
26th International Conference on
DNA Computing and Molecular
Programming

DNA 26, September 14–17, 2020, Oxford, UK (Virtual
Conference)

Edited by

Cody Geary
Matthew J. Patitz

LIPIcs – Vo l . 174 – DNA 26 www.dagstuh l .de/ l ip i c s

Editors

Cody Geary
Interdisciplinary Nanoscience Centre, University of Aarhus, Denmark
codyge@gmail.com

Matthew J. Patitz
Department of Computer Science and Computer Engineering,
University of Arkansas, Fayetteville, AR, USA
patitz@uark.edu

ACM Classification 2012
Theory of computation → Models of computation; Applied computing → Molecular structural biology;
Applied computing → Biological networks; Information systems → Information storage systems

ISBN 978-3-95977-163-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-163-4.

Publication date
September, 2020

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.DNA.2020.0

ISBN 978-3-95977-163-4 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0003-2083-4259
mailto:codyge@gmail.com
https://orcid.org/0000-0001-9287-4028
mailto:patitz@uark.edu
https://www.dagstuhl.de/dagpub/978-3-95977-163-4
https://www.dagstuhl.de/dagpub/978-3-95977-163-4
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.DNA.2020.0
https://www.dagstuhl.de/dagpub/978-3-95977-163-4
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

DNA 26

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Cody Geary and Matthew J. Patitz . 0:vii

Steering Committee
. 0:ix

Programm Committee
. 0:x

Additional Reviewers
. 0:xi

Organizing Committee for DNA 26
. 0:xii

Sponsors
. 0:xiii

Regular Papers

The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes
Abdulmelik Mohammed, Nataša Jonoska, and Masahico Saito . 1:1–1:17

Simplifying Chemical Reaction Network Implementations with Two-Stranded
DNA Building Blocks

Robert F. Johnson and Lulu Qian . 2:1–2:14

Composable Computation in Leaderless, Discrete Chemical Reaction Networks
Hooman Hashemi, Ben Chugg, and Anne Condon . 3:1–3:18

CRNs Exposed: A Method for the Systematic Exploration of Chemical Reaction
Networks

Marko Vasic, David Soloveichik, and Sarfraz Khurshid . 4:1–4:25

Population-Induced Phase Transitions and the Verification of Chemical Reaction
Networks

James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, Hugh D. Potter, and
Matthew R. Riley . 5:1–5:17

ALCH: An Imperative Language for Chemical Reaction Network-Controlled Tile
Assembly

Titus H. Klinge, James I. Lathrop, Sonia Moreno, Hugh D. Potter,
Narun K. Raman, and Matthew R. Riley . 6:1–6:22

Implementing Non-Equilibrium Networks with Active Circuits of Duplex Catalysts
Antti Lankinen, Ismael Mullor Ruiz, and Thomas E. Ouldridge 7:1–7:25

Design Automation of Polyomino Set That Self-Assembles into a Desired Shape
Yuta Matsumura, Ibuki Kawamata, and Satoshi Murata . 8:1–8:15

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures
David Doty, Benjamin L Lee, and Tristan Stérin . 9:1–9:17

Verification and Computation in Restricted Tile Automata
David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie 10:1–10:18

Turning Machines
Irina Kostitsyna, Cai Wood, and Damien Woods . 11:1–11:21

Preface

This volume contains the papers presented at DNA 26: the 26th International Conference on
DNA Computing and Molecular Programming. The conference was originally scheduled to
be held at the University of Oxford, but due to the COVID-19 pandemic it was changed to
an online format. The virtual conference was held during September 14-17, 2020, and was
organized under the auspices of the International Society for Nanoscale Science, Computation,
and Engineering (ISNSCE). The DNA conference series aims to draw together researchers from
the fields of mathematics, computer science, physics, chemistry, biology, and nanotechnology
to address the analysis, design, and synthesis of information-based molecular systems.

Papers and presentations were sought in all areas that relate to biomolecular computing,
including, but not restricted to: algorithms and models for computation on biomolecular
systems; computational processes in vitro and in vivo; molecular switches, gates, devices,
and circuits; molecular folding and self-assembly of nanostructures; analysis and theoretical
models of laboratory techniques; molecular motors and molecular robotics; information
storage; studies of fault-tolerance and error correction; software tools for analysis, simulation,
and design; synthetic biology and in vitro evolution; and applications in engineering, physics,
chemistry, biology, and medicine.

Authors who wished to orally present their work were asked to select one of two submission
tracks: Track A (full paper) or Track B (one-page abstract with supplementary document).
Track B is primarily for authors submitting experimental results who plan to submit to
a journal rather than publish in the conference proceedings. We received 52 submissions
for oral presentations: 25 submissions to Track A and 27 submissions to Track B. Each
submission was reviewed by at least three reviewers, with several reviewed by four reviewers.
The Program Committee accepted 11 papers for Track A (44%) and 11 papers for Track
B (41%). Additionally, the Program Committee reviewed and accepted 37 submissions to
Track C (poster) and selected 6 for short oral presentations. This volume contains the papers
accepted for Track A.

We express our sincere appreciation to our invited speakers, Tom de Greef, Marta
Kwiatkowska, Jérôme Leroux, Ard Louis, Damien Woods, and Niles Pierce. We especially
thank all of the authors who contributed papers to these proceedings, and who presented
papers and posters during the conference. Last but not least, the editors thank the members
of the Program Committee and the additional invited reviewers for their hard work in
reviewing the papers and providing constructive comments to the authors.

September 2020 Cody Geary
Matt Patitz

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organization

Steering Committee

Luca Cardelli Oxford University, UK
Anne Condon (Chair) University of British Columbia, Canada
Masami Hagiya University of Tokyo, Japan
Natasha Jonoska University of Southern Florida, USA
Lila Kari University of Waterloo, Canada
Chengde Mao Purdue University, USA
Satoshi Murata Tohoku University, Japan
John H. Reif Duke University, USA
Grzegorz Rozenberg University of Leiden, The Netherlands
Rebecca Schulman Johns Hopkins University, USA
Nadrian C. Seeman New York University, USA
Friedrich Simmel Technical University Munich, Germany
David Soloveichik University of Texas at Austin, USA
Andrew J. Turberfield Oxford University, UK
Erik Winfree California Institute of Technology, USA
Damien Woods Maynooth University, Ireland
Hao Yan Arizona State University, USA

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Organization

Program Committee

Matt Patitz (Co-chair) University of Arkansas, USA
Cody Geary (Co-chair) Aarhus University, Denmark
Ebbe Andersen Aarhus University, Denmark
Luca Cardelli University of Oxford, UK
Yuan-Jyue Chen Microsoft Research, USA
Anne Condon University of British Columbia, Canada
David Doty University of California, Davis, USA
Elisa Franco University of California, Los Angeles, USA
Anthony Genot CNRS, France
Manoj Gopalkrishnan Indian Institute of Technology, Bombay, India
Elton Graugnard Boise State University, USA
Masami Hagiya University of Tokyo, Japan
Rizal Hariadi Arizona State University, USA
Natasha Jonoska University of South Florida, USA
Lila Kari University of Waterloo, Canada
Matthew Lakin University of New Mexico, USA
Chenxiang Lin Yale University, USA
Yan Liu Arizona State University, USA
Olgica Milenkovic University of Illinois, USA
Satoshi Murata Tohoku University, Japan
Pekka Orponen Aalto University, Finland
Tom Ouldridge Imperial College London, UK
Lulu Qian California Institute of Technology, USA
John Reif Duke University, USA
Dominic Scalise Johns Hopkins University, USA
Nicolas Schabanel CNRS and École normale supérieure de Lyon, France
Joseph Schaeffer Autodesk Research, USA
Robbie Schweller University of Texas Rio Grande Valley, USA
William Shih Harvard University, USA
David Soloveichik University of Texas, USA
Darko Stefanovic University of New Mexico, USA
Jamie Stewart California Institute of Technology, USA
Petr Sulc Arizona State University, USA
Chris Thachuk California Institute of Technology, USA
Greg Tikhomirov California Institute of Technology, USA
Andrew Turberfield Oxford University, UK
Bryan Wei Tsinghua University, China
Shelley Wickham University of Sydney, Australia
Erik Winfree California Institute of Technology, USA
Damien Woods Maynooth University, Ireland
Fei Zhang Rutgers University, USA

Organization 0:xi

Additional Reviewers

Abdulmelik Mohammed Joanna Ellis-Monaghan
Christian Cuba Samaniego Lance Williams
Daniel Fu Margherita Maria Ferrari
Daniel Hader Miklos Z. Racz
David Arredondo Scott Summers
David Haley Shalin Shah
Eric Severson Shinnosuke Seki
Eugen Czeizler Tianqi Song
Ho-Lin Chen Wen Wang

DNA 26

0:xii Organization

Organizing Committee for DNA 26

Andrew Phillips (Co-chair) Microsoft Research, Cambridge, UK
Andrew Turberfield (Co-chair) University of Oxford, UK
Claire Garland Institute of Physics, UK

Organization 0:xiii

Sponsors

International Society for Nanoscale Science, Computation, and Engineering
Biological Physics Group, Institute of Physics
Department of Physics, University of Oxford
Microsoft Research

DNA 26

The Topology of Scaffold Routings on
Non-Spherical Mesh Wireframes
Abdulmelik Mohammed
Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
abdulmelik@usf.edu

Nataša Jonoska
Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
jonoska@usf.edu

Masahico Saito
Department of Mathematics and Statistics, University of South Florida, Tampa, FL, USA
saito@usf.edu

Abstract
The routing of a DNA-origami scaffold strand is often modelled as an Eulerian circuit of an Eulerian
graph in combinatorial models of DNA origami design. The knot type of the scaffold strand dictates
the feasibility of an Eulerian circuit to be used as the scaffold route in the design. Motivated by the
topology of scaffold routings in 3D DNA origami, we investigate the knottedness of Eulerian circuits
on surface-embedded graphs. We show that certain graph embeddings, checkerboard colorable,
always admit unknotted Eulerian circuits. On the other hand, we prove that if a graph admits an
embedding in a torus that is not checkerboard colorable, then it can be re-embedded so that all its
non-intersecting Eulerian circuits are knotted. For surfaces of genus greater than one, we present
an infinite family of checkerboard-colorable graph embeddings where there exist knotted Eulerian
circuits.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases DNA origami, Scaffold routing, Graphs, Surfaces, Knots, Eulerian circuits

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.1

Funding This research was (partially) supported by the grants NSF DMS-1800443/1764366 and the
Southeast Center for Mathematics and Biology, an NSF-Simons Research Center for Mathematics
of Complex Biological Systems, under National Science Foundation Grant No. DMS-1764406 and
Simons Foundation Grant No. 594594. Travel support is provided to Abdulmelik Mohammed
through an AMS-Simons Travel Grant (2020).

1 Introduction

The conception of stable branched DNA molecules was one of the central ideas in the birth
of DNA nanotechnology [28, 29]. Branched nucleic acids exhibit a mathematical structure
naturally modelled by graphs, where graph vertices (roughly points) correspond to the
branch locations while graph edges (roughly line segments connecting points) model linear
double-helical domains. Graph-theoretic models for the construction of three-dimensional
DNA nanostructures have been proposed as early as 1997 [15, 16]. The first experiments
demonstrating the self-assembly of non-regular graphs using DNA junctions as vertices and
duplexes as edge connectors were presented in 2003 [27]. DNA self assembly has also been
used to solve small instances of graph-theoretic problems such as the Directed Hamilton
Path problem [2] and the vertex 3-colorability problem [33].

Graphs of convex polyhedra [8, 11, 13, 14, 30] have been synthesized using a variety
of DNA vertex and edge motifs. Graph theory took an explicit and integral role in the
automated design of non-convex polyhedra when graphs embedded in topological spheres were

© Abdulmelik Mohammed, Nataša Jonoska, and Masahico Saito;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 1; pp. 1:1–1:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abdulmelik@usf.edu
mailto:jonoska@usf.edu
mailto:saito@usf.edu
https://doi.org/10.4230/LIPIcs.DNA.2020.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes

Figure 1 A knotted Eulerian circuit (A-trail) on a torus.

exploited to model a large class of wireframe DNA origami [5, 22]. Thereafter, graph-theoretic
modelling has been widely adopted for the design and synthesis of 2D [4, 18, 19] and 3D
wireframe DNA origami [17, 32].

In DNA origami [26], a long, typically circular, scaffold strand is folded into a target
conformation using hundreds of short helper strands. One of the key and challenging steps
in designing complex 3D DNA origami is the routing of the circular scaffold strand so that it
covers half the mass of each of the constituent helical domains. In graph based design of
DNA origami [5, 4, 32], the scaffold routing typically corresponds to an Eulerian circuit of a
graph which has been obtained from the target wireframe after some processing. Briefly, an
Eulerian circuit is a closed path in a graph which traces each edge exactly once. Eulerian
circuits capture the essential idea that the scaffold constitutes exactly one of the strands in
each double helical domain. A general scheme for stapling Eulerian scaffold routings has
been proposed in [22].

A fundamental consideration when employing circular strands in the design of nano-
structures is ensuring that the topology of the strand routing in the design corresponds
to the topology of the physical strand. For instance, the scaffold strand currently used in
DNA origami assembly is unknotted. In most DNA origami constructs, the scaffold does
not intersect itself when it traces the structure. For this reason, a class of non-intersecting
Eulerian circuits called A-trails was adopted for unknotted scaffold routing of Eulerian graphs
embedded in a sphere [5]. However, it has been pointed out that A-trails can be knotted
for graphs embedded in tori [9]. An example of a knotted A-trail on a torus is shown in
Figure 1. The A-trail is illustrated with the blue curve. As usual, the torus is obtained
by gluing the horizontal boundaries in red together to form a cylinder and then gluing the
violet boundaries to close the cylinder to a torus. Compare with Figure 3 to see that the
A-trail corresponds to a trefoil knot. Unknotted scaffold routings may be achieved with
non-intersecting Eulerian circuits (a generalization of A-trails, see definitions in Section 2) for
graphs that are embedded in surfaces. In this paper, we further investigate the knottedness of
non-intersecting Eulerian circuits. These Eulerian circuits can represent knotted or unknotted
scaffold routings. Here we specify properties of graph embeddings in surfaces when knotted
or unknotted scaffold routings arise from non-intersecting Eulerian circuits.

An approximation algorithm for finding unknotted scaffold routings on triangular embed-
dings in positive genus surfaces has been proposed earlier [23]. For certain Eulerian graphs,
the algorithm can trace some edges twice even if the embedded graph contains an unknotted
non-intersecting Eulerian circuit. It has been proved that for checkerboard-colorable graph
embeddings (see definition in Section 2) in a torus, A-trails, if any exist, are unknotted [24].
In this paper, we present a number of additional results connecting checkerboard-colorable
graph embeddings and the knottedness of non-intersecting Eulerian circuits. We generalize
the result of [24] by proving that all non-intersecting Eulerian circuits of checkerboard-
colorable torus graphs are unknotted. We show that at least one unknotted non-intersecting

A. Mohammed, N. Jonoska, and M. Saito 1:3

(a) (b) (c)

Figure 2 Closed orientable surfaces of genus 1, 2 and 3 in (a), (b) and (c), respectively.

Eulerian circuits exists for all checkerboard-colorable embeddings in orientable closed surfaces,
including surfaces of genus greater than one. We show that, however, checkerboard-colorable
graph embeddings in surfaces of genus greater than one can contain knotted Eulerian circuits.
For tori, we characterize graphs which admit embeddings where all non-intersecting Eulerian
circuits are knotted; such embeddings would require a knotted scaffold for routing as a
non-intersecting Eulerian circuit.

2 Preliminaries

Graphs embedded in non-spherical surfaces significantly expand the class of wireframe DNA
origami that can be designed based on topological techniques. For instance, reinforced
cubes [32] and certain cubic lattices can be modelled as graphs on non-spherical surfaces. In
this section, we present the basic topological concepts needed to introduce non-intersecting
Eulerian circuits on surface-embedded graphs, our model for topological study of scaffold
routings. We refer the reader to Armstrong’s book [3] for an accessible account on surfaces,
the monograph by Fleischner [10] for a detailed exposition on Eulerian graphs and the first
two chapters of Rolfsen’s classic [25] for an illustrative introduction to knot theory.

2.1 Surfaces
Surfaces are mathematical models of spaces which, when sufficiently zoomed in, look like
a flat plane. Surfaces are commonly used in computer graphics as boundary models of
well-defined 3D shapes. The simplest example of a surface is the unit sphere S2 = {(x, y, z) ∈
R3|x2 + y2 + z2 = 1}. Topologically, a sphere is any space homeomorphic to the unit sphere.
For instance, the underlying spaces of all the meshes constructed in [5] are topological spheres.

The simplest surface topologically distinct from a sphere is a torus. It is commonly
recognized in its standard embedding like the crust of a doughnut (cf. Figure 2a). A torus
can be fairly complicated as a geometric figure. The surface of a regular coffee mug is, for
instance, topologically a torus. Let S1 denote the unit circle in the plane. Formally, a torus T
is a surface homeomorphic to the product space S1×S1. Viewing S1 as the unit circle in the
complex plane, points in a torus can be given coordinates (eiθ, eiφ), for 0 ≤ θ, φ < 2π. In the
standard embedding of the torus (Figure 2a), θ can be understood as the counter-clockwise
rotation with respect to the axis of rotational symmetry, while φ denotes the right-handed
rotation with respect to the core circle of the embedding. A torus is commonly represented
by its fundamental polygon, a square whose parallel edges are identified and glued to form
the torus (compare Figure 3c and 3b). On the square, θ can be understood to go from 0 to
2π along the horizontal edge in the positive x direction, while φ does so along the vertical
edge in the positive y direction.

More complicated surfaces are constructed by joining tori together as follows. The
connected sum of two surfaces F1 and F2 is obtained by removing topological open disks
Di from Fi, for i ∈ {1, 2}, and gluing the resulting surfaces Fi \Di along their boundaries.
For instance, the connected sum of two tori is the 2-torus shown in Figure 2b; the blue

DNA 26

1:4 The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes

(a) (b) (c)

Figure 3 A trefoil knot (a) in a torus (b) and in the fundamental square of the torus (c).

curve indicates the location where the two tori are summed. The classification theorem of
(compact, connected, orientable, and without boundary) surfaces states that any surface
is either a sphere, a torus, or the connected sum of n tori, for n ≥ 2. Here, n denotes the
genus of the surface. The sphere is considered to have genus 0 while the torus has genus 1.
As a sample of the classification theorem, three surfaces of genus 1, 2 and 3 are shown in
Figure 2a, 2b and 2c, respectively.

A loop in a surface F is a continuous map β : S1 → F , where S1 is oriented in this setting,
for instance, in the counter-clockwise direction. A loop β is simple if β(s1) 6= β(s2), for all
pair of distinct points s1, s2 in S1. A simple loop β is said to be separating if F \ Im(β)
consists of two disjoint connected components; otherwise it is non-separating. The blue curve
in Figure 2b is a separating loop. Two basic examples of non-separating simple loops are
the longitude and meridian of the torus, drawn in red and violet in Figure 3b, respectively.
The longitude of the torus is the loop βL : S1 → S1 × S1 with βL(eiθ) = (eiθ, 1), while the
meridian is the loop βM : S1 → S1 × S1 with βL(eiφ) = (1, eiφ).

A knot is an embedding of the unit circle in R3. A trefoil knot, which is obtained by
joining the two ends of the everyday overhand knot, is illustrated in Figure 3a. Two knots
are equivalent if there is an orientation preserving self-homeomorphism of R3 taking the first
knot to the second. Intuitively, this represents the fact that two knots are equivalent if and
only if the first knot can be continuously deformed to the second one without crossing itself
during the deformation. A knot is trivial or an unknot if it is equivalent to the unit circle
in the plane. Otherwise it is non-trivial. A knot is trivial if and only if it bounds a disk
(tamely) embedded in R3 (see Theorem 10.6, p. 224 in [3]).

A torus knot is a non-trivial knot that lies in the standard torus. As the sketch in
Figure 3b demonstrates, the trefoil knot is a torus knot; Figure 3c depicts the knot in the
fundamental square of the torus. Loops on the torus belong to homotopy classes that can
be identified by a pair of integers (a, b), where a denotes the number of times the loop goes
around in the positive longitude direction and b denotes the number of times it goes around
the positive meridian direction. A class (a, b) is represented by a simple loop if and only if
both a and b are zero, or gcd(a, b) = 1 [25, p. 19]. A simple loop on a torus is a trivial knot
if |a| ≤ 1 or |b| ≤ 1; otherwise, it is a non-trivial knot. Thus, torus knots can be identified
with a pair of coprime integers (a, b) with absolute values greater than one. The trefoil knot
shown in Figure 3a is a torus knot of type (2, 3).

A longitudinal (Dehn) twist of a torus is a self-homeomorphism hL : T → T with
h((eiθ, eiφ)) = (ei(θ+φ), eiφ). A meridional (Dehn) twist is a self-homeomorphism hM : T → T

with h((eiθ, eiφ)) = (eiφ, ei(φ+θ)). It is to be understood that hL and hM constitute positive
twists while their inverses form negative twists. Intuitively, a longitudinal (resp. meridional)
twist is obtained by cutting the torus along the longitude (resp. meridian), twisting the
resulting cylinder by 360◦ and gluing the cylinder ends together to form a torus. On the
fundamental square of the torus, a longitudinal twist can be visualized as a horizontal shear,

A. Mohammed, N. Jonoska, and M. Saito 1:5

(a) (b)

Figure 4 A longitudinal twist of a torus sending a (−1, 3) loop in a torus (a) to the (2, 3) torus
knot (b).

as illustrated in Figure 4; the upper triangle protruding from the square is to be understood
as coming back on the left to join with the lower triangle. A meridional twist can analogously
be visualized as a vertical shear of the square. A positive longitudinal twist maps a knot of
class (a, b) to a knot of class (a+ b, b) while a positive meridional twist maps a knot of class
(a, b) to a knot of class (a, a+ b) [25, p. 24]. Negative twists map from class (a, b) to classes
(a− b, b) and (a,−a+ b), respectively. A positive longitudinal twist taking a (−3, 1) unknot
to the (2, 3) trefoil knot is shown in Figure 4; Figure 4a shows the unknot, while the trefoil
knot that is produced by the twist is shown in Figure 4b.

2.2 Graphs
Graphs are natural models to represent the branching of nucleic acids and have been
successfully used to design DNA origami polyhedral wireframes [5, 32]. While a surface
models the set of all points in the boundary of a polyhedron, the wireframe composed of
the corners and edges of a polyhedron constitute the graph that is embedded in the surface.
Here, we briefly recall some basic notions related to graphs. We refer the reader to [12] for a
thorough but accessible introduction to graphs on surfaces.

All graphs under consideration in this paper are finite and undirected but, for brevity
of construction, can contain multiedges and loops. It is assumed that all graphs contain at
least one edge. Each edge in a graph is understood to be composed of two half edges which
are incident to the two endpoints of the edge; in the case of a loop edge, the two half edges
meet the same vertex. The degree of a vertex v is the number of half edges incident to it
and is denoted by d(v). A vertex is said to be even if it has an even degree.

For graphs that are embedded in surfaces, it is convenient to think of graphs as topological
spaces which are endowed a 1-dimensional cell structure, where the 0-cells correspond to
vertices and the 1-cells correspond to edges. An embedding g : G → F of a graph G in a
surface F is a topological embedding of G into F ; that is, the image g(G) is homeomorphic
to the topological space G. In other terms, an embedding of a graph is a drawing of the
graph on the surface where no edges cross. The space F \ g(G) consists of disjoint connected
subspaces called faces. An embedding of a graph in a surface is said to be checkerboard
colorable if the faces can be assigned two colors (e.g. black and white) such that, for every
edge, the two faces on the two sides of the edge are assigned distinct colors; if there is an
edge where one face is present on both sides of the edge, the embedding is not checkerboard
colorable. See Figure 8a for a checkerboard-colorable embedding of K7, the complete graph
on seven vertices.

An embedding g : G→ F is said to be cellular if each face is homeomorphic to the open
unit disk. A cellular embedding of a simple graph is said to be triangular if each face is
bounded by three distinct edges. An embedding g : G→ F determines a counter-clockwise
cyclic order ρv of the half edges incident at a vertex v, for each vertex v in the graph. The

DNA 26

1:6 The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes

v

b2

b1

(a)

w u

b2

b1

(b) (c) (d) (e)

Figure 5 Smoothing of an even vertex. (a) Neighboring half edges in a vertex, (b) smoothing
one transition composed of the neighboring half edges, (c) a smoothing of the vertex induced by
a non-intersecting Eulerian circuit, (d) a smoothing induced by an A-trail, (e) a splitting away of
transitions where two transitions intersect.

order ρv is called a rotation at v. The collection ρ = {ρv : v ∈ G} of rotations at vertices is
called a rotation system. In a rotation system, each vertex can be treated as rigid (see [7]
for the notion of rigid vertices). Conversely, if each vertex is rigid, it gives rise to a cellular
embedding g : G→ F for some (closed orientable) surface F .

In wireframe DNA origami [5, 32], the fact that the scaffold comprises one strand of each
double-helical domain is conveniently captured by an Eulerian circuit of an underlying graph.
A circuit in a graph is a closed walk (v0, e0, v1, . . . , vl−1, el−1, v0) with no repeated edges,
where l ≥ 1 is the length of the circuit and each ei, for 0 ≤ i ≤ l − 1, is an edge in the graph
with endpoints vi, vi+1 mod l. An Eulerian circuit is a circuit which visits every edge of the
graph. A graph is said to be Eulerian if it contains an Eulerian circuit. A connected graph
is Eulerian if and only if every vertex is of even degree. Closely related to circuits are cycles
and transitions. A cycle is a circuit with no repeated vertices. For a surface-embedded graph,
a cycle corresponds to a simple loop and the separating/non-separating qualification equally
apply to cycles. A transition is an unordered pair of half edges incident to a common vertex.
A circuit C = (v0, e0, v1, . . . , vl−1, el−1, v0) can also be seen as a collection of transitions
{bi, b′i+1 mod l}, where bi is the half edge of ei incident to vi+1 mod l, and b′i is the half edge
of ei incident with vi, for all i ∈ {0, . . . , l − l}. In this sense, we can say that {bi, b′i+1 mod l}
is contained in C.

Let g : G→ F be an embedding of a graph in a surface. Let v be a vertex ofG with d(v) ≥ 4
and let the rotation ρv determined by g be (b0, . . . , bd(v)−1). Let 0 ≤ i, j, k, l ≤ d(v)− 1 with
i < j, k < l, i < k. A pair of disjoint transitions {bi, bj}, {bk, bl} intersect if i < k < j < l

(cf. Figure 5e). An Eulerian circuit of an Eulerian graph G is said to be non-intersecting
with respect to g : G → F if it contains no intersecting transitions with respect to g (cf.
the collection of transitions of the vertex v in Figure 5a suggested by Figure 5c). It has
been shown that a non-intersecting Eulerian circuit can be found in polynomial time for any
Eulerian graph embedded in a sphere [1, 31], or in any other surface [10, 23]. However, the
computational complexity changes when considering a subclass of non-intersecting Eulerian
circuits called A-trails. Two half edges b1, b2 incident to a vertex v are said to be neighbors
if ρv(b1) = b2 or ρv(b2) = b1 (see Figure 5a for an example). An A-trail is a non-intersecting
Eulerian circuit where every transition is composed of neighboring half edges (cf. Figure 5d).
Deciding whether a surface-embedded graph has an A-trail is known to be NP-complete,
even when restricted to embeddings in a sphere [6].

Let g : G→ F be a graph embedded in a surface. Let v be a vertex of G, d(v) ≥ 4, with
rotation ρv determined by g. Let t = {b1, b2} be a transition composed of neighboring half
edges incident to v. A smoothing of a transition t is the graph embedded in F obtained
from (G, g) by deleting v and adding two new vertices u and w such that b1 and b2 become
incident with u and the rest of the half edges become incident with w. The graph obtained

A. Mohammed, N. Jonoska, and M. Saito 1:7

after smoothing is embedded exactly according to g except in a local disk neighborhood of v
where u and w are embedded in a manner illustrated by the example in Figure 5b. Note that
the two half edges flanking b1 and b2 become neighbors in the new embedding. The notion of
smoothing defined here is a special case of the notion of “splitting away a pair of edges” [10,
p. III.16] catered to non-intersecting Eulerian circuits. Now suppose v is even and its incident
half edges are partitioned into disjoint mutually non-intersecting transitions. The transitions
can be ordered as σ = (t1, . . . , td(v)/2) such that t1 is composed of neighboring half edges,
and each ti+1 is composed of neighboring half edges after ti has been smoothed. A smoothing
of v is the embedded graph g̃v : G̃v → F obtained after such a sequence σ of smoothings of
transitions. Two possible smoothings of the vertex v in Figure 5a are shown in Figures 5c
and 5d. We note that smoothings of a vertex are in bijection with crossingless chord diagrams.
The number of possible smoothings of a vertex v is the Catalan number Ck = 1

k+1
(2k
k

)
, where

k = d(v)
2 . A smoothing of a non-intersecting Eulerian circuit γ is the embedded cycle graph

γ̃ obtained after smoothing all the vertices according to the transitions in γ. The smoothed
Eulerian circuit γ̃ is unique up to isotopy. Figures 5c and 5d illustrate smoothings of a vertex
based on a non-intersecting Eulerian circuit and an A-trail, respectively.

Having established the concepts, the general scheme of discussion is as follows: we are
given an Eulerian graph G embedded in a surface F and a non-intersecting Eulerian circuit
γ; then F is embedded in R3. In notation, this is described as: γ → G

g
↪→ F

f
↪→ R3.

We then ask whether f(γ̃) is an unknot or a non-trivial knot. We present results where
f(γ̃) is an unknot in Section 3 and results where f(γ̃) is a non-trivial knot in Section 4. When
f(γ̃) is an unknot, the regular unknotted scaffold can be routed according to γ; otherwise
either a knotted scaffold must be used, or a different unknotted non-intersecting Eulerian
circuit must be chosen. If all f(γ̃) are non-trivial knots, a knotted scaffold is necessary for
routing the embedded graph using a non-intersecting Eulerian circuit.

3 Unknotted Scaffold Routings

When the available scaffold is unknotted, as typically is the case, we aim to find unknotted
non-intersecting Eulerian circuits. In this section, we show that checkerboard colorability
of an embedding is a sufficient condition for an embedded graph to contain an unknotted
non-intersecting Eulerian circuit, thus allowing design using the typical unknotted scaffold
strand.

It is well-known that a graph embedded in a sphere is Eulerian if and only if the embedding
is checkerboard colorable [10, Theorem III.68]. Although an Eulerian graph embedded in
a positive genus surface may not be checkerboard colorable, we show that checkerboard
colorability affects the topology of Eulerian circuits on surface-embedded graphs. It has
been shown that [24, Theorem 3.6] all A-trails (if any exist) on checkerboard-colorable
torus graphs are unknotted, for any embedding f : T → R3. We first generalize this result
to all non-intersecting Eulerian circuits using a more topological proof. We then show a
general result for all surfaces: every checkerboard-colorable surface-embedded graph admits
an unknotted non-intersecting Eulerian circuit.

Non-intersecting Eulerian circuits are unknotted on a sphere due to the Jordan-Schönflies
theorem [25, p. 9], which states that every simple loop in a sphere is separating and bounds a
disk. On the other hand, simple loops in a torus can either be separating or non-separating.
A separating loop in a torus bounds a disk on one side and thus one strategy to find an
unknotted non-intersecting Eulerian circuit on a torus graph is to search for a separating
non-intersecting Eulerian circuit. In Lemma 2, we show that the checkerboard colorability

DNA 26

1:8 The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes

(a) (b)

Figure 6 A checkerboard coloring viewed locally at a vertex (a) and how it induces a checkerboard
coloring when the vertex is smoothed (b).

of a graph embedding is a sufficient criteria for its non-intersecting Eulerian circuits to be
separating. To prove Lemma 2, we first prove in Lemma 1 that checkerboard colorability is
preserved under smoothing and unsmoothing of vertices.

I Lemma 1. Let g : G→ F be an embedding of an Eulerian graph G in a surface F and let
g̃v : G̃v → F be an embedding obtained by smoothing a vertex v of G. Then, g is checkerboard
colorable if and only if g̃v is checkerboard colorable.

Proof. The proof idea is sufficiently illustrated by the example in Figure 6, where a check-
erboard coloring of g (Figure 6a) is extended to a checkerboard coloring of g̃v (Figure 6b).
In words, since any smoothing of v is by definition obtained as a sequence of smoothings of
transitions (composed of neighboring edges), it is sufficient to prove the claim for a smoothing
of a transition. In a checkerboard coloring, if the faces that merge when smoothing a trans-
ition are distinct, they are colored alike before they merge. In this manner, a checkerboard
coloring of g extends to a checkerboard coloring of g̃v when the faces are merged. When
unsmoothing a transition, if a face is split into two faces, the new faces inherit the color of
the parent for a checkerboard coloring of the new embedding. In this way, a checkerboard
coloring of g̃v naturally induces a checkerboard coloring of g. J

We can now prove Lemma 2 that relates checkerboard colorability of graph embeddings
and the separating property of non-intersecting Eulerian circuits.

I Lemma 2. Let g : G→ F be an embedding of an Eulerian graph G in a surface F . The
following claims hold for every smoothed non-intersecting Eulerian circuit γ̃ of (G, g):
(i) If g is checkerboard colorable, then γ̃ is separating;
(ii) If g is not checkerboard colorable, then γ̃ is non-separating.

Proof. (i) Let γ be an arbitrary non-intersecting Eulerian circuit of (G, g). If g is check-
erboard colorable, then γ̃ is checkerboard colorable by Lemma 1. In a checkerboard
coloring of γ̃ the two sides of γ̃ must be colored differently; thus the two sides must be
in distinct faces and γ̃ must be separating.

(ii) By the contrapositive, suppose there exists a separating smoothed non-intersecting
Eulerian circuit γ̃. Since γ̃ is separating, the two separate regions can be colored
distinctly to obtain a checkerboard coloring of γ̃. By Lemma 1, unsmoothing γ̃ to g
gives rise to a checkerboard coloring of g. J

Lemma 2 equips us to generalize Theorem 3.6 of [24] to non-intersecting Eulerian circuits
on checkerboard-colorable torus graphs, as stated in Theorem 3.

I Theorem 3. If g : G→ T is a checkerboard-colorable cellular embedding of an Eulerian
graph in a torus, then f(γ̃) is an unknot for any non-intersecting Eulerian circuit γ of (G, g)
and any embedding f : T → R3.

A. Mohammed, N. Jonoska, and M. Saito 1:9

(a) (b)

Figure 7 A checkerboard-colorable graph embedding (b) obtained by doubling the edges of a
graph which has a triangular embedding in a torus (a).

Proof. By Lemma 2, any smoothed non-intersected Eulerian circuit γ̃ of (G, g) is separ-
ating. A separating loop in a torus bounds a disk and thus γ̃ bounds a disk. Under any
homeomorphism of T , γ̃ still bounds a disk and thus f(γ̃) is an unknot for any embedding
f : T → R3 of the torus in R3. J

For checkerboard-colorable embeddings on a torus, by Theorem 3, any non-intersecting
Eulerian circuit can be used as a route for an unknotted scaffold strand. Theorem 3 suggests
the existence of graphs where the unknottedness of non-intersecting Eulerian circuits can
be guaranteed purely from the adjacency structure of the abstract graph, i.e., independent
of the graph embedding in the torus and of the torus’ embedding in R3. An infinite family
of graphs with this property is presented in Proposition 4. For such families of graphs, the
possibility of routing using unknotted scaffold strand is completely determined from the
abstract graph.

I Proposition 4. There exist an infinite family G of Eulerian graphs such that for all G ∈ G,
and all g : G→ T , and all f : T → R3, and all non-intersecting Eulerian circuit γ of (G, g),
f(γ̃) is an unknot.

Proof. Let G be the family of graphs obtained by doubling the edges of graphs with triangular
embedding in a torus. Let G be a graph in G. One example is shown in Figure 7b. Consider
any pair e1, e2 of double edges with endpoints u and v. With slight abuse of notation, let ρu
(resp. ρv) denote the cyclic counter-clockwise order of the edges, instead of half edges, incident
with u (resp. v). In any embedding g of G in a torus, either ρu(e1) = e2 or ρu(e2) = e1.
If ρu(e1) = e2 then ρv(e2) = e1; otherwise ρv(e1) = e2. Thus, double edges such as e1, e2
bound faces in g. These faces can be shaded black, while the other faces are left white, to get
a checkerboard coloring of g (cf. Figure 7b). The claim then follows from Theorem 3. J

Theorem 3 crucially depends on the surface being a torus, as a separating loop in a
surface of genus greater than one need not bound a disk. For instance, the blue loop
in the double torus in Figure 2b is separating but bounds punctured tori on both sides.
In Section 4 (Theorem 8), we employ this property to construct families of checkerboard-
colorable embeddings in Fn (n ≥ 2) with knotted non-intersecting Eulerian circuits. Although
checkerboard colorability is not sufficient to guarantee that all non-intersecting Eulerian
circuits are unknotted for embeddings in surfaces of genus at least two, it is sufficient to
ensure that there is at least one unknotted non-intersecting Eulerian circuit, as shown in
Theorem 5. Thus, checkerboard-colorable graph embeddings can generally be routed using
an unknotted scaffold.

DNA 26

1:10 The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes

(a)

e′p

e′ e

ep

(b)

e′p

e′ e

ep

(c) (d)

Figure 8 An unknotted non-intersecting Eulerian circuit of K7 in a torus. (a) a checkerboard-
colorable embedding of K7 in a torus, (b) circuits bounding the black faces, (c) merging circuits, (d)
the unknotted non-intersecting Eulerian circuit.

I Theorem 5. If g : G→ F is a checkerboard-colorable cellular embedding of an Eulerian
graph G in a surface F , then there exists a non-intersecting Eulerian circuit γ of G such
that f(γ̃) is unknotted for any embedding f : F → R3.

Proof. Let g : G → F be a checkerboard-colorable embedding of an Eulerian graph in a
surface F . An example is given by the embedding of K7 in the torus shown in Figure 8a. Let
the faces of g be colored with black and white. By the definition of checkerboard coloring,
each edge is incident to exactly one black face and one white face. Thus, the collection
of all the boundary circuits of the black faces form a non-intersecting circuit partition of
G. Because the embedding is cellular, the circuits bound disjoint closed disks after a small
isotopy. This is illustrated in Figure 8b for the embedding of K7 in a torus.

To convert the non-intersecting circuit partition into a non-intersecting Eulerian circuit γ,
we perform a re-splicing of disjoint circuits one by one at each vertex (see Lemma 7 of [23]
for details). We go through the edges incident to the vertex in the cyclic order they appear
in the embedding, and if two neighboring edges e and e′ are not in the same circuit, we
re-splice the two circuits so that e and e′ are paired to each other and e’s previous pair ep is
paired with e′’s previous pair e′p (cf. Figure 8c). This re-pairing merges the two circuits and
reduces the number of circuits in the circuit partition, while keeping the circuit partition
non-intersecting. A repeated application of this operation for every vertex in the graph yields
a non-intersecting Eulerian circuit γ.

Now consider any embedding f : F → R3. To prove f(γ̃) is an unknot, we show by
induction that γ̃ bounds a disk. In particular, we prove that, after each merge of circuits
through a re-pairing of edges, each circuit in the circuit partition, up to isotopy, bounds
a closed disk. The base case is handled by the circuit partition formed from the black
faces. Suppose by induction hypothesis that all the circuits before the pairing of e and e′
bound a disk. The re-pairing joins the two disjoint disks by a band, which results in a new
disk that the new circuit bounds (cf. Figure 8c). For the embedding of K7 in a torus, the
non-intersecting Eulerian circuit, and the disk that it bounds can be seen in Figure 8d. J

A. Mohammed, N. Jonoska, and M. Saito 1:11

(a) (b) (c)

Figure 9 Knotted Eulerian circuits on an embedding of K5 in the torus. (a) an embedding of K5

in a torus, (b) a non-intersecting Eulerian circuit which is a (4, 5) torus knot, (c) a non-intersecting
Eulerian circuit which is a (2, 3) torus knot.

4 Knotted Scaffold Routings

In Section 3, we saw that checkerboard-colorable embeddings are closely related to the
existence of unknotted scaffold routings. In this section, we study the relationship between
non-checkerboard colorable embeddings and the existence of knotted scaffold routings.

A non-intersecting Eulerian circuit γ on a surface-embedded graph can be knotted due
to the embedding g of the graph in the surface or due to the embedding f of the surface
in R3. Moreover, f(γ̃) can be either an unknot or a non-trivial knot for a fixed embedding
g, depending on f . For instance, consider the Eulerian graph B formed by the crossing of
the meridian and longitude of the torus. That is, B is the bouquet of two circles with one
vertex and two loop edges and its embedding g is the natural one where the vertex is placed
at the crossing point of the meridian and longitude (recall Figure 3b). Note that B has two
Eulerian circuits which have identical structure; let γ be one of these circuits. In a standard
embedding of the torus (Figure 3b), f(γ̃) is an unknot. However, if the torus is embedded in
R3 as a tubular neighborhood of a non-trivial knot K such that the longitude is equivalent
to K, then f(γ̃) is also equivalent to K and thus non-trivial. The construction generalizes to
graph embeddings that are not checkerboard colorable, in the sense described in Theorem 6.

I Theorem 6. Suppose g : G→ F is an embedding of an Eulerian graph G in a surface F
and suppose that g is not checkerboard colorable. Then, for any non-intersecting Eulerian
circuit γ, there exists an embedding f : F → R3 such that f(γ̃) is a non-trivial knot.

Proof. Let g : G → F be an embedding that is not checkerboard colorable, and γ be a
non-intersecting Eulerian circuit. By Lemma 2, γ̃ is a non-separating loop in F . Hence, after
applying a homeomorphism of F , γ̃ can be considered to be positioned as a longitudinal loop
in F (a curve that goes around a hole, just like a longitude of a torus). Then we can choose
an embedding f : F → R3 such that this longitudinal loop γ̃ is knotted.

The observation above, taking γ̃ as longitudinal as a consequence of g being not checker-
board colorable, can be deduced using the first homology groups in homology theory; here
the technical details are omitted. J

We now focus on the case where the embedding of the surface is standard. It has been
shown that the bouquet of two circles can be embedded in a standard torus so that all the
non-intersecting Eulerian circuits are knotted [24, Figure 11]. Figure 9a shows an embedding
of the toroidal graph K5 where all its non-intersecting Eulerian circuits are knotted. A
non-intersecting Eulerian circuit of this embedding of K5 is either a (4, 5) torus knot (e.g.
Figure 9b) or a (2, 3) torus knot (e.g. Figure 9c). Theorem 7 characterizes Eulerian graphs
which admit toroidal embeddings where all the non-intersecting Eulerian circuits are knotted.

DNA 26

1:12 The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes

Theorem 7 shows the existence of embeddings of Eulerian graphs where a routing as a
non-intersecting Eulerian circuit would necessitate the use of knotted scaffold strands. It
also supports the suggestion in [9] that knotted scaffolds could expand the possible set of
DNA origami meshes that can be constructed.

I Theorem 7. An Eulerian graph admits a cellular embedding in a standardly embedded
torus where all smoothed non-intersecting Eulerian circuits are knotted if and only if it admits
a cellular embedding in a torus that is not checkerboard colorable.

Proof. (=⇒) By the contrapositive, if all the embeddings of a graph in a torus are
checkerboard colorable, then by Theorem 3, each of these embeddings will contain an
unknotted non-intersecting Eulerian circuit.

(⇐=) Let g : G → T be a cellular embedding of an Eulerian graph in a torus such
that the embedding is not checkerboard colorable. The main idea of the proof is to use
self-homeomorphisms of the torus to twist g so that each of the non-intersecting circuits
becomes a non-trivial knot when the torus is embedded in a standard fashion in R3. This is
possible because the number of non-intersecting Eulerian circuits is finite and each smoothed
non-intersecting Eulerian circuit is non-separating (Lemma 2). A concrete combination of
twists is presented next.

Since every (smoothed) non-intersecting Eulerian circuit of (G, g) is non-separating, each
oriented non-intersecting Eulerian circuit can be represented by a pair (a, b) of integers
with (a, b) 6= (0, 0) and gcd(a, b) = 1. Let the ith oriented non-intersecting Eulerian circuit
(in some order) be represented with (ai, bi). Let k, l,m be natural numbers representing
the twists that are to be determined. Applying k longitudinal twists to T converts the
embedding g to an embedding g1 so that the Eulerian circuits become simple loops of type
(ai + kbi, bi). Next, applying l meridional twists converts g1 to an embedding g2 so that
the circuits become simple loops of type (ai + kbi, lai + (lk + 1)bi). Finally, applying m
longitudinal twists converts g2 to an embedding g3 so that the circuits are simple loops of
type ((1 + lm)ai + (k+mlk+m)bi), lai + (k+ 1)bi)). We thus only need to choose k, l,m so
that |(1 + lm)ai + (k +mlk +m)bi)| > 1 and |lai + (k + 1)bi)| > 1, for all i; that is, k, l,m
are to be chosen so that all the circuits become non-trivial knots. For this purpose, we can
choose l = 2,m = 1 and k = maxi:bi 6=0{ 2|ai|

|bi| + 1} if there exists a bi 6= 0, or k = 1 if bi = 0
for all i. Since (ai, bi) 6= (0, 0), we need to consider three cases:
(i) ai = 0 and bi 6= 0. Then, |(1 + lm)ai + (k+mlk+m)bi)| = |(3k+ 1)bi| = (3k+ 1)|bi| ≥

(6 |ai|
|bi| + 4)|bi| = 4|bi| ≥ 4. Additionally, |lai + (k + 1)bi)| = |(k + 1)bi| = (k + 1)|bi| ≥

(2|ai|
|bi| + 2)|bi| ≥ 2.

(ii) ai 6= 0 and bi = 0. Then |(1 + lm)ai + (k + mlk + m)bi)| = 3|ai| ≥ 3. Moreover,
|lai + (k + 1)bi)| = 2|ai| ≥ 2.

(iii) ai 6= 0 and bi 6= 0. Then |(1 + lm)ai + (k + mlk + m)bi)| = |3ai + (3k + 1)bi| ≥
|(3k + 1)bi| − |3ai| = (3k + 1)|bi| − |3ai| ≥ (6 |ai|

|bi| + 4)|bi| − 3|ai| = 3|ai| + 4|bi| ≥ 7.
And |lai + (k + 1)bi)| = |2ai + (k + 1)bi| ≥ |(k + 1)bi| − |2ai| = (k + 1)|bi| − |2ai| ≥
(2|ai|
|bi| + 2)|bi| − 2|ai| = 2|bi| ≥ 2. J

Note that the twists in the proof of Theorem 7 need not change the rotation system
determined by the embedding. This highlights the geometric nature of the problem, in
the sense that the existence of knotted non-intersecting Eulerian circuits cannot generally
be completely determined from the combinatorial structure of the embedding. In fact,
the original embedding g may have no knotted non-intersecting Eulerian circuits at all,
as is the case for instance, with the standard embedding of the bouquet of two circles in
the standard torus. Nevertheless, Theorem 7 provides a mechanism to check whether an

A. Mohammed, N. Jonoska, and M. Saito 1:13

Eulerian graph admits an embedding in a torus where all the non-intersecting Eulerian
circuits are knotted, as one can algorithmically determine whether a graph admits a cellular
embedding in a torus that is not checkerboard colorable. Indeed, this can be done by going
through the finite number of possible rotation systems of the graph, obtaining the cellular
embeddings corresponding to the rotation systems via standard face-tracing algorithms in
topological graph theory [12, p. 115], checking that the embedding is in a torus from the
generalized Euler’s polyhedron formula [12, p. 27, p. 122], and then checking for checkerboard
colorability. Determining checkerboard colorability of a cellular embedding is equivalent to
deciding whether the geometric dual is bipartite, which can be done through a standard
breadth-first-search algorithm.

For surfaces of genus greater than one, even checkerboard-colorable embeddings can
have knotted non-intersecting Eulerian circuits, as demonstrated by the infinite family in
Theorem 8. Note that in Theorem 8, the claim is not that all non-intersecting Eulerian circuits
are knotted but that there is at least one that is knotted. The problem of characterizing
graphs which admit cellular embeddings in a standardly embedded surface Fn, n ≥ 2, so that
all non-intersecting Eulerian circuits are knotted is left for future work. Theorem 8 suggests
that, unlike the case of the torus, checkerboard-colorable embeddings of graphs in surfaces of
genus larger than one can possibly be routed and constructed using knotted scaffold strands.

I Theorem 8. Let Fn be an orientable closed surface of genus n that is standardly embedded
in R3.
(i) For all n ≥ 2, there exist infinitely many Eulerian graphs that have checkerboard-

colorable cellular embeddings in Fn with knotted non-intersecting Eulerian circuits.
(ii) For any non-trivial knot K, there exists an Eulerian graph G cellularly embedded with

a checkerboard coloring in Fn for some n ≥ 1 having K as a non-intersecting Eulerian
circuit of G.

Proof. First consider the case n = 2 for (i). Let S be an orientable surface with a connected
boundary obtained from a disk by attaching two twisted unknotted bands. An example is
depicted in Figure 10. The twists must be full (versus half) twists to obtain an orientable
surface. The boundary ∂S of S is a non-trivial knot K.

Figure 10 Two twisted bands attached to a disk.

Let F = Fn (n = 2) be the surface obtained by thickening S. Figure 11 depicts this
process. In Figure 11a a portion of a band is depicted. The top image of Figure 11a is a
cross sectional view of a part of a band depicted at the bottom. In Figure 11b a thickened
band is depicted with its cross section shown at the top. The boundary after thickening is a
tube. By applying this process to S, we obtain a standard surface F as depicted in Figure 12.
The knot K can be regarded as staying on F as in Figure 12, indicated by a red curve. Note
that K divides F into two parts (in Figure 11b the two parts are the front and back faces).

DNA 26

1:14 The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes

(a) (b)

Figure 11 Thickening a band (a) to a tube (b).

Next we construct a graph G cellularly embedded in F by finger moves as depicted in
Figure 13. In Figure 13a, a dotted arc connects two parts of K. Push one end of K along the
arc, and at the other end make it intersect in two double points as indicated in Figure 13b.
After one finger move we obtain a 4-regular graph with two vertices. In Figure 14, it is
shown that a finger move preserves the checkerboard colorability as in Figure 14b, and there
is a choice of a non-intersecting Eulerian circuit that is the original knot K as illustrated in
Figure 14c by a blue curve. By repeating finger moves across non-cellular faces, we obtain a
cellularly embedded graph G with K as a non-intersecting Eulerian circuit.

Figure 12 The boundary surface after thickening contains the original knot.

This construction can be performed for any even n ∈ N. For an odd n, we add a trivial
handle to Fn−1 as indicated in Figure 15a. At this point G becomes non-cellular. To obtain
a new cellularly embedded graph, we perform two finger moves as depicted in Figure 15b.
The new graph retains the checkerboard colorability and the property of having K as a
non-intersecting Eulerian circuit, as desired. The construction allows for infinitely many such
graphs, for example by performing additional finger moves, or by choosing different arcs for
finger moves. This completes the proof of (i).

(a) (b)

Figure 13 A finger move (b) along a dotted arc (a).

(ii) It is known that any knot K can be realized as the boundary of an orientable surface
S, such that a thickened S is a standard handlebody. Hence a similar argument applies. J

A. Mohammed, N. Jonoska, and M. Saito 1:15

(A) (B) (C)(a)(A) (B) (C)(b)(A) (B) (C)(c)

Figure 14 A checkerboard coloring before (a) and after a finger move (b). A choice of non-
intersecting Eulerian circuit after a finger move (c).

(a) (b)

Figure 15 A handle added to make the genus odd (a) and finger moves to make the embedding
cellular (b).

5 Conclusion

Eulerian circuits are emerging as broadly applicable model of strand routings in biomolecular
technology [4, 5, 20, 21, 32]. For circular strands, the knot type of the strand routing in
the design must conform to the knot type of the strand in solution. Herein, we studied the
knottedness of strand routings modelled by non-intersecting Eulerian circuits of Eulerian
graphs embedded in surfaces.

We showed a strong connection between checkerboard-colorable graph embeddings in
surfaces and the knottedness of non-intersecting Eulerian circuits. We extended the result
of [24] by showing that all non-intersecting Eulerian circuits are unknotted for checkerboard-
colorable torus graphs (Theorem 3). Thus, checkerboard-colorable torus graphs can be
routed (as non-intersecting Eulerian circuits) using unknotted scaffolds but they cannot
be routed using knotted ones. For checkerboard-colorable embeddings in surfaces of genus
greater than one, we showed that there is at least one unknotted non-intersecting Eulerian
circuit (Theorem 5). Thus, all checkerboard-colorable graph embeddings can be routed
using unknotted scaffold strands. We proved that checkerboard-colorable embedded graphs
in surfaces of genus greater than one can have knotted Eulerian circuits (Theorem 8) and
hence knotted scaffolds can potentially be used to construct checkerboard colorable graph
embeddings in non-toroidal (and non-spherical) surfaces. For torus graphs, we characterized
Eulerian graphs which admit an embedding in a standard torus where all non-intersecting
Eulerian circuits are knotted. These are precisely the Eulerian graphs which admit embeddings
in a torus that are not checkerboard colorable (Theorem 7). This shows the existence of
Eulerian graphs embedded in surfaces that require knotted scaffolds for construction. The
results presented can suggest, for instance, reconditioning of graphs to meet checkerboard
colorability so that unknotted scaffold routings can potentially be found. In general, knot
theory of non-intersecting Eulerian circuits is also of theoretical interest, as suggested in [24].

We note that, although the problem was motivated by DNA-origami scaffold routings, the
results presented could be applied for any routing of a circular strand that can be modelled
as a non-intersecting circuit in a surface-embedded graph. This is because a circuit in a

DNA 26

1:16 The Topology of Scaffold Routings on Non-Spherical Mesh Wireframes

graph can be considered as an Eulerian circuit of a subgraph. The study of surface-embedded
graphs significantly expands the systematic ways of designing nanostructures, and the study
of the topology of circuits on such graphs can be a useful guide in the design of topologically
complex 3D nanostructures.

References
1 Jaromir Abrham and Anton Kotzig. Construction of planar Eulerian multigraphs. In Proc.

Tenth Southeastern Conf. Comb., Graph Theory, and Computing, pages 123–130, 1979.
2 Leonard M. Adleman. Molecular computation of solutions to combinatorial problems. Science,

266(5187):1021–1024, 1994. doi:10.1126/SCIENCE.7973651.
3 Mark A. Armstrong. Basic Topology. Springer New York, 1983.
4 Erik Benson, Abdulmelik Mohammed, Alessandro Bosco, Ana I. Teixeira, Pekka Orponen,

and Björn Högberg. Computer-aided production of scaffolded DNA nanostructures from
flat sheet meshes. Angewandte Chemie International Edition, 55(31):8869–8872, 2016. doi:
10.1002/anie.201602446.

5 Erik Benson, Abdulmelik Mohammed, Johan Gardell, Sergej Masich, Eugen Czeizler, Pekka
Orponen, and Björn Högberg. DNA rendering of polyhedral meshes at the nanoscale. Nature,
523(7561):441–444, 2015. doi:10.1038/nature14586.

6 Samuel W. Bent and Udi Manber. On non-intersecting Eulerian circuits. Discrete Applied
Mathematics, 18(1):87–94, 1987. doi:10.1016/0166-218X(87)90045-X.

7 Dorothy Buck, Egor Dolzhenko, Nataša Jonoska, Masahico Saito, and Karin Valencia. Genus
ranges of 4-regular rigid vertex graphs. Electronic Journal of Combinatorics, 22(3):P3.43,
2015.

8 Junghuei Chen and Nadrian C. Seeman. Synthesis from DNA of a molecule with the connectivity
of a cube. Nature, 350(6319):631–633, 1991. doi:10.1038/350631a0.

9 Joanna A. Ellis-Monaghan, Greta Pangborn, Nadrian C. Seeman, Sam Blakeley, Conor Disher,
Mary Falcigno, Brianna Healy, Ada Morse, Bharti Singh, and Melissa Westland. Design
tools for reporter strands and DNA origami scaffold strands. Theoretical Computer Science,
671:69–78, 2017. doi:10.1016/j.tcs.2016.10.007.

10 Herbert Fleischner. Eulerian Graphs and Related Topics. Part 1, Volume 1, volume 45 of
Annals of Discrete Mathematics. North-Holland Publishing Co., Amsterdam, 1990.

11 R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F. Schmidt,
and A. J. Turberfield. Rapid chiral assembly of rigid DNA building blocks for molecular
nanofabrication. Science, 310(5754):1661–1665, 2005. doi:10.1126/science.1120367.

12 Jonathan L. Gross and Thomas W. Tucker. Topological Graph Theory. Dover Publications,
INC, 2001. Dover reprint, original published in 1987.

13 Yu He, Tao Ye, Min Su, Chuan Zhang, Alexander E. Ribbe, Wen Jiang, and Chengde
Mao. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature,
452(7184):198–201, 2008. doi:10.1038/nature06597.

14 Ryosuke Iinuma, Yonggang Ke, Ralf Jungmann, Thomas Schlichthaerle, Johannes B. Woehr-
stein, and Peng Yin. Polyhedra self-assembled from DNA tripods and characterized with 3D
DNA-PAINT. Science, 344(6179):65–69, 2014. doi:10.1126/science.1250944.

15 Nataša Jonoska, Stephen A. Karl, and Masahico Saito. Creating 3-dimensional graph structures
with DNA. In Harvey Rubin and David H. Wood, editors, DNA Based Computers III, volume 48
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 123–136.
AMS and DIMACS, 1999.

16 Nataša Jonoska and Masahico Saito. Boundary components of thickened graphs. In Nataša
Jonoska and Nadrian C. Seeman, editors, 7th International Workshop on DNA-Based Com-
puters, volume 2340 of Lecture Notes in Computer Science, pages 70–81. Springer, 2001.
doi:10.1007/3-540-48017-X_7.

https://doi.org/10.1126/SCIENCE.7973651
https://doi.org/10.1002/anie.201602446
https://doi.org/10.1002/anie.201602446
https://doi.org/10.1038/nature14586
https://doi.org/10.1016/0166-218X(87)90045-X
https://doi.org/10.1038/350631a0
https://doi.org/10.1016/j.tcs.2016.10.007
https://doi.org/10.1126/science.1120367
https://doi.org/10.1038/nature06597
https://doi.org/10.1126/science.1250944
https://doi.org/10.1007/3-540-48017-X_7

A. Mohammed, N. Jonoska, and M. Saito 1:17

17 Hyungmin Jun, Tyson R. Shepherd, Kaiming Zhang, William P. Bricker, Shanshan Li, Wah
Chiu, and Mark Bathe. Automated sequence design of 3D polyhedral wireframe DNA origami
with honeycomb edges. ACS Nano, 13(2):2083–2093, 2019. doi:10.1021/acsnano.8b08671.

18 Hyungmin Jun, Xiao Wang, William P. Bricker, and Mark Bathe. Automated sequence design
of 2D wireframe DNA origami with honeycomb edges. Nature Communications, 10(5419):1–9,
2019. doi:10.1038/s41467-019-13457-y.

19 Hyungmin Jun, Fei Zhang, Tyson Shepherd, Sakul Ratanalert, Xiaodong Qi, Hao Yan, and
Mark Bathe. Autonomously designed free-form 2D DNA origami. Science Advances, 5(1),
2019. doi:10.1126/sciadv.aav0655.

20 Vid Kočar, John S. Schreck, Slavko Čeru, Helena Gradišar, Nino Bašić, Tomaž Pisanski,
Jonathan P. K. Doye, and Roman Jerala. Design principles for rapid folding of knotted DNA
nanostructures. Nature Communications, 7:10803, 2016. doi:10.1038/ncomms10803.

21 Ajasja Ljubetič, Fabio Lapenta, Helena Gradišar, Igor Drobnak, Jana Aupič, Žiga Strmšek,
Duško Lainšček, Iva Hafner-Bratkovič, Andreja Majerle, Nuša Krivec, Mojca Benčina, Tomaž
Pisanski, Tanja Ćirković Veličković, Adam Round, José María Carazo, Roberto Melero, and
Roman Jerala. Design of coiled-coil protein-origami cages that self-assemble in vitro and in
vivo. Nature Biotechnology, 35(11):1094–1101, 2017. doi:10.1038/nbt.3994.

22 Abdulmelik Mohammed. Algorithmic Design of Biomolecular Nanostructures. PhD thesis,
Aalto University, 2018.

23 Abdulmelik Mohammed and Mustafa Hajij. Unknotted strand routings of triangulated meshes.
In Robert Brijder and Lulu Qian, editors, DNA Computing and Molecular Programming,
volume 10467 of Lecture Notes in Computer Science, pages 46–63. Springer, 2017.

24 Ada Morse, William Adkisson, Jessica Greene, David Perry, Brenna Smith, Jo Ellis-Monaghan,
and Greta Pangborn. DNA origami and unknotted A-trails in torus graphs. arXiv preprint
arXiv:1703.03799, 2017. arXiv:/arxiv.org/pdf/1703.03799.pdf.

25 Dale Rolfsen. Knots and Links. AMS Chelsea Publishing, 2003. Reprint, original print in
1976.

26 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006. doi:10.1038/nature04586.

27 Phiset Sa-Ardyen, Nataša Jonoska, and Nadrian C. Seeman. Self-assembling DNA graphs.
Natural Computing, 2:427–438, 2003. doi:10.1023/B:NACO.0000006771.95566.34.

28 Nadrian C. Seeman. Nucleic-acid junctions and lattices. Journal of Theoretical Biology,
99(2):237–247, 1982. doi:10.1016/0022-5193(82)90002-9.

29 Nadrian C. Seeman and Neville R. Kallenbach. Design of immobile nucleic acid junctions.
Biophysical Journal, 44(2):201–209, 1983. doi:10.1016/S0006-3495(83)84292-1.

30 William M. Shih, Joel D. Quispe, and Gerald F. Joyce. A 1.7-kilobase single-stranded DNA
that folds into a nanoscale octahedron. Nature, 427(6975):618–621, 2004. doi:10.1038/
nature02307.

31 Mu-Tsun Tsai and Douglas B. West. A new proof of 3-colorability of Eulerian triangulations.
Ars Mathematica Contemporanea, 4(1):73–77, 2011.

32 Rémi Veneziano, Sakul Ratanalert, Kaiming Zhang, Fei Zhang, Hao Yan, Wah Chiu, and
Mark Bathe. Designer nanoscale DNA assemblies programmed from the top down. Science,
352(6293):1534, 2016. doi:10.1126/science.aaf4388.

33 Gang Wu, Nataša Jonoska, and Nadrian C. Seeman. Construction of a DNA nano-object dir-
ectly demonstrates computation. Biosystems, 98(2):80–84, 2009. doi:10.1016/j.biosystems.
2009.07.004.

DNA 26

https://doi.org/10.1021/acsnano.8b08671
https://doi.org/10.1038/s41467-019-13457-y
https://doi.org/10.1126/sciadv.aav0655
https://doi.org/10.1038/ncomms10803
https://doi.org/10.1038/nbt.3994
http://arxiv.org/abs//arxiv.org/pdf/1703.03799.pdf
https://doi.org/10.1038/nature04586
https://doi.org/10.1023/B:NACO.0000006771.95566.34
https://doi.org/10.1016/0022-5193(82)90002-9
https://doi.org/10.1016/S0006-3495(83)84292-1
https://doi.org/10.1038/nature02307
https://doi.org/10.1038/nature02307
https://doi.org/10.1126/science.aaf4388
https://doi.org/10.1016/j.biosystems.2009.07.004
https://doi.org/10.1016/j.biosystems.2009.07.004

Simplifying Chemical Reaction Network
Implementations with Two-Stranded DNA
Building Blocks
Robert F. Johnson
California Institute of Technology, Pasadena, CA, USA
rfjohnso@dna.caltech.edu

Lulu Qian
California Institute of Technology, Pasadena, CA, USA

Abstract
In molecular programming, the Chemical Reaction Network model is often used to describe real or
hypothetical systems. Often, an interesting computational task can be done with a known hypothet-
ical Chemical Reaction Network, but often such networks have no known physical implementation.
One of the important breakthroughs in the field was that any Chemical Reaction Network can be
physically implemented, approximately, using DNA strand displacement mechanisms. This allows us
to treat the Chemical Reaction Network model as a programming language and the implementation
schemes as its compiler. This also suggests that it would be useful to optimize the result of such a
compilation, and in general to find effective ways to design better DNA strand displacement systems.

We discuss DNA strand displacement systems in terms of “motifs”, short sequences of elementary
DNA strand displacement reactions. We argue that describing such motifs in terms of their inputs
and outputs, then building larger systems out of the abstracted motifs, can be an efficient way of
designing DNA strand displacement systems. We discuss four previously studied motifs in this
abstracted way, and present a new motif based on cooperative 4-way strand exchange. We then show
how Chemical Reaction Network implementations can be built out of abstracted motifs, discussing
existing implementations as well as presenting two new implementations based on 4-way strand
exchange, one of which uses the new cooperative motif. The new implementations both have two
desirable properties not found in existing implementations, namely both use only at most 2-stranded
DNA complexes for signal and fuel complexes and both are physically reversible. There are reasons
to believe that those properties may make them more robust and energy-efficient, but at the expense
of using more fuel complexes than existing implementation schemes.

2012 ACM Subject Classification Computer systems organization → Molecular computing

Keywords and phrases Molecular programming, DNA computing, Chemical Reaction Networks,
DNA strand displacement

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.2

Funding Robert F. Johnson: NSF Graduate Research Fellowship.
Lulu Qian: NSF grant CCF-1908643.

Acknowledgements We would like to thank Chris Thachuk and Erik Winfree for helpful discussions
on new DNA strand displacement motifs and optimization thereof.

1 Introduction

What does it mean to optimize a molecular system? One particular field in molecular
programming is currently faced with that question. The Chemical Reaction Network (CRN)
model is often used to describe systems of interacting molecules. The model can either
describe real systems, to analyze their behavior and computational function, or describe
hypothetical systems, with known computational function but perhaps no known physical

© Robert F. Johnson and Lulu Qian;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 2; pp. 2:1–2:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5340-8347
mailto:rfjohnso@dna.caltech.edu
https://orcid.org/0000-0003-4115-2409
https://doi.org/10.4230/LIPIcs.DNA.2020.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Simplifying CRN Implementations with Two-Stranded DNA Building Blocks

example. It was therefore a significant breakthrough when Soloveichik et al. showed that any
CRN, real or hypothetical, can be approximately implemented by a system of DNA strand
displacement (DSD) mechanisms [34]. This allows the Chemical Reaction Network model
to be used as a programming language, where programs can be written in the abstract and
compiled into physical molecules. Other CRN-to-DSD implementation schemes promptly
followed [27, 4], each with their own strengths and weaknesses. Some have been implemented
experimentally, with variable – but mostly good – degrees of success and robustness [7, 36].
Given a programming language and a concept of compiling it, one would naturally want to
optimize the result of that compilation and ask, can we do better than the best implementation
schemes so far?

So what does it mean to optimize a DSD system? We focus on DNA-only (or “enzyme-
free”) systems using standard toehold-mediated 3-way [45, 48] and 4-way [25, 10] strand
displacement mechanisms. First, such DSD CRN implementations so far require “fuel species”
(or “fuels”), DNA complexes that have to be synthesized by whatever method and added
to the DSD system at the start. Fuel complexes that mediate a reaction by interacting
with signal strands are often referred to as “gates”, though this is not usually formally
defined. When testing DSD circuits in the lab, fuels are chemically synthesized, annealed,
and manually added to the test tube; in the hypothetical future where DSD is used in
autonomous molecular devices, those devices would need some as-yet-undecided mechanism
to synthesize or input fuels. Any property of the fuel species, such as length of strands,
number of strands, or number of fuels, that makes them more costly to synthesize, or more
difficult to synthesize without undesired byproducts, is thus a target for optimization. Second,
no physical DSD system ever does exactly what the formal DSD model says it should. Some
of this is due to improbable, but not impossible, “leak reactions” not included in the formal
model, while some is due to the aforementioned undesired byproducts or other imperfect
synthesis of the fuels [36].

In terms of robust DSD systems and their fuels, we can take a lesson from experiments
with seesaw gates [28, 40]. For a two-reactant two-product reaction, the Soloveichik et al.
translation scheme uses 3-stranded fuels [34], the Cardelli scheme 4-stranded fuels [4], and
the Qian et al. scheme [27] (in the corrected version) a 5-stranded or a 7-stranded fuel. The
seesaw gates compute logic gates which are less complex than chemical reactions, but they
do so with only single strands and 2-stranded complexes [28]. Possibly because of this, they
have been used to build larger circuits and to be robust to experimental imperfections, such
as unpurified strands [40].

For this purpose, we have been investigating implementing CRNs using only 2-stranded
fuels. Simple DSD systems, such as detecting a desired sequence [5] or AND gates [16], are
often 2-stranded, in addition to the seesaw gates mentioned above. There is even a class of
hairpin-based systems that construct larger structures from single-stranded initial complexes
[44], including the Hybridization Chain Reaction often used in imaging [11], and a design
for hairpin-based logic circuits [12]. However, none of these are a full Chemical Reaction
Network implementation, or even an equivalently powerful dynamical system – while logic
gates are universal for computing functions, CRNs have a dynamical behavior that logic
gates in general do not.

We focus in this work on DSD systems using only 2-stranded fuels and where all mechan-
isms are physically reversible. We focus on 2-stranded fuels for the robustness concerns above,
as well as the theoretical question of whether 2-stranded complexes are sufficient for complex
behavior (as discussed further in [18]). We focus on physical reversiblility because it reduces
the quantity of fuel consumed by reversible reactions. Many interesting computations and

R. F. Johnson and L. Qian 2:3

... ...

(a) (b)

(c) (d)
(t,s;m)

[transient]

(s,t;n) (n,m;t)*

(m,n;s)*

Figure 1 Four previously studied reversible 2-stranded DSD motifs, shown through common
examples. (a) Toehold exchange; (b) Symmetric cooperative hybridization; (c) Asymmetric cooper-
ative hybridization; (d) 4-way strand exchange, with a diagram and names used in the abstracted
notation we will introduce.

dynamical behaviors require reversible reactions. For example, logically reversible operations
allow computation with arbitrarily low energy if they are implemented with physically
reversible reactions [2, 3], such as DSD implementations of stack machines [27], Gray code
counters [9], and space-bounded computations [37]. DNA buffers [29] use reversible reactions
to maintain stable [30] and dynamical [31] spatial patterns. DNA circuits can be reset to
process new input signals when reversible reactions are used for restoring fuel molecules in
response to reset signals [14, 13, 12]. (Existing implementations often are or can be made
physically reversible; Qian et al. [27] demonstrate it explicitly, while simple methods to make
other existing schemes [34, 4] physically reversible is an exercise for the interested reader.)

In this work, we discuss ways of implementing CRNs using only 2-stranded fuels and
where all mechanisms are physically reversible. We discuss four known 2-stranded DSD
motifs that can serve as building blocks for such implementations, and we present a new
cooperative 4-way strand exchange motif that starts with 2-stranded complexes. We discuss
two ways of implementing general CRNs with these motifs, and tradeoffs between the two
schemes. Finally, we show how, using CRN bisimulation, these schemes can be proven correct
assuming the assumptions of the formal DSD model reflect real DSD systems.

We believe that having abstract descriptions of simple motifs will help the design of
complex DSD systems. Whatever complex behavior is desired, it may be easier to implement
by combining the simple logical operations of known motifs. To demonstrate this, we
first discuss the 5 motifs and their behavior on an abstract level, then show how various
CRN implementations can be constructed and comprehended by combining those abstract
behaviors.

2 Two-stranded motifs

We identify five “motifs”, or simple condensed reactions, out of which we build two-stranded
CRN implementations. Four of these motifs have been previously studied, while one is new.
We discuss the properties of each motif in itself, while in Section 3 we will discuss how

DNA 26

2:4 Simplifying CRN Implementations with Two-Stranded DNA Building Blocks

those properties interact when building larger circuits. For building two-stranded CRNs, key
questions about a given motif are what logical operation it represents, whether its outputs
have the form of its inputs and/or the inputs of the other motifs, and whether its outputs
and reverse gates are 2-stranded.

Toehold Exchange

A reversible 3-way strand displacement exchanges which of two strands is bound to a gate
(Figure 1 (a)). The input strand is an unbound toehold-long domain combination, while
the input gate has that long domain bound with that toehold open. The reaction has two
high-level effects. First, the output strand has the same long domain (B, in the figure) in a
different toehold context, and may have different long domains (A versus C) on the other
side of its newly open toehold. Second, the gate now has a different toehold open, which may
allow interaction with adjacent domains. See for example the first CRN implementations
[34], seesaw gates [28], and various others [47].

Cooperative Hybridization (symmetric)

Two 3-way strand displacement reactions occur simultaneously on either side of a gate
complex, meeting in the middle and allowing the two halves to dissociate only if both inputs
are present (Figure 1 (b)). The input strands are unbound toehold-long domain combinations,
while the output signals have the same long domains adjacent to different open toeholds. See
for example Cherry et al.’s winner-take-all circuits [8]. This mechanism, like the two other
cooperative motifs, is “cooperative” in the sense that it requires two inputs to simultaneously,
“cooperatively”, displace parts of the gate complexes for a productive reaction to happen.

Cooperative Hybridization (asymmetric)

Two 3-way strand displacement reactions occur simultaneously on either side of a gate
complex, meeting in the middle and releasing an output strand only if both inputs are present
(Figure 1 (c)). The input strands are unbound toehold-long domain combinations, while the
output strand has those two long domains in combination with a different toehold; but with
only one toehold, barring complex mechanisms either one but only one of them can react.
However, even if both inputs are single strands the reverse gate is a 3-stranded complex, so
this motif is not “reversible with 2-stranded fuels”. Introduced and tested by Zhang [46].

