Kernelization of Whitney Switches
Fedor V. Fomin

Department of Informatics, University of Bergen, Norway
Fedor.Fomin@uib.no

Petr A. Golovach

Department of Informatics, University of Bergen, Norway
Petr.Golovach@uib.no

—— Abstract

A fundamental theorem of Whitney from 1933 asserts that 2-connected graphs G and H are 2-
isomorphic, or equivalently, their cycle matroids are isomorphic, if and only if G can be transformed
into H by a series of operations called Whitney switches. In this paper we consider the quantitative
question arising from Whitney’s theorem: Given 2-isomorphic graphs, can we transform one into
another by applying at most k& Whitney switches? This problem is already NP-complete for cycles,
and we investigate its parameterized complexity. We show that the problem admits a kernel of size
O(k), and thus, is fixed-parameter tractable when parameterized by k.
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1 Introduction

A fundamental result of Whitney from 1933 [35], asserts that every 2-connected graph is
completely characterized, up to a series of Whitney switches (also known as 2-switches), by
its edge set and cycles. This theorem is one of the cornerstones of Matroid Theory, since
it provides an exact characterization of two graphs having isomorphic cycle matroids [32].
In graph drawing and graph embeddings, this theorem (applied to dual graphs) is used to
characterize all drawings of a planar graph [8].

A Whitney switch is an operation, that from a 2-connected graph G, constructs graph
G’ as follows. Let {u,v} be two vertices of G, whose removal separates G into two disjoint
subgraphs G; and G5. The graph G’ is obtained by flipping the neighbors of u and v in the
set of vertices of G3. In other words, for every vertex w € V(Gs), if w was adjacent to u in
G, in graph G’ edge uw is replaced by vw. Similarly, if w was adjacent to v in G, we replace
vw by uw. See Figure 1 for an example.

If we view the graph G as a graph with labelled edges, then a Whitney switch transforms
G into a graph G’ with the same set of labelled edges, however graphs G and G’ are not
necessarily isomorphic. On the other hand, graphs G and G’ have the same set of cycles
in the following sense: a set of (labelled) edges forms a cycle in G if and only if it forms a
cycle in G’. (In other words, the cycle matroids of G and G’ are isomorphic.) Whitney’s
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Figure 1 G’ is obtained from G by the Whitney switch with respect to the partition of G — {u, v}
into G; and Go.

theorem claims that the opposite is also true: if there is a cycle-preserving mapping between
graphs G and G’ then one graph can be transformed into another by a sequence of Whitney
switches. To state the theorem of Whitney more precisely, we need to define 2-isomorphisms.

We say that 2-connected graphs G and H are 2-isomorphic if there is a bijection
¢: E(G) — E(H) such that ¢ and ¢! preserve cycles, that is, for every cycle C' of
G, C is mapped to a cycle of H by ¢ and, symmetrically, every cycle of H is mapped to
a cycle of G by p~!. We refer to ¢ as to 2-isomorphism from G to H. An isomorphism
P: V(G) = V(H) is a p-isomorphism if for every edge uwv € E(G), p(uv) = ¢ (u)y(v), and
G and H are ¢-isomorphic if there is an isomorphism G to H that is a p-isomorphism. Let us
note that if G is 3-connected and 2-isomorphic to H under ¢ then G and H are p-isomorphic
[29, Lemma 1]. But for 2-connected graphs this is not true. For example, the graphs in
Fig. 1 are not isomorphic but are 2-isomorphic. Moreover, even isomorphic graphs with
2-isomorphism ¢ not always have a -isomorphism. For example, for the 2-isomorphism ¢ in
Fig. 2 mapping a cycle G into another cycle H (we view these cycles as labelled graphs),
there is no ¢-isomorphism. (For every @-isomorphism edges ¢(a) and ¢(b) should have an
endpoint in common.) On the other hand, graph G’ obtained from G by Whitney switch
(for vertices u and v) is p-isomorphic to H.
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————
o(d)
U g c /
Q
a b
— o
d v

Figure 2 Graph G is not g-isomorphic to H but its Whitney switch G’ is.

» Theorem 1 (Whitney's theorem [35]). If there is a 2-isomorphism ¢ from graph G to graph
H, then G can be transformed by a sequence of Whitney switches to a graph G’ which is
p-isomorphic to H.

However, Whitney’s theorem does not provide an answer to the following question: Given
a 2-isomorphism ¢ from graph G to graph H, what is the minimum number of Whitney
switches required to transform G to a graph p-isomorphic to H? Truemper in [29] proved
that n — 2 switches always suffices, where n is the number of vertices in G. He also proved
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that this upper bound it tight, that is, there are graphs G and H for which n — 2 switches
are necessary. In this paper we study the algorithmic complexity of the following problem
about Whitney switches.
WHITNEY SWITCHES
Input: 2-Isomorphic n-vertex graphs G and H with a 2-isomorphism ¢: E(G) —
E(H), and a nonnegative integer k.

Task: Decide whether it is possible to obtain from G a graph G’ that ¢-isomorphic
to H by at most k Whitney switches.

The departure point for our study is an easy reduction (Theorem 4) from SORTING BY
REVERSALS that establishes NP-completeness of WHITNEY SWITCHES even when input
graphs G and H are cycles. Our main algorithmic result is the following theorem (we
postpone the definition of a kernel till Section 2). Informally, it means that the instance of
the problem can be compressed in polynomial time to an equivalent instance with two graphs
on O(k) vertices. It also implies that WHITNEY SWITCHES is fixed-parameter tractable
parameterized by k.

» Theorem 2. WHITNEY SWITCHES admits a kernel with O(k) vertices and is solvable in
20(k logk) .

nPW time.

