algorithm for node-
connectivity problems and to [16, 22, 25, 9, 24] on approximation algorithm for various
node-weighted connectivity problems and their generalizations. Currently, β = O(k2 ln |T |)
[22]. From previous work it can be deduced that Subset k-Connectivity with |T | ≥ k

Z. Nutov 73:3

admits ratio β + k2. Add a new root node r connected to a set R ⊆ T of k nodes by edges
of cost zero. Then compute a β-approximate solution to the obtained Rooted Subset
k-Connectivity instance. Finally, augment this solution by computing for every u, v ∈ R a
min-weight set of k internally disjoint uv-paths. For the (k,m)-CDS problem with m ≥ k
this already gives ratio β + k2 = O(k2 ln |T |) in general graphs. For the special case when T
is a k-dominating set the ratio β + k2 was improved in [26] to β + k − 1, since then in the
final step it is sufficient to compute a min-weight set of k internally disjoint uv-paths only
for pairs that form a forest on R (by the Critical Cycle Theorem of Mader [20]).

We now consider unit disk graphs. Zhang et al. [31] showed that any k-connected unit
disk graph has a k-connected spanning subgraph of maximum degree ≤ 5k. This implies that
the node weighted case is reduced with a loss of factor O(k) to the case of node induced edge
costs – when cuv = wu + wv for every edge e = uv ∈ E. The edge costs version of Subset
k-Connectivity admits ratio O(k2 ln k), which gives ratio O(k3 ln k) for (k,m)-CDS with
m ≥ k in unit disk graphs. Independently, Fukunaga [10] obtained ratio O(k2 ln k) using a
different approach – he considered the Rooted Subset Connectivity Augmentation
problem, when G[T] is `-(T, r)-connected and we seek a minimum weight S ⊆ V \ T such
that G[T ∪ S] is (`+ 1)-(T, r)-connected. In [22] it is shown that the augmentation problem
decomposes into O(k) “uncrossable” subproblems (for precise definitions, see Definition 20
in Section 3), and Fukunaga [10] designed a primal-dual O(1)-approximation algorithm for
such an uncrossable subproblem in unit disk graphs. This gives ratio O(`) for Rooted
Subset Connectivity Augmentation in unit disk graphs. Furthermore, using the so
called “backward augmentation analysis” [11] Fukunaga showed that since his approximation
is w.r.t. an LP, then sequentially increasing the T -connectivity by 1 invokes only a factor of
O(ln k), thus obtaining ratio O(k ln k) for Rooted Subset Connectivity Augmentation.
He then combined this result with a decomposition of the Subset k-Connectivity problem
into k Rooted Subset k-Connectivity problems, and obtained ratio O(k2 ln k). As was
mentioned, in [26] it is proved that ratio β for Rooted Subset k-Connectivity implies
ratio β + k − 1 for (k,m)-CDS with m ≥ k, which improves the ratio to O(k ln k).

However, it seems that previous reductions and methods alone do not enable to obtain
ratio better than O(k2 ln |T |) in general graphs, or a sublinear ratio in unit disk graphs. These
algorithm rely on the ratios and decompositions for the Rooted/Subset k-Connectivity
problems from [22, 23, 19], but these do not consider the specific feature relevant to (k,m)-
CDS with m ≥ k – that the set T of terminals is a k-dominating set; note that then Subset
k-Connectivity is equivalent to the problem of finding the lightest k-connected subgraph
containing T , by Lemma 2. Here we change this situation by asking the following question:

If the set T of terminals is an m-dominating set with m ≥ k, what approximation ratio can
be achieved for (node weighted) Subset k-Connectivity?

Our answer to this question is given in the following theorem, which is of independent interest,
and note that it implies Theorem 1.

I Theorem 3. The (node weighted) Subset k-Connectivity problem such that T is an
m-dominating set with m ≥ k admits the following approximation ratios: O(k lnn) in general
graphs, O(ln2 k) ·min

{
m

m−k+1 , k
2/3
}
in unit disk graphs, and O(ln2 k) ·min

{
m

m−k+1 ,
√
k
}

in unit disk graphs with unit weights.

In the proof of Theorem 3 we use several results and ideas from previous works [22, 23,
31, 10, 26]. As was mentioned, the best ratios for the Subset k-Connectivity are derived
via reductions of [23, 26] from the ratios for the Rooted Subset k-Connectivity problem,

ESA 2020

73:4 Approximating k-Connected m-Dominating Sets

so we will consider the latter problem; the currently best known ratio for this problem is
O(k2 ln |T |) [22]. The algorithm of [22] has k iterations, where at iteration ` = 0, . . . , k − 1
it considers the augmentation problem of increasing the connectivity from ` to `+ 1. This
is equivalent to “covering” a certain family F of “deficient sets” (see Section 2 for precise
definitions), and the algorithm of [22] decomposes this problem into O(`) uncrossable family
covering problems; the ratio for covering each uncrossable family is O(lnn) in general
graphs [22] and O(1) in unit disk graphs [10].

However, a more careful analysis of the [22] algorithm reveals that in fact the number
of uncrossable families is O(`/q) + 1, where q is the minimum number of terminals in a
deficient set. Instances with q ≥ `+ 1 are often called “T -independence-free” (see Lemmas 6
and 7). In T -independence-free instances the entire family of deficient sets is uncrossable,
hence such instances admit ratio O(lnn) in general graphs and O(1) in unit disk graphs.
The algorithm of [22] has an “inflation phase” that works towards reaching q ≥ `+ 1 – to
make the instance T -independence-free, by repeatedly covering O(`/q) uncrossable families
to double q. Hence if q0 is the initial value of q, the total number of uncrossable families
that the algorithm covers is 1 plus order of `

q0

(
1 + 1

2 + 1
4 + · · ·

)
= O(`/q0). Note that a

large part of the uncrossable families are covered when q is small. One of our contributions
is designing different “lighter” inflation algorithms for increasing the parameter q. These
algorithms just aim to cover the inclusion minimal deficient sets (a.k.a. “cores” – for precise
definition see Definition 14), by adding a light set S of nodes, and then add S to the set T of
terminals; if T is a k-dominating set then adding any set S to T does not make the problem
harder, by Lemma 2.

Our algorithms for covering inclusion minimal deficient sets reduce the problem to a
set covering type problem. In the case of general graphs the reduction is to a special
case considered in [18] of the Submodular Covering problem; the ratio invoked by
this procedure is only O(lnn) and if we apply it p = max{2k −m − 1, 1} times then we
get q ≥ m − ` + p(k − `) ≥ k for all ` = 0, . . . , k − 1. In fact, we apply this procedure
before considering the augmentation problems, but it guarantees that q ≥ k through all
augmentation iterations. The same procedure applies in the case of unit disk graphs, but
to avoid the dependence on n in the ratio we use a different procedure. Specifically, we use
the result of Zhang et. al. [31] that a minimally k-connected unit disk graph has maximum
degree ≤ 5k, to reduce the problem of covering the family of deficient sets to the Set Cover
problem with soft capacities. This approach gives ratio min

{
m

m−k , k
2/3
}
·O(ln2 k).

Our algorithms are simple and combinatorial. We omit the running time analysis, but it
is polynomial and dominated by that of finding k times an approximate solution to Rooted
Subset k-Connectivity in T -independence-free instances [22, 10]. Apart from significantly
improving approximation ratios for (k,m)-CDS and special instances of Subset/Rooted
k-Connectivity, which are extensively studied important fundamental problems, we also
have the following contribution. The framework of approximating k-connectivity problems
via independence-free graphs was very successful in [22] and [4, 30] (see also [14] for the first
paper that used this framework, for an exact algorithm), but these are the only papers that
succeeded to apply it. In general, it is not clear how to find a cheap partial solution to make
the residual instance independence-free. In [22] this was achieved by “merging” deficient
sets, so that at each iteration the minimum number of terminals in a deficient set is doubled.
The method used in [4, 30] constructs an independence free instance in just two iterations,
but it is tailor made for the k-Connected Subgraph problem considered there. We use a
different method that reaches an almost independence-free instance by just repeatedly solving

Z. Nutov 73:5

a Set Cover (or a Submodular Cover) problem. We believe that the method used here
can be also applied for other problems, maybe for activation network design problems [24, 9],
that generalize node weighted network design problems.

In the rest of the paper we prove Theorem 3; Section 2 considers general graphs and
Section 3 considers unit disk graphs.

2 General graphs

In order to prove our results we need to characterize k-connectivity in terms of “cuts” rather
than in terms of paths. While edge-cuts of a graph correspond to node subsets, a natural
way to represent a node-cut of a graph is by a pair of sets called a “biset”.

I Definition 4. An ordered pair A = (A,A+) of subsets of V with A ⊆ A+ is called a biset;
the set ∂A = A+ \ A is called the cut of A. We say that A is a (T, r)-biset if A ∩ T 6= ∅
and r ∈ V \ A+. For an edge set/graph J let dJ(A) denote the number of edges in J that
have one end in A and the other in V \A+.

Let κG(t, r) denote the maximum number of pairwise internally disjoint tr-paths in G.
In biset terms, the node connectivity version of Menger’s Theorem (that applies also for
non-simple graphs) says that κG(t, r) equals min{|∂A| : t ∈ A, r ∈ V \A+} plus the number
of tr-edges. Here ∂A is a node cut that separates t from r in the graph obtained from G

by removing the tr-edges. It is not hard to verify that if J is an edge set that contains the
tr-edges then κG(t, r) = min{|∂A| : t ∈ A, r ∈ V \A+}+ dJ(A). In particular, we have:

I Lemma 5. Let G = (V,E) be a graph and let {t, r} ⊆ T ⊆ V . Then

κG(t, r) = min
A
{|∂A|+ dG[T](A) : t ∈ A, r ∈ V \A+} .

Here the nodes in ∂A and the edges in G[T] that go from A to V \A+ form a “mixed”
st-cut of G that contains both nodes and edges. The original Menger’s Theorem is the case
T = {r, t}, while the case T = V is also widely used in the literature, c.f. [28].

From Lemma 5 we get that G is k-(T, r)-connected iff |∂A|+ dG[T](A) ≥ k holds for every
(T, r)-biset A. Given a Rooted Subset k-Connectivity instance, we say that a (T, r)-biset
A is a deficient biset if |∂A|+dG[T](A) ≤ k−1. We use the algorithm from [22] for Rooted
Subset k-Connectivity. Two deficient bisets A,B are T -independent if A ∩ T ⊆ ∂B or
B ∩ T ⊆ ∂A. A Rooted Subset k-Connectivity instance is T -independence-free if
no pair of deficient bisets are T -independent. We have the following from previous work [22].

I Lemma 6 ([22]). T -independence-free Rooted Subset k-Connectivity instances admit
ratio O(k ln |T |).

Clearly, a sufficient condition for an instance to be T -independence-free is:

I Lemma 7. If for a Rooted Subset k-Connectivity instance |A ∩ T | ≥ k holds for
every deficient biset A, then the instance is T -independence-free.

In the next two lemmas we show how to find an O(k lnn)-approximate set S ⊆ V \ T
such that adding S to T result in a T -independence-free instance.

I Lemma 8 (Inflation Lemma for general graphs). There exists a polynomial time algorithm
that given an instance of Rooted Subset k-Connectivity finds S ⊆ V \ T such that
|A ∩ S| ≥ k − (|∂A|+ dG[T∪S](A)) holds for any (T, r)-biset A, and w(S) = O(ln ∆) · opt.

ESA 2020

73:6 Approximating k-Connected m-Dominating Sets

1t

2s

v1

r

t5

t2

t3

t4

s

s2
u

t1

4t

3t

2t

5t

r

1t

2s

v1s

u

r

t5

t2

t3

t4

s1

A

B

(a) (b) (c)

Figure 1 Illustration to Lemma 8 Algorithm 1 for k = 3. (a) Rooted Subset k-Connectivity
instance; nodes in T are shown by gray circles. (b) Centered Rooted Subset k-Connectivity
instance constructed in Algorithm 1; added edges are shown by dashed lines. (c) The set S = {s1, s2}
returned by the algorithm and two bisets A,B in G[T ∪ S] (the dashed edges do not belong to
G[T ∪ S]), where A = {t5, t4, s1}, ∂A = {t1} and B = (T ∪ S) \ {r}, ∂B = ∅.

Proof. The Centered Rooted Subset k-Connectivity problem is a particular case
of the Rooted Subset k-Connectivity problem when all nodes of positive weight are
neighbors of the root. This problem admits ratio O(ln ∆) [18], where here ∆ is the maximum
degree of a neighbor of the root. We use this in our algorithm as follows (see Fig. 1):

Algorithm 1 (G = (V,E), w, r, T, k).

1 construct a Centered Rooted Subset k-Connectivity instance
(G′ = (V,E′), w, T, r, k), where G′ is obtained from G by removing edges in
G[(V \ T) ∪ {r}] and adding an rv-edge for each v ∈ V \ T (see Fig. 1(a,b))

2 compute an O(ln ∆)-approximate solution S ⊆ V \ T for the obtained Centered
Rooted Subset k-Connectivity instance (see Fig. 1(c))

3 return S

Let S∗ and S∗c be optimal solutions to Rooted Subset k-Connectivity and the
constructed Centered Rooted Subset k-Connectivity instances, respectively. For
every t ∈ T fix some set of k internally disjoint rt-paths in the graph G[T ∪ S∗], and obtain
a set Pt by picking for each path the node in S∗ that is closest to t on this path, if such a
node exists. Let P = ∪t∈TPt. Then P is a feasible solution to the constructed Centered
Rooted Subset k-Connectivity instance, since for each t ∈ T , G′ has |Pt| internally
disjoint rt-paths of length 2 each that go through Pt, and k − |Pt| paths that have all nodes
in T . Furthermore, since P ⊆ S∗, w(P) ≤ w(S∗). Thus w(S∗c) ≤ w(P) ≤ w(S∗), implying
that w(S) = O(ln ∆) · w(S∗).

Now let A be a (T, r)-biset on T ∪ S. Then:
dG′[T∪S](A) = |A ∩ S|+ dG[T∪S](A) by the construction.
|∂A|+ dG′[T∪S](A) ≥ k since G′[T ∪ S] is k-(T, r)-connected.

Combining we get that |∂A|+ dG[T∪S](A) + |A ∩ S| ≥ k, as claimed. J

Note that Lemma 8 does not assume that T has any domination properties, and it does
not imply that G[T ∪ S] has higher (T, r)-connectivity than G[T] – see the example in Fig. 1.
The lemma just states that for every biset A in G[T ∪ S], |A ∩ S| is at least the “deficiency”
k − (|∂A|+ dG[T∪S](A)) of A. E.g., in the example in Fig. 1(c) we have:

A ∩ S = {s1}, k − (|∂A|+ dG[T∪S](A)) = 3− (1 + 1) = 1.
B ∩ S = {s1, s2}, k − (|∂B|+ dG[T∪S](B)) = 3− (0 + 1) = 2.

Z. Nutov 73:7

Hence if we add S to T and T ← T ∪ S will become the new set of terminals, then the new
Rooted Subset k-Connectivity instance will be “closer” to being T -independence-free
than the original instance. And if also T is a k-dominating set (this is not the case in Fig. 1),
then adding S to T does not increase the optimal solution value, by Lemma 2.

Our algorithms use the following simple procedure – Algorithm 2, that sequentially adds
p sets S1, . . . , Sp to an m-dominating set T = T0 with m ≥ k; in the case of general graphs
considered in this section, each Si is as in Lemma 8.

Algorithm 2 (G = (V,E), c, r, T = T0, k, 1 ≤ p ≤ k − 1).

1 for i = 1 to p do
2 T ← T ∪ Si

3 return T

I Lemma 9. Suppose that we are given a Rooted Subset k-Connectivity instance
such that T is an m-dominating set in G with m ≥ k. If at each iteration i at step 2 of
Algorithm 2 we add to T a set S = Si as in Lemma 8, then at the end of the algorithm
w(T \ T0) = O(p ln ∆) · opt, and |A ∩ T | ≥ m− `+ p(k − `) holds for any biset A on T with
|∂A| + dG[T](A) = ` ≤ k − 1. In particular, if p ≥ max{2k −m − 1, 1} then the resulting
instance is T -independence-free.

Proof. The bound w(T \ T0) = O(p ln ∆) · opt follows from Lemma 2 and the bound
w(S) = O(ln ∆) · opt in Lemma 8.

Let A be a biset as in the lemma. Let Ti = T0 ∪ S1 ∪ · · · ∪ Si be the set stored in T at
the end of iteration i, where T0 is the initial set. Applying Lemma 8 on Ti−1 and Si we get

|A ∩ Si| ≥ k − (|∂A ∩ Ti−1|+ dG[Ti](A)) ≥ k − (|∂A|+ dG[T](A)) = k − ` .

In particular A∩S1 6= ∅. Any v ∈ A∩S1 has in G[T] at least m neighbors in T0, and at most
` of them are not in A; thus v has at least m−` neighbors in A∩T0, so |A∩T0| ≥ m−`. Since
T0, S1, . . . , Sp are pairwise disjoint we get |A∩T | ≥ |A∩T0|+

∑p
i=1 |A∩Si| ≥ m−`+p(k−`).

If p ≥ max{2k−m−1, 1} then m−`+p(k− l) ≥ k; thus, by Lemma 7, the resulting instance
is T -independence-free. J

The proof of the following known statement can be found in [17], and the second part
follows from Mader’s Undirected Critical Cycle Theorem [20].

I Lemma 10. Let Hr = (U,F) be a k-(U, r)-connected graph and R the set of neighbors of
r in Hr. The graph H = Hr \ {r} can be made k-connected by adding a set J of new edges
on R, and if J is inclusion minimal then J is a forest.

Note that an inclusion minimal edge set J as in Lemma 10 can be computed in polynomial
time, by starting with J being a clique on R and repeatedly removing from J an edge e if
H ∪ (J \ e) remains k-connected.

Our algorithm for general graphs is as follows.

ESA 2020

73:8 Approximating k-Connected m-Dominating Sets

Algorithm 3 (G = (V,E), w, T) general graphs.

1 construct a graph Gr by adding to G and to T a new node r connected to a set
R ⊆ T of k nodes by a set Fr = {rv : v ∈ R} of new edges

2 apply the Lemma 9 algorithm with p = max{2k −m− 1, 0}
3 use the algorithm from Lemma 6 to compute an O(k lnn)-approximate set S ⊆ V \ T

such that Hr = Gr[T ∪ S] is k-(T, r)-connected
4 let H = H \ {r} = G[T ∪ S] and let J be a forest of new edges on R as in Lemma 10

such that the graph H ∪ J is k-connected
5 for every uv ∈ J find a minimum weight node set Puv such that G[T ∪ S ∪ Puv] has k

internally disjoint uv-paths; let P =
⋃

uv∈J

Puv

6 return T ∪ S ∪ P

Except step 2, the algorithm is identical to the algorithm of [26] – the only difference is
that step 2 improves the factor invoked by step 3. In [26] it is also proved that at the end of
the algorithm T ∪ S ∪ P is a k-connected set. The dominating terms in the ratio are invoked
by steps 2 and 3, and they are both O(k lnn), while step 5 invokes just ratio k − 1; thus the
overall ratio is O(k lnn).

This concludes the proof of Theorem 3 for general graphs.

3 Unit disk graphs

Our goal in this section is to prove the following:

I Lemma 11. Consider a Subset k-Connectivity instance on a unit disk graph G = (V,E)
where T is an (`,m)-cds in G (so G[T] is `-connected and every v ∈ V \ T has at least m
neighbors in T), m ≥ k ≥ `+ 1. Then for any 1 ≤ p ≤ `+ 1 there exists a polynomial time
algorithm that computes S ⊆ V \ T such that G[T ∪ S] is (`+ 1)-connected and

w(S)
opt = O(ln k)

k − `

(
p+ (m+ p)2

(m+ p− `)2

)
.

Furthermore, in the case of unit weights w(S)
opt = O(ln k)

k−`

(
p+ m+p

m+p−`

)
.

Let us show that Lemma 11 implies the unit disk part of Theorem 3. We can apply
the Lemma 11 algorithm sequentially, starting with an O(1)-approximate m-dominating
set T = T0, and at iteration ` = 0, . . . , k − 1 add to T a set S = S` as in the lemma. In
the case of arbitrary weights choosing p = 1 if m − ` ≥ `2/3 and p = `2/3 otherwise gives
w(S`)

opt = O(ln `)
k−` min

{
m

m−` , `
2/3
}
. Then denoting S = S0 ∪ · · · ∪ Sk−1 we get:

w(S)
opt =

k−1∑
`=0

O(ln `)
k − `

min
{

m

m− `
, `2/3

}
= O(ln2 k) ·min

{
m

m− k + 1 , k
2/3
}

In the case of unit weights, choosing p = 1 if m − ` ≥
√
` and p =

√
` otherwise gives

w(S`)
opt = O(ln `)

k−` min
{

m
m−` ,

√
`
}
, and then by a similar analysis we get that

w(S)
opt = O(ln2 k) ·min

{
m

m− k + 1 ,
√
k

}
.

Z. Nutov 73:9

V \ A

T \ A

V \ T S

C+

+
(b)(a) v

U

A

A T A*A

(U)

Figure 2 (a) Illustration to the definition of a biset A ∈ DT and a node v that covers A.
(b) Illustration to the proof that if G[T ∪ S] is not (`+ 1)-connected then S does not cover DT .

In the rest of this section we prove Lemma 11, so let G, T , and ` be as in the lemma; in
particular, G[T] is `-connected. Define the following family of biset on V (see Fig. 2)

DT = {A : A ∩ T 6= ∅ 6= T \A+, dG[T](A) = 0, |∂A| = `} .

Let A ∈ DT . Then G[T] \ ∂A is disconnected (since dG[T](A) = 0), hence ∂A ∩ T is a node
cut of G[T] that separates between the non-empty sets A ∩ T and T \ A+. Since |∂A| = `

and since G is `-connected, ∂A must be a minimum node cut of G[T]. Thus we have:

I Corollary 12. A biset A on V belongs to DT if and only if the following holds:
∂A ⊆ T and ∂A is a minimum node cut (of size `) of the graph G[T].
A ∩ T is a union of some, but not all, connected components of G[T] \ ∂A.

We say that a node v covers A ∈ DT (see Fig. 2(a)) if v ∈ Γ(A)\T , where Γ(A) ⊆ V \A
is the set of neighbors of A in G; S ⊆ V \ T covers F ⊆ DT if every A ∈ F is covered by
some v ∈ S. Using Menger’s Theorem and Lemma 2, one can see the following (see also [10,
Section 5.2]).

I Lemma 13. Let T be an (`, ` + 1)-cds in a graph G = (V,E). Let S ⊆ V \ T . Then
G[T ∪ S] is (`+ 1)-connected if and only if S covers DT .

Proof. Let A ∈ DT . Then ∂A ⊆ T is a node cut of size ` of the graph G[T] that separates
between the nonempty sets A∩T and T \A+. If S does not cover A, then S ∩Γ(A) = ∅, and
then ∂A is also a node cut of size ` of the graph G[T ∪ S] that separates between A ∩ T and
(T \A+)∪S; thus G[T ∪S] is not `-connected. Consequently, if G[T ∪S] is (`+ 1)-connected
then S must cover DT .

Suppose that G[T ∪ S] is not (` + 1)-connected (see Fig. 2(b)). Then there is a node
cut C of size ` of G[T ∪ S] that separates some A ⊆ T ∪ S from A∗ = (T ∪ S) \ (A ∪ C).
Since T is an (`+ 1)-dominating set in G[T ∪ S] and since |C| = `, we must have A ∩ T 6= ∅;
otherwise, if A∩T = ∅, then for any u ∈ A, there must exist u′ ∈ A∗ with uu′ ∈ E since T is
an (`+1)-dominating set, which contradicts that C is a node cut separating A from A∗. By a
similar argument, A∗ ∩ T 6= ∅. Let A = (A,A ∪C). Then A ∩ T 6= ∅ 6= T \A+, dG[T](A) = 0
(since dG[T∪S](A) = 0), and |∂A| = |C| = `. Thus A ∈ DT . Furthermore, in G[T], C ∩ T
separates between the nonempty node sets A ∩ T and T \A+, hence C = ∂A = Γ(A) ⊆ T ,
since G[T] is `-connected. Consequently, S does not cover A, and the proof is complete. J

Thus we have the following LP-relaxation for the problem of finding a min-weight cover
of DT (a similar LP was used by Fukunaga in [10, Section 5.2]):

τ(DT) = min
∑

v∈V \T wvxv

s.t.
∑

v∈Γ(A)\T xv ≥ 1 ∀A ∈ DT

xv ≥ 0 ∀v ∈ V \ T

ESA 2020

73:10 Approximating k-Connected m-Dominating Sets

Note that if A ∈ DT then Γ(A)\T = Γ(A)\∂A, and thus the constraint
∑

v∈Γ(A)\T xv ≥ 1
is equivalent to

∑
v∈Γ(A)\∂A xv ≥ 1.

I Definition 14. We say that A contains B and write A ⊆ B if A ⊆ B and A+ ⊆ B+.
Inclusion minimal members of a biset family F are called F-cores. The intersection and
the union of two bisets A,B are defined by

A ∩ B = (A ∩B,A+ ∩B+) A ∪ B = (A ∪B,A+ ∪B+) .

I Lemma 15. Let C be the family of DT -cores. Then C ∩ C ′ = ∅ for any distinct C,C′ ∈ C
or |C| ≤ `(`+ 1).

Proof. let F be the family of “deficient bisets” of the `-connected graph G[T]; namely, F
is the family of those bisets A on T such that ∂A is a minimum node cut (of size `) of the
graph G[T], and A is a union of some, but not all, connected components of G[T] \ ∂A. Note
that from Corollary 12 it follows that:
F = {A ∈ DT : A ⊆ T}.
Every DT -core belongs to F , hence C coincides with the family of F-cores.

Thus it is sufficient to prove the lemma with DT replaced by F . The family F has the
following well known “symmetry” and “crossing” properties, c.f. [30].
(i) If A ∈ F then (V \A+, V \A) ∈ F .
(ii) If A,B ∈ F and A ∩B, T \ (A+ ∪B+) are non-empty then A ∩ B,A ∪ B ∈ F .
In [[15], Lemma 3.5, Case II] it is proved that if C ∩ C ′ 6= ∅ for some distinct C,C′ ∈ C then
there is P ⊆ V with |P | ≤ `+ 1 such that P ∩ C 6= ∅ for every C ∈ C. In this case F has at
most `(`+ 1) distinct cores, since:

For every C ∈ C, there is s ∈ P ∩ C, and there is t ∈ P ∩ (V \ C+), by (i).
For each (s, t) ∈ P × P there is at most one such C, by (ii).

Hence if C ∩ C ′ 6= ∅ for some distinct C,C′ ∈ C then |C| ≤ |P |(|P | − 1) ≤ `(`+ 1). J

To obtain an approximation ratio that depends on k rather than on n, we will need the
following result.

I Theorem 16 (Zhang, Zhou, Mo, & Du [31]). Any k-connected unit disk graph has a
k-connected spanning subgraph of maximum degree ≤ 5k.

I Lemma 17 (Inflation Lemma for unit disk graphs). There exists a polynomial time algorithm
that computes S ⊆ V \ T that covers the family C of cores of DT and w(S) = O(ln k) · opt

k−` .

Proof. The problem of covering C is essentially a (weighted) Set Cover problem where for
each v ∈ V \ T the corresponding set has weight wv and consists of the cores covered by v.
Then the greedy algorithm for Set Cover computes a solution of weight O(ln |C|) times the
value of the standard Set Cover LP

τ(C) = min
∑

v∈V \T wvxv

s.t.
∑

v∈Γ(A)\T xv ≥ 1 ∀A ∈ C
xv ≥ 0 ∀v ∈ V \ T

For any S′ ⊆ V \T such that G[T ∪S′] is k-connected, any set A has at least k− ` neighbors
in G[T ∪ S′], hence if x′ is a characteristic vector of S′ then x′

k−` is a feasible solution to the
LP. Consequently, τ(C) ≤ opt

k−` .
In the case |C| ≤ `(`+ 1) we get a solution of weight O(ln `) · τ(C) = O(ln `) · opt

k−` .

Z. Nutov 73:11

In the case |C| > `(`+ 1), C ∩ C ′ = ∅ for any C,C′ ∈ C, by Lemma 15. Then relying on
Theorem 16 we modify this reduction such that every v ∈ V \ T can cover at most 5k cores;
this is essentially the Set Cover with (soft) capacities problem. Specifically, for each pair
(v, J) where v ∈ V \ S and J is a set of at most 5k edges incident to v, we add a new node
vJ of weight wv with corresponding copies of the edges in J . In the obtained Set Cover
instance the maximum size of a set is at most 5k, since the sets in {C : C ∈ C} are pairwise
disjoint. Note that we do not need to construct this Set Cover instance explicitly to run
the greedy algorithm – we just need to determine for each v ∈ V the maximum number of
at most 5k not yet covered cores that can be covered by v. Since the sets in {C : C ∈ C}
are pairwise disjoint, this can be done in polynomial time. Note that during the greedy
algorithm we may pick pairs (v, J) and (v, J ′) with distinct J, J ′ but with the same node v,
but this only makes the solution lighter. Since in the Set Cover instance the maximum set
size is 5k, the computed solution has weight O(ln k) · τ , where here τ is an optimal LP-value
of the modified instance. Now we argue in the same way as before that τ ≤ opt

k−` . Consider a
feasible solution S′ ⊆ V \T and an edge J ′ such that G[T]∪S′∪J ′ is a spanning k-connected
subgraph of G[T ∪ S′] and degJ′(v) ≤ 5k for all v ∈ S′; such J ′ exists by Theorem 16. Let
x′ be the characteristic vector of the pairs (v, J ′v) where v ∈ S′ and J ′v is the set of edges in
J ′ incident to v. Any set A has at least k − ` neighbors in G[T] ∪ S′ ∪ J ′, hence x′

k−` is a
feasible solution to the LP. Consequently, τ ≤ opt

k−` . J

I Corollary 18. If at step 2 of Algorithm 2 we add S = Si is as in Lemma 17, then at the
end of the algorithm w(T \T0) = O(p ln k) · τ∗ and |A∩T | ≥ m− `+ p holds for any A ∈ DT .

Proof. We have |A ∩ Si| ≥ 1 for all i. In particular A ∩ S1 6= ∅. Any v ∈ A ∩ S1 has in G[T]
at least m neighbors in T0, and at most ` of them are not in A; thus v has at least m− `
neighbors in A ∩ T0, so |A ∩ T0| ≥ m− `. Since T0, S1, . . . , Sp are pairwise disjoint we get
|A ∩ T | ≥ |A ∩ T0|+

∑p
i=1 |A ∩ Si| ≥ m− `+ p. J

Now we decompose the problem of covering DT into several subproblems. For r ∈ T let
D(T,r) = {A ∈ DT : r ∈ T \ A+}; we note the sets in {A : A ∈ D(T,r)} are called “demand
cuts” by Fukunaga [10, Section 5.2].

I Theorem 19 ([23]). Given an `-T -connected graph with |T | ≥ ` + 1, one can find in
polynomial time R ⊆ T of size |R| = O

(
|T |
|T |−` ln `

)
such that DT = ∪r∈RD(T,r).

We now describe how to cover the family D(T,r) for given r ∈ T .

I Definition 20. The biset A \ B is defined by A \ B = (A \ B+, A+ \ B). We say that a
biset family F is:

uncrossable if A ∩ B,A ∪ B ∈ F or if A \ B,B \ A ∈ F for all A,B ∈ F .
T -intersecting if A ∩ B,A ∪ B ∈ F for any A,B ∈ F with A ∩B ∩ T 6= ∅.
T -co-crossing if A\B,B\A ∈ F for any A,B ∈ F with A∩B∗∩T 6= ∅ and B∩A∗∩T 6= ∅.

I Lemma 21 ([22, 10]). D(T,r) is T -intersecting and T -co-crossing for any r ∈ T .

I Theorem 22 ([22]). There exists a polynomial time algorithm that given a T -intersecting T -
co-crossing biset family F sequentially finds O

(
q+`

q

)
T -intersecting uncrossable subfamilies of

F , such that the union of covers of these subfamilies covers F , where q = min{|A∩T | : A ∈ F}
and ` = max

A∈F
|∂A ∩ T |.

ESA 2020

73:12 Approximating k-Connected m-Dominating Sets

In [10, Theorem 3 and Proof of Corollary 3] Fukunaga proved the following.

I Theorem 23 (Fukunaga [10]). If F is a T -intersecting uncrossable subfamily of D(T,r) then
there exists a polynomial time algorithm that computes a cover S of F of weight w(S) ≤ 15opt

k−` .

Combining Lemma 21 with Theorems 22 and 23 we get:

I Corollary 24. For any r ∈ T , there exists a polynomial time algorithm that computes a
cover Sr of D(T,r) such that if q = min{|A ∩ T | : A ∈ D(T,r)} then

w(Sr)
opt = O

(
q + `

q(k − `)

)
.

The algorithm for unit disk graphs is as follows.

Algorithm 4 (G = (V,E), w, T, p) unit disk graphs.

1 apply Algorithm 2 where at step 2 each Si is as in Lemma 17
2 if G[T] is (`+ 1) connected then S ← ∅
3 else {comment: now |T | ≥ m+ p and |A ∩ T | ≥ m+ p− ` for all A ∈ DT }
4 find a set R of O

(
|T |
|T |−` ln `

)
roots as in Theorem 19

5 for each r ∈ R compute a cover Sr of D(T,r) as in Corollary 24
6 S ← ∪r∈RSr

7 return T ∪ S

We bound the weight of each of the sets computed. Let T0 denote the initial set stored in
T . By Lemma 17, at the end of step 1 we have

w(T \ T0)
opt = O(ln k)

k − `
· p

Now we bound the weight of the set S computed in steps 3 to 6:

w(S)
opt = |R| ·O

(
q + `

q(k − `)

)
= O(ln `)

k − `
|T |
|T | − `

q + `

q
= O(ln k)

k − `
(m+ p)2

(m+ p− `)2

The last equation is since q = min{|A ∩ T | : A ∈ F} ≥ m− `+ p by Corollary 18 and since
|T | ≥ m+ p. The overall weight of the augmenting set computed is as claimed in Lemma 11.

In the case of unit weights, we add arbitrary ` nodes to T ; this step invokes an additive
term of O(1) to the ratio, and |T | ≥ 2`+ 1 holds after this step. Hence by Theorem 19 we
will have |R| = O

(
|T |
|T |−` ln `

)
= O

(
2`+1
`+1 ln `

)
= O(ln `) and thus

w(S)
opt = |R| ·O

(
q + `

q(k − `)

)
= O(ln `)

k − `
q + `

q
= O(ln k)

k − `
m+ p

m+ p− `
.

The overall weight of the augmenting set computed is as claimed in Lemma 11.
This concludes the proof of Lemma 11, and thus also the proof of Theorem 3.

Z. Nutov 73:13

References
1 C. Ambühl, T. Erlebach, M. Mihalák, and M. Nunkesser. Constant-factor approximation for

minimum weight (connected) dominating sets in unit disk graphs. In APPROX-RANDOM,
pages 3–14, 2006.

2 A. Belgi and Z. Nutov. An Õ(log2 n)-approximation algorithm for 2-edge-connected dominating
set. CoRR abs/1912.09662, 2019. arXiv:1912.09662.

3 X. Cheng, X. Huang, D. Li, W. Weili, and D.-Z. Du. A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks,
42(4):202–208, 2003.

4 J. Cheriyan and L Végh. Approximating minimum-cost k-node connected subgraphs via
independence-free graphs. SIAM J. Comput., 43(4):1342–1362, 2014. Preliminary version in
FOCS 2013.

5 B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics,
86(1-3):165–177, 1990.

6 B. Das and V. Bharghavan. Routing in ad-hoc networks using minimum connected dominating
sets. In IEEE International Conference on Comunications, Montreal, page 376–380, 1997.

7 A. Ephremides, J. E. Wieselthier, and D. J. Baker. A design concept for reliable mobile radio
networks with frequency hopping signaling. Proceedings of the IEEE, 75(1):56–73, 1987.

8 K.-T. Förster. Approximating fault-tolerant domination in general graphs. In ANALCO, pages
25–32, 2013.

9 T. Fukunaga. Spider covers for prize-collecting network activation problem. ACM Trans.
Algorithms, 13(4):49:1–49:31, 2017. preliminary version in SODA 2015.

10 T. Fukunaga. Approximation algorithms for highly connected multi-dominating sets in unit
disk graphs. Algorithmica, 80(11):3270–3292, 2018.

11 M. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos, and D. Williamson. Improved
approximation algorithms for network design problems. In SODA, pages 223–232, 1994.

12 S. Guha and S. Khuller. Approximation algorithms for connected dominating sets. Algorithmica,
20(4):374–387, 1998. preliminary version in ESA 1996.

13 S. Guha and S. Khuller. Improved methods for approximating node weighted steiner trees
and connected dominating sets. Inf. Comput., 150(1):57–74, 1999.

14 B. Jackson and T. Jordán. Independence free graphs and vertex connectivity augmentation.
J. Comb. Theory, Ser. B, 94(1):31–77, 2005. Preliminary version in IPCO 2001.

15 T. Jordán. On the optimal vertex-connectivity augmentation. J. Combin. Theory Ser. B,
63:8–20, 1995.

16 P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted
steiner trees. J. Algorithms, 19(1):104–115, 1995. Preliminary version in IPCO 1993.

17 G. Kortsarz and Z. Nutov. Approximating node connectivity problems via set covers. Al-
gorithmica, 37:75–92, 2003. Preliminary version in APPROX 2000.

18 G. Kortsarz and Z. Nutov. Approximating source location and star survivable network
problems. Theoretical Computer Science, 674:32–42, 2017.

19 B. Laekhanukit. An improved approximation algorithm for the minimum cost subset k-
connected subgraph problem. Algorithmica, 72(3):714–733, 2015. Preliminary version in
ICALP 2011.

20 W. Mader. Ecken vom grad n in minimalen n-fach zusammenhängenden graphen. Archive der
Mathematik, 23:219–224, 1972.

21 M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics
for unit disk graphs. Networks, 25(2):59–68, 1995.

22 Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies.
ACM Transactions on Algorithms, 9(1):1:1–1:16, 2012. Preliminary version in FOCS 2009.

23 Z. Nutov. Approximating subset k-connectivity problems. J. Discrete Algorithms, 17:51–59,
2012.

ESA 2020

http://arxiv.org/abs/1912.09662

73:14 Approximating k-Connected m-Dominating Sets

24 Z. Nutov. Activation network design problems. In T. F. Gonzalez, editor, Handbook on
Approximation Algorithms and Metaheuristics, Second Edition, volume 2, chapter 12. Chapman
& Hall/CRC, 2018.

25 Z. Nutov. Erratum: Approximating minimum cost connectivity problems via uncrossable
bifamilies. ACM Transactions on Algorithms, 14(3):37:1–37:8, 2018.

26 Z. Nutov. Improved approximation algorithms for k-connected m-dominating set problems.
Information Processing Letters, 140:30–33, 2018.

27 Z. Nutov. The k-connected subgraph problem. In T. F. Gonzalez, editor, Handbook on
Approximation Algorithms and Metaheuristics, Second Edition, volume 2, chapter 15. Chapman
& Hall/CRC, 2018.

28 Z. Nutov. Node-connectivity survivable network problems. In T. F. Gonzalez, editor, Handbook
on Approximation Algorithms and Metaheuristics, Second Edition, volume 2, chapter 13.
Chapman & Hall/CRC, 2018.

29 Z. Nutov. 2-node-connectivity network design. CoRR abs/2002.04048, 2020. arXiv:2002.
04048.

30 Z. Nutov. A 4 + ε approximation for k-connected subgraphs. In SODA, pages 1000–1009, 2020.
31 Y. Shi, Z. Zhang, Y. Mo, and D.-Z. Du. Approximation algorithm for minimum weight

fault-tolerant virtual backbone in unit disk graphs. IEEE/ACM Transactions on networking,
25(2):925–933, 2017.

32 M. Thai, N. Zhang, R. Tiwari, and X. Xu. On approximation algorithms of k-connected
m-dominating sets in disk graphs. Theoretical Computer Science, 385:49–59, 2007.

33 J. Willson, Z. Zhang, W. Wu, and D.-Z. Du. Fault-tolerant coverage with maximum lifetime
in wireless sensor networks. In INFOCOM, pages 1364–1372, 2015.

34 Z. Zhang, J. Zhou, S. Tang, X. Huang, and D.-Z. Du. Computing minimum k-connected
m-fold dominating set in general graphs. INFORMS Journal on Computing, 30(2):217–224,
2018.

35 F. Zou, X. Li, S. Gao, and W. Weili. Node-weighted steiner tree approximation in unit disk
graphs. J. Combinatorial Optimization, 18(4):342–349, 2009.

36 F. Zou, Y. Wang, X. XiaoHua, X. Li, D. Hongwei, P.-J. Wan, andW.Weili. New approximations
for minimum-weighted dominating sets and minimum-weighted connected dominating sets on
unit disk graphs. Theoretical Computer Science, 412(3):198–208, 2011.

http://arxiv.org/abs/2002.04048
http://arxiv.org/abs/2002.04048

Full Complexity Classification of the List
Homomorphism Problem for Bounded-Treewidth
Graphs
Karolina Okrasa
Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
University of Warsaw, Institute of Informatics, Poland
k.okrasa@mini.pw.edu.pl

Marta Piecyk
Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
m.piecyk@mini.pw.edu.pl

Paweł Rzążewski
Warsaw University of Technology, Faculty of Mathematics and Information Science, Poland
University of Warsaw, Institute of Informatics, Poland
p.rzazewski@mini.pw.edu.pl

Abstract
A homomorphism from a graph G to a graph H is an edge-preserving mapping from V (G) to
V (H). Let H be a fixed graph with possible loops. In the list homomorphism problem, denoted by
LHom(H), we are given a graph G, whose every vertex v is assigned with a list L(v) of vertices of
H. We ask whether there exists a homomorphism h from G to H, which respects lists L, i.e., for
every v ∈ V (G) it holds that h(v) ∈ L(v).

The complexity dichotomy for LHom(H) was proven by Feder, Hell, and Huang [JGT 2003].
The authors showed that the problem is polynomial-time solvable if H belongs to the class called
bi-arc graphs, and for all other graphs H it is NP-complete.

We are interested in the complexity of the LHom(H) problem, parameterized by the treewidth
of the input graph. This problem was investigated by Egri, Marx, and Rzążewski [STACS 2018],
who obtained tight complexity bounds for the special case of reflexive graphs H, i.e., if every vertex
has a loop.

In this paper we extend and generalize their results for all relevant graphs H, i.e., those, for
which the LHom(H) problem is NP-hard. For every such H we find a constant k = k(H), such that
the LHom(H) problem on instances G with n vertices and treewidth t

can be solved in time kt · nO(1), provided that G is given along with a tree decomposition of
width t,
cannot be solved in time (k − ε)t · nO(1), for any ε > 0, unless the SETH fails.

For some graphs H the value of k(H) is much smaller than the trivial upper bound, i.e., |V (H)|.
Obtaining matching upper and lower bounds shows that the set of algorithmic tools that we

have discovered cannot be extended in order to obtain faster algorithms for LHom(H) in bounded-
treewidth graphs. Furthermore, neither the algorithm, nor the proof of the lower bound, is very
specific to treewidth. We believe that they can be used for other variants of the LHom(H) problem,
e.g. with different parameterizations.

2012 ACM Subject Classification Mathematics of computing → Graph coloring; Theory of com-
putation → Problems, reductions and completeness; Theory of computation → Graph algorithms
analysis; Theory of computation → Parameterized complexity and exact algorithms

Keywords and phrases list homomorphisms, fine-grained complexity, SETH, treewidth

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.74

Related Version A full version of the paper is available at http://arxiv.org/abs/2006.11155.

Funding Karolina Okrasa: This research is a part of a project that has received funding from

© Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 74; pp. 74:1–74:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1414-3507
mailto:k.okrasa@mini.pw.edu.pl
mailto:m.piecyk@mini.pw.edu.pl
https://orcid.org/0000-0001-7696-3848
mailto:p.rzazewski@mini.pw.edu.pl
https://doi.org/10.4230/LIPIcs.ESA.2020.74
http://arxiv.org/abs/2006.11155
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

74:2 Full Complexity Classification of the List Homomorphism Problem

the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme Grant Agreement no. 714704.
Marta Piecyk: Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.
Paweł Rzążewski: Supported by Polish National Science Centre grant no. 2018/31/D/ST6/00062.

Acknowledgements We are grateful to Daniél Marx and Lászlo Egri for much advice regarding the
topic and to Kamil Szpojankowski for an inspiring discussion about almost all graphs.

1 Introduction

A popular line of research in studying computationally hard problems is to consider restricted
instances, in order to understand the boundary between easy and hard cases. For example,
most of natural problems can be efficiently solved on trees, using a bottom-up dynamic
programming. This observation led to the definition of treewidth, which, informally speaking,
measures how much a given graph resembles a tree. The notion of treewidth appears
to be very natural and it was independently discovered by several authors in different
contexts [2, 8, 37, 13].

For many problems, polynomial-time algorithms for graphs with bounded treewidth can
be obtained by adapting the dynamic programming algorithms for trees. Most of these
straightforward algorithms follow the same pattern, which was captured by the seminal
meta-theorem by Courcelle [11]: he proved that each problem expressible in monadic second
order logic (MSO2) can be solved in time f(tw(G)) · nO(1) on graphs G with n vertices and
treewidth tw(G), where f is some function, depending on the MSO2 formula describing the
particular problem. As a consequence of this meta-theorem, in order to show that some
problem Π is fixed-parameter tractable (FPT), parameterized by the treewidth, it is sufficient
to show that Π can be described in a certain way.

The main problem with using the meta-theorem as a black-box is that the function f it
produces is huge (non-elementary). We also know that this bound cannot be improved, if
we want to keep the full generality of the statement [23]. Because of this, as the area of the
so-called fine-grained complexity gained popularity [32], researchers turned back to studying
particular problems, and asking about the best possible dependence on treewidth, i.e., the
function f . This led to many exciting algorithmic results which significantly improved the
naive dynamic programming approach [40, 6, 31].

There is a little caveat that applies to most of algorithms mentioned above: Usually we
assume that the input graph is given with its tree decomposition, and the running time is
expressed in terms of the width of this decomposition. This might be a serious drawback, since
finding an optimal tree decomposition is NP-hard [1]. However, finding a tree decomposition
of given width (if one exists) can be done in FPT time [4, 7], which is often sufficient. Since
we are interested in the complexity of certain problems, parameterized by the treewidth, we
will not discuss the time needed to find a decomposition. Thus we will assume that the input
graph is given with its tree decomposition.

In parallel to improving the algorithms, many lower bounds were also developed [33, 37, 13].
Let us point out that the main assumption from the classical complexity theory, i.e., P 6=
NP, is too weak to provide any meaningful lower bounds in our setting. The most commonly
used assumptions in the fine-grained complexity world, are the Exponential-Time Hypothesis
(ETH) and the Strong Exponential-Time Hypothesis (SETH), both introduced by Impagliazzo
and Paturi [27, 28]. Informally speaking, the ETH implies that 3-Sat with n variables cannot
be solved in subexponential time, i.e., in time 2o(n), and the SETH implies that CNF-Sat
with n variables and m clauses cannot be solved in time (2− ε)n ·mO(1), for any ε > 0.

K. Okrasa, M. Piecyk, and P. Rzążewski 74:3

For example the straightforward dynamic programming algorithm for k-Coloring works
in time ktw(G)·nO(1). As one of the first SETH-based lower bounds for problems parameterized
by the treewidth, Lokshtanov, Marx, and Saurabh [33] proved that this bound is tight.

I Theorem 1 (Lokshtanov, Marx, Saurabh [33]). For any k > 3, there is no algorithm solving
k-Coloring on a graph with n vertices and treewidth t in time (k − ε)t · nO(1), unless the
SETH fails.

Graph homomorphisms. In this paper we are interested in extending Theorem 1 for one of
possible generalizations of the k-Coloring problem. For graph G and H (both with possible
loops on vertices), a homomorphism from G to H is a mapping h : V (G) → V (H), which
preserves edges, i.e., for every edge xy of G it holds that h(x)h(y) ∈ E(H). The graph H is
called a target. If h is a homomorphism from G to H, we denote it by writing h : G→ H.
We also write G→ H to indicate that some homomorphism from G to H exists.

By Hom(H) we denote the problem of deciding if an instance graph G admits a homo-
morphism to H (usually we consider H a fixed graph, but we might also treat it as a part
of the input). Observe that if H = Kk, then Hom(H) is equivalent to the k-Coloring
problem. Because of that, homomorphisms to H are often called H-colorings. We will also
refer to vertices of H as colors.

Let us briefly survey some results concerning the complexity of variants of the Hom(H)
problem. For more, we refer the reader to the monograph by Hell and Nešetřil [25]. The
complexity dichotomy for Hom(H) was shown by Hell and Nešetřil [26]: the problem is
polynomial-time-solvable if H contains a vertex with a loop or is bipartite, and NP-complete
for all other graphs H. Since then, many interesting results concerning the complexity of
graph homomorphisms have appeared [22, 41, 38, 12, 14, 10]. The fine-grained complexity
of the Hom(H) problem, parameterized by the treewidth of the input graph, was recently
studied by Okrasa and Rzążewski [35]. They found tight SETH-bounds, conditioned on two
conjectures from algebraic graph theory from early 2000s. As these conjectures remain wide
open, we know no graph, for which the bounds from [35] do not apply.

A natural and interesting extension of the Hom(H) problem is its list version. In the list
homomorphism problem, denoted by LHom(H), the input consists of a graph G and a H-lists
L, which means that L is a function which assigns to each vertex of G a subset of vertices of
H. We ask whether there is a homomorphism h from G to H, which respects lists L, i.e.,
for each x ∈ V (G) it holds that h(x) ∈ L(x). If h is such a list homomorphism, we denote
it by h : (G,L) → H. We also write (G,L) → H to indicate that some homomorphism
h : (G,L)→ H exists.

The complexity of the LHom(H) problem was shown in three steps. First, Feder and
Hell [16] provided a classification for the case that H is reflexive, i.e., every vertex has a loop.
They proved that if H is an interval graph, then the problem is polynomial-time solvable,
and otherwise it is NP-complete. The next step was showing the complexity dichotomy
for irreflexive graphs (i.e., with no loops). Feder, Hell, and Huang [17] proved that if H is
bipartite and its complement is a circular-arc graph, then the problem is polynomial-time
solvable, and otherwise it is NP-complete. Interestingly, bipartite graphs whose complement
is circular-arc were studied independently by Trotter and Moore [39] in the context of some
poset problems. Finally, Feder, Hell, and Huang [18] provided the full classification for
general graph H: the polynomial cases appear to be bi-arc graphs, which are also defined
in terms of some geometric representation. Let us now skip the exact definition of bi-arc
graphs, and we will get back to it in Section 4.1.

ESA 2020

74:4 Full Complexity Classification of the List Homomorphism Problem

Let us point out that in all three papers mentioned above, the polynomial-time algorithms
for LHom(H) exploited the geometric representation of H. On the other hand, all hardness
proofs followed the same pattern. First, for each “easy” class C (i.e., interval graphs, bipartite
co-circular-arc graphs, and bi-arc graphs), the authors provided an alternative characterization
in terms of forbidden subgraphs. In other words, they defined a (non-necessarily finite) family
F of graphs, such that H ∈ C if and only if H does not contain any F ∈ F as an induced
subgraph. Then, for each F ∈ F , the authors showed that LHom(F) is NP-complete. Note
that this is sufficient, as every “hard” graph H contains some F ∈ F , and every instance of
LHom(F) is also an instance of LHom(H), where no vertex from V (H)− V (F) appears in
any list.

If the input graph G is given with a tree decomposition of width tw(G), then the
straightforward dynamic programming solves the LHom(H) problem in time |V (H)|tw(G) ·
|V (G)|O(1). The study of the fine-grained complexity of LHom(H), parameterized by the
treewidth of the input graph, was initiated by Egri, Marx, and Rzążewski [15]. They
provided the full complexity classification for reflexive graphs H, i.e., corresponding to the
first step of the above-mentioned complexity dichotomy. The authors defined a new graph
invariant, denoted by i∗, which is based on incomparable sets and the existence of a certain
decomposition in H, and proved the following tight bounds.

I Theorem 2 (Egri, Marx, Rzążewski [15]). Let H be a fixed connected reflexive non-interval
graph, and let k = i∗(H). The LHom(H) problem on instances (G,L) with n vertices,
(a) can be solved in time ktw(G) · nO(1), provided that an optimal tree decomposition of G is

given,
(b) cannot be solved in time (k − ε)tw(G) · nO(1) for any ε > 0, unless the SETH fails.

Our results

In this paper we provide a full complexity classification of LHom(H), parameterized by
the treewidth of an instance graph. Our results heavily extend the ones of Egri, Marx,
Rzążewski [15] and generalize Theorem 2 to all relevant graphs H. Let us point out that
instead of designing ad-hoc algorithms and reductions that are fine-tailored for a particular
problem, we rather build a general framework that allows us to provide tight bounds for a
natural and important family of problems.

Bipartite graphs H. We first deal with the case thatH is bipartite (in particular, irreflexive),
with bipartition classes X and Y . Recall that we are interested in graphs H, for which the
LHom(H) problem is NP-hard, i.e., graphs that are not co-circular-arc graphs. Moreover,
we consider only connected graphs H (as otherwise we can reduce to this case in polynomial
time).

Let us present the high-level idea behind our algorithm for LHom(H). Consider an
instance (G,L), such that G is connected, and let n = |V (G)|. We may assume that G is
bipartite, as otherwise (G,L) is clearly a no-instance. Furthermore, in any homomorphism
from G to H, each bipartition class of G is mapped to a different bipartition class of H. We
can assume that this is already reflected in the lists (we might have to solve two independent
instances).

The algorithm is based on two main ideas. First, observe that if H contains two vertices
u, v, which are in the same bipartition class, and each neighbor of u is a neighbor of v, then
we can always use v instead of u, unless this is forbidden by lists. Thus we might always
assume that each list is an incomparable set, i.e., it does not contain two vertices u, v as
above. By i(H) we denote the size of a largest incomparable set contained in one bipartition
class.

K. Okrasa, M. Piecyk, and P. Rzążewski 74:5

The second idea is related to a certain decomposition of H. By a bipartite decomposition
we mean a partition of the vertex set of H into three subsets D,N,R, such that:

at least one of sets (D ∩X) and (D ∩ Y) has at least 2 elements,
N is non-empty, induces a biclique in H, and separates D and R,
the sets (D ∩X) ∪ (N ∩ Y) and (D ∩ Y) ∪ (N ∩X) induce bicliques in H.

We show that if H has a bipartite decomposition, then we can reduce solving an instance
(G,L) of LHom(H) to solving several instances of LHom(H1) and LHom(H2), where H1
is the subgraph of H induced by D, and H2 is obtained from H by collapsing D ∩X and
D ∩ Y to single vertices.

This leads to the definition of i∗(H) as the maximum value of i(H ′) over all connected
undecomposable induced subgraphs H ′ of H, which are not complements of a circular-arc
graph (a graph is undecomposable if it has no bipartite decomposition). As our first result, we
show that the algorithm exploiting decompositions recursively runs in time i∗(H)tw(G) ·nO(1).

One might wonder whether some additional observations could be used to improve the
algorithm. As our second result, we show that this is not possible, assuming the SETH.
This means that unless something unexpected happens in complexity theory, our algorithmic
toolbox allows to solve LHom(H), parameterized by the treewidth, as fast as possible. More
formally, we show the following theorem, which fully classifies the complexity of LHom(H)
for bipartite graphs H.

I Theorem 3. Let H be a connected bipartite graph, whose complement is not a circular-arc
graph, and let k = i∗(H). Let G be a bipartite graph with n vertices and treewidth tw(G).
(a) Even if H is given as an input, the LHom(H) problem with instance (G,L) can be solved

in time ktw(G) · (n · |H|)O(1) for any lists L, provided that G is given with an optimal tree
decomposition.

(b) Even if H is fixed, there is no algorithm that solves LHom(H) for every G and L in
time (k − ε)tw(G) · nO(1) for any ε > 0, unless the SETH fails.

Note that for Theorem 3 a), if H is not considered to be a constant, n · |H| is a natural
measure of the size of an instance, as it is an upper estimate on the sum of sizes of all lists.

The main tool used in the proof of Theorem 3 b) is the following technical lemma.

I Lemma 4 (Constructing a NEQ(S)-gadget). Let H be a connected, bipartite, undecomposable
graph, whose complement is not a circular-arc graph. Let S be an incomparable set of k > 2
vertices of H, contained in one bipartition class. Then there exists a NEQ(S)-gadget, i.e., a
graph F with H-lists L and two special vertices x, x′ ∈ V (F), such that L(x) = L(x′) = S

and
for any list homomorphism h : (F,L)→ H, it holds that h(x) 6= h(x′),
for any distinct s, s′ ∈ S there is h : (F,L)→ H, such that h(x) = s and h(x′) = s′.

Let us point out that the graph constructed in Lemma 4 can be seen as a primitive-positive
definition of the inequality relation on S (see e.g. Bulatov [9, Section 2.1]). However, we
prefer to present our results using purely combinatorial terms.

The proof of Lemma 4 is technically involved, but as soon as we have it, the proof
of Theorem 3 b) is straightforward. Consider an instance G of k-Coloring, where k = i∗(H).
Let H ′ be a connected, undecomposable, induced subgraph of H, whose complement is not
a circular-arc graph, and contains an incomparable set S of size k. We construct a graph
G∗ by replacing each edge uv of G with a copy of the NEQ(S)-gadget, given by Lemma 4
(invoked for H ′ and S), so that u is identified with x and v is identified with x′. By the
properties of the gadget, we observe that G∗ has a list homomorphism to H if and only if

ESA 2020

74:6 Full Complexity Classification of the List Homomorphism Problem

G is a yes-instance of k-Coloring. Furthermore, the construction of the NEQ(S)-gadget
depends on H only, and H is assumed fixed, so we conclude that tw(G∗) = tw(G) +O(1).
Therefore the statement of Theorem 3 b) follows from Theorem 1.

General graphs H. Next, we move to the general case. We aim to reduce the problem
to the bipartite case. The main idea comes from Feder, Hell, and Huang [18] who showed
a close connection between the LHom(H) problem and the LHom(H∗) problem, where
H∗ is the associated bipartite graph of H, i.e., the bipartite graph with bipartition classes
{v′ : v ∈ V (H)} and {v′′ : v ∈ V (H)}, where u′v′′ ∈ E(H∗) if and only if uv ∈ E(H). Let
us point out that we can equivalently define H∗ as a categorical (direct) product of H and
K2 [24].

We extend the definition of i∗ to non-bipartite graphs by setting i∗(H) := i∗(H∗). Let
us point out that this is consistent with the definition for bipartite graphs, and with the
definition of i∗ for reflexive graphs, introduced by Egri, Marx, and Rzążewski [15]. We show
the following theorem, fully classifying the complexity of LHom(H), parameterized by the
treewidth of the instance graph1.

I Theorem 5. Let H be a connected non-bi-arc graph (with possible loops), and let k = i∗(H).
Let G be a graph with n vertices and treewidth tw(G).
(a) Even if H is given as an input, the LHom(H) problem with instance (G,L) can be solved

in time ktw(G) · (n · |H|)O(1) for any lists L, provided that G is given with an optimal tree
decomposition.

(b) (♠) Even if H is fixed, there is no algorithm that solves LHom(H) for every G and L
in time (k − ε)tw(G) · nO(1) for any ε > 0, unless the SETH fails.

As we mentioned before, both statements of Theorem 5 follow from the corresponding
statements in Theorem 3. For the algorithmic part, we define certain decompositions of
general graphs H and show that they coincide with bipartite decompositions H∗. This lets us
reduce solving an instance (G,L) of LHom(H) to solving some instances of LHom(H∗). On
the complexity side, the reduction is even more direct: we show that an algorithm solving the
LHom(H) problem on instances with treewidth t in time (i∗(H)− ε)t · nO(1) could be used
to solve the LHom(H∗) problem on instances with treewidth t in time (i∗(H∗)− ε)t · nO(1),
thus contradicting Theorem 3 b).

We also analyze the complexity of LHom(H) for typical graphs H, and prove the following.

I Corollary 6 (♠). For almost all graphs H with possible loops the following holds. Even
if H is fixed, there is no algorithm that solves LHom(H) for every instance (G,L) in time
O
(
(|V (H)| − ε)tw(G) · nO(1)) for any ε > 0, unless the SETH fails.

Finally, we show how to generalize our approach of reducing instances of LHom(H)
to instances of LHom(H ′), where H ′ is undecomposable. We believe that this idea could
be exploited to study the complexity of LHom(H) in various regimes, e.g., for different
parameterizations of input instances.

Comparison to the previous work. Let us briefly discuss similarities and differences between
our work and previous, closely related results by Egri, Marx, and Rzążewski [15] (about the
complexity of the LHom(H) problem for reflexive H), and by Okrasa and Rzążewski [35]
(about the complexity of the Hom(H) problem).

1 The proofs of results marked with ♠ can be found in the full version of the paper [34].

K. Okrasa, M. Piecyk, and P. Rzążewski 74:7

At the high level, we follow the direction used by Egri et al. [15], but since we generalize
their result to all relevant graphs H, the techniques become much more involved. The crucial
idea was to reduce the problem to the bipartite case, and to define decompositions of general
graphs that correspond to the decompositions of H∗. On the contrary, the case of reflexive
graphs H is much more straightforward. In particular, there is just one type of decomposition
that could be exploited algorithmically. Also, the structure of “hard” subgraphs is much
simpler in this case, so the necessary gadgets are significantly easier to construct.

On the other hand, in order to prove hardness for the Hom(H) problem, Okrasa and
Rzążewski [35] used mostly algebraic tools that are able to capture the global structure of a
graph. In contrast, our proofs are purely combinatorial. Furthermore, we are able to provide
the full complexity classification for all graphs H, while the results of [35] are conditioned on
two twenty-year-old conjectures.

Notation

Let H be a graph. By comp(H) we denote the set of connected components of H. For a
vertex v, by N(v) we denote the open neighborhood of v, i.e., the set of vertices adjacent
to v (note that v ∈ N(v) if and only if v has a loop). For a set U ⊆ V (H), we define
N(U) :=

⋃
u∈U N(u)−U and N [U] :=

⋃
u∈U N(u)∪U . If U = {u1, . . . , uk}, we omit one pair

of brackets and write N(u1, . . . , uk) (respectively N [u1, . . . , uk]) instead of N({u1, . . . , uk})
(respectively N [{u1, . . . , uk}]).

We say that two vertices x, y are comparable if N(y) ⊆ N(x) or N(x) ⊆ N(y). If
two vertices are not comparable, we say that they are incomparable. A set of vertices is
incomparable if all vertices are pairwise incomparable.

We say that a set A ⊆ V (H) is complete to a set B ⊆ V (H) if for every a ∈ A and b ∈ B
the edge ab exists. On the other hand, A is non-adjacent to B if there are no edges with one
endvertex in A and the other in B.

Let H be a bipartite graph, whose bipartition classes are denoted by X and Y . For a set
S ⊆ V (H) and Z ∈ {X,Y }, by SZ we denote S ∩ Z. For A,B ⊆ V (H), we say that A is
bipartite-complete to B if AX is complete to BY and AY is complete to BX .

A walk P is a sequence P = p1, . . . , p` of vertices of H, such that pipi+1 ∈ E(H), for
every i ∈ [`− 1].

2 Algorithm for bipartite target graphs

Observe that we might always assume that H is connected, as otherwise we can solve the
problem for each connected component of H separately. Furthermore, without losing the
generality we may assume certain properties of instances of LHom(H) that we need to solve.

I Observation 7 (♠). Let (G,L) be an instance of LHom(H), where H is connected and
bipartite with bipartition classes X,Y . Without loss of generality, we might assume the
following.
1. The graph G is connected and bipartite, with bipartition classes XG and YG,
2.
⋃

x∈XG
L(x) ⊆ X and

⋃
y∈YG

L(y) ⊆ Y ,
3. for each x ∈ V (G), the set L(x) is incomparable.

An instance of LHom(H) that respects conditions in Observation 7 is called consistent.
From now on we will restrict ourselves to consistent instances. Let us introduce a graph
parameter, which will play a crucial role in our investigations.

ESA 2020

74:8 Full Complexity Classification of the List Homomorphism Problem

NX NY

DX DY

RX RY

Figure 1 A schematic view of a bipartite decomposition. Disks correspond to independent sets
of vertices. Thick black lines indicate that all possible edges between two sets exist, and thin orange
lines depict edges that might exist, but do not have to. The lack of a line means that there are no
edges between two sets.

I Definition 8 (i(H)). For a bipartite graph H, by i(H) we denote the maximum size of an
incomparable set in H, which is fully contained in one bipartition class.

Clearly for every H we have i(H) 6 |H|. Note that by Observation 7 we obtain the
following.

I Corollary 9. Let (G,L) be a consistent instance of LHom(H), where H is bipartite. Then
max

v∈V (G)
|L(v)| 6 i(H).

2.1 Decomposition of bipartite graphs
Throughout this section we assume that the target graph H is bipartite with bipartition
classes X and Y . In particular, it has no loops. Our algorithm for LHom(H) is based on
the existence of a certain decomposition of H.

I Definition 10 (Bipartite decomposition). A partition of V (H) into an ordered triple of sets
(D,N,R) is a bipartite decomposition if the following conditions are satisfied (see Figure 1).
1. N is non-empty and separates D and R,
2. |DX | > 2 or |DY | > 2,
3. N induces a biclique in H,
4. D is bipartite-complete to N .

Since so far we only consider bipartite decompositions, we will just call them decompo-
sitions. Later on we will introduce other types of decompositions and then the distinction
will be important. If H admits a decomposition, then it is decomposable, otherwise it is
undecomposable.

For a graph H with a decomposition (D,N,R), the factors of the decomposition are two
graphs H1, H2 defined as follows. The graph H1 is the subgraph of H induced by the set D.
The graph H2 is obtained in the following way. For Z ∈ {X,Y }, if DZ is non-empty, then
we contract it to a vertex dZ . If there is at least one edge between the sets DX and DY , we
add the edge dXdY .

Note that both H1 and H2 are proper induced subgraphs of H. For H1 is follows directly
from the definition and H2 can be equivalently defined as a graph obtained from H by
removing all but one vertex from DX (if DX 6= ∅) and all but one vertex from DY (if
DY 6= ∅). We leave the vertices that are joined by an edge, provided that such a pair exists.

Now let us show how the bipartite decomposition can be used algorithmically. Let
T (H,n, t) denote an upper bound for the complexity of LHom(H) on instances with n

vertices, given along a tree decomposition of width t. In the following lemma we do not
assume that |H| is a constant.

K. Okrasa, M. Piecyk, and P. Rzążewski 74:9

I Lemma 11 (Bipartite decomposition lemma). Let H be a bipartite graph with bipartition
classes X and Y , whose complement is not a circular-arc graph, and suppose H has a
bipartite decomposition with factors H1, H2. Assume that there are constants α > 1, c > 1,
and d > 2, such that T (H1, n, t) 6 α · ct · (n · |H1|)d and T (H2, n, t) 6 α · ct · (n · |H2|)d.
Then T (H,n, t) 6 α · ct · (n · |H|)d, if n is sufficiently large.

Proof. Consider an instance (G,L) of LHom(H), recall that without loss of generality we
may assume that it is consistent. Let the bipartition classes of G be XG and YG and assume
that

⋃
x∈XG

L(x) ⊆ X and
⋃

y∈YG
L(y) ⊆ Y .

Let (D,N,R) be a bipartite decomposition of H. We observe that for Z ∈ {X,Y }, and
any two vertices v ∈ DZ , s ∈ NZ , we have N(v) ⊆ N(s). Thus we may assume that no list
contains both s and v. Let Q be the set of vertices of G which have at least one vertex from
N in their lists.

B Claim 12. If there exists a list homomorphism h : (G,L) → H, the image of each
C ∈ comp(G−Q) is entirely contained either in D or in R.

Proof. By the definition of comp(G−Q), the image of C is disjoint with N . Suppose there
exist a, b ∈ C, such that h(a) = u ∈ D and h(b) = r ∈ R. Since C is connected, there exists
an a-b-path P in C. The image of P is an u-r-walk in H. But since N separates D and R in
H, there is a vertex of P , which is mapped to a vertex of N , a contradiction. C

Let us define lists L1 as L1(x) := L(x) ∩ D, for every x ∈ V (G) − Q. For each
C ∈ comp(G−Q), we check if there exists a homomorphism hC : (C,L1) → H1. Let
C1 be the set of those C ∈ comp(G−Q), for which hC exists. By Claim 12, we observe that
if C /∈ C1, then we can safely remove all vertices from D from the lists of vertices of C.

Now consider the graph H2. Let Z ∈ {X,Y } and let dZ be the vertex to which the set
DZ is collapsed (if it exists). Let us define an instance (G,L2) of the LHom(H2) problem,
where the lists L2 are as follows. If v ∈ ZG is a vertex from some component of C1, then
L2(v) := L(v) − DZ ∪ {dZ} (note that in this case dZ must exist). If v is a vertex from
some component of comp(G−Q) − C1, then L2(v) := L(v) −DZ . Finally, if v ∈ Q, then
L2(v) := L(v). Note that the image of each list is contained in V (H2). Moreover, note that⋃

x∈XG
L2(x) ⊆ RX ∪NX ∪ {dX} and

⋃
y∈YG

L2(y) ⊆ RY ∪NY ∪ {dY }.

B Claim 13. There is a list homomorphism h : (G,L) → H if an only if there is a list
homomorphism h′ : (G,L2)→ H2.

Proof. First, assume that h : (G,L)→ H exists. Define h′ : V (G)→ V (H2) in the following
way:

h′(v) =

dX if h(v) ∈ DX ,

dY if h(v) ∈ DY ,

h(v) otherwise.

Clearly h′ is a homomorphism from G to H2, we need to show that it also respects lists L2.
Suppose otherwise and let v be a vertex of G, such that h′(v) /∈ L2(v). By symmetry, assume
that v ∈ XG, and thus h′(v) ∈ X. If h′(v) 6= dX , then h′(v) = h(v) ∈ (L(v)−DX) ⊆ L2(v).
So suppose h′(v) = dX (and thus h(v) ∈ DX) and dX /∈ L2(v). Observe that v cannot be a
vertex from Q, since h maps v to a vertex of DX and vertices from Q do not have any vertices
of D in their lists. So the only case left is that v belongs to some connected component C of
G−Q, which cannot be mapped to H1. But then, by Claim 12, no vertex of C is mapped to
any vertex of D, so h(v) /∈ DX , a contradiction.

ESA 2020

74:10 Full Complexity Classification of the List Homomorphism Problem

Now suppose there exists a list homomorphism h′ : (G,L2)→ H2. Define the following
mapping h from V (G) to V (H). If h′(v) /∈ {dX , dY }, then we set h(v) := h′(v). Otherwise,
if h′(v) ∈ {dX , dY }, then v is a vertex of some connected component C ∈ C1, and we
define h(v) := hC(v). Clearly h preserves lists L: if h(v) /∈ D, then h(v) = h′(v) ∈
L2(v)− {dX , dY } ⊆ L(v); otherwise we use hC , which preserves lists L by the definition.

Now suppose h does not preserve edges, so there are vertices u ∈ XG and v ∈ YG, such
that uv is an edge of G and h(u)h(v) is not an edge of H. If h′(u) = dX , h

′(v) = dY , or
h′(u) 6= dX , h

′(v) 6= dY , then h(u)h(v) must be an edge of H, otherwise we get a contradiction
by the definitions of hC (as since x and y are neighbors, they belong to the same C) and h′,
respectively. So, by symmetry, suppose h′(u) = dX and h′(v) 6= dY . But then we observe
that h(u) ∈ DX and h(v) = h′(v) ∈ NY , since h′ is a homomorphism. And because NY is
complete to DX , so h(u)h(v) is an edge – a contradiction. C

Computing comp(G−Q) can be done in time O(n · |H|+ n2) = O((n · |H|)2). Note that
given a tree decomposition of G of width at most t, we can easily obtain a tree decomposition
of each C ∈ comp(G−Q) of width at most t. Computing hC for all C ∈ comp(G−Q)
requires time at most∑

C∈comp(G−Q)

T (H1, |C|, t) 6
∑

C∈comp(G−Q)

α · ct · (|H1| · |C|)d 6 α · ct · (|H1| · n)d.

The estimation follows from the facts that
∑

C∈comp(G−Q) |C| 6 n, and nd is superadditive
with respect to n, i.e., nd

1 + nd
2 6 (n1 + n2)d. Computing lists L2 can be performed in time

O(|H| · n). Finally, computing h′ requires time T (H2, n, t) 6 α · ct · (|H2| · n)d. The total
running time is therefore bounded by:

O
(
(n · |H|)2)+ α · ct · (|H1| · n)d +O(|H| · n) + α · ct · (|H2| · n)d.

With a careful analysis one can verify that the above expression is bounded by α ·ct ·(|H| ·n)d,
provided that n is sufficiently large. J

2.2 Solving LHom(H) for bipartite targets
Let us define the main combinatorial invariant of the paper, i∗(H):

I Definition 14 (i∗(H) for bipartite H). Let H be a connected bipartite graph, whose
complement is not a circular-arc graph. Define

i∗(H) := max{i(H ′) : H ′ is an undecomposable, connected, induced
subgraph of H, whose complement is not a circular-arc graph}.

Observe that if H ′ is an induced subgraph of H, then i(H ′) 6 i(H) and i∗(H ′) 6 i∗(H), and
thus i∗(H) = i(H) for undecomposable H. Furthermore, we always have i∗(H) 6 i(H) 6 |H|.

Now we are ready to present an algorithm solving LHom(H), note that again we do not
assume that |H| is a constant. We present the following, slightly more general variant of
Theorem 3 a), where we also do not assume that the tree decomposition of G is optimal.

I Theorem 3’ a). Let H be a connected bipartite graph (given as an input) and let (G,L)
be an instance of LHom(H), where G has n vertices and is given along a tree decompo-
sition of width t. Then there is an algorithm which decides whether (G,L) → H in time
O
(
i∗(H)t · (n · |H|)O(1)).

K. Okrasa, M. Piecyk, and P. Rzążewski 74:11

Proof. Clearly we can assume that n is sufficiently large, as otherwise we can solve the
problem in polynomial time by brute-force.

Observe that with H we can associate a recursion tree R, whose nodes are labeled with
induced subgraphs of H. The root, denoted by node(H) corresponds to the whole graph
H. If H is undecomposable or is a complement of a circular-arc graph, then the recursion
tree has just one node. Otherwise H has a decomposition with factors H1 and H2, and then
node(H) has two children, node(H1) and node(H2), respectively. Recall that each factor
has strictly fewer vertices than H, so we can construct R recursively. Clearly, each leaf of
R is either the complement of a circular-arc graph (and thus the corresponding problem
is polynomial-time solvable), or is an undecomposable induced subgraph of H. Note that
a recursion tree may not be unique, as a graph may have more than one decomposition.
However, the number of leaves is bounded by O(|H|) (actually, with a careful analysis we
can show that it is at most |H| − 2), so the total number of nodes is O(|H|). Furthermore, it
can be shown that in time polynomial in H we can check if H is undecomposable, or find a
decomposition (we show this in the full version of the paper). Since recognizing circular-arc
graphs (and therefore of course their complements) is also polynomial-time solvable, we
conclude that R can be constructed in time polynomial in |H|.

If H is the complement of a circular-arc graph, then we solve the problem in polynomial
time [17]. If H is undecomposable, we run a standard dynamic programming algorithm
on a tree decomposition of G (see [8, 5]). For each bag of the tree decomposition, and
every partial list homomorphism from the graph induced by this bag to H we indicate
whether this particular partial homomorphism can be extended to a list homomorphism
of the graph induced by the subtree rooted at this bag. By Corollary 9, the size of each
list L(x) for x ∈ V (G) is at most i(H), thus the complexity of the algorithm is bounded by
α · i(H)t · (n · |H|)d for some constants α, d. We can assume that d > 2, as otherwise we can
always increase it.

So suppose H is decomposable and let us show that we can solve the problem in time
α · i∗(H)t · (n · |H|)d. Let R be a recursion tree of H and recall that its every leaf corresponds
to an induced subgraph of H with strictly fewer vertices. Therefore, for any leaf node of
R, corresponding to the subgraph H ′ of H, we can solve every instance of LHom(H ′) with
n vertices and a tree decomposition of width at most t in time α · i(H ′)t · (n · |H ′|)d 6
α · i∗(H)t · (n · |H ′|)d. Now, applying Lemma 11 in a bottom-up fashion, we conclude that
we can solve LHom(H) in time α · i∗(H)t · (n · |H|)d = O(i∗(H)t · (n · |H|)O(1)). J

3 Hardness for bipartite target graphs

In this section we aim to prove Theorem 3 b). Actually we will show a version, which gives
the lower bound parameterized by the pathwidth of G. Clearly such a statement is be
stronger, as pw(G) > tw(G). This corresponds to the pathwidth variant of Theorem 1, also
shown by Lokshtanov, Marx, Saurabh [33].

I Theorem 1’ (Lokshtanov, Marx, Saurabh [33]). For any k > 3, there is no algorithm solving
k-Coloring on a graph with n vertices and pathwidth t in time (k − ε)t · nO(1), unless the
SETH fails.

Thus we show the following strengthening of Theorem 3 b).

I Theorem 3’ b). Let H be a fixed bipartite graph, whose complement is not a circular-arc
graph. Unless the SETH fails, there is no algorithm that solves the LHom(H) problem on
instances with n vertices and pathwidth t in time (i∗(H)− ε)t · nO(1), for any ε > 0.

ESA 2020

74:12 Full Complexity Classification of the List Homomorphism Problem

In order to prove Theorem 3’ b), it is sufficient to show the following.

I Theorem 15. Let H be a fixed connected bipartite undecomposable graph, whose complement
is not a circular-arc graph. Unless the SETH fails, there is no algorithm that solves the
LHom(H) problem on instances with n vertices and pathwidth t in time (i(H)− ε)t · nO(1),
for any ε > 0.

Let us show that Theorem 3’ b) and Theorem 15 are equivalent.