4-way Strand Exchange

Two 2-stranded complexes bind by two toeholds and exchange strands via 4-way branch
migration (Figure 1 (d)). The inputs are 2-stranded complexes sharing a common long
domain, with complementary pairs of open toeholds and (if the reaction is reversible) a closed
toehold on each. The outputs are 2-stranded complexes in the same form, with the formerly
open toeholds now paired up and closed and the formerly closed toeholds now split and open.
Experimentally tested by Dabby [10]. Various mechanisms, simple and complex, based on
4-way strand exchange have been used experimentally in a number of devices [41, 24, 5, 16].

4-way Cooperative Hybridization

Two 4-way branch migrations happen on either side of a gate, meeting in the middle and
separating into two intermediate complexes (Figure 2). Observe that the “top” toeholds
(t and t) on the initial X and Y complexes end up on one of the two products, while the

R. F. Johnson and L. Qian 2:5

“bottom” toeholds (s∗ and v∗) end up on another. That is, each of the two products carries
only half of the information of the original reactants, and products of different instances of
this reaction can interact in the reverse reaction. If for example the (t, t) top half of this
reaction interacted with a (v∗, s∗) bottom half from a different instance, while the (s∗, v∗)
bottom half interacted with an (a, a) top half, the result would be X and Y complexes with
the same form as the original reactants but different toehold combinations. The effect of such
a quadruplet of reactions is strand exchange between one pair of complexes coupled to strand
exchange between the other, simultaneously changing the open toehold combinations on
distinct long domains. This is important because affecting distinct long domains in a coupled
manner was the one thing that, under a set of additional restrictions that this mechanism
satisfies, our previous work [18] showed that uncooperative 4-way strand exchange could not
do.

While the other four mechanisms discussed have been experimentally demonstrated to
work, cooperative 4-way branch migration has not yet been tested. In particular, the final
dissociation step requires 3 toeholds separated by two 4-way junctions to dissociate. We
think this is plausible, based on Dabby’s observation that 2 toeholds separated by one 4-way
junction can dissociate [10]; or, if this is not the case, that there is some 0 < Length(l) ≤ 6
for which that dissociation is possible and reversible. It is possible that Length(l) = 0 (i.e. no
third toehold) will give the desired behavior, but from Dabby’s results, “closed” (both toehold
lengths at least 2) 4-way branch migration seems to proceed much faster than “open” 4-way
branch migration. Thus we suspect that Length(l) 6= 0, and in particular Length(l) ≥ 2,
will give the desired fast and reversible reaction kinetics.

An abstraction for 4-way-based mechanisms

Common to both uncooperative and cooperative 4-way strand exchange is a basic signal
complex: two strands, one long domain bound to its complement flanked by one bound
pair of complementary toeholds and one open pair of non-complementary toeholds, as seen
repeatedly in Figures 1 (d) and 2. As both types of 4-way strand exchange transform
complexes of this form into complexes of the same form with different domain combinations,
we find an abstract description of this type of molecule useful. For example, we write the
molecule with long domain X, open 3’ (end of the DNA) toehold t, open 5’ toehold s∗,
and bound toehold m as X(t, s; m). Note that the semicolon distinguishes open toeholds
t, s∗ available for interaction from the closed (m, m∗) toehold pair that cannot interact with
other complexes, but can be opened for interaction by a reaction. When the long domain is
unimportant or universal, such as a system composed entirely of uncooperative 4-way strand
exchange, we omit it and write simply (t, s; m). For experimental reasons we prefer to have
strands made up of only non-∗ or only ∗ domains, and design non-∗ and ∗ domains to have
distinct sequence properties (for example, using a three-letter code [28]). Then X(t, s; m)
unambiguously describes the top reactant of Figure 1 (d), with s understood to mean an open
s∗ toehold. With that assumption, the top product in Figure 1 (d) would be X(m, n; s)∗,
with the first toehold listed still being on the 3’ end of its strand, but now understood to mean
an open m∗ toehold. Without that assumption, we might use a more general notation where
those molecules are X(t, s∗; m) and X∗(m∗, n; s∗) respectively. The circle abstraction shown
in said figures is also useful to illustrate strand exchange reactions. Each circle represents a
strand with one long domain and two toeholds, where half-faded circles represent strands
made of ∗ domains. Thin connections (both figures) represent strands bonded directly,
requiring matching domains; thick connections labelled with a toehold domain (horizontal
in Figure 2) represent strands connected by gate strands from a cooperative 4-way strand
exchange reaction, which can be between any domains so long as the appropriate gate exists.

DNA 26

2:6 Simplifying CRN Implementations with Two-Stranded DNA Building Blocks

X(t,s;m) [signal]

[fuel]

Y(v,t;n)* [fuel]

[transients]

(m,l*,n;X:t,Y*:t*)
[intermediate] (n*,l,m*;Y*:v*,X:s)

[intermediate]

Figure 2 A cooperative 4-way branch migration mechanism. Initial X and Y complexes combine
with a gate that matches their open toehold combinations, producing two 3-stranded complexes
each with one of the strands of X and one of the strands of Y . These complexes can recombine
with each other or with the corresponding products of a similar reaction, which in the latter case
will produce X and Y complexes with different toehold combinations. On the right, this reaction is
shown in abstracted form. The cooperative 4-way CRN is based on groups of four of these reactions,
two in the reverse of the direction shown, where in the reverse reactions each product of one forward
reaction interacts with the corresponding product of the other forward reaction. Complexes are
labeled with names in the abstract notation if applicable, and their role in the cooperative 4-way
CRN implementation scheme. “Signal” and “fuel” complexes have 2 strands as desired; stable
“intermediate” complexes can have any number of strands; and “transient” complexes will quickly
decay to one side or the other of the reaction. The marking of X(t, s, m) as signal and Y (v, t, n)∗ as
fuel is based on the CRN implementation scheme presented in Section 3, but in general the two can
be any combination of signal and fuel, or could be intermediates of a more complex pathway.

In Figure 2 we introduce a similar notation for the “intermediate” products of a cooperative
4-way strand exchange reaction, in that case (m, l∗, n; X : t, Y ∗ : t∗) and (n∗, l, m∗; Y ∗ :
v∗, X : s). Again the semicolon distinguishes the three open toeholds, listed from 5’ to 3’
end, from the bound long domain-toehold pairs; each of those pairs is listed as the domains
that appear first in 5’ to 3’ order. Thus the full reaction is

X(t, s; m) + Y (v, t, n)∗
 (m, l∗, n; X : t, Y ∗ : t∗) + (n∗, l, m∗; Y ∗ : v∗, X : s)

assuming the appropriate fuel (top center), which we do not give a notation to and omit
from the reaction, is present.

3 Chemical Reaction Network implementations

The above motifs can be combined in various ways to construct implementations of arbitrary
Chemical Reaction Networks. To implement arbitrary CRNs, the reaction A + B → C + D

(or A + B → C and A → B + C) is sufficient; for arbitrary reversible CRNs, the reaction
A + B
 C (or a fortiori, A + B
 C + D) is sufficient [26]. From a logical perspective,
“join” and “fork” operations are sufficient; the above reactions represent those logics.

R. F. Johnson and L. Qian 2:7

We take modular CRN bisimulation [19] as the definition of a “correct” CRN implement-
ation scheme. Given that a scheme is correct, there are a number of other conditions that
would be useful to satisfy for various reasons, theoretical and practical. CRN implementations
typically have signal complexes that are the primary form of a given formal species, and
fuel complexes that are assumed to be always present and drive the reactions. For a CRN
to have “only 2-stranded inputs”, as desired in this work, means that all signal complexes
and fuel complexes are single strands or 2-stranded. We implicitly assume that we are
discussing systematic CRN implementations, where we give a template for a generic reaction
and construct larger CRNs by combining independent copies of the template with different
domain identities. In such a case we can ask how the number of toehold domains scales,
i.e. whether different reactions can use the same toeholds or have to create new ones; as
toeholds are limited in length by thermodynamics, a system with O(n) toeholds may be able
to implement small CRNs but a system with O(1) toeholds is better if possible. Whether a
scheme requires cooperative mechanisms is worth noting. Finally, it is desirable for reversible
reactions (A + B
 C + D) to be implemented with physically reversible mechanisms, so
that going forward and backward multiple times does not consume fuel; to be truly reversible,
the 2-stranded fuel criterion should include the reverse fuels as well. For further discussion
and formal definitions of these criteria, see [18], which also contains a proof that no CRN
implementation scheme using only 4-way branch migration can satisfy all of them.

Toehold Exchange-based CRNs

Existing CRN implementations [34, 27, 4] are often based on toehold exchange mechanisms
where e.g. A + B → C is implemented by a toehold exchange reaction with A opening a
toehold on the gate for a reaction involving B. These schemes can be understood in light of
the motifs previously discussed: the property of toehold exchange that a different toehold
on the gate is opened allows join and fork logic. The property that the released strand has
a different long domain/toehold combination is used to pass signals between gates. The
same shared-toehold logic could also be used with 4-way branch migration instead of toehold
exchange, similar to the 4-way-based AND gate [16] (although that gate itself uses a toehold
hidden in a loop rather than a toehold shared between adjacent long domains, which is a
line of investigation to be explored elsewhere).

Such a shared-toehold mechanism seems to require a 3-stranded complex for the gate
molecule to achieve join logic, so it does not meet the goal of this paper, but is worth
mentioning as the current state of the art. Another relevant mechanism using toehold
exchange is the seesaw gate [28], where transduction logic combines with threshold logic
to check whether the total amount of signal is more than either A or B can produce by
itself. This achieves join logic for macroscopic signals but cannot satisfy criteria such as
CRN bisimulation for individual molecules.

3-way Cooperative CRNs

The symmetric cooperative hybridization is A + B
 C + D logic, if we consider the same
long domain in a different toehold context to be a different signal. Since toehold exchange
reactions depend on the combination of long domain and toehold, this is valid. Thachuk
et al. use a combination of symmetric cooperative hybridization and toehold exchange to
implement leakless A + B → C + D reactions in exactly this manner [38, 39, 42]).

From our perspective, the only problem is that symmetric cooperative hybridization with
1-stranded inputs produces 2-stranded products, and toehold exchange with a 2-stranded
input signal produces a 3-stranded reverse gate. For physically reversible reactions, this

DNA 26

2:8 Simplifying CRN Implementations with Two-Stranded DNA Building Blocks

Table 1 List of species for the 4-way O(n)-toeholds reaction A + B
 C + D, in the abstracted
notation. Species in columns A, B, C, and D represent the given formal species. Species in columns
labeled ∅ are fuels and assumed to be always present. ai domains are toeholds specific to species A,
and similarly for B, C, and D; ri domains are specific to the reaction A + B
 C + D; this ensures
no crosstalk with other pathways.

A ∅ B ∅
(a1, a2; a3) (a2, a1; r5) (b1, b2; b3) (b2, b1; r6)
(r5, a3; a1)∗ (a3, r5; a2)∗ (r6, b3; b1)∗ (b3, r6; b2)∗

(a3, r5; r2)∗ (b3, r6; r1)∗

(r2, a1; r5) (a1, r2; a3) (r1, b1; r6) (b1, r1; b3)
(a1, r2; r3) (b1, r1; r4)

(r3, r5; r2)∗ (r5, r3; a1)∗ (r4, r6; r1)∗ (r6, r4; b1)∗

(r5, r3; r1)∗ (r6, r4; r2)∗

(r1, r2; r3) (r2, r1; r5) (r2, r1; r4) (r1, r2; r6)

C ∅ D ∅
(c1, c2; c3) (c2, c1; r3) (d1, d2; d3) (d2, d1; r4)
(c3, r3; c2)∗ (r3, c3; c1)∗ (d3, r4; d2)∗ (r4, d3; d1)∗

(r3, c3; r2)∗ (r4, d3; r1)∗

(c2, r2; r3) (r2, c2; c3) (d2, r1; r4) (r1, d2; d3)
(r2, c2; r4) (r1, d2; r3)

(r3, r4; r2)∗ (r4, r3; c2)∗ (r4, r3; r1)∗ (r3, r4; d2)∗

3-stranded gate would be considered a reverse fuel, and the system would not be made with
entirely 2-stranded fuels. Thus this mechanism meets all our criteria for irreversible CRNs,
but not reversible CRNs.

4-way-based CRNs with O(n) toeholds

The two-toehold-mediated 4-way strand exchange mechanism effectively exchanges toeholds
on a common long domain; note that while the inputs both have t and s toeholds, the
outputs have one with only t and one with only s. When a signal complex goes through
multiple copies of this reaction with different fuels, it can turn any combination of toeholds
into any other combination. When two signals with complementary pairs of toeholds meet
in this reaction, it produces two signals with different combinations in A + B
 C + D

logic. So for example, we can turn (a1, a2; a3) into (r1, r2; r3) and (b1, b2; b3) into (r2, r1; r4),
which will react and produce (r3, r4; r2)∗ and (r4, r3; r1)∗, which can be turned into (c1, c2; c3)
and (d1, d2; d3) respectively. Thus two-toehold-mediated 4-way strand exchange alone can
implement arbitrary reversible CRNs if we allow O(n) toeholds.

A list of all species involved is given in Table 1. Note that fuels (r2, r1; r5) and (r1, r2; r6)
can interact, but the products can do nothing but reverse the reaction, and the same is true
for (r4, r3; c2)∗ with (r3, r4; d2)∗.

4-way Cooperative CRNs

The cooperative 4-way strand exchange motif in Figure 2, when its products recombine
with products of a different instance of the reaction, simultaneously exchanges the toehold
combinations on a complex with long domain X and a complex with long domain Y . If

R. F. Johnson and L. Qian 2:9

A(t, s; m) is the signal molecule for A, then simultaneously breaking the (t, s) combination on
A and putting together a (u, v) combination on some long domain R is effectively converting
A(t, s; m)
 R(v, u; n)∗ if all other molecules involved are considered fuels. Where R is
unique to the reaction A + B
 C + D, we can convert the four signal species from their
own long domains to the R domain, then use a two-toehold-mediated 4-way strand exchange
reaction to implement the reaction itself. In contrast to the previous implementation scheme,
that each reaction has a different long domain allows the toeholds (u, v, etc.) to be universal,
using O(1) toeholds at the expense of requiring cooperative hybridization. In the notation
used in Figure 2, this quadruplet of reactions (with the appropriate top-center fuels assumed
present but not written) is

A(t, s; m) + R(s, u; n)∗
 (m, l∗, n; A : t, R∗ : u∗) + (n∗, l, m∗ : R∗ : s∗, A : s)
A(u, v; m) + R(v, t; n)∗
 (m, l∗, n; A : u, R∗ : t∗) + (n∗, l, m∗ : R∗ : v∗, A : v)
(m, l∗, n; A : u, R∗ : t∗) + (n∗, l, m∗ : R∗ : s∗, A : s)
 A(u, s; m) + R(s, t; n)∗

(m, l∗, n; A : t, R∗ : u∗) + (n∗, l, m∗ : R∗ : v∗, A : v)
 A(t, v; m) + R(v, u; n)∗

where A(t, s; m) and R(v, u; n)∗ are the designated meaningful complexes. The other 2-
stranded complexes – A(u, v; m), A(u, s; m), A(t, v; m), R(s, u; n)∗, R(v, t; n)∗, and R(s, t; n)∗

are treated as fuels and assumed always present. If this motif works as hypothesized and
without leak, R(v, u; n)∗ can only be produced by consuming A(t, s; m) and vice versa.

As this scheme is based on the O(n)-toehold scheme, we reuse the mechanism from Table 1.
Assume all complexes in that list have long domain R, unique to the reaction A+B
 C +D.
To the toeholds listed, add toeholds t, s, m, n, l, and let a3 = b3 = c3 = d3 = n∗, with u

and v in the above quadruplet renamed appropriately. Then use cooperative 4-way strand
exchange to convert A(t, s; m)
 (R∗(a∗

1, a∗
2; n))∗ = R(a1, a2; n∗) (the fuel will have R∗

on the “top” strand with A), B(t, s; m)
 R(b1, b2; n∗), C(t, s; m)
 R(c1, c2; n∗), and
D(t, s; m)
 R(d1, d2; n∗). This gives a mechanism with one long domain per species, one
long domain per reaction, and a total of 19 toeholds. Because the long domains now indicate
species/reaction identity, the toeholds can be shared between all species and reactions without
crosstalk.

4 Correctness of the schemes

The correctness of the schemes can be verified by CRN bisimulation, a formal definition of
correctness of a CRN implementation that implies several desirable properties [19]. Below
we give an intuitive explanation of why the schemes are correct that parallels the definition
of CRN bisimulation; readers familiar with CRN bisimulation can fill in the details of the
formal proof. Intuitively, CRN bisimulation consists of interpreting each DNA complex as
zero or more formal species, then confirming that the behavior of the formal system and the
interpreted DSD system are the same from any initial state. That is to say, any reaction of
the DNA complexes should be interpreted as a reaction of formal species that is either valid
or trivial (“anything that can happen, should”), and any reaction of the formal interpretation
of a set of DNA complexes should be possible, perhaps after some trivial reactions, starting
from that set of DNA complexes (“anything that should happen, can”).

Table 1 is effectively a proof of the correctness of the O(n)-toehold 4-way-based scheme
according to CRN bisimulation [19]. For each A + B
 C + D reaction, construct a copy
of this mechanism with unique ri domains, but any ai domains in common with other
reactions using the same formal species; reactions with fewer reactants or products can
have one of A, B, C, or D as a fuel; reactions with more reactants or products should

DNA 26

2:10 Simplifying CRN Implementations with Two-Stranded DNA Building Blocks

be broken into steps with at most 2 of each [26]. DNA complexes in columns labeled A,
B, C, or D are interpreted as one copy of the corresponding species, while complexes in
columns labeled ∅ are fuels. Formally, fuels are assumed always present and removed from
the enumerated implementation CRN before bisimulation verification; so for example the
physical pathway (r2, a2; r3) + (a2, r2; r5)
 (r5, r3; r2)∗ + (r3, r5; a2)∗ would be represented
as (r2, a2; r3)
 (r5, r3; r2)∗, and then interpreted as the trivial reaction A
 A. Using
the abstraction for 4-way strand exchange notation, the table is structured such that each
non-fuel species can interact with the (usually two) fuel species in the same row, producing
the corresponding fuel+non-fuel pair above or below it; that the final A + B forms react
to produce the final C + D forms, while their fuels also have a spurious-but-harmless
reaction with each other; and that, given the uniqueness of the domains, no other intra-
module or inter-module reactions exist. In CRN bisimulation, we say that a reaction
interpreted as, for example, A
 A is “trivial”, and in this case all reactions are trivial
except (r1, r2; r3) + (r2, r1; r4)
 (r3, r4; r2)∗ + (r4, r3; r1)∗ which is interpreted as the desired
reaction A + B
 C + D. With (a1, a2; a3) etc. as the signal species, one can see that the
signal species can implement the formal reaction, and any intermediate species can turn into
the common species with the same interpretation by interacting with only fuels. Intuitively
this is a good argument for correctness, and readers familiar with CRN bisimulation will
recognize the above as a sufficient condition for modular CRN bisimulation with respect to
the signal species as common species.

For the cooperative 4-way scheme, the same bisimulation logic applies. In the notation
used in Figure 2 and Section 3, in e.g. A(t, s; m)
 R(a1, a2, n∗) the signal complex A(t, s; m),
output complex R(a1, a2, n∗), and intermediate (m, l∗, n; A : t, R : a2) all interpreted as A,
while the other three intermediates and all the fuels will each be interpreted as nothing. From
there the bisimulation proof follows the O(n)-toeholds case. In this case the lack of crosstalk
between modules is assured by the distinct long domains; even if toehold combinations are
identical, different long domains will make the reaction unproductive. The remaining caveat
is with the cooperative 4-way mechanism itself. We designed the system so that the toeholds
along the cooperative reaction are always m, l, n. Thus, we assume that intermediates of
the cooperative pathway will all have the matching m, l, n toeholds, and all three toeholds
will bind and dissociate as a unit. Whether this is actually true or not will be determined
experimentally; if not, there may be problematic crosstalk between, for example, an (A, R1)
and (A, R2) pair of long domains which leads to temporarily duplicated signals. If it is true,
however, then the result of such a crosstalk will be a release of one side with the other
suspended, one of which carries the signal, and the system will be correct according to
bisimulation.

5 Discussion

We discussed the use of DNA Strand Displacement to implement Chemical Reaction Networks,
and the desire to create larger, more robust DSD CRN implementations. We then presented
2-stranded DSD motifs which we used to build 2-stranded CRN implementations, in the hope
that they would be more robust than those which rely on 3-or-more-stranded complexes.
There is some indication that 2-stranded DSD systems in general are more robust (as we
briefly reviewed in the introduction), but whether these particular systems are more robust
than the current state-of-the-art CRN implementations is an open question.

We can compare Soloveichik et al.’s original CRN scheme [34, 36] (which is reasonably
representative of other toehold exchange schemes), our O(n)-toehold 4-way strand exchange
scheme, and our (O(1)-toehold) cooperative 4-way strand exchange scheme. While 3- and

R. F. Johnson and L. Qian 2:11

4-stranded complexes may be less robust, in other aspects the toehold exchange scheme is
simpler than our two schemes: it uses one long domain per formal species, one long domain per
reaction, and can be done with a single, universal toehold. To go from reactant signal species
to product signal species in the toehold exchange scheme (as implemented experimentally
[36]) takes 4 toehold exchange steps in an A + B → C + D reaction, and generalizes naturally
to n + m steps in an n-reactant m-product reaction. In contrast, while the cooperative 4-way
scheme also uses one long domain per formal species and reaction, as described above it
uses 19 universal toeholds and takes 30 reactions for A + B → C + D. (By “reaction” we
mean roughly one condensed reaction as described in Peppercorn [17], generalized to include
trimolecular reactions. So one toehold exchange or one 2-toehold-mediated 4-way strand
exchange is one reaction, as is the cooperative 4-way strand exchange shown in Figure 2;
note that using that mechanism to exchange e.g. A(t, s; m)
 R(a1, a2; n∗) takes 4 such
reactions.) The O(n)-toeholds scheme takes only 14 reactions for A + B → C + D, but with
one universal long domain it takes 3 toeholds per species and 6 per reaction, which may
run out of design space for large CRNs. Also, 14 reactions is still much more than 4. These
pathways are not provably optimal; we suspect they can be reduced to less than 14 and 30,
but still more than 4.

The increase in number of reactions to implement A + B → C + D may just be a cost
of using 2-stranded complexes. The fundamental question is, given a complex of a certain
size, how much information can it store? How can complexes meant to represent A, C,
and an E from another reaction all present different enough open and bound domains that
none can undergo a reaction meant for a different one? With 3-stranded complexes and
toehold exchange, the long domain identity and open toehold does this very efficiently. With
2-stranded complexes and 4-way strand exchange, we use pairs of toehold identity to represent
signal identity, which means we need extra reactions to (a) change the toehold identity one
strand at a time, and (b) ensure that intermediates of different pathways don’t try to pass
through the same toehold combination.

This question, then, connects to another work of ours. The final result of that work was
a proof that a systematic CRN implementation that satisfies certain desirable conditions,
including using only 2-stranded inputs and the other conditions discussed at the beginning
of Section 3, cannot be done with DSD using only 4-way branch migration [18]. The steps
taken to prove that result involve questions of what sort of transformations are possible
with DSD reactions, and how and whether the possibility of certain transformations can
depend on the features of the strands. This “dependence” is in the sense that the release of
a strand in toehold exchange “depends on” the incoming strand having the correct toehold
and long domain identities, or the way we have to structure our CRN implementations so
that production of the output species depends on the inputs having the correct toehold
identity pairs. Thus, further exploration of that line of investigation might help answer
some of the questions suggested by the mechanisms in this paper, of whether 2-stranded
complex based CRN implementations inherently require longer pathways, and quantitatively
how much longer. Moreover, the investigation could be expanded to include other CRN
implementations involving enzymes. For example, transcriptional circuits [20, 21], PEN-DNA
toolbox [23, 1], primer exchange reaction cascades [22], and strand-displacing polymerase
systems [35, 32, 33] all have elementary reactions that can be abstracted as motifs and
are candidates for formal analysis. In these systems, it is possible to start with fewer and
simpler fuel molecules (e.g. single strands only) while more complex molecules can be
generated by DNA polymerase to carry out desired reactions. In addition to 3-way and 4-way
strand displacement with standard toeholds, other mechanisms could also be investigated,

DNA 26

2:12 Simplifying CRN Implementations with Two-Stranded DNA Building Blocks

including remote [15], associative [6], and allosteric [43] toeholds. These mechanisms may
allow further simplification of the implementations as they enrich the design space with
alternative representations of signals.

It is also worth discussing how we discovered the cooperative 4-way strand exchange
motif and associated CRN implementation in the process of working out the impossibility
proof in [18]. We give an intuitive list of those conditions at the beginning of Section 3,
but readers desiring a formal list of conditions should see [18]. Two of the conditions are
using only O(1) toeholds and not using cooperative mechanisms, so both the O(n) toeholds
uncooperative 4-way strand exchange based scheme and the O(1) toeholds cooperative
4-way strand exchange based scheme satisfy all but one of the conditions, each failing to
satisfy a different one. Thus in some sense this paper is the positive counterpart to the
previous negative result, forming a tight upper and lower bound on the complexity of DSD
implementations of CRNs. But this pair of results also has implications for design of DSD
systems. The cooperative 4-way strand exchange motif and the process by which we came
up with it is potentially a proof of concept that, in systematically eliminating possibilities
in DSD systems, we can find new motifs in whatever remains. How exactly this can be
generalized we do not know, but if it can be, it may make the process of designing DSD
systems faster and more systematic.

Another aspect worth mentioning is the focus on motifs before building up CRN imple-
mentations. We argued that each of the 5 motifs has certain abstract behaviors, and that
larger systems such as CRN implementations can be thought of in terms of those behaviors.
When building large systems, it is much easier if one can build mid-sized building blocks
out of the fundamental units, then build larger systems out of the mid-sized building blocks.
Motifs take that role between fundamental DSD steps (bind, unbind, 3-way branch migration,
4-way branch migration) and systems on the scale of CRN implementations. To the extent
that we were able to describe our CRN implementations in terms of the motifs rather than
in terms of the underlying DSD steps, this approach should be considered for future DSD
system design.

References
1 Nathanaël Aubert, Clément Mosca, Teruo Fujii, Masami Hagiya, and Yannick Rondelez.

Computer-assisted design for scaling up systems based on DNA reaction networks. Journal of
The Royal Society Interface, 11(93):20131167, 2014.

2 Charles H Bennett. Logical reversibility of computation. IBM journal of Research and
Development, 17(6):525–532, 1973.

3 Charles H Bennett. The thermodynamics of computation—a review. International Journal of
Theoretical Physics, 21(12):905–940, 1982.

4 Luca Cardelli. Two-domain DNA strand displacement. Mathematical Structures in Computer
Science, 23(02):247–271, 2013.

5 Sherry Xi Chen, David Yu Zhang, and Georg Seelig. Conditionally fluorescent molecular
probes for detecting single base changes in double-stranded DNA. Nature Chemistry, 5(9):782,
2013.

6 Xi Chen. Expanding the rule set of DNA circuitry with associative toehold activation. Journal
of the American Chemical Society, 134(1):263–271, 2012.

7 Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, 2013.

8 Kevin M Cherry and Lulu Qian. Scaling up molecular pattern recognition with DNA-based
winner-take-all neural networks. Nature, 559(7714):370, 2018.

R. F. Johnson and L. Qian 2:13

9 Anne Condon, Alan J Hu, Ján Maňuch, and Chris Thachuk. Less haste, less waste: on
recycling and its limits in strand displacement systems. Interface Focus, 2(4):512–521, 2012.

10 Nadine L Dabby. Synthetic molecular machines for active self-assembly: prototype algorithms,
designs, and experimental study. PhD thesis, California Institute of Technology, February
2013.

11 Robert M Dirks and Niles A Pierce. Triggered amplification by hybridization chain reaction.
Proceedings of the National Academy of Sciences, 101(43):15275–15278, 2004.

12 Abeer Eshra, Shalin Shah, Tianqi Song, and John Reif. Renewable DNA hairpin-based logic
circuits. IEEE Transactions on Nanotechnology, 18:252–259, 2019.

13 Sudhanshu Garg, Shalin Shah, Hieu Bui, Tianqi Song, Reem Mokhtar, and John Reif. Renew-
able time-responsive DNA circuits. Small, 14(33):1801470, 2018.

14 Anthony J Genot, Jonathan Bath, and Andrew J Turberfield. Reversible logic circuits made
of DNA. Journal of the American Chemical Society, 133(50):20080–20083, 2011.

15 Anthony J Genot, David Yu Zhang, Jonathan Bath, and Andrew J Turberfield. Remote
toehold: a mechanism for flexible control of DNA hybridization kinetics. Journal of the
American Chemical Society, 133(7):2177–2182, 2011.

16 Benjamin Groves, Yuan-Jyue Chen, Chiara Zurla, Sergii Pochekailov, Jonathan L Kirschman,
Philip J Santangelo, and Georg Seelig. Computing in mammalian cells with nucleic acid strand
exchange. Nature Nanotechnology, 11(3):287, 2016.

17 Casey Grun, Karthik Sarma, Brian Wolfe, Seung Woo Shin, and Erik Winfree. A domain-level
DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary
structures. CoRR, 2015. URL: http://arxiv.org/abs/1505.03738, arXiv:1505.03738.

18 Robert F. Johnson. Impossibility of sufficiently simple chemical reaction network imple-
mentations in DNA strand displacement. In Ian McQuillan and Shinnosuke Seki, editors,
Unconventional Computation and Natural Computation, pages 136–149. Springer International
Publishing, 2019. doi:10.1007/978-3-030-19311-9_12.

19 Robert F Johnson, Qing Dong, and Erik Winfree. Verifying chemical reaction network
implementations: A bisimulation approach. Theoretical Computer Science, 2018. doi:10.
1016/j.tcs.2018.01.002.

20 Jongmin Kim, John Hopfield, and Erik Winfree. Neural network computation by in vitro
transcriptional circuits. In Advances in Neural Information Processing systems, pages 681–688,
2005.

21 Jongmin Kim and Erik Winfree. Synthetic in vitro transcriptional oscillators. Molecular
Systems Biology, 7(1):465, 2011.

22 Jocelyn Y Kishi, Thomas E Schaus, Nikhil Gopalkrishnan, Feng Xuan, and Peng Yin. Pro-
grammable autonomous synthesis of single-stranded DNA. Nature Chemistry, 10(2):155,
2018.

23 Kevin Montagne, Raphael Plasson, Yasuyuki Sakai, Teruo Fujii, and Yannick Rondelez.
Programming an in vitro DNA oscillator using a molecular networking strategy. Molecular
Systems Biology, 7(1):466, 2011.

24 Richard A Muscat, Jonathan Bath, and Andrew J Turberfield. A programmable molecular
robot. Nano letters, 11(3):982–987, 2011.

25 Igor G Panyutin and Peggy Hsieh. The kinetics of spontaneous DNA branch migration.
Proceedings of the National Academy of Sciences, 91(6):2021–2025, 1994.

26 Tomislav Plesa. Stochastic approximation of high-molecular by bi-molecular reactions. arXiv
preprint arXiv:1811.02766, 2018.

27 Lulu Qian, David Soloveichik, and Erik Winfree. Efficient Turing-universal computation
with DNA polymers. In Yasubumi Sakakibara and Yongli Mi, editors, DNA Computing and
Molecular Programming, volume 6518 of Lecture Notes in Computer Science, pages 123–140.
Springer, 2011.

28 Lulu Qian and Erik Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332(6034):1196–1201, 2011.

DNA 26

http://arxiv.org/abs/1505.03738
http://arxiv.org/abs/1505.03738
https://doi.org/10.1007/978-3-030-19311-9_12
https://doi.org/10.1016/j.tcs.2018.01.002
https://doi.org/10.1016/j.tcs.2018.01.002

2:14 Simplifying CRN Implementations with Two-Stranded DNA Building Blocks

29 Dominic Scalise, Nisita Dutta, and Rebecca Schulman. DNA strand buffers. Journal of the
American Chemical Society, 140(38):12069–12076, 2018.

30 Dominic Scalise and Rebecca Schulman. Designing modular reaction-diffusion programs for
complex pattern formation. Technology, 2(01):55–66, 2014.

31 Dominic Scalise and Rebecca Schulman. Emulating cellular automata in chemical reaction-
diffusion networks. Natural Computing, 15(2):197–214, 2016.

32 Shalin Shah, Tianqi Song, Xin Song, Ming Yang, and John Reif. Implementing arbitrary
CRNs using strand displacing polymerase. In International Conference on DNA Computing
and Molecular Programming, pages 21–36. Springer, 2019.

33 Shalin Shah, Jasmine Wee, Tianqi Song, Luis Ceze, Karin Strauss, Yuan-Jyue Chen, and John
Reif. Using strand displacing polymerase to program chemical reaction networks. Journal of
the American Chemical Society, 2020.

34 David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.

35 Tianqi Song, Abeer Eshra, Shalin Shah, Hieu Bui, Daniel Fu, Ming Yang, Reem Mokhtar,
and John Reif. Fast and compact DNA logic circuits based on single-stranded gates using
strand-displacing polymerase. Nature Nanotechnology, 14(11):1075–1081, 2019.

36 Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David Soloveichik. Enzyme-
free nucleic acid dynamical systems. Science, 358:doi:10.1126/science.aal2052, 2017.

37 Chris Thachuk and Anne Condon. Space and energy efficient computation with DNA strand
displacement systems. In International Workshop on DNA-Based Computers, pages 135–149.
Springer, 2012.

38 Chris Thachuk and Erik Winfree. A fast, robust, and reconfigurable molecular circuit
breadboard. 15th Annual Conference on Foundations of Nanoscience, invited talk, 2018.
URL: https://thachuk.com/talk/2018-fnano-invited/2018-FNANO-invited.pdf.

39 Chris Thachuk, Erik Winfree, and David Soloveichik. Leakless DNA strand displacement sys-
tems. In Andrew Phillips and Peng Yin, editors, DNA Computing and Molecular Programming,
volume 9211 of Lecture Notes in Computer Science, pages 133–153. Springer, 2015.

40 Anupama J Thubagere, Chris Thachuk, Joseph Berleant, Robert F Johnson, Diana A Ardelean,
Kevin M Cherry, and Lulu Qian. Compiler-aided systematic construction of large-scale DNA
strand displacement circuits using unpurified components. Nature Communications, 8:14373,
2017.

41 Suvir Venkataraman, Robert M Dirks, Paul WK Rothemund, Erik Winfree, and Niles A Pierce.
An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnology,
2(8):490, 2007.

42 Boya Wang, Chris Thachuk, Andrew D Ellington, Erik Winfree, and David Soloveichik.
Effective design principles for leakless strand displacement systems. Proceedings of the National
Academy of Sciences, 115(52):E12182–E12191, 2018.

43 Xiaolong Yang, Yanan Tang, Sarah M Traynor, and Feng Li. Regulation of DNA strand
displacement using an allosteric DNA toehold. Journal of the American Chemical Society,
138(42):14076–14082, 2016.

44 Peng Yin, Harry MT Choi, Colby R Calvert, and Niles A Pierce. Programming biomolecular
self-assembly pathways. Nature, 451(7176):318–322, 2008.

45 Bernard Yurke and Allen P Mills. Using DNA to power nanostructures. Genetic Programming
and Evolvable Machines, 4(2):111–122, 2003.

46 David Yu Zhang. Cooperative hybridization of oligonucleotides. Journal of the American
Chemical Society, 133(4):1077–1086, 2010.

47 David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement
reactions. Nature Chemistry, 3(2):103–113, 2011.

48 David Yu Zhang and Erik Winfree. Control of DNA strand displacement kinetics using toehold
exchange. Journal of the American Chemical Society, 131(47):17303–17314, 2009.

https://thachuk.com/talk/2018-fnano-invited/2018-FNANO-invited.pdf

Composable Computation in Leaderless, Discrete
Chemical Reaction Networks
Hooman Hashemi
The University of British Columbia, Vancouver, Canada

Ben Chugg
Stanford University, CA, USA
benchugg@stanford.edu

Anne Condon
The University of British Columbia, Vancouver, Canada
condon@cs.ubc.ca

Abstract
We classify the functions f : Nd → N that are stably computable by leaderless, output-oblivious
discrete (stochastic) Chemical Reaction Networks (CRNs). CRNs that compute such functions
are systems of reactions over species that include d designated input species, whose initial counts
represent an input x ∈ Nd, and one output species whose eventual count represents f(x). Chen et
al. showed that the class of functions computable by CRNs is precisely the semilinear functions. In
output-oblivious CRNs, the output species is never a reactant. Output-oblivious CRNs are easily
composable since a downstream CRN can consume the output of an upstream CRN without affecting
its correctness. Severson et al. showed that output-oblivious CRNs compute exactly the subclass of
semilinear functions that are eventually the minimum of quilt-affine functions, i.e., affine functions
with different intercepts in each of finitely many congruence classes. They call such functions the
output-oblivious functions. A leaderless CRN can compute only superadditive functions, and so a
leaderless output-oblivious CRN can compute only superadditive, output-oblivious functions. In
this work we show that a function f : Nd → N is stably computable by a leaderless, output-oblivious
CRN if and only if it is superadditive and output-oblivious.

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of
computation → Formal languages and automata theory

Keywords and phrases Chemical Reaction Networks, Stable Function Computation, Output-Oblivi-
ous, Output-Monotonic

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.3

Funding Hooman Hashemi: Supported by an NSERC Discovery Grant.
Ben Chugg: Supported by an NSERC Undergraduate Research Award.
Anne Condon: Supported by an NSERC Discovery Grant.

Acknowledgements This work benefited greatly from conversations with Eric Severson and David
Doty. Thanks also to David Haley and Eric Severson for help in generating the figures.

1 Introduction

Chemical Reaction Networks (CRNs) have proven to be very valuable as a programming
language for describing how computations can ensue when molecules react. There is now a
rich complexity theory of computation with the CRN model, as well as the closely related
population protocol model of distributed computing [2, 4, 7, 10, 11, 17]. This theory helps
us understand what types of computational or engineered dynamic processes are possible
with molecules, since CRNs can be “compiled” down to DNA strand displacement systems,
which in turn can be implemented with real DNA strands in a test tube [5, 15, 18, 19].

© Hooman Hashemi, Ben Chugg, and Anne Condon;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 3; pp. 3:1–3:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:benchugg@stanford.edu
https://orcid.org/0000-0003-1458-1259
mailto:condon@cs.ubc.ca
https://doi.org/10.4230/LIPIcs.DNA.2020.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Composable Leaderless CRN Computation

It is natural to ask: If CRNs C and C ′ compute functions f and f ′, respectively, can
we compose the CRNs to compute the composition f ′ ◦ f? In this paper we study this
question for leaderless, discrete CRNs, resolving an open question of Chugg et al. [9], Severson
et al. [16], and Chalk et al. [6]. Here we first describe the CRN model, background and
motivation for the work, and then describe our result in more detail.

We focus on discrete CRNs (also called stochastic CRNs), which are described as a finite
set of chemical reactions among abstract species. Discrete CRNs stably compute functions
f : Nd → N in the following sense. An input x = (x1, . . . , xd) ∈ Nd is represented by initial
counts of d designated molecular species. A single copy of a so-called leader molecule may
also be present initially. Reactions of the CRN ensue, changing the species counts over time.
Eventually, regardless of the order of reactions, the count of a designated output species
Y equals f(x) and does not subsequently change. See Figure 1. Here and throughout, we
assume without loss of generality that the range of f is N, since functions that map Nd to Nl

for some l > 1 can be computed by first cloning l distinct copies of the inputs, and then for
each 1 ≤ i ≤ l, computing the ith output from the ith copy of the inputs.

X ′
1 +X ′

1 → 2Y ′

X ′
1 +X ′

2 → 2Y ′

X ′
2 +X ′

2 → 2Y ′
X ′′

2 → 2Y ′′
X1 → X ′

1 +X ′′
1

X2 → X ′
2 +X ′′

2
Y ′ + Y ′′ → Y

(a) (b) (c)

Figure 1 Examples of Chemical Reaction Networks (CRNs) for stable function computation.
(a) A CRN C1 for f(x1, x2) = x1 + x2 + ((x1 + x2) mod 2), with inputs X ′

1, X
′
2 and output Y ′.

(b) A CRN C2 for f ′(x1, x2) = 2x2, with inputs X ′′
1 , X

′′
2 and output Y ′′. (The input X ′′

1 does not
appear in the reaction.) (c) A CRN C for the function min{f(x1, x2), 2x2}. C converts its inputs
X1, X2 to those needed by CRNs C1 and C2 of parts (a) and (b), and then computes the function
min{f(x1, x2), 2x2} from the outputs of C1 and C2, demonstrating function composition. All three
CRNs are leaderless.

Exactly the semilinear predicates and functions are stably computable by discrete CRNs
[2, 7]. Such functions are linear on each of a finite number of semilinear domains – subsets of
Nd that are defined using ≥ or mod. See Figure 2.

Let C and C ′ be discrete CRNs that stably compute functions f : Nd → N and f ′ : N→ N.
Suppose furthermore that C is output-oblivious: That is, the output species of C is not a
reactant of any reaction of C. This condition ensures that outputs produced by C can be
consumed as inputs by a downstream CRN, without affecting the correctness of C. Then if
the output species of C is the input species of C ′, and there is no other species common to
C and C ′, the CRN C ∪ C ′ computes f ′ ◦ f .

More generally, suppose that CRNs C1, C2, . . . , Cd′ stably compute the functions f1, f2,
. . ., fd′ : Nd → N, and CRN C ′ stably computes f ′ : Nd′ → N. Suppose also that the Ci

are output-oblivious, the output of Ci is the ith input to C ′ and there is no other species
common to the CRNs. Then C1 ∪ C2 . . . Cd′ ∪ C ′ computes f ′(f1(x), f2(x), . . . , fd′(x)). For
example, combining the reactions of the CRN of Figure 1 parts (a), (b) and (c) results in a
CRN to compute the function f ′(x1, x2) = min{f(x1, x2), 2x2}.

If a function f is stably computable by an output-oblivious CRN with a leader, we say that
f is obliviously-computable. Obliviously-computable functions must be nondecreasing, because
a CRN on input x + x′ can produce f(x) Y’s (by ignoring inputs representing x′), and if Y ’s
are never consumed, the stable output f(x + x′) that is eventually produced must then be at
least f(x). However, not all nondecreasing semilinear functions are obliviously-computable,
the max function being an interesting counterexample. Chugg et al. [9] characterized the

H. Hashemi, B. Chugg, and A. Condon 3:3

(a) (b)

(c) (d)

Figure 2 Illustrations of quilt-affine functions with domain N2. (a) The function h(x) =
x1 + x2 − ((x1 + x2) mod 2). (b) Domains of the function h of part (a). h(x) = x1 + x2 on
the domain Dom1 = {x ∈ N2 | x1 + x2 = 0 (mod 2)}, shown in blue. Dom1 is linear since it
equals {α1(2, 0) + α2(0, 2) + α3(1, 1) + (0, 0) | α1, α2, α3 ∈ N}. Also, h(x) = x1 + x2 − 1 on
the domain Dom2 = {x ∈ N2 | x1 + x2 = 1 (mod 2)}, shown in red. The domain Dom2 is
the union of two linear sets, namely {α1(2, 0) + α2(0, 2) + α3(1, 1) + (0, 1) | α1, α2, α3 ∈ N} and
{α1(2, 0) +α2(0, 2) +α3(1, 1) + (1, 0) | α1, α2, α3 ∈ N}. (c) The function f(x) = min{h(x1, x2), 2x2}.
(d) Domains of the function f of part (c). f(x) = 2x2 on the domain Dom3 = {x ∈ N2 | x2 +1 ≤ x1},
shown in green. Dom3 is linear since it equals {α1(1, 0) + α2(1, 1) + (1, 0) | α1, α2 ∈ N}. Also,
f(x1, x2) = h(x1, x2) on the semilinear domains Dom′

1 = Dom1 ∩ {x ∈ N2 | x1 ≤ x2} and
Dom′

2 = Dom2 ∩ {x ∈ N2 | x1 ≤ x2}, shown in red and blue.

subclass of obliviously-computable functions with two inputs, i.e., functions f : N2 → N.
Severson et al. [16] gave a general characterization of obliviously-computable functions
f : Nd → N, for any d; such functions are eventually the min of quilt-affine functions, defined
as nondecreasing linear functions with a periodic intercept, see Figure 2. See Section 2 for
formal definitions of quilt-affine and obliviously-computable functions.

The results of Chugg et al. and Severson et al. described so far concern discrete, output-
oblivious CRNs with leaders. What about leaderless CRNs? Output-oblivious functions
computed by a leaderless CRN C must be superadditive, i.e., f(x) + f(x′) ≥ f(x + x′). This
is because on input x + x′, reactions of a leaderless CRN could be used to independently
compute both f(x) and f(x′), resulting in f(x) + f(x′) output molecules, so this quantity
must be less than or equal to the eventual stable output, namely f(x + x′). This raises the
question: Is the class of functions f : Nd → N that can be stably computed by leaderless
output-oblivious CRNs exactly the superadditive obliviously-computable functions? Severson
et al. showed that this is indeed the case when d = 1, but the more general case was left as
an open problem. In this paper we show that the answer is “yes” for all d:

DNA 26

3:4 Composable Leaderless CRN Computation

I Theorem 1. Functions that are stably computable by leaderless output-oblivious CRNs are
exactly the superadditive obliviously-computable functions.

Our proof of Theorem 1 has two parts. First, building on the previous work of Severson
et al. and Chugg et al., we provide in Claim 5 a new characterization of superadditive,
obliviously-computable functions as the minimum of superadditive quilt-affine functions
on well-ordered domains, which we define in Section 2. Then in Claim 14 we construct a
leaderless, output-oblivious CRN for superadditive, obliviously-computable functions, using
the well-ordered domain representation.

Our result has strong parallels with that of Chalk et al. [6] who studied composability of
function-computing CRNs for the continuous (also called mass-action) CRN model. In this
model, real-valued species concentrations, rather than discrete species counts, evolve over
time, according to a finite set of reactions. Earlier, Chen et al. [8] showed that continuous
CRNs can stably (i.e., regardless of actual reaction rates) compute positive-continuous,
piecewise rational linear functions. Chalk et al. showed that such functions are obliviously-
computable by continuous CRNs if and only if they are superadditive. However, the proof
techniques for the discrete and continuous CRN models are quite different.

2 The CRN Model and Obliviously-Computable Functions

Following a summary of useful notation, we describe Chemical Reaction Networks (CRNs),
stable CRN function computation, and output-oblivious function computation. We then
describe the result of Severson et al. [16] that characterizes the class of functions that are stably
computable by output-oblivious CRNs with a leader, i.e., obliviously-computable functions,
in terms of quilt-affine functions. Finally, we provide a new, alternative characterization of
obliviously-computable functions that is useful for our main results.

2.1 Notation
We use N to denote the set of nonnegative integers, N+ the positive integers, Z the integers, Q
the rationals, and Q≥0 the nonnegative rationals. Where d is understood, we use boldface to
represent d-dimensional vectors x ∈ Nd, and xi to denote the ith component of x, 1 ≤ i ≤ d.
We write x ≤ x′ to denote that xi ≤ x′i, for all i, 1 ≤ i ≤ d, and x < x′ to denote that x ≤ x′
and for some i, 1 ≤ i ≤ d, xi < x′i. For 1 ≤ i ≤ d, we let ei denote the d-dimensional unit
vector (ei1, . . . , eid) in which all components are zero except that eii = 1. We denote the
d-dimensional vector of all zero’s by 0.

For d, p ∈ N+, Zd/pZd denotes the additive group of Zd modulo p. Each element of
Zd/pZd is a congruence class of the form {n + pz | z ∈ Zd} for some n ∈ Nd, and we denote
this set by n.

2.2 Chemical Reaction Networks and Stable Function Computation
A discrete Chemical Reaction Network (CRNs) is specified as a finite set Z = {Z1, . . . , Zm}
of species, plus a finite set of R of reactions (s, t) = ((s1, . . . , sm), (t1, . . . , tm)) ∈ NZ × NZ
of the form∑

k:sk>0
skZk →

∑
k:tk>0

tkZk,

where for at least one j, sj 6= tj . The species Zk with sk > 0 are the reactants, which are
consumed, while those with tk > 0 are the products. (A species may be both a reactant and
product of the same reaction). A configuration c ∈ Nm describes counts of species in Z, and

H. Hashemi, B. Chugg, and A. Condon 3:5

c(Z) denotes the count of species Z ∈ Z. Reaction (s, t) is applicable to configuration c if
s ≤ c, i.e., sufficiently many copies of each reactant are present. Application of the reaction
to c results in the configuration c′ = c − s + t, and we write c → c′. If c0 → c1 → . . . ct

then we say that ct is reachable from c0 and call c0 → c1 → . . . ct an execution of the CRN.
A CRN C to stably compute a function f : Nd → N has designated input species, say

X1, . . . , Xd, a designated output species, say Y , and may or may not have a designated
leader species, L ∈ Z \ I. Leaderless function computation on input x ∈ Nd starts from a
valid initial configuration c0 = c0(x), where c0(Xi) = xi for 1 ≤ i ≤ d, and the count of any
other species is 0. CRN computation with a leader differs only in that the initial count of
the leader species L is 1, i.e., c0(L) = 1. We say that C stably computes f if for every valid
initial configuration c0 = c0(x) for some x, and for every configuration c reachable from c0,
there exists a stable configuration c′ reachable from c such that f(x) = c′(Y). Here, c′ is
stable if for every c′′ ∈ Nm reachable from c′, c′(Y) = c′′(Y). That is, once configuration
c′ is reached, the count of the output species does not change. Stable computation with
a leader is defined in the same way, except that in the initial configuration the count of a
designated leader species L is 1.

Chen et al. [7] (building on related work of Angluin et al. [2, 4] on predicate computation
by population protocols) showed that exactly the semilinear functions are stably computable
by CRNs. A semilinear function is the union of partial affine functions on linear domains. A
domain E ⊂ Nd is linear if E = {

∑
z∈F αzz + o : αz ∈ N} for some finite set F ⊂ Nd and

o ∈ Nd. Thus, if E1, E2, . . . , Em are linear sets, ∪m
i=1Ei = Nd, and for 1 ≤ i ≤ m fi : Ei → N

is a partial affine function, then the function f : Nd → N where f(x) = fi(x) if x ∈ Ei is
semilinear. Figure 2 shows examples of linear sets and semilinear functions, illustrating show
the union of linear sets can be defined using ≥ or mod. Doty and Hajiaghayi [11] showed
that leaderless CRNs also stably compute the semilinear functions.

2.3 Obliviously-Computable Functions As Quilt-Affine Functions

A CRN C is output-oblivious if no reaction consumes the output species. A function f is
obliviously-computable if some output-oblivious CRN with a leader stably computes f . A
subclass of the obliviously-computable functions are the leaderless obliviously-computable
functions, that can be stably computed by leaderless output-oblivious CRNs.

Severson et al. [16] defined a quilt-affine function h : Nd → Z to be a nondecreasing
function that is the sum of a rational linear function and a periodic function. That is,
for some ∇h ∈ Qd

≥0, called the gradient of h, some p ∈ N+, called the period, and some
B : Zd/pZd → Q, called the periodic intercept,

h(x) = ∇h · x +B(x).

For example, the 2D function h(x) = x1 + x2 − ((x1 + x2) mod 2) of Figure 2 is quilt-affine,
since it can be written as h(x) = (1, 1) · (x1, x2) + B(x), where B(0, 0) = B(1, 1) = 0 and
B(0, 1) = B(1, 0) = −1. Severson et al. [16] proved the following result.

I Theorem 2. (Severson et al. [16]) A function f : Nd → N is obliviously-computable if and
only if it satisfies the following three properties:
(i) f is nondecreasing, i.e., f(x) ≤ f(x′) for all x ≤ x′.
(ii) There exist (nondecreasing) quilt-affine functions h1, . . . , hm : Nd → N and kf ∈ Nd

such that for all x ≥ kf , f(x) = mini{hi(x)}.

DNA 26

3:6 Composable Leaderless CRN Computation

(iii) All fixed-input restrictions of f are obliviously-computable. Here, a fixed-input restriction
of f is a function on d− 1 inputs defined as

f[xi→j](x) = f(x1, x2, . . . , xi−1, j, xi+1, . . . , xd),

for some 1 ≤ i ≤ d and j ∈ N.

2.4 Obliviously-Computable Functions As Well-Ordered Quilt-Affine
Functions

Here we adapt Severson et al.’s result to obtain a slightly different characterization of
obliviously-computable functions, as the union of partial quilt-affine functions over well-
ordered domains sets. This result lays the foundation for the rest of the paper. Claim 4
in Section 3 demonstrates that these partial quilt-affine functions may be assumed to be
superadditive which, coupled with Theorem 2, implicitly proves one direction of Theorem 1.
Additionally, the well-ordered domain sets will be further refined by the CRN construction
in Section 4, enabling a quilt-affine function to be expressed simply as a piecewise affine
function. A partial quilt-affine function is simply a quilt-affine function that is defined only
over a subset of Nd.

Next we define well-ordered domain sets. Let w ∈ Nd be fixed and let 0 ≤ o ≤ w. Let

Domo (= Domo,w) = {x ∈ Nd | x ≥ o and xi = oi if oi < wi}. (1)

The sets Domo for 0 ≤ o ≤ w, are disjoint and their union is Nd. We call the set of sets
{Domo | 0 ≤ o ≤ w} a well-ordered domain set, and we denote this set by WOw. The sets
are ordered in the sense that if x ∈ Domo, x′ ∈ Domo′ and x ≤ x′ then o ≤ o′. Figure 3 (b)
shows a well-ordered domain set for N2 where w = (4, 4). We will later use the following
property of well-ordered domains:

I Lemma 3. Let Domo and Domo′ be domains of a well-ordered set defined by w, and
let Domo′′ be the domain containing o + o′. Then for any x ∈ Domo, and x′ ∈ Domo′ ,
x′′ = x + x′ ∈ Domo′′ .

Proof. Since x ∈ Domo and x′ ∈ Domo′ we have that x ≥ o and x′ ≥ o′. Additionally, since
o + o′ ∈ Domo′′ , we have that x + x′ ≥ o + o′ ≥ o′′. So x′′ satisfies the first condition of
membership in Domo′′ .

It remains to show that if o′′i < wi, then xi = o′′i . So suppose that o′′i < wi. Then it must
also be the case that oi < wi and o′i < wi, that o′′i = oi + o′i, and that xi = oi and x′i = o′i.
The result follows. J

A well-ordered quilt-affine function is the finite union of partial quilt-affine functions,
each of which is defined on a domain of a well-ordered domain set.

B Claim 4. Any obliviously-computable function is the minimum of a finite number of
nondecreasing, well-ordered quilt-affine functions.

Proof. First, from the characterization of obliviously-computable functions of Severson et
al. [16] given in Theorem 2 above, we identify a finite set of partial quilt-affine functions H,
as follows. We include in H the functions h1, h2, . . . , hm, each with domain Domhi

= {x ∈
Nd | x ≥ kf}, described in property (ii) of Theorem 2.3. Then we recursively augment H by
considering each of the fixed-input restrictions f[xi→j] of f of part (iii) of the definition, for
each choice of j < kf,i, and adding the functions corresponding to f[xi→j] from property (ii)

H. Hashemi, B. Chugg, and A. Condon 3:7

(a) (b)

(c) (d)

Figure 3 (a) A well-ordered, superadditive function f with domain setWOw for w = (4, 4). Here,
f(x, y) = h(x, y) = y− (y mod 2) on the red line and f = 2y− (y mod 2) + 2x− (x mod 2)− 8 on
the large 2 dimensional area. The red line corresponds to the domain Dom(3,4). (b) The well-ordered
domain set for the function f of part (a), with w = (4, 4). There is one 2D domain, eight 1D domains,
and twelve 0D domains, i.e., points. (c) The function hwo obtained from h via the construction of
Claim 4. (d) The three domains Domh (in red), Dombig (in blue) and Domsmall (in green), for the
function h of part (c). Here, wh = (3, 4).

of Theorem 2. There are d levels of recursion; the functions that are recursively added to H
have at least one and up to d fixed inputs, and the remaining (non-fixed) inputs are lower
bounded by some constant. Thus, for each function h added to H, the domain of h has the
form

Domh = {x ∈ Nd | xi = kh,i if i ∈ Dh and xi ≥ kh,i otherwise}, (2)

for some kh ∈ Nd and Dh ⊆ [1, . . . , d]. We can assume without loss of generality that all
functions h ∈ H have the same period, since we can always take the least common multiple
of the periods and redefine each h with respect to this least common multiple.

For each such h ∈ H we will construct a nondecreasing, well-ordered quilt-affine function
hwo : Nd → N such that hwo(x) = h(x) for all x ∈ Domh, and also f(x) ≤ hwo(x) for all
x ∈ Nd −Domh. Then f = min{h∈H} hwo, and the claim follows.

We’ll use the following notation when describing hwo. Let ∇h = (λh,1, λh,2, . . . , λh,k) ∈
Qd be the gradient of h, let λmax = dmaxh∈H,1≤i≤d{λh,i}e and let

∇max = (λmax, . . . , λmax).

DNA 26

3:8 Composable Leaderless CRN Computation

Similarly, let Bh be the periodic intercept of h and let

Bmax =
⌈

max
h∈H,x∈Nd

{Bh(x mod p)}
⌉
.

We partition Nd into three domains:
Domh, defined in Equation (2), where kh ∈ Nd and Dh ⊆ [1, . . . , d].
Domsmall = {x ∈ Nd | xi ≤ kh,i, 1 ≤ i ≤ d} −Domh;
Dombig = Nd −Domsmall−Domh.

Also, for x ∈ Nd, we let

pr(x) = (pr(x1),pr(x2), . . . ,pr(xd)),

where pr(xi) = ki if xi ≤ ki and pr(xi) = xi otherwise. Note that for x ∈ Domsmall we have
pr(x) ∈ Domh. We can now define hwo as follows.

hwo(x) =


h(x), for all x ∈ Domh,

∇max · x +Bmax, for all x ∈ Dombig, and
h(pr(x)), for all x ∈ Domsmall.

Figure 3 shows an example of the construction of hwo from h.
First we show that f(x) ≤ hwo(x) for all x ∈ Nd. There are three cases, depending on

whether x is in Domh, Dombig, or Domsmall. (1) By definition, for x ∈ Domh we have f(x) ≤
h(x) = hwo(x). (2) For x ∈ Domsmall, we know that x ≤ pr(x) and so f(x) ≤ f(pr(x)).
Also, pr(x) ∈ Domh, and so we know from case (1) that f(pr(x)) ≤ hwo(pr(x)). (3) For
x ∈ Dombig we know that f(x) = h′(x) for some h′ ∈ H, and also by our choice of ∇max and
Bmax we have that h′(x) ≤ ∇max ·x +Bmax = hwo(x). Putting these together, we have that

f(x) = h′(x) ≤ hwo(x).

Next we show that hwo is non-decreasing, that is, hwo(x) ≤ hwo(x′) for all x,x′ ∈ Nd

with x ≤ x′. We consider the possible cases for the domains of x and x′:
1. x ∈ Domh and x′ ∈ Domh. Then hwo(x) ≤ hwo(x′) since hwo = h on Domh and h is

nondecreasing.
2. x ∈ Dombig and x′ ∈ Dombig. Then

hwo(x) = ∇max(x) +Bmax ≤ ∇max(x′) +Bmax = hwo(x′).

3. x ∈ Domh and x′ ∈ Dombig. Then

hwo(x) = ∇h(x) +B(x) ≤ ∇max(x) +Bmax ≤ ∇max(x′) +Bmax = hwo(x′).

4. x ∈ Domsmall and x′ ∈ Domsmall. Then pr(x) ≤ pr(x′) and both pr(x) and pr(x′) are in
Domh, so

hwo(x) = hwo(pr(x)) ≤ hwo(pr(x′)) = hwo(x′),

where the inequality holds because of case 1.
5. x ∈ Domsmall and x′ ∈ Domh. Then pr(x) ∈ Domh and pr(x) ≤ x′, so

hwo(x) = hwo(pr(x)) = h(pr(x)) ≤ h(x′) = hwo(x′).

6. x ∈ Domsmall and x′ ∈ Dombig. Then

hwo(x) = hwo(pr(x)) ≤ ∇max(x) +Bmax ≤ ∇max(x′) +Bmax = hwo(x′).

H. Hashemi, B. Chugg, and A. Condon 3:9

Finally, we show that hwo is a well ordered quilt-affine function with offset wh, where we
define wh ∈ Nd as wh,i = kh,i if i ∈ Dh and wh,i = kh,i + 1 otherwise. Consider any o ≤ wh.
We need to show that hwo is quilt-affine on the domain Domo (defined in Equation (1)).
There are three cases:
1. If o = kh (≤ wh) then Domo = Domh. By construction, hwo = h on Domh, and h is

quilt-affine.
2. If o ≤ kh but o 6= kh, then o is in Domsmall. Let o = kh − k′h, where k′h ∈ Nd. For each

x ∈ Domo we have x ∈ Domsmall, and so also pr(x) = x + k′h ∈ Domh. Therefore,

hwo(x) = hwo(pr(x))
= h(pr(x))
= h(x + k′h)
= ∇h · (x + k′h) +B(x + k′h)
= ∇h · x +∇h · k′h +B(x + k′h)
= ∇h · x +B′(x),

where B′(x) = ∇h · k′h +B(x + k′h). Thus hwo is quilt-affine.
3. If o ∈ Dombig, then since all x ≥ o are in Dombig, the function hwo on Domo is affine

and therefore quilt-affine with period p. C

3 Superadditive, Obliviously-Computable Functions as Quilt-Affine
Functions

In Claim 4, we showed that an obliviously-computable function f can be represented as the
min of finitely many well-ordered quilt-affine functions. However, even if f is superadditive,
the quilt-affine functions constructed in Claim 4 may not be superadditive. In this section
we strengthen that result to show in Claim 5 that if f is superadditive, then f is the min of
finitely many superadditive well-ordered quilt-affine functions, thereby proving the first half
of our main result, Theorem 1.

B Claim 5. Any superadditive, obliviously-computable function is the minimum of a finite
number of superadditive, well-ordered quilt-affine functions.

Proof. Let f : Nd → N be a superadditive, obliviously-computable function. From Claim
4, we know that f = min{hwo}, where each of the finitely many hwo : Nd → N is a non-
decreasing, well-ordered quilt-affine function. Let p be the period of the functions f and the
hwo’s. Since the hwo’s may not be superadditive, we construct a superadditive, well-ordered
quilt-affine function hs from each hwo, such that f = min{hs}.

With respect to some fixed hwo and its well-ordered domain representation, sayWOw, we
first partition the well-ordered domains into new types of domains that we will call patches.
Then we define a superadditive function hs as the union of partial affine functions on patches,
such that f(x) ≤ hs(x) ≤ hwo(x) for all x ∈ Nd. Finally we further partition the patches
into well-ordered domains to show that hs is well-ordered quilt-affine, completing the proof
of the claim.

We define a patch as follows. Let n be a congruence class mod p, i.e., n = {n+pz | z ∈ Zd},
where n ∈ Nd. The patch defined by a corner q ∈ Nd ∩ n, a finite set of excluding points
Q ⊂ Nd, and n is

P (q, Q,n) = {x ∈ Nd ∩ n | q ≤ x and x � q′,∀q′ ∈ Q}.

Figure 6 of the appendix illustrates a patch, and our overall transformation from hwo to hs.

DNA 26

3:10 Composable Leaderless CRN Computation

For each domain Dom of the well-ordered representation of hwo and each congruence
class n in Zd/pZd, we cover Dom∩ n with a finite number patches as follows. Initially, let
the set Q of excluding points be the set of offsets of domains of hwo that are greater than the
offset of Dom. This ensures that only points in Dom are included in the constructed patches.
While not all of Dom∩ n is covered, select from the uncovered points the lexicographically
first minimal point q that minimizes hwo(q) − f(q). Here, by minimal q we mean that
there is no point q′ < q, q′ ∈ Dom∩ n with hwo(q′) − f(q′) ≤ hwo(q) − f(q), and if q1
and q2 are two distinct such minimal points then the lexicographically first one is the one
with the smaller value at the first index between 1 and d where the two points differ. Since
hwo(q)−f(q) ≥ 0, the minimum exists if Dom∩ n is not empty. Create the patch P (q, Q,n).
Then add q to Q (so that future patches exclude points in already-created patches), and
repeat until all points of Dom∩ n are covered.

Since the above algorithm is deterministic, for a given a patch corner, the associated set
of excluding points and congruence class are uniquely determined, so we simply refer to a
patch by its corner. Moreover, the number of patches generated by the algorithm is finite.
To see why, we use the following lemma from Angluin et al., which is in turn a corollary of
Higman’s Lemma [13].

I Lemma 6. (Angluin et al. [2], Higman [13].) Every subset of Nd under the inclusion
ordering ≤ has finitely many minimal elements.

The algorithm selects patch corners q with nondecreasing value of hwo(q)− f(q). The
function f is bounded above by hwo. So a lower bound for hwo(q)− f(q) is 0. If x0 is the
minimum point of Dom∩ n, then when x0 is selected as a patch corner the algorithm must
terminate. So the upper bound for hwo(q)−f(q) is hwo(x0)−f(x0). Since hwo(q)−f(q) is
always integral, there are at most hwo(x0)− f(x0) different values for hwo(q)− f(q) during
the algorithm. Consider the set of points q in Nd with the same value hwo(q)− f(q). By
Lemma 6 this set has a finite number of minimal points. So the number of patches produced
by the algorithm is equal to the sum of the sizes of these finite minimal point sets, summed
over the finite different values in the range 0, . . . , hwo(x0) − f(x0). Thus the algorithm
terminates after a finite number of steps, when run on each Dom∩ n, and Nd is covered by
the union of all the patches, taken over all domains of WOw and congruence classes n.

We define hs : P (q, Q,n) → N by hs(x) = hwo(x) − hwo(q) + f(q). If q is in domain
Dom of hwo’s well-ordered representation, where on domain Dom∩ n we have that hwo(x)
is the affine function hwo(x) = ∇ · x + b, then we can write

hs(x) = ∇ · x + b− hwo(q) + f(q). (3)

That is, hs : P (q, Q,n)→ N is an affine function with gradient ∇ and intercept b−hwo(q) +
f(q). Finally, we define hs : Nd → N to be the union of these partial affine functions on
patches. Next we prove several useful properties of hs.

I Lemma 7. For each patch corner q, hs(q) = f(q).

Proof. Follows directly from the definition of hs, since hs(q) = hwo(q)−hwo(q) +f(q). J

I Lemma 8. For all x ∈ Nd, hs(x) ≤ hwo(x).

Proof. Let x be in the patch with corner q. Then hs(x) = hwo(x)−hwo(q)+f(q) ≤ hwo(x),
since hwo(q) ≥ f(q). J

I Lemma 9. For all x ∈ Nd, f(x) ≤ hs(x).

H. Hashemi, B. Chugg, and A. Condon 3:11

Proof. Let x be in the patch with corner q. Then by our choice of q, hwo(q) − f(q) ≤
hwo(x) − f(x). Rearranging the terms, we have that f(x) ≤ hwo(x) − hwo(q) + f(q) =
hs(x). J

I Lemma 10. Let x,x′ ∈ Nd and let x ≤ x′. Then the gradient of hs on the patch containing
x is less than or equal to the gradient of hs on the patch containing x′.

Proof. Suppose that x and x′ are in domains Domo and Domo′ in the well-ordered domain
representation of hwo. Then since x ≤ x′, the gradient of hwo on Domo is less than or equal
to the gradient of hwo on Domo′ (the construction of Claim 4 satisfies this property). By
construction of hs in Equation (3), the gradient of hs on a patch equals the gradient of hwo
in the domain containing the patch, and so the lemma follows. J

I Lemma 11. Let x,x′ ∈ Dom∩ n, for some Dom ∈ WOw and congruence class n. Suppose
also that x ≤ x′. Then the intercept of hs on x is less than or equal to the intercept of hs on
x′.

Proof. The stated conditions of the lemma on x and x′ imply that either x and x′ are
in the same patch, or the patch containing x is constructed after the patch containing x′.
The intercepts of hs on patches within Dom∩ n are nonincreasing in the order of patch
construction. J

I Lemma 12. hs is superadditive.

Proof. Let x1 and x2 be in patches q1 and q2, respectively. Then q1 + q2 ≤ x1 + x2 and
q1 + q2 and x1 + x2 are in the same congruence class. Also, by Lemma 3, the points x1 + x2
and q1 + q2 lie in the same domain of hwo. Let x1 + x2 be in the patch with corner q.

On the patches with corners q1, q2, and q, let hs(x1) = ∇1 · x + b1, hs(x2) = ∇2 · x + b2,
and hs(x) = ∇ · x + b, respectively. By Lemma 10, ∇1 ≤ ∇ and ∇2 ≤ ∇. Also, we have that

hs(q1) + hs(q2) = f(q1) + f(q2) (by Lemma 7)
≤ f(q1 + q2) (since f is superadditive)
≤ hs(q1 + q2) (by Lemma 9)
≤ ∇ · (q1 + q2) + b,

where the last inequality follows by Lemmas 10 and 11. Then

hs(x1) + hs(x2) = hs(x1)− hs(q1) + hs(x2)− hs(q2) + hs(q1) + hs(q2)
= ∇1 · (x1 − q1) +∇2 · (x2 − q2) + hs(q1) + hs(q2)
≤ ∇ · (x1 − q1) +∇ · (x2 − q2) +∇ · (q1 + q2) + b

= ∇ · (x1 + x2) + b

= hs(x1 + x2). J

I Lemma 13. hs is well-ordered quilt-affine.

Proof. Define w′ to be the vector whose ith component w′i is maxq qi, rounded up to be 0
mod p. The domain set WOw′ is a refinement of the original domain set WOw of hwo’s
representation. Let Domo′ be one of the domains of WOw′ (where o′ ≤ w′), and let
Domo′ ⊂ Domo, where Domo ∈ WOw.

Fix any congruence class n of Zd/pZd. If Domo′ ∩ n is not empty, let m be the smallest
point in Domo′ ∩ n. Let q be the corner of the patch containing m. Note that q is in Domo.

We claim that Domo′ ∩ n is contained in the patch with corner q. This is trivially true if
Domo′ ∩ n is finite, and thus a single point. Consider the case where Domo′ is infinite. Let

DNA 26

3:12 Composable Leaderless CRN Computation

x ∈ Domo′ ∩ n and let q′ be the corner of the patch containing x. We claim that q′ ≤ m.
To see why, note that if xi > mi then it must be that mi ≥ w′i and by our choice of w′,
q′i ≤ mi. Otherwise, xi ≤ mi and so q′i ≤ xi ≤ mi. But then q = q′, since q is the corner of
the patch containing m. Therefore all of Domo′ ∩ n is in the patch with corner q. It follows
that hs on domain Domo′ ∩ n is a single affine function, namely that associated with the
patch with corner q. Moreover, the gradient of this function is the gradient of the function
hwo on domain Domo ∈ WOw. Since this is true for any congruence class n, the function
hs on domain Domo′ is a quilt-affine function whose gradient is the same as that of f on
Domo, completing the proof. J

From Lemmas 8 and 9, we have that f = min{hs} where the min is taken over a finite
number of functions hs. Moreover, from Lemma 12, each hs is superadditive and from
Lemma 13, each hs is well-ordered quilt-affine. The proof of Claim 5 follows. C

4 A Leaderless Output-Oblivious CRN for Superadditive,
Obliviously-Computable Functions

Here we show the second half of our main result, Theorem 1, by constructing a leaderless,
output-oblivious CRN for any superadditive, well-ordered quilt-affine function.

B Claim 14. Any superadditive, well-ordered quilt-affine function can be stably computed
by a leaderless, output-oblivious CRN.

Proof. Let f : Nd → N be a superadditive, obliviously-computable function. From Claim 5,
we know that f = min{hs}, where each of the finitely many hs is a superadditive, well-ordered
quilt-affine function. Below we show that any such function has a leaderless, output-oblivious
CRN, say Chs. A leaderless, output-oblivious CRN for f can then be obtained from the
Chs’s via the following steps: (i) for each function hs, create a unique replica Xhs,i of each
input species Xi ; (ii) adapt Chs by replacing input species Xi by the replica Xhs,i, in every
reaction and for each i and replacing the output species Y of Chs with Yhs in every reaction;
and (iii) adding the reaction

∑
hs Yhs → Y , which implements the min function.

Fix any superadditive, well-ordered quilt-affine function h, and a representation of h
with well-ordered domain set WOw and period p ∈ N+. To simplify our proof we will
assume without loss of generality that p > 1. Recall that there is one domain Domo in h’s
representation for each o ≤ w. We partition these domains by taking intersections with
congruence classes mod p. For each Domo ∈ WOw and each congruence class x of Zd/pZd

such that Domo ∩ x is non-empty, let m = m(o,x) be the minimum point in the subdomain
Domo ∩ x, and denote this subdomain by Dom′m. Let N be the set of all such m. By our
assumption that p > 1, it must be that all unit vectors ei are in N , 1 ≤ i ≤ d. Since h is
quilt-affine with period p, we have that h(x) on Dom′m is a partial affine function, which we
denote by hm(x) = ∇m(x) + bm, where ∇m = ∇o if m = m(o,x).