While Theorem 2 is not restricted to planar graphs, pipelined with the well-known
connection of planar embeddings and Whitney switches, it can be used to obtain interesting
algorithmic consequences about distance between planar embeddings of a graph. Recall that
graphs G and G* are called abstractly dual if there is a bijection 7: E(G) — E(G*) such
that edge set E C E(G) forms a cycle in G if and only if 7(F) is a minimal edge-cut in G*.
By another classical theorem of Whitney [34], a graph G has a dual graph if and only if G
is planar. Moreover, an embedding of a planar graph into a sphere is uniquely defined by
the planar graph G and edges of the faces, or equivalently, its dual graph G*. While every
3-connected planar graph has a unique embedding into the sphere, a 2-connected graph can
have several non-equivalent embeddings, and hence several non-isomorphic dual graphs. If
G7 and G5 are dual graphs of graph G, then G7 is 2-isomorphic to G5. Then by Theorem 1,
by a sequence of Whitney switches G7 can be transformed into G3, or equivalently, the
embedding of G corresponding to G can be transformed to embedding of G corresponding
to G%. We refer to the survey of Carsten Thomassen [28, Section 2.2] for more details. By
Theorem 2, we have that given two planar embeddings of a (labelled) 2-connected graph G,
deciding whether one embedding can be transformed into another by making use of at most
k Whitney switches, admits a kernel of size O(k) and is fixed-parameter tractable.

Related work. Whitney’s theorem had a strong impact on the development of modern
graph and matroid theories. While the original proof is long, a number of simpler proofs
are known in the literature. In particular, the work of Truemper in [29], whose proof of
Whitney’s theorem is based on applications of Tutte decomposition [30, 31]. This is also the
approach we adapt in our work.

The well-studied problem similar in spirit to WHITNEY SWITCHES is the problem of
computing the flip distance for triangulations of a set of points. The parameterized complexity
of this problem was studied in [10, 23]. As we already have mentioned, WHITNEY SWITCHES
for planar graphs is equivalent to the problem of computing the Whitney switch distance
between planar embeddings. We refer to the survey of Bose and Hurtado [4] for the discussion
of the relations between geometric and graph variants. The problem is known to be NP-
complete [22] and FPT parameterized by the number of flips [19]. For the special case when
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the set of points defines a convex polygon, the problem of computing the flip distance between
triangulations is equivalent to computing the rotation distance between two binary trees.
For that case linear kernels are known [10, 23] but for the general case the existence of a
polynomial kernel is open.

WHITNEY SWITCHES also can be seen as a reconfiguration problem, study of reconfigura-
tion problems is a popular trend in parameterized complexity, see e.g. [24, 21].

Overview of the proof of Theorem 2. The main tool in the construction of the kernel is
the classical Tutte decompositions [30, 31] We postpone the formal definition till Section 2.
Informally, the Tutte decomposition of a 2-connected graph represents the vertex separators
of size two in a tree-like structure. Each node of this tree represents a part of the graph (or
bag) that is either a 3-connected graph or a cycle, and each edge corresponds to a separator of
size two. Then a 2-isomorphism of G and H allows to establish an isomorphism of the trees
representing the Tutte decompositions of the input graphs. After that, potential Whitney
switches can be divided into two types: the switches with respect to separators corresponding
to the edges of the trees and the switches with respect to separators formed by nonadjacent
vertices of a cycle-bag. The switches of the first type are relatively easy to analyze and we
can identify necessary switches of this type. The “troublemakers” that make the problem
hard are switches of the second type. To deal with them, we use the structural results
about sorting of permutations by reversals of Hannenhalli and Pevzner [17] adapted for our
purposes. This allows us to identify a set of vertices of size O(k) that potentially can be used
for Whitney switches transforming G to H. Given such a set of crucial vertices, we simplify
the structure of the input graphs and then reduce their size.

Organization of the paper. In Section 2, we give basic definitions. In Section 3, we discuss
the SORTING BY REVERSALS problem for permutations that is closely related to WHITNEY
SWITCHES. Section 4 contains structural results used by our kernelization algorithm, and
in Section 5, we give the algorithm itself. We conclude in Section 6 by discussing further
directions of research. Due to space constraints, the proofs are either omitted or just sketched.
The details are given in the full version of the paper [15].

2 Preliminaries

Graphs. All graphs considered in this paper are finite undirected graphs without loops or
multiple edges, unless it is specified explicitly that we consider directed graphs (in Section 6
we deal with tournaments). We follow the standard graph theoretic notation and terminology
(see, e.g., [13]). For each of the graph problems considered in this paper, we let n = |[V(G)|
and m = |E(G)| denote the number of vertices and edges, respectively, of the input graph G
if it does not create confusion. A pair (A, B), where A, B C V(G), is a separation of G if
AUB=V(G), A\B#0, B\ A# {0 and G has no edge uv with u € A\ B and v € B\ 4;
|A N B is the order of the separation. If the order is 2, then we say that (A4, B) is a Whitney
separation. A set S C V(G) is a separator of G if there is a separation (A, B) of G with
S=ANBKB.

Whitney switches. It is convenient to define Whitney switches using separations. Let G be
a 2-connected graph. Let also (A4, B) be a Whitney separation of G with ANB = {u,v}. The
Whitney switch operation with respect to (A, B) transforms G as follows: take G[A] and G[B]
and identify the vertex u of G[A] with the vertex v of G[B] and, symmetrically, v of G[A] with
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u of G[B]; if u and v are adjacent in G, then the edges uv of G[A] and G[B] are identified
as well. Let G be the obtained graph. We define the mapping o4 p): E(G) — E(G')
that maps the edges of G[A] and G[B], respectively, to themselves. It is easy to see that
0(a,B) is a 2-isomorphism of G' to G’. Therefore, if ¢ is a 2-isomorphism of G to a graph H,
then @ o a(*Al, B) is a 2-isomorphism of G’ to H. To simplify notation, we assume, if it does
not create confusion, that the sets of edges of G and G’ are identical and we only change
incidences by switching. In particular, under this assumption, we have that ¢ o U(;xl, By = ¥
We also assume that the graphs G and G’ have the same sets of vertices.