(Theorem 15 → Theorem 3’ b)). Assume the SETH and suppose that Theorem 15 holds
and Theorem 3’ b) fails. So there is a bipartite graph H, whose complement is not a
circular-arc graph, and an algorithm A that solves LHom(H) in time (i∗(H)− ε)pw(G) ·nO(1)

for every input (G,L), assuming that G is given along with its optimal path decomposition.
Let H ′ be an undecomposable connected induced subgraph of H, whose complement

is not a circular-arc graph, and i(H ′) = i∗(H). Let (G,L′) be an arbitrary instance of
LHom(H ′). Since H ′ is an induced subgraph of H, the instance (G,L′) can be seen as
an instance of LHom(H), where no vertex from V (H) − V (H ′) appears in any list. The
algorithm A solves this instance in time (i∗(H)− ε)pw(G) · nO(1) = (i(H ′)− ε)pw(G) · nO(1),
contradicting Theorem 15.

(Theorem 3’ b) → Theorem 15). Assume the SETH and suppose Theorem 3’ b) holds
and Theorem 15 fails. So there is a connected bipartite undecomposable graph H, whose
complement is not a circular-arc graph, and an algorithm A that solves LHom(H) in time
(i(H) − ε)pw(G) · nO(1) for every input (G,L). But since H is connected, bipartite, and
undecomposable, we have i∗(H) = i(H), so algorithm A contradicts Theorem 3’ b).

3.1 Hardness reduction
Let H be an undecomposable, bipartite graph, whose complement is not a circular-arc graph.
First, we will show that the structure of H is sufficiently rich to express some basic relations.

For a k-ary relation Rk ⊆ V (H)k, by an Rk-gadget we mean a graph F with H-lists L
and k specified vertices v1, v2, . . . , vk, called interface, such that for every i ∈ [k] it holds that

{f(v1)f(v2) . . . f(vk) | f : (F,L)→ H} = Rk.

In other words, the set of all possible colorings of the interface vertices that can be extended
to a list H-coloring of the whole gadget is precisely the relation we are expressing. In the
definition of an Rk-gadget we do not insist that interface vertices are pairwise different.

Let (α, β) be a fixed pair of vertices of H. First, we need to express a k-ary relation
ORk = {α, β}k − {αk} and a binary relation NAND2 = {αα, αβ, βα} for (α, β). To make
the definitions more intuitive, note that we can assign logic values to vertices α, β in the
following way: α is interpreted as false, and β is interpreted as true. Note that the relations
ORk and NAND2 are symmetric with respect to interface vertices.

The other type of gadget which we need to introduce is distinguisher.

I Definition 16 (Distinguisher). Let S be an incomparable set in H and let (α, β) be a fixed
pair of vertices of H, such that {α, β} ∪ S is contained in one bipartition class of H. Let
a, b ∈ S. A distinguisher gadget for (α, β) is a graph Da/b with two specified vertices x (called
input) and y (called output), and H-lists L such that:
(D1) L(x) = S and L(y) = {α, β},
(D2) there is a list homomorphism ϕa : (Da/b, L)→ H, such that ϕa(x) = a and ϕa(y) = α,

K. Okrasa, M. Piecyk, and P. Rzążewski 74:13

(D3) there is a list homomorphism ϕb : (Da/b, L)→ H, such that ϕb(x) = b and ϕb(y) = β,
(D4) for any c ∈ S − {a, b} there is ϕc : (Da/b, L) → H, such that ϕc(x) = c and ϕc(y) ∈

{α, β},
(D5) there is no list homomorphism ϕ : (Da/b, L)→ H, such that ϕ(x) = a and ϕ(y) = β.

The existence of the ORk-gadget, the NAND2-gadget, and the distinguisher gadgets
follows from the lemma.

I Lemma 17 (♠). Let H be an undecomposable bipartite graph, whose complement is not a
circular-arc graph and let S be an incomparable set in H, |S| > 2. Then there exists a pair
of vertices (α, β), such that S ∪ {α, β} is contained in one bipartition class of H and:
1. for every k > 2 there exists an ORk-gadget for (α, β),
2. there exists a NAND2-gadget for (α, β),
3. for every pair (a, b) of distinct elements of S there exists a distinguisher Da/b for (α, β).

With Lemma 17 in hand we proceed to the construction of the NEQ(S)-gadget.

I Lemma 4 (Constructing a NEQ(S)-gadget). Let H be a connected, bipartite, undecomposable
graph, whose complement is not a circular-arc graph. Let S be an incomparable set of k > 2
vertices of H, contained in one bipartition class. Then there exists a NEQ(S)-gadget, i.e., a
graph F with H-lists L and two special vertices x, x′ ∈ V (F), such that L(x) = L(x′) = S

and
for any list homomorphism h : (F,L)→ H, it holds that h(x) 6= h(x′),
for any distinct s, s′ ∈ S there is h : (F,L)→ H, such that h(x) = s and h(x′) = s′.

Proof. We denote the vertices of S by v1, v2, . . . , vk. We call Lemma 17 for S, let (α, β) be
a pair of vertices given by this lemma. We will construct the NEQ(S)-gadget in three steps.

Step I. In this step we will show that for every i ∈ [k] we can construct a graph Ii with
two special vertices xi and ci and H-lists L, satisfying the following properties.

L(xi) = S and L(ci) = {α, β},
for every list homomorphism ϕ : (Ii, L)→ H, if ϕ(xi) = vi, then ϕ(ci) = β,
for every j 6= i there exists a list homomorphism ϕj : (Ii, L)→ H such that ϕj(xi) = vj

and ϕj(ci) = α.

Let us fix any i ∈ [k]. For every j ∈ [k] − {i} we take a distinguisher Dvi/vj
given by

Lemma 17 for a = vi, b = vj with the input xi,j and the output yi,j . We identify the vertices
xi,j , for all feasible j, to a single vertex xi, and introduce a new vertex ci. Then we add to
our construction a copy of the ORk gadget and identify its k interface vertices with distinct
elements of {ci} ∪ {yi,j}j 6=i. This completes the construction of Ii (see Figure 2, left).

Recall that the properties of the ORk-gadget imply that every list homomorphism from
Ii to H maps at least one of vertices in {ci} ∪ {yi,j}j 6=i to β. By the property (D5) in
Definition 16, for any ϕ : (Ii, L) → H with ϕ(xi) = vi, and for every j 6= i it holds that
ϕ(yi,j) = α. This in turn forces ϕ(ci) = β.

On the other hand, by properties (D2), (D3), and (D4), for any j 6= i there is a
homomorphism ϕj : (Ii, L)→ H, such that ϕj(xi) = vj and ϕ(yi,j) = β, which allows us to
set ϕj(ci) = α. So Ii satisfies all desired properties.

ESA 2020

74:14 Full Complexity Classification of the List Homomorphism Problem

xi

ci

Dvi/v1

Dvi/vk

Dvi/vi−1

Dvi/vi+1 ORk

x x′

c1 c′1

ck c′k

I I ′

I1

Ik

I ′1

I ′k

NAND2

NAND2

Figure 2 The graph Ii with special vertices xi and ci (left) and NEQ(S)-gadget with interface
vertices x, x′ (right).

Step II. In this step we will construct a graph I with H-lists L and special vertices
x, c1, . . . , ck, satisfying the following properties.

L(x) = S and L(ci) = {α, β} for every i ∈ [k],
for every list homomorphism ϕ : (I, L)→ H, if ϕ(x) = vi, then ϕ(ci) = β.
for every i ∈ [k] there exists a list homomorphism ϕi : (I, L)→ H, such that ϕi(x) = vi

and ϕi(ci) = β, and ϕi(cj) = α for every j ∈ [k]− {i}.

The graph I is constructed by introducing k gadgets I1, . . . , Ik, and identifying the vertices
x1, . . . , xk into a single vertex x (see Figure 2, right). The desired properties of I follow
directly from properties of Ii’s.

Step III. Finally, we can construct a NEQ(S)-gadget. We introduce two copies of the gadget
from the previous step, call them I and I ′ (we will use primes to denote the appropriate
vertices of I ′). For each i ∈ [k], we introduce a NAND2-gadget and identify its interface
vertices with vertices ci and c′i (see Figure 2, right). Let us call such constructed graph F .
We claim that F is a NEQ(S)-gadget, whose interface vertices are x and x′.

Clearly, L(x) = L(x′) = S. Suppose that ϕ : (F,L)→ H is a list homomorphism such
that ϕ(x) = ϕ(x′) = vi. Then, by definition of I, we have ϕ(ci) = ϕ(c′i) = β, but this is
impossible due to the properties of the NAND2-gadget joining ci and c′i.

On the other hand, let us choose any distinct vi, vj ∈ S. We can color I according to the
homomorphism ϕi, and I ′ according to the homomorphism ϕj (both ϕi and ϕj are defined
in Step II). In particular this means that x is mapped to vi, x′ is mapped to vj , ci and c′j
are mapped to β, and all other vertices in {c1, . . . , ck} ∪ {c′1, . . . , c′k} are mapped to α. Since
i 6= j, by the definition of a NAND2-gadget, we can extend such defined mapping to all
vertices of F . This completes the proof of the lemma. J

Now, equipped with Lemma 4, we can easily prove Theorem 15.

Proof of Theorem 15. Recall that H is an undecomposable bipartite graph, whose comple-
ment is not a circular-arc graph. Let S be the largest incomparable set in H, contained in
one bipartition class. Let k = |S|, i.e., k = i(H).

Observe that since the complement of H is not a circular-arc graph, we have that k > 3.
Indeed, recall that H contains an obstruction, which is either an induced C6, an induced C8,
or an asteroidal subgraph. Observe that all vertices from one bipartition class of C6 or C8
form an incomparable set of size at least 3. On the other hand, recall that a special edge
asteroid contains at least three independent edges, so their appropriate endvertices form the
desired incomparable set.

K. Okrasa, M. Piecyk, and P. Rzążewski 74:15

We reduce from k-Coloring, let G be an instance. Clearly we can assume that G is
connected and has at least 3 vertices. We will construct a graph G∗ with H-lists L and the
following properties:

(G∗, L)→ H if and only if G is k-colorable,
the number of vertices of G∗ is at most g(H) · |E(G)| for some function g of H,
the pathwidth of G∗ is at most g(H) + pw(G),
G∗ can be constructed in time (|V (G)|)O(1) · g′(H) for some function g′.

Observe that this will be sufficient to prove the theorem. Indeed, suppose that for some
ε > 0 we can solve LHom(H) in time O∗((k − ε)t) on instances of pathwidth t. Let us
observe that applying this algorithm to G∗ gives an algorithm solving the k-Coloring
problem on G in time

(k−ε)pw(G∗)·|V (G∗)|O(1) 6 (k−ε)pw(G)+g(H)·(g(H) · |E(G)|)O(1) = (k−ε)pw(G)·|V (G)|O(1),

where the last step follows since |H| is a constant. Recall that by Theorem 1’, the existence
of such an algorithm for k-Coloring contradicts the SETH.

We start the construction of G∗ with the vertex set of G. The lists of these vertices are set
to S. Then, for each edge uv of G, we introduce a copy Fuv of the NEQ(S)-gadget introduced
in Lemma 4. We identify the interface vertices of this gadget with u and v, respectively.
This completes the construction of G∗. Let us show that it satisfies the properties (a)–(d).

Note that (a) follows directly from Lemma 4. Indeed, consider an edge uv of G. On one
hand, for every list homomorphism f : (G∗, L)→ H we have that f(u) 6= f(v). On the other
hand, mapping u and v to any distinct vertices from S can be extended to a homomorphism
of the whole graph Fuv.

To show (b), recall that the number of vertices of each Fuv depends only on H, let it
be g(H). Every original vertex of G belongs to some gadget in G∗, so G∗ contains at most
g(H) · |E(G)| vertices.

Next, consider a path decomposition T of G of width pw(G), let the consecutive bags be
X1, X2, . . . , X`. We extend T to a path decomposition T ∗ of G∗ as follows: for every edge
uv in G we choose one bag Xi such that u, v ∈ Xi, and we add a new bag X ′i = Xi ∪ V (F),
which becomes the immediate successor of Xi. We repeat this for every edge, making sure
that for Xi we can only choose the original bags coming from T . Note that it might happen
that we will insert several new bags in a row, if the same Xi was chosen for different edges,
but this is not a problem. Is it straightforward to observe that T ∗ is a path decomposition
of G∗, and the width of T ∗ is at most g(H) + pw(G). This proves (c).

Finally, it is straightforward to observe that the construction of G∗ was performed in
time polynomial in G (recall that we treat H as a constant-size graph). J

4 Algorithm for general target graphs

In this section we will generalize the invariant i∗(H) and extend Theorem 3’ a) to all
relevant target graphs H. Let us start with a simple observation, which is an analogue of
Observation 7.

I Observation 18 (♠). Let (G,L) be an instance of LHom(H). Without loss of generality
we might assume the following.
1. The graph G is connected,
2. for each x ∈ V (G), the set L(x) is incomparable,
3. for each edge xy ∈ E(G), for every u ∈ L(x) there is v ∈ L(y), such that uv ∈ E(H).

ESA 2020

74:16 Full Complexity Classification of the List Homomorphism Problem

The high-level idea is to reduce the general case of LHom(H) to the case, when the target
is bipartite, and then use Theorem 3’ a). For this, we will consider the so-called associated
instances, introduced by Feder, Hell, and Huang [18] (see Section 4.1).

We will also separately consider some special graphs that we call strong split graphs. A
graph H is a strong split graph, if its vertex set can be partitioned into two sets B and P ,
where B is independent and P induces a reflexive clique. We call (B,P) the partition of H.
Note that the partition is unique: all vertices without loops must be in B and all vertices
with loops must be in P .

4.1 Associated instances and clean homomorphisms
For a graph G = (V,E), by G∗ we denote the associated bipartite graph, defined as follows.
The vertex set of G∗ is the union of two independent sets: {x′ : x ∈ V } and {x′′ : x ∈ V }.
The vertices x′ and y′′ are adjacent if and only if xy ∈ E. Note that the edges of type x′x′′
in G∗ correspond to loops in G. The vertices x′ and x′′ are called twins. For any W ⊆ V (G),
we define two subsets of V (G∗) as follows: W ′ := {x′ : x ∈W} and W ′′ := {x′′ : x ∈W}.

Let (G,L) be an instance of LHom(H). An associated instance is the instance (G∗, L∗)
of LHom(H∗), where L∗ are associated lists defined as follows. For x ∈ V (G), we set
L∗(x′) = {u′ : u ∈ L(x)} and L∗(x′′) = {u′′ : u ∈ L(x)}. Note that in the associated lists, the
vertices appearing in the list of x′ are precisely the twins of the vertices appearing in the list
of x′′. A homomorphism f : (G∗, L∗)→ H∗ is clean if it maps twins to twins, i.e., f(x′) = u′

if and only if f(x′′) = u′′. The following simple observation was the crucial step of the proof
of the complexity dichotomy for list homomorphisms, shown by Feder, Hell, and Huang [18].
We state it using slightly different language, which is more suitable for our purpose.

I Proposition 19 (Feder, Hell, Huang [18]). Let (G,L) be an instance of LHom(H). Then
it is a yes-instance if and only if (G∗, L∗) admits a clean homomorphism to H∗.

Let us point out that the restriction to clean homomorphisms is necessary for the
equivalence. Indeed, consider for example G = K3, H = C6 and L(v) = V (H) for every
v ∈ V (G). Clearly (G,L) 6→ H, however, we have G∗ ' C6 and H∗ ' 2C6, so (G∗, L∗)→ H∗.

Recall that if H is bipartite, then LHom(H) is polynomial-time solvable if H is the
complement of a circular-arc graph [17], and NP-complete otherwise. Feder, Hell, and
Huang [18] proved the following dichotomy theorem.

I Theorem 20 (Feder, Hell, Huang [18]). Let H be an arbitrary graph (with loops allowed).
1. The LHom(H) problem is in P if H is a bi-arc graph, and NP-complete otherwise.
2. The graph H is a bi-arc-graph if and only if H∗ is the complement of a circular-arc graph.

So for our problem the interesting graphs H are those, for which H∗ is not the complement
of a circular-arc graph. In the observation below we summarize some properties of associated
instances.

I Observation 21 (♠). Consider an instance (G,L) of LHom(H) and the associated instance
(G∗, L∗) of LHom(H∗). Suppose that G is given along with a tree decomposition of width t.
1. For each v ∈ V (G) and u ∈ V (H), we have u ∈ L(v) if and only if u′ ∈ L∗(v′) if and

only if u′′ ∈ L∗(v′′). In particular, each list is contained in one bipartition class of H∗.
2. In polynomial time we can construct a tree decomposition T ∗ of G∗ of width at most 2t

with the property that for each x ∈ V (G), each bag of T either contains both x′, x′′ or
none of them.

K. Okrasa, M. Piecyk, and P. Rzążewski 74:17

Observe that for bipartite H, the graph H∗ consists of two disjoint copies of H, so clearly
i∗(H) = i∗(H∗). This motivates the following definition, generalizing Definition 14.

I Definition 22 (i∗(H)). For a connected non-bi-arc graph H, we define i∗(H) := i∗(H∗).

4.2 Decompositions of generals target graphs
In this section we generalize the notion of decompositions of bipartite graphs, introduced in
Section 2.1, to all graphs (with possible loops). The high-level idea is to define decompositions
of H, so that they will correspond to bipartite decompositions of H∗. We consider the
following three types of decompositions of a graph H. Note that unless stated explicitly, we
do not insist that any of the defined sets is non-empty.

I Definition 23 (F -decomposition). A partition of V (H) into an ordered triple of sets
(F,K,Z) is an F -decomposition if the following conditions are satisfied (see Figure 3, left).
1. K is non-empty and it separates F and Z,
2. |F | > 2,
3. K induces a reflexive clique,
4. F is complete to K.

I Definition 24 (BP -decomposition). A partition of V (H) into an ordered five-tuple of sets
(B,P,M,K,Z) is a BP -decomposition if the following conditions are satisfied (see Figure 3,
middle).
1. K ∪M is non-empty and separates (P ∪B) and Z,
2. |P | > 2 or |B| > 2,
3. K ∪ P induces a reflexive clique and B is an independent set,
4. M is complete to P ∪K and B is complete to K,
5. B is non-adjacent to M .

I Definition 25 (B-decomposition). A partition of V (H) into an ordered six-tuple of sets
(B1, B2,K, M1,M2, Z) is a B-decomposition if the following conditions are satisfied (see
Figure 3, right).
1. K ∪M1 ∪M2 is non-empty and it separates (B1 ∪B2) and Z,
2. |B1| > 2 or |B2| > 2,
3. K induces a reflexive clique and each of B1, B2 is an independent set,
4. K is complete to M1 ∪M2 ∪B1 ∪B2, M2 is complete to M1 ∪B1, and M1 is complete

to B2,
5. B1 is non-adjacent to M1 and B2 is non-adjacent to M2.

Observe that a graph H can have more than one decomposition: for example, if
(B,P,M,K,Z) is an BP -decomposition of H, but M = ∅, then (B ∪ P,K,Z) is an F -
decomposition of H.

For each kind of decomposition, we define its factors as the following pair of graphs
(H1, H2).
for an F -decomposition: H1 = H[F] and H2 is obtained from H by contracting F to a

vertex f . It has a loop if and only if F is not an independent set.
for a BP -decomposition: H1 = H[B ∪ P] and H2 is obtained from H by contracting P

and B respectively (if they are non-empty), to vertices p and b, such that p has a loop
and b does not. Also, pb ∈ E(H2) if and only if there is any edge between P and B in H.

ESA 2020

74:18 Full Complexity Classification of the List Homomorphism Problem

K

F

Z

M K

B P

Z

M1
K

M2

B1 B2

Z

Figure 3 A schematic view of an F -decomposition (left), a BP -decomposition (middle), and a
B-decomposition of H (right). Disks correspond to sets of vertices: white ones depict independent
sets, black ones depict reflexive cliques, and orange ones depict arbitrary subgraphs. Similarly, thick
black lines indicate that all possible edges between two sets exist, and thin orange lines depict edges
that might exist, but do not have to. The lack of a line means that there are no edges between two
sets.

for a B-decomposition: H1 = H[B1 ∪ B2] and H2 is obtained from H by contracting B1
and B2 respectively (if they are non-empty), to vertices b1 and b2 (without loops). Also,
b1b2 ∈ E(H2) if and only if there is any edge between B1 and B2 in H.

It appears that if H is not a strong split graph, then the three types of decompositions
defined above precisely correspond to bipartite decompositions of the associated bipartite
graph H∗.

I Lemma 26 (♠). Let H be be a connected, non-bi-arc graph, which is not a strong split
graph. Then H∗ admits a bipartite decomposition if and only if H admits a B-, a BP -, or
an F -decomposition.

Let us point out that one application of a BP -decomposition or a B-decomposition
corresponds to two consecutive applications of a bipartite decomposition in H∗. Consider
the case of a BP -decomposition and the bipartite decomposition (B′ ∪ P ′′,K ′ ∪M ′ ∪ P ′ ∪
K ′′, Z ′ ∪M ′′ ∪B′′ ∪ Z ′′) of H ′. Note that after contracting B′ to b′ and P ′′ to p′′, we still
have a decomposition (P ′∪B′′,K ′∪K ′′∪M ′′∪{p′′},M ′∪{b′}∪Z ′∪Z ′′) of the second factor
(H∗)2 of H∗. Similarly, in the case of a B-decomposition, we still have another bipartite
decomposition of (H∗)2, where the new set D is B′′1 ∪B′2.

Note that in a BP -decomposition, a B-decomposition, and an F -decomposition, when
F is an independent set or contains a vertex with a loop, the factors are always induced
subgraphs of H. Indeed, we can equivalently obtain H2 by removing certain vertices from
H. In the last case of an F -decomposition, when F contains at least one edge and has only
vertices without loops, H2 is not an induced subgraph of H. We can equivalently define H2
as the graph obtained by removing from F all but two adjacent vertices, and then replacing
them with a vertex with a loop.

In the next lemma we consider a graph H ′ that was obtained from H by a series of
decompositions (i.e., it is a factor of H, or a factor of a factor of H etc.). We show that even
if H ′ is not an induced subgraph of H, the associated bipartite graph H ′∗ is still an induced
subgraph of H∗.

I Lemma 27 (♠). Let H ′ be a graph obtained from H by a series of decompositions. Then
H ′∗ is an induced subgraph of H∗.

K. Okrasa, M. Piecyk, and P. Rzążewski 74:19

Finally, let us show an analogue of Lemma 11 for general graphs. Recall that T (H,n, t)
denotes an upper bound for the complexity of LHom(H) on instances with n vertices, given
along with a tree decomposition of width t. Note that we do not assume that |H| is a
constant 2.

I Lemma 28 (♠ General decomposition lemma). Let H be a connected, non-bi-arc graph,
and let Γ be a decomposition of H (i.e., Γ is either an F -, a BP -, or a B-decomposition)
with factors H1, H2. If there exist constants c > 1 and d > 2 such that T (H1, n, t) =
O
(
ct · (n · |H1|)d

)
and T (H2, n, t) = O

(
ct · (n · |H2|)d

)
, then T (H,n, t) =

O
(
ct · (n · (|H|+ 2))d

)
.

4.3 Solving LHom(H) for general target graphs
By Lemma 26, it is straightforward to observe the following.

I Observation 29. If H is a connected, undecomposable, non-bi-arc graph, then i∗(H) is
the size of the largest incomparable set in H.

In this section we sketch the proof of the following, slightly stronger version of Theorem 5 a),
where the input tree decomposition is not assumed to be optimal.

I Theorem 5’ a). Let H be non-bi-arc graph. Even if H is given as an input, the LHom(H)
problem with instance (G,L) can be solved in time O

(
i∗(H)t · (n · |H|)O(1)) for any lists L,

provided that G is given with its tree decomposition of width t.

The main idea is similar to the one in the proof of Theorem 3’ a): given an instance of
LHom(H), we recursively decompose H into smaller subgraphs and reduce the initial instance
to a number of instances of list homomorphism to these smaller subgraphs. Finally, we solve
the problem for leaves of the recursion tree, and then, using Lemma 28 in a bottom-up
fashion, we will compute the solution to the original instance. The only thing missing is how
to solve the instances corresponding to leaves of the recursion tree. We describe this in the
following results.

I Corollary 30 (♠). Let Ĥ be a graph and let H be a strong split graph, which was obtained
from Ĥ by a series of decompositions. The LHom(H) problem with instance (G,L) with n
vertices, given along with a tree decomposition of width t, can be solved in time O(i∗(Ĥ)t ·
(n · |H|)O(1)).

I Lemma 31. For any graph H, any n-vertex instance (G,L) of LHom(H) can be solved in
time O

(
i(H∗)t · (n · |H|)O(1)), assuming a tree decomposition of G with width at most t is

given.

Proof. Let (G∗, L∗) be the associated instance of LHom(H∗). By Proposition 19, we know
that (G,L)→ H if and only if there is a clean homomorphism (G∗, L∗)→ H∗. We will focus
on finding such a clean homomorphism.

First, recall that by Observation 18 (2) and Observation 21 (1), the instance (G∗, L∗)
is consistent. So, by Corollary 9, the size of each list in L∗ is at most i(H∗). Moreover,
by Observation 21 (1), for every x ∈ V (G), the vertices in L∗(x′) are precisely the twins

2 Let us point out that in the full version of the paper we actually prove three variants of Lemma 28, one
for each type of decomposition. Furthermore, in the statements of these three lemmas we are more
explicit about the constants, to make sure that they do not increase multiplicatively. This is necessary
to avoid introducing factors exponential in |H| in the proof of Theorem 5 a).

ESA 2020

74:20 Full Complexity Classification of the List Homomorphism Problem

of vertices in L∗(x′′). Finally, by Observation 21 (2), in polynomial time we can obtain a
tree decomposition T ∗ of G∗ with width at most 2t, in which vertices of G∗ come in pairs:
whenever any bag contains x′, it also contains x′′.

Consider the straightforward dynamic programming algorithm for LHom(H∗), using the
tree decomposition T ∗ of G∗. We observe that since we are looking for a clean homomorphism,
we do not need to remember partial solutions, in which the colors of twins do not agree.
Thus, even though the size of each bag of T ∗ is at most 2t, the number of partial colorings
we need to consider is bounded by (maxx∈V (G∗) |L∗(x)|)t 6 i(H∗)t. So the claim follows. J

Finally, let us wrap everything up and prove Theorem 5’ a).

Proof of Theorem 5’ a). Let (G,L) be an instance of LHom(H), where G has n vertices
and is given with its tree decomposition of width at most t. Again, we can assume that n is
sufficiently large, as otherwise we can solve the problem by brute-force. We proceed as in
the Theorem 3’ a). We consider a recursion tree R, obtained by decomposing H recursively.
For each node corresponding to some graph H ′, we construct its children recursively, unless
none of the following happens (i) H ′ is a bi-arc graph, (ii) H ′ is bipartite, (iii) H ′ is a strong
split graph, or (iv) H ′ is undecomposable.

We compute the solutions in a bottom-up fashion. First, consider a leaf of the recursion
tree, let the corresponding target graph for this node of R be H ′. If H ′ is a bi-arc graph,
we can solve the problem in polynomial time. If H ′ is bipartite, we solve the problem in
time β · i∗(H ′) · (n · |H ′|)d1 6 β · i∗(H) · (n · |H ′|)d1 for some constants β and d1, using the
algorithm from Theorem 3’ a). If H ′ is a strong split graph, we can solve the problem in
time γ · i∗(H) · (n · |H ′|)d2 , for constants γ, d2, using the algorithm from Corollary 30.

So finally consider the remaining case, i.e., that H ′ is connected, non-bi-arc, non-bipartite,
undecomposable, which is not a strong split graph. Furthermore we know that H ′ was
obtained from H by a sequence of decompositions. Recall that by Lemma 31, we can solve
the instances of LHom(H ′) in time δ · i(H ′∗)t · (n · |H ′|)d3 , for some constants δ, d3. Let us
consider the graph H ′∗, by Lemma 27 we know that H ′∗ is an induced subgraph of H∗. Also,
H ′∗ is either connected (if H ′ is non-bipartite), or consists of two disjoint copies of H ′ (if H ′
is bipartite). Moreover, by Lemma 26, we observe that H ′∗ is undecomposable. Thus, by the
definition of i∗(H), we observe that

i(H ′∗) 6max{i(H ′′) : H ′′ is an undecomposable, connected, induced subgraph of H∗,
whose complement is not a circular-arc graph} = i∗(H).

So the algorithm from Lemma 31 solves the instances corresponding to leaves of R in time
δ · i∗(H)t · (n · |H ′|)d3 . Define α := max(2β, γ, δ) and d := max(d1, d2, d3, 3) 3. By applying
Lemma 28 for every non-leaf node of R in a bottom-up fashion, we conclude that we can
solve LHom(H) in time α · i∗(H)t · (n · |H|)d = O

(
i∗(H)t · (n · |H|)O(1)), which completes

the proof. J

3 The choice of these constants follows from the full statement of Lemma 28, refined for each of the
decompositions.

K. Okrasa, M. Piecyk, and P. Rzążewski 74:21

5 Conclusion

Let us conclude the paper with some side remarks and pointing out several open problems.

5.1 Special cases: reflexive and irreflexive graphs
Recall that the crucial tool for our algorithmic results were the decompositions of a connected
graph H, introduced in Section 2.1 (for bipartite graphs H) and in Section 4.2 (for general
graphs H). Let us analyze how the general decompositions behave in two natural special
cases: if H is either a reflexive or an irreflexive graph. We use the notation introduced in
Definition 23, Definition 24, and Definition 25.

First we consider the case that H is reflexive, i.e., every vertex of H has a loop. Let us
point out that a B-decomposition cannot occur in this case, as the sets B1, B2 are empty. In
case of an F -decomposition we obtain exactly the decomposition defined by Egri et al. [15,
Lemma 8]. Finally, in the case of a BP -decomposition, note that the set B is empty and
therefore each vertex in P has exactly the same neighborhood. Thus the total contribution
of the vertices in P to i∗(H) is at most 1. Therefore the only type of decomposition that can
be algorithmically exploited in reflexive graph is the F -decomposition, as observed by Egri
et al. [15].

Now let us consider the case that H is irreflexive, i.e., no vertex of H has a loop. Observe
that the sets K and P are reflexive cliques, so they are empty in our case. Thus BP -
decompositions and F -decompositions do not occur in this case (recall that H is connected).
Therefore the only possibility left is a B-decomposition, in which the set K is empty. Let us
point out that this decomposition is very similar to the bipartite decomposition, in particular,
the graph H1 is bipartite (while H2 might be non-bipartite). This gives even more evidence
that the case of bipartite graphs H is a crucial step to understanding the complexity of the
LHom(H) problem. Actually, if H is bipartite, then the B-decomposition turns out to be
equivalent to the bipartite decomposition introduced in Section 2.1.

5.2 Generalized algorithm
We believe that the decompositions that we discovered can be used for many problems
concerning the complexity of variants of the LHom(H) problem, e.g., for various other
parameterizations. Let us point out that in the proofs of Lemma 11 and Lemma 28, we did
not really require that the running time is of the form O(ctw(G) · (n · |H|)d), for a constant c.

Moreover, recall that in each variant of the decomposition lemma, all instances for
which we computed partial results were induced subgraphs of G, the original instance. This
motivates the following, generalized statement. For a graph G, and a graph H, let T (G,H, n)
be an upper bound for the complexity of the LHom(H) problem for instances of size n,
which are induced subgraphs of G.

I Corollary 32. Let H be a connected, non-bi-arc graph. Let R be its recursion tree and let
H be the set of graphs associated with leaves of R. Consider an instance (G,L) of LHom(H)
with n vertices. Suppose that that for each H ′ ∈ H it holds that T (G,H ′, n′) 6 f(n′, H ′),
where f is superadditive with respect to its first argument. Then (G,L) can be solved in time
O
(∑

H′∈H f(n,H ′) + n2 · |H|3
)
.

Sketch of proof. The proof is analogous to the proofs of Theorem 3’ a) and Theorem 5’ a).
Recall that we can compute the instances associated with the leaves of R, and then proceed in
a bottom-up fashion. Even though there might be more than one instance associated with a
leaf node, we observe that their numbers of vertices sum up to n , so by the superadditivity of
f we can bound the running time related to each leaf node, associated with H ′, by f(n,H ′).

ESA 2020

74:22 Full Complexity Classification of the List Homomorphism Problem

Now let us consider an internal node of R, it is associated with some subgraph H ′

of H. Recall that the computation for this node consists of the computations for child
nodes and O(n2|H ′|2) additional steps. Since the total number of nodes of R is O(|H|), we
can bound the total running time for the root node (i.e., time needed to solve (G,L)) by
O
(∑

H′∈H f(n,H ′) + n2 · |H|3
)
. J

5.3 Further research directions
In this paper we have shown tight complexity bounds for the list homomorphism problem,
parameterized by the treewidth of the instance graph.

A very natural question, mentioned also in [15], is to provide analogous results for the
non-list variant of the problem, denoted by Hom(H). As we already mentioned, Okrasa and
Rzążewski were able to provide tight bounds for the complexity of Hom(H), assuming two
conjectures from algebraic graph theory from early 2000s [35]. It would be very interesting
to strengthen these results, either by proving the mentioned two conjectures, or by providing
a different reduction.

Another interesting direction is to consider one of many other variants of the graph
homomorphism problem. Let us mention one, i.e., locally surjectve homomorphism, denoted
by LSHom(H). In this problem we ask for a homomorphism from an instance graph G to
the target graph H, which is surjective on each neighborhood. In other words, if we map
some vertex x ∈ V (G) to some vertex v ∈ V (H), then every neighbor of v must appear as a
color of some neighbor of x [21, 19, 20, 36]. We believe that it is interesting to show tight
complexity bounds for this problem. One of the reasons why this problem is challenging is
that the natural dynamic programming runs in time 2O(|H|·tw(G)) · (n+ |H|)O(1). Thus in
order to show that this bound is tight, it is not sufficient to design edge gadgets encoding
inequality and substitute all edges of the instance of k-Coloring with these edge gadgets,
as we did in this paper. Since the number of colors needs to be exponential in H, one should
also design some vertex gadgets, which will encode the exponential number of possible states.

Finally, instead of changing the problem, we can consider changing the parameter.
We believe that an exciting question is to find tight bounds for Hom(H) and LHom(H),
parameterized by the cutwidth of the instance graph, denoted by cw(G). Quite recently
Jansen and Nederlof showed that the chromatic number of a graph can be found in time
2O(cw(G)) · nO(1) [30], i.e., the base of the exponential factor does not depend on the number
of colors. Jansen [29] asked whether the same is possible for Hom(H) and LHom(H), if the
target H is not complete? Note that while the chromatic number of a graph can be found
in time 2n · nO(1) [3], for the Hom(H) and LHom(H) problems the |H|O(n)-time algorithm
is essentially best possible, assuming the ETH [12]. We believe that a similar phenomenon
might occur if the cutwidth is a parameter.

References
1 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding

embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277–284, April 1987.
doi:10.1137/0608024.

2 Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for NP-hard problems
restricted to partial k-trees. Discrete Applied Mathematics, 23(1):11–24, 1989. doi:10.1016/
0166-218X(89)90031-0.

3 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.

https://doi.org/10.1137/0608024
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1137/070683933

K. Okrasa, M. Piecyk, and P. Rzążewski 74:23

4 Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

5 Hans L. Bodlaender, Paul S. Bonsma, and Daniel Lokshtanov. The fine details of fast dynamic
programming over tree decompositions. In Parameterized and Exact Computation - 8th
International Symposium, IPEC 2013, Sophia Antipolis, France, September 4-6, 2013, Revised
Selected Papers, pages 41–53, 2013. doi:10.1007/978-3-319-03898-8_5.

6 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

7 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM J. Comput.,
45(2):317–378, 2016. doi:10.1137/130947374.

8 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, May 2008. doi:10.1093/comjnl/bxm037.

9 Andrei A. Bulatov. Constraint satisfaction problems: Complexity and algorithms. In
Shmuel Tomi Klein, Carlos Martín-Vide, and Dana Shapira, editors, Language and Automata
Theory and Applications, pages 1–25, Cham, 2018. Springer International Publishing.

10 Rajesh Chitnis, László Egri, and Dániel Marx. List H-coloring a graph by removing few
vertices. Algorithmica, 78(1):110–146, 2017. doi:10.1007/s00453-016-0139-6.

11 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

12 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,
Jakub Pachocki, and Arkadiusz Socala. Tight lower bounds on graph embedding problems. J.
ACM, 64(3):18:1–18:22, 2017. doi:10.1145/3051094.

13 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.

14 László Egri, Andrei A. Krokhin, Benoît Larose, and Pascal Tesson. The complexity of
the list homomorphism problem for graphs. Theory Comput. Syst., 51(2):143–178, 2012.
doi:10.1007/s00224-011-9333-8.

15 László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from bounded-
treewidth graphs to reflexive graphs: a complete complexity characterization. In Rolf
Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Com-
puter Science, STACS 2018, February 28 to March 3, 2018, Caen, France, volume 96
of LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.STACS.2018.27.

16 Tomas Feder and Pavol Hell. List homomorphisms to reflexive graphs. Journal of Combinatorial
Theory, Series B, 72(2):236–250, 1998. doi:10.1006/jctb.1997.1812.

17 Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc graphs.
Combinatorica, 19(4):487–505, 1999. doi:10.1007/s004939970003.

18 Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homomor-
phisms. Journal of Graph Theory, 42(1):61–80, 2003. doi:10.1002/jgt.10073.

19 Jirí Fiala and Jana Maxová. Cantor-Bernstein type theorem for locally constrained graph
homomorphisms. Eur. J. Comb., 27(7):1111–1116, 2006. doi:10.1016/j.ejc.2006.06.003.

20 Jirí Fiala and Daniël Paulusma. A complete complexity classification of the role assignment
problem. Theor. Comput. Sci., 349(1):67–81, 2005. doi:10.1016/j.tcs.2005.09.029.

21 Jirí Fiala, Daniël Paulusma, and Jan Arne Telle. Matrix and graph orders derived from locally
constrained graph homomorphisms. In Joanna Jedrzejowicz and Andrzej Szepietowski, editors,
Mathematical Foundations of Computer Science 2005, 30th International Symposium, MFCS
2005, Gdansk, Poland, August 29 - September 2, 2005, Proceedings, volume 3618 of Lecture
Notes in Computer Science, pages 340–351. Springer, 2005. doi:10.1007/11549345_30.

22 Fedor V. Fomin, Pinar Heggernes, and Dieter Kratsch. Exact algorithms for graph homomor-
phisms. Theory Comput. Syst., 41(2):381–393, 2007. doi:10.1007/s00224-007-2007-x.

ESA 2020

https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1007/978-3-319-03898-8_5
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1137/130947374
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1007/s00453-016-0139-6
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1145/3051094
https://doi.org/10.1007/s00224-011-9333-8
https://doi.org/10.4230/LIPIcs.STACS.2018.27
https://doi.org/10.1006/jctb.1997.1812
https://doi.org/10.1007/s004939970003
https://doi.org/10.1002/jgt.10073
https://doi.org/10.1016/j.ejc.2006.06.003
https://doi.org/10.1016/j.tcs.2005.09.029
https://doi.org/10.1007/11549345_30
https://doi.org/10.1007/s00224-007-2007-x

74:24 Full Complexity Classification of the List Homomorphism Problem

23 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order logic
revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004. doi:10.1016/j.apal.2004.01.007.

24 Richard Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product graphs. Discrete
Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, second edition,
2011. With a foreword by Peter Winkler.

25 Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Oxford University Press, 2004.
26 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory, Ser. B,

48(1):92–110, 1990. doi:10.1016/0095-8956(90)90132-J.
27 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.

Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.
28 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly

exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

29 Bart M. P. Jansen. personal communication.
30 Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph

decompositions via matrix rank. Theor. Comput. Sci., 795:520–539, 2019. doi:10.1016/j.
tcs.2019.08.006.

31 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
Algorithmica, 81(9):3655–3691, 2019. doi:10.1007/s00453-019-00592-7.

32 Stefan Kratsch, Daniel Lokshtanov, Dániel Marx, and Peter Rossmanith. Optimality and tight
results in parameterized complexity (dagstuhl seminar 14451). Dagstuhl Reports, 4(11):1–21,
2014. doi:10.4230/DagRep.4.11.1.

33 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.
doi:10.1145/3170442.

34 Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classification of the
list homomorphism problem for bounded-treewidth graphs. CoRR, abs/2006.11155, 2020.
arXiv:2006.11155.

35 Karolina Okrasa and Paweł Rzążewski. Fine-grained complexity of graph homomorphism
problem for bounded-treewidth graphs. In Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, pages 1578–1590, 2020. doi:10.1137/1.9781611975994.97.

36 Karolina Okrasa and Paweł Rzążewski. Subexponential algorithms for variants of the
homomorphism problem in string graphs. J. Comput. Syst. Sci., 109:126–144, 2020.
doi:10.1016/j.jcss.2019.12.004.

37 Michał Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In MFCS 2011, volume 6907, pages 520–531. Springer, 2011.

38 Paweł Rzążewski. Exact algorithm for graph homomorphism and locally injective graph
homomorphism. Inf. Process. Lett., 114(7):387–391, 2014. doi:10.1016/j.ipl.2014.02.012.

39 William T. Trotter and John I. Moore. Characterization problems for graphs, partially
ordered sets, lattices, and families of sets. Discrete Mathematics, 16(4):361–381, 1976. doi:
10.1016/S0012-365X(76)80011-8.

40 Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter Sanders,
editors, Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark,
September 7-9, 2009. Proceedings, volume 5757 of Lecture Notes in Computer Science, pages
566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

41 Magnus Wahlström. New plain-exponential time classes for graph homomorphism. Theory
Comput. Syst., 49(2):273–282, 2011. doi:10.1007/s00224-010-9261-z.

https://doi.org/10.1016/j.apal.2004.01.007
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1016/j.tcs.2019.08.006
https://doi.org/10.1007/s00453-019-00592-7
https://doi.org/10.4230/DagRep.4.11.1
https://doi.org/10.1145/3170442
http://arxiv.org/abs/2006.11155
https://doi.org/10.1137/1.9781611975994.97
https://doi.org/10.1016/j.jcss.2019.12.004
https://doi.org/10.1016/j.ipl.2014.02.012
https://doi.org/10.1016/S0012-365X(76)80011-8
https://doi.org/10.1016/S0012-365X(76)80011-8
https://doi.org/10.1007/978-3-642-04128-0_51
https://doi.org/10.1007/s00224-010-9261-z

Generalizing CGAL Periodic Delaunay
Triangulations
Georg Osang
IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
georg.osang@ist.ac.at

Mael Rouxel-Labbé
GeometryFactory, Grasse, France
mael.rouxel.labbe@geometryfactory.com

Monique Teillaud
Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
Monique.Teillaud@inria.fr

Abstract
Even though Delaunay originally introduced his famous triangulations in the case of infinite point sets
with translational periodicity, a software that computes such triangulations in the general case is not
yet available, to the best of our knowledge. Combining and generalizing previous work, we present
a practical algorithm for computing such triangulations. The algorithm has been implemented
and experiments show that its performance is as good as the one of the CGAL package, which is
restricted to cubic periodicity.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Delaunay triangulation, lattice, algorithm, software, experiments

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.75

Supplementary Material https://members.loria.fr/Monique.Teillaud/CGAL_periodicDT_ESA20/

Funding Georg Osang: This author is partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme, grant no. 788183.
Monique Teillaud: This author is partially supported by the grants ANR-17-CE40-0033 of the
French National Research Agency ANR (project SoS) and INTER/ANR/16/11554412/SoS of the
Luxembourg National Research fund FNR (https://members.loria.fr/Monique.Teillaud/collab/

SoS/).

1 Introduction

Delaunay triangulations are one of the most prominent structures in computational geometry.
While nowadays many applications use Delaunay triangulations of finite point sets in Euc-
lidean space, Delaunay originally introduced the notion in the context of infinite point sets
with translational periodicity [9]. Such periodic point sets are abundant in fields such as
crystallography and material sciences; thus their communities would benefit from software
that computes Delaunay triangulations of infinite periodic point sets in Euclidean space.
Specifically, given a d-dimensional lattice and its associated translation group, the orbits of a
given finite point set in Rd with respect to this translation group define a periodic point set.
Our aim is to compute a finite representation of the periodic Delaunay triangulation of such
a periodic point set, specifically a projection of the triangulation onto the flat d-torus that is
the quotient space of Rd under the action of the translation group.

The first algorithm for this problem was already outlined in 1997 [12], yet a robust and
efficient implementation for this problem does not exist to date as far as we know. The
Voro++ library [18] is focused on crystallographic applications in 3 dimensions; however it is

© Georg Osang, Mael Rouxel-Labbé, and Monique Teillaud;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 75; pp. 75:1–75:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8882-5116
mailto:georg.osang@ist.ac.at
mailto:mael.rouxel.labbe@geometryfactory.com
https://orcid.org/0000-0003-2568-7024
mailto:Monique.Teillaud@inria.fr
https://doi.org/10.4230/LIPIcs.ESA.2020.75
https://members.loria.fr/Monique.Teillaud/CGAL_periodicDT_ESA20/
https://members.loria.fr/Monique.Teillaud/collab/SoS/
https://members.loria.fr/Monique.Teillaud/collab/SoS/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 Generalizing CGAL Periodic Delaunay Triangulations

limited to orthogonal lattices. Zeo++ [22] extends its functionality to arbitrary 3-dimensional
lattices. Both libraries compute the Voronoi cell of a given input point as an intersection of
half-spaces, by searching for other points around it that have an influence on its Voronoi
cell. The combinatorics of the Delaunay triangulation cannot be easily accessed. The CGAL
library [17] provides packages for periodic Euclidean Delaunay triangulations in 2D and
3D, which currently are limited to the integer lattice, referred to as the square and cubic
setting and 2 and 3 dimensions, respectively [15, 6, 5]. We propose an addition to CGAL
that extends this functionality to arbitrary lattices.

The algorithm by Dolbilin and Huson [12] creates 3d copies of each input point and
computes their finite Delaunay triangulation, from which a representation of the periodic
Delaunay triangulation is extracted. The CGAL algorithm [4, 7] computes the triangulation
in a finitely-sheeted covering space of the d-torus. It is based on the classical incremental
algorithm by Bowyer and Watson [3, 21], and requires that the triangulation be a simplicial
complex at any given time. Let us quickly recall that a triangulation is a simplicial complex,
or is simplicial for short, if each of its simplices consists of a set of distinct vertices, and the
intersection of any two simplices is either empty or a simplex. Operating directly on the
d-torus does not guarantee this, see Figure 1a. Thus, in the cubic setting, a 3d-sheeted cover
is used (Figure 1b) until sufficiently many points have been inserted to guarantee that the
triangulation in the 1-sheeted cover is a simplicial complex. Unfortunately, a 3d-sheeted cover
is not sufficient for more general periodic point sets: As the 3d copies of each point have to be
inserted iteratively into the 3d-sheeted cover, simpliciality can be violated in the intermediate
stages of point insertion, see Figure 1c. While there always exists a finitely-sheeted covering
space [7] that ensures simpliciality, the number of sheets might be prohibitively large. Thus,
we propose a different approach.

(a) The intersection of the
two red edges is not a sim-
plex but a set of two ver-
tices. Thus the triangula-
tion is not simplicial.

(b) The 9-sheeted cover
guarantees a simplicial tri-
angulation in the square set-
ting.

(c) In the non-square setting, incremental
point insertion of the 9 copies into the 9-
sheeted cover can violate simpliciality. Here,
the first of 9 copies is being inserted.

Figure 1 Representation of the projections of the periodic Delaunay triangulation into the
1-sheeted (left) and 9-sheeted cover (middle, right) of the 2-torus.

Overview. After formally defining the problem in Section 2, we propose an algorithm
(Section 3) for periodic Delaunay triangulations that combines two different approaches
and consists of two phases, both of which use Bowyer-Watson’s algorithm. While for 2-
dimensional spaces algorithms based on flips circumvent the simpliciality requirement [10],
we stick to Bowyer-Watson’s algorithm as it easily generalizes to 3 (and higher) dimensions.
Furthermore it enables an efficient, clean, and easily maintainable implementation. The first
phase of our algorithm (Section 3.2) refines the algorithm by Dolbilin and Huson [12], and
its implementation details are based on some new results. It uses 3d copies of each input
point, regardless of the lattice, and computes a finite Euclidean Delaunay triangulation on
this point set, from which a representation of the Delaunay triangulation on the d-torus is
obtained. Once a simpliciality criterion is met, our algorithm switches to the second phase

G. Osang, M. Rouxel-Labbé, and M. Teillaud 75:3

(Section 3.4), which conceptually follows the CGAL implementation of the cubic case [4]. It
operates directly on the d-torus, maintaining only one copy of each input point, and thus
provides better insertion running times than phase 1. A first version of our open-source
implementation in 2D and 3D is publicly available.1 This implementation is expected to be
an integral part of CGAL in a near future release. Experiments (Section 4) show similar
performances as the CGAL implementation restricted to cubic lattices [5]. We close with a
discussion of future extensions in Section 5.

2 Preliminaries

Let us recall various notions [13, 8] that are employed throughout the algorithm. Let
B = {b1, b2, . . . , bd} be a basis of Rd. The point set Λ := {

∑d
i=1 zibi : z ∈ Zd} is called a

lattice, and B is its lattice basis. The lattice Λ is associated with the translation group Γ
consisting of the translations φλ : Rd → Rd mapping the origin to λ, for each λ ∈ Λ. The
group Γ acts on Rd and each translation of Γ maps Λ onto itself. We denote the length of the
shortest non-zero lattice vector as sv(Λ). For a given lattice basis B, we call Bsup := B∪{b0}
with b0 = −

∑d
i=1 bi its superbase. A superbase is obtuse if for any pair bi and bj , 〈bi, bj〉 ≤ 0.

A basis is reduced if its superbase is obtuse [13, Definition 4.4]. This notion is defined in
such a way that we can easily compute sv(Λ) and Dirichlet domains. The Dirichlet domain
of a lattice point λ ∈ Λ is the region of λ in the Voronoi tesselation of Λ, or more formally
dom(λ,Λ) := {p ∈ Rd : ‖p− λ‖ ≤ ‖p− ν‖ ∀ν ∈ Λ}. It is a convex polytope, and we call the
lattice Λ generic if each vertex of dom(0,Λ) is incident to the Dirichlet domains of exactly d
other lattice points. For 2-dimensional generic lattices the Dirichlet domains are hexagons,
for 3-dimensional generic lattices they are combinatorially equivalent to truncated cubes.

For a lattice vector λ, str(λ) = {p ∈ Rd : − 0.5 ≤ 〈p,λ〉
〈λ,λ〉 < 0.5} is an infinite half-open

strip that contains the subspace orthogonal to λ through the origin. Then dom(0,Λ) is
the closure of the intersection of these strips for all non-zero lattice vectors. However, as
dom(0,Λ) only has a finite number of facets, there must be a finite subset of strips whose
closed intersection yields dom(0,Λ). Let V be the minimal set of lattice vectors (together
with their negates) such that the closure of

⋂
v∈V str(v) is dom(0,Λ). The vectors in V are

commonly called Voronoi-relevant vectors. Each of them is a normal vector of a facet of the
Dirichlet domain of 0, and thus there are at most 2(2d − 1) Voronoi relevant vectors [13,
Theorem 3.6]. Let V+ t V− be a partition of V such that if v ∈ V+, then −v ∈ V−, and
vice versa. For a fixed choice of V+ (and implicitly V−), we define the canonical domain
domI(0,Λ) :=

⋂
v∈V+ str(v) (Figure 2). Its closure is dom(0,Λ), and its images under Γ,

denoted domI(λ,Λ) := φλ(domI(0,Λ)) for λ ∈ Λ, form a partition of Rd. With kΛ for k ∈ Z
referring to the lattice with basis {kb1, . . . , kbd}, we note that domI(0, kΛ) is domI(0,Λ)
scaled by a factor of k.

For d ≤ 3, if we have a reduced lattice basis B with its superbase Bsup, then V is a subset
of {

∑
v∈S v : S ⊂ Bsup, S 6= ∅, S 6= Bsup} [8, Theorems 3 and 8], with equality if the lattice

is generic. Note that sv(Λ) can be obtained as the length of the shortest vector in V.

Delaunay triangulations. The Delaunay triangulation Del(X) of an input point set X ⊂ Rd
is a collection of simplices up to dimension d whose vertex set is X and each d-simplex (which
we refer to as a cell) corresponds to a set of d + 1 points whose open circumscribing ball
does not contain any other points of X. We call the (d− 1)-simplices of Del(X) its facets.

1 https://members.loria.fr/Monique.Teillaud/CGAL_periodicDT_ESA20/

ESA 2020

https://members.loria.fr/Monique.Teillaud/CGAL_periodicDT_ESA20/

75:4 Generalizing CGAL Periodic Delaunay Triangulations

v1

v2

v3

str(v2)

str(v1)

str(v3)

0

(a) domI(0,Λ) (red) is the intersection of the half-
open strips (blue) of V+ = {v1, v2, v3}.

(b) domI(0,Λ) of a 3-dimensional lattice
(blue). Lattice basis B in black, V+ ⊃ B
in orange.

Figure 2 Canonical domains and Voronoi relevant vectors for lattices in 2D and 3D.

Given a lattice Λ and a finite set of points X, we get the periodic point set ΓX :=
{φλ(x) : x ∈ X and λ ∈ Λ} consisting of the elements of the orbits of X under Γ. ΓX is
globally invariant under Γ. Then Del(ΓX) is the periodic Delaunay triangulation of the infinite
point set ΓX. Note that we can ignore degeneracies in ΓX by using the symbolic perturbation
provided by CGAL [11]: it is translation-invariant, so, degeneracies are triangulated in a
consistent way, which ensures that the computed Del(ΓX) is actually invariant under
Γ. The orbit space Rd/Γ is a flat torus, and we denote its projection map as π : Rd →
Rd/Γ. The torus triangulation Del(ΓX)/Γ is the projection of Del(ΓX) into Rd/Γ. Using
domI(0,Λ) as a geometric representation of the torus, we can use X0 := ΓX ∩ domI(0,Λ) as
canonical representatives of the vertex set of Del(ΓX)/Γ. While Del(ΓX)/Γ gives us a finite
representation of Del(ΓX), unlike Del(ΓX) it is not necessarily simplicial (see Figure 1a).

3 Algorithm

The input to our algorithm is a lattice basis B′ for Λ and a set of points X defining the
periodic point set. The output is an object representing Del(ΓX)/Γ. This object provides a
uniform interface that, regardless of the internal state of our algorithm, allows the user to
access the properties of Λ as well as the torus triangulation Del(ΓX)/Γ. For Λ this includes
the reduced basis B = {b1, . . . , bd}. For Del(ΓX)/Γ this includes the set X0 of canonical
representatives for its vertex set, and its cells. Cells are not solely defined by their vertex
set, but have additional geometric information attached. Specifically, each vertex of a cell
is represented as a point x from X0 with an associated offset o = (o1, . . . , od), which is an
integer vector. The geometric location of the vertex then is x +

∑d
i=1 oibi. In alignment

with other CGAL triangulations, we also provide access to simplices of lower dimensions,
represented with associated vertex offsets akin to cells, as well as neighborhood relations.
These include querying a cell for its adjacent cells, or querying a vertex for its incident cells
or lower dimensional simplices. While many steps generalize, we restrict our focus to 2- and
3-dimensional triangulations, which are the most widely used.

Internally, our algorithm operates in two phases, which use two different data structures,
respectively: The first phase maintains a finite Euclidean Delaunay triangulation while the
second phase maintains a triangulation of Del(ΓX)/Γ.

G. Osang, M. Rouxel-Labbé, and M. Teillaud 75:5

Let us now recall the result that is crucial to the first phase of our algorithm. For a point
set X, let X3 := domI(0, 3Λ) ∩ ΓX, i.e. all periodic copies of X that lie within the Dirichlet
domain of 0 scaled by a factor of 3. We call a cell of Del(X3) a periodic cell if it is also a cell
of the periodic triangulation Del(ΓX) (see Figure 3a).

I Proposition 1 ([12, Lemma 3.4]). Given a point set X, each cell of Del(X3) that has at
least one vertex in domI(0,Λ) is a periodic cell. Furthermore the set of these cells contains
at least one periodic copy of each cell of Del(ΓX)/Γ.

After some preprocessing that essentially consists in computing the canonical domain, the
first phase internally maintains Del(X3) using the CGAL packages for Euclidean Delaunay
triangulations [14, 23]. For this we need to develop a systematic way of computing X3 and
obtaining the interface for Del(ΓX)/Γ from the internal data structure Del(X3).

(a) Cells in blue are guaranteed
to be periodic cells by Proposi-
tion 1. Green: non-periodic cells.
Black vertices: Λ.

(
0
0

)

(
0
1

)

(
1
1

)

(
1
0

)

(−1
−1

)

(−1
1

)

(−1
0

) (
0
−1

)

(
1
−1

)

(
2
1

)
(
1
2

)

(−1
−2

)(−2
−1

)

(b) The set of canonical cells in
blue. Each copy of dom(0,Λ) is
labeled with its offset.

σ σn

σ′ σ′n

σ′′n
τ

τ ′

(c) Finding the periodic neighbor
of σ across the edge τ , which is
σ′′

n, the canonical representative
of σ′

n.

Figure 3 In blue, the points X3 with their Delaunay triangulation Del(X3). The large hexagon
is dom(0, 3Λ), while the smaller ones are dom(0,Λ) and (middle, right) its periodic copies. The
reduced lattice basis is drawn in red (left, middle).

Once we can guarantee that Del(ΓX)/Γ is simplicial and will remain so for any future
point insertions, we switch to the second phase. Simpliciality guarantees that the Bowyer-
Watson algorithm can be used directly on Del(ΓX)/Γ. For this purpose we leverage the
CGAL machinery for periodic triangulations from the cubic setting [15, 5] and enhance its
underlying data structures to work for the generic setting. As we keep only one representative
for each vertex, inserting points in this phase is more efficient than in the first phase.

The remainder of this section describes the two phases and the transition between them,
as well as the preprocessing of the lattice.

3.1 Lattice preprocessing
We first compute the reduced lattice basis B, which allows us to compute V , the face normals
of the canonical domain. We use V to represent domI(0,Λ) and check for containment of a
point within domI(0,Λ), which helps obtaining the canonical copy of each input point. To
find all periodic copies of a canonical point x that lie within domI(0, 3Λ), it is sufficient to
find all points λ such that the domain domI(λ,Λ) intersects domI(0, 3Λ), and then check
φλ(x) for containment within domI(0, 3Λ) for these points. As the set of these points λ is
independent of x, we compute it before phase 1.

ESA 2020

75:6 Generalizing CGAL Periodic Delaunay Triangulations

Lattice reduction

Many lattice related problems, such as the shortest non-zero vector problem (SVP), are
believed to be hard in general [20, 2]. However in low dimensions, we can use two classical
iterative algorithms to solve lattice reduction. Let B′ be a lattice basis and B′sup =
{b′0, . . . , b′d} its superbase, as defined in Section 2. Define cij := 〈b′i, b′j〉.

2-dimensional reduction. A 2-dimensional lattice basis is Lagrange-reduced [13, Section
4.2] if 0 ≤ 2|c12| ≤ c11 ≤ c22. We can negate b′2 if necessary so that c12 ≤ 0. Then
{b′1, b′2, b′0 := −b′1−b′2} form an obtuse superbase, because c01 = 〈b′1,−b′1−b′2〉 = −c11−c12 ≤ 0
due to 2|c12| ≤ c11, and similarly c02 ≤ 0. If a basis is not Lagrange-reduced with 2|c12| > c11,
we exchange b′2 for a shorter vector that forms a basis with b′1: Let b′′2 := b′2 − sb′1, with s = 1
if c12 > 0 and s = −1 otherwise. Vector b′′2 is shorter than b′2 since c′22 = c22 + c11 − 2sc12.
Since there are only finitely many pairs of lattice vectors within a ball of any given radius, a
finite number of applications of this procedure will yield a Lagrange-reduced basis.

3-dimensional reduction. We outline Selling’s algorithm [13, Section 4.4], an iterative
algorithm that obtains an obtuse superbase in 3 dimensions. In each step of the algorithm,
if there is a cij > 0, the algorithm returns a new superbase B′′sup defined via b′′i := −b′i,
b′′j := b′j , b′′h := b′h + b′i and b′′k := b′k + b′i where h and k are the remaining two indices
different from i and j. For any basis B, let σ(B) :=

∑
b∈Bsup

||b||2. Notice that in each step,
σ(B′′) = σ(B′)− 2cij . In particular, σ(B′′) < σ(B′). This fact, together with the fact that
there are only finitely many lattice points in a ball of radius

√
σ(B′) (and thus only finitely

many quadruplets of vectors whose square magnitudes sum up to at most σ(B′)) guarantees
termination of the algorithm.

Intersecting domains

For a given canonical point x ∈ X0, each of its periodic copies y ∈ Γx can be obtained as φλ(x)
for some translation φλ ∈ Γ. The corresponding lattice point λ can be uniquely written as∑d
i=1 oibi for some o ∈ Zd and we write and λ(o) := λ. We then call o =: o(y) the offset of y

and φλ(o) the translation associated with o. For each point x ∈ X0 we need to determine the 3d

offsets for which φλ(o)(x) is within domI(0, 3Λ). Fortunately, these offsets have to come from
a fixed set of offsets that only depends on the lattice basis. Notice that if φλ(o)(domI(0,Λ))
does not intersect domI(0, 3Λ), then φλ(o)(x) cannot be in domI(0, 3Λ) for x ∈ X0. Thus
we only need to check those offsets for which φλ(o)(domI(0,Λ)) ∩ domI(0, 3Λ) 6= ∅.

I Lemma 2. There are at most 4d − 2d + 1 translates of domI(0,Λ) that have non-empty
intersection with domI(0, 3Λ).

Proof. If domI(λ,Λ) intersects domI(0, 3Λ) for some λ ∈ Λ, then λ must be inside
domI(0, 4Λ). There are 4d lattice points within domI(0, 4Λ). For each v ∈ V+, the lattice
vectors −2v and 2v are on the boundary of domI(0, 4Λ), however only −2v is one of those 4d
points within domI(0, 4Λ). For these lattice points −2v on the boundary however the inter-
section between domI(−2v,Λ) and domI(0, 3Λ) is empty. Thus only 4d−|V+| = 4d−(2d−1)
translates of domI(0,Λ) intersect domI(0, 3Λ). J

In general, we can find this set of offsets via a breadth-first search: We define a graph
on Λ with each lattice point λ connected to λ+ v for v ∈ V. We start the search at lattice
point 0 and terminate once we have found 4d − 2d + 1 offsets, or in the case of non-generic
lattices once all 4d lattice points inside domI(0, 4Λ) have been reached (with the ones on the
boundary being discarded).

G. Osang, M. Rouxel-Labbé, and M. Teillaud 75:7

In 2 dimensions, there is in fact a fixed set S of 13 offsets such that for any lattice,
domI(λ(o),Λ) only intersects domI(0, 3Λ) when o ∈ S (Figure 3b).

I Lemma 3. Given a 2-dimensional lattice with basis B and an offset o, if o 6∈ {(0, 0), (-1,
-1), (0, 1), (1, 0), (-1, 0), (0, -1), (1, 1), (-1, -2), (1, 2), (-2, -1), (2, 1), (-1, 1), (1, -1)},
then domI(λ(o),Λ) ∩ domI(0, 3Λ) = ∅.

Proof. Each domI(λ,Λ) adjacent to domI(0,Λ) has all but one of its facets in the interior
of domI(0, 3Λ). Except for those adjacent via one of those facets, all domI(λ,Λ) at graph
distance 2 from 0 intersect domI(0, 3Λ). The ones that don’t are exactly the 6 domains
domI(2v,Λ) for v ∈ V. As there are 19 domains at distance at most 2, we have found 13
domains that intersect domI(0, 3Λ). As this is the maximum possible number by Lemma 2,
we have found all of them. J

In 3 dimensions, the same argument yields a set of 51 fixed offsets. However, by Lemma 2,
the total number of domains that intersect domI(0, 3Λ) is 57. Fortunately, the remaining 6
offsets come from a fixed set of 24 offsets that is independent of the lattice.

I Lemma 4. There is a set O≤2 of 51 offsets and a set O3 of 24 offsets such that for any
3-dimensional lattice with basis B, there is a subset S of O3 of size 6 such that if o 6∈ O≤2∪S,
then domI(λ(o),Λ) ∩ domI(0, 3Λ) = ∅.

Proof. We use the observation that |〈v, w〉| ≤ 〈v, v〉 for any two Voronoi relevant vectors
w, v ∈ V [13, Section 3.5]. Then the following claim holds:

B Claim. Domains domI(ν,Λ) of graph-distance at most (k − 2) from some λ = kv for an
integer k ≥ 2 and v ∈ V cannot intersect domI(0, 3Λ).

Proof. We have ν = kv + v1 + · · ·+ vk−2 for some vi ∈ V, i = 1, . . . , k − 2. Then 〈w, v〉 =
k〈v, v〉 + 〈v, v1〉 + · · · + 〈v, vk−2〉 ≥ k〈v, v〉 − (k − 2)〈v, v〉 = 2〈v, v〉 due to the observation
above. This means that ν is not in the interior of str(4v) and thus the interior of the 4-scaled
domain. Therefore domI(ν,Λ) ∩ domI(0, 3Λ) = ∅. C

For a generic 3-dimensional lattice, the Voronoi relevant vectors correspond to the non-empty
subsets of Bsup of size at most 3, independent of the actual vectors of Bsup. Thus the graph
we defined on Λ is isomorphic for all generic lattices. For non-generic lattices it is isomorphic
to a subgraph of the graph for generic lattices; thus it is sufficient to restrict our attention to
generic lattices.

We enumerate all lattice points at graph distance 3 from the origin. For a generic lattice,
this yields 110 points, however all but 24 of them can be written as 3v or 3v +w for Voronoi
relevant vectors v and w. The set of the 24 corresponding offsets is O3, while O≤2 are those
51 offsets that the argument from Lemma 3 yields. All lattice points at graph distance 4 can
be written as 4v+kw for k ≤ 2 and Voronoi relevant vectors v and w, and thus their domains
and consequently any domains at higher distances cannot intersect domI(0, 3Λ). J

3.2 Phase 1
Phase 1 maintains the Euclidean Delaunay triangulation of X3. For each new point to be
inserted, we first find its canonical copy. Then we can compute its periodic copies that are
contained within domI(0, 3Λ) using Lemmas 3 and 4. These are then inserted into Del(X3).
To provide user access to the cells of Del(ΓX)/Γ, we define a notion of canonical cell in
Del(X3) to get a representative for each cell of Del(ΓX)/Γ.

ESA 2020

75:8 Generalizing CGAL Periodic Delaunay Triangulations

Canonical points

For each point of X, finding its periodic copy that lies in domI(0,Λ) is equivalent to solving
the closest vector problem (CVP), i.e. given x ∈ X, determining the lattice point that is
closest to x. For arbitrary dimensions this problem is known to be NP-hard [20]. For the
exact version of CVP, various iterative algorithms have been described [1, 19, 16]. As we are
only operating in 2 and 3 dimensions, any of them would suffice for us in practice in terms of
running time, and we will describe the algorithm by Sommer et al [19] due to its simplicity.

For a real number r, define round(r) to be the closest integer to r. If this integer is
not unique, then it is the one with the smallest absolute value. This definition ensures
convergence in cases where x is on the boundary of a Dirichlet domain of the lattice [19].
Recall that V+ is a set of normals of the facets of the canonical domain, and can be obtained
from a reduced basis B (see Section 2). We first sort the vectors of V+ by their magnitude.
As domI(0,Λ) is the intersection of the strips str(v) for v ∈ V+, we need to find the periodic
copy of x that is in all these str(v). We loop through the vectors v of V+ and for each of
them perform the following operations: Compute c := 〈x,v〉

〈v,v〉 . If −0.5 ≤ c < 0.5, then already
x ∈ str(v). If not, then we subtract round(c) · v from x. Note that after such a step, it is
guaranteed that x ∈ str(v). However after modifying x for a longer vector v, it might happen
that x is moved outside of str(v′) for some shorter vector v′ again. Therefore we need to
repeatedly loop through V+ and perform this operation until x ∈ str(v) for all v ∈ V+.

Notice that in each step where x is modified, the magnitude of x strictly decreases.
Therefore this algorithm terminates in finite time, as the number of lattice vectors within a
ball of given radius ||x|| is finite.

Extracting representative cells

Recall that our interface specifies access to the cells (and lower-dimensional simplices) of
Del(ΓX)/Γ. Thus for each of its cells we have to provide one representative from Del(X3).
For a cell σ of either Del(ΓX) or Del(X3), with V (σ) = {x1, . . . , xd}, we define its offset
as the vector o(σ) = minx∈V (σ){o(x)} where the minimum is taken lexicographically. Note
that this definition differs from [4, Convention 3.3.1] where the coordinate-wise minimum is
taken. If the offset of a cell is the 0-vector, we call it a canonical cell. Note that due to our
definition a canonical cell always has a vertex with offset 0. Therefore by Proposition 1 a
canonical cell of Del(X3) is also periodic , see Figure 3b. For σ ∈ Del(ΓX), the translated cell
σ −

∑d
i=1 oibi is called its canonical representative. This means that for each class of cells in

Del(ΓX) (or equivalently each cell of Del(ΓX)/Γ), there is a unique canonical representative
in Del(X3). Therefore we can get a set of representative cells by iterating over the cells of
Del(X3) and selecting those that are canonical.

Neighborhood relations

In accordance with our interface, we need to provide neighborhood relations for the vertices
and cells of Del(ΓX)/Γ. These vertices and cells are represented by the canonical vertices
and cells of Del(X3), whose neighbors in Del(X3) (which we have access to) may differ from
the neighbors in Del(ΓX)/Γ (which we want to find). We outline how to get the neighors of
a cell of Del(ΓX)/Γ from Del(X3), and note that other neighborhood relations work in a
conceptually similar way. Note that we do not store these relations explicity, but we compute
them upon request and may cache them for future access.

Consider a canonical cell σ of Del(X3) and a neighboring cell σn. If σn is canonical, it is
the neighbor of σ in Del(ΓX). If σn is not canonical but has a vertex in domI(0,Λ), then it
is periodic and we return the canonical representative of this cell. However, it is possible that

G. Osang, M. Rouxel-Labbé, and M. Teillaud 75:9

all vertices of σn are outside domI(0,Λ), and thus σn might not be a periodic cell at all. In
that case, we need to consider the facet τ separating σ and its neighbor σn. As τ is a facet
of a canonical cell, it is also a periodic facet (i.e. a facet of Del(ΓX)). We compute τ ’s offset
o := o(τ). Then τ ′ := φλ(−o)(τ) is the canonical representative of τ and σ′ := φλ(−o)(σ) as
well as its neighbor σ′n across τ ′ are periodic cells because they share τ ′, which has a vertex
in domI(0,Λ). If σ′n is canonical, then is it the canonical representative of the neighbor of σ
in Del(ΓX); if not, then its canonical representative is. Figure 3c illustrates this process.

In practice, we store the canonical representative of each vertex of X3. To obtain the
canonical representative of a cell (or facet) σ, we need to choose a vertex x whose offset is
minimal (lexicographically) among its vertices. This ensures that the periodic copy x′ of x
in the canonical version of the cell is inside domI(0,Λ). Then one of the cells (or facets)
incident to x′ in Del(X3) is the canonical representative of σ.

3.3 Transition
Phase 2 is more efficient than phase 1 as it directly operates on Del(ΓX)/Γ; however, we
cannot use it from the start as the Bowyer-Watson algorithm [3, 21] comes with some
constraints. The Bowyer-Watson algorithm is an incremental algorithm inserting points
one by one. For each new point x, it determines the conflict zone, which is the set of cells
whose circumsphere contains x. All these cells are removed, and all boundary facets of the
resulting hole are connected to x to fill in the hole with new cells. The algorithm requires
this hole to be a topological d-ball, which is not always guaranteed for Del(ΓX)/Γ. However
the following criterion is a sufficient condition for the Bowyer-Watson algorithm to work [7].

I Lemma 5 ([7, Criterion 3.11]). If for every cell in Del(ΓX)/Γ the circumradius is smaller
than 1

4 sv(Λ), then Del(ΓX ′)/Γ is simplicial for every X ′ ⊇ X.

If this criterion is fulfilled, we can safely switch to phase 2. To detect at which point in
phase 1 the criterion is fulfilled, we maintain a set Sbig of big cells, which are canonical cells
whose circumradius is larger than or equal to 1

4 sv(Λ). We update Sbig during each point
insertion.

Assume we wish to insert a new point x into the periodic triangulation of some point
set X. On a high level, we need to remove the big cells in the conflict zone of x from Sbig,
and then add the newly created big cells to Sbig. In practice, we have already computed the
triangulation Del(X3) and have to insert the periodic copies of x that are within domI(0, 3Λ),
i.e. Γx ∩ domI(0, 3Λ), into Del(X3). We first detect the conflict zone of x0, the canonical
copy of x. For each big cell in the conflict zone we check if it has a canonical copy in Sbig,
and remove that copy from Sbig if it does. While the conflict zone may contain non-periodic
cells, Lemma 6 guarantees that we capture a representative of each cell from Del(ΓX) that
is in conflict with x. Next we insert all the copies Γx ∩ domI(0, 3Λ) into Del(X3). Finally,
for each big cell incident to x0 in the resulting triangulation, we add its canonical copy to
Sbig. Note that all these cells have a canonical copy by Proposition 1 as they have a vertex
inside domI(0,Λ).

I Lemma 6. Let C be the conflict zone of some point x ∈ domI(0,Λ) with respect to
Del(ΓX). Then the conflict zone of x with respect to Del(X3) contains at least one periodic
copy of each cell from C.

Proof. First observe that if a cell of Del(ΓX) has its circumcenter at the origin, then all
its vertices must be within dom(0,Λ), because if the circumsphere contains a point outside
dom(0,Λ), then it also contains its canonical copy. Via translation it follows that if a cell has

ESA 2020

75:10 Generalizing CGAL Periodic Delaunay Triangulations

its circumcenter in domI(0, 2Λ), then its vertices are in domI(0, 3Λ) and thus it is a cell of
Del(X3). So assume we have a cell σ in C whose circumcenter c is not within domI(0, 2Λ).
Then there is a facet of domI(0, 2Λ) with respect to which c is outside. Let f be its face
normal. Then x+f is also contained in the circumsphere of σ. Reversely, σ−f is a cell whose
circumsphere contains x, and furthermore its circumcenter is closer to 0 than c, see Figure 4.
As there are only finitely many periodic copies of c within a given distance from 0, after

c

c− f

0

f

Figure 4 The red point x is in the conflict zone of the blue cell σ, which is not a cell of Del(X3)
and whose circumcenter c is outside domI(0, 2Λ). However the light blue cell σ − f is a periodic
copy of σ that is in Del(X3) and x is in its conflict zone.

applying this process a finite number of times we eventually obtain a cell whose circumsphere
contains x and whose circumcenter is in domI(0, 2Λ). This cell is a periodic copy of σ, is
contained in Del(X3) and thus also part of the conflict zone of x with respect to Del(X3). J

Once Sbig is empty, the criterion of Lemma 5 is fulfilled, and we can internally convert
our triangulation from Del(X3) to Del(ΓX)/Γ, which is maintained in phase 2. We initialize
the periodic triangulation data structure with the set of canonical vertices X0 and canonical
cells obtained from Del(X3), as well as the adjacency and incidence relations outlined earlier.

3.4 Phase 2
Phase 2 operates directly on the torus triangulation Del(ΓX)/Γ. Thus it maintains only one
copy of each cell and vertex and point insertion is faster than in phase 1. The data structure
it uses to represent Del(ΓX)/Γ is akin to the one used in CGAL for the cubic case, and
closely resembles the interface we defined for our algorithm: Only X0 is stored as vertex set,
and each cell is represented by its vertices, with a vertex encoded as a pair (x, o) of a point
x ∈ X0 and an offset so that its geometric location is φλ(o)(x). While in the cubic case each
offset coordinate either takes the value 0 or 1 and offsets can be encoded in d bits, in our
more general setting offsets can take any of the lattice-specific values from Lemma 2. Unlike
in phase 1, most neighborhood relations for Del(ΓX)/Γ are already stored explicitly in the
data structure: For each cell its adjacent cells are stored, and for each vertex one incident
cell is stored. The remaining neighborhood relations required by our interface are obtained
implicitly from the explicitly stored ones. With each point insertion, all stored neighborhood
relations have to be updated accordingly.

Point insertion. To insert a new point x into Del(ΓX)/Γ using the Bowyer-Watson al-
gorithm, first we compute the canonical copy x0. Then we locate the cell containing x0, via a
traversal starting from an arbitrary cell. The conflict zone is computed via a search starting
in the cell containing the point x0. Whenever we are traversing cells, care has to be taken to
maintain the correct offset of the affected cells relative to x0, and similarly when creating

G. Osang, M. Rouxel-Labbé, and M. Teillaud 75:11

new cells to fill in the hole left by the deleted conflict zone. For the cubic case the details are
described in [4, Section 3.3], and we omit the technical adjustments needed to make these
steps work in the more general case.

4 Experimental results

Points until transition. We experimentally evaluated the number of points required until
the criterion of Lemma 5 is fulfilled and the transition to phase 2 occurs. Lemma 5 requires
all of Rd/Γ to be covered by the balls of radius 1

4 sv(Λ) around X0. As the volume of
the torus equals the volume of the Dirichlet domain of 0, denoted as vol(dom(0,Λ)), we
expect the number of points until switching to phase 2 to be roughly proportional to
vol(dom(0,Λ))/sv(Λ)d, assuming the points are sampled uniformly at random.

To investigate this in 2 dimensions, we parametrize a 2-dimensional space of lattices. We
call the parameters the elongation ` and the skew s. The basis of the lattice with elongation
` and skew s is b1 = (`, 0) and b2 = (s · `/2, 1). With ` ≥ 1 and s between 0 and 1 we can
parametrize all 2-dimensional lattices up to symmetry and scaling. Note that the skew affects
sv(Λ) but not vol(dom(0,Λ)), while the elongation is proportional to vol(dom(0,Λ)) but
does not affect the sv(Λ). Fixing the skew at 0 and varying the elongation (Figure 5a), we see
that the number of random points needed until the phase switch appears to be proportional
to the elongation. The same applies to the number of points until the resulting triangulation
is simplicial for the first time. Figure 5b shows the same statistics for lattices of fixed area
but varying skew. In addition we plot the inverse of sv(Λ)2 for comparison, and observe that
it behaves similarly albeit not entirely proportionally.