Our CRN has input species X1, X2, . . . , Xd and an output species Y . We will use x
to denote the vector of counts of input species consumed, and y to denote the number of
Y ’s produced, during an execution of the CRN. Our CRN also has a leader species Lm for
m ∈ N , and a distance species Pm,i for each m ∈ N and each i ∈ {1, . . . , d}. We will use
#Lm and #Pm,i to denote counts of leader and distance species, during an execution of the
CRN.

The leader and distances species will track how much input has been consumed by
reactions. To build intuition on how this works, it may be helpful first to imagine that there
is just one leader. In this case, if the input x consumed so far is in domain Dom′m, then our

H. Hashemi, B. Chugg, and A. Condon 3:13

reactions will ensure that the leader is Lm and that for 1 ≤ i ≤ d, #Pm,i = (xi −mi)/p, i.e.,
the distance of the consumed input x from m, along the ith dimension. (Since x ∈ Dom′m,
xi −mi is a multiple of p.) Thus,

x = m + p
∑

1≤i≤d

#Pm,i × ei.

Generalizing to the leaderless scenario, consumption of input will produce many leaders;
we can imagine that the consumed input is distributed over many domains Domm. Our
reactions will ensure that a generalization of the above equality holds:

x =
∑

m∈N

#Lm ×m + p
∑

i∈{1,...,d}

#Pm,i × ei

 , (4)

and we call the term on the right hand side of this invariant the input value of the CRN
configuration. The invariant trivially holds initially since both x and the input value are 0.
Our reactions will also maintain the following output invariant:

y =
∑

m∈N

#Lm × h(m) +
∑

i∈{1,...,d}

#Pm,i ×∇m,i

 . (5)

We call the term on the right hand side of this invariant the output value. Initially both y
and the output value are 0. We will show that once our CRN stabilizes, the output value is
the function h applied to the input value, and so these invariants ensure that y = h(x) upon
stabilization.

Our CRN has three types of reactions. We next describe these, and show that each
respects the input and output invariants. Figure 4, included in the appendix, shows an
example of a function h, a quilt-affine representation and the partitioning of the quilt-affine
domains (via intersections with congruence classes), and Figure 5, also in the appendix,
illustrates part of our CRN construction for the function of Figure 4.

4.1 Input-Consuming Reactions
These reactions consume inputs and produce leader species. There is one reaction for each
i, 1 ≤ i ≤ d:

Xi → Lei
+ h(ei)× Y.

This reaction consumes input ei, and recall that by our assumption that p > 1, ei ∈ N . So,
no distance species are needed to ensure that the input invariant holds. Producing h(ei) Y’s
ensures that the output invariant holds.

4.2 Merge Reactions
Merge reactions reduce the number of leader species, effectively electing a single leader:

Lm + Lm′ → Lm′′ + δ × Y +
∑

j∈{1..d}

δ′jPm′′,j .

Here, m′′ is chosen such that Dom′m′′ contains m + m′. To ensure that the input invariant
holds upon a merge reaction, we choose δ′j = (nj + n′j − n′′j)/p. Plugging this value into the
input invariant (4) shows that the input value is unchanged, which is necessary since no

DNA 26

3:14 Composable Leaderless CRN Computation

input is consumed. To ensure that the output invariant holds, we set δ to be equal to the
change in the output value as a result of the reaction (increase due to addition of products
minus decrease due to removal of reactants):

δ = h(m′′) + p
∑

j∈{1..d} δ
′
j ×∇m′′,j − h(m)− h(m′)

= h(m + m′)− h(m)− h(m′).

In this case, δ is non-negative because f is superadditive.

4.3 Exchange Reactions
The exchange reactions ensure that, once there is a single leader molecule, say Lm, eventually
all of the distance species Pm′,i are such that m′ = m. Let m and m′ be in N , with m 6= m′.
Let m and m′ be in the well-ordered domains of WOw with offsets o and o′, respectively.
Recall that ∇m = ∇o and ∇m′ = ∇o′ . Suppose without loss of generality that o ≤ o′ (in
which case ∇o ≤ ∇o′), and that if o = o′ then m ≤m′. Then we add the following reactions,
for 1 ≤ i ≤ d:

Lm + Pm′,i → Lm + δ × Y + Pm,i.

Each exchange reaction preserves the input invariant because the input value is unchanged
and no input is consumed. To ensure that the output invariant holds, we set δ to equal the
change in the output value as a result of the reaction (increase due to addition of products
minus decrease due to removal of reactants):

δ = h(m) + p∇m,i − h(m)− p∇m′,i

= p(∇m,i −∇m′,i)
= p(∇o,i −∇o′,i)
≥ 0, since ∇o ≥ ∇o′ .

This completes the description of the reactions of the CRN.

4.4 Correctness
A “leader dominance” invariant that is maintained by all reactions is that for any Pm′,i

with positive count, there is also some leader Lm with positive count, such that if Domo
and Domo′ are the well-ordered domains containing m and m′, respectively then o ≥ o′.
The input consuming and exchange reactions trivially maintain this invariant. Consider a
merge reaction with reactants Lm and Lm′ that produces Lm′′ . Suppose that m, m′, and
m′′ are in the well-ordered domains with offsets Domo, Domo′ and Domo′′ , respectively.
Then by Lemma 3, since Dom′m′′ contains m + m′, Domo′′ must contain o + o′. Therefore,
o′′ = (o+o′)�w, where we use � to denote the element-wise min. So it must be that o′′ ≥ o′,
and the leader dominance invariant must hold upon a merge reaction.

Next we show that the CRN stabilizes. First note that eventually all input species are
consumed by the input-consuming reactions, at which point no more leaders will be produced.
Also, eventually there is exactly one leader, because of the merge reactions. At this point, the
only possible reactions are exchange reactions. Each exchange reaction reduces the number
of Pm′,i with m′ 6= m. By the leader dominance invariant, this number will eventually reach
zero, at which point no more exchange reactions are possible.

H. Hashemi, B. Chugg, and A. Condon 3:15

Suppose that, once no more reactions are possible, the leader is Lm, in which case the
only distance species with count greater than zero are species Pm,i for some i. As a result,
we have that

y = h(m) + p
∑

i∈1..d #Pm,i ×∇m,i from the output invariant
= h(m)∇np(

∑
i∈1..d #Pm,i × ei + m−m)

= h(m) +∇m × (x−m) from the input invariant
= h(x).

This ensures that the output is correct once the CRN has stabilized, completing the proof.
C

5 Conclusion

We have classified the functions f : Nd → N which are stably computable by CRNs that
are (a) leaderless, and (b) never consume their own output. This result sheds light on the
fundamental limitations of discrete CRNs. Indeed, together with previous work on CRNs with
leaders [16], this has completed the classification of functions which are stably computable by
output-oblivious CRNs – with and without leaders. Such results inform the larger question
of composability in this model of computation, and to what extent such systems can be
comprised of smaller, modular components.

While composition with guaranteed correctness seems dubious for functions which are
not output-oblivious, we emphasize that there are nevertheless routes to composition with a
high probability of correctness. Phase-clocks for example, a ubiquitous tool in population
protocols (e.g., [3, 12, 1]), may be used to prohibit a CRN from being activated for some
number of time steps. Kosowski and Uznański recently demonstrated how to build hierarchies
of phase clocks; these could be leveraged to construct an arbitrarily long series of CRN
compositions [14].

A question raised by our results is the extent to which the theory of discrete and continuous
CRNs can be reconciled. As mentioned in the introduction, our results mirror those for
continuous CRNs, but our techniques are quite distinct. It would be useful to know whether
and under what conditions certain statements apply to both models. Is their a theoretical
framework allowing both continuous and discrete CRNs to be studied simultaneously?

A separate question is whether CRNs which compute output-oblivious functions, but are
not themselves output-oblivious, can be augmented with reactions to make them so. For
CRNs implemented as strand displacement systems, for instance, it may be easier to add
reactions than to change the underlying network entirely. Understanding the limitations
of being able to edit in this way would shed light on the possibility of building CRNs
incrementally instead of requiring that the design be understood beforehand.

References
1 Dan Alistarh, James Aspnes, and Rati Gelashvili. Space-optimal majority in population

protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2221–2239. SIAM, 2018.

2 Dana Angluin, James Aspnes, and David Eisenstat. Stably computable predicates are
semilinear. In PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on Principles
of distributed computing, pages 292–299, New York, NY, USA, 2006. ACM Press. doi:
10.1145/1146381.1146425.

DNA 26

https://doi.org/10.1145/1146381.1146425
https://doi.org/10.1145/1146381.1146425

3:16 Composable Leaderless CRN Computation

3 Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by population protocols
with a leader. Distributed Computing, 21(3):183–199, 2008.

4 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279–304, 2007.

5 Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk, and Erik
Winfree. A general-purpose CRN-to-DSD compiler with formal verification, optimization,
and simulation capabilities. In Robert Brijder and Lulu Qian, editors, DNA Computing and
Molecular Programming, pages 232–248, Cham, 2017. Springer International Publishing.

6 Cameron Chalk, Niels Kornerup, Wyatt Reeves, and David Soloveichik. Composable rate-
independent computation in continuous chemical reaction networks. In Milan Ceska and David
Safránek, editors, Computational Methods in Systems Biology, pages 256–273, Cham, 2018.
Springer International Publishing.

7 Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural Computing, 13(4):517–534, December 2014.

8 Ho-Lin Chen, David Doty, and David Soloveichik. Rate-independent computation in continuous
chemical reaction networks. In Proceedings of the 5th Conference on Innovations in Theoretical
Computer Science, ITCS 2014, pages 313–326, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2554797.2554827.

9 Ben Chugg, Hooman Hashemi, and Anne Condon. Output-oblivious stochastic chemical
reaction networks. In Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira,
editors, 22nd International Conference on Principles of Distributed Systems, OPODIS 2018,
December 17-19, 2018, Hong Kong, China, volume 125 of LIPIcs, pages 21:1–21:16. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.OPODIS.2018.21.

10 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. Algorithmic Bioprocesses, pages 543–584, 2009.

11 David Doty and Monir Hajiaghayi. Leaderless deterministic chemical reaction networks.
Natural Computing, 14(2):213–223, 2015.

12 Leszek Gąsieniec and Grzegorz Staehowiak. Fast space optimal leader election in population
protocols. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2653–2667. SIAM, 2018.

13 G Higman. Ordering by divisibility in abstract algebras. Proceedings of the London Mathe-
matical Society, 3(2):326–336, 1952.

14 Adrian Kosowski and Przemysław Uznański. Population protocols are fast. arXiv preprint
arXiv:1802.06872, 2018.

15 Lulu Qian and Erik Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332(6034):1196–1201, 2011.

16 Eric E. Severson, David Haley, and David Doty. Composable computation in discrete chemical
reaction networks. In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July
29 - August 2, 2019, pages 14–23. ACM, 2019. doi:10.1145/3293611.3331615.

17 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Natural Computing, 7, 2008.

18 David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.

19 David Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement
reactions. Nature chemistry, 3:103–13, February 2011. doi:10.1038/nchem.957.

https://doi.org/10.1145/2554797.2554827
https://doi.org/10.4230/LIPIcs.OPODIS.2018.21
https://doi.org/10.1145/3293611.3331615
https://doi.org/10.1038/nchem.957

H. Hashemi, B. Chugg, and A. Condon 3:17

A Appendix

h(x1, x2) =


x1, x2 = 0
x2, x1 = 0
h′(x1, x2), x1 ≥ 1, x2 ≥ 1.

(a) A superadditive, output-oblivious function h, where h′(x1, x2) = 2x1 + 2x2 − ((x1 + x2)
mod 2).

h(x1, x2) =


0, (x1, x2) ∈ Dom00 = {(0, 0)}
x1, (x1, x2) ∈ Dom01 = {(x1, 0) + (1, 0) | x1 ∈ N}
x2, (x1, x2) ∈ Dom10 = {(0, x2) + (0, 1) | x2 ∈ N}
h′(x1, x2), (x1, x2) ∈ Dom11 = {(x1, x2) + (1, 1) | x1, x2 ∈ N}.

(b) A well-ordered, quilt-affine representation of h. The domain set WOw has period 2,
w = 11 and contains four domains Domo as shown, for o ∈ {00, 01, 10, 11}.

h(x1, x2) =



0, (x1, x2) ∈ Dom′00 = Dom00 ∩ 00
x1, (x1, x2) ∈ Dom′01 = Dom01 ∩ 01
x1, (x1, x2) ∈ Dom′02 = Dom01 ∩ 00
x2, (x1, x2) ∈ Dom′10 = Dom10 ∩ 10
x2, (x1, x2) ∈ Dom′20 = Dom10 ∩ 00
2x1 + 2x2, (x1, x2) ∈ Dom′11 = Dom11 ∩ 11
2x1 + 2x2 − 1, (x1, x2) ∈ Dom′12 = Dom11 ∩ 10
2x1 + 2x2 − 1, (x1, x2) ∈ Dom′21 = Dom11 ∩ 01
2x1 + 2x1, (x1, x2) ∈ Dom′22 = Dom11 ∩ 00

(c) Representation of h on nonempty domains of the form Dom′n = Dom′n(o,z) = Domo ∩ z,
for each congruence class z of Z2/2Z2, where z = {2(x1, x2) + z | x1, x2 ∈ N} for each

z = 00, 01, 10, 11, and n = n(o, z) is the minimum point in Domo ∩ z.

Figure 4 (a) A superadditive, output-oblivious function h. (b) Quilt-affine representation of h.
(c) Representation of h used in our leaderless CRN construction. Here as in Figure 5, we use strings
to denote vectors, e.g. 11 denotes (1, 1).

DNA 26

3:18 Composable Leaderless CRN Computation

Input-consuming Sample Merge Sample Exchange
Reactions Reactions (involving L01 or L11) Reactions (involving L11 or L22)

X1 → L10 + Y

X2 → L01 + Y

L01 + L10 → L11 + 2Y
L01 + Lx1 → Lx2, x ∈ {0, 1}
L01 + L21 → L22 + 2Y
L01 + L02 → L01 + P01,2

L01 + Lx2 → Lx1 + 2Y + Px1,2, x ∈ {1, 2}

L11 + L01 → L21

L11 + L11 → L22

L11 + L21 → L12 + P21,1

L11 + L12 → L21 + P21,2

L11 + L22 → L11 + 2Y + P11,x, x ∈ {1, 2}

L11 + P01,x → P11,x + 2Y
L11 + P10,x → P11,x + 2Y

L22 + P01,x → P22,x + 2Y
L22 + P10,x → P22,x + 2Y
L22 + P11,x → P22,x

L22 + P21,x → P22,x

L22 + P12,x → P22,x

Figure 5 Sample reactions of the leaderless, output-oblivious CRN for the function h of Figure 4,
obtained from our construction of Claim 14.

(a) (b)

(c) (d)

Figure 6 (a) An output-oblivious function f(x). (b) By Claim 4, the function f of part (a)
can be written as f = min{hwo}, where each of the finitely many functions hwo is nondecreasing,
well-ordered quilt-affine. One of these functions is shown here. This function happens to be quite
simple, with period 1 and one domain, namely N2, and f = hwo on the red line shown in part (a).
(c) The superadditive, obliviously-computable function hs that is derived from the function hwo of
part (b) via the construction of Claim 5. Patch corners are shown as red dots. The function hs has
the same gradient as hwo on each patch, but has different intercepts. (d) Each coloured region is a
patch on N2 (i.e., the congruence class has period 1). These patches correspond to the corners of
part (c).

CRNs Exposed: A Method for the Systematic
Exploration of Chemical Reaction Networks
Marko Vasic
The University of Texas at Austin, TX, USA
https://marko-vasic.github.io/
vasic@utexas.edu

David Soloveichik
The University of Texas at Austin, TX, USA
http://users.ece.utexas.edu/~soloveichik/
david.soloveichik@utexas.edu

Sarfraz Khurshid
The University of Texas at Austin, TX, USA
https://users.ece.utexas.edu/~khurshid/
khurshid@utexas.edu

Abstract
Formal methods have enabled breakthroughs in many fields, such as in hardware verification, machine
learning and biological systems. The key object of interest in systems biology, synthetic biology, and
molecular programming is chemical reaction networks (CRNs) which formalizes coupled chemical
reactions in a well-mixed solution. CRNs are pivotal for our understanding of biological regulatory
and metabolic networks, as well as for programming engineered molecular behavior. Although it is
clear that small CRNs are capable of complex dynamics and computational behavior, it remains
difficult to explore the space of CRNs in search for desired functionality. We use Alloy, a tool
for expressing structural constraints and behavior in software systems, to enumerate CRNs with
declaratively specified properties. We show how this framework can enumerate CRNs with a variety
of structural constraints including biologically motivated catalytic networks and metabolic networks,
and seesaw networks motivated by DNA nanotechnology. We also use the framework to explore
analog function computation in rate-independent CRNs. By computing the desired output value with
stoichiometry rather than with reaction rates (in the sense that X → Y + Y computes multiplication
by 2), such CRNs are completely robust to the choice of reaction rates or rate law. We find the
smallest CRNs computing the max, minmax, abs and ReLU (rectified linear unit) functions in a
natural subclass of rate-independent CRNs where rate-independence follows from structural network
properties.

2012 ACM Subject Classification Theory of computation

Keywords and phrases molecular programming, formal methods

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.4

Supplementary Material We release the source code of our tool at https://github.com/marko-
vasic/crnsExposed to enable others make use of it, and extend it further.

Acknowledgements This work was supported in part by NSF grants CCF-1901025 to DS and
CCF-1718903 to SK.

1 Introduction

Formal methods have enabled breakthroughs in many fields, e.g., in hardware verification [15],
machine learning [23, 32], and biological systems [5, 24, 29, 40, 61]. In this paper we apply
formal methods to Chemical Reaction Networks (CRNs), which have been objects of intense
study in systems and synthetic biology. CRNs are widely used in modeling biological
regulatory networks, and essentially identical models are also widely used in ecology [60],

© Marko Vasic, David Soloveichik, and Sarfraz Khurshid;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 4; pp. 4:1–4:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://marko-vasic.github.io/
mailto:vasic@utexas.edu
http://users.ece.utexas.edu/~soloveichik/
mailto:david.soloveichik@utexas.edu
https://users.ece.utexas.edu/~khurshid/
mailto:khurshid@utexas.edu
https://doi.org/10.4230/LIPIcs.DNA.2020.4
https://github.com/marko-vasic/crnsExposed
https://github.com/marko-vasic/crnsExposed
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 CRNs Exposed

distributed computing [2], and other fields. More recently, CRNs have been directly used as
a programming language for engineering molecules obeying prescribed interaction rules via
DNA strand displacement cascades [6, 12,53,55,57].

It is clear that small CRNs can exhibit very complex behavior. Dynamical systems, e.g.,
oscillatory, chaotic, and bistable systems, typically contain only a few reactions. Small CRNs
also exhibit interesting computational behavior. For example, the approximate majority
population protocol studied in distributed computing [1] was later identified with a variety of
biological networks [7]. Can we systematically explore the power of small reaction networks?

We present a method that exhaustively enumerates small CRNs in different classes
that are relevant for biology and for synthetic engineering systems. The enumeration is
performed using Alloy, a powerful tool for modeling structural constraints and behavior
in software systems using first-order logic with transitive closure [33]. The Alloy tool
performs scope-bounded analysis [35]. Given an Alloy model and a scope, i.e., a bound on the
universe of discourse, the analyzer translates the Alloy model to a propositional satisfiability
(SAT) formula and invokes an off-the-shelf SAT solver [20] to analyze the model. Alloy is
used in a wide range of areas in software engineering, including software design [21, 34],
analysis [19, 22, 36, 38], testing [44], and security [37]. We show how Alloy can be used to
conveniently model interesting classes of CRNs for biology and bioengineering, and we use
the Alloy analyzer to search for CRNs with specific desired functionality.

As examples of the method we first focus on a number of classes: elementary, catalytic,
metabolic. We say elementary reactions are CRNs with at most two reactants and products.
(We allow reactions to be irreversible; reversible reactions are represented by two irreversible
reactions.) Catalytic networks are those elementary CRNs in which the reactants and
products are not disjoint; i.e., the reaction is catalyzed by some species that is not consumed
in the reaction. Catalytic networks (e.g., transcriptional, phosphorylation, etc.) regulate
many aspects of the cell’s behavior [42, 48]. In general protein-protein interactions, proteins
can catalytically modify other proteins, which in turn can be catalysts in other interactions.
An important subclass of catalytic networks are metabolic networks, where the enzymes are
proteins while the substrates are small molecules; these catalytic CRNs are “bipartite” in the
sense that a species is either always a catalyst or never a catalyst. Autocatalytic networks
are another interesting subclass of catalytic networks in which the (auto)catalyst generates
another copy of itself. Autocatalysis is useful for exponential amplification and oscillation.

We then turn our attention to classes of CRNs especially relevant for synthetic reaction
networks, showing how abstract molecular structure can be modeled in Alloy. In particular,
we focus on DNA strand displacement cascades, which have proved to be a uniquely pro-
grammable technology for cell-free DNA-only systems [64]. Strand displacement interactions
correspond to reactions between two types of molecules: “gates” and “strands”, where the
reacting strand displaces the strand previously sequestered in the gate complex. A simple,
yet very scalable, class of strand displacement circuits uses a simple motif called seesaw
gates [13,49,50] that makes use of a reversible strand displacement reaction. We designed
an Alloy model to enumerate such strand displacement reactions, showing that abstract
molecular structure can be incorporated into the Alloy modeling formalism.

In the second part of the paper, we use our enumeration framework to search for specific
desired functionality in a class of CRNs. In particular, we focus on the class of rate-
independent CRNs [11]. Consider the reaction X → Y + Y , and think of the concentrations
of species X and Y as input and output respectively. This reaction computes the function
of “multiplication by 2” since in the limit of time going to infinity it produces two units of
Y for every unit of X initially present. Similarly the reaction X1 + X2 → Y computes the

M. Vasic, D. Soloveichik, and S. Khurshid 4:3

A −−→ Z1 + Y

B −−→ Z2 + Y

Z1 + Z2 −−→ K

Y + K −−→ ∅

Figure 1 CRN computing Max. We think of the initial amount of A and B as inputs, and the
converging amount of Y as the output. The amount of Y eventually produced in reactions 1 and 2
is the sum of the initial amounts of A and B. The amount of K eventually produced in reaction 3 is
the minimum of the initial amounts of A and B. Reaction 4 subtracts the minimum from the sum,
yielding the maximum. (The 4th reaction generates waste species, which are not named.)

“minimum” function since the amount of Y eventually produced will be the minimum of
the initial amounts of X1 and X2. Note that such computation makes no assumption on
the rate law, such as whether the reaction obeys mass-action kinetics1 or not, allowing the
computation to be correct in a wide variety of chemical contexts. (We use the continuous
CRN model where concentrations are real-valued quantities.)

A natural subclass of CRNs whose structure enforces rate independence are those that
satisfy two constraints: feed-forward, and non-competitive.2 Intuitively, the first condition
ensures that the CRN converges to a static equilibrium where no reaction can occur. The
second condition ensures that no matter what the rates are, the system converges to the
same static equilibrium. More precisely, we define feed-forward as follows: there exists a
total ordering on the reactions such that no reaction consumes3 a species produced by a
reaction later in the ordering. We define non-competitive as follows: if a species is consumed
in a reaction then it cannot appear as a reactant somewhere else. Such constraints on the
structure of the network can be easily encoded in the Alloy specification. We also require each
reaction to consume at least one species (boundedness condition). We show in Appendix A
that these conditions ensure that the CRN is rate-independent.

Focusing on the class of feed-forward, non-competitive CRNs, we search for the smallest
reaction networks implementing max, minmax, abs, and ReLU (rectified linear unit) functions.
As an example of the kind of computation we achieve, consider the max computing CRN
shown in Figure 1. This CRN was previously studied [10, 11]; our result shows that it is
indeed the smallest. The maximum function serves an important role in rate-independent
computation since together with minimum, multiplication and division by a constant it
forms a complete basis set [9, 11]. The ReLU function was first introduced due to the
biological motivations explaining functioning of neurons in the brain cortex [27]. Since then,
it was used with great success in the machine learning community, particularly in deep
learning [25, 41] for realizing artificial neural networks. The simplicity of its implementation
suggests that CRNs can naturally realize neural computation [58]. To our knowledge, the
smallest implementations of abs (absolute value), and minmax (a two output function
computing both minimum and maximum of two inputs) that we find are novel and have not
been previously published.

1 “Mass-action” kinetics refers to the best-studied case where the reaction rate is proportional to the
product of the concentration of the reactants.

2 Feed-forward and non-competitive conditions are sufficient for rate-independence, but are not necessary.
However, most known examples of rate independent computation satisfy these conditions.

3 We say a reaction produces (resp. consumes) a species S if there is net stoichiometric gain (resp. loss) of
S. Thus a catalyst in a reaction is neither consumed nor produced.

DNA 26

4:4 CRNs Exposed

Listing 1 General Alloy model of CRNs. “−−” indicate start of a comment.
module crn

abstract sig Species {}
abstract sig Reaction { reactants, products: seq Species }

-- Basic semantic constraints -- for all CRNs
fact AtLeastOneReactant { -- each reaction has >=1 reactant
all r: Reaction | some r.reactants }

fact UniqueReactions { -- each reaction is unique
all disj r1, r2 : Reaction | ReactionsDifferent[r1, r2] }

pred ReactionsDifferent[r1, r2: Reaction] {
SpeciesSeqDifferent[r1.reactants, r2.reactants]
or SpeciesSeqDifferent[r1.products, r2.products] }

pred SpeciesSeqDifferent[seq1, seq2: seq Species] {
some s : Species | #indsOf[seq1, s] != #indsOf[seq2, s] }

fact ReactantsDifferentThanProducts {
all r: Reaction | SpeciesSeqDifferent[r.reactants, r.products] }

fact AllSpeciesUsed { -- each species is used in some reaction
Int.(Reaction.(reactants + products)) = Species }

pred ContainsAsReactant[r: Reaction, s: Species] { s in Int.(r.reactants) }
pred ContainsAsProduct[r: Reaction, s: Species] { s in Int.(r.products) }

Much ongoing work explores the computational power of CRNs. Previous work showed
the implementation of numerous complex behaviors, such as mapping polynomials to chemical
reactions [51], programming logic gates [43], mapping discrete, control flow, algorithms [31],
and a molecular programming language translating high-level specifications to chemical
reactions [59]. However the complexity of these reaction systems can be infeasible, asking for
novel techniques that answer what is the natural way to compute “in reactions”. To help
answer this question we can take a different, bottom-up approach, and explore what small
CRNs naturally do. We believe that insight we get from exploring reactions will help in
design of higher-level primitives that naturally map to reactions, and will provide knowledge
for more efficient design of high-level languages.

2 Modeling CRNs in Alloy

This section describes our approach to modeling chemical reaction networks (CRNs) in Alloy.
(See Appendix B for additional background on Alloy.) We first introduce a general model to
represent the broadest class of CRNs (allowing arbitrary number of reactants and products),
and next show specializations of the model for different classes such as elementary, catalytic,
metabolic, autocatalytic, and feed-forward non-competitive reactions. Next, we present models
that encode abstract molecular structure, including strands and gates model and a seesaw
model built on top of it. Our approach naturally admits a hierarchical structuring of
models where a model builds on and specializes another model – e.g., metabolic reactions are
structurally more constrained reactions than elementary. This allows a systematic exploration
of the design space of models as this section illustrates.

M. Vasic, D. Soloveichik, and S. Khurshid 4:5

General model. Our general model captures CRNs consisting of reactions with arbitrarily
many reactants and products. To model this in Alloy we define a set of species, a set of
reactions, two relations that characterize the reactants and products, and logical constraints
that define the basic structural requirements for well-formed CRNs. Listing 1 specifies the
general model in Alloy. The keyword module allows naming the model, which can be imported
in other models. The keyword sig declares a basic type and introduces a set of indivisible
atoms that do not have any internal structure. The model declares two sets: a set of species
(Species) and a set of reactions (Reaction). The signature declaration of Reaction introduces
two fields, reactants and products, each of type sequence (seq) of Species. Alloy models
a sequence as a binary relation from (non-negative) integer indices to atoms. Thus, each
of these field declarations introduces a ternary relation of type: Reaction × Int × Species.
In a case of reaction R0 : X → Y + Y , the value of products relation would be the set:
{R0× 0× Y, R0× 1× Y }. Note that we model reactants and products with seq instead of
set to support repetition of a species as a reactant or product, as in the above reaction.

After defining the basic structure, we use Alloy facts to add constraints ensuring that
enumerated CRNs are well-formed. A fact paragraph states a constraint that must always
be satisfied, i.e., every solution found (CRN enumerated) must satisfy each fact (and may
satisfy additional constraints as desired). For example, the fact AtLeastOneReactant requires
that every reaction contains at least one reactant. We use universal quantification (all) to
require that the reactants in each reaction form a non-empty sequence. The keyword some in
formula “some E” for expression E constrains it to represent a non-empty set. The operator
‘.’ is relational join; specifically, if r and s are binary relations where the domain of r is the
same as co-domain of s, r.s is relational composition, and if x is a scalar and t is a binary
relation where the type of x is the co-domain of t, x.t is relational image of x under t. Thus,
r.reactants represents a sequence of reactants in a reaction r.

We ensure that there are no two identical reactions in aCRNusing the fact UniqueReactions.
For all distinct (disj) reactions we require that predicate ReactionsDifferent holds. A pre-
dicate (pred) paragraph is a named formula that may have parameters. The predicate
ReactionsDifferent uses logical disjunction (or) and invokes SpeciesSeqDifferent to con-
strain its parameters (reactions) r1 and r2 to be different.

The predicate SpeciesSeqDifferent is true if the two sequences of species are different.
It uses existential quantification (some). The operator ‘#’ represents set cardinality. The
Alloy library function indsOf represents the set of indices where the atom argument (e.g.,
s) appears in the sequence argument (e.g., seq1). Intuitively, this predicate compares the
number of appearances of species in two sequences, and returns true if exists a species that
appears a different number of times in the two sequences.

The fact ReactantsDifferentThanProducts requires each reaction to have non-identical
reactants and products. Finally, the fact AllSpeciesUsed states that all species must be a
part of some reaction. Int represents the set of integers.

The predicate ContainsAsReactant is true if a given reaction contains a given species as a
reactant. Similar holds for ContainsAsProduct and reaction products.

Illustrating the General Model. To illustrate using the Alloy analyzer, consider generating
an instance of the constraints modeled. The following Generate command instructs the
analyzer to create an instance with respect to a universe that contains exactly 2 reactions
and 2 species, and 2-bit integers, and conforms to all the facts in the model:

Generate: run {} for exactly 2 Reaction, exactly 2 Species, 2 int

DNA 26

4:6 CRNs Exposed

Listing 2 Elementary reactions.
module elementary
open crn
pred Elementary() { MaxReactantsNum[2] and MaxProductsNum[2] }
pred MaxReactantsNum[num: Int] { all r: Reaction | lte[#r.reactants, num] }
pred MaxProductsNum[num: Int] { all r: Reaction | lte[#r.products, num] }

Listing 3 Catalytic reactions.
module catalytic
open elementary
pred Catalytic[] { all r: Reaction | CatalyticReaction[r] }
pred CatalyticReaction[r: Reaction] { some elems[r.reactants] & elems[r.products] }
run { Catalytic and Elementary } for 2

Executing the command Generate and enumerating the first three instances creates the
following CRNs where S0 and S1 are species, and ∅ are waste species 4:

S1 −−→ S0

S0 −−→ S1

S1 −−→ ∅
S1 −−→ S0

S1 −−→ ∅
S0 −−→ S1

(a) (b) (c)

While quite small, these three instances exhibit interesting properties, CRN in (a) models
a reversible reaction S1 ←→ S0; CRN in (b) is rate-dependent, where amount of S1 in a
limit of time going to infinity is 0, but amount of S0 is dependent on reaction rates; and
CRN in (c) is rate-independent, where concentrations of both S0 and S1 converge to 0.

Elementary reactions. Elementary reactions have at most 2 reactants and at most 2
products. Elementary reactions are arguably the ones commonly occurring in nature, as it is
unlikely that 3 (or more) molecules react or split at the same exact time. Also, reactions
with more than 2 reactants can be represented with elementary reactions; e.g. reaction
A + B + C → D can be constructed with two elementary reactions: A + B → T and
T + C → D. (Similarly for products.)

Listing 2 shows the Alloy model of elementary reactions, which specializes (restricts) the
general CRN model crn. The Alloy model elementary imports (open) the crn model and
defines the predicate Elementary, which uses the conjunction (and) of two helper predicates
MaxReactantsNum and MaxProductsNum to characterize elementary reactions. The predicate
lte is a standard Alloy utility predicate and represents the ≤ comparison.

Catalytic reactions. Next, we model catalytic reactions (Listing 3). The predicate Catalytic
uses the helper predicate CatalyticReaction to require each reaction to be catalytic, i.e.,
have some species that is both a reactant and a product in that reaction. The Alloy utility
function elems represents the set of elements in its argument sequence; the operator ‘&’
represents set intersection. The run command instructs the analyzer to create an instance

4 Alloy shows each instance as a valuation to the sets and relations declared in the model, and also supports
visualizing the instances as graphs. We write the reactions here using their natural representation for
clarity.

M. Vasic, D. Soloveichik, and S. Khurshid 4:7

Listing 4 Metabolic reactions.
module metabolic
open catalytic

pred Metabolic[] {
Catalytic[] and
all s: Species | (some r: Reaction | IsCatalyst[s, r]) implies

all x: Reaction | Contains[x, s] implies IsCatalyst[s, x] }

pred IsCatalyst[s: Species, r: Reaction] { s in Int.(r.reactants) & Int.(r.products) }
pred Contains[r: Reaction, s: Species] { ContainsAsReactant[r, s] or ContainsAsProduct[

r, s] }

Listing 5 Strands and gates.
module strandsandgates
open crn

sig Strand, Gate extends Species {}
fact { Strand + Gate = Species } -- strands and gates partition species

pred StrandsAndGates() {
ExactReactantsNum[2] and ExactProductsNum[2] and
all r: Reaction {
some Int.(r.reactants) & Strand and some Int.(r.reactants) & Gate
some Int.(r.products) & Strand and some Int.(r.products) & Gate }}

pred ExactReactantsNum[num: Int] { all r: Reaction | eq[#r.reactants, num] }
pred ExactProductsNum[num: Int] { all r: Reaction | eq[#r.products, num] }

that is both a catalytic and an elementary reaction within a scope of 2, i.e., at most 2 atoms
in each sig. An example instance created by executing the command is:

S0 + S1 → S0 + S0

S0 + S1 → S1 + S1

We also model autocatalytic reactions shown in Appendix C.

Metabolic reactions. In metabolic networks catalysts are proteins that act upon substrates
that are small molecules. Thus metabolic reactions are a form of catalytic reactions in which
if a species appears as a catalyst in a reaction, then it has to be a catalyst in all reactions in
which the species occurs. The predicate Metabolic in Listing 4 specifies metabolic reactions.

Strands and gates. We next model synthetic CRNs which use DNA strand displacement
cascades for its implementation. Strand displacement interactions correspond to reactions
between two types of molecules: “gates” and “strands”, where the reacting strand displaces
the strand previously sequestered in the gate complex. We first capture the bipartite nature
of the reactions: Listing 5 declares strands and gates as disjoint subsets (extends) that
partition species. The predicate StrandsAndGates requires that each reaction has exactly 2
reactants and 2 products, and moreover has a strand and a gate as a reactant, and a strand
and a gate as a product.

DNA 26

4:8 CRNs Exposed

t* t*

t

t

b*

b

b

a

c+

t* t*

t

t

b*

b

b

a

c

+

(strand)

(left gate)

(strand)

(right gate)

Figure 2 DNA strand displacement reaction with the seesaw gate motif. There are two reactants
(a strand and a gate) and two products (a strand and a gate). A gate consists of two strands bound
together. (For simplicity the usual helical structure of DNA is not shown.) Labels show binding
sites (domains); a star indicates Watson-Crick complement such that domain x binds x∗. In order
for the reaction to happen, the complementary domains must match as shown. Such reactions can
be cascaded since the strands < a, t, b > and < b, t, c > can react with other seesaw gates.

Seesaw networks. A simple yet powerful subclass of DNA strand displacement reactions is
the “seesaw” model. Seesaw reactions have been used to create some of the largest synthetic
biochemical reaction networks, including logic circuits and neural networks [13, 49]. The
molecular structure schematic for a seesaw reaction is shown in Figure 2. Listing 6 models
seesaw reactions by specializing the model of strands and gates (Listing 5), capturing the
abstract molecular structure in an Alloy model. The signature Domain models the binding
domains. The signature DNASpecies is a subset (in) of species, and left and right are
binary relations that map DNASpecies to their left and right domains respectively. The
keyword lone constraints the relations to be partial functions. The signatures RightGate
and LeftGate partition gates. The fact UseAll requires all species to be DNA species, and
requires all domains to be a part of some species . The fact UniqueSpecies enforces that
strands and gates are unique, i.e., there cannot be two or more strands (or left/right gates)
with matching left and right domains. The fact OneDomain requires strands and gates to have
exactly one left and exactly one right domain. The predicate CanReactStrandAndLeftGate
is true if inputs (reactants) conform to the interaction rules of a strand and a left gate,
similar holds for the predicate CanReactStrandAndRightGate on strands and right gates. The
predicate CanReact is true if inputs (reactants) satisfy either CanReactStrandAndLeftGate
or CanReactStrandAndRightGate. The predicate ReactStrandAndLeftGate is true if inputs
(reactants and products) conform to the interaction rules of a strand and a left gate,
specifically s and lg interact, i.e., the right domain of s matches the left domain of lg,
and produce s’ and rg’ where the left and right domains of s’ match those of lg, and
left and right domains of rg’ match those of s; likewise, ReactStrandAndRightGate specifies
the interaction of a strand and a right gate. The functions ReactantsSet and ProductsSet
returns a set of reactants (products) in a reaction. The predicate Seesaw specifies: (a) each
reaction to be a seesaw reaction by enforcing the predicate React on every reaction; (b) that
all possible reactions exist, i.e., if two species can interact based on seesaw interaction rules
(predicate CanReact) than a reaction containing those species as reactants (or products) must
exist; (c) that reactions only in one direction exist (to reduce number of solutions we enforce
that only one direction of reaction exist in enumerated CRNs knowing that seesaw reactions
are always reversible); (d) that reactions have a left gate as a reactant (this is to prevent
multiple redundant solutions, since all reactions are reversible we can enforce that left gate
is always on the left hand side).

An instance generated by Alloy running the predicate with command GenSeesaw is
Sab + LGbc → Sbc + RGab, where Sab and Sbc are strands, LGbc left gate, RGab right gate,
while left and right domains {a, b, c} are denoted in subscript. Note that this reaction is
equivalent to the one shown in Figure 2.

M. Vasic, D. Soloveichik, and S. Khurshid 4:9

Listing 6 Seesaw model.
open strandsandgates

sig Domain {}
sig DNASpecies in Species { left, right: lone Domain }
sig RightGate, LeftGate extends Gate {}

fact UseAll { DNASpecies = Species and DNASpecies.(left + right) = Domain }
fact UniqueSpecies {
all s1, s2: Strand | s1.left = s2.left and s1.right = s2.right implies s1 = s2
all s1, s2: RightGate | s1.left = s2.left and s1.right = s2.right implies s1 = s2
all s1, s2: LeftGate | s1.left = s2.left and s1.right = s2.right implies s1 = s2 }

fact OneDomain { all s: Strand + LeftGate + RightGate | one s.left and one s.right }

pred CanReactStrandAndLeftGate[s: Strand, lg: LeftGate] {
s in Strand and lg in LeftGate and s.right = lg.left }

pred CanReactStrandAndRightGate[s: Strand, rg: RightGate] {
s in Strand and rg in RightGate and s.left = rg.right }

pred CanReact[r1: DNASpecies, r2: DNASpecies] {
CanReactStrandAndLeftGate[r1, r2] or CanReactStrandAndRightGate[r1, r2] }

pred ReactStrandAndLeftGate[s: Strand, lg: LeftGate, s’:Strand, rg’: RightGate] {
(s in Strand and lg in LeftGate and s’ in Strand and rg’ in RightGate
and CanReactStrandAndLeftGate[s, lg]
and s’.left = lg.left and s’.right = lg.right and rg’.left = s.left and rg’.right = s

.right) }
pred ReactStrandAndRightGate[s: Strand, rg: RightGate, s’: Strand, lg’: LeftGate] {
(s in Strand and rg in RightGate and s’ in Strand and lg’ in LeftGate
and CanReactStrandAndRightGate[s, rg]
and s’.left = rg.left and s’.right = rg.right and lg’.left = s.left and lg’.right = s

.right) }
pred React[r1: Species, r2: Species, p1: Species, p2: Species] {
ReactStrandAndLeftGate[r1, r2, p1, p2] or ReactStrandAndRightGate[r1, r2, p1, p2] }

fun ReactantsSet[r: Reaction]: set Species { Int.(r.reactants) }
fun ProductsSet[r: Reaction]: set Species { Int.(r.products) }

pred Seesaw {
StrandsAndGates[]
all r: Reaction { -- All reactions are seesaw reactions.
let s = 0.(r.reactants), g = 1.(r.reactants), s’ = 0.(r.products), g’ = 1.(r.

products) {
React[s, g, s’, g’] }}

all s1, s2: Species { -- All possible reactions exist.
CanReact[s1, s2] implies some r: Reaction {
(s1 + s2) = ReactantsSet[r] or (s1 + s2) = ProductsSet[r] }}

all s1, s2: Species | all rxn1, rxn2: Reaction { -- Prevent reverse direction.
((s1+s2) = ReactantsSet[rxn1]) implies ((s1+s2) != ProductsSet[rxn2]) }

all r: Reaction { some LeftGate & ReactantsSet[r] }
}

GenSeesaw: run Seesaw for exactly 1 Reaction, exactly 3 Domain, exactly 4 Species

To reduce the enumeration overhead for seesaw, we updated the Reaction signature by
removing the representation of reactants and products as a sequence (sequence introduces
integers as an overhead), and adding two relations for reactants and products (as seesaw
reactions are restricted to two reactants and two products). The updated Reaction signature
is: abstract sig Reaction { r1, r2, p1, p2: Species }

DNA 26

4:10 CRNs Exposed

Listing 7 Feed-forward, non-competitive CRNs in Alloy.
open elementary

one sig Graph { edges: Reaction -> Reaction }
{ all r1, r2: Reaction | r1->r2 in edges implies some s: Species |

NetProduces[r1, s] and NetConsumes[r2, s]
all s: Species | all r1, r2: Reaction |
NetProduces[r1, s] and NetConsumes[r2, s] implies r1->r2 in edges }

pred DAG[] { all r: Reaction | r !in r.^(Graph.edges) }

pred NonCompetitive[] {
all r1, r2: Reaction | all s : Species {
(ContainsAsReactant[r1, s] and NetConsumes[r2, s]) implies r1 = r2 }}

pred NetProduces[r: Reaction, s: Species] { -- r net produces s
lt[#indsOf[r.reactants,s], #indsOf[r.products,s]] }

pred NetConsumes[r: Reaction, s: Species] { -- r net consumes s
gt[#indsOf[r.reactants,s], #indsOf[r.products,s]] }

pred MustConsume[] {
all r: Reaction | some s: Species | NetConsumes[r, s] }

pred Feedforward[] { Elementary[] and DAG[] and NonCompetitive[] and MustConsume[] }

Feed-forward, non-competitive CRNs. Listing 7 models feed-forward, non-competitive
CRNs. Recall, we define feed-forward as: there exists a total ordering on the reactions such
that no reaction consumes a species produced by a reaction later in the ordering. Also, we
define non-competitive as: every species is consumed by at most one reaction.

To model feed-forward constraints, one approach is to directly enforce a total ordering on
the reactions with respect to the feed-forward property. Observe that there can be multiple
valid total orderings of reactions for the same feed-forward CRN, which means that when
enumerating instances for the resulting model, multiple unique instances are created for the
same CRN. This is useful when finding all total orderings that exist for a CRN. However, our
goal is to search for CRNs exhibiting desired functionality, and thus we aim to enumerate
each CRN once, and as quickly as possible. To tackle this problem we achieve the total
ordering by creating a graph of reaction dependencies, and enforce it to be directed-acyclic.

Our modeling of feed-forward constraints introduces a new singleton (one) sig, termed
Graph, to model a dependency relation, termed edges, between reactions. The constraint
paragraph that immediately follows the signature declaration implicitly introduces a fact that
defines the edges. Specifically, there is an edge from reaction r1 to reaction r2 if and only if
there is some species s such that r1 produces s and r2 consumes s. Total ordering is achieved
by the predicate DAG that requires the graph to be directed-acyclic. The operator ‘ˆ’ is
transitive closure and r.ˆ(Graph.edges) represents the set of all reactions that are reachable
from r. The predicate NonCompetitive enforces that if a species is used as a reactant in
a reaction then it cannot be consumed by any other reaction. The predicate MustConsume
enforces that every reaction consumes some species (boundedness condition). The predicate
Feedforward defines elementary, feed-forward, and non-competitive reactions where each
reaction must consume some species.

M. Vasic, D. Soloveichik, and S. Khurshid 4:11

Algorithm 1 Search Algorithm.
Input: Model (model), Generation bounds (scope), Function (f), Inputs (N).
Output: CRN that computes f if found; otherwise, null.

1: procedure ExhaustiveSearch
2: for each instance ∈ Alloy.findAllInstances(model, scope) do
3: crn← translate(instance)
4: if ComputesF (crn, f, N) then return crn
5: end for
6: return null
7: end procedure

3 CRN Enumeration and Search

In this section we describe our algorithm (shown in Algorithm 1) that performs a bounded
exhaustive search enumerating all CRNs in a given class and within a given bounds respecting
properties defined by an Alloy model, to find the CRN implementing desired function.

Inputs to the algorithm are the Alloy model, the size of CRNs (e.g., number of reactions
and species) defined by the scope, desired target function f , and the number of inputs to the
function N . Function findAllInstances accepts the Alloy model definition and scope, and
enumerates all possible instances that satisfy the Alloy model. Each Alloy instance is
translated to CRN (step 3). Then, in step 4 we invoke the Algorithm 2 (Section 4) to check
if CRN computes f . If CRN implementing given function is found then it is returned (step
4). If after checking all instances no satisfying CRN is found then the procedure returns null.

Bounded exhaustive search . To find the smallest CRN computing f we conduct a bounded
exhaustive search. Our goal is to find a smallest (in terms of numbers of species and reactions)
feed-forward, non-competitive CRN that computes f . We use iterative deepening [26, 28,30]
where we start from a small scope and iteratively increase it to a larger scope until a desired
CRN is found, where for each scope we invoke Algorithm 1.

4 CRN Analysis

In this section we describe our algorithm for checking if a CRN computes a function of
interest (f).

Conservation Equations. We first construct a set of conservation equations for the CRN
which describe concentrations of species in terms of their initial concentrations and reaction
fluxes. A reaction flux is equal to the total “flow of material” through the reaction. We
associate a flux variable to the each reaction, where fluxi represents the flux of the reaction
i. Then the concentration of a species S can be expressed in terms of its initial concentration
S0 and reaction fluxes:

s = s0 +
N∑

i=1

netGain(rxni, S) · fluxi (1)

where netGain(rxni, S) is the net stoichiometric gain of species S in the reaction i (negative
in the case of loss), and N is the number of reactions in the CRN. For example, the CRN
from Figure 1 generates the equations shown in 2. The variables on the left side of equations
represent concentrations of species, variables with suffixes 0 represent initial concentrations of

DNA 26

4:12 CRNs Exposed

species (e.g., z10 is initial concentration of species Z1), and finally fluxi variables represent
fluxes of reactions.

a = a0 − flux1 b = b0 − flux2

z1 = z10 + flux1 − flux3 z2 = z20 + flux2 − flux3

k = k0 + flux3 − flux4 y = y0 + flux1 + flux2 − flux4

(2)

Equilibrium Condition. We next use the above conservation equations to find equilibria.
Since we focus on rate-independent computation, we search for static equilibria only (none
of the reactions is occurring).5 A static equilibrium corresponds to every reaction having at
least one reactant in zero concentration. Thus, we create multiple systems of equations from
the conservation equations, where each system corresponds to setting concentrations of a set
of species to zero, where the set contains a reactant from each reaction. The solution of each
such constructed system of equations represents concentrations of species at an equilibrium.
Different equilibria will be reached from different initial conditions.

As an example, consider again the CRN shown in Figure 1. All combinations of species
containing a reactant from each reaction are: (A, B, Z1, Y), (A, B, Z2, Y), (A, B, Z1, K),
(A, B, Z2, K). For each combination we set its species concentrations to zero and solve the
system 2. This results in 4 solutions shown in 3 (we do not show solutions for flux variables
due to the space limits).

a b k y z1 z2

0 0 −b0 + k0 − y0 + z10 0 0 −a0 + b0 − z10 + z20

0 0 −a0 + k0 − y0 + z20 0 a0 − b0 + z10 − z20 0
0 0 0 b0 − k0 + y0 − z10 0 −a0 + b0 − z10 + z20

0 0 0 a0 − k0 + y0 − z20 a0 − b0 + z10 − z20 0
(3)

Although there are 4 solutions, for any particular initial concentrations of the species only
one of the solutions is non-negative (concentrations of species must be non-negative), and
thus feasible.

Check whether CRN computes f . We then check if the equilibrium solutions are equivalent
to f . In general, we do not know which species correspond to the input and which to the
output, and thus we need to check for all possible combinations of the input and the output
species. First, we construct all input n-tuples without repeating elements from a set of
species (where n is the number of the inputs to f)6. Second, for all species that are not
in the input tuple we set initial concentrations to zero. Third, for the output species we
try any of the remaining species. Fourth, for a given set of input and output species, we
construct a piecewise function, where each solution is valid if concentrations of species are
non-negative. Finally, we use Mathematica’s constraint solving procedure FindInstance to
check if the constructed piecewise function differs from function f .

5 In chemical kinetics, static equilibrium refers to an equilibrium where none of the reactions occur. In
contrast, in dynamic equilibria, concentrations don’t change over time because the effects of the different
reactions cancel out. Note that dynamic equilibria are not rate-independent since changing a reaction
rate affects the equilibrium concentrations of the species involved in that reaction.

6 An input tuple (a,b) will be separately considered from (b,a). However, if the sought function is known
to be commutative than the order of species can be ignored.

M. Vasic, D. Soloveichik, and S. Khurshid 4:13

Algorithm 2 ComputesF.
Input: CRN crn, Function f , Number of inputs N .
Output: True if crn computes f ; false otherwise.

1: procedure ComputesF
2: conservationEquations← constructConservationEquations(crn)
3: equilibriumSolutions← ∅
4: for each speciesSet ∈ getAllReactantCombinations(crn) do
5: equilibriumEquations← setConcT oZero(conservationEquations, speciesSet)
6: solution← solve(equilibriumEquations)
7: equilibriumSolutions.add(solution)
8: end for
9: for each {x1, x2, ..., xN , y} ∈ getInputOutputSpecies(crn, N) do
10: nonInputSpecies← getOtherSpecies(crn, {x1, x2, ..., xn})
11: newSols← setInitialConcT oZero(equilibriumSolutions, nonInputSpecies)
12: pwF ← constructP iecewise(newSols, y)
13: counterExample← F indInstance(pwF 6= f(x1, x2, ..., xN))
14: if counterExample = null then return true
15: end for
16: return false
17: end procedure

To illustrate on our example, consider setting input species to A and B, and output to Y .
The system of equations 3 reduces to the system 4.

a b k y z1 z2

0 0 −b0 0 0 −a0 + b0

0 0 −a0 0 a0 − b0 0
0 0 0 b0 0 −a0 + b0

0 0 0 a0 a0 − b0 0

(4)

The first two solutions are infeasible since they result in species k having negative con-
centration, −b0 and −a0. More precisely they are feasible only in the trivial case where
a0 = 0 ∧ b0 = 0. The third solution is feasible when b0 ≥ a0, in which case y = b0; while
fourth solution is feasible when a0 ≥ b0, in which case y = a0. Thus, we can construct the
piecewise function unifying multiple equilibrium solutions into a single function:

y =

{
b0 b0 ≥ a0

a0 a0 ≥ b0

Next, once we constructed the equilibrium piecewise function (y(a0, b0)) we invoke the
Mathematica’s constraint solving procedure FindInstance to find an assignment of inputs
(a0, b0) for which y differs from f , with additional condition that initial concentrations are
non-negative (a0 ≥ 0 ∧ b0 ≥ 0). If no counterexample is found, then the CRN computes f

and we have finished our search. On the other hand, if a counterexample is found, then
we repeat the procedure for the next combination of input and output species. When the
list of input and output combinations is exhausted we can conclude that the CRN does not
compute f .

Algorithm. We implement this functionality in Mathematica by defining ComputesF func-
tion described in Algorithm 2. In step 2, conservation equations are constructed, while in
step 3 we initialize a set of equilibrium solutions equilibriumSolutions to an empty set. In
steps 4–8, we iterate over all existing sets of species containing at least one reactant from each
reaction. Specifically, function getAllReactantCombinations computes Cartesian product over
sets of reactants from different reactions; and removes elements with the same sets of species.
In step 5 we update the conservation equations by setting speciesSet concentrations to zero,

DNA 26

4:14 CRNs Exposed

Table 1 Number of enumerated feed-forward, non-competitive CRNs and wall-clock times
(hh:mm:ss) for the enumeration procedure.

1 Reaction 2 Reactions 3 Reactions 4 Reactions

1 Species 3 00:00:00 0 00:00:00 0 00:00:00 0 00:00:00
2 Species 10 00:00:00 22 00:00:00 0 00:00:00 0 00:00:00
3 Species 6 00:00:00 199 00:00:00 287 00:00:00 0 00:00:00
4 Species 1 00:00:00 391 00:00:00 4,666 00:00:05 5,643 00:00:07
5 Species 0 00:00:00 291 00:00:00 17,509 00:00:19 140,064 00:03:57
6 Species 0 00:00:00 100 00:00:00 27,257 00:00:32 817,742 00:30:35

and save the linear system in equilibriumEquations. In steps 6–7 we solve the system of
linear equations and add it to the list of equilibrium solutions (note that since we are focused
on feed-forward non-competitive reactions, a unique solution will always exist). Next, we
iterate over all combinations of input and output species {x1, x2, ..., xN , y}, where x1, x2,
..., xN represent input species, and y output species. In step 10 we get all the species that
are not in the input species set. In step 11 we modify the equilibrium solutions by setting
initial concentrations of nonInputSpecies to zero, and we save the result in newSols. In
step 12 we construct a piecewise function pwF out of newSols. Finally, in step 13 we invoke
the FindInstance method to find input values for which pwF is different then f . If such
solution is not found then counterExample is null, and constructed pwF is implementing
f ; in which case procedure returns true. If counterexample is found then the same steps
are repeated for different set of input and output species. Finally, if all combinations are
exhausted procedure returns false.

5 New Results

In this section we present new discoveries made using the proposed techniques. We focus on
the class of feed-forward, non-competitive CRNs since they are always rate-independent.

Smallest max CRN. We perform bounded exhaustive search for 1 to 4 reactions, and 1–6
species, starting with smaller number of species and reactions, and iteratively increasing the
scope until the max is found. Table 1 shows the number of enumerated CRNs and Alloy
enumeration time for different scope sizes. We perform (not perfect) isomorphic breaking
in Alloy by requiring lexicographic ordering on reactions among other things (details of
symmetry breaking are shown in Appendix F). Note that while we perform some isomorphic
breaking7, not all isomorphic cases are pruned, and thus number of non-isomorphic instances
may be less then numbers reported in Table 1. In spite of this, our approach is still exhaustive,
meaning that all possible CRNs will be enumerated, but some may be enumerated multiple
times. The first occurrence of max is found in the scope of 4 reactions and 6 species, and
it was the 124, 118th instance Alloy enumerated in that scope. The CRN discovered is
equivalent to the one shown in Figure 1, modulo reaction and species ordering.

7 Alloy can generate isomorphic instances, i.e., two instances that are distinct but there exists a permutation
on atoms, which maps one instance to the other

M. Vasic, D. Soloveichik, and S. Khurshid 4:15

X+ −−→M + Y +

M + X− −−→ Y −

X+ −−→ Y + + C

X− −−→ Y + + E

C + E −−→ 2 Y −

X+
1 −−→M1 + Y +

max

X−
1 −−→M2 + Y −

min

X+
2 −−→M2 + Y +

max

X−
2 −−→M1 + Y −

min

M1 + M2 −−→ Y −
max + Y +

min

Figure 3 Minimal ReLU (left), abs (middle) and minmax (right) CRNs. (left) The ReLU
CRN produces x+(0) amount of M and Y + by the first reaction. The second reaction produces
min(x+(0), x−(0)) amount of Y −. Thus, the amount of output produced is: y = y+ − y− =
x+(0)−min(x+(0), x−(0)) which can be shown to be equal to ReLU(x+(0)− x+(0)) = ReLU(x).
(middle) The abs CRN produces x+(0) amount of C and E by the first and second reactions,
respectively, x+(0) + x−(0) amount of Y +, and 2min(x+(0), x−(0)) amount of Y −. Thus, y =
x+(0) + x−(0)− 2min(x+(0), x−(0)) = abs(x+(0), x−(0)) = abs(x).

Dual-rail convention. Concentrations of species are always non-negative, making it im-
possible to represent negative values directly. However, there is a natural way to extend
computation semantics to negative values. Instead of using a single species to represent a
value, in dual-rail convention a value is represented by a difference between a two species
(e.g., the output value is equal to the concentration of species Y + minus that of Y −).

An additional requirement for CRN modules is to be composable, in the sense that the
output of one can be input to another. Note, for example, that the max system (Figure 1) is
not composable because the downstream module might consume some amount of Y before it
is consumed in its interaction with K (last reaction). Composability can be ensured if the
output species are never consumed [9,14,52]. Note that consuming Y + is logically equivalent
to producing Y − (and vise versa for Y −), and thus we restrict dual-rail computation in this
way without losing expressibility.

Smallest ReLU CRN. Using the above described procedure we run experiments for finding
the smallest CRN computing ReLU (rectified linear unit) function. We confirm that the
CRN introduced in [58], which is shown in Figure 3, is indeed the smallest. Note that CRNs
were already enumerated when searching for max, and that was no need to re-enumerate
them as they were saved on disk.

Our analysis shows that the ReLU CRN is the smallest in the sense that there is no other
CRN computing this function with fewer than 2 reactions or 5 species. In Appendix D we
argue that our enumeration in Table 1 is sufficient to ensure that 5 species are necessary no
matter how many reactions are allowed.

Smallest abs CRN. We conducted a similar experiment for finding the smallest CRN
computing the absolute value function, finding CRN shown in Figure 3.

Smallest minmax CRN. Minmax CRN accepts two inputs and has two outputs, where one
output computes max, and other output computes min of the inputs. Since species are in
dual-rail form, there is 4 input and 4 output species. Thus, for minmax search we enumerated
CRNs that have at least 8 species, where at least 4 species only appear as products (output
species candidates), and at least 4 species which do not appear only as products (input
species candidates). We have further restricted the CRNs to have a total of at most 16
reactants and products over all reactions. Enumeration results with those constraints are
shown in Table 2 (isomorphic breaking is imperfect in this case as well). We discovered the

DNA 26

4:16 CRNs Exposed

Table 2 Number of enumerated feed-forward, non-competitive CRNs with at least two dual-rail
inputs (4 actual species) and two outputs (4 actual species). Star (∗) denotes that the scope has
been partially enumerated.

2 Reactions 3 Reactions 4 Reactions 5 Reactions

8 Species 1 00:00:00 1,176 00:00:03 67,323 00:03:09 0 00:00:00
9 Species 0 00:00:00 1,073 00:00:03 223,775 00:12:48 2,439,310 13:31:19
10 Species 0 00:00:00 385 00:00:02 328,397 00:19:30 4,669,000∗ 47:39:39

Table 3 Number of enumerated seesaw reactions with different number of domains and reactions,
and up to 20 distinct species.

1 Reaction 2 Reactions 3 Reactions 4 Reactions 5 Reactions

1 Domain 1 00:00:00 0 00:00:00 0 00:00:00 0 00:00:00 0 00:00:00
2 Domains 1 00:00:00 4 00:00:00 0 00:00:00 2 00:00:01 1 00:00:03
3 Domains 1 00:00:00 5 00:00:00 15 00:00:01 13 00:00:05 14 00:00:17
4 Domains 0 00:00:00 9 00:00:01 33 00:00:02 92 00:00:18 121 00:01:58
5 Domains 0 00:00:00 4 00:00:00 55 00:00:04 243 00:00:48 705 00:10:16
6 Domains 0 00:00:00 1 00:00:00 43 00:00:10 436 00:06:40 2027 03:01:06

minimal minmax CRN, which is shown in Figure 3. We performed several optimizations to
speed up the analysis phase which are described in Appendix E.

Seesaw enumeration. We enumerated all nonisomorphic seesaw CRNs up to specified
bounds on the number of domains and reactions. Table 3 shows the number of enumerated
CRNs restricted to 1-5 reactions, 1-6 domains, and up to 20 species. Since 5 seesaw reactions
can have at most 20 distinct species this includes all possible seesaw CRNs in the scope of 1-5
reactions. For seesaw networks, we define isomorphic CRNs as those that can be obtained
by: (a) swapping domain names, (b) changing order of reactants or products, (c) changing
order of reactions, (d) swapping reactants with products (follows from the reversibility of
seesaw reactions).

In order to check for isomorphisms while enumerating seesaw CRNs, we maintain a set
of previously enumerated CRNs and all their isomorphisms. If a newly enumerated CRN
is not found in the current set, we create the isomorphic class of the CRN by making all
permutations of the CRN, and adding them to the set. Permutations are done only with
respect to domains. Permuting the order of reactants and products, as well as swapping
reactants and products, is not needed as we follow the convention of enumerating CRNs
in a form S?? + LG?? ↔ S?? + RG??. Permuting the order of reactions is not needed, as
the set of CRNs is preserved as a hash table where a custom-made hash function is used
for CRNs (a same hash value is returned for a CRN irrespective of the order of reactions).
The isomorphic breaking is implemented as a post-processing step in Java. The run-times
reported in Table 3 include both generation and isomorphic breaking times.

Note that we require that the CRN corresponding to a seesaw system contain all reactions
that can occur. For illustration, we analyze seesaw CRNs with 2 domains and 1 reaction.
Due to the reversibility of seesaw reactions we can limit our analysis to CRNs that have a
left gate on the left hand side; thus our CRN will be of the form S?? + LG?? ↔ S?? + RG??,
where ? represent domains to be filled in. We denote two available domains with a and b,

M. Vasic, D. Soloveichik, and S. Khurshid 4:17

and we enforce that both domains are used in a CRN. The possible combinations for the
domains of the first strand are {aa, ab, ba, bb}, where we can remove cases starting with b as
they are symmetrical. Choosing Saa as a first strand, the only option for left gate is LGab as
we have to use two domains and left domain of LG must match right domain of S. This leads
to a CRN: Saa + LGab ↔ Sab + RGaa. Note that this CRN is not a valid one, as in this case
Saa and RGaa can also interact creating additional reaction. Another option for the strand
is Sab, in which case there are two options for left gate LGbb and LGba. In a case of LGbb

reaction is following: Sab + LGbb ↔ Sbb + RGab. This is also not a valid CRN since Sbb and
LGbb can interact creating additional reaction. The final option is Sab + LGba ↔ Sba + RGab,
which is only valid seesaw CRN in a case of 2 domains and 1 reaction; thus Table 3 shows
count 1 for seesaw CRNs with 2 domains and 1 reaction.

Similarly, note that there are 0 CRNs with 2 domains and 3 reactions, but there are
2 with 2 domains and 4 reactions. This is due to the fact that all 3 reaction CRNs with
2 domains have some other species that can also interact producing additional (spurious)
reaction. A curious reader can check that removing any reaction from 4 reaction 2 domain
seesaw CRNs (Table 4) will leave some species that can interact creating the fourth reaction.

Table 4 Seesaw CRNs with 2 domains and 4 reactions.

Saa + LGaa ←−→ Saa + RGaa

Sba + LGaa ←−→ Saa + RGba

Sbb + LGba ←−→ Sba + RGbb

Sbb + LGbb ←−→ Sbb + RGbb

Sab + LGba ←−→ Sba + RGab

Sbb + LGba ←−→ Sba + RGbb

Sab + LGbb ←−→ Sbb + RGab

Sbb + LGbb ←−→ Sbb + RGbb

6 Related Work

CRN Enumeration. Deckard et al. [18] developed an online library of reaction networks,
which was extended [3] to catalog reactions of several classes. These approaches generate non-
isomorphic bipartite graphs (two types of vertices for species and reactions) with undirected
edges relying on Nauty library [45]. Each such constructed graph is then reified as multiple
CRN instances. Recent generalization of this work gives the first complete count of all
2-species bimolecular CRNs, and counts for other classes of CRNs such as mass-conserving
and reversible [56]. Rather than focusing on removing all isomorphisms and generating exact
counts of non-isomorphic CRNs in each class, our work allows the user to flexibly specify
and analyze structural properties of CRNs of interest (enabling direct generation of CRNs
following the structure). For example, it is not clear how to encode molecular structure (such
as we do for seesaw networks) using graph-based models.

Minimal Systems with Desired Behavior. Complementary to CRN enumeration, previous
work also tackled the problem of finding minimal CRNs respecting some desired properties
or exhibiting certain behavior. Wilhelm [62] discovers the smallest elementary CRN with
bistability. Wilhelm and Heinrich [63] similarly detect the smallest CRN with Hopf bifurcation.
In comparison with this line of work, our paper presents a more general framework that allows
specifying structure and properties, including different functions, of CRNs to be explored.

Recent work due to Murphy et al [47] is close to ours in spirit, but focuses on discrete-state
stochastic systems (integer molecular counts of the species), rate-dependent reactions, and
does not guarantee that discovered CRNs are minimal. Cardelli et al [8] take a program
synthesis approach to generate CRNs that follow properties provided by a certain “sketch”
language (i.e., a template) using SMT solvers on the back end [4, 17].

DNA 26

4:18 CRNs Exposed

Computational power of CRNs. Much ongoing work has explored computational power of
CRNs [31,43,51,59]. It is shown how to map complex computation to CRNs, such as mapping
polynomials to chemical reactions, mapping discrete algorithms, and even defining a high-level
imperative languages that map to CRNs. We believe that by exploring CRNs bottom up, we
may found answers of what the appropriate (more efficient) high-level primitives are to be
used for implementing such high-level functionality.

7 Conclusion

We introduced the use of Alloy, a framework for modeling and analyzing structural constraints
and behavior in software systems, to enumerate CRNs with declaratively specified properties.
We showed how this framework can enumerate CRNs with a variety of structural constraints
including biologically motivated catalytic networks and metabolic networks, and seesaw
networks motivated by DNA nanotechnology. We also used the framework to explore analog
function computation in rate-independent CRNs. We applied our approach in a case-study
to find the smallest CRNs computing the max, minmax, abs and ReLU functions in a natural
subclass of rate-independent CRNs where rate-independence follows from structural network
properties.

There remain a number of open questions that motivate future research directions. An
important area of optimization is improving the run-time of the Alloy enumeration. Can
we optimize the isomorphic breaking process to eliminate all isomorphisms? For improved
efficiency and ease of use, do we need to rely on a separate tool like Mathematica to determine
whether a given CRN computes the desired function, or can the necessary functionality be
performed in Alloy alone? Finally, it remains to be seen how easily the techniques developed
in this paper could be applied to rate-dependent computation.

References
1 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast

robust approximate majority. Distributed Computing, 21(2):87–102, 2008.
2 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power

of population protocols. Distributed Computing, 20(4):279–304, 2007.
3 Murad Banaji. Counting chemical reaction networks with NAUTY. arXiv preprint

arXiv:1705.10820, 2017.
4 Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,

Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In CAV, 2011.
5 Gilles Bernot, Jean-Paul Comet, Adrien Richard, and Janine Guespin. Application of formal

methods to biological regulatory networks: extending thomas’ asynchronous logical approach
with temporal logic. Journal of theoretical biology, 2004.

6 Luca Cardelli. Strand algebras for DNA computing. Natural Computing, 10(1):407–428, 2011.
7 Luca Cardelli. Morphisms of reaction networks that couple structure to function. BMC

systems biology, 8(1):84, 2014.
8 Luca Cardelli, Milan Češka, Martin Fränzle, Marta Kwiatkowska, Luca Laurenti, Nicola

Paoletti, and Max Whitby. Syntax-guided optimal synthesis for chemical reaction networks.
In CAV, 2017.

9 Cameron Chalk, Niels Kornerup, Wyatt Reeves, and David Soloveichik. Composable rate-
independent computation in continuous chemical reaction networks. In CMSB, pages 256–273.
Springer, 2018.

10 Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural computing, 13(4):517–534, 2014.

M. Vasic, D. Soloveichik, and S. Khurshid 4:19

11 Ho-Lin Chen, David Doty, and David Soloveichik. Rate-independent computation in continuous
chemical reaction networks. In Proceedings of the 5th conference on Innovations in theoretical
computer science, pages 313–326. ACM, 2014.

12 Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
nanotechnology, 8(10):755, 2013.

13 Kevin M Cherry and Lulu Qian. Scaling up molecular pattern recognition with DNA-based
winner-take-all neural networks. Nature, 559(7714):370, 2018.

14 Ben Chugg, Anne Condon, and Hooman Hashemi. Output-oblivious stochastic chemical
reaction networks. arXiv preprint arXiv:1812.04401, 2018.

15 Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron Peled, and Helmut Veith. Model
Checking. MIT Press, 2018.

16 CRNs Exposed Github Page. URL: https://github.com/marko-vasic/crnsExposed.
17 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International

conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

18 Anastasia C Deckard, Frank T Bergmann, and Herbert M Sauro. Enumeration and online
library of mass-action reaction networks. arXiv preprint arXiv:0901.3067, 2009.

19 Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular verification of code with
SAT. In ISSTA, 2006.

20 Niklas Een and Niklas Sorensson. An extensible SAT-solver. In SAT03, Santa Margherita
Ligure, Italy, 2003.

21 Marcelo F. Frias, Juan P. Galeotti, Carlos G. López Pombo, and Nazareno M. Aguirre.
DynAlloy: Upgrading Alloy with actions. In ICSE, 2005.

22 Juan P. Galeotti, Nicolás Rosner, Carlos G. López Pombo, and Marcelo F. Frias. TACO:
efficient SAT-based bounded verification using symmetry breaking and tight bounds. TSE,
2013.

23 Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. Ai2: Safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security and Privacy (SP), 2018.

24 Mirco Giacobbe, Călin C Guet, Ashutosh Gupta, Thomas A Henzinger, Tiago Paixão, and
Tatjana Petrov. Model checking gene regulatory networks. In TACAS, 2015.

25 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
2011.

26 Patrice Godefroid. VeriSoft: A tool for the automatic analysis of concurrent reactive software.
In CAV, pages 476–479. Springer, 1997.

27 Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas, and
H Sebastian Seung. Digital selection and analogue amplification coexist in a cortex-inspired
silicon circuit. Nature, 2000.

28 Klaus Havelund and Thomas Pressburger. Model checking Java programs using Java pathfinder.
International Journal on Software Tools for Technology Transfer, 2(4):366–381, 2000.

29 John Heath, Marta Kwiatkowska, Gethin Norman, David Parker, and Oksana Tymchyshyn.
Probabilistic model checking of complex biological pathways. Theoretical Computer Science,
2008.

30 Gerard J Holzmann. The SPIN model checker: Primer and reference manual, volume 1003.
Addison-Wesley Reading, 2004.

31 De-An Huang, Jie-Hong R. Jiang, Ruei-Yang Huang, and Chi-Yun Cheng. Compiling program
control flows into biochemical reactions. In Proceedings of the International Conference on
Computer-Aided Design, pages 361–368, 2012.

32 Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep
neural networks. In CAV, 2017.

DNA 26

https://github.com/marko-vasic/crnsExposed

4:20 CRNs Exposed

33 Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

34 Daniel Jackson and Alan Fekete. Lightweight analysis of object interactions. In TACS, 2001.
35 Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. ALCOA: The Alloy constraint analyzer.

In International Conference on Software Engineering, Limerick, Ireland, June 2000.
36 Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In ISSTA, 2000.
37 Eunsuk Kang, Aleksandar Milicevic, and Daniel Jackson. Multi-representational security

analysis. In FSE, 2016.
38 Sarfraz Khurshid, Darko Marinov, and Daniel Jackson. An analyzable annotation language.

In ACM SIGPLAN Notices, volume 37, pages 231–245. ACM, 2002.
39 Sarfraz Khurshid, Darko Marinov, Ilya Shlyakhter, and Daniel Jackson. A case for efficient

solution enumeration. In Sixth International Conference on Theory and Applications of
Satisfiability Testing (SAT), Santa Margherita Ligure, Italy, May 2003.

40 Matthew R Lakin, David Parker, Luca Cardelli, Marta Kwiatkowska, and Andrew Phillips.
Design and analysis of DNA strand displacement devices using probabilistic model checking.
Journal of the Royal Society Interface, 2012.

41 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 2015.
42 Tong Ihn Lee, Nicola J Rinaldi, François Robert, Duncan T Odom, Ziv Bar-Joseph, Georg K

Gerber, Nancy M Hannett, Christopher T Harbison, Craig M Thompson, Itamar Simon, et al.
Transcriptional regulatory networks in saccharomyces cerevisiae. Science, 298(5594):799–804,
2002.

43 Marcelo OMagnasco. Chemical kinetics is Turing universal. Physical Review Letters, 78(6):1190,
1997.

44 Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for automated testing of
Java programs. In ASE, pages 22–31, 2001.

45 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}. Journal of
Symbolic Computation, 2014.

46 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In 39th Design Automation Conference (DAC),
2001.