Tutte decomposition. Our kernelization algorithm for WHITNEY SWITCHES is based on
the classical result of Tutte [30, 31] about decomposing of 2-connected graphs via separators
of size two. Following Courcelle [11], we define Tutte decompositions in the terms of tree
decompositions.

A tree decomposition of a graph G is a pair T = (T, {X; }+ev (1)), where T is a tree whose
every node ¢ is assigned a vertex subset X; C V(G), called a bag, such that the following
three conditions hold:

(T1) Usev(r) Xt = V(G), that is, every vertex of G is in at least one bag,
(T2) for every uv € E(G), there exists a node ¢ of T such that the bag X; contains both u

and v,

(T3) for every v € V(G), the set T, = {t € V(T) | v € X,}, i.e., the set of nodes whose

corresponding bags contain v, induces a connected subtree of T
To distinguish between the vertices of the decomposition tree T and the vertices of the graph
G, we will refer to the vertices of T as nodes.

Let T = (T,{X:}tev(r)) be a tree decomposition of G. The torso of X; for t € V(T) is
the graph obtained from G[X;] by additionally making adjacent every two distinct vertices
u,v € Xy such that there is t' € V(T) adjacent to ¢t with u,v € X; N Xy. For adjacent
t,t' € V(T), X;N Xy is the adhesion set of the bags X; and Xy and | X;N Xy | is the adhesion
of the bags. The maximum adhesion of adjacent bags is called the adhesion of the tree
decomposition.

Let G be a 2-connected graph. A tree decomposition 7 = (T, {X;}icv (1)) is said to be a
Tutte decomposition if T is a tree decomposition of adhesion 2 such that there is a partition
(W2, W>3) of V(T') such that the following holds:

(T4) |Xy|=2fort € Wy and | X;| > 3 for t € W>3,

(T5) the torso of X, is either a 3-connected graph or a cycle for every t € Wx3,

(T6) for every t € Wa, dr(t) > 2 and t' € W3 for each neighbor ¢ of ¢,

(T7) for every t € W3, t' € Wy for each neighbor ¢’ of ¢,

(T8) if t € W5 and dp(t) = 2, then for the neighbors ¢’ and ¢” of ¢, either the torso of ¢’ or

the torso of ¢ is a 3-connected graph or the vertices of X; are adjacent in G.

Notice that the bags X; for ¢t € W5 are distinct separators of G of size two, and X; C Xy
for t € Wy and t' € Np(t). Observe also that if {u,v} is a separator of G of size two, then
either {u,v} = X, for some t € W or u,v € X, for t € W>3 such that the torso of X, is a
cycle and v and v are nonadjacent vertices of the torso.

Combining the results of Tutte [30, 31] and of Hopcroft and Tarjan [18], we state the
following proposition.

» Proposition 3 ([30, 31, 18]). A 2-connected graph G has a unique Tutte decomposition
that can be constructed in linear time.
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Parameterized Complexity and Kernelization. We refer to the books [12, 14, 16] for the
detailed introduction to the field. Here we only give the most basic definitions. In the
Parameterized Complexity theorey, the computational complexity is measured as a function
of the input size n of a problem and an integer parameter k associated with the input. A
parameterized problem is said to be fized parameter tractable (or FPT) if it can be solved
in time f(k) - n®® for some function f. A kernelization algorithm for a parameterized
problem II is a polynomial algorithm that maps each instance (I, k) of II to an instance
(I', k') of TI such that (i) (I, k) is a yes-instance of II if and only if (I’,k’) is a yes-instance of
I, and (ii) |I'| + &’ is bounded by f(k) for a computable function f. Respectively, (I’, k") is
a kernel and f is its size. A kernel is polynomial if f is polynomial. It is common to present
a kernelization algorithm as a series of reduction rules. A reduction rule for a parameterized
problem is an algorithm that takes an instance of the problem and computes in polynomial
time another instance that is more “simple” in a certain way. A reduction rule is safe if the
computed instance is equivalent to the input instance.

3 Sorting by reversals

Sorting by reversals is the classical problem with many applications including bioinformatics.
We refer to the book of Pevzner [25] for the detailed survey of results and applications of this
problem. This problem is also strongly related to WHITNEY SWITCHES— solving the problem
for two cycles is basically the same as sorting circular permutations by reversals. First we use
this relation to observe the NP-completeness. But we also need to establish some structural
properties of sorting by reversals which will be used in kernelization algorithm.

Let m = (m1,...,7,) be a permutation of {1,...,n}, that is, a bijective mapping of
{1,...,n} to itself. Throughout this section, all considered permutations are permutations
of {1,...,n}. For 1 <1i < j <mn, the reversal p(i, j) reverse the order of elements m;, ..., m;

and transforms 7 into

P(1,7) 0 = (T1, ooy My Ty Tjmty e ey Ty W1y« - - 5 W)

The reversal distance d(mw, o) between two permutations 7 and o is the minimum number
of reversals needed to transform = to o. For a permutation 7, d(w) = d(=,t), where ¢ is
the identity permutation; note that d(w,0) = d(c~! o 7,1) and this means that computing
the reversal distance can be reduced to sorting a permutation by the minimum number of
reversals.

These definitions can be extended for circular permutations (further, we may refer to
usual permutations as linear to avoid confusion). We say that 7¢ = (71, ..., m,) is a circular
permutation if 7€ is the class of the permutations that can be obtained from the linear
permutation (71, ..., m,) by rotations and reflections, that is, all the permutations

(77—17 o 77Tn), (ﬂ-naﬂ—lv DR 77T’n71)a ey (7727 CIaE 77Tn,71'1),
and
(T e ooy 1) (T Ty o ooy T2)s ey (MT—1y e v oy T1, )

composing one class are identified, meaning that we do not distinguish them when discussing
circular permutations. The circular reversals p©(i, j) and circular reversal distance d¢(m¢, o)
and d°(7¢) are defined in the same way as for linear permutations.
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Figure 3 The construction of G’ that is (-isomorphic to H by the Whitney switches corresponding
to the sorting by reversals (3,4,1,2,5,6) — (1,4,3,2,5,6) — (1,2,3,4,5,6); ¢(e;) = e; for i €
{1,...,6}, the vertices of the separators for the switches are shown in black.