0 2 4 6 8 10
elongation

0

100

200

300

400

500

nu
m

be
r

of
 p

oi
nt

s

simplicial
criterion

(a) Results for fixed skew s = 0 and varying
elongation `.

0.0 0.2 0.4 0.6 0.8 1.0
skew

0.0

0.2

0.4

0.6

0.8

1.0

sv
(

)
2

sv() 2

0

25

50

75

100

125

150

175

200

nu
m

be
r

of
 p

oi
nt

s

simplicial
criterion

(b) Results for ` = 4 and varying s. The inverse of the
square length of the shortest non-zero lattice vector
in black, with its y-axis on the right.

Figure 5 For different lattices, the number of points inserted into a periodic triangulation until
(blue) Del(ΓX)/Γ is simplicial for the first time, and (orange) Del(ΓX)/Γ fulfills Lemma 5. Each
data point is the mean of 200 trials, and the bars represent the standard deviation.

In 3-dimensions, a parametrization of lattices up to symmetry and scaling needs 5
parameters, and thus an analysis like in 2D is impractical. As mentioned before, we expect
that the number of points until the switch to phase 2 is proportional to vol(dom(0,Λ))/sv(Λ)3.
By comparing the two, Figure 6 confirms this relationship for 182 lattices whose basis vectors
have randomly sampled direction and a random magnitude between 1 and 100.

ESA 2020

75:12 Generalizing CGAL Periodic Delaunay Triangulations

0 5 10 15 20 25 30
vol(dom(0,))/sv()3

0

1000

2000

3000

4000

5000

6000

7000

po
in

ts
 u

nt
il

ph
as

e
sw

itc
h

Figure 6 Phase switching in 3D: Each point in the plot represents a lattice, with
vol(dom(0,Λ))/sv(Λ)3 on the x-axis and the number of points inserted until the switch to phase 2
occurred on the y-axis. Each y-value is obtained as the average over 200 point sets, each distributed
uniformly at random.

Running times. We evaluate the running times of our algorithm for different 3-dimensional
lattices, and compare them to the existing CGAL implementations. The data points
collected are from Delaunay triangulations of 10k uniformly sampled random points for
k up to 7. Each data point is an average of 300 trials (10 trials for 107 points). The
experiments were conducted on a laptop running Fedora 30 64-bits, with two 6-core Intel(R)
i9-8950HK CPU clocked at 2.90GHz, and with 32GB of RAM. The CGAL kernel used was
CGAL::Exact_predicates_inexact_constructions_kernel and CPU time was measured using
CGAL’s timer tools. The code was compiled using clang 8.0.0 with compilation flags -O3
and -DNDEBUG.

Table 1 shows a comparison between the CGAL implementation of Euclidean Delaunay
triangulations [14] (with random points uniformly sampled in the unit cube), periodic
Delaunay triangulations in the cubic setting [5] and our algorithm for various lattices,
including the cubic lattice. For each lattice, we also measured the average number of points
until the switch to phase 2. As our algorithm and the one for the cubic setting are based
on the same code base when operating directly on the torus triangulation, their runtimes
are comparable for large point sets. It should be noted that when similar experiments were
conducted in 2010 to compare the Euclidean and cubic periodic algorithms [4, Section 3.6.2],
both were performing comparably. Since then, Euclidean Delaunay triangulations in CGAL
have seen significant optimizations, which were not applied to periodic triangulations. This
also explains why our algorithm is faster than the cubic periodic algorithm for point sets
where phase 1 takes up a significant portion of the running time, as internally we use a
Euclidean rather than a periodic triangulation.

5 Discussion
Weighted points. Phase 1 of our algorithm readily generalizes to weighted point sets. In
particular, Proposition 1 still holds for weighted point sets (see Appendix A for a proof).
Phase 2 only works for weighted points under additional restrictions because Del(ΓX)/Γ
can not be guaranteed to remain simplicial, in particular after inserting points with large
weights. Such point insertions that break simpliciality can be prevented by requiring points
to be inserted in decreasing order of weight, or like in the cubic implementation in CGAL
by severely restricting the range of weights a point can have. Thus an implementation is
subject to a tradeoff between flexibility (phase 1) and performance (phase 2).

G. Osang, M. Rouxel-Labbé, and M. Teillaud 75:13

Table 1 Running time (in seconds) of various Delaunay triangulation algorithms on random
point sets of different sizes. Our algorithm (“Lattice”) is evaluated for different lattices including the
cubic lattice, face-centered cubic (FCC) lattice and two other lattices Λ1 and Λ2 with bases B1 =
{(0.5,−0.5, 0.1), (−0.5, 0.5, 0.1), (0.5, 0.5,−0.1)} and B2 = {(1, 0, 0), (−0.5,

√
3/2, 0), (0, 0, 0.05)}. For

each lattice we also record the average number of points until the switch to phase 2 (nswitch).

Algorithm Euclidean [14] Cubic [5] Lattice
Lattice – Cubic Cubic FCC Λ1 Λ2

vol(dom(0,Λ))
sv(Λ)3 – 1.00 1.00 0.71 12.50 346.41
nswitch – 145 [4] 141 94 2519 89950

100 0.0000 0.0001 0.0002 0.0001 0.0003 0.0004
101 0.0000 0.0160 0.0033 0.0026 0.0044 0.0035
102 0.0004 0.1848 0.0461 0.0287 0.0460 0.0380
103 0.0049 0.5957 0.0858 0.0446 0.9812 0.6372
104 0.0487 0.9591 0.3832 0.1642 4.6602 16.5759
105 0.5679 4.8119 4.5153 2.7868 10.8139 362.7956
106 6.5974 93.9327 95.1447 51.5945 58.1568 517.9715
107 59.5152 2314.3618 2317.7867 1215.2648 1799.4515 2983.0943

Higher dimensions. Conceptually, our algorithm generalizes to higher dimensions. The
only step that is dimension-dependent and therefore requires significant adjustments is
obtaining a representation of domI(0,Λ). While up to 3 dimensions every lattice has an
obtuse superbase, this does not hold in higher dimensions. Therefore we would need to find
a different way of obtaining the set of Voronoi relevant vectors. Complexity-wise, computing
the canonical representative of a point is believed to be hard. Furthermore, the number of
copies that we compute of each input point in phase 1 is 3d. Therefore we expect the runtime
of our algorithm to be exponential in the dimension, but still feasible in practice as long as
the dimension is not too large.

Dummy points. For best performance, transition from phase 1 to phase 2 should occur
as soon as possible. Intuitively, this happens when the input point distribution does not
have large gaps. We can achieve this by first inserting additional dummy points, which are
removed at the end (if possible) [7]. In practice, we can choose these points from a sufficiently
fine hexagonal lattice (or body-centered cubic in 3 dimensions), such that the open spheres
of radius 1

4 sv(Λ) around the points cover the entire torus.

Software distribution. We aim to provide a CGAL package for periodic Delaunay triangu-
lations for arbitrary lattices in 2 and 3 dimensions. The current state of our implementation
is available online (see Footnote 1). Both the 2- and 3-dimensional implementations have
been integrated into the CGAL codebase and only require some additional refactoring and
optimizing to adhere to CGAL’s quality standards. Automated tests and documentation
still have to be produced. An extension to weighted Delaunay triangulations, referred to as
regular triangulations in CGAL, is planned for the future.

References
1 Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth Zeger. Closest point search in

lattices. IEEE Trans. Inform. Theory, 48(8):2201–2214, 2002. doi:10.1109/TIT.2002.800499.
2 Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions.

In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC
’98, page 10–19, New York, NY, USA, 1998. Association for Computing Machinery. doi:
10.1145/276698.276705.

ESA 2020

https://doi.org/10.1109/TIT.2002.800499
https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/276698.276705

75:14 Generalizing CGAL Periodic Delaunay Triangulations

3 Adrian Bowyer. Computing Dirichlet tessellations. The computer journal, 24(2):162–166, 1981.
4 Manuel Caroli. Triangulating Point Sets in Orbit Spaces. PhD thesis, Université Nice Sophia

Antipolis, 2010. URL: https://tel.archives-ouvertes.fr/tel-00552215.
5 Manuel Caroli, Aymeric Pellé, Mael Rouxel-Labbé, and Monique Teillaud. 3D periodic triangu-

lations. In CGAL User and Reference Manual. CGAL Editorial Board, 5.0.2 edition, 2020. URL:
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic3Triangulation3.

6 Manuel Caroli and Monique Teillaud. 3D periodic triangulations. In CGAL User and Reference
Manual. CGAL Editorial Board, 3.5 edition, 2009.

7 Manuel Caroli and Monique Teillaud. Delaunay triangulations of closed Euclidean d-orbifolds.
Discrete & Computational Geometry, 55(4):827–853, 2016. URL: https://hal.inria.fr/
hal-01294409, doi:10.1007/s00454-016-9782-6.

8 J. H. Conway and N. J. A. Sloane. Low-dimensional lattices VI: Voronoi reduction of
three-dimensional lattices. Proc. R. Soc. Lond. A, pages 55–68, 1992.

9 B. Delaunay. Sur la sphère vide. À la mémoire de Georges Voronoï. Izv. Akad. Nauk SSSR,
Otdelenie Matematicheskih i Estestvennyh Nauk, 7:793–800, 1934. URL: http://mi.mathnet.
ru/eng/izv4937.

10 Vincent Despré, Jean-Marc Schlenker, and Monique Teillaud. Flipping geometric triangu-
lations on hyperbolic surfaces. In Proceedings of the Thirty-sixth International Symposium
on Computational Geometry, 2020. To appear. Preliminary version: https://hal.inria.fr/
hal-02400219.

11 Olivier Devillers and Monique Teillaud. Perturbations for Delaunay and weighted Delaunay
3D triangulations. Computational Geometry: Theory and Applications, 44:160–168, 2011.
URL: http://hal.inria.fr/inria-00560388/, doi:10.1016/j.comgeo.2010.09.010.

12 Nikolai Dolbilin and Daniel Huson. Periodic Delone tilings. Periodica Mathematica Hungarica,
34:1-2:57–64, 1997.

13 Peter Engel. Geometric crystallography: an axiomatic introduction to crystallography. Springer,
Dordrecht, 1986. doi:10.1007/978-94-009-4760-3.

14 Clément Jamin, Sylvain Pion, and Monique Teillaud. 3D triangulations. In CGAL User and
Reference Manual. CGAL Editorial Board, 5.0.2 edition, 2020. URL: https://doc.cgal.org/
latest/Manual/packages.html#PkgTriangulation3.

15 Nico Kruithof. 2D periodic triangulations. In CGAL User and Reference Manual. CGAL
Editorial Board, 4.4 edition, 2014. URL: http://doc.cgal.org/latest/Manual/packages.
html#PkgPeriodic2Triangulation2Summary.

16 Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm
for most lattice problems based on Voronoi cell computations. SIAM J. Comput., 42(3):1364–
1391, 2013. doi:10.1137/100811970.

17 The CGAL Project. URL: http://www.cgal.org.
18 Chris Rycroft. Voro++: A three-dimensional Voronoi cell library in c++. Technical report,

Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2009. URL: http:
//math.lbl.gov/voro++/.

19 Naftali Sommer, Meir Feder, and Ofir Shalvi. Finding the closest lattice point by iterative
slicing. SIAM J. Discrete Math., 23(2):715–731, 2009. doi:10.1137/060676362.

20 Peter van Emde Boas. Another NP-complete problem and the complexity of computing short
vectors in a lattice. Technical report, Mathematische Instituut, Uni. Amsterdam Report, April
1981.

21 David F Watson. Computing the n-dimensional Delaunay tessellation with application to
Voronoi polytopes. The computer journal, 24(2):167–172, 1981.

22 Thomas F Willems, Chris H Rycroft, Michaeel Kazi, Juan C Meza, and Maciej Haranczyk.
Algorithms and tools for high-throughput geometry-based analysis of crystalline porous
materials. Microporous and Mesoporous Materials, 149(1):134–141, 2012. URL: http://
zeoplusplus.org/.

23 Mariette Yvinec. 2D triangulation. In CGAL User and Reference Manual. CGAL Editorial
Board, 5.0.2 edition, 2020. URL: https://doc.cgal.org/latest/Manual/packages.html#
PkgTriangulation2.

https://tel.archives-ouvertes.fr/tel-00552215
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic3Triangulation3
https://hal.inria.fr/hal-01294409
https://hal.inria.fr/hal-01294409
https://doi.org/10.1007/s00454-016-9782-6
http://mi.mathnet.ru/eng/izv4937
http://mi.mathnet.ru/eng/izv4937
https://hal.inria.fr/hal-02400219
https://hal.inria.fr/hal-02400219
http://hal.inria.fr/inria-00560388/
https://doi.org/10.1016/j.comgeo.2010.09.010
https://doi.org/10.1007/978-94-009-4760-3
https://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation3
https://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation3
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic2Triangulation2Summary
http://doc.cgal.org/latest/Manual/packages.html#PkgPeriodic2Triangulation2Summary
https://doi.org/10.1137/100811970
http://www.cgal.org
http://math.lbl.gov/voro++/
http://math.lbl.gov/voro++/
https://doi.org/10.1137/060676362
http://zeoplusplus.org/
http://zeoplusplus.org/
https://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation2
https://doc.cgal.org/latest/Manual/packages.html#PkgTriangulation2

G. Osang, M. Rouxel-Labbé, and M. Teillaud 75:15

A Generalization to weighted points

For a weighted point x, we denote its weight with wx. For weighted points x, y ∈ X, their
power distance is dist(x, y) := ‖x− y‖ − wx − wy. For an arbitrary point p ∈ R that is not
part of X we define the power distance from x to p as dist(x, p) := ‖x− p‖ − wx (as if the
weight of p was 0).

We call two points x and y orthogonal if dist(x, y) = 0. For d+ 1 points Q ⊆ X (if in
general position) there is a unique point z with weight wz that is orthogonal to all points of
Q. This point is called the orthocenter or power sphere of Q. If Q is a set of points forming
a cell (simplex) in the Delaunay triangulation, then for all points x ∈ Q and y ∈ X \Q it
holds that dist(y, z) > dist(x, z) = 0. We call this the empty-sphere property. The converse
holds as well. The perpendicular bisector of two weighted points x and y is the set of points
p with dist(x, p) = dist(y, p).

I Proposition 7 (Generalization of Lemma 3.2–3.4 from [12]). Given a set X of representatives
for our point set, let X3 := domI(0, 3Λ) ∩ ΓX, i.e. all periodic copies of these points that lie
within the Dirichlet domain of 0 scaled by a factor of 3. Let T0 be those cells of Del(X3) that
have at least one vertex in domI(0,Λ). Then the cells of T0 are all part of the triangulation
of ΓX. Furthermore, these cells contain at least one representative of each class of cells from
Del(ΓX).

Proof. We will prove the proposition in 3 steps.

B Claim 1. Assume one of our points is x0 = 0 (with arbitrary weight). Then the orthocenter
cT of any Delaunay cell that has x0 as a vertex is within dom(0,Λ).

Proof. Assume not. Then there is a face Fi of dom(0,Λ) such that Fi separates x0 from
cT . Let fi be the corresponding translation lattice vector orthogonal to Fi. Then x0 + fi is
strictly closer to cT than x0 because it has the same weight as x0. This is a contradiction to
the empty-sphere property. C

B Claim 2. For a cell containing x0 as a vertex, all vertices are in dom(0, 2Λ).

Proof. Assume some vertex x is not. Consider the perpendicular bisector between x and
x− fi where fi is the face normal vector orthogonal to the face Fi of dom(0,Λ) with respect
to which x is outside of dom(0, 2Λ). This bisector is separated from x0 and the orthocenter
cT by Fi, the face of dom(0,Λ) that is parallel to this bisector. In particular, it follows from
Claim 1 that cT is (strictly) on the x − fi side of the perpendicular bisector. So x− fi is
closer to cT than x and thus the empty-sphere property is violated. See Figure 7 for reference.

C

B Claim 3. All cells σ having a vertex in domI(0,Λ) are entirely contained in domI(0, 3Λ).

Proof. Let x be a vertex of σ that is within domI(0,Λ). Shift the entire point set ΓX and its
triangulation by the vector −x so that x now coincides with 0. Now from Claim 2 it follows
that the other vertices of the shifted cell are within dom(0, 2Λ). Adding the vector +x to
these shifted vertices we get back to the original setting, but because x ∈ domI(0,Λ) we also
know now that these vertices are within domI(0, 3Λ), as domI(0, 3Λ) is the Minkowski sum
of domI(0,Λ) and dom(0, 2Λ). C

ESA 2020

75:16 Generalizing CGAL Periodic Delaunay Triangulations

fi

Fi

x0

x

x− fi

cT

Figure 7 A cell (dashed) with a vertex x that is outside of dom(0, 2Λ). The dotted line is the
perpendicular bisector between x and x− fi.

Every cell of Del(ΓX) that has a vertex in domI(0,Λ) has all its vertices in X3. Further-
more, because it fulfils the empty-sphere property in ΓX, then it also fulfils this property in
X3 ⊂ ΓX, and thus is present in Del(X3). As every point from X has a representative in
domI(0,Λ), also each cell from Del(ΓX) has a representative in T0, proving the statement.

J

B Detailed proof of Lemma 4

I Lemma 4 (extended version). Let O3 := {(3, 2, 1), (2, 1, -1), (3, 1, 2), (2, -1, 1),
(1, -1, -2), (1, -2, -1), (2, 3, 1), (1, 2, -1), (1, 3, 2), (-1, 2, 1), (-1, 1, -2),
(-2, 1, -1), (2, 1, 3), (1, -1, 2), (1, 2, 3), (-1, 1, 2), (-1, -2, 1), (-2, -1, 1),
(-1, -2, -3), (-1, -3, -2), (-2, -1, -3), (-3, -1, -2), (-2, -3, -1), (-3, -2, -1)}

and O≤2 := {(0, 0, 0), (-1, -1, -1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0),
(1, 0, 1), (0, -1, -1), (0, 1, 1), (-1, 0, -1), (-1, -1, 0), (1, 1, 1), (0, 0, -1),
(0, -1, 0), (-1, 0, 0), (1, 2, 0), (1, 0, 2), (-1, -2, -2), (2, 1, 0), (2, 0, 1),
(1, -1, -1), (0, 1, 2), (-2, -1, -2), (0, 2, 1), (-1, 1, -1), (-2, -2, -1),
(-1, -1, 1), (1, 1, 2), (-1, -1, -2), (1, 2, 1), (0, 1, -1), (-1, -2, -1),
(0, -1, 1), (2, 1, 1), (1, 0, -1), (1, -1, 0), (-2, -1, -1), (-1, 0, 1), (-1, 1, 0),
(1, 2, 2), (-1, 0, -2), (-1, -2, 0), (2, 1, 2), (0, -1, -2), (2, 2, 1), (1, 1, -1),
(0, -2, -1), (1, -1, 1), (-2, -1, 0), (-2, 0, -1), (-1, 1, 1)}.

Given a 3-dimensional lattice and an offset o, there is a subset S of size 6 of O3 such
that if o 6∈ O≤2 ∪ S, then domI(λ(o),Λ) ∩ domI(0, 3Λ) = ∅.

Proof. As mentioned in the proof of Theorem 3.5 from [13], v
2 is on the boundary of

domI(0,Λ) for every Voronoi-relevant vector v.

B Claim 1. The orthogonal projection of v into the 1-dimensional subspace spanned by
another Voronoi relevant vector w ∈ V+ has magnitude less than w.

Proof. All facets of domI(0,Λ) are contained in str(w) for all w ∈ V+, so because v
2 is on

the boundary of domI(0,Λ), it is contained in str(w). By definition of str(w) this implies
|〈 1

2v, w〉/〈w,w〉| ≤
1
2 , from which it follows that |〈v, w〉| ≤ 〈w,w〉. C

B Claim 2. Domains domI(ν,Λ) of graph-distance (k − 2) from some λ = kv for an integer
k and v ∈ V cannot intersect domI(0, 3Λ).

Proof. We have ν = kv + v1 + · · ·+ vk−2 for some vi ∈ V. Then 〈w, v〉 = k〈v, v〉+ 〈v, v1〉+
· · · + 〈v, vk−2〉 ≥ k〈v, v〉 − (k − 2)〈v, v〉 = 2〈v, v〉 due to Claim 1. This means that ν
is not in the interior of str(4v) and thus the interior of the 4-scaled domain. Therefore
domI(ν,Λ) ∩ domI(0, 3Λ) = ∅. C

G. Osang, M. Rouxel-Labbé, and M. Teillaud 75:17

Let Bsup = {b0, b1, b2, b3}. Note that because b0 = −(b1 + b2 + b3), every lattice point λ can
be written as a non-negative integer combination of three of these extended basis vectors, i.e.
λ = c1a+ c2b+ c3c with ci ∈ Z, c1 ≥ c2 ≥ c3 ≥ 0 and a, b, c ∈ Bsup. This representation is
unique up to permutation of basis vectors with the same coefficient.

Enumerating all domI(λ,Λ) at graph distance 3 from domI(0,Λ), we get lattice points λ
with non-negative integer combinations of the following types:

3a
3a + b = 3a + b

3a + b + c = 3a + (b+ c)
3a + 2b = 3(a+ b) − b

3a + 2b + c

3a + 2b + 2c = 3(a+ b+ c) − (b+ c)
3a + 3b
3a + 3b + c = 3(a+ b) + c

3a + 3b + 2c = 3(a+ b+ c) − c

3a + 3b + 3c

All of these, except for type 3a + 2b + c, can be written as 3v or 3v + w for some
Voronoi relevant vectors v, w ∈ V. This means that they are, or are adjacent to, a domain
centered at 3v, and from Claim 2 it follows that they cannot intersect domI(0, 3Λ). A similar
argument shows that none of the domains at graph distance 4 from domI(0,Λ) can intersect
domI(0, 3Λ), and therefore also none at higher graph distance.

Now the 51 offsets from O≤2 are those that the argument from Lemma 3 yields, while O3
contains the offsets corresponding to type 3a+2b+c. As by Lemma 2 there are 57 intersecting
domains, only 6 of the offsets from O3 can correspond to intersecting domains. J

ESA 2020

Engineering Fast Almost Optimal Algorithms for
Bipartite Graph Matching
Ioannis Panagiotas
ENS Lyon, France
ioannis.panagiotas@ens-lyon.fr

Bora Uçar
CNRS and LIP, ENS Lyon, France
bora.ucar@ens-lyon.fr

Abstract
We consider the maximum cardinality matching problem in bipartite graphs. There are a number
of exact, deterministic algorithms for this purpose, whose complexities are high in practice. There
are randomized approaches for special classes of bipartite graphs. Random 2-out bipartite graphs,
where each vertex chooses two neighbors at random from the other side, form one class for which
there is an O(m+ n logn)-time Monte Carlo algorithm. Regular bipartite graphs, where all vertices
have the same degree, form another class for which there is an expected O(m+ n logn)-time Las
Vegas algorithm. We investigate these two algorithms and turn them into practical heuristics with
randomization. Experimental results show that the heuristics are fast and obtain near optimal
matchings. They are also more robust than the state of the art heuristics used in the cardinality
matching algorithms, and are generally more useful as initialization routines.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases bipartite graphs, matching, randomized algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.76

Supplementary Material https://gitlab.inria.fr/bora-ucar/fast-matching

1 Introduction

A matching in a graph is a set of edges, such that no two of them share a common vertex.
We consider the maximum cardinality problem in bipartite graphs which asks for a matching
with maximum cardinality. There are a number of exact algorithms for this problem. The
best known algorithms [21] run in O(m

√
n) time for a graph with n vertices and m edges.

Such complexity can be prohibiting for large instances. For this reason, there is significant
interest in algorithms which can find large matchings in linear or near linear time [37]. The
practical use of approximate matchings in applications [33] and as an initialization to exact
algorithms [30] are well known.

We investigate two randomized algorithms by Karp et al. [22] and Goel et al. [18], both
of which run in O(m+ n logn) time. The former algorithm finds, almost surely, maximum
cardinality matchings on random graphs formed by allowing each vertex to select two
vertices from the other side uniformly at random. The latter algorithm finds maximum
cardinality matchings in regular bipartite graphs, where all vertices have equal degree. In
both of these classes of graphs, the bipartite graphs have equal number of vertices in each
part, and the maximum cardinality matchings cover all vertices (such matchings are called
perfect). We investigate these two theoretical algorithms for very special cases of bipartite
graphs and convert them to efficient heuristics for general bipartite graphs. We discuss
our implementations and investigate the performance of the resulting heuristics in terms of
run time and the matching cardinality. Both heuristics run in near linear time and obtain
matchings whose cardinality is more than 0.99 of the maximum, even in cases where the
current state of the art approaches have difficulties.

© Ioannis Panagiotas and Bora Uçar;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 76; pp. 76:1–76:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1081-2411
mailto:ioannis.panagiotas@ens-lyon.fr
https://orcid.org/0000-0002-4960-3545
mailto:bora.ucar@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.ESA.2020.76
https://gitlab.inria.fr/bora-ucar/fast-matching
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

76:2 Almost Optimal Algorithms for Bipartite Matching

The rest of the paper is organized as follows. In Section 2, we give the necessary
background. In Sections 3.1 and 3.2 we review the existing randomized algorithms and then
discuss how we adapt them. Section 4 contains the experimental results, and Section 5
concludes the paper. Appendices A–D provide some additional results and discussion.

2 Background and notation

Let G = (R ∪C,E) be a bipartite graph, where R and C are two disjoint set of vertices, and
E is the set of edges. The bipartite graph G can be represented with a matrix AG. The
vertex ri ∈ R corresponds to the ith row, and the vertex cj ∈ C corresponds to the jth
column, so that AG(i, j) = 1 if and only if (ri, cj) ∈ E. We will refer to vertices of R as rows
and to those of C as columns from this point on, and use A to refer to AG.

LetM be a matching. For (u, v) ∈M, the vertices u and v are matched, and they are
each other’s mate. A vertex is called free if it is not matched by M. If there are no free
vertices in R or in C, thenM is called perfect. An augmenting path with respect toM is a
path which starts with a free vertex and ends at another free vertex, where every second
edge is inM. A matching is maximum if and only if there are no augmenting paths [7].

A square matrix is called doubly stochastic if the sum of entries in each row and column is
equal to one. An n× n matrix A has support if there is a perfect matching in the associated
bipartite graph G. A is said to have total support if each edge in G is used in a perfect
matching. A square matrix is fully indecomposable, if it has total support and cannot be
permuted into a block diagonal matrix. Any nonnegative matrix A with total support can be
scaled with two positive diagonal matrices DR and DC such that AS = DRADC is doubly
stochastic, and if A is fully indecomposable, then the matrices DR and DC are unique. The
Sinkhorn–Knopp algorithm [38] is a well-known method for finding such DR and DC for a
given matrix. This is an iterative algorithm, where at each iteration each row is normalized to
have unit length, and then each column is normalized to have unit length. If a given matrix
A has total support, then Sinkhorn–Knopp algorithm finds the unique scaling matrices. If A
has support but not total support, then entries that cannot be put into a perfect matching
tend to zero. The method converges with an asymptotical convergence rate depending on
the second singular value of the final doubly stochastic matrix. There are other iterative,
faster converging methods [1, 10, 28], whose iterations are more sophisticated than that of
Sinkhorn–Knopp’s.

A k-out subgraph Gk of a host graph G is defined by allowing each vertex in G to
randomly select uniformly k of its neighbors, and the union of all selections forms the edge
set of Gk. Walkup [40] shows that in the pure random k-out setting, where the host graph is
the complete bipartite graph, the resulting Gk has a perfect matching with high probability
for k ≥ 2. We do not know any general result about properties of G2 sampled from any
arbitrary host graph. Frieze and Johansson [17] investigate some other properties of Gks on
host graphs where the minimum degree of a vertex is at least n/2. Dufossé et al. [16] propose
using the doubly stochastic matrix AS (scaled version of the matrix representation) for
sampling and show an approximation result for G1, when A has total support. We give some
experiments in which G2s generated using the same probabilities have perfect matchings in
majority of the cases.

Two popular classes of randomized algorithms are Las Vegas and Monte Carlo algorithms.
Las Vegas algorithms always return a correct answer, but their run time can depend on
random choices, whereas Monte Carlo algorithms can fail with small probability, but their
complexity is independent of the random choices made (see for example [34, p. 70]).

I. Panagiotas and B. Uçar 76:3

There are a number of heuristics for the cardinality matching problem [30, 37] (see
Appendix A for a relevant discussion). Among those, that by Karp and Sipser [23] is very
well known and widely used. This heuristic eliminates vertices of degree at most two in the
following way. It matches any degree-1 vertices with their neighbors (and discards both), or
merges the neighbors of a degree-2 vertex (which is then discarded) to a single node, and
removes any parallel edges that occur. If neither operation can be done, it matches a pair of
vertices randomly.

3 Two heuristics

We describe the original Monte Carlo algorithm [22] for finding perfect matchings in 2-out
bipartite graphs in Section 3.1 and the original Las Vegas algorithm [18] for finding perfect
matchings in d-regular bipartite graphs in Section 3.2. These two algorithms are based on
uniform sampling. We generalize these two algorithms to general bipartite graphs within a
common framework. The framework we propose scales the adjacency matrix of the input
bipartite graph and uses the nonzero values of the scaled matrix for sampling. We also
identify and fix an oversight in the description of the Monte Carlo algorithm, and describe
efficient implementations of the two heuristics.

3.1 2outMC: Monte Carlo on 2-out graphs

3.1.1 Description of the algorithm
The Monte Carlo algorithm by Karp et al. [22] finds a perfect matching, with high probability,
in a random 2-out bipartite graph, sampled from the complete bipartite graph. A random
2-out bipartite graph B2o is constructed by selecting uniformly at random two row vertices
for each column, and two column vertices for each row. These selections form the edges
of B2o. Given the edges of B2o, Karp et al. define two multigraphs. The Column-Graph
(CG) is the multigraph whose vertices are the rows, and whose edges are the choices of the
columns. That is, there is an edge in CG for a column vertex in B2o. Parallel edges occur
if two columns select the same rows. The Row-Graph (RG) is defined similarly. The main
idea to show that B2o has a perfect matching is the following. In a component of CG that
contains a cycle, it is possible to match all rows (vertices in CG) with one of the columns
that have selected them (edges in CG). On the other hand in a tree component of CG, in
any matching (pairing of edges with vertices) there will always be a free row vertex. As a
consequence, when one or more trees appear in CG, the choices of the columns alone do
not suffice to find a perfect matching, and those of the rows must be used. The algorithm
thus keeps track of the tree components of CG and tries to identify one row vertex per tree
component whose selections should be taken into account. The columns selected by such a
row could be used for a set of rows belonging in tree components. Thus one should go back
and forth identifying trees in CG and analyzing components in RG. Karp et al.’s algorithm,
which is described in Algorithm 1, formalizes this approach.

The algorithm operates on H1, a copy of CG, and H2, a copy of RG initially devoid of
edges. It furthermore uses two arrays checked for columns and marked for rows. These two
arrays together signal whether a vertex will be matched with one of its two selections or not.
More specifically, if a row vertex r is marked (i.e., marked[r]=true), then the algorithm will
match r with one of its two selections. On the other hand, if a column c is checked (i.e.,
checked[c]=true), then the algorithm will match c with one of the marked row vertices that
have selected it.

ESA 2020

76:4 Almost Optimal Algorithms for Bipartite Matching

Initially, all row vertices are unmarked and all column vertices are unchecked. The
algorithm at each step picks a tree from H1 and marks one of its vertices x. This signifies
that x can only be matched with one of its choices. Then, the edge of x is inserted in H2.
The algorithm then finds the component Qx in H2 containing the edge x, and selects an
unchecked column y from Qx. Column y is checked, which means that it can only be matched
with a marked vertex. As y’s choices are rendered useless now, the corresponding edge is
removed from H1 upon which new trees can arise. For each tree vertex x identified in H1, one
should be able to find a vertex in the associated component Qx, so that x can be matched in
that component. Otherwise, Qx has more edges than vertices, and any matching of vertices
with edges in Qx will hence leave some edges unpaired. In other words, Algorithm 1 has
decided that all columns that correspond to edges in Qx should be matched with one of their
two selections. However, the union of the rows denoted by these selections has cardinality
strictly smaler than the number of such columns, and that is why a column is always left
unmatched by the algorithm if this scenario occurs. The algorithm returns failure upon
detecting this case (Line 10). The algorithm terminates successfully if all trees have a marked
vertex. If this happens, each component in H1 will have as many edges as unmarked vertices.
Likewise, each component in H2 will have as many edges as checked vertices. It is therefore
possible to orient the edges in either H1 or H2 such that each vertex (excluding marked rows
or unchecked columns) is matched with a unique adjacent edge. This gives a perfect matching
in B2o, which can be found by the Karp–Sipser heuristic in linear time. Algorithm 1 finds a
perfect matching with probability 1−O(n−α), where α is a positive constant.

Algorithm 1 2outMC: Monte Carlo on 2-out graphs.

1: H1 ← CG, H2 ← empty graph with columns as vertices;
2: All vertices in H1 are unmarked, all vertices in H2 are unchecked;
3: CORE ← edges in cycles of CG
4: while there exists a tree T in H1 with no marked vertex do
5: Let x be a random vertex of T I x is a column vertex
6: marked[x] ← true I x must be matched with one of its choices
7: Add the edge of x in H2

8: Let Qx be the component in H2 containing the edge of x
9: if Qx has no unchecked vertices then
10: Return Fail I Qx has more edges than vertices (no 1-1 pairing possible)
11: else
12: Select an unchecked vertex y of Qx. In case of ties, prefer one from CORE
13: checked[y] ← true I y will be matched with a row that selected it
14: delete y in H1 I The algorithm forgets y’s choices
15: Create B′2o from B2o by keeping only edges between marked rows and checked columns

(edges in H2) or unmarked rows and unchecked columns (edges in H1)
16: Apply Karp–Sipser on B′2o to find a perfect matchin

The authors then describe how to efficiently implement the algorithm such that it runs
in O(n logn) worst case time. They identify two main tasks:

Task A: Keep track of the tree components during edge deletions in H1.
Task B: Keep track of the connected components during edge insertions in H2, and the
single unchecked vertex in each component.

Task B can be efficiently done in amortized near linear time (over the course of the
algorithm) by using a union-find data-structure and keeping the identity of the single
unchecked vertex in a component of H2 at the root of the component. For Task A, Karp

I. Panagiotas and B. Uçar 76:5

Figure 1 Algorithm 1 does not recognize new trees, if another edge is deleted after (u, v).

et al. propose the following. In the beginning, the edges of CG are labeled as F , if their
deletion creates a tree; T , if they belong to a tree component; and C otherwise. Let c-degree
of a vertex v be the number of C edges incident on v. During deleting the edge (u, v) from
H1, one of the following is performed depending on the label of (u, v).

Case 1: (u, v) is C: The c-degrees of u and v are decreased by one. Then, while there is
a vertex with a single C edge; its C edge is relabeled as F .
Case 2: (u, v) is F : Using a dove-tailed depth-first search, where depth-first searches from
u and v are interleaved, the tree component created can be found in time proportional to
its size. One then changes the labels of all edges in this tree from F to T .
Case 3: (u, v) is T : Deleting (u, v) creates two trees. As in the previous case, a dove-
tailed DFS is used to find these two trees in time proportional to the size of the smaller
one. The new trees are to be examined by the algorithm.

We identify an oversight in this procedure, where the algorithm fails to keep track of some
trees in H1. We demonstrate this by an example. In Figure 1, if the edge between vertices u
and v gets deleted, then the connected component is split into two triangles. The c-degree of
both u and v decreases to two, and as both are greater to one, the deletion procedure stops
without any action. However, both triangles are unicylic. If an edge is deleted from either
triangle, then Case-1 does not recognize that the remaining edges should be relabeled as T
not F .

If Algorithm 1 is not able to keep track of all the trees in H1, then it can exit the loop
of Line 4 prematurely. As a consequence Karp–Sipser in Line 16 will return a suboptimal
matching. We propose a fix for this oversight in Lemma 1.

I Lemma 1. Let u be an endpoint of a deleted edge (u, v) with label C. Apply the procedure
of Case-1 until we arrive at a vertex p with c-degree[p] 6= 1. If c-degree[p] = 0, then u’s
component has become a tree.

Proof. We claim that if c-degree[p] = 0, then p and v are the same vertex. Each vertex on
the path from u to p had its c-degree affected twice (from 2 to 0), except p. Hence for p to
become 0, its c-degree must have been equal to 1. If p 6= v, then p should had its C edge
relabeled during another deletion process. Therefore, prior to the deletion of (u, v), there was
a cycle on H1 with all vertices having c-degree equal to 2, and both their C edges participated
in the cycle. Any outgoing edges from vertices of the cycle therefore were labeled F and by
definition, their deletion led to a tree being formed. The component was hence unicyclic
before. J

Case 1-continuation is therefore as follows:
Once there are no vertices with c-degree equal to 1, take the last vertex v whose c-degree
was reduced. If c-degree[v] = 0, then relabel all edges in vs component from F to T .

This addition has overall O(n) cost, because each edge can change label at most twice.

ESA 2020

76:6 Almost Optimal Algorithms for Bipartite Matching

3.1.2 Conversion to an efficient general heuristic
Algorithm 1 works well when the random 2-out graph is sampled from Kn,n. However, in the
case of an arbitrary host graph, the underlying theory is not shown to hold, and the algorithm
can make erroneous decisions. Here we discuss how to turn Algorithm 1 into a general
heuristic. Apart from the aim of obtaining a practical heuristic for bipartite matching, there
is another reason to investigate the matching problem in 2-out bipartite graphs. We show in
Appendix D that an O(f(n,m)) time algorithm to find a maximum cardinality matching in
a 2-out bipartite graph can be used to find a maximum cardinality matching in any bipartite
graph with m edges in O(f(m,m)) time, where f is a function on the number of vertices n
and edges m. Such a reduction is important because it shows that an algorithm for finding
maximum cardinality matchings in 2-out graphs with similar complexity to 2outMC can be
used to obtain an O(m logm) algorithm for matchings in general bipartite graphs.

If the algorithm reaches Line 10 during execution, it quits immediately before examining
all trees in H1. We instead propose to continue with the execution of the algorithm to make
the returned matching as large as possible. To achieve this efficiently, we keep for each tree T
a list LT of unmarked vertices. At Line 5 we randomly sample x from LT and discard it from
LT . Contrary to Algorithm 1, we neither mark x nor insert it in H2 yet. Instead, we examine
first whether the component in H2 of either of the two choices of x has an unchecked column
y. If y exists, we mark x, insert it to H2 and continue by deleting y from H1. Otherwise,
we perform the same set of actions with another randomly sampled vertex from LT . If LT
becomes empty, and no vertex was marked, we abandon T and proceed to another tree. Each
such tree in the final state of H1 decreases the cardinality of the returned matching by one,
as a row is left free. If T is split into two trees, the lists of unmarked vertices for the new
trees contain only those vertices still inside LT at the moment of splitting. This is necessary
to avoid sampling vertices more than once.

The overall algorithm 2outMC is as follows. It takes the matrix representation of the
given bipartite graph and scales it with a few steps of the Sinkhorn–Knopp algorithm to
obtain AS. It then chooses two random neighbors for each column and row using their
respective probability distributions in the corresponding row and column of AS, which are
given as input to Algorithm 1. Then, the auxiliary graph B2o is constructed and Karp–Sipser
is run on this graph to retrieve a maximum cardinality matching in B2o. If one allows vertices
to choose neighbors uniformly, then there are no guarantees on the maximum cardinality of
a matching in B2o. As an example, consider the graph where the ith row and ith column
are connected for i = 1, . . . , n, and additionally the first ` rows and columns are connected
with every vertex on the opposite side. Then, in expectation O(`−1

`+1 · n) rows (resp. columns)
make both choices from the first ` columns (resp. rows), such that in the generated B2o the
maximum cardinality matching is of size O(n` + `). Using AS’s values to perform the random
choices spreads the choices so that the maximum cardinality of the matching in the subgraph
increases (see Theorem 2 and Lemmas 6–8 in [16] that examines the 1-out subgraph model).

In Appendix B we describe two heuristics for 2outMC which can lead to an increase in
the cardinality of the returned matching. The main idea of both heuristics is to reduce the
chance that an edge deletion in H1 creates a new tree.

3.2 TruncRW: Truncated random walk with nonuniform sampling
3.2.1 Description of the algorithm for regular bipartite graphs
Goel et al. [18] propose a randomized algorithm (of the Las Vegas type) that finds a perfect
matching in a d-regular bipartite graph with n vertices in each side in O(n logn) time in
expectation. This algorithm starts a random walk from a randomly chosen free column-vertex.

I. Panagiotas and B. Uçar 76:7

At a column vertex c, the algorithm selects uniformly at random one of the row-vertices that
are not matched to c, and goes to the chosen row vertex r. If r is free, then an augmenting
path is obtained by removing possible loops from the walk. If r is matched, then the random
walk goes to the mate of r. Goel et al. show that the total length of the random walks is
O(n logn) in expectation, and thus the algorithm obtains a perfect matching in the stated
time [18, Theorem 4]. They also show that one can obtain a Monte Carlo-type algorithm
by truncating the random walks. The expected length of an augmenting path with respect
to a given matching of cardinality j is 2(4 + 2n/(n− j)), and the random walks could be
truncated at this length to obtain near optimal matchings in O(n logn) time.

A random walk is easy to implement for d-regular bipartite graphs. At a column vertex c,
one can create a random number between 1 and d in O(1) time and choose the neighbor at
that position, and repeat the experiment if the mate of c is chosen. This will take O(1) time
in expectation for each step of the walk, and the run time bound of O(n logn) is maintained.

Goel et al. show that the random-walk based algorithm will work for finding perfect
matchings in the bipartite graph representation of a doubly stochastic matrix. They also
suggest using an existing data structure [20] when the row and column sums are constant
with nonnegative integer entries bounded by a polynomial in n, to attain an O(n logn) run
time bound. A more recent paper [32] removes the restriction on the entries, and obtains
an expected constant time per update and sampling. Further investigations and a careful
implementation are necessary to apply the mentioned sampling approaches in our context.
Instead, for general doubly stochastic matrices without any bound on the entries, Goel et
al. propose an augmented binary search tree with which each selection step of the random
walk can be implemented in O(logn) time, and obtain a run time of O(m + n log2 n) in
expectation, with a total of O(m) preprocessing time.

3.2.2 Conversion to an efficient general heuristic

Let c be a free column vertex with respect to a given matching of cardinality j. Assuming
there is a perfect matching, one can find an augmenting path to match c, and a random walk
can find it. The O(n

n−j) bound on the expected length of such a path will not hold if the
bipartite graph is not regular. One may perform more than m steps, which is the worst case
time complexity of deterministically finding an augmenting path starting from a free vertex.
We propose two methods to make the random walks more useful and to sample efficiently in
a random walk. We also discuss an efficient implementation of the whole approach.

The first proposed method is to scale the matrix representation A of a given bipartite
graph to obtain a doubly stochastic matrix AS for random selections. The expected length
of a random walk to find an augmenting path holds when AS has bounded nonzero entries.
In general, ones does not have any bound on the entries of AS. Consider the matrix A
associated with an upper Hessenberg matrix of size n. A has a full lower triangular part,
and additional n− 1 entries A(i− 1, i) = 1 for i = 2, . . . , n, and fully indecomposable. The
4× 4 example along with its unique scaling matrices are shown in Fig. 2. In the resulting
scaled matrix AS(n, 1) = 1/2n−1 whose inverse is not bounded polynomially in n.

As highlighted at the end of Section 3.2, one needs an O(logn) time algorithm to select a
row vertex randomly from a given column vertex. The second proposed method is a simple
yet efficient algorithm for this purpose, rather than a sophisticated augmented tree. The
main components of the proposed sampling method are as follows. For each column vertex c,
with dc neighbors, we have:

ESA 2020

76:8 Almost Optimal Algorithms for Bipartite Matching

√

2
1√
2

1√
8

1√
8

 1 1 0 0

1 1 1 0
1 1 1 1
1 1 1 1

1√
8

1√
8

1√
2 √

2

 =

 1/2 1/2 0 0
1/4 1/4 1/2 0
1/8 1/8 1/4 1/2
1/8 1/8 1/4 1/2

Figure 2 The matrix A associated with a 4× 4 Hessenberg matrix, the scaling matrices DR and

DC, and the resulting doubly stochastic matrix AS = DRADC. In general, AS(n, 1) = 1/2n−1.

adjc[1, . . . , dc]: an array keeping the neighbors of c.
wghtsc[1, . . . , dc]: the weight of the edges incident on c. This array is parallel to the first
one so that the weight of the edge (c, adjc[i]) is wghtsc[i].
medge[c]: the position of the mate of c in the array adjc, or −1 if c is not matched.

At the beginning, we compute the prefix sum of wghtsc[1, . . . , dc]. After this operation, the
total weight of the edges incident on c is wghtsc[dc], and the weight of the edge (c,mate[c])
is wghtsc[medge[c]]− wghtsc[medge[c]− 1], assuming that wghtsc[0] signifies zero.

Given the prefix sums in wghtsc[1, . . . , dc], the position of the mate of c at medge[c], we
can choose a random neighbor (which is not equal to mate[c]) as shown in Algorithm 2. We
use a binary search function, binSearch, which takes an array, the array’s start and end
positions, a target value, and returns the smallest index of an array element which is larger
than the given value with binary search (we skip the details of this search function). At
Line 5, since c does not have a mate, we search in the whole list. At Line 8, since the prefix
sum just before medge[c] is larger than the target value, we search in the first part of wghtsc
until the current mate located at medge[c]. At Line 10, we search on the right of medge[c],
by a modified target value. This last part is the gist of the algorithm’s efficiency as it avoids
updating the prefix sums when the mate changes.

Algorithm 2 Sampling a random neighbor of the column vertex c with dc neighbors.
Require: adjc[1, . . . , dc], wghtsc[1, . . . , dc], and medge[c].
1: mwght ← wghtsc[medge[c]]− wghtsc[medge[c]− 1] if medge[c] 6= −1, otherwise 0
2: totalW ← wghtsc[dc]−mwght I The total weight of the edges that can be sampled
3: create a random value rv between 0 and totalW
4: if medgec = −1 then
5: return binarySearch(wghtsc[1, . . . , dc], rv)
6: else
7: if wghtsc[medgec]−mwght ≥ rv then
8: return binSearch(wghtsc[1, . . . ,medge[c]− 1], rv)
9: else
10: return binSearch(wghtsc[medge[c] + 1, . . . , dc], rv + mwght) + medgec

The sampling algorithm returns the index of the neighbor in adjc different from the
current mate in time O(log dc), independent of the values of the edges. It thus respects the
required run time bound. If we were to apply the rejection sampling (as discussed before for
the regular bipartite graphs), the run time would depend on the value of the matching edge
that we want to avoid. This could of course lead to an expected run time of more than O(n).

There are two key components of Algorithm 2. The first one is the prefix sum, which
is computed once before the random walks start and does not change. The second one is
medge[c], the position of mate[c] in adjc. The value medge[c] changes and needs to be updated
when we perform an augmentation. We handle this update as follows. We keep the random
walk in a stack by storing only the column vertices, as the row vertices direct the walk to
their mate, or terminate the walk if not matched. We discard the cycles from the random

I. Panagiotas and B. Uçar 76:9

walk as soon as they arise – this way we only store a path on the stack, and its length can
be at most n. Storing a path also enables keeping the medge[·] up-to-date. Every time we
sample an outgoing edge from a column vertex c, we assign the location of the sampled
row vertex in adjc to a variable nmedge[c]. When we find a free row, the stack contains the
column vertices of the corresponding augmenting path, whose new mates’ locations are in
nmedge[·] and thus can be used to update medge[·].

The described procedure will work gracefully in expected O(m+ n logn) time for regular
bipartite graphs and for doubly stochastic matrices where the nonzero values do not differ by
large. On the other hand, when there are large differences in edge weights, a random walk can
get stuck in a cycle. That is why truncating the long walks is necessary to make the algorithm
work for any given doubly stochastic matrix. Furthermore, such a truncation is necessary
with the proposed matrix scaling approach for defining random choices. For the overall
approach to be practical, we should not apply the scaling algorithms until convergence. As
in the previous approaches [15, 16], we allot a linear time of O(m+ n) for scaling. Applying
Sinkhorn–Knopp algorithm for a few iterations will thus be allowable. The known convergence
bounds for the Sinkhorn–Knopp algorithm [27, Thm. 4.5] apply asymptotically, therefore
we do not have any bounds on the error after a few iterations; it can be large. That is why
truncation makes the random walk based augmenting path search practical.

The overall algorithm TruncRW is thus as follows. It takes the matrix representation of
the given bipartite graph and scales it with a few steps of the Sinkhorn–Knopp algorithm.
Then for j = 0 to n − 1, it uniformly at random picks a free column vertex, and starts a
random walk starting from that column, for at most 2(4 + 2n/(n − j)) steps, after which
the walk is truncated. Some follow discussion and experiments with different parameters for
TruncRW may be found in Appendix C.

4 Experiments

We implemented 2outMC and TruncRW in C/C++, and the codes are accessible from
https://gitlab.inria.fr/bora-ucar/fast-matching. The codes, all are sequential, were
compiled with “-O3” and run on a machine with 2 x Intel Xeon CPU Gold 6136 CPUs
and 187 GB RAM. We evaluate 2outMC and TruncRW both on real-life and synthetic
bipartite graphs with equal number of vertices in each side. We compared the two algorithms
against KaSi, the widely used version of Karp–Sipser which applies degree-1 reduction
(own implementation), and KaSi2, the original version of Karp–Sipser with both reduction
rules. We use a publicly available implementation of KaSi2 (https://gitlab.inria.fr/
bora-ucar/karp--sipser-reduction) which is the fastest of recent implementations [26,
29]. We note that there are other heuristics (a short summary and further references are
in Appendix A) which deliver very good results in practice. For most of these heuristics,
especially for those based on vertex degree, there are known worst case upper bounds close
to 1/2. We therefore restrict the focus on KaSi and KaSi2, which are efficient and very
effective in practice [14, 25, 30]. We also investigated if random 2-out bipartite graphs of a
general host graph have perfect matchings if rows and columns select neighbors with the
probabilities in the scaled matrix representation. The quality of a matching refers to the
ratio of the cardinality of the matching to the maximum cardinality of a matching in a given
graph. The practical version of Sinkhorn-Knopp is referred to as SK-t, where t is the number
of allowed iterations. All run times are reported in seconds.

ESA 2020

https://gitlab.inria.fr/bora-ucar/fast-matching
https://gitlab.inria.fr/bora-ucar/karp--sipser-reduction
https://gitlab.inria.fr/bora-ucar/karp--sipser-reduction

76:10 Almost Optimal Algorithms for Bipartite Matching

Table 1 We divide the real-life graphs into five groups. The ith group consists of graphs whose
m
n

ratio is between 10(i− 1) and 10i. For each group, we give the number of instances in which a
2-out graph built using the models M1 and M2 has a perfect matching and the largest difference
from the maximum cardinality of a matching.

m
n

[0,10) [10,20) [20,30) [30,40) [40,50)
#Instances 27 5 5 1 1

#PM deficiency #PM deficiency #PM deficiency #PM deficiency #PM deficiency
Model M1 0 223 0 8 1 20 0 2 1 0
Model M2 27 0 3 3 1 10 0 1 0 1

4.1 Investigation of perfect matchings in 2-out graphs
Here, we investigate the claim that G2 will likely have a perfect matching for G, if created
with the probabilities in the scaled matrix. We used a set of 39 large sparse square matrices
from the SuiteSparse Collection [12], whose bipartite graphs have perfect matchings. These
matrices are automatically selected from all square matrices available at the collection with
106 ≤ n ≤ 28× 106, and with at least two nonzeros per row or column.

We consider two different models to create G2. In the model M1, row choices are
independent of the column choices. Under this model, a row and a column can select each
other resulting in parallel edges – only one of them is kept. The model M2 tries to avoid
parallel edges. In this model, all columns perform their selections. Then, each row r attempts
to randomly choose two columns, only from those that did not select r. These selections again
are based on the scaled matrix. In this model, parallel edges can arise (and be discarded)
only when a vertex v is connected in the 2-out graph with all of its neighbors in G, because
it is impossible for v to select otherwise. We experimented three times with each real-life
graph. Mi’s result is the maximum of those three experiments. In each test, we first created
the choices of all columns. Then we allowed the two models to generate the choices of the
rows accordingly.

The results are shown in Table 1 for the 39 real-life graphs and are with SK-5. As seen in
this table, the random G2 graphs generated with the model M1 have near perfect matchings,
but they do not contain perfect matchings in most cases. In contrast, the random G2 graphs
generated by M2 in many cases contain a perfect matching. In only a few graphs this does
not hold true, and in these cases the deficiency is no more than 10.

4.2 On synthetic graphs
In Table 2, we give results with a synthetic family I of graphs from literature [16], whose
matrix representations do not have total support. To create a member of I, we separate
the vertex set R into R1 = {r1, . . . , rn/2} and R2 = {rn/2+1, . . . , rn} and likewise for C.
All vertices of R1 are connected to all vertices of C1. Edges (ri, cn/2+i) and (rn/2+i, ci) for
i = 1, . . . , n/2 are added to introduce a perfect matching. A parameter h is used to connect
h vertices from R1, and h vertices from C1 to every vertex on the opposite side.

As seen in Table 2, KaSi and KaSi2 have more and more difficulty with increasing h.
The matching quality drops over 30% between h = 2 and h = 512 for KaSi and almost 40%
for KaSi2. On the contrary, 2outMC and TruncRW both obtain a near perfect matching,
with SK-5. Even though the matrices associated with the graphs of I lack total support,
SK-5 sufficed to obtain near optimal matchings. We notice the effect of scaling: if vertices
select without scaling (Uniform), the matching quality reduces. This is particularly true
for 2outMC, which exhibits the worst overall performance with uniform selection. Family

I. Panagiotas and B. Uçar 76:11

Table 2 Average quality of the matchings found by the algorithms on graphs from the synthetic
family I for n = 30000 and various values of h.

2outMC TruncRW
h KaSi KaSi2 Uniform SK-5 Uniform SK-5
2 0.93 1.00 0.78 0.99 0.88 0.99
8 0.80 0.85 0.59 0.99 0.91 0.99
32 0.69 0.72 0.52 0.99 0.83 0.99

128 0.64 0.65 0.51 0.99 0.78 0.99
512 0.61 0.63 0.52 0.99 0.76 0.99

Table 3 Average quality of the matchings found by the algorithms on graphs from the synthetic
family J for n ∈ {10000, 20000, 30000}.

KaSi KaSi2 2outMC TruncRW
n quality quality uniform SK-5 SK-20 uniform SK-5 SK-20

10000 0.76 0.84 0.81 0.92 0.95 0.97 0.97 0.97
20000 0.73 0.83 0.81 0.92 0.95 0.97 0.97 0.97
30000 0.73 0.83 0.81 0.92 0.95 0.97 0.97 0.97

I shows the importance of scaling, and more importantly highlights the robustness of the
proposed methods. An adversary can create graphs which make degree-based randomized
approaches lose quality – some of those heuristics are briefly mentioned in Appendix A, and
the full details including negative results on KaSi2 can be found elsewhere [9]. On the other
hand, the use of scaling helps to avoid such cases for 2outMC and TruncRW.

We now discuss another synthetic family of graphs J in which the proposed approaches
obtain matchings of much higher quality than KaSi and KaSi2. A bipartite graph with n
vertices per side belonging to J contains the following edges: (ri, cj) for all i ≤ j; (r2, c1),
(rn, cn−1); (r3, c1), (r3, c2), (rn, cn−2); and (rn−1, cn−2). The graphs in J are hard for
Karp–Sipser-based heuristics because only few of the edges participate in a perfect matching,
the deterministic rules do not apply, and hence they resort to multiple suboptimal random
decisions. Likewise, due to the large number of entries without support in the matrix
representation, Sinkhorn–Knopp will take many iterations to properly scale the matrix.

In Table 3, we give results of the algorithms for a few graphs from this family. In the
table, we also show the effects of scaling on 2outMC and TruncRW by showing results
without scaling (under column “uniform”, in which a column vertex chooses a neighbor
uniformly at random), with SK-5, and with SK-20. As can be seen, despite the lack of
total support, both 2outMC and TruncRW obtain matchings whose cardinality is more
than 0.92 of the maximum, when SK-5 or SK-20 is used. TruncRW in particular is nearly
optimal. These results are always better than that of KaSi and KaSi2, with the difference
in matching quality being about 20–25% for the former, and 10–15% for the latter. With
increased iterations of Sinkhorn–Knopp, 2outMC increases the cardinality of its matchings
by 3%. If we do not use scaling (“uniform”), while there’s no noticeable effect on TruncRW’s
matchings, 2outMC matchings decrease by roughly 10%. Even so, its results remain better
than KaSi’s and on par with those of KaSi2.

4.3 On real-life graphs
We compared TruncRW and 2outMC with KaSi and KaSi2 on all 39 real-life graphs from
Section 4.1. Figure 3a and Figure 3b present the high level picture. For the experiments, we
did not permute the matrices randomly, which generally increases the experimentation time.

ESA 2020

76:12 Almost Optimal Algorithms for Bipartite Matching

5 10 15 20 25 30 35
Graphs (sorted wrt. number of edges)

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1
M

at
ch

in
g

Q
ua

lit
y KaSi

KaSi2
TruncRW
2outMC

(a) Quality results.

5 10 15 20 25 30 35
Graphs (sorted wrt. number of edges)

0

20

40

60

80

100

120

140

160

Ru
n

tim
e

KaSi
KaSi2
TruncRW
2outMC

(b) Run time results.

Figure 3 Quality (left) and run time (right) results for all 39 graphs from Section 4.1.

The results for matching quality can be seen in Figure 3a, where we plot the ratio of the
cardinality of the matchings found by different algorithms to the maximum cardinality of
the matching. The graphs are indexed in nondecreasing number of edges. 2outMC and
TruncRW use SK-3 for scaling. As can be observed, both 2outMC and TruncRW obtain
near perfect matchings. The average matching quality obtained by 2outMC is 0.9979 and
that obtained by TruncRW is 0.9984. Both algorithms never drop below 0.9900 in any of
the 39 cases.

Figure 3a also shows the matching quality of KaSi2 and KaSi. KaSi obtains matchings
of quality 0.9862 on average, with always smaller cardinality than TruncRW and 2outMC.
KaSi2 fares better and its average quality is 0.9968. Even so, in the majority of cases, it
obtains matchings that are inferior quality-wise to both TruncRW and 2outMC.

While all algorithms obtain matchings of high quality, the absolute different is remarkable
in some cases. For example, the largest difference observed between the matching cardinalities
obtained by 2outMC and KaSi was 346577, in favor of 2outMC.

Figure 3b shows the run time of all examined heuristics, where the graphs are again
indexed in nondecreasing number of edges. KaSi is in general the fastest of these four
algorithms when there are not too many edges. TruncRW and 2outMC are close run-time
wise to KaSi and in some instances faster than it. This is especially true in instances with
many edges because KaSi depends more on m. KaSi2 has the slowest performance overall.

For a detailed study, we show results on the five largest graphs from the mentioned dataset
and Circuit5M, which was identified as a challenging instance in earlier work [25]. Degree-1
vertices from Circuit5M are removed by applying Rule-1 of KaSi2 as a preprocessing step –
this is without loss of generality of the heuristics. For each graph we relabeled its row-vertices
randomly and executed five tests with each algorithm.

Table 4 shows the matching quality and the run time of the four heuristics. 2outMC
and TruncRW used SK-3 for this set of experiments for speed. For each graph, we give the
minimum, maximum, and averages over five runs. As already discussed, all heuristics obtain
high quality matchings. On a closer look, we see that TruncRW, on average, matched
158410 more edges than KaSi, and 50847 more edges than KaSi2. Similarly 2outMC
matched 139220 more edges than KaSi on average, and 31652 more edges than KaSi2.
Interestingly, on graph Channel-500 TruncRW was able to find the maximum matching.

I. Panagiotas and B. Uçar 76:13

Table 4 Full run time comparisons with heuristics for the graphs of Section 4.3. The run time of
SK-3 should be added to TruncRW and 2outMC. For each instance we give the minimum, the
average, and the maximum of five runs for all columns regarding the quality and the run time. The
number of vertices n per side is in the order of millions. Hugebub-20 stands for Hugebubbles-0020.

KaSi KaSi2 SK-3 2outMC TruncRW
name n statistics quality time quality time time quality time quality time

cage15 5.15
min. 0.99 12.67 0.99 26.89 4.59 0.99 8.82 0.99 8.27
avg. 0.99 12.81 0.99 27.08 4.68 0.99 8.88 0.99 9.32
max. 0.99 13.17 0.99 27.27 4.83 0.99 8.96 0.99 10.23

Channel-500 4.80
min. 0.99 10.12 0.99 20.63 2.74 0.99 7.63 1.00 3.86
avg. 0.99 10.16 0.99 20.94 2.75 0.99 7.66 1.00 4.48
max. 0.99 10.18 0.99 21.87 2.75 0.99 7.70 1.00 5.11

Circuit5M 5.55
min. 0.99 6.57 0.99 24.74 2.45 0.99 4.40 0.99 2.07
avg. 0.99 6.76 0.99 24.93 2.84 0.99 4.56 0.99 2.19
max. 0.99 7.03 0.99 25.33 4.16 0.99 4.81 0.99 2.35

Delaunay_24 16.00
min. 0.99 11.58 0.99 65.97 4.32 0.99 23.34 0.99 11.21
avg. 0.99 11.61 0.99 68.30 4.44 0.99 23.58 0.99 11.31
max. 0.99 11.66 0.99 72.47 4.48 0.99 24.38 0.99 11.37

Hugebub-20 21.19
min. 0.99 14.97 0.99 91.42 6.26 0.99 30.96 0.99 14.25
avg. 0.99 15.04 0.99 97.77 6.29 0.99 31.28 0.99 14.38
max. 0.99 15.15 0.99 106.78 6.31 0.99 31.59 0.99 14.57

nlpkkt240 27.99
min. 0.98 98.58 0.99 182.08 29.77 0.99 52.34 0.99 34.34
avg. 0.98 98.66 0.99 183.10 29.92 0.99 52.53 0.99 34.50
max. 0.98 98.76 0.99 186.08 30.27 0.99 52.76 0.99 34.70

Concerning run time, as KaSi is a linear time heuristic it is expected to be the fastest.
Surprisingly, TruncRW even with the scaling time added is faster than KaSi in three
instances. This is due to the fact that each iteration of the scaling algorithm takes linear time
with small constants. As an algorithm on its own (without scaling time), TruncRW becomes
the fastest one, thanks to its run time not depending on m after the initialization. 2outMC,
though slower, also exhibits good behavior, except in nlpkkt240. KaSi2 has the worst run
time overall. Its initialization takes more time, and its implementation is more involved.
SK-3 is fast except for nlpkkt240 where it requires about 30 seconds. The reason that SK-3
requires 30 seconds for this particular graph is due to the random permutation of its rows,
which is not cache-friendly (if SK-3 is run on nlpkkt240 using the initial ordering of rows, it
finishes in less than 10 seconds). In the other cases and despite the large size of the graphs,
scaling finishes in less than seven seconds. Table 4 additionally shows that TruncRW and
2outMC’s run time performance does not seem to be affected by their random decisions.
The largest difference between the result of the minimum, and the maximum run is no more
than two seconds for both of these algorithms.

Combined with the results in the previous section, we conclude thus that (i) 2outMC
and TruncRW always obtain near perfect matchings, while KaSi and KaSi2 are not as
robust; (ii) 2outMC and TruncRW are nearly as fast as the linear time algorithm KaSi,
and are much faster than KaSi2.

Next, we consider the impact of our heuristics as initialization to an exact algorithm for
finding a maximum cardinality matching. We first run the heuristics to obtain an initial
matching, then call an exact algorithm to augment the initial matchings for maximum
cardinality. We consider three different exact algorithms MC21, PR, and PF+ for the
augmentation steps. MC21 [13] from mmaker [14, 25] visits free vertices one by one and
tries to match the visited vertex with a depth-first search, and hence is closely related
to TruncRW. In this setting, differences among the qualities of initial matchings should

ESA 2020

76:14 Almost Optimal Algorithms for Bipartite Matching

be observable while computing an exact matching. PR [25] is based on the Push-Relabel
method [19], and PF+ which is a depth-first search based method [14, 36]. The last two
algorithms are more elaborate than MC21, and the cardinality difference between two different
initial matchings does not necessarily correlate with the run time.

The statistics of five runs with MC21 are given in Table 5. In this table, the time
spent in augmentations is given in column “augment.”. The overall time to compute a
maximum cardinality matching is given in column “overall’, which includes the time spent in
heuristics – in case of 2outMC and TruncRW it includes the scaling time as well. The
runs on nlpkkt240 did not finish within an hour and are not presented. As seen in the
table, the overall time to obtain a maximum cardinality matching is always the smallest
with TruncRW initialization. 2outMC is usually competitive with the faster of KaSi2
and KaSi, without a clear winner. It is also interesting to note that in all graphs the worst
behavior of TruncRW is better than the best behavior of KaSi2 and KaSi and in some
cases (see cage15 or Channel-500) significantly so. The same is almost true for 2outMC as
well except for graphs Delaunay_24 and Hugebbubles-0020 where 2outMC’s worst result
is only a few seconds slower than KaSi’s best result, or cage15 versus KaSi2.

In Table 6, we observe the behavior of the heuristics when used for initializing the PF+
algorithm. The table shows the minimum, average, and maximum time over the five runs. As
can be observed, TruncRW exhibits the best overall behavior. TruncRW has the fastest
performance in four out of six instances, and in the remaining two instances it is very close
to KaSi. The largest difference between the two can be observed in nlpkkt240 where KaSi
is overall almost 50 seconds slower. The total run time with KaSi2 is never better than that
with TruncRW. It roughly takes the same amount of time for PF+ to augment 2outMC’s
initial matching, as it takes for it to augment the matching of TruncRW. Therefore, when
2outMC has a run time similar to TruncRW their overall run times are similar. In the
largest of instances 2outMC’s and TruncRW’s performance diverge, but 2outMC’s overall
behavior is superior to KaSi2 and competitive with that of KaSi.

In Table 7, we observe the behavior of the heuristics when used for initializing the
PR algorithm. The behavior of KaSi in Circuit5M demonstrates the robustness of our
approaches. The average behavior of PR initialized with KaSi is 339 seconds with the
maximum run time exceeding 500 seconds. In stark contrast, PR with TruncRW’s input
never needs more than 25 seconds, whereas with 2outMC it never surpasses 150 seconds. In
the remaining instances, the proposed algorithms are competitive with KaSi or even faster.

In summary, the effects of the proposed methods as an initialization routine are more
observable with MC21 on all instances. With PF+, we see that the augmentations take
less time on average with 2outMC and TruncRW, but the overall time with KaSi can
be sometimes better than that of TruncRW slightly thanks to KaSi being faster. When
PR is used, the augmentations take less time with KaSi in three instances compared to
TruncRW; and in four instances compared to 2outMC. When 2outMC and TruncRW
serve better than KaSi as an initialization to PR, the difference is more significant. The
above results with three different algorithms demonstrate the merits of the two proposed
algorithms for use as initialization routines in exact matching algorithms.

5 Conclusions

We have examined two randomized algorithms for the maximum cardinality matching problem
in bipartite graphs. These algorithms originally were designed for two very special classes of
bipartite graphs. We have discussed how to convert them into efficient and effective heuristics.

I. Panagiotas and B. Uçar 76:15

Table 5 Detailed run times when MC21 is used for augmentations on the graphs described in
Section 4.3. The quality of heuristics are in Table 4. We have omitted graph nlpkkt240 for which
MC21 did not finish within a reasonable amount of time. For each instance we give the minimum,
the average, and the maximum run time of five runs. Hugebub-20 stands for Hugebubbles-0020.

KaSi KaSi2 2outMC TruncRW
name statistics augment overall. augment overall. augment overall. augment overall

cage15
min. 133.85 146.52 7.42 34.47 27.29 40.75 0.22 14.07
avg. 140.13 152.94 8.81 35.90 31.44 45.00 1.85 15.84
max. 144.42 157.28 10.70 37.59 37.84 51.47 2.46 16.84

Channel-500
min. 64.29 74.46 9.15 29.81 12.18 22.62 0.04 6.65
avg. 71.61 81.76 10.93 31.86 15.28 25.68 0.14 7.36
max. 78.81 88.98 11.71 33.58 18.84 29.25 0.25 8.11

Circuit5M
min. 14.33 20.94 10.51 35.32 4.38 12.21 0.50 5.02
avg. 15.26 22.01 13.11 38.04 5.70 13.09 0.77 5.80
max. 16.00 22.72 14.42 39.43 6.81 13.68 1.31 7.79

Delaunay_24
min. 49.95 61.54 26.93 94.02 35.10 63.71 26.77 42.49
avg. 54.79 66.40 29.99 98.29 36.68 64.70 31.06 46.81
max. 61.23 72.81 32.70 104.13 40.30 68.11 34.09 49.77

Hugebub-20
min. 68.17 83.14 55.79 148.64 44.83 82.31 42.02 62.56
avg. 73.15 88.20 58.95 156.72 50.65 88.21 44.54 65.21
max. 75.99 91.10 61.18 166.98 54.35 91.60 47.11 67.68

Table 6 Detailed run times when PF+ is used for augmentations on the graphs described in
Section 4.3. The quality of heuristics are in Table 4. For each instance we give the minimum, the
average, and the maximum run time of five runs. Hugebub-20 stands for Hugebubbles-0020.

KaSi KaSi2 2outMC TruncRW
name statistics augment. overall augment. overall augment. overall augment. overall

cage15
min. 2.19 14.89 2.11 29.18 1.90 15.46 0.73 14.22
avg. 2.51 15.33 2.59 29.67 1.97 15.53 1.16 15.15
max. 2.98 16.15 3.16 30.43 2.01 15.69 1.55 15.63

Channel-500
min. 1.70 11.84 1.82 22.50 1.19 11.60 0.04 6.66
avg. 1.91 12.06 2.07 23.01 1.30 11.71 0.04 7.27
max. 2.60 12.77 2.89 23.69 1.40 11.84 0.05 7.90

Circuit5M
min. 0.63 7.20 0.45 25.28 0.45 7.34 0.48 5.01
avg. 0.77 7.53 0.62 25.55 0.53 7.93 0.58 5.61
max. 0.97 7.97 0.90 25.92 0.67 9.55 0.64 7.04

Delaunay_24
min. 18.47 30.06 13.88 80.75 14.24 42.05 14.20 29.92
avg. 20.83 32.44 14.89 83.19 15.47 43.49 17.67 33.41
max. 22.33 33.91 16.17 86.35 17.12 44.98 20.40 36.09

Hugebub-20
min. 23.09 38.09 14.99 106.41 23.27 60.75 21.97 42.54
avg. 28.13 43.17 19.63 117.40 26.97 64.53 24.49 45.16
max. 34.11 49.26 23.00 127.49 30.38 68.17 29.65 50.53

nlpkkt240
min. 27.01 125.69 28.19 210.27 14.91 97.26 13.76 77.87
avg. 27.09 125.76 29.63 212.73 17.56 100.01 13.96 78.38
max. 27.24 125.83 30.27 216.15 20.99 103.47 14.09 79.06

ESA 2020

76:16 Almost Optimal Algorithms for Bipartite Matching

Table 7 Detailed run times when PR is used for augmentations on the graphs described in
Section 4.3. The quality of heuristics are in Table 4. For each instance we give the minimum, the
average, and the maximum run time of five runs. Hugebub-20 stands for Hugebubbles-0020.

KaSi KaSi2 2outMC TruncRW
name statistics augment. overall augment. overall augment overall augment overall

cage15
min. 2.15 14.85 3.63 30.52 1.19 14.67 1.10 14.03
avg. 2.41 15.22 3.80 30.88 1.39 14.95 1.28 15.28
max. 2.68 15.85 4.01 31.08 1.69 15.32 1.69 16.59

Channel-500
min. 1.57 11.75 2.83 23.47 1.63 12.03 0.04 6.68
avg. 1.66 11.81 2.92 23.86 1.75 12.16 0.06 7.28
max. 1.70 11.85 3.01 24.88 2.02 12.44 0.08 7.92

Circuit5M
min. 116.67 123.24 107.51 132.34 2.02 8.89 0.74 5.26
avg. 332.29 339.05 235.54 260.47 37.11 44.51 5.37 10.40
max. 559.09 566.09 378.31 403.12 139.61 148.58 18.30 24.78

Delaunay_24
min. 40.52 52.15 32.09 98.89 41.66 69.52 48.63 64.32
avg. 45.48 57.09 36.90 105.20 46.94 74.96 52.48 68.23
max. 52.47 64.06 43.74 110.18 53.19 81.04 58.07 73.91

Hugebub-20
min. 41.01 56.16 55.22 146.78 44.71 81.96 49.46 70.34
avg. 47.53 62.58 58.56 156.33 51.59 89.15 53.16 73.84
max. 52.59 67.56 61.17 166.57 58.54 96.15 54.82 75.36

nlpkkt240
min. 13.98 112.59 22.87 205.18 15.49 97.63 19.74 84.26
avg. 14.13 112.80 24.17 207.27 17.34 99.79 28.70 93.13
max. 14.51 113.27 25.77 211.10 19.01 101.46 47.31 112.28

Our experimental results show that these approaches obtain near perfect matchings in real-life
and synthetic instances and have a near linear time run time. The two approaches are also
shown to be more robust than the state of the art heuristics used in the cardinality matching
algorithms, and are generally more useful as initialization routines.

Our adaptation of 2outMC is based on the premise that 2-out graphs sampled from
a host graph have perfect matchings, assuming that the matrix representation of the host
graph have total support. We showed evidence that this may be true and even if not, the
sampled graphs have close to perfect matchings. A proof or the disproof of such 2-out graphs
having perfect matchings is certainly welcome. Furthermore, this was the first attempt to
implement 2outMC, and there is room for improved performance.

References

1 Z. Allen-Zhu, Y. Li, R. Mendes de Oliveira, and A. Wigderson. Much faster algorithms for
matrix scaling. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pages 890–901, Berkeley, CA, USA, October 2017.

2 J. Aronson, M. Dyer, A. Frieze, and S. Suen. Randomized greedy matching II. Random
Structures & Algorithms, 6(1):55–73, 1995.

3 S. Assadi, M. Bateni, A. Bernstein, V. Mirrokni, and C. Stein. Coresets meet edcs: algorithms
for matching and vertex cover on massive graphs. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1616–1635. SIAM, 2019.

4 S. Assadi and A. Bernstein. Towards a unified theory of sparsification for matching problems.
arXiv preprint, 2018. arXiv:1811.02009.

5 S. Behnezhad, S. Brandt, M. Derakhshan, M. Fischer, M. Hajiaghayi, R.M. Karp, and J. Uitto.
Massively parallel computation of matching and mis in sparse graphs. In Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, pages 481–490, 2019.

http://arxiv.org/abs/1811.02009

I. Panagiotas and B. Uçar 76:17

6 S. Behnezhad, J. Łącki, and V. Mirrokni. Fully dynamic matching: Beating 2-approximation in
δε update time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2492–2508. SIAM, 2020.

7 C. Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences of
the USA, 43:842–844, 1957.

8 A. Bernstein and C. Stein. Fully dynamic matching in bipartite graphs. In International
Colloquium on Automata, Languages, and Programming, pages 167–179. Springer, 2015.

9 B. Besser and M. Poloczek. Greedy matching: Guarantees and limitations. Algorithmica,
77(1):201–234, 2017.

10 M. B. Cohen, A. Madry, D. Tsipras, and A. Vladu. Matrix scaling and balancing via box
constrained newton’s method and interior point methods. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pages 902–913, Berkeley, CA, USA, October
2017.

11 A. Czumaj, J. Łącki, A. Madry, S. Mitrovic, K. Onak, and P. Sankowski. Round compression
for parallel matching algorithms. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 471–484. Association for Computing Machinery, 2018.

12 T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Transactions
on Mathematical Software, 38(1):1:1–1:25, 2011.

13 I. S. Duff. On algorithms for obtaining a maximum transversal. ACM Transactions on
Mathematical Software, 7(3):315–330, 1981.

14 I. S. Duff, K. Kaya, and B. Uçar. Design, implementation, and analysis of maximum transversal
algorithms. ACM Transactions on Mathematical Software, 38:13:1–13:31, 2011.

15 F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Approximation algorithms for maximum
matchings in undirected graphs. In 2018 Proceedings of the Seventh SIAM Workshop on
Combinatorial Scientific Computing, pages 56–65, 2018.

16 F. Dufossé, K. Kaya, and B. Uçar. Two approximation algorithms for bipartite matching on
multicore architectures. Journal of Parallel and Distributed Computing, 85:62–78, 2015.

17 A. Frieze and T. Johansson. On random k-out subgraphs of large graphs. Random Structures
& Algorithms, 50(2):143–157, 2017.

18 A. Goel, M. Kapralov, and S. Khanna. Perfect matchings in O(n logn) time in regular bipartite
graphs. SIAM Journal on Computing, 42(3):1392–1404, 2013.

19 A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. J. ACM,
35(4):921–940, 1988.

20 T. Hagerup, K. Mehlhorn, and J. I. Munro. Maintaining discrete probability distributions
optimally. In A. Lingas, R. Karlsson, and S. Carlsson, editors, 20th International Colloquium
on Automata, Languages, and Programming (ICALP), pages 253–264, Berlin, Heidelberg, 1993.
Springer Berlin Heidelberg.

21 J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

22 R. M. Karp, A. H. G. Rinnooy Kan, and R. V. Vohra. Average case analysis of a heuristic for
the assignment problem. Mathematics of Operations Research, 19(3):513–522, 1994.

23 R. M. Karp and M. Sipser. Maximum matching in sparse random graphs. In 22nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 364–375, Los Alamitos,
CA, USA, 1981. IEEE Computer Society.