47 Niall Murphy, Rasmus Petersen, Andrew Phillips, Boyan Yordanov, and Neil Dalchau. Syn-
thesizing and tuning stochastic chemical reaction networks with specified behaviours. Journal
of The Royal Society Interface, 15(145):20180283, 2018.

48 Jason Ptacek, Geeta Devgan, Gregory Michaud, Heng Zhu, Xiaowei Zhu, Joseph Fasolo,
Hong Guo, Ghil Jona, Ashton Breitkreutz, Richelle Sopko, et al. Global analysis of protein
phosphorylation in yeast. Nature, 438(7068):679, 2005.

49 Lulu Qian and Erik Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332(6034):1196–1201, 2011.

50 Lulu Qian and Erik Winfree. A simple DNA gate motif for synthesizing large-scale circuits.
Journal of the Royal Society Interface, 8(62):1281–1297, 2011.

51 Sayed Ahmad Salehi, Keshab K. Parhi, and Marc D. Riedel. Chemical reaction networks for
computing polynomials. ACS Synthetic Biology, 6(1):76–83, 2017.

52 Eric E Severson, David Haley, and David Doty. Composable computation in discrete chemical
reaction networks. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 14–23, 2019.

53 Shalin Shah, Jasmine Wee, Tianqi Song, Luis Ceze, Karin Strauss, Yuan-Jyue Chen, and John
Reif. Using strand displacing polymerase to program chemical reaction networks. Journal of
the American Chemical Society, 2020.

54 Ilya Shlyakhter. Generating effective symmetry-breaking predicates for search problems. In
Proc. Workshop on Theory and Applications of Satisfiability Testing, June 2001.

55 David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.

M. Vasic, D. Soloveichik, and S. Khurshid 4:21

56 Carlo Spaccasassi, Boyan Yordanov, Andrew Phillips, and Neil Dalchau. Fast enumeration of
non-isomorphic chemical reaction networks. In CMSB, pages 224–247. Springer, 2019.

57 Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David Soloveichik. Enzyme-
free nucleic acid dynamical systems. Science, 358(6369):eaal2052, 2017.

58 Marko Vasic, Cameron Chalk, Sarfraz Khurshid, and David Soloveichik. Deep Molecular
Programming: A Natural Implementation of Binary-Weight ReLU Neural Networks. In
International Conference on Machine Learning, 2020.

59 Marko Vasic, David Soloveichik, and Sarfraz Khurshid. CRN++: molecular programming
language. In International Conference on DNA Computing and Molecular Programming, pages
1–18. Springer, 2018.

60 Vito Volterra. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. C.
Ferrari, 1927.

61 Qinsi Wang, Paolo Zuliani, Soonho Kong, Sicun Gao, and Edmund M Clarke. Sreach: A
probabilistic bounded delta-reachability analyzer for stochastic hybrid systems. In CMSB,
2015.

62 Thomas Wilhelm. The smallest chemical reaction system with bistability. BMC systems
biology, 3(1):90, 2009.

63 Thomas Wilhelm and Reinhart Heinrich. Smallest chemical reaction system with hopf
bifurcation. Journal of mathematical chemistry, 17(1):1–14, 1995.

64 David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement
reactions. Nature chemistry, 3(2):103, 2011.

A Proof of Rate Independence

In this section we develop an argument that the class of feed-forward, non-competitive CRNs
as defined in the main text is rate-independent. For simplicity, we base our argument on
the discrete CRN model, in which concentrations are integer molecular counts, reactions
are discrete events (firings), and rate-independence corresponds to behaving correctly no
matter what order the reactions occur in [10]. The continuous model is usually taken as an
approximation of the discrete model.

Note that when we say that a species S is consumed by a reaction, we mean that it
appears with negative net stoichiometry in the reaction. So we would not say that a catalyst
is consumed. We define produced similarly. We say configuration d is reachable from c if
there is a sequence of reactions that can fire to get from c to d.

In the main text, we define non-competitive as follows: if a species is consumed in a
reaction then it cannot appear as a reactant somewhere else. Feed-forward is defined as
follows: there exists a total ordering on the reactions such that no reaction consumes a species
produced by a reaction later in the ordering. We also require that all reactions consume
some species (boundedness condition).

Here we show that the feed-forward condition combined with boundedness implies that
the CRN will always reach a static equilibrium. (A static equilibrium is one where no reaction
can fire.) We then show that adding the non-competitive condition implies that the CRN
always reaches the same static equilibrium independent of the order in which the reactions
happen to occur.

The CRN always reaches some static equilibrium: If not then there is a set of reactions
that can fire infinitely often. Choose the earliest (according to the ordering) reaction in
this set. It must consume some S by boundedness. But by feed-forwardness, S can only be
produced earlier in the ordering. Which means that the reactions that net produce S can
only fire finite many times (they are not in this set). This is a contradiction.

DNA 26

4:22 CRNs Exposed

The CRN always reaches the same static equilibrium: Toward a contradiction, suppose
two different static equilibria c and d are reachable. Let p be the path to c and q be the path
to d. Without loss of generality there are reactions that fire fewer times in p than in q. Let
R be the reaction among these that comes earliest in the ordering. So compared to q, p has
at least as many firings of reactions earlier in the ordering than R. By non-competitiveness,
no other reaction consumes the reactants of R. Let S be a reactant of R. Consider two cases:
(1) S is consumed in R. By feed-forwardness, S must be produced in a reaction earlier in
the ordering than R. This means that the reactions producing S fire at least as much in p

as in q. Since R fired fewer times in p than in q, there are some of S left in c. (2) S is not
consumed in R (it acts as a catalyst). By the argument below, since R fires in q at least
once, R fires in p at least once. Thus S is present in c. Combining (1) and (2), we have that
R can fire in c, which contradicts the assumption that c is a static equilibrium.

There are no reactions that can fire on the path toward one static equilibrium but not
fire on the path to another : Toward a contradiction, suppose two different static equilibria
c and d are reachable. Let p be the path to c and q be the path to d. Let Ω be the set of
reactions that fire in q but not in p. Let R be the reaction in Ω that occurs first (in time) in
q. Its reactants must be either inputs or produced outside of Ω since R is the first reaction
in Ω that fired in q. By non-competitiveness, the reactants of R cannot be consumed in any
reaction other than R. So it must be possible to fire R at the end of p, which contradicts the
assumption that p is a static equilibrium.

B Background: Alloy

The Alloy modeling language is a first-order logic with transitive closure [33]. The Alloy
analyzer is a fully automatic tool for scope-bounded analysis of properties of Alloy models [35].
Given an Alloy model and a scope, i.e., a bound on the universe of discourse, the analyzer
translates the Alloy model to a propositional satisfiability (SAT) formula and invokes an
off-the-shelf SAT solver [20] to analyze the model.

An Alloy model consists of a set of paragraphs where each paragraph declares some typed
sets or relations, defines some logical constraints, or defines a command that informs the
analyzer of the analysis to perform. Each command defines a constraint solving problem. and
each solution to the problem defines an Alloy instance, i.e., a valuation of the sets and relations
declared in the model such that the constraints with respect to the command are satisfied. The
analyzer supports instance enumeration using incremental SAT solvers [20,46]. In addition,
the analyzer supports symmetry breaking and adds symmetry breaking predicates [54] to
the original formula, which allows the backend SAT solvers to more effectively prune their
search, and when enumerating solutions, create fewer solutions [39]. The analyzer’s default
symmetry breaking does not guarantee removal of all isomorphisms but is quite effective in
practice.

C Autocatalytic Reactions

Similarly to catalytic reactions we model autocatalytic (Listing 8). Autocatalytic reactions
add a requirement that in addition to existence of a catalyst species, the catalyst converts
the other species into itself, for example: X + Y → Y + Y .

M. Vasic, D. Soloveichik, and S. Khurshid 4:23

Listing 8 Autocatalytic reactions.
module autocatalytic
open elementary
pred Autocatalytic[] { Elementary[] and all r: Reaction | AutocatalyticReaction[r] }
pred AutocatalyticReaction[r: Reaction] {

some elems[r.reactants] & elems[r.products]
eq[#r.products, 2] and eq[#elems[r.products], 1] }

D ReLU Minimality

In this section we argue that our enumeration in Table 1 is sufficient to ensure that 5 species
are necessary for computing ReLU no matter how many reactions are allowed.

Because with 4 species there are at most 2 different reactions possible (which we enu-
merate). Consider the ReLU CRN with 4 species. This CRN must consist of 2 input
species (X+ and X−) and 2 output species (Y + and Y −), which we require to be distinct.
Further, the output species have to appear only as products. Thus, only species X+ and
X− can appear as reactants. Due to the requirement that every reaction has to net consume
some species (Listing 7), and that different reactions have to consume different species
(non-competitiveness), it follows that the CRN can have at maximum 2 reactions, one net
consuming X+, and other X+ species. Considering that our technique did not discover any
ReLU CRN with 2 reactions and 4 species, we conclude that there is no ReLU computing
CRN with 4 species.

E Optimizing Analysis

In this section we explain how we optimize the analysis phase of search for minmax CRN.
The optimization is done by including tests. Instead of invoking FindInstance SMT solver

for every combination of inputs and outputs, we construct a set of concrete test cases. If
a test case fails we immediately discard that combination and move to the next one. This
optimization improved analysis from 75s to 7.3s measured on the discovered minmax CRN.
Furthermore from equality |max(a, b)|+ |min(a, b)| = min(|a|, |b|) + max(|a|, |b|), we first
checked for CRNs that sattisfy this condition (using tests and FindInstance), and only run
the check whether output species compute min and max on those. Checking for the above
equality speeded up analysis becase the equality does not depend on the order of output
species y1 and y2, thus reducing number of input output combinations that need to be
tried. After implementing this additional optimization step analysis time went down to 0.75s
measured on the discovered minmax CRN. The optimizations made it feasible to discover
the minmax CRN.

F Symmetry breaking

This section shows our Alloy model for symmetry breaking of CRNs (Listing 9).
The Alloy analyzer during its translation from Alloy to propositional formulas automat-

ically adds to the propositional formulas symmetry breaking predicates, which reduce the
number of isomorphic solutions [54]. However, this automatic support is not practical for
breaking all isomorphisms since there is a delicate trade-off between the complexity of the
predicates that are added and the time it takes for the back-end solvers to handle them.

We follow a more effective approach where additional constraints in Alloy are mechanically
added directly to the Alloy model [39]. The key idea is to define a linear order on the atoms
and require that any solution when scanned in a pre-defined manner contains the atoms in

DNA 26

4:24 CRNs Exposed

conformance with the linear order. The approach breaks all symmetries for rooted, edge-
labeled graphs. However, CRNs represent a more complex structure and the approach does
not guarantee breaking all symmetries. Nonetheless, it removes many isomorphic solutions
and provides us a practical tool for exploring CRNs.

Note that the symmetry breaking is focused on a case of elementary CRNs as those CRNs
are our focus group (all of our inherited CRN models are subclass of elementary).

Listing 9 Alloy modeling of CRN symmetry breaking.
module symmetry

open elementary

open util/ordering[Species] as Sordering
open util/ordering[Reaction] as Rordering

pred CheckFirstReaction {
let first = Rordering/first,

r1 = 0.(first.reactants), r2 = 1.(first.reactants),
p1 = 0.(first.products), p2 = 1.(first.products)

{
r1 = Sordering/first
r2 in r1 + r1.next
p1 in r1 + r2 + (r1 + r2).next
p2 in r1 + r2 + p1 + (r1 + r2 + p1).next

}
}

pred CheckNonFirstReaction() {
all r: Reaction - Rordering/first {

let prevRxns = Rordering/prevs[r],
prevSpecies = Int.(prevRxns.reactants + prevRxns.products),
r1 = 0.(r.reactants), r2 = 1.(r.reactants),
p1 = 0.(r.products), p2 = 1.(r.products)

{
r1 in prevSpecies + prevSpecies.next
r2 in prevSpecies + r1 + (prevSpecies + r1).next
p1 in prevSpecies + r1 + r2 + (prevSpecies + r1 + r2).next
p2 in prevSpecies + r1 + r2 + p1 + (prevSpecies + r1 + r2 + p1).next

}
}

}

pred OrderReactionsBySize() {
all disj r1, r2 : Reaction {

Rordering/lt[r1, r2] implies {
lt[#r1.reactants, #r2.reactants]
or (eq[#r1.reactants, #r2.reactants]

and lte[#r1.products, #r2.products])
}

}
}

pred ReactionsSameSize[r1, r2: Reaction] {
eq[#r1.reactants, #r2.reactants]

and eq[#r1.products, #r2.products]
}

pred CheckLexicographic() {
all r: Reaction - Rordering/first {

let p = r.prev,
rr1 = 0.(r.reactants), rr2 = 1.(r.reactants), rp1 = 0.(r.products), rp2 = 1.(r.products),
pr1 = 0.(p.reactants), pr2 = 1.(p.reactants), pp1 = 0.(p.products), pp2 = 1.(p.products)
{

ReactionsSameSize[r, p] implies {
// DO only if sizes are the same assuming the size constraing.
rr1 in pr1.*next
rr1 = pr1 implies (no pr2 or rr2 in pr2.*next)
(rr1 = pr1 and rr2 = pr2) implies (rp1 in pp1.*next)
(rr1 = pr1 and rr2 = pr2 and rp1 = pp1) implies (no pp2 or rp2 in pp2.*next)

}
}

}

M. Vasic, D. Soloveichik, and S. Khurshid 4:25

all r: Reaction {
let r1 = 0.(r.reactants), r2 = 1.(r.reactants), p1 = 0.(r.products), p2 = 1.(r.products)
{

some r1 and some r2 implies Sordering/lte[r1, r2]
some p1 and some p2 implies Sordering/lte[p1, p2]

}
}

}

pred SymmetryBreaking {
Elementary
CheckFirstReaction
CheckNonFirstReaction
OrderReactionsBySize
CheckLexicographic

}

DNA 26

Population-Induced Phase Transitions and the
Verification of Chemical Reaction Networks
James I. Lathrop
Iowa State University, Ames, IA, USA
jil@iastate.edu

Jack H. Lutz
Iowa State University, Ames, IA, USA
lutz@iastate.edu

Robyn R. Lutz
Iowa State University, Ames, IA, USA
rlutz@iastate.edu

Hugh D. Potter
Iowa State University, Ames, IA, USA
hdpotter@iastate.edu

Matthew R. Riley
Iowa State University, Ames, IA, USA
mrriley@iastate.edu

Abstract
We show that very simple molecular systems, modeled as chemical reaction networks, can have
behaviors that exhibit dramatic phase transitions at certain population thresholds. Moreover,
the magnitudes of these thresholds can thwart attempts to use simulation, model checking, or
approximation by differential equations to formally verify the behaviors of such systems at realistic
populations. We show how formal theorem provers can successfully verify some such systems at
populations where other verification methods fail.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases chemical reaction networks, molecular programming, phase transitions,
population protocols, verification

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.5

Funding This research was supported in part by National Science Foundation grants 1545028,
1900716, and 1909688.

Acknowledgements The second and third authors thank Erik Winfree for his hospitality while they
did part of this work during a 2020 sabbatical visit at Caltech. We thank Neil Lutz for technical
assistance. We thank the reviewers for detailed suggestions that have improved our exposition, both
here and in an expansion of this paper in preparation.

1 Introduction

Chemical reaction networks, mathematical abstractions similar to Petri nets, are used as a
programming language to specify the dynamic behaviors of engineered molecular systems.
Existing software can compile chemical reaction networks into DNA strand displacement
systems that simulate them with growing generality and precision [52, 14, 6, 53]. Programming
is a challenging discipline in any case, but this is especially true of molecular programming,
because chemical reaction networks – in addition to being Turing universal [51, 18, 21] and
hence subject to all the uncomputable aspects of sequential, imperative programs–are, like the
systems that they specify, distributed, asynchronous, and probabilistic. Since many envisioned

© James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, Hugh D. Potter, and Matthew R. Riley;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 5; pp. 5:1–5:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jil@iastate.edu
mailto:lutz@iastate.edu
mailto:rlutz@iastate.edu
mailto:hdpotter@iastate.edu
mailto:mrriley@iastate.edu
https://doi.org/10.4230/LIPIcs.DNA.2020.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Population-Induced Phase Transitions

applications of molecular programming will be safety critical [54, 55, 19, 33, 32, 50, 44],
programmers thus seek to create chemical reaction networks that can be verified to correctly
carry out their design intent.

One principle that is sometimes used in chemical reaction network design is the small
population heuristic [31, 11, 20]. The idea here is to verify various stages of a design by
model checking or software simulation to ferret out bugs in the design prior to laboratory
experimentation or deployment. Since the number of states of a molecular system is typically
much larger than its population (the number of molecules present), and since molecular
systems typically have very large populations, this model checking or simulation can usually
only be carried out on populations that are far smaller than those of the intended molecular
systems. It is nevertheless reasonable to hope that, if a system is going to consist of a
very large number of “devices” of various sorts, then any unforeseen errors in these devices’
interactions will manifest themselves even with very small populations of each device. It is
this reasonable hope that is the underlying premise of the small population heuristic. (Note
that the small population heuristic can be regarded as a molecular version of the small scope
hypothesis [24].)

The question that we address here is whether real molecular systems can thwart the
small population heuristic. That is, can a real molecular system behave very differently at
large populations than at small populations? If so, how sensitive can its behavior be to its
population, and how simple a mechanism can achieve such sensitivity?

In order to ensure that we are only investigating population effects, we focus our attention
on chemical reaction networks that are population protocols in the sense that their populations
remain constant throughout their operations. If we have such a chemical reaction network,
and if we vary its initial population and nothing else, then we are assured that any resulting
variations of behavior are due solely to the differing populations.

In this paper we show that very simple chemical reaction networks can be very sensitive
to their own populations. In fact, they can exhibit population-induced phase transitions,
behaving one way below a threshold population and behaving very differently above that
threshold. After reviewing chemical reaction networks in Section 2, we present in Section 3 a
chemical reaction network N1, and we prove that N1 exhibits a population-induced phase
transition in the following sense. There are two parameters, m and n, in the construction.
For this discussion, we may take m = 34 and n = 67, but the construction is general. There
are n+ 1 reactions among n+ 2 species (molecule types) in N1. A species Z0 is given an
initial population p, and all other species counts are initially 0. Each reaction of N1 has two
reactants and two products, so the total population of N1 is p at all times. There are in N1
two distinguished species, B and R. These “blue” and “red” species are abstract stand-ins for
two different behaviors of N1. Our construction exploits the inherent nonlinearity of chemical
kinetics to ensure that, if p < 2m, then N1 terminates with essentially all its population blue,
while if p ≥ 2m, then N1 terminates with essentially all its population red. Thus N1 exhibits
a sharp phase transition at the population threshold p = 2m.

Our construction is very simple. The chemical reaction network N1 changes its behavior
at the threshold p = 2m by merely computing successive bits of p, starting at the least
significant bit. This mechanism is so simple that it could be hidden, by accident or by malice,
in a larger chemical reaction network. Moreover, for suitable values of m (e.g., m = 34, so
that the threshold p = 2m is roughly 1.7× 1010),
(1) any attempt to model-check or simulate N1 will perforce use a population much less

than the threshold and conclude that N1 will always turn blue; while
(2) any realistic wet-lab molecular implementation of N1 will have a population greater than

the threshold and thus turn red.

J. I. Lathrop, J. H. Lutz, R. R. Lutz, H.D. Potter, and M.R. Riley 5:3

If the behaviors represented by blue and red here are a desired, “good” behavior of N1 (or of
a network containing N1) and an undesired, “bad” behavior of this network, respectively,
then the possibility of such a phase transition is a serious challenge to verifying the correct
behavior of the chemical reaction network. Simply put, this is a context in which the small
population heuristic can lead us astray.

population0 ∞

realistic nano-experiments
and applications

model checking works

simulation works

ODEs work

Figure 1 Scales at which different verification methods (simulation, model checking, and ODE’s)
work. The gap in the middle shows the scale at which none of these methods will catch the “produce
blue” behavior of the system design. This gap is problematic because it is the scale of realistic
programmed molecular systems. We show in Section 5.4 how such systems can be verified using
automated theorem proving.

There is a dual large population heuristic that is used even more often than the small
population heuristic. A theorem of Kurtz [27, 2, 3] draws a connection between the behavior
of a stochastic chemical reaction network (the type of chemical reaction network used in our
work here and in most of molecular programming) at large populations and the behavior
of a deterministic chemical reaction network, which is governed by a system of ordinary
differential equations. Kurtz’s theorem involves several preconditions and caveats, and it does
not always transparently equate stochastic and deterministic behavior. When it does apply,
however, we can use a mathematical software package to numerically solve the deterministic
system and thereby understand the behavior of the stochastic chemical reaction network at
sufficiently large populations.

In Section 4 we add a single reaction to the chemical reaction network N1, creating
a chemical reaction network N2 that we prove (in Theorem 4.6) to exhibit two coupled
population-induced phase transitions in the following sense. If p < 2m or p ≥ 2n, then N2
terminates with essentially all its population blue, while if 2m ≤ p < 2n, then N2 terminates
with essentially all its population red. Thus N2 exhibits sharp phase transitions at the two
population thresholds, p = 2m and p = 2n. These phase transitions are coupled in that
exceeding the second threshold returns the behavior of N2 to its behavior below the first
threshold. For suitable values of m and n (e.g. m = 34 and n = 67 as above, so that the
thresholds p = 2m and p = 2n are roughly 1.7 × 1010 and 1.5 × 1020), this implies (see
Figure 1) that
(1) any attempt to model-check or simulate N2 will perforce use a population much less

than the smaller threshold and conclude that N2 will always turn blue, and
(2) any realistic wet-lab molecular implementation of N2 will have a population between

the two thresholds and thus turn red.
As we discuss later, when we analyze N2 with a numerical approach based on differential
equations, we also do not observe a red outcome. The chemical reaction network N2 thus
exemplifies a class of contexts in which the small population heuristic and the large population
heuristic can both lead us astray.

We emphasize that the phase transitions in the chemical reaction networks N1 and N2
occur at thresholds in their absolute populations. In contrast, phase transitions in chemical
reaction networks for approximate majority [4, 10, 17] occur at threshold ratios between
sub-populations, and phase transitions in bacterial quorum sensing [36] occur at threshold
population densities.

DNA 26

5:4 Population-Induced Phase Transitions

Section 5 discusses the consequences of our results for the verification of programmed
molecular systems in some detail. Here we summarize these consequences briefly. Phase
transitions are ubiquitous in natural and engineered systems [37, 45, 46, 47, 9, 43]. Our results
are thus cautionary, but they should not be daunting. Fifteen years after Turing proved the
undecidability of the halting problem, Rice [48, 49] proved his famous generalization stating
that every nontrivial input/output property of programs is undecidable. Rice’s theorem
saves valuable time, but it has never prevented computer scientists from developing specific
programs in disciplined ways that enable them to be verified. Similarly, Sections 3 and 4 give
mathematical proofs that the chemical reaction networks N1 and N2 have the properties
described above, and Section 5 describes how we have implemented such proofs in the Isabelle
proof assistant [40, 41]. As molecular programming develops, simulators, model checkers,
theorem provers, and other tools will evolve with it, as will disciplined scientific judgment
about how and when to use such tools.

2 Chemical Reaction Networks

Chemical reaction networks (CRNs) are abstract models of molecular processes in well-mixed
solutions. They are roughly equivalent to three models used in distributed computing, namely,
Petri nets, population protocols, and vector addition systems [18]. This paper uses stochastic
chemical reaction networks.

For our purposes, a (stochastic) chemical reaction network N consists of finitely many
reactions, each of which has the form

A+B → C +D, (2.1)

where A, B, C, and D (not necessarily distinct) are species, i.e., abstract types of molecules.
Intuitively, if this reaction occurs in a solution at some time, then one A and one B
disappear from the solution and are replaced by one C and one D, these things happening
instantaneously. A state of the chemical reaction network N with species A1, . . . , An at a
particular moment of time is the vector (a1, . . . , as), where each ai is the nonnegative integer
count of the molecules of species Ai in solution at that moment. Note that we are using the
so called “lower-case convention” for denoting species counts.

In the full stochastic chemical reaction network model, each reaction also has a positive
real rate constant, and the random behavior of N obeys a continuous-time Markov chain
derived from these rate constants. However, our results here are so robust that they hold for
any assignment of rate constants, so we need not concern ourselves with rate constants or
continuous-time Markov chains. In fact, for this paper, we can consider the reaction (2.1) to
be the if-statement

if a > 0 and b > 0 then a, b, c, d := a− 1, b− 1, c+ 1, d+ 1 (2.2)

(with the obvious modifications if A, B, C, and D are not distinct), where “:=” is parallel
assignment. The reaction (2.1) is enabled in a state q of N if a > 0 and b > 0 in q; otherwise,
this reaction is disabled in q. A state q of N is terminal if no reaction is enabled in q.

A trajectory of a chemical reaction network N is a sequence τ = (qi | 0 ≤ i < `) of states
of N, where ` ∈ Z+ ∪ {∞} is the length of τ and, for each i ∈ N with i+ 1 < `, there is a
reaction of N that is enabled in qi and whose effect, as defined by (2.2), is to change the
state of N from qi to qi+1. A trajectory τ = (qi | 0 ≤ i < `) is terminal if ` <∞ and q`−1 is
a terminal state of N.

J. I. Lathrop, J. H. Lutz, R. R. Lutz, H.D. Potter, and M.R. Riley 5:5

Assume for this paragraph that the context specifies an initial state q0 of N, as it does
in this paper. A state q of N is reachable if there is a finite trajectory τ = (qi | 0 ≤ i < `)
of N with q`−1 = q. A full trajectory of N is a trajectory τ = (qi | 0 ≤ i < `) that is either
terminal or infinite.

The fact that each reaction (2.1) has two reactants (A and B) and two products (C and
D) means that N is a population protocol [5]. This condition implies that the total population
of all species never changes in the course of a trajectory. If such a chemical reaction network
has s species and initial population p, its state space is thus the (s− 1)-dimensional integer
simplex

∆s−1(p) =
{

(a1, . . . , as) ∈ Ns

∣∣∣∣∣
s∑

i=1
ai = p

}
. (2.3)

Note that |∆s−1(p)| =
(

p+s−1
s−1

)
. Of course, fewer than this many states may be reachable

from a particular initial state of N.
A full trajectory τ = (qi | 0 ≤ i < `) of a CRN N is (strongly) fair [30, 7] if it has the

property that, for every state q and reaction ρ that is enabled in q,

(∃∞i)qi = q =⇒ (∃∞j)[qj = q and ρ occurs at j in τ], (2.4)

where (∃∞i) means “there exist infinitely many i such that.” Note that every terminal
trajectory of N is vacuously fair, because it does not satisfy the hypothesis of (2.4).

The stochastic kinetics of chemical reaction networks implies that, regardless of the rate
constants of the reactions, for every population protocol N and every initial population p
of N, there is a real number ε > 0 such that, for every state q of N and reaction ρ that is
enabled in q, the probability that ρ occurs in q depends only on q and is at least ε. This in
turn implies that, with probability 1, N follows a fair trajectory. Hence, if N has a given
behavior on all fair trajectories, then N has that behavior with probability 1.

We use the following two facts in Section 4. The first is an obvious consequence of the
definition of fairness.

I Observation 2.1. If τ = (qi | 0 ≤ i < `) is a fair trajectory of a population protocol N,
then, for every reaction ρ of N,

(∃∞i)[ρ is enabled in qi] =⇒ (∃∞j)[ρ occurs at j in τ]. (2.5)

A famous theorem of Harel [22, 26] implies that the general problem of deciding whether a
chemical reaction network terminates on all fair trajectories is undecidable. Nevertheless, the
following lemma gives a useful sufficient condition for termination of a population protocol
on all fair trajectories. This lemma undoubtedly follows from a very old result on fairness,
but we do not know a proper reference at the time of this writing. A proof appears in the
Appendix.

I Lemma 2.2 (fair termination lemma). If a population protocol with a specified initial state
has a terminal trajectory from every reachable state, then all its fair trajectories are terminal.

3 Single Phase Transition

This section presents the chemical reaction network N1 and proves that it exhibits a
population-induced phase transition as described in the introduction.

DNA 26

5:6 Population-Induced Phase Transitions

Fix m,n, p ∈ Z+ with n > m+ 1. Let N1 be a chemical reaction network consisting of
the n+ 1 ζ-reactions

ζi ≡ Zi + Zi →


Zi+1 +B (0 ≤ i < m)
Zi+1 +R (m ≤ i < n)
Zi +R (i = n)

and the χ-reaction

χ ≡ B +R→ R+R.

All results here hold regardless of the rate constants of these n+ 2 reactions.
We initialize N1 with z0 = p and all other counts 0.
Intuitively, B is blue, R is red, and the species Zi are all colorless.

I Lemma 3.1. N1 terminates on all possible trajectories.

I Notation. For 1 ≤ k ≤ n+ 1, let

Sk =
k−1∑
i=0

2izi,

noting that this quantity depends on the state of N1.

I Lemma 3.2. Let 0 ≤ j ≤ n and 1 ≤ k ≤ n+ 1.
1. If j 6= k − 1, then the reaction ζj preserves the value of Sk.
2. If j = k − 1, then the reaction ζj reduces the value of Sk.

I Corollary 3.3. For every 1 ≤ k ≤ n+ 1, the inequality Sk ≤ p is an invariant of N1.

I Corollary 3.4. If 1 ≤ k ≤ n and zk > 0 in some reachable state of N1, then p ≥ 2k.

In the following, for d ∈ Z+, we use both the mod-d congruence (equivalence relation)

a ≡ b mod d,

which asserts of integers a, b ∈ Z that b− a is divisible by d, and the mod-d operation

b mod d

whose value, for b ∈ Z, is the unique r ∈ Z such that 0 ≤ r < d and r ≡ b mod d.

I Corollary 3.5. The congruence

Sn ≡ p mod 2n (3.1)

is an invariant of N1.

I Corollary 3.6. For every 1 ≤ k ≤ n, the condition

Θk ≡ [zk = · · · = zn = 0 =⇒ Sk = p]

is an invariant of N1.

I Corollary 3.7. Let (q0, . . . , qt) be a trajectory of N1, where qt is a terminal state, and let
1 ≤ k ≤ n. If p ≥ 2k, then there exists 1 ≤ s ≤ t such that zk > 0 in qs.

J. I. Lathrop, J. H. Lutz, R. R. Lutz, H.D. Potter, and M.R. Riley 5:7

I Notation. For each r ∈ {0, . . . , 2n − 1}, let λ(r) be the number of 1s in the n-bit binary
representation of r (leading 0s allowed), and let

ε =
{
λ(p) if p < 2n

1 + λ(p mod 2n) if p ≥ 2n.

Note that ε is an integer depending on n and p, and that ε is negligible in the sense that
ε = o(p) as p→∞.
The boolean value of a condition ϕ is JϕK = if ϕ then 1 else 0.

I Theorem 3.8. N1 terminates on all trajectories in the state (z0, . . . , zn, b, r) specified as
follows.
(i) zn−1 · · · z0 is the n-bit binary expansion of p mod 2n.
(ii) zn = Jp ≥ 2nK.
(iii) b = (p− ε) · Jp < 2mK
(iv) r = (p− ε) · Jp ≥ 2mK.

Proof. Lemma 3.1 tells us that N1 terminates on all trajectories. Let q = (z0, . . . , zn, b, r)
be a terminal state of N1, and note the following.
(a) For all 0 ≤ i ≤ n, ζi is not enabled in q, so zi ∈ {0, 1}.
(b) χ is not enabled in q, so b = 0 or r = 0.
(c) By (a), Sn ≤

∑n−1
i=0 2i = 2n − 1, so Corollary 3.5 tells us that Sn = p mod 2n, i.e., that

(i) holds.
(d) If p < 2n, then Corollary 3.4 tells us that zn = 0. If p ≥ 2n, then Corollary 3.7 tells us

that zn ≥ 1 somewhere along every trajectory leading to q. Since zn can never become 0
after becoming positive, this implies that zn = 1 in q. Hence (ii) holds.

(e) By (c) and (d) we have
∑n

i=0 zi = ε.
(f) Since b+ r +

∑n
i=0 zi (the total population p) is an invariant of N1, (b) and (e) tell us

that one of b and r is p− ε and the other is 0.
(g) If p < 2m, then Corollary 3.4 tells us that zm = · · · = zn = 0 holds throughout every

trajectory leading to q. This implies that none of the reactions ζm, . . . , ζn occurs along
any trajectory leading to q, whence r = 0.

(h) If p ≥ 2m, then Corollary 3.7 tells us that zm > 0 holds somewhere along every trajectory
leading to q. This implies that the reaction ζm−1 occurs, whence r becomes positive,
somewhere along every trajectory leading to q. Since r can never become 0 after becoming
positive, this implies that r > 0.

(i) By (f), (g), and (h), (iii) and (iv) hold. J

Since ε is negligible with respect to p, Theorem 3.8 says that N1 terminates in an
overwhelmingly blue state if p < 2m and in an overwhelmingly red state if p ≥ 2m. This is a
very sharp phase transition at the population threshold 2m.

4 Coupled Phase Transitions

Let m,n, p, and N1 be as in Section 3, and let N2 be a CRN consisting of the n+ 2 reactions
of N1 and the ω-reaction

ω ≡ R+ Zn → B + Zn.

This section proves that N2 exhibits two coupled population-induced phase transitions as
described in the introduction.

DNA 26

5:8 Population-Induced Phase Transitions

We use the same initialization for N2 as for N1. Again, all our results hold regardless of
the rate constants of the n+ 3 reactions of N2.

Routine inspection verifies the following.

I Observation 4.1. Lemma 3.2 and Corollaries 3.3-3.7 hold for N2 as well as for N1.

If p < 2n, then Corollary 3.4 tells us that zn never becomes positive in N2, so the
ω-reaction never occurs in N2. Thus, for p < 2n, N2 behaves exactly like N1.

On the other hand, if p ≥ 2n, then the behavior of N2 is very different from that of N1.
For example, in contrast with Lemma 3.1, we have the following.

I Lemma 4.2. If p ≥ 2n, then not all trajectories of N2 terminate.

It is easy to see that the infinite trajectory of N2 exhibited in the proof of Lemma 4.2 is
not fair. In fact, we prove below that all fair paths of N2 terminate. First, however, we note
that N2, like N1, has a unique terminal state.

Let ε be as defined before Theorem 3.8.

I Lemma 4.3. If p ≥ 2n and N2 terminates, then it does so in the state (z0, . . . , zn, b, r)
specified as follows.
(i) zn−1 · · · z0 is the n−bit binary expansion of p mod 2n.
(ii) zn = 1.
(iii) b = p− ε.
(iv) r = 0.

I Lemma 4.4. On any fair trajectory of N2, after finitely many steps, all ζ-reactions are
permanently disabled.

I Lemma 4.5. With any initialization, all fair trajectories of the chemical reaction network
Nχω, consisting of just the reactions χ and ω, are terminal.

Recall the notation defined just before Theorem 3.8. The following result is our main
theorem.

I Theorem 4.6. Let (z0, . . . , zn, b, r) be the state of N2 specified as follows.
(i) zn−1 · · · z0 is the n-bit binary expansion of p mod 2n.
(ii) zn = Jp ≥ 2nK.
(iii) b = (p− ε) · Jp < 2m or p ≥ 2nK.
(iv) r = (p− ε) · J2m ≤ p < 2nK.
If p < 2n, then N2 terminates in this state on all trajectories. If p ≥ 2n, then N2 terminates
in this state on all fair trajectories.

Proof. If p < 2n, then Corollary 3.3 tells us that zn never becomes positive in N2, so ω
is never enabled. Hence, in this case N2 behaves exactly like N1. Theorem 3.8 tells us
that N2 terminates on all trajectories to the state satisfying (i) and (ii) above and, since
Jp < 2mK = Jp < 2m or p ≥ 2nK and Jp ≥ 2mK = J2m ≤ p < 2nK, also satisfying (iii) and (iv)
above.

If p ≥ 2n, then Lemmas 4.4 and 4.5 together tell us that N2 terminates on all fair
trajectories. Since Jp ≥ 2nK = 1, Jp < 2m or p ≥ 2nK = 1, and J2m ≤ p < 2nK = 0, Lemma 4.3
tells us that termination must occur in the state satisfying (i)-(iv) above. J

Since ε is again negligible with respect to p, Theorem 4.6 says that N2 terminates in
an overwhelmingly blue state if p < 2m or p ≥ 2n but in an overwhelmingly red state if
2m ≤ p < 2n. Hence N2 exhibits very sharp phase transitions at the population thresholds 2m

and 2n. As noted in the introduction and elaborated in Section 5 below, this has significant
implications for the verification of chemical reaction networks.

J. I. Lathrop, J. H. Lutz, R. R. Lutz, H.D. Potter, and M.R. Riley 5:9

5 Implications for Verification

The coupled phase transitions in the chemical reaction network N2 make it difficult to
verify its behavior. In this section we describe the use and limitations of verifying the
chemical reaction network using simulation, model checking and differential equations. None
of these methods detected that the system turned red when the population is between
2m = 234 ≈ 1.7 × 1010 and 2n = 267 ≈ 1.5 × 1020. We then describe how the use of an
interactive theorem prover enabled us to verify the chemical reaction network’s behavior at
both phase transitions, i.e., that it turned from blue to red at 2m and from red to blue at 2n.
The fact that theorem proving could verify behavior that was otherwise not verified for the
chemical reaction network suggests that interactive theorem proving may have a useful role
to play in future verification of a class of chemical reaction networks.

Recall that the chemical reaction networks N1 and N2 have fixed populations throughout
any given execution, and that their initial states have z0 as the entire population.

5.1 Simulation

The MATLAB SimBiology package is widely used to explore the behavior of a number of
devices (molecules) executing concurrently [35]. Using SimBiology, simulations of the N2
chemical reaction network were performed on an Intel processor computer with a processor
clock of 5.0 GHz and 64GB of RAM. Several simulations were performed with increasing
populations z0. With a population of 107, the simulation performed as expected. However,
with a population of 108, the simulation failed and terminated with no output or error
message. Thus, the stochastic simulation was unable to detect that the behavior of the N2
chemical reaction network could experience a phase transition.

5.2 Model Checking

The chemical reaction network N2 simulated in SimBiology and described above also was
verified using the PRISM 4.6 probabilistic model checker [28]. Kwiatkowska and Thachuk,
among others, have described the use of PRISM for the probabilistic verification of chemical
reaction networks for biological systems [29].

To verify the chemical reaction network behavior we first converted the N2 model to
SBML using the export function in SimBiology, and then converted the SBML model to
PRISM using the sbml2prism conversion tool supplied with the PRISM software. PRISM
was used to verify six key properties of the N2 chemical reaction network at multiple
populations. For example, one of the properties stated that “P >= 1[F G r = 0]”, i.e., that
with probability 1, the eventual state of the R species has 0 molecules, and never changes
from that. With a population of 100, PRISM generated the CTMC state model in 1.65
seconds using the same processor and memory as for the SimBiology simulations, and the
verification of the six properties required less than 2 seconds of CPU time. For a population
of 100 molecules, 97 are blue and 3 are colorless in the final state. PRISM also verified that
in the final state z0 = z1 = z3 = z4 = 0 and z2 = z5 = z6 = 1, so that z6z5z4z3z2z1z0 is the
binary expansion of one hundred.

However, we were unable to model check N2 with a population of 400 due to the rapid
increase in states and limited memory. Thus, model checking confirmed the expected
behavior of the N2 chemical reaction network for a population of 100 but could not detect
the behavioral change to red when the population is greater than 234.

DNA 26

5:10 Population-Induced Phase Transitions

Advanced methods to prune a model so that meaningful model checking can occur include
symmetry reduction [23], statistical model checking [11], and automated partial exploration
of the model [42]. Recent work by Cauchi, et al. using formal synthesis allowed verification
of systems with 10 continuous variables [12]. However, even these methods would not be
likely to help with the exceedingly large number of states when the number of molecules is
scaled to a realistic value for experiments.

5.3 Differential Equations

We have seen how model checking and simulation fail to detect the “red” behavior in our
chemical reaction network N2 due to the processing time and memory required for a large
population. The red behavior also is not detected when N2 is approximated by deterministic
semantics. In this model, a chemical reaction network is represented by a system of polynomial
autonomous differential equations. Our purpose here is to investigate the usefulness of the
large population heuristic in this context; we do not make any claims that our results respect
the preconditions and caveats of Kurtz’s theorem [27], which provides a mathematical link
between deterministic and high-population stochastic systems.

In general, the system of differential equations induced by a chemical reaction network is
difficult or impossible to solve exactly, and numerical methods are often used to approximate
solutions. Here, we utilized MATLAB and the SimBiology package [35] to numerically
integrate the system of differential equations for N2. We found that N2 reached and
remained in a predominantly blue state for the duration of the simulation, again missing the
red behavior.

We identify three potential causes for this failure. One potential cause is numerical failure;
it may be that MATLAB’s numerical integration was not robust enough to capture the
relevant deterministic behavior, or that we did not let the simulation run long enough to
converge. (We note that, at least in the stochastic case, we expect N2 to take an extreme
amount of time to converge.) Another potential cause is that, as suggested by Kurtz’s
theorem, the deterministic system might correctly approximate high-population stochastic
behavior, which falls above the second phase-transition threshold (and well above the range
of a realistic wet-lab implementation of N2.) Finally, it may be that the stochastic and
deterministic behaviors of N2 are not actually closely related, and the deterministic result
does not imply anything conclusive about the underlying stochastic system. Regardless of
the cause, however, we see that differential equation methods are not sufficient to capture
the red behavior of N2.

5.4 Theorem Proving

The simulation, model checking, and differential equations approaches to chemical reaction
network verification outlined above all make some simplifying assumptions: reduced state
space or generalization to the continuum. In the case of our chemical reaction network, these
assumptions lead to an incorrect verification result.

Interactive theorem proving, however, offers an exact approach that is guaranteed to
apply at every scale. In the interactive theorem proving paradigm, users create a machine-
checkable mathematical proof of verification properties in collaboration with a software
system. Model checking also constructs a mathematical proof of correctness, but it relies
more on a complete or semi-complete search of the state space in question. By contrast,
the goal of interactive theorem proving is to construct a more traditional mathematical
proof that is also machine-checkable. The result then applies to any population scale; a
mathematical proof parameterized by population N is valid at every possible value of N .

J. I. Lathrop, J. H. Lutz, R. R. Lutz, H.D. Potter, and M.R. Riley 5:11

In a typical interactive theorem proving session, a user starts with a base of trusted
facts generated from axioms and assumptions, and uses well-understood rules like modus
ponens and double negation removal to construct new trusted facts and lemmas. As with a
conventional mathematical proof, the user’s goal is to add new trusted facts in a strategic
way until reaching the goal of the proof.

We have verified our chemical reaction network with Isabelle/HOL [39, 40], a popular
interactive theorem prover with several useful proof automation features. Instead of working
at the level of rules like modus ponens, users can instruct Isabelle to execute more general
proof methods that can apply sequences of basic rules without user direct input. For
example, Isabelle can often prove the equivalence of predicate logic formulas with only one
user-generated method invocation. Once invoked, such a method attempts to automatically
construct a series of low-level logical rules whose application proves the equivalence. An
Isabelle proof, then, consists of a directed acyclic graph of facts, connected by applications
of these methods. The user’s task is to choose a chain of intermediate goal facts in a way
that allows Isabelle to connect them easily on the way to the overall goal.

Isabelle also provides the powerful Sledgehammer automation tool, which makes calls to
external proof systems to automate aspects of proof creation. Sledgehammer takes a goal
fact as input and attempts to generate a method invocation that proves it, operating at one
level of abstraction above the proof methods invocations discussed above. Since it is often
unclear which method to invoke (or which arguments to supply to it), this functionality can
increase proof construction speed substantially.

We have used Isabelle to verify that our chemical reaction network has the desired
behavior for all possible initializations. That is, if we initialize it with N < 234 or N ≥ 267,
the chemical reaction network terminates with majority blue, but if we initialize it with
234 ≤ N < 267, it terminates with majority red. Theorem proving is able to verify behavior
correctly in all regions, including the middle region that is inaccessible to model checking,
simulation, and ODE methods. Figure 2 shows an image taken from the end of our Isabelle
proof; it contains the three goal facts that we successfully verified, which summarize the
behavior of the chemical reaction network.

Our Isabelle proof is loosely based on the proofs presented in Sections 3 and 4. Whereas
those proofs define two chemical reaction networks N1 and N2, we use Isabelle’s locale
feature to associate assumptions about the population of N with various parts of our proof.
In the locale where N < 235, for example, we are able to prove that our chemical reaction
network terminates with majority blue. Figure 2 shows how we enter these locales at the
end of the proof to bring together our final results.

We refer to the three final locales as the lower blue region, the middle red region, and the
upper blue region. For each region, our proof must show both termination and correctness;
i.e., we must show that our chemical reaction network reaches a final state where no reactions
are possible, and that any possible final state has the specified red or blue population.

As in Lemma 3.1, we show termination in the lower two regions via a “countdown”
expression that is guaranteed to decrease with every reaction. See Figure 3 for our Isabelle
definitions of termination and a general lemma we proved that allows us to use the count-
down technique. In the upper blue region, it is impossible to prove termination without
assuming that executions are fair. Our Isabelle proof includes Equation 2.4 as an unproven
assumption; we are not interested in unfair trajectories, but since they exist we cannot prove
that all trajectories are fair. For convenience, we also include Observation 2.1 as an an
assumption. These two fairness assumptions allow us to prove that our chemical reaction
network terminates in the upper blue region as well.

DNA 26

5:12 Population-Induced Phase Transitions

Figure 2 The end of the Isabelle proof, which summarizes its results in three lemmas. The
context statements bring our assumptions about the value of N into context. The using statements
bring in trusted facts from the rest of our proof and supply them as arguments to Isabelle’s auto
proof method. The identifier p refers to an arbitrary trajectory that is part of each context. Isabelle
displays all statements with a white or light gray background to indicate that it has checked them
completely, and they are valid.

Our correctness proofs rely heavily on the sum S68 =
∑67

i=0 2izi, using the notation of
Section 3, which is an invariant in the lower two regions. In the upper blue region, it is
an invariant until at least one Z67 is produced. This invariant allows us to reason about
the composition of terminal states. In the lower blue region, for example, we know that
no red can ever be produced; the chemical reaction network can only produce its first red
molecule alongside Z species that would make the invariant too large. Following the proof of
Theorem 3.8, then, we prove that any terminal state must be majority blue.

6 Conclusion

Taken together, the near-ubiquity of phase transitions in nature [47, 9], the sheer size of
molecular populations, and the simplicity of the chemical reaction networks that we have
shown to exhibit population-induced phase transitions, indicate that molecular programming
will present us with many exceptions to the otherwise useful notion that most bugs can
be demonstrated with small counterexamples. As we have seen, this presents a significant
challenge to the verification of chemical reaction networks. Here we suggest some directions
of current and future research that might help meet this challenge.

J. I. Lathrop, J. H. Lutz, R. R. Lutz, H.D. Potter, and M.R. Riley 5:13

theory termin
imports piptcrn

begin

definition terminal :: state ⇒ bool where terminal s1 = (¬(∃ s2 . K s1 s2))
definition nonterm :: state ⇒ bool where nonterm s = (¬(terminal s))

definition path-term :: (nat ⇒ state) ⇒ bool where
(path-term p) = (∃ t . (terminal (p t)))

definition state-term :: (state ⇒ bool) where
(state-term s) = (∀ (p :: (nat ⇒ state)).

((∃ t . ((p t) = s))
−→ (path-term p)))

lemma dec-imp-term:
fixes f :: state ⇒ nat
fixes p :: nat ⇒ state
fixes c :: nat
assumes evterm: ((f s) ≤ c) −→ (terminal s)
assumes dec: ∀ i . ((¬(terminal (p i))) −→ (
(f (p (i + 1)) < (f (p i)))))

shows path-term p
proof −
{

fix n::nat
have ((∃ t . ((f (p t)) ≤ n)) −→ (path-term p))
proof (induction n)

case 0
then show ?case

using dec gr-implies-not0 path-term-def by blast
next

case (Suc n)
then show ?case

by (metis dec le-SucE less-Suc-eq-le path-term-def)
qed

}
then show ?thesis by blast

qed

end

145

Figure 3 This Isabelle code defines a terminal state as a state with no outgoing reactions; K is a
relation that encodes which state transitions our reaction set allows. We also show a sample lemma
that helps prove termination: if we identify a countdown expression f and a constant C such that
all states with f < C are terminal, then our system is guaranteed to terminate.

A great deal of creative work has produced a steady scaling up of model checking to
larger and larger state spaces [16, 15, 1, 8, 34, 13]. Perhaps the most hopeful approach for
dealing with population-induced phase changes, or with more general population-sensitive
behaviors, is the model checking of parametrized systems [1].

Our results clearly demonstrate the advantage of including theorem proving (by humans
and by software) in the verification toolbox for chemical reaction networks and other molecular
programming languages. This in turn suggests that software proof assistants such as Isabelle
[40, 39] be augmented with features to deal more directly with chemical reaction networks
and with population-sensitive phenomena. It would also be useful to know how much of such
work could be carried out with more fully automated theorem provers such as Vampire [25].

Some future programmed molecular applications will be safety-critical, such as in health
diagnostics and therapeutics. It is likely that evidence that such systems behave as intended
will be required for certification by regulators prior to deployment. Toward providing such
evidence, Nemouchi et al. have recently shown how a descriptive language for safety cases
can be incorporated into Isabelle in order to formalize argument-based safety assurance
cases [38].

DNA 26

5:14 Population-Induced Phase Transitions

We conclude with a more focused, theoretical question. Our chemical reaction network
N1 exhibits its phase transition on all trajectories, while N2 exhibits its coupled phase
transitions only on all fair trajectories. Is there a chemical reaction network that achieves
N2’s coupled phase transitions on all trajectories?

References

1 Parosh Aziz Abdulla, A. Prasad Sistla, and Muralidhar Talupur. Model checking pa-
rameterized systems. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking, pages 685–725. Springer, 2018.
doi:10.1007/978-3-319-10575-8_21.

2 David F. Anderson and Thomas G. Kurtz. Continuous time Markov chain models for chemical
reaction networks. In Heinz Koeppl, Gianluca Setti, Mario di Bernardo, and Douglas Densmore,
editors, Design and Analysis of Biomolecular Circuits, pages 3–42. Springer, 2011.

3 David F. Anderson and Thomas G. Kurtz. Stochastic Analysis of Biochemical Systems.
Springer, 2015.

4 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87–102, 2008.

5 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power
of population protocols. Distributed Computing, 20(4):279–304, 2007.

6 Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk, and Erik
Winfree. A general-purpose CRN-to-DSD compiler with formal verification, optimization,
and simulation capabilities. In Proceedings of the 23rd International Conference on DNA
Computing and Molecular Programming, Springer, pages 232–248, 2017.

7 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

8 Luca Bortolussi, Luca Cardelli, Marta Kwiatkowska, and Luca Laurenti. Central limit model
checking. ACM Trans. Comput. Log., 20(4):19:1–19:35, 2019. doi:10.1145/3331452.

9 Sarah Cannon, Sarah Miracle, and Dana Randall. Phase transitions in random dyadic
tilings and rectangular dissections. SIAM J. Discret. Math., 32(3):1966–1992, 2018. doi:
10.1137/17M1157118.

10 Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes approximate majority.
Scientific Reports, 2, 2012.

11 Luca Cardelli, Marta Kwiatkowska, and Max Whitby. Chemical reaction network designs
for asynchronous logic circuits. Natural Computing, 17(1):109–130, 2018. doi:10.1007/
s11047-017-9665-7.

12 Nathalie Cauchi, Luca Laurenti, Morteza Lahijanian, Alessandro Abate, Marta Kwiatkowska,
and Luca Cardelli. Efficiency through uncertainty: scalable formal synthesis for stochastic
hybrid systems. In Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019., pages
240–251, 2019. doi:10.1145/3302504.3311805.

13 Milan Ceska, Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen. Shepherding hordes of
Markov chains. In Proceedings of the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 172–190. Springer, 2019.

14 Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, 2013.

15 Philipp Chrszon, Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier. ProFeat: feature-
oriented engineering for family-based probabilistic model checking. Formal Asp. Comput.,
30(1):45–75, 2018. doi:10.1007/s00165-017-0432-4.

https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1145/3331452
https://doi.org/10.1137/17M1157118
https://doi.org/10.1137/17M1157118
https://doi.org/10.1007/s11047-017-9665-7
https://doi.org/10.1007/s11047-017-9665-7
https://doi.org/10.1145/3302504.3311805
https://doi.org/10.1007/s00165-017-0432-4

J. I. Lathrop, J. H. Lutz, R. R. Lutz, H.D. Potter, and M.R. Riley 5:15

16 Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: algorithmic
verification and debugging. Commun. ACM, 52(11):74–84, 2009. doi:10.1145/1592761.
1592781.

17 Anne Condon, Monir Hajiaghayi, David G. Kirkpatrick, and Ján Manuch. Simplifying analyses
of chemical reaction networks for approximate majority. In Proceedings of the 23rd International
Conference on DNA Computing and Molecular Programming, pages 188–209. Springer, 2017.

18 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. In Anne Condon, David Harel, Joost N. Kok, Arto Salomaa, and
Erik Winfree, editors, Algorithmic Bioprocesses, Natural Computing Series, pages 543–584.
Springer, 2009.

19 Shawn M. Douglas, Ido Bachelet, and George M. Church. A logic-gated nanorobot for targeted
transport of molecular payloads. Science, 335(6070):831–834, 2012.

20 Samuel J. Ellis, Titus H. Klinge, James I. Lathrop, Jack H. Lutz, Robyn R. Lutz, Andrew S.
Miner, and Hugh D. Potter. Runtime fault detection in programmed molecular systems. ACM
Trans. Softw. Eng. Methodol., 28(2):6:1–6:20, 2019. doi:10.1145/3295740.

21 François Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury Pouly. Strong Turing
completeness of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In Proceedings of the 15th International Conference on Computational Methods in
Systems Biology, pages 108–127. Springer, 2017.

22 David Harel. Effective transformations on infinite trees, with applications to high undecidability,
dominoes, and fairness. J. ACM, 33(1):224–248, 1986. doi:10.1145/4904.4993.

23 J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic model
checking of complex biological pathways. In Computational Methods in Systems Biology, pages
32–47, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

24 Daniel Jackson. Alloy: a language and tool for exploring software designs. Commun. ACM,
62(9):66–76, 2019. doi:10.1145/3338843.

25 Laura Kovács and Andrei Voronkov. First-order theorem proving and Vampire. In Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings, pages 1–35. Springer, 2013. doi:10.1007/978-3-642-39799-8_1.

26 Dexter Kozen. Theory of Computation. Texts in Computer Science. Springer, 2006. doi:
10.1007/1-84628-477-5.

27 Thomas G. Kurtz. The relationship between stochastic and deterministic models for chemical
reactions. The Journal of Chemical Physics, 57(7):2976–2978, 1972.

28 Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In Proceedings of the 23rd International Conference on Computer
Aided Verification, pages 585–591. Springer, 2011.

29 Marta Kwiatkowska and Chris Thachuk. Probabilistic model checking for biology. Software
Systems Safety, 36:165–189, 2014.

30 Marta Z. Kwiatkowska. Survey of fairness notions. Information and Software Technology,
31(7):371–386, 1989. doi:10.1016/0950-5849(89)90159-6.

31 Matthew R. Lakin, David Parker, Luca Cardelli, Marta Kwiatkowska, and Andrew Phillips.
Design and analysis of DNA strand displacement devices using probabilistic model checking.
Journal of the Royal Society Interface, 9(72):1470–1485, 2012.

32 Suping Li, Qiao Jiang, Shaoli Liu, Yinlong Zhang, Yanhua Tian, Chen Song, Jing Wang,
Yiguo Zou, Gregory J Anderson, Jing-Yan Han, Yung Chang, Yan Liu, Chen Zhang, Liang
Chen, Guangbiao Zhou, Guangjun Nie, Hao Yan, Baoquan Ding, and Yuliang Zhao. A DNA
nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nature
Biotechnology, 36:258, 2018.

33 Xiaowei Liu, Yan Liu, and Hao Yan. Functionalized DNA nanostructures for nanomedicine.
Israel Journal of Chemistry, 53(8):555–566, 2013.

34 Alessio Lomuscio and Edoardo Pirovano. A counter abstraction technique for the verification
of probabilistic swarm systems. In Proceedings of the 18th International Conference on

DNA 26

https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/3295740
https://doi.org/10.1145/4904.4993
https://doi.org/10.1145/3338843
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.1016/0950-5849(89)90159-6

5:16 Population-Induced Phase Transitions

Autonomous Agents and MultiAgent Systems, AAMAS’19, pages 161–169, 2019. URL: http:
//dl.acm.org/citation.cfm?id=3331689.

35 MATLAB. version 9.7.0 (R2019b, Update 4). The MathWorks Inc., Natick, Massachusetts,
2019.

36 Melissa B. Miller and Bonnie L. Bassler. Quorum sensing in bacteria. Annual Review of
Microbiology, 55(1):165–199, 2001. PMID: 11544353. doi:10.1146/annurev.micro.55.1.165.

37 Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press,
2011.

38 Yakoub Nemouchi, Simon Foster, Mario Gleirscher, and Tim Kelly. Isabelle/SACM: Computer-
assisted assurance cases with integrated formal methods. In Proceedings of the 15th Inter-
national Conference on Integrated Formal MethodsIFM 2019, pages 379–398. Springer, 2019.
doi:10.1007/978-3-030-34968-4_21.

39 Tobias Nipkow and Gerwin Klein. Concrete Semantics–With Isabelle/HOL. Springer, 2014.
40 Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL, volume 2283 of

Lecture Notes in Computer Science. Springer-Verlag Berlin Heidelberg, 1 edition, 2002.
41 Lawrence C. Paulson, Tobias Nipkow, and Makarius Wenzel. From LCF to Isabelle/HOL.

Formal Asp. Comput., 31(6):675–698, 2019. doi:10.1007/s00165-019-00492-1.
42 Esteban Pavese, Víctor Braberman, and Sebastián Uchitel. Less is more: Estimating proba-

bilistic rewards over partial system explorations. ACM Transactions on Software Engineering
and Methodology, 25(2):16:1–16:47, 2016.

43 Gerald Pollack and Wei-Chun Chin, editors. Phase Transitions in Cell Biology. Springer,
2008.

44 Hamid Ramezani and Hendrik Dietz. Building machines with DNA molecules. Nature Reviews
Genetics, 21(1):5–26, 2020.

45 Dana Randall. Phase transitions in sampling algorithms and the underlying random structures.
In Haim Kaplan, editor, Proceedings Scandinavian Symposium and Workshops on Algorithm
Theory SWAT, page 309. Springer, 2010. doi:10.1007/978-3-642-13731-0_29.

46 Dana Randall. Phase Transitions and Emergent Phenomena in Random Structures and
Algorithms (Keynote Talk). In 31st International Symposium on Distributed Computing
(DISC 2017), pages 3:1–3:2. Schloss Dagstuhl LZI, 2017. doi:10.4230/LIPIcs.DISC.2017.3.

47 Dana Randall. Statistical Physics and Algorithms (Invited Talk). In Christophe Paul and
Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer
Science (STACS 2020), pages 1:1–1:6. Schloss Dagstuhl LZI, 2020.

48 H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems. PhD thesis,
Syracuse University, 1951.

49 H. G. Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74:358–366, 1953. doi:10.1090/
s0002-9947-1953-0053041-6.

50 Apoorva Sarode, Akshaya Annapragada, Junling Guo, and Samir Mitragotri. Layered self-
assemblies for controlled drug delivery: A translational overview. Biomaterials, 242:119929,
2020. doi:10.1016/j.biomaterials.2020.119929.

51 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. Natural Computing, 7(4):615–633, 2008.

52 David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. In Proceedings of the 14th International Meeting on DNA Computing, pages 57–69.
Springer, 2009.

53 Anupama J. Thubagere, Chris Thachuk, Joseph Berleant, Robert F. Johnson, Diana A.
Ardelean, Kevin M. Cherry, and Lulu Qian. Compiler-aided systematic construction of large-
scale DNA strand displacement circuits using unpurified components. Nature Communications,
8, 2017 .

54 John C. Wooley and Herbert S. Lin. Catalyzing Inquiry at the Interface of Computing and
Biology. National Academies Press, 2005.

55 David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement
reactions. Nature Chemistry, 3(2):103–113, 2011.

http://dl.acm.org/citation.cfm?id=3331689
http://dl.acm.org/citation.cfm?id=3331689
https://doi.org/10.1146/annurev.micro.55.1.165
https://doi.org/10.1007/978-3-030-34968-4_21
https://doi.org/10.1007/s00165-019-00492-1
https://doi.org/10.1007/978-3-642-13731-0_29
https://doi.org/10.4230/LIPIcs.DISC.2017.3
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1090/s0002-9947-1953-0053041-6
https://doi.org/10.1016/j.biomaterials.2020.119929

J. I. Lathrop, J. H. Lutz, R. R. Lutz, H.D. Potter, and M.R. Riley 5:17

A Proof of Fair Termination Lemma

I Lemma A.1 (fair termination lemma). If a population protocol with a specified initial state
has a terminal trajectory from every reachable state, then all its fair trajectories are terminal.

Proof. Let N be a population protocol with initial state q0, and assume that N has a
terminal trajectory from every reachable state. Let τ = (qi | 0 ≤ i < ∞) be an infinite
trajectory of N. It suffices to show that τ is not fair.

For each state q of N, let

Iq = {i ∈ N | qi = q}. (A.1)

Since N is a population protocol, it has finitely many reachable states, so there is a state
q∗ of N such that the set Iq∗ is infinite. This state q∗ is reachable, so our assumption tells
us that there is a finite trajectory τ∗ = (q∗i | 0 ≤ i < `) of N such that q∗0 = q∗ and q∗`−1 is
terminal.

Now Iq∗
0

= Iq∗ is infinite and Iq∗
`−1

= ∅ (because q∗`−1 is terminal, so it does not appear in
the infinite trajectory τ), so there exists 0 ≤ k < `− 1 such that Iq∗

k
is infinite and Iq∗

k+1
is

finite. Let q∗∗ = q∗k, and let ρ be the reaction that takes q∗k to q∗k+1. Then ρ is enabled in q∗∗
and there exist infinitely many i such that qi = q∗∗ (because Iq∗∗ is infinite), but there are
only finitely many j for which qj = q∗ and ρ occurs at j in τ (because Iq∗

k+1
is finite). Hence

τ is not fair. J

DNA 26

ALCH: An Imperative Language for Chemical
Reaction Network-Controlled Tile Assembly
Titus H. Klinge
Department of Mathematics and Computer Science, Drake University, Des Moines, IA, USA
titus.klinge@drake.edu

James I. Lathrop
Department of Computer Science, Iowa State University, Ames, IA, USA
jil@iastate.edu

Sonia Moreno
Department of Computer Science, Carleton College, Northfield, MN, USA
morenos@carleton.edu

Hugh D. Potter
Department of Computer Science, Iowa State University, Ames, IA, USA
hdpotter@iastate.edu

Narun K. Raman
Department of Computer Science, Carleton College, Northfield, MN, USA
ramann@carleton.edu

Matthew R. Riley
Department of Computer Science, Iowa State University, Ames, IA, USA
mrriley@iastate.edu

Abstract
In 2015 Schiefer and Winfree introduced the chemical reaction network-controlled tile assembly model
(CRN-TAM), a variant of the abstract tile assembly model (aTAM), where tile reactions are mediated
via non-local chemical signals. In this paper, we introduce ALCH, an imperative programming
language for specifying CRN-TAM programs. ALCH contains common features like Boolean variables,
conditionals, and loops. It also supports CRN-TAM-specific features such as adding and removing
tiles. A unique feature of the language is the branch statement, a nondeterministic control structure
that allows us to query the current state of tile assemblies. We also developed a compiler that
translates ALCH to the CRN-TAM, and a simulator that simulates and visualizes the self-assembly
of a CRN-TAM program. Using this language, we show that the discrete Sierpinski triangle can
be strictly self-assembled in the CRN-TAM. This solves an open problem that the CRN-TAM is
capable of self-assembling infinite shapes at scale one that the aTAM cannot. ALCH allows us to
present this construction at a high level, abstracting species and reactions into C-like code that is
simpler to understand. Our construction utilizes two new CRN-TAM techniques that allow us to
tackle this open problem. First, it employs the branching feature of ALCH to probe the previously
placed tiles of the assembly and detect the presence and absence of tiles. Second, it uses scaffolding
tiles to precisely control tile placement by occluding any undesired binding sites.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Tile assembly, Chemical reaction network, Sierpinski triangle

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.6

Supplementary Material The ALCH compiler and the CRN-TAM simulator, together with examples
and visual illustrations, are available at http://web.cs.iastate.edu/~lamp.

Funding This research was supported in part by National Science Foundation grants 1900716 and
1545028.

Acknowledgements We thank the three anonymous reviewers for their helpful comments and
suggestions. We especially thank reviewer 3 for their detailed insights, comments, and suggestions.

© Titus H. Klinge, James I. Lathrop, Sonia Moreno, Hugh D. Potter, Narun K. Raman, and Matthew
R. Riley;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:titus.klinge@drake.edu
mailto:jil@iastate.edu
mailto:morenos@carleton.edu
mailto:hdpotter@iastate.edu
mailto:ramann@carleton.edu
mailto:mrriley@iastate.edu
https://doi.org/10.4230/LIPIcs.DNA.2020.6
http://web.cs.iastate.edu/~lamp
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 ALCH: An Imperative Language for the CRN-TAM

1 Introduction

Molecular programming is a relatively new field that weaves together biology and computer
science to specify the behavior of molecules at the nanoscale. Early research in the field was
sparked in 1982 by Seeman’s pioneering work employing DNA crossover tiles to self-assemble
crystals at the nanoscale [13]. Seeman’s work was later extended by Erik Winfree to include
cooperative DNA tile self-assembly to construct more complex shapes and patterns [15].
Winfree formalized the abstract tile assembly model (aTAM) in his Ph.D. thesis, where
he proved it is Turing complete [15]. As a result, the aTAM is considered a programming
language for self-assembling two and three-dimensional nanoscale patterns and is still actively
investigated today [8, 3, 10, 7].

Another model commonly used to study biomolecular computation is the chemical reaction
network (CRN), which models the interactions of chemical species. The CRN model assumes
the solution is well-mixed, and therefore computations are amorphous and do not rely
on geometry or structure. Two common variants of the CRN model are stochastic CRNs
and deterministic CRNs. Stochastic CRNs are modeled with discrete species counts, and
their reactions are probabilistic. In contrast, deterministic CRNs model the species’ state
continuously with real-valued concentrations governed by a system of autonomous ordinary
differential equations (ODEs). The law of mass action determines the rates of reactions in
both models. For more information on these models, see [6, 5, 2].

In 2015, Schiefer and Winfree introduced the chemical reaction network-controlled tile
assembly model (CRN-TAM) [11, 12]. Their model combines the amorphous properties of
stochastic CRNs with the spatial self-assembly of complex structures afforded by the aTAM.
More specifically, a chemical reaction network interacts with tiles from the aTAM model to
exert non-local control over the self-assembly process.

Molecular programming provides a rich field for algorithmic study. However, it is often
time-consuming and complex to generate algorithmic constructions at the level of chemical
species, tiles, or reactions. Recently, Vasić, Soloveichik, and Khurshid introduced CRN++,
a high-level language for implementing deterministic CRN programs [14]. The CRN++
language provides a toolset for manipulating concentrations as numerical variables, with some
support for conditionals and loops. This simplifies the development of high-level deterministic
CRNs by abstracting away many low-level details. Other such languages exist such as Liekens
and Fernando’s Chemical Bare Bones (CBB), a hypothetical chemical implementation of
the simple but Turing complete Bare Bones programming language [9]. CBB implements
increment, decrement, and loop instructions using a catalytic particle model in which a single
multistate particle catalyzes reactions based on its state. However, these languages cannot
be used for CRN-TAM programs, since they have no provision for tile self-assembly.

On the tile self-assembly side, we have seen several forms of abstraction. Becker presents
a geometry-based system for generating shapes in the aTAM [1]. This system allows users
to describe how information and assembly construction propagate along vectors defined in
the physical space of the assembly. Users can then generate an aTAM system by designing
a system of vectors and applying a well-defined procedure to convert it into tiles. Doty
and Patitz provide a toolset at a lower level of abstraction, focusing on the connections
between individual tiles and how information is shared across them [4]. Users can define
variables to be transmitted from tile to tile via bond labels and transformation functions
to “modify” those variables within a tile while specifying which sets of tiles can bond with
which. The provided software then automatically generates an aTAM system. Both of these

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:3

tools focus on the parallel, semi-uncoordinated concept of tile self-assembly typical of aTAM
constructions. In the CRN-TAM, on the other hand, the CRN component allows precise
control over which tiles are added and when.

CRN-TAM constructions often rely on sequences of reactions and tile attachments, with
sequential execution enforced by associating a chemical species with each reaction in the chain.
For this reason, the CRN-TAM is a natural fit for a high-level imperative programming
language. In this paper, we present the Algorithmic Language for Chemistry (ALCH),
an imperative language for specifying CRN-TAM programs. ALCH targets the specific
CRN-TAM design paradigm described above, where the CRN component mediates a strictly
controlled sequence of tile actions We do not intend ALCH in its current form to be used for
highly parallel aTAM-style constructions.

ALCH is reminiscent of other popular imperative languages, supporting loops and
conditionals but omitting numerical computation and function calls. ALCH also contains
many CRN-TAM specific statements that abstract away low-level details of the model’s
underlying semantics while maintaining that statements are executed in sequence. ALCH
also includes a branch statement, a control structure that allows CRN-TAM programs to
nondeterministically choose between a finite number of self-assembly paths. We are not
aware of any shape that can be constructed in the CRN-TAM but not in ALCH, but we
do not claim that ALCH is as general as the CRN-TAM. We have implemented an ALCH
compiler that translates ALCH code into a proper CRN-TAM program and a simulator that
visualizes the assembly process of a CRN-TAM program1.

Using ALCH, we demonstrate that the CRN-TAM can construct infinite shapes that
the aTAM cannot. For example, the discrete Sierpinski triangle is a well-known self-similar
fractal that can be weakly self-assembled in the aTAM [15] but cannot be strictly self-
assembled [8]. Weak self-assembly allows for “filler” tiles to be used to propagate information
through an assembly, whereas strict self-assembly disallows this. We show that the non-local
communication provided by the CRN-TAM is sufficient to overcome this limitation. Using
ALCH, we construct a CRN-TAM program that strictly self-assembles the discrete Sierpinski
triangle. Our construction relies on the ability to add and remove scaffolding tiles and
self-assembles the fractal in a natural way, using only localized information contained in the
current assembly. We achieve this by using ALCH’s nondeterministic branch feature to probe
previously placed tiles to inform which tiles are placed next. We also use the scaffolding
tiles to occlude any spurious bonding sites, giving precise control over the placement of the
next tile. The construction proceeds in a sequence of stages where each stage successfully
self-assembles a subset of the discrete Sierpinski triangle. After the completion of a stage,
all scaffolding tiles are removed, leaving only the Sierpinski triangle tiles. Thus, in the
limit, only the Sierpinski triangle remains, since the scaffolding tiles are removed infinitely
often. In fact, the ratio of scaffold tiles to Sierpinski triangle tiles approaches zero as the
self-assembly process proceeds. The ALCH programming language and simulator simplifies
the development process and the specification of the CRN-TAM program.

The rest of the paper is organized as follows. Section 2 gives an overview of the CRN-
TAM model. Section 3 presents a detailed description of the ALCH programming language,
including how each statement is compiled to the CRN-TAM. Section 4 gives an overview of
the construction for the discrete Sierpinski triangle using the ALCH language, with examples
to illustrate key concepts such as probing using nondeterministic branching. Finally, Section 5
discusses some conclusions from this work.

1 The ALCH compiler and the CRN-TAM simulator, together with examples and visual illustrations, are
available at http://web.cs.iastate.edu/~lamp.

DNA 26

http://web.cs.iastate.edu/~lamp

6:4 ALCH: An Imperative Language for the CRN-TAM

2 Preliminaries

We now review the chemical reaction network-controlled tile assembly model (CRN-TAM),
which combines the notions of the abstract tile-assembly model (aTAM) [15] and the stochastic
chemical reaction network (sCRN) [2]. For a complete introduction to the model, see Schiefer
and Winfree’s original paper [11].

A tile type is a tuple t = (N,E, S,W) consisting of four bonds for the north, east, south,
and west sides of the tile, respectively. Each bond is a tuple B = (`B , sB) where `B is the
label and sB is the binding strength which is a non-negative integer. Given a finite set of tile
types T , an assembly is a partial function α : Z2 99K T that encodes the positions of tiles in
two-dimensional space. If α(i, j) is undefined, then we say that (i, j) is unoccupied in the
assembly α. When two adjacent tiles in α have matching bond labels `N on their abutting
sides, we say that they interact with a strength determined by their bond strengths sB .

The literature is unclear about whether it is permissible to have bonds with the same
label but asymmetric bond strengths; we have made the choice to allow it in this work. We
adopt the prescription that adjacent bonds with the same label have interaction strength
s, where s is given by the minimum of the bond strengths. Note that this prescription is
physically plausible; if we view a bond site as an exposed single DNA strand, a stronger
bond corresponds to a longer exposed area. We can then choose the base pairs exposed by a
weaker bond to be a subset of those exposed by a stronger bond. Our probe mechanism,
discussed in a subsequent section, relies on such asymmetric bonds.

The binding graph of an assembly α is a two-dimensional lattice of vertices representing
the tiles of α where two vertices are connected by an undirected edge with weight s if their
corresponding tiles in α interact with strength s. For τ ∈ N, we say that an assembly is
τ -stable if the minimum cut of its binding graph is at least τ . We also denote assemblies
using α , and given a tile type t , use t to denote the singleton assembly that consists
of only a single tile of type t placed at the origin. Note that the number of tiles of a given
tile type t available in solution is finite but unbounded. This is in contrast to the aTAM
which assumes an unlimited supply of all tile types throughout the self-assembly process.