To see the connection between Whitney switches and circular reversals of permutations,
consider a cycle G with the vertices vy,...,v, for n > 4 taken in the cycle order and the
edges e; = v;—1v; for i € {1,...,r} assuming that vop = v,. Let 1 < i < j < n be such
that v; and v; are not adjacent. Then the Whitney switch with respect to (A, B), where
A={v,...,0}U{vj,...,v,} and B = {v;,...,v;} is equivalent to applying the reversal
p°(i + 1,7) to the circular permutation (ey,...,e,) of the edges of G. Moreover, let H
be a cycle with n vertices and denote by €/,..., e/, its edges in the cycle order. Notice
that every bijection ¢: E(G) — E(H) is a 2-isomorphism of G to H, and G and H are
p-isomorphic if and only if the circular permutation 7¢ = (¢ ~1(e}),..., o (e)) is the same
as 0¢ = (eq,...,e,). Clearly, we can assume that 7¢ is a permutation of {1,...,n} and o€ is
the identity permutation. Then G can be transformed to a graph G’ y-isomorphic to H by
at most k¥ Whitney switches if and only if d°(7¢) < k. An example is shown in Fig. 3.

In particular, the above observation implies the hardness of WHITNEY SWITCHES, because
the computing of the reversal distances is known to be NP-hard. For linear permutations,
this was shown by Caprara in [7]. Then Solomon, Sutcliffe, and Lister [27] proved that it is
NP-complete to decide, given a circular permutation 7¢ and a nonnegative integer k, whether
d®(m€) < k. This brings us to the following result.

» Theorem 4. WHITNEY SWITCHES is NP-complete even when restricted to cycles.

For our kernelization algorithm, we need some further structural results about reversals
in an optimal sorting sequence.

Let m = (m1,...,m,) be a linear permutation. For 1 <14 < j <n, we say that (m;,...,7;)
is an interval of w. An interval (m;,...,m;) is called a block if either ¢ = j or ¢ < j and for
every h € {i+1,...,7}, |mh—1 — 7| = 1, that is, a block is formed by consecutive integers in

7 in either the ascending or descending order. An inclusion maximal block is called a strip.

In other words, a strip is an inclusion maximal interval that has no breakpoint, that is, a
pair of elements 7j_1, 7, with |m,_1 — m,| > 2. It is said that a reversal p(p, q) cuts a strip
(7, ... ,m;) if either ¢ < p < j or i < g < j, that is, the reversals separates elements that are
consecutive in the identity permutation.

It is known that there are cases when every optimal sorting by reversal requires a reversal
that cuts a strip. For example, as was pointed by Hannenhalli and Pevzner in [17], the
permutation (3,4, 1,2) requires three reversals that do not cut strips, but the sorting can be
done by two reversals: !

(3,4,1,2) — (1,4,3,2) — (1,2,3,4).

! This example can be extended for circular permutations: (3,4,1,2,5,6) — (1,4,3,2,5,6) —
(1,2,3,4,5,6).
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However, it was conjectured by Kececioglu and Sankoff [20] that there is an optimal sorting
that does not cut strips other than at their first or last elements. This conjecture was proved
by Hannenhalli and Pevzner in [17]. More precisely, they proved that there is an optimal
sorting that does not cut strips of length at least three.

It is common for bioinformatics applications, to consider signed permutations (see,
e.g., [25]). In a signed permutation 7@ = (m,...,m,), each element 7; has its sign
or “47. Then for ¢,j € {1,...,n}, the reversal reverse the sign of each element m;, ..., 7,
besides reversing their order. We generalize this notion and define partially signed circular

“w_»

“_» o«

permutations, where each element has one of the sings: , “4+7 or “no sign”. Formally,
a partially signed circular permutation ¢ = ((m1,81)y -+ s {TTny Sn)), where (my,...,m,) is
a linear permutation and s; € {—1,41,0} for i € {1,...,m}, as the class of the linear
permutations that can be obtained from ({1, s1),...,{(m,, s,)) by rotations and reflections
such that every reflection reverse signs. For ¢,7 € {1,...,n}, the reversal

?C(imj) oW = (<771751>7 ) <7Ti*17si*1>7 <7rj’ _Sj>1 EERE) <7ri7 _si>7 <7Tj+1vsj+1> B <7Tn7571>)
if 1 < j, and
7C(i7j) oW = (<7Tn7 _Sn>7 ER) <7Ti7 _5i>, <7Tj+175j+1>7 B <7Ti*1a S¢71>, <7rj7 _Sj> [ER) <7r17 _31>)

otherwise.

We say that T is signed if each s; is either —1 or +1 and the signed circular identity
permutation is 7¢ = ((1,41),...,(n,+1)). Also a partially signed circular permutation
T = ((m1,81), .-, (Tn, $n)) agrees in signs with a signed circular permutation 7'¢ =
((m1,81), ...y {mn, s0,)) if s; = s} for i € {1,...,n} such that s; # 0, that is, the zero signs are
replaced by either —1 or 41 in the signed permutation, and Z(?C) is used to denote the set
of all signed circular permutations 7'¢ that agree in signs with 7¢. Then reversal distance

C(?C, o), where ¢ is a signed circular permutation, is the minimum number or reversal
needed to obtain from 7¢ a partially signed circular permutation 7'¢ that agrees in signs
with &€, and 70(75) = d°(7°, 7). A a sequence of reversals of minimum length that
result in a partially signed circular permutation that agrees in signs with 7 is an optimal
sorting sequence.