24 R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In Proceedings of the twenty-second annual ACM symposium on Theory of computing,
STOC ’90, pages 352–358, New York, NY, USA, 1990. ACM.

25 K. Kaya, J. Langguth, F. Manne, and B. Uçar. Push-relabel based algorithms for the maximum
transversal problem. Computers & Operations Research, 40(5):1266–1275, 2013.

26 K. Kaya, J. Langguth, I. Panagiotas, and B. Uçar. Karp–Sipser based kernels for bipartite
graph matching. In SIAM Symposium on Algorithm Engineering and Experiments (ALENEX),
pages 134–145, Salt Lake City, Utah, US, January 2020.

ESA 2020

76:18 Almost Optimal Algorithms for Bipartite Matching

27 P. A. Knight. The Sinkhorn–Knopp algorithm: Convergence and applications. SIAM Journal
on Matrix Analysis and Applications, 30(1):261–275, 2008.

28 P. A. Knight and D. Ruiz. A fast algorithm for matrix balancing. IMA Journal of Numerical
Analysis, 33(3):1029–1047, 2013.

29 V. Korenwein, A. Nichterlein, R. Niedermeier, and P. Zschoche. Data reduction for maximum
matching on real-world graphs: Theory and experiments. In 26th Annual European Symposium
on Algorithms (ESA 2018), volume 112, pages 53:1–53:13, Dagstuhl, Germany, 2018.

30 J. Langguth, F. Manne, and P. Sanders. Heuristic initialization for bipartite matching problems.
Journal of Experimental Algorithmics (JEA), 15:1–22, 2010.

31 J. Magun. Greedy matching algorithms, an experimental study. Journal of Experimental
Algorithmics, 3:6, 1998.

32 Y. Matias, J. S. Vitter, and W.-C. Ni. Dynamic generation of discrete random variates. Theory
of Computing Systems, 36(4):329–358, 2003.

33 N. McKeown. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM
Transactions on Networking, 7:188–201, 1999.

34 M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and
probabilistic analysis. Cambridge University Press, 1st edition, 2005.

35 M. Poloczek and M. Szegedy. Randomized greedy algorithms for the maximum matching
problem with new analysis. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd
Annual Symposium on, pages 708–717, 2012.

36 A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse matrix. ACM
Transactions on Mathematical Software, 16(4):303–324, 1990.

37 A. Pothen, S. M. Ferdous, and F. Manne. Approximation algorithms in combinatorial scientific
computing. Acta Numerica, 28:541–633, 2019.

38 R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices.
Pacific Journal of Mathematics, 21(2):343–348, 1967.

39 G. Tinhofer. A probabilistic analysis of some greedy cardinality matching algorithms. Annals
of Operations Research, 1(3):239–254, 1984.

40 D. Walkup. Matchings in random regular bipartite digraphs. Discrete Mathematics, 31(1):59–64,
1980.

A Other heuristics for bipartite matching and recent work

In the main text, we compared the proposed heuristics with KaSi and KaSi2. There are a
few other effective heuristics, which we briefly review here (see a recent survey [37]).

Hopcroft and Karp’s original algorithm [21] proceeds in phases. At each phase, it finds
shortest augmenting paths, and augments the current matching along a maximal set of
disjoint such paths, where each phase runs in O(n+m) time. Stopping when the shortest
augmenting paths is of length 2k + 1 at a phase no larger than k results in an 1− 1/(k + 1)
approximate matching in O(k(m+ n)) time in the worst case. Greedy [39] chooses a random
edge and matches the two endpoints and discards both vertices and the edges incident on
them. Modified Greedy [39] chooses a free vertex and then randomly matches it to one of
the available neighbors. MinGreedy [39] (see also Magun [31] and Langguth et al. [30] for
related algorithms) improves upon Modified Greedy by selecting a random vertex with the
minimum degree at the first step. The Greedy-like algorithms obtain maximal matchings
and therefore are 1/2 approximate. Slight improvements in the form of 1/2 + ε are shown
for these algorithms [2, 35], but there are theoretical bounds in the same vicinity [9]. Duff et
al. [14] and Langguth et al. [25, 30] compare these algorithms for initialization in maximum
cardinality matching algorithms and suggest using KaSi as initialization for general problems
especially with the push-relabel based algorithms.

I. Panagiotas and B. Uçar 76:19

Another class of heuristics use randomization for breaking the 1/2 barrier. RANKING [24]
algorithm achieves an approximation ratio of 1 − 1/e, where e is the base of the natural
logarithm. The same approximation ration is also achieved by a very simple parallel algorithm
[16] whose most involved step is the application of a matrix scaling algorithm. This last
paper also proposes an algorithm based on sampling 1-out subgraphs of a general bipartite
graph (as we did in this paper) to obtain matchings of size about 0.86 times the maximum
cardinality.

Matching has stirred some recent interest in the theoretical computer science community,
with works focusing on parallel and distributed settings [4, 5, 11, 3] or on the fully dynamic
version [6, 8] among others. Among the recent work, a method by Assadi et al. [4] shares
similarities with the 2outMC algorithm. Their approach similarly sparsifies a given graph
G to produce a subgraph with some approximation guarantees for the maximum cardinality
matching. A detailed experimentation with this sparsification approach will reveal useful.

B Further comments on 2outMC

As demonstrated in the experiments in Section 4, 2outMC obtains matchings of very high
cardinality. We can improve its matching quality by the following two heuristics. These two
heuristics are not used in the given experiments. We plan to improve their run time.

B.1 Heuristic 1: Delayed tree vertex selection during Line 5
The ideal case at Line 5 of Algorithm 1 is to select an x such that x’s insertion as an edge
to H2 does not lead to a new tree in H1 after the deletion of the edge corresponding to the
unchecked vertex of the connected component Qx. This is only possible if Qx contains an
unchecked column labeled as C in H1. Otherwise, a new tree will be created in H1, and the
algorithm will have to process it in a future step. For the first heuristic, we greedily select
an x such that, if possible, the creation of a tree in H1 is avoided.

We replace LT is with two lists L1
T and L2

T . The lists L1
T contains those unmarked

vertices of T whose insertion in H2 leads to a new tree; L2
T contains all other LT vertices

that have not been tried yet. At first, we sample x from L2
T and see whether the components

of x’s choices in H2 have an unchecked vertex of type C in H1. If they have, x is marked and
inserted to H2. Otherwise, x is inserted in L1

T , and we consider another random vertex of
L2
T . If L2

T becomes empty, we start sampling from L1
T .

With the union-find data structure, this heuristic requires constant amortized time per
sample and each vertex can be sampled at most twice. Therefore the overhead associated
with this heuristic is almost linear in n.

B.2 Heuristic 2: Online creation of the RG multigraph
In this heuristic, the decisions of the rows are not given as input, but are instead defined
during the course of the algorithm. Similar to the previous idea, this heuristic aims to reduce
the possibility that a tree in H1 gets created following an edge insertion into H2.

More specifically, consider a vertex x randomly chosen at Line 5. In this heuristic, x
has not picked its two choices yet, and we let x choose them at this point, in the way that
benefits the algorithm the most. This is done as follows. Initially, we iterate over all of x’s
neighbors in the host graph G. Let c be one of x’s neighbors and c∗ be the sole unchecked
vertex in c’s connected component in H2, or c∗ = −1 if no unchecked vertices exist. We
assign values to x’s neighbors to classify them. If c∗ is equal to −1, c’s value is 0. If c∗ has

ESA 2020

76:20 Almost Optimal Algorithms for Bipartite Matching

label F or T in H1, c’s value is 1. Otherwise, c’s value is 2. Based on these assigned values,
we partition the neighbors of x in G into three disjoint sets C0, C1 and C2 such that Ci
contains all neighbors of x with value equal to i. Selecting columns from C2 is preferred, as
they can avoid creating a tree in H1. Vertex x will attempt to sample first from C2, and if
needed from C1 or C0, with a preference for C1 over C0. The sets C0, C1 and C2 are kept
implicitly, and each vertex x requires amortized O(dx) to make its choices, where dx is its
degree. Hence, the overhead associated with this heuristic is almost linear in m.

B.3 Comparison with 2outMC
Here, we briefly discuss the effects that the above two heuristics have on the performance of the
2outMC algorithm. Since 2outMC obtains high quality results, the two heuristics can only
yield a relatively small improvement. When they are enabled and used with SK-5 2outMC
finds matchings with average quality of 0.9997 for the real-world graphs from Section 4.3 for
which 2outMC obtained matchings of quality 0.9983. This difference corresponds to about
13113 additionally matched edges, and hence signals that 13113 augmentations are avoided.

It is also interesting to consider the effects that these heuristics can have on cases where
2outMC did not deliver near-optimal matchings. As an example, we consider the synthetic
family J from Section 4.2. When scaling was not enabled, 2outMC found matchings of
average cardinality 0.80− 0.81% of the maximum. If however one uses the two heuristics
proposed in this section, then there is a significant improvement in performance, and 2outMC
finds matchings of cardinality 0.89 of the maximum.

C Further comments on TruncRW

We incorporated a known heuristic called look-ahead [13, 14] for speeding up the augmenting
path search in practice. All our experiments with TruncRW in Section 4 were with the
look-ahead approach. In this heuristic, before sampling an arbitrary row-vertex from a
column-vertex c, we check if there is a free row vertex in the adjacency list of c. If so, such a
row is returned, and the random walk terminates. The implementation of this heuristic has
a total overhead of O(m) for the whole course of the algorithm [13, 14]. We note that the
look-ahead technique trades the quality of TruncRW with run time. In our experiments, the
look-ahead heuristic reduced the run time significantly; it interferes with the randomization
though.

We can easily apply TruncRW to bipartite graphs with different number of vertices
in each side. This is based on the fact that we can scale a rectangular n1 × n2 matrix (say
n1 ≥ n2) so that all columns have sum of 1, and all rows have equal sum of n2/n1, if there
is matching covering all columns, and all entries can be put in such a matching. Then, all
components of TruncRW work without any change.

If there is no total support, then Sinkhorn–Knopp works in such a way that the entries
that cannot put into a perfect matching tend to zero. This is helpful in TruncRW’s context,
as the corresponding edges will not likely be selected in a random walk. If there is no perfect
matching, then little is known about scaling. It is our experience that the Sinkhorn–Knopp
iterations tend to zero out entries that cannot be put into a maximum cardinality matching.
Therefore, in this case again, scaling, random selection, and truncation should help. We
present some experiments to support this observation and leave the question of showing this
theoretically as an open problem.

We experimented with bipartite graphs without total support which correspond to square
(10000×10000) and rectangular matrices (12000×10000) with a uniform nonzero distribution.
These matrices are generated with sprand command of Maltab and have about d× 10000

I. Panagiotas and B. Uçar 76:21

Table 8 The quality of TruncRW on bipartite graphs without perfect matchings.

10000× 10000 12000× 10000
d sprank TruncRW sprank TruncRW
2 7787 0.9888 8724 0.9919
3 9266 0.9697 9667 0.9958
4 9761 0.9828 9899 0.9995
5 9918 0.9922 9973 1.0000

nonzeros for d = 2, 3, 4, 5. The matrix representation of the bipartite graphs were scaled with
10 iterations of SK. For each d, we created five random matrices and ran TruncRW on the
corresponding five instances. We report the worst quality of the five instances in Table 8. As
seen in this table, TruncRW works just fine for this case. We did not report in the table
but with increased SK iterations, the results improve, which is in accordance with earlier
work [16].

C.1 Engineering TruncRW
The experiments here are on real-life instances from Subsection 4.3 and with SK-5.

Recall that TruncRW tries to find an augmenting path starting from a column vertex a
certain number of times before giving up and moving to the next column vertex. When we
allowed TruncRW just a single attempt, it was unable to find a perfect matching in any
of the cases, and its average matching quality was 0.9984. When we allowed five attempts,
TruncRW found a perfect matching for 13 graphs, and its average matching quality was
0.9999. With 10 attempts, it managed to find a perfect matching in 5 additional graphs.
This verifies that allowing more attempts indeed improves the performance of the algorithm.
The drawback, however, was the increased run time, which we did not think worth. That is
why our implementation of TruncRW starts a random walk from a vertex only once.

We also test the effects of the look-ahead mechanism. Let us define the walk efficiency of
TruncRW as the ratio of the cardinality of the matching found to the total length of the
random walks. The higher this ratio, the more useful the random walks are. We evaluate
the walk efficiency on a set of seven instances (real-life instances having at most 10000000
edges). We test both with and without scaling and report the results of the 14 tests. In 13
cases, the look-ahead mechanism improved the walk efficiency. The geometric mean (of 14
cases) of the ratios of walk efficiencies with look-ahead to that of without was 1.37. In the
case where the look-ahead did not help (ratio was 0.71 in an instance named Hamrle3), the
maximum deviation of a row or column sum from one after SK-5 was 0.28, which is high.
We conclude that the look-ahead mechanism is very helpful.

Finally we test the effects that the length of the augmenting walk has on TruncRW. We
doubled the allowed length of a random walk to 4(4 + 2n/(n− j)). On average, the matching
quality rose from 0.9984 to 0.9998. This modification was not able to find a perfect matching
in any of the 39 instances. This led to an increase in the run time, which we deemed too
large. We therefore keep 2(4 + 2n/(n− j)) as the truncation length.

D Reducing bipartite graph matching to matching on 2-out graphs

Here, we prove our claim in Section 3.1 that bipartite matching can be reduced to matching
on a 2-out bipartite graph. Let G = (VG, EG), with be a graph with minimum degree at least
two. If G’s minimum degree is one, we can apply the first deterministic rule of Karp–Sipser
to match degree-1 vertices with their neighbors and consider as G the resulting graph.

ESA 2020

76:22 Almost Optimal Algorithms for Bipartite Matching

We produce a new graph G′ from G in the following way. For any edge e = (a, b) ∈ E
we add edges e′ = (a, ae), e′′ = (ae, be), and e′′′ = (be, b) to G′. We hence introduce two
new vertices ae, be s.t dG′(ae) = dG′ = 2 for each edge e ∈ EG. The degree of nodes in VG
remains unchanged in G′.

I Lemma 2. Let H be a random 2-out subgraph G′. Then H = G′.

Proof. The added vertices ae, be have degree two and will select both neighbors, hence no
edge will remain unpicked. J

In what follows, we refer to the second reduction rule of Karp–Sipser which merges the
neighbors of a degree-2 vertex, which is then discarded, as a degree-2 reduction.

I Lemma 3. It is possible to obtain G by doing only degree-2 reductions on G′.

Proof. Let ae be a vertex of G′, introduced due to the edge e = (a, b). Since dG′(ae) = 2 we
can apply a degree-2 reduction which will merge a with be to create a single node abe. As a
consequence of this merge, the edge (abe, b) will be created and edges (a, ae), (ae, be), (be, b)
will be erased. We simply relabel abe to a again. The proof then follows similarly by applying
degree-2 reduction for all ae corresponding to e ∈ E until we obtain G. J

Now we show that maximum matchings in G′ are related to those on G and vice versa.

I Lemma 4. Any maximum cardinality matching M ′ on G′ corresponds to a maximum
cardinality matching M on G.

Proof. Let M ′ be a maximum cardinality matching on G′. A matching M for G can be
generated in the following way: If both (a, ae) and (be, b) appear in M ′, e is added to M .
Hence it suffices to show that any maximum cardinality matching M ′ in G′ necessarily
contains |M | pair of matched edges (a, ae) and (b, be).

First, we have that |M ′| = |EG|+ |M |. To see this, note that per Lemma 2 we perform
|EG| degree-2 reductions, and result in G. Each of this reductions corresponds with a matched
edge in M ′. Then, we only need to find the maximum cardinality on G which is |M |.

Let Sa contain all indices e such that (a, ae) is in M ′ and (be, b) is not in M ′. Set Sb is
defined similarly. Set S∅ contains all indices e such that (ae, be) appears in M ′. Finally, Sab
contains all indices e such that (a, ae) and (b, be) are matched together in M ′. Then, since
M ′ is a maximum cardinality matching we have

|Sa|+ |Sb|+ |S∅|+ 2 · |Sab| = |EG|+ |M | .

This is true because of the fact that for each edge e exactly one matched edge appears in M ′
in case e ∈ Sa ∪ Sb ∪ S∅ and two edges are added if e ∈ Sab.

However, |Sa|+ |Sb|+ |S∅|+ |Sab| = |EG|, since each edge e must appear in one of those
sets and there exist exactly |EG| of them.

Hence, |Sab| = |M | necessarily. As they define a matching in G and their cardinality is
|M |, the matching is maximum. J

Using the above lemma, we can prove Theorem 5 below.

I Theorem 5. Assume there is an algorithm ALG working in O(f(n,m)) time for finding a
maximum cardinality matching in a 2-out graph. Then we can find a maximum cardinality
matching in O(f(m,m)) time for any given graph.

I. Panagiotas and B. Uçar 76:23

Proof. Let G be any bipartite graph without degree-1 vertices and m = |EG|. In O(m) time
we generate G′. By Lemma 2, the 2-out subgraph of G′ corresponds to G′ itself. In addition
|EG′ |, |VG′ | ∈ O(m). Using ALG, we can find a maximum cardinality M ′ for G′ in O(f(m,m))
time. By Lemma 4 then, we can convert M ′ to a maximum cardinality matching M for G in
O(m) time. J

As a byproduct of Lemma 4, we observe that the transformation of G to G′ also eliminates
the need to perform SK as a preprocessing step. We briefly experimented with this method
on the real-world graphs of Section 4.3. For each graph G of the test-set, we generated
its extension G′ and executed the 2outMC algorithm on 2-out graphs sampled from G′,
with uniform selections. The behavior of 2outMC was similar with that of the previous
experiments. It was not able to obtain a perfect matching in G′ (and consequently G), but
it always returned near-optimal matchings of quality over 0.99. These matchings, when
converted into matchings of G (following the idea in Lemma 4) yielded also near-optimal
matchings with quality over 0.99.

ESA 2020

Efficient Computation of 2-Covers of a String
Jakub Radoszewski
Institute of Informatics, University of Warsaw, Poland
Samsung R&D Poland, Warsaw, Poland
jrad@mimuw.edu.pl

Juliusz Straszyński
Institute of Informatics, University of Warsaw, Poland
jks@mimuw.edu.pl

Abstract
Quasiperiodicity is a generalization of periodicity that has been researched for almost 30 years.
The notion of cover is the classic variant of quasiperiodicity. A cover of a text T is a string whose
occurrences in T cover all positions of T . There are several algorithms computing covers of a text
in linear time. In this paper we consider a natural extension of cover. For a text T , we call a
pair of strings a 2-cover if they have the same length and their occurrences cover the text T . We
give an algorithm that computes all 2-covers of a string of length n in O(n logn log logn+ output)
expected time or O(n logn log2 logn/ log log logn+ output) worst-case time, where output is the size
of output.

If (X,Y) is a 2-cover of T , then either X is a prefix and Y is a suffix of T , in which case we
call (X,Y) a ps-cover, or one of X, Y is a border (that is, both a prefix and a suffix) of T , and
then we call (X,Y) a b-cover. A string of length n has up to n ps-covers; we show an algorithm
that computes all of them in O(n log logn) expected time or O(n log2 logn/ log log logn) worst-case
time. A string of length n can have Θ(n2) non-trivial b-covers; our algorithm can report one
b-cover per length (if it exists) or all shortest b-covers in O(n logn log logn) expected time or
O(n logn log2 logn/ log log logn) worst-case time. All our algorithms use linear space.

The problem in scope can be generalized to λ > 2 equal-length strings, resulting in the notion
of λ-cover. Cole et al. (2005) showed that the λ-cover problem is NP-complete. Our algorithms
generalize to λ-covers, with (the first component of) the algorithm’s complexity multiplied by nλ−2.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases quasiperiodicity, cover of a string, 2-cover, lambda-cover

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.77

Funding Supported by the “Algorithms for text processing with errors and uncertainties” project
carried out within the HOMING program of the Foundation for Polish Science co-financed by the
European Union under the European Regional Development Fund, project no. POIR.04.04.00-00-
24BA/16, and by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.

Acknowledgements The authors thank Patryk Czajka for helpful discussions on the initial version
of the algorithm.

1 Introduction

Identifying repetitive structure of a string is one of the key research areas of text algorithms,
with applications to computational biology; see e.g. the books [19, 28]. Processing of a string
that has a regular structure can be performed more efficiently, be it for pattern matching or
for data compression.

The most elementary notion that grasps repetitiveness is periodicity. If a string can be
generated by repeated concatenation of its smaller piece, then we say that it is periodic.
The field of periodicity has been expanded upon by allowing not only concatenation, but
also superpositions, which resulted in the introduction of quasiperiodicity by Apostolico and
Ehrenfeucht [6].

© Jakub Radoszewski and Juliusz Straszyński;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 77; pp. 77:1–77:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0067-6401
mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0003-2207-0053
mailto:jks@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.ESA.2020.77
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

77:2 Efficient Computation of 2-Covers of a String

The basic terms of quasiperiodicity are the notions of cover and seed. A cover of a text
T is a string whose occurrences in T cover all positions of T , while a seed of T is a cover of
some superstring of T . An O(n)-time algorithm for computing the shortest cover of a text of
length n was presented by Apostolico et al. [7]. Moore and Smyth showed that all the covers
of a string can be computed in O(n) time [43, 44, 45]. Moreover, O(n)-time algorithms for
computing covers of all prefixes of a string were shown [13, 41]. Seeds were introduced by
Iliopoulos et al. [33] who showed an algorithm for finding a representation of all seeds of a
string in O(n logn) time. The majority of these classic algorithms were developed in the
1990s. It was not until many years later that an O(n)-time algorithm for computing seeds
was found [36, 37]. Various approximate variants of covers and seeds were studied – see
e.g. [3, 4, 16, 25, 38, 39] – as well as covers in other models of computation [10, 14, 26], in
non-standard stringology [1, 9, 20, 31, 32] and in 2-dimensional texts [21, 47].

We consider 2-covers which are a natural generalization of covers. A 2-cover of a text T
is a pair of equal-length strings whose occurrences in T cover all positions of T ; see Figure 1.
A yet more general notion of a λ-cover, that is, a λ-tuple of strings whose occurrences cover
the whole text T , was introduced by Iliopoulos et al. in [27, 49]. Unfortunately, the authors’
O(n2) time algorithm for finding all λ-covers under fixed λ and constant-size alphabet has
been proven to be faulty. In reality, the algorithm has, at worst, exponential runtime [23].

a b a a a b a b a a b a a b a a a b a b
B B

A A
A

A
a b a b a a b a a a b a a b a b a b a b
C C

C
C

D
D

D

Figure 1 Two examples of a 2-cover of a string: a ps-cover (left) and a b-cover (right). Note that
none of these strings has a proper cover.

In this paper, we present an O(n logn log logn+ output) time algorithm for finding all
2-covers of a text of length n. Each string from a 2-cover in the output is represented by giving
endpoints of its sample occurrence. Our algorithm can compute a 2-cover of each length
or all shortest 2-covers in O(n logn log logn) time. The complexities show the expected
running time of the algorithms; they can be made worst-case at a cost of an additional
log logn/ log log logn factor. The space complexities of the algorithms are O(n). We assume
the standard word-RAM model of computation.

In the case of previously mentioned seeds and covers, the input text is generated by
concatenations and superpositions of a single string. However, in our problem, we need to
check if the text can be generated by two strings of equal length. This alone suggests that
the problem is computationally harder than its original counterpart. Intuitively, to find all
covers of a string we need to check only O(n) candidates, i.e. all prefixes. This is not the
case with 2-covers, because a text of length n can have up to Θ(n2) different non-trivial
2-covers. (A simple example T = ambambam of such a text was shown in [23].) The general
λ-cover problem was shown to be NP-hard by Cole et al. [17].

There are two types of 2-cover of a text T , as shown in Figure 1: a ps-cover (X,Y) that
is composed of a prefix X and a suffix Y of T and a b-cover (X,Y) in which one of the
strings, let us say X, is a border of T . (2-covers (X,Y) in which X is actually a cover of T
are considered to be trivial and can be ignored.) Our main result consists of two algorithms,
one for each of the types.

J. Radoszewski and J. Straszyński 77:3

The first algorithm finds ps-covers. This is the easier type and for it, we propose an
O(n log logn) expected time algorithm. It iterates over all possible candidates (there are
O(n) of them) and maintains a set of gaps, that is, parts of the text that are not covered
yet. There, we exploit locality of changes in coverage between consecutive lengths by using a
predecessor data structure [5, 48]. Secondly, we efficiently express the dynamics of the gaps
by storing linear functions.

The remaining, harder algorithm, finds b-covers (X,Y). In this case there are significantly
more candidates to consider (up to O(n2) [23]). For each length ` we use string periodicity
to compute a set of O(n/`) positions in T , called anchors, that implies all non-redundant
occurrences of any string Y in a b-cover of length `. This set is computed using Internal
Pattern Matching [40]. Finally our algorithm forms a set of constraints on Y based on
the anchors and finds all strings that satisfy these constraints in O(n log logn/`+ output)
expected time using predecessor queries.

Our algorithms easily generalize to the λ-covers problem, achieving O(nλ−1polylogn+
output) time.
I Remark 1. “String cover” is also used to describe a different notion that should not be
confused with the one studied in this work. Namely, a string cover C of a set of strings S is a
set of factors of strings from S such that every string in S can be written as a concatenation
of the strings in C; see [12, 15, 30, 46].

2 Preliminaries

By [i . . j] we denote the integer interval {i, . . . , j}; we use a round bracket if the interval
does not contain one of its ends. For a set S of integers and integer a, by S ⊕ a and S 	 a
we denote the sets {s+ a : s ∈ S} and {s− a : s ∈ S}, respectively, and by intervalsk(S)
we denote the set {[i . . i+ k) : i ∈ S}.

A string T is a sequence of letters from a given alphabet. The length of string T is
denoted by |T |. We assume that the positions in T are numbered 1 through |T |, with letter
at position i denoted as T [i]. By T [i . . j] we denote the string T [i] . . . T [j] that is called a
factor of T (the same notation is used for open intervals of positions). A factor T [i . . j] is
called a prefix if i = 1 and a suffix if j = |T |.

For a string X, by OccT (X) we denote the set of starting positions of occurrences of X
in T and by CovT (X) the set of positions that are covered by occurrences of X in T , i.e.,

CovT (X) =
⋃

intervals|X|(OccT (X)).

We omit the subscript T when it is clear from the context. We say that a set of strings S is
a λ-cover of length ` of T if the following conditions hold:
|S| = λ

|X| = ` for all X ∈ S⋃
X∈S Cov(X) = [1 . . |T |]

Periodicity of strings. We say that string S has period p (for p ∈ [1 . . |S|]) if S[i] = S[i+ p]
for all i ∈ [1 . . |S| − p].

I Fact 2 (Periodicity lemma; Fine and Wilf [24]). If string S has periods p and q such that
p+ q ≤ |S|, then it has a period gcd(p, q).

A string is called periodic if it has a period that is at most a half of its length and
aperiodic otherwise. Moreover, a string is called 4-periodic if it has a period that is at most a
quarter of its length.

ESA 2020

77:4 Efficient Computation of 2-Covers of a String

I Fact 3 (Folklore; see [2]). If S is periodic and S′ is a string of length |S| that differs from
S at exactly one position, then S′ is aperiodic.

In particular, if S is periodic with smallest period p and the letter c is different from
S[|S| − p+ 1], then Sc, i.e., S concatenated with c, is aperiodic.

String B is called a border of string S if B is a prefix and a suffix of S. String S has a
period p if and only if it has a border of length n− p. In particular, this implies the following.

I Observation 4. If string S is not periodic, then |OccT (S)| = O(|T |/|S|).

A string S is primitive if S = V k for a string V and positive integer k implies that k = 1.

I Fact 5 (Synchronization property; [19, Lemma 1.11]). A primitive string S has exactly two
occurrences in S2.

PREF table. The table PREF over a length-n string T stores, as PREF [i], the length of
the longest common prefix of T and T [i . . n]. Let PREFR[i] denote the length of the longest
common suffix of T and T [1 . . i]. Both arrays can be computed in O(n) time by a classical
comparison-based algorithm, as in the Main-Lorentz algorithm [42]; see also the book [22].

Longest Common Extension (LCE) queries. Assume that string T is over an integer
alphabet [1 . . nO(1)]. A longest common prefix (longest common suffix) query on T , given
indices i, j ∈ [1 . . n], returns the length of the longest common prefix of suffixes T [i . . n] and
T [j . . n] (the length of the longest common suffix of T [1 . . i] and T [1 . . j], respectively). Both
types of queries are often referred to as LCE queries. It is well-known that after O(n)-time
preprocessing, one can answer LCE queries for T in O(1) time using the suffix array [34] and
range minimum queries [11]. Moreover, we use the inverse suffix array that gives, for each
suffix, its position in the sorted list of suffixes.

Assume that T [i . . j] is periodic with smallest period p. A position j′ > j (i′ < i) is said
to break the periodicity of T [i . . j] if j′ = min{k > j : T [k] 6= T [k − p]} (i′ = max{k < i :
T [k] 6= T [k + p]}, respectively). We set i′ = 0 and j′ = n+ 1 if the respective position does
not exist. One can use LCE queries to compute the positions breaking periodicity of a given
factor T [i . . j], if they exist, in O(1) time.

Internal Pattern Matching (IPM) queries. Again assume that T is over an integer alphabet
[0 . . nO(1)]. The IPM problem requires one to preprocess a text T of length n so that one can
efficiently compute the occurrences of a factor of T in another factor of T . An O(n)-sized
data structure, with O(n) expected time construction, that answers IPM queries in O(1)
time when the ratio between the lengths of the two factors is at most 2 was presented in [40].
The set of occurrences is returned as a single arithmetic sequence. Moreover, if the sequence
contains at least three elements, then its difference equals the smallest period of the pattern
factor. A deterministic version of this data structure can be found in [35]. This data structure
can also be used to answer in O(1) time so-called two-period queries, in which we are asked
to find the smallest period of a given factor of T if this factor is periodic (an alternative data
structure was proposed in [8]).

Predecessor data structures. For a set of integers A, by pred(x,A) and succ(x,A) we denote
the predecessor and successor of x in A, that is, max{a ∈ A : a < x} and min{a ∈ A : a > x},
respectively. (We assume that max ∅ = −∞ and min ∅ =∞.) We use the following known
efficient dynamic predecessor data structures. A collection A ⊆ [1 . . n] can be maintained

J. Radoszewski and J. Straszyński 77:5

under insertions and deletions and can answer predecessor and successor queries in O(log logn)
expected time per operation using a y-fast trie [48] or in O(log2 logn/ log log logn) worst-
case time using an exponential search tree [5]. Below by τn we denote the time complexity
of an operation on a predecessor data structure. Moreover, we use Han’s deterministic
algorithm [29] to sort n numbers in O(n log logn) time.

3 Computing ps-covers

Let T be a string of length n. Let us start with a simpler but less efficient approach
for computing ps-covers. For each length ` we would like to check if there is a ps-cover
(X,Y) of length ` of T . We aim at O(n/`) time complexity after linear-time preprocessing.
In the preprocessing phase we compute the data structures for LCE-queries [11, 34] and
IPM queries [35, 40] in T . If T has a ps-cover (X,Y) of length `, then X = T [1 . . `] and
Y = T [n− `+ 1 . . n]. We apply IPM queries to compute the sets of occurrences Occ(X) and
Occ(Y), represented as unions of O(n/`) of arithmetic sequences, in O(n/`) time. This lets
us compute the sets Cov(X) and Cov(Y), represented as unions of O(n/`) maximal intervals,
sorted left-to-right. Then we need to check if Cov(X)∪Cov(Y) = [1 . . n], which can be done
in linear time w.r.t. to the sizes of the representations of these sets by merging the sorted
lists of intervals. Thus we have shown the following result.

I Lemma 6. Let T be a string of length n over an integer alphabet. After O(n)-time and
space preprocessing, one can compute a ps-cover of T of a given length `, if it exists, in
O(n/`) time.

Let us note that Lemma 6 applied for all lengths ` = 1, . . . , n allows us to compute
all ps-covers in O(n logn) time. However, there is a more efficient approach that does not
involve the intricate technique of IPM queries and also works for strings over any alphabet.
We will use the lemma when computing λ-covers in Section 5.

Let P` be the prefix of length ` of T and S` be the suffix of length ` of T . For each
length ` there is only one candidate for a ps-cover, that is, (P`, S`). Furthermore, the set of
positions of the text T that are covered by Cov(P`) ∪Cov(S`) does not change much when `
is incremented.

The idea is to iterate over increasing values of ` and check whether occurrences of P` and
S` cover the entire text. We are going to maintain a set of gaps, that is, parts of the text
that are covered by occurrences of neither the prefix nor the suffix.

First, let us identify an occurrence of a prefix P` with the index of its leftmost character
and an occurrence of a suffix S` with the index of its rightmost character. In this way, when
the length ` is incremented, some occurrences persist and get their length increased by one
and other occurrences disappear. Specifically, occurrences of the prefix extend to the right
and, respectively, occurrences of the suffix extend to the left. As a result, some gaps shrink
or disappear and some other gaps are created. For an example, see Figure 2. Because of the
way how joint occurrences of the prefix and the suffix affect the sizes of gaps, we will refer to
these occurrences as the pressing factors.

We will iterate over subsequent ` = 1, . . . , n and observe the set of gaps. If for some `
the set of gaps is empty, then (P`, S`) is a ps-cover. We track the following data:

length `
the set B` of left endpoints of occurrences of P`
the set C` of right endpoints of occurrences of S`
a set of pairwise disjoint gaps and an expiration time (value of `) for each of them.

ESA 2020

77:6 Efficient Computation of 2-Covers of a String

Length `:
a b a a b a b a a a a b a a a a a a b
P`

P`

P` P`

S` S` S`

Length `+ 1:
a b a a b a b a a a a b a a a a a a b
P`+1 P`+1 P`+1

S`+1 S`+1

Figure 2 Illustration of gap dynamics. After incrementation of `, a gap b was created, a gap a
disappeared, and a gap aaa shrunk to a.

The sets will be maintained using predecessor data structures, which allow to perform
predecessor/successor queries in τn time. Using the aforementioned data, the outline of the
algorithm is as follows:

Algorithm 1 Outline of the algorithm for computing ps-covers.

pressing_factors :=Occurrences of P1 and S1 in T ;
gaps :=Gaps between pressing_factors;
for ` := 1 to n do

to_remove :=Expired pressing_factors;
Remove to_remove from pressing_factors;
foreach expired_factor in to_remove do

Recalculate elements of gaps around expired_factor;

An occurrence i ∈B` (i ∈C`) persists as long as ` ≤ PREF [i] (` ≤ PREFR[i], respectively).
Therefore, for ` = PREF [i] + 1 (` = PREFR[i] + 1), we consider that occurrence as expired.
In conclusion, the PREF arrays allow us to compute expiration times of every prefix and
suffix. This allows us to efficiently compute expired pressing factors in amortized O(1) time
by precomputing a list of factors to expire for each moment of time in O(n) time.

Now let us simulate gap dynamics. Incrementations of ` successively get a gap increasingly
covered (by occurrences of a prefix and/or suffix) until it expires completely. Assuming that
none of the relevant pressing factors disappears, a gap expiration depends on the closest
prefix occurrence to the left and the closest suffix occurrence to the right of the gap. If we
know that some position p belongs to a gap, we would like to know the following:

LB = max{a : a ∈ B`, a < p} and LC = max{a : a ∈ C`, a < p}
RB = min{b : b ∈ B`, b > p} and RC = min{b : b ∈ C`, b > p}.

Unfortunately, this is too much to maintain. One factor that expires might influence many
gaps. Let us analyze it further. Let us fix some prefix occurrence, i.e. pressing factor that
extends to the right. It might influence expiration time of many gaps to the right. On the
other, hand we can safely note this exclusively in the closest gap to the right. This is because
the pressing factor won’t reach other gaps before closing the immediate gap. When the gap
closes, we can propagate the information to neighbouring gaps. Therefore, in a gap we only
take into consideration pressing factors whose immediate neighbour is this gap and ignore
them otherwise. We can easily check for this and compute all these values in τn time. If the
gap initially covers the interval [i . . j], then it can expire in two ways:

it can close on one boundary by a single opposing pressing factor, so the gap will close no
later than ` = min(RC − i+ 1, j − LB + 1), or

J. Radoszewski and J. Straszyński 77:7

it can close in the middle of the gap, by both pressing factors simultaneously, at ` =
dRC−LB+1

2 e.

The endpoints of a gap at moment ` can be computed using the formulas:

i = max(LB + `, LC + 1) and j = min(RC − `, RB − 1).

When a gap is created or its neighbouring pressing factors are altered, we use these formulas
to recompute the gap boundaries. The predecessor data structure that stores gaps uses,
for each gap, its recently computed left boundary for comparison. It is sufficient since the
left-to-right order of gaps is never changed.

Thus we can recompute the expiration moment of a single gap given at least one position
belonging to the gap. The remaining issue is to know which gaps need to be updated. Note
that each expired factor can affect at most two existing neighbouring gaps and possibly
introduce a new one. We can find the neighbouring gaps via predecessor/successor queries.
Positions that were not covered will still not be covered after removing the expired factor, so
we can pick an arbitrary position from this gap and recalculate its boundaries.

Now, we need to check if some new gap was created in the boundaries of the expired
factor. In this case we have some intervals of length `, representing the set Cov(P`)∪Cov(S`),
and we would like to know if removing one interval creates a gap in coverage. Thanks to
the fact that all intervals are of the same length, if the expired factor is [i . . j], we only need
to find the last interval ending at most at j and the first interval starting at least at i. If
found intervals do not cover the entirety of [i . . j], we have at least one position of the gap
and we are able to calculate its boundaries. Otherwise, removing the factor did not change
the coverage, so no new gap was created. All of this can be performed using the predecessor
data structures in τn time.

In conclusion, the entire computation of ps-covers takes O(nτn) time and O(n) space.
We obtain the following result.

I Theorem 7. Let T be a string of length n over any alphabet that allows O(1)-time checking
of letter equality. One can compute a ps-cover of T of every possible length in O(nτn) time
and O(n) space.

4 Computing b-covers

Let T be a string of length n. Our goal in this section is, given a length `, to check if
there is a b-cover (X,Y) of length ` of T . We aim at O(nτn/`) time complexity after
linear-time preprocessing. In the preprocessing phase we compute the data structures for
LCE-queries [11, 34] and IPM queries [35, 40] in T .

Let X = T [1 . . `]. We apply IPM queries to compute the set Occ(X), represented as
a union of O(n/`) of arithmetic sequences, and the set Cov(X), represented as a union of
O(n/`) maximal intervals, in O(n/`) time. If n − ` + 1 6∈ Occ(X), there is no b-cover of
length `, and if Cov(X) = [1 . . n], we skip this length since we have the trivial case of a
2-cover containing a cover. Henceforth we assume that X is a border of T whose occurrences
do not cover the whole string T .

Our goal is to find all strings Y for which (X,Y) is a b-cover of T . We start by building
up some intuition. We have |Y | = `, so in order for Y to cover all positions from the set
Cov(Y), it suffices to use O(n/`) occurrences of Y (instead of, potentially, Θ(n) occurrences).
Let PY be a set of starting positions of such a set of occurrences. We will compute t = O(1)
sets Γ1, . . . ,Γt, each of size O(n/`), that contain information about all (Y, PY), for every Y
that can form a b-cover with X. In each set Γi we will select an element γi ∈ Γi and consider
only length-` factors Y starting at positions γi − a for a ∈ [0 . . `).

ESA 2020

77:8 Efficient Computation of 2-Covers of a String

X

Y

Z
γ

a b a b a b a a b a a b a b a a a b a a b a b

Figure 3 This string has a b-cover (X = abab, Y = abaa). The sets Cov(X) and Cov(Y) are
shown in gray. We have Z = ba, Γ = OccT (Z), and γ is the position of the occurrence of Z that
ends at the first position that is not covered by Cov(X). The set PY of occurrences of Y that is
generated by (Γ, γ, 1) is shown. For the meaning of arrows, see Section 4.3.

In particular, for every such (Y, PY) we would like to have PY ⊆ (Γi 	 a) and Y =
T [γi − a . . γi − a + `) for some i ∈ [1 . . t] and a ∈ [0 . . `). We then say that (Y, PY) is
generated by (Γi, γi, a). Moreover, for each set Γi we will provide an interval Ji ⊆ [0 . . `)
such that for every Y that forms a b-cover with X, the factor Y is generated by (Γi, γi, a)
for just a constant number of a ∈ Ji. This will allow us to report each sought factor Y a
constant number of times and filter out repetitions in the end.

In the algorithm we first compute a constant number of factors Z1, . . . , Zt of T length
z = d`/2e such that if (X,Y) is a b-cover, then Y contains at least one of Z1, . . . , Zt as a factor.
Let Z be a factor of Y such that a+1 ∈ OccY (Z). If i ∈ OccT (Z) and i−a ∈ OccT (Y), then
we say that the occurrence i of Z a-anchors the occurrence i− a of Y and that the latter is
a-anchored at the former. If Zi is aperiodic, by Observation 4, we have |OccZi(T)| = O(n/`)
and |OccZi(Y)| = O(1) for any length-` string Y . In this case we will take Γi = OccZi(T)
and Ji = [0 . . `− z]. If Zi is periodic with period p, we will only be interested in factors Y
that are periodic with the same period. In this case we will take as Γi a sufficient subset of
OccZi(T) and set Ji = [0 . . p). See Figure 3 for an example.

Formally, we reduce computing a b-cover of a given length to a constant number of
instances of the following problem.

Positioned Cover of Length `

Input: A factor Z of T , a set of positions Γ ⊆ OccT (Z), its element γ ∈ Γ, and an
interval J ⊆ [0 . . `).
Output: Report all a ∈ J such that CovT (X)∪ (

⋃
intervals`(PY)) = [1 . . n] for (Y, PY)

that is generated by (Γ, γ, a), with |Y | = `.

In Section 4.3 we show how to solve this problem efficiently if |Γ| = O(n/`). Clearly:

I Observation 8. If an instance of Positioned Cover of Length ` for any Γ, γ, J has a
solution (X,Y) for some a ∈ J , then (X,Y) is a b-cover of T .

Let i be the first position of T that is not covered by occurrences of X. Hence, i has to
be covered by the second string Y of the b-cover. Let us denote

z = d`/2e, Z1 = T [i− z + 1 . . i], Z2 = T [i . . i+ z).

I Observation 9. If (X,Y) is a b-cover of length ` of T , then Z1 or Z2 is a factor of Y .

J. Radoszewski and J. Straszyński 77:9

Proof. Let T [j . . j + `) be an occurrence of Y that covers the position i. If j ≤ i − z + 1,
then it covers the factor Z1. Otherwise, j + `− 1 ≥ i+ z and j ≤ i, so it covers Z2. J

We will consider as Z each of the two factors Z1, Z2 and denote by iZ the starting position
of the occurrence of Z mentioned in the definition. We can ask a two-period query [8, 35, 40]
to check if Z is periodic and, if so, compute its smallest period.

I Observation 10. If Z is aperiodic, then Y is not 4-periodic. If Z is periodic, then either
Y is 4-periodic with the same period, or Y is not 4-periodic.

Proof. Assume that Z is aperiodic. If Y was 4-periodic with period p, i.e., 4p ≤ `, then p
would also be a period of its factor Z and 2p ≤ z, so Z would be periodic.

Assume now that Z is periodic. Let p be the smallest period of Z; we have 2p ≤ z.
Assume to the contrary that Y is 4-periodic with smallest period p′ such that p′ 6= p. We have
4p′ ≤ `, so 2p′ ≤ z. Then p′ is not a multiple of p, since otherwise p would have been a period
of Y . By the periodicity lemma (Fact 2), Z has period gcd(p, p′) < p, a contradiction. J

In the remainder of the reduction we consider two cases depending on if Y is 4-periodic.

4.1 Reduction for non-4-periodic Y
If Z is periodic, then we try two ways of substituting it with a string that is not periodic.

I Observation 11. Assume that Z is periodic with smallest period p, Y is not 4-periodic and
an occurrence T [i . . i+ `) of Y contains T [iZ . . iZ + z). Let i′ < j′ be the positions that break
the periodicity of T [iZ . . iZ + z). Then T [i . . i + `) contains at least one of the fragments
T [i′ . . i′ + z), T [j′ − z + 1 . . j′].

We denote the fragments in the conclusion of the observation by Z ′ and Z ′′, respectively.
Let us recall that if Z is periodic, the positions breaking the periodicity can be computed
using LCE queries. Hence, Z ′ and Z ′′ can be computed in O(1) time. By Fact 3, if Z ′ or
Z ′′ exists, it is aperiodic. If Z is periodic, we try replacing it by Z ′ or Z ′′ (and redefine the
occurrence iZ).

In total we obtain up to four aperiodic strings Z such that if Y is not 4-periodic,
its occurrence contains the occurrence T [iZ . . iZ + z) for at least one of them. We have
|Occ(Z)| = O(n/`) (Observation 4) and all the occurrences can be found in O(n/`) time
using IPM queries. The following lemma summarizes the above argument.

I Lemma 12. If T has a b-cover (X,Y) of length ` with non-4-periodic Y , then (Y, PY) is
generated by (Γ, γ, a) where Γ = Occ(Z), γ = iZ and a ∈ [0 . . `− z], for one of up to four
aperiodic strings Z. We have |Γ| = O(n/`) and Γ, γ can be computed in O(n/`) time.

4.2 Reduction for 4-periodic Y
By Observation 10, in this case Z is necessarily periodic with the same smallest period as Y .
If we used the same reduction as in Lemma 12, we could unfortunately have |Γ| = |Occ(Z)| =
Θ(n). We deal with this problem by choosing the first occurrence of Z in Y as an anchor
and selecting only some of the occurrences of Z in T to the set Γ that are sufficient for Y to
cover all positions in Cov(Y); see Figure 4.

I Lemma 13. If T has a b-cover (X,Y) of length ` with 4-periodic Y , then (Y, PY) is
generated by (Γ, γ, a) where Γ ⊆ Occ(Z) and a ∈ [0 . . p), for one of up to two periodic strings
Z with smallest period p and one of up to two positions γ. We have |Γ| = O(n/`) and Γ, γ,
p can be computed in O(n/`) time.

ESA 2020

77:10 Efficient Computation of 2-Covers of a String

c b ba b a b a b a b a b a b a b a b a b a b a b

a b a b

a b a b

a b a b

a b a b

a b a b

a b a b

a b a b

a b a b

a b a b

a b a b

b a b a b a b a b a b a b a b a

b a b a b a b a

Figure 4 Z = abab (black rectangles), Y = babababa (blue rectangles); gray color shows Cov(Y).
The occurrences of Y that are 1-anchored at marked occurrences of Z are shown and cover Cov(Y).

Proof. Let p = per(Z). We apply IPM queries to compute the set Occ(Z), represented
as a union of O(n/`) arithmetic sequences with difference p. Let us further merge these
arithmetic sequences into maximal sequences with difference p, that we denote as S1, . . . , Sk.
We note that Z[1 . . p] is primitive, since otherwise Z would have a smaller period. By the
synchronization property (Fact 5) for Z[1 . . p], we can assume that max(Si) + p < min(Si+1)
for i = 2, . . . , k, so

∑k
i=1 |Si| = O(n/p). Initially let Γ = Occ(Z). We will show how to

prune Γ by leaving O(|Si|p/`) elements in each of the sequences Si. This will indeed give
|Γ| = O(n/`).

The set OccY (Z) is an arithmetic sequence with difference p and first element t ∈ [1 . . p).
Let m = |OccY (Z)|; we have 2 ≤ m ≤ `/p. An occurrence of Y in T implies a subsequence
of length m of consecutive elements in one of the sequences Si. Moreover, any arithmetic
sequence j, j + p, . . . , j + (m+ 1)p of m+ 2 occurrences of Z in T implies an occurrence of
Y in T at position j + p − t + 1. (Note that a difference-p arithmetic sequence of m + 1
occurrences of Z in T does not have to imply an occurrence of Y , e.g. if T = abababab,
Z = abab and Y = babababa.)

We can now construct the pruned set Γ′ as follows. Let us consider Si = {j, j + p, . . . , j +
(w − 1)p}. If w + 1 < m, then we can ignore Si. Otherwise we insert to Γ′:

the elements j and j + p;
all elements j +m · p · t ∈ Si for positive integer t;
the elements j + (w −m− 1)p and j + (w −m)p.

This way O(w/m) = O(|Si|p/`) elements are inserted to Γ′, so indeed |Γ′| = O(n/`).
Finally, let Sb be the arithmetic sequence that contains the position iZ . Then we have

two choices for γ: min(Sb) or min(Sb) + p. J

4.3 Solution to Positioned Cover problem

Let us recall the problem statement.

Positioned Cover of Length `

Input: A factor Z of T , a set of positions Γ ⊆ OccT (Z), its element γ ∈ Γ, and an
interval J ⊆ [0 . . `).
Output: Report all a ∈ J such that CovT (X)∪ (

⋃
intervals`(PY)) = [1 . . n] for (Y, PY)

that is generated by (Γ, γ, a), with |Y | = `.

I Lemma 14. After O(n) time and space preprocessing, assuming that |Γ| = O(n/`),
Positioned Cover of Length ` over an integer alphabet can be solved in O(nτn/`+output)
time and O(n/`) space.

J. Radoszewski and J. Straszyński 77:11

Proof. Let A = Cov(X), A′ = [1 . . n] \A, and A ⊆ [1 . . n]2 be the set of maximal intervals
of A. We have |A| ≤ n/` and A can be computed in O(n/`) time. Then the Positioned
Cover problem can be solved with the following Claim 15 for

S = {(i, lcs(T [1 . . i), T [1 . . γ)), lcp(T [i . . n], T [γ . . n])) : i ∈ Γ},

where lcp and lcs is the length of the longest common prefix and the longest common suffix,
respectively. Intuitively, if (i, x, y) ∈ S, then there is an occurrence of a length-` factor Y
a-anchored at i ∈ Occ(Z) if and only if a ≤ x and |Z| ≤ `−a ≤ y. See the arrows in Figure 3.

B Claim 15. In O(nτn/` + output) time and O(n/`) space one can report all a ∈ J such
that

A ∪
⋃

intervals`(S′a 	 a) = [1 . . n], (1)

where S′a = {i : (i, x, y) ∈ S, a ≤ x, `− a ≤ y}.

Proof. In the algorithm we store A in a predecessor data structure DA sorted by the left
endpoints of intervals. We will consider all a ∈ J in a decreasing order and store the current
set S′a in a predecessor data structure DS . However, we will only consider values of a for
which S′a 6= S′a+1. Let us note that (i, x, y) ∈ S contributes to i ∈ S′a for a ∈ [` − y . . x].
Hence, if this interval is non-empty, we will insert i to S′a for a = x and remove it for
a = `− y − 1. We have |S| = O(n/`), so all events of insertion and deletion to DS can be
precomputed and sorted in O(n log logn/`) time using Han’s algorithm [29].

Assume that DS is the data structure that stores S′a for all a in an interval J0 ⊆ J . Let
i ∈ DS and i′ = succ(i,DS). We can observe that:

If K = [i . . i′) \A is non-empty and (1) holds for some a ∈ J0, then K ⊆ [i− a . . i− a+
`) ∪ [i′ − a . . i′ − a+ `).

Hence, if [i . . i′) is to be covered by the left hand side of (1) for some a ∈ J0, we have the
following set C(i, i′) of constraints on a (see Figure 5 in the appendix):
(a) If i′ − i ≤ ` or [i . . i′) ⊆ A, no constraints are imposed. If there are at least two intervals

from A that are fully contained in [i . . i′), then there is no such a.
(b) Otherwise, if no interval in A is a subset of [i . . i′), then a ≥ i′ − j or `− a ≥ j′ − i+ 1,

where j = succ(i, A′) and j′ = pred(i′ − 1, A′).
(c) Otherwise, if there is an interval [u . . v] ∈ A such that [u . . v] ⊆ [i . . i′), then a ≥ i′−v−1

and `− a ≥ u− i.
The respective cases can be checked and C(i, i′) can be constructed in τn time using DA. A
similar set of conditions can be stated for the left hand side of (1) to contain all elements
of [1 . .minDS) and [maxDS . . n]; we denote the resulting constraints by C(0,minDS) and
C(maxDS , n+ 1), respectively, and insert 0 and n+ 1 to S′a.

Let us note that each of the constraints from the set C(i, i′) is a conjunction of at most
two constraints of the form a 6∈ I for some interval I. Indeed,

(a ≥ x) ∨ (a ≤ y)⇔ a 6∈ (y . . x), (a ≥ x) ∧ (a ≤ y)⇔ (a 6∈ [0 . . x)) ∧ (a 6∈ (y . . `)).

When i is inserted to DS , we remove the constraints C(i′, i′′) imposed by the pair i′ =
pred(i,DS) and i′′ = succ(i,DS) and insert the constraints C(i′, i) and C(i, i′′). For every
constraint a 6∈ I, we will retain the value a1 of a for which it is inserted and the value a2 for
which it is removed. If I ′ = [a1 . . a2), the constraint imposes a constraint a 6∈ (I ∩ I ′) on
values of a that satisfy (1).

ESA 2020

77:12 Efficient Computation of 2-Covers of a String

Overall we obtain O(n/`) constraints of the form a 6∈ I for (1) to hold. Our goal is to
report all a ∈ J that satisfy all the constraints, i.e., all a in the complement of the union of
the O(n/`) intervals from the constraints. This task can be completed by a classic 1d sweep
algorithm if the endpoints of intervals from the constraints are sorted [29].

The data structure DA takes O(nτn/`) time to construct since |A| = O(n/`) and admits
O(n/`) queries. The data structure DS admits O(n/`) operations. Additional sorting takes
O(nτn/`) time. Finally, all values of a for which (1) is satisfied are reported in O(output)
time. The complexity follows. C

This concludes the solution to Positioned Cover problem. J

A single string Y can be generated by (Γ, γ, a) with a ∈ J from Lemma 12 a constant
number of times because Z is aperiodic, and a constant number of times from Lemma 13
because of the synchronization property. By combining Lemma 14 with Observation 8 and
the reductions of Lemmas 12 and 13, we obtain the following result and its corollary.

I Lemma 16. Let T be a string of length n over an integer alphabet. After O(n)-time and
space preprocessing, one can report all b-covers of T of a given length `, each of them O(1)
times, in O(nτn/`+ output) time.

I Theorem 17. Let T be a string of length n over any ordered alphabet. All b-covers of T
can be computed in O(nτn logn+ output) time and O(n) space.

Proof. Let us sort and renumber letters in T so that they are in [1 . . n]. This takes O(n logn)
time. Then we apply Lemma 16 for every possible length ` of a b-cover. Apart from the
time to report the output, the complexity becomes

∑n
`=1O(nτn/`) = O(nτn logn).

Finally, we need to make sure that each b-cover is reported only once. We can use the
inverse suffix array to sort all factors Y of a given length in the lexicographic order. The
sorting is performed globally, across all lengths, using radix sort. We can then iterate over
length-` strings Y in the sorted order and remove duplicates using LCE-queries. J

5 Computation of 2-covers and λ-covers

We summarize the results of Theorems 7 and 17 and use efficient predecessor data structures [5,
48] to obtain the following result.

I Theorem 18. Let T be a string of length n over any ordered alphabet. All 2-covers of T can
be computed in O(n logn log logn+output) expected time or O(n logn log2 logn/ log log logn+
output) worst-case time and O(n) space.

Let us recall that there are up to n ps-covers. Moreover, the algorithm behind Lemma 16
allows one to generate as many b-covers of a given length as one requires. This shows that
indeed one can compute a 2-cover of each possible length or all the shortest 2-covers in
O(nτn logn) time.

Theorem 19 extends Theorem 18 to λ-covers for any λ ≥ 2. As in the case of 2-covers, we
are only interested in computing λ-covers of lengths for which T does not have a (λ−1)-cover.

I Theorem 19. Let T be a string of length n over any ordered alphabet. For any λ ≥
2, all λ-covers of T can be computed in O(nλ−1 logn log logn + output) expected time or
O(nλ−1 logn log2 logn/ log log logn+ output) worst-case time and O(n) space.

J. Radoszewski and J. Straszyński 77:13

Proof. It suffices to give a proof for λ ≥ 3. Similarly as in the case of 2-covers, we classify
λ-covers S = (X1, . . . , Xλ) into ps-λ-covers, for which X1 is a prefix and X2 is a suffix of T ,
and b-λ-covers, for which X1 is a border of T . (Formally, in order to compute all λ-covers, in
case of ps-λ-covers in the end we need to generate all tuples where the prefix and suffix of T
are not the first two respective elements of the tuple, and similarly for b-λ-covers.) The two
cases are handled similarly as ps-covers and b-covers, respectively. The number of ps-λ-covers
is upper bounded by nλ−1, whereas the number of b-λ-covers can be Θ(nλ); see [23].

Let us show how to compute all ps-λ-covers of a given length ` ∈ [1 . . n]. First we use
IPM queries to compute Cov(X1) ∪ Cov(X2), represented as a union of O(n/`) maximal
intervals, as in Lemma 6. We LCE-queries on suffixes of the suffix array of T to partition
positions of T into classes C1, . . . , Cm such that positions i, j belong to the same class if and
only if T [i . . i + `) = T [j . . j + `). This could be also done in O(n logn) total time using
Crochemore’s partitioning [18]. For each of the

(
m
λ−2
)
choices of λ− 2 classes Ci1 , . . . , Ciλ−2 ,

if none of them corresponds to X1 or X2, we compute their union B. The sets B are
computed simultaneously for several choices containing Θ(n) elements in total using radix
sort in order to achieve O(|Ci1 |+ · · ·+ |Ciλ−2 |) amortized time per choice. Within the same
time complexity we can compute the set

⋃
intervals`(B) represented as a union of maximal

intervals. Finally, we merge this set with Cov(X1) ∪ Cov(X2) and check if their union is
[1 . . n]. The time complexity for a given choice of classes is O(|Ci1 |+ · · ·+ |Ciλ−2 |+ n/`).

Over all choices, the running time is proportional to

∑
1≤i1≤...≤iλ−2≤m

(
|Ci1 |+ · · ·+ |Ciλ−2 |+

n

`

)
=
(
m− 1
λ− 3

) m∑
i=1
|Ci|+

(
m

λ− 2

)
n

`
≤ 2nλ−1

`
. (2)

The total cost of computing all classes Ci, over all ` ∈ [1 . . n], is O(n2) (or O(n logn)), and
the other preprocessing (LCE and IPM) takes O(n) time. Thus the overall cost of computing
all ps-λ-covers is O(nλ−1 logn).

Computation of b-λ-covers is a similar adjustment to the computation of b-covers of a
given length. Recall that X1 is a length-` border of T . We iterate over all

(
m
λ−2
)
choices

of λ − 2 classes Ci1 , . . . , Ciλ−2 which corresponds to selecting factors X2, . . . , Xλ−1 from
the b-λ-cover. A selection for which Xi = X1 for some i > 1 is discarded. The set
C := Cov(X1) ∪ · · · ∪ Cov(Xλ−1) can be expressed as a union of O(n/`) maximal intervals
in O(|Ci1 |+ · · ·+ |Ciλ−2 |+ n/`) time, which is O(nλ−1/`) overall by (2).

In order to compute Xλ, we we make a reduction to a generalization of Positioned
Cover of Length ` in which we take C instead of CovT (X). The factors Z1 and Z2 are
computed as in Observation 9, by setting i to the first position in T that is not covered by C.
This allows us to compute Z depending on if Xλ is 4-periodic, as in Sections 4.1 and 4.2,
in O(1) time. The solution of the general Positioned Cover of Length ` is the same
as the one given in Lemma 14, but using C instead of CovT (X). The time complexity of
the solution is O(nτn/`) plus the time needed to output b-λ-covers. These steps need to be
performed for each of the

(
m
λ−2
)
≤ nλ−2 choices of classes, which gives O(nλ−1τn/`) for the

given length `, and O(nλ−1τn logn) in total (plus output).
The complexity follows by summing the complexities of computing ps-λ-covers and

b-λ-covers and using efficient predecessor data structures [5, 48]. J

ESA 2020

77:14 Efficient Computation of 2-Covers of a String

6 Conclusions and open problems

We presented quasi-linear time algorithms (plus the time to report the output) for computing
2-covers of a string. One could ask if a shortest 2-cover can be computed in linear time.
A further problem is to check if the general λ-cover problem parameterized by λ is fixed-
parameter tractable.

One could also consider alternative definitions of 2-covers (and λ-covers) in which the
factors that are to cover the text need not to be of the same length. Efficient computation of
such covers seems to be an interesting open problem. In particular, under this alternative
definition, there can be Θ(n4) candidates for a 2-cover (every pair of factors).

References
1 Ali Alatabbi, M. Sohel Rahman, and William F. Smyth. Computing covers using prefix tables.

Discrete Applied Mathematics, 212:2–9, 2016. doi:10.1016/j.dam.2015.05.019.
2 Amihood Amir, Costas S. Iliopoulos, and Jakub Radoszewski. Two strings at Hamming

distance 1 cannot be both quasiperiodic. Information Processing Letters, 128:54–57, 2017.
doi:10.1016/j.ipl.2017.08.005.

3 Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat. Can we
recover the cover? Algorithmica, 81(7):2857–2875, 2019. doi:10.1007/s00453-019-00559-8.

4 Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat. Approximate cover of strings.
Theoretical Computer Science, 793:59–69, 2019. doi:10.1016/j.tcs.2019.05.020.

5 Arne Andersson and Mikkel Thorup. Dynamic ordered sets with exponential search trees.
Journal of the ACM, 54(3):13, 2007. doi:10.1145/1236457.1236460.

6 Alberto Apostolico and Andrzej Ehrenfeucht. Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science, 119(2):247–265, 1993. doi:10.1016/0304-3975(93)90159-Q.

7 Alberto Apostolico, Martin Farach, and Costas S. Iliopoulos. Optimal superprimitivity testing
for strings. Information Processing Letters, 39(1):17–20, 1991. doi:10.1016/0020-0190(91)
90056-N.

8 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

9 Carl Barton, Tomasz Kociumaka, Chang Liu, Solon P. Pissis, and Jakub Radoszewski. Indexing
weighted sequences: Neat and efficient. Information and Computation, 270:104462, 2020.
doi:10.1016/j.ic.2019.104462.

10 Amir M. Ben-Amram, Omer Berkman, Costas S. Iliopoulos, and Kunsoo Park. The subtree
max gap problem with application to parallel string covering. In Daniel Dominic Sleator,
editor, Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
501–510. ACM/SIAM, 1994. URL: http://dl.acm.org/citation.cfm?id=314464.314633.

11 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, volume 1776 of Lecture Notes in Computer Science, pages
88–94. Springer, 2000. doi:10.1007/10719839_9.

12 Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, Michael T. Hallett, and Harold T.
Wareham. Parameterized complexity analysis in computational biology. Computer Applications
in the Biosciences, 11(1):49–57, 1995. doi:10.1093/bioinformatics/11.1.49.

13 Dany Breslauer. An on-line string superprimitivity test. Information Processing Letters,
44(6):345–347, 1992. doi:10.1016/0020-0190(92)90111-8.

14 Dany Breslauer. Testing string superprimitivity in parallel. Information Processing Letters,
49(5):235–241, 1994. doi:10.1016/0020-0190(94)90060-4.

http://dx.doi.org/10.1016/j.dam.2015.05.019
http://dx.doi.org/10.1016/j.ipl.2017.08.005
http://dx.doi.org/10.1007/s00453-019-00559-8
http://dx.doi.org/10.1016/j.tcs.2019.05.020
http://dx.doi.org/10.1145/1236457.1236460
http://dx.doi.org/10.1016/0304-3975(93)90159-Q
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1137/15M1011032
http://dx.doi.org/10.1016/j.ic.2019.104462
http://dl.acm.org/citation.cfm?id=314464.314633
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1093/bioinformatics/11.1.49
http://dx.doi.org/10.1016/0020-0190(92)90111-8
http://dx.doi.org/10.1016/0020-0190(94)90060-4

J. Radoszewski and J. Straszyński 77:15

15 Stefan Canzar, Tobias Marschall, Sven Rahmann, and Chris Schwiegelshohn. Solving the
minimum string cover problem. In Proceedings of the 14th Meeting on Algorithm Engineering
& Experiments, ALENEX 2012, pages 75–83. SIAM / Omnipress, 2012. doi:10.1137/1.
9781611972924.8.

16 Manolis Christodoulakis, Costas S. Iliopoulos, Kunsoo Park, and Jeong Seop Sim. Approximate
seeds of strings. Journal of Automata, Languages, and Combinatorics, 10(5/6):609–626, 2005.
doi:10.25596/jalc-2005-609.

17 Richard Cole, Costas S. Iliopoulos, Manal Mohamed, William F. Smyth, and Lu Yang.
The complexity of the minimum k-cover problem. Journal of Automata, Languages, and
Combinatorics, 10(5/6):641–653, 2005.

18 Maxime Crochemore. An optimal algorithm for computing the repetitions in a word. Informa-
tion Processing Letters, 12(5):244–250, 1981. doi:10.1016/0020-0190(81)90024-7.

19 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings.
Cambridge University Press, 2007. doi:10.1017/cbo9780511546853.

20 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Covering problems for partial words and for indeterminate strings.
Theoretical Computer Science, 698:25–39, 2017. doi:10.1016/j.tcs.2017.05.026.

21 Maxime Crochemore, Costas S. Iliopoulos, and Maureen Korda. Two-dimensional prefix
string matching and covering on square matrices. Algorithmica, 20(4):353–373, 1998. doi:
10.1007/PL00009200.

22 Maxime Crochemore and Wojciech Rytter. Jewels of Stringology. World Scientific, 2003.
doi:10.1142/4838.

23 Patryk Czajka and Jakub Radoszewski. Experimental evaluation of algorithms for computing
quasiperiods. CoRR, abs/1909.11336, 2019 (accepted to Theoretical Computer Science).
arXiv:1909.11336.

24 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965. doi:10.2307/2034009.

25 Tomás Flouri, Costas S. Iliopoulos, Tomasz Kociumaka, Solon P. Pissis, Simon J. Puglisi,
William F. Smyth, and Wojciech Tyczyński. Enhanced string covering. Theoretical Computer
Science, 506:102–114, 2013. doi:10.1016/j.tcs.2013.08.013.

26 Paweł Gawrychowski, Jakub Radoszewski, and Tatiana A. Starikovskaya. Quasi-periodicity
in streams. In Nadia Pisanti and Solon P. Pissis, editors, 30th Annual Symposium on
Combinatorial Pattern Matching, CPM 2019, volume 128 of LIPIcs, pages 22:1–22:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019. doi:10.4230/LIPIcs.CPM.2019.22.

27 Qing Guo, Hui Zhang, and Costas S. Iliopoulos. Computing the λ-covers of a string. Information
Sciences, 177(19):3957–3967, 2007. doi:10.1016/j.ins.2007.02.020.

28 Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997. doi:10.1017/cbo9780511574931.

29 Yijie Han. Deterministic sorting in O(n loglogn) time and linear space. Journal of Algorithms,
50(1):96–105, 2004. doi:10.1016/j.jalgor.2003.09.001.

30 Danny Hermelin, Dror Rawitz, Romeo Rizzi, and Stéphane Vialette. The minimum substring
cover problem. Information and Computation, 206(11):1303–1312, 2008. doi:10.1016/j.ic.
2008.06.002.

31 Costas S. Iliopoulos, Christos Makris, Yannis Panagis, Katerina Perdikuri, Evangelos Theodor-
idis, and Athanasios K. Tsakalidis. The weighted suffix tree: An efficient data structure for hand-
ling molecular weighted sequences and its applications. Fundamenta Informaticae, 71(2-3):259–
277, 2006. URL: http://content.iospress.com/articles/fundamenta-informaticae/
fi71-2-3-07.

32 Costas S. Iliopoulos, Manal Mohamed, Laurent Mouchard, Katerina Perdikuri, William F.
Smyth, and Athanasios K. Tsakalidis. String regularities with don’t cares. Nordic Journal on
Computing, 10(1):40–51, 2003.

ESA 2020

http://dx.doi.org/10.1137/1.9781611972924.8
http://dx.doi.org/10.1137/1.9781611972924.8
http://dx.doi.org/10.25596/jalc-2005-609
http://dx.doi.org/10.1016/0020-0190(81)90024-7
http://dx.doi.org/10.1017/cbo9780511546853
http://dx.doi.org/10.1016/j.tcs.2017.05.026
http://dx.doi.org/10.1007/PL00009200
http://dx.doi.org/10.1007/PL00009200
http://dx.doi.org/10.1142/4838
http://arxiv.org/abs/1909.11336
http://dx.doi.org/10.2307/2034009
http://dx.doi.org/10.1016/j.tcs.2013.08.013
http://dx.doi.org/10.4230/LIPIcs.CPM.2019.22
http://dx.doi.org/10.1016/j.ins.2007.02.020
http://dx.doi.org/10.1017/cbo9780511574931
http://dx.doi.org/10.1016/j.jalgor.2003.09.001
http://dx.doi.org/10.1016/j.ic.2008.06.002
http://dx.doi.org/10.1016/j.ic.2008.06.002
http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-07
http://content.iospress.com/articles/fundamenta-informaticae/fi71-2-3-07

77:16 Efficient Computation of 2-Covers of a String

33 Costas S. Iliopoulos, Dennis W. G. Moore, and Kunsoo Park. Covering a string. Algorithmica,
16(3):288–297, 1996. doi:10.1007/BF01955677.

34 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
Journal of the ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

35 Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis,
University of Warsaw, 2018. URL: https://mimuw.edu.pl/~kociumaka/files/phd.pdf.

36 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
A linear-time algorithm for seeds computation. ACM Transactions on Algorithms, 16(2):Article
27, 2020. doi:10.1145/3386369.

37 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. A linear time algorithm for seeds computation. In Yuval Rabani, editor, 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pages 1095–1112. SIAM, 2012.
doi:10.1137/1.9781611973099.

38 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. Efficient algorithms for shortest partial seeds in words. Theoretical Computer Science,
710:139–147, 2018. doi:10.1016/j.tcs.2016.11.035.

39 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. Fast algorithm for partial covers in words. Algorithmica, 73(1):217–233, 2015. doi:
10.1007/s00453-014-9915-3.

40 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Internal
pattern matching queries in a text and applications. In Piotr Indyk, editor, 26th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages 532–551. SIAM, 2015.
doi:10.1137/1.9781611973730.36.

41 Yin Li and William F. Smyth. Computing the cover array in linear time. Algorithmica,
32(1):95–106, 2002. doi:10.1007/s00453-001-0062-2.

42 Michael G. Main and Richard J. Lorentz. An O(n logn) algorithm for finding all repetitions
in a string. Journal of Algorithms, 5(3):422–432, 1984. doi:10.1016/0196-6774(84)90021-X.

43 Dennis Moore and W. F. Smyth. Computing the covers of a string in linear time. In Proceedings
of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’94, page 511–515,
USA, 1994. Society for Industrial and Applied Mathematics.

44 Dennis W. G. Moore and William F. Smyth. An optimal algorithm to compute all the covers
of a string. Information Processing Letters, 50(5):239–246, 1994. doi:10.1016/0020-0190(94)
00045-X.

45 Dennis W. G. Moore and William F. Smyth. A correction to “An optimal algorithm to
compute all the covers of a string”. Information Processing Letters, 54(2):101–103, 1995.
doi:10.1016/0020-0190(94)00235-Q.

46 Jean Néraud. Elementariness of a finite set of words is co-NP-complete. RAIRO Theoretical
Informatics and Applications, 24:459–470, 1990. doi:10.1051/ita/1990240504591.

47 Alexandru Popa and Andrei Tanasescu. An output-sensitive algorithm for the minimization
of 2-dimensional string covers. In T. V. Gopal and Junzo Watada, editors, Theory and
Applications of Models of Computation - 15th Annual Conference, TAMC 2019, volume
11436 of Lecture Notes in Computer Science, pages 536–549. Springer, 2019. doi:10.1007/
978-3-030-14812-6_33.

48 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space θ(n). Informa-
tion Processing Letters, 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

49 Hui Zhang, Qing Guo, and Costas S. Iliopoulos. Algorithms for computing the lambda-
regularities in strings. Fundamenta Informaticae, 84(1):33–49, 2008. URL: http://content.
iospress.com/articles/fundamenta-informaticae/fi84-1-04.

http://dx.doi.org/10.1007/BF01955677
http://dx.doi.org/10.1145/1217856.1217858
https://mimuw.edu.pl/~kociumaka/files/phd.pdf
http://dx.doi.org/10.1145/3386369
http://dx.doi.org/10.1137/1.9781611973099
http://dx.doi.org/10.1016/j.tcs.2016.11.035
http://dx.doi.org/10.1007/s00453-014-9915-3
http://dx.doi.org/10.1007/s00453-014-9915-3
http://dx.doi.org/10.1137/1.9781611973730.36
http://dx.doi.org/10.1007/s00453-001-0062-2
http://dx.doi.org/10.1016/0196-6774(84)90021-X
http://dx.doi.org/10.1016/0020-0190(94)00045-X
http://dx.doi.org/10.1016/0020-0190(94)00045-X
http://dx.doi.org/10.1016/0020-0190(94)00235-Q
http://dx.doi.org/10.1051/ita/1990240504591
http://dx.doi.org/10.1007/978-3-030-14812-6_33
http://dx.doi.org/10.1007/978-3-030-14812-6_33
http://dx.doi.org/10.1016/0020-0190(83)90075-3
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04

J. Radoszewski and J. Straszyński 77:17

A Supplementary Figure

i i′

d

YES ⇔ d ≤ `

i i′I

YES

i i′I I ′

NO

> ` > `

i i′I

d

a ≥ d

i i′I

d

`− a ≥ d

i i′I I ′

d2
d1

(a ≥ d1) ∨ (`− a ≥ d2)

i i′I

d2 d1

(a ≥ d1) ∧ (`− a ≥ d2)

i i′I I ′

d2 d1

(a ≥ d1) ∧ (`− a ≥ d2)

Figure 5 Sets of constraints C(i, i′) generated depending on the interactions with intervals
I, I ′ ∈ A. The respective rows correspond to items (a)–(c).

ESA 2020

Improved Approximation Algorithm for Set
Multicover with Non-Piercing Regions
Rajiv Raman
IIIT Delhi, India
rajiv@iiitd.ac.in

Saurabh Ray
NYU Abu Dhabi, United Arab Emirates
saurabh.ray@nyu.edu

Abstract
In the Set Multicover problem, we are given a set system (X,S), where X is a finite ground set, and
S is a collection of subsets of X. Each element x ∈ X has a non-negative demand d(x). The goal
is to pick a smallest cardinality sub-collection S ′ of S such that each point is covered by at least
d(x) sets from S ′. In this paper, we study the set multicover problem for set systems defined by
points and non-piercing regions in the plane, which includes disks, pseudodisks, k-admissible regions,
squares, unit height rectangles, homothets of convex sets, upward paths on a tree, etc.

We give a polynomial time (2 + ε)-approximation algorithm for the set multicover problem
(P,R), where P is a set of points with demands, and R is a set of non-piercing regions, as well as
for the set multicover problem (D, P), where D is a set of pseudodisks with demands, and P is a set
of points in the plane, which is the hitting set problem with demands.

2012 ACM Subject Classification Theory of computation → Packing and covering problems; Theory
of computation → Computational geometry

Keywords and phrases Approximation algorithms, geometry, Covering

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.78

Acknowledgements The authors are grateful to Nabil H. Mustafa for ideas and comments.

1 Introduction

The Set Cover problem and its variants are central problems in Computer Science. For
general set systems, tight results are known - there is an O(logn) approximation algorithm
[32] and this is tight under standard complexity assumptions [18]. Over the last decade,
significant progress has been on these problems for geometric set systems in the plane and
in low dimensions. There are broadly two approaches that have been successful in the
geometric setting, viz., LP-rounding based algorithms and local-search. The LP-rounding
approach relies on the existence of small ε-nets, which exist whenever the VC-dimension of
the set system is bounded. Set systems with VC-dimension at most d have ε-nets of size
O(d/ε log 1/ε) [22], and this leads to an O(log |Opt|)-approximation algorithm [5, 17], that
holds even in the weighted setting1. Smaller ε-nets are known when the union complexity
of the set system is small [13], leading to algorithms with better approximation factors,
though not in the weighted setting. Varadarajan [31] showed via the quasi-uniform sampling
technique how these results can be made to work in the weighted setting. His technique
was optimized by Chan, et al. [7] who also introduced the notion of shallow cell complexity
generalizing the notion of union complexity to abstract set systems. Chekuri, et al. [11]
extended the LP-based techniques for set cover to set multicover obtaining an O(log |Opt|)

1 In the weighted setting, the sets have non-negative weights, and the goal is to find a minimum weight
feasible sub-collection, as opposed to the minimum cardinality.

© Rajiv Raman and Saurabh Ray;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 78; pp. 78:1–78:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rajiv@iiitd.ac.in
mailto:saurabh.ray@nyu.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.78
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

78:2 Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions

approximation when the VC dimension is bounded, and better bounds in the case where the
union complexity is bounded. In particular, they obtain O(1)-approximation algorithms when
union complexity is linear. However, their results only hold in the unweighted setting. Bansal
and Pruhs [3] extended the approach based on shallow cell complexity and quasi-uniform
sampling [31, 7] to work for the weighted set multicover problem. The main weakness of these
LP-rounding techniques is that the approximation factor obtained is at least as large as the
integrality gap, which is often large. Furthermore, the constants gained in the approximation
factor during the rounding process is often large. For instance, [11] uses shallow cuttings,
which involves large constants.

A second approach that has been effective for fundamental geometric packing and covering
problems, albeit in the unweighted setting [8, 28, 21, 25, 4, 30] is Local Search. Besides
packing and covering problems, Local Search has also been remarkably successful for several
clustering problems (See [20, 19, 14, 15], and references therein). A drawback of the Local
Search approach is that the running time of the algorithms are prohibitive. In particular,
Mustafa and Jartoux [23] showed that to obtain a (1 + ε)-approximation for the Set Cover
problem with disks, the local search algorithm takes nΩ(1/ε2) time.