A signal species is an abstract molecule type. In contrast to tiles, signal species have no
geometry and are used to facilitate non-local communication in the self-assembly process.
Every tile t has a unique removal species t∗, and given a finite set T of tile types, we write
T ∗ = {t∗ | t ∈ T} to denote the set of all tile removal species of T . Note that the definitions
in Schiefer and Winfree’s papers [11, 12] allow tile removal species to be shared or even
omitted. However, it is convenient for the compiler to always generate tile removal species
and for them to be unique.

A CRN-TAM program is a tuple P = (S, T,R, τ, I) where T is a finite set of tile types, S
is a finite set of signal species that satisfies T ∗ ⊆ S, τ ∈ N is the temperature, I : S ∪ T → N
is the initial state which specifies how many tiles and signal molecules are initially present,
and R is a finite set of reactions that are of the following six types.
Signal reactions are of the form X1 + X2 → Y1 + Y2 where X1, X2, Y1, Y2 ∈ S ∪ {ε}. The

ε symbol denotes the absence of a species, therefore X + ε → Y1 + Y2 is equivalent to
X → Y1 + Y2. Since these reactions only consist of signal species, their semantics are
identical to those in the traditional sCRN model. The species on the left-hand-side are
called reactants and are consumed by the reaction and the species on the right-hand-side
are called products and are produced by the reaction.

Deletion reactions are of the form X + t → Y1 + Y2 where X,Y1, Y2 ∈ S ∪ {ε} and t ∈ T .
These reactions consume a tile, treating it as if it were a signal species. Note, deletion
reaction cannot consume tiles bound to the assembly.

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:5

Creation reactions are of the form X1 +X2 → t +Y where X1, X2, Y ∈ S∪{ε} and t ∈ T .
These reactions produce tiles, making them available to interact with assemblies.

Relabelling reactions are of the form X + t1 → Y + t2 where X,Y ∈ S ∪ {ε} and
t1 , t2 ∈ T .

Activation reactions are of the form X + t → t + t∗ where X ∈ S, t ∈ T , and t∗ is the

signal removal species for t . These reactions use tile t to seed a new assembly with t

placed at the origin.
Deactivation reactions are of the form t + t∗ → t + Y where t ∈ T , t∗ is the removal

signal for t , and Y ∈ S ∪ {ε}. These reactions remove the tile t from the singleton

assembly t , thereby deactivating it.

In addition to the reactions above, for each t ∈ T , the following two reactions included
in the set of reactions R.
Addition reactions of the form α + t → β + t∗ where β and α are τ−stable

assemblies that differ by one copy of t ∈ T and t∗ ∈ T ∗ is the removal signal for t .

Removal reactions of the form β +t∗ → α + t where again β and α are τ−stable

assemblies that differ by one copy of t ∈ T and t∗ ∈ T ∗ is the removal signal for t .

These reactions can only remove t from β if there is an instance of t that is bound
at exactly τ strength.

A CRN-TAM program P is initialized with nonnegative counts of each tile and signal
species type, according to I. In an execution of P, the reactions above occur in a stochastic
sequence. The species or assemblies on the left-hand side of a reaction are the reactants and
those on the right are the products. A reaction is enabled if all of its reactants are present in
solution. The subsequent reaction to execute is always chosen randomly from the set of all
enabled reactions. The likelihood of choosing a particular reaction is proportional to the
product of its reactant counts, as with regular stochastic CRNs. If an execution reaches
a state where no reactions are enabled, we say that it has terminated. Some CRN-TAM
programs, like the DST construction in this work, do not terminate and continue indefinitely.
For more information on the kinetics of the CRN-TAM model, see [12].

The CRN-TAM distinguishes between free tiles in solution and tiles that are part of
activated assemblies. Free tiles can bond to assemblies, but two free tiles cannot bond together.
All tiles come into being as free tiles, including those in the initialization; immediately after
initialization, then, only signal, creation, deletion, and relabeling reactions are possible.
We refer to these reactions as the CRN component of the CRN-TAM program. The CRN
component usually serves to coordinate activation, deactivation, addition, and removal
reactions and guide tile assembly growth.

In most CRN-TAM constructions, the CRN component is engineered to execute at least
one activation reaction, which creates a new tile assembly so tiles can be added. Tiles
created with creation reactions (or present in solution from the start) can then bond via
their addition reactions, and potentially later be removed via their removal reactions. As
discussed above, a tile can bond at any site on an activated assembly where it would interact
with strength at least τ ; tiles are subject to removal reactions when their interaction strength
does not exceed τ . Note that if tile t has a removal signal t∗, then adding t releases t∗,
and removing t requires and consumes t∗. This allows the CRN component to interact

DNA 26

6:6 ALCH: An Imperative Language for the CRN-TAM

more precisely with the addition and removal reactions. Some constructions also employ the
deactivation reaction to eliminate existing (singleton) assemblies; unlike in the aTAM, the
number of concurrent assemblies can increase or decrease over time. The constructions in
this work, however, do not require more than one assembly.

3 The ALCH Programming Language

We present an overview of the features of the ALCH language and its implementation. ALCH
is an imperative language with provisions specific to the CRN-TAM model such as the add,
remove, activate, and deactivate statements which all take a tile type as a parameter and
execute the corresponding tile actions. ALCH provides high-level features such as conditions,
loops, and variable declaration and assignment. To guarantee the proper sequential execution
of the code, special line number species are used to track progress through the ALCH
program. By ensuring that only a single line number species is present at any given time2,
the CRN-TAM program can transition from instruction to instruction without introducing
any race conditions. At this time, ALCH only supports global variables and three datatypes:
bool, BondLabel, and TileSpecies. Variables of type bool may be reassigned throughout the
computation, but all BondLabel and TileSpecies variables are immutable and final. One
unique feature of ALCH is the branch statement, which nondeterministically chooses and
executes multiple independent code blocks of tile addition and removal statements until one
block finishes execution. Effects from uncompleted blocks are reversed, so only the code from
the completed block remains. The branch statement also returns a bool associated with
the block that finished successfully. Using branch, it is possible to query the state of tile
assemblies without permanently attaching tiles to them. Each block in a branch statement is
implemented as a reversible random walk. As an optimization, blocks can be given different
weights to make them more likely to be chosen at the nondeterministic branch point.

We developed a software compiler in C# that compiles ALCH programs into CRN-TAM
programs. We also developed a simulator for the CRN-TAM that includes the following
two extensions to the model which are used only for optimization purposes: (1) it supports
reactions with arbitrary arity, relaxing the CRN-TAM requirement that reactions are at
most bimolecular; (2) it allows any reaction to add, remove, or activate a tile as a side effect
and removes the requirement for the specific per-tile add and remove actions. Note that the
output of the ALCH compiler is strictly compliant with the original CRN-TAM as specified
in [11]. We have not yet implemented tile deactivation in the simulator.

To demonstrate the expressiveness of ALCH, we will show that the CRN-TAM can strictly
self-assemble an infinite shape at temperature 2 that the aTAM cannot. Consider an infinite
staircase, visualized in Figure 1, where for each k ∈ N, the (2k)th column is 2 + k tiles tall
and the (2k + 1)th column is one tile tall. The gaps between steps (even-numbered columns)
prevent an aTAM program from directly transferring information about the height of one
step to the next. Consequently, all information about the height of steps must be passed
along the base of the assembly; an infinite tileset is required. However, the CRN-TAM can
build and remove probe tiles that allow the assembly to query the previous column. We
take advantage of this and show that the CRN-TAM can self-assemble this infinite shape, as
shown in Figure 1. Note that we omit the tile and bond declarations but include a graphical
representation of the tile species used in the construction. We also omit the CRN species
and reactions that ALCH outputs.

2 See Subsection 3.3 for the one exception.

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:7

F f

a

d
ef

a

C r

halt

d
ef

def

A r

a

l

def

B l

def

r

def

NH f

halt

d
ef

a

H h

def

d
ef

halt

NHT f

halt

h

a

HD h

def

h

def

FD f
def

f

def

FT f

a

f

a

bool at_top ;
activate C;
add H; add B; add A;
while (true) {

at_top = branch {
true () { add NHT; add HD; }
fa l se () { add FT; add FD; }

} ;

i f (at_top) {
remove HD; remove NHT;
add NH; add H;
add B; add A;

} else {
remove FD; remove FT;
add F;

}
}

Figure 1 An ALCH simulation of the infinite staircase is shown in the upper left. ALCH code
for the staircase is shown on the right-hand side. The definitions of the tile types are not shown but
are provided visually with bond labels and strengths in the lower left. On the right-most column of
the simulation, the FT and FD tiles probe the previous column to detect which tile should be
placed. These probe tiles are temporary and are eventually removed. Chemical species and reactions
of the staircase construction, as output by ALCH, are not shown. Note that the temperature τ of
the CRN-TAM program is 2.

Intuitively, the self-assembly of the infinite staircase is implemented with a single infinite
loop that repeatedly adds tiles to the assembly. Each execution of the loop begins by probing
the previous column using the branch statement, which nondeterministically attempts to
add the sequence of tiles FT and FD or the sequence of tiles NHT and HD . If the
latter succeeds, the variable at_top is set to true, and if the former succeeds, the variable is
set to false. Notice that the true() branch will succeed if and only if the current column is
the same height as the previous column because of the top tile H . The variable at_top is
then used to either (a) finish the current column and initialize the next column or (b) add
a single filler tile F and continue with the current column. Using branch to query local
structural information during the assembly is powerful; we employ a similar technique to
show that the discrete Sierpinski triangle can be strictly self-assembled in the CRN-TAM.

We now define each of the language features of the ALCH programming language and
explain how they are implemented in the ALCH compiler. We begin by discussing how
variables are implemented and define some useful notation that we use to specify what
reactions and species are created for each language construct.

The ALCH compiler processes all variable declarations at compile-time. All BondLabel
and TileSpecies variables are added to a symbol table for later reference in add, remove,
activate, and deactivate statements. Since BondLabel and TileSpecies variables are im-
mutable and cannot be reassigned, this simple treatment is sufficient. bool variables are
implemented using two chemical species that are created at compile-time, and we commonly
refer to them as Boolean flags. A Boolean flag x represents two chemical species (x, x), where
at any given time one of x and x has population 0 and the other has population 1. Unlike
BondLabel and TileSpecies variables, bool variables are mutable and can be reassigned by
switching which species has population 1.

Most ALCH statements are implemented with a set of reactions, and each of their
corresponding reactions includes its line number species as a reactant. When two statements
are executed in sequence, the first statement emits the corresponding line number species

DNA 26

6:8 ALCH: An Imperative Language for the CRN-TAM

of the second when it is finished. This allows the sequential execution of statements and
avoids race conditions during the program execution. For statements that return a bool, the
compiler creates a dedicated Boolean flag (x, x) (or, in some cases, links an existing flag) for
that line of code and guarantees that when the statement is executed, the associated flag
contains the correct value.

When defining how each syntactical element of ALCH is implemented, it is convenient to
use notation such as <block> to denote compound ALCH statements and expressions. For
example, in the ALCH program in Figure 1, the if statement and surrounding code can be
written abstractly as:

<block1>
i f (<block2 >) {

<block3>
}
<block4>

Notice how each <block> represents a sequence of statements. Here <block1> must emit the
appropriate line number species for the conditional, and similarly, the if statement must
emit the appropriate line number species for <block4> when it is finished. Since most of
these language constructs are implemented with chemical species and reactions, the following
notation is convenient:

Xstart →<block> → Xend (1)

Intuitively this notation means that if the line number species Xstart is produced, then all
the statements corresponding to <block> will be executed. The line number species Xend will
be produced afterward. It is important to note that <block> abstractly represents a sequence
of ALCH instructions, which may themselves use many intermediate line number species.
Since some statements return a Boolean flag, we also use T<block> and F<block> to denote
the true and false species of the returned Boolean flag after <block> is executed.

3.1 Boolean Expressions and Variable Assignment

We now discuss how Boolean expressions such as (val1 && val2) || !val3 are evaluated as well
as Boolean assignment statements such as bool a = <block>. We begin with the logical
operations of negation, conjunction, and disjunction.

Given an abstract Boolean expression represented by <block>, we consider the imple-
mentation of the logical negation !<block>. Recall that, at compile-time, <block> is given a
dual-rail Boolean flag (x, x). To implement negation, we simply need to return the negated
flag (x, x). We handle this at compile-time when we link the ! syntax element with the flag
of its child element <block>. Intuitively, the compiler will “cross the wires” of <block>’s
Boolean flag when it encounters !<block> so that its output flag is negated. Thus negation
does not introduce any new species or reactions but rather modifies the output of <block>
directly at compile-time so that T<block> and F!<block> are the same species and F<block>
and T!<block> are the same species.

To process a conjunction of logical expressions, we evaluate each expression from left to
right and immediately return a false Boolean flag if an expression evaluates to false. Only
when all expressions have evaluated to true will a true Boolean flag be returned. Below is

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:9

how the conjunction statement <exp1> && <exp2> is implemented:

Xstart →<exp1> → X1 (2)
X1 + T<exp1> → X2 + T<exp1> (3)
X1 + F<exp1> → Xf + F<exp1> (4)

X2 →<exp2> → X3 (5)
X3 + T<exp2> → Xt + T<exp2> (6)
X3 + F<exp2> → Xf + F<exp2> (7)

Notice how <exp1> is evaluated first, which emits the line number species X1. The line
number species together with the species T<exp1> and F<exp1> are used to determine
whether the expression should immediately return false by producing the Xf line number
species or continue by producing X2 to start evaluating <exp2>. This process continues until
one expression evaluates to false, or all expressions are true, and the Xt line number species
is produced. A dedicated Boolean flag for the conditional is needed for output because the
compiler cannot identify any preexisting child element that is guaranteed to hold the correct
return value after execution. This Boolean flag is added to the CRN at compile-time, along
with the following reactions to update the flag according to whichever Xt or Xf line number
species is produced:

Xt + Tresult → Xend + Tresult (8)
Xt + Fresult → Xend + Tresult (9)
Xf + Tresult → Xend + Fresult (10)
Xf + Fresult → Xend + Fresult (11)

Here the species Tresult and Fresult correspond to the unique Boolean flag generated for
this conjunction statement, and Xend is the line number species that initiates the block
immediately following the conjunction. We implement logical disjunction in a very similar
way: the first time an expression returns true, we immediately return true; if all expressions
return false, we return false.

We now describe how Boolean assignment statements such as a = <block> are implemented.
To execute this command, we evaluate the right-hand side of the assignment. As discussed
above, <block> has an associated Boolean return flag; when <block> finishes execution, this
flag is guaranteed to hold the correct return value. We then use the flag species as catalysts
to direct execution to the lines of code that set the variable a to true or to false accordingly.
Below are the reactions that implement the assignment a = <block>:

Xstart →<block> → X1 (12)
X1 + T<block> → Xt + T<block> (13)
X1 + F<block> → Xf + F<block> (14)

The line number species Xt and Xf encode the Boolean return value of <block>, and the
following four reactions copy this result into the global Boolean flag for the variable a:

Xt + Ta → Xend + Ta (15)
Xt + Fa → Xend + Ta (16)
Xf + Ta → Xend + Fa (17)
Xf + Fa → Xend + Fa (18)

DNA 26

6:10 ALCH: An Imperative Language for the CRN-TAM

Here Ta and Fa are the species representing the global Boolean flag associated with the
variable a. Since we do not know whether a is true or false at compile-time, we must account
for both possibilities. Note that we use the <block> Boolean flag species only as catalysts, so
the dual-railed representation is preserved.

Since the CRN-TAM requires all reactions to be at most bimolecular, we can use at
most one non-line-species product and one non-line-species reactant per reaction. To process
information, we must often split computations across several reactions and pass information
down in the line number species. Above, for example, the intermediate line number species
Xt and Xf serve to temporarily store the return value so we can process it in the following
reactions. This and similar patterns frequently occur throughout our implementation of
ALCH.

3.2 Conditionals and Loops
ALCH also supports conditional execution with the conventional syntax as shown below:

i f (<exp>) {
<block>

}

The implementation below is similar to the previous constructions above.

Xstart →<exp> → X1 (19)
X1 + T<exp> → Xt + T<exp> (20)
X1 + F<exp> → Xend + F<exp> (21)

Xt →<block> → Xend (22)

We also support else blocks by modifying Reaction (21) to output an Xf molecule and adding
an additional reaction Xf → X2 where X2 is the line number species for the else block.
ALCH also supports while loops which are implemented in a similar fashion but alternates
between the line number for <exp> and the internal <block>.

3.3 Tile Addition, Removal, Activation, and Deactivation
Recall that in the CRN-TAM, every tile species A is associated with at most 1 tile removal
signal A∗, and the following two sets of reactions.

α + A → β +A∗ (23)

β +A∗ → α + A (24)

Assemblies α and β differ only by one instance of A , placed in β . We are given
the option to have tiles with no removal signals in the CRN-TAM, but ALCH gives each
tile type a unique removal signal. Therefore, we can add a tile by placing it in solution and
relying on the first reaction above to attach it to the. We then wait to proceed until we can
clean up the tile removal signal that the new tile releases when it bonds to an assembly. The
implementation of add tileA is as follows where Xstart is the line number species of the add
statement and Xend is the line number species of statement that immediately follows.

Xstart → X1 + A (25)
X1 +A∗ → Xend (26)

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:11

The implementation of remove tileA is similar, but it relies on the existence of Reaction (24)
discussed earlier:

Xstart → X1 +A∗ (27)

X1 + A → Xend (28)

Assembly activation is more difficult. The CRN-TAM allows only activation reactions of
the form: X + A → A +A∗. There are two difficulties here. First, it is challenging to

guarantee that A is activated as a new assembly instead of being added to a preexisting
assembly. In order for an activation reaction for A to proceed, we must already have A in
solution; if A is in solution, we cannot prevent it from bonding to an existing compatible
site. Instead of guaranteeing this explicitly, we rely on users of ALCH to prevent these
situations. The second difficulty is that tile activation reactions cannot output a line number
species, so we have no easy way of passing execution to the next reaction in our desired
sequence. We handle this issue by producing the desired line number species in advance, as
shown in the implementation of activate tileA below.

Xstart → X1 +X3 (29)

X1 → X2 + A (30)

X2 + A → α +A∗ (31)

X3 +A∗ → Xend (32)

Although the line number species X3 is present initially, the last reaction cannot execute
until the end, when A∗ is also present.

We straightforwardly implement tile deactivation, subject to similar constraints. Instead
of temporarily having two line number species in solution, we temporarily have none as we
wait for the deactivation reaction to return one.

3.4 Nondeterministic Branch Construct
We allow nondeterminism in our language through the branch construct. A branch statement
contains multiple branch paths; a branch path is a sequence of tile addition and removal
instructions collectively associated with a Boolean value. At the start of a branch statement,
a program nondeterministically chooses one of the branch paths and begins executing it.
Broadly speaking, branch returns the Boolean value of the path that ultimately finishes
successfully. Each path contains only reversible commands, so if one path is impossible to
complete, execution will ultimately reverse out of it and proceed down a different path. Since
we require branch paths to be reversible, we allow only add and remove commands inside
branch paths. It is possible to support additional commands by making other language
constructs reversible, but for our purposes here, add and remove statements are sufficient.

It is important to note that our notion of reversibility is not complete. For example,
suppose we execute add tileA inside a branch path. If this statement is reversed, the system
will attempt to remove the tile A . However, if there are multiple instances of A bonded
to the assembly, it is not guaranteed to remove the same tile added earlier in the branch.
Additionally, if we add a tile at a strength greater than τ , we will not be able to remove it
when attempting to reverse the addition. Any ALCH programmer should exercise caution
when using the branch statement to avoid such side effects.

DNA 26

6:12 ALCH: An Imperative Language for the CRN-TAM

r e s u l t = branch {
true (2) {

add t i l eA ;
remove t i l eB ;

}
fa l se (1) {

remove t i l eC ;
}

} ;

Figure 2 Possible execution paths through a branch statement. Instructions associated with true
and instructions associated with false are executed nondeterministically via a random walk. The
branch statement terminates when one path runs to completion, and it returns the corresponding
Boolean flag. The integers inside the parentheses of the true and false branches correspond to
weights that bias the random walk.

The branch statement is implemented with a single branch point that can lead to any
one of the branch paths, as shown in Figure 2. From that branch point, we execute only
one branch path at a time. Since each branch path is reversible, if execution proceeds down
a branch that is incapable of completing, it will eventually return to the branch point via
random walk. When a branch finishes execution, we return the Boolean flag that corresponds
with the path that completed.

Consider the following branch statement where <trueblock> and <falseblock> are arbitrary
sequences of add and remove statements.

branch {
true () { <trueb lock> }
fa l se () { <f a l s e b l o c k > }

}

The above branch statement is implemented in ALCH with the chemical reactions:

Xstart ↔<trueblock> → Xt (33)
Xstart ↔<falseblock> → Xf (34)

A few things should be noted about the above implementation. First, both the <trueblock> and
<falseblock> use the same line number species Xstart. Second, those reactions are reversible, as
indicated by the bidirectional arrows. Third, once one of the blocks finishes, it is completed
with an irreversible reaction that terminates the branch statement. Fourth, the add and
remove commands outside of branch are not reversible; inside branch paths, we modify each
add and remove command to make them reversible. The reversible implementation for the
add statement is shown below.

X1 ↔ A (35)
A∗ ↔ X2 (36)

A reversible remove statement is implemented in a similar way but is not shown.

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:13

The last thing to note about the branch statement is that it returns a Boolean flag.
Therefore a dedicated flag must be created at compile-time and be appropriately set after
the execution is completed. Therefore the following reactions are also needed to set this
Boolean flag.

Xt + Tresult → Xend + Tresult (37)
Xt + Fresult → Xend + Tresult (38)
Xf + Tresult → Xend + Fresult (39)
Xf + Fresult → Xend + Fresult (40)

4 Strict Self-Assembly of the Discrete Sierpinski Triangle

We now present the CRN-TAM construction that strictly self-assembles the discrete Sierpinski
triangle (DST) using ALCH. Our discussion here is complete but brief; see Appendix A
for a more detailed description of our algorithm. To see the complete specification of the
construction in ALCH, along with a video visualization of the self-assembly, see http:
//web.cs.iastate.edu/~lamp/.

We begin with an overview of tile types and a brief description of their purpose and
then describe the DST construction algorithm in detail. Since the DST is symmetric about
the line f(x) = x, we refer to the two symmetric halves as the lower symmetric triangle
(LST) and the upper symmetric triangle (UST). We first discuss the techniques to strictly
self-assemble the LST, which can be easily modified to construct the UST in parallel. In
our construction, it is useful to distinguish between three types of tiles: (1) structural tiles,
(2) scaffold tiles, and (3) probe tiles. Structural tiles are permanent and form the DST
itself. Scaffold tiles are used to construct temporary auxiliary structures to facilitate the
DST construction. Probe tiles are rapidly added and removed to query existing information
of previously placed structural tiles. To avoid unwanted crosstalk between the symmetric
halves, we duplicate the set of structure tiles into a symmetric group with bonds that are
incompatible with the LST tiles. We also differentiate the tile types of even and odd columns
to prevent a partially constructed column from interfering with the construction.

We now discuss the construction for the strict self-assembly of the DST. The first step
in our construction unpacks the initial structure shown in Figure 3a with hard-coded tile
activation and addition statements. This is easily accomplished by adding tiles in a specific
order that avoids ambiguity in placement. After the initial structure tiles are placed, we
then construct the LST column by column, adding structure tiles one-at-a-time, completing
each column before proceeding to the next. We also use a variable to track whether we are
currently constructing an even or odd column. The process of adding one structure tile at a
time is akin to a dot-matrix printer, placing dots of ink one line at a time.

4.1 Scaffold Construction
We construct two types of scaffolds. The diagonal scaffold, shown in red in Figure 3, runs
along the diagonal of the DST and provides an anchor for the vertical scaffold, which is
shown in cyan. The vertical scaffold covers up potential bond sites that we do not wish to
bond to, as illustrated in Figure 3b. The diagonal scaffold is straightforward to construct;
before constructing each column, we extend it out by two more tiles. For the vertical scaffold,
we must extend it only as far as the base of the DST. We extend the DST base row out by

DNA 26

http://web.cs.iastate.edu/~lamp/
http://web.cs.iastate.edu/~lamp/

6:14 ALCH: An Imperative Language for the CRN-TAM

(a) Seed. (b) Vertical scaffold. (c) Diagonal scaffold. (d) Sierpinski triangle.

Figure 3 (a) The initial hard-coded structure upon which we build the lower half of the DST.
(In the final program that constructs the whole DST, this structure has a symmetric upper half.)
(b) Demonstrates how our construction extends a vertical scaffold down to occlude all the potential
tile bond sites on column currently being constructed. (c) Shows the diagonal scaffold before erasing
itself and starting a new diagonal scaffold. (d) Shows a section of the Sierpinski triangle that includes
the lower and upper symmetric halves; the part corresponding to (c) is highlighted.

(a) Illustrates how the probe detects empty
spaces in the Sierpinski triangle; both
paths are attempted in parallel.

(b) Illustrates how the next 3× 3 window around the
probe is updated using the previous window and the
tile detected by the probe.

Figure 4 Visualization of the probe querying nearby tiles and updating the 3× 3 window.

one space to denote the bottom of the vertical scaffold. We begin the vertical scaffold with
SC0 and construct most of it from vertically double-bonded SC tiles. We use SC0 so
that we know when we are done when removing the scaffold.

The special final tile SCf has a single bond on its north and south edges; it cannot
attach until it can bond cooperatively with the base tile below it and the scaffold tile above
it. When our system succeeds at placing SCf , it knows to continue to the next phase. We

allow the assembly to remove SC as well, in case SC bonds at the bottom instead of
SCf ; scaffold construction proceeds as a random walk, which we bias with reaction rates.

Since the diagonal scaffold is not part of the DST, we must periodically clean it up. Some
columns in the LST are entirely solid up to the diagonal; when we encounter one of these,
we destroy the existing diagonal and begin a new diagonal starting from the top of the solid
column. As with SC0 , we start with a special diagonal tile so that we can remove the
diagonal in a loop and know when to stop.

4.2 Adding Structure Tiles with the Probe
When beginning to place tiles on a new column i, the vertical scaffold must be completely
initialized as in Figure 3b. We must know which tile, if any to add to the DST at each
vertical position: T-joint, straight connector, etc. To that end, after constructing the vertical

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:15

scaffold, we initialize a 3× 3 Boolean grid, centered on (i, 1), of Boolean flag variables. This
grid stores whether those tile positions are occupied in the full DST; note that if we know the
3× 3 grid around a position, we know which tile, if any, goes there. The lower six squares are
entirely determined by whether i is even or odd; the lowest row of the LST is solid, and the
second-lowest alternates every space between filled and empty. To determine the upper-left
space, we use the “probe” to measure whether (i− 1, 2) is filled or empty in column i− 1,
which we have already constructed. We do this by nondeterministically attempting to build
two structures in parallel, as shown in Figure 4a, and can deduce the value of (i− 1, 2) based
on which one succeeds. If the upper left space (i− 1, 2) is empty, then it is possible to place
a tile there; using double-bonded probe tiles, we build south from the scaffold and then west
into the potential empty space. If this construction succeeds, we know that the space is
empty. We exploit cooperative bonding to determine if (i − 1, 2) is filled. Structure tiles
connect to each other with double bonds; each structure tile, however, has at least a single
bond on its east edge. Our probe tile, then, has a single bond on its north and west edges.
It can bond cooperatively with the scaffold and space (i− 1, 2) only if (i− 1, 2) is filled. We
use ALCH’s branch structure to nondeterministically try both paths until one succeeds, at
which point our program knows the upper-left space of the 3× 3 grid. We can then calculate
the upper-center and upper-right spaces using the XOR characterization of the DST.

With the grid filled in, our program can put the correct tile into solution (or skip forward
if no tile is required). All incorrect bond sites in column i are covered by the vertical scaffold,
so our tile is guaranteed to bond at the correct location. We must then “slide” the 3× 3 grid
one space north (updating the Boolean flags accordingly) to process the next tile site, as
illustrated in Figure 4b. The lowest six spaces of the new grid overlap with the old grid, so
we already know them. As during initialization, we can calculate the upper-left space using
the probe method and the remaining two using XOR. We proceed in this fashion up the
entire column until it is completed. Note that when adding tiles in the middle of column
i, we must make sure they do not bond into column i+ 1 using bond sites on the part of
column i that we have already constructed. We use even and odd bond types to prevent this;
the tiles we add for column i are incompatible with the bond sites in column j.

4.3 Constructing the Upper Symmetric Triangle
We have discussed how to construct the lower symmetric triangle (LST); it is straightforward
to extend this method to the upper symmetric triangle (UST). Since the DST is symmetric, we
need not track any additional information. We generate a symmetric scaffold corresponding
to the vertical scaffold discussed above. (Since the diagonal scaffold is off-center, we skip
the symmetric version of SC0 .) When we add a structure tile to the LST, we add its
symmetric version as well. We must also make a straightforward modification to our method
for finishing off the solid columns (rows in the UST) that signal diagonal scaffold cleanup;
see the appendix for details.

5 Conclusion

In this paper, we define ALCH, a programming language for the CRN-TAM, and use it to
exhibit a strict self-assembly of the discrete Sierpinski triangle (DST). Our use of ALCH allows
us to conceptualize our construction at the level of imperative tile commands and familiar
control structures like conditionals and while loops. Furthermore, since it is impossible to
strictly self-assemble the DST in the aTAM, our construction serves as a proof that the
CRN-TAM can strictly self-assemble infinite shapes that the aTAM cannot.

DNA 26

6:16 ALCH: An Imperative Language for the CRN-TAM

We have utilized two new techniques in our DST construction. First, we have used a probe
mechanism to measure which tiles have been placed, allowing us to derive information from
the already-constructed system. The probe technique showcases ALCH’s nondeterministic
branch structure, exploring multiple potential executions to find one that can complete. It
also enables us to query the parts of the DST we have already constructed. Second, we have
used a temporary scaffold to occlude undesirable tile bonding sites and precisely control
where new tiles are added. Both of these techniques leverage the CRN-TAM’s ability to
remove tiles and create temporary structures.

We considered an alternate strategy to construct the DST using a CRN-TAM Turing
machine implementation to control scaffold construction and tile placement. This entailed
maintaining a secondary representation of the partially-constructed DST in the Turing
machine tape, updating and querying it as the construction proceeds. The Turing machine
would likely require unbounded storage to retain the last-constructed column even if it
does not store the whole DST. On the other hand, our CRN-TAM construction acts as a
“transformer,” converting a stream of local data into a stream of tile placements without
retaining unbounded information. The only part of the DST that we store in a computational
form is the local 3× 3 grid. We update it using the probe mechanism, thereby converting
measurements of the existing DST into a bounded representation of the local DST area.

Our second technique, occluding bond sites with a temporary scaffold, is very general;
we can apply it to any construction where we have a frontier of potential bond sites and
must bond at a precise one. We expect this technique to be useful in constructing a wide
variety of infinite shapes in the CRN-TAM. Our DST construction does not require a Turing
machine, but the full power of CRN-TAM universality is available to use in combination with
occlusion scaffolds. We speculate that it is possible to construct every connected recursively
enumerable subset of Z2 using variants of this technique.

For the current version of ALCH, we have focused on a very sequential programming
model. However, the CRN-TAM, allows for potentially massive parallelism via large chemical
populations; it would be interesting to explore additional ALCH features that leverage this
capability. For example, the aTAM tileset design toolkit by Doty and Patitz [4] provides
an abstraction for highly-parallel tile assembly. Incorporating a similar tool into ALCH
could enable powerful constructions that combine chemical parallelism with the coordination
capabilities of ALCH’s imperative framework. More broadly, we speculate that ideas from
classical concurrent programming are relevant to ALCH as well.

We hope that the tools and techniques presented here will catalyze research into the
CRN-TAM and similar hybrid models.

References
1 Florent Becker. Pictures worth a thousand tiles, a geometrical programming language for self-

assembly. Theoretical Computer Science, 410(16):1495–1515, 2009. Theory and Applications
of Tiling. doi:10.1016/j.tcs.2008.12.011.

2 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. In Algorithmic Bioprocesses, Natural Computing Series, pages
543–584. Springer, 2009. doi:10.1007/978-3-540-88869-7_27.

3 David Doty, Jack H Lutz, Matthew J Patitz, Robert T Schweller, Scott M Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In Proceedings of the
53rd Symposium on Foundations of Computer Science, pages 302–310. IEEE, 2012. doi:
10.1109/FOCS.2012.76.

4 David Doty and Matthew J. Patitz. A domain-specific language for programming in the tile
assembly model. In Proceedings of the 17th International Conference on DNA Computing

https://doi.org/10.1016/j.tcs.2008.12.011
https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1109/FOCS.2012.76
https://doi.org/10.1109/FOCS.2012.76

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:17

and Molecular Programming, pages 25–34. Springer Berlin Heidelberg, 2009. doi:10.1007/
978-3-642-10604-0_3.

5 Irving Robert Epstein and John Anthony Pojman. An Introduction to Nonlinear Chemical
Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press, 1998. doi:
10.1021/ed077p450.1.

6 Martin Feinberg. Foundations of chemical reaction network theory. Springer, 2019. doi:
10.1007/978-3-030-03858-8.

7 David Furcy, Scott M. Summers, and Christian Wendlandt. New bounds on the tile complexity
of thin rectangles at temperature-1. In Proceedings of the 25rd International Conference
on DNA Computing and Molecular Programming, pages 100–119. Springer International
Publishing, 2019. doi:10.1007/978-3-030-26807-7_6.

8 James I. Lathrop, Jack H. Lutz, and Scott M. Summers. Strict self-assembly of discrete
Sierpinski triangles. Theoretical Computer Science, 410(4):384–405, 2009. doi:10.1016/j.
tcs.2008.09.062.

9 Anthony M. L. Liekens and Chrisantha T. Fernando. Turing complete catalytic particle
computers. In Advances in Artificial Life, pages 1202–1211. Springer Berlin Heidelberg, 2007.
doi:10.1007/978-3-540-74913-4_120.

10 Pierre-Étienne Meunier and Damien Woods. The non-cooperative tile assembly model is not
intrinsically universal or capable of bounded Turing machine simulation. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, pages 328–341. ACM, 2017.
doi:10.1145/3055399.3055446.

11 Nicholas Schiefer and Erik Winfree. Universal computation and optimal construction in
the chemical reaction network-controlled tile assembly model. In Proceedings of the 21st
International Conference on DNA Computing and Molecular Programming, pages 34–54.
Springer International Publishing, 2015. doi:10.1007/978-3-319-21999-8_3.

12 Nicholas Schiefer and Erik Winfree. Time complexity of computation and construction in
the chemical reaction network-controlled tile assembly model. In Proceedings of the 22nd
International Conference on DNA Computing and Molecular Programming, pages 165–182.
Springer International Publishing, 2016. doi:10.1007/978-3-319-43994-5_11.

13 Nadrian C. Seeman. Nucleic acid junctions and lattices. Journal of Theoretical Biology,
99(2):237–247, 1982. doi:10.1016/0022-5193(82)90002-9.

14 Marko Vasić, David Soloveichik, and Sarfraz Khurshid. CRN++: Molecular programming
language. Natural Computing, pages 1–17, 2020. doi:10.1007/s11047-019-09775-1.

15 Erik Winfree. Algorithmic self-assembly of DNA. PhD thesis, California Institute of Technology,
1998. URL: https://resolver.caltech.edu/CaltechETD:etd-05192003-110022.

A Strict DST Construction: Details

We now present a more detailed look into our DST construction in ALCH. We begin with an
overview of tile types and a brief description of their purpose; we then describe the DST
construction algorithm in detail.

The DST is symmetric about the line y = x. We refer to the two symmetric halves as
the lower symmetric triangle (LST) and the upper symmetric triangle (UST). We will focus
on the LST construction algorithm, as it can be easily modified to construct the UST at the
same time.

A.1 Tile Types
We distinguish three types of tiles. Structure tiles form the DST itself. Scaffold tiles form
semi-permanent auxiliary scaffolds that enable us to build the DST, and probe tiles are added
and removed quickly to probe the existing structure for useful information. One commonality
between all three tile types is the inert bond label, which we use always at strength 0.

DNA 26

https://doi.org/10.1007/978-3-642-10604-0_3
https://doi.org/10.1007/978-3-642-10604-0_3
https://doi.org/10.1021/ed077p450.1
https://doi.org/10.1021/ed077p450.1
https://doi.org/10.1007/978-3-030-03858-8
https://doi.org/10.1007/978-3-030-03858-8
https://doi.org/10.1007/978-3-030-26807-7_6
https://doi.org/10.1016/j.tcs.2008.09.062
https://doi.org/10.1016/j.tcs.2008.09.062
https://doi.org/10.1007/978-3-540-74913-4_120
https://doi.org/10.1145/3055399.3055446
https://doi.org/10.1007/978-3-319-21999-8_3
https://doi.org/10.1007/978-3-319-43994-5_11
https://doi.org/10.1016/0022-5193(82)90002-9
https://doi.org/10.1007/s11047-019-09775-1
https://resolver.caltech.edu/CaltechETD:etd-05192003-110022

6:18 ALCH: An Imperative Language for the CRN-TAM

S h
e
o

heo,sym

in
ert

inert

He h
e
o

inert

h
o

e

inert

HNe h
e
o

v

h
o

e

inert

NCe h
e
o

inert

in
ert

v

NCDe h
e
o

ncv

in
ert

v

Ve h
e
o

v

in
ert

v

V Ee h
e
o

v

in
ert

v

ECe h
e
o

inert

h
o

e

inert

HNb,e

h
b
,e

o

v

h
b
,o

e

inert

(a) These are the structure tiles
that form the odd columns of
the LST; we omit the even
column tiles and the tiles for the
entire UST, which are very sim-
ilar.

DS

in
er
t

diag

in
ert

ncv

DA

d
ia
g

inertsca
f
f

s
y

m

diag

DAC

d
ia
g

inert

in
ert

diag

DB

in
er
t

diag

d
ia
g

inert

DBC

in
er
t

diag

d
ia
g

inert

NCt

in
er
t

inert

in
ert

v

(b) These tiles form
the scaffolding that
runs along regions
of the southwest-to-
northeast diagonal.

SC0

in
er
t

scaff

in
ert

scaff

SC

in
er
t

scaff

in
ert

scaff

SCf

in
er
t

scaff

in
ert

v

SCsym

sc
a
f
f

inert

sca
f
f

inert

ZPA

in
er
t

scaffsca
f
f

inert

ZPB

sc
a
f
f

inert

in
ert

inert

OPo

in
er
t

scaff

h
e
o

inert

OPe

in
er
t

scaff

h
o

e

inert

(c) The blue tiles form the vertical scaffold-
ing that obscures bond sites to facilitate
adding tiles at specific locations. The yel-
low tiles form the probes that determine
whether a position in the previous column
is filled or empty.

Figure 5 Tiles types used in the DST construction.

A.1.1 Structure Tiles
Structure tiles use several bond labels for the LST.

v is a strength 2 vertical bond that joins structure tiles in completed regions of the DST.
heo and hoe are likewise structural horizontal bonds. We must disambiguate between
even and odd columns; heo joins an even-column tile on the left with an odd-column tile
on the right, and hoe is the reverse.
hb,eo and hb,oe are variants that mark the lowest (“base”) row in the DST.
ncv interfaces structure tiles with one type of scaffold tiles.

To avoid unwanted crosstalk between the symmetric halves, we duplicate the set of structure
tiles into a symmetric group with bonds that are incompatible with the LST tiles. Likewise,
we use separate bond labels and tile types to avoid crosstalk between even and odd columns.
This produces four similar categories of structure tile: even LST, odd LST, even UST, and
odd UST. We present a list of even LST tiles in Figure 5a. Note that most structure tiles
have an heo bond of strength at least one on their eastern edges so that probe tiles can attach
cooperatively.

Tile S is the seed tile that we activate to form the southwest corner of the DST. Tile
NCDe interfaces between the structure and the scaffold, and tile HNb,e is a variant tile
type that occurs specifically on the lowest row. All the other structure tile types in Figure 5a
fill in the DST structure in a straightforward way.

A.1.2 Scaffold Tiles
We use two types of scaffolds. The vertical scaffold extends along the eastern face where
the next column is to be added; we extend and retract it to expose structural tile addition
sites. The diagonal scaffold extends along parts of the southwest-to-northeast diagonal and
provides an attachment point for the vertical scaffold. We require two additional bond labels:
scaff for the vertical scaffold and diag for the diagonal scaffold.

See Figure 5b for a list of diagonal scaffold tiles. Tile DS interfaces with the structure
tiles and begins the diagonal scaffold; tiles DA and DB form the body of the diagonal.
Since DA and DB contain bond sites to begin the vertical scaffolds, when we finish with a
column we must replace them with the capped variants DAC and DBC so future vertical
scaffolds don’t spuriously bond there. We use NCt as a temporary variant of NCe that is
useful for cleaning up the scaffold.

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:19

We present a list of vertical scaffold tiles in Figure 5c. Tiles SC and SCsym form the

body of the vertical and symmetric horizontal scaffolds. We use SC0 and SCf at the
beginning and end of the LST vertical scaffold so that we can identify when we are done
adding and removing it; since we know this information from the LST, we don’t require
corresponding symmetric tile species.

A.1.3 Probe Tiles
When constructing a new column, we use a probe mechanism to determine whether specific
rows in the last constructed column contain structure tiles; this allows us to use XOR to
reconstruct the DST with constant information stored in chemical species counts. We have
separate probe mechanisms to detect “zeros” (empty positions) and “ones” (filled positions).
See Figure 5c for a list of probe tiles.

A.2 Initialization
We now begin our discussion of the DST construction algorithm. First, we prepare the
structure shown in Figure 3a, using a straightforward series of tile additions that do not
result in ambiguity. We also initialize to odd the flag that tracks whether we are in an even
or an odd column.

We face two challenges when constructing the rest of the triangle:
We must add each tile in the correct location, instead of any of a potentially unbounded
number of incorrect locations.
At each position, we must determine which tile to add, if any; i.e., we must know whether
to add nothing, ECe , HNe , etc.

We solve the first problem by tracking the tile positions around the tile position in question.
To solve the second problem, we extend a scaffold of tiles to occlude all unintended bond
sites.

To begin, we add the diagonal scaffold tile DS above NCDe ; this will be the start of
our occluding scaffold. Immediately after DS is added, we enter a loop construct in our
algorithm. We will refer to this loop as the outer loop; each outer loop iteration constructs
another column of the LST.

A.3 Outer Loop

A.3.1 Initialization: building the scaffold
Inside the loop, we must first build out the scaffold. We add DA and DB to DS , and
we extend the base row with Hb,o (or HNb,e in an even row). Since we have a tile set

specifically for constructing the base layer, we don’t need to worry about adding Hb,o in
the wrong row.

Now, we construct the vertical scaffold down from DB to produce a structure like the
one shown in Fig 3b. We add SC0 first so that when we remove it again we will know we
have reached the top; as discussed below, SCf is a mechanism to detect the bottom row.

We then add SC until we reach the bottom row. Since we have added Hb,o extending

out, we cannot add SC at row 0 or lower. We must detect when we reach the bottom,
however, so we can stop attempting to add SC and continue with the rest of the program.

DNA 26

6:20 ALCH: An Imperative Language for the CRN-TAM

Whenever we attempt to add SC , we also attempt to add SCf in parallel using the

branch structure. Recall that Hb,o always has a bond site on its north edge; since SCf

has single bonds on its north and south edges and must bond at strength 2, it can only bond
in row 1 between Hb,o to the south and SC to the north.

It may be that SC bonds in row 1 instead of SCf ; we always add SC reversibly so

that if this happens the program can proceed (and can only proceed) by removing SC . In
this way we have as many chances as we need to add SCf and continue with the program.

We attempt to add SC in one branch and SCf in another; the return value tells us
whether we have finished adding the scaffold.

A.3.2 Guaranteeing correct added tile position
We can now remove the vertical scaffold row by row, exposing only one tile addition site at a
time. There are two types of addition sites: north and east edges of preexisting tiles. We
claim that when we add a new structure tile, at most one potential bond site is exposed, so
the tile is added unambiguously.

Recall that we have separate bond types for even and odd columns; an odd-column
structure tile cannot bond to the east side of another odd-column structure tile, and likewise
with even columns. If we are building column i, then, we don’t need to worry about
unintended bonding in column i+ 1. In column i itself, the region above our intended bond
site is covered by vertical scaffold tiles and is therefore not a concern. In the region below
our intended bond site, all viable bond sites have already been taken up. We can therefore
guarantee that we can always add the next DST structure tile unambiguously.

A.3.3 Choosing the correct tile
Now that we can guarantee that tiles are added at the correct position, we must determine
which tile to add and whether or not to add one at all.

We store a 3 × 3 “window” of boolean flags around the tile position where we will
potentially add a tile, as shown in Fig. 4b. Each flag is true or false based on whether the
corresponding position in the DST is full or empty. Note that if we possess this information,
it is easy to determine whether we must add the center tile, and, if so, which tile we must
add.

If we are constructing column i, we have added the first tile Hb,o or HNb,e at position
(i, 0). We will therefore initialize the 3× 3 grid centered on (i, 1), which is the next potential
tile position to fill. The bottom row is always filled in all three positions by the base row, so
we can initialize the lower three flags to true. The second row in the DST always alternates
between full and empty, so we need to set either the center flag or the center-left and
center-right flags to true depending on whether we are building an odd or an even column.
Since we track this information, we can easily initialize the middle row.

We do not immediately have enough information to initialize the upper tiles. Recall,
however, that the DST can be characterized as a cellular automaton based on the XOR
relation ⊕:

DST [x, y]↔ DST [x− 1, y]⊕DST [x, y − 1]. (41)

Therefore if we could somehow measure the upper-left tile, we could calculate the upper-center
and upper-right tiles.

T.H. Klinge, J. I. Lathrop, S. Moreno, H.D. Potter, N. K. Raman, and M.R. Riley 6:21

We can measure the upper-left tile (i− 1, 2) using the branch construct. We require two
series of tile additions: one that is only possible if (i− 1, 2) is empty, and one that is only
possible if it contains a tile.

If (i − 1, 2) is empty, we can add a “zero probe” tile into that location; we therefore
attempt to add such a tile, first building ZPA down from the scaffold and then attempting
to build ZPB at (i− 1, 2). See Fig. 4a for an illustration.

Recall that all structural tiles have an east bond site of strength at least one. We therefore
attempt in parallel to add a “one probe” OP with strength-one north and west bond sites.
If there is a structural tile in (i− 1, 2), then the one probe can bond cooperatively with it
and the vertical scaffold, as shown in Fig. 4a.

We perform these attempts in parallel using the branch construct. It is possible that
ZPA will bond when (i− 1, 2) is full. Since we add ZPA reversibly, this is not a problem;
the program can only proceed by removing ZPA , and OP then has another chance to
bond. It is clear, then, that only the correct branch can fully complete. When it does, the
branch statement returns the correct value of (i− 1, 2).

Once we know (i− 1, 2), we can calculate the upper-center tile value in our 3× 3 window
using the XOR characterization of the DST. We can then similarly calculate the upper-right
tile; that completes the grid, and we can add the appropriate tile into the exposed bond site
or skip it if no tile is required.

We must then adjust the grid so it is centered on (i, 2) instead of (i, 1). Note that the
lower two rows of the new grid must be the same as the upper two rows of the old grid,
which we have already calculated and stored. We therefore need to calculate only the top
row. We can measure (i − 1, 3) in the same way we measured (i − 1, 2); this allows us to
calculate the new top row the same way we calculated the old top row. We can then continue
adding or skipping tiles and sliding the grid upwards iteratively as we construct the column;
one sliding iteration is shown in Fig. 4b.

At some point we will attempt to remove SC and instead remove SC0 ; we detect this
with the branch construct and terminate the column loop. This also signals the end of the
outer loop. We remove DB and replace it with DBC so that new SC and SC0 tiles
can’t bond there and restart the outer loop.

A.4 Cleaning Up the Diagonal
As we build additional columns, we extend the diagonal scaffold along the diagonal of the
DST; since it is not part of the DST, we must periodically remove it to “clean up” our
construction.

At every horizontal coordinate that is a power of 2, the DST contains a column of filled
cells that extends all the way from the baseline to the diagonal, as shown in Fig 3c. We can
detect this in our program by inspecting the state of the 3× 3 grid when we remove SC0 ;
if we have just completed a column of filled cells, we clean up the diagonal in the region to
the left of the completed column.

We began the diagonal scaffold with a special tile DS , just as we begin the vertical
scaffolds with SC0 . We can therefore remove DA and DBC repeatedly until we can
instead remove DS with the branch construct. When we remove DS , we have cleaned up
the scaffold.

Recall that there is a specific tile NCDe with a north bond site that allows the diagonal
scaffold to connect. On the old column that supported the diagonal scaffold, we must replace
NCDe with NCe ; otherwise when we attempt to add the diagonal scaffold, it might bond

DNA 26

6:22 ALCH: An Imperative Language for the CRN-TAM

on the old column instead of the new one. We must also ensure that NCDe is at the top
of the new column. To facilitate this swap without risking an unintended tile placement, we
place a new tile species NCt as a temporary cap on the new column. At the end of this
process, all tile positions to the left of the new column correctly match the LST, with no
excess scaffold. Since we repeat this process iteratively at farther and farther positions, we
are strongly constructing the LST.

A.5 Constructing the Upper Symmetric Triangle
We have shown a construction of the lower symmetric triangle (LST) of the DST. We
can construct the upper symmetric triangle (UST) at the same time using a very similar
mechanism. There is no need to calculate the 3× 3 grid for the UST, as we already know its
symmetric version for the LST.

We duplicate the tileset that we used to construct the LST so that there is no tile
placement ambiguity between symmetric halves. With a few exceptions, discussed below,
whenever we add or remove a vertical scaffold or structure tile in the LST, we also add or
remove the symmetric tile in the UST. Also, since the horizontal scaffold bonds onto DA ,
we must replace DA with DAC at the end of the outer loop.

The diagonal scaffold is not entirely symmetric across the diagonal axis, so we must make
several adjustments. First, since the diagonal scaffold occupies the spaces where SC0 would
go in the UST, we do not add a symmetric SC0 ; we attach the horizontal scaffold directly
onto the diagonal scaffold. We rely on the SC0 tile in the LST to inform horizontal scaffold
removal. Second, every power-of-two row in the UST intersects with the diagonal at one grid
point; we fill in that grid point manually every time we clean up a section of the diagonal
scaffold.

With these modifications, our ALCH program strongly constructs the full DST in the
CRN-TAM.

Implementing Non-Equilibrium Networks with
Active Circuits of Duplex Catalysts
Antti Lankinen
Department of Bioengineering, Imperial College London, UK
antti.lankinen15@imperial.ac.uk

Ismael Mullor Ruiz
Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College
London, UK
i.mullor-ruiz16@imperial.ac.uk

Thomas E. Ouldridge
Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College
London, UK
t.ouldridge@imperial.ac.uk

Abstract
DNA strand displacement (DSD) reactions have been used to construct chemical reaction networks
in which species act catalytically at the level of the overall stoichiometry of reactions. These effective
catalytic reactions are typically realised through one or more of the following: many-stranded gate
complexes to coordinate the catalysis, indirect interaction between the catalyst and its substrate,
and the recovery of a distinct “catalyst” strand from the one that triggered the reaction. These
facts make emulation of the out-of-equilibrium catalytic circuitry of living cells more difficult. Here,
we propose a new framework for constructing catalytic DSD networks: Active Circuits of Duplex
Catalysts (ACDC). ACDC components are all double-stranded complexes, with reactions occurring
through 4-way strand exchange. Catalysts directly bind to their substrates, and the “identity” strand
of the catalyst recovered at the end of a reaction is the same molecule as the one that initiated it. We
analyse the capability of the framework to implement catalytic circuits analogous to phosphorylation
networks in living cells. We also propose two methods of systematically introducing mismatches
within DNA strands to avoid leak reactions and introduce driving through net base pair formation.
We then combine these results into a compiler to automate the process of designing DNA strands
that realise any catalytic network allowed by our framework.

2012 ACM Subject Classification Hardware → Biology-related information processing

Keywords and phrases DNA strand displacement, Catalysis, Information-processing networks

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.7

Supplementary Material A compiler to generate optimal sequences for each strand in any allowed
catalytic network is available at https://zenodo.org/record/3948343.

1 Introduction

DNA is an attractive engineering material due to the high specificity of Watson-Crick
base pairing and well-characterised thermodynamics of DNA hybridisation [13,40], which
give DNA the most predictable and programmable interactions of any natural or synthetic
molecule [43]. DNA computing involves exploiting these properties to assemble computational
devices made of DNA. The computational circuits are typically realised using DNA strand
displacement (DSD) reactions, in which sections of DNA strands called domains with partial
or full complementarity hybridise, displacing one or more previously hybridised strands in
the process [55]. DSD is initiated by the binding of short complementary sequences called
toeholds. It is helpful to divide DSD reactions into a few common reaction steps, including:

© Antti Lankinen, Ismael Mullor Ruiz, and Thomas E. Ouldridge;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 7; pp. 7:1–7:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antti.lankinen15@imperial.ac.uk
mailto:i.mullor-ruiz16@imperial.ac.uk
mailto:t.ouldridge@imperial.ac.uk
https://doi.org/10.4230/LIPIcs.DNA.2020.7
https://zenodo.org/record/3948343
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Active Circuits of Duplex Catalysts

binding, unbinding, and three- or four-way strand displacement and branch migration, shown
in Figure 1. DSD is an attractive scheme for computation as it can be used as a medium
in which to realise chemical reaction networks (CRNs) [44], which provide an abstraction
of systems exhibiting mass-action chemical kinetics and have been shown to be Turing
complete [27]. DSD is then Turing complete as well [34,52]. DSD has been used to construct,
for example, logic circuits [35,42], artificial neural networks [9,17,38], dynamical systems [46],
catalytic networks [8,36,56], and other computational devices [1,53]. To facilitate testing and
realisation of DSD systems, domain-level design tools [23, 45] as well as domain-to-sequence
translation [54] software have been introduced.

While DNA nanotechnology is concerned with using DNA as a non-biological material,
a key goal of DNA nanotechnology is the imitation and augmentation of cellular systems.
It is therefore worth considering how these natural systems typically perform computation
and information processing. One ubiquitous biological paradigm for signal propagation
and processing is the catalytic activation network, as exemplified by kinases [20, 28, 29].
Kinases are catalysts that modify substrates by phosphorylation and consume ATP in
the process. These substrates can be, for example, transcription factors, but can also be
kinases themselves that are either activated or deactivated by phosphorylation. The opposite
function, dephosphorylation, is performed by phosphatases [4]. The emergent catalytic
network then performs information propagation or computation by converting species, kinases
and phosphatases, between their active and passive states. Kinase cascades are featured in
many key biological functions, such as cellular growth, adhesion, and differentiation [28,51]
and long-term potentiation [47].

Most catalytic networks - including many with a simple topology and a constant steady
state, such as a a single kinase and phosphatase species competing to activate/deactivate
a substrate - operate out of equilibrium and consume fuel even in their steady state. This
fuel-consuming, non-equilibrium behaviour is vital in allowing them to perform functions such
as signal splitting, amplification, time integration and insulation [5, 12,18,30,31]. Moreover,
since the key molecular species are recovered rather than consumed by reactions, catalytic
networks can operate continuously, responding to stimuli as they change over time - unlike
many architectures for DSD-based computation and information processing that operate by
allowing the key components to be consumed [1, 9, 38]. This ability to operate continuously
is invaluable in autonomous environments such as living cells.

In this work, we propose a minimal mechanism for implementing reaction networks of
molecules that exist in catalytically active and inactive states, a simple abstraction of natural
kinase networks. In these catalytic activation networks, we implement arbitrary activation
reactions of the form Aon + Boff +

∑
i Fi → Aon + Bon +

∑
i Wi, i ∈ {1, 2, 3...}. Here, the

catalyst A in its active state Aon drives B between its inactive and active states (Boff , Bon) by
the conversion of one or more fuel molecules {Fi} into waste {Wi}. Equivalent deactivation
reactions in which an active catalyst deactivates a substrate are also considered.

The rest of this paper is organised as follows. In Section 2, we propose and motivate
the concept of a direct bimolecular catalytic reaction and consider the necessary conditions
for DSD species that are able to perform such reactions. Section 3 introduces a novel DSD
framework to implement these reactions, and its computational properties are analysed
in Section 4. Based on these findings, we propose a systematic method of introducing
mismatched base pairs within species in our framework to improve its function in Section 5.
We combine our findings and propositions into a software to automate the sequence-level
design of any CRN that is realisable within our framework, and detail this software in Section
6. In Section 7, we discuss our framework, findings, and future work. We conclude the paper
in Section 8.

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:3

a

a*

a

a*

(a) Bind.

a

a*

a

a*

(b) Unbind.

b

b

b*a*

a

a

a*

b

b

b*

(c) Displace (3-way).

b*a*

ba

ee*

b* d*

b d

c*c

a*

a

b
e

b*
e*

d*

d

c*
b*

c
b

(d) Branch migrate (4-way).

Figure 1 Basic reaction steps in the DSD formalism, as represented by Visual DSD [23]. Each
domain is represented by a letter and a colour. “*” denotes the Watson-Crick complement. The
barbed end of a strand indicates the 3’ end.

2 Direct Action of Molecular Catalysts

Catalytic processes are those in which a species is both a reactant and a product. Such
processes cannot result from an individual elementary reaction of binding, unbinding or
unimolecular state change; catalysis is therefore only defined at the level of the overall
stoichiometry of a series of elementary reactions. As a corollary, the same overall stoichiometry
can result from many different combinations of elementary steps.

In kinase cascades, functional changes in substrates are a result of direct binding of the
catalyst to the substrate. Moreover, the essential products of the reaction (the activated
substrate and recovered catalyst) are the same molecules that initially bound to each other
- albeit with some modification of certain residues, or turnover of small molecules such as
ATP or ADP to which they are bound. Motivated by these facts, we propose the following
definition for a direct bimolecular catalytic activation reaction.

I Definition 1 (Direct bimolecular catalytic activation). Consider the (non-elementary) process

Aon + Boff +
∑

i

Fi → Aon + Bon +
∑

i

Wi, i ∈ {1, 2, 3...},

where A in active state Aon catalyses the conversion of B from inactive Boff to active Bon,
using one or more ancillary fuels {Fi} and producing waste {Wi}. The overall reaction is a
direct bimolecular catalytic activation reaction if and only if:
1. The reaction is initialised with the interaction of A in state Aon and B in state Boff .
2. A and B molecules have molecular cores that are retained in the products, rather than the

input molecules being consumed and distinct outputs released.
Deactivation reactions have an equivalent form, but convert B from Bon to Boff . If the same
overall reaction stoichiometry is implemented by any set of reactions and species that violate
conditions 1 and 2, we label the process a pseudocatalytic bimolecular activation reaction.

Direct bimolecular catalytic (de)activation reactions have some important functional
properties. The first is that, if the first step of the reaction requires the presence of A and B,
nothing can happen unless both molecules are present. In pseudocatalytic implementations,
as we discuss below, it is possible to produce activated Bon or sequester A even if no B
molecules in state Boff are present, violating the logic of activation-based networks. The
second is that the persistence of a molecular core of both the substrate and the catalyst allows
either or both to be localised on a surface or scaffold, as is observed for some kinase cascades
in living cells [14, 41,50] and is often proposed for DNA-based systems [6, 7, 37,39,48].

DNA 26

7:4 Active Circuits of Duplex Catalysts

c b

c* b*

e

b*

Gate:Output

c b e

Output

c b

c* b*

d

b*

Gate:Fuel

c* b*

c b

b*

a

Gate:Input

c b d

Fuel

a b c

Input

Figure 2 Catalytic reaction using a seesaw gate [19, 36]. Reactants are shown in bold boxes; the
input acts pseudocatalytically to “convert” the fuel into an output, with ancillary gate complexes
consumed and produced. Each compound reaction is illustrated by a small square, and consists of
sequential bind, displace, and unbind reactions. All reactions are reversible; open arrows indicate
reactions proceeding forwards, and closed arrows by reactions proceeding backwards.

A number of DNA computing frameworks have been developed to implement reactions
of the stoichiometry of Definition 1. The simplest, illustrated in Figure 2 (a), involves a
two-step seesaw gate [19,36]. An input molecule (representing A in state Aon in Definition
1) binds to a gate-output complex (F), releasing the output (B in state Bon). The input
is then displaced by a molecule conventionally described as the fuel, but fulfilling the role
of B in state Boff from Definition 1 in the context of catalysis, recovering A in state Aon

and generating a waste duplex (W). Although the A molecule recovered at the end of the
process is the same one that initiated the process, the strands representing Boff and Bon

molecules are distinct and the reaction is not initiated by the binding of A and B; it is
therefore pseudocatalytic.

This pseudocatalysis can have important consequences. If a small quantity of input the
strand representing Aon is added to a solution containing the gate-output complex F but
no strand representing Boff , a large fraction of the Aon strand will be sequestered and a
corresponding amount of the Bon strand produced. This sequestration of A and production
of activated B from nothing violates the logic of ideal catalytic activation networks.

More complex strategies to implement reactions of the stoichiometry of Definition 1 using
DSD exist [8, 34]. These approaches rely on the catalyst and substrate (Aon and Boff from
Definition 1) interacting with a gate, rather than binding to each other, and the recovered
catalyst and product are separate strands - the reactions are therefore pseudocatalytic. In
certain limits, these strategies can approximate a mass-action dependence of reaction rates
on the concentrations of Aon and Boff [8, 33], providing a better approximation to the logic
of ideal catalytic activation circuits than the simple seesaw motif. The price, however, is
the need to construct large multi-stranded gate complexes to facilitate the reaction; the
complexity of these motifs is a major barrier to implementing such systems in autonomous
setting such as living cells. Moreover, localising catalysts and substrates to a scaffold or
surface remains challenging when the molecules themselves are not recovered.

We now consider how to design minimal DSD-based units that implement direct bimolecu-
lar catalytic (de)activation in catalytic activation networks. If the core of the substrate
species B must be retained in both Boff and Bon, Boff and Bon cannot simply be two strands
with a slightly different sequence. Instead, Boff and Bon must either be distinct complexes
of strands, in which at least one strand is common, have different secondary structure within
a single strand, or both. To avoid complexities in balancing the thermodynamics of hairpin
loop formation with bimolecular association, and suppressing the kinetics of unimolecular
rearrangement, we do not pursue the possibility of engineering metastable secondary structure

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:5

c*b*

cb
g*

d*

d

f*

ea State strand

Identity strand

Upstream
interface

Downstream
interface

Inner toeholds

Outer toeholds

(a) Major species.

e* d* c*

e d c

h*

i*

b

j

(b) Ancillary species.

Figure 3 (a) Structure of major species in the ACDC system (substrates or catalysts), illustrating
upstream and downstream interfaces, and inner and outer toeholds. The long central domain forms a
stable binding duplex. (b) Structure of ancillary species (fuel, waste or substrate-catalyst complex).

within a strand. At least one of the states Boff and Bon of B must therefore consist of at least
two strands. Moreover, since each activation state of each species must be a viable substrate
in an arbitrary catalytic (de)activation network, the simplest approach that allows for a
generic catalytic mechanism is to implement all substrate/catalyst species as two-stranded
complexes.

3 ACDC: A Duplex-Based Catalytic DSD Framework

We introduce the Active Circuits of Duplex Catalysts (ACDC) scheme to implement catalytic
activation networks through direct bimolecular catalytic (de)activation. Each reaction has
three inputs: a substrate, a catalyst, and a single fuel complex. The outputs are a modified
substrate, the recovered catalyst and a waste complex. The domain-level structures of these
species are shown in Figure 3.

Substrates and catalysts – hereafter referred to as major species – are structurally identical.
Each consists of two strands, each of which has one central long domain (∼ 20 nucleotides
(nt)) and two toeholds (∼ 5 nt) on each side of the long domain. In major species, these
strands are called the identity strand and the state strand. The identity strand is the
preserved molecular core; the state strand specifies the activation state of a major species at
a particular time (specifically, through the domain at its 5′ end - labelled “a” in Fig. 3).

The two strands in a major species are bound by three central domains; the outer toeholds
at either end of the strands are available (unbound). Major species thus contain two interfaces
at either end of the molecule, both displaying two available toeholds, one on each constituent
strand. The inner toeholds, which are bound in major species, are described as hidden. We
call the interface at the 5’ end of the state strand and the 3’ end of the identity strand the
downstream interface and the interface with the 3’ end of the state strand and 5’ end of the
identity strand the upstream interface.

All other two-stranded species in ACDC, including fuel and waste species, are described
as ancillary species. They have a distinct structure from major species (Figure 3). Ancillary
species also consist of two strands of five domains, but are bound by the central long domain
and two shorter flanking toeholds (one outer toehold and one inner toehold) on one side.
They therefore possess just one interface of available toeholds, but this interface presents
two contiguous available toeholds on each strand.

DNA 26

7:6 Active Circuits of Duplex Catalysts

The catalytic reaction of a single ACDC unit proceeds as shown in Figure 4. The
downstream interface of the catalyst A in state Aon and upstream interface of the substrate
B in state Boff bind together through recognition of all four available toeholds in the relevant
interfaces. The resultant complex undergoes a 4-way branch migration, with the base pairs
between the state and identity strand of the substrate and catalyst being exchanged for base
pairs between the two state strands and the two identity strands. After the exchange of a
hidden toehold and the central binding domain, the 4-stranded complex is held together
by only two inner toeholds on either side of a 4-way junction. Dissociation by spontaneous
detachment of these toeholds creates two ancillary product species, a waste WAB→Bon and
an intermediate complex AB. The sequence of these three reactions is called the 2r-4
reaction [21].

The fuel FAB→Bon is identical to the waste, except for a single toehold. This toehold
corresponds to the outer toehold of the state strand of B from the downstream interface.
FAB→Bon and AB can undergo another 2r-4 reaction, producing B in state Bon (equivalent
to Boff , but with a single domain changed in the downstream interface) and recovering the
catalyst. With the downstream interface of substrate B changed from that of Boff into that
of Bon, the substrate has been activated and could act as a catalyst to another reaction,
provided that an appropriate downstream substrate and fuel were present. An equivalent
catalytic process could trigger another reaction converting B from Bon to Boff , deactivating
B, analogous to dephosphorylation by a phosphatase. Note that the domain structures of
ancillary species participating in an ACDC catalytic unit are unambiguously specified by the
major species involved, since the individual strands are the same.

The ACDC mechanism borrows significantly from Qian and Winfree’s design for surface-
bound reaction networks [37]. In particular, that proposed framework also includes double-
stranded species with identity and state strands, and exploits 4-way strand exchange reactions.
However, the mechanistic details are more complex; species do not directly bind to each
other, and interactions are mediated by multi-stranded gate complexes.

The basic ACDC unit in Figure 4 satisfies the conditions of Definition 1 for direct
bimolecular catalytic activation, since the reaction is initiated by the binding of A in state
Aon and B in state Boff , and the identity strands in the major species are retained throughout.
In this case, a single fuel molecule is consumed and a single waste produced by a single
catalytic conversion. ACDC relies on the experimentally-verified mechanism of toehold-
mediated 4-way branch migration [10,22,25,49]. The number of base pairs and complexes
is unchanged by each 2r-4 reaction, and therefore a bias for clockwise activation cycles
(as opposed to anticlockwise deactivation) would require a large excess of fuel complexes
FAB→Bon relative to waste WAB→Bon . In addition, for a single catalytic cycle to operate as
intended, the following assumptions must hold:

I Assumption 2 (Stability of complexes). It is assumed that strands bound together by long
domains are stable and will not spontaneously dissociate. It is also assumed that if two
strands are bound by a pair of complementary domains, any adjacent pairs of complementary
domains that could bind to form a contiguous duplex are not available.

I Assumption 3 (Detachment of products). It is assumed that 4-stranded complexes bound
together by two pairs of toehold domains either side of a junction can dissociate into duplexes.

I Assumption 4 (Need for two complementary toeholds to trigger branch migration). It is
assumed that if a 4-stranded complex is formed by the binding of a single pair of toehold
domains, it will dissociate into product duplexes, rather than undergo branch migration.

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:7

h c d

h* c* d*

j f

i* e*

Boff

d* c* b*

d c b

f* g*

e a

Aon

f* d* c*

f d c

b*

g*

h

k

FAB→Bon

h c d

h* c* d*

k f

i* e*

Bon
d*

c*
b*

d
c

b

g*a

f

f*

d*
c*

h*

d
c

h

i* k

e*

e

b*b

g*a

c d f

c* d* f*

h* h

i* k
e* d* c*

e d c

f* d* c*

f d c

b*

g*

h

j

WAB→Bon

e* d* c*

e d c

h*

i*

b

a

AB

b*b

g*a

c d f

c* d* f*

h* h

i* j

e* d* c*

e d cd*
c*

b*

d
c

b

g*a

f

f*

d*
c*

h*

d
c

h

i* j

e*

e

b
u

m
m

u
b

b
u

m
m

u
b

Figure 4 A basic ACDC reaction unit Aon + Boff + FAB→Bon → Aon + Bon + WAB→Bon , as
represented by Visual DSD [23]. Inputs to the reaction are shown in bold, and each small box
corresponding to a reaction step is labelled with b/u (bind/unbind) or m (migrate). Imbalances in
the concentration of fuel and waste drive the reaction clockwise (the direction indicated by open
arrows).

Assumption 2 ensures that the system keeps its duplex-based structure, and that toeholds
are well hidden in complexes when required. Assumption 3 is necessary to avoid all species
being sequestered into 4-stranded complexes. Note that the assumption is not that detachment
must happen extremely quickly, since such 4-stranded complexes need to be metastable
enough to initiate branch migration with reasonable frequency. It is equivalent to the need
for single toeholds to detach in 3-way toehold exchange reactions [36]. In practice, toehold
length and conditions such as temperature could be tuned to optimize the relative propensity
for branch migration and detachment. Given a reasonable balance between branch migration
and detachment, Assumption 4 – which enables the switching of B from Boff and Bon to
have a downstream effect – is also likely to be satisfied.

4 Domain-based constraints in ACDC Networks

Larger catalytic activation networks can be constructed from the basic ACDC units of
Figure 4, since the substrate B in its activated state Bon can itself act as a catalyst. To
describe these networks, let us now formalise the notation so that roman letters A, B, C etc.
represent the nodes of the catalytic network, and italic symbols Aon, Boff , FAB→Bon , AB etc.

DNA 26

7:8 Active Circuits of Duplex Catalysts

represent the actual double-stranded molecular species in solution, carrying both identity
and state information where appropriate. In this formalism, let A → B be a shorthand
for the reaction Aon + Boff + FAB→Bon → Aon + Bon + WAB→Bon and C a B a shorthand
for the reaction Con + Bon + FCB→Boff → Con + Boff + WCB→Boff . Then, any potential
catalytic activation network can be represented as a weighted directed graph, where nodes
represent catalyst/substrate in the network and edges represent activation (edge weight 1) or
deactivation (edge weight -1). Is it possible to realise any such graph using ACDC?

I Assumption 5 (Toehold orthogonality). We assume that there are sufficiently many toehold
domain sequences that cross-talk between non-complementary domains is negligible.

Since ACDC components share a long central domain, specificity is entirely driven through
toehold recognition. As noted by Johnson, [21], there is a finite number of orthogonal short
toehold domains that limits the size of the connected network that can be constructed.
We assume that the network of interest does not violate this limit. We instead ask the
realisability question at the level of domains.

I Definition 6 (Realisability). A catalytic activation network is realisable using the ACDC
framework if a domain structure for the major species, which implies the domain structure
of the ancillary species, can be specified such that:
1. All network edges A→ B (A a B) are realised through basic ACDC units as illustrated in

Figure 4. These units implement the overall reaction

Aon + Boff(Bon) + FAB→Bon(Boff) → Aon + Bon(Boff) + WAB→Bon(Boff),

where the bracketed terms apply to deactivation reactions.
2. Other than the pairs of species that undergo reactions implied by condition 1, no pairs of

species exist for which: (a) it is possible to exchange a pair of strands between the species
and retain three contiguous bound domains in both the resultant complexes; and (b) the
two species are able to bind via two available pairs of complementary toeholds. If (a) and
(b) are both satisfied, the pair of species could undergo 2r-4 reactions as illustrated in
Figure 4.

3. No two strands can form an uninterrupted duplex of four bound domains or more.
4. No two species (including all wastes, fuels and catalyst-substrate complexes) possess two

available toehold pairs that could form a contiguous complementary duplex as shown in
Figure 5(b).

Condition 2 rules out reactions that respect the architecture of ACDC, but which involve
reactants that are not intended to interact. Condition 3 rules out strand exchange reactions
that allow an increase in the number of bound domains, which would sequester additional
toeholds and violate the ACDC architecture (it is assumed that strand exchange reactions
that would reduce the number of bound domains can be neglected). Condition 4 rules out the
formation of 4-stranded complexes that can only dissociate by disrupting an uninterrupted
two-toehold duplex. Contiguous duplexes of this kind are potentially stable, even if they
cannot undergo strand exchange, and would potentially sequester components.

I Lemma 7 (Realisability with activation implies realisability with deactivation). If a catalytic
activation network with purely activation reactions is realisable using the basic ACDC form-
alism, it is also realisable using the basic ACDC formalism if any subset of those reactions
are converted to deactivation.