Let 7¢ = ({m1,51), ..., (T, Sn)) be a partially signed circular permutation. For 1 < i <
J < n, we say that ((m;,s;),...,(m;,5;)) and ((T41,Sj41)s - - (T, Sn)s (M1, 81), -+ -, (75, 8i))
are intervals of 7#¢. An interval is a stgned block if it either has size one or for every two
consecutive elements (m;_1, $;-1), (7, $;), |mi—1 — m;| < 1 and, moreover, if the elements of
the interval are in the increasing order, then all the signs s; € {0,+1}, and if they are in the
the decreasing order, then all the signs s; € {0, —1}. A signed strip is an inclusion maximal
signed block. A reversal 7C(p, q) cuts an interval if the reversed part includes at least one
element of the interval and excludes at least one element of the interval. We use the result of
Hannenhalli and Pevzner [17] to show the following lemma.

» Lemma 5. For a signed circular permutation 72 there is an optimal sorting sequence
such that no reversal in the sequence cuts the interval formed by a signed strip of e of
length at least 5.

Notice that we do not claim that no reversal cuts a strip of length at least 5 that is
obtained by performing the previous reversals; only the long strips of the initial permutation
7€ are not cut by any reversal in the sorting sequence.
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4  Tutte decomposition and 2-isomorphisms

In this section we provide a number of auxiliary results about 2-isomorphisms and Tutte
decompositions.

We need the following folklore observation about ¢-isomorphisms that we prove for
completeness. For this, we extend ¢ on sets of edges in standard way, that is, p(A4) = {e(e) |
e € A} and ¢(0) = 0.

» Lemma 6. Let G and H be n-vertex 2-connected 2-isomorphic graphs with a 2-isomorphism
. Then G and H are p-isomorphic if and only if there is a bijective mapping v: V(G) —
V(H) such that for every v € V(G), ¢(Eg(v)) = Eg(¥(v)). Moreover, G and H are ¢-
isomorphic if and only if ¢ bijectively maps the family of the sets of edges {Ec(v) | v € V(G)}
to the family {Ex(v) | v € V(H)}, and this property can be checked in polynomial time.

By Lemma 6, we can restate the task of WHITNEY SWITCHES and ask whether it is
possible to obtain a graph G’ by performing at most ¥ Whitney switches starting from G with
the property that the extension of ¢ to the family of sets {Eg:(v) | v € V(G’)} bijectively
maps this family to {Ex(v) |v € V(H)}.

We use Whitney’s theorem [35](see also [29]).

» Proposition 7 ([35]). Let G and H be n-vertex graphs and let ¢ be a 2-isomorphism of G
to H. Then there is a finite sequence of Whitney switches such that the graph G’ obtained
from G by these switches is p-isomorphic to H.

We also use the property of 3-connected graphs explicitly given by Truemper [29]. It also
can be derived from Proposition 7.

» Proposition 8 ([29]). Let G and H be 3-connected n-vertex graphs and let ¢ be a 2-
isomorphism of G to H. Then G and H are p-isomorphic.

Throughout this section we assume that G and H are n-vertex 2-connected graphs
and let ¢ be a 2-isomorphism of G to H. Let also 7() = (T(1)7{Xt(1)}tev(T(1))) and

T? = (1@, {Xt(z)}tev(:r@))) be the Tutte decompositions of G and H, respectively, and

denote by (Wg(h), Wg;)) the partition of V/(TM) satisfying (T4)—(T8) for h = 1,2. We use

Lemma 6 and Propositions 7 and 8 to show the following lemmata.

» Lemma 9. There is an isomorphism o of T to T?) such that
(i) for everyt € V(TW), \Xt(l)| = |X£[2()t)|, in particular, t € WQ(D (t e WS?)), respectively)
if and only if a(t) € WQ(Z) (a(t) € ng), respectively),
(ii) for every t € WS;, the torso of Xt(l) is a 3-connected graph (a cycle, respectively) if

and only if the torso of XC(YQ()t) is a 3-connected graph (a cycle, respectively),

(i) for every t € V(TM), @(E(G[Xt(l)]) = E(H[Xg(zr)])

Let F' be a 2-connected graph. Let also 7 = (T, {X; }sev (1)) be the Tutte decomposition
of F' and let (W2, W>3) be the partition of V(T') satisfying (T4)—(T8). We denote by F the
graph obtained from F' by making the vertices of X; adjacent for every t € W5. We say that
F is the enhancement of F. Note that T is the Tutte decomposition of F and the torso of
each bag X, is F [X:]. Notice also that (A, B) is a Whitney separation of F' if and only if
(A, B) is a Whitney separation of . We also say that F is enhanced if F = F.

To simplify the arguments in our proofs, it is convenient for us to switch from 2-

isomorphisms of graphs to 2-isomorphisms of their enhancements. By Lemma 9, there is
an isomorphism a of T to T?) satisfying conditions (i) — (ii) of the lemma. We define
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the enhanced mapping @: E(G) — E(H) such that $(e) = Ee) for e € E(G), and for each
e € E(G) \ E(G) with its end-vertices in Xt(l) for some t € Wzl), we define p(e) be the edge
with the end-vertices in Xf()t).

» Lemma 10. The mapping @ is a 2-isomorphism of G to H. Moreover, a sequence of
Whitney switches makes G p-isomorphic to H if and only if the same sequence makes G
p-isomorphic to H.

Lemma 10 allows us to consider enhanced graph and this is useful, because we can
strengthen the claim of Lemma 9.

» Lemma 11. Let G and H be enhanced graphs. Then there is an isomorphism o of T()
T® such that conditions (i)-(iii) of Lemma 9 are fulfilled and, moreover,

(iv) for every t € V(T(l)), G[X( )] is zsomorphzc to H[X(Q())]

Moreover, if G’[Xt(l)] is 3-connected, then G[X, t ] is @-isomorphic to H[X((f(i)]

For the remaining part of the sections, we assume that G and H are enhanced graphs
and « is the isomorphism of T to T(?) satisfying conditions (i)-(iv) of Lemmas 9 and 11.

Our next aim is to investigate properties of the sequences of Whitney switches that are
used in solutions for WHITNEY SWITCHES. For a sequence S of Whitney switches such that
the graph G’ obtained from G by applying this sequence is ¢-isomorphic to H, we say that
S is an H-sequence. We also say that S is minimum if S has minimum length.