The analysis of local search for most of the geometric packing and covering problems
relies on showing the existence of a graph with desired characteristics which is problem
specific, and this is usually the challenging part of the analysis. In [30], Raman and Ray gave
a unified method to obtain such graphs for several packing and covering problems. While
the techniques in [30] can be extended to packing problems with bounded capacities as was
shown in [4], it was not clear how to extend them to the set multicover problem - even with
bounded demands.

Obtaining approximation algorithms that run fast, while simultaneously guaranteeing
small approximation factors is a challenging research direction. Recently, Chekuri et al. [12],
and Chan and He [10], building on the work of Agarwal and Pan [1] have improved the
running times of the LP based algorithms for both packing and covering problems via the
multiplicative weights update framework. In this work, we improve the approximation factor,
but we do not improve the running times of the algorithms. We give a polynomial time
(2 + ε)-approximation algorithm for the Set Multicover problem for non-piercing regions in
the unweighted setting. We obtain the same approximation factor for the multi-hitting set
problem for pseudodisks. Our key observation is that even if the LP relaxation has a large
integrality gap, we can round it without losing more than a (1 + δ) factor so that it meets
all demands with only a constant deficit which depends on the parameter δ. This yields a
problem with low demands for which a PTAS can be obtained via local search. Note that
even the second part of our approach - PTAS for multihitting set problems with bounded
demands, is non-trivial, and builds on tools developed by Raman and Ray [30].

2 Preliminaries

The set multicover problem is defined by a set system (X,S) and a demand function
d : X 7→ R. The task is to select the smallest cardinality subset S ′ of S such that each x ∈ X
is contained in at least d(x) subsets of S ′. We refer to the set X as the ground set and the
elements of S as ranges. For any subset S ′ ⊆ S and any x ∈ X, we denote by S ′(x) the set
of elements in S ′ containing x and we refer to |S ′(x)| as the depth of x in S ′.

We require the notion of shallow-cell complexity defined by Chan et al. [7]. A cell in the
set system (X,S) is a maximal subset X ′ ⊆ X such that the elements of X ′ are contained in
the same collection of ranges in S. We say that a range S ∈ S contains a cell C if S contains

R. Raman and S. Ray 78:3

the elements in C. The depth of a cell C is the number of ranges in S containing C. A set
system has shallow-cell complexity f(n, k) if for any subset S ′ ⊆ S of size n, the number of
cells of depth at most k in (X,S ′) is at most f(n, k). We focus on set systems whose shallow
cell complexity is linear in n and polynomial in k. We say that a set system is c-linear, for
some constant c, if its shallow-cell complexity is O(nkc).

The set systems we study in this paper are defined by a set of points and a set of regions in
the plane. A Jordan region is a compact, simply connected set in the plane whose boundary
is a simple jordan curve. We say that a set R of Jordan regions is a non-piercing family if
for any γ, γ′ ∈ R, γ \ γ′ and γ′ \ γ are both path connected sets. A set of Jordan regions R
is said to be a family of pseudodisks if the boundaries of every pair of regions either do not
intersect or cross (i.e. intersect non-tangentially) at exactly two points. Note that a family
of pseudodisks is also a family of non-piercing regions but not vice-versa.

In this paper, we study two set multicover problems defined by a set of points and a set
of regions in the plane. The first is the set multicover problem in which the ground set is a
finite set P of points in the plane and the ranges are obtained by intersecting P with the
regions in a family R of non-piercing regions. Abusing notation, we denote such set systems
by (P,R). In the second set multicover problem we study, the ground set is a family of
pseudodisks D and each range is the subset of D containing a particular point p in a set of
points P . Again, for simplicity, we denote such a set system by (D, P). This variant of the
set cover problem is usually called the hitting set problem.

3 Our Results

The results of Chekuri et al. [11] imply an O(1)-approximation algorithm for the set multicover
problem for set systems with linear union complexity. Such set systems are c-linear for some
constant c. Bansal and Pruhs [3] guarantee an O(1)-approximation factor for the weighted
set multicover problem defined by a c-linear set system.

Since both the methods above are based on LP-rounding, the approximation factor is
at least as large as the integrality gap. Even for set cover problems (i.e., all demands are
1) defined by very simple geometric regions in the plane, the integrality gap is not known
to be small. For halfspaces in the plane, the integrality gap is 2 [24] which implies that
it is at least 2 for disks as well. Even though no larger lower bound is known, the best
upper bound currently known on the integrality gap for disks is significantly higher: 13.4 [6].
The integrality gap is probably higher when the demands are allowed to be more than 1.
However, we are not aware of any results regarding this. Apart from the integrality gap,
there are additional constant factors that are gained in the process of rounding. While the
exact constants are not analyzed in [11] or [3], they seem to be large. For instance, since
the main tool is used in [3] is the quasi-sampling technique [7, 31], the constant seems to
be at least e4.34362 > 76 (see Claims 2 and 4 of [7]). We do not have accurate estimates
for the constants involved in shallow cuttings used in [11] but we believe that they are not
significantly smaller (and likely to be much larger since they use ε-nets and approximations
for which the known constants are quite large). Our main result is a (2 + ε)-approximation
algorithm for the set multicover problem for points and non-piercing regions in the plane, in
the unweighted setting.

I Theorem 1. The set multicover problem defined by a set system (P,R), where P is a finite
set of points and R is a set of non-piercing regions in the plane with an arbitrary demand
function d : P → R admits a polynomial time (2 + ε)-approximation algorithm for any ε > 0.

ESA 2020

78:4 Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions

The result follows from the following results that we prove in Sections 4 and 5. First,
we show that the set system (P,R) is 2-linear (Lemma 25) and for any set system that is
c-linear for some constant c, we obtain the following result via a simple modification of the
technique of Bansal and Pruhs [3].

I Theorem 2. Let (X,S) be a c-linear set system for some constant c and let m = |S|.
Consider the set multicover problem defined by (X,S) in which each element x ∈ X has a
demand d(x). Let y be any feasible solution to the linear programming relaxation of this
problem i.e., y satisfies the constraints: ∀x ∈ X,

∑
S3x yS ≥ d(x), and let δ ∈ (0, 1) be a

given parameter. Then, we can obtain a subset of ranges S ′ ⊆ S s.t.

(i) ∀x ∈ X, |S ′(x)| ≥ d(x)− 3τ , where τ = Cδ−4 log δ−1 with a large enough C

(ii) |S ′| ≤ (1 +O(δ))
∑
S∈S yS

This shows that the LP solution can be “rounded” without increasing the objective value
much and causing only a constant deficit in the demands. Since the residual demands are
O(1) for any constant δ, we obtain a set multicover problem with bounded demands. We
then show that the set multicover problem with non-piercing regions and bounded demands
has a PTAS via local search.

I Theorem 3. Local Search yields a PTAS for the set multicover problem defined by a set
system (P,R) where P is a set of points and R is a family of non-piercing regions in the
plane and where each point p ∈ P has a demand bounded above by some constant Θ.

We also obtain the same approximation factor in the dual setting, though here we are
currently only able to prove the result when the regions are pseudodisks.

I Theorem 4. Let P be a Set Multicover problem for the set system (D, P) defined by a set
of pseudodisks D and a set of points P in the plane with demand function d : D → R. For
any ε > 0, there is a polynomial time (2 + ε)-approximation algorithm for P.

The result is obtained by showing that the set system (D, P) is 2-linear, which implies
that Theorem 2 can be used to obtain an instance of the set multicover problem where the
demands of the pseudodisks are bounded above by a constant Θ. For these instances, we
show that local search yields a PTAS.

I Theorem 5. Local Search yields a PTAS for the set multicover problem defined by a set
system (D, P) where P is a set of points and D is a family of pseudodisks in the plane and
where each pseudodisk D ∈ D has a demand bounded above by some constant Θ.

Even though the PTASes obtained in Theorems 3 and 5 are not surprising, the proofs are not
trivial. In fact, it would not be surprising if local search yields a PTAS for the set multicover
problem with arbitrary demands. However, we are currently unable to prove such a result.

The paper is organized as follows. In Section 4, we prove Theorem 2. In Subsection 5.1,
we prove Theorem 3, and we prove Theorem 5 in Subsection 5.2. Theorems 1 and 4 are
proved in Section 6.

R. Raman and S. Ray 78:5

4 LP Rounding with bounded deficits

In this section we prove Theorem 2. Consider the set multicover problem defined by a c-linear
set system (X,S) and a demand function d : X 7→ R. The natural linear programming
relaxation for this problem is the following:

min
∑
S∈S

yS s.t. ∀S ∈ S, yS ∈ [0, 1] and ∀x ∈ X,
∑

S3x:S∈S
yS ≥ d(x) (1)

Our goal is to show that given any feasible solution y to the above LP and any δ > 0,
we can find a subset S ′ ⊆ S of size at most (1 + O(δ))

∑
S∈S yS and ∀x ∈ X, |S ′(x)| ≥

d(x)−O(δ−4 log δ−1). We start with a few technical results. The lemma below follows from
the techniques in [7, 31] where similar statements are proved.

I Lemma 6. Let (X,S) be a c-linear set system and let m = |S|. Then, there exists an
ordering S1, · · · , Sm of the ranges in S s.t. in the set system (X,Si) where Si = {S1, · · · , Si},
the range Si contains at most O(kc+3) cells of depth at most k, for any k.

Proof. We assign a weight to each cell in (X,S) depending on its depth. A cell of depth
k is assigned a weight of 1/kc+3. We define the weight of a range to be the total weight of
all the cells it contains. Since there are at most O(mkc) cells of depth k (since (X,S) is
c-linear), the total weight of all cells of depth k is at most O(m/k3). Since each cell of depth
k contributes to the weight of k ranges in S, the contribution of the depth k cells to the
total weight of all ranges is O(m/k2). The total weight of all ranges is therefore at most
O(m)

∑m
k=1 k

−2 = O(m). This implies that there is a range S ∈ S whose weight is O(1)
which in turn implies that for any k, the number of depth k cells in S is at most O(kc+3).
We recursively find the ordering of (X,S \ {S}). The ordering for (X,S) is obtained by
appending S to the ordering for (X,S \ {S}). The lemma follows. J

I Definition 7 (Weighted Depth). Let (X,S) be a set system. Let w(S) ≥ 0 be a weight
associated with each range S ∈ S. Then, for any element x ∈ X, we denote by wS(x) the
total weight of the ranges in S containing x. We call this the weighted depth of the element x
with respect to the ranges in S and the weight function w.

I Lemma 8 (Weighted Sampling Procedure). Let (X,S) be a c-linear set system for some
constant c and let m = |S|. Let w(S) ∈ [0.5, 1.0] be a weight associated with each S ∈ S and
let δ ∈ (0, 1) be a parameter. Then, there is a polynomial time procedure to pick a subset
S ′ ⊆ S s.t.
(i) |S ′| ≤ (1 +O(δ))W where W =

∑
S∈S w(S), and

(ii) for any element x ∈ X : |S ′(x)| ≥ wS(x)−τ where τ = Cδ−3 log δ−1 for a large enough
constant C.

Proof. The set S ′ is unweighted but we can think of each range in S ′ as having weight 1.
This means that any range S ∈ S with weight ≥ 1 − δ can be safely included in S ′ since
this way we are increasing its weight by at most a factor of 1 +O(δ). We will thus assume
without loss of generality that all ranges in S have weight at most 1− δ. We will show that
a procedure similar to the quasi-uniform sampling procedure [31, 7] can be used to pick each
range S ∈ S into S ′ with probability at most (1 +O(δ))w(S) s.t. the second condition in
the lemma is satisfied. Then, the expected number of ranges in S ′ is at most (1 +O(δ))W .

Now, by Markov inequality, the probability that |S ′| exceeds its expectation by a factor
of more than (1 + δ) is at most 1/(1 + δ) which means that the with probability Ω(δ), |S ′| is
(1 +O(δ))W . We can therefore repeat the process O(1/δ) times in expectation to obtain the
desired collection S ′ of sets.

ESA 2020

78:6 Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions

Our sampling procedure has two stages. In the first stage, we pick a sample T ⊆ S
by picking each range S ∈ S independently with probability w(S)/(1 − δ) ∈ [0, 1]. In the
second stage, we pick another sample T ′ ⊆ S s.t. each range is picked with a probability
O(δ) = O(w(S) · δ) but whether or not a range is picked depends on the outcome of the first
stage. We set S ′ = T ∪ T ′. The probability that a particular range S ∈ S is included in S ′
is at most w(S)/(1− δ) +O(w(S) · δ) = w(S)(1 +O(δ)) as required.

Let S1, · · · , Sm be the ordering of the ranges in S given by Lemma 6. Let Si =
{S1, · · · , Si} and let Ti = T ∩ Si denote the subset of the ranges in Si picked in the
first stage. The range Si is picked in the second stage if it is forced by an element x ∈ X
which happens if k = wS(x) ≥ τ , ki = wSi

(x) ≥ δk and si = |Ti(x)| < ki. In words, Si is
forced by x if i) x has high weighted depth (at least τ) w.r.t. the ranges in S, ii) the ranges
in Si contribute at least δ fraction of the total weight of the ranges in S containing x and iii)
fewer than wSi(x) ranges among the ranges in Si containing x are sampled in the first stage.

Note that the second stage guarantees that the second condition in the lemma is satisfied
for all elements in X. We now bound the probability that Si is forced by x. Since each range
S ∈ S is picked independently with probability w(S)/(1− δ) in the first stage, the expected
value of si is µ = ki(1 − δ) and by Chernoff bound, Pr(si < ki) = Pr(si < (1 − δ)µ) ≤
exp(−µδ2/2) ≤ exp(−kiδ2/2) ≤ k

−(c+5)
i since ki ≥ δk ≥ δτ = Cδ−2 log δ−1 which for large

enough C implies that kiδ2/2 ≥ (c+ 5) log ki.
Thus, we have shown that the probability that the range Si is forced by a particular

element x having weighted depth ki w.r.t. Si is at most k−(c+5)
i . However Si may be forced

by many elements in X. To bound the probability that Si is forced (by some element), first
note that all elements lying in the same cell of (X,Si) behave identically i.e., they all either
force Si or don’t force Si. Thus, we only need to consider elements in distinct cells of (X,Si).
By Lemma 6, for any t ≥ 1, Si contains at most O(tc+3) cells of depth t in (X,Si). Since each
range S ∈ S has a weight w(S) ≥ 0.5, it follows that if an element of X has (unweighted)
depth t, then its weighted depth is at least t/2. Thus, the probability that Si is forced by
elements in X of depth t w.r.t. Si is at most O(tc+3) ·O(t−(c+5)) = O(t−2). Since the second
condition in the lemma is trivially satisfied for elements having weighted depth at most τ in
(X,S), we are concerned only with elements having weighted depth k ≥ τ in (X,S), and any
such an element can force Si only if its weighted depth in (X,Si) is at least δk ≥ δτ , the
probability that Si is forced (by some element) is at most

∑∞
t=δτ O(t−2) = O(1/(δτ)) = O(δ).

The lemma follows. J

The following is an unweighted version of the above lemma.

I Lemma 9 (Unweighted Sampling Procedure). Let (X,S) be a c-linear set system and let
m = |S|. Let ∆ be a large enough parameter. Then, there is a procedure to pick a subset
S ′ ⊆ S s.t.
(i) |S ′| ≤ (1 +O(4

√
(log ∆)/∆) |S|/2 and

(ii) any element x ∈ X having depth k ≥ ∆ in S, has depth at least k/2 in S ′.

Proof. The lemma follows from a straightforward application of Lemma 8 with parameter
δ = α 4

√
(log ∆)/∆ for a small enough constant α s.t. ∆ ≥ 2

δ C δ
−3 log δ−1 where C is the

constant in Lemma 8 and setting the weight of each range in S to 0.5(1 + δ). J

We now restate and prove Theorem 2.

R. Raman and S. Ray 78:7

I Theorem 2. Let (X,S) be a c-linear set system for some constant c and let m = |S|.
Consider the set multicover problem defined by (X,S) in which each element x ∈ X has a
demand d(x). Let y be any feasible solution to the linear programming relaxation of this
problem i.e., y satisfies the constraints: ∀x ∈ X,

∑
S3x yS ≥ d(x), and let δ ∈ (0, 1) be a

given parameter. Then, we can obtain a subset of ranges S ′ ⊆ S s.t.
(i) ∀x ∈ X, |S ′(x)| ≥ d(x)− 3τ , where τ = Cδ−4 log δ−1 with a large enough C
(ii) |S ′| ≤ (1 +O(δ))

∑
S∈S yS

Proof. Since condition (i) in the lemma is trivially satisfied for elements with demand at
most 3τ , we can assume without loss of generality that each element has demand more
than 3τ . We associate a value vS with each range S ∈ S. Initially vS = yS . The proof is
constructive, and consists of two phases. The first phase consists of several rounds in which
we modify the values of the ranges so that they are either 0 or lie in the interval [0.5, 1]. In a
second phase we pick each range S ∈ S into S ′ with probability equal to the value vS at the
end of the first phase.

In the first phase we maintain a partition of the set of ranges S into two sets F and N
where F is the set of frozen ranges whose values are either 0 or in the interval [0.5, 1] and
N = D \ F is the set of non-frozen ranges. We do not modify the value of any range in F
which means that once a range is in F , it remains in F . We continue to modify the values of
the ranges in N until all of them move to F .

The first phase has several rounds. At the beginning of the first round, each range S
has value yS . The total value of all ranges at this time is

∑
S∈S yS . We replace each range

S ∈ N by bm · ySc replicas where each replica has value λ1 = 1/m. The value of a range S
is now the product of the number of replicas and the replica value. Note that the total value
of any particular range decreases by at most 1/m due to this and therefore for each element
x ∈ X, we have

∑
S3x:S∈S vS ≥ d(x)− 1 i.e., v satisfies the demands with a deficit of ≤ 1.

At the beginning of round i, each replica has value λi = 2i−1/m. Note that the replica
values are uniform in any round and we double the replica value in each round. In round i, we
use the unweighted sampling procedure (Lemma 9) with the parameter ∆ set to ∆i = τ/λi
to obtain a subset of the replicas that go to the round i+ 1. Note that the value of a frozen
range is not modified by this procedure. The value of a non-frozen range changes according
to the number of its replicas that make it to the next round. In particular, if a range has
lost all its replicas, then its value becomes 0 and is frozen. Similarly, a range is frozen if the
total value of its replicas becomes at least 0.5. The number of rounds is less than log2m

since after so many rounds each replica has value at least 0.5.
Let vS be the value of range S after the first phase. We claim that v satisfies ∀x ∈ X :∑
S∈S vS ≥ d(x) − 2τ . To see this, consider any element x ∈ X and let us say that x is

satisfied at any point in time if the total value of the ranges containing it is at least its
demand minus 1 i.e.,

∑
S3x vS =

∑
S3x:S∈N vS +

∑
S3x:S∈F vS ≥ d(x)− 1. Note that x is

satisfied at the beginning of round 1. Furthermore, if x is satisfied at the beginning of round
i and in addition

∑
x3S:S∈N vS ≥ τ , then it is also satisfied after round i. This follows since

every replica has value λi in round i, which means that if x’s depth in the arrangement of
the replicas is k then k ≥ ∆i = τ/λi and Lemma 9 guarantees that its depth with respect to
the replicas after round i is at least k/2. Recall that replica weights are doubled in every
round which compensates for the decrease in the number of replicas covering x. Thus, if
x is satisfied at the beginning of round i, then the only way it can be dissatisfied at the
end of the round is if at the beginning of the round,

∑
S3x:S∈N vS < τ which means that∑

S3x:S∈F vS ≥ d(x)− τ − 1 ≥ d(x)− 2τ . Since we don’t modify the value of any range once
it enters the set F , this inequality is satisfied at the end of the first phase too.

ESA 2020

78:8 Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions

We now argue that at the end of the first phase:
∑
S∈S vS ≤ (1 +O(δ))

∑
S∈S yS . To see

this note that, by Lemma 9, the total value of the ranges in S increases, by a factor of at
most 1 +O(4

√
(log ∆i)/∆i) in round i. Therefore, the total value of all ranges increases in

the first phase by a factor of at most

t∏
i=1

(
1 +O

(
4

√
log ∆i

∆i

))
≤ exp

[
O

(
t∑
i=1

4

√
log ∆i

∆i

)]
≤ exp

[
O

(
4

√
log ∆t

∆t

)]
≤ (1+O(δ))

where t < log2m is the number of rounds. The second last inequality above follows from
the fact that 4

√
(log ∆i)/∆i increases geometrically with i since ∆i = τm/2i−1 decreases

geometrically with i. The last inequality follows from the fact that t < log2m, which means
that ∆t < τ .

Recall that at the end of the first phase, the value of each range is either 0 or lies in
the range [0.5, 1]. In the second phase, we apply Lemma 8 to the ranges having a non-zero
value vS ∈ [0.5, 1] at the end of the first phase with the weight function w(S) = vS and the
parameter δ. Since every element x ∈ X is assumed to have demand at least 3τ , its weighted
depth k with respect to the weight function w is least d(x)−2τ ≥ τ . Lemma 8 then guarantees
that its unweighted depth with respect to the set of ranges S ′ returned by Lemma 8 is also at
least k. Thus S ′ satisfies the first condition in the lemma. It also satisfies the second condition
in the lemma since Lemma 8 guarantees that |S ′| ≤ (1 + O(δ))

∑
S∈S vS which is at most

(1+O(δ))
∑
S∈S yS since we had established earlier that

∑
S∈S vS ≤ (1+O(δ))

∑
S∈S yS . J

5 Set Multicover with bounded demands

Consider the set multicover problem defined by a set system (X,S) and a demand function
d s.t. for each element x ∈ X, d(x) is bounded above by a constant Θ. We will show that
a standard local search algorithm (see e.g. [2, 9, 28, 30] for details) yields a PTAS for this
problem when X is a set of points and S is a set of non-piercing regions in the plane, or
when X is a set of pseudodisks and S is a set of points in the plane. The algorithm takes as
input a parameter k and starting with any feasible solution it tries to improve the solution
by making swaps of size at most k and stops when no such improvement is possible.

In order to show that such a local search algorithm yields a PTAS, we consider an optimal
solution R to the problem and a solution B returned by the local search algorithm. We
want to show that |B| ≤ (1 + ε(k)) |R| where ε(k)→ 0 as k →∞. We can assume without
loss of generality that R and B are disjoint by removing the set S = R ∩B from both and
considering the problem with residual demands where the residual demand of any element
x ∈ X is d(x)− |S(x)|. Note that the residual demands are still bounded above by Θ and if
|B \ S| ≤ (1 + ε(k)) |R \ S| then it follows that |B| ≤ (1 + ε(k)) |R|.

By standard arguments [2, 9, 28, 30], it then suffices to show that there exists a graph
G = (R ∪B,E) satisfying the following local search conditions:
1. For any B′ ⊆ B, (B \ B′) ∪ N(B′) is a feasible solution, where N(B′) is the set of

neighbors of B′ in the graph G. We call this the local exchange property.
2. The graph has the sublinear separator property (see Definition 10).

I Definition 10 (Sublinear Separator Property). We say that a graph H satisfies the sublinear
separator property if there exist 0 < α, δ < 1 s.t. for any induced subgraph H ′ of H with
vertex set V (H ′), there is a vertex separator S ⊂ V (H ′) so that |S| = O(|V (H ′)|δ), and each
connected component of H ′ \ S is of size at most α|V (H ′)|.

R. Raman and S. Ray 78:9

In all applications of this technique so far, the critical part has been showing the existence
of such a graph, which is what we now focus on. Instead of the local exchange property, we
will use the following local expansion property which implies the local exchange property.

I Definition 11 (Local Expansion). Let R and B be two feasible solutions for a set multicover
problem defined by a set system (X,S) and a demand function d. We say that a graph
G = (R ∪B,E) satisfies the local expansion property with respect to (X,R ∪B) if for every
x ∈ X at least one of the following statements hold:

There are at least d(x) elements in R(x) that have d(x) or more neighbors in B(x).
There are at least d(x) elements in B(x) that have d(x) or more neighbors in R(x).

Here, by “neighbors” we mean neighbors in the graph G.

I Proposition 12. Let R and B be two feasible solutions to the set multicover problem
defined by a set system (X,S) and a demand function d. Then, any graph G = (R ∪B,E)
satisfying the local expansion property with respect to (X,R ∪ B) also satisfies the local
exchange property (i.e., local search condition 1).

Proof. Consider any x ∈ X. The local expansion property implies that the subgraph of G
induced on R(x) ∪B(x) contains a matching of size d(x). Let U ⊆ R(x) and V ⊆ B(x) be
the matched elements. Suppose that we replace B by (B \ B′) ∪N(B′) for some B′ ⊆ B.
Then we may lose k ≤ d(x) of elements of V but we gain at least an equal number of elements
from U due to the matching. This implies that (B \B′) ∪N(B′) still satisfies x’s demand.
Since this is true for any x ∈ X, (B \B′) ∪N(B′) is a feasible solution. J

Observe that the intersection graph I(R ∪B) of the ranges in R ∪B in which two ranges
are adjacent iff they share an element of X, has the local expansion property and therefore
satisfies the local exchange property. However, the intersection graph may not satisfy the
sublinear separator property. The next two lemmas show that for the geometric sets systems
we consider, the intersection graph does satisfy the sublinear separator property if the depth
of each cell in the set system is bounded above by a constant.

I Lemma 13. Let R be a family of n non-piercing regions. Then, the number of pairs of
regions in R that intersect at a point of depth 2 in the arrangement A(R) of R is at most
3n− 6.

Proof. Let G = (R, E) be the planar graph obtained from part 1 of Theorem 20. There
must be an edge in G between any two regions in R that intersect at a point of depth 2 in
A(R). The lemma follows from the fact that a planar graph with n vertices has at most
3n− 6 edges. J

I Lemma 14. Let R be a family of n non-piercing regions whose arrangement has depth at
most ∆. Then, there exists a set Q of O(∆n) points in the plane s.t. any intersecting pair
of regions in R also intersect at one the points in Q.

Proof. We assume that ∆ ≥ 2 as otherwise no pair of regions in R intersect. Let Q be a
minimal set of points so that any pair of intersecting regions in R also intersect at some point
in Q. Since Q is minimal, for each q ∈ Q, there must be two regions Aq and Bq in R which
intersect at q but don’t intersect at any other point in Q. Suppose now that we take a sample
R′ of R by picking each region in R independently with probability p = 1/∆. Since any point
q ∈ Q is contained in at most ∆ regions in R, the probability that we pick Aq and Bq in our
sample but do not pick any other regions containing q is at least p2(1− p)∆−2 ≥ 1/(e∆)2.
The expected number of points in Q for which this happens is at least |Q|/(e∆)2. Each such

ESA 2020

78:10 Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions

point q corresponds to a distinct pair of regions in R′ intersecting at a point of depth 2 (in
the arrangement of R′). Since the expected number of regions in R′ is pn = n/∆, and there
can be at most 3|R′| pairs of regions in R′ that intersect at a point of depth 2, by Lemma
13, we conclude that |Q|/(e∆)2 ≤ 3n/∆ which implies that |Q| ≤ 3e2∆n. J

I Lemma 15. Let H = (V,E) be a planar graph and let T be a set of subsets of V s.t. i) for
each T ∈ T the subgraph H[T] of H induced by T is connected and ii) each vertex v ∈ V is
contained in at most ∆ of the sets in T , where ∆ is a constant. Then, the intersection graph
of the sets in any S ⊆ T has a balanced separator of size O(∆

√
|W |), where W = ∪S∈SS. In

other words, the intersection graph of the sets in T satisfies the sublinear separator property.

Proof. Fix any S ⊆ T . We assign a weight w(v) to each vertex v ∈ W as follows: each
set S ∈ S has a weight of 1 and it distributes it equally among all the vertices it contains.
More precisely, w(v) =

∑
S∈S:v∈S 1/|S|. Note that the total weight of all vertices is |S|. Let

X ⊆ W be a balanced vertex separator of G = H[W] of size O(
√
|W |) so that the total

weight of the vertices in each connected component of G[W \X] is at most α |S| for some
α < 1. The fact that such a separator exists follows from the fact that H[W] is planar and
the planar graph separator theorem [27].

Let X = {S ∈ S : S ∩X 6= ∅}. As each vertex in X is contained in at most ∆ sets in S,
|X | ≤ ∆|X| = O(∆

√
|W |). Since each set S ∈ S induces a connected subgraph of H, X is a

separator for the intersection graph I of the sets in S. Furthermore, it is balanced since each
connected component of I[S \ X] corresponds to a connected component of H[W \X] and
since the total weight of all vertices in the latter is at most αn, the number of sets in the
former is also at most αn. J

I Lemma 16. Let R be a family of n non-piercing regions in the plane whose arrangement
has depth at most ∆, where ∆ is a constant. Then the intersection graph of the regions in R
has the sublinear separator property.

Proof. Let Q be a set of O(∆n) points obtained by applying Lemma 14. By Theorem 20,
there is a planar graph H = (Q,F), such that for any region R ∈ R, the induced subgraph
H[QR], where QR = R ∩ Q, is connected. Since every pair of intersecting regions in R
intersect at some point in Q, the intersection graph of the sets in S = {QR : R ∈ R} is
isomorphic to the intersection graph of the regions in R. Further, since the arrangement of
the regions has depth ∆, no vertex of H is contained in more than ∆ sets in S. Therefore,
the Lemma follows from the application of Lemma 15 to H and S. J

I Lemma 17. Let (D, P) be a set system defined by a set P of n points and a set D of
pseudodisks in the plane. Then, the number of pairs of points (p, q) that lie in a common cell
of depth 2 in (D, P) (i.e., there is a pseudodisk D ∈ D s.t. D = {p, q}) is at most 3n− 6.

Proof. The proof is the same as the proof of Lemma 13 except that we use part 2 of
Theorem 20 instead of part 1. J

I Lemma 18. Let P be a set of n points and let D be a family of pseudodisks in the plane
s.t. for each D ∈ D, |D ∩P | ≤ ∆. Then, there exists a subset D′ ⊆ D of size O(∆n) s.t. any
pair of points in P that belong to a common pseudodisk in D ∈ D also belong to a common
pseudodisk D′ ∈ D′.

Proof. The proof is identical to the proof of Lemma 14 except that we use Lemma 17 instead
of Lemma 13. J

R. Raman and S. Ray 78:11

I Lemma 19. Let P be a set of points and let D be a family of pseudodisks in the plane
such that for any D ∈ D, |D ∩ P | ≤ ∆ for some constant ∆. Then, the graph G(P,E) in
which two points p, q ∈ P are adjacent iff there is a pseudodisk D ∈ D containing both p and
q, has the sublinear separator property.

Proof. The proof is identical to the proof of Lemma 16, except that we use Lemma 18
instead of Lemma 14. J

In order to use the above lemmas, we need to modify a given set system (X,R ∪B) so
that each cell in it has bounded depth. We also require the following result which follows
from Theorem 1 in [30].

I Theorem 20 ([30]). Let R be any family of non-piercing regions in the plane, and let P
be any finite set of points in the plane. Then,
1. There exists a planar graph G = (R, E) s.t. for each point p ∈ R2, the subgraph of G

induced by the regions containing p is connected.
2. There exists a planar graph H = (P,E′) s.t. for each γ ∈ R, the subgraph of H induced

by γ ∩ P is connected.

5.1 Points and Non-Piercing regions
In this subsection, we prove Theorem 3. Consider the set multicover problem defined by a set
system (P,R) where P is a set of points and R is a family of non-piercing regions in the plane,
and in which the demand d(p) of each point is at most Θ. As before, R,B ⊆ R represent
an optimal solution and a solution returned by the local search algorithm respectively.
Furthermore, as argue before, we can assume without loss of generality that R ∩B = ∅. We
will show the existence of a graph G = (R ∪ B,E) satisfying the local search conditions,
implying a PTAS for this problem.

We first need a technical tool from [30] for modifying the regions so that the arrangement
of the modified regions has bounded depth. A maximal cell in an arrangement of regions in
the plane is a cell whose depth is higher than all neighboring cells.

I Definition 21 (Cell Bypassing [30]). Let R be a non-piercing family of regions. Let γ ∈ R
be one of the regions and let C be a maximal cell contained in γ so that that the boundary of γ
contributes exactly one arc to the boundary of C. Then, if we modified γ to γ′ = γ \ (C⊕Kε),
the resulting set of regions remains a non-piercing family. Here ⊕ denotes Minkowski sum
and Kε is a disk of arbitrarily small radius ε.

We refer to the modification of γ to γ′ in the above theorem as the “bypassing of C by γ”.
Note that the modified region γ′ ≈ γ \ C since ε is arbitrarily small.

I Lemma 22. There exists a graph G = (R ∪B,E) that satisfies the local search conditions
with respect to the set system (P,R).

Proof. We will construct a graph that satisfies the local expansion property at every point
p ∈ P and has the sublinear separator property. In fact, we will make the first condition
stronger: we require the local expansion property to be satisfied at every point in the plane.
In other words, we replace P by R2 and for each point q ∈ R2, we define the demand d(q)
as min(|R(q)|, |B(q)|,Θ). Note that R and B are still feasible solutions to this modified
problem and a graph G = (R ∪B,E) satisfying the local expansion property with respect to
(R2, R ∪B) also satisfies the property with respect to (P,R ∪B).

ESA 2020

78:12 Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions

If the depth of the arrangement of R∪B is at most 2Θ, then we can simply use Lemma 16
to obtain the required graph G. Otherwise, consider a cell C of maximum depth. By the
results in [30], there exists a region γ ∈ R ∪ B that contributes exactly one arc to the
boundary of C. Our plan is to modify γ so that it bypasses C in order to reduce the depth
of the cell C.

For convenience, we will refer to the regions in R and B as red and blue respectively. We
will use the following slightly modified version of the cell bypassing procedure: The process
remains the same as before except when the cell C to be bypassed consists of just one side
i.e., it is identical to one of the regions. In such a case, the usual cell bypassing procedure
removes the region. Instead, we do the following: if the points in the region are contained in
more than Θ regions of its color, then we remove the region as before. Otherwise, if the point
is contained in exactly Θ regions of its color (including itself), we keep the region but make
it inactive so that this region does not participate in any further cell bypassing. Initially,
all regions are defined to be active. Note that since an inactive region lies in the interior
of a cell in the arrangement of the remaining active regions, it does not affect further cell
bypassing. Only a cell defined by active regions is bypassed. All inactive regions lie in the
interior of some cell in the arrangement of the active regions.

Let C be a cell of maximum depth in the arrangement of the active regions in R ∪B and
suppose that this cell is contained in at least Θ + 1 active regions of some color (either red
or blue). Let us assume that it is contained in at least Θ + 1 active blue regions. The other
case is analogous. We will argue that a graph satisfying the local expansion property for the
modified red and blue regions obtained after bypassing C by one of the active regions also
satisfies the condition for the original regions. To see this, consider any point p in the cell
C that we are about to bypass in the arrangement of the active regions. The point p may
be contained in some of the inactive regions contained in C apart from the active regions
containing C. However, p cannot be contained in any inactive blue region β since that would
mean that p was contained in at most Θ blue regions when β became inactive and is now
contained in more than Θ blue regions (by assumption). Since cell bypassing only contracts
regions, this is impossible.

Let γ be the region bypassing C. If γ is blue, note that p is still contained in at least
Θ ≥ d(p) blue regions after bypassing. Therefore, a graph satisfying the local expansion
property for p in the arrangement of the modified regions also satisfies the condition in the
arrangement of the original regions.

Consider now the case when γ is red. Let C ′ be a cell contained in γ and adjacent to C in
the original arrangement of the active regions. Let q be a point in C ′ that is not contained in
any of the inactive regions. Note that the set of red regions that contain at least one of the
points in {p, q} after bypassing is the same as the set of regions containing p before bypassing.
Furthermore, both p and q are contained in the same set of blue regions before and after
bypassing. Thus, a graph satisfying the locality preserving condition for the points p and q
in the modified arrangement also satisfies the condition for p in the original arrangement.

Each cell-bypassing operation either decreases the maximum depth of the arrangement of
the active regions, or decreases the number of cells of maximum depth in that arrangement.
Therefore, we eventually obtain an arrangement where the maximum number of blue or red
regions containing any cell in the arrangement of active regions is at most Θ. At this point,
the number of active or inactive regions of the same color containing any point in the plane
is at most Θ. Thus the depth of the arrangement of all active and inactive regions is at most
2Θ. We can now obtain the required graph using Lemma 16. J

Theorem 3 now follows from the discussions above.

R. Raman and S. Ray 78:13

5.2 Pseudodisks and Points
In this subsection, we prove Theorem 5. Consider a set multicover problem defined by the set
system (D, P) where P is set of points and D is a family of non-piercing regions in the plane,
and in which each pseudodisk D ∈ D has a demand bounded above by Θ. As earlier, let
R,B ⊆ P represent an optimal solution and a solution yielded by the local search algorithm
respectively. Also, without loss of generality, R ∩B = ∅.

I Lemma 23. There exists a graph G = (R ∪B,E) that satisfies the local search conditions
with respect to the set system (D, P).

In order to prove Lemma 23, we will use the following result of Pinchasi [29].

I Lemma 24 ([29]). Let D be a set of pseudodisks in the plane. For any specified D ∈ D
and any point q ∈ D, we can continuously shrink D to q so that the arrangement at any time
remains an arrangement of pseudodisks.

Proof of Lemma 23. If every pseudodisk in D contains at most 2Θ points of P , then we
can use Lemma 19 to obtain the required graph. Now, consider any pseudodisk D ∈ D
containing more than 2Θ points of P . Then, D must contain either > d(D) points of B or
> d(D) points of R. Using Lemma 24, we first shrink D to D′ as follows: we pick any point
p ∈ D ∩ (R ∪B) and imagine continuously shrinking D to the point p. During the shrinking,
we stop as soon as |D ∩ R| = d(D) or |D ∩ B| = d(D). We call this modified region D′.
Lemma 24 guarantees that the arrangement obtained by replacing D by D′ is still a family
of pseudodisks.

Note that both |D′ ∩B| and |D′ ∩R| are at least d(D) and one of them is equal to d(D).
Assume that |D′ ∩B| = d(D), the other case being analogous. Then, one by one, for every
b ∈ D′ ∩B, we imagine shrinking a copy of D′ continuously to the point b and stop when the
region contains exactly d(D) points of R. We call this region Db and add it to the collection
D. Again by Lemma 24 we can do this so that the arrangement remains an arrangement of
pseudodisks. Finally, we remove the pseudodisk D from the collection D. Observe that each
of the regions added to the collection contain at most d(D) points of R and at most d(D)
points of B.

This entire procedure is repeated for each pseudodisk D ∈ D containing more than 2Θ
points. Let D′ be the collection of regions obtained in the end. We now claim that a graph
G = (R ∪ B,E) satisfying the local expansion property with respect to (D′, R ∪ B) also
satisfies the local expansion property with respect to (D, R ∪B).

To see this, observe that if a pseudodisk D ∈ D is still in D′, then a graph that satisfies
the local expansion property with respect to (D, R ∪ B) also satisfies the condition for D.
On the other hand, if D was removed i.e., D /∈ D′, then one of the following holds:

There are at least d(D) points b ∈ B ∩D for each of which we have added a pseudodisk
Db contained in D s.t. Db contains |d(D)| points of R ∩D
There are at least d(D) points r ∈ R ∩D for each of which we have added a pseudodisk
Dr contained in D s.t. Dr contains |d(D)| points of B ∩D.

Assume the first case holds for a pseudodisk D removed from D. The second case is
analogous. Then, since each region Db added has exactly d(D) points of R, in any graph G
that satisfies the local expansion property with respect to (D′, R ∪B), the point b must be
adjacent to all of the points in R ∩Db ⊆ D. Since we have added such a pseudodisk Db for
at least d(D) points in B ∩D, we have at least d(D) points B ∩D each of which has at least

ESA 2020

78:14 Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions

d(D) neighbors in R ∩D. Thus, G satisfies the local expansion property with respect to
(D, R ∪B). Now, since each D ∈ D′ has at most 2Θ points of R ∪B, Lemma 19 yields the
required graph G that satisfies the local search conditions with respect to (D, R ∪B). J

Theorem 5 follows from the discussions above.

6 (2 + ε)-Approximation Algorithms

In this section, we prove Theorems 1 and 4, which require the following lemmas,

I Lemma 25. The set system (P,R) where P is a set of points and R is a non-piercing
family is 2-linear.

Proof. By Theorem 20 of [30], there is a planar support for the dual set system (R, P) i.e.,
there is a planar graph H = (R, E) s.t. for any p ∈ P , the set of regions R(p) induce a
connected subgraph of H. Since H has O(m) edges where m = |R|, the number of cells of
depth 2 in (P,R) is O(m). By a standard Clarkson-Shor type argument, this shows that the
number of cells of depth at most k is O(mk2). J

Note that a family of non-piercing regions may not have linear union complexity but the
set system (P,R) still has a low shallow cell complexity.

I Lemma 26. The set system (D, P) where D is a set of pseudodisks and P is a set of points
in the plane is 2-linear.

Proof. By Theorem 20 of [30], there is a planar support for the dual set system (P,D) i.e.,
there is a planar graph H = (P,E) s.t. for any D ∈ D, the induced subgraph on the points
in D is connected. Since H has O(m) edges where m = |P |, the number of cells of depth 2
in (P,D) is O(m). By a standard Clarkson-Shor type argument, this shows that the number
of cells of depth at most k is O(mk2). J

Proof of Theorem 1. We solve the LP-relaxation (1) for the multicover problem, and obtain
a solution y, with objective value

∑
D∈R yD ≤ |Opt| where Opt is an optimal solution to the

given set multicover problem. By Lemma 25, the set system (P,R) is 2-linear, and therefore
we can use Theorem 2 to obtain a subset R′ ⊆ R of size at most (1 + O(δ))

∑
D∈R yD ≤

(1 + O(δ)) |Opt|, which satisfies the demands of the points in p with a deficit of at most
Θ = O(δ−4 log δ−1). We then consider the problem with the residual demands in which all
the demands are at most Θ. For this problem, we obtain a solution R′′ ⊆ R of size at most
(1 +O(δ)) |Opt| using Theorem 3. Then, R′ ∪R′′ is a solution to the set multicover and has
size at most (2 +O(δ)) |Opt|. By taking δ = αε for some suitably small constant α > 0, we
get a (2 + ε)-approximation to the optimal solution. J

Proof of Theorem 4. The proof is exactly the same as the proof of Theorem 1 except that
we use Lemma 26 instead of Lemma 25 and Theorem 5 instead of Theorem 3. J

7 Conclusion

In this paper, we made progress on the Set Multicover in the geometric setting. We obtained
a (2 + ε) approximation by combining LP-rounding and local search. We believe that local
search itself yields a PTAS for the problem with arbitrary demands. Unfortunately we are
currently able to prove that local search yields a PTAS only when the demands bounded
above by a constant. Our approach does not work for the weighted setting since local search

R. Raman and S. Ray 78:15

thus far works only for the unweighted setting. It is likely that a dynamic programming
approach similar to [26, 16] can give a PTAS for the weighted set multicover problem for unit
size disks and squares in the plane. Obtaining a PTAS for the problem with arbitrary size
squares or disks seems challenging even for the set cover problem. Even with the improved
approximation factor, our algorithm remains infeasible in practice due to the prohibitive
running time (npoly(1/ε)) of the local search algorithm.

References
1 Pankaj K. Agarwal and Jiangwei Pan. Near-linear algorithms for geometric hitting sets and set

covers. Discret. Comput. Geom., 63(2):460–482, 2020. doi:10.1007/s00454-019-00099-6.
2 Rom Aschner, Matthew J. Katz, Gila Morgenstern, and Yelena Yuditsky. Approximation

schemes for covering and packing. In WALCOM: Algorithms and Computation, volume 7748
of Lecture Notes in Computer Science, pages 89–100. Springer Berlin Heidelberg, 2013.

3 Nikhil Bansal and Kirk Pruhs. Weighted geometric set multi-cover via quasi-uniform sampling.
JoCG, 7(1):221–236, 2016.

4 Aniket Basu Roy, Sathish Govindarajan, Rajiv Raman, and Saurabh Ray. Packing and
covering with non-piercing regions. Discrete & Computational Geometry, 2018.

5 Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite vc-dimension.
Discrete & Computational Geometry, 14(4):463–479, 1995.

6 Norbert Bus, Shashwat Garg, Nabil H. Mustafa, and Saurabh Ray. Tighter estimates for
ε-nets for disks. Comput. Geom., 53:27–35, 2016. doi:10.1016/j.comgeo.2015.12.002.

7 Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capacit-
ated, priority, and geometric set cover via improved quasi-uniform sampling. In Proceedings of
the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages
1576–1585, 2012.

8 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012.

9 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012. doi:10.1007/
s00454-012-9417-5.

10 Timothy M. Chan and Qizheng He. Faster approximation algorithms for geometric set cover.
CoRR, abs/2003.13420, 2020. arXiv:2003.13420.

11 Chandra Chekuri, Kenneth L. Clarkson, and Sariel Har-Peled. On the set multicover problem
in geometric settings. ACM Trans. Algorithms, 9(1):9:1–9:17, 2012. doi:10.1145/2390176.
2390185.

12 Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast lp-based approximations for
geometric packing and covering problems. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1019–1038. SIAM, 2020. doi:10.1137/1.9781611975994.62.

13 Kenneth L. Clarkson and Kasturi R. Varadarajan. Improved approximation algorithms for
geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007. doi:10.1007/
s00454-006-1273-8.

14 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J. Comput.,
48(2):644–667, 2019. doi:10.1137/17M112717X.

15 Vincent Cohen-Addad and Claire Mathieu. Effectiveness of local search for geometric optimiz-
ation. In Proceedings of the Thirty-first International Symposium on Computational Geometry,
SoCG ’15, pages 329–343, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

16 Thomas Erlebach and Erik Jan van Leeuwen. PTAS for weighted set cover on unit squares. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
13th International Workshop, APPROX 2010, and 14th International Workshop, RANDOM
2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pages 166–177, 2010.

ESA 2020

https://doi.org/10.1007/s00454-019-00099-6
https://doi.org/10.1016/j.comgeo.2015.12.002
https://doi.org/10.1007/s00454-012-9417-5
https://doi.org/10.1007/s00454-012-9417-5
http://arxiv.org/abs/2003.13420
https://doi.org/10.1145/2390176.2390185
https://doi.org/10.1145/2390176.2390185
https://doi.org/10.1137/1.9781611975994.62
https://doi.org/10.1007/s00454-006-1273-8
https://doi.org/10.1007/s00454-006-1273-8
https://doi.org/10.1137/17M112717X

78:16 Improved Approximation Algorithm for Set Multicover with Non-Piercing Regions

17 Guy Even, Dror Rawitz, and Shimon Shahar. Hitting sets when the vc-dimension is small.
Inf. Process. Lett., 95(2):358–362, 2005. doi:10.1016/j.ipl.2005.03.010.

18 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

19 Zachary Friggstad, Kamyar Khodamoradi, Mohsen Rezapour, and Mohammad R. Salavatipour.
Approximation schemes for clustering with outliers. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 398–414, 2018.

20 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields
a PTAS for k-means in doubling metrics. SIAM J. Comput., 48(2):452–480, 2019. doi:
10.1137/17M1127181.

21 Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking
the logn barrier. In Algorithms – ESA 2010 - 18th Annual European Symposium, Liverpool,
United Kingdom, September 6–8, 2010, Proceedings, pages 243–254, 2010.

22 David Haussler and Emo Welzl. epsilon-nets and simplex range queries. Discrete & Computa-
tional Geometry, 2:127–151, 1987. doi:10.1007/BF02187876.

23 Bruno Jartoux and Nabil H. Mustafa. Optimality of Geometric Local Search. In 34th
International Symposium on Computational Geometry (SoCG 2018), Leibniz International
Proceedings in Informatics (LIPIcs), pages 48:1–48:15, 2018.

24 János Komlós, János Pach, and Gerhard J. Woeginger. Almost tight bounds for epsilon-nets.
Discret. Comput. Geom., 7:163–173, 1992. doi:10.1007/BF02187833.

25 Erik Krohn, Matt Gibson, Gaurav Kanade, and Kasturi Varadarajan. Guarding terrains via
local search. Journal of Computational Geometry, 5(1):168–178, 2014.

26 Jian Li and Yifei Jin. A PTAS for the weighted unit disk cover problem. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, pages 898–909, 2015.

27 Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

28 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

29 Rom Pinchasi. A finite family of pseudodiscs must include a “small” pseudodisc. SIAM J.
Discret. Math., 28(4):1930–1934, 2014. doi:10.1137/130949750.

30 Rajiv Raman and Saurabh Ray. Planar support for non-piercing regions and applications. In
26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,
Finland, pages 69:1–69:14, 2018.

31 Kasturi Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In Proceedings
of the 42nd ACM Symposium on Theory of Computing, pages 641–648, 2010.

32 Vijay V. Vazirani. Approximation algorithms. Springer, 2001. URL: http://www.springer.
com/computer/theoretical+computer+science/book/978-3-540-65367-7.

https://doi.org/10.1016/j.ipl.2005.03.010
https://doi.org/10.1145/285055.285059
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181
https://doi.org/10.1007/BF02187876
https://doi.org/10.1007/BF02187833
https://doi.org/10.1137/130949750
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7
http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-65367-7

Improved Distance Sensitivity Oracles with
Subcubic Preprocessing Time
Hanlin Ren
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
rhl16@mails.tsinghua.edu.cn

Abstract
We consider the problem of building Distance Sensitivity Oracles (DSOs). Given a directed graph
G = (V, E) with edge weights in {1, 2, . . . , M}, we need to preprocess it into a data structure, and
answer the following queries: given vertices u, v, x ∈ V , output the length of the shortest path from u

to v that does not go through x. Our main result is a simple DSO with Õ(n2.7233M2) preprocessing
time and O(1) query time. Moreover, if the input graph is undirected, the preprocessing time can
be improved to Õ(n2.6865M2). Our algorithms are randomized with correct probability ≥ 1− 1/nc,
for a constant c that can be made arbitrarily large. Previously, there is a DSO with Õ(n2.8729M)
preprocessing time and polylog(n) query time [Chechik and Cohen, STOC’20].

At the core of our DSO is the following observation from [Bernstein and Karger, STOC’09]: if
there is a DSO with preprocessing time P and query time Q, then we can construct a DSO with
preprocessing time P + Õ(Mn2) ·Q and query time O(1). (Here Õ(·) hides polylog(n) factors.)

2012 ACM Subject Classification Theory of computation→ Shortest paths; Theory of computation
→ Data structures design and analysis

Keywords and phrases Graph theory, Failure-prone structures

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.79

Related Version A full version of this paper is available at https://arxiv.org/abs/2007.11495.

Acknowledgements I would like to thank Zihao Li for introducing this problem to me, and Ran
Duan and Yong Gu for helpful discussions. I would also like to thank Hongxun Wu for reading
and commenting an early draft version of this paper, and pointing out the issue with non-unique
shortest paths. I am also grateful to the anonymous referees of ESA for their helpful comments that
improves the presentation of this work.

1 Introduction

Suppose we are given a directed graph G = (V,E), and we want to build a data structure
that, given any three vertices u, v, x ∈ V , outputs the length of the shortest path from u to
v that does not go through x. Such a data structure is called a Distance Sensitivity Oracle
(or DSO for short).

The problem of constructing DSOs is motivated by the fact that real-life networks often
suffer from failures. Suppose we have a network with n nodes and m (directed) links, and we
want to route a package from a node u to another node v. Normally, it suffices to compute
the shortest path from u to v. However, if some node x in this network fails, then our route
cannot use x, and our task becomes to find the shortest path from u to v that does not go
through x. Usually, there is only a very small number of failures. In this paper, we consider
the simplest case, in which there is only one failed node.

The problem of constructing a DSO is well-studied: Demetrescu et al. [6] showed that
given a directed graph G = (V,E), there is a DSO which occupies O(n2 logn) space, and
can answer a query in O(1) time. Duan and Zhang [8] improved the space complexity to
O(n2), which is optimal for dense graphs (i.e. m = Θ(n2)).

© Hanlin Ren;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 79; pp. 79:1–79:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rhl16@mails.tsinghua.edu.cn
https://doi.org/10.4230/LIPIcs.ESA.2020.79
https://arxiv.org/abs/2007.11495
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

79:2 Improved DSOs with Subcubic Preprocessing Time

Unfortunately, the oracle in [6] requires a large preprocessing time (O(mn2 + n3 logn)).
In real-life applications, the preprocessing time of the DSO is also very important. Bernstein
and Karger [2, 3] improved this time bound to Õ(mn). Note that the All-Pairs Shortest
Paths (APSP) problem, which only asks the distances between each pair of vertices u, v, is
conjectured to require mn1−o(1) time to solve [13]. Since we can solve the APSP problem by
using a DSO, the preprocessing time Õ(mn) is optimal in this sense.

However, if the edge weights are small positive integers (that do not exceed M), then the
APSP problem can be solved in Õ(n2.58M0.7) time [20], which is significantly faster than
O(mn) for dense graphs with small weights (e.g. M = O(1)). Thus it might be possible to
obtain better results than [3] in the regime of small integer edge weights. Weimann and Yuster
[19] showed that for any constant α ∈ (0, 1), we can construct a DSO in Õ(n1−α+ωM) time.
Here ω < 2.3728639 is the exponent of matrix multiplication [10]. However, the query time
for this oracle is Õ(n1+α), which is superlinear. Later, Grandoni and Williams [12] showed
that for every constant α ∈ [0, 1], we can construct a DSO in Õ(nω+1/2M + nω+α(4−ω)M)
time, which answers each query in Õ(n1−α) time.

Recently, in an independent work, Chechik and Cohen [4] showed that a DSO with
polylog(n) query time can be constructed in Õ(Mn2.873) time, achieving both subcubic
preprocessing time and polylogarithmic query time. The space complexity for their DSO is
Õ(n2.5).

1.1 Our Results
In this work, we show improved and simplified constructions of DSOs. We start with an
observation.

I Observation 1 (informal version). If we have a DSO with preprocessing time P and query
time Q, then we can build a DSO with preprocessing time P + Õ(M · n2) ·Q and query time
O(1).

For α = 0.2, the oracle in [12] already achieves Õ(n2.8729M) preprocessing time and
O(n0.8) query time. Observation 1 implies that this query time can be brought down to
O(1).

Observation 1 can be proven by a close inspection of [3]: The algorithm in [3] for
constructing a DSO picks Õ(n2) carefully chosen queries (u, v, x), such that the answers of
all these queries can be computed in Õ(mn) time. Then from these answers, we can easily
compute a DSO with O(1) query time. If, instead of computing these answers in Õ(mn) time,
we use the given DSO to answer these queries, the preprocessing time becomes P + Õ(n2) ·Q.
As the proof essentially repeats the arguments in [3], we leave it in Appendix A.

Our main result is a simple construction of DSOs with preprocessing time Õ(n2.7233M2)
and query time O(1). If the input graph is undirected, we can achieve a better preprocessing
time of Õ(n2.6865M2).

I Theorem 2. We can construct a DSO with Õ(n2.7233M2) preprocessing time and O(1)
query time. Moreover, if the input graph is undirected, then we can construct a DSO with
Õ(n(3+ω)/2M2) = Õ(n2.6865M2) preprocessing time and O(1) query time. The construction
algorithms are randomized and yield valid DSOs w.h.p.1

1 We say that an event happens with high probability (w.h.p.), if it happens with probability 1− 1/nC ,
for some constant C that can be made arbitrarily large.

H. Ren 79:3

We remark that two drawbacks of our results compared to [4, 12, 19] are that it does not
handle negative edge weights, and it has a worse (quadratic) dependence on M . However,
our results have the currently best dependence on n, and is conceptually simple. Also, the
space complexity of our DSO is Õ(n2), which is better than [4].

Non-unique shortest paths. A subtle technical issue is that the shortest paths in G may
not be unique. Normally, if we perturb every edge weight by a small random value, then we
can ensure that shortest paths are unique w.h.p. by the isolation lemma [15,18]. However, the
subcubic-time algorithms for shortest paths [16,17,20] depend crucially on the assumption
that edge weights are small integers, so we cannot perform the random perturbation.

Therefore, we have to work without assuming the uniqueness of shortest paths. It turns
out that Observation 1 is affected. Actually, if we assume the shortest paths are unique, we
can build a DSO with preprocessing time P + Õ(n2) ·Q in the conclusion of Observation 1,
regardless of the edge weights. However, without this assumption, Observation 1 somehow
needs Õ(Mn2) queries to the slower DSO, instead of Õ(n2). See Remark 5 and Remark 6
for more details.

1.2 Notation

We mainly stick to the notation used in [7], namely:
If p is a path, then |p| denotes the number of edges in it, and ‖p‖ denotes its length
(i.e. the total weight of its edges).
We use uv to denote the shortest path from u to v in the original graph, and uv � x the
shortest path from u to v that does not go through x. In the case that there are multiple
shortest paths, we will use e.g. “a path of the form uv �x” to denote an arbitrary shortest
path from uv in G− x (i.e. the graph G with vertex x deleted). Note that if x is not in
the original path uv, then ‖uv � x‖ = ‖uv‖.
Let p be a path from u to v. For two vertices a, b ∈ p such that a appears earlier than
b, we say the interval p[a, b] is the subpath from a to b, and p(a, b) is the path p[a, b]
without its endpoints (a and b). If the path p is known in the context, then we may omit
p and simply write [a, b] or (a, b).

We define MM(n1, n2, n3) as the complexity of multiplying an n1 × n2 matrix and
an n2 × n3 matrix. Let a, b, c be real numbers, we define ω(a, b, c) be the infimum over
all real numbers α such that MM(na, nb, nc) = O(nα). For any real number r, we have
ω(1, 1, r) = ω(1, r, 1) = ω(r, 1, 1) [14], and we denote ω(r) = ω(1, 1, r).

We also need the following adaptation of Zwick’s APSP algorithm [20] (see also [12,
Corollary 1]):

I Theorem 3. Given a directed graph G = (V,E) with edge weights in {1, 2, . . . ,M}, and
an integer r, we can compute the distances between every pair of nodes whose shortest path
uses at most r edges, in Õ(rM ·MM(n, n/r, n)) time.

Proof Sketch. We simply run the first dlog3/2 re iterations of the algorithm rand-short-
path in [20]. The correctness of this algorithm is guaranteed by [20, Lemma 4.2]. J

ESA 2020

79:4 Improved DSOs with Subcubic Preprocessing Time

2 Constructing a DSO in Õ(n2.7233M2) Time

In this section, we prove Theorem 2.

I Theorem 2. We can construct a DSO with Õ(n2.7233M2) preprocessing time and O(1)
query time. Moreover, if the input graph is undirected, then we can construct a DSO with
Õ(n(3+ω)/2M2) = Õ(n2.6865M2) preprocessing time and O(1) query time. The construction
algorithms are randomized and yield valid DSOs w.h.p.

Given an integer r and a graph G = (V,E), we define an r-truncated DSO to be a data
structure that, when given a query (u, v, x), outputs the value min{‖uv � x‖, r}. In other
words, an r-truncated DSO is a DSO which only needs to be correct when the path uv � x
has length at most r. If this length is greater than r, it outputs r instead.

Inspired by Zwick’s APSP algorithm [20], our main idea is to compute an r-truncated
DSO for every r = (3/2)i. Our strategies for small r and large r are completely different.

When r is small, the sampling approach in [12,19] already suffices. Fix a particular query
(u, v, x), we assume that ‖uv � x‖ ≤ r. In particular, if we fix any path of the form uv � x,
then this path contains at most r + 1 vertices. Suppose we sample a graph by discarding
each vertex w.p. 1/r. With probability Ω(1/r), the resulting graph would “capture” this
query in the sense that x is not in it but uv � x is completely included in it. Therefore, if we
take Õ(r) independent samples, and compute APSP for each sampled subgraph, we can deal
with all queries w.h.p.

For large r, our idea is to compute a (3/2)r-truncated DSO from an r-truncated DSO.
More precisely, given an r-truncated DSO with O(1) query time, we can compute a (3/2)r-
truncated DSO with Õ(Mn/r) query time. First we sample a bridging set (cf. [20]) H of
size Õ(Mn/r). Let (u, v, x) be a query such that r ≤ ‖uv � x‖ ≤ (3/2)r, then w.h.p. there is
a “bridging vertex” h ∈ H such that h is on some path of the form uv � x, and both of the
queries (u, h, x) and (h, v, x) are captured by the r-truncated DSO. If we iterate through H,
we can answer the query (u, v, x) in Õ(Mn/r) time. Then we use an “r-truncated” version of
Observation 1 to transform this (3/2)r-truncated DSO into a new one with O(1) query time.

2.1 Case I: r is Small
We make r̃ = d4Cr lnne independent samples of graphs G1, G2, . . . , Gr̃, where C is a large
enough constant. The vertex set V (Gi) of each graph is sampled by including each vertex
independently w.p. 1− 1/r. The graph Gi is simply the induced subgraph of G on vertices
V (Gi). Then, for each 1 ≤ i ≤ r̃, we compute all-pairs shortest paths of the graph Gi, but
we only compute the shortest paths that use at most r edges. By Theorem 3, this step can
be done in Õ(rM ·MM(n, n/r, n)) time for each graph Gi. Alternatively, if the input graph
is undirected, then this step can be done in Õ(Mnω) time [16,17] for each Gi.

Consider a query (u, v, x), assume that ‖uv � x‖ ≤ r, and fix any path of the form uv � x.
Let 1 ≤ i ≤ r̃, we say i is good for the query (u, v, x), if both of the following hold.

The graph Gi does not contain the failed vertex x.
The graph Gi contains the path uv � x entirely.

For every i (1 ≤ i ≤ r̃), the probability that i is good for the particular query (u, v, x) is
at least

(1/r) · (1− 1/r)r ≥ 1/4r (if r ≥ 2).

H. Ren 79:5

Given a query (u, v, x), we iterate through every i’s such that x 6∈ V (Gi), and take the
smallest value among the distances from u to v in these graphs Gi. With high probability,
there are only Õ(1) valid i’s such that x 6∈ V (Gi), and we can preprocess this set of i’s for
every x ∈ V . Therefore the query time is Õ(1).

The algorithm succeeds at a query (u, v, x) if there is an i that is good for (u, v, x). Since
the Gi’s are independent, the probability that there is an i good for (u, v, x) is at least

1− (1− 1/4r)r̃ ≥ 1− 1/nC .

By a union bound over all n3 triples of possible queries (u, v, x), it follows that our data
structure is correct w.p. at least 1− 1/nC−3, which is high probability.

In conclusion, there is an r-truncated DSO with Õ(1) query time, whose preprocessing
time is Õ(r̃ · rM ·MM(n, n/r, n)) for directed graphs, and Õ(r̃ ·Mnω) for undirected graphs.

2.2 An Observation
We need the following observation (“r-truncated” version of Observation 1), which roughly
states that given an r-truncated DSO with preprocessing time P and query time Q, we can
build an r-truncated DSO with preprocessing time P + Õ(Mn2) ·Q and query time O(1).
More formally, we have:

I Observation 4. Let r be an integer, G = (V,E) be an input graph whose edge weights are
in {1, 2, . . . ,M}, and D be an arbitrary r-truncated DSO. We can construct Fast(D), which
is an r-truncated DSO with O(1) query time and a preprocessing algorithm as follows.

It first computes the distance matrix of G, and the outgoing shortest path trees rooted at
each vertex.
Then it invokes the preprocessing algorithm of D on the input graph G.
At last, it makes Õ(Mn2) queries to D, and spends Õ(Mn2) additional time to finish the
preprocessing algorithm.
We emphasize the following technical details that are not reflected in the informal

statement of Observation 1. First, we need to compute the distance matrix and outgoing
shortest path trees of G (henceforth the “APSP data” of G) before using D. The APSP data
can be computed in Õ(Mn2.58) time [20], and in particular, the wit-to-suc algorithm in
[20] describes how to compute the shortest path trees efficiently. Second, the preprocessing
algorithm of D is called only once, and on the same graph G (on which we have already
computed the APSP data). The reason that the second detail is important is: Suppose we
have another routine that given an r-truncated DSO D, constructs Extend(D) which is a
(3/2)r-truncated DSO with a possibly large query time. Then given an 1-truncated DSO
Dstart, we can construct a (normal) DSO as follows:

Dfinal = Fast(Extend(Fast(Extend(. . .Extend(Dstart)))))︸ ︷︷ ︸
O(logn) times

.

However, even if the preprocessing algorithm of Fast(D) invokes the preprocessing al-
gorithm of D twice, the preprocessing algorithm of Dfinal would invoke a polynomial times
the preprocessing algorithm of Dstart, which is too many. In contrast, if the preprocessing
algorithm of both Fast(D) and Extend(D) only invokes the preprocessing algorithm of D
once, then the preprocessing algorithm of Dfinal would also invoke the preprocessing algorithm
of Dstart only once, which is okay.

ESA 2020

79:6 Improved DSOs with Subcubic Preprocessing Time

2.3 Case II: r is Large
Suppose we have an r-truncated DSO D, which has preprocessing time P and query time
O(1). We show how to construct a (3/2)r-truncated DSO, which we name as Extend(D),
with preprocessing time P +O(n2) and query time Õ(nM/r). This is done by the following
bridging set argument.

Let P be a set of paths that contains exactly one path of the form uv � x, for every u, v, x
such that r ≤ ‖uv � x‖ < (3/2)r. This corresponds to the paths that D cannot deal with,
but Extend(D) has to output the correct answer. Let p = uv � x ∈ P, mid(p) be the set of
vertices y ∈ p such that ‖p[u, y]‖ < r and ‖p[y, v]‖ < r. (See Figure 1.) For every y ∈ mid(p),
as p[u, y], p[y, v] are of the form uy � x and yv � x respectively, it follows that D can find
‖uy � x‖ and ‖yv � x‖ correctly. Moreover, |mid(p)| ≥ r/3M .

r

r
︸ ︷︷ ︸

mid(p)

u
y

v

v

Figure 1 Example of a path p = uv � x. If we can find a vertex y ∈ mid(p), then we can use D to
compute ‖uy � x‖ and ‖yv � x‖, thus to compute the length of p.

Fix a large enough constant C, the preprocessing algorithm of Extend(D) is as follows:
We preprocess D, and then randomly sample a set H of vertices, where every vertex v ∈ V is
in H with probability min{1, 3CM lnn/r} independently. We have |H| = Õ(nM/r) w.h.p.

Fix u, v, x ∈ V , suppose p = uv � x and r ≤ ‖p‖ < (3/2)r. Then the probability that H
hits mid(p) (i.e. H ∩mid(p) 6= ∅) is at least

1− (1− 3CM lnn/r)r/3M ≥ 1− 1/nC .

By a union bound over O(n3) paths in P, it follows that w.h.p. H hits mid(p) for every
path p ∈ P.

The query algorithm for Extend(D) is as follows: Given a query (u, v, x), if D(u, v, x) < r,
then we output D(u, v, x); otherwise we output

min
{

(3/2)r,min
h∈H
{D(u, h, x) +D(h, v, x)}

}
.

It is easy to see that Extend(D) is a correct (3/2)r-truncated DSO, has preprocessing time
P +O(n2) and query time Õ(nM/r).

2.4 Putting it Together
Let a ∈ [0, 1] be a constant that we pick later, and r = na. To start, we invoke Section 2.1 to
build an r-truncated DSO for r = na, which costs Õ(r2M ·MM(n, n/r, n)) time for directed
graphs or Õ(r ·Mnω) for undirected graphs. Then for every 1 ≤ i ≤ dlog3/2(Mn/r)e, suppose
we have an r(3/2)i−1-truncated DSO Di−1, we can construct Di = Fast(Extend(Di−1)) which
is an r(3/2)i-truncated DSO. This step costs Õ(n3M2/(r(3/2)i)) time. The preprocessing
algorithm terminates when i = i? = dlog3/2(Mn/r)e = O(logn), and we obtain an r(3/2)i? -
truncated DSO which is a (normal) DSO.

H. Ren 79:7

Case 1: the input graph is undirected. The total preprocessing time is

Õ
(
r ·Mnω + n3M2/r

)
= Õ

(
nmax{ω+a,3−a}M2

)
.

When a = (3− ω)/2, this time complexity is Õ(n(3+ω)/2M2) = Õ(n2.6865M2).
Therefore, given an undirected graph G = (V,E), there is a DSO with Õ(n2.6865M2)

preprocessing time and O(1) query time.

Case 2: the input graph is directed. The total preprocessing time is

Õ
(
r2M ·MM(n, n/r, n) + n3M2/r

)
= Õ

(
n2a+ω(1−a)M + n3−aM2

)
.

(Recall that ω(1− a) is the exponent of multiplying an n× n1−a matrix and an n1−a × n
matrix.)

Let a = 0.276724, then 1− a = 0.723276. By convexity of the function ω(·) [14], we have

ω(1− a) ≤ (a− 0.25)ω(0.7) + (0.3− a)ω(0.75)
0.75− 0.7 .

We substitute ω(0.7) ≤ 2.154399 and ω(0.75) ≤ 2.187543 [11], and obtain:

ω(1− a) ≤ 20 · ((a− 0.25) · 2.154399 + (0.3− a) · 2.187543) ≤ 2.169829.

Therefore, given a directed graph G = (V,E), there is a DSO with

Õ
(
nmax{2a+ω(1−a),3−a}M2

)
= Õ(n2.723277M2).

preprocessing time and O(1) query time.

3 Open Questions

The main open problem after this work is to improve the preprocessing time for DSOs. We
believe it should be possible to overcome the issue that shortest paths are not unique, and
improve the preprocessing time of the oracle specified in Observation 1 and Observation 4 to
P + Õ(n2) ·Q (dropping the M factor). Then, we can build DSOs with O(1) query time,
and Õ(n2.7233M) preprocessing time (for directed graphs), or Õ(n(3+ω)/2M) preprocessing
time (for undirected graphs).

Can we improve the preprocessing time for directed graphs to Õ(n2.58M), matching the
current best algorithm for APSP in directed graphs [20]? Can we improve the preprocessing
time for undirected graphs to Õ(nωM), matching the nearly-optimal algorithm for APSP in
undirected graphs [16,17]?

References
1 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.

Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

2 Aaron Bernstein and David R. Karger. Improved distance sensitivity oracles via random
sampling. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January
20-22, 2008, pages 34–43. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.
1347087.

ESA 2020

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
http://dl.acm.org/citation.cfm?id=1347082.1347087
http://dl.acm.org/citation.cfm?id=1347082.1347087

79:8 Improved DSOs with Subcubic Preprocessing Time

3 Aaron Bernstein and David R. Karger. A nearly optimal oracle for avoiding failed vertices
and edges. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 – June 2, 2009, pages
101–110. ACM, 2009. doi:10.1145/1536414.1536431.

4 Shiri Chechik and Sarel Cohen. Distance sensitivity oracles with subcubic preprocessing
time and fast query time. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages
1375–1388. ACM, 2020. doi:10.1145/3357713.3384253.

5 Erik D. Demaine, Gad M. Landau, and Oren Weimann. On Cartesian trees and range minimum
queries. Algorithmica, 68(3):610–625, 2014. doi:10.1007/s00453-012-9683-x.

6 Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318, 2008.
doi:10.1137/S0097539705429847.

7 Ran Duan and Seth Pettie. Dual-failure distance and connectivity oracles. In Claire Mathieu,
editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6, 2009, pages 506–515. SIAM, 2009. URL:
http://dl.acm.org/citation.cfm?id=1496770.1496826.

8 Ran Duan and Tianyi Zhang. Improved distance sensitivity oracles via tree partitioning.
In Faith Ellen, Antonina Kolokolova, and Jörg-Rüdiger Sack, editors, Algorithms and Data
Structures – 15th International Symposium, WADS 2017, St. John’s, NL, Canada, July 31
– August 2, 2017, Proceedings, volume 10389 of Lecture Notes in Computer Science, pages
349–360. Springer, 2017. doi:10.1007/978-3-319-62127-2_30.

9 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. In 23rd Annual Symposium on Foundations of Computer Science,
Chicago, Illinois, USA, 3-5 November 1982, pages 165–169. IEEE Computer Society, 1982.
doi:10.1109/SFCS.1982.39.

10 François Le Gall. Powers of tensors and fast matrix multiplication. In Katsusuke Nabeshima,
Kosaku Nagasaka, Franz Winkler, and Ágnes Szántó, editors, International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages
296–303. ACM, 2014. doi:10.1145/2608628.2608664.

11 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers
of the Coppersmith-Winograd tensor. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1029–1046. SIAM, 2018. doi:10.1137/1.9781611975031.67.

12 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved distance sensitivity oracles
via fast single-source replacement paths. In 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages
748–757. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.17.

13 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1236–1252. SIAM, 2018. doi:10.1137/1.9781611975031.80.

14 Grazia Lotti and Francesco Romani. On the asymptotic complexity of rectangular matrix
multiplication. Theor. Comput. Sci., 23:171–185, 1983. doi:10.1016/0304-3975(83)90054-3.

15 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

16 Raimund Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J.
Comput. Syst. Sci., 51(3):400–403, 1995. doi:10.1006/jcss.1995.1078.

https://doi.org/10.1145/1536414.1536431
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1007/s00453-012-9683-x
https://doi.org/10.1137/S0097539705429847
http://dl.acm.org/citation.cfm?id=1496770.1496826
https://doi.org/10.1007/978-3-319-62127-2_30
https://doi.org/10.1109/SFCS.1982.39
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1109/FOCS.2012.17
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1016/0304-3975(83)90054-3
https://doi.org/10.1007/BF02579206
https://doi.org/10.1006/jcss.1995.1078

H. Ren 79:9

17 Avi Shoshan and Uri Zwick. All pairs shortest paths in undirected graphs with integer
weights. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-
18 October, 1999, New York, NY, USA, pages 605–615. IEEE Computer Society, 1999.
doi:10.1109/SFFCS.1999.814635.

18 Noam Ta-Shma. A simple proof of the isolation lemma. Electronic Colloquium on Computa-
tional Complexity (ECCC), 22:80, 2015. URL: https://eccc.weizmann.ac.il/report/2015/
080.

19 Oren Weimann and Raphael Yuster. Replacement paths and distance sensitivity oracles via
fast matrix multiplication. ACM Trans. Algorithms, 9(2):14:1–14:13, 2013. doi:10.1145/
2438645.2438646.

20 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
J. ACM, 49(3):289–317, 2002. doi:10.1145/567112.567114.

A Proof of Observation 4 and Observation 1

In this section, we prove Observation 4. Note that Observation 1 follows from Observation 4
by setting r = +∞.

I Observation 4. Let r be an integer, G = (V,E) be an input graph whose edge weights are
in {1, 2, . . . ,M}, and D be an arbitrary r-truncated DSO. We can construct Fast(D), which
is an r-truncated DSO with O(1) query time and a preprocessing algorithm as follows.

It first computes the distance matrix of G, and the outgoing shortest path trees rooted at
each vertex.
Then it invokes the preprocessing algorithm of D on the input graph G.
At last, it makes Õ(Mn2) queries to D, and spends Õ(Mn2) additional time to finish the
preprocessing algorithm.
Let Tout(u) be the outgoing shortest path tree rooted at u. In this section, the notation

uv denotes the shortest path from u to v in the tree Tout(u). In particular, for any x ∈ uv,
the path ux is guaranteed to be a subpath of uv.

A.1 The Preprocessing Algorithm
We review and slightly modify the preprocessing algorithm of [3]. For convenience, we denote
‖p‖r = min{‖p‖, r} for any path p and number r.

We define a path to be good if it is a subpath of some shortest path in the shortest path
trees. In other words, for any vertices u, v, x ∈ V such that x ∈ uv, we say the subpath
(uv)[x, v] is good. Note that if the shortest paths in G are unique, then the set of good paths
coincides with the set of shortest paths in G. Also note that there are only O(n3) good paths
even if the shortest paths are not unique.

Assigning priorities. We assign each vertex a priority, which is independently sampled from
the following distribution: for any positive integer c, each vertex has priority c w.p. 1/2c.
Denote c(v) the priority of the vertex v. With high probability, all of the following are true:

The maximum priority is O(logn).
For every c ≤ O(logn), there are Õ(n/2c) vertices with priority c.
Let C be a large enough constant. For every good path p with at least C · 2c logn edges,
there is a vertex on p whose priority is greater than c.

In the following discussions, we will assume that all of the above assumptions hold.

ESA 2020

https://doi.org/10.1109/SFFCS.1999.814635
https://eccc.weizmann.ac.il/report/2015/080
https://eccc.weizmann.ac.il/report/2015/080
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/567112.567114

79:10 Improved DSOs with Subcubic Preprocessing Time

Fix a pair u, v ∈ V , let si be the first vertex in uv with priority ≥ i, and ti be the last
such vertex. Then we can write the path uv as

u s1 s2 . . . sO(logn) tO(logn) . . . t1 v.

We say that the vertices u, v, si, ti are key vertices, and the i-th key vertex is denoted as ki.
Then the path uv can also be written as

u = k0 k1 . . . kO(logn) = v.

It is important to see that

|(uv)[ki, ki+1]| ≤ C · 2min{c(ki),c(ki+1)} logn (1)

for every valid i, as otherwise there will be another key vertex between ki and ki+1.

Data structure for quick location. Suppose we are given a query (u, v, x), the first thing we
should do is to “locate” x, i.e. find the key vertices ki, ki+1 ∈ uv such that x ∈ (uv)[ki, ki+1].
We will utilize the following data (cf. [2]).

For every u, v ∈ V , we compute
CL[u, v, c] (for “center left”): the first vertex in uv with priority at least c; and
CR[u, v, c] (for “center right”): the last vertex in uv with priority at least c.

It is easy to compute these numbers in Õ(n2) time: for each priority c and each vertex
u ∈ V , we simply perform a depth-first search on the outgoing shortest path tree Tout(u)
rooted at u to compute all CL[u, ·, c] and CR[u, ·, c].

We also compute a structure called BCP (for “biggest center priority”). In this structure,
for each vertex u ∈ V , we preprocess the outgoing shortest path tree Tout(u) rooted at u
in Õ(n) time such that given any vertices x, y ∈ V , we can find the biggest priority of any
vertex on the path from x to y in Tout(u) in O(1) time [5]. Then, given any good path p (p is
specified by vertices u, v, x and p = (uv)[x, v]), we can find the biggest priority of any vertex
on p in O(1) time.

In addition, for every u, v ∈ V , we store the key vertices on uv into a hash table of size
O(logn). Given a vertex x, we can output whether x is among these key vertices on uv in
O(1) worst-case time [9].