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:9

q* c* m*

q c m

p* o*

r n

Doff

m c i

m* c* i*

l k

n* j*

Coff

i* c* b*

i c b

h* a*

j g

Boff
d*c*b*

dcb

f*g*

ea

Aon

(a) Major species.

i
k

i*
k*

c* m* o*

c m o

p*

q*
a b c

a* b* c*

d
e

i
k

i*
k*

c* m* o*

c m o

s*

q*
a b c

a* b* c*

d

e

c*
m*

n*c
m

n
r

q

i

j
i*

j*

g b c

g* b* c* d*

f*

o m c

o* m* c*

i

k

q*

p*

WCD→Don

o m c

o* m* c*

i

k

q*

s*

FCD→Don

a b c

a* b* c*

d

e

i*

k*

FAB→Bon

n m c

n* m* c*

q

r

i*

j*

CD

g b c

g* b* c*

i

j

d*

f*

AB

b b b

(b) Ancillary species and unwanted reactions.

Figure 5 Major species and a subset of ancillary species from an implementation of A → B →
C → D using the ACDC formalism. Three unwanted reactions, as identified in Lemma 10, occur
between the shown ancillary species.

Proof. A deactivation reaction is simply an activation reaction with the role of the fuel and
waste reversed. Therefore a domain structure specification that realises a given network with
activation reactions also realises all networks of the same structure. J

4.1 Realisability of Motifs in the ACDC formalism
Since there are infinitely many networks, we restrict our analysis to a set of motifs (generalised
versions of the minimal examples depicted in Figure 6), establishing whether these motifs
can be realised in isolation. The split, integrate, cascade, self-activation, bidirectional edge,
feedback loop (FBL), and feedforward loop (FFL) are chosen because of their importance in
biology and synthetic biology [2, 15,16]. The proofs of theorems not explicitly given in this
section are provided in Appendix B.

4.1.1 Motifs Without Loops
Theorems 8 and 9 establish that arbitrarily complex split and integrate motifs, constructed
using ACDC in accordance with Definition 1, are realisable as per Definition 6.

I Theorem 8 (Split motifs are realisable). Consider the N reactions

A→ B1 A→ B2 . . . A→ BN ,

in which all Bi are distinct from A. This network is realisable for any N ≥ 1.

DNA 26

7:10 Active Circuits of Duplex Catalysts

(a) Split. (b) Integrate. (c) Cascade

(d) Auto-activation loop. (e) Bidirectional edge. (f) Feedback loop. (g) Feedforward loop.

Figure 6 Minimal example motifs of interest in a catalytic activation network.

I Theorem 9 (Integrate motifs are realisable). Consider the N reactions

A1 → B A2 → B . . . AN → B,

in which all Ai are distinct from B. This network is realisable for any N ≥ 1.

Although all networks consist of simply combining split and integrate motifs for each
node, proving that all split and integrate motifs are realisable in isolation does not prove that
any network assembled from them is realisable. We therefore explore other simple motifs.
For example, consider the cascade motif (a 3-component example is illustrated in Figure 6).

I Lemma 10 (The ancillary species of a catalyst’s upstream reactions and substrate’s down-
stream reactions cause leak reactions). Consider a reaction B→ C, and further assume that
A → B and C → D for a species A and a species D. Then AB and CD, and FAB→Bon

and FCD→Don/WCD→Don possess two available toehold pairs that could form a contiguous
complementary duplex. No other violations of realisability occur.

This failure is illustrated in Figure 5. The essence of the problem is that both the inner and
outer toehold domains from the downstream end of Bon are available in AB and FAB→Bon ,
and the inner and outer toehold domains from the upstream end of C are available in
CD, FCD→Don and WCD→Don . Since the downstream end of Bon is complementary to the
upstream end of Coff , the result is that the species can bind to each other strongly.

I Theorem 11 (Cascades with at most 3 components are realisable; longer cascades are not
realisable). Consider the set of N reactions A1 → A2, A2 → A3 ... AN−1 → AN , in which all
Ai are distinct. This network is realisable if and only if N ≤ 3.

Proof. A direct consequence of Lemma 10 and Definition 6. J

I Theorem 12 (Long cascades are non-realisable due to a particular type of leak reaction only).
Consider the set of reactions A1 → A2, A2 → A3 ... AN−1 → AN for N > 3, in which all Ai

are distinct. This network would be realisable if reactions between ancillary species AiAi+1
and Ai+2Ai+3, and FAiAi+1→Aon

i+1
and FAi+2Ai+3→Aon

i+3
/WAi+2Ai+3→Aon

i+3
, were absent.

The result of Theorem 11 is discouraging, since cascades are a major feature of kinase
networks [20,29]. Nonetheless, we will continue the analysis of remaining motifs, and present
a potential solution in Section 5.

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:11

4.1.2 Motifs With Loops
A network possesses a loop if it is possible to traverse a path that begins and ends at the
same node without using the same edge twice. For the purposes of this classification, a
given (directed) edge can be traversed in either direction. Loops are common components of
natural networks, providing the possibility of oscillation, bistability and filtering [2, 11].

I Theorem 13 (Loops of odd length are not realisable). Consider a system of reactions
A1 ↔ A2 ↔ A3 . . . AN−1 ↔ A1, where ↔ indicates a catalytic activation in either direction.
This network, a directionless loop, is not realizable if N is odd, unless the long central domain
is self-complementary.

Proof. ACDC circuits require that the long central domain alternates between a sequence
and its complement in the identity strands of catalysts and their substrates. If N is odd,
then the sequence must be self-complementary for this alternation to happen. J

Introducing a self-complementary central domain is a strategy that risks a competition
between duplexes and single-stranded hairpins. We do not consider it further.

I Theorem 14 (Self interactions and bidirectional edges are not realisable). Consider a system
of reactions A1 → A2 → A3 . . . AN−1 → A1. This network is not realisable if N ≤ 2.

The ACDC system is not inherently suited to auto-activation or bidirectional interactions.
These motifs require complementarity between both the downstream and upstream toeholds
of either a single species, or two species. Strands in the system therefore violate condition 3
of Definition 6 and will tend to hybridise to form fully complementary duplexes.

An isolated feedback loop is a network of size N with a single directed path around the
network. A simple example of length 3 is shown in Fig. 6(f).

I Theorem 15 (Feedback loops are not realisable). Consider the feedback loop A1 → A2 →
A3 . . . AN−1 → A1. Such a system is not realisable for any N .

Proof. A direct consequence of Theorems 11, 13, and 14. J

As a consequence of Theorems 13 and 14, any realisable feedback loop must have N ≥ 4.
However, a feedback loop of this length faces the same issues as a cascade: formation of stable,
undesired products between ancillary species. As with cascades, the problem is essentially
local, due to interactions between ancillary species in reaction n and reaction n + 2.

I Theorem 16 (Long feedback loops with an even number of units are non-realisable due to a
particular type of leak reaction only). Consider the feedback loop

A1 → A2 A2 → A3 . . . AN−1 → AN AN → A1

For N even, N ≥ 4, this network would be realisable if reactions between ancillary species
AiAi+1 and Ai+2Ai+3, and FAiAi+1→Aon

i+1
and FAi+2Ai+3→Aon

i+3
/WAi+2Ai+3→Aon

i+3
, were absent.

Here, the index j in Aj should be interpreted modularly: Aj = Aj−N for j > N .

An isolated feedforward loop is a network of size N with two directed paths from one
node i to another node j. Every other node appears exactly once in one of these paths. An
example with path lengths of 1 and 2 is shown in Figure 6.

DNA 26

7:12 Active Circuits of Duplex Catalysts

I Theorem 17 (The relative lengths of paths are constrained in feedforward loops). Consider
the generalised feedforward loop

A→ B1 B1 → B2 . . . BN−1 → BN BN → D
A→ C1 C1 → C2 . . . CM−1 → CM CM → D

For such a network to be realisable, it is necessary that N ≥ 1, M ≥ 1, and N −M is even.

Proof. The claim about N −M having to be even follows from Theorem 13.
Assume for contradiction that a FFL with N = 0 and M ≥ 2 and even is realisable. Since

A activates C1, and both A and CM activate D, it must be that CM can also perform a branch
migration with C1, which is an unwanted reaction violating condition 2 of Definition 6. J

Since each path in a feedforward loop is a cascade, Theorems 11 and 17 imply that only
feedforward loops with a single intermediate in each branch are realisable.

I Theorem 18 (Realisability of feedforward loops). Consider the generalised feedforward loop

A→ B1 B1 → B2 . . . BN−1 → BN BN → D
A→ C1 C1 → C2 . . . CM−1 → CM CM → D

Such a system is realisable if and only if N = 1 and M = 1.

Proof. As a consequence of Theorems 8, 9, 11, and 17, all other FFLs are not realisable.
The realisability of the FFL with N=1 and M=1 can be verified by inspection. J

Typically, feedforward loops use branches of different lengths to achieve a complex
response to a signal over time [2,11]. Such networks are not realisable. Indeed, our analysis of
various motifs has revealed that the majority are not realisable. Broadly speaking, there are a
number of small motifs (e.g. auto-activation, bi-directional reactions, feedforward loops with
no intermediates in one branch) that cannot be achieved because the major species themselves
interact directly. In addition, loops of odd total length are not realisable due to the nature
of complementary base pairs. However, most motifs are ruled out because of a single type of
interaction, between the ancillary species in one reaction and the ancillary species in another
reaction that occurs two steps downstream. In Section 5, we propose a strategy to overcome
this last problem, massively increasing the scope of the ACDC framework.

5 Overcoming the Cascade Leak Reaction and Introducing Hidden
Thermodynamic Drive

The most severe limitation of the ACDC system detailed in Section 3 is expressed by Theorem
11. Long cascades, and loops incorporating cascades, are non-realisable due to interactions
between ancillary species of a given reaction, and ancillary species of a reaction separated by
two catalytic steps (Theorem 12).

I Assumption 19 (Mismatches destabilise complexes held together by two contiguous toehold
domains). We assume that a single mismatched C-C or G-G base pair, positioned adjacent to
the interface of two toehold domains, is sufficiently destabilizing that an unwanted complex
formed only by the binding of these toehold domains no longer precludes realisability.

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:13

The basic design of the ACDC motif assumes that toehold binding is relatively weak; two
toehold domains on either side of a junction must be able to dissociate by Assumption 2.
Individual C-C or G-G mismatches are known to be highly destabilising [40], and should
similarly allow for two contiguous domains to detach. Given Assumption 19, the challenge
is then to systematically introduce mismatches so that all interactions between ancillary
species identified in Theorem 12 are compromised by a mismatch, without compromising
intended circuit activity. Our full scheme is visualised in Figure 7.

I Definition 20 (Mismatches proposed to destabilize unintended complexes). We propose the
following mismatches.
1. We propose that the upstream interface of every major species is made distinct for active

and inactive states. Specifically, we introduce a G base at the inner edge of the outer
toehold domain of the state strand of the inactive species, and a C base in the same
position for the active species. Catalysts that (de)activate that species possess a C(G) in
the complementary position of their downstream interface.

2. We introduce a C-C mismatch at the outer edge of the inner toehold domain at the
downstream interface of each major species. This mismatch is eliminated in the formation
of waste complexes, and retained in the substrate-catalyst complexes.

I Assumption 21 (Mismatches cannot cause leak reactions). We assume that the sequence
constraints introduced by mismatch inclusion do not violate Assumption 5, and that the
destabilisation of duplexes does not violate Assumption 2.

In practice, mismatches will likely result in some increase in the rate of interactions between
otherwise hidden toeholds; we assume that these rates remain negligible.

I Theorem 22 (Mismatches successfully destabilize unintended complexes). The scheme
proposed in Definition 20 satisfies the following:
1. All motifs that are realisable in the mismatch-free ACDC design remain realisable in the

mismatch-based scheme.
2. Cascades of arbitrary length N with at most the first and last reactions deactivating are

realisable;
3. Feedback loops with N even and N ≥ 6 in which all reactions are activating are realisable;
4. Feedforward loops with N ≥ 1, M ≥ 1, N −M even, in which at most the first and last

reactions are deactivating in each branch, are realisable.

The proof of Theorem 22 is given in Appendix B.
Note that the introduction of mismatches proposed in Definition 20 invalidates Lemma

7, since the downstream domains of activating and deactivating catalysts are now distinct.
Indeed, the described strategy only eliminates unwanted sequestration in cascades in which
the intermediate steps are activating. Nonetheless, it makes complex networks in which -
for example - deactivating catalysts are always active realisable. Networks of this kind are
common in biology [20,29].

The first type of mismatch in Definition 20 ensures that there is always a C-C mismatch
between the upstream toeholds of the state strand of Aon

i+2 and the downstream toeholds of
the state strand of Aon

i+1 in the cascade Ai → / a Ai+1 → Ai+2 → / a Ai+3, weakening the
unwanted binding between the fuel and waste species identified in Theorem 12. Here → / a
indicates activation or deactivation. The second type of mismatch in Definition 20 ensures
that the upstream toeholds of the identity strand of Ai+2 are no longer fully complementary
to the downstream toeholds of Ai+1 in the cascade Ai → / a Ai+1 → / a Ai+2 → / a Ai+3,
weakening the unwanted binding between ancillary species AiAi+1 and Ai+2Ai+3.

DNA 26

7:14 Active Circuits of Duplex Catalysts

Aone
1 * d1* c* h1*

i*

jh1cd2
f

NNNNCC NNNNNNNNNNNNNNNNNNNNNNNNNG
NNNNNNNNNNNNNNNNNNNNNNNNNC

NN
NN
NC

NN
NN
N

NNNNN

Bonk
b1 c d1

e 2

f*
d1*c*b2*

g*

NNNNNC NNNNNNNNNNNNNNNNNNNNNNNNNG
NNNNNNNNNNNNNNNNNNNNNNNNNC

NN
NN
NC

CN
NN
N

NNNNN

Boffa
b1 c d1

e 1

f*
d1*c*b2*

g*

NNNNNC NNNNNNNNNNNNNNNNNNNNNNNNNG
NNNNNNNNNNNNNNNNNNNNNNNNNC

NN
NN
NC

GN
NN
N

NNNNN

WAB→Bon
NNNNNCNNNN

NN
NN
NG
NN
NN
NNNNNNNNNNNNNNNNNNNNNGGNNNN
NNNNNNNNNNNNNNNNNNNNNCCNNNN

a

b
1

h 1
*

i*

d1

d1*

e1c

c* e1*

FAB→BonNNNNNCNNNN

NN
NN
NG
NN
NN
NNNNNNNNNNNNNNNNNNNNNGCNNNN
NNNNNNNNNNNNNNNNNNNNNCCNNNN

k

b
1

h 1
*

i*

d1

d1*

e2c

c* e1*

ABNNNNNCNNNN

NN
NN
NC
NN
NN
NNNNNNNNNNNNNNNNNNNNNCNNNNN
NNNNNNNNNNNNNNNNNNNNNCNNNNN

j

h
1

b 2
*

g*

d2

d1*

fc

c* f*

(a) A → B.

Boffa
b1 c d1

e 1

f*
d1*c*b2*

g*

NNNNNC NNNNNNNNNNNNNNNNNNNNNNNNNG
NNNNNNNNNNNNNNNNNNNNNNNNNC

NN
NN
NC

GN
NN
N

NNNNN

C on
e
2 * d1* c* l1*

m*

nl1cd2
f

NNNNGC NNNNNNNNNNNNNNNNNNNNNNNNNG
NNNNNNNNNNNNNNNNNNNNNNNNNC

NN
NN
NC

GN
NN
N

NNNNN

WCB→Boff
NNNNNCNNNN

NN
NN
NG
NN
NN
NNNNNNNNNNNNNNNNNNNNNGGNNNN
NNNNNNNNNNNNNNNNNNNNNCCNNNN

k

b
1

l 1
*

m*

d1

d1*

e1c

c* e1*

NNNNNCNNNN

NN
NN
NG
NN
NN
NNNNNNNNNNNNNNNNNNNNNGGNNNN
NNNNNNNNNNNNNNNNNNNNNCGNNNN

a

b
1

l 1
*

m*

d1

d1*

e1c

c* e2*

CBNNNNNCNNNN

NN
NN
NC
NN
NN
NNNNNNNNNNNNNNNNNNNNNCNNNNN
NNNNNNNNNNNNNNNNNNNNNCNNNNN

n

l
1

b 2
*

g*

d2

d1*

fc

c* f*

Bonk
b1 c d1

e 2

f*
d1*c*b2*

g*

NNNNNC NNNNNNNNNNNNNNNNNNNNNNNNNG
NNNNNNNNNNNNNNNNNNNNNNNNNC

NN
NN
NC

CN
NN
N

NNNNN

FCB→Boff

(b) C a B.

Figure 7 Illustration of the proposed mismatch schemes for reactions A → B and C a B, assuming
toeholds of length 5 nucleotides and central domains of length 17 nucleotides. Specific mismatched
bases are highlighted in red, and the same bases are highlighted in green when not part of a mismatch.
The domains are separated with ticks on each species, and upstream interfaces of the major species
are shown on the right of each diagram.

Having proposed these mismatches, it is important to determine that they would not
compromise the intended reactions. The first type of mismatch in Definition 20 is not
present in any complex that must form during the operation of the network; only in the
initially-prepared fuel and if a (de)activating catalyst binds to an (in)active substrate. It
therefore presents no issues for intended reactions.

The second type of mismatch in Definition 20 is more subtle. When a catalyst Aon

interacts with its substrate Boff , a mismatch at the very end of the catalyst duplex is
converted into a mismatch within the stem of of the catalyst-substrate complex AB. Since
mismatches are known to be more destabilizing in duplex interiors [32,40], this conversion
represents a local barrier to branch migration. The thermodynamic favourability of the
full 2r-4 reaction Aon + Boff → AB + WAB→Bon (or the equivalent step in a deactivation
reaction) is marginal, as the mismatch at the downstream end of Boff counters this barrier.
We assume that the local barriers introduced would not prohibit the intended reactions -
indeed, conventional 3-way strand displacement is able to proceed through unmitigated C-C
mismatch formation, albeit with a significant effect on kinetics [26]. In this case, any penalty
is likely to be far weaker.

The second step of the catalytic turnover, AB +FAB→Bon → Aon +Bon (or the equivalent
in a deactivation) is thermodynamically favourable (two internal mismatches are converted
into exterior mismatches) and without local barriers, although one of the toeholds is effectively
shortened to 4 base pairs. The overall catalytic (de)activation cycle effectively eliminates a
single C-C (G-G) mismatch initially present in the fuel. The reaction as a whole is therefore
driven forwards by the free energy of base-pairing via “hidden thermodynamic driving” [19];
products are more stable than reactants without consumption of initially available toeholds.
In this sense, the mismatches proposed in Definition 20 will improve the efficacy of the ACDC
motif, as the concentration excess of fuel relative to waste required to drive the reaction in
the desired direction would be reduced.

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:15

6 A Compiler for ACDC Networks

To construct an ACDC network that implements a given graph, three things need to be done:
(1) verification that the network is realisable; (2) enumerating all domains on all species
given the graph topology; and (3) compile sequences for each domain and thus for each
strand present in the system. We have created an ACDC compiler with this functionality [24].
While compilers for DSD systems that could be potentially be extended to accommodate
our framework exist [3, 46], we decided to make our own since our framework has unique
requirements about verifying the feasibility of a given CRN and introducing mismatches
within domains.

The first part is done, at least at the level of each cascade and loop present, by analysing
the properties of a given graph. For every pair of nodes i, j, all directed simple paths are
computed. We search for paths of length N ≥ 3 that containing edge weights of -1 anywhere
other than at the first or last edge; these cascades are not rendered realisable by our mismatch
scheme, per Theorem 22. Moreover, if there exists more than 1 path between the nodes,
then either a FFL (at least two paths from i to j or from j to i) or a FBL (at least one path
from i to j and from j to i) exists in the graph. Furthermore, if there exists more than 1
path between the nodes after transforming the graph to an undirected form, there exists
a “directionless loop” (Theorem 13) in the graph. The realisability of the loop(s) can be
verified from the lengths of the paths according to Theorems 13 and 22.

If a given graph is found to be realisable, then domains are assigned for each strand of
each species, such that all complementarities and mismatches required by the topology are
satisfied. This ask can be achieved by local analysis of the network topology.

Finally, a NUPACK [54] script is generated to generate optimal sequences for each strand.
The required mismatches are hard-coded into the domain definitions in the script. The
software is available at https://zenodo.org/record/3948343.

7 Discussion

We have introduced the ACDC scheme for constructing DNA-based networks that perform
direct catalysis, analysed its shortcomings, and subsequently proposed practical improvements.
As of now, we have focused only on the realisability of ACDC implementations for some
graphs, not their dynamical behaviour. Three natural directions for further theoretical
investigation are: (1) proving the realisability of arbitrary networks; (2) implementing
additional hidden thermodynamic driving so that both 2r-4 substeps of a catalytic reaction
are thermodynamically downhill; and (3) automated design of ACDC networks to perform
some desired transfer function between input concentrations xi(t), i = 1..N and output
concentrations yj(t), j = 1..M . With regard to the first, we conjecture that all violations of
realisability in arbitrary networks are attributable to the causes identified in Section 4.

Equally important, however, is experimentally testing the ACDC motif. Whilst 4-way
branch migration has been used in several contexts [10, 22, 25, 49], the toehold exchange
mechanism proposed here is relatively untested. It is also important to establish that the
mismatches function as intended, limiting sequestration reactions and providing strong
overall thermodynamic driving without causing excessive local barriers that frustrate the
necessary reactions. A final consideration is the possibility of leak reactions involving non-
complementary toeholds that we have assumed to be negligible. It remains to be established
that unintended reactions will occur at a negligible rate, particularly in the context of species
containing mismatches. This research is ongoing within the group.

DNA 26

https://zenodo.org/record/3948343

7:16 Active Circuits of Duplex Catalysts

A key property of ACDC is the two recognition interfaces within each species and the
inherent symmetry in the species that follows. While this symmetry is a design feature
that allows both substrate-like and catalyst-like behaviour for a single species, it also has
a drawback that domains that are essential for some reaction to occur are also present in
reactions where they only act as identity placeholders (downstream interface of a catalyst and
an upstream interface of a substrate) that do not interact with any other domain. Consider
the reaction in Figure 4; the identity of the “placeholder domains” a, b, g, h, i, j, k that aren’t
involved in the initial binding and migration reactions could be swapped to arbitrary domains
that aren’t complementary with d, e, f or each other in only one species and the reaction
could still occur (assuming the correct fuel species is generated based on the substrate and
catalyst). However, this may not be possible if A and B are part of some larger computational
network where the placeholder domain identities are important. Another drawback of the
symmetry is the limitation of loop lengths to even numbers, characterised in Theorem 13.
An obvious potential mitigation to this problem is to make the central domain its own
complement, although this choice risks the formation of self-complementary hairpins.

The weaknesses of the ACDC motif invite the exploration of other possible designs of
catalytic activation networks that operate via direct bimolecular catalysis. It is an open
question as to whether the shortcomings of ACDC can be mitigated without a substantial
increase in complexity or abandoning the mechanism of direct catalytic action.

8 Conclusion

We have established the concept of a direct catalytic reaction and discussed why previous
work on catalytic DNA computing does not fulfil this definition. We have then proposed
a framework, ACDC, for implementing non-equilibrium catalytic (de)activation networks
using direct catalytic activation, analogous to systems seen in living cells. ACDC is simple
in the sense that all species contain only two strands - an important consideration in the
context of implementing DSD circuitry in a broad range of contexts.

We have analysed the framework’s expressiveness by exploring the implementation of
seven network motifs with ACDC. The basic design is highly limited by the inherent symmetry
of components, prohibiting long cascades and most feedforward and feedback loops. However,
we propose that systematic placement of mismatches can obviate these difficulties in many
contexts. Moreover, we argue that these initially-present mismatches can contribute a “hidden
thermodynamic driving” [19] to the ACDC motifs, increasing the robustness of the design
to subtleties in DNA thermodynamics and reducing the concentration imbalances of fuels
required to drive the reactions forward. We present a compiler for the sequence design of
ACDC-based networks that implements these findings [24].

References
1 Leonard Adleman. Molecular computation of solutions to combinatorial problems. Science,

266(5187):1021–1024, November 1994. doi:10.1126/science.7973651.
2 Uri Alon. An introduction to systems biology: design principles of biological circuits, Second

Edition. CRC Press LLC, Boca Raton, UNITED STATES, 2019.
3 Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk, and

Erik Winfree. A general-purpose CRN-to-DSD compiler with formal verification, optim-
ization, and simulation capabilities. In DNA computing and molecular programming, Lec-
ture notes in computer science, pages 232–248. Springer, Cham, September 2017. doi:
10.1007/978-3-319-66799-7_15.

https://doi.org/10.1126/science.7973651
https://doi.org/10.1007/978-3-319-66799-7_15
https://doi.org/10.1007/978-3-319-66799-7_15

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:17

4 David Barford, Amit K. Das, and Marie-Pierre Egloff. The structure and mechanism of
protein phosphatases: insights into catalysis and regulation. Annual Review of Biophysics
and Biomolecular Structure, 27(1):133–164, June 1998. Publisher: Annual Reviews. doi:
10.1146/annurev.biophys.27.1.133.

5 John P. Barton and Eduardo D. Sontag. The energy costs of insulators in biochemical networks.
Biophysical Journal, 104(6):1380–1390, March 2013. doi:10.1016/j.bpj.2013.01.056.

6 Hieu Bui, Shalin Shah, Reem Mokhtar, Tianqi Song, Sudhanshu Garg, and John Reif. Localized
DNA hybridization chain reactions on DNA origami. ACS Nano, 12(2):1146–1155, February
2018. Publisher: American Chemical Society. doi:10.1021/acsnano.7b06699.

7 Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg Seelig. A
spatially localized architecture for fast and modular DNA computing. Nature Nanotechnology,
12(9):920–927, September 2017. Number: 9 Publisher: Nature Publishing Group. doi:
10.1038/nnano.2017.127.

8 Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik, and Georg Seelig. Programmable chemical controllers made from DNA. Nature
Nanotechnology, 8(10):755–762, October 2013. doi:10.1038/nnano.2013.189.

9 Kevin M. Cherry and Lulu Qian. Scaling up molecular pattern recognition with DNA-
based winner-take-all neural networks. Nature, 559(7714):370–376, July 2018. doi:10.1038/
s41586-018-0289-6.

10 Nadine L. Dabby. Synthetic molecular machines for active self-assembly: prototype al-
gorithms, designs, and experimental study. PhD thesis, California Institute of Tech-
nology, Pasadena, California, 2013. URL: https://pdfs.semanticscholar.org/e668/
440cdb786ea7c2d0d6ae306c5aefef1208f6.pdf.

11 Wiet de Ronde and Pieter Rein ten Wolde. Multiplexing oscillatory biochemical signals.
Physical Biology, 11(2):026004, April 2014. doi:10.1088/1478-3975/11/2/026004.

12 Abhishek Deshpande and Thomas E. Ouldridge. High rates of fuel consumption are not required
by insulating motifs to suppress retroactivity in biochemical circuits. Engineering Biology,
1(2):86–99, December 2017. Publisher: IET Digital Library. doi:10.1049/enb.2017.0017.

13 Robert M. Dirks, Justin S. Bois, Joseph M. Schaeffer, Erik Winfree, and Niles A. Pierce.
Thermodynamic analysis of interacting nucleic acid strands. SIAM Review, 49(1):65–88,
January 2007. Publisher: Society for Industrial and Applied Mathematics. doi:10.1137/
060651100.

14 Elaine A. Elion. Ste5: a meeting place for MAP kinases and their associates. Trends in Cell
Biology, 5(8):322–327, August 1995. doi:10.1016/S0962-8924(00)89055-8.

15 Michael B. Elowitz and Stanislas Leibler. A synthetic oscillatory network of transcriptional
regulators. Nature, 403(6767):335–338, January 2000. Number: 6767 Publisher: Nature
Publishing Group. doi:10.1038/35002125.

16 Timothy S. Gardner, Charles R. Cantor, and James J. Collins. Construction of a genetic
toggle switch in Escherichia coli. Nature, 403(6767):339–342, January 2000. Number: 6767
Publisher: Nature Publishing Group. doi:10.1038/35002131.

17 Anthony J. Genot, Teruo Fujii, and Yannick Rondelez. Scaling down DNA circuits with
competitive neural networks. Journal of The Royal Society Interface, 10(85):20130212, August
2013. Publisher: Royal Society. doi:10.1098/rsif.2013.0212.

18 Christopher C. Govern and Pieter Rein ten Wolde. Energy dissipation and noise correlations
in biochemical sensing. Physical Review Letters, 113(25):258102, December 2014. Publisher:
American Physical Society. doi:10.1103/PhysRevLett.113.258102.

19 Natalie E. C. Haley, Thomas E. Ouldridge, Ismael Mullor Ruiz, Alessandro Geraldini, Ard A.
Louis, Jonathan Bath, and Andrew J. Turberfield. Design of hidden thermodynamic driving for
non-equilibrium systems via mismatch elimination during DNA strand displacement. Nature
Communications, 11(1):2562, May 2020. Number: 1 Publisher: Nature Publishing Group.
doi:10.1038/s41467-020-16353-y.

DNA 26

https://doi.org/10.1146/annurev.biophys.27.1.133
https://doi.org/10.1146/annurev.biophys.27.1.133
https://doi.org/10.1016/j.bpj.2013.01.056
https://doi.org/10.1021/acsnano.7b06699
https://doi.org/10.1038/nnano.2017.127
https://doi.org/10.1038/nnano.2017.127
https://doi.org/10.1038/nnano.2013.189
https://doi.org/10.1038/s41586-018-0289-6
https://doi.org/10.1038/s41586-018-0289-6
https://pdfs.semanticscholar.org/e668/440cdb786ea7c2d0d6ae306c5aefef1208f6.pdf
https://pdfs.semanticscholar.org/e668/440cdb786ea7c2d0d6ae306c5aefef1208f6.pdf
https://doi.org/10.1088/1478-3975/11/2/026004
https://doi.org/10.1049/enb.2017.0017
https://doi.org/10.1137/060651100
https://doi.org/10.1137/060651100
https://doi.org/10.1016/S0962-8924(00)89055-8
https://doi.org/10.1038/35002125
https://doi.org/10.1038/35002131
https://doi.org/10.1098/rsif.2013.0212
https://doi.org/10.1103/PhysRevLett.113.258102
https://doi.org/10.1038/s41467-020-16353-y

7:18 Active Circuits of Duplex Catalysts

20 Ira Herskowitz. MAP kinase pathways in yeast: for mating and more. Cell, 80(2):187–197,
January 1995. doi:10.1016/0092-8674(95)90402-6.

21 Robert F. Johnson. Impossibility of sufficiently simple chemical reaction network imple-
mentations in DNA strand displacement. In Ian McQuillan and Shinnosuke Seki, editors,
Unconventional computation and natural computation, Lecture notes in computer science, pages
136–149. Springer International Publishing, 2019. doi:10.1007/978-3-030-19311-9_12.

22 Shohei Kotani and William L. Hughes. Multi-arm junctions for dynamic DNA nanotechnology.
Journal of the American Chemical Society, 139(18):6363–6368, May 2017. doi:10.1021/jacs.
7b00530.

23 Matthew R. Lakin, Simon Youssef, Filippo Polo, Stephen Emmott, and Andrew Phillips.
Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics,
27(22):3211–3213, November 2011. doi:10.1093/bioinformatics/btr543.

24 Antti Lankinen. ACDC compiler, July 2020. URL: https://zenodo.org/record/3948343.
25 Tong Lin, Jun Yan, Luvena L. Ong, Joanna Robaszewski, Hoang D. Lu, Yongli Mi, Peng Yin,

and Bryan Wei. Hierarchical assembly of DNA nanostructures based on four-way toehold-
mediated strand displacement. Nano Letters, 18(8):4791–4795, August 2018. Publisher:
American Chemical Society. doi:10.1021/acs.nanolett.8b01355.

26 Robert R. F. Machinek, Thomas E. Ouldridge, Natalie E. C. Haley, Jonathan Bath, and
Andrew J. Turberfield. Programmable energy landscapes for kinetic control of DNA strand
displacement. Nature Communications, 5(1):1–9, November 2014. Number: 1 Publisher:
Nature Publishing Group. doi:10.1038/ncomms6324.

27 Marcelo O. Magnasco. Chemical kinetics is Turing universal. Physical Review Letters,
78(6):1190–1193, February 1997. doi:10.1103/PhysRevLett.78.1190.

28 G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam. The protein
kinase complement of the human genome. Science, 298(5600):1912–1934, December 2002.
Publisher: American Association for the Advancement of Science Section: Review. doi:
10.1126/science.1075762.

29 Christopher J. Marshall. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase.
Current Opinion in Genetics & Development, 4(1):82–89, February 1994. doi:10.1016/
0959-437X(94)90095-7.

30 Pankaj Mehta, Alex H. Lang, and David J. Schwab. Landauer in the agea of synthetic biology:
energy consumption and information processing in biochemical networks. Journal of Statistical
Physics, 162(5):1153–1166, March 2016. doi:10.1007/s10955-015-1431-6.

31 Thomas E. Ouldridge, Christopher C. Govern, and Pieter Rein ten Wolde. Thermodynamics
of computational copying in biochemical systems. Physical Review X, 7(2):021004, April 2017.
Publisher: American Physical Society. doi:10.1103/PhysRevX.7.021004.

32 Thomas E. Ouldridge, Ard A. Louis, and Jonathan P. K. Doye. Structural, mechanical,
and thermodynamic properties of a coarse-grained DNA model. The Journal of Chemical
Physics, 134(8):085101, February 2011. Publisher: American Institute of Physics. doi:
10.1063/1.3552946.

33 Tomislav Plesa. Stochastic approximation of high-molecular by bi-molecular reactions.
arXiv:1811.02766 [math, q-bio], November 2018. arXiv: 1811.02766. URL: http://arxiv.
org/abs/1811.02766.

34 Lulu Qian, David Soloveichik, and Erik Winfree. Efficient Turing-universal computation
with DNA polymers. In Yasubumi Sakakibara and Yongli Mi, editors, DNA computing and
molecular programming, Lecture notes in computer science, pages 123–140, Berlin, Heidelberg,
2011. Springer. doi:10.1007/978-3-642-18305-8_12.

35 Lulu Qian and Erik Winfree. Scaling up digital circuit computation with DNA strand
displacement cascades. Science, 332(6034):1196–1201, June 2011. doi:10.1126/science.
1200520.

https://doi.org/10.1016/0092-8674(95)90402-6
https://doi.org/10.1007/978-3-030-19311-9_12
https://doi.org/10.1021/jacs.7b00530
https://doi.org/10.1021/jacs.7b00530
https://doi.org/10.1093/bioinformatics/btr543
https://zenodo.org/record/3948343
https://doi.org/10.1021/acs.nanolett.8b01355
https://doi.org/10.1038/ncomms6324
https://doi.org/10.1103/PhysRevLett.78.1190
https://doi.org/10.1126/science.1075762
https://doi.org/10.1126/science.1075762
https://doi.org/10.1016/0959-437X(94)90095-7
https://doi.org/10.1016/0959-437X(94)90095-7
https://doi.org/10.1007/s10955-015-1431-6
https://doi.org/10.1103/PhysRevX.7.021004
https://doi.org/10.1063/1.3552946
https://doi.org/10.1063/1.3552946
http://arxiv.org/abs/1811.02766
http://arxiv.org/abs/1811.02766
https://doi.org/10.1007/978-3-642-18305-8_12
https://doi.org/10.1126/science.1200520
https://doi.org/10.1126/science.1200520

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:19

36 Lulu Qian and Erik Winfree. A simple DNA gate motif for synthesizing large-scale circuits.
Journal of the Royal Society Interface, 8(62):1281–1297, September 2011. doi:10.1098/rsif.
2010.0729.

37 Lulu Qian and Erik Winfree. Parallel and scalable computation and spatial dynamics with
DNA-based chemical reaction networks on a surface. In Satoshi Murata and Satoshi Kobayashi,
editors, DNA computing and molecular programming, Lecture notes in computer science, pages
114–131, Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-11295-4_8.

38 Lulu Qian, Erik Winfree, and Jehoshua Bruck. Neural network computation with DNA strand
displacement cascades. Nature, 475(7356):368–372, July 2011. doi:10.1038/nature10262.

39 Ismael Mullor Ruiz, Jean-Michel Arbona, Amitkumar Lad, Oscar Mendoza, Jean-Pierre Aimé,
and Juan Elezgaray. Connecting localized DNA strand displacement reactions. Nanoscale,
7(30):12970–12978, July 2015. Publisher: The Royal Society of Chemistry. doi:10.1039/
C5NR02434J.

40 John SantaLucia and Donald Hicks. The thermodynamics of DNA structural motifs. An-
nual Review of Biophysics and Biomolecular Structure, 33(1):415–440, 2004. _eprint: ht-
tps://doi.org/10.1146/annurev.biophys.32.110601.141800. doi:10.1146/annurev.biophys.32.
110601.141800.

41 Hans J. Schaeffer, Andrew D. Catling, Scott T. Eblen, Lara S. Collier, Anke Krauss, and
Michael J. Weber. MP1: a MEK binding partner that enhances enzymatic activation of the
MAP kinase cascade. Science, 281(5383):1668–1671, September 1998. Publisher: American
Association for the Advancement of Science Section: Report. doi:10.1126/science.281.
5383.1668.

42 Georg Seelig, David Soloveichik, David Yu Zhang, and Erik Winfree. Enzyme-free nucleic acid
logic circuits. Science, 314(5805):1585–1588, December 2006. Publisher: American Association
for the Advancement of Science Section: Report. doi:10.1126/science.1132493.

43 Nadrian C. Seeman and Hanadi F. Sleiman. DNA nanotechnology. Nature Reviews Materials,
3(1):1–23, November 2017. doi:10.1038/natrevmats.2017.68.

44 David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, March 2010.
doi:10.1073/pnas.0909380107.

45 Carlo Spaccasassi, Matthew R. Lakin, and Andrew Phillips. A logic programming language
for computational nucleic acid devices. ACS synthetic biology, 8(7):1530–1547, July 2019.
doi:10.1021/acssynbio.8b00229.

46 Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, and David Soloveichik. Enzyme-
free nucleic acid dynamical systems. Science, 358(6369), December 2017. doi:10.1126/
science.aal2052.

47 J. David Sweatt. The neuronal MAP kinase cascade: a biochemical signal integration system
subserving synaptic plasticity and memory. Journal of Neurochemistry, 76(1):1–10, 2001.
doi:10.1046/j.1471-4159.2001.00054.x.

48 Mario Teichmann, Enzo Kopperger, and Friedrich C. Simmel. Robustness of localized DNA
strand displacement cascades. ACS Nano, 8(8):8487–8496, August 2014. Publisher: American
Chemical Society. doi:10.1021/nn503073p.

49 Suvir Venkataraman, Robert M. Dirks, Paul W. K. Rothemund, Erik Winfree, and Niles A.
Pierce. An autonomous polymerization motor powered by DNA hybridization. Nature
Nanotechnology, 2(8):490–494, August 2007. Number: 8 Publisher: Nature Publishing Group.
doi:10.1038/nnano.2007.225.

50 Alan J. Whitmarsh, Julie Cavanagh, Cathy Tournier, Jun Yasuda, and Roger J. Davis.
A mammalian scaffold complex that selectively mediates MAP kinase activation. Science,
281(5383):1671–1674, September 1998. Publisher: American Association for the Advancement
of Science Section: Report. doi:10.1126/science.281.5383.1671.

51 Christian Widmann, Spencer Gibson, Matthew B. Jarpe, and Gary L. Johnson. Mitogen-
activated protein kinase: conservation of a three-kinase module from yeast to human. Physiolo-

DNA 26

https://doi.org/10.1098/rsif.2010.0729
https://doi.org/10.1098/rsif.2010.0729
https://doi.org/10.1007/978-3-319-11295-4_8
https://doi.org/10.1038/nature10262
https://doi.org/10.1039/C5NR02434J
https://doi.org/10.1039/C5NR02434J
https://doi.org/10.1146/annurev.biophys.32.110601.141800
https://doi.org/10.1146/annurev.biophys.32.110601.141800
https://doi.org/10.1126/science.281.5383.1668
https://doi.org/10.1126/science.281.5383.1668
https://doi.org/10.1126/science.1132493
https://doi.org/10.1038/natrevmats.2017.68
https://doi.org/10.1073/pnas.0909380107
https://doi.org/10.1021/acssynbio.8b00229
https://doi.org/10.1126/science.aal2052
https://doi.org/10.1126/science.aal2052
https://doi.org/10.1046/j.1471-4159.2001.00054.x
https://doi.org/10.1021/nn503073p
https://doi.org/10.1038/nnano.2007.225
https://doi.org/10.1126/science.281.5383.1671

7:20 Active Circuits of Duplex Catalysts

gical Reviews, 79(1):143–180, January 1999. Publisher: American Physiological Society.
doi:10.1152/physrev.1999.79.1.143.

52 Wataru Yahiro and Masami Hagiya. Implementation of Turing machine using DNA strand
displacement. In Carlos Martín-Vide, Takaaki Mizuki, and Miguel A. Vega-Rodríguez, editors,
Theory and Practice of Natural Computing, Lecture notes in computer science, pages 161–172,
Cham, 2016. Springer International Publishing. doi:10.1007/978-3-319-49001-4_13.

53 Peng Yin, Harry M. T. Choi, Colby R. Calvert, and Niles A. Pierce. Programming biomolecular
self-assembly pathways. Nature, 451(7176):318–322, January 2008. Number: 7176 Publisher:
Nature Publishing Group. doi:10.1038/nature06451.

54 Joseph N. Zadeh, Conrad D. Steenberg, Justin S. Bois, Brian R. Wolfe, Marshall B. Pierce,
Asif R. Khan, Robert M. Dirks, and Niles A. Pierce. NUPACK: Analysis and design of nucleic
acid systems. Journal of Computational Chemistry, 32(1):170–173, 2011. doi:10.1002/jcc.
21596.

55 David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement
reactions. Nature Chemistry, 3(2):103–113, February 2011. doi:10.1038/nchem.957.

56 David Yu Zhang, Andrew J. Turberfield, Bernard Yurke, and Erik Winfree. Engineering
entropy-driven reactions and networks catalyzed by DNA. Science, 318(5853):1121–1125,
November 2007. Publisher: American Association for the Advancement of Science Section:
Report. doi:10.1126/science.1148532.

A Notation For ACDC Species and Reactions

[a b] denotes a strand consisting of domains a and b. Logical not is denoted by ¬ and logical
and by ∧.

I Definition 23. (ACDC major species structure). Each major species in an ACDC network
consists of two strands, each of which have one long domain and four toehold domains. The
two strands are called state strand and identity strand based on the fact that one strand
decodes the state of the species and other the identity. A major species X has the following
domains (note the use of H for “inner” to avoid confusion with “identity”):

SH5(X): the inner toehold domain on the 5’ side (downstream end) of the state strand.
SO5(X): the outer toehold domain on the 5’ side (downstream end) of the state strand.
SH3(X): the inner toehold domain on the 3’ side (upstream end) of the state strand.
SO3(X): the outer toehold domain on the 3’ side (upstream end) of the state strand.
IH5(X): the inner toehold domain on the 5’ side (upstream end) of the identity strand.
IO5(X): the outer toehold domain on the 5’ side (upstream end) of the identity strand.
IH3(X): the inner toehold domain on the 3’ side (downstream end) of the identity strand.
IO3(X): the outer toehold domain on the 3’ side (downstream end) of the identity strand.
SL(X): the long domain on the state strand.
IL(X): the long domain on the identity strand.

I Definition 24. (Subset and logical operations for ACDC species). The following operations
will be useful in the analysis of ACDC networks:

Complementarity � : x � y is true for sequences x, y iff x = y∗ (and x∗ = y).
Complementarity with mismatch � : x�y is true for sequences x, y iff x = y∗ (and
x∗ = y) except for a single centrally-placed C-C or G-G mismatch. x�y is distinct from
¬x � y, for which it is assumed that interactions between x and y are negligible.
5′ (downstream end) state toehold sequence S5(X) := [SO5(X) SH5(X)].
3′ (upstream end) state toehold sequence S3(X) := [SH3(X) SO3(X)].
5′ (upstream end) identity toehold sequence I5(X) := [IO5(X) IH5(X)].
3′ (downstream end) identity toehold sequence I3(X) := [IH3(X) IO3(X)].

https://doi.org/10.1152/physrev.1999.79.1.143
https://doi.org/10.1007/978-3-319-49001-4_13
https://doi.org/10.1038/nature06451
https://doi.org/10.1002/jcc.21596
https://doi.org/10.1002/jcc.21596
https://doi.org/10.1038/nchem.957
https://doi.org/10.1126/science.1148532

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:21

I Definition 25. (Major species). A major species X must satisfy

¬
(
SO5(X) � IO3(X)

)
∧
(
SH5(X) � IH3(X)

)
∧(

SL(X) � IL(X)
)
∧(

SH3(X) � IH5(X)
)
∧ ¬
(
SO3(X) � IO5(X)

)
.

I Definition 26. (Domain complementarities in an ACDC reaction without mismatches).
An ACDC reaction A→ B or A a B implies

S5(Aon) � S3(Boff) = S3(Bon) ∧
IL(Aon) = IL(Aoff) � IL(Boff) = IL(Bon) ∧
I3(Aon) = I3(Aoff) � I5(Boff) = I5(Bon).

Domains not constrained by these requirements are non-complementary. We emphasize that
the domains of ancillary species involved in A → B are determined unambiguously by the
domains of the relevant major species.

I Definition 27. (Domain complementarities in ACDC reactions with mismatches). An
ACDC reaction A→ / a B with mismatches placed as per Definition 20 implies

S5(Aon) � S3(Boff) / S5(Aon)�S3(Boff) ∧
S5(Aon)�S3(Bon) / S5(Aon) � S3(Bon) ∧
IL(Aon) = IL(Aoff) � IL(Boff) = IL(Bon) ∧
I3(Aon) = I3(Aoff)�I5(Boff) = I5(Bon).

Domains not constrained by these requirements are non-complementary.

B Proofs of Theorems and Lemmas 8 - 22

I Theorem 8 (Split motifs are realisable). Consider the N reactions A→ B1, A→ B2, . . . A→
BN , in which all Bi are distinct from A. Such a network is realisable for any N ≥ 1.

Proof. By induction. Assume that the split motif is realisable for a given N = M >

0. If so, a valid domain level implementation exists for N = M . Now consider the
species Boff

M+1, Bon
M+1, ABM+1WABM+1→Bon

M+1
, FABM+1→Bon

M+1
related to a putative additional

node BM+1. Let these species be identical to those of B1, except with the domains that
function as the downstream end (SO5, SH5, IO3, IH3) in Boff

M+1, Bon
M+1 changed to have no

complementarity with any domains in the existing valid implementation for N = M . This
assignment is possible by Assumption 5. Since the upstream domains SO3, SH3, IO5, IH5 of
Bon

M+1, Boff
M+1 are identical to those of Bon

1 , Boff
1 , Definition 26 implies A→ B as required by

condition 1 of Definition 6. Moreover, since the species related to node BM+1 are identical to
those of the existing node B1, except for the downstream domains with no complementarity
to the rest of the network, no new violations of conditions 2-4 of Definition 6 can occur
due to interactions between the species related to BM+1 and Aon or those related to Bi for
1 < i ≤ M . By considering the species defined in Figure 4 for B1, and replacing domains
h, i, j, k with hM+1, iM+1, jM+1, kM+1 to define BM+1, it is straightforward to establish that
no violations of conditions 2-4 of Definition 6 occur between the species related to BM+1 and
B1. Therefore if a split motif of size N = M is realisable, a split motif of size N = M + 1 is
realisable. Given the valid implementation for N = 1 in Figure 4, split motifs of arbitrary
N > 0 are realisable. J

DNA 26

7:22 Active Circuits of Duplex Catalysts

I Theorem 9 (Integrate motifs are realisable). Consider the N reactions A1 → B, A2 →
B, . . . AN → B, in which all Ai are distinct from B. This network is realisable for any N ≥ 1.

Proof. The proof is identical to that of Theorem 8 with the direction of catalysis interchanged.
J

I Lemma 10 (The ancillary species of a catalyst’s upstream reactions and substrate’s down-
stream reactions cause leak reactions). Consider a reaction B→ C, and further assume that
A → B and C → D for a species A and a species D. Then AB and CD, and FAB→Bon

and FCD→Don/WCD→Don possess two available toehold pairs that could form a contiguous
complementary duplex. No other violations of realisability occur.

Proof. Consider the following major species:

Aon := [a b c d e]
[g∗ b∗ c∗ d∗ f∗]

Boff := [h∗ i∗ c∗ b∗ a∗] Bon := [k∗ i∗ c∗ b∗ a∗]
[j i c b g] [j i c b g]

Coff := [l m c i k] Con := [o m c i k]
[n∗ m∗ c∗ i∗ j∗] [n∗ m∗ c∗ i∗ j∗]

Doff := [p∗ q∗ c∗ m∗ o∗] Don := [s∗ q∗ c∗ m∗ o∗]
[r q c m n] [r q c m n]

where the top (bottom) strand of each species is the state (identity) strand in 5’-3’ (3’-5’)
direction. These species and the accordingly generated ancillary species implement the
cascade A→ B→ C→ D. Conditions 1-3 of Definition 6 are satisfied.

To establish whether condition 4 of Definition 6 is necessarily violated, consider the
unbound domains on the ancillary species in the system A→ B→ C→ D:

I5(Aoff), I3(Boff) in AB

S3(Aon), S5(Bon) in FAB→Bon

S3(Aon), S5(Boff) in WAB→Bon

I5(Boff), I3(Coff) in BC

S3(Bon), S5(Con) in FBC→Con

S3(Bon), S5(Coff) in WBC→Con

I5(Coff), I3(Doff) in CD

S3(Con), S5(Don) in FCD→Don

S3(Con), S5(Doff) in WCD→Don .
Definition 26 requires that I3(Boff) � I5(Coff), S5(Bon) � S3(Con). These constraints are
manifested in the example above as [j, i] being present in the identity strand of Boff/Bon

and [i∗, j∗] in the identity strand of Coff/Con, and [i, k] being present in the state strand
of Coff/Con and [k∗, i∗] in the state strand of Bon. Consequently AB and BC can bind
by the two contiguous toehold domains I3(Boff), I5(Coff), and FAB→Bon can bind with
FCD→Don and WCD→Don by the two contiguous toehold domains in S5(Bon), S3(Con). No
other violations of condition 4 occur in the proposed implementation. J

I Theorem 12 (Long cascades are non-realisable due to a particular type of leak reaction only).
Consider the set of reactions A1 → A2, A2 → A3 ... AN−1 → AN for N > 3, in which all Ai

are distinct. This network would be realisable if reactions between ancillary species AiAi+1
and Ai+2Ai+3, and FAiAi+1→Aon

i+1
and FAi+2Ai+3→Aon

i+3
/WAi+2Ai+3→Aon

i+3
, were absent.

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:23

Proof. By induction. Assume that an implementation of a cascade of length N > 3 exists in
which: (a) for any toehold domain x present in the downstream [upstream] end of Aoff

M or
Aon

M , S5(Aoff
M), S5(Aon

M), I3(Aoff
M) = I3(Aon

M)
[
S3(Aoff

M) = S3(Aon
M), I5(Aoff

M) = I5(Aon
M)
]
, the

presence of x and x∗ in major species is restricted to the downstream [upstream] end of Aoff
M and

Aon
M and the upstream [downstream] end of Aoff

M+1 and Aon
M+1 [Aoff

M−1 and Aon
M−1], S3(Aoff

M+1) =
S3(Aon

M+1), I5(Aoff
M+1) = I5(Aon

M+1)
[
S5(Aoff

M−1), S5(Aon
M−1), I3(Aoff

M−1) = I3(Aon
M−1)

]
; and

(b) the only violations of realisability are those stated in this theorem. Lemma 10 gives an
implementation for N = 4 satisfying these conditions.

Let us consider adding a new layer AN+1 to the cascade. The toeholds S3(Aoff
N+1) =

S3(Aon
N+1), I5(Aoff

N+1) = I5(Aon
N+1) are complements of S5(Aon

N), I3(Aon
N), respectively, and

the toeholds S5(Aoff
N+1), S5(Aon

N+1), I3(Aoff
N+1) = I3(Aon

N+1) can be orthogonal to all other
toeholds by Assumption 5. This choice preserves assumption (a) above for the N + 1-
layer cascade. Definition 26 indicates that when the implied ancillary species are included,
AN → AN+1 as required by condition 1 of Definition 6. Moreover, the only toeholds in the
new species are either non-complementary to the rest of the network, or taken from the
upstream and downstream ends of Aoff

N and Aon
N . By (a), these toeholds are only present in

major species of nodes AN−1, AN and AN+1 and the ancillary species associated with them.
To identify violations of conditions 2-4 of Definition 6, it is therefore sufficient to consider
the isolated 4-level cascade AN−2 → AN−1 → AN → AN+1 only. This analysis proceeds
exactly as in Lemma 10; the proposed N + 1-layer cascade therefore preserves assumption
(b) as well as (a). Given that a domain-level implementation satisfying assumption (a) and
(b) is given in Lemma 10 for N = 4, we therefore conclude that an implementation satisfying
(a) and (b) can be constructed for arbitrary N > 3. Consequently there are no restrictions
on realisability of cascades for N > 3 other than those stated in the theorem. J

I Theorem 14 (Self interactions and bidirectional edges are not realisable). Consider a system
of reactions A1 → A2 → A3 . . . AN−1 → A1. This network is not realisable if N ≤ 2.

Proof. The result for N = 1 is a direct consequence of Theorem 13. For N = 2, consider the
set of reactions: A→ B, B→ A. By Definition 26, A→ B implies I3(Aoff) � I5(Boff) and
IL(Aoff) � IL(Boff). In addition, B→ A implies I5(Aoff) � I3(Boff). The identity strands of
A and B are then fully complementary, violating condition 3 of Definition 6. J

I Theorem 16 (Long feedback loops with an even number of units are non-realisable due to a par-
ticular type of leak reaction only). Consider the feedback loop A1 → A2, A2 → A3, . . . AN−1 →
AN , AN → A1. For N even, N ≥ 4, this network would be realisable if reactions between ancil-
lary species AiAi+1 and Ai+2Ai+3, and FAiAi+1→Aon

i+1
and FAi+2Ai+3→Aon

i+3
/WAi+2Ai+3→Aon

i+3
,

were absent. Here, the index j in Aj should be interpreted modularly: Aj = Aj−N for j > N .

Proof. For N even, N ≥ 4, a loop obeying condition 1 of Definition 6 can be constructed from
the cascades identified in the proof of Theorem 12 by setting the otherwise unconstrained
toeholds S5(Aon

N), I3(Aon
N) to S5(Aon

N) � S3(Aoff
1) = S3(Aon

1), I3(Aon
N) � I5(Aoff

1) = I5(Aoff
1).

To identify the violations of realisability that arise from conditions 2-4 of Definition 6, let us
first consider a cascade without the AN → A1 reaction. The only violations of realisability
are those identified in Theorem 12: between AiAi+1 and Ai+2Ai+3, and FAiAi+1→Aon

i+1

and FAi+2Ai+3→Aon
i+3

/WAi+2Ai+3→Aon
i+3

, without interpreting the index modularly. Now we
consider the additional effect of requiring AN → A1. The only domains that must be
changed are S5(Aon

N) and I3(Aon
N). These domains and their complements are only present

in the species of AN−1 → AN , AN → A1, A1 → A2, and so it is sufficient to consider only
this cascade to identify additional violations of realisability. By Lemma 10, the resultant
violations of realisability are exactly those stated in the theorem. J

DNA 26

7:24 Active Circuits of Duplex Catalysts

I Theorem 22 (Mismatches successfully destabilize unintended complexes). The scheme
proposed in Definition 20 satisfies the following:
1. All motifs that are realisable in the mismatch-free ACDC design remain realisable in the

mismatch-based scheme.
2. Cascades of arbitrary length N with at most the first and last reactions deactivating are

realisable;
3. Feedback loops with N even and N ≥ 6 in which all reactions are activating are realisable;
4. Feedforward loops with N ≥ 1, M ≥ 1, N −M even, in which at most the first and last

reactions are deactivating in each branch, are realisable.

Proof. Consider the first claim. For any network in which it is possible to select domains
that satisfy Definition 25 and Definition 26, it is trivial to convert those domains to satisfy
25 and 27 by introducing the mismatches in major species, and adjusting ancillary species
compensate. By Assumption 19, these changes do not introduce new violations of realisability.

Now consider the second claim. By the first claim and the construction in Theorem 12,
it is sufficient to consider whether the sequestration reactions identified in Lemma 10 for
an N = 4 cascade occur in the mismatch-based scheme of Definition 20. First, consider the
unbound domains in the ancillary species in the system A → / a B → C → / a D, with
mismatches placed as per Definition 20:

I5(Aoff), I3(Boff) in AB

S3(Aon), S5(Bon) in FAB→Bon/WAB→Boff

S3(Aon), S5(Boff) in WAB→Bon/FAB→Boff

I5(Boff), I3(Coff) in BC

S3(Bon), S5(Con) in FBC→Con

S3(Bon), S5(Coff) in WBC→Con

I5(Coff), I3(Doff) in CD

S3(Con), S5(Don) in FCD→Don/WCD→Doff

S3(Con), S5(Doff) in WCD→Don/FCD→Doff .

By Definition 27, the reaction B → C implies I3(Boff)�I5(Coff), S5(Bon)�S3(Con).
Moreover, ¬S5(Boff) � S3(Con). By Assumption 19, none of the violations of realisabil-
ity that would otherwise occur due to binding of AB and CD; FAB→Bon WAB→Boff and
FCD→Don WCD→Doff ; and FAB→Bon WAB→Boff and WCD→Don FCD→Doff characterised
by Lemma 10, occur. Note that if B a C in the above network, Definition 27 implies
S5(Bon)�S3(Con), meaning that sequestration reactions still occur between ancillary species.
Cascades with deactivation reactions as intermediate steps are therefore not realisable.

Now consider the third claim. By the construction in Theorem 16 and the first claim of
this Theorem, it is sufficient to consider only the sequestration reactions listed in Theorem
16. Further, since the only difference between a feedback loop with exclusively activating
interactions and an activating cascade with N species is that AN → A1, by the second
claim of this Theorem we need only consider changes in realisability due to the introduction
of AN → A1 to a cascade. For N ≥ 6, imposing I3(Aoff

N)�I5(Aoff
1), S5(Aon

N)�S(3)Aon
1 ,

as required by AN → A1, does not create new realisability violations for a cascade of
length N with exclusively activating reactions. The ancillary species of the reactions
AN−2 → AN−1, AN−1 → AN , AN → A1, A1 → A2, A2 → A3 can only form complexes held
together by two contiguous toehold domains with a central mismatch, and thus do not violate
realisability by Assumption 19.

A. Lankinen, I.M. Ruiz, and T. E. Ouldridge 7:25

The above argument does not apply to FBLs of length N = 4, which remain non-realisable.
In that case, adding the reaction AN → A1 allows complexes of ancillary species bound
by two separate sets of contiguous toehold domains, each with a central mismatch, either
side of a 4-way junction. The short periodicity of an N = 4 loop means that the unwanted
interaction identified in Lemma 10 happens twice for each pair of ancillary species. We
do not assume in Assumption 19 that such a structure will dissociate. We also note that
feedback loops with any deactivating reactions remain non-realisable, since each reaction
Ai → Ai+1 is effectively an intermediate reaction between Ai−1 → Ai and Ai+1 → Ai+2.

Finally we turn to the fourth claim. By the first claim of this Theorem, and Theorem
17, it is sufficient to consider only the potential unwanted sequestration reactions between
ancillary species identified in Theorem 17 for each feed-forward branch. The proof is then
identical to that of the second claim of this Theorem. J

DNA 26

Design Automation of Polyomino Set That
Self-Assembles into a Desired Shape
Yuta Matsumura
Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
matsumura@molbot.mech.tohoku.ac.jp

Ibuki Kawamata
Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
Natural Science Division, Faculty of Core Research, Ochanomizu University, Tokyo, Japan
kawamata@molbot.mech.tohoku.ac.jp

Satoshi Murata
Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
murata@molbot.mech.tohoku.ac.jp

Abstract
The problem of finding the smallest DNA tile set that self-assembles into a desired pattern or shape is
a research focus that has been investigated by many researchers. In this paper, we take a polyomino,
which is a non-square element composed of several connected square units, as an element of assembly
and consider the design problem of the minimal set of polyominoes that self-assembles into a desired
shape. We developed a self-assembly simulator of polyominoes based on the agent-based Monte
Carlo method, in which the potential energy among the polyominoes is evaluated and the simulation
state is updated toward the direction to decrease the total potential. Aggregated polyominoes are
represented as an agent, which can move, merge, and split during the simulation. In order to search
the minimal set of polyominoes, two-step evaluation strategy is adopted, because of enormous search
space including many parameters such as the shape, the size, and the glue types attached to the
polyominoes. The feasibility of the proposed method is shown through three examples with different
size and complexity.

2012 ACM Subject Classification Applied computing → Systems biology; Applied computing →
Chemistry; Hardware → Biology-related information processing

Keywords and phrases DNA polyomino, DNA nanostructure, DNA tile, Agent based simulation,
Self-assembly, Combinatorial optimization, Simulated annealing

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.8

1 Introduction

As a method of creating artificial nanostructures, programed self-assembly of molecules is
attracting attentions [3, 5, 7]. Since DNA has an excellent property of double helix formation
between complementary base sequences, it is thought to be the most promising molecule for
this purpose. One of the methods to make DNA nanostructures is called DNA tile [11, 12, 2].
In this method a unit called DNA tile composed of a few short DNA strands assemble into a
large two-dimensional nanostructure. The DNA tile is a rectangle molecule having sticky
ends (i.e. bonding edges with sequence specificity) on its sides. By arranging the sticky
ends, it is possible to program the connectivity between the tiles. We can design a tile set to
assemble periodic or aperiodic patterns, while the production cost depends on the complexity
of the tile set (e.g. the number of sticky end types and the number of tile types), also the
more complicated the tile set, the lower the quality and yield of the obtained assembly. From
this point of view, the problem of finding the smallest tile set that forms the desired pattern
(Pattern self-Assembly Tile-set Synthesis, PATS) has been studied [4, 1].

© Yuta Matsumura, Ibuki Kawamata, and Satoshi Murata;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matsumura@molbot.mech.tohoku.ac.jp
mailto:kawamata@molbot.mech.tohoku.ac.jp
mailto:murata@molbot.mech.tohoku.ac.jp
https://doi.org/10.4230/LIPIcs.DNA.2020.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Design Automation of Polyomino Set

In this paper, we deal with self-assembly problem of a non-square element composed of
several connected square units called a polyomino. We propose an algorithm to search for
the minimum set of polyominoes required to assemble a desired outer shape. By using a
polyomino as an element of assembly, it becomes possible to utilize the shape complementarity
of the polyomino, in addition to the complementarity of sticky ends on the polyomino. This
enables us to make relatively complex shapes also given as connected polyominoes. Since
DNA origami technique enables us to make various three-dimensional shapes, it is expected
that such non-square-shaped element made by DNA origami will allow us to construct a
large structure with desired shape.

In the following sections, we consider the problem of finding the smallest polyomino set
to fill a given shape. In Section 2, we introduce an assembly model that simulates the
stochastic process of polyomino assembling. Section 3 describes a searching method for the
simplest polyomino set that forms the target shape. In Section 4, we show the results of
automatic design for target shapes with different size and complexity to verify the validity of
the proposed method. Section 5 gives discussions.

2 Self-assembly model of polyominoes

2.1 Outline
This section explains the mathematical model of a polyomino and then introduces a stochastic
simulation technique to predict the behavior of polyominoes. Unlike the abstracted kinetic
tile assembly model [9, 10, 6], we employ an agent-based technique for the simulation.

Our model is illustrated in Fig. 1. The following summarises the outline.

Polyomino is represented as a set of connected square units.
An integer number named glue type is assigned to each side of the square unit.
Agent is defined as a naive set of polyominoes.
At the beginning of simulation, agents are randomly distributed over discretized space.
In each step of simulation, agents can translate or rotate in the space.
Potential energy computed from the interactions among polyominoes is minimized through
the agent-based Monte Carlo simulation.

2.2 Square unit
A polyomino consists of several connected square units. To define the square unit, we need
some prerequisite notations. D = {N,E,S,W} is a set of four cardinal directions (north, east,
south, west) such that N̂ = S, Ŝ = N, Ê = W, Ŵ = E. The neighboring cell of x = (x, y) ∈ N2

in the direction d ∈ D is given by coord(x, d) assuming a periodic boundary condition of the
square lattice space.

coord(x, d) =


(x, y − 1 mod mcell) (d = N)
(x+ 1 mod ncell, y) (d = E)
(x, y + 1 mod mcell) (d = S)
(x− 1 mod ncell, y) (d = S)

,

where mcell, ncell ∈ N are the total number of rows and columns in the lattice, respectively.
Hereafter, mcell and ncell are both set to 32.

Y. Matsumura, I. Kawamata, and S. Murata 8:3

Figure 1 (a) Model of polyomino. (b) polyomino sets. (c) Interaction between square unit. (d)
Initial simulation state I0 and most stable simulation state Ibest. (e) Snapshot of the simulation.

Square unit u is defined as a tuple of a position x, y ∈ N and a map g ∈ ZD that gives
the glue type of the cardinal direction D (i.e. u = (x, y, g)). The pair (x, y), and coordinates
x and y of a square unit u = (x, y, g) can be obtained by pos(u) = (x, y), posx(u) = x,
posy(u) = y, respectively. Similarly, the glue type of a square unit u = (x, y, g) in the
direction d ∈ D can be obtained by gl(u, d) = g(d). Non-zero glue types g1 and g2 are
complementary when g1 + g2 = 0 stands.

2.3 Polyomino
A polyomino p is defined as a nonempty set of connected square units (i.e. p = {u1, u2, . . .}
such that ∀ui, uj ∈ p,∃u′1 = ui, u

′
2, . . . , u

′
k = uj ∈ p,∀l ∈ {z ∈ N|1 ≤ z ∧ z ≤ k},∃d ∈

D,pos(u′l+1) = coord(pos(u′l), d)). To avoid an overlap, we assume that a square unit
u1 ∈ p1 never belongs to other polyomino p2 (i.e. ∀u1 ∈ p1, u2 ∈ p2, u1 = u2 → p1 = p2).
The center of mass of a polyomino p is defined as cM(p) = (cx(p), cx(p)), where cx(p) =
round(

∑
u∈p posx(u)/|p|) and cy(p) = round(

∑
u∈p posy(u)/|p|)). The nearest integer is

obtained by round(x) ∈ Z from a real number x ∈ R.

2.4 Movement of polyomino
A polyomino is capable of performing a movement m ∈ Mpoly, which is a map from
polyominoes to polyominoes. Here, we define 7 possible movements : translation to
the north, east, south or west, or rotation to the left, back or right. Here “back rota-
tion” means rotation of 180 degrees. The set of these movements is defined as Mpoly =
{north, east, south,west, right,back, left}. Formal description of the movement is given in
Appendix A.1.

DNA 26

8:4 Design Automation of Polyomino Set

Polyominoes p1 and p2 are isomorphic (p1 ≡ p2) when there are finite movements that
can move p1 to p2, which is defined as p1 ≡ p2 ↔ ∃n ∈ N,∃m1,m2, . . .mn ∈ Mpoly,m1 ◦
m2 ◦ . . . ◦mn(p1) = p2. When p1 and p2 are not isomorphic, they are called non-isomorphic.

2.5 Polyomino species
The concept of polyomino set was ambiguously used so far to illustrate the goal of our
research. Here, we introduce the formal definition of polyomino species, which is more
accurate to describe the polyomino set. A polyomino species is a multiset of quotient set of
polyominoes by the isomorphic relationship ≡, which is not a naive set of polyomino. Namely,
polyomino species P can be expressed as a set of tuples of representative polyomino pi and
its occurrence count ni (i.e. P = {(p1, n1), (p2, n2), . . .}). The number of representative
polyominoes is denoted as |P |, and the set of glue types in P is defined as Gl(P) = {gl(u, d) ∈
D, u ∈ p, (p, n) ∈ P}. We say polyomino set to simply explain the target problem, although
it formally means polyomino species throughout this paper.

2.6 Agent
In the proposed simulation model, we introduce a concept of agent which represents a naive
set of polyominoes [8]. Instead of applying the movement to each polyomino, we move the
agent in order to improve energy convergence.

Agent a = {p1, p2, . . .} is a non-empty set of polyominoes, connected by the complementary
glue types. (i.e. a = {p1, p2, . . .} such that ∀pi, pj ∈ a,∃p′1 = pi, p

′
2, . . . , p

′
k = pj ∈ a,∃u ∈

p′l+1,∃u′ ∈ pl,∀l ∈ {z ∈ N|1 ≤ z ∧ z ≤ k},∃d ∈ D,pos(u) = coord(pos(u′), d) ∧ gl(u, d̂) +
gl(u′, d) = 0 ∧ gl(u′, d) 6= 0). We define a set of square units in an agent a as U(a) and the
number of square units in the agent a as |U(a)|. Similar to the polyomino, there are also 7
movements Magent for the agent (see Appendix A.1).

At the beginning of the simulation, each polyomino is assumed to belong to a different
agent, and is able to move independently. Through the simulation process, agents can merge
or split, resulting in a unified movement of several polyominoes. Details of the process is
described in the following.

2.7 Simulation state
Simulation state I = {a1, a2, . . .} is defined as a set of agent at specific time step. We define
a naive set of polyominoes in the simulation state I as P(I) = {p|p ∈ a, a ∈ I}, and a set of
square units as U(I) = {u|u ∈ p, p ∈ P(I)}.

The initial simulation state I0 is defined for a given polyomino species P =
{(p1, n1), (p2, n2), . . .}. There are ni copies of polyomino pi without any overlap at the
beginning. Namely, ∀u1, u2 ∈ U(I0),pos(u1) = pos(u2)→ u1 = u2.

2.8 Cluster
A cluster c is a naive set of polyominoes in a simulation state I, such that there are no
polyomino p ∈ P(I)\c neighboring to c. This is formalized as ∀p1 ∈ c,∀p2 ∈ P(I)\c,∀u1 ∈
p1,∀u2 ∈ p2,∀d ∈ D, coord(pos(u1), d) 6= pos(u2). Note that a cluster does not necessarily
have to contain polyominoes with matching glues. Unlike agents that can translate and
rotate, the cluster only refers to an static assembly of polyominoes. They are used to evaluate
the state of the simulation. When a simulation state I is given, the set of all clusters are
defined as cl(I).

The same movements Magent of agent can be applied to cluster (see Appendix A).

Y. Matsumura, I. Kawamata, and S. Murata 8:5

2.9 Potential energy
During the simulation, the total potential energy is evaluated as a sum of local energy gained
from interactions among the square units. When two units are not neighboring, there is no
local energy between them. If they are located in the neighboring cells, there is an attractive
force between them when the facing glue types are complementary, otherwise, there is a
repulsive force. Given two square units u1 and u2, the local energy between them eunit(u1, u2)
is defined as

eunit(u1, u2) =

{
0 (∀d ∈ D, coord(pos(u1), d) 6=pos(u2))
eatt (∃d ∈ D, coord(pos(u1), d)=pos(u2) ∧ gl(u1, d) + gl(u2, d̂)=0) ∧ gl(u1, d) 6=0)
erep (otherwise)

,

where eatt and erep are local energy caused by the attractive and the repulsive forces,
respectively. Hereafter, we use eatt = −11 and erep = 2, referring to a reported agent-based
simulation method [8].

The potential energy epoly(p1, p2) between polyominoes p1, p2 is a sum of all energy of
the square units in them. Namely,

epoly(p1, p2) =
{ ∑

u1∈p1,u2∈p2
eunit(u1, u2) (p1 6= p2)

0 (otherwise) .

Similarly, the potential energy eagent(a1, a2) between agents a1, a2 can be defined as

eagent(a1, a2) =
{ ∑

p1∈a1,p2∈a2
epoly(p1, p2) (a1 6= a2)

0 (otherwise) .

For convenience, we also define the potential ein(a) of a given agent a as

ein(a) =
∑

p1,p2∈a
epoly(p1, p2)/2.

The total potential energy estate(I) of a given simulation state I is defined as

estate(I) =
∑

a1,a2∈I
eagent(a1, a2)/2.

2.10 Time development of the simulation state
By using the agent-based simulation, we are able to minimize the total energy of a simulation
state. From a state Ii of i-th step of the simulation, the next state Ii+1 can be obtained by
the algorithm shown in Fig. 2. First, an agent asel is randomly selected from the state Ii,
and one of the three actions (i.e. split, move or merge) takes place to update the state. If
none of the actions are admissible, Ii becomes the next state.

Split of agent
Namely, the agent an with an energy ein(an) is split into two, if it is composed of n
(n ≥ 2) polyominoes that satisfy

∃i ∈ N, 1 < i ≤ n, ein(an)/n > emin(i, n)/i,

where emin(i, n) is the smallest energy of the agent with i square units among all the
simulation states before the current n-th step. Namely,

emin(i, n) = min(
⋃
j≤n

{ein(a)|a ∈ Ij ∧ |U(a)| = i}).

DNA 26

8:6 Design Automation of Polyomino Set

Figure 2 Flowchart of simulation.