For t € W;g), we say that X( ) is p-good if G[X( )] is p-isomorphic to H[X (t)] and

Xt( ) is p-bad otherwise. Notice that if G[Xt( )] is 3-connected, then Xt( ) is p-good but this
not always so if G[Xt(l)] is a cycle.

Figure 4 An example of a ¢-good segment; p(e;) = e; for i € {1,...,18}, the vertices of the
segment are white.

Let t € ng) such that Xt(l) is p-bad. Clearly, G[Xt(l)] is a cycle. Let {t1,...,ts} =
N2, (t) and denote Gy = G[X;" UUi, X{) and Haqy = H[X()) U UL 1Xf(>t ]. Let
P =wvg---v, be a path in G[Xt(l)] and e; = v;_1v; fori € {1,...,r}. We say that P a ¢-good
segment of Xt(l) if the following holds (see Fig. 4 for an example):

(i) the length of P is at least 5,

(ii) there is a path P’ = ug - - - u, in H[XS&)} such that u;—1u; = p(e;) for all i € {1,...,r},
iii) for every i € {1,...,r} and for every t’ € WY such that X(l) OX(l) ={vi—1,v; X(l)
>3
is p-good,

(iv) for every i € {1,...,7 — 1}, p(Eq,(vi)) = B, (u:).

For distinct ¢1,t2 € WS?)) with a common neighbor in T we say that Xt(ll) and Xt(zl)
are mutually p-good (see Fig. 5) if they are p-good and G[Xt(ll) U Xt(;)] is ¢-isomorphic to

(2) (2
H[X, (tr )UX (ts )]
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Figure 5 Mutually ¢-good bags; ¢(e;) = e} for i € {1,...,7}, the vertices of the mutually ¢-good
bags of G and the corresponding bags of H are white.

We say that an H-sequence is ¢-good if no Whitney switch of S splits (mutually) ¢-good
bags and segments. Formally, for every switch with respect to some Whitney separation
(A,B) in S,

(i) Xt(l) CAor Xt(l) C B for every p-good bag Xt(l)7
(ii) V(P) C A or V(P) C B for every ¢-good segment P,
(iii) Xt(ll) U Xt(zl) CAor Xt(ll) U Xt(:) C B for every two distinct mutually ¢-good bags Xt(ll)
and Xt(: ),

We prove that it is sufficient to consider p-good H-sequences. The crucial tool for our

kernelization algorithm is the following lemma that is proved by using Lemmata 5 and 11.

In particular, Lemma 5 is crucial for showing that we can avoid splitting p-good segments.

» Lemma 12. There is a minimum H -sequence of Whitney switches S that is p-good.

Let t € Wélg) be such that Xt(l) is ¢-bad. Denote by t1,...,ts # ¢ the nodes of N7, (t).

Let G = GIXV U, XV] and Huy = GIX0

a(

)t) uUi_, Xg&)] In words, Gy is the

subgraphs of G induced by the vertices of Xt(l) and the vertices of the bags at distance two
in 7MW from ¢, and H ) the subgraph of H induced by the vertices of the bags that are
images of the bags composing G; according to a.

We say that a vertex v € Xt(l) is a crucial breakpoint if ¢(Eg,(v)) # En,,,, (u) for every
u € V(Hqt)). We denote by b(G) the total number of crucial breakpoints in the o-bad bags
and say that b(G) is the breakpoint number of G. Recall that by our convention, G and H
are enhanced graphs, but we extend this definition for the general case needed in the next
section. For (not necessarily enhanced) 2-isomorphic graphs G and H, and a 2-isomorphism
, we construct their enhancements G and H , and consider the enhanced mapping ». Then

~

b(G) is defined as b(G).

Observe that if G and H are p-isomorphic, then b(¢) = 0 by Lemma 6, but not the other
way around.

We conclude the section by giving a lower bound for the length of an H-sequence.

» Lemma 13. Let S be an H-sequence of Whitney switches. Then b(G)/2 < |S|.

5 Kernelization for Whitney Switches

In this section, we show that WHITNEY SWITCHES parameterized by k£ admits a polynomial
kernel. To do it, we obtain a more general result by proving that the problem has a polynomial
kernel when parameterized by the breakpoint number of the first input graph.
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» Theorem 14. WHITNEY SWITCHES has a kernel such that each graph in the obtained
instance has at most max{52 -b — 36,3} vertices, where b is the breakpoint number of the
input graph.

Proof sketch. Let (G, H, p, k) be an instance of WHITNEY SWITCHES, where G and H are
n-vertex 2-connected 2-isomorphic graphs, ¢: E(G) — E(H) is a 2-isomorphism, and k is a
nonnegative integer.

First, we use Proposition 3 to construct the Tutte decompositions of G and H. Denote
by T = (TM), {Xt(l)}tev(TO))) and 73 = (7, {Xt(Q)}tev(T(Q))) the constructed Tutte
decompositions of G and H respectively, and let (Wz(h), ng)) be the partition of V (T")
satisfying (T4)-(T8) for h =1, 2. N

In the next step, we construct the isomorphism a: V(T')) — V(7)) satisfying conditions
(i)—(iii) of Lemma 9. Recall that Lemma 9 claims that such an isomorphism always exists.

Given a, we compute the enhancements G and H of G and H respectively, and then

~ ~

define the enhanced mapping $: F(G) — E(H). Note that « satisfies the conditions of

(1)
t

Lemma 11. Observe also that we can verify in polynomial time whether a bag X,/ for

te WS?)) is -good or not.

To simplify notation, let G := é, H := H and Y= Q.

Now we apply a series of reduction rules that are applied for G, H, ¢, and the Tutte
decompositions of G and H.

The aim of the first rule is to decrease the total size of bags that are ¢-bad (see Fig. 6
for an example).

Figure 6 An example of an application of Reduction Rule 1; p(e;) = e} for i € {1,...,13}, the
vertices of the p-good segment in G and the corresponding segment in H are white, and the added
edges are shown by dashed lines.