Data structure for avoiding a failure. We use D to preprocess the input graph. Then we
compute the following data:
(Data a) For every u, v ∈ V , and every 1 ≤ i ≤ min{M · C · 2c(u) logn, |uv|}, let xi be the

i-th vertex in the path uv. (Here u is the 0-th vertex.) We compute and store
the value ‖uv � xi‖r. Symmetrically, let x−i be the last i-th vertex in the path vu
(not uv!), for every 1 ≤ i ≤ min{M · C · 2c(u) logn, |vu|}, we compute and store
‖vu � x−i‖r.

(Data b) For every u, v ∈ V and consecutive key vertices ki, ki+1 ∈ uv, let y be the vertex in
the portion ki ki+1 that maximizes ‖uv � y‖r. We compute and store ‖uv � y‖r.

(Data c) For every u, v ∈ V and key vertex ki ∈ uv, we compute and store ‖uv � ki‖r.

For each priority c ≤ Õ(1), there are Õ(n/2c) vertices u whose priority is exactly c.
In (Data a), we make Õ(nM2c) queries for each such u (Õ(M2c) queries for each v ∈ V).
Therefore in total, we make Õ(Mn2) queries in (Data a). We will show in Appendix A.3
that we can compute (Data b) using Õ(n2) queries to D and Õ(n2) additional time. (Data
c) can be computed in Õ(n2) queries easily.

H. Ren 79:11

I Remark 5. If shortest paths in G are unique, then in (Data a) we only need to store
‖uv � xi‖r and ‖vu � x−i‖r for i ≤ C · 2c(u) logn (shaving off a factor of M). The reason will
be evident when we see the query algorithm.

A.2 The Query Algorithm
Let (u, v, x) be a query. We check whether x ∈ uv in O(1) time on the shortest path tree
Tout(u). If x 6∈ uv, then it is easy to see that ‖uv � x‖r = ‖uv‖r.

We check whether x is a key vertex on uv (that is, x = ki for some i), using the hash
tables. If this is the case, we return ‖uv � x‖r stored in (Data c) immediately.

Otherwise, we start by finding two consecutive key vertices ki, ki+1 ∈ uv such that
x ∈ [ki, ki+1]. Recall that, if ` is the biggest priority of any vertex on uv, then the key
vertices on uv are

(u =)CL[u, v, 1] CL[u, v, 2] . . . CL[u, v, `] CR[u, v, `] . . . CR[u, v, 2] CR[u, v, 1](= v).

Therefore, we can find ki in O(1) time using the following procedure. Let c1 be the biggest
priority of any vertex in ux (which coincides the [u, x] portion of uv), and c2 be the biggest
priority of any vertex in the [x, v] portion of uv. We can compute c1, c2 from the structure
BCP in O(1) time. If c2 = `, then x is in the range (u,CR[u, v, `]), so ki = CL[u, v, c1].
Otherwise, x is in the range (CR[u, v, `], v), so ki = CR[u, v, c2 + 1]. We can find ki+1
similarly.

By (1), if ki = u, then |(uv)[u, x]| ≤ C ·2c(u) logn, and we can look up the value ‖uv �x‖r
from (Data a) directly. Similarly, if ki+1 = v then we can also look up ‖uv � x‖r from
(Data a).

Now we assume that ki 6= u and ki+1 6= v. A crucial observation is that

‖uv � x‖ = min{‖uki+1 � x‖+ ‖ki+1v‖, ‖uki‖+ ‖kiv � x‖, ‖uv � y‖}, (2)

where y is the vertex in [ki, ki+1] that maximizes ‖uv � y‖. The proof of (2) is as follows:
(i) If there is a path of the form uv�x that goes through ki, then ‖uv�x‖ = ‖uki‖+‖kiv�x‖.
(ii) If there is a path of the form uv � x that goes through ki+1, then ‖uv � x‖ = ‖uki+1 �

x‖+ ‖ki+1v‖.
(iii) If every path of the form uv � x does not through either ki or ki+1, then every path

of the form uv � x avoids the entire portion of ki ki+1, thus also avoids y. We have
‖uv �x‖ ≥ ‖uv �y‖. But ‖uv �y‖ ≥ ‖uv �x‖ by definition of y, thus ‖uv �x‖ = ‖uv �y‖.

It is easy to see that a similar equation holds for r-truncated DSOs:

‖uv � x‖r = min{‖uki+1 � x‖r + ‖ki+1v‖, ‖uki‖+ ‖kiv � x‖r, ‖uv � y‖r, r}, (3)

where y is any vertex in [ki, ki+1] that maximizes ‖uv � y‖r.
Recall that we already know the values ‖uki‖ and ‖ki+1v‖. To compute ‖uki+1 � x‖r, we

note that if x is the last j-th vertex in uki+1, then j ≤ C · 2c(ki+1) logn. Therefore we can
look up the value of ‖uki+1 � x‖r from (Data a). Similarly, to compute ‖kiv � x‖r, we note
that if x is the j-th vertex in the ki v portion of the path uv, then j ≤ C · 2c(ki) logn.
However, kiv may be different from the ki v portion of the path uv. Nevertheless, since
‖kix‖ = ‖(uv)[ki, x]‖ ≤ M · C · 2c(ki) logn, we also have |kix| ≤ M · C · 2c(ki) logn, so we
can still look up the value ‖kiv � x‖r in (Data a). Finally, we can look up ‖uv � y‖r from
(Data b).

We can see that the query time is O(1).

ESA 2020

79:12 Improved DSOs with Subcubic Preprocessing Time

I Remark 6. If shortest paths in G are unique, then the path kiv actually coincides with the
ki v portion of the path uv. Therefore, |kix| = |(uv)[ki, x]| ≤ C · 2c(ki) logn. In this case
we do not need to “sacrifice” a factor of M in (Data a): We can look up ‖kiv � x‖r even if
we only stored the values ‖kiv � xi′‖r for i′ ≤ C · 2c(ki) logn, as in Remark 5.

A.3 Computing (Data b)
We will use the following notation. Let p be a path from u to v which is fixed in context,
and a, b be two vertices in p. We will say that a < b if |p[u, a]| < |p[u, b]|, i.e. a appears
strictly before b on the path p. Similarly, a > b, a ≤ b, a ≥ b mean |p[u, a]| > |p[u, b]|,
|p[u, a]| ≤ |p[u, b]|, |p[u, a]| ≥ |p[u, b]| respectively.

Let u, v ∈ V and s < t be two vertices on the path uv. Let y ∈ (uv)[s, t] be the vertex
in (uv)[s, t] which maximizes ‖uv � y‖r. We first show that assuming we have built some
oracles, we can find this vertex y in O(logn) oracle calls and O(logn) additional time. The
idea is to use a binary search described in [3, Section 6].

I Lemma 7. Let r be an integer, u, v ∈ V , p be the path uv, and s, t be two vertices on p
such that u < s < t < v. Suppose we have the following oracles, each with O(1) query time:

an oracle that given a vertex x ∈ p[s, t], outputs ‖ut � x‖r;
an oracle that given a vertex x ∈ p[s, t], outputs ‖sv � x‖r;
an oracle that given an interval p[s′, t′] such that s ≤ s′ ≤ t′ ≤ t, outputs a vertex
x ∈ p[s′, t′] that maximizes the value ‖ut � x‖r.

Then we can find a vertex y ∈ p[s, t] which maximizes ‖uv � y‖r in O(logn) time.

u vs ts′ t′qy

Figure 2 If every path of the form sv � y does not go through t, then every path of the form
sv � y does not go through the whole interval p[q, t′].

Proof. For any y ∈ p[s, t], we denote

h(y) = min{‖ut � y‖r + ‖tv‖, ‖us‖+ ‖sv � y‖r, r}.

By (3), we have ‖uv � y‖r = min{h(y), ‖uv � y?‖r} where y? is some vertex independent of y.
Thus it suffices to find some y ∈ p[s, t] that maximizes h(y).

We use a binary search. Assume that we know the optimal y is in some interval p[s′, t′],
where s ≤ s′ < t′ ≤ t. (Initially we set s′ = s and t′ = t.) If |p[s′, t′]| = O(1) then we can use
brute force to find a vertex y ∈ p[s′, t′] that maximizes h(y). Otherwise let q be the middle
point of p[s′, t′], and we use the third oracle to find a vertex y ∈ p[s′, q] that maximizes
‖ut � y‖r. There are two cases:

If min{‖ut � y‖r + ‖tv‖, r} = h(y), then we can restrict our attention to the interval
p[q, t′]. This is because for every vertex x ∈ p[s′, q],

h(x) ≤ min{‖ut � x‖r + ‖tv‖, r} ≤ min{‖ut � y‖r + ‖tv‖, r} ≤ h(y).

Otherwise, h(y) = ‖us‖+‖sv �y‖r, and every path of the form sv �y does not go through
t. Therefore every path of the form sv � y avoids every vertex in p[q, t′]. (See Figure 2.)
For every vertex x ∈ p[q, t′],

h(x) ≤ ‖us‖+ ‖sv � y‖ ≤ h(y).

H. Ren 79:13

It follows that we can restrict our attention to the interval [s′, q] now.
Therefore, we can always shrink the length of our candidate interval p[s′, t′] by a half. It
follows that we can find the desired vertex y in O(logn) time. J

Now we show how to compute (Data b) in Õ(n2) time (assuming that (Data a) is ready).
The most crucial ingredient is the following Range Maximum Query (RMQ) structures (used
in the third item of Lemma 7).

For every u, v ∈ V , consider the following sequence (of length ` = min{|uv| − 1, C ·
2c(v) logn}):

(‖uv � x−1‖r, ‖uv � x−2‖r, . . . , ‖uv � x−`‖r),

where x−i denotes the last i-th vertex in the path uv (v is the last 0-th). We build an
RMQ structure of this sequence, which given a query (s, t) (1 ≤ s ≤ t ≤ `), outputs a
number i ∈ [s, t] that maximizes ‖uv � x−i‖r. After we compute the above sequence, this
data structure can be preprocessed in O(`) time, and each query costs O(1) time [1].

For every priority c ≤ O(logn), there are Õ(n/2c) vertices v of this priority, and for each
vertex v we construct n RMQ structures (one for each u ∈ V) on length-Õ(2c) sequences.
The total size of these RMQ structures is

O(logn)∑
c=1

Õ(n/2c) · n · Õ(2c) = Õ(n2).

Therefore, these RMQ structures can be preprocessed in Õ(n2) time. (Note that every
element ‖uv � x−i‖r is already computed in (Data a).)

To compute (Data b), we enumerate u, v, ki, ki+1 where ki, ki+1 are consecutive key
vertices in uv. There are Õ(n2) possible combinations of (u, v, ki, ki+1). As argued in
Appendix A.2, we know that the following data are already computed in (Data a):
‖uki+1 � x‖r, for any x ∈ (uv)[ki, ki+1];
‖kiv � x‖r, for any x ∈ (uv)[ki, ki+1].

Since uki+1 is a prefix of uv (as defined in the outgoing shortest path trees), we also have
the following RMQ oracles constructed above:

An oracle that given any interval [s′, t′] on the path uv such that ki ≤ s′ ≤ t′ ≤ ki+1,
finds the vertex y ∈ [s′, t′] that maximizes ‖uki+1 � y‖r in O(1) time.

It follows from Lemma 7 that we can find a vertex y ∈ (uv)[ki, ki+1] that maximizes
‖uv � y‖r in O(logn) time. The total time for computing (Data b) is thus Õ(n2).

ESA 2020

Fine-Grained Complexity of Regular Expression
Pattern Matching and Membership
Philipp Schepper
CISPA – Helmholtz Center for Information Security, Saarbrücken, Germany
Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus,
Saarbrücken, Germany
philipp.schepper@cispa.saarland

Abstract
The currently fastest algorithm for regular expression pattern matching and membership improves
the classical O(nm) time algorithm by a factor of about log3/2 n. Instead of focussing on general
patterns we analyse homogeneous patterns of bounded depth in this work. For them a classification
splitting the types in easy (strongly sub-quadratic) and hard (essentially quadratic time under
SETH) is known. We take a very fine-grained look at the hard pattern types from this classification
and show a dichotomy: few types allow super-poly-logarithmic improvements while the algorithms
for the other pattern types can only be improved by a constant number of log-factors, assuming the
Formula-SAT Hypothesis.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Fine-Grained Complexity, Regular Expression, Pattern Matching, Dichotomy

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.80

Related Version A full version of this paper is available at https://arxiv.org/abs/2008.02769.
All presented lower bounds and an alternative proof of the upper bounds for pattern matching using
the polynomial method are contained in the author’s Master’s thesis.

Funding Supported by the European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH.

Acknowledgements I thank Karl Bringmann for the supervision during the research for my Master’s
Thesis which this paper is based on and especially the pointer to Batch-OV which simplified the
upper bounds extremely.

1 Introduction

Regular expressions with the operations alternative |, concatenation ◦, Kleene Plus +, and
Kleene Star ? are used in many fields of computer science. For example to search in texts
and files or to replace strings by other strings as the unix tool sed does. But they are also
used to analyse XML files [17, 18], for network analysis [12, 24], human computer interaction
[13], and in biology to search for proteins in DNA sequences [16, 20].

The most intuitive problem for regular expressions is the membership problem. There we
ask whether a given text t can be generated by a given regular expression p, i.e. is t ∈ L(p)?
We also call p a pattern in the following. A similar problem is the pattern matching problem,
where we are interested whether some substring of the given text t can be matched by p.
To simplify notation we define the matching language of p asM(p) := Σ∗L(p)Σ∗. Then we
want to check whether t ∈M(p). The standard algorithm for both problems runs in time
O(nm) where n is the text length and m the pattern size [22].

Based on the “Four Russians” trick Myers showed an algorithm with running time
O(nm/ logn) [19]. This result was improved to an O(nm log logn/ log3/2 n) time algorithm
by Bille and Thorup [5]. Although for several special cases of pattern matching and

© Philipp Schepper;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 80; pp. 80:1–80:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:philipp.schepper@cispa.saarland
https://doi.org/10.4230/LIPIcs.ESA.2020.80
https://arxiv.org/abs/2008.02769
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

Table 1 Hard pattern types that have to be considered.

Pattern matching
◦? ◦|◦ ◦|+ ◦+◦ ◦+| |◦| |◦+

Membership +|◦| +|◦+ |+|◦

membership improved sub-quadratic time algorithms have been given [3, 11, 14], it remained
an open question whether there are truly sub-quadratic time algorithms for the general
case. The first conditional lower bounds were shown by Backurs and Indyk [4]. They
introduced so-called homogenous patterns and classified their hardness into easy, i.e. strongly
sub-quadratic time solvable, and hard, requiring essentially quadratic time assuming the
Strong Exponential Time Hypothesis (SETH). This classification of Backurs and Indyk
was completed by a dichotomy for all homogeneous pattern types by Bringmann, Grønlund,
and Larsen [8]. They reduced the hardness of all hard pattern types to the hardness of
few pattern types of bounded depth. By this it was sufficient to check few cases instead of
infinitely many.

To understand what a homogeneous pattern is, we observe that one can see patterns
as rooted and node labeled trees where the inner nodes correspond to the operations of
the pattern. Then a pattern is homogenous if the operations on each level of the tree are
equal. The type of the pattern is the sequence of operations from the root to the leaves. See
Section 2 for a formal introduction.

But as SETH rules out only polynomial improvements, super-poly-logarithmic runtime
improvements are still feasible. Such improvements are know for Orthogonal Vectors
(OV) [2, 9], for example, although there is a known conditional lower bound based on
SETH. But for pattern matching and membership no faster algorithms are known. By a
reduction from Formula-SAT Abboud and Bringmann showed that in general pattern
matching and membership cannot be solved in time O(nm/ log7+ε n) under the Formula-
SAT Hypothesis [1].

For Formula-SAT one is given a De Morgan formula F over n inputs and size s, i.e.
the formula is a tree where each inner gate computes the AND or OR of two other gates
and each of the s leaves is labeled with one of the n variables or their negation. The task
is to find a satisfying assignment for F . While the naive approach takes time O(2ns) to
evaluate F on all possible assignments, there are polynomial improvements for formulas of
size s = o(n3) [10, 15, 21]. But despite intense research there is currently no faster algorithm
known for s = n3+Ω(1). Thus it seem reasonable to assume the following hypothesis:

I Hypothesis 1.1 (Formula-SAT Hypothesis (FSH) [1]). There is no algorithm that can
solve Formula-SAT on De Morgan formulas of size s = n3+Ω(1) in O(2n/nε) time, for
some ε > 0, in the Word-RAM model.

Although the new lower bound of O(nm/ log7+ε n) is quite astonishing since before only
polynomial improvements have been ruled out, the bound is for the general case. It remained
an open question whether it also holds for homogeneous patterns of bounded depth. Using
the results by Bringmann, Grønlund, and Larsen [8] relating the hardness of different pattern
types to each other, it suffices to check the pattern types in Table 1 for the corresponding
problem.

We answer this last question and give a dichotomy for these hard pattern types: For few
pattern types we give the currently fastest algorithm for pattern matching and membership.
For the remaining patterns we show improved lower bounds of the form Ω(nm/ logc n).

P. Schepper 80:3

nm

2Ω(
√

log min(n,m))

Thm. 3.1

nm

2Ω(
√

log min(n,m))

Thm. 3.1

Θ
�

nm
poly log n

�

Sec. 4.1

Θ
�

nm
poly log n

�
(◦�)

Full version, Lem. 2.2

Θ
�

nm
poly log n

�

Full version

◦

�

|

O(n log2 m + m)
[4]

Θ
�

nm
poly log n

�

Full version

Θ
�

nm
poly log n

�
(◦�)

Full version, Lem. 2.2

Θ
�

nm
poly log n

�

Full version

◦

�

+

O(n log2 m + m)
[11]

Θ
�

nm
poly log n

�

Full version

String
Matching
Θ(n + m)
[14]

◦ �

+

|

Complete Subtree
Θ(n + m)
immediate

Simplifies
Lem. 2.1

Θ
�

nm
poly log n

�
(◦�)

Full version, Lem. 2.2

�

+

|

Dictionary
Matching
Θ(n + m)
[3]

Θ(n + m)
|

�

◦

+ Simplifies
Lem. 2.1

Complete Subtree
Θ(n + m)
[8]

Θ
�

nm
poly log n

�
(◦|◦)

Full version, Lem. 2.2

Θ
�

nm
poly log n

�
(◦�)

Full version, Lem. 2.2

Θ
�

nm
poly log n

�
(◦|+)

Full version, Lem. 2.2

◦

�

+

Θ
�

nm
poly log n

�
(◦+◦)

Sec. 4.1, Lem. 2.2

Θ
�

nm
poly log n

�
(◦�)

Full version, Lem. 2.2

Θ
�

nm
poly log n

�
(◦+|)

Full version, Lem. 2.2

◦

�

|

+

�

Figure 1 The classification of the patterns for pattern matching.

I Theorem 1.2. For texts of length n and patterns of size m we have the following time
bounds for the stated problems:

nm/2Ω(
√

log min(n,m)) for |◦|- and |◦+-pattern matching, and +|◦|- and +|◦+-membership
Θ(nm/poly logn) for pattern matching and membership with types ◦+|, ◦|+, ◦+◦, ◦|◦,
and ◦? and for |+|◦-membership, unless FSH is false.

This dichotomy result gives us a simple classification for the hard pattern types. Depending
on the pattern type one can decide if there is super-poly-logarithmic algorithm, or if even
the classical algorithm is optimal up to a constant number of log-factors. See Figure 1 for an
overview of the results for pattern matching. Further, the dichotomy shows that the type
of a pattern has a larger impact on the hardness than the depth. The alternative as outer
operation of the “easier” patterns allows us to split the pattern into independent sub-patterns.
This is crucial for the speed-up since pattern matching for ◦+ and ◦| is near-linear time
solvable [4, 11]. Contrary almost all hard pattern types have a concatenation as outer
operation which does not allow this decomposition into independent problems. Further,
the length of the matched texts can vary largely. The pattern (a | aba)(b | bca)(a | ab), for
example, can match strings of length 3 to 8. We exploit both properties in our reductions,
especially to encode a boolean OR.

In Section 2 we give a formal definition of homogeneous patterns and state the problems
we start reducing from and the ones we reduce to. We show the algorithms for the upper
bounds in Section 3. In Section 4 we give the improved lower bounds for pattern matching
while the ones for membership are given in Section 5.

ESA 2020

80:4 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

2 Preliminaries

Regular expressions. Recall, that patterns over a finite alphabet Σ are build recursively
from other patterns using the operations |, ◦, +, and ?. We construct the patterns and the
language of each pattern (i.e. the set of words matched by the pattern) as follows. Each
symbol σ ∈ Σ is a pattern representing the language L(σ) = {σ}. Let in the following p1
and p2 be two patterns. For the alternative operation we define L(p1 | p2) = L(p1) ∪ L(p2).
For the concatenation we define L(p1 ◦ p2) = {w1w2 | w1 ∈ L(p1) ∧ w2 ∈ L(p2)}. For the
Kleene Plus we set L(p+

1) = {w | ∃k ≥ 1 : ∃w1, . . . , wk ∈ L(p1) : w = w1 . . . wk}. With ε as
the empty word we have L(p?1) = L(p+

1) ∪ {ε} for the Kleene Star.
Based on this construction it is easy to see patterns as rooted and node-labeled trees

where each inner node is labeled by an operation and the leaves are labeled by symbols. We
call this tree the parse tree of a pattern in the following. Then each node is connected to the
node representing the sub-pattern p1 and also for p2 in the case of the binary operations
◦ and |. We extend the definition of the alternative and the concatenation in the natural
way to more than two sub-patterns. To simplify notation we omit the symbol ◦ from the
patterns in the following. We define the size of a pattern to be the number of inner nodes
plus the number of leaves in the parse tree.

We call a pattern homogeneous if for each level of the parse tree, all inner nodes are
labeled with the same operation. We define the type of a homogeneous pattern p to be the
sequence of operations from the root of the parse tree of p to the deepest leaf. The depth of
a pattern is the depth of the tree, which is equal to the number of operations in the type.
For example, the pattern [(abc | c)(a | dc)c(db | c | bd)]+ is of type +◦|◦ and has depth 4.

Relations between pattern types. Backurs and Indyk showed in [4] the first quadratic
time lower bound for several homogeneous patterns based on SETH. This classification
was completed by the dichotomy result of Bringmann, Grønlund, and Larsen in [8]. As
there are infinitely many homogeneous pattern types, they showed linear-time reductions
between different pattern types. By these reductions lower bounds also transfer to other
(more complicated) pattern types and faster algorithms also give improvements for other
(equivalent) pattern types.

I Lemma 2.1 (Lemma 1 and Lemma 8 in the full version of [8]). For any type T , applying
any of the following rules yields a type T ′ such that both are equivalent for pattern matching
and membership under linear-time reductions, respectively:

For pattern matching: remove prefix + and replace prefix |+ by |.
For membership: replace any substring +|+ by +| and replace prefix r? by r+ for any
r ∈ {+, |}∗.
For both problems: replace any substring pp, for any p ∈ {◦, |, ?,+}, by p.

We say that T simplifies if one of these rules applies. Applying these rules in any order will
eventually lead to an unsimplifiable type.

I Lemma 2.2 (Lemma 6 and Lemma 9 in the full version of [8]). For types T and T ′, there is
a linear-time reduction from T -pattern matching/membership to T ′-pattern matching/mem-
bership if one of the following sufficient conditions holds:

T is a prefix of T ′,
we may obtain T ′ from T by replacing a ? by +?,
we may obtain T ′ from T by inserting a | at any position,
only for membership: T starts with ◦ and we may obtain T ′ from T by prepending a +
to T .

P. Schepper 80:5

Together with the already known sub-quadratic time algorithms for various pattern types
[3, 4, 8, 11, 14], it suffices to check the remaining cases in Table 1 to get a fine-grained
dichotomy for the hard pattern types (i.e. the ones requiring essentially quadratic time under
SETH).

Hypothesis. As mentioned in the introduction, we follow the ideas of Abboud and Bring-
mann in [1] and show reductions from Formula-SAT to pattern matching to prove lower
bounds. Likewise as in their result, we also start from the intermediate problem Formula-
Pair: Given a monotone De Morgan formula F with size s, that is a De Morgan formula
where each leaf is labeled with a variable, i.e. no negation allowed, and each variable is used
only once. Further, one is given two sets A,B of half-assignments to s/2 variables of F with
|A| = n and |B| = m. The task is to find a pair a ∈ A, b ∈ B such that F (a, b) = true.

There is an intuitive reduction from Formula-SAT to Formula-Pair as shown in [1].
Thus, FSH implies the following hypothesis, which we prove in Appendix A:

I Hypothesis 2.3 (Formula-Pair Hypothesis (FPH)). For all k ≥ 1, there is no algorithm
that can solve Formula-Pair for a monotone De Morgan formula F of size s and sets
A,B ⊆ {0, 1}s/2 of size n and m, respectively, in time O(nmsk/log3k+2 n) in the Word-RAM
model.

Batch-OV. For the upper bounds we transform texts and patterns into bit-vectors such
that they are orthogonal if and only if the text is matched by the pattern. This gives us a
reduction from pattern matching to Orthogonal Vectors (OV) ([9, 23]). But to improve
the runtime we process many text simultaneously using the following lemmas.

I Lemma 2.4 (Batch-OV, cf. [9]). Let A,B ⊆ {0, 1}d with |A| = |B| = n and d ≤ 2c
−1
√

logn

for some constant c > 0. We can decide for all vectors a ∈ A whether there is a vector b ∈ B
such that 〈a, b〉 = 0 in time n2/2εc

√
logn for sufficiently small ε > 0.

We generalize this balanced case to the unbalanced case which we use later:

I Lemma 2.5 (Unbalanced Batch-OV). Let A,B ⊆ {0, 1}d with |A| = n and |B| = m and
d ≤ 2c

−1
√

log min(n,m) for some constant c > 0. We can decide for all vectors a ∈ A whether
there is a vector b ∈ B such that 〈a, b〉 = 0 in time nm/2εc

√
log min(n,m) for sufficiently small

ε > 0.

Proof. If n ≤ m, partition B into dm/ne sets of size n and run the algorithm from Lemma 2.4
on every instance in time dm/nen2/2εc

√
logn ≈ nm/2εc

√
logn. Analogously for n > m. J

3 Upper Bounds

For patterns p of type |◦| and |◦+ let p = (p1 | p2 | . . . | pk) be the pattern of size m. Likewise
for the patterns with a Kleene Plus as additional outer operation. Let further t = t1 · · · tn be
the text of length n. The main idea of the fast algorithm is to compute a set of matched
substrings: M = {(i, j) | ∃` ∈ [k] : ti · · · tj ∈ L(p`)} ⊆ [n] × [n]. From M we construct a
graph where the nodes correspond to different prefixes that can be matched. The tuples
in M represent edges between these nodes. Then it remains to check whether the node
corresponding to t is reachable.

ESA 2020

80:6 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

I Theorem 3.1 (Upper Bounds). We can solve in time nm/2Ω
√

log min(n,m):
1. |◦|-pattern matching and +|◦|-membership.
2. |◦+-pattern matching and +|◦+-membership.
To compute M we split the patterns into large and small ones. For the large patterns we
compute the corresponding values of M sequentially while for the small patterns we reduce
to unbalanced Batch-OV and use the fast algorithm for this problem shown in Lemma 2.5.

3.1 Patterns of Type +|◦| and |◦|
As mentioned in the beginning of this section, we compute the set M of matched substring
by partitioning the sub-patterns into large and small ones.

I Lemma 3.2. Given a text t of length n and patterns {pi}i of type ◦| such that
∑
i|pi| = m.

We can compute M in time nm/2Ω(
√

log min(n,m)).

I Lemma 3.3 (Large Sub-Patterns). Given a text t of length n and patterns p1, . . . , p` of
type ◦| such that

∑`
i=1|pi| ≤ m. We can compute M in time O(`n log2 min(n,m) +m).

Proof. From a result by Cole and Hariharan [11] we know that there is a O(n log2 m̂+ m̂)
time algorithm for ◦|-pattern matching with patterns of size m̂. We run this algorithm
sequentially for every pattern. We can ignore all pi with |pi| > |Σ|n since they match
more than n symbols. We get |pi| ≤ min(|Σ|n,m) ≤ min(n2,m) ≤ min(n2,m2). Since
log min(n2,m2) = 2 log min(n,m), each iteration takes time O(n log2 min(n,m) + |pi|) and
the claim follows. J

I Lemma 3.4 (Small Sub-Patterns). Given a text t of length n and patterns p1, . . . , pm of
type ◦|. There is a f ∈ 2Ω(

√
log min(n,m)) such that the following holds: If |pi| ≤ f for all

i ∈ [m], then we can compute M in time nm/2Ω(
√

log min(n,m)) with small error probability.

We postpone the proof of this lemma and first combine the results for small and large patterns
to proof the main theorem.

Proof of Lemma 3.2. Choose f ∈ 2Ω(
√

log min(n,m)) as in Lemma 3.4 and split the patterns
into large patterns of size > f and small patterns of size ≤ f .

For the at most m/f large patterns compute M> by Lemma 3.3 in time O(m/f ·
n log2 min(n,m) +m) ∈ nm/2Ω(

√
log min(n,m)). Duplicate the ` small-patterns m/` times and

compute M≤ for the m small patterns by Lemma 3.4 in the claimed running time. J

Proof of Theorem 3.1 Item 1. ConstructM by Lemma 3.2. Check for |◦|-pattern matching
whether M = ∅ since any matched substring is sufficient.

For +|◦|-membership we construct a graph G with nodes v0, . . . , vn where we put an edge
from vi−1 to vj if (i, j) ∈M . Then vn is reachable from v0 iff there is a decomposition of t
into substrings which can be matched by the pis. This reachability check can be performed
in time O(n+ |M |) by a depth-first search starting from v0. J

For the proof of Lemma 3.4 we proceed as follows. For the construction of M for small
sub-patterns we define some threshold f and check for every substring of t of length at
most f whether there is a pattern that matches this substring. This check is reduced to
Batch-OV by encoding the substrings and patterns as bit-vectors.

For small alphabets with |Σ| < f this encoding is rather simple since we can use a one-hot
encoding of the alphabet. But for larger alphabets this does not work as the dimension of the
vectors would increase too much and the fast algorithm for Batch-OV could not be used

P. Schepper 80:7

anymore. Therefore, we define a randomised encoding χ to ensure that the final bit-vectors
are not to large. For simplicity we can assume |Σ| = Θ(min(n,m)) by padding Σ with fresh
symbols. The construction in the following lemma is based on the idea of Bloom-Filters [6].

I Lemma 3.5 (Randomised Characteristic Vector). For a finite universe Σ and a threshold
f ≤ 2O(

√
log |Σ|) there is a randomised χ : P(Σ)→ {0, 1}d with d ∈ O(f log|Σ|) such that for

all σ ∈ Σ and S ⊆ Σ with |S| ≤ f the following holds:
If σ ∈ S, then χ(σ) := χ({σ}) ⊆ χ(S), i.e. ∀i ∈ [d] : χ({σ})[i] = 1 =⇒ χ(S)[i] = 1.
If χ(σ) ⊆ χ(S), then σ ∈ S with high probability, i.e. ≥ 1− 1/ poly(|Σ|).

Proof. We define χ element-wise and set for S ⊆ Σ: χ(S)[i] :=
∨
s∈S χ(s)[i], i.e. the bitwise

OR over χ(s) for s ∈ S. Hence, the first claim already holds by definition. For each σ ∈ Σ
we define χ(σ) independently by setting χ(σ)[i] = 1 with probability 1/f for all i ∈ [d]. Let
S ⊆ Σ with |S| ≤ f and σ ∈ Σ \ S. For all i ∈ [d]:

Pr[χ(σ)[i] * χ(S)[i]] = Pr[χ(σ)[i] = 1 ∧ χ(S)[i] = 0]

= 1
f

(
1− 1

f

)|S|
≥ 1

f

(
1− 1

f

)f
≥ e−2

f

Pr[χ(σ) ⊆ χ(S)] =
d∏
i=1

Pr[χ(σ)[i] ⊆ χ(S)[i]] =
d∏
i=1

(1− Pr[χ(σ)[i] * χ(S)[i]])

≤
d∏
i=1

(
1− e−2

f

)
=
((

1− e−2

f

)d)
.

Setting d = fc ln|Σ| for some arbitrary c > e2, we get:

=
(

1− e−2

f

)
f ·c ln|Σ| ≤ e−1/e2·c ln|Σ| = |Σ|−c/e

2
= 1/ poly |Σ|. J

Proof of Lemma 3.4. Define f = 2
√
ε/3·
√

log min(n,m) with ε as in Lemma 2.5 and let a be
some fresh symbol we add to Σ. Let χ : P(Σ)→ {0, 1}f2 be as in Lemma 3.5. For simplicity
one can think of χ as the one-hot encoding of alphabet Σ.

We define Tj := {ti · · · ti+j−1 | 1 ≤ i ≤ n − j + 1} and Pj := {pi | L(pi) ⊆ Σj} for all
j ∈ [f]. Then replace all symbols and sub-patterns of type | by bit-vectors by applying χ.
Finally, pad every vector in Tj and Pj by f − j repetitions of χ(a) and flip all values of Pj
bit-wise such that 1s become 0s and vice versa. Let T be the set of all ≤ nf modified texts
and P be the set of all m transformed patterns.

We observe that a text-vector in T is orthogonal to a pattern-vector in P iff the original
text was matched by the original pattern. Since f ·f2 ≤ 2

√
ε
√

log min(n,m) ≤ 2
√
ε
√

log min(nf,m),
we can apply Lemma 2.5 for T and P :

nfm

2(ε/
√
ε)
√

log min(nf,m)
≤ nm

2(
√
ε−
√
ε/3)·
√

log min(n,m)
∈ nm

2Ω(
√

log min(n,m))
. J

3.2 Patterns of Type +|◦+ and |◦+
First observe that even for small patterns M can be too large to be computed explicitly. For
t = 0n1n and p = 0+1+ we have M = [1, n] × [n + 1, 2n] and thus cannot write down M
explicitly in time o(nm).

To get around this problem we first define the run-length encoding r(u) of a text u as
in [4]: We have r(ε) = ε. For a non-empty string starting with σ, let ` be the largest integer
such that the first ` symbols of u are σ. Append the tuple (σ, `) to the run-length encoding

ESA 2020

80:8 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

and recurse on u after removing the first ` symbols. We use the same approach for patterns
of type ◦+. But if there occurs a σ+ during these ` positions, we add (σ,≥ `) to the encoding,
otherwise (σ,= `). We write σ` for the tuple (σ, `) and similar for σ=` and σ≥` to shorten
notation. For example, r(aaa+b+bc) = a≥3b≥2c=1.

The idea is to compute a subset of M which only contains those (i, j) such that there
is no distinct (i′, j′) in the subset with i′ ≤ i and j′ ≥ j and both substrings of t are
matched by the same pattern p`. We augment each tuple with two boolean flags, indicating
whether the first and last run of the pattern p` contains a Kleene Plus. From this set
M ′ ⊆ {0, 1} × [n] × [n] × {0, 1} we can fully recover M . For our above example we get
M ′ = {(1, n, n+ 1, 1)}.

I Lemma 3.6. Given a text t of length n and patterns {pi}i of type ◦+ such that
∑
i|pi| = m.

We can compute M ′ in time nm/2Ω(
√

log min(n,m)).

I Lemma 3.7 (Large Sub-Patterns). Given a text t of length n and patterns p1, . . . , p` of
type ◦+ such that

∑`
i=1|pi| ≤ m. We can compute M ′ in time O(`n log2 min(n,m) +m).

Proof. We modify all patterns such that their first and last run is of the form σ=`, i.e. we
remove every Kleene Plus from these two runs. There is a O(n log2 m̂+m̂) time algorithm for
◦+-pattern matching with patterns of size m̂ shown in [4]. We run this algorithm sequentially
for each altered pattern. For every tuple (i, j) the algorithm outputs, we add (f, i, j, e) to
M ′ where f and e are set to 1 iff the first and last run of the pattern contain a Kleene Plus,
respectively.

We can ignore all pi with |pi| > |Σ|n because they match more than n symbols. Since
|pi| ≤ min(|Σ|n,m) ≤ min(n2,m) ≤ min(n2,m2) = 2 log min(n,m), each iteration takes
time O(n log2 min(n,m) + |pi|) and the claim follows. J

I Lemma 3.8 (Small Sub-Patterns). For a text t of length n and patterns p1, . . . , pm of type
◦+, there is a f ∈ 2Ω(

√
log min(n,m)) such that the following holds: If |pi| ≤ f for all i ∈ [m],

then we can compute M ′ in time nm/2Ω(
√

log min(n,m)).

We postpone the proof of this lemma and first show the final upper bound as the proof of
Lemma 3.2 also works for Lemma 3.6.

Proof of Theorem 3.1 Item 2. Use Lemma 3.6 to construct M ′ and check for |◦+-pattern
matching whether M ′ = ∅.

For +|◦+-membership we define a graph G = (V,E). Instead of having nodes v0, . . . , vn
as for +|◦|-membership we have for each node vi three versions, V := {v0

i , v
1
i , v

2
i | 0 ≤ i ≤ n}.

The versions correspond to the different ways a suffix or prefix of a run can be matched. For
node v0

i we need that all symbols are explicitly matched by a pattern. For v1
i we need that

the suffix of the run containing ti has to be matched by a pattern starting with t+i . For v2
i we

say that the prefix has to be matched by a pattern ending with t+i−1. Hence, we add edges for
the runs simulating the σ+ of a pattern: For each run σ` from position i to j in t with ` > 1
we add the edges (v1

k−1, v
1
k) and (v2

k, v
2
k+1) to the graph for i ≤ k < j. Further, we add edges

(v2
i , v

0
i) and (v0

i , v
1
i) to change between the states for all 0 ≤ i ≤ n. While this construction

solely depends on the text, we add for each (f, i, j, e) ∈M ′ the edge (vfi−1, v
2e
j) to the graph.

We claim that there is a path from v0
0 to v0

n if and only if t ∈ L((p1 | · · · | pk)+). We prove
this claim in Appendix B. See Figure 2 for an example of the construction.

The time for the construction is linear in the output size. The graph has Θ(n) nodes and
|M ′|+O(n) edges. As the DFS runs in linear time, the overall runtime follows. J

P. Schepper 80:9

v2
0

v0
0

v2
n

v0
n

v1
nv1

0

a a a a abccbt =

Figure 2 Graph for the pattern (a+ | a+b | bc+ | cba | b+a)+ and text aaaabccba.

It remains to show how the set M ′ is constructed for small patterns.

Proof of Lemma 3.8. Set f := 2
√
ε/5
√

log min(n,m) with ε as in Lemma 2.5 and consider all
≤ n/f3 many long runs of length ≥ f3 in t. Check for each long run by an exhaustive search
whether there is a pi such that the following holds: The run in the text is matched by one of
the ≤ |pi| runs in pi and the remaining runs of pi can match the contiguous parts of the text.
This check can be performed in the following time for all large runs:

n

f3

m∑
i=1
|pi|2 ≤

n

f3

m∑
i=1

f2 ≤ nm

f

Since a pattern can have at most f runs and each run matches now at most f3 symbols, it
remains to check substrings of t of length at most f4. Hence, define T = {ti · · · ti+j−1 | ∀j ∈
[f4], i ∈ [n − j + 1]} and ignore all substrings with more than f runs or runs longer than
f3. Convert these substrings and the patterns into bit-vectors by replacing the runs by the
following bit-vectors of length 2 log|Σ|+ 2f3:

cr 7→ 〈c〉〈c〉0r1f
3−r1r0f

3−r c=r 7→ 〈c〉〈c〉1r0f
3−r0r1f

3−r c≥r 7→ 〈c〉〈c〉1r0f
3−r0f

3

〈c〉 denotes the unique binary representation of symbol c and 〈c〉 its bit-wise negation. One
can easily see that two such vectors are orthogonal if and only if the runs match each other.
Thus, a text and a pattern vector resulting from this transformation are orthogonal iff the
text is matched by the pattern. By padding the vectors with 1s we normalise their length
but still preserve orthogonality between text and pattern vectors with the same number of
runs. Let T ′ and P ′ be the resulting sets with ≤ nf4 and m elements, respectively.

From log|Σ| ≤ log min(n,m) ≤ f we get f(2 log|Σ|+ 2f3) ≤ f5 ≤ 2
√
ε
√

log min(nf4,m) and
hence can apply Lemma 2.5 for T ′ and P ′. Actually we have to partition P ′ depending on
whether a pattern has a Kleene Plus in its first and last run. Thus, we need four iterations
but we can always duplicate patterns such that there are m patterns in each group.

nf4m

2ε/
√
ε
√

log min(nf4,m)
≤ nm

2(
√
ε−4/5

√
ε)
√

log min(n,m)
∈ nm

2Ω(
√

log min(n,m))
. J

4 Lower Bounds for Pattern Matching

Abboud and Bringmann showed in [1] a lower bound for pattern matching (and membership)
in general of O(nm/ log7+ε n), unless FSH is false. We use this result and the corresponding
reduction as a basis to show similar lower bounds for the remaining hard pattern types.
But we also do not start our reductions directly from Formula-SAT but from Formula-
Pair as defined in Section 2 and use the corresponding Formula-Pair Hypothesis from
Hypothesis 2.3.

ESA 2020

80:10 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

I Theorem 4.1. There are constants c◦? = 76, c◦+◦ = c◦|+ = 72, c◦|◦ = 81, and c◦+| = 27
such that pattern matching with patterns of type T ∈ {◦?, ◦+◦, ◦|◦, ◦+|, ◦|+} cannot be solved
in time O(nm/logcT n) even for constant sized alphabets, unless FPH is false.

We show the lower bounds by a reduction from Formula-Pair to pattern matching:

I Lemma 4.2. Given a Formula-Pair instance with a formula of size s, depth d, and sets
A and B with n and m ≤ n assignments. (If m > n, swap A and B.) We can reduce this
to pattern matching with a text t and a pattern p of type T ∈ {◦?, ◦+◦, ◦|◦, ◦+|, ◦|+} over a
constant sized alphabet in time linear in the output size.
|t| ∈ O(n5ds log s) except for ◦+|, there we have |t| ∈ O(n2ds log s) Further, |p| ∈

O(mbdT s log s) with b◦? = 6, b◦+◦ = b◦|+ = 5, b◦|◦ = 8, and b◦+| = 1.

Proof of Theorem 4.1. We show the result only for patterns of type ◦+◦, the proof for the
other types is analogous.

Let F be a formula of size s with two sets of n half-assignments each, and d be the depth
of F . Applying the depth-reduction technique of Bonet and Buss [7] gives us an equivalent
formula F ′ with size s′ ≤ s2 and depth d′ ≤ 6 ln s. By Lemma 4.2 we get a pattern matching
instance with a text t and pattern p. Both of size O(n5d′s′ log s′) = O(n56 ln ss2 log s) =
O(ns6 ln 5+2 log s). Now assume there is an algorithm for pattern matching with the stated
running time and run it on t and p:

O
(
ns6 ln 5+2 log s · ns6 ln 5+2 log s

log72(ns6 ln 2+2 log s)

)
⊆ O

(
n2s12 ln 5+4 log2 s

log72 n

)
⊆ O

(
n2s23.314

log72 n

)
.

But this contradicts FPH which was assumed to be true. J

4.1 Proof of Lemma 4.2

Again we only give the proof for patterns of type ◦+◦. The reduction for the other pattern
types can be found in the full version of the paper. We first encode the evaluation of a
formula on two half-assignments, then the encoding for finding such a pair. In the following
we define the actual text tg and pattern pg. The universal text ug and universal pattern qg
are needed for technical purposes and do not depend on the assignments.

4.1.1 Encoding the Formula

A formula of size s (i.e. s leaves) has s−1 inner gates and thus 2s−1 gates in total. We assign
every gate g a unique integer in [2s− 1], its ID, and write 〈g〉 for the binary encoding of the
ID of gate g. We can always see 〈g〉 as a sequence of blog(2s− 1)c+1 ≤ blog sc+2 = Θ(log s)
bits padded with zeros if necessary. For a fixed gate g we define a separator gadget G := 2〈g〉2
with 2 as a new symbol.

INPUT Gate The text and the pattern depend on the variable that is read:
For Fg(a, b) = ai define tg := 0ai1 as the text and pg := 0+11+ as the pattern.
For Fg(a, b) = bi define tg := 011 as the text and pg := 0+bi1+ as the pattern.
Define ug := 0011 as the universal text and qg := 0+1+ as the universal pattern.

AND Gates We define: tg := t1Gt2, pg := p1Gp2, ug := u1Gu2, and qg := q1Gq2.

P. Schepper 80:11

OR Gates The texts and the patterns for gate g are defined as follows where the parentheses
are just for grouping and are not part of the text or pattern:

tg := (u1GGu2)G(u1GGu2)G(t1GGt2)G(u1GGu2)G(u1GGu2)
ug := (u1GGu2)G(u1GGu2)G(u1GGu2)G(u1GGu2)G(u1GGu2)
qg := (u1GGu2)G(u1GGu2)G(q1GGq2)G(u1GGu2)G(u1GGu2)
pg := (u1GGu2G)+(q1GGp2)G(p1GGq2)(Gu1GGu2)+

I Lemma 4.3 (Correctness of the Construction). For all assignments a, b and gates g:
Fg(a, b) = true ⇐⇒ tg(a) ∈ L(pg(b))
tg(a) ∈ L(qg)
ug ∈ L(qg) ∩ L(pg(b))

Proof. The proofs of the second and third claim follow inductively from the encoding of the
gates and especially because of the encoding of the INPUT gate. For the first claim we do a
structural induction on the output gate of the formula.

INPUT Gate “⇒” Follows directly from the definition.
INPUT Gate “⇐” If the gate is not satisfied, then there are not enough 0s or 1s in the text

than the pattern has to match.
AND Gate “⇒” Follows directly from the definition.
AND Gate “⇐” By the uniqueness of the binary encoding, the G in the middle of the text

and the pattern have to match. Since the whole text is matched, we get t1 ∈ L(p1) and
t2 ∈ L(p2) and Fg(a, b) is satisfied by the induction hypothesis.

OR Gate “⇒” Fg(a, b) = Fg1(a, b) ∨ Fg2(a, b) = true. Assume w.l.o.g. that Fg1(a, b) = true,
the other case is symmetric. Repeat (u1GGu2G)+ only once to transform q1GGp2 into
the second u1GGu2 by our third claim of the lemma. Now p1GGq2 matches t1GGt2 by
the second claim and the assumption t1 ∈ L(p1). Finally, we match Gu1GGu2Gu1GGu2
by two repetitions of (Gu1GGu2)+.

OR Gate “⇐” By the uniqueness of the binary encoding there are exactly 14 Gs in the
text and the pattern can match 11 Gs when taking both repetitions once. Since each
additional repetition increases the number by 3, exactly one repetition is taken twice.
If the first repetition is taken once, the following q1GGp2 has to match the second u1GGu2
in the text. But then p1 is transformed into t1 showing that Fg is satisfied by the inductive
hypothesis. The case for the second repetition is symmetric. J

Length of the text and the pattern. All texts and patterns for a specific gate only depend
on the texts and patterns for the two sub-gates. Thus, we can compute the texts and patterns
in a bottom-up manner and the encoding can be done in time linear in the size of the output.
It remains to analyse the length of the texts and the size of the patterns:

I Lemma 4.4. |ur|, |tr|, |pr|, |qr| ∈ O(5ds log s).

Proof. pg is obviously smaller than ug. Since the sizes of ug, tg, and qg are asymptotically
equal, it suffices to analyse the length of ug: |ug| ≤ 5|u1|+ 5|u2|+O(log s). Inductively over
the d(Fg) levels of Fg, i.e. the depth of Fg, this yields |ug| ≤ O(5d(Fg)s log s). The factor of
s log s is due to the O(s) inner gates each introducing O(log s) additional symbols. J

ESA 2020

80:12 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

4.1.2 Final Reduction
In the first part of the reduction we have seen how to evaluate a formula on one specific
pair of half-assignments. It remains to design a text and a pattern such that such a pair
of half-assignments can be chosen. For this let A = {a(1), . . . , a(n)} be the first set and
B = {b(1), . . . , b(m)} be the second set of half-assignments. Inspired by the reduction in
Section 3.4 in the full version of [4] we define the final text and pattern as follows:

t :=
3n⊙
i=1

(
33ur3ur3ur3t(a(i))3ur3ur3ur3ur

)
p := 3ur3ur3ur3ur

m⊙
j=1

(
3+(ur3)+ur3+qr3p(b(j))3(ur3)+qr

)
3ur3ur3ur3ur.

Where we set a(j) = a(j mod n) for j ∈ [n+ 1, 3n]. We call the concatenations in t and p for
each i and j the ith text group and the jth pattern group, respectively.

I Lemma 4.5. If there are a(k) and b(l) such that F (a(k), b(l)) = true, then t ∈M(p).

Proof. Assume w.l.o.g. a(k) and b(k) satisfy F . Otherwise we have to shift the indices for
the text and the pattern accordingly in the proof. We match the prefix of p to the suffix
of the nth text group. Then we match the n+ ith text group by the ith pattern group for
i = 1, . . . , k − 1: Both (ur3)+ are repeated twice. Then the remaining parts are matched in
a straightforward way by transforming the qrs into t(a(i)) and ur, and p(b(i)) into ur.

Then, we match the kth and k + 1th pattern group to the n+ kth text group and a part
of the n+ k + 1th text group:

3+(ur3)+ ur 3+qr3 p(b(k)) 3(ur3)+ qr 3+(ur3)+ ur3
+ qr3 p(b(k+1)) 3(ur3)+ qr

33ur3 ur 3ur3 t(a(k)) 3ur3 ur 3ur3 ur33 ur3 ur 3ur3 t(a(k+1))

k + 1th pattern groupkth pattern group

n + kth text group beginning of n + k + 1th text group

For the last step we shift the groups in the remaining text t′ such that it becomes easier to
prove which part of the text the remaining pattern matches:

t′ =3ur3ur3ur3ur
3n⊙

i=n+k+2

(
33ur3ur3ur3t(a(i))3ur3ur3ur3ur

)

=
3n⊙

i=n+k+2

(
3ur3ur3ur3ur33ur3ur3ur3t(a(i))

)
3ur3ur3ur3ur.

For each of the remaining pattern groups the first repetition is taken three times. With this
the n+ ith group of t′ and the ith pattern group are matched in a straightforward way for
i = k + 2, . . . ,m. The suffix of the pattern is matched to the start of the n+m+ 1th text
group in the obvious way. J

I Lemma 4.6. If t ∈M(p), then there are a(k) and b(l) such that F (a(k), b(l)) = true.

Proof. By the design of the pattern and the text, there must be a j ≤ n such that the prefix
of the pattern is matched to the suffix of the j − 1th text group. Likewise the suffix of the
pattern has to match the same sequence in some other text group because nowhere else the

P. Schepper 80:13

four 3ur could be matched. Thus, not all text groups and pattern groups match each other
precisely and there is a text group k and a pattern group l such that the pattern group does
not match the whole text group or it matches more than this group. Choose the first of
these groups, i.e. the pair with smallest k and l.

Since all prior groups have been matched precisely, the first repetition can be taken at
most twice. Otherwise the following ur could not be transformed into a part of the text.
Now assume it is repeated exactly once. Then the following ur matches the second ur of the
text group. Since 3 is a fresh symbol, qr has to match the third ur. But then p(b(k)) has to
be transformed into t(a(l)) and Lemma 4.3 gives us a satisfying assignments.

It remains to check the case when (ur3)+ is repeated twice. Then qr is transformed into
t(a(l)) and p(b(k)) is transformed into the fourth ur. The second repetition has to be taken
exactly twice in this case. Because otherwise the 33 from the beginning of the next text
group could not be matched. But if the pattern (ur3)+ is repeated twice, this pattern group
is completely matched to a text group, contradicting our assumption. J

I Lemma 4.7. The final text has length O(n5ds log s) and the pattern has size O(m5ds log s).

By this we conclude the proof of Lemma 4.2 for this pattern type. y

5 Lower Bounds for Membership

Instead of giving all reductions from scratch, we reduce pattern matching to membership
and make use of the results in Lemma 4.2. By this we get the same bounds as for pattern
matching given in Theorem 4.1. For the remaining pattern type |+|◦ we give a new reduction
from scratch which is necessary due to the missing concatenation as outer operation.

5.1 Reducing Pattern Matching to Membership
I Lemma 5.1 (Reducing Pattern Matching to Membership). Given a text t and a pattern p
with type in {◦?, ◦+◦, ◦|◦, ◦+|, ◦|+} over a constant sized alphabet.

We can construct a text t′ and a pattern p′ of the same type as p in linear time such that
t ∈M(p) ⇐⇒ t′ ∈ L(p′). Further, |t′| ∈ O(|t|) and |p′| ∈ O(|t|+ |p|), except for ◦+|, there
we even have |p′| ∈ O(|p|).

Proof. Again we only show the proof for type ◦+◦. The reductions for the other types can
be found in the full version.

Let Σ = {1, . . . , s} be the alphabet. We first encode every symbol such that we can
simulate a universal pattern (i.e. matching any symbol) by some gadget U of type ◦+. Let
f : Σ→ Σs+1 be this encoding with f(x) = 1 · · · (x− 1)xx(x+ 1) · · · s. Since we can extend
f in the natural way to texts by applying it to every symbol, we can also modify patterns of
type ◦+◦ by applying f to every symbol without changing the type. After applying f we
still have t ∈M(p) ⇐⇒ f(t) ∈M(f(p)).

For the step from pattern matching to membership we set U := 1+2+ · · · s+ and R :=
12 · · · s. Obviously R ∈ L(U) and f(σ) ∈ L(U) for all σ ∈ Σ. But we also get R /∈ L(f(σ))
since R does not contain a repetition of σ. Finally, we define t′ := R|t|+1f(t)R|t|+1 and
p′ = R+U |t|f(p)U |t|R+. We claim t ∈M(p) ⇐⇒ t′ ∈ L(p′).

“⇒” If t ∈M(p), then there is a substring t̂ of t matched by p. By the above observations,
f(p) matches f(t̂) which is a substring of f(t). Then we use U |t| to match the not matched
suffix and prefix of f(t) and a part of R|t|+1. The remaining repetitions of R are matched
by the R+ in the beginning and the end. “⇐” If t′ ∈ L(p′), then f(p) has to match some
substring of f(t) because R cannot be matched by the above observation. J

ESA 2020

80:14 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

5.2 Patterns of Type |+|◦

Even though the remaining hard pattern type |+|◦ does not have a concatenation as outer
operation, we can still show a similar lower bound as for the other types.

I Theorem 5.2. |+|◦-membership cannot be solved in time O(nm/log17 n) even for constant
sized alphabets, unless FPH is false.

To proof the theorem it suffices to show that Formula-Pair can be reduced to membership
with a text of length O(ns2 log s) and a pattern of size O(ms3 log s). Then the claim directly
follows from the definition of FPH as for the other types.

Idea of the reduction. As for the other lower bounds, we first encode the evaluation of the
formula on two fixed half-assignments. We define for each gate g a text tg and two dictionaries
DM
g and DS

g of words. The final dictionary for a gate g is defined as Dg =
⋃
g′∈Fg

DS
g′ ∪DM

g′ .
The final pattern is D+

r where r is the root of F .
DM
g corresponds to pg and allows us to match the whole text tg if the formula is satisfied.

The texts of the sub-gates are then matched by the corresponding dictionaries. But for the
OR gate we have to be able to ignore the evaluation of one sub-formula. For this we define
the set DS

g which corresponds to qg and allows us to match the text independently from
the assignments. As main idea we include the path from the root of the formula to the
current gate in the encoding. This trace is appended to the text as a prefix and in reverse
as suffix. The words in DM

g for OR gates g allow us to jump to a gate in such a trace of
exactly one sub-formula. Then we use corresponding words from DS to propagate this jump
to the sub-formulas. Because the included trace started at the root, we can proceed to the
INPUT gates. There we add words to accept all evaluations of the gate. For the way back
up we add the corresponding words in reverse to the dictionaries.

We make sure that these words are just used at one specific position by embedding the
encoding of the corresponding gate in the trace. Since the gate number can be made unique
these words can only be used at one specific position. This procedure allows us to write
down the words as a set and not as a concatenation as for the other reductions.

Encoding the Formula. We identify each gate g with its ID, i.e. an integer in [2s]. Let 〈g〉
be the binary encoding of the gate ID with blog sc+ 2 = Θ(log s) bits padded with zeros if
necessary. Further, let h0h1 . . . hd be the path from the root r = h0 of F to the gate g = hd
of depth d ≥ 0. To simplify notation we define hgi = 2〈hi〉〈g〉2, i.e. the encoding of the gate
on the path and the gate where the path ends.
INPUT Gates We set DS

g := {hgi . . . h
g
d0h

g
d . . . h

g
i , h

g
i . . . h

g
d1h

g
d . . . h

g
i | i ∈ [d]}.

For Fg(a, b) = ai, we set tg := hg0 . . . h
g
daih

g
d . . . h

g
0 and DM

g := {hg0 . . . h
g
d1h

g
d . . . h

g
0}

For Fg(a, b) = bi, we set tg := hg0 . . . h
g
d1h

g
d . . . h

g
0 and DM

g := {hg0 . . . h
g
dbih

g
d . . . h

g
0}

AND Gate We define the text and the corresponding dictionaries as follows:

tg :=hg0 . . . h
g
dt1t2h

g
d . . . h

g
0

DM
g :={hg0 . . . h

g
d, h

g
d . . . h

g
0}

DS
g :={hgi . . . h

g
dh
g1
0 . . . hg1

i−1, h
g1
i−1 . . . h

g1
0 h

g2
0 . . . hg2

i−1, h
g2
i−1 . . . h

g2
0 h

g
d . . . h

g
i | i ∈ [d]}

P. Schepper 80:15

OR Gate We define the text and the additional dictionaries for g as:

tg :=hg0 . . . h
g
dt1h

g
dt2h

g
d . . . h

g
0

DM
g :={hg0 . . . h

g
d, h

g
dh
g2
0 . . . hg2

d , h
g2
d . . . hg2

0 h
g
d . . . h

g
0}

∪{hg0 . . . h
g
dh
g1
0 . . . hg1

d , h
g1
d . . . hg1

0 h
g
d, h

g
d . . . h

g
0}

DS
g :={hgi . . . h

g
dh
g1
0 . . . hg1

i−1, h
g1
i−1 . . . h

g1
0 h

g
dh
g2
0 . . . hg2

i−1, h
g2
i−1 . . . h

g2
0 h

g
d . . . h

g
i | i ∈ [d]}

I Lemma 5.3. For all assignments a, b and gates g:
tg(a) ∈ L(hg0 . . . h

g
i−1(Dg(b))+hgi−1 . . . h

g
0) for all i ∈ [d].

tg(a) /∈ L(hg0 . . . h
g
i−1(Dg(b))+hgj−1 . . . h

g
0) for all i 6= j ∈ [0, d], where hg0h

g
−1 and hg−1h

g
0

denote the empty string.

Proof. The first claim follows by a structural induction on the output gate using only words
from DS

g′ for the current gate g′. Likewise we show the second case by a structural induction
on the output gate.
INPUT Gate The statement holds by the definition of the dictionary.
AND Gate Assume the claim is false for g. We can only match the “prefix” hgi . . . h

g
d

with the word hgi . . . h
g
dh
g1
0 . . . hg1

i−1. And analogously for the “suffix”. The joining
part of t1t2 has to be matched by some hg1

k−1 . . . h
g1
0 h

g2
0 . . . hg2

k−1 for k ∈ [0, . . . , d] (pos-
sibly the empty string). Hence, t1 ∈ L(hg1

0 . . . hg1
i−1(Dg1(b))+hg1

k−1 . . . h
g1
0) and t2 ∈

L(hg2
0 . . . hg2

k−1(Dg2(b))+hg2
j−1 . . . h

g2
0). But from i 6= j it follows that k 6= i or k 6= j and

we have a contradiction to the induction hypothesis for g1 and g2.
OR Gate The “prefix” hgi . . . h

g
d has to be matched by hgi . . . h

g
dh
g1
0 . . . hg1

i−1 and analogously
for the “suffix”. If the joining part of t1hgdt2 was matched by hg1

k−1 . . . h
g1
0 h

g
dh
g2
0 . . . hg2

k−1 for
some k ∈ [d], the same proof as for the AND gate applies. Otherwise, either hg1

d . . . hg1
0 h

g
d

or hgdh
g2
0 . . . hg2

d was used. Let it w.l.o.g. be the first one. Since i ∈ [0, d], we have i 6= d+ 1
and hence a contradiction to the inductive hypothesis for t1. J

I Lemma 5.4 (Correctness of the Construction). For all assignments a, b and gates g:
Fg(a, b) = true ⇐⇒ tg(a) ∈ L((Dg(b))+).

Proof. We proof the claim by an induction on the output gate.
INPUT Gate Follows directly from the construction of the text and the dictionary.
AND Gate “⇒” We can use D+

1 and D+
2 to match t1 and t2 by the induction hypothesis,

respectively. The remaining parts are matched by the words in DM
g .

AND Gate “⇐” The initial and last hg0 of the text have to be matched. Since the gate g is
part of the encoding, we can only use words from DM

g for this. It follows directly that
t1 is matched by words from D1 because the initial hg1

0 has to be matched too and the
words in DS

g are not eligible for this. The same argument shows that t2 is matched by
words from D2. Hence, the claim follows by the induction hypothesis.

OR Gate “⇒” Assume w.l.o.g. that Fg1(a, b) = true, the other case is symmetric. We
match the prefix of tg in the obvious way by the corresponding word from DM

g . By
assumption we match t1 with words from D1. The prefix hg2

0 . . . hg2
d of t2 is matched

by the corresponding word in DM
g . By the first claim of the previous lemma, we have

t2 ∈ L(hg2
0 . . . hg2

d (Dg2)+hg2
d . . . hg2

0) and the remaining suffix can be matched by the
corresponding word from DM

g .
OR Gate “⇐” By Lemma 5.3 the joining part of t1hgdt2 has to be matched by either

hgdh
g2
0 . . . hg2

d or hg1
d . . . hg1

0 h
g
d. Let it w.l.o.g. be the first one. Then t1 has to be matched

by words from D1 again by the lemma. The inductive hypothesis gives us a satisfying
assignment. J

ESA 2020

80:16 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

I Lemma 5.5. We have the following size bounds:
|tr| ∈ O(sd log s) ⊆ O(s2 log s)
|Dr| ∈ O(sd) ⊆ O(s2)
∀x ∈ Dr : |x| ∈ O(d log s) ⊆ O(s log s)

Proof. The lemma follows directly from the definitions and the observations that |tg| ≤
|t1|+ |t2|+O(d log s), |DM

g | ∈ O(1), and |DS
g | ∈ O(d). J

Outer OR. Let A = {a(1), . . . , a(n)} be the first set and B = {b(1), . . . , b(m)} be the second
set of half-assignments. Again we encode A by the text and B by the pattern. For this we
observe that the first step of the reduction produced a pattern of type +|◦. Thus, we can use
the outer alternative to encode the outer OR to select a specific b(j). To match the whole
text, we blow up the text and the pattern and pad each symbol with three new symbols such
that we can distinguish between the following three matching states: (1) ignore the padding
and match a part of the original text to the original pattern, i.e. we evaluate the formula on
two half-assignments. (2) Match an arbitrary prefix, i.e. the symbols before the actual match
in state (1). (3) Match some arbitrary suffix, i.e. the symbols after the actual match from
state (1). We allow a change between these states only at the end of a text group and require
that we go through all three states if and only if the text can be matched by the pattern.

I Definition 5.6 (Blow-Up of a Text). Let t = t1 · · · tn be a text of length n and u be some
arbitrary string. We define t⇑u:= ut1ut2 · · ·utn and extend it in the natural way to sets.

Using this we define the final text and pattern as follows:

t :=563
n⊙
i=1

(
t(a(i))3⇑456

)
45

p :=p+
1 | p

+
2 | · · · | p+

m

pj :=5604 | 5614 | 5624 | 5634 | 563 | Dr(b(j))⇑456| 456345 | 6045 | 6145 | 6245 | 6345

I Lemma 5.7. If there are a(k) and b(l) such that F (a(k), b(l)) = true, then t ∈ L(p).

Proof. It suffices to show that we can match t to p+
l . The prefix of t and the first k − 1

text groups are matched by repetitions of 56x4 for values x ∈ {0, 1, 2, 3} while the last three
symbols of the k − 1th group are matched by 563. This is possible by our blow-up with
456. By Lemma 5.4 and the definition of the blow-up we get t(a(k))⇑456∈ L((Dr(b(l))⇑456)+).
The following 456345 is matched by the corresponding pattern while the remaining symbols
of the text are matched in a straight forward way by repetitions of 6x45. J

I Lemma 5.8. If t ∈ L(p), then there are a(k) and b(l) such that F (a(k), b(l)) = true.

Proof. By the structure of the pattern we can already fix l. As there is no way to match
the text just with words 56x4 or 6x45, the word 563 must have been used at the end of
some group to switch to the first state. Hence, let the kth text group be the first group
not matched by words of the form 56x4. Observe that we cannot directly switch to an
application of 6x45 and thus get t(a(k))⇑456∈ L((Dr(b(l))⇑456)+). Since the blow-up 456
always matches each other, we can ignore it and get t(a(k)) ∈ L(Dr(b(l))+) proving the claim
by Lemma 5.4. J

I Corollary 5.9. The final text has length O(nsd log s) ⊆ O(ns2 log s) and the pattern has
size O(msd2 log s) ⊆ O(ms3 log s).

This finishes the proof of Theorem 5.2. y

P. Schepper 80:17

References
1 Amir Abboud and Karl Bringmann. Tighter connections between formula-sat and shaving

logs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella,
editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 8:1–8:18. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. Full version: arXiv:1804.08978. doi:
10.4230/LIPIcs.ICALP.2018.8.

2 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 218–230. SIAM, 2015. doi:10.1137/1.9781611973730.17.

3 Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18(6):333–340, 1975. doi:10.1145/360825.360855.

4 Arturs Backurs and Piotr Indyk. Which regular expression patterns are hard to match? In
Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 457–466.
IEEE Computer Society, 2016. Full version: arXiv:1511.07070. doi:10.1109/FOCS.2016.56.

5 Philip Bille and Mikkel Thorup. Faster regular expression matching. In Susanne Albers,
Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas,
editors, Automata, Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in
Computer Science, pages 171–182. Springer, 2009. doi:10.1007/978-3-642-02927-1_16.

6 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970. doi:10.1145/362686.362692.

7 Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoffs for boolean fomulae. Inf. Process.
Lett., 49(3):151–155, 1994. doi:10.1016/0020-0190(94)90093-0.

8 Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular expression
membership testing. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 307–318.
IEEE Computer Society, 2017. Full version: arXiv:1611.00918. doi:10.1109/FOCS.2017.36.

9 Timothy M. Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Robert Krauthgamer, editor, Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 1246–1255. SIAM, 2016. doi:10.1137/1.
9781611974331.ch87.

10 Ruiwen Chen, Valentine Kabanets, and Nitin Saurabh. An improved deterministic #sat
algorithm for small de morgan formulas. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and
Zoltán Ésik, editors, Mathematical Foundations of Computer Science 2014 – 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25–29, 2014. Proceedings, Part II,
volume 8635 of Lecture Notes in Computer Science, pages 165–176. Springer, 2014. doi:
10.1007/978-3-662-44465-8_15.

11 Richard Cole and Ramesh Hariharan. Verifying candidate matches in sparse and wildcard
matching. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory
of Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 592–601. ACM, 2002.
doi:10.1145/509907.509992.

12 Theodore Johnson, S. Muthukrishnan, and Irina Rozenbaum. Monitoring regular expressions
on out-of-order streams. In Rada Chirkova, Asuman Dogac, M. Tamer Özsu, and Timos K.
Sellis, editors, Proceedings of the 23rd International Conference on Data Engineering, ICDE
2007, The Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 1315–1319. IEEE
Computer Society, 2007. doi:10.1109/ICDE.2007.369001.

13 Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Proton: multitouch
gestures as regular expressions. In Joseph A. Konstan, Ed H. Chi, and Kristina Höök, editors,
CHI Conference on Human Factors in Computing Systems, CHI ’12, Austin, TX, USA – May
05–10, 2012, pages 2885–2894. ACM, 2012. doi:10.1145/2207676.2208694.

ESA 2020

https://arxiv.org/abs/1804.08978
https://doi.org/10.4230/LIPIcs.ICALP.2018.8
https://doi.org/10.4230/LIPIcs.ICALP.2018.8
https://doi.org/10.1137/1.9781611973730.17
https://doi.org/10.1145/360825.360855
https://arxiv.org/abs/1511.07070
https://doi.org/10.1109/FOCS.2016.56
https://doi.org/10.1007/978-3-642-02927-1_16
https://doi.org/10.1145/362686.362692
https://doi.org/10.1016/0020-0190(94)90093-0
https://arxiv.org/abs/1611.00918
https://doi.org/10.1109/FOCS.2017.36
https://doi.org/10.1137/1.9781611974331.ch87
https://doi.org/10.1137/1.9781611974331.ch87
https://doi.org/10.1007/978-3-662-44465-8_15
https://doi.org/10.1007/978-3-662-44465-8_15
https://doi.org/10.1145/509907.509992
https://doi.org/10.1109/ICDE.2007.369001
https://doi.org/10.1145/2207676.2208694

80:18 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

14 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

15 Ilan Komargodski, Ran Raz, and Avishay Tal. Improved average-case lower bounds for
demorgan formula size. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 588–597. IEEE Computer Society,
2013. doi:10.1109/FOCS.2013.69.

16 David Landsman. RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock
domain. Nucleic Acids Research, 20(11):2861–2864, June 1992. doi:10.1093/nar/20.11.2861.

17 Quanzhong Li and Bongki Moon. Indexing and querying XML data for regular path ex-
pressions. In Peter M. G. Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri
Ramamohanarao, and Richard T. Snodgrass, editors, VLDB 2001, Proceedings of 27th Inter-
national Conference on Very Large Data Bases, September 11-14, 2001, Roma, Italy, pages
361–370. Morgan Kaufmann, 2001. URL: http://www.vldb.org/conf/2001/P361.pdf.

18 Makoto Murata. Extended path expressions for XML. In Peter Buneman, editor, Proceedings
of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, May 21-23, 2001, Santa Barbara, California, USA. ACM, 2001. doi:10.1145/
375551.375569.

19 Eugene W. Myers. A four russians algorithm for regular expression pattern matching. J. ACM,
39(2):430–448, 1992. doi:10.1145/128749.128755.

20 Gonzalo Navarro and Mathieu Raffinot. Fast and simple character classes and bounded gaps
pattern matching, with applications to protein searching. Journal of Computational Biology,
10(6):903–923, 2003. PMID: 14980017. doi:10.1089/106652703322756140.

21 Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 183–192. IEEE Computer Society,
2010. doi:10.1109/FOCS.2010.25.

22 Ken Thompson. Regular expression search algorithm. Commun. ACM, 11(6):419–422, 1968.
doi:10.1145/363347.363387.

23 Richard Ryan Williams. The polynomial method in circuit complexity applied to algorithm
design (invited talk). In Venkatesh Raman and S. P. Suresh, editors, 34th International
Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS
2014, December 15-17, 2014, New Delhi, India, volume 29 of LIPIcs, pages 47–60. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.47.

24 Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H. Katz. Fast and memory-
efficient regular expression matching for deep packet inspection. In Laxmi N. Bhuyan, Michel
Dubois, and Will Eatherton, editors, Proceedings of the 2006 ACM/IEEE Symposium on
Architecture for Networking and Communications Systems, ANCS 2006, San Jose, California,
USA, December 3-5, 2006, pages 93–102. ACM, 2006. doi:10.1145/1185347.1185360.

A FSH implies FPH

We use the following relation between Formula-SAT and Formula-Pair to show that
FSH implies FPH:

I Lemma A.1 (Weak version of Lemma B.2 in the full version of [1]). An instance of Formula-
SAT on a De Morgan formula of size s over n variables can be reduced to an instance of
Formula-Pair with a monotone De Morgan formula of size k = O(s) and two sets of size
O(2n/2) in linear time.

Proof Idea. Let F be the formula for Formula-SAT on n variables and size s. We define
F ′ to be the same formula as F but each leaf is labeled with a different variable and we
remove the negations from the leaves.

https://doi.org/10.1137/0206024
https://doi.org/10.1109/FOCS.2013.69
https://doi.org/10.1093/nar/20.11.2861
http://www.vldb.org/conf/2001/P361.pdf
https://doi.org/10.1145/375551.375569
https://doi.org/10.1145/375551.375569
https://doi.org/10.1145/128749.128755
https://doi.org/10.1089/106652703322756140
https://doi.org/10.1109/FOCS.2010.25
https://doi.org/10.1145/363347.363387
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.47
https://doi.org/10.1145/1185347.1185360

P. Schepper 80:19

For all half-assignments x to the first half of variables of F we construct a new half-
assignment ax for F ′ as follows: Let l be a leaf in F with a variable from the first half of
inputs and let l′ be the corresponding variable/leaf in F ′. We set ax[l′] = true if and only if l
evaluates to true under x. We construct the set B analogous for the second half of inputs of
F . Since F has n inputs this results in 2n/2 assignments for A and B. J

I Lemma A.2. FSH implies FPH.

Proof. Assume FSH holds and FPH is false for some fixed k ≥ 1. Let F be a formula
for Formula-SAT on N inputs and size s = N3+1/(4k) ∈ N3+Ω(1). By Lemma A.1 we
transform F into a monotone De Morgan formula F ′ of size s′ = O(s) and two sets with
n,m ∈ O(2N/2) assignments. We run the algorithm for Formula-Pair on this instance to
contradict FSH:

O
(
n ·m · s′k

log3k+2 n
log1+o(1) 2N

)
⊆ O

(
2N/22N/2skN1.25

log3k+2 2N/2

)
= O

(
2N N3k+0.25+1.25

N3k+2(1/2)3k+2

)
= O

(
2N N

3k+1.5

N3k+2

)
= O

(
2N

N0.5

)
.

See the following paragraph for the additional factor of N1+o(1). J

As Abboud and Bringmann [1] we use the Word-RAM model as our computational model.
The word size of the machine will be fixed to Θ(logN) many bits for input size N . Likewise
we assume several operations that can be performed in time O(1) (e.g. AND, OR, NOT,
addition, multiplication, . . .).

While this is sufficient for our reductions, we also need that the operations are robust to a
change of the word size to state FPH. As in [1] we require that we can simulate the operations
on words of size Θ(logN) on a machine with word size Θ(log logN) in time (logN)1+o(1).

In the above proof the input size increased from N to n = 2N . Hence, we have to simulate
the algorithm for Formula-Pair with word size logn = N on a machine with word size
logN to get an algorithm for Formula-SAT. Thus, the running time slows down by a factor
of (logn)1+o(1) = N1+o(1).

B Correctness of the Graph Construction for +|◦+-Membership

We show the correctness of the graph construction given in the proof of Theorem 3.1 Item 2.

B Claim B.1. If t ∈ L(p), then there is a path from v0
0 to v0

n.

Proof. Assume p = (p1 | . . . | pk)+. Since t ∈ L(p), we can decompose t into t = τ1 · · · τ`
such that for all l ∈ [`] τl ∈ L(pkl

) for some kl ∈ [k]. Define λl = |τ1 · · · τl| as the length of
the first l parts of t for all l ∈ [`]. We claim that if τ1 · · · τl ∈ L(p), then there is a path from
v0

0 to v0
λl
.

For l = 0, the claim is vacuously true as ε /∈ L(p). Now assume the claim holds for
arbitrary but fixed l. We define i = λl + 1 and j = λl+1 to simplify notation and get
τl+1 = ti · · · tj . From τl+1 ∈ L(pkl+1) and Lemma 3.6 we know (f, i′, j′, e) ∈ M ′ for some
i ≤ i′ ≤ j′ ≤ j. Further, f, e are set to 1 if and only if the first and last run of pkl+1 contains
a Kleene Plus, respectively. Hence, v2e

j′ is reachable from vfi′−1. Now it suffices to show that
(1) vfi′−1 is reachable from v0

i−1 and (2) v0
j is reachable from v2e

j′ . Then the claim follows
inductively as v0

i−1 is reachable from v0
0 .

ESA 2020

80:20 Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

We first show (1). If f = 0, we must have i = i′ and the claim holds. Thus assume f = 1.
We know τl+1 = ti · · · tj ∈ L(pk′) and ti′ · · · tj′ ∈ L(pk′) for some k′ ∈ [k]. As the first run of
pk′ contains a Kleene Plus, the symbols, ti, ti+1, . . . , ti′ are all equal. That is, they form a run
from i to i′. By the construction of the graph, there are edges (v1

i−1, v
1
i), . . . , (v1

i′−2, v
1
i′−1).

But there is also the additional edge (v0
i−1, v

1
i−1) proving (1).

By a symmetric argument one can show claim (2). C

B Claim B.2. If there is a path from v0
0 to v0

n, then t ∈ L(p).

Proof. First observe that it is not possible to reach v0
n from v0

0 without using edges introduced
by tuples in M ′. Now fix some path P from v0

0 to v0
n and let P1, . . . , P` be the edges on the

path that are introduced by tuples in M ′. Let Pl = (vfl

i′
l
−1, v

2el

j′
l

), i.e. (fl, i′l, j′l , el) ∈M ′.
Assume j′0 = 0 and i′`+1 = n + 1 in the following to simplify notation. For each tuple

there are two indices il and jl such that j′l−1 ≤ il − 1 ≤ i′l − 1 and j′l ≤ jl ≤ i′l+1 − 1 and the
path P goes through v0

il−1 and v0
jl
. These nodes exist, as every path from v

2el−1
j′

l−1
to vfl

i′
l
−1

has to go through some node v0
r . We have jl + 1 = il+1 for all l ∈ [0, `] with j0 = 0 and

i`+1 = n+ 1 and hence, t = ti1 · · · tj1ti2 · · · tj2 · · · ti` · · · tj`
. Thus, it suffices to show that for

every l ∈ [`] there is a k′ ∈ [k] such that til · · · tjl
∈ L(pk′).