An agent can be split in several ways. One polyomino p1 is removed from the agent and
becomes a new agent when p1 has the worst (biggest) contribution to the potential. The
polyomino p1 satisfies ∀p2 ∈ asel, eagent(asel, {p1}) ≤ eagent(asel, {p2}). When splitting
takes place, the next simulation state Ii+1 becomes Ii\{asel} ∪ {asel\{p1}, {p1}}.
Move of agent
When the agent cannot split, one or several polyominoes try to move together as a unified
agent. When the agent asel takes a move m ∈ Magent, a simulation state transits to
Imi+1 = Ii\{asel} ∪ {m(asel)}. As there are 7 movements, there are 7 possible simulation
states Inorth

i+1 , Ieast
i+1 , Isouth

i+1 , Iwest
i+1 , Iright

i+1 , Iback
i+1 , I left

i+1. One of them is stochastically selected
as the next simulation state Ii+1 with the probability P(Ii, Imi+1) given as

P(Ii, Imi+1) =
{

min(1, exp((estate(Ii)−estate(Im
i+1))/kBτsim))

|Magent| (condition A)
0 (otherwise)

,

where τsim is a temperature parameter introduced to overcome the energetic barrier (i.e.
local minima), and kB is the Boltzmann constant. Hereafter, we use τsimkB = 5, which is
an empirically good value for the energy convergence. “Condition A” means that there
is no overlap of agents as a result of the movement and the agent asel is not rotational
symmetry, which can be formalized as

(∀p1, p2 ∈ Im
i , p1 6= p2, ∀u1 ∈ p1, u2 ∈ p2, pos(u1) = pos(u2)→ u1 = u2)∧ (m(asel) 6= m(asel)).

Y. Matsumura, I. Kawamata, and S. Murata 8:7

Merge of agents
If all the possible movements increase the potential energy (i.e. ∀m ∈ Magent,P(Ii, Imi+1) <
1/|Magent|) and also none of the movements are chosen by the calculated possibilities, the
agent then try to merge with a neighboring agent. This condition implies that there is an
attractive interaction between asel and the neighboring agent.
The agent asel merges with another agent a1 that can make the assembly most stable
in respect to the potential energy. The agent a1 satisfies ∀a2 ∈ Ii, eagent(asel, a1) ≤
eagent(asel, a2). When the agent asel merges with the agent a1, the simulation state
becomes

Ii+1 = Ii\{asel, a1} ∪ {asel ∪ a1}.

The most stable simulation state is predicted by iterating the above state transition for
nsim times. When a polyomino species P is given, the resulting assembly is defined as a set
of clusters A(P) such that

A(P) = cl(Ibest) (∃Ibest ∈ X,∀I ∈ X, estate(Ibest) ≤ estate(I)),

where X is the set of simulation state through the simulation (X = {I0, I1, . . . , Insim}).

3 Design automation

3.1 Criteria
By using the simulation model in Section 2, we solve a shape self-assembly polyomino
set (SAP) problem, which is formalized as follows.

The target assembly is given as a shape defined as a finite set of positions s =
{(x1, y1), (x2, y2), . . .} with the size mshape = max(x1, x2, . . .) − min(x1, x2, . . .), and
nshape = max(y1, y2, . . .)−min(y1, y2, . . .).
If a polyomino species P can construct a shape s through self-assembly, then P is said to
be an polyomino species of s.
The size of polyominoes in the polyomino species P is less than or equal to mpoly × npoly,
and must be smaller than that of the target shape s.
There are no limitations on the number of representative polyominoes |P | and glue types
|Gl(P)|.
An optimum polyomino species for a shape of finite size is the polyomino species of
minimum cardinality (i.e., with the smallest number of representative polyominoes).
The SAP (shape self-assembly polyomino species) problem is defined as a problem to find
the optimum polyomino species for a given finite-size shape.

3.2 Outline
To tackle the SAP problem, we employ a simulated-annealing algorithm which is one of
the meta-heuristics approaches. The flowchart of the algorithm is given in Fig. 3. An
initial polyomino species is randomly generated from a given shape s and evaluated by
the simulation. In our optimization strategy, a polyomino species is rated better when the
predicted assembly is closer to the target shape, and also the number of representative
polyominoes and the number of glue types are smaller. A polyomino species is gradually
improved by repeating evolutionary process.

DNA 26

8:8 Design Automation of Polyomino Set

Figure 3 Flowchart of automatic design.

3.3 Evaluation of polyomino species
To evaluate a polyomino species P , we introduce an inaccurate but light-cost function losslight
and an accurate but heavy-cost function lossheavy. The function is named “loss” because
the smaller the value, the better the polyomino species. In order to minimize the time
of computation, the light-cost function is first used for rough evaluation, then heavy-cost
function is further used when it meets a certain criteria.

The light cost function is defined as

losslight(P) = |P |2 + 1
2 |Gl(P)|.

When losslight(P) < αth holds, the heavy-cost function is applied, where αth ∈ R is a
threshold parameter updated when lossheavy(P, s) is computed. By introducing αth, the
algorithm can efficiently search for polyomino species with a smaller loss value than current
best value. The initial value of αth is |s|2 + 2|s|, which is the maximum value of losslight(P)
for given target shape s. The algorithm to update αth is

αth :=
{
αth (lossheavy(P, s)− losslight(P) > 0)
min(αth, losslight(P)) (otherwise) .

The condition indicates that αth is updated when all the clusters in A(P) have exactly the
same shape as the target s.

Y. Matsumura, I. Kawamata, and S. Murata 8:9

Figure 4 Example of loss value calculation. (a) Polyomino species P . (b) Cluster A(P) which P

self-assembles into. (c) Target shape s. (d) A state that gives maximum overlap between the cluster
and the shape.

The heavy-cost function is computationally heavy because it is necessary to estimate the
formed clusters A(P) by the simulation. In order to define the heavy-cost function, we need
to introduce a function to evaluate similarity between shapes.

The shape of a given cluster c is represented as a set of x, y coordinates in the cluster,
shape(c) = {pos(u) |u ∈ p, p ∈ c}. The similarity Vss between a cluster c and a shape s is
defined as the number of square units that does not belong to the overlap, which is

Vss(c, s) =
∑

x∈shape(c)

incl(x, s) +
∑
y∈s

incl(y, shape(c)),

where

incl(p, s) =
{

0 (p ∈ s)
−1 (otherwise) .

The maximum volume of the similarity Vmax
ss (c, s) is then defined by moving cluster c to

have the maximum overlap, which means

Vmax
ss (c, s) = max(

⋃
n∈N
{Vss(c′, s)|∀m1,m2, . . .mn ∈ Magent, c

′ = m1 ◦m2 ◦ . . . ◦mn(c)}).

Using the above definitions, the heavy-cost function is defined as

lossheavy(P, s) = |P |2 + 1
2 |Gl(P)|+ (

∑
c∈A(P)

Vmax
ss (c, s)
|A(P)|)2.

As the result, a polyomino species P is evaluated as

loss(P, s) =
{

lossheavy(P, s) (losslight(P) < αth)
|s|2 + 3|s|+ ncell ×mcell (otherwise) .

3.4 Search of polyomino species with low loss value
Fig. 5 illustrates an example of initial and neighbor polyomino species generation. The
initial polyomino species is generated by randomly decomposing the target shape into smaller
polyominoes. This process is realized by repeating following two actions after generating a
naive set of polyomino S = {p} that has only one element p with the shape s.

DNA 26

8:10 Design Automation of Polyomino Set

Figure 5 Generation of initial polyomino species and neighbor polyomino species.

Action1
A square unit u ∈ p is randomly selected. If randomly selected polyomino p ∈ S satisfies
“condition B”, the algorithm removes the square unit u from the polyomino p and generate
a new polyomino {u}. Here, condition B for a given polyomino p means that there are
no other polyominoes with the same shape, or the size of p is smaller than or equal to
mfix × nfix. The S is updated to S\{p} ∪ {p\{u}, {u}}. The probability to perform this
action is rgen.
Action2
A pair of neighboring polyominoes p and p′ are randomly selected from S. If the
polyominoes p and p′ satisfy condition B, the algorithm removes a randomly selected
square unit u ∈ p from p that is adjacent to p′, and add it to p′. The S is updated to
S\{p, p′} ∪ {p\{u}, p′ ∪ {u}}. The probability to perform this action is 1− rgen.

If there are no polyominoes which meet condition B, one of these two actions takes place
ignoring condition B. These two actions are repeated more than nnew steps, so that the sizes
of all the polyominoes become smaller or equal to mpoly × npoly. Hereafter, we use mfix = 2
and nfix = 1 and rgen = 0.05, nnew = 100.

Next, the algorithm assigns the glue types of polyominoes. Each glue type of polyominoes
is set to all different value such that the square units have complementary glue types in
contacting face with another polyomino. Glue types which are not contacting with any
other polyomino are fixed to 0. Polyominoes with the equivalent shape are converted to
equivalent polyominoes by assigning glue types properly (see Appendix A.2). From the set
of polyominoes, corresponding polyomino species can be trivially constructed.

Y. Matsumura, I. Kawamata, and S. Murata 8:11

To make a neighbor polyomino species, one of the two decomposing actions is applied as
a mutation and then new glue types are assigned.

When the current polyomino species is P and its new neighbor is P ′, the possibility to
accept P ′ is

P(P, P ′) =
{

1 (loss(P, s)− loss(P ′, s) ≥ 0)
exp((loss(P, s)− loss(P ′, s)) / τsa) (otherwise) ,

where τsa is a constant temperature parameter. Hereafter, we use τsa = 10, which empirically
accepts 20% of transitions that increase the loss values. The total iteration nopt is set to 100.

4 Result

To demonstrate the validity of proposed algorithm, we tested 3 target shapes with different
complexities (small, medium, and large), where mpoly and npoly are both set to 3. For
each case, we run 100 searches for statistical analysis. The small target is given in 4 × 4
lattice (Fig. 6(a)). For this target, reasonably good polyomino species were always obtained
such as the example in Fig. 6(b,c). The loss function development of 10 representative
searches are shown in Fig. 6(d). The average loss value over 100 searches was 12.5 with a
standard deviation of ±0.37, which is smaller than 67.3± 14.6 of 100 random searches that
find the best candidate from randomly generated 100 polyomino species.

Figure 6 (a) Target shape. (b) An example of polyomino species P . (c) Cluster which P

self-assembles into. (d) Development of loss function. The illustrated solution is shown in bold.

The medium target is given in a 5 × 5 lattice (Fig. 7(a)). A polyomino species that
self-assembles into the target shape was also found as expected (Fig. 7(b,c)). The average
loss value was 15.4± 2.7, which is significantly smaller than 134.2± 29.0 of random search.
Ten representative results are shown in Fig. 7(d).

The large target is given in a 6× 6 lattice (Fig. 8(a)). Some of the searches succeeded in
finding a polyomino species that self-assembles into the target shape as in the example of
Fig. 8(b,c). The polyominoes in the set, however, were all different and none of them were
recycled in different places. The average loss value was 144.7± 87.7, which is smaller than
201.0± 121.6 of random search. Ten representative results are shown in Fig. 8(d).

The performance of the proposed algorithm is summarized in Fig. 9. In the small and
medium cases, the loss values of proposed algorithm got significantly smaller than those of
random search. In the large case, however, the difference between the proposed algorithm
and random search was not as significant. This may due to insufficient iteration of the

DNA 26

8:12 Design Automation of Polyomino Set

Figure 7 (a) Target shape. (b) An example of polyomino species P . (c) Cluster assembled by P .
(d) Development of loss function. The illustrated solution is shown in bold.

Figure 8 (a) Target shape. (b) An example of polyomino species P . (c) Cluster assembled by P .
(d) Development of loss function. The illustrated solution is shown in bold.

search. We further quantified the convergence speed of the search using a logarithmic fit.
The development of loss values in respect to the logarithmic optimization step with estimated
slopes are shown in inset of Fig. 9(b). The number of iteration that is necessary to optimize
the polyomino species using our strategy may grow exponentially to the size of the target.

5 Discussion

In this paper, we consider the problem of finding minimum set of polyominoes that assemble
into a desired shape. A simulator developed on the agent-based Monte Carlo method
evaluates the potential energy among the polyominoes and updates the simulation state to
decrease the total potential. Since the geometrical interactions between polyominoes have
to be taken into account, the developed simulator become complicated compared with the
simulators for homogeneous units such as kTAM, where a set of polyominoes is represented
as an agent, which can move, merge, and split during the simulation. With this framework,
a self-assembly processes of polyominoes can be efficiently simulated.

In the proposed algorithm, meta-heuristic method called simulated annealing was adopted.
Because of the enormous search space for the design problem, a two-step evaluation strategy
was adopted to prune unpromising solution spaces. Automatic design for three example
targets with different size and complexity was tested to show the feasibility of the proposed
method.

Y. Matsumura, I. Kawamata, and S. Murata 8:13

Figure 9 (a) The average of loss values at the last iteration of the searches of small (4 × 4),
medium (5× 5), and large (6× 6) cases. The results of random search and proposed algorithms are
compared. (b) Convergence speed of the proposed algorithm using a logarithmic fit. The inset shows
the log-scale mean development of loss values, where standard deviation is illustrated as transparent
area. The bars summarize the estimated slopes in the log-scale graph. The algorithms are run 100
times, and error bar indicates the standard deviation.

In order to solve a larger problem, we need to improve the efficiency of the algorithm,
especially to reduce the computational cost of Monte Carlo simulation. For this purpose,
it is necessary to redesign the potential energy between polyominoes to avoid kinetic traps.
Introducing a new criterion to terminate the simulation at an appropriate step will be also
effective. Larger-scale problems can be solved by introducing parallel computing hardware
such as GPU along with the above improvements of the algorithms. From a computer science
point of view, whether or not the automatic design problem of the polyomino set is NP is an
interesting issue. Also, extending the problem to three-dimensional polycube is remained for
a future work.

References

1 Mika Göös and Pekka Orponen. Synthesizing minimal tile sets for patterned dna self-
assembly. In International Workshop on DNA-Based Computers, pages 71–82. Springer, 2010.
doi:10.1007/978-3-642-18305-8_7.

2 Yu He, Yi Chen, Haipeng Liu, Alexander E Ribbe, and Chengde Mao. Self-assembly of
hexagonal dna two-dimensional (2d) arrays. Journal of the American Chemical Society,
127(35):12202–12203, 2005. doi:10.1021/ja0541938.

3 Chenxiang Lin, Yan Liu, Sherri Rinker, and Hao Yan. Dna tile based self-assembly: build-
ing complex nanoarchitectures. ChemPhysChem, 7(8):1641–1647, 2006. doi:10.1002/cphc.
200600260.

4 Xiaojun Ma and Fabrizio Lombardi. Synthesis of tile sets for dna self-assembly. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(5):963–967,
2008. doi:10.1109/tcad.2008.917973.

5 Sung Ha Park, Robert Barish, Hanying Li, John H Reif, Gleb Finkelstein, Hao Yan, and
Thomas H LaBean. Three-helix bundle dna tiles self-assemble into 2d lattice or 1d templates
for silver nanowires. Nano letters, 5(4):693–696, 2005. doi:10.1021/nl050108i.

6 Matthew J Patitz. An introduction to tile-based self-assembly and a survey of recent results.
Natural Computing, 13(2):195–224, 2014. URL: https://link.springer.com/content/pdf/
10.1007/s11047-013-9379-4.pdf.

DNA 26

https://doi.org/10.1007/978-3-642-18305-8_7
https://doi.org/10.1021/ja0541938
https://doi.org/10.1002/cphc.200600260
https://doi.org/10.1002/cphc.200600260
https://doi.org/10.1109/tcad.2008.917973
https://doi.org/10.1021/nl050108i
https://link.springer.com/content/pdf/10.1007/s11047-013-9379-4.pdf
https://link.springer.com/content/pdf/10.1007/s11047-013-9379-4.pdf

8:14 Design Automation of Polyomino Set

7 Paul WK Rothemund. Folding dna to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006. doi:10.1038/nature04586.

8 Alessandro Troisi, Vance Wong, and Mark A Ratner. An agent-based approach for modeling
molecular self-organization. Proceedings of the National Academy of Sciences, 102(2):255–260,
2005. doi:10.1073/pnas.0408308102.

9 Erik Winfree. Simulations of computing by self-assembly. In Fourth International Meeting on
DNA-Based Computing. California Institute of Technology, 1998. doi:10.7907/Z9TB14X7.

10 Erik Winfree and Renat Bekbolatov. Proofreading tile sets: Error correction for algorithmic
self-assembly. In International Workshop on DNA-Based Computers, pages 126–144. Springer,
2003. doi:10.1007/978-3-540-24628-2_13.

11 Erik Winfree, Furong Liu, Lisa A Wenzler, and Nadrian C Seeman. Design and self-assembly
of two-dimensional dna crystals. Nature, 394(6693):539–544, 1998. doi:10.1038/28998.

12 Hao Yan, Sung Ha Park, Gleb Finkelstein, John H Reif, and Thomas H LaBean. Dna-templated
self-assembly of protein arrays and highly conductive nanowires. science, 301(5641):1882–1884,
2003. doi:10.1126/science.1089389.

A Appendix

A.1 Movements
Each movement of the polyomino p is defined as

north(p) =
⋃
u∈p
{(coord(pos(u),N), gl(u))},

east(p) =
⋃
u∈p
{(coord(pos(u),E), gl(u))},

south(p) =
⋃
u∈p
{(coord(pos(u),S), gl(u))},

west(p) =
⋃
u∈p
{(coord(pos(u),W), gl(u))},

right(p) =
⋃
u∈p
{(−(posy(u)− cy(p)) + cx(p),posx(u)− cx(p) + cy(p), gl(u)|r)},

back(p) =
⋃
u∈p
{(−(posx(u)− cx(p)) + cx(p), (posy(u)− cy(p)) + cy(p), gl(u)|b)},

left(p) =
⋃
u∈p
{(posy(u)− cy(p) + cx(p),−(posx(u)− cx(p)) + cy(p), gl(u)|l)},

where gl(u) is the glue types g of u = (x, y, g) and g|r, g|b, g|l are the glue types which can
be obtained by rotating g. Namely,

g|r(d) =


g(W) (d = N)
g(N) (d = E)
g(E) (d = S)
g(S) (d = W)

,

g|b(d) =


g(S) (d = N)
g(W) (d = E)
g(N) (d = S)
g(E) (d = W)

,

https://doi.org/10.1038/nature04586
https://doi.org/10.1073/pnas.0408308102
https://doi.org/10.7907/Z9TB14X7
https://doi.org/10.1007/978-3-540-24628-2_13
https://doi.org/10.1038/28998
https://doi.org/10.1126/science.1089389

Y. Matsumura, I. Kawamata, and S. Murata 8:15

g|l(d) =


g(E) (d = N)
g(S) (d = E)
g(W) (d = S)
g(N) (d = W)

.

Similarly, each movement of the agent a is defined as

north(a) =
⋃
p∈a
{north(p)},

east(a) =
⋃
p∈a
{east(p)},

south(a) =
⋃
p∈a
{south(p)},

west(a) =
⋃
p∈a
{west(p)},

right(a) =
⋃
p∈a
{
⋃
u∈p
{(−(posy(u)− cy(p)) + cx(a),posx(u)− cx(a) + cy(a), gl(u)|r)}},

back(a) =
⋃
p∈a
{
⋃
u∈p
{(−(posx(u)− cx(a)) + cx(a),−(posy(u)− cy(a)) + cy(a), gl(u)|b)}},

left(a) =
⋃
p∈a
{
⋃
u∈p
{(posy(u)− cy(a) + cx(a),−(posx(u)− cx(a)) + cy(a), gl(u)|l)}},

where cx(a) and cy(a) are the center of mass of an agent a, which is defined as cx(a) =
round(

∑
u∈p,p∈a posx(u)/|a|) and cy(a) = round(

∑
u∈p,p∈a posy(u)/|a|)).

A.2 Glue type assignment
Given a naive set of polyominoes S, the assignment of glue types satisfies the conditions;

∀p1, p2 ∈ S, ∀u1 ∈ p1,∀u2 ∈ p2,∀d ∈ D, gl(u1, d) = 0→
coord(pos(u1), d) 6= pos(u2), and

∀p1, p2 ∈ S, ∀u1 ∈ p1,∀u2 ∈ p2,∀d ∈ D, coord(pos(u), d) = pos(u2)→
gl(u1, d)) + gl(u2, d̂) = 0 ∧ gl(u1, d)) 6= 0.

The first condition means that the glue type is 0 when there are no neighboring square
units. The second condition guarantees that the the neighboring units have complementary
glue types. Finally, the number of representative polyominoes are decreased as much as
possible by assigning glue types through an ad-hoc trial and error. The assignment of glue
types is applied to construct the initial and neighbor polyomino species.

DNA 26

scadnano: A Browser-Based, Scriptable Tool for
Designing DNA Nanostructures
David Doty1

University of California, Davis, CA, USA
https://web.cs.ucdavis.edu/~doty/
doty@ucdavis.edu

Benjamin L Lee
University of California, Davis, CA, USA
bnllee@ucdavis.edu

Tristan Stérin
Maynooth University, Ireland
https://dna.hamilton.ie/tsterin/index.html
Tristan.Sterin@mu.ie

Abstract
We introduce scadnano (short for “scriptable cadnano”), a computational tool for designing synthetic
DNA structures. Its design is based heavily on cadnano [24], the most widely-used software for
designing DNA origami [33], with three main differences:

1. scadnano runs entirely in the browser, with no software installation required.
2. scadnano designs, while they can be edited manually, can also be created and edited by a

well-documented Python scripting library, to help automate tedious tasks.
3. The scadnano file format is easily human-readable. This goal is closely aligned with the scripting

library, intended to be helpful when debugging scripts or interfacing with other software. The
format is also somewhat more expressive than that of cadnano, able to describe a broader range
of DNA structures than just DNA origami.

2012 ACM Subject Classification Applied computing → Computer-aided design

Keywords and phrases computer-aided design, structural DNA nanotechnology, DNA origami

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.9

Supplementary Material stable/dev apps: https://scadnano.org, https://scadnano.org/dev
repositories: https://github.com/UC-Davis-molecular-computing/scadnano
https://github.com/UC-Davis-molecular-computing/scadnano-python-package
Python library API: https://scadnano-python-package.readthedocs.io
tutorials: https://github.com/UC-Davis-molecular-computing/scadnano-python-package/
blob/master/tutorial/tutorial.md, https://github.com/UC-Davis-molecular-computing/
scadnano/blob/master/tutorial/tutorial.md

Funding David Doty: Supported by NSF grants 1619343, 1900931, and CAREER grant 1844976.
Benjamin L Lee: Supported by REU supplement through NSF CAREER grant 1844976.
Tristan Stérin: Supported by European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 772766, Active-DNA project),
and Science Foundation Ireland (SFI) under Grant number 18/ERCS/5746.

Acknowledgements We thank Matthew Patitz for beta-testing and feedback, and Pierre-Étienne
Meunier, author of codenano, for valuable discussions regarding the data model/file format. We are
grateful to anonymous reviewers whose detailed feedback has increased the presentation quality.

1 Corresponding author

© David Doty, Benjamin L Lee, and Tristan Stérin;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 9; pp. 9:1–9:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3922-172X
https://web.cs.ucdavis.edu/~doty/
mailto:doty@ucdavis.edu
https://orcid.org/0000-0003-2307-075X
mailto:bnllee@ucdavis.edu
https://orcid.org/0000-0002-2649-3718
https://dna.hamilton.ie/tsterin/index.html
mailto:Tristan.Sterin@mu.ie
https://doi.org/10.4230/LIPIcs.DNA.2020.9
https://scadnano.org
https://scadnano.org/dev
https://github.com/UC-Davis-molecular-computing/scadnano
https://github.com/UC-Davis-molecular-computing/scadnano-python-package
https://scadnano-python-package.readthedocs.io
https://github.com/UC-Davis-molecular-computing/scadnano-python-package/blob/master/tutorial/tutorial.md
https://github.com/UC-Davis-molecular-computing/scadnano-python-package/blob/master/tutorial/tutorial.md
https://github.com/UC-Davis-molecular-computing/scadnano/blob/master/tutorial/tutorial.md
https://github.com/UC-Davis-molecular-computing/scadnano/blob/master/tutorial/tutorial.md
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures

1 Introduction

1.1 DNA origami and cadnano
Since its inception almost 15 years ago, DNA origami [33] has stood as the most reliable,
high-yield, and low-cost method for synthesizing uniquely addressed DNA nanostructures,
on the order of 100 nm wide, with ≈ 6 nm addressing resolution (i.e., that’s how far apart
individual strands are).2 To create the original designs, Rothemund wrote custom Matlab
scripts to generate and visualize the designs (with ASCII art). Soon after, the software
cadnano was developed by Douglas et al. [24], as part of a project extending the original 2D
DNA origami results to 3D structures [23]. cadnano has become a standard tool in structural
DNA nanotechnology, used for describing most major DNA origami designs.

1.2 scadnano
The scadnano graphical interface is shown in Figure 1; it mimics that of cadnano.

The goal of scadnano is to aid in designing large-scale DNA nanostructures, such as
DNA origami, with ability to edit structures either manually, or programmatically through
a scripting library. scadnano seeks to imitate most of the features of cadnano, with three
major differences that enhance the usability and interoperability of scadnano:
1. scadnano runs entirely in the browser, with no software installation required. It aims,

above all else, to be simple and easy to use, well-suited for teaching, for example.
2. scadnano designs, while they can be edited manually, can also be created and edited by a

well-documented Python scripting library, to help automate tedious tasks.3
3. The scadnano file format is easily human-readable and expressive, natural for describing

a broader range of DNA structures than just DNA origami. This goal is closely aligned
with the scripting library, useful when debugging scripts or interfacing with other soft-
ware. A related project, codenano [5], uses essentially the same file format, developed
simultaneously in consultation with the main author of codenano.

The major features of scadnano are described in more detail in Section 3. Designed with
interoperability in mind, any cadnano design can be imported into scadnano, and scadnano
designs obeying certain constraints (see Section 2.3) can be exported to cadnano.

1.3 Related work
cadnano is the most related prior work, and its design was the inspiration for scadnano.
Section 3.1 goes into detail about features that scadnano shares in common with cadnano,
and the rest of Section 3 discusses some extra features in scadnano. codenano is close in
purpose to scadnano [5], being also browser-based and scriptable. Unlike scadnano, codenano
includes 3D visualisation components but not graphical editing.

2 The basic idea of DNA origami is to use a long scaffold strand (either synthesized or natural; the most
common choice is the natural circular single-stranded virus known as M13mp18, 7249 bases long), and
to synthesize shorter (a few dozen bases long) staple strands designed to bind to multiple regions of the
scaffold. Upon mixing in standard DNA self-assembly buffer conditions (e.g., 10 mM Tris, 1 mM EDTA,
pH 8.0, 12.5 mM MgCl2), with staples “significantly” more concentrated than the scaffold (typical
concentrations are 1 nM scaffold and 10 nM each staple), and annealing from 90°C to 20°C for one hour,
the staples bind to the scaffold and fold it into the desired shape, while excess staples remain free in
solution and are easily separated from the formed structures by standard purification techniques.

3 cadnano v2.5 has a Python scripting library, but its documentation is incomplete [3], and cadnano v2.5
has not been updated for two years [2] at the time of this writing.

D. Doty, B. L. Lee, and T. Stérin 9:3

Figure 1 screenshot of scadnano, annotated with some labels (in orange rectangles) to point
out various parts of the data model.4 The center part is the main view, which shows the x and y

coordinates; most editing takes place here. On the left is the side view, which shows the z and y

coordinates. y increases going down in both views (so-called “screen coordinates), x increases going
right in the main view and going into the screen in the side view. z increases going right in the side
view and going out of the screen in the main view. The Edit modes on the right change what sorts
of edits are possible, and the Select modes change what sort of objects can be selected while in the
“select” edit mode.

vHelix [18] offers comprehensive 3D origami editing and visualisation features but relies on
Autodesk Maya. Adenita [21] is a design and visualisation tool that allows one to work with
various DNA nanostructures: standard parallel-helix DNA origami, wireframe origamis [28],
and tile-based designs. Adenita is distributed within the SAMSON [17] molecular modeling
platform. Specific to the domain of 2D and 3D wireframe origamis, ATHENA [28] provides
both an editing interface and sequence design algorithms that generate staple sequences from a
2D sketch. Not related to graphical or script-based DNA design editing, the following software
provides structural prediction tools for various features of DNA designs: CanDo [4] (finite
elements-based 3D structure prediction), NUPACK and ViennaRNA [30,43] (thermodynamic
energy of DNA strands), oxDNA [38] (kinetics prediction by molecular dynamics simulation),
and MrDNA [31] (3D structure and kinetics prediction).

1.4 Paper outline
Section 2 describes the data model used by scadnano to represent a DNA design, and
its closely related storage file format, including a comparison with cadnano’s file format.
Section 3 describes several features of scadnano, including some that are absent from cadnano.
Section 4 explains the software architecture of scadnano. Section 4 is not necessary to
understand how to use scadnano, but it helps to justify why scadnano may be simpler to
maintain and enhance in the future. Section 5 discusses possible future features.

This paper is not a self-contained document describing scadnano in full. See the supple-
mentary material links for online documentation, tutorials, and the Python library API.

4 This design is intended merely to show some scadnano features, not to show proper design respecting
DNA crossover geometry; it would be strained if actually assembled.

DNA 26

9:4 scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures

2 Data model and file format

2.1 scadnano data model

Although scadnano and its data model are natural for describing DNA origami, it can be
used to describe any DNA nanostructure composed of several DNA strands. Like cadnano,
scadnano is especially well-suited to structures where all DNA helices are parallel, which
includes not only origami, but also certain tile-based designs (e.g., [39,40,42]), or “criss-cross
slat” assembly [32]. The basic concepts, explained in more detail below, are that the design
is composed of several strands, which are bound to each other on some domains, and possibly
single-stranded on others, and double-stranded portions of DNA occupy a helix.

DNA Design

An example DNA design is shown in Figure 1, showing most of the features discussed here.
A design (the type of object stored in a .sc file produced when clicking “Save” in scadnano)
consists of a grid type (a.k.a., lattice, one of the following types: square, honeycomb, hex, or
none, explained below), a list of helices, and a list of strands. The order of strands in the
list generally doesn’t matter, although it influences which are drawn on top, so a strand later
in the list will have its crossovers drawn over the top of earlier strands.

Helices

Unlike strands, the order of the helices matters; if there are h helices, the helices are numbered
0 through h − 1. This can be overridden by specifying a field called idx in each helix, but
the default is to number them consecutively. Each helix defines a set of integer offsets with a
minimum and maximum; in the example above, the minimum and maximum for each helix
are 0 and 48, respectively, so 48 total offsets are shown. Each offset is a position where a
DNA base of a strand can go.

Helices in a grid (meaning one of square, honeycomb, or hex) have a 2D integer
grid_position depicted in the side view (see Figure 3). Helices without a grid (mean-
ing grid type none) have a position, a 3D real vector describing their x, y, z coordinates.
Each Helix also has fields to describe angular orientation, using the “aircraft principle
axes” pitch, roll, and yaw (default 0), although this feature is currently not well-supported
(https://github.com/UC-Davis-molecular-computing/scadnano/issues/39). The co-
ordinates of helices in the main view depends on grid_position if a grid is used, and on
position otherwise. (Each grid position is essentially interpreted as a position with z =
pitch = roll = yaw = 0.) Helices are listed from top to bottom in the order they appear in
the sequence, unless the property helices_view_order is specified in the design to display
them in a different order, though currently this can only be done in the scripting library.

Helix.roll describes the DNA backbone rotation about the long axis of the helix. At
the offset Helix.min_offset, the backbone of the forward strand on that helix has angle
Helix.roll, where we define 0 degrees to point to straight up in the side view. Rotation is
clockwise as the rotation increases from 0 up to 360 degrees. This feature is not intended
as a globally predictive model of stability. Rather, it helps visualize backbone angles, to
place crossovers that minimize strain, by ensuring crossovers are “locally consistent”, without
enforcing a global notion of absolute backbone rotation on all offsets in the system.

https://github.com/UC-Davis-molecular-computing/scadnano/issues/39

D. Doty, B. L. Lee, and T. Stérin 9:5

Strands and domains

Each strand is defined primarily by an ordered list of domains. Each domain is either a
single-stranded loopout not associated to any helix, or it is a bound domain: a region of the
strand that is contiguous on a single helix. The phrase is a bit misleading, since a bound
domain is not necessarily bound to another strand, but the intention is for most of them to
be bound, and for single-stranded regions usually to be represented by loopouts.

Each bound domain is specified by four mandatory properties: helix (indicating the
index of the helix on which the domain resides), forward (a direction can be forward or
reverse, indicated by whether this field is true or false), start integer offset, and a larger
end integer offset. As with common string/list indexing in programming languages, start
is inclusive but end is exclusive. So for example, a bound domain with end=8 is adjacent
to one with start=8. In the main view, forward bound domains are depicted on the top
half of the helix, and reverse (those with forward=false) are on the bottom half. If a bound
domain is forward, then start is the offset of its 5’ end, and end−1 is the offset of its 3’ end,
otherwise these roles are reversed. There is implicitly a crossover between adjacent bound
domains in a strand. Loopouts are explicitly specified as a (non-bound) domain in between
two bound domains. Currently, two loopouts cannot be consecutive (and this will remain
a requirement), and a loopout cannot be the first or last domain of a strand (this may be
relaxed in the future).

Bound domains may have optional fields, notably deletions (called skips in cadnano) and
insertions (called loops in cadnano). They are a visual trick used to allow bound domains
to appear to be one length in the main view of scadnano, while actually having a different
length. Normally, each offset represents a single base. If instead a deletion appears at that
offset, then it does not correspond to any DNA base. If an insertion appears at that offset, it
has a positive integer length: the number of bases represented by that offset is length+1.

Strand optional fields

Each strand also has a color and a Boolean field is_scaffold. DNA origami designs have at
least one strand that is a scaffold (but can have more), and a non-DNA-origami design is
simply one in which every strand has is_scaffold = false. Unlike cadnano, a scaffold strand
can have either direction on any helix. When there is at least one scaffold, all non-scaffold
strands are called staples. The general idea behind DNA origami is that all binding is between
scaffolds and staples, never scaffold-scaffold or staple-staple. However, this convention is not
enforced by scadnano; there are legitimate reasons for non-scaffold strands to bind to each
other (e.g., DNA walkers [26] or circuits [20] on the surface of an origami).

A strand can have an optional DNA sequence. Of course, since the whole point of this
software is to help design DNA structures, at some point a DNA sequence should be assigned
to some of the strands. However, it is often best to mostly finalize the design before assigning
a DNA sequence, which is why the field is optional. Many of the operations attempt to keep
things consistent when modifying a design where some strands already have DNA sequences
assigned, but in some cases it’s not clear what to do. (e.g., what DNA sequence results when
a length-5 strand with sequence AACGT is extended to be longer?)

DNA modifications

DNA modifications describe ways that various small molecules may be attached to synthetic
DNA as part of the DNA synthesis process. Common DNA modifications include biotin
(useful for binding to the protein streptavidin) and fluorophores such as Cy3 (useful for light
microscopy). Modifications can be attached to the 5’ end, the 3’ end, or to an internal base.

DNA 26

9:6 scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures

A few pre-defined modifications are provided as examples in the Python scripting library.
However, it is straightforward to implement a custom modification. For example, useful
fields of a modification are display_text, which is displayed in the web interface (e.g., B for
biotin; see Figure 1), and idt_text, the IDT code for the modification, used for exporting
DNA sequences (e.g., "/5Biosg/ACGT", which attaches a 5’ biotin to the sequence ACGT).

Because it is common to attach one type of modification to several strands in a DNA
design, modifications are defined at the top level of a DNA design, where they are given a
string id, referenced on each strand that contains the modification.

2.2 scadnano file format
The following scadnano .sc file encodes the design in Figure 1 in a format called JSON, a
commonly-used plain text format for describing structured data [9], with support in many
programming language standard libraries. The format is not exhaustively described here,
but the example shows how the JSON data maps to the data model described above.
{

"grid": " square ",
" helices ": [

{" max_offset ": 48, " grid_position ": [0, 0]},
{" max_offset ": 48, " grid_position ": [0, 1]}

],
" modifications_in_design ": {

"/5 Biosg /": {
" display_text ": "B",
" idt_text ": "/5 Biosg /",
" location ": "5 ’"

}
},
" strands ": [

{
" color ": "#0066cc",
" sequence ": "

AACGTAACGTAACGTAACGTAACGTAACGTAACGTAACGTAACGTAACGTAACGTAACGTAACGTAACG ",
" domains ": [

{" helix ": 1, " forward ": false , " start ": 8, "end": 24, " deletions ": [20]},
{" helix ":0, " forward ":true, " start ":8, "end":40, " insertions ":[[14,1],[26,2]]},
{" loopout ": 3},
{" helix ": 1, " forward ": false , " start ": 24, "end": 40}

],
" is_scaffold ": true

},
{

" color ": "#f74308",
" sequence ": " ACGTTACGTTACGTTTTACGTTACGTTACGTT ",
" domains ": [

{" helix ": 1, " forward ": true, " start ": 8, "end": 24, " deletions ": [20]},
{" helix ": 0, " forward ": false , " start ": 8, "end": 24, " insertions ": [[14, 1]]}

]
},
{

" color ": "#57bb00",
" sequence ": " ACGTTACGTTACGTTACGCGTTACGTTACGTTAC ",
" domains ": [

{" helix ": 0, " forward ": false , " start ": 24, "end": 40, " insertions ":[[26,2]]},
{" helix ": 1, " forward ": true, " start ": 24, "end": 40}

],
"5 prime_modification ": "/5 Biosg /"

}
]

}

2.3 Comparison to cadnano file format
The file format used by cadnano v2 is a grid of dimension (number of helices)×(maximum
offset) describing at each position whether a domain is present and the direction in which it
is going. Additional information about insertions and deletions is given in a similar way.

D. Doty, B. L. Lee, and T. Stérin 9:7

An important goal of scadnano is to ensure interoperability with cadnano (see Section 3.9).
Thus every cadnano design can be imported into scadnano. However, the converse is not
true; scadnano’s data model can describe features not present in cadnano.

1. cadnano does not have a way to encode loopouts, modifications, or gridless designs.
2. cadnano does not store DNA sequences in its file format.
3. cadnano has the constraint that helices with even index have the scaffold going forward

and helices with odd index have the scaffold going backward. scadnano designs not
following that convention cannot be encoded in cadnano.

4. cadnano does not explicitly encode the grid type, instead inferring it from the maximum
helix offset: multiples of 21 represent the honeycomb grid, while multiples of 32 represent
the square grid. To encode a scadnano design in cadnano’s convention, each helix’s
maximum offset is modified to the lowest multiple of 21 or 32 fitting the design.

Converting a scadnano design to cadnano v2 is straightforward: lay out all domains of all
strands in a (number of helices)×(modified maximum offset) grid. Maximum offsets have to
be modified because of Item 4. However, converting a cadnano design to scadnano format is
a bit more involved, requiring a connected components detection algorithm performed on
the grid – similar to a depth-first search – in order to identify strands and their domains.

3 Features

3.1 Features shared with cadnano v2
The web interface of scadnano is similar to cadnano (see Figure 1). Like cadnano, scadnano
is optimal for structures consisting of parallel helices. On the left, the side view shows a
cross-sectional view of the lattice where helices can be added to the design. The main view
shows what the helix would look like going from left to right in the screen. Moving to the
right in the main view is like moving “into the screen” in the side view.

DNA designs are drawn as they are often drawn in figures, with strands on a double-helix
represented as straight lines that are connected to other helices by crossovers. Users can also
add deletions and insertions (called skips and loops in cadnano) which means a strand has
fewer or more bases than the interface’s visually depicted length. Insertions and deletions
help to use a regular spacing pattern – note the “major tick marks” every 8 bases on the
helix – while allowing short regions to deviate and use more or fewer than the typical number
of bases between two major tick marks. One feature scadnano adds to cadnano is the ability
to customize the major tick marks, including non-regular spacing, e.g, alternating 10, 11, 10,
11 for single-stranded tiles [39,42].

scadnano includes several “Edit modes”, many similar to those of cadnano, shown in the
top right corner of Figure 1. There are two main modes for editing, select mode and pencil
mode, as well as several others explained in more detail in the scadnano documentation.
Select mode allows users to select, resize, and delete items, just like in cadnano. (scadnano
additionally allows users to copy and paste or move items; see Section 3.2). Pencil mode is
used to create new objects such as helices, strands, or crossovers.

Users can assign DNA sequences to strands, and the complementary sequences for the
bound strands are automatically computed. The common M13 DNA sequence is provided as
a default for single-scaffold designs.

Although scadnano currently provides no 3D visualization, it does provide a primitive way
to visualize the DNA backbone angles to help pick where to place crossovers; see Figure 2.
This feature is slightly more flexible than the analogous feature in cadnano in that the user

DNA 26

9:8 scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures

(a) Backbone angles at a cros-
sover.

(b) Backbone angle 3 bases to
the left.

Figure 2 The side view displays the backbone angles to aid with crossover placement.

is allow to set the backbone angle at one base position to see what that implies about the
backbone angle at other (typically nearby) base positions. For example, a user can “unstrain”
the backbone at a crossover so that the backbone angles are perfectly aligned (see Figure 2a).
The backbone angles at other positions are automatically computed (see Figure 2b).

The side and main view designs can be exported as SVG figures, and DNA sequences can
be be exported into a CSV file, as well as formats recognized by the synthesis company IDT.

0,0
1,0

2,0
-1,0

-1,1

0,-1
-1,-1 1,-1

2,-1
3,-1

4,-1

3,0
4,0

0,1
1,1

2,1
3,1

4,1

0,2
-1,2 1,2

2,2
3,2

4,2

-1,3
0,3

1,3
2,3

3,3
4,3

-1,4
0,4

1,4
2,4

3,4
4,4

(a) Honeycomb grid, in-
teger coordinates.

0,0 1,0 2,0-1,0

-1,1

0,-1-1,-1 1,-1 2,-1 3,-1 4,-1

3,0 4,0

0,1 1,1 2,1 3,1 4,1

0,2-1,2 1,2 2,2 3,2 4,2

-1,3 0,3 1,3 2,3 3,3 4,3

-1,4 0,4 1,4 2,4 3,4 4,4

(b) Square grid, integer co-
ordinates.

(c) No grid, real-valued co-
ordinates in units of nanomet-
ers (coordinates not shown).

Figure 3 scadnano grids (hex grid not shown).

Like cadnano, helices can be placed in a square or honeycomb lattice, as shown in
Figure 3a and Figure 3b. scadnano provides two more grids not available on cadnano: the
hex grid (allowing helices in the “holes” of the honeycomb grid) and no grid; see Section 3.8.

The remainder of Section 3 describes features not shared with cadnano v2.

3.2 Copy and paste

A full DNA origami design using a standard 7249-base M13mp18 scaffold uses ≈ 200 staples,
which are tedious to create manually. In scadnano, this process is accelerated by the

D. Doty, B. L. Lee, and T. Stérin 9:9

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Figure 4 A standard 24 helix DNA origami rectangle design, with “twist-correction” [41].

copy/paste feature.5 For instance, to create a vertical “column” of 24 staples in a 24-helix
rectangle (see Figure 4), one would create 2 types of staples (plus some special cases near
the top/bottom), copy/paste them to make 4, copy/paste those to make 8, then copy/paste
the group of 8 two more times for a total of 24 staples. Since most of the design consists
of horizontally translated copies of this column, it can be created quickly by copying and
pasting the column.

3.3 Scripting library
The scadnano Python module allows one to write scripts for creating and editing scadnano
designs. (Note that cadnano v2.5, unlike v2, does have a scripting library [2], though with
incomplete documentation.) The module helps automate some of the tedious tasks involved
in creating DNA designs, as well as making large-scale changes to them that are easier to
describe programmatically than to do by hand in scadnano.

For example, the following is Python code generating the design in Figure 4, creating a
.sc file with the design and a Microsoft Excel file with staple strand DNA sequences in a
format ready to order from the DNA synthesis company IDT. It is perhaps unnecessary to
read the code in detail; we provide it to demonstrate that “production-ready” designs can
be created with relatively short and simple scripts. It follows the pattern described in the
online tutorial (see first page).

5 cadnano provides features to make large designs quickly, autostaple and autobreak, which are faster than
copy/pasting strands, though they give less control over the outcome.

DNA 26

9:10 scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures

import scadnano as sc

def create_design ():
design = create_design_with_precursor_scaffolds ()
add_scaffold_nicks (design)
add_scaffold_crossovers (design)
scaffold = design . strands [0]
scaffold . set_scaffold ()
add_precursor_staples (design)
add_staple_nicks (design)
add_staple_crossovers (design)
add_twist_correcting_deletions (design)
design . assign_m13_to_scaffold ()
return design

def create_design_with_precursor_scaffolds () -> sc. DNADesign :
helices = [sc. Helix (max_offset =304) for _ in range (24)]
scaffolds = [sc. Strand ([sc. Domain (helix =helix , forward = helix %2 == 0, start =8, end
=296)])

for helix in range (24)]
return DNADesign (helices =helices , strands =scaffolds , grid= square)

def add_scaffold_nicks (design : sc. DNADesign):
for helix in range (1, 24):

design . add_nick (helix =helix , offset =152 , forward = helix %2 == 0)

def add_scaffold_crossovers (design : sc. DNADesign):
crossovers = []
for helix in range (1, 23, 2): # scaffold interior

crossovers . append (
sc. Crossover (helix1 =helix , helix2 = helix +1, offset1 =152 , forward1 = False))

for helix in range (0, 23, 2): # scaffold edges
crossovers . append (

sc. Crossover (helix1 =helix , helix2 = helix +1, offset1 =8, forward1 =True , half=
True))

crossovers . append (
sc. Crossover (helix1 =helix , helix2 = helix +1, offset1 =295 , forward1 =True ,half=

True))
design . add_crossovers (crossovers)

def add_precursor_staples (design : sc. DNADesign):
staples = [sc. Strand ([sc. Domain (helix =helix , forward = helix %2 == 1, start =8, end
=296)])

for helix in range (24)]
for staple in staples :

design . add_strand (staple)

def add_staple_nicks (design : sc. DNADesign):
for helix in range (24):

start_offset = 32 if helix % 2 == 0 else 48
for offset in range (start_offset , 280 , 32):

design . add_nick (helix , offset , forward = helix %2 == 1)

def add_staple_crossovers (design : sc. DNADesign):
for helix in range (23):

start_offset = 24 if helix % 2 == 0 else 40
for offset in range (start_offset , 296 , 32):

if offset != 152: # skip crossover near seam
design . add_full_crossover (helix1 =helix , helix2 = helix + 1,

offset1 =offset , forward1 = helix % 2 == 1)

def add_twist_correcting_deletions (design : sc. DNADesign):
for helix in range (24):

for offset in range (27 , 294 , 48):
design . add_deletion (helix , offset)

def export_idt_plate_file (design : sc. DNADesign):
for strand in design . strands :

if strand != design . scaffold :
strand . set_default_idt (use_default_idt =True)

design . write_idt_plate_excel_file (use_default_plates =True)

if __name__ == " __main__ ":
design = create_design ()
export_idt_plate_file (design)
design . write_scadnano_file ()

D. Doty, B. L. Lee, and T. Stérin 9:11

3.4 Hiding helices to aid 3D design
The 2D main view in scadnano distorts the relative positions of the helices if they do not
form a flat 2D shape as in Figure 4. For example, consider Figure 5. Helices 19 and 24,
though adjacent (see side view), appear far apart in the main view. Thus crossovers between
these helices, while appearing to stretch over a long distance (Figure 5a), are the same length
as any other crossover (just a single phosphate group between two DNA bases).

(a) Without helix-hiding. (b) With helix-hiding.

Figure 5 Two helices in a design, 19 and 24, are adjacent in the side view (i.e., in the actual 3D
structure) but not in the main view. The selected crossover appears “long-range” in Figure 5a, but
“short-range” in Figure 5b.

This can make it difficult to analyze and edit 3D designs. For example, consider the
squarenut design from the original 3D origami paper [23] (see Figure 6a). This design is
difficult to visualize because the 2D view is not representative of the 3D positions of the
actual DNA helices, in no small part because of the “cobweb” of crossovers that results.

To aid in visualization, scadnano can display only selected helices (see Figure 6b). Helix
19 and 24 in Figure 5b can be seen in the side view are actually adjacent in 3D space. When
other helices are hidden, helices 19 and 24 are displayed adjacently in the main view.

cadnano puts all helices immediately adjacent to each other in the order they are displayed
in the main view. scadnano uses the distance between helices (as determined by their grid
position or gridless 3D position) to determine distances. Helices are displayed in order of
their index field idx (unless helices_view_order is specified to alter this order), but two
helices adjacent in this order will have a vertical distance between them in the main view
proportional to the distance as determined by the grid position or gridless 3D position.

3.5 Single-stranded loopouts
scadnano allows a type of single-stranded domain not associated to any helix, called a loopout,
used to describe common single-stranded features such as hairpins. In cadnano users would
need to make a “fake” helix if they want to add a single-stranded DNA. For some designs,
this creates awkward artifacts such as long-range crossovers to reach the fake helix.

3.6 DNA modifications
scadnano supports for DNA modifications, such as biotin or Cy3 [8]. Figure 7a shows an
example of biotin modifications to the 5’ end of some staples in a 16-helix DNA origami.
Users can specify a string such as "O" to represent the modification in the web interface.

The aspect ratio is proper for 2D origami with helices all stacked in the square lattice,
helping to place modifications and visualize their relative positions to scale. Compare the
scadnano display in Figure 7a to the AFM image in Figure 7b. Currently, only a few
pre-loaded modifications are provided, but users can describe custom modifications.

DNA 26

9:12 scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures

(a) All helices shown, causing the dreaded crossover cobweb, like laser beams guarding priceless art.

(b) Restricted subset of helices displayed: only relevant helices and crossovers are shown.

Figure 6 Squarenut 3D origami [23], a typical 3D origami difficult to visualize in a 2D projection.

3.7 Unused fields

In order to maximize interoperability with other tools, scadnano allows arbitrary fields to
be included in a scadnano .sc file. Any fields that it does not recognize are simply ignored.
However, they are stored and written back out when the file is saved. Thus, “light” editing
of scadnano files is possible that will preserve fields used by other programs. For example,
codenano [5] allows an optional field label on each strand, which will be preserved for each
strand by scadnano while editing other aspects of the design.

3.8 Gridless helix placement

scadnano includes the option to use no grid; see Figure 3c. This allows more flexible helix
placement, where helix centers can be placed at any real-valued (i.e., floating-point) (z, y)
coordinate. This feature is useful for some designs that do not align nicely with the standard
square or honeycomb lattice. In the absence of a grid, coordinates of helices are specified in
nanometers. By default, the distance between each DNA helix center is 3 nm.6

6 The accepted measurement of the DNA double-helix diameter is ≈ 2 nm. However, AFM images show
that in 2D square-lattice DNA origami designs, an origami with n helices will have height in nanometers
of approximately 3 · n due to electrostatic repulsion between neighboring helices.

D. Doty, B. L. Lee, and T. Stérin 9:13

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1

1

1 O
1

1

1

1

1O
1

1

1

1

1

1

1

1

1

O1

O
O1

O1

1

1

1

1O
1

1

1

1

1

1

O

1

1O
1O
O

1O
1

1

1

1

1

1

O

1

1

1

1O
1

1

1

O1

O
O1

O1

1

1

1

1

1

1

1

O1

O
O1

O1

1

O
1

1O

1O
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1O
1

1

1

1

1

1

O

1O

1O
1O

1

1O 1

1

1

O1

1

O

1

1

1

O
1O
1

1

1

1

1

1

(a) biotin DNA modifications on the 5’ end of some staples, displayed in scadnano.

(b) The same design imaged with atomic force microscopy (AFM), with strep-
tavidin added to visualize the biotin locations. (scale bar: 50 nm) (image source:
https://web.cs.ucdavis.edu/~doty/papers/#proposal)

Figure 7 An example of a design containing biotin modifications.

3.9 Interoperability with cadnano
Interoperability with cadnano (version 2) is an important goal of the project. Both the
scadnano GUI and Python module provide functionality that allows users to import/export
a design from/to cadnano. All cadnano (version 2) designs can be imported in scadnano.
However, because of fundamental differences between the way cadnano and scadnano encode
designs, some scadnano designs cannot be converted cadnano (see Section 2.3).7

4 Software architecture

4.1 Two codebases
The codebase for scadnano is split into two pieces: the Python scripting library, and the
web interface. Unfortunately, some algorithmic functionality is duplicated between them.
We chose Python as the scripting language because it is easy to learn and already familiar
to many physical scientists likely to use scadnano. However (despite innovations such as
Pyodide [11], Skulpt [15], and Brython [1]), Python is not well-suited for front-end web
programming, where the code is executed in the browser rather than on a server. A design
goal of scadnano is to do as much work as possible in the browser.

The web interface is instead implemented using the Dart programming language [6], a
modern, strongly-typed, object-oriented language that can be compiled to Javascript, the
lingua franca of web browsers. In order to make the Python scripting library as easy to use
as possible (no dependence on Dart libraries) and to keep the web interface as fast as possible

7 These constraints are described in the documentation: https://scadnano-python-package.
readthedocs.io/en/latest/index.html#interoperability-cadnano-v2

DNA 26

https://web.cs.ucdavis.edu/~doty/papers/#proposal
https://scadnano-python-package.readthedocs.io/en/latest/index.html#interoperability-cadnano-v2
https://scadnano-python-package.readthedocs.io/en/latest/index.html#interoperability-cadnano-v2

9:14 scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures

and avoid the need to farm out computation to a server, some algorithms (e.g., computing
complementary DNA sequences of strands when they are bound to another strand that has
had a DNA sequence assigned to it) are implemented in both libraries.

However, we intend for the file format to be decoupled from the scripting and web-based
programs that manipulate it. Indeed, another tool called codenano [5] uses essentially the
same file format as scadnano, although that program is written in Rust and has the user
specify the design by writing Rust code.

4.2 Unidirectional data flow in graphical user interface code
Graphical user interface software, inherently asynchronous and non-sequential, is notoriously
difficult to reason about. Whole classes of bugs exist that do not plague programs with only
sequential logic. The open-source software community has developed many tools to aid in
such design. The model-view-controller (MVC) architecture is almost as old as graphical
interfaces themselves, dating to the 1970s [29]. However, MVC is not very well-defined,
particularly the controller part, and still lends itself to common bugs.

A more recent innovation, originating within the past decade, goes under a few names,
such as model-view-update, the Elm architecture [7], or unidirectional data flow [16]. Several
variants exist implementing the idea. We chose a popular pair of technologies, React [12]
and Redux [14]. They are designed for Javascript, but since Dart compiles to Javascript,
they can be used with Dart with appropriate wrapping libraries [10,13].

The cited links go into detail about the architecture; we summarize it briefly here for the
curious. Briefly, all application state is stored in a single immutable object. (In scadnano,
this includes the entire DNA design, as well as more ephemeral UI state, such as which
strands are currently selected.) Immutability is a powerful concept in programming, allowing
one to share an object between many concurrent processes without worrying that one process
will modify it in ways unexpected by the other processes. The global state object is a tree
(cycles are difficult to handle with immutable objects). The view (what the user sees on the
screen) is specified as a deterministic function of the state. This greatly reduces the “surface
area” where bugs can (and reliably do) occur: the application does not have to contain code
stating how to modify the view in response to any possible change in the state. It merely
says what the entire view should be, as a function of the entire state.

Changes to the application state are expressed using the Command pattern [25] by
dispatching an action describing that the state should change. The application responds
to the action by computing the new state as a deterministic function of the old state and
the action. The view redraws itself, but optimizations ensure only the parts that depend on
changed state will actually be redrawn.

This decoupling of actions that change state (and the sometimes complex logic behind
them), and views that draw themselves as a function of a single state, is the key to making
it straightforward to implement new features without introducing bugs. It’s not foolproof;
bugs do occur. There is also a nontrivial computational cost: the React library compares the
old state to the new to determine which subtrees actually changed (determining which parts
of the view actually need to re-render), a potentially expensive operation.

However, we find it is worth the computational cost for the benefit of reliability. We
believe it will make it easier to maintain scadnano, fix bugs, and add features in the future.

Both the Python package and the Dart web interface are open-source software to which
anyone can contribute. Both repositories have a CONTRIBUTING document explaining how
to contribute to the projects, following the git model of making a separate branch, adding
the change, and doing a pull request to merge the changes. Both repositories are currently
maintained by the first author, who reviews all pull requests.

D. Doty, B. L. Lee, and T. Stérin 9:15

5 Conclusion

The goal of scadnano is to reproduce the usefulness of cadnano for designing large-scale DNA
structures in a web app with a well-documented, easy-to-use scripting library. It is ready
to use for designing DNA structures, although some work remains to bring it up to a more
polished state. The issues page of each repository (see first page) shows many bugs and
feature enhancements that have not yet been addressed.

scadnano excels where cadnano excels: in describing DNA structures where all DNA
helices are in parallel. A broader range of DNA nanostructures exists, such as wireframe
designs [19,44] and curved DNA origami shapes [22,27]. A 2D projected view can describe
these, but more awkwardly than a 3D view. Since the chief goal of scadnano is to remain
easy to use and responsive to bug reports and feature requests within the current scope of
scadnano, it will remain for the near-term future as a tool primarily for designs that are
straightforward to visualize in 2D. We outline possible future work:

export to other file formats. Currently, scadnano can export to the cadnano v2 file format,
and it can export DNA sequences in either a comma-separated value (CSV) file, which
can be processed by the user’s custom scripts, or in a few formats recognized by the
DNA synthesis company IDT (Integrated DNA Technologies, Coralville, IA, https:
//www.idtdna.com). It should be straightforward to export to formats recognized by
other DNA synthesis companies (e.g., Bioneer), or other DNA nanotech software (e.g.,
oxDNA).

helices rotated in the main view plane. Some 2D structures do not have all helices in par-
allel, for example DNA origami implementations of 4-sided tiles [37], or flat origami
“stiffened” by a second layer of perpendicular helices [36]. We are exploring design ideas
for supporting this in a way “natural” for editing in the 2D view. In particular, copy/paste
and moving of strands spanning multiple helices makes most sense for groups of helices
that are parallel. One idea is to let a design specify several helix groups, where all helices
within a group are parallel, but the groups have different rotations and translations. (For
example, there would be two groups for [36] and two or four groups for [37].)

3D visualization. cadnano has never been ideal for visualizing arbitrary 3D structures, and
neither is scadnano currently. It may remain the case that the ideal way to visualize
3D structures is to export the design to another tool specialized for the job, such as
codenano [5], CanDo [4], or oxDNA [35]. However, WebGL provides a powerful platform
for visualizing 3D structures, used by other software such as oxDNA and codenano. In
fact, since codenano is itself implemented as a web app (written in Rust that is compiled to
WebAssembly, which is itself callable from Javascript), it should be possible to implement
the 3D visualization features of codenano as a library that scadnano can call.

DNA design database. Communication of DNA designs through the Supplementary In-
formation of a journal remains an ad hoc method. A centralized database of DNA
designs would benefit the community. We hope that the scadnano/codenano file format
is sufficiently expressive to describe any such design. However, such a database need not
have anything to do with the scadnano website itself.

collaborative editing. Collaborative editing tools such as Google Docs make use of a recently
developed technique known as a conflict-free replicated data type (CRDT) [34]. It is con-
ceivable that a CRDT representation of a DNA design could enable remote collaborators
to simultaneously view and edit a DNA design.

DNA 26

https://www.idtdna.com
https://www.idtdna.com

9:16 scadnano: A Browser-Based, Scriptable Tool for Designing DNA Nanostructures

References
1 Brython. https://brython.info/.
2 cadnano v2.5. https://github.com/cadnano/cadnano2.5.
3 cadnano v2.5 Python API. https://cadnano.readthedocs.io/en/master/scripting.html.
4 Cando. https://cando-dna-origami.org/.
5 codenano. https://dna.hamilton.ie/2019-07-18-codenano.html.
6 Dart programming language. https://dart.dev/.
7 Elm programming language. https://elm-lang.org/.
8 IDT DNA modifications. https://www.idtdna.com/pages/products/custom-dna-rna/

oligo-modifications.
9 Json (javascript object notation). https://www.json.org/json-en.html.

10 Overreact Dart library. https://pub.dev/packages/over_react.
11 Pyodide. https://github.com/iodide-project/pyodide.
12 React Javascript library. https://reactjs.org/.
13 Redux Dart library. https://pub.dev/packages/redux.
14 Redux Javascript library. https://redux.js.org/.
15 Skulpt. https://skulpt.org/.
16 Unidirectional data flow in Redux. https://redux.js.org/basics/data-flow.
17 SAMSON, the open molecular modeling platform. https://www.samson-connect.net, 2019.
18 Erik Benson, Abdulmelik Mohammed, Johan Gardell, Sergej Masich, Eugen Czeizler, Pekka

Orponen, and Björn Högberg. DNA rendering of polyhedral meshes at the nanoscale. Nature,
523(7561):441–444, July 2015. doi:10.1038/nature14586.

19 Erik Benson, Abdulmelik Mohammed, Johan Gardell, Sergej Masich, Eugen Czeizler, Pekka
Orponen, and Björn Högberg. DNA rendering of polyhedral meshes at the nanoscale. Nature,
523(7561):441–444, 2015.

20 Gourab Chatterjee, Neil Dalchau, Richard A Muscat, Andrew Phillips, and Georg Seelig. A
spatially localized architecture for fast and modular DNA computing. Nature nanotechnology,
12(9):920, 2017.

21 Elisa de Llano, Haichao Miao, Yasaman Ahmadi, Amanda J. Wilson, Morgan Beeby, Ivan Viola,
and Ivan Barisic. Adenita: Interactive 3D modeling and visualization of DNA nanostructures.
Technical report, bioRxiv, 2019. doi:10.1101/849976.

22 Hendrik Dietz, Shawn M Douglas, and William M Shih. Folding DNA into twisted and curved
nanoscale shapes. Science, 325(5941):725–730, 2009.

23 Shawn M Douglas, Hendrik Dietz, Tim Liedl, Björn Högberg, Franziska Graf, and William M
Shih. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459(7245):414–
418, 2009.

24 Shawn M Douglas, Adam H Marblestone, Surat Teerapittayanon, Alejandro Vazquez, George M
Church, and William M Shih. Rapid prototyping of 3D DNA-origami shapes with caDNAno.
Nucleic Acids Research, 37(15):5001–5006, 2009. URL: https://cadnano.org/.

25 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Elements
of reusable object-oriented software. Pearson Education India, 1995.

26 Hongzhou Gu, Jie Chao, Shou-Jun Xiao, and Nadrian C Seeman. A proximity-based program-
mable DNA nanoscale assembly line. Nature, 465(7295):202–205, 2010.

27 Dongran Han, Suchetan Pal, Jeanette Nangreave, Zhengtao Deng, Yan Liu, and Hao Yan.
DNA origami with complex curvatures in three-dimensional space. Science, 332(6027):342–346,
2011.

28 Hyungmin Jun, Xiao Wang, William Bricker, Steve Jackson, and Mark Bathe. Rapid proto-
typing of wireframe scaffolded DNA origami using ATHENA. Technical report, bioRxiv, 2020.
doi:10.1101/2020.02.09.940320.

29 Glenn Krasner and Stephen Pope. A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80. Journal of object-oriented programming, 1, 1988.

https://brython.info/
https://github.com/cadnano/cadnano2.5
https://cadnano.readthedocs.io/en/master/scripting.html
https://cando-dna-origami.org/
https://dna.hamilton.ie/2019-07-18-codenano.html
https://dart.dev/
https://elm-lang.org/
https://www.idtdna.com/pages/products/custom-dna-rna/oligo-modifications
https://www.idtdna.com/pages/products/custom-dna-rna/oligo-modifications
https://www.json.org/json-en.html
https://pub.dev/packages/over_react
https://github.com/iodide-project/pyodide
https://reactjs.org/
https://pub.dev/packages/redux
https://redux.js.org/
https://skulpt.org/
https://redux.js.org/basics/data-flow
 https://www.samson-connect.net
https://doi.org/10.1038/nature14586
https://doi.org/10.1101/849976
https://cadnano.org/
https://doi.org/10.1101/2020.02.09.940320

D. Doty, B. L. Lee, and T. Stérin 9:17

30 Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer, Christoph
Flamm, Peter F Stadler, and Ivo L Hofacker. ViennaRNA package 2.0. Algorithms for
Molecular Biology, 6(1), November 2011. doi:10.1186/1748-7188-6-26.

31 Christopher Maffeo and Aleksei Aksimentiev. MrDNA: A multi-resolution model for predicting
the structure and dynamics of nanoscale dna objects. bioRxiv, 2019. doi:10.1101/865733.

32 Dionis Minev, Christopher M. Wintersinger, Anastasia Ershova, and William M Shih. Robust
nucleation control via crisscross polymerization of DNA slats. Technical report, biorXiv, 2019.
URL: https://www.biorxiv.org/content/10.1101/2019.12.11.873349v1.

33 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, 2006.

34 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In SSS 2011: Symposium on self-stabilizing systems, pages 386–400, 2011.

35 Benedict EK Snodin, Ferdinando Randisi, Majid Mosayebi, Petr Šulc, John S Schreck, Flavio
Romano, Thomas E Ouldridge, Roman Tsukanov, Eyal Nir, Ard A Louis, and Jonathan P. K.
Doye. Introducing improved structural properties and salt dependence into a coarse-grained
model of DNA. The Journal of chemical physics, 142(23):234901, 2015.

36 Anupama J Thubagere, Wei Li, Robert F Johnson, Zibo Chen, Shayan Doroudi, Yae Lim Lee,
Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, Erik Winfree, and Lulu
Qian. A cargo-sorting DNA robot. Science, 357(6356):eaan6558, 2017.

37 Grigory Tikhomirov, Philip Petersen, and Lulu Qian. Programmable disorder in random DNA
tilings. Nature nanotechnology, 12(3):251, 2017.

38 Petr Šulc, Flavio Romano, Thomas E. Ouldridge, Lorenzo Rovigatti, Jonathan P. K. Doye,
and Ard A. Louis. Sequence-dependent thermodynamics of a coarse-grained DNA model. The
Journal of Chemical Physics, 137(13):135101, 2012. doi:10.1063/1.4754132.

39 Bryan Wei, Mingjie Dai, and Peng Yin. Complex shapes self-assembled from single-stranded
DNA tiles. Nature, 485(7400):623–626, 2012.

40 Erik Winfree, Furong Liu, Lisa A Wenzler, and Nadrian C Seeman. Design and self-assembly
of two-dimensional DNA crystals. Nature, 394(6693):539–544, 1998.

41 Sungwook Woo and Paul WK Rothemund. Programmable molecular recognition based on the
geometry of DNA nanostructures. Nature chemistry, 3(8):620, 2011.

42 Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik
Winfree. Diverse and robust molecular algorithms using reprogrammable DNA self-assembly.
Nature, 567:366–372, 2019. doi:10.1038/s41586-019-1014-9.

43 Joseph N. Zadeh, Conrad D. Steenberg, Justin S. Bois, Brian R. Wolfe, Marshall B. Pierce,
Asif R. Khan, Robert M. Dirks, and Niles A. Pierce. Nupack: Analysis and design of nucleic acid
systems. Journal of Computational Chemistry, 32(1):170–173, 2011. doi:10.1002/jcc.21596.

44 Fei Zhang, Shuoxing Jiang, Siyu Wu, Yulin Li, Chengde Mao, Yan Liu, and Hao Yan.
Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature
nanotechnology, 10(9):779, 2015.

DNA 26

https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1101/865733
https://www.biorxiv.org/content/10.1101/2019.12.11.873349v1
https://doi.org/10.1063/1.4754132
https://doi.org/10.1038/s41586-019-1014-9
https://doi.org/10.1002/jcc.21596

Verification and Computation in Restricted Tile
Automata
David Caballero
Department of Computer Science, University of Texas, Rio Grande Valley, TX, USA
david.caballero01@utrgv.edu

Timothy Gomez
Department of Computer Science, University of Texas, Rio Grande Valley, TX, USA
timothy.gomez01@utrgv.edu

Robert Schweller
Department of Computer Science, University of Texas, Rio Grande Valley, TX, USA
robert.schweller@utrgv.edu

Tim Wylie
Department of Computer Science, University of Texas, Rio Grande Valley, TX, USA
timothy.wylie@utrgv.edu

Abstract
Many models of self-assembly have been shown to be capable of performing computation. Tile
Automata was recently introduced combining features of both Celluar Automata and the 2-Handed
Model of self-assembly both capable of universal computation. In this work we study the complexity
of Tile Automata utilizing features inherited from the two models mentioned above. We first present a
construction for simulating Turing Machines that performs both covert and fuel efficient computation.
We then explore the capabilities of limited Tile Automata systems such as 1-Dimensional systems
(all assemblies are of height 1) and freezing Systems (tiles may not repeat states). Using these
results we provide a connection between the problem of finding the largest uniquely producible
assembly using n states and the busy beaver problem for non-freezing systems and provide a freezing
system capable of uniquely assembling an assembly whose length is exponential in the number of
states of the system. We finish by exploring the complexity of the Unique Assembly Verification
problem in Tile Automata with different limitations such as freezing and systems without the power
of detachment.

2012 ACM Subject Classification Theory of computation → Turing machines; Computer systems
organization → Molecular computing; Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases Tile Automata, Turing Machines, Unique Assembly Verification

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.10

Funding This research was supported in part by National Science Foundation Grant CCF-1817602.

1 Introduction

Self-assembly systems have quickly become an intense area of research due to fabrication
simplicity [13], the ability to create systems at the DNA level [16], the control of nanobots
[14], and the maturity of experimental techniques [12]. Self-assembly is a naturally occur-
ring process where simple particles come together to form complex structures. These are
computationally of interest since computing at the molecular level yields a lot of power.

There are several models of tile self-assembly, and they each strive to capture some
aspect of self-assembling systems. A few of the better known models are the Abstract
Tile Assembly Model (aTAM) [24], the 2-Handed Assembly Model (2HAM) [3], the Staged
self-assembly model [10], and the Signal-passing Tile Assembly Model (STAM) [19]. There

© David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 10; pp. 10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.caballero01@utrgv.edu
mailto:timothy.gomez01@utrgv.edu
mailto:robert.schweller@utrgv.edu
mailto:timothy.wylie@utrgv.edu
https://doi.org/10.4230/LIPIcs.DNA.2020.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Verification and Computation in Restricted Tile Automata

are several other models designed to model different aspects of DNA/RNA or laboratory
conditions. A recent model of tile self-assembly, called Tile Automata [5], was introduced as
an intentional mathematical abstraction designed to implement the key features of active
algorithmic self-assembly while avoiding specifics tied to any one particular implementation
(using state change rules and tile attachments/detachments based on local affinities between
states). By abstracting away implementation details, TA strives to serve as a proving ground
for exploring the power of active algorithmic self-assembly, along with providing a central hub
through which various disparate models of self-assembly can be related by way of comparison
to TA. One recent example of this type of application includes [2] in which TA is shown
capable of simulating the Amoebots model [8] of programmable matter.

Given the goal of TA to connect many models of self assembly, in this paper we explore
the computational power of limited Tile Automata systems such as versions of TA that do
not allow detachment (not possible in some models). To facilitate this, we first show how to
create general Turing Machines, and then we explore the complexity of a common question
within self-assembly models: the unique assembly verification problem. If given a system,
can the output be guaranteed? This is a natural problem that is polynomial in some models,
yet uncomputable in others.

1.1 Previous Work

In his Ph.D. thesis, Winfree presented the Abstract Tile Assembly model (aTAM) and
showed it was capable of universal computation by simulating a Turing Machine [24], and
the computational power is explored in depth in other works such as [15]. The 2-Handed
Assembly Model (2HAM) [3] introduced a more powerful model and is capable of fuel efficient
computation [20] along with the Signal-passing Tile Assembly Model [19] which has tiles
that can interact to turn glues on or off.

In [10, 25], the authors show a connection between finding the smallest Context Free
Grammar and optimization problems in the Staged Assembly model. In the staged assembly
model, it was show that while only using a constant number of tile types, a system can
construct length-n lines using O(logn) bins and mixes [9]. Repulsive forces have been shown
to aid in constructing shapes at constant scale [18]. Further, by utilizing the temperature to
encode information, shapes can be constructed with constant (or nearly) tile types [6, 22].

The Unique Assembly Verification problem asks if a given system uniquely produces a
given assembly. In the aTAM this problem was shown to be solvable in polynomial time
[1]. In the 2HAM this problem was shown to be in coNP with certain generalizations
being coNP-Complete [3, 21]. In the staged assembly model, this problem is known to be
coNPNP-hard and conjectured to be PSPACE-Complete [23]. Adding the power of negative
glues also vastly changes the complexity of this problem making in uncomputable in models
that include it due to the ability for pieces of assemblies to break off [11]. However, adding
negative glues but restricting the ability for assemblies to detach we still see an increase in
difficulty with UAV in aTAM without detachment being coNP-complete [4].

The Tile Automata model was introduced in [5] merging ideas from Cellular Automata
and Tile Self-Assembly. The authors showed that freezing tile automata (where a tile
cannot repeat states) is capable of simulating non-freezing systems. This powerful model has
also been shown to be capable of simulating models of programmable matter [2]. Cellular
Automata has been shown to be Turing Complete even in 1-dimension [7].

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 10:3

Table 1 Given a Turing Machine M = (Q,Σ,Γ, δ, qa, qr, qs), simulating Tile Automata systems
are given in Theorems 3.4 and 3.5, respectively.

Turing Machine Tile Automata System States Transition Rules
Determinisic Non-Freezing 1D O(|Q||Γ|) O(|δ|)
Bounded Time Freezing 1D O(|Q||Γ|TIME(M)) O(|δ|TIME(M)2)

Table 2 Results for the Unique Assembly Verification in Tile Automata. Transition Rules
describes the types of transition rules allowed in the system. In Affinity Strengthening Systems
all transition rules increase affinity so no detachment may occur. Freezing indicates whether the
system is freezing where tiles cannot repeat states. Result 1D is the complexity of UAV in 1
Dimension and Result 2D is the complexity of 2 Dimensions. Theorem is where these can be
found. ∗This result is only true when cycles in the production graph are allowed. All other results
are true regardless of which definition is used.