» Reduction Rule 1. If fort € ng) such that Xt(l) is p-bad, there is an inclusion mazimal
p-good segment P = vy - - - vy, then do the following:
find the path P' = ug---u, in H[XC(YQ&)] composed by the edges u;—1u; = @(v;—1v;) for
ie{l,...,r},
add the edge vou, to G and ugu, to H,
extend ¢ by setting o(vou,) = ugty.,
recompute the Tutte decompositions of the obtained graphs and the isomorphism «.
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The safeness of the rule is proved by using Lemma 12. The crucial observation is that
there is an optimal sequence of Whitney switches such that every ¢-good segment remains
in one part of every Whitney separation in the sequence, i.e., they are not split. Reduction
Rule 1 is applied exhaustively while we are able to find ¢-good segments. To simplify

notation, we use G, H and ¢ to denote the obtained graphs and the obtained 2-isomorphism.

We also keep the notation used for the Tutte decompositions.
Our next reduction rule is used to simplify the structure of ¢-good bags by turning them
into cliques (see Fig. 7 for an example).

Figure 7 An example of an application of Reduction Rule 2; ¢(e;) = e} for i € {1,...,5}, the
vertices of the ¢-good bag of G and the corresponding bag of H are white, and the added edges are
shown by dashed lines.

» Reduction Rule 2. If fort € Wg?)) such that Xt(l) is a @-good, there are monadjacent
vertices in Xt(l), then compute the p-isomorphism ¢ of G[Xt(l)} to H[Xf(i)} and for every
nonadjacent u,v € Xt(l), do the following:

add the edge uwv to G and Y(u)(v) to H,

extend ¢ by setting p(uv) = P (u)(v).

The safeness of the rule follows from Lemma 12. We use that there is an optimal sequence
of Whitney switches such that no Whitney separation splits ¢-good bags. We apply Reduction
Rule 2 for all bags of G that are not cliques. We use the same convention as for the first
rule, and keep the old notation for the obtained graphs, their Tutte decompositions, and the
obtained 2-isomorphism.

The next aim is to reduce the number of mutually ¢-good bags by “gluing” them into
cliques (see Fig. 8 for an example).

» Reduction Rule 3. For distinct t1,t5 € ng such that Xt(ll) and Xt(;) are mutually p-good,

compute the p-isomorphism 1 of G[Xt(ll) U Xt(j)] to H[X(2) U X((f()tz)],

a(ty)
for every u € Xt(ll) \Xt(j) and every v € Xt(j) \Xt(ll), do the following:
add the edge uv to G and Y (u)y(v) to H,
extend ¢ by setting p(uv) = P(u)(v),
recompute the Tutte decompositions of the obtained graphs and the isomorphism a.
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Figure 8 An example of an application of Reduction Rule 3; p(e;) = e} for i € {1,...,11}, the
vertices of the mutually p-good bags of G and the corresponding bags of H are white, and the added
edges are shown by dashed lines.

To show the safeness, we use that, by Lemma 12, we can find an optimal sequence of
Whitney switches such that the corresponding Whitney separations do not split mutually
p-good bags. Reduction Rule 3 is applied exhaustively whenever it is possible. As before, we
do not change the notation for the obtained graphs, their Tutte decompositions, and the
obtained 2-isomorphism.

Our next rule is used to perform the Whitney switches that are unavoidable (see Fig. 9
for an example).

» Reduction Rule 4. If there ist € W2(1) such that dpay (t) = 2 and for the neighbors ty
and ty of t, it holds that Xt(ll) and Xt(f) are p-good but not mutually p-good, then do the
following:

find the connected components Ty and T of 71 t, and construct A = Ut,ev(Tl) Xt(,l)

and B = Ut’GV(Tg) Xt(’l)’

perform the Whitney switch with respect to the separation (A, B),

set k:=k—1, and if k <0, then return the trivial no-instance and stop.

Reduction Rule 4 is applied exhaustively whenever it is possible. Note that after applying
this rule, we are able to apply Reduction Rule 3 and we do it.

Suppose that the algorithm did not stop while executing Reduction Rule 4. In the same
way as with previous rules, we maintain the initial notation for the obtained graphs, their
Tutte decompositions, and the obtained 2-isomorphism.

Our final rule deletes simplicial vertices of degree at least 3.

» Reduction Rule 5. If there is a simplicial vertex v € V(GQ) with dg(v) > 3, then do the
following:

find the vertex uw € V(H) such that Ep(u) = ¢(Eq(v)),

set G:=G —v and H := H — u,

set ¢ 1= 9|pG)\Ee(v)-
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Figure 9 An example of an application of Reduction Rule 4; ¢(e;) = e} for i € {1,...,8}, the
vertices of the switched ¢-good bags of G and the corresponding bags of H are white.

Reduction Rule 5 is applied exhaustively. Let G, H and ¢ be the resulting graphs. We
also keep the same notation for the Tutte decompositions of G and H and the isomorphism
« following the previous convention. This completes the description of our kernelization
algorithm as the graphs G and H have bounded size. We show that |V(G)| = |[V(H)| <
max{52 - b(G) — 36, 3}.

It can be shown that Reduction Rules 1-5 do not increase the breakpoint number.

Therefore, for the the obtained instance (G, H,p, k) of WHITNEY SWITCHES, |[V(G)| =
|[V(H)| < min{52-b—36, 3}, where b is the breakpoint number of the initial input graph G. <

Theorem 14 together with Lemma 13 imply that WHITNEY SWITCHES has a polynomial
kernel when parameterized by k. Thus, we can show Theorem 2 that we restate.

» Theorem 2. WHITNEY SWITCHES admits a kernel with O(k) vertices and is solvable in
20(klogk) . nOM) time.

In Corollary 4, we proved that WHITNEY SWITCHES is NP-hard when the input graphs
are constrained to be cycles. Theorem 14 indicates that it is the presence of bags in the
Tutte decompositions that are cycles of length at least 4 that makes WHITNEY SWITCHES
difficult, because only such cycles may contain crucial breakpoint. In particular, we can
derive the following straightforward corollary.