We fix l in the following and omit it as index to simplify notation. By the construction
of the graph we have (f, i′, j′, e) ∈M ′ and hence by Lemma 3.6 ti′ · · · tj′ ∈ L(pk′) for some
k′ ∈ [k]. We extend this result and claim ti · · · tj′ ∈ L(pk′). Recall, that there is a path
from v0

i−1 to vfi′−1 in P . If f = 0, then i′ = i and the claim follows. Otherwise, we know
that the first run of pk′ contains a Kleene Plus for some symbol α. As no edge resulting
from a tuple in M ′ can be chosen, the edge (v0

i−1, v
1
i−1) is contained in the path P . By the

construction of the graph, the sequence ti · · · ti′ is contained in some run βc. But α = β and
we get ti · · · ti′−1ti′ · · · tj′ ∈ L(pk′).

We can apply the symmetric argument to show that ti · · · tj′tj′+1 · · · tj ∈ L(pk′) proving
the claim. C

Space-Efficient, Fast and Exact Routing in
Time-Dependent Road Networks
Ben Strasser
Karlsruhe Institute of Technology, Germany
academia@ben-strasser.net

Dorothea Wagner
Karlsruhe Institute of Technology, Germany
dorothea.wagner@kit.edu

Tim Zeitz
Karlsruhe Institute of Technology, Germany
tim.zeitz@kit.edu

Abstract
We study the problem of computing shortest paths in massive road networks with traffic predictions.
Incorporating traffic predictions into routing allows, for example, to avoid commuter traffic conges-
tions. Existing techniques follow a two-phase approach: In a preprocessing step, an index is built.
The index depends on the road network and the traffic patterns but not on the path start and end.
The latter are the input of the query phase, in which shortest paths are computed. All existing
techniques have either large index size, slow query running times, or may compute suboptimal paths.
In this work, we introduce CATCHUp (Customizable Approximated Time-dependent Contraction
Hierarchies through Unpacking), the first algorithm that simultaneously achieves all three objectives.
The core idea of CATCHUp is to store paths instead of travel times at shortcuts. Shortcut travel
times are derived lazily from the stored paths. We perform an experimental study on a set of real
world instances and compare our approach with state-of-the-art techniques. Our approach achieves
the fastest preprocessing, competitive query running times and up to 30 times smaller indexes than
competing approaches.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of com-
puting → Graph algorithms; Applied computing → Transportation

Keywords and phrases realistic road networks, time-dependent route planning, shortest paths

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.81

Supplementary Material https://github.com/kit-algo/catchup

Acknowledgements We thank Lars Gottesbüren and Michael Hamann for fruitful discussions and
feedback. We also thank Marcel Radermacher for his input on approximation algorithms.

1 Introduction

Routing in road networks is a well-studied topic with a plethora of real world applications.
The core problem is to compute a fastest route between a source and a target. The idealized
problem can be formalized as the classic shortest path problem. Streets are modeled as arcs.
Street intersections are modeled as nodes. Travel times are modeled as scalar arc weights.
Unfortunately, this idealized view does not model certain important real world effects. An
important example are recurring commuter congestions. In this paper, we consider an
extended problem in which travel times are time-dependent. The travel time of an arc is a
function of the moment where a car enters the arc. Figure 1 depicts an example.

Computing shortest-paths using Dijkstra’s [12] algorithm is possible both in the classical
and in the time-dependent setting. However, for many applications, its running time is too
large. To achieve fast running times, a two-phase approach is used. In the first phase, the

© Ben Strasser, Dorothea Wagner, and Tim Zeitz;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 81; pp. 81:1–81:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:academia@ben-strasser.net
mailto:dorothea.wagner@kit.edu
https://orcid.org/0000-0003-4746-3582
mailto:tim.zeitz@kit.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.81
https://github.com/kit-algo/catchup
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

81:2 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

00:00 06:00 12:00 18:00 24:00
Entry time

14

16

18

20

Tr
av

el
 ti

m
e

[s
]

Figure 1 The graph of a small road network with predicted travel times for each road segment.

preprocessing phase, an index is constructed. The index only depends on the road networks
and the time-dependent arc weights. In the second phase, the query phase, shortest paths
are computed utilizing this index.

An important ingredient for many such two-phase techniques [1, 4, 9, 11, 15] are shortcuts.
Shortcuts are additional arcs introduced during preprocessing, which bypass parts of the
input graph like in Figure 2a. The weight of a shortcut is set to the length of the shortest
path between its endpoints. When computing shortest paths, only few shortcuts are explored
instead of many arcs in the input graph. The path represented by a shortcut can be obtained
lazily, for example by running local Dijkstra searches [8], or by iterating over possible middle
nodes when shortcuts always represent exactly two other (shortcut) arcs [11, 15].

This approach has been extended to the time-dependent setting [2, 5]. Shortcuts are no
longer associated with scalar weights. Instead travel time functions are used that map the
entry time into a shortcut onto the travel time through it. Unfortunately, in practice these
functions become very complex. Computing and storing them is expensive. Implementations
represent these functions typically as piecewise linear functions. They are stored as a sequence
of breakpoints. The number of breakpoints in a shortcut’s function practically corresponds to
the accumulated number of breakpoints of the functions of the arcs it bypasses. Contrary to
the classic setting, shortcuts aggregate the complexity of paths they represent, rather than
skipping over it. This leads to slow preprocessing and prohibitive memory consumption.

In this paper, we explore an alternative approach to shortcut travel time functions. Rather
than explicitly storing them and obtaining paths lazily, we store paths and obtain travel
times lazily. We expect that the shortest path between two nodes changes less frequently
than the travel time. Intuitively, going via a highway may be slower due to congestion
but is usually still the fastest option. Consider the functions f and g in Figure 2b. These
functions are travel time functions of two paths between the same endpoints and have
many breakpoints. If we want to store the travel time function of a shortcut between these
endpoints, we need to store the function h = min(f, g). Storing h explicitly requires roughly
a number of breakpoints proportional to the number of breakpoints in f and g. However,
if we only store which path is the fastest, we only need to store the points in time when
the faster path switches. We expect significantly fewer switches than breakpoints. In this
paper, we employ this alternative approach to adapt an existing speed-up technique to the
time-dependent setting, describe engineering techniques employed in our implementation, and
present experimental results demonstrating that our approach significantly reduces memory
consumption while achieving competitive query times.

Related Work. Routing in road networks has been extensively studied in the past decade.
An overview over the field can be found in [1]. Here, we focus on speed-up techniques for
time-dependent road networks. Several time-independent speed-up techniques have been
generalized to the time-dependent setting. ALT [17], an approach using landmarks to obtain

B. Strasser, D. Wagner, and T. Zeitz 81:3

(a) A shortcut arc (dashed, black) bypassing several
nodes. In our implementation, shortcuts always
skip over exactly one node and two arcs, which may
in turn be shortcut arcs (dashed gray arcs).

06:00 09:00 12:00 15:00 18:00
Entry time

8

10

12

Tr
av

el
 ti

m
e

[s
]

f
g

(b) Travel time functions for two different paths
between the same start and end node.

Figure 2 Shortcuts and their travel time functions.

good A* [19] potentials has been generalized to TD-ALT [24] and successively extended with
node contraction to TD-CALT [9]. Even when combined with approximation, TD-CALT
queries may take longer than 10ms on continental sized graphs. SHARC [4], a combination
of ARC-Flags [23] with shortcuts which allows unidirectional queries was also extended
to the time-dependent scenario [7]. It can additionally be combined with ALT yielding
L-SHARC [7]. SHARC can find short paths in less than a millisecond but does not always
find a shortest path. MLD/CRP [8, 20] has been extended to TD-CRP [5] which can be
used in a time-dependent setting. TD-CRP requires approximation to achieve reasonable
memory consumption. It may find suboptimal paths. Another approach is FLAT [21] and
its extension CFLAT [22]. CFLAT features sublinear query running time after subquadratic
preprocessing and guarantees on the approximation error. Unfortunately, preprocessing takes
long in practice and generates a prohibitively large index size.

There are several approaches based on CH [15]. Three were introduced in [2]: Time-
dependent CH (TCH), inexact TCH, and Approximated TCH (ATCH). TCH achieve great
query performance but at the cost of a huge index size on state-of-the-art continental sized
instances. The index size can be reduced at the cost of exactness (inexact TCH) or query
performance (ATCH). An open-source reimplementation of [2] named KaTCH1 exists. A
simple heuristic named Time-Dependent Sampling (TD-S) was introduced in [26]. It samples
a fixed set of scalar values from the time-dependent functions. It has manageable index sizes
and fast query times but does not always find shortest paths.

Contribution and Outline. In this work, we explore a variant of time-dependent CH, where
shortcuts store paths instead of travel times. We introduce CATCHUp – Customizable
Approximated Time-dependent Contraction Hierarchies trough Unpacking, a time-dependent
generalization of Customizable Contraction Hierarchies [11] and a thoroughly engineered
implementation. Preprocessing takes only a few minutes even on modern production-grade
continental sized instances with tens of millions of nodes. We also present algorithms which
allow us to employ approximation to accelerate preprocessing without sacrificing exactness
for the queries. Our implementation achieves fast and exact queries with performance
competitive to TCH queries while requiring up to 30 times less memory.

The rest of this paper is organized as follows. In Section 2, we introduce some notation
and existing algorithms we build on. We describe our shortcut data structure, and the
preprocessing and query algorithms in Section 3. In Section 4, we discuss our experimental
evaluation. We conclude in Section 5.

1 https://github.com/GVeitBatz/KaTCH

ESA 2020

https://github.com/GVeitBatz/KaTCH

81:4 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

2 Preliminaries

We model road networks as directed graphs G = (V,A). A node v ∈ V represents an
intersection and an arc a = uv ∈ A with u, v ∈ V represents a road segment. A path
is a sequence of nodes [v1, ..., vk] such that vivi+1 ∈ A. Every arc a has a travel time
function fa : R→ R>0 mapping departure time to travel time. We assume that travel time
functions fulfill the First-In-First-Out (FIFO) property, that is for any σ, τ ∈ R with σ ≤ τ ,
σ+f(σ) ≤ τ +f(τ) has to hold. Informally, this means that it is not possible to arrive earlier
by starting later. If there are arcs that do not fulfill the FIFO property, the shortest path
problem becomes NP-hard [25]. In our implementation, travel time functions are periodic
piecewise linear functions represented by a sequence of breakpoints. We denote the number
of breakpoints by |f |.

Given two travel time functions f and g for arcs uv and vw, we are often interested in the
travel time function of traversing first uv and then vw, that is (g ◦ f)(τ) = f(τ) + g(f(τ) + τ).
Computing this function is called linking. When combining two travel time functions f and
g for different paths [u, ..., v] with the same start and end, we often want to know the travel
time of the best path between u und v, that is min(f, g). Computing this function is called
merging. Both linking and merging can be implemented with coordinated linear sweeps over
the breakpoints of both functions.

Given a departure time τ and nodes s and t, an earliest-arrival query asks for earliest
point in time one can arrive at t when starting from s at τ . Such a query can be handled
by Dijkstra’s algorithm [12] with little modifications [14]. The algorithm keeps track of the
earliest known arrival time eav at each node v. These labels are initialized with τ for s and
∞ for all other nodes. A priority queue is initialized with (s, τ). In each step, the node u
with minimal earliest arrival eau is popped from the queue and outgoing arcs are relaxed. To
relax an arc uv, the algorithm checks if eau +fuv(eau) improves eav and updates label and
queue position of v accordingly. Once t is extracted from the queue, the earliest arrival at t is
known. To retrieve the shortest path, one can use parent pointers which for each node store
the previous node on the shortest path from s. We refer to this algorithm as TD-Dijkstra.

The A* algorithm [19] is an extension to Dijkstra’s algorithm. It reduces the number of
explored nodes by guiding the search towards t. Each node u has a potential ρt(u) which is
an estimate of the distance to t. The priority queue is then ordered by eau +ρt(u).

Contraction Hierarchies (CH) [15] is a speed-up technique exploiting the inherent hierarchy
in road networks. Nodes are heuristically ranked by their importance. Nodes with higher
rank should cover more shortest paths. During preprocessing, all nodes are contracted in
order of ascending importance. Contracting a node v means removing it from the network but
preserving all shortest distances among the remaining higher ranked nodes. This is achieved
by inserting shortcut arcs between the neighbors of v if a shortest path goes through v. A
shortcut is only necessary if it represents the only shortest path between its endpoints. This
can be checked with a local Dijkstra search (called witness search) between the endpoints.
The result of the preprocessing is called an augmented graph. Queries can be answered by
performing a bidirectional Dijkstra search on the augmented graph where only arcs to higher
ranked nodes are relaxed. The construction guarantees that this algorithm will find a shortest
up-down-path which has the same length as shortest paths in the original graph.

Customizable Contraction Hierarchies (CCH) [11] is a CH extension, splitting CH pre-
processing into two steps where only the second one uses arc weights. In the first step, a
separator decomposition and an associated nested dissection order [3, 16] are computed. This
order determines the node ranks. Nodes in the top-level separators have the highest ranks,

B. Strasser, D. Wagner, and T. Zeitz 81:5

u v

w1 w2

00:00 uw1 w1v

07:32 uw2 w2v

15:42 uw1 w1v

Figure 3 A shortcut with associated time-dependent unpacking information.

followed by the nodes of each cell, recursively ordered by the same method. Then, nodes are
contracted without running witness searches, so all potential shortcuts are added. In the
second step (called customization), shortcut arc weights are computed. All arcs are processed
in ascending order of their lower ranked endpoint. To process an arc uv, all lower triangles
[u,w, v], where w has lower rank than u and v are enumerated, checking if the path [u,w, v]
can improve the weight of uv. The CH query algorithm can be reused without modifications.
Another query algorithm is described in [11] based on the elimination tree which does not
need priority queues. The parent of each node in the elimination tree is its lowest-ranked
upward neighbor in the augmented undirected graph. A nodes ancestors in the elimination
tree are exactly the set of nodes that are reachable in a CH search from this node [3]. Thus,
instead of exploring the search space through Dijkstra searches, the elimination tree query
traverses the same nodes by traversing the path to the root in the elimination tree.

3 Algorithms

In this section, we describe our algorithms, data structures and implementation. Our
approach builds upon CCH. However, instead of storing travel time functions at shortcuts,
we store unpacking information to efficiently reconstruct the represented paths in the original
graph. We start by describing our representation of this unpacking information. Then, we
continue by presenting our adapted CCH algorithms for the time-dependent setting.

3.1 Shortcut Data Structure
The key element of our approach is the information we store with each shortcut. We store
time-dependent unpacking information, which allows us to efficiently reconstruct the original
path represented by a shortcut for a point in time. In (C)CH, shortcuts uv are inserted when
a node w is contracted and the arcs uw and wv exist. Thus, a shortcut uv always skips over
a triangle [u,w, v]. However, there may be several triangles and which one is the fastest may
change over time. This is the information our shortcut data structure has to capture.

For each shortcut arc uv, we store a set of time-dependent expansions Xuv for unpacking.
See Figure 3 for an example. For an expansion x ∈ Xuv, we denote the time during which
x represents the shortest path as the validity interval Πx of x and the lower node of the
triangle [u,wx, v] as wx. In our implementation, the expansion information is represented
as an array of triples (π, uwx, wxv). π is the beginning of the validity interval and uw and
wv are arc ids. This information can be stored in 16 bytes for each entry – 8 bytes for the
timestamp and 4 bytes for each arc id. Beside the unpacking information, we also store a
scalar lower bound buv and an upper bound buv to prune unnecessary operations.

To obtain the shortest path represented by a shortcut uv for a time τ , we first need to
determine the relevant expansion x such that τ ∈ Πx. This can be done performing a binary
search in Xuv. The shortcut can then be expanded to [u,wx, v]. However, uwx or wxv may
also be shortcuts. Thus, we recursively apply the operation to (u,wx) at τ and to (wx, v) at

ESA 2020

81:6 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

τ + f(u,wx)(τ). Evaluating the travel time of the first arc is always necessary to determine
the time for unpacking for the second arc. The travel time of a shortcut can be obtained by
unpacking the path and then evaluating the travel times of the original arcs successively.

3.2 Preprocessing
The first step of CCH preprocessing is performed only on the topology of the graph. Since no
travel time functions are involved, we can adapt the algorithms of [11] without modification.
We use InertialFlowCutter [18] to obtain the nested dissection order. To generate the shortcut
augmented graph, we implement an improved contraction algorithm first presented in [27].
When contracting a node, we insert all upward neighbors of the current node only into the
neighborhood of its lowest ranked upward neighbor. This algorithm can be implemented to
run in linear time in the size of the output graph.

The goal of the second step of preprocessing for classical CCH is to compute the shortcut
weights. So for our approach, we have to compute travel time bounds and unpacking
information for all shortcuts2. Recall that a shortcut uv always bypasses one or many lower
triangles [u,wi, v] for different nodes wi, where wi has lower rank than u and v. For the
bounds, we want to find the minimum and maximum travel time of the fastest travel time
function between u and v over any wi. For the unpacking information, we need to determine
for each point in time which triangle is the fastest. Assuming we know the final travel
time functions of all uwi and wiv, we can obtain the travel time function for each triangle
by linking fuwi and fwiv. By merging these linked functions, we can compute both the
final bounds and the times during which each triangle is the fastest. This leads to the
following algorithmic schema: Iterate over all arcs in a bottom-up fashion. For each arc
enumerate lower triangles. Link and merge their functions to compute the function, bounds,
and unpacking information of the current arc. Keep the current arc’s travel time function in
memory until it is no longer needed.

We implement this schema as follows: We process all arcs uv ordered ascending by their
lower ranked endpoint. Since the middle node w of a lower triangle [u,w, v] has always lower
rank than u and v, the arcs uw and wv will have been processed already. To process an arc
uv we enumerate lower triangles [u,w, v]. For each triangle, we obtain the function of [u,w, v]
by linking the functions of the arcs uw and wv, and merge it with the current function of
the shortcut uv. Once all arcs uv have been processed where u is the lower ranked endpoint,
we drop the travel time functions of all arcs wu where u is the higher ranked endpoint.

When enumerating triangles, we order them ascending by buw +bwv. This way, we process
triangles, which are likely faster first. This gives us preliminary bounds on the travel time of
uv. Before linking the functions of another triangle fuw and fwv, we check if buv ≤ buw + bwv.
If so, the linked path would be dominated by the shortcut, and we can skip linking and
merging completely. If not, we link fuw and fwv and obtain f[u,w,v]. We still can skip
merging if one function is strictly smaller than the other, that is either buv ≤ min(f[u,w,v])
or max(f[u,w,v]) ≤ buv. Even if the bounds overlap, one function might still dominate the
other. To check for this case, we simultaneously sweep over the breakpoints of both functions,
determining the value of the respectively other function by linear interpolation. Only when
this check fails, we perform the merge operation.

2 Note that actually all arcs in the augmented graph have to be treated as shortcuts. We represent arcs
from the original graph as a special expansion element pointing to the original arc.

B. Strasser, D. Wagner, and T. Zeitz 81:7

Before the time-dependent customization, we first use the basic and perfect customization
algorithms from [11] to compute preliminary scalar upper and lower bounds for all shortcuts.
With these bounds, we can skip additional linking and merging operations. Also, we can
remove some shortcuts completely, when a shorter path through higher ranked nodes exists.

Parallelization. We employ both loop based and task based parallelism. The original CCH
publication [11] suggests processing shortcuts with their lower ranked endpoint on the same
level in parallel. The level of a node is the level of its highest ranked downward neighbor
increased by one, or zero if the node does not have downward neighbors. We use this approach
to process arcs in the top-level separators.

In [6], a task based parallelism approach utilizing the separator decomposition of the
graph is described. Each task is responsible for a subgraph G′. Removing the top-level
separator in G′ decomposes the subgraph into two or more disconnected components. For
each component, a new task is spawned to process the shortcuts the component. After all
child tasks are completed, the shortcuts in the separator are processed utilizing the loop
based parallelization schema. If the size of subgraph G′ is below a certain threshold, the
task processes the shortcuts in G′ sequentially without spawning subtasks.

Approximation. As we process increasingly higher ranked shortcuts, the associated travel
time functions become more and more complex. This leads to two problems. First, linking
and merging becomes very time-consuming as running times scale with the complexity of
the input functions. Second, storing these functions for later reuse – even though it is only
temporary – requires a lot of memory. We employ approximation to mitigate these issues.
However, for exact queries, we need exact shortcut unpacking information. We achieve this
by lazily reconstructing parts of exact travel time functions during merging.

When approximating, we do not store one approximated function but two – a lower
bound function and an upper bound function with maximum error ε where ε is a configurable
parameter. These approximations replace the exact function stored for later merge operations
and will also be dropped when no longer needed. To obtain the bound functions, we first
compute an approximation using the algorithm of Douglas and Peucker [13]. Then, we add
or subtract ε to the value of each breakpoint to obtain an upper or lower bound, respectively.
This yields valid upper or lower bounds, but they may not be as tight as possible. Therefore,
we iterate over all approximated points and move each point back towards the original
function. Both adjacent segments in the approximated functions have a minimum absolute
error to the original function. We move the breakpoint by the smaller of the two errors. This
yields sufficiently good bounds.

When linking approximated functions, we can link both lower and both upper bound
functions. Linking two lower bounds yields a valid lower bound function of the linked exact
functions because of the FIFO property. The same argument holds for upper bounds.

Merging approximated shortcuts is slightly more involved. Our goal is to determine
the exact unpacking information for each shortcut. We use the approximated bounds to
narrow down the time ranges where intersections are possible. To identify these parts, we
merge the first function’s lower bound with the second function’s upper bound and vice
versa. Where the bounds overlap, an intersection might occur. We then obtain the exact
functions in the overlapping parts through unpacking and perform the exact merging. To
obtain approximated upper and lower bounds of the merged function, we merge both lower
bounds and both upper bounds.

ESA 2020

81:8 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

We approximate whenever a function has more than β breakpoints. This includes already
approximated functions. Both β and the maximum error ε are tuning parameters which
influence the performance (but not the correctness).

3.3 Queries
Our query algorithm is based on the CCH elimination tree query algorithm [11]. There are
two challenges. First, we can not perform a backwards search, as we do not know the arrival
time at the target node. Second, to evaluate the travel time of a shortcut, we need to obtain
the path in the original graph. Since unpacking shortcuts is expensive, we try to keep the
number of these operations as small as possible.

Our query algorithm works in two phases. In the first phase, we perform an elimination
tree interval query using the lower and upper travel time bounds of the arcs. The backward
search is possible since these bounds are not time-dependent. This yields a shortest path
corridor. This corridor is made up of both original and shortcut arcs and always contains
the actual shortest path. In the second phase, we perform a unidirectional Dijkstra search
on this corridor, which lazily unpacks shortcuts.

Elimination Tree Interval Query. The elimination tree interval query is a bidirectional
search starting from both the source node s and the target node t. Node labels contain an
upper tv and a lower bound tv on the travel time to/from the search origin and a parent
pointer to the previous node. The bounds ts, tt, ts, tt are all initialized to zero in their
respective direction, all other bounds to infinity. We also track tentative travel time bounds
for the total travel time from s to t. For both directions, the path from the start node to
the root of the elimination tree is traversed. For each node u, all arcs uv to higher ranked
neighbors are relaxed, that is checking if tu + buv < tv or tu + buv < tv and improving the
bounds of v if possible. When the new travel time bounds from an arc relaxation overlap
with the current bounds, more than one label has to be stored. After both directions are
finished, we have several meeting nodes in the intersection of the search spaces. Where the
sum of the forward and backward distance bounds of a node overlaps with the total travel
time bounds, the parent pointers are traversed to the search origin and all arcs on the paths
are marked as part of the shortest path corridor.

Lazy Corridor Dijkstra. In the second query phase, we perform Dijkstra’s algorithm on the
corridor obtained in the first phase. At the beginning, the corridor contains many shortcuts,
which need to be unpacked, to determine their travel time. We perform unpacking lazily. The
algorithm starts with the same initialization as a regular TD-Dijkstra. All earliest arrivals
are set to infinity, except for the start node which is set to the departure time. The start
node is inserted into the queue. Then, nodes are popped from the queue until it is empty or
the target node is reached. For each node, all outgoing arcs within the shortest path corridor
are relaxed. When an arc is from the original graph, the travel time can be evaluated directly.
Shortcut arcs, however, need to be unpacked. The unpacking algorithm defers the work
as much as possible: Only the first arc of the triangle of each shortcut will be recursively
unpacked until an original arc is reached, the second arc will be added to the corridor. See
Figure 4 for an example. This way, we unpack only the necessary parts and avoid relaxing
arcs multiple times when shortcuts share the same paths.

Corridor A*. The query can be accelerated further, by using the lower bounds obtained
during the elimination tree interval query as potentials for an A*-search. For nodes in the CH
search space of t, the lower bounds from the backward search can be used. For nodes in the

B. Strasser, D. Wagner, and T. Zeitz 81:9

u

v

w

x

1. Lazy unpack/relax
2. Add to corridor
3. Lazy unpack/relax
4. Add to corridor
5. Relax

Figure 4 Lazy relaxation of shortcut uv. Since uv is a shortcut, it needs to be unpacked. This
causes wv to be added to the corridor and uw to be relaxed. Relaxing uw causes xw to be added to
the corridor and ux to be relaxed. In this example, ux is an original arc and the recursion stops.
xw will be relaxed (or unpacked) only once x is popped from the queue.

Table 1 Characteristics of test instances used. The third column contains the percentage of arcs
with a non-constant travel time. The fourth column the average number of breakpoints among those.

Nodes [·103] Arcs [·103] TD arcs [%] Avg. |f | per TD arc Size [GB]

Ger06 4 688 10 796 7 17.6 0.2
Ger17 7 248 15 752 29 29.6 0.7
Eur17 25 758 55 504 27 27.5 2.3

CH search space of s, we start at the meeting nodes from the corridor search and propagate
the bounds backwards down along the parent pointers. This yields potentials for all nodes in
the initial corridor. However, we also need potentials for nodes added to the corridor through
unpacking. These potentials are computed during the shortcut unpacking. When unpacking
a shortcut uv into the arcs uw and wv, then ρ(w) will be set to min(ρ(w), ρ(v) + bwv).

4 Experiments

We implement our algorithms in Rust3 and compile them with rustc 1.36.0-nightly (372be4f36
2019-05-14) in the release profile with the target-cpu=native option4. To compile competing
implementations written in C++, we use GCC 7.4. All experiments were conducted on a dual
8-core Intel Xeon Gold 6144 CPU with a base frequency of 3.5GHz with 192GiB of DDR4
RAM (clocked at 2.6GHz). Preprocessing utilized all 16 cores (without hyperthreading).
The running times are averages over five runs. We generate 100 000 source, target, departure
time triples chosen uniformly at random for each graph and report average query times.
Queries were performed sequentially.

We use two production-grade instances for Germany and Europe and with traffic predic-
tions from 2017. To compare our algorithms to related work, we also include an old instance
of Germany from 2006. The instances were provided by PTV5 and include traffic predictions
as piecewise linear functions. We use traffic predictions for a car on a typical midweek day.
Table 1 lists key characteristics of each graph.

Table 2 reports numbers on our preprocessing. On Ger06, the first preprocessing step
takes longer than the second. However, for the newer instances with more time-dependent
arcs and more breakpoints per function this changes and the second step becomes more

3 The code is available at https://github.com/kit-algo/catchup.
4 We disabled AVX512 instructions, as they caused misoptimizations.
5 https://ptvgroup.com

ESA 2020

https://github.com/kit-algo/catchup
https://ptvgroup.com

81:10 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

Table 2 Preprocessing statistics. Running times are for parallel execution on 16 cores.

CCH arcs Expansions per shortcut Index Step 1 Step 2

[·103] Avg. Max. = 1 [%] [GB] [s] [s]

Ger06 22 521 1.075 44 98.4 1.06 31 18
Ger17 31 517 1.090 107 98.5 1.50 35 92
Eur17 115 023 1.100 115 98.4 5.48 196 479

Table 3 Mean query performance and search space sizes with and without our A* query extension.

Elimination tree interval query Lazy corridor Dijkstra

Nodes in
search space

Relaxed
shortcuts

Queue pops Relaxed arcs Time [ms]

no A* A* no A* A* no A* A*

Ger06 735 48 574 3 328 831 3 845 995 1.62 0.54
Ger17 770 58 903 18 499 3 099 19 986 3 502 8.70 1.59
Eur17 1 302 162 295 39 717 6 876 43 654 7 928 19.55 3.76

expensive. Despite that, the size of the final index corresponds to the number of shortcut
arcs and does not grow as much for the newer instances. The augmented graphs have about
twice as many arcs as the original graphs. On average, only 1.1 expansions per shortcut
need to be stored for all graphs. About 98% of all shortcuts have only one expansion. The
maximum number of expansions per shortcuts is only 115 even for our largest graph. This is
two orders of magnitude less than the number of breakpoints in the travel time function of
that shortcut. This clearly shows the superiority of shortcuts with expansion information
over explicitly storing travel time functions.

Table 3 depicts the performance of our query algorithms in terms of running time and
search space sizes. Without the A* optimization, queries take up to 5.5 times longer and the
search space of the corridor Dijkstra grows roughly by the same factor. Both query variants
relax only little more arcs than they settle nodes. This is caused by the shortcut unpacking.
Large parts of the unpacked search space are just long paths of nodes with degree two.

Table 4 provides an overview over different techniques, their preprocessing and query times,
space overhead of the index data structures and average query errors where approximation is
used. Where possible, we obtained the code of competing algorithms6 and evaluated them
with same methodology, instances and queries as our algorithms. For other competitors, we
report available numbers from the respective publications.

In our comparison, KaTCH, heu SHARC, CFLAT and CATCHUp all achieve query times
around 0.6ms on Ger06. The original research implementation TCH reports slightly slower
times than KaTCH. This may be because experiments were run on an older machine, but
also because according to the KaTCH documentation, the newer query is somewhat more
efficient. TCH pays for this speed with 4.7GB index data. Reducing the KaTCH memory
consumption while keeping exactness (ATCH) brings query times up to 1.24ms. ATCH also
feature a configuration where they only keep upper and lower bounds for each profile (ATCH
∞). This configuration uses even less memory than CATCHUp because the optimized order
results in fewer shortcuts. Giving up on exactness allows keeping the query times at 0.7ms
(inex. TCH) but introduces some noticeable errors.

6 KaTCH: https://github.com/GVeitBatz/KaTCH
TD-S: https://github.com/ben-strasser/td_p

https://github.com/GVeitBatz/KaTCH
https://github.com/ben-strasser/td_p

B. Strasser, D. Wagner, and T. Zeitz 81:11

Table 4 Comparison with related work. We list unscaled numbers as reported in the respective
publications for algorithms we could not run ourselves. Values not reported are indicated as n/r.
OOM means that the program crashed while trying to allocate more memory than available. A
similar overview with scaled numbers can be found in [10].

Preprocessing Index Query

Time Cores size Time Rel. error

[s] [GB] [ms] Avg. [%] Max. [%]

G
er
06

TD-Dijkstra - - - 525.48 exact
TDCALT [9] 540 1 0.23 5.36 exact
TDCALT-K1.15 [9] 540 1 0.23 1.87 0.050 13.840
eco L-SHARC [7] 4 680 1 1.03 6.31 exact
heu SHARC [7] 12 360 1 0.64 0.69 n/r 0.610
KaTCH 170 16 4.66 0.63 exact
TCH [2] 378 8 4.66 0.75 exact
ATCH (1.0) [2] 378 8 1.12 1.24 exact
ATCH (∞) [2] 378 8 0.55 1.66 exact
inex. TCH (0.1) [2] 378 8 1.34 0.70 0.020 0.100
inex. TCH (1.0) [2] 378 8 1.00 0.69 0.270 1.010
TD-CRP (0.1) [5] 289 16 0.78 1.92 0.050 0.250
TD-CRP (1.0) [5] 281 16 0.36 1.66 0.680 2.850
FLAT [22] 158 760 6 54.63 1.27 0.015 n/r
CFLAT [22] 104 220 6 34.63 0.58 0.008 0.918
TD-S+9 547 1 3.61 1.67 0.001 1.523
CATCHUp 49 16 1.06 0.70 exact

G
er
17

TD-Dijkstra - - - 869.79 exact
KaTCH 874 16 42.81 1.38 exact
TD-S+9 617 1 5.28 2.28 0.001 0.963
CATCHUp 127 16 1.50 1.86 exact

E
ur
17

TD-Dijkstra - - - 2 581.16 exact
KaTCH 3 089 16 146.97 OOM exact
TD-S+9 3 368 1 18.84 4.03 0.002 1.159
CATCHUp 675 16 5.48 4.50 exact

While achieving competitive query times for acceptable memory consumption, heu SHARC
suffers from huge preprocessing times of several hours. The original publication does not
report average query errors, only a maximum error of 0.61%. TDCALT has the smallest
memory consumption of all approaches but does not achieve competitive query times, even
when approximating. FLAT and CFLAT both suffer from extreme preprocessing times and
memory consumption despite having no exact queries. CATCHUp offers competitive query
times for exact results while keeping memory consumption reasonable. TD-CRP offers even
lower memory consumption. But this is only possible through the use of approximation.
TD-CRP queries depict a noticeable error and perform somewhat worse than KaTCH or
CATCHUp queries. TD-S+9 depicts the smallest average error of all non-exact approaches7.

7 [22] report another CFLAT configuration with even smaller errors but significantly slower queries.

ESA 2020

81:12 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

On Ger17, KaTCH query times increase by a factor of about two. Memory usage on the
other hand, grows by almost an order of magnitude. For TD-S, both the growth in space
consumption and query times corresponds roughly to the growth of the graph size, but not
the increased number of breakpoints. For the index data of CATCHUp, this growth factor
also roughly applies. Query times get about 2.7 times slower.

On Eur17, the memory consumption of KaTCH becomes prohibitive. While KaTCH is
still able to finish preprocessing and output 150GB of data, queries crash since the 192GB
RAM of our machine are not enough. Using ATCH or inexact TCH, the memory consumption
could likely be reduced sufficiently to perform queries. But this would either introduce errors
or slow down queries significantly. On the other hand, with only 5.5GB of index data,
CATCHUp is still able to perform exact queries in less than 5ms on average. This is fast
enough to enable interactive applications. Total preprocessing for CATCHUp takes less than
a quarter of the time KaTCH needs. TD-S+9 is also able to handle this instance with similar
query times but only with a small average error.

5 Conclusion and future work

We introduce CATCHUp, a speed-up technique for routing in time-dependent road networks.
It features a small index size and fast, exact queries. To the best of our knowledge, our ap-
proach is the first to simultaneously achieve all three objectives. We perform an experimental
study to evaluate the performance of CATCHUp and compare it to competing approaches.
Our approach achieves the fastest preprocessing, competitive query running times and up to
30 times smaller indexes than other approaches.

Revisiting ATCH, TCH, and TD-CRP with the insights gained in this work could be
fruitful. Combining ATCH with our A* query extension could reduce ATCH query running
times. CATCHUp makes use of travel time independent node orders. Combining CATCHUp
with TCH-like node orders could result in even smaller index sizes and query running times.
We further expect that some of our optimizations to the preprocessing can also be applied
in a TD-CRP context. Another possible direction for future research would be to support
partial updates to further accelerate the second step of preprocessing. This could enable the
integration of live traffic information.

References
1 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas

Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in Trans-
portation Networks. In Lasse Kliemann and Peter Sanders, editors, Algorithm Engineering -
Selected Results and Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19–80.
Springer, 2016. URL: http://www.springer.com/gp/book/9783319494869.

2 Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum Time-
Dependent Travel Times with Contraction Hierarchies. ACM Journal of Experimental Al-
gorithmics, 18(1.4):1–43, April 2013.

3 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space size in
contraction hierarchies. Theoretical Computer Science, 645:112–127, 2016.

4 Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional Routing. ACM
Journal of Experimental Algorithmics, 14(2.4):1–29, August 2009. Special Section on Selected
Papers from ALENEX 2008. doi:10.1145/1498698.1537599.

5 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Dynamic Time-Dependent
Route Planning in Road Networks with User Preferences. In Proceedings of the 15th Interna-
tional Symposium on Experimental Algorithms (SEA’16), volume 9685 of Lecture Notes in
Computer Science, pages 33–49. Springer, 2016. URL: http://link.springer.com/chapter/
10.1007/978-3-319-38851-9_3.

http://www.springer.com/gp/book/9783319494869
https://doi.org/10.1145/1498698.1537599
http://link.springer.com/chapter/10.1007/978-3-319-38851-9_3
http://link.springer.com/chapter/10.1007/978-3-319-38851-9_3

B. Strasser, D. Wagner, and T. Zeitz 81:13

6 Valentin Buchhold, Peter Sanders, and Dorothea Wagner. Real-time Traffic Assignment Using
Engineered Customizable Contraction Hierarchies. ACM Journal of Experimental Algorithmics,
24(2):2.4:1–2.4:28, 2019. URL: https://dl.acm.org/citation.cfm?id=3362693.

7 Daniel Delling. Time-Dependent SHARC-Routing. Algorithmica, 60(1):60–94, May 2011.
doi:10.1007/s00453-009-9341-0.

8 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
Route Planning in Road Networks. Transportation Science, 51(2):566–591, 2017. doi:
10.1287/trsc.2014.0579.

9 Daniel Delling and Giacomo Nannicini. Core Routing on Dynamic Time-Dependent Road
Networks. Informs Journal on Computing, 24(2):187–201, 2012.

10 Julian Dibbelt. Engineering Algorithms for Route Planning in Multimodal Transportation
Networks. PhD thesis, Karlsruhe Institute of Technology, February 2016. URL: http://
nbn-resolving.de/urn:nbn:de:swb:90-530503.

11 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction Hierarchies.
ACM Journal of Experimental Algorithmics, 21(1):1.5:1–1.5:49, April 2016. doi:10.1145/
2886843.

12 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

13 David H. Douglas and Thomas K. Peucker. Algorithms for the Reduction of the Number
of Points Required to Represent a Digitized Line or its Caricature. Cartographica: The
International Journal for Geographic Information and Geovisualization, 10:112–122, 1973.

14 Stuart E. Dreyfus. An Appraisal of Some Shortest-Path Algorithms. Operations Research,
17(3):395–412, 1969.

15 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing in
Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388–404,
August 2012.

16 Alan George. Nested Dissection of a Regular Finite Element Mesh. SIAM Journal on Numerical
Analysis, 10(2):345–363, 1973.

17 Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory. In Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’05), pages 156–165. SIAM, 2005.

18 Lars Gottesbüren, Michael Hamann, Tim Niklas Uhl, and Dorothea Wagner. Faster and Better
Nested Dissection Orders for Customizable Contraction Hierarchies. Algorithms, 12(9):196,
2019. doi:10.3390/a12090196.

19 Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Determ-
ination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

20 Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering Multilevel Overlay Graphs
for Shortest-Path Queries. ACM Journal of Experimental Algorithmics, 13(2.5):1–26, December
2008.

21 Spyros Kontogiannis, George Michalopoulos, Georgia Papastavrou, Andreas Paraskevopoulos,
Dorothea Wagner, and Christos Zaroliagis. Engineering Oracles for Time-Dependent Road
Networks. In Proceedings of the 18th Meeting on Algorithm Engineering and Experiments
(ALENEX’16), pages 1–14. SIAM, 2016. URL: http://epubs.siam.org/doi/abs/10.1137/1.
9781611974317.1.

22 Spyros Kontogiannis, Georgia Papastavrou, Andreas Paraskevopoulos, Dorothea Wagner, and
Christos Zaroliagis. Improved Oracles for Time-Dependent Road Networks. In Proceedings
of the 17th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS’17), volume 59 of OpenAccess Series in Informatics (OASIcs), pages
4:1–4:17, 2017. doi:10.4230/OASIcs.ATMOS.2017.4.

23 Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static
Networks with Geographical Background. In Geoinformation und Mobilität - von der Forschung
zur praktischen Anwendung, volume 22, pages 219–230. IfGI prints, 2004.

ESA 2020

https://dl.acm.org/citation.cfm?id=3362693
https://doi.org/10.1007/s00453-009-9341-0
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1287/trsc.2014.0579
http://nbn-resolving.de/urn:nbn:de:swb:90-530503
http://nbn-resolving.de/urn:nbn:de:swb:90-530503
https://doi.org/10.1145/2886843
https://doi.org/10.1145/2886843
https://doi.org/10.3390/a12090196
http://epubs.siam.org/doi/abs/10.1137/1.9781611974317.1
http://epubs.siam.org/doi/abs/10.1137/1.9781611974317.1
https://doi.org/10.4230/OASIcs.ATMOS.2017.4

81:14 Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

24 Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes. Bidirectional A*
Search on Time-Dependent Road Networks. Networks, 59:240–251, 2012. Best Paper Award.

25 Ariel Orda and Raphael Rom. Traveling without waiting in time-dependent networks is NP-
hard. Technical report, Dept. Electrical Engineering, Technion-Israel Institute of Technology,
1989.

26 Ben Strasser. Dynamic Time-Dependent Routing in Road Networks Through Sampling. In
Proceedings of the 17th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’17), volume 59 of OpenAccess Series in Informatics
(OASIcs), pages 3:1–3:17, 2017. doi:10.4230/OASIcs.ATMOS.2017.3.

27 Michael Zündorf. Customizable Contraction Hierarchies with Turn Costs. Bachelor thesis,
Karlsruhe Institute of Technology, 2019.

https://doi.org/10.4230/OASIcs.ATMOS.2017.3

Improved Prophet Inequalities for Combinatorial
Welfare Maximization with (Approximately)
Subadditive Agents
Hanrui Zhang
Duke University, Durham, NC, USA
hrzhang@cs.duke.edu

Abstract
We give a framework for designing prophet inequalities for combinatorial welfare maximization.
Instantiated with different parameters, our framework implies (1) an O(log m/ log log m)-competitive
prophet inequality for subadditive agents, improving over the O(log m) upper bound via item pricing,
(2) an O(D log m/ log log m)-competitive prophet inequality for D-approximately subadditive agents,
where D ∈ {1, . . . , m − 1} measures the maximum number of items that complement each other,
and (3) as a byproduct, an O(1)-competitive prophet inequality for submodular or fractionally
subadditive (a.k.a. XOS) agents, matching the optimal ratio asymptotically. Our framework is
computationally efficient given sample access to the prior and demand queries.

2012 ACM Subject Classification Theory of computation → Stochastic approximation; Theory of
computation → Algorithmic game theory and mechanism design

Keywords and phrases Prophet Inequalities, Combinatorial Welfare Maximization, (Approximate)
Subadditivity

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.82

Funding Hanrui Zhang: Supported by NSF award IIS-1814056.

Acknowledgements The author thanks Yuan Deng, Kamesh Munagala, and anonymous reviewers
for helpful feedback.

1 Introduction

Prophet inequalities are a classical topic in stopping theory. The problem is neat and natural:
an agent plays a game, where there are n boxes, each containing a reward (e.g., some amount
of cash). The agent cannot see through the boxes to know precisely the amounts of cash inside
each box. However, she has the prior knowledge that the amounts are drawn independently
for each box, and fortunately, knows the distributions according to which the amounts are
drawn. Now nature opens the boxes one by one. Upon seeing the inside of each box, the agent
gets to make a choice: she can either (1) take the cash in the box and leave, or (2) let the
current box expire (which means she gains nothing from the current box and it disappears),
in which case the game proceeds with the remaining boxes. What is the maximum expected
amount of cash the agent can get, and how to achieve that?

Quite surprisingly, the agent can guarantee half the amount of reward that a prophet is
able to get, who sees through the boxes and therefore always picks the box with the largest
reward [21, 22]. Moreover, the agent can achieve this by executing a simple threshold-based
protocol: accept the first box containing a reward exceeding a pre-calculated amount. The
existence of such 2-approximate protocols lead to the name “prophet inequalities.”

Prophet inequalities were recently rediscovered in computer science and economics. Since
then, they have been drawing increasing interest in both fields. Hajiaghayi et al. [18]
observe the connection between prophet inequalities and a pricing problem in auctions. They
formulate the problem in the following equivalent way: a seller has an indivisible item to

© Hanrui Zhang;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 82; pp. 82:1–82:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hrzhang@cs.duke.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.82
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

82:2 Improved Prophet Inequalities for Subadditive Agents

sell. n buyers arrive one by one, each of which has a value for the item, drawn independently
from a distribution known to the seller. When a buyer arrives, the seller learns the value
of the buyer (or otherwise negotiates with the buyer), and decides whether to sell the item
to the buyer. The buyer then leaves forever (with the item if sold to the buyer). The goal
of the seller is to maximize the utility of the buyer who receives the item, or just the total
utility (i.e., the welfare) of all buyers, since all other buyers have utility 0. Here, each buyer
corresponds to a box in the classical formulation, and the value of the buyer represents
the reward in the box. A threshold-based protocol can then be translated directly into a
take-it-or-leave-it offer – a buyer receives the item (i.e., she buys) iff her value exceeds the
pre-calculated price, and so buying is preferred to not buying.

Given this connection, various forms of auctions have been considered in the prophet
inequality context (see, e.g., the recent survey by Lucier [23]). Examples include (1) the
case where the seller has k identical items to sell and each buyer wants only one of them
(or equivalently, up to k boxes can be accepted) [18], (2) the setting with a knapsack style
constraint, requiring that the total “weight” of sellers who get an item cannot exceed 1 [17],
and (3) the setting where m possibly distinct items are available for sale, and each agent
has a combinatorial (as opposed to additive) valuation function assigning every subset of
items a value [16]. The third setting, known as combinatorial welfare maximization, appears
particularly interesting and general, as it nicely captures the potentially complex interaction
between items. For instance, a Coke and a Pepsi substitute each other, in the sense that
having a Coke or a Pepsi probably gives one roughly the same utility (say 1), whereas having
both likely gives strictly less utility than the sum, 2, of the former values, since one can only
drink so much at a time.

In this paper, we consider combinatorial welfare maximization in the prophet inequality
context. We begin our investigation with subadditive (also known as complement-free) agents,
who regard items only as substitutes but not complements to each other. From there, we
generalize our results to accommodate valuations that are approximately subadditive, which
have remained largely unexplored even in offline environments.

1.1 Our Contributions

1.1.1 Current Landscape of the Problem

Feldman et al. [16] were the first to explicitly study combinatorial welfare maximization with
rich valuations in the prophet inequality context. They give an existential 2-approximate
protocol and a computationally efficient (2e)/(e− 1)-approximate protocol when agents are
submodular or fractionally subadditive (which are strict subclasses of subadditive valuations).
Dütting et al. [10] propose a powerful framework, unifying a number of prophet inequalities,
and yielding a computationally efficient 2-approximate protocol for the same class of valu-
ations, which is optimal given a lower bound inherited from the single-item setting. These
bounds, through a standard approximation result, extend directly to subadditive agents with
a loss of factor O(log m), where m is the number of items. The best known lower bound
for subadditive agents, however, is again 2, leaving a huge gap in between. This gap, as
acknowledged by Feldman et al. [16] and Dütting et al. [10], raises a curious question:

Can we do better than O(log m) for subadditive agents?

H. Zhang 82:3

1.1.2 The Logarithmic Barrier for Subadditive Agents
The above question did not have an immediate answer. For subadditive agents, all existing
results essentially build on the same argument: one first computes prices that O(log m)-
approximately “support” the optimal allocation. Such prices have the property, that if
one posts the prices on the items, and let agents, one by one in some arbitrary order,
purchase their utility-maximizing bundles of items, then the resulting allocation O(log m)-
approximately maximizes the expected welfare. With these prices, one can implement an
O(log m)-approximate threshold-based protocol, by running a posted-price auction with the
supporting prices for each arriving agent, and allocating the set of items purchased to the
agent. The bottleneck of this approach is that the O(log m) factor of approximate supporting
prices is tight: there are subadditive valuations for which no o(log m)-approximate supporting
prices exist [2]. Therefore, any protocol relying on supporting prices (including all currently
existing results) cannot possibly give better ratios than O(log m). In fact, given the tightness
of this O(log m) factor, one may even suspect that the right ratio for subadditive agents is
precisely Θ(log m). We show that this is not the case.

1.1.3 A Sublogarithmic Prophet Inequality for Subadditive Agents
We give a framework for designing prophet inequalities for combinatorial welfare maximiza-
tion, which implies an O(log m/ log log m)-approximate prophet inequality for subadditive
agents, breaking the foregoing logarithmic barrier. Our framework is computationally ef-
ficient given: (1) sample access to the prior distributions, and (2) demand queries to the
sample valuations. Unlike previous results, our protocol is not based on pricing items via
approximately supporting prices and running sequential auctions – which enables the protocol
to bypass the obstacle discussed above, at the cost of losing incentive compatibility.1 As a
byproduct, we show that our framework, instantiated with different parameters, also gives an
O(1)-approximately optimal prophet inequality for submodular or fractionally subadditive
agents. Our approach provides an alternative view of combinatorial welfare maximization in
the prophet inequality context, which may be of independent interest.

Very recently, in independent work, Dütting et al. [11] give an O(log log m)-approximate
prophet inequality for combinatorial welfare maximization with subadditive agents using
radically different techniques from ours. Their result is a major breakthrough in the research
of prophet inequalities for combinatorial welfare maximization. In particular, the work of
Dütting et al. significantly improves over our main result in that (1) they “truely” improve
the approximation ratio from O(log m) all the way to O(log log m), and (2) their approach is
based on pricing individual items, which shows that it is possible to beat O(log m) using
item-pricing schemes, which are incentive-compatible.

1.1.4 Generalizing to Approximate Subadditivity
Utilizing the same framework, we give a family of parameters, which imply an
O(D log m/ log log m)-approximate prophet inequality when agents have valuations with
superadditive width at most D > 0 (see Definition 1). As a corollary, we obtain an
O(D log m/ log log m)-approximation algorithm for the offline combinatorial welfare maxim-
ization problem with the same class of valuations. Here, D roughly measures the maximum

1 In some scenarios, incentive incompatibility is not an issue – one such example is a government agency
allocating resources among projects arriving online.

ESA 2020

82:4 Improved Prophet Inequalities for Subadditive Agents

number of items that may complement each other, and generalizes the notion of subadditivity.
In particular, valuations with superadditive width 0 are precisely valuations that are subad-
ditive. The implication of the above bound is twofold: concretely, to our knowledge, this
is the first nontrivial prophet inequality for valuations that are approximately subadditive;
conceptually, the existence of parameters leading to this bound demonstrates the capacity
of the parametrized framework we propose. We remark that while Feldman et al. [16]
and Dütting et al. [10] present results of a similar flavor, their bounds are based on the
Maximum-over-Positive-Hypergraph (MPH) hierarchy [15], which does not directly model
approximate subadditivity, and thus is incompatible with the goal of this paper.

1.2 Technical Overview
We present a parametrized protocol, which works by rounding online a standard LP relaxation
of the welfare maximization problem. The protocol is inspired by the two-stage offline
rounding procedure by Dobzinski et al. [9], which works roughly as follows:
1. Compute a distribution over sets of items for each agent. These distributions together

satisfy: (1) each item in expectation goes to at most 1 agent, and (2) the total expected
value enjoyed by all agents is maximized.

2. For each agent i, draw i’s tentative set of items according to i’s distribution. Note that
after this step, an item can appear in multiple agents’ tentative sets.

3. Break ties for items, by independently allocating each item j to one of the agents whose
tentative sets contain j, uniformly at random.

Dobzinski et al. [9] show that the above procedure outputs an O(log m)-approximation for
the combinatorial welfare maximization problem when agents are subadditive, and Feige [14]
further proves a tighter bound of O(log m/ log log m).

Intuitively, we wish to carry out Dobzinski’s rounding procedure online. One main
difficulty, however, is to deal with incomplete information, since when handling one agent,
the protocol does not know the actual valuation of any agent yet to arrive. As a result,
it is impossible to round online the solution to the LP with respect to all agents’ actual
valuations. To this end, we create a partially fictitious LP for each agent, by chaining this
agent’s actual valuation (which becomes available to the protocol upon the agent’s arrival)
with independently drawn dummy valuations for all other agents. By doing this, each agent
is intuitively playing against the average case configuration of all other agents. Moreover,
in each agent’s fictitious LP, her share of the fractional allocation gives her precisely the
expected value she would get in the actual optimal fractional allocation. So if we can round
the fictitious LP solutions with mild loss, the resulting welfare will in fact be approximately
optimal.

To achieve this, we need to deal with another difficulty, i.e., instead of breaking ties for
each item simultaneously with all the tentative sets available, we now have to irrevocably
decide which items are being allocated to each agent immediately upon his arrival, before
seeing the valuations of all agents yet to arrive. And still, we need to make sure no item
is allocated twice. This rules out the possibility of the independent uniform tie-breaking
performed in Step 3 of Dobzinski et al.’s rounding procedure, which is crucial in the proofs
for the approximation ratios in both papers.2 To overcome this issue, we break ties in a
correlated way, which pairs gracefully with (approximate) subadditivity. Roughly speaking,

2 With some additional tricks one can simulate online the uniformity and independence conditions required
in those papers, but even then the online version of Feige’s argument works only for exactly subadditive
valuations, and fails for approximately subadditive ones.

H. Zhang 82:5

we first draw a (not necessarily uniformly) random integer r from {1, . . . , n}, where n is the
number of agents. We then partition each agent’s tentative set into n subsets according
to the number of times each item has appeared in some agent’s tentative set so far, and
give the agent all items that have appeared exactly r times. The intuition is that, if the
valuations are subadditive, we then know that the sum of the values of these subsets is at
least the value of the tentative set itself, which gives us a way to relate the expected value
of the allocated subset to the value of the tentative set. Also, no item is possibly allocated
twice, since each item can appear the r-th time only once throughout the procedure. Given
the above, by choosing the distribution of r and other parameters in different ways, the
parametrized protocol yields the desired bounds for subadditive, approximately subadditive,
and fractionally subadditive valuations respectively.

1.3 Additional Related Work
Kleinberg and Weinberg [20] study the setting where possible combinations of boxes that can
be accepted satisfy a matroid constraint. Dütting and Kleinberg [12] consider polymatroids,
generalizing the above setting. Rubinstein and Singla [25] further consider subadditive reward
functions. Their setting, while also being combinatorial, is different from combinatorial
welfare maximization considered in this paper.

Another line of research consider revenue maximization in the prophet inequality context.
We list a few results here. Blumrosen and Holenstein [3] give a constant factor protocol in
the single-item setting. When agents are unit-demand – that is, they only want a single
item – Chawla et al. [5] give constant factor posted-price policies. Cai and Zhao [4] study
truthful policies for combinatorial auctions with subadditive agents. Their goal, however, is
to maximize the revenue of the protocol, instead of the welfare as we consider.

Prior to Feldman et al., Chawla et al. [6] and Alaei [1] consider welfare maximization
with unit-demand agents. Cohen-Addad et al. [8] further show that dynamic pricing achieves
optimal welfare for unit-demand agents. Ehsani et al. [13] show that the ratio improves to
e/(e− 1) for combinatorial welfare maximization with submodular or fractionally subadditive
agents, if agents arrive in a random order.

2 Preliminaries

Throughout the paper, we use n to denote the number of agents, and m the number of items.
In general, we use i as the index of an agent, and j as the index of an item.

2.1 Combinatorial Valuations
A combinatorial valuation function f : 2[m] → R+ maps any subset S of the ground set
[m] = {1, 2, . . . m} to a nonnegative real number f(S). In this paper, we consider valuation
functions that are monotone: f is monotone iff for any S ⊆ T ⊆ [m], f(S) ≤ f(T). The
following subclasses of valuation functions are considered or helpful for our purposes:

subadditive: f is subadditive iff for any S, T ⊆ [m], f(S) + f(T) ≥ f(S ∪ T).
additive valuations: f is additive iff for any disjoint S, T ⊆ [m], f(S) + f(T) = f(S ∪ T).
submodular valuations: f is submodular iff for any S, T ⊆ [m], f(S) + f(T) ≥ f(S ∪ T) +
f(S ∩ T).
fractionally subadditive (or XOS) valuations: f is fractionally subadditive iff there exist
additive valuations c1, . . . , c`, such that for any S ⊆ [m], f(S) = maxk∈[`] ck(S). Each
such additive valuation ck is called a clause.

ESA 2020

82:6 Improved Prophet Inequalities for Subadditive Agents

It is known that every additive valuation is submodular, every submodular valuation is
fractionally subadditive, and every fractionally subadditive function is subadditive. Beyond
subadditive valuations, we also consider valuations of limited superadditivity, parametrized
by the superadditive width, defined below.

I Definition 1 (Superadditive Width [7]). Fix a ground set M = [m]. A set T ⊆ M is
superadditive w.r.t. a valuation function f , if there exists S ⊆M , such that

f(S | T) > max
T ′(T

f(S | T ′),

where f(A | B) := f(A ∪ B) − f(B) is the marginal value of A given B for any two sets
A, B ⊆M . The superadditive width of f is defined to be the size of the largest superadditive
set, i.e.,

SAW(f) := max{|T | | T is superadditive w.r.t. f}.

In words, the definition says that the superadditive width of a valuation is the size of the
largest set, which provides strictly more marginal value for another set, than any of its strict
subsets. Intuitively, the smaller this quantity is, the closer a valuation is to being subadditive.
In particular, any subadditive valuation has superadditive width 0.

2.2 Problem Formulation
We formulate the problem in the following way: There are n agents and m items, and a prior
F = F1 × · · · × Fn for the valuations of the agents over the items. All agents are monotone
and subadditive (resp., fractionally subadditive), i.e., for any agent i, any valuation function
fi in the support of Fi is monotone and subadditive (resp., fractionally subadditive). Agents
arrive one by one in an adversarial order. When agent i arrives, we see the realization fi ∼ Fi

of her valuation (through query oracles discussed below), and must allocate irrevocably some
items to the agent. The agent then takes the items and departs, and all items allocated to
the agent become unavailable to subsequently arriving agents.

The goal is to maximize the expected (over the realization of the valuations and the
randomness of the protocol) welfare of all agents. In particular, we wish to compete against
the offline optimal allocation (i.e., the prophet), which has unlimited computational power,
and knows beforehand the realization of all agents’ valuations {fi}i. The competitive ratio
is defined to be the ratio between the expected welfare (denoted OPT) of the offline optimal
allocation3 and the expected welfare produced by the online protocol.

2.3 Oracle Access to Valuation Functions
The representation of a combinatorial valuation function may be exponentially large in the
number of items m. Given this complexity, it is standard to assume that the protocol may
access valuation functions only through query oracles. In particular, the following two types
of queries are commonly allowed (see, e.g., [14, 16, 10]):

value queries: given a valuation function f and a set S, return the value of S, f(S).
demand queries: given a valuation function f and prices {pj}j∈[m], return a utility-
maximizing set (i.e., a demand set) with respect to f under the given prices. That is, the
query returns a set S that maximizes f(S)−

∑
j∈S pj .

In this paper, we assume the protocol has access to both kinds of queries.

3 Note that the offline optimal allocation may be hard to find, computationally and / or information
theoretically.

H. Zhang 82:7

2.4 The Welfare Maximizing LP
The following LP relaxation of the welfare maximization problem has been considered in
[9, 24, 14]:

maximize
∑

i∈[n]
∑

S⊆[m] xi,Sfi(S)
s.t.

∑
S⊆[m] xi,S ≤ 1 ∀i ∈ [n]∑
i∈[n],S⊆[m]:j∈S xi,S ≤ 1 ∀j ∈ [m]

xi,S ≥ 0 ∀i ∈ [n], S ⊆ [m].

One may interpret the LP in the following way: xi,S stands for the probability that agent i

receives bundle S. The objective is therefore the total expected value of all agents, which
is the expected welfare. The first constraint requires that each agent i receives at most 1
bundle, and the second requires that each item goes to at most 1 agent, in expectation.

It is known (see, e.g., [9, 24]) that the above LP can be solved with polynomially many
value and demand queries to f1, . . . , fn. Let xi,S({fi′}i′) (parameters omitted when clear
from the context) denote the value of variable xi,S in the optimal solution to the LP with
respect to valuation functions {fi′}i′ .4 Given F , denote the expected value enjoyed by agent
i in this optimal solution by

LPi := E{fi′}i′∼F

 ∑
S⊆[m]

xi,S({fi′}i′) · fi(S)

 ,

and the optimal objective value by

LP :=
∑
i∈[n]

LPi = E{fi′}i′∼F

 ∑
i∈[n],S⊆[m]

xi,S({fi′}i′) · fi(S)

 .

Note that for any prior F , we always have LP ≥ OPT. We will use the welfare maximizing
LP and its solution as a building block of our framework in a blackbox manner.

3 The Framework

In this section, we present our general framework, in the form of a parametrized protocol,
for designing prophet inequalities for combinatorial welfare maximization. The framework
works for any arrival order of agents, but for ease of presentation, we assume agents arrive
according to their indices. That is, agent 1 arrives first, followed by agent 2, etc. We also
let f−i := (f1, . . . , fi−1, fi+1, . . . , fn) (i.e., f−i denotes the valuations of all agents but i) and
use g−i and F−i similarly. Below is our parametrized protocol:
1. For each item j, initialize counter cj ← 0.
2. Draw positive integer r ∈ [n], where Pr[r = k] = pk for any k ∈ [n], and {pk}k∈[n] are

parameters of the protocol.
3. Upon agent i’s arrival:

a. Let fi be agent i’s realized valuation; draw dummy valuations g−i ∼ F−i for all other
agents.5

4 If there are multiple such solutions, let {xi,S({fi′}i′)}i,S be the one produced by the efficient LP solving
algorithm which we use as a subroutine of the protocol.

5 Note that we abuse notation here, so for any i1 6= i2, g−i1 and g−i2 are independent – they are not
different parts of a same group of valuations.

ESA 2020

82:8 Improved Prophet Inequalities for Subadditive Agents

b. Solve the welfare maximizing LP with valuations (fi, g−i), and let {xi′,S(fi, g−i)}i′,S

be the solution.
c. Now view {xi,S}S as a distribution over sets of items.6 Draw set Si ∼ {xi,S}S from

this distribution, where for any S, Pr[Si = S] = xi,S . We say agent i demands set Si.
d. For each item j ∈ Si, let cj ← cj + 1 (i.e., increase the counter for item j). For

any k ∈ [n], let Sk
i be the set of items in Si whose counters are exactly k right after

demanded by agent i.
e. With probability q, where q is a parameter of the protocol, serve agent i by giving i

all items in Sr
i (i.e., item j goes to agent i iff agent i is chronologically the r-th agent

demanding item j and being served); otherwise, for each item j ∈ Si, let cj ← cj − 1
(i.e., undo the increase for all items demanded by i).

For any agent i, let seri = I[i is served] be the indicator variable that i is served in Step 3(e).
Note that the above protocol never allocates an item to more than one agent, since once r

is fixed, at most one agent can be the r-th demanding an item. As a result, the protocol
always produces a valid allocation.

We now present a meta-analysis for the above protocol, which yields a parameter-
dependent welfare guarantee. In later sections, we will show how one can instantiate the
protocol by setting different parameters, so that the general guarantee realizes into specific
bounds for the respective classes of valuations of interest.

I Theorem 2. Let ui be the value enjoyed by agent i. For each agent i, fixing fi and Si, the
above protocol guarantees agent i expected value

ERi [ui | fi, Si] = q ·
∑

k∈[n]

pk · ERi [fi(Sk
i)],

where Ri summarizes all the randomness other than fi, g−i and Si, both from the protocol
and from the realization of the valuations.

Proof. The theorem is essentially a claim regarding independence of random variables. Recall
that for any agent i′, seri′ = I[i′ is served]. Fixing fi and Si, i’s expected value can be
written as

ERi [ui | fi, Si] = ERi

seri ·
∑

k∈[n]

I[r = k] · fi(Sk
i)

∣∣∣∣∣∣ fi, Si

 .

Ri here summarizes {(fi′ , g−i′ , Si′)}i′ 6=i, the choice of r, and whether i′ is served for all i′

(including i′ = i). To simplify this, first observe that the conditioning can be removed,
because the randomness involved in the expectation, Ri, is independent of fi and Si. In
particular, {fi′}i′ 6=i are independent of fi because F is a product distribution. Moreover, the
three factors within the expectation are independent, because whether i is served depends
only on the coin flipping in Step 3(e) when agent i arrives, the choice of r depends only on
the random draw in Step 2, and fixing Si, fi(Sk

i) depends only on the realization of {fi′}i′<i

and the random bits of the protocol dealing with the agents arriving before i. Given the
above, we have

6 It is possible that
∑

S
xi,S < 1, in which case with probability 1−

∑
S

xi,S , Si = ∅.

H. Zhang 82:9

ERi
[ui | fi, Si] = ERi

seri ·
∑

k∈[n]

I[r = k] · fi(Sk
i)

= Pr[seri = 1] ·

∑
k∈[n]

Pr[r = k] · E{(fi′ ,g−i′ ,Si′ ,seri′)}i′<i
[fi(Sk

i)]

= q ·
∑

k∈[n]

pk · ERi [fi(Sk
i)]. J

Before proceeding to the specific instantiations of the protocol, we note the following
high-level interpretation of the above parameter-dependent bound, which provides important
intuition and leads to our choices of parameters for different classes of valuations. For
concreteness, suppose agents are subadditive. First observe that the share of agent i in the
optimal solution of the welfare maximizing LP is

LPi = E{fi′}i′∼F

[∑
S

xi,S({fi′}i′) · fi(S)
]

= E(fi,g−i)∼F,Si∼{xi,S(fi,g−i)}S
[fi(Si)] = Efi,Si [fi(Si)].

On the other hand, since {Sk
i }k∈[n] is a partition of Si, by the subadditivity of fi, we always

have∑
k∈[n]

ERi
[fi(Sk

i)] ≥ ERi
[fi(Si)] = fi(Si).

So hypothetically, if somehow we were able to set q = 1 and pk = 1 for every k ∈ [n]
simultaneously (which is of course impossible), then fixing any choice of fi and Si, the
above protocol would yield at least fi(Si) as the expected value for agent i. Further taking
expectation over fi and Si, this would imply a 1-approximate prophet inequality against the
welfare maximizing LP.

In reality, however, one cannot set pk to be large for all k simultaneously. In fact, these
probabilities must sum to 1. Still, our goal is to guarantee a decent fraction of fi(Si) for
any choice of fi and Si. This is possible when, for example, the total value of Si, fi(Si),
concentrates in relatively few entries among its n parts, {ERi [fi(Sk

i)]}k∈[n]. In such cases, we
can let r be uniformly distributed over the indices of these entries, leading to a competitive
ratio proportional to the number of such heavy entries. The key step here is analyzing the
distribution of fi(Si) into {fi(Sk

i)}k∈[n], over the randomness in Ri. We will further develop
the above intuition in later sections.

4 Warmup: the Case of Fractionally Subadditive Agents

We start with the relatively simple case of fractionally subadditive agents, the analysis for
which provides tools for the more involved cases to be handled in later sections. Throughout
this section, we consider the following choice of parameters: p1 = 1, pk = 0 for any 1 < k ≤ n,
and q = 1/2. That is, each agent is served with probability 1/2, and whenever an agent is
served, he receives all the items demanded which are not yet taken. We now analyze our
protocol with the above parameters for fractionally subadditive agents.

I Theorem 3. The protocol in Section 3 with p1 = 1, pk = 0 for any 1 < k ≤ n, and q = 1/2
is 4-competitive when agents are fractionally subadditive.

ESA 2020

82:10 Improved Prophet Inequalities for Subadditive Agents

Proof. In light of Theorem 2, we only need to show that for any agent i, fixing fi and Si,

ERi [fi(S1
i)] ≥ 1

2fi(Si). (1)

The theorem then follows by plugging the above into Theorem 2 and taking expectation over
fi and Si, which yields

Efi,Si
[ERi

[ui | fi, Si]] = Efi,Si

[
1
2ERi

[fi(S1
i)]
]
≥ 1

4Efi,Si
[fi(Si)] = 1

4LPi.

Summing over the agents, we get the following lower bound on the expected welfare:

E

∑
i∈[n]

ui

 ≥ 1
4
∑
i∈[n]

LPi = 1
4LP ≥ 1

4OPT,

where the expectation is over all the randomness, both from the protocol and from the
realization of agents’ valuations. This gives precisely the desired competitive ratio of 4. The
rest of the proof is dedicated to establishing (1) when i, fi and Si are fixed.

Recall the following property of fractionally subadditive functions.

I Lemma 4. For fractionally subadditive f and any set of items S, let T be such that for
any j ∈ S, j ∈ T with probability at least p. Then

E[f(T)] ≥ p · f(S).

While this is sometimes considered standard, we give below a quick proof for completeness.

Proof. Let ck be the clause of f such that

f(S) = ck(S) =
∑
j∈S

ck({j}).

By the fractional subadditivity of f , for any S′ ⊆ S,

f(S′) ≥ ck(S′).

This is in particular true for T , which implies

E[f(T)] ≥ E[ck(T)]

=
∑
j∈S

E[I[j ∈ T] · ck({j})]

=
∑
j∈S

Pr[j ∈ T] · ck({j})

≥ p ·
∑
j∈S

ck({j})

= p · f(S). J

Given Lemma 4, the plan is to show that each item j in Si appears in S1
i with probability

at least 1/2. That is, with probability at least 1/2, no agent i′ < i demands item j and gets
served simultaneously. To see why this is true, consider the unconditional distribution of the
set Si′ demanded by any agent i′. Let yi′,S = Pr[Si′ = S] be the probability that agent i′

demands set S, over fi′ , g−i′ , and the random bits of the protocol. Note that yi′,S is not
random, and depends only on the prior F . We first show that {yi′,S}i′,S form a feasible
solution to the welfare maximizing LP, regardless of the actual valuations of the agents.
This is well-defined, since fixing n and m, the precise values of sets do not appear in any
constraint of the welfare maximizing LP.

H. Zhang 82:11

I Lemma 5. {yi′,S}i′,S satisfy:
for any agent i′ ∈ [n],

∑
S⊆[m] yi′,S ≤ 1,

for any item j ∈ [m],
∑

i′∈[n],S⊆[m]:j∈S yi′,S ≤ 1, and
for any i′ ∈ [n], S ⊆ [m], yi′,S ≥ 0.

Proof. Observe that according to the protocol, for any i′, S,

yi′,S = Efi′∼Fi′ ,g−i′∼F−i′ [xi′,S(fi′ , g−i′)] = E{fi′′}i′′∼F [xi,S({fi′′}i′′)].

In other words, yi′,S is the expected value of the variable xi′,S in the optimal solution to the
welfare maximizing LP, when valuations are distributed according to prior F . Now since
for any realization of {fi′′}i′′ , {xi′,S({fi′′}i′′)}i′,S satisfy the LP constraints, it follows from
linearity of expectation that the expected values {yi′,S}i′,S also satisfy the constraints. The
lemma follows. J

For any agent i′ and item j, let dj
i′ be the probability that item j is demanded by agent i′.

That is,

dj
i′ := Pr

fi′ ,g−i′
[j ∈ Si′] =

∑
S:j∈S

yi′,S .

The feasibility of yi′,S (Lemma 5) implies: for any j ∈ [m],∑
i′∈[n]

dj
i′ =

∑
i′∈[n],S:j∈S

yi′,S ≤ 1.

Also, whether agent i′ demands j is independent of whether i′ is served, so for any j ∈ [m],

Pr[∃i′ < i : (j ∈ Si′ ∧ i′ is served)] ≤
∑
i′<i

Pr[j ∈ Si′ ∧ i′ is served] (union bound)

≤
∑

i′∈[n]

Pr[j ∈ Si′ ∧ i′ is served]

=
∑

i′∈[n]

dj
i′ · Pr[seri′ = 1]

(independence of Si′ and seri′)

≤ 1 · q = 1
2 , (Lemma 5)

which concludes the proof of the theorem. J

5 The Case of Subadditive Agents

Equipped with tools developed in previous sections, now we proceed to the case of subadditive
agents. Here we choose q = 1 and

pk =
{

1/C, 1 ≤ k ≤ C

0, C < k ≤ n,

where C = min(100 log m/ log log m, n) = O(log m/ log log m). We prove the following bound
for subadditive agents.

I Theorem 6. The protocol in Section 3 with the above parameters is O(log m/ log log m)-
competitive when agents are subadditive.

ESA 2020

82:12 Improved Prophet Inequalities for Subadditive Agents

Proof. When n ≤ 100 log m/ log log m, the theorem is easy to prove. Below we focus on the
case where C = 100 log m/ log log m < n. Consider any agent i. Fix fi and Si. In light of
Theorem 2, our goal here is to show∑

1≤k≤C

ERi
[fi(Sk

i)] = Ω(fi(Si)). (2)

That is, the first C terms in {fi(Sk
i)}k∈[n] contribute a constant fraction of fi(Si) in expect-

ation. The theorem then again follows by plugging the above into Theorem 2, yielding

ERi
[ui | fi, Si] ≥ q ·

∑
1≤k≤C

pk · ERi
[fi(Sk

i)] = Ω(fi(Si)/C).

Taking expectation over fi and Si, and summing over the agents, we have∑
i

E[ui] ≥ Ω(1/C) ·
∑

i

E[fi(Si)] = Ω(1/C) · LP ≥ Ω(1/C) · OPT.

A competitive ratio of O(C) = O(log m/ log log m) follows. The rest of the proof is dedicated
to establishing (2) when i, fi and Si are fixed.

The plan is to show, with constant probability over Ri, Sk
i = ∅ for all k > C. Denote

this event by Ei. Whenever this happens,
⋃

1≤k≤C Sk
i = Si, and by the subadditivity of fi,∑

1≤k≤C

fi(Sk
i) ≥ fi(Si).

As a result,∑
1≤k≤C

ERi [fi(Sk
i)] ≥

∑
1≤k≤C

ERi [fi(Sk
i) | Ei] · Pr[Ei] ≥ Pr[Ei] · fi(Si).

We show below Pr[Ei] = Ω(1).
Fix an item j, and consider the probability that j ∈ Sk

i for some k > C, or equivalently,

Pr
[∑

i′<i

I[j ∈ Si′] ≥ C

]
.

To bound the above probability, recall the following fact about independent Bernoulli variables
(see, e.g., [14, 19]).

I Lemma 7. For any n ∈ Z+, independent Bernoulli random variables X1, . . . , Xn where
E
[∑

i∈[n] Xi

]
≤ 1, and any k ∈ Z+,

Pr
[∑

i

Xi ≥ k

]
= O

(
1
k!

)
= k−Ω(k).

The lemma says, that if the sum of independent Bernoulli variables in expectation does not
exceed 1, then the tail of this sum decays factorially fast. Now observe that S1, . . . , Si−1, and
therefore I[j ∈ S1], . . . , I[j ∈ Si−1] are independent. This is because for any i′, Si′ depends
only on fi′ and g−i′ . Also, since

E

[∑
i′<i

I[j ∈ Si′]
]

=
∑
i′<i

Pr[j ∈ Si′] =
∑
i′<i

di′

j ≤
∑

i′∈[n]

di′

j ≤ 1,

H. Zhang 82:13

random variables {I[j ∈ Si′]}i′<i satisfy the conditions of Lemma 7. So for large enough
m, we can bound the probability that j ∈ Sk

i for some k > C using Lemma 7. Recall that
C = 100 log m/ log log m. Plugging this in, Lemma 7 then gives

Pr
[∑

i′<i

I[j ∈ Si′] ≥ C

]
≤ C−Ω(C) = O

(
1

m2

)
.

Now taking a union bound over all items, we get

Pr[Ei] ≥ 1−
∑

j∈[m]

Pr
[∑

i′<i

I[j ∈ Si′] ≥ C

]
= 1−

∑
j∈[m]

O

(
1

m2

)
= 1−O

(
1
m

)
= Ω(1).

This concludes the proof of the theorem. J

6 Generalizing to Approximately Subadditive Agents

In this section, we consider valuations with superadditive width at most D > 0. In order to
utilize the boundedness of the superadditive width, we set q = 1

4D , and

pk =

1
2 + 1

2C , k = 1
1

2C , 1 < k ≤ C

0, C < k ≤ n,

where again C = min(100 log m/ log log m, n) = O(log m/ log log m). One may check that
{pk}k∈[n] in fact sum to 1. We prove the following competitive ratio.

I Theorem 8. The protocol in Section 3 with the above parameters is O(D log m/ log log m)-
competitive when all valuations have superadditive width at most D.

Proof. Again, fix an agent i, fi and Si. Our goal is to show that one of the following two
claims is always true:

Claim (i):

ERi
[fi(S1

i)] = Ω (fi(Si)/C) .

Claim (ii):∑
1≤k≤C

ERi
[fi(Sk

i)] = Ω(fi(Si)).

We first show how the above condition implies the theorem. Again, by applying Theorem 2,

ERi
[ui | fi, Si] ≥ q ·

∑
1≤k≤C

pk · ERi
[fi(Sk

i)]

= Ω(1/D) ·

ERi
[fi(Sk

i)] + 1
C

∑
1≤k≤C

ERi
[fi(Sk

i)]

= Ω(1/D) · Ω(fi(Si)/C)

= Ω
(

D log m

log log m
· fi(Si)

)
.

The theorem then follows by taking expectation over fi and Si, and summing over the agents.

ESA 2020

82:14 Improved Prophet Inequalities for Subadditive Agents

The rest of the proof is dedicated to establishing the above condition. We consider the
most valuable 2D items for agent i in Si, i.e.,

S∗i := argmaxS:S⊆Si,|S|≤2D fi(S).

We show below that when the value of S∗i , fi(S∗i), is small, then Claim (i) holds. Otherwise,
Claim (ii) holds. Since fi and Si are fixed, one of the two claims is always true.

First suppose

fi(S∗i) ≥ fi(Si)/(2C).

In such cases, we show that with constant probability, S∗i ⊆ S1
i . Whenever this happens,

monotonicity implies

fi(S1
i) ≥ fi(S∗i) ≥ fi(Si)/(2C).

Taking expectation over Ri, this implies Claim (i).
We now bound the probability that S∗i ⊆ S1

i . Fix j ∈ S∗i . Consider the probability that
j /∈ S1

i , or equivalently,

Pr
[∑

i′<i

I[j ∈ Si′ ∧ i′ is served] ≥ 1
]

.

We upper bound this probability in the following way.

Pr
[∑

i′<i

I[j ∈ Si′ ∧ i′ is served] ≥ 1
]
≤
∑
i′<i

Pr[j ∈ Si′ ∧ i′ is served] (union bound)

=
∑
i′<i

dj
i′ · q ≤

∑
i′∈[n]

dj
i′ · q

≤ q = 1
4D

. (Lemma 5)

So for any j ∈ S∗i ,

Pr[j /∈ S1
i] ≤ 1

4D
.

Since |S∗i | = 2d, taking a union bound over all items in S∗i , we get

Pr[S∗i ⊆ S1
i] ≥ 1−

∑
j∈S∗

i

Pr[j /∈ S1
i] ≥ 1− 2D · 1

4D
= 1

2 .

This implies Claim (i) as argued above.
Now suppose

fi(S∗i) < fi(Si)/(2C).

Given this, we show Claim (ii) holds. First we need the following property of valuations with
bounded superadditive width.

I Lemma 9 ([7]). Let f : 2[m] → R+ be a valuation function such that SAW(f) ≤ D. For
any S, T ⊆ [m],

f(S | T) ≤ min
T ′:T ′⊆T,|T ′|≤D

f(S | T ′).

H. Zhang 82:15

Consider the prefix unions of {Sk
i }k∈[C]. To be precise, let U0

i = ∅, and for any k ∈ [C],

Uk
i = Uk−1

i ∪ Sk
i .

Recall that for any S, T ⊆ [m], fi(S | T) = fi(S ∪T)− fi(T) is the marginal value of S given
T . For any k ∈ [C], we have

fi(Uk
i) = fi(Sk

i | Uk−1
i) + fi(Uk−1

i)
≤ fi(Sk

i | X) + fi(Uk−1
i), where X = argminS:S⊆Uk−1

i
,|S|≤D fi(Sk

i | S)
(Lemma 9)

≤ fi(Sk
i ∪X) + fi(Uk−1

i) (monotonicity of fi)
= fi(X | Sk

i) + fi(Sk
i) + fi(Uk−1

i)
≤ fi(X | Y) + fi(Sk

i) + fi(Uk−1
i), where Y = argminS:S⊆Sk

i
,|S|≤D fi(X | S)

(Lemma 9)
≤ fi(X ∪ Y) + fi(Sk

i) + fi(Uk−1
i) (monotonicity)

≤ fi(S∗i) + fi(Sk
i) + fi(Uk−1

i). (definition of S∗i and |X ∪ Y | ≤ |X|+ |Y | ≤ 2D)

Now recall that Ei is the event that for all k > C, Sk
i = ∅. In the proof of Theorem 6, we

have shown that Pr[Ei] = Ω(1). Also, whenever Ei happens, we have UC
i = Si. As a result,

when Ei happens, we can bound fi(Si) in the following way.

fi(Si) = fi(UC
i) ≤ fi(S∗i) + fi(SC

i) + fi(UC−1
i)

≤ 2fi(S∗i) + fi(SC
i) + fi(SC−1

i) + fi(UC−2
i)

≤ . . .

≤ C · fi(S∗i) +
∑

1≤k≤C

fi(Sk
i).

Compared to the subadditive case, here we have the additional term C · fi(S∗i). However,
as we are in the world where fi(S∗i) is small, this term does not affect the bound too much.
Concretely, whenever Ei happens, we have∑

1≤k≤C

fi(Sk
i) ≥ fi(Si)− C · fi(S∗i) > fi(Si)− C · fi(Si)

2C
= fi(Si)

2 .

Again, since Pr[Ei] = Ω(1), we have∑
1≤k≤C

ERi [fi(Sk
i)] = Ω(fi(Si)),

which is precisely Claim (ii), and therefore concludes the proof of the theorem. J

References
1 Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mechanisms to many

buyers. SIAM Journal on Computing, 43(2):930–972, 2014.
2 Kshipra Bhawalkar and Tim Roughgarden. Welfare guarantees for combinatorial auctions

with item bidding. In Proceedings of the twenty-second annual ACM-SIAM symposium on
Discrete Algorithms, pages 700–709. Society for Industrial and Applied Mathematics, 2011.

3 Liad Blumrosen and Thomas Holenstein. Posted prices vs. negotiations: an asymptotic analysis.
In EC, page 49. Citeseer, 2008.

ESA 2020

82:16 Improved Prophet Inequalities for Subadditive Agents

4 Yang Cai and Mingfei Zhao. Simple mechanisms for subadditive buyers via duality. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
170–183. ACM, 2017.

5 Shuchi Chawla, Jason D Hartline, and Robert Kleinberg. Algorithmic pricing via virtual
valuations. In Proceedings of the 8th ACM conference on Electronic commerce, pages 243–251.
ACM, 2007.

6 Shuchi Chawla, Jason D Hartline, David L Malec, and Balasubramanian Sivan. Multi-
parameter mechanism design and sequential posted pricing. In Proceedings of the forty-second
ACM symposium on Theory of computing, pages 311–320. ACM, 2010.

7 Wei Chen, Shang-Hua Teng, and Hanrui Zhang. Capturing complementarity in set functions
by going beyond submodularity/subadditivity. 10th Innovations in Theoretical Computer
Science, 2019.

8 Vincent Cohen-Addad, Alon Eden, Michal Feldman, and Amos Fiat. The invisible hand of
dynamic market pricing. In Proceedings of the 2016 ACM Conference on Economics and
Computation, pages 383–400. ACM, 2016.

9 Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation algorithms for combin-
atorial auctions with complement-free bidders. In Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages 610–618. ACM, 2005.

10 Paul Dütting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. Prophet inequalities
made easy: Stochastic optimization by pricing non-stochastic inputs. In Foundations of
Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on, pages 540–551. IEEE,
2017.

11 Paul Dütting, Thomas Kesselheim, and Brendan Lucier. An o (log log m) prophet inequality
for subadditive combinatorial auctions. arXiv preprint, 2020. arXiv:2004.09784.

12 Paul Dütting and Robert Kleinberg. Polymatroid prophet inequalities. In Algorithms-ESA
2015, pages 437–449. Springer, 2015.

13 Soheil Ehsani, MohammadTaghi Hajiaghayi, Thomas Kesselheim, and Sahil Singla. Prophet
secretary for combinatorial auctions and matroids. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 700–714. SIAM, 2018.

14 Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on
Computing, 39(1):122–142, 2009.

15 Uriel Feige, Michal Feldman, Nicole Immorlica, Rani Izsak, Brendan Lucier, and Vasilis
Syrgkanis. A unifying hierarchy of valuations with complements and substitutes. In Twenty-
Ninth AAAI Conference on Artificial Intelligence, 2015.

16 Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial auctions via posted prices.
In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms,
pages 123–135. Society for Industrial and Applied Mathematics, 2015.

17 Moran Feldman, Ola Svensson, and Rico Zenklusen. A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. In Proceedings of the twenty-sixth annual
ACM-SIAM symposium on Discrete algorithms, pages 1189–1201. SIAM, 2014.

18 Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. Automated online
mechanism design and prophet inequalities. In AAAI, volume 7, pages 58–65, 2007.

19 Svante Janson. Large deviation inequalities for sums of indicator variables. arXiv preprint,
2016. arXiv:1609.00533.

20 Robert Kleinberg and Seth Matthew Weinberg. Matroid prophet inequalities. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pages 123–136. ACM,
2012.

21 Ulrich Krengel and Louis Sucheston. Semiamarts and finite values. Bulletin of the American
Mathematical Society, 83(4):745–747, 1977.

22 Ulrich Krengel and Louis Sucheston. On semiamarts, amarts, and processes with finite value.
Probability on Banach spaces, 4:197–266, 1978.

http://arxiv.org/abs/2004.09784
http://arxiv.org/abs/1609.00533

H. Zhang 82:17

23 Brendan Lucier. An economic view of prophet inequalities. ACM SIGecom Exchanges,
16(1):24–47, 2017.

24 Noam Nisan and Ilya Segal. The communication requirements of efficient allocations and
supporting prices. Journal of Economic Theory, 129(1):192–224, 2006.

25 Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1671–1687.
SIAM, 2017.

ESA 2020

On the Approximation Ratio of the k-Opt and
Lin-Kernighan Algorithm for Metric and Graph
TSP
Xianghui Zhong
University of Bonn, Germany
zhong@cs.uni-bonn.de

Abstract
The k-Opt and Lin-Kernighan algorithm are two of the most important local search approaches for
the Metric TSP. Both start with an arbitrary tour and make local improvements in each step to get
a shorter tour. We show that for any fixed k ≥ 3 the approximation ratio of the k-Opt algorithm for
Metric TSP is O(k

√
n). Assuming the Erdős girth conjecture, we prove a matching lower bound of

Ω(k
√
n). Unconditionally, we obtain matching bounds for k = 3, 4, 6 and a lower bound of Ω(n

2
3k−3).

Our most general bounds depend on the values of a function from extremal graph theory and are
tight up to a factor logarithmic in the number of vertices unconditionally. Moreover, all the upper
bounds also apply to a parameterized version of the Lin-Kernighan algorithm with appropriate
parameter. We also show that the approximation ratio of k-Opt for Graph TSP is Ω

(
log(n)

log log(n)

)
and O

((
log(n)

log log(n)

)log2(9)+ε
)

for all ε > 0.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases traveling salesman problem, metric TSP, graph TSP, k-Opt algorithm,
Lin-Kernighan algorithm, approximation algorithm, approximation ratio.

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.83

Related Version A full version of the paper is available at https://arxiv.org/abs/1909.12755.

Funding The author was supported by the Bonn International Graduate School.

Acknowledgements I want to thank Fabian Henneke, Stefan Hougardy, Yvonne Omlor, Heiko Röglin
and Fabian Zaiser for reading this paper and making helpful remarks.

1 Introduction

The traveling salesman problem (TSP) is probably the best-known problem in discrete
optimization. An instance consists of the pairwise distances of n vertices and the task is to
find a shortest Hamiltonian cycle, i.e. a tour visiting every vertex exactly once. The problem
is known to be NP-hard [12]. A special case of the TSP is the Metric TSP. Here the
distances satisfy the triangle inequality. This TSP variant is still NP-hard [15].

Since the problem is NP-hard, a polynomial-time algorithm is not expected to exist. In
order to speed up the calculation of a good tour in practice, several approximation algorithms
are considered. The approximation ratio is one way to compare approximation algorithms.
It is the maximal ratio, taken over all instances, of the output of the algorithm divided
by the optimum solution. The best currently known approximation algorithm in terms of
approximation ratio for Metric TSP was independently developed by Christofides and
Serdjukov [6, 24] with an approximation ratio of 3

2 . However, in practice other algorithms
are usually easier to implement and have better performance and runtime [3, 14, 22]. One
natural approach is the k-Opt algorithm which is based on local search. It starts with an
arbitrary tour and replaces at most k edges by new edges such that the resulting tour is

© Xianghui Zhong;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 83; pp. 83:1–83:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3812-2903
mailto:zhong@cs.uni-bonn.de
https://doi.org/10.4230/LIPIcs.ESA.2020.83
https://arxiv.org/abs/1909.12755
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

83:2 Approximation Ratio of k-Opt and Lin-Kernighan for Metric and Graph TSP

shorter. It stops if the procedure cannot be applied anymore. For the 2-Opt algorithm
Plesník showed that there are infinitely many instances with approximation ratio

√
n
8 , where

n is the number of vertices [21]. Chandra, Karloff and Tovey showed that the approximation
ratio of 2-Opt is at most 4

√
n [5]. Levin and Yovel observed that the same proof yields an

upper bound of
√

8n [19]. Recently, Hougardy, Zaiser and Zhong closed the gap and proved
that the approximation ratio of the 2-Opt algorithm is at most

√
n
2 and that this bound

is tight [13]. For general k > 2 Chandra, Karloff and Tovey gave a lower bound of 1
4

2k
√
n

[5], no non-trivial upper bound is known so far. In the case where the instances can be
embedded into the normed space Rd the approximation ratio of 2-Opt is between Ω(log(n)

log log(n))
and O(log(n)) [5].

Beyond the worst-case analysis there are also results about the average case behavior of the
algorithm. For example the smoothed analysis of the 2-Opt algorithm by Englert, Röglin and
Vöcking [7]. In their model each vertex of the TSP instance is a random variable distributed
in the d dimensional unit cube by a given probability density function fi : [0, 1]d → [0, φ]
bounded from above by a constant 1 ≤ φ <∞ and the distances are given by the Lp norm.
They show that in this case the expected approximation ratio is bounded by O(d

√
φ) for all p.

In the model where any instance is given in [0, 1]d and perturbed by a Gaussian noise with
standard deviation σ the approximation ratio was improved to O(log(1

σ)) by Künnemann
and Manthey [17].

One of the best practical heuristics by Lin and Kernighan is based on k-Opt [20]. The
Lin-Kernighan algorithm, like the k-Opt algorithm, modifies the tour locally to obtain a new
tour. Instead of replacing arbitrary k edges with new edges, which results in a high runtime
for large k, it searches for specific changes: Changes where the edges to be added and deleted
are alternating in a closed walk, a so called closed alternating walk. Since the Lin-Kernighan
algorithm uses a super set of the modification rules of the 2-Opt algorithm, the same upper
bound as for 2-Opt also applies. Apart from this, no other upper bound was known.

A special case of the Metric TSP is the Graph TSP. In this case an undirected
unweighted graph is given and the distance between two vertices is the distance between
them in the graph. Apart from the upper bounds of the Metric TSP, which also apply to
the special case, only a lower bound of 2(1 − 1

n) on the approximation ratio of the k-Opt
algorithm is known so far: Rosenkrantz, Stearns and Lewis describe a Metric TSP instance
with this ratio that is also a Graph TSP instance [23].

New results. For fixed k ≥ 3, we show that the approximation ratio of the k-Opt algorithm
is related to the extremal graph theoretic problem of maximizing the number of edges in a
graph with fixed number of vertices and no short cycles. Let ex(n, 2k) be the largest number
of edges in a graph with n vertices and girth at least 2k, i.e. it contains no cycles with less
than 2k edges. For instances with n vertices we show for Metric TSP that:

I Theorem 1. If ex(n, 2k) ∈ O(nc) for some c > 1, the approximation ratio of k-Opt is
O(n1− 1

c) for all fixed k.

I Theorem 2. If ex(n, 2k) ∈ Ω(nc) for some c > 1, the approximation ratio of k-Opt is
Ω(n1− 1

c) for all fixed k.

Using known upper bounds on ex(n, 2k) in [1] we can conclude:

I Corollary 3. The approximation ratio of k-Opt is in O(k
√
n) for all fixed k.

If we further assume the Erdős girth conjecture [10], i.e. ex(n, 2k) ∈ Θ(n1+ 1
k−1), we have:

X. Zhong 83:3

I Corollary 4. Assuming the Erdős girth conjecture, the approximation ratio of k-Opt is in
Ω(k
√
n) for all fixed k.

Using known lower bounds on ex(n, 2k) from [8, 9, 4, 2, 25, 26, 18] we obtain:

I Corollary 5. The approximation ratio of k-Opt is in Ω(k
√
n) for k = 3, 4, 6 and in Ω(n

2
3k−4+ε)

for all fixed k where ε = 0 if k is even and ε = 1 if k is odd.

Comparing our upper and lower bounds we obtain:

I Theorem 6. Our most general upper bound depending on ex(n, 2k) is tight up to a factor
of O(log(n)).

The upper bounds can be carried over to a parameterized version of the Lin-Kernighan
algorithm:

I Theorem 7. The same upper bounds from Theorem 1 and 3 hold for a parameterized
version of the Lin-Kernighan algorithm with appropriate parameter.

Although the Lin-Kernighan algorithm only considers special changes, namely changes
by augmenting a closed alternating walk, we are able to show the same upper bound as for
the general k-Opt algorithm. For the original version of Lin-Kernighan we get an improved
upper bound of O(3

√
n). Our results solve two of the four open questions in [5], namely:

Can the upper bounds given in [5] be generalized to the k-Opt algorithm, i.e. for increasing
k the performance guarantee improves?
Can we show better upper bounds for the Lin-Kernighan algorithm than the upper bound
obtained from the 2-Opt algorithm?

We also bound the approximation ratio of the k-Opt algorithm for Graph TSP.

I Theorem 8. The approximation ratio of k-Opt with k ≥ 2 for Graph TSP is Ω
(

log(n)
log log(n)

)
.

I Theorem 9. The approximation ratio of 2-Opt for Graph TSP is O
((

log(n)
log log(n)

)log2(9)+ε
)

for all ε > 0.

Note that the same upper bound also applies to the k-Opt algorithm and the Lin-
Kernighan algorithm since they produce 2-optimal tours. Hence, up to a constant factor of
at most log2(9) in the exponent the k-Opt algorithm does not achieve asymptotically better
performance than the 2-Opt algorithm in contrast to the metric case.

Outline of the paper. We start with the basic definitions we need for the analysis in the
preliminaries. Then, an outline of the analysis roughly describes the main ideas for the lower
and upper bounds on the approximation ratio for Metric and Graph TSP. In the main
part of the paper we will only focus on the upper bound on the approximation ratio of the
k-Opt algorithm for Metric TSP. Note that the same analysis can be carried over to the
Lin-Kernighan algorithm by showing that the k-moves we consider can be performed by
augmenting appropriate alternating cycles. For more details on this and the analysis of the
other bounds we refer to the full version of the paper.

ESA 2020

83:4 Approximation Ratio of k-Opt and Lin-Kernighan for Metric and Graph TSP

1.1 Preliminaries

1.1.1 TSP

An instance of Metric TSP is given by a complete weighted graph (Kn, c) where the costs
are non-negative and satisfy the triangle inequality: c({x, z}) + c({z, y}) ≥ c({x, y}) for all
x, y, z ∈ V (Kn). A cycle is a closed walk that visits every vertex at most once. A tour is a
cycle that visits every vertex exactly once. For a tour T , let the length of the tour be defined
as c(T) :=

∑
e∈T c(e). The task is to find a tour of minimal length. We fix an orientation

of the tour, i.e. we consider the edges of the tour as directed edges such that the tour is a
directed cycle. From now on, let n denote the number of vertices of the instance.

Graph TSP is a special case of the Metric TSP. Each instance arises from an
unweighted, undirected connected graph G. To construct a TSP instance (Kn, c), we set
V (Kn) = V (G). The cost c({u, v}) of the edge connecting any two vertices u, v ∈ V (G) is
given by the length of the shortest u-v-path in G.

An algorithm A for the traveling salesman problem has approximation ratio α(n) ≥ 1 if
for every TSP instance with n vertices it finds a tour that is at most α(n) times as long as
a shortest tour and this ratio is achieved by an instance for every n. Note that we require
here the sharpness of the approximation ratio deviating from the standard definition in the
literature to express the approximation ratio in terms of the Landau symbols. Nevertheless,
the results also hold for the standard definition with more complicated notation.

1.1.2 k-Opt and Lin-Kernighan Algorithm

A k-move replaces at most k edges of a given tour by other edges to obtain a new tour. It
is called improving if the resulting tour is shorter than the original one. A tour is called
k-optimal if there is no improving k-move.

For the 2-Opt algorithm recall the following well known fact: Given a tour T with a fixed
orientation, it stays connected if we replace two edges of T by the edge connecting their
heads and the edge connecting their tails, i.e. if we replace edges (a, b), (c, d) ∈ T by (a, c)
and (b, d).

An alternating walk of a tour T is a walk starting with an edge in T where exactly one
of two consecutive edges is in T . An edge of the alternating walk is called tour edge if it is
contained in T , otherwise it is called non-tour edge. A closed alternating walk and alternating
cycle are alternating walks whose edges form a closed walk and cycle, respectively.

We consider a parameterized version of the Lin-Kernighan algorithm described in Section
21.3 of [16] for the analysis. In this version two parameters p1 and p2 specify the depth
the algorithm is searching for an improvement. Since this extended abstract will focus on
the k-Opt algorithm, we do not describe the Lin-Kernighan algorithm here and refer to the
Section 21.3 of [16] or the full version of the paper.

1.2 Girth and Ex

The girth of a graph is the length of the shortest cycle contained in the graph if it contains
a cycle and infinity otherwise. Let ex(n, 2k) be the maximum number of edges in a graph
with n vertices and girth at least 2k. Moreover, define ex−1(m, 2k) as the minimal number
of vertices of a graph with m edges and girth at least 2k.

X. Zhong 83:5

2 Outline of the Analysis

In this section we give an outline of the analysis for the lower and upper bounds of k-Opt for
the Metric TSP and Graph TSP.

2.1 Outline of Lower Bound for Metric TSP
In this subsection we sketch the lower bound of k-Opt for the Metric TSP given by Theorem
2. We use the following lemma from [5]:

I Theorem 10 (Lemma 3.6 in [5]). Suppose there exists a Eulerian unweighted graph Gk,n,m
with n vertices and m edges, having girth at least 2k. Then, there is a Metric TSP instance
with m vertices and a k-optimal tour T such that c(T)

c(T∗) ≥
m
2n , where T

∗ is the optimal tour
of the instance.

For the previous lower bound the theorem was applied to regular Eulerian graphs with
high girth. Instead, we show that for every graph that there is a Eulerian subgraph with
similar edge vertex ratio and apply the theorem to the Eulerian subgraphs of dense graphs
with high girth to get the new bound.

2.2 Outline of Upper Bound for Metric TSP
In this subsection we briefly summarize the ideas for the analysis of the upper bound for
the Metric TSP given by Theorem 1. For a fixed k assume that an instance is given with
a k-optimal tour T . We fix an orientation of T and assume w.l.o.g. that the length of the
optimal tour is 1. To bound the approximation ratio it is enough to bound the length of T .
Our general strategy is to construct an auxiliary graph depending on T and bound its girth.
More precisely, we show that if this graph has a short cycle this would imply the existence
of an improving k-move contradicting the k-optimality of T . Moreover, the auxiliary graph
contains many long edges of T so the bound on its girth also bounds the number of long
edges in the tour and hence the approximation ratio.

Let the graph G consist of the vertices of the instance and the edges of T , i.e. G :=
(V (Kn), T). We first divide the edges of T in length classes such that the lth length class
consists of the edges with length between cl+1 and cl for some constant c < 1, we call these
edges l-long. For each l ∈ N0 we want get an upper bound on the number of l-long edges
that depends on the number of vertices.

If we performed the complete analysis on G, we would get a bad bound on the number of
l-long edges since G contains too many vertices. To strengthen the result we first construct
an auxiliary graph containing all l-long edges for some fixed l but fewer vertices and bound
the number of l-long edges in that graph: We partition V (G) into classes with help of the
optimal tour such that in each class any two vertices have small distance to each other. We
contract the vertices in each class to one vertex and delete self loops to get the multigraph
Gl1. We can partition V (G) in such a way that Gl1 contains all the l-long edges. Note we did
not delete parallel edges in Gl1 and hence every edge in Gl1 has a unique preimage in G.

Unfortunately, we cannot directly bound the girth of Gl1 since the existence of a short
cycle would not necessarily imply an improving k-move for T . For that we need a property
of the cycles in the graph: The common vertex of consecutive edges in any cycle has to be
head of both or tail of both edges according to the orientation of T . Therefore, we construct
the auxiliary graph Gl2 from Gl1 as follows: We start with Gl2 as a copy of Gl1 and color the
vertices of Gl2 red and blue. We only consider l-long edges in Gl2 from a red vertex to a blue
vertex according to the orientation of T and delete all other edges. We can show that the
coloring can be done in such a way that at least 1

4 of the l-long edges remain in Gl2.

ESA 2020

83:6 Approximation Ratio of k-Opt and Lin-Kernighan for Metric and Graph TSP

We claim that the underlying undirected graph of Gl2 has girth at least 2k. Note that
by construction the graph is bipartite and hence all cycles have even length. Assume that
there is a cycle C with 2h < 2k edges. We call the preimage of the edges of C in G the
C-edges. Our aim is to construct a tour T ′ with the assistance of C that arises from T by an
improving k-move.

For every common vertex w of two consecutive edges e1, e2 of C in Gl2 we consider the
preimage e−1

1 , e−1
2 of e1, e2 in G. Then there have to be endpoints u ∈ e−1

1 and v ∈ e−1
2 such

that the images of u and v after the contraction in Gl2 are both w. We will call the edge
{u, v} a short edge. In fact since both endpoints of a short edge are mapped to the same
vertex in Gl1 after the contraction and we contracted vertices which have small distance to
each other, they are indeed short. Furthermore, we can show that the total length of all the
short edges is shorter than that of any single C-edge. The number of the short edges is equal
to the number of C-edges which is 2h. Now, observe that the cycle C defines an alternating
cycle in G in a natural way: Let the preimages of C in G be the tour edges and the short
edges be the non-tour edges.

To construct a new tour T ′ from T we start by augmenting the alternating cycle.
Afterwards, the tour may split into at most 2h connected components. A key property is that
the coloring of the vertices in Gl2 ensures that every connected component contains at least
two short edges. Since there are 2h short edges, we know that after the augmentation we
actually get at most h connected components. To reconnect and retain the degree condition
we add twice a set L of at most h− 1 different C-edges, i.e. in total at most 2h− 2 edges. In
the end we shortcut to the new tour T ′ in a particular way without decreasing |T ∩ T ′|.

Note that the original tour T contains 2h C-edges, thus T ′ contains at least 2 fewer
C-edges than T . The additional short edges T ′ contains are cheap, therefore T ′ is cheaper
than T . Moreover, T ′ arises from T by replacing at most 2h− |L| C-edges since we deleted
the C-edges and added twice the set L consisting of C-edges. Therefore, we know that
T ′ arises from T by a 2h − |L| ≤ 2h-move. By the k-optimality of T , we have 2h > k or
2h ≥ k + 1. This already gives us a lower bound of k + 1 for the girth of the graph Gl2 as C
contains 2h edges.

In the next step we use the previous result to show that there is actually a cheaper tour
T ′ that arises by an h+ 1-move. This implies that h+ 1 > k or 2h ≥ 2k, i.e. the girth of
Gl2 is at least 2k. As we have seen above the number of edges we have to replace to obtain
T ′ from T depends on |L|, the number of C-edges T ′ contains. Therefore, we modify T ′
iteratively such that the number of C-edges in T ′ increases by 1 after every iteration while
still maintaining the property that T ′ is cheaper than T . We stop when the number of
C-edges in T ′ is h− 1 as then T ′ would arise from T by a 2h− (h− 1) = h+ 1-move.

To achieve this we start with the constructed tour T ′ and iteratively perform 2-moves
that are not necessarily improving but add one more C-edge to T ′. In every iteration we
consider C-edges e not in the current tour T ′. We can show that there is an edge in T ′\T
incident to each of the endpoints of e. Let the two edges be f1 and f2. We want to replace f1
and f2 in T ′ by e1 and the edge connecting the endpoints of f1 and f2 not incident to e. To
ensure the connectivity after the 2-move we need to find edges e such that the corresponding
edges f1, f2 fulfill the following condition: Either both heads or both tails of f1 and f2 have
to be endpoints of e. It turns out that we can find such edges e in enough iterations to
construct T ′ with the desired properties.

In the end we notice that a lower bound on the girth of Gl2 gives us an upper bound on
the number of edges in Gl2 by previous results on extremal graph theory. This implies an
upper bound on the number of l-long edges as Gl2 contains at least 1

4 of the l-long edges in
T . That gives us an upper bound on the length of T and thus also an upper bound on the
approximation ratio as we assumed that the optimal tour has length 1.

X. Zhong 83:7

2.3 Outline of Lower Bound for Graph TSP
For the lower bound of Graph TSP given by Theorem 8 let an integer f be given. We
construct an instance with approximation ratio Θ(f) and (c1f)c2f vertices for some constants
c1, c2 > 0. Thus, the approximation ratio is Ω

(
logn

log logn

)
.

The construction starts with a dense 2f -regular Eulerian graph G with high girth. Let
W = (v0, v1, . . . , v|E(G)|−1) be a Eulerian walk of G. Traverse through G according to W
starting at v0 and mark every fth vertex both in G and in W . Whenever we would mark an
already marked vertex v in G, we add a new copy v′ of v adjacent exactly to the neighbors
of v and mark v′ instead. Moreover, we replace this occurrence of v in W by v′ and mark
v′. Let G′ be the graph containing G and all the copies of the vertices we made. After the
traversal of W , we mark for every unmarked vertex in G′ one occurrence of it in W . Since
we only need the property that every vertex of G′ is marked in W it does not matter which
occurrence we mark. The tour T consists of the edges connecting consecutive marked vertices
in W .

The proof that T is k-optimal uses the same basic idea as the lower bound of the
approximation ratio in the metric case in [5]: If there was an improving k-move, it has to
contain an alternating cycle with negative cost. By construction, the length of every edge in
T is bounded by f . Thus, such an alternating cycle would imply the existence of a short
cycle in G′ that can be transformed to a short cycle in G contradicting its high girth.

The constructed instance has approximation ratio Θ(f) since on the one hand, almost
every edge in T has length Θ(f) leading to a total length of approximately f |V (G′)|. On
the other hand, the length of the optimal tour can be bounded by twice the length of the
minimum spanning tree which is at most 2|V (G′)| in the case of Graph TSP.

2.4 Outline of Upper Bound for Graph TSP
This subsection comprises a sketch of the proof of Theorem 9. Assume that an instance of
Graph TSP (Kn, c) is given where c arises from the unweighted graph G. Let a 2-optimal
tour T be given for the instance and fix an orientation.

First, note that every edge with length l corresponds to shortest paths with l edges in
G between the endpoints of the edges. Now, if the corresponding shortest paths of two
edges share a common directed edge, we see that there is an improving 2-move contradicting
the assumed 2-optimality of T (Figure 1). Hence, the directed edges of the corresponding
shortest paths are disjoint. Note that the optimal tour contains n edges and hence has length
at least n. Thus, if the approximation ratio is high, we must have many edges in the union of
the shortest paths corresponding to the edges in T and hence also in G. The main challenge
now is to exploit this fact in a good way since a simple bound of n(n− 1) on the number of
directed edges in G would only give an upper bound of O(n) on the approximation ratio,
which is worse than the upper bound of O(

√
n) for Metric TSP.

To get a better result we use the same idea from the analysis of the upper bound for
Metric TSP: We contract vertices and get a graph with fewer vertices and many edges.
Instead of contracting once, we iteratively partition the vertices into sets and contract each
set to a single vertex to get a new graph. (We note that we actually just contract the vertices
and construct the edges of the new graph in a slightly different way. But let us assume for
simplicity that the edges of the new graph are images of the contraction of edges in the old
graph.) Starting with G in every iteration we ideally want to partition the vertices of the
current graph into sets, contract each set to a vertex and delete self loops such that:
1. The number of vertices decreases much faster than the number of edges.
2. The subgraphs induced by the sets we contract have small diameter.

ESA 2020

83:8 Approximation Ratio of k-Opt and Lin-Kernighan for Metric and Graph TSP

Figure 1 The solid and dashed edges are shortest paths that correspond to two edges in T . If
they share a directed edge, there exists an improving 2-move replacing these two edges. The cost of
the new edges is bounded by the number of the red edges which is less than the total cost of the two
original edges.

The first condition ensures that we get a better bound after every iteration. The second
condition builds the connection between the approximation ratio and the number of edges in
the contracted graph: It ensures that if the shortest paths corresponding to two edges of T
share a directed edge in the contracted graph, then they are also not far away in G, so there
is an improving 2-move replacing these two edges. This means that a high approximation
ratio would imply a high number of edges in the contracted graph.

Unfortunately, it is not easy to ensure both conditions at the same time even if we know
that the graph has many edges as the edges are not equally distributed in the graph. It might
happen that there are many vertices with very low degree. If we contract them while still
ensuring that the subgraphs have small diameter, the number of vertices cannot decrease fast
enough. Therefore, we consider a subset of vertices we call active vertices and only require
that the number of active vertices decreases fast. If an active vertex has low degree, we will
not contract it and consider it as inactive in future iterations. Initially, all vertices are active
and we use the following theorem from [11] to find a good partition of the active vertices:

I Theorem 11 (Theorem 6 in [11]). Given ε > 0 every graph G on n vertices can be edge
partitioned E = E0 ∪ E1 ∪ · · · ∪ El such that |E0| ≤ εn2, l ≤ 16ε−1, and for 1 ≤ i ≤ l the
diameter of Ei is at most 4.

In every iteration we apply the theorem to the subgraph induced by the currently active
vertices. The vertices only incident to edges in E0 become inactive after this iteration. For
each of the sets E1, . . . , El we contract the vertices incident to an edge in the set to a single
vertex. These are the active vertices in the next iteration. By choosing ε appropriately, we
can ensure that the number of vertices decreases significantly and the number of vertices
that become inactive in every iteration is small.

After a fixed number of iterations, we have at least one edge and one active vertex
remaining. Since the number of active vertices decreased much faster than the edges, we can
conclude that G only contains few edges compared to the number of vertices. This implies a
bound on the approximation ratio.

3 Upper Bound for Metric TSP

In this section we give an upper bound on the approximation ratio of the k-Opt algorithm.
Fix a k > 2 and assume that a worst-case instance with n vertices is given. Let T be a

k-optimal tour of this instance. We fix an orientation of the optimal tour and T . Moreover,
let w.l.o.g. the length of the optimal tour be 1. We divide the edges of T into length classes.

X. Zhong 83:9

I Definition 12. An edge e is l-long if (4k−5
4k−4)l+1 < c(e) ≤ (4k−5

4k−4)l.

Note that the shortest path between every pair of vertices has length at most 1
2 since the

optimal tour has length 1. Thus, by the triangle inequality every edge with positive length
in T has length at most 1

2 and is l-long for exactly one l. For every l we want to bound the
number of l-long edges. Let us consider from now on a fixed l. In the following we define
auxiliary graphs we need for the analysis and show some useful properties of them.

I Definition 13. We view the optimal tour as a circle with circumference 1. Let the vertices
of the instance lie on that circle in the order of the oriented tour where the arc distance of
two consecutive vertices is the length of the edge between them. Divide the optimal tour circle
into 4(k− 1)d(4k−4

4k−5)le consecutive arcs of length 1
4(k−1)d(4k−4

4k−5)le . Two vertices are called near
to each other if they lie on the same arc.

I Definition 14. Let the directed graph G := (V (Kn), T) consist of the vertices of the
instance and the oriented edges of T (an example is shown in Figure 2, the colors of the
edges will be explained later). The directed multigraph Gl1 arises from G by contracting all
vertices near to each other to a vertex and deleting self-loops (Figure 3).

Note that Gl1 may contain parallel edges. Moreover, edges between vertices which are
near to each other are not l-long and hence Gl1 contains all l-long edges.

I Lemma 15. There exists a coloring of the vertices of Gl1 with two colors such that at
least 1

4 of the l-long edges in Gl1 go from a red vertex to a blue vertex according to the fixed
orientation of T .

Proof Sketch. The proof is similar to the standard proof that a maximal cut of a graph
contains at least 1

2 of the edges (see for example Theorem 5.3 in [27]). J

I Definition 16. We obtain the directed multigraph Gl2 by coloring the vertices of Gl1 red
and blue according to Lemma 15 and deleting all edges that are not l-long edges from a red
vertex to a blue vertex according to the fixed orientation of T (Figure 4, the colors of the
edges will be explained later).

Now, we claim that the underlying undirected graph of Gl2 has girth at least 2k. In
particular, it is a simple graph. Assume the contrary, then there has to be a cycle C with
2h < 2k edges since Gl2 is bipartite by construction. We call the preimage of the edges of C
in G the C-edges. Note that the preimages are unique since we do not delete parallel edges
after the contraction.

I Definition 17. Let the connecting paths be the connected components of (V (Kn), T\C),
i.e. the paths in T between consecutive heads and tails of C-edges (the red edges in Figure 2
and 4). Define head and tail of a path p as the head of the last edge and the tail of the first
edge of p according to the orientation of T , respectively. The head and tail of a connecting
path are also called the endpoints of the connecting path.

I Definition 18. For any two endpoints v1, v2 of C-edges in G which are near to each other
we call the edge {v1, v2} a short edge.

The definition of near ensures that the short edges are indeed short. In fact the total
length of all short edges is smaller than that of any C-edge. The number of short edges is 2h
which is equal to the number of C-edges.

ESA 2020

83:10 Approximation Ratio of k-Opt and Lin-Kernighan for Metric and Graph TSP

Figure 2 An example instance with a k-
optimal tour, i.e. the directed graph G. The
blue and red edges are the C-edges and con-
necting path edges that arise from the chosen
cycle in Gl2 in Figure 4, respectively.

Figure 3 The directed multigraph Gl1: We
contracted vertices that lie near to each other
in the optimal tour. Note that the optimal
tour is not drawn here, so it is not clear from
the figure which vertices to contract.

Figure 4 The directed multigraphGl2: Col-
oring the vertices and only considering the
l-long edges from red to blue. In this example
the upper left edge is not l-long and hence not
drawn. The blue edges form the undirected
cycle C, the black edges are the remaining
edges of the connecting paths corresponding
to this cycle.

Figure 5 The graph Gl,C3 : The green edges
are the short edges, the red edges are the
connecting paths.

I Definition 19. We construct the graph Gl,C3 as follows: The vertex set of Gl,C3 is that of
G and the edge set consists of the connecting paths and the short edges (Figure 5).

I Lemma 20. E(Gl,C3) is the union of at most h disjoint cycles.

Proof Sketch. We can show that the degree of every vertex in Gl,C3 is two. Moreover, we
can see by considering the incident C-edges that the two endpoints of a connecting path are
not near to each other since otherwise the common endpoint of the connecting path in Gl2
has to be colored red and blue. Hence, every connected component consists of at least two
out of 2h connecting paths and we have at most h disjoint cycles. J

Now, we show that the existence of C implies that there is an improving k-move contra-
dicting the k-optimality of T .

I Lemma 21. There is a tour T ′ containing the connecting paths and u− 1 C-edges, where
u is the number of connected components of Gl,C3 .

Proof Sketch. We construct such a tour T ′. Start with a graph G′ with the same vertex set
and edge set as Gl,C3 . First, add a set of C-edges to E(G′) that makes the graph connected.
This is possible since T consists of the C-edges and connecting paths and is connected. We
call these C-edges the fixed C-edges. Next, add another copy of the fixed C-edges (Figure 6).
After shortcutting in a particular way without decreasing |T ∩ T ′|, we get a tour with the
desired properties. J

X. Zhong 83:11

Figure 6 Sketch for Lemma 21. The red
curves represent the connecting paths. The
green edges are the short edges, the blue edges
are the fixed C-edges and the pink edges are
the copies of the fixed C-edges. The tour T ′

results from shortcutting the green and pink
edges while leaving the other edges fixed.

e1

e2

f1 f2

Figure 7 Sketch for Lemma 25. The drawn
orientation is that of T ′. The red curves rep-
resent oppositely oriented connecting paths
connected by a C-edge e1. The green edges
f1 and f2 are the non-connecting path edges
of T ′ incident to e1. The edge e2 connects the
other two endpoints of f1 and f2 not incident
to e1.

I Remark 22. The last lemma already gives us a bound on the girth of Gl2: By Lemma 20,
Gl,C3 has at most h connected components. Therefore, we added in the construction above at
most 2h− 2 C-edges and some cheap short edges. As T contains 2h C-edges, we can show
that T ′ is shorter than T . Moreover, T ′ arises from T by replacing at most 2h C-edges, i.e.
by a 2h-move. If 2h ≤ k, this would contradict the k-optimality of T , hence Gl2 has girth at
least k + 1.

Next, we improve this result and show that Gl2 has girth at least 2k. We achieve this
by starting at T ′ and iteratively performing 2-moves that are not necessarily improving but
include one more C-edge in T ′. We stop when the number of C-edges in T ′ is h− 1. Then,
T ′ arises from T by a 2h− (h− 1) = h+ 1 move.

I Definition 23. Given a tour T ′ containing the connecting paths. An ambivalent 2-move
replaces two non-connecting path edges of T ′ to obtain a new tour containing at least one
more C-edge.

I Definition 24. Fix an orientation of T ′, we call a connecting path p wrongly oriented if
the orientation of p in T ′ is opposite to the orientation in T . Otherwise, it is called correctly
oriented.

I Lemma 25. If a tour T ′ contains a short edge and all connecting paths, then there is an
ambivalent 2-move that increases the length of the tour by at most two C-edges.

Proof Sketch. The coloring of the vertices in Gl2 ensures that every short edge e connects
either two heads or two tails of connecting paths. If in addition e ∈ T ′, one of them is
correctly oriented and the other one is wrongly oriented. Thus, as long as there is a short edge
in T ′, there has to be at least one correctly oriented and one wrongly oriented connecting
path. In this case there has to be a C-edge e1 connecting two oppositely oriented connecting
paths since the C-edges connect the connecting paths to the tour T . By definition, every
C-edge connects a head and a tail of two connecting paths. If e1 ∈ T ′, the incident connecting
paths would be both correctly or both wrongly oriented. Thus, e1 is not contained in T ′. Let
e2, f1 and f2 be defined as in Figure 7. Now, we can make a 2-move replacing f1, f2 by e1
and e2 to obtain a new tour with the additional C-edge e1. The property that e1 connects

ESA 2020

83:12 Approximation Ratio of k-Opt and Lin-Kernighan for Metric and Graph TSP

two oppositely oriented connecting paths ensures that the tour stays connected after the
2-move. By the triangle inequality, we have c(e2) ≤ c(f1) + c(e1) + c(f2) and thus each of
the 2-moves increases the length of the tour by at most two C-edges. J

I Lemma 26. T is not h+ 1-optimal.

Proof Sketch. By Lemma 21, we can construct a tour T ′ using the connecting paths and
u − 1 C-edges where u is the number of connected components of Gl,C3 . We iteratively
perform ambivalent 2-moves to increase the number of C-edges in T ′. Since after every such
2-move the number of short edges decreases by at most two, we can perform by Lemma 25
a sufficient number of iterations such that we get a tour with h− 1 C-edges. There are in
total 2h C-edges, hence the resulting tour arises by an 2h− (h− 1) = h+ 1-move from T .
As every ambivalent 2-move increases the length of the tour by at most two C-edges, we can
show that in the end the resulting T ′ is still shorter than T . J

Since h < k, this is a contradiction to the assumption that T is k-optimal. Hence, such a
cycle C with less than 2k edges cannot exist and this gives us a lower bound of 2k on the
girth of Gl2. Next, we conclude an upper bound on the length of T :

I Corollary 27. For l∗ := minj{j|
∑j
l=0 4 ex(4(k − 1)d(4k−4

4k−5)le, 2k) ≥ n} we have

c(T) ≤
l∗∑
l=0

4 ex(4(k − 1)d(4k−4
4k−5)le, 2k)

(4k−4
4k−5)l

.

Proof Sketch. Let ql be the number of l-long edges in T . The definition of near ensures
that two vertices which are near to each other have shorter distance than the length of any
l-long edge. Hence, Gl1 also has ql l-long edges. Since we have chosen a coloring according
to Lemma 15, Gl2 has at least 1

4ql edges. By the k-optimality and Lemma 26, Gl2 has girth
at least 2k and thus at most ex(|V (Gl2)|, 2k) ≤ ex(4(k − 1)d(4k−4

4k−5)le, 2k) edges. Therefore,
ql ≤ 4 ex(4(k − 1)d(4k−4

4k−5)le, 2k). This leads to a bound on the length of T . J

This is also a bound on the approximation ratio since the length of the optimal tour is 1.
With certain assumptions about the growth of ex(n, 2k), we obtain the main result:

I Theorem 28. If ex(x, 2k) ∈ O(xc) for some c > 1, the approximation ratio of the k-Opt
algorithm is O(n1− 1

c).

By a rather technical calculation comparing the upper and lower bound, we get:

I Theorem 29. The upper bound from Corollary 27 for the approximation ratio of k-Opt is
tight up to a factor of O(log(n)).

References
1 Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound for irregular graphs. Graphs

and Combinatorics, 18(1):53–57, March 2002. doi:10.1007/s003730200002.
2 Clark T. Benson. Minimal regular graphs of girths eight and twelve. Canadian Journal of

Mathematics, 18:1091–1094, 1966. doi:10.4153/CJM-1966-109-8.
3 Jon J. Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal on

computing, 4(4):387–411, 1992. doi:10.1287/ijoc.4.4.387.
4 William G. Brown. On graphs that do not contain a thomsen graph. Canadian Mathematical

Bulletin, 9(3):281–285, 1966.

https://doi.org/10.1007/s003730200002
https://doi.org/10.4153/CJM-1966-109-8
https://doi.org/10.1287/ijoc.4.4.387

X. Zhong 83:13

5 Barun Chandra, Howard Karloff, and Craig Tovey. New results on the old k-opt algorithm
for the traveling salesman problem. SIAM Journal on Computing, 28(6):1998–2029, 1999.
doi:10.1137/S0097539793251244.

6 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group,
1976.

7 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and probabilistic analysis
of the 2-opt algorithm for the TSP. Algorithmica, 68(1):190–264, January 2014. doi:10.1007/
s00453-013-9801-4.

8 Paul Erdős and Alfréd Rényi. On a problem of graph theory. Magyar Tudományos Akadémia
Math. Kuató Int. Közl., 7:623–641, 1962.

9 Paul Erdős, Alfréd Rényi, and Vera T. Sós. On a problem of graph theory. Studia Scientiarum
Mathematicarum Hungarica, 1:215–235, 1966.

10 Paul Erdős. Extremal problems in graph theory. In Proc. Symp. Theory of Graphs and its
Applications, pages 29–36, 1963.

11 Jacob Fox and Benny Sudakov. Decompositions into subgraphs of small diameter. Combinat-
orics, Probability and Computing, 19(5-6):753–774, 2010. doi:10.1017/S0963548310000040.

12 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

13 Stefan Hougardy, Fabian Zaiser, and Xianghui Zhong. The approximation ratio of the 2-opt
heuristic for the metric traveling salesman problem. Operations Research Letters, 48(4):401–404,
2020. doi:10.1016/j.orl.2020.05.007.

14 David S. Johnson. Local optimization and the traveling salesman problem. In International
colloquium on automata, languages, and programming, pages 446–461. Springer, 1990. doi:
10.1007/BFb0032050.

15 Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972. doi:10.1007/978-3-540-68279-0_8.

16 Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms. Springer
Publishing Company, Incorporated, 4th edition, 2007. doi:10.1007/978-3-642-24488-9.

17 Marvin Künnemann and Bodo Manthey. Towards understanding the smoothed approximation
ratio of the 2-opt heuristic. In International Colloquium on Automata, Languages, and
Programming, pages 859–871. Springer, 2015. doi:10.1007/978-3-662-47672-7_70.

18 Felix Lazebnik, Vasiliy A. Ustimenko, and Andrew J. Woldar. A new series of dense graphs of
high girth. Bulletin of the American mathematical society, 32(1):73–79, 1995. doi:10.1090/
S0273-0979-1995-00569-0.

19 Asaf Levin and Uri Yovel. Nonoblivious 2-opt heuristics for the traveling salesman problem.
Networks, 62(3):201–219, 2013. doi:10.1002/net.21512.

20 Shen Lin and Brian W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations research, 21(2):498–516, 1973. doi:10.1287/opre.21.2.498.

21 Ján Plesník. Bad examples of the metric traveling salesman problem for the 2-change heuristic.
Acta Mathematica Universitatis Comenianae, 55:203–207, 1986.

22 Gerhard Reinelt. The traveling salesman: computational solutions for TSP applications.
Springer-Verlag, 1994. doi:10.1007/3-540-48661-5.

23 Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several
heuristics for the traveling salesman problem. SIAM journal on computing, 6(3):563–581, 1977.
doi:10.1007/978-1-4020-9688-4_3.

24 A. I. Serdjukov. Some extremal bypasses in graphs [in Russian]. Upravlyaemye Sistemy,
17:76–79, 1978.

25 Robert Singleton. On minimal graphs of maximum even girth. Journal of Combinatorial
Theory, 1(3):306–332, 1966. doi:10.1016/S0021-9800(66)80054-6.

26 Rephael Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. J. Comb. Theory, Ser. B,
52(1):113–116, 1991. doi:10.1016/0095-8956(91)90097-4.

27 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

ESA 2020

https://doi.org/10.1137/S0097539793251244
https://doi.org/10.1007/s00453-013-9801-4
https://doi.org/10.1007/s00453-013-9801-4
https://doi.org/10.1017/S0963548310000040
https://doi.org/10.1016/j.orl.2020.05.007
https://doi.org/10.1007/BFb0032050
https://doi.org/10.1007/BFb0032050
https://doi.org/10.1007/978-3-540-68279-0_8
https://doi.org/10.1007/978-3-642-24488-9
https://doi.org/10.1007/978-3-662-47672-7_70
https://doi.org/10.1090/S0273-0979-1995-00569-0
https://doi.org/10.1090/S0273-0979-1995-00569-0
https://doi.org/10.1002/net.21512
https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1007/3-540-48661-5
https://doi.org/10.1007/978-1-4020-9688-4_3
https://doi.org/10.1016/S0021-9800(66)80054-6
https://doi.org/10.1016/0095-8956(91)90097-4

	p000-Frontmatter
	Preface
	Program Committees
	List of External Reviewers

	p001-Abu-Affash
	Introduction
	Hardness Proof
	Approximation Algorithm

	p002-Acar
	Introduction
	Preliminaries
	Parallel Models
	Parallel Primitives

	Dynamization Framework
	Round-synchronous algorithms
	Change propagation
	Correctness
	Cost analysis

	Dynamizing Tree Contraction
	Analysis
	Analysis of construction
	Analysis of dynamic updates

	Parallel Rake-compress Trees
	Building and maintaining RC trees
	Applications

	Conclusion

	p003-Afshar
	Introduction
	Related Work

	Preliminaries
	Reconstructing Biological Phylogenetic Trees in Parallel
	Algorithm
	Analysis

	Reconstructing Phylogenetic Trees from Path Queries
	Algorithms
	Analysis
	Lower Bound

	Experiments
	Reconstructing Biological Phylogenetic Trees
	Reconstructing Phylogenetic Trees from Path Queries

	p004-Ahmed
	Introduction
	Related work
	Our contributions

	Preliminaries
	Kruskal- and Prim-based approximations for the ST problem
	Review of the QoSMT algorithm of Charikar et al.

	Kruskal-based MLST algorithms
	Tightness
	Running Time

	Prim-based MLST algorithm
	Integer linear programming (ILP) formulation
	Experiments
	Experiment Parameters
	Results
	Graphs for which KruskalMLST always outperforms C_{2a}

	Conclusion
	Proof of Theorem 6
	Additional Experimental Results
	Graph Generator Parameters
	Computing Environment
	Experimental Setup
	Approximation Ratio vs. Parameters – Proportional edge costs
	Approximation Ratio vs. Parameters – Non-Proportional Edge Costs
	Approximation Ratio vs. Parameters – SteinLib Instances
	Runtime vs. Parameters – Proportional Edge Costs
	Runtime vs. Parameters – Non-Proportional Edge Costs

	ILP Solver

	p005-Amir
	Introduction
	Preliminaries
	A universal Error Bound Does not Allow Recovery
	Results
	k-Type Upper Error Bounds
	Tighter Bounds for 2log_3 n Candidates
	Lower bound on the Hamming distance between strings
	Groundwork
	Co-prime proof
	Non-divisible proof

	Candidates for periods
	Proof for alien strings
	Proof for similar strings

	The Number of Candidates

	The Error Upper Bounds Hierarchy
	Conclusions and Open Problems

	p006-Angriman
	Introduction
	Preliminaries
	Problem Description and Notation
	Related Work

	Approximation Algorithm
	Overview
	Effective Resistance Approximation by UST Sampling
	Algorithm Analysis
	Generalizations

	Engineering Aspects and Parallelization
	Experiments
	Settings
	Running Time and Quality
	Parallel Scalability
	Scalability to Large Networks

	Conclusions
	Algorithmic Details and Omitted Proofs
	Our Approximation Algorithm in More Detail
	Aggregation algorithm
	Parallelism

	Wilson's UST Algorithm
	Proof of Lemma 2
	Proof of Theorem 3
	Proof of Lemma 6

	Kirchhoff Index and Related Centralities
	Description
	Related Work
	Kirchhoff Index and Edge Centralities

	Detailed Engineering Aspects
	UST Generation, Pivot Selection, and the Linear System
	Parallel Implementation

	p007-Arkin
	Introduction
	Hardness in Polygons with Holes
	Decomposition Algorithms for Simple Polygons
	Min-LaserArea
	Bi-Criteria Approximation for Diameter
	O(1)-Approximation for MinDiameter in Simple Polygons

	Axis-Parallel Lasers
	Reduction to Histograms
	O(1)-Approximation for Min-LaserDiameter in Histograms
	Discretization of the Solution Space in a Histogram Polygon
	O(1)-Approximation for Min-LaserArea

	Diameter Measure in Polygons with Holes and Axis-Parallel Lasers
	Bi-Criteria Approximation for Diameter
	O(1)-Approximation to MinDiameter

	O(logOPT)-approximation for Min-LaserCircle

	p008-Azar
	Introduction
	Our Results
	Our Techniques
	Other Related Work

	Preliminaries
	The Non-Clairvoyant Algorithm for Fractional SCD
	Charging Buying Cost to Delay
	Charging Delay to Optimum
	Linear Programming Formulation
	Charging Delay to Optimum via Dual Fitting

	Randomized Algorithm for SCD by Rounding
	Lower Bounds for Clairvoyant SCD
	 Analysis of Lower Bounds
	 Reduction to Unweighted

	Vertex Cover with Delay

	p009-Bandyapadhyay
	Introduction
	Our Results and Techniques
	Related Work
	Paper Outline

	Preliminaries
	Overview of the Algorithm of [Bandyapadhyay et al., 2019]
	The Modified Algorithm for MMCC
	Rounding the First Auxilliary LP
	Analysis

	Rounding the Second Auxilliary LP
	Combining the Two LP solutions

	Uniform Capacitated Case
	Conclusion

	p010-Bar-Noy
	Introduction
	Preliminaries
	Realizations on Acyclic graphs
	Constructive Algorithm
	Tightness Criterion

	Realizations in General graphs
	Sequences admitting Disjoint-Leader-Follower Sets

	MinND realization of tri-sequences in General Graphs

	p011-Barman
	Introduction
	Notation and Preliminaries
	An 8n-Approximation for Nash Social Welfare
	Proof of Theorem 2

	An 8n-Approximation for p-Mean Welfare
	Lower Bound on Approximating p-Mean Welfare
	(m-n+1)-Approximation Guarantees

	p012-Baswana
	Introduction
	Our Contribution
	On reporting the value of mincut

	Overview of our results
	Related work
	Organization of the paper

	Preliminaries
	The nearest and the farthest mincuts

	A compact data structure for all nearest mincuts to vertex s
	A compact data structure for all farthest mincuts to vertex s
	A DAG of size O(|S|²)
	Bounding the in-degree of D^(t) by 2

	Single source mincut sensitivity for insertion of an edge
	All-pairs mincut sensitivity data structure for insertion of an edge

	p013-Beisegel
	Introduction
	Preliminaries
	Search Orderings and Trees of LexDFS
	LexDFS on Chordal Graphs
	Conclusion

	p014-Belmonte
	Introduction
	Known problems which are W-hard for treewidth and for pathwidth

	Definitions and Preliminaries
	W[1]-Hardness for Treewidth
	FPT for pathwidth
	NP-hardness for Constant Clique-width
	FPT for modular-width

	p015-Bentley
	Introduction and Related Work
	Related Work

	Problem Definitions and Our Results
	Preliminaries: L-reductions
	Hardness of Alphabet Ordering
	Reduction Phase 1
	Reduction Phase 2
	Proof of Corollary 3

	Constrained Alphabet Ordering
	Reducing to a Simpler Problem
	Solving the Tuple Ordering Problem in Linear Time
	An Example of the Effectiveness of CAO

	p016-Berenbrink
	Introduction
	Formal Model Definition
	Our Contributions
	Related Work

	Sequential Simulation
	Dynamic Alias Tables
	Batch Processing
	Merging Batches
	Heuristics and Implementation Details
	Sampling the Length of a Collision-Free Run
	Heuristics
	Dynamic Epoch Lengths

	Experimental Evaluation
	Conclusions and Open Problems

	p017-Bertschinger
	Introduction
	Proof of Theorem 1.1
	Tail Bounds
	A simultaneous-recoloring variant of the algorithm

	p018-Bhattacharya
	Introduction
	Lower Bound for Greedy k-means++
	Analysis of Noisy k-means++ Seeding

	p019-Bhore
	Introduction
	Model and Notation
	Dynamic MIS with Sub-Logarithmic Update Time
	Approximation Algorithms for Dynamic Maximum Independent Set
	4-Approximation Algorithm with Constant Update Time
	2(1+1/k)-Approximation Algorithm with O(k) Update Time
	2-Approximation Algorithm with O(omega log n) Update Time

	Experiments
	Experimental Setup
	Experimental Results
	Discussion

	Conclusions

	p020-Blum
	Introduction
	Related Work
	Contribution

	Preliminaries
	Strong and Weak Contraction Hierarchies
	Balanced Separators

	Bounds and Algorithms for Search Space Sizes in Weak CH
	Maximum versus Average Search Space Size
	Balanced Separators and Average Search Space Size
	An Approximation Algorithm for the Average Search Space Size

	Relation to Road Network Dimensions
	Highway Dimension Lower Bound
	General Incomparability

	Lower Bounds for Strong CH
	HittingSet Lower Bound
	Hierarchical Lower Bound

	Conclusions and Future Work

	p021-Blasius
	Introduction
	Model and Main Theorem
	Preliminaries and Notation
	The Chernoff–Hoeffding Theorem
	Distinct Sets and Minimality
	Proof of the Main Theorem
	The Lower Bound
	The Upper Bound

	Conclusion

	p022-Bok
	Introduction
	A General Polynomial Result
	Acyclic Colouring
	Star Colouring
	Injective Colouring
	Conclusions

	p023-Bonnet
	Introduction
	Constructive Erdos-Hajnal and the substitution operation
	Better approximation ratios
	Adding a universal vertex
	Locally easy graphs
	Local Search for K_{t,t}-free graphs

	Graphs without short cycles
	Triangle-free graphs
	Graphs with higher girth
	Strengthening the inapproximability

	Concluding remarks

	p024-Bousquet
	Introduction
	Spanning trees with few leaves
	The Reduction
	Reconfiguration hardness

	Spanning tree with many leaves
	Hardness results
	Two internal nodes and cographs
	Interval graphs

	p025-Bringmann
	Introduction
	Preliminaries
	Our Approach: Lipschitz meets Fréchet
	View I: Arrangement-based Algorithms
	View II: A Global Lipschitz Optimization problem

	Contribution I: An Exact Decider by Combining Both Views
	Contribution II: Computation of the Distance Value
	Experiments
	Conclusion

	p026-Brooksbank
	Introduction
	Motivation and related works
	Average-case algorithms for GI and AltMatSplso
	A simplified algorithm and its implementation

	Preliminaries
	Random models and average-case properties
	Average-case algorithms for AltMatSplso
	The simplified main algorithm
	Magma implementation of Algorithm 1
	The main algorithm and proof of Theorem 1

	p027-Buchin
	Introduction
	Preliminaries
	Reliable spanners in one dimension
	Construction
	Analysis
	Probabilistic bound

	Reliable spanners in higher dimensions
	Construction
	Analysis
	Probabilistic bound

	Conclusions

	p028-Chalermsook
	Introduction
	Our Contribution

	Overview of Techniques
	Interval geometry for BST & Extended Inversion
	Our potential function and its basic properties
	Overview of our proofs
	The First Showcase: Splay's Ziz-zig
	Geometric Inversion for Geometric BST Algorithms
	The Second Showcase: Greedy
	MTR-Competitiveness

	p029-Chan
	Introduction
	Preliminaries
	O~(t^{4/3}) Algorithm
	O(u^2log u+t) Algorithm
	All-Capacities Unbounded Knapsack
	O~(u) Algorithm for Single-Target Change-Making
	O~(nu) Algorithm for Single-Capacity Unbounded Knapsack
	Minimum Word Break
	Concluding Remarks

	p030-Chandrasekaran
	Introduction
	Related work
	Our contributions
	Inapproximability results
	Algorithmic results

	Proof techniques
	Inapproximability results
	Algorithmic results

	Preliminaries

	A 2^{k}poly(n) time algorithm for k-BinaryTree
	Hardness results for DAGs
	Self-improvability for directed graphs
	APX-hardness for DAGs

	Conclusion and Open Problems

	p031-Charalampopoulos
	Introduction
	Preliminaries
	Fully Dynamic Single Source Shortest Paths
	A Dynamic Closest Facility Data Structure

	Fully Dynamic Strongly Connected Components
	Omitted Proofs
	Empty Voronoi Cells
	Negative Edges in the Fully Dynamic SSSP Algorithm

	p032-Charalampopoulos
	Introduction
	Preliminaries
	Improved Upper Bound for 2D-Runs
	Upper Bound on the Number of Distinct Quartics
	Algorithms for Computing Quartics
	Final Remarks
	Alternative Algorithm for the Proof of Lemma 21

	p033-Chen
	Introduction
	Preliminaries
	4-block n-fold IP
	3-block n-fold IP
	Decomposition into lattice elements with bounded l_{infinity}-norm
	A sign-compatible decomposition

	4-block n-fold IP reduces to 3-block n-fold IP
	Algorithms
	Conclusion

	p034-Chiu
	Introduction
	Mapping a weak CDR into a pointset
	Auxiliary function
	Transforming the tree into a pointset

	Bichromatic discrepancy
	Lower bound for two dimensional weak CDRs
	Lower bound for CDRs in high dimensions
	Final remarks

	p035-Chudnovsky
	Introduction
	Preliminaries
	Monitors in P_6-free graphs
	Branching
	Corollaries for subclasses of P_6-free graphs
	Open problems

	p036-Czerner
	Introduction
	Further Work
	Preliminaries

	Overview
	The Decomposition Tree
	Constructing Transformation Schemes

	Detailed Analysis
	Constructing a mixing CTS
	Constructing an Unmixing CTS
	Combining the Results

	p037-Deng
	Introduction
	Our Results
	Other Related Work

	A Constant Approximation for Dynamic Ordered k-Median
	Flow-based Rounding of LP Solution
	From Rectangular to General Cases

	Approximating Dynamic k-Supplier
	A 3-Approximation for Dynamic k-Supplier, T = 2
	The Hardness of Approximating Dynamic k-Supplier, T > = 3
	A Bi-criteria Approximation for Dynamic k-Supplier with Outliers

	Future Directions

	p038-Ding
	Introduction
	Our Contributions
	Related Work

	Definitions and Preliminaries
	A More Careful Analysis for Core-set Construction in [Badoiu and Clarkson, 2003]

	Two Key Lemmas for Handling Outliers
	Proof of Lemma 6
	Proof of Lemma 7

	Sub-linear Time Algorithm of MEB with Outliers
	A Linear Time Algorithm
	Improvement on Running Time

	The Extension: MEX with Outliers
	Appendix
	The Lower Bound of Sample Size for MEB with Outliers
	Proof of Theorem 4

	p039-Dinklage
	Introduction and Related Work
	Preliminaries
	Karp–Rabin Fingerprints
	Static Successor Data Structures

	LCE Data Structures
	In-Place Fingerprinting
	String Synchronizing Sets

	Implementation
	A Simple but Fast Static Successor Data Structure
	Naive LCE Queries
	In-Place Fingerprinting
	String Synchronizing Sets

	Experimental Evaluation
	Construction and Space Usage
	Query Times

	Conclusions
	Detailed Results for Predecessor Queries

	p040-Dreier
	Introduction
	Average Case Complexity
	Previous Work

	Our Results
	Power-Law-Boundedness
	Model Checking
	Structure

	Techniques and Outline
	Missing Proofs

	Notations and Definitions
	Graph Notation
	Probabilities and Random Graph Models
	Sparsity
	First-Order Logic
	Model-Checking

	Structure Theorem for Power-Law-Bounded Random Graph Models
	Protrusion Decompositions of Neighborhoods
	Compressing Neighborhoods
	Model-Checking
	Implications for Various Graph Models
	Preferential Attachment Model
	Chung–Lu Model
	Erdos–Rényi Model

	Conclusion

	p041-Eberle
	Introduction
	The blocking algorithm
	Completing all admitted jobs on time
	Admitting sufficiently many jobs
	Key lemma on the size of non-admitted jobs
	Admitting sufficiently many jobs

	p042-Eiben
	Introduction
	Preliminaries
	Structure of Line Graphs
	Level Structure of Instances

	Bounding the Distance from S
	Finishing the Proof
	Concluding Remarks

	p043-Eisenbrand
	Introduction
	Covering balls with boxes
	Approximate CVP_{p} for p > = 2
	List sieve
	Approximation to CVP_p and SVP_{p} for p in [2,infinity]

	Approximate CVP_{p} for p in [1,2)
	Proof of Lemma 7

	p044-Fairstein
	Introduction
	Our Results
	Tools and Techniques

	Preliminaries
	The Approximation Algorithm
	Structuring the Instance
	Solving a Continuous Relaxation and Rounding
	The Block-Constraint Problem
	An Algorithm for delta-restricted SMKP

	Discussion
	Basic Properties of Submodular Functions
	Chernoff Bounds

	p045-Fan
	Introduction
	 Preliminaries
	The Expected Complexity of Random Semi Voronoi Diagrams
	The probability of covering the plane
	A simple near linear bound
	An optimal linear bound

	The Expected Complexity of Multiplicative Voronoi Diagrams
	Sampling from a small set of weights
	Sampling site locations with bounded weights
	Sampling sites locations in general

	Claim Proof
	Complexity Sketch

	p046-Feldmann
	Introduction
	Our results
	Related work
	Our techniques
	Outline

	Preliminaries
	Decomposing the graph
	The algorithm
	Approximating the distances
	The dynamic program (proof of Lemma 20)

	Hardness for graphs of highway dimension 1

	p047-Flores-Velazco
	Introduction
	Coreset Characterization
	Approximation-Sensitive Condensation
	Guarantees on Classification Accuracy

	Coreset Computation
	Hardness Results
	A Practical Algorithm
	Subquadratic Algorithm

	Experimental Evaluation

	p048-Fomin
	Introduction
	Preliminaries
	Sorting by reversals
	Tutte decomposition and 2-isomorphisms
	Kernelization for Whitney Switches
	Conclusion

	p049-Fomin
	Introduction
	Preliminaries
	Subexponential algorithms for induced d-colorable subgraphs
	Beyond induced d-colorable subgraphs
	Kernelization on Chordal-ke
	Conclusion

	p050-Fomin
	Introduction
	Preliminaries
	The enumeration algorithms for (min-rank,{C})-Graph Recovery and (min-weight,{C})-Graph Recovery
	Reducing enumeration to decision
	Decision algorithms for Extended (min- rank,{C})-Graph Recovery
	Recovering simple graphs
	Recovering acyclic graphs
	Recovering Graphs of Fixed Arboricity
	Recovering connected graphs

	Decision algorithms for Extended (min-weight,{C})-Graph Recovery
	NP-completeness of (min- rank,{C})-Graph Recovery

	Concluding remarks and future work

	p051-Fomin
	Introduction
	Problem definition and preliminaries
	Modifications on graphs
	Gaifman's theorem
	Equivalent formulations

	The algorithm
	Two main lemmata
	Sketch of the proof of Lemma 6
	Extension on graphs of bounded genus

	Further research directions

	p052-Friggstad
	Introduction
	Our contributions
	Related Work

	An O(1)-Approximation in Quasi-Polynomial Time
	Bounding the Latency of P^{v*, l*}

	Bounding the Integrality Gap of (LP-ATSPP_rho
	Constructing the Path
	Bounding z_s-z_t: Proof of Lemma 15
	A Bad Example for LP-ATSPP_rho

	An Improved Integrality Gap Bound for (LP-ATSPP_rho in Regret Metrics
	Reduction to Instances with Polynomially-Bounded Integer Distances

	p053-Forster
	Introduction
	New Area Upper Bounds for RAC Drawings
	An Area Lower Bound for RAC_3 Drawings
	Open Questions

	p054-Gao
	Introduction
	Preliminaries
	Fast Construction of {{#1}} {rank'} Query Structures
	Fast Construction of Data Structures for Ball Inheritance
	Optimal Orthogonal Range Reporting with Fast Preprocessing
	Orthogonal Range Reporting in a Small Grid
	Orthogonal Range Reporting in a Narrow Grid
	Orthogonal Range Reporting in an n x n Grid

	Optimal Orthogonal Range Successor with Fast Preprocessing
	Applications

	p055-Garg
	Introduction
	Preliminaries
	Half-integrality of the GW-dual for proper functions
	The WGMV algorithm
	Duals constructed by WGMV are not half-integral

	A stronger analysis of the WGMV algorithm
	Modifying WGMV
	Computing half-integral flow in Seymour graphs

	p056-Held
	Introduction
	Our Contribution
	Preliminaries
	Offset Circles
	A Simple Event-Based Construction Scheme
	Reducing the Number of Collisions Computed
	Extensions
	Experimental Evaluation
	Conclusion

	p057-Henzinger
	Introduction
	Related Work

	Preliminaries
	A Dynamic Coreset
	The Binary-Tree Structure
	Reducing the Number of Nodes

	Lower Bounds
	Space Lower Bound
	Conditional Lower Bounds on the Time Per Operation

	Proof of Lemma 8

	p058-Henzinger
	Introduction
	Preliminaries
	Basic Concepts
	Related Work

	Algorithms
	Random Walk-based Algorithms
	Random Walks For Augmenting Paths
	Analysis

	Blossom-based (Optimum) Algorithms
	Baswana, Gupta and Sen Algorithm
	Neiman and Solomon Algorithm

	Experimental Evaluation
	Random Walk and Blossom-based Algorithms
	Comparison of Algorithms

	Conclusion
	Instances

	p059-Henzinger
	Introduction
	Basic Concepts
	Algorithm Description
	Edge Contraction
	Connectivity-based Contraction
	Local Contraction Criteria
	Vertices with one Neighbor

	Finding all Minimum Cuts
	Edge Selection
	Degree-two Reductions

	Putting it all together
	Shared-Memory Parallelism

	Applications
	Experiments and Results
	Edge Selection
	Optimization
	Shared-memory Parallelism

	Conclusion
	Graph Instances

	p060-Hols
	Introduction
	Preliminaries
	Approximate Turing kernels for specific problems
	Vertex Cover
	Edge Clique Cover
	Edge-Disjoint Triangle Packing
	Connected Vertex Cover

	Meta result
	Consequences

	Conclusion

	p061-Hoppenworth
	Introduction
	Related Work

	Hardness for -Median-Edit-Distance
	Technical Overview
	Coordinate level reduction
	Vector level reduction
	Set level reduction
	Proof of Proof of Lemma 14
	Proof of Lemma 15

	Reduction from -Median-Edit-Distance to -Center-Edit-Distance
	Discussion

	p062-Inamdar
	Introduction
	Capacitated Clustering
	Our Results and Techniques

	Sum of Radii with a Matroid Constraint
	Uniform Capacitated Sum of Radii
	Conclusion

	p063-Jansen
	Introduction
	Preliminaries
	Types of constraints
	Closures of constraint languages
	Constraint implementations
	Parameterized complexity

	Characteristic polynomials
	Reductions between constraint systems
	Consequences for compression
	Consequences for exponential-time algorithms
	Conclusions and open problems

	p064-Kante
	Introduction
	Preliminaries and definitions
	Basic concepts
	Integer sequences
	Boundaried sequences
	Operations on B-boundaried sequences
	Projection of B-boundaried sequences
	Insertion into a B-boundaried sequence

	Computing the connected pathwidth
	Encoding a connected path-decomposition
	Forget Routine
	Insertion Routine
	The dynamic programming algorithm

	p065-Koana
	Introduction
	Preliminaries
	On Ramsey Numbers of c-Closed Graphs
	(Threshold) Dominating Set
	Polynomial Kernel in c-closed Graphs

	Induced Matching
	Ramsey-like Bounds for Induced Matchings
	Polynomial Kernel in c-closed Graphs

	Irredundant Set
	Conclusion

	p066-Kowalik
	Introduction
	Related work
	Our results

	Preliminaries
	Reduction to small demands
	The small costs case in time {{O*}}(2^nD)
	Unweighted decision version with small degree demands
	Finding the solution
	Proof of Theorem 1.1

	The general case
	Polynomial space
	Our algorithm
	The flow
	Correctness
	Running time

	(1+epsilon)-approximation
	Further Research

	p067-Le
	Introduction
	Our Contribution
	Proof Overview

	Preliminaries
	Steiner Spanners on the Plane
	A Linear Time Construction
	 Steiner Spanners in High Dimension
	Spanner construction at level i
	Bounding the stretch
	Bounding w(E_{sp})
	Constructing a Charging Cover Tree

	p068-Lecomte
	Introduction
	Preliminaries
	The Funnel bound dominates the Alternation bound
	Upper-bounding the Alternation bound by a sum of two Funnel bounds
	Characterizing the Funnel bound using z-rectangles

	Separation between the Alternation bound and the Funnel bound

	p069-Li
	Notation
	Introduction
	Our Results

	Hardness Result
	Linear Discrepancy

	Algorithms for Linear Discrepancy
	Linear Discrepancy of a Row Matrix
	One Row Linear Discrepancy Rounding

	Constant Rows with Bounded Matrix Entries
	Poly-time Approximation Algorithm

	Open Problems
	Appendix
	Bit Complexity of Linear Discrepancy
	Largest Empty Ball Problem

	p070-Manghiuc
	Introduction
	Our techniques
	Other related work

	A fast SDP solver
	The MWU algorithm
	The oracle
	Proof of Theorem 2

	Algorithm for subgraph sparsification
	Overview of our algorithm
	Description of our algorithm
	Proof sketch of Theorem 9

	Proof of the main theorem

	p071-Marx
	Introduction
	Preliminaries
	Part 1: Treewidth reduction (almost)
	Part 2: Special Hole Packing
	A difficult situation

	p072-Marx
	Introduction
	Preliminaries
	Churning
	Regular graphs
	Small graphs
	Cliques and empty graphs
	Cliques/empty graphs plus small graphs
	Near-empty graphs

	Reductions
	Reductions based on Construction 1
	Reductions based on Construction 2
	Reductions based on Construction 3
	Other reductions

	Incompressibility results for the graphs in A and B
	Incompressibility results for the restricted problems
	Using enforcers to reduce to the unrestricted problems
	Further tricky reductions

	p073-Nutov
	Introduction
	General graphs
	Unit disk graphs

	p074-Okrasa
	Introduction
	Algorithm for bipartite target graphs
	Decomposition of bipartite graphs
	Solving LHom(H) for bipartite targets

	Hardness for bipartite target graphs
	Hardness reduction

	Algorithm for general target graphs
	Associated instances and clean homomorphisms
	Decompositions of generals target graphs
	Solving LHom(H) for general target graphs

	Conclusion
	Special cases: reflexive and irreflexive graphs
	Generalized algorithm
	Further research directions

	p075-Osang
	Introduction
	Preliminaries
	Algorithm
	Lattice preprocessing
	Phase 1
	Transition
	Phase 2

	Experimental results
	Discussion
	Generalization to weighted points
	Detailed proof of Lemma 4

	p076-Panagiotas
	Introduction
	Background and notation
	Two heuristics
	2outMC: Monte Carlo on 2-out graphs
	Description of the algorithm
	Conversion to an efficient general heuristic

	TruncRW: Truncated random walk with nonuniform sampling
	Description of the algorithm for regular bipartite graphs
	Conversion to an efficient general heuristic

	Experiments
	Investigation of perfect matchings in 2-out graphs
	On synthetic graphs
	On real-life graphs

	Conclusions
	Other heuristics for bipartite matching and recent work
	Further comments on 2outMC
	Heuristic 1: Delayed tree vertex selection during Line 5
	Heuristic 2: Online creation of the RG multigraph
	Comparison with 2outMC

	Further comments on TruncRW
	Engineering TruncRW

	Reducing bipartite graph matching to matching on 2-out graphs

	p077-Radoszewski
	Introduction
	Preliminaries
	Computing ps-covers
	Computing b-covers
	Reduction for non-4-periodic Y
	Reduction for 4-periodic Y
	Solution to Positioned Cover problem

	Computation of 2-covers and lambda-covers
	Conclusions and open problems
	Supplementary Figure

	p078-Raman
	Introduction
	Preliminaries
	Our Results
	LP Rounding with bounded deficits
	Set Multicover with bounded demands
	Points and Non-Piercing regions
	Pseudodisks and Points

	–Approximation Algorithms
	Conclusion

	p079-Ren
	Introduction
	Our Results
	Notation

	Constructing a DSO in O~(n^{2.7233}M~2) Time
	Case I: r is Small
	An Observation
	Case II: r is Large
	Putting it Together

	Open Questions
	Proof of Observation 4 and Observation 1
	The Preprocessing Algorithm
	The Query Algorithm
	Computing (Data b)

	p080-Schepper
	Introduction
	Preliminaries
	Upper Bounds
	Patterns of Type +|o| and |o|
	Patterns of Type +|o+ and |o+

	Lower Bounds for Pattern Matching
	Proof of Lemma 4.2
	Encoding the Formula
	Final Reduction

	Lower Bounds for Membership
	Reducing Pattern Matching to Membership
	Patterns of Type |+|o

	FSH implies FPH
	Correctness of the Graph Construction for +|o+-Membership

	p081-Strasser
	Introduction
	Preliminaries
	Algorithms
	Shortcut Data Structure
	Preprocessing
	Queries

	Experiments
	Conclusion and future work

	p082-Zhang
	Introduction
	Our Contributions
	Current Landscape of the Problem
	The Logarithmic Barrier for Subadditive Agents
	A Sublogarithmic Prophet Inequality for Subadditive Agents
	Generalizing to Approximate Subadditivity

	Technical Overview
	Additional Related Work

	Preliminaries
	Combinatorial Valuations
	Problem Formulation
	Oracle Access to Valuation Functions
	The Welfare Maximizing LP

	The Framework
	Warmup: the Case of Fractionally Subadditive Agents
	The Case of Subadditive Agents
	Generalizing to Approximately Subadditive Agents

	p083-Zhong
	Introduction
	Preliminaries
	TSP
	k-Opt and Lin-Kernighan Algorithm

	Girth and Ex

	Outline of the Analysis
	Outline of Lower Bound for Metric TSP
	Outline of Upper Bound for Metric TSP
	Outline of Lower Bound for Graph TSP
	Outline of Upper Bound for Graph TSP

	Upper Bound for Metric TSP