Transition Rules Freezing 1D Result 2D Result Theorem
Affinity Strengthening Freezing coNP-hard coNPNP-Complete Thms. 6.8, 6.7
Affinity Strengthening Non-freezing PSPACE-Complete PSPACE-Complete Thm. 6.3

General Freezing Open Undecidable Thm. 5.2∗

General Non-freezing Undecidable Undecidable Thm. 5.1

1.2 Our Contributions

In Tile Automata, cases may occur where systems contain one terminal assembly but exhibit
behavior that does not naturally seem to uniquely produce that assembly. We define unique
assembly later, but note that the final requirement addresses a feature of Tile Automata and
other models with detachment where there exist assemblies that are not terminal but are
never part of the final assembly. Cycles in the production graph are not possible in many
self-assembly models so we add this restriction. However many of our results work with or
without this restriction, so we explore both cases.

In this work we explore Tile Automata systems that uniquely assemble n-length lines and
the complexity of determining whether a system uniquely assembles a given assembly. We
first present a Turing Machine simulation capable of covert and fuel-efficient computation.
We use this construction to show a connection between the largest finite assembly problem
and Busy Beaver Machines (Turing Machines that print a certain number of symbols using a
minimum number of states). In the more restricted case of Freezing Systems we show we can
construct n-length lines using O(n) states. Results are shown in Table 1.

We then explore the Unique Assembly Verification problem. An overview of the results
are shown in Table 2. We show that UAV is uncomputable via Turing Machine simulation.
We also extend this to 2-Dimensional freezing systems (this reduction results in a system with
cycles). By removing the ability for assemblies to break apart we achieve a model closer to
traditionally studied models. We restrict this by studying what we call Affinity-Strengthening
systems where a state can never lose affinity by a transition. In this case, we show the UAV
problem is PSPACE-Complete utilizing bounded-space Turing Machine simulation. When
restricting the model to both Affinity Strengthening and Freezing we show membership in
coNPNP. We then provide reductions to show coNPNP-completeness for 2-dimensional UAV
and coNP-hardness in 1 dimension.

DNA 26

10:4 Verification and Computation in Restricted Tile Automata

2 Model and Definitions

A Tile Automata system is a marriage between cellular automata and 2-handed self-assembly.
Systems consist of a set of monomer tile states, along with local affinities between states
denoting the strength of attraction between adjacent monomer tiles in those states. A set
of local state-change rules are included for pairs of adjacent states. Assemblies (collections
of edge-connected tiles) in the model are created from an initial set of starting assemblies
by combining previously built assemblies given sufficient binding strength from the affinity
function. Further, existing assemblies may change states of internal monomer tiles according
to any applicable state change rules. An example system is shown in Figure 1.

2.1 States, tiles, and assemblies

Tiles and States. Consider an alphabet of state types1 Σ. A tile t is an axis-aligned unit
square centered at a point L(t) ∈ Z2. Further, tiles are assigned a state type from Σ, where
S(t) denotes the state type for a given tile t. We say two tiles t1 and t2 are of the same tile
type if S(t1) = S(t2).

Affinity Function. An affinity function takes as input an element in Σ2×D, where D = {⊥
,`}, and outputs an element in N. This output is referred to as the affinity strength between
two states, given direction d ∈ D. Directions ⊥ and ` indicate above-below and side-by-side
orientations of states, respectively.

Transition Rules. Transition rules allow states to change based on their neighbors. A
transition rule is a 5-tuple (S1a, S2a, S1b, S2b, d) with each S1a, S2a, S1b, S2b ∈ Σ and d ∈ D =
{⊥,`}. (S1a and S1b being the left state or the top state.) Essentially, a transition rule says
that if states S1a and S2a are adjacent to each other, with a given orientation d, they can
transition to states S1b and S2b respectively.

Assemblies. A positioned shape is any subset of Z2. A positioned assembly is a set of tiles
at unique coordinates in Z2, and the positioned shape of a positioned assembly A is the set
of coordinates of those tiles, denoted as SHAPEA. For a positioned assembly A, let A(x, y)
denote the state type of the tile with location (x, y) ∈ Z2 in A.

For a given positioned assembly A and affinity function Π, define the bond graph GA to
be the weighted grid graph in which:

each tile of A is a vertex,
no edge exists between non-adjacent tiles,
the weight of an edge between adjacent tiles T1 and T2 with locations (x1, y1) and (x2, y2),
respectively, is

Π(S(T1), S(T2),⊥) if y1 > y2,
Π(S(T2), S(T1),⊥) if y1 < y2,
Π(S(T1), S(T2),`) if x1 < x2,
Π(S(T2), S(T1),`) if x1 > x2.

1 We note that Σ does not include an “empty” state. In tile self-assembly, unlike cellular automata,
positions in Z2 may have no tile (and thus no state).

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 10:5

CA B D E
States

A
B
=2

C
D
=2

A C =1

B D =1

B E =2

Affinity Functions

B EB D
Transition Rules

A B C D
Initial Assemblies

Stability Threshold=2

(a) Tile Automata System Γ.

CA B D

A
B

C
D

A
B
C
D

A
B
C
E

A
B E

Producibles

A
B E

Terminals

(b) The producibles and terminals of Γ.

Figure 1 An example of a tile automata system Γ. Recursively applying the transition rules and
affinity functions to the initial assemblies of a system yields a set of producible assemblies. Any
producibles that cannot combine with, break into, or transition to another assembly are considered
to be terminal.

A positioned assembly A is said to be τ -stable for positive integer τ provided the bond
graph GA has min-cut at least τ .

For a positioned assembly A and integer vector ~v = (v1, v2), let A~v denote the positioned
assembly obtained by translating each tile in A by vector ~v. An assembly is a set of all
translations A~v of a positioned assembly A. A shape is the set of all integer translations for
some subset of Z2, and the shape of an assembly A is defined to be the set of the positioned
shapes of all positioned assemblies in A. The size of either an assembly or shape X, denoted
as |X|, refers to the number of elements of any positioned assembly of X.

Breakable Assemblies. An assembly is τ -breakable if it can be split into two assemblies
along a cut whose total affinity strength sums to less than τ . Formally, an assembly C is
breakable into assemblies A and B if the bond graph GC for some positioned assembly C ∈ C
has a cut (A,B) for positioned assemblies A ∈ A and B ∈ B of affinity strength less than τ .
We call assemblies A and B pieces of the breakable assembly C.

Combinable Assemblies. Two assemblies are τ -combinable provided they may attach along
a border whose strength sums to at least τ . Formally, two assemblies A and B are τ -
combinable into an assembly C provided GC for any C ∈ C has a cut (A,B) of strength at
least τ for some positioned assemblies A ∈ A and B ∈ B. C is a combination of A and B.

Transitionable Assemblies. Consider some set of transition rules ∆. An assembly A is
transitionable, with respect to ∆, into assembly B if and only if there exist A ∈ A and B ∈ B
such that for some pair of adjacent tiles ti, tj ∈ A:
∃ a pair of adjacent tiles th, tk ∈ B with L(ti) = L(th) and L(tj) = L(tk)
∃ a transition rule δ ∈ ∆ s.t. δ = (S(ti), S(tj), S(th), S(tk),⊥) or
δ = (S(ti), S(tj), S(th), S(tk),`)
A− {ti, tj} = B − {th, tk}

2.2 Tile Automata model (TA)
A tile automata system is a 5-tuple (Σ,Π,Λ,∆, τ) where Σ is an alphabet of state types, Π
is an affinity function, Λ is a set of initial assemblies with each tile assigned a state from Σ,
∆ is a set of transition rules for states in Σ, and τ ∈ N is the stability threshold. When the
affinity function and state types are implied, let (Λ,∆, τ) denote a tile automata system. An
example tile automata system can be seen in Figure 1.

DNA 26

10:6 Verification and Computation in Restricted Tile Automata

I Definition 2.1 (Tile Automata Producibility). For a given tile automata system Γ =
(Σ,Λ,Π,∆, τ), the set of producible assemblies of Γ, denoted PRODΓ, is defined recursively:

(Base) Λ ⊆ PRODΓ
(Recursion) Any of the following:

(Combinations) For any A,B ∈ PRODΓ such that A and B are τ -combinable into C,
then C ∈ PRODΓ.
(Breaks) For any C ∈ PRODΓ such that C is τ -breakable into A and B, then A,B ∈
PRODΓ.
(Transitions) For any A ∈ PRODΓ such that A is transitionable into B (with respect to
∆), then B ∈ PRODΓ.

For a system Γ = (Σ,Λ,Π,∆, τ), we say A →Γ
1 B for assemblies A and B if A is τ -

combinable with some producible assembly to form B, if A is transitionable into B (with
respect to ∆), if A is τ -breakable into assembly B and some other assembly, or if A = B.
Intuitively this means that A may grow into assembly B through one or fewer combinations,
transitions, and breaks. We define the relation →Γ to be the transitive closure of →Γ

1 , i.e.,
A→Γ B means that A may grow into B through a sequence of combinations, transitions,
and/or breaks.

I Definition 2.2 (Production Graph). The production graph of a Tile Automata system Γ is
a directed graph where each vertex corresponds to an assembly in PRODΓ and there exists a
directed edge between assemblies A and B if A→Γ B.

I Definition 2.3 (Terminal Assemblies). A producible assembly A of a tile automata system
Γ = (Σ,Λ,Π,∆, τ) is terminal provided A is not τ -combinable with any producible assembly
of Γ, A is not τ -breakable, and A is not transitionable to any producible assembly of Γ. Let
TERMΓ ⊆ PRODΓ denote the set of producible assemblies of Γ which are terminal.

I Definition 2.4 (Freezing). Consider a tile automata system Γ = (Σ,Λ,Π,∆, τ) and a
directed graph G constructed as follows:

each state type σ ∈ Σ is a vertex
for any two state types α, β ∈ Σ, an edge from α to β exists if and only if there exists a
transition rule in ∆ s.t. α transitions to β

Γ is said to be freezing if G is acyclic and non-freezing otherwise. Intuitively, a tile
automata system is freezing if any one tile in the system can never return to a state which
it held previously. This implies that any given tile in the system can only undergo a finite
number of state transitions.

I Definition 2.5 (Affinity Strengthening). An Affinity-Strengthening system is a Tile Au-
tomata system where all transition rules can only increase a states affinity with all other states
so no detachments ever occur. Formally a tile automata system Γ = (Σ,Λ,Π,∆, τ) is an Affin-
ity Strengthening system if for each s, s′ ∈ Σ where s transitions to s′, ∆(s, t) ≤ ∆(s′, t)∀t ∈ Σ.

I Definition 2.6 (Bounded). A tile automata system Γ is bounded if and only if there exists
a k ∈ Z>0 such that for all A ∈ PRODΓ, |A| < k.

I Definition 2.7 (Unique Assembly). A Tile Automata system Γ uniquely produces an
assembly A if

A is the only assembly in TERMΓ
for all B ∈ PRODΓ, B →Γ A.
Γ is bounded.
there does not exist a pair of assemblies B,C ∈ PRODΓ, such that B →Γ C →Γ B.2

2 When we refer to Unique Assembly allowing cycles, this requirement is omitted.

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 10:7

3 One Dimensional Turing Machine

Since Tile Automata is a generalization of 2HAM and borrows from Cellular Automata it
is expected that it is as powerful as both of these models. Here we present a construction
that is capable of both covert and fuel-efficient computation. We present informal definitions
of each of these. For rigorous definitions, we refer the reader to [20, 19] for fuel-efficiency,
and [4] for covert computation.

I Definition 3.1 (Simulation). A Tile Automata system T is said to simulate a Turing
Machine M , if for every producible assembly a of T can be mapped to a configuration m of
M and any other producible assembly b such that a→Γ

1 b, b either also maps to m or maps to
another configuration m′ such that m′ is the next step of m. Finally, each terminal assembly
of T maps to an output of M .

I Definition 3.2 (Covert Computation). Given a Tile Automata system T that simulates a
Turing Machine M , T covertly simulates M if for each output of M , there exits a single
terminal assembly that maps to it.

I Definition 3.3 (Fuel Efficient Computation). A fuel efficient Turing machine simulation in
Tile Automata represents the tape of a Turing machine as one assembly, and requires that
each computational step of the Turing machine occurs by way of the attachment of at most a
constant number of assemblies of at most constant size. Thus, the simulation of n steps of a
computation “uses up” at most O(n) tiles worth of fuel.

I Theorem 3.4. For any Turing Machine M = (Q,Σ,Γ, δ, qa, qr, qs), there exists a covert,
fuel-efficient, 1-dimensional Tile Automata system T = (ΣTA,Π,Λ,∆)3 that can simulate M
such that |ΣTA| = O(|Q||Γ|) and |∆| = O(|δ|).

Proof. Given a Turing Machine M = (Q,Σ,Γ, δ, qa, qr, qs), we construct the Tile Automata
system T = (ΣTA,Π,Λ,∆) as follows.

States. Conceptually, we partition the set of states (ΣTA) into three subsets for clarity:
head states H, symbol states S, and utility states W. Let H = {h(q,s)|q ∈ Q, s ∈ Σ} and
let S = {σs|s ∈ Σ} (Figure 2a). All states in H and S have affinity with all states in ΣTA.
There are eight states in W: signal accept states, final accept states, signal reject states,
final reject states, and four buffer states BL, B′

L, BR, and B′
R. The signal accept state has

affinity with all states in ΣTA, and the final accept state has affinity with all states other
than itself and the four buffer states. The two reject states have corresponding affinity rules
as those of the accept states. The buffer states ensure that no two assemblies attach during
the computation. Each of the four buffer states have affinity with each state in H and S.
BL and BR have affinity with B′

L or B′
R respectively.

Transitions. We create a transition rule such that for each Tile Automata state h(q,s) ∈ H
and σi ∈ S, the rule represents a step in M (Figure 2b). WLOG, assume an assembly A
representing the a configuration of a Turing Machine M has the state h(q,s) with states,
σL, σR ∈ S to the left and right of h(q,s), respectively. If the head of M moves right then the
transition rule will take place between h(q,s) and σR. If the TM head moves left then the
transition rule will be between σL and h(q,s). h(q,s) will transition into the state representing

3 1-Dimensional Tile Automata systems always have τ = 1 so we omit that parameter from T

DNA 26

10:8 Verification and Computation in Restricted Tile Automata

the symbol that is to be written on the tape in M after a state q reads symbol s. Either
σL or σR would then transition into the state h(q′,σL) or h(q′,σR) respectively where q′ is the
new state of the head of M after reading s from state q. There also exists an additional
transition rule if σL or σR is a buffer state. This will transition BL or BR to state B′

L or B′
R

respectively. B′
L/B′

R transitions into the symbol state representing the blank symbol when
it is to attached to state BL/BR.

Accept/Reject. For transitions where M enters the accept state, we create transition rules
where both tiles enter the signal accept state. This state has transition rules with each other
state transitioning that state into the signal accept state as well. If it transitions with a
buffer state or the final accept state, both tiles enter the final accept state. The final accept
state also transitions with every other state and both tiles become the final accept state.
The reject states follow the same rules.

Input. We construct a Tile Automata system that runs M on a string x. We construct the
system as described and create an initial assembly A that represents x. A will have a length
of |x|+ 2. The left most state of A will be BL. (WLOG assume the head of M starts on
the left most cell.) The next state of A will be s(q,s) where q is the initial state of M and s
is the first symbol in x. The next states of A each represent the symbols in the string x in
order. The rightmost state of A is BR (Figures 2c, 2d).

The buffer states BL and BR are always an initial assembly and are used to extend the
tape if the head attempts to move past the right edge. First, the head state causes BR to
transition to B′

R. With B′
R on the edge of the assembly a new BR tile will attach. Once

this attachment occurs B′
R transitions to the symbol state representing the blank symbol on

the tape. Then the head state may transition with the blank symbol if needed. The same
process occurs with BL when the head attempts to move off the left end of the tape.

Terminal Assemblies. If M accepts the input x, then by the rules of our system the accept
states will appear in our assembly. The signal accept state will be the first to appear and
will propagate to the edges of the assembly. Once the signal accept state reaches the buffer
states on the edge of the assembly they will transition into the final accept states. Any final
accept state that is attached to any other state will make that tile into a final accept state.
Any two final accept states that are next to each other do not have affinity and will detach.
After the accept state appears in an assembly the only terminal assemblies that will exist
are single final accept states. The same will occur if the machine rejects.

Since there are only two possible terminal assemblies, the final accept state and the final
reject state, this construction performs covert computation. This computation is also fuel
efficient since the only time a new assembly is attached is when the Turing Machine writes on
a blank symbol at the edge of the tape, which can only occur once per computation step. J

3.1 Freezing Systems
Here we present modifications to the construction above for freezing 1-dimensional systems
to perform bounded time computation.

I Theorem 3.5. For any bounded-time Turing Machine M = (Q,Σ,Γ, δ, qa, qr, qs), there
exists a covert, fuel-efficient, 1-dimensional freezing Tile Automata system T = (ΣTA,Π,Λ,∆)
that can simulate M such that. |ΣTA| = O(|Q||Γ|TIME(M)) and |∆| = O(|δ|TIME(M)2).

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 10:9

Q = {q1, q2, ... qk}

q1,0 q2,0 qk,0

q1,1 q2,1 qk,1

(a)

q1,0 1

q1, 0 q2, 0, R

q2,10

(b)

q1

1 010

q1,0 1 1 0B B

(c)

q2

1 011

q2,11 1 0B B

(d)

Figure 2 (a) Tile automata states (Below) created from the states of Turing Machine (Above)
over a binary alphabet. (b) State change rules (Below) created from the Turing Machine transition
rules (Above). (c) A Turing Machine (Above) configuration and the representative TA assembly
(Below) . (d) The same Turing Machine (Above) after making one step and the assembly (Below)
after the same step.

Proof. We modify the construction from Theorem 3.4. We have ΣTA partitioned into three
sets H, S, and W. In a freezing system states can not be repeated, so for each state in H
and S we create a number of states equal to the number of steps the Turing Machine M
can take. Each head state will not only represent the state of the Turing machine and the
symbol on the tape, but it will also represent how many steps the Turing Machine has taken.
Each symbol state will represent the symbol on the tape and also the last step that it was
modified. The head states will have a transition rule with each symbol state regardless of
the last step that symbol was modified. When a head state transitions into a symbol state it
will represent the step that the transition took place.

This increase in state-space ensures no tile will ever become the same state twice. Symbol
states written at step x can only transition into a head state. The head state will always
represent a step y > x. When the head state transitions back to a symbol state it will go to
a symbol state written at state y. Since x < y, no tile will ever repeat states. J

4 Shapebuilding and the Largest Assembly Problem

Given a Tile Automata system with limited states, we examine how large of an assembly
may be constructed. We first consider the case of one-dimensional assemblies and leverage
Theorems 4.2 and 4.3 to show that the longest buildable line’s length is related to the
Busy Beaver function in general, and exponential in the case of freezing systems. We then
consider the Largest Assembly problem, and apply Theorem 4.3 to show that this problem is
uncomputable for general TA even in one-dimension.

4.1 General
The Busy Beaver function BB(n), for any positive integer n, is the maximum number of
symbols printable by a Turing Machine using n states.4

I Definition 4.1 (String Representation). An assembly A is said to represent a string x if
there exists a mapping of the states in A to the symbols in x such that the nth state of A
maps to the nth symbol of x for all 0 < n ≤ |x|

I Lemma 4.2. For any n-state 2-symbol (not including the blank symbol) Turing Machine
M which produces an output x, there exists a O(n)-state Tile Automata System T which
uniquely assembles an assembly A, such that A represents x.

4 For this definition we consider Turing Machines using a binary alphabet.

DNA 26

10:10 Verification and Computation in Restricted Tile Automata

Proof. We modify the construction from Theorem 3.4 so that once M halts the head state
transitions into a symbol state. The resulting assembly will be terminal since symbol states
do not transition with each other. This final assembly will consist of symbol states that each
represent the symbols in x. The number of states used by T is 2n head states, 2 symbol
states, and 4 buffer states which is bounded by O(n). Note there is no need for accept/reject
states since the head state just turns into a symbol state when the TM halts. J

I Theorem 4.3. For any positive integer n, there exists a 1-dimensional Tile Automata
system that uniquely assembles a BB(n)-length line using O(n) states.

Proof. Using Lemma 4.2 we can take any Busy Beaver Machine and create a Tile Automata
system which uniquely produces an assembly the same size as the number of symbols printed
on the tape. J

4.2 Freezing
For freezing Tile Automata systems, we can create systems that uniquely produce n-length
lines and only require states that are logarithmic in the length of the line. For clarity we
begin with a helping lemma.

I Lemma 4.4. For all n = 2x for x ∈ N, there exists a 1-dimensional freezing Tile Automata
system that uniquely assembles an n length line using O(logn) states.

Proof. The cases for x = 0, 1, 2 are trivial. A system that uniquely builds a length 23 line
is shown in Figure 3. The only initial states are 1A and 1B. The affinities are between
adjacent states. The transition rules are highlighted in red which transition to make the next
producible assembly depicted. Our unique terminal assembly is a length 23 line. We will
show that by adding a constant number of states, transitions, and affinities to this system
the length of the uniquely assembled line will double, and that this process can be repeated
to uniquely assemble any length 2n line.

For n > 3, Let Tn be the system that uniquely assembles a length 2n line derived by
recursively applying the following process to T3 n − 3 times. Assuming that Tn uniquely
assembles a length 2n line of the form (1A, nD, . . . , nD, nA, nB , nF , . . . , nF , 1B), Tn+1 is
constructed as follows. First we add the non-initial states n+1A, . . . , n+1F , and a transition
from (nA, nB) to both (n+ 1E , nB) and (nA, n+ 1C). We add six new transitions involving
n+ 1C or n+ 1E which allow that state to propagate left/right respectively and transition
to n+ 1D and n+ 1F respectively when the end to the line assembly is reached. There will
be 6 additional transition rules added to allow states n+ 1D and n+ 1F to propagate in the
opposite direction and eventually transition 1A and 1B to n+ 1B and n+ 1A respectively.
Adding the affinity rule (n+ 1A, n+ 1B) will allow the two length 2n lines to bond uniquely
assembling a length 2n+1 line. This new system uniquely produces a length 2n+1 line of the
same form previously described, to which the process can be repeated to once again double
the length of the unique assembly. J

I Theorem 4.5. For all positive integers n, there exists a 1-dimensional freezing Tile
Automata system that uniquely assembles an n length line using O(logn) states.

Proof. We modify the construction from Lemma 4.4 to build arbitrary length-n lines.
To build any length-n line using O(logn) states we modify T = Tdlog2 ne. Let bi indicate

the ith least significant bit of n’s binary expansion. For all i > 2 such that bi is equal to 1
we add a transition rule from (iA, iB) to (iL, iL) in T . When these two states are adjacent

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 10:11

1A 1B

1A 1B

1A 2A 2B 1B

1A 2A 3C 1B 1A 3E 2B 1B

1A 3C 3C 1B 1A 3E 3E 1B

1A 3D 3C 1B 1A 3E 3F 1B

1A 3D 3D 1B 1A 3F 3F 1B

1A 3D 3D 3A 3B 3F 3F 1B

1A 3D 3D 3A 3B 3F 3F 1B

1A 2A 2B 1B 1A 3D 3C 1B 1A 3E 3F 1B

1A 2A 2B 1B
...

...

...

...

Figure 3 A system that uniquely builds a length 23 line. The only initial states are 1A and
1B . The affinities are between adjacent states. The transition rules are highlighted in red which
transition to make the next producible depicted.

they exist in an assembled line of length 2i. This transition “locks” this producible, stopping
it from growing. Four more transition rules are added to allow this state to propagate to
the ends of the line. Finally, we add a transitions between all iL states and the states 1B
and 1A, which are the endpoints of the lines. These endpoints transition to states that have
affinity with the next largest locked producible on one side. If b1 or b2 is equal to 1 we add
in an assembly of size b1 × 1 + b2 × 2 that connects to the last locked producible. J

4.3 Largest Finite Assembly Problem
Given a positive integer n, the Largest Finite Assembly Problem asks what is the largest
assembly that can be uniquely assembled in a Tile Automata system using n states.

I Theorem 4.6. The Largest Finite Assembly problem in Tile Automata is uncomputable.

Proof. Let σn be the size of the largest assembly that can be constructed using n states. From
Theorem 4.3, there must exists a system that can construct a line of length BB(n) using O(n)
states so σO(n) ≥ BB(n). This means σn grows asymptotically as fast as the Busy Beaver
function, which grows faster than any computable function. Thus, σn is uncomputable. J

5 Unique Assembly Verification

A well-studied problem in self-assembly is the Unique Assembly Verification problem. This
asks whether a given system uniquely produces a given assembly. We show that the general
problem is undecidable. Again, we consider two definitions of Unique Assembly one where
systems with cycles are allowed in the production graph, and the other where they are not.

5.1 Undecidability
I Theorem 5.1. Tile Automata Unique Assembly Verification is undecidable even in one
dimension.

Proof. Using Theorem 3.4 we reduce from the halting problem. Given a Turing Machine M
we can construct a Tile Automata system Γ that simulates M . If M halts then there exists
a single terminal assembly which is the final accept state tile. If M does not halt then there
exists no terminal assemblies. This is true under both definitions of Uniquely Assembly since
the only time there would exist a cycle in the production graph of Γ is if M ever revisited
a configuration. If M revisits a configuration then M will not halt so our system will not
uniquely assemble the final accept state tile. J

DNA 26

10:12 Verification and Computation in Restricted Tile Automata

I Theorem 5.2. Freezing 2-Dimensional Tile Automata Unique Assembly Verification is
undecidable under the definition of Unique Assembly allowing cycles even when all assemblies
are of constant height.

Proof. To prove undecidability we reduce from UAV for 1-Dimensional Tile Automata
systems (Theorem 5.1). Given an instance of UAV asking if a system Γ uniquely produces an
assembly A we use the simulation provided in [5] to create a freezing Tile Automata system
Γ′. By the definition of Γ′ simulating Γ if TERMΓ only contains one terminal assembly A then
TERM′

Γ will only contain one assembly A′ that maps to A.
The simulation utilizes constant scale macroblocks to represent tiles so the height of the

assemblies in T will be constant height. This simulation also uses a token passing scheme that
results in cycles in the production graph so this system will not uniquely produce assemblies
if cycles are not allowed. J

6 Affinity Strengthening UAV

Many self-assembly models where UAV is well-studied do not have detachment (and are thus
decidable). Here, we investigate versions of TA without this power and show hardness. We
do this by exploring Affinity-Strengthening Tile Automata (ASTA). We start by considering
the non-freezing case, then consider the added restriction of freezing.

6.1 Non-Freezing
I Lemma 6.1. The Unique Assembly Verification problem in Affinity-Strengthening Tile
Automata is in PSPACE.

Proof. The UAV problem can be solved by the following co-nondeterministic algorithm.
Given an Assembly A and an ASTA system T , nondeterministically build an assembly B
of less than size 2|A| where |A| is the size of the given assembly. We now have a branch
for every producible assembly and we check the following about B in order. If any branch
rejects, the whole algorithm rejects.

If B = A, accept.
If |B| ≥ |A|, reject.
If B 6= A and B is terminal, reject.
Continue nondeterministically performing construction steps (attachments and transitions)
on B. If B is reached again, reject. If A is reached, accept.

Only assemblies up to size 2|A| can be checked since if any assembly exists larger than
2|A|, it would have been built using at least one assembly of size greater than |A|, which
would have already been rejected. We can also check if B is terminal using a nondeterministic
subroutine by non-deterministically building a second assembly and checking if it can attach
to B. Checking if an assembly is breakable or if it is transitionable can be done in polynomial
time and space. The final step of the algorithm checks for cycles in the production graph.
By the definition of unique assembly, B →Γ A, by continuing to perform construction steps
on B we will eventually reach A. If we ever end up reaching B again we know that there
exists a cycle in the production graph (cycle checking in a directed graph is in P).

This algorithm shows the UAV problem for Affinity-Strengthening Tile Automata is in
coNPSPACE which equals PSPACE. For the case of unique assembly where cycles in the
production graph are allowed, the last step of the algorithm is skipped. J

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 10:13

I Lemma 6.2. The Unique Assembly Verification problem in Affinity-Strengthening Tile
Automata is PSPACE-hard.

Proof. We show UAV in Affinity-Strengthening TA is PSPACE-hard by describing how
to reduce from any problem L ∈ PSPACE. Consider a Turing Machine M that decides
L. The construction from Theorem 3.4 can be modified to be an Affinity-Strengthening
system that results in a system capable of performing bounded space computation (a Linear
Bounded Automata, which is equivalent to parsing a context-sensitive grammar and is
PSPACE-complete [17]). The only transition where a state loses affinity is from the signal
accept and reject state to the final accept and reject state. We remove the final states from
the system. This will result in two possible terminal assemblies one consisting of a buffer
state, then accept states, then another buffer state, and the other being the same with reject
states. We remove the buffer state from the set of initial assemblies. We change the length
of the assembly representing the input to be the amount of space used by M .

Given a bounded space deterministic Turing machine and its input, construct a Tile
Automata system that uniquely produces the assembly with accept states if and only if the
Turing machine accepts. If the Turing Machine rejects, then the reject assembly will be the
only terminal assembly. If the TM ever enters an infinite loop then there will exist a cycle
in our system and there will not exist any terminal assemblies, so the TA system will not
uniquely produce any assembly regardless of whether there exists a restriction on cycles. J

I Theorem 6.3. The Unique Assembly Verification problem in Affinity-Strengthening Tile
Automata is PSPACE-complete.

Proof. Follows from Lemmas 6.1 and 6.2. J

6.2 Freezing
In this section we show the complexity of Unique Assembly Verification in a freezing Affinity-
Strengthening Tile Automata system. In 2-dimensions, we show UAV is coNPNP-Complete.
We utilize the same reduction strategy as in [23]. We conclude by showing coNP-hardness
for UAV in one dimension. Note that cycles cannot occur in Freezing Affinity-Strengthening
Tile Automata, so we only consider one definition of Unique Assembly.

I Definition 6.4 (∀∃3SAT). Given a 3SAT formula φ(x1, . . . , xk, xk+1, . . . , xn), is it true
that for every assignment to variables x1, . . . , xk, there exists an assignment to xk+1, . . . , xn
such that φ(x1, . . . , xn) is satisfied?

I Lemma 6.5. The Unique Assembly Verification problem in freezing Affinity-Strengthening
Tile Automata is in coNPNP.

Proof. Take the construction and algorithm from Lemma 6.1, we prove that the running
time is polynomial. When building an assembly B, since the system is freezing we know the
time to build B is |Σ||B| where |Σ| is the number of states in the system. Since we reject if
one branch rejects, this is a coNP algorithm.

We utilize one subroutine that is in coNP to check if B is terminal. This is done in
polynomial time by nondeterministically building a second assembly and checking if they can
attach. If there is an assembly that can attach to B, then the assembly is not terminal. Using
the coNP algorithm and using the subroutines as oracles, this problem is in coNPNP J

I Lemma 6.6. The Unique Assembly Verification problem in freezing Affinity-Strengthening
Tile Automata is coNPNP-Hard.

DNA 26

10:14 Verification and Computation in Restricted Tile Automata

C3

C2

C1

Variable 1 Variable 2 Variable 3 Variable 4

A
0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1

(a)

C3
C2
C1
A 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 C

(b)

Figure 4 Part of the construction for Theorem 6.6. (a) The base assemblies are constructed
nondeterministically. One is constructed for every possible variable assignment. (b) An example of
a base assembly fitting into a frame. Cx binds cooperatively to Cx−1 and the frame states.

Proof. Given an instance of ∀∃3-SAT, this reduction produces a τ = 2 freezing ASTA system
which uniquely assembles a target assembly if and only if the instance of ∀∃3-SAT is true.
This system has stability threshold 2 to allow for cooperative binding in which two assemblies
attach using affinities at two separate points, when one of the affinities alone would not be
strong enough for this attachment to be stable.

Overview. We first create an ‘L’-shaped base assembly contained in a larger frame (Figure
4b) that encodes a variable assignment. Rows of this assembly represent clauses and columns
represent variables. Each clause is evaluated by cooperatively placing tiles that represent
the assignment of the variable in its column, and whether the clause of its row is currently
satisfied. Once the assignments are evaluated, additional tiles fill out the rest of the frame.
If the assignment evaluates to false, then frame will be filled. If the assignment evaluates to
true, then there will be remaining spaces representing the assignment to the variables in the
first quantifier. We construct a test assembly for every possible assignment to thee variables
that can attach into that space. Once an assembly has completely filled out its frame, all
states inside transition into a target state and create our target assembly.

Base Assemblies. We construct a rectangular base assembly for every possible variable
assignment to x1, . . . , xn, with the rows of this assembly representing clauses and columns
representing variables. There are two sets of initial states for each variable: one for 0, and one
for 1. These sets of states attach to form length-4 line assemblies. The line assemblies have
affinities with both the 0 and 1 line assemblies of the next variable. The nondeterministic
nature of the model will ensure the creation of all possible combinations of these 0 and 1
line assemblies (Figure 4a). Given m clauses in our 3SAT formula, the TA system includes
tiles with initial states C1, . . . , Cm. These states cooperatively attach to state A and a frame
(Figure 4b). The frame ensures there is no unbounded growth. Tiles then cooperatively bind
to fill out this structure. The affinities between these states and the variable line assemblies
are encoded such that they evaluate if the variable assignment, represented by the base
assembly, satisfies the 3SAT formula (Figure 5a). The row containing Ci evaluates whether
the ith clause is satisfied by the variable assignment of the base. U and S states cooperatively
attach to fill out a row- U indicating the clause has not yet been satisfied, and S indicating
that it has. This is done by “passing” the assignment of the variable line upwards with a
specific encoding of the affinities. When an S state attaches, only S states can attach to its
right side. This allows a Y state to attach at the end of the row if a previous clause was not
already evaluated to be unsatisfied. If it is not satisfied, the rightmost state of that row will
be N , which does not allow a Y state to attach above it.

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 10:15

SX
y S

S S

S
S

S
U

U U
UU

X
y0T
X - 1

y

S

U
1/0

S
1/0

S Y

U N

Y
Y

N
N

N
Y

Affinity = 1

S
1/0

1SX
y

X
y

S0U

0SX
y

X
y1U

0T

X
y1T
X - 1

y1T

U

Y N
A

B

States

0UX
y

X
y1UC

0
1

UX
y

0
1

SX
y

0
1

TX
y

0
1

(a)

0 0 0 0 1 1 1 1 0 0 0 01 1 1 1

C3
C2
C1 U U U 1

2 U U U
1
3 S S S S S S S

C
Y

S S S S S S SS S S S S S S S Y
S S S S S S SS S S S S S S S Y

A
0U
1
1

1
1

1
10S

0S

1U 1U

E

(b)

0 0 0 0 1 1 1 1 0 0 0 01 1 1 1

C3
C2
C1 0U11 U U U

1
2 U U U

1
3 S S S S S S S

C
Y

1
1 Y

1
1 S S S S S S SS S S S S S S S N

A

0S

0U

1U 1S

F

U U U U U U U U U U U U U2
21U

2
31U

(c)

Figure 5 (a) Initial states needed to evaluate if the variable assignment satisfies the 3SAT formula.
Choose 1 from A/B/C for each clause/variable combination. Choose A if 1 assigned to variable y
satisfies the xth clause, B if 0 satisfies, and C if the variable does not appear in that clause. T is a
placeholder for U or S, depending on which was chosen for each clause/variable combination. (b)
Example of a 4-variable, 3-clause base assembly that is marked as true (top right “Y”). The assembly
grows downward, but interacts with the variable tile line to encode their variable assignment in the
assembly’s geometry. (c) Example of a 4-variable 3-clause base assembly marked as false (top right
“N”). The assembly grows to fill out the entire frame.

Once the rectangle is filled out an assembly will be marked as “True” or “False”, rep-
resented by the top right Y /N state in the construction. (Figure 5b, 5c). True assemblies
grow downward, leaving a space between the base assembly and the frame. The shape of this
space is an encoding of this assembly’s original variable assignment of x1, . . . , xk (Figure 5b).
False assemblies also grow downward, but entirely fill out the frame of the base construction.

Test Assemblies. A set of test assemblies are also built using the same nondeterministic
method used to create the base assemblies’ variable assignments. A test assembly is created
for each assignment to variables x1, . . . , xk (Figure 6a). The geometry of a test assembly
encodes this variable assignment in a complementary fashion to that of a “True” base assembly
representing the same assignment to x1, . . . , xk. This allows a test assembly to attach to a
“True” base assembly with the same variable assignment to x1, . . . , xk, but not to any other
due to that causing overlapping geometry. The test assemblies cooperatively bind with two
strength-1 affinities at two points (Figure 6b). A test assembly will only be terminal if there
is no base assembly matching its variable assignment that was marked as “True”.

Transition to Uniform Assembly. If the solution to the instance of ∀∃3SAT is true, all
assemblies eventually grow/transition to one unique target assembly. To achieve this, there
are state transitions which allow every “True”/“False” flagged base assembly to grow into one
uniform assembly. For base assemblies marked “True”, to which a test assembly attached,
the states needed to cooperatively bind these test assemblies to base assemblies having a
transition rule to transition to state T . For assemblies marked “False”, a transition to state
T occurs when A and F (Figure 5c) are adjacent. Additional transition rules between state
T and all other states (excluding the frame states) allow this state to propagate throughout
the entire assembly. The transitions used are shown in Figure 7a. These transitions will
change every state besides the frame states to state T . This is the target assembly for our
created instance of ASTA UAV (Figure 7b).

The only terminal assembly possibly produced that is not the target assembly is a
test assembly representing a specific assignment to x1, . . . , xk that could not attach to an
assignment assembly marked “True”, which represents the same variable assignment. Thus,
the system only uniquely assembles the target assembly if the instance of ∀∃3SAT is true. J

I Theorem 6.7. The Unique Assembly Verification problem in freezing Affinity-Strengthening
Tile Automata is coNPNP-Complete.

DNA 26

10:16 Verification and Computation in Restricted Tile Automata

B
0

1
D

(a)

Affinity = 1

DB
A E

(b)

0 0 0 0 1 1 1 1 0 0 0 01 1 1 1

C3
C2
C1 U U U 1

2 U U U
1
3 S S S S S S S

C
Y

S S S S S S SS S S S S S S S Y
S S S S S S SS S S S S S S S Y

A
0U
1
1

1
1

1
10S

0S

1U 1U

B
D
E

(c)

Figure 6 (a) Test assemblies are nondeterministically built by allowing the possibility for
each assignment of one variable construction to attach to either assignment of the next variable
construction. (b) Affinities between test assemblies and base assemblies. (c) Example of a test
assembly binding to a base assembly that encodes the same variable assignment of x1, . . . , xk.

T
T

T
X T

X

TX

T X

T
T

T T

T T

T T

For all states X excluding Frame

T
TD

B
A

E
A
F

T
T

(a)

T
T
T
T
T
T
T

T
T
T
T
T
T
T

T
T
T
T
T
T
T

T
T
T
T
T
T
T

T
T
T
T
T
T
T

T
T
T
T
T
T
T

T
T
T
T
T
T
T

T
T
T
T
T
T
T

T
T
T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

T
T
T
T
T

(b)

Figure 7 (a) Transitions Utilized. All states will take the place of X, excluding those that are
part of the frame. (b) Target Assembly after the T state has fully propagated through the assembly.

Proof. Follows from Lemmas 6.5 and 6.6. J

I Theorem 6.8. The Unique Assembly Verification problem in freezing Affinity-Strengthening
Tile Automata is coNP-hard in one dimension.

Proof. We show Affinity Strengthening Freezing UAV is coNP-hard by describing how to
reduce from any problem in coNP. Given a problem L ∈ coNP take a nondeterministic
Turing Machine M that decides L. From Theorem 3.5, we construct systems that simulate
bounded-time Turing Machines. Since we are considering polynomial-time machines, the
size of this Tile Automata system is also polynomial. We change the system to be Affinity
Strengthening in the same way as in Lemma 6.2. Further, since the Tile Automata model
includes nondeterminism in selecting possible transitions for an assembly, we can simulate
nondeterministic Turing Machines. We simply have transition rules for each possible outcome.

Using the method described above we can simulate M on x. If any of the possible
computation paths lead to M accepting, the assembly with the accept states will appear as
a terminal assembly. If all possible computations path reject, the only terminal assembly
will be the assembly with the reject states. J

7 Conclusion

In this paper we looked at a powerful new model of self-assembly that combines properties
of both cellular automata and hierarchical self-assembly models. We showed that even
extremely limited and simple constructions in Tile Automata are powerful and capable of
arbitrary computation. We also showed how difficult it is to determine the output of these
limited systems. This opens several directions for future work.

One direction is further exploring the assembly of length-n lines in freezing systems. Does
there exist a bound on buildable length? Is the finite assembly problem in freezing or other
restricted system decidable? Also attempting to construct lines in systems with additional
restrictions such as limits on the number of transition rules per state.

D. Caballero, T. Gomez, R. Schweller, and T. Wylie 10:17

For the UAV problem, we show that the general case is undecidable. However, the
complexity of the problem in freezing 1-dimensional systems is open. If the problem of asking
whether a system is bounded is decidable, then UAV is decidable by first identifying whether
a system is bounded and then constructing the production graph and finding the terminal
assemblies. The problem for freezing 2-dimensional systems with no cycles is also open.

Since Tile Automata can be seen as a generalization of 2HAM, our results can be compared
to the open problem of UAV in that model which is known to be in coNP. The most restricted
version of Tile Automata we explore is Affinity Strengthening and freezing, which is only one
level of the polynomial hierarchy above other generalizations of 2HAM such as allowing tiles
to go into 3-dimensions or allowing a variable temperature. Further limiting Tile Automata
may provide more insight into the hardness of these problems.

References
1 Leonard M. Adleman, Qi Cheng, Ashish Goel, Ming-Deh A. Huang, David Kempe, Pablo Mois-

set de Espanés, and Paul W. K. Rothemund. Combinatorial optimization problems in
self-assembly. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
pages 23–32, 2002.

2 John Calvin Alumbaugh, Joshua J. Daymude, Erik D. Demaine, Matthew J. Patitz, and
Andréa W. Richa. Simulation of programmable matter systems using active tile-based self-
assembly. In Chris Thachuk and Yan Liu, editors, DNA Computing and Molecular Programming,
pages 140–158, Cham, 2019. Springer International Publishing.

3 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,
Robert T. Schweller, Scott M Summers, and Andrew Winslow. Two Hands Are Better Than
One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 172–184. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013.

4 Angel A. Cantu, Austin Luchsinger, Robert Schweller, and Tim Wylie. Covert Computation
in Self-Assembled Circuits. In 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 31:1–31:14, 2019.

5 Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and
Tim Wylie. Freezing simulates non-freezing tile automata. In International Conference on
DNA Computing and Molecular Programming, pages 155–172. Springer, 2018.

6 Cameron Chalk, Austin Luchsinger, Robert Schweller, and Tim Wylie. Self-assembly of any
shape with constant tile types using high temperature. In Proc. of the 26th Annual European
Symposium on Algorithms, ESA’18, 2018.

7 Matthew Cook. Universality in elementary cellular automata. Complex systems, 15(1):1–40,
2004.

8 Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Scheideler. Com-
puting by programmable particles. In Distributed Computing by Mobile Entities: Current
Research in Moving and Computing, pages 615–681. Springer, Cham, 2019.

9 Erik D Demaine, Martin L Demaine, Sándor P Fekete, Mashhood Ishaque, Eynat Rafalin,
Robert T Schweller, and Diane L Souvaine. Staged self-assembly: nanomanufacture of arbitrary
shapes with o (1) glues. Natural Computing, 7(3):347–370, 2008.

10 Erik D. Demaine, Sarah Eisenstat, Mashhood Ishaque, and Andrew Winslow. One-dimensional
staged self-assembly. In Proceedings of the 17th international conference on DNA computing
and molecular programming, DNA’11, pages 100–114, 2011.

11 David Doty, Lila Kari, and Benoît Masson. Negative interactions in irreversible self-assembly.
Algorithmica, 66(1):153–172, 2013.

DNA 26

10:18 Verification and Computation in Restricted Tile Automata

12 Constantine Evans. Crystals that Count! Physical Principles and Experimental Investigations
of DNA Tile Self-Assembly. PhD thesis, California Inst. of Tech., 2014.

13 Antonios G Kanaras, Zhenxin Wang, Andrew D Bates, Richard Cosstick, and Mathias Brust.
Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of dna/gold
systems. Angewandte Chemie International Edition, 42(2):191–194, 2003.

14 Ryuji Kawano. Synthetic ion channels and dna logic gates as components of molecular robots.
ChemPhysChem, 19(4):359–366, 2018. doi:10.1002/cphc.201700982.

15 Alexandra Keenan, Robert Schweller, Michael Sherman, and Xingsi Zhong. Fast arithmetic in
algorithmic self-assembly. Natural Computing, 15(1):115–128, March 2016.

16 Ceren Kimna and Oliver Lieleg. Engineering an orchestrated release avalanche from hydrogels
using dna-nanotechnology. Journal of Controlled Release, April 2019. doi:10.1016/j.jconrel.
2019.04.028.

17 Sige-Yuki Kuroda. Classes of languages and linear-bounded automata. Information and
Control, 7(2):207–223, 1964. doi:10.1016/S0019-9958(64)90120-2.

18 Austin Luchsinger, Robert Schweller, and Tim Wylie. Self-assembly of shapes at constant scale
using repulsive forces. Natural Computing, August 2018. doi:10.1007/s11047-018-9707-9.

19 Jennifer E. Padilla, Matthew J. Patitz, Raul Pena, Robert T. Schweller, Nadrian C. Seeman,
Robert Sheline, Scott M. Summers, and Xingsi Zhong. Asynchronous signal passing for tile
self-assembly: Fuel efficient computation and efficient assembly of shapes. In Unconventional
Computation and Natural Computation, pages 174–185. Springer, 2013.

20 Robert Schweller and Michael Sherman. Fuel efficient computation in passive self-assembly.
In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’13,
pages 1513–1525. SIAM, 2013.

21 Robert Schweller, Andrew Winslow, and Tim Wylie. Complexities for high-temperature
two-handed tile self-assembly. In Robert Brijder and Lulu Qian, editors, DNA Computing and
Molecular Programming, pages 98–109, Cham, 2017. Springer International Publishing.

22 Robert Schweller, Andrew Winslow, and Tim Wylie. Nearly constant tile complexity for any
shape in two-handed tile assembly. Algorithmica, 81(8):3114–3135, 2019.

23 Robert Schweller, Andrew Winslow, and Tim Wylie. Verification in staged tile self-assembly.
Natural Computing, 18(1):107–117, 2019.

24 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
June 1998.

25 Andrew Winslow. Staged self-assembly and polyomino context-free grammars. Natural
Computing, 14(2):293–302, 2015.

https://doi.org/10.1002/cphc.201700982
https://doi.org/10.1016/j.jconrel.2019.04.028
https://doi.org/10.1016/j.jconrel.2019.04.028
https://doi.org/10.1016/S0019-9958(64)90120-2
https://doi.org/10.1007/s11047-018-9707-9

Turning Machines
Irina Kostitsyna
Department of Mathematics and Computer Science, TU Eindhoven, The Netherlands
https://www.win.tue.nl/~ikostits/
i.kostitsyna@tue.nl

Cai Wood
Hamilton Institute and Department of Theoretical Physics, Maynooth University, Ireland
https://dna.hamilton.ie
cai.wood.2017@mumail.ie

Damien Woods
Hamilton Institute and Department of Computer Science, Maynooth University, Ireland
https://dna.hamilton.ie/woods/
damien.woods@mu.ie

Abstract
Molecular robotics is challenging, so it seems best to keep it simple. We consider an abstract
molecular robotics model based on simple folding instructions that execute asynchronously. Turning
Machines are a simple 1D to 2D folding model, also easily generalisable to 2D to 3D folding. A
Turning Machine starts out as a line of connected monomers in the discrete plane, each with an
associated turning number. A monomer turns relative to its neighbours, executing a unit-distance
translation that drags other monomers along with it, and through collective motion the initial set of
monomers eventually folds into a programmed shape. We fully characterise the ability of Turning
Machines to execute line rotations, and to do so efficiently: computing an almost-full line rotation
of 5π/3 radians is possible, yet a full 2π rotation is impossible. We show that such line-rotations
represent a fundamental primitive in the model, by using them to efficiently and asynchronously
fold arbitrarily large zig-zag-rastered squares and y-monotone shapes.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases model of computation, molecular robotics, self-assembly, nubot, reconfigura-
tion

Digital Object Identifier 10.4230/LIPIcs.DNA.2020.11

Funding Authors C. Wood and D. Woods are supported by European Research Council (ERC)
award number 772766 and Science foundation Ireland (SFI) grant 18/ERCS/5746 (this manuscript
reflects only the authors’ view and the ERC is not responsible for any use that may be made of the
information it contains).

Acknowledgements We thank Vera Sacristán and Suneeta Ramaswami for insightful ideas and
important input. This work began at the 29th Bellairs Winter Workshop on Computational
Geometry (March 21-28, 2014 in Holetown, Barbados), we thank Erik Demaine for organising a
wonderful workshop and providing valuable feedback, and the rest of the participants for providing
a stimulating environment. We also thank Dave Doty and Nicolas Schabanel for helpful comments.

1 Introduction

The challenge of building molecular robots has many moving parts, as the saying goes.
These include molecular parts that move relative to each other; units needing some sort
of memory state; the ability to transition between states; and perhaps even the ability to
use computation to drive robotic movements. Here we consider a simple robotic model of
reconfiguration called Turning Machines.

© Irina Kostitsyna, Cai Wood, and Damien Woods;
licensed under Creative Commons License CC-BY

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No. 11; pp. 11:1–11:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.win.tue.nl/~ikostits/
mailto:i.kostitsyna@tue.nl
https://dna.hamilton.ie
mailto:cai.wood.2017@mumail.ie
https://dna.hamilton.ie/woods/
mailto:damien.woods@mu.ie
https://doi.org/10.4230/LIPIcs.DNA.2020.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Turning Machines

?

Figure 1 Turning Machine motivation: what shapes can be made by autonomously folding
structures using simple local turning rules that effect non-local movement? Finding suitable abstract
models and characterising their ability helps us to step back and create a vision of where we can go.

The main ethos behind our work is the notion of having a reconfigurable structure where
component monomers actuate their position relative to their neighbours and governed by
simple actuation rules. Volume exclusion applies (two monomers can not occupy the same
position in space), almost for free we get massive parallelism and asynchronicity, and the
complexity of allowable state changes is small: start with a natural number and decrement
step-by-step to zero. The Turning Machine model embodies these concepts.

On the one hand, there are a number of senses in which molecular systems are better
suited to robotic-style reconfiguration than macro-scale robotic systems: there is no gravity
nor friction fighting against components’ actuation, and should we know how to exploit
them, randomness, freely diffusing fuel (robots need not carry all their fuel) and large
numbers of components are all readily available as resources. On the other hand, building
nanoscale components presents a number of challenges including implementing computational
controllers at the nanoscale, as well as designing systems that self-assemble and interact in a
regime where we can not easily send in human mechanics to diagnose and fix problems.

1.1 Turning machines
Monomers are the atomic components of a Turning machine and are arranged in a connected
chain on the triangular/hexagonal grid, with each monomer along the chain pointing at the
next. In an initial instance, the chain of monomers are sitting on the x-axis all pointing
to the east. Each monomer has an initial integer turning number s ∈ Z, the monomer’s
ultimate goal is to set that number to 0: if s is positive, the monomer tries to simultaneously
decrement s and turn anti/counter-clockwise1 by an angle of π/3, if s is negative, it tries
to increment and turn clockwise by π/3.2 If s = 0 the monomer has reached its target
orientation and does not turn again. Figures 2 and 3 give the idea, and Section 2 gives a full
definition.

A key point is that although a monomer actuates by rotating the direction in which it
points, when it does so it “drags” (translates) all monomers that come after it in the chain
in the same way the rotation motion of an arm (around a shoulder) appears to translate a
flag through the air, or the way a cam in an combustion engine converts rotational shaft
motion to translational piston motion.

1 We define counter-clockwise to be anticlockwise and use these terms interchangeably.
2 Having the monomer turning angle be confined to the range (0, π/2] seems to capture a range of

interesting and important blocking behaviours that would otherwise be missed by the model. Having
the angle be π/3, which leads us to the choice of triangular grid over the square grid, is a somewhat
arbitrary choice in the model definition.

I. Kostitsyna, C. Wood, and D. Woods 11:3

1.2 Turning machines: the main programming challenge
Programming the model simply requires annotating an east-pointing line of monomers with
turning numbers; an incredibly simple programming syntax.

Locally, individual monomers exhibit a small rotation, but globally this effects a large
translation, or dragging, of many monomers. Thus globally, the main challenge is how to
effect global rotations – in other words how to use translation to simulate rotation. In
particular, how to do this when lots of monomers are asynchronously moving and bumping
into each other, potentially blocking each other from moving.

Blocking comes in two forms. Temporary blocking where one monomer is in the way of
another, but eventually will get out of the way, and permanent blocking where all monomers
block each other in a locked configuration that will never free itself. We say that a target
structure is foldable if all possible system trajectories lead to that structure, i.e. permanent
blocking does not occur. A foldable structure may exhibit temporary blocking on some
trajectories, indeed most of the work for our positive results in this paper comes down to
showing that for certain folding tasks any blockings that happen are merely temporary
kinks in the chain that are eventually worked out. We measure the amount of blocking by
considering the completion time: a foldable structure where temporarily blocked monomers
can quickly become unblocked finishes faster than one where blocking takes a while to
sort out. Our model of time assumes that the time to apply a turning rule to a given
unblocked monomer is an exponential random variable with rate 1, and the system evolves as
a continuous time Markov chain with the discrete events being rules applied asynchronously
and in parallel.

1.3 Results
We fully characterise the line rotation capability of the Turning Machine model, in two
senses. First, we show that for each of the angles θ ∈ {π/3, 2π/3, π, 4π/3, 5π/3}, and any
number of monomers n ∈ N there is a Turning Machine with n monomers that starts on the
x-axis and ends rotated by θ radians. We show this is the best one can do, that is, that
rotation of θ ≥ 2π is impossible (for any n > 7, there are always some trajectories that
are permanently blocked). Second, line rotation is fast. Up to constant factors the speed
is optimal, completing in expected time O(logn). This shows that despite the fact that
line rotations in the range π ≤ θ ≤ 5π/3 experience large number of blockings along their
trajectories, these blockings are all temporary, and do not conspire to slow the system down
by more than a constant factor on average.

To illustrate that line rotation results are indeed a fundamental primitive in the model,
as an application, we show how to fold any n × n square, rastered in a zig-zag fashion
(Theorem 17). More generally, this allows us to fold any shape from a wide class called
y-monotone shapes (see Figure 9), all in optimal expected time O(logn).

1.4 Related and future work
Besides finding insights at the interface of computation and geometry, another ultimate aim
of this kind of work is bridge the gap between what we can imagine in theory and what
we can engineer in the lab [19]. Biological systems actuated at the molecular scale provide
inspiration: in the gastrulation phase of embryonic development of the model organism
Drosophila melanogaster, large-scale rearrangements of the embryo are effected by thousands
of (nanoscale) molecular motors working together to rapidly push and pull the embryo into a
target shape [9, 17].

DNA 26

11:4 Turning Machines

(0, 0) (1, 0) (2, 0)

(1, 0)

(2, 0)
~p+ ~x

~p− ~w

~p+ ~y

~p

~p− ~y

~p− ~x

~p+ ~w

x

yw

3 2 1 0

Figure 2 Turning machine model. Left: Triangular grid conventions. A configuration showing a
single monomer on the triangular grid, along with axes x, y and w. Right: A monomer in state 3
pointing to the east undergoes three turning rule applications finishing in state 0 and no more rules
are applicable. Locally, the monomer effects a rotation motion, subsequent figures show the induced
global translational, or dragging, motion.

Our Turning Machine model is a restriction of the nubot model [20], a molecular robotic
model with many features including self-assembly capabilities, random agitation (jiggling) of
monomers, the ability to execute cellular automata style rules, and floppy/rigid molecular
bonds. The parallel computing capabilities [4], and construction using random agitation and
self-assembly [3] have been studied. Dabby and Chen consider related (experimental and
theoretical) systems that use an insertion primitive to quickly grow long (possibly floppy)
linear structures [8], later tightly characterised by Hescott, Malchik and Winslow [15, 14]
in terms of number of monomer types and time. Hou and Chen [16] show that the nubot
model can display exponential growth without needing to exploit state changes. Chin, Tsai
and Chen [6] look at both minimising numbers of state changes and number of ‘2D layers’ to
assembly 1D structures. There are a number related autonomous self-folding models, both
1D to 2D [5] and 2D to 3D [7], and reconfigurable robotic/programmable matter systems,
e.g. [1, 2, 10, 11, 12, 18].

There are several avenues for future work. In this paper, we study model instances with
natural number states, leading to anti-clockwise rotation motion (that is, anti-clockwise
translation about the origin). Does the combination of clockwise and anti-clockwise turning
rules increase the expressivity of the model? Using a variant [20, 3] of the model with random
agitation of monomers would side-step our main negative result about the impossibility of
full 2π line rotation by allowing reversible movement out of blocked configurations. Indeed,
the analysis of such systems would provide intellectual fruit by mixing probability, geometry
and computation. As indicated in Figure 1, it is straightforward to generalise the model to
(say) 2D trees folding into 3D shapes, this provides an interesting avenue for exploration. In
all of these cases fully characterising the class of shapes that can be folded, and characterising
the time to fold such classes of structures, provides a number of questions whose answers
would expand our understanding of the capabilities of simple reconfigurable robotic systems.

2 Turning machine model definition

In this section we define the Turning Machine model. Formally speaking, the model is a
restriction of the Nubot model [20], for simplicity we instead use a custom formalism.

Grid. Positions are pairs in Z2 defined on a two-dimensional triangular grid using x and
y axes as shown in Figure 2. For convenience, we define a third axis, w, centred on the
origin and running through the point (x, y) = (−1, 1). We let ±−→x ,±−→y ,±−→w denote the unit
vectors along the x, y and w axes.

I. Kostitsyna, C. Wood, and D. Woods 11:5

Monomer, configuration, trajectory. A monomer is a pair m = (s(m),pos(m)) where
s(m) ∈ Z is a state and pos(mi) ∈ Z2 is a position. A configuration, of length n ∈ N, is a
tuple of monomers c = (m0,m1, . . . ,mn−1) whose positions σ(c) = pos(m0),pos(m1), . . . ,
pos(mn−1) define a length n− 1 simple directed path (or non-self-intersecting chain) in Z2

(on the triangular grid) and where pos(m0) = (0, 0).3
A configuration is a tuple of n ∈ N monomers (m0,m1, . . . ,mn−1). A final configuration

has all monomers in state 0. A pair of configurations (ci, ci+1) is said to be a step if
ci yields ci+1 via a single rule application (defined below) which we write as ci → ci+1.
A trajectory, of length k, is a sequence of configurations c0, c1, . . . , ck−1 where, for each
i ∈ {0, 1, . . . , k − 2} the pair (ci, ci+1) is a step ci → ci+1. A Turning machine initial
configuration c0 is said to compute the target configuration ct if all trajectories that start at
c0 lead to ct, and is said to compute its target configuration if it reaches the configuration
with all monomers in state 0. A Turning machine instance is an initial configuration. For a
monomer mi, we let s0(mi) denote its state in the initial configuration.

Turning rule: state decrement. Let Sinit (Z be the set of states that appear in the
initial configuration.4 Let smin = min(Sinit ∪ {0}) and smax = max(Sinit ∪ {0}), and let
S = {smin, smin + 1, . . . , smax} be the called the Turning machine state set. The turning rules
of a turning machine are defined by a function r such that for all states s ∈ (S \ {0}):

r(s) =
{
s− 1 if s > 0 ,
s+ 1 if s < 0 .

(1)

Let C be the set of all configurations. The turning rule R : C × Z → C is a function and
R(c, i) is said to be applicable to monomer mi in configuration c if s(mi) 6= 0 and the rule
is not blocked (defined below). If the rule is applicable, we write R(c, i) = c′ and say that
R(c, i) yields the new configuration c′, and we say that (c, c′) is a step.

Turning rule: blocking. For i ∈ {0, 1, . . . , n− 1}, we define the head and tail of monomer
mi as head(mi) = mi+1,mi+2, . . . ,mn−1 and tail(mi) = m0,m1, . . . ,mi.

Consider the following tuple of unit vectors: ~d = (~x, ~y, ~w,−~x,−~y,−~w), and let ~dk denote
the kth element of that tuple. Let ~di = pos(mi+1)−pos(mi), i.e. the unit vector from monomer
mi to mi+1, and then let i′ = (i+2) mod 6. For a vector ~v ∈ Z2 we write mi+~v to mean the
monomer mi translated by ~v. Define5 head→(mi) = mi+1 + ~di′ ,mi+2 + ~di′ , . . . ,mn−1 + ~di′ .
If the set of positions of tail(mi) has a non-empty intersection with the set of positions of
head→(mi) we say that the rule is blocked, and the rule is not applicable. If the rule is not
blocked, it is applicable and the resulting next configuration is c′ = tail(mi), head→(mi) =
m0,m1, . . . ,mi,mi+1 + ~di′ ,mi+2 + ~di′ , . . . ,mn−1 + ~di′ .

A configuration c is said to be permanently blocked if (a) not all states are 0, and (b)
none of the monomers in c has an applicable rule. A monomer m within a configuration c is
said to be temporarily blocked if (a) m is not in state 0, and (b) there is no rule applicable to
m, and (c) there is a trajectory starting at c that reaches a configuration c′ where there is a
rule applicable to m.

3 In the language of [20], one can imagine that for all i ∈ {0, 1, . . . , n− 2}, there is a rigid bond between
monomer mi and monomer mi+1, and otherwise there are no bonds.

4 Throughout this paper, only natural number states are used. However, for generality, symmetry and
potential future work, we intentionally define the model to have integer states.

5 Another way to state this is that when a monomer mi moves, head(mi) translates in the direction
corresponding to the current direction of mi rotated by the angle 2π/3.

DNA 26

11:6 Turning Machines

= 1
= 0

mi

`i

Figure 3 Left: The Turning Machine L1
n that rotates a line of n = 11 monomers by π/3;

illustration for Lemma 5. Four configurations are shown. The initial configuration has all monomers
in state 1 sitting on the x-axis, in the final configuration all are in state 0 and sitting on the π/3
line. Two intermediate configurations are shown, respectively after 2, and then after 5, turning rules
applications. Right: A configuration of some Turning Machine from the classM3

11 with the chain
running from bottom left to top right. Lemmas 5 and 6 uses the fact that tail(mi) sits on or below
`i, head(mi) sits on or above `i, and head→(mi) sits strictly above `i.

Time. A Turning Machine evolves as a continuous time Markov process. The rate for each
rule application is 1. If there are k applicable transitions for a configuration ci (i.e. k is the
sum of the number of rule applications that can be applied to all monomers in ci), then
the probability of any given transition being applied is 1/k, and the time until the next
transition is applied is an exponential random variable with rate k (i.e. the expected time
is 1/k). The probability of a trajectory is then the product of the probabilities of each of
the transitions along the trajectory, and the expected time of a trajectory is the sum of the
expected times of each transition in the trajectory. Thus,

∑
t∈T Pr[t] · time(t) is the expected

time for the system to evolve from configuration ci to configuration cj , where T is the set of
all trajectories from ci to cj , and time(t) is the expected time for trajectory t.

I Example. The proof of Lemma 5 in Appendix A, and Figure 3, illustrate these concepts.

3 Classes of Turning Machines: line rotation and square

Every Turning Machine analysed in this paper starts with n ∈ N monomers, sitting on the
x-axis, as formalised in the following definition.

I Definition 1 (M≤σn). Let n, σ ∈ N. We let M≤σn denote the set of n-monomer Turning
Machines with initial configuration c0 = m0,m1, . . . ,mn−1 having all monomers positioned
on the x-axis (pos(mi) = (i, 0) ∈ Z2) and pointing to the east, and with initial states s0(mi)
bounded by σ, i.e. s0(mi) ≤ σ for all 0 ≤ i ≤ n− 2, and s0(mn−1) = 0.

We next define a sub class ofM≤σn machines, called “line rotation” Turning Machines.

I Definition 2 (Line rotation Turning Machine). Let n ∈ N and let Lσn be the Turning Machine
with initial configuration of n monomers c0 = m0,m1, . . . ,mn−1 all pointing to the east,
positioned on the x-axis (pos(mi) = (i, 0) ∈ Z2), and for 0 ≤ i ≤ n− 2 all monomers in the
same state s0(mi) = σ ∈ N+ and s0(mn−1) = 0.

I Remark 3. The initial monomer state σ ≥ 0 dictates that each monomer wishes to turn
(have a rule applied) a total σ times, i.e. be rotated through an angle of σπ/3.

I. Kostitsyna, C. Wood, and D. Woods 11:7

αi

mi

mj

αi+1

αj

Figure 4 Illustration of turn angle (Definition 7). The turn angles αi and αi+1 are positive (and
to the left), and αj is negative (and to the right).

I Remark 4 (Target configuration). For intuition, if there was no notion of blocking in the
Turning Machine model, that is, if the model permitted self-intersecting configurations (which
it does not), then the final configuration c of the Turning Machine in Definition 2 is a straight
line of monomers sitting along the ray that starts at the origin and is at an angle of σ π3 ,
i.e. at positions (0, 0), (0,−1), . . . , (0,−(n− 1)) and all pointing to the west. We call c the
desired target configuration of the line rotation Turning Machine Lσn. Also, if there was no
notion of blocking: expected time to completion would be fast, O(logn) (by a generalisation
of the analysis used in the proof of Lemma 5). However, a model with no blocking would be
rather uninteresting.

Figure 3 (left) illustrates Lemma 5 and Appendix A contains its straightforward, yet
instructive, proof.

I Lemma 5. For each n ∈ N, the line-rotating Turning Machine L1
n computes its target

configuration, and does so in expected O(logn) time.

Lemma 6 is illustrated in Figure 3 (right).

I Lemma 6. Let n ∈ N and let L≤3
n be a Turning Machine inM≤3

n (Definition 1). Let mi

for 0 ≤ i ≤ n− 1 be a monomer in some reachable configuration c of L≤3
n . The monomers

head(mi) are positioned on or above `i, and tail(mi) are positioned on or below `i.

Proof. The claim follows from the fact that in any configuration of L≤3
n , and for any

j ∈ {0, 1, . . . , n− 2} the angle of the vector
−−−−−−−−−−−−−→
pos(mj)pos(mj+1) (from monomer mj to mi+1)

is either 0◦, 60◦, 120◦, or 180◦ (and, in particular, is not strictly between 180◦ and 360◦). J

4 Tools for reasoning about Turning machines

The notion of turn angle of a monomer is crucial to our analysis and is illustrated in Figure 4.

I Definition 7 (Turn angle). Let c be the configuration of an n-monomer Turning Ma-
chine and let 0 ≤ i < n − 1. The turn angle αi at monomer mi is the angle between−−−−−−−−−−−−−→
pos(mi−1)pos(mi) and

−−−−−−−−−−−−−→
pos(mi)pos(mi+1), and it is the positive counterclockwise angle if

the points pos(mi−1),pos(mi),pos(mi+1) make a left turn6, and the negative clockwise angle
otherwise.

6 The notion of left or right turn along the three points pos(mi−1),pos(mi),pos(mi+1) can be formalised
by considering the line `i running through pos(mi), in the direction

−−−−−−−−−−−−−→
pos(mi−1)pos(mi), noting that `i

cuts the plane in two, and defining the left- and right-hand side of the plane with respect to the vector
along `i.

DNA 26

11:8 Turning Machines

For a monomer mi, the following definition gives a measure, ∆s(mi), of how its state s(mi)
has progressed since the initial configuration.

I Definition 8. Let c be a reachable configuration of an n-monomer Turning Machine. Define
∆s(mi) to be the number of rule applications to (moves of) the monomer mi from the initial
configuration to c. That is, ∆s(mi) = s0(mi)− s(mi), where s0(mi) is the initial state of
mi, and s(mi) is the state of mi in configuration c.

I Lemma 9 (Difference of State is ≤ 2). Let n ∈ N, and let c be any reachable configuration
of an n-monomer Turning Machine Tn with non-negative initial states, then

|∆s(mi)−∆s(mi+1)| ≤ 2 ,

for all 0 ≤ i < n− 1.

Proof. Let mt
k, for t ∈ N and k ∈ {0, 1, . . . , n− 1}, denote the kth monomer in the tth config-

uration ct. Initially, ∆s(m0
j) = 0 for all monomers mj , and thus |∆s(m0

i)−∆s(m0
i+1)| = 0.

Observe, that |∆s(mi)−∆s(mi+1)| 6= 3 because otherwise pos(mi) = pos(mi+2) making c
a self-intersecting (non-simple) configuration, contradicting its definition.

By Equation (1), when a rule is applied to one of mt
i or mt

i+1 its state decreases by 1
and its ∆s(·) increases by 1. Then |∆s(mt

i) − ∆s(mt
i+1)| = |∆s(mt−1

i) − ∆s(mt−1
i+1)| ± 1.

When a rule is applied to some other monomer mk with i 6= k 6= j, then |∆s(mt
i) −

∆s(mt
i+1)| = |∆s(mt−1

i) − ∆s(mt−1
i+1)| ± 0. Thus, after each rule application the value of

|∆s(mi) −∆s(mi+1)| changes by at most 1, and as it cannot be equal to 3, we have that
|∆s(mi)−∆s(mi+1)| ≤ 2. J

We can now show the following lemma, which proves a relation between the states of any
two monomers of a Turning Machine and the geometry of the current configuration.

I Lemma 10. Let c be any reachable configuration of an n-monomer Turning Machine Tn,
whose initial configuration c0 has all monomers pointing in the same direction, and let mi

and mj be two monomers of c such that i < j < n− 1, then

∆s(mj)−∆s(mi) = 3
π

j∑
k=i+1

αk ,

where αk is the turn angle at monomer mk.

Proof. For any intermediate configuration, the turn angle αi+1 between monomers mi and
mi+1 depends only on the number of moves each monomer has made. Initially, αi+1 = 0,
and it increases by π/3 each time monomer mi moves, and decreases by π/3 every time
monomer mi+1 moves. By Lemma 9, for two consecutive monomers mi and mi+1, in any
configuration, |∆s(mi)−∆s(mi+1)| ≤ 2. Hence, for a pair of consecutive monomers mi and
mi+1, the turn angle αi+1 is in the range [−2π3 , 2

π
3], and thus αi+1 = ∆s(mi+1)−∆s(mi).

Summing over all i gives the lemma conclusion. J

The following technical lemma is used extensively for our main results. Intuitively, it tells
us that high-state monomers are not blocked.

I Lemma 11. Let Tn ∈ Ms
n be a Turning Machine with maximum state s ≤ 5. In

any reachable configuration c of Tn no monomer mi with ∆s(mi) ≤ 1 is blocked (neither
temporarily blocked nor permanently blocked).

I. Kostitsyna, C. Wood, and D. Woods 11:9

βj

mk

mj

βk

mi

mi+1

βjmk
mj

βk

mi

mi+1

Figure 5 Illustration for Lemma 11. Monomer mi is shown in black, head(mi) is shown in blue
and tail(mi) is shown as the green curve plus the black monomer mi. Left: monomer mi is in its
initial state (∆s(mi) = 0), and polygon P is traversed counter-clockwise. Right: monomer mi has
moved once (∆s(mi) = 1), and polygon P is traversed clockwise.

Proof. Suppose, for the sake of contradiction, there is a blocked monomer mi with ∆s(mi) ≤
1. Then there exist two monomers mj ∈ head(mi) and mk ∈ tail(mi) such that pos(mk) =
pos′(mj), where pos′(mj) is the position of mj in head→(mi) (see Figure 5).

By definition of head and tail we know that k ≤ i < j. Consider the closed chain
P = pos(mk),pos(mk+1), . . . ,pos(mj−1),pos(mj),pos(mk). Since configurations are simple,
P defines a simple polygon. The turn angles of a simple polygon sum to 2π if the polygon is
traversed anticlockwise (interior of P is on the left-hand side while traversing), or −2π if the
polygon is traversed clockwise (interior of P is on the right-hand side). For P , this sum is
defined as:

αP =
j−1∑
`=k+1

α` + βj + βk = ±2π ,

where α` is the turn angle at monomer m`, and βj and βk are the turn angles of the polygon
at vertices pos(mj) and pos(mk) respectively (see Figure 5). More precisely,

α` = ∠(
−−−−−→
pos(m`)−

−−−−−−−→
pos(m`−1),

−−−−−−−→
pos(m`+1)−

−−−−−→
pos(m`)) ,

βj = ∠(
−−−−−→
pos(mj)−

−−−−−−−→
pos(mj−1),

−−−−−→
pos(mk)−

−−−−−→
pos(mj)) , and

βk = ∠(
−−−−−→
pos(mk)−

−−−−−→
pos(mj),

−−−−−−−→
pos(mk+1)−

−−−−−→
pos(mk)) .

Furthermore, by Lemma 10,

∆s(mj−1)−∆s(mk) = 3
π

j−1∑
`=k+1

α` .

Thus,

∆s(mj−1) = ∆s(mk)+ 3
π

j−1∑
`=k+1

α` = ∆s(mk)+ 3
π

(±2π−βj−βk) = ∆s(mk)±6− 3
π

(βj+βk) .

Observe that when a monomer mi moves, its head translates in the direction corresponding
to the current direction of mi rotated by angle 2π/3. Therefore, the state of mk can be
represented as a function of the state of mi and the angle βk, more precisely

∆s(mk) = ∆s(mi) + 2 + 3
π
βk .

DNA 26

11:10 Turning Machines

(See Figure 5 for an example.) Therefore, by