» Corollary 15. Let (G, H, ¢, k) be an instance of WHITNEY SWITCHES such that b(G) = 0.
Then WHITNEY SWITCHES for this instance can be solved in polynomial time.

For example, the condition that b(G) = 0 holds when G and H have no induced cycles of
length at least 4, that is, when G and H are chordal graphs.

» Corollary 16. WHITNEY SWITCHES can be solved in polynomial time on chordal graphs.

6 Conclusion

We proved that WHITNEY SWITCHES admits a polynomial kernel when parameterized by the
breakpoint number of the input graphs and this implies that the problem has a polynomial
kernel when parameterized by k. More precisely, we obtain a kernel, where the graphs have
O(k) vertices. Using this kernel, we can solve WHITNEY SWITCHES in 20(klegk) . pO(1)
It is natural to ask whether the problem can be solved in a single-exponential in k time.

time.
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Another interesting direction of research is to investigate approximability for WHITNEY
SWITCHES. In [3], Berman and Karpinski proved that for every € > 0, it is NP-hard to
approximate the reversal distance d(7) for a linear permutation 7 within factor % —e. This
result can be translated for circular permutations and this allows to obtain inapproximability
lower bound for WHITNEY SWITCHES on cycles similarly to Corollary 4. From the positive
side, the currently best 1.375-approximation for d(m) was given by Berman, Hannenhalli,
and Karpinski [2]. Due to the close relations between WHITNEY SWITCHES and the sorting
by reversal problem, it is interesting to check whether the same approximation ratio can be
achieved for WHITNEY SWITCHES.

In WHITNEY SWITCHES, we are given two graphs G and H together with a 2-isomorphism
and the task is to decide whether we can apply at most & Whitney switches to obtain a
graph G’ from G such that G’ is y-isomorphic to H. We can relax the task and ask whether
we can obtain G’ that is isomorphic to H, that is, we do not require an isomorphism of G to
H be a g-isomorphism. Formally, we define the following problem.

UNLABELED WHITNEY SWITCHES

Input: 2-Isomorphic graphs G and H, and a nonnegative integer k.

Task: Decide whether it is possible to obtain a graph G’ from G by at most k
Whitney switches such that G’ is isomorphic to H.

Note that if ¢ is a 2-isomorphism of G to H, then the minimum number of Whitney
switches needed to obtain G’ that is y-isomorphic to H gives an upper bound for the number
of Whitney switches required to obtain from G a graph that isomorphic to G. However,
these values can be arbitrary far apart. Consider two cycles G and H with the same number
of vertices. Clearly, G and H are isomorphic but for a given 2-isomorphism ¢ of G to H, we
may need many Whitney switches to obtain G’ that is p-isomorphic to H and the number
of switches is not bounded by any constant.

Using the result of Solomon, Sutcliffe, and Lister [27], we can show that UNLABELED
WHITNEY SWITCHES is NP-hard for very restricted instances.

» Proposition 17. UNLABELED WHITNEY SWITCHES is NP-complete when restricted to
2-connected series-parallel graphs even if the input graphs are given together with their
2-isomorphism.

Proposition 17 lead to the question about the parameterized complexity of UNLABELED
WHITNEY SWITCHES. In particular, does the problem admit a polynomial kernel when
parameterized by k7

Notice that to deal with UNLABELED WHITNEY SWITCHES, we should be able to check
whether the input graphs G and H are isomorphic. If we are given a 2-isomorphism ¢ of
G to H, then checking whether G and H are ¢-isomorphic can be done in polynomial time
by Lemma 6. However, checking whether G and H are isomorphic, even if a 2-isomorphism
@ is given, is a complicated task. For example, it can be observed that this is at least as
difficult as solving GRAPH ISOMORPHISM on tournaments (recall that a tournament is a
directed graph such that for every two distinct vertices u and v, either uv or vu is an arc).
While GRAPH ISOMORPHISM on tournaments may be easier than the general problem (we
refer to [26, 33] for the details), still it is unknown whether this special case can be solved in
polynomial time and the best known algorithm is the quasi-polynomial algorithm of Babai [1].
Given this observation, it is natural to consider UNLABELED WHITNEY SWITCHES on graph
classes for which GRAPH ISOMORPHISM is polynomially solvable. For example, what can be
said about UNLABELED WHITNEY SWITCHES on planar graphs?
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The relation between Whitney switches and sorting by reversals together with the
reduction in the proof of Proposition 17 indicates that as the first step, it could be reasonable
to investigate the following problem for sequences that generalizes SORTING BY REVERSALS
for permutations. Let m = (my,...,7,) be a sequence of positive integers; note that now
some elements of m may be the same. For 1 < i < j < n, we define the reversal p(i,j) in
exactly the same way as for permutations. Then we can define the reversal distance between
two m-element sequences such that the multisets of their elements are the same; we assume
that the distance is +oo if the multisets of elements are distinct.

SEQUENCE REVERSAL DISTANCE

Input: Two n-element sequences m and o of positive integers and a nonnegative
integer k.
Task: Decide whether the reversal distance between 7 and o is at most k.

By the result of Caprara in [7], this problem is NP-complete even if the input sequences are
permutations. It is also known that the problem is NP—complete if the input sequences contain
only two distinct elements [9]. The question, whether SEQUENCE REVERSAL DISTANCE
is FPT when parameterized by k, was explicitly stated in the survey of Bulteau et. al [6]
(in terms of strings) and is open and only some partial results are known [5]. We also can
define the version of SEQUENCE REVERSAL DISTANCE for circular sequences and ask the
same question about parameterized complexity. Using the idea behind the reduction in the
proof of Proposition 17, it is easy to observe that UNLABELED WHITNEY SWITCHES on
2-connected series-parallel graphs is at least as hard as the circular variant of SEQUENCE
REVERSAL DISTANCE.
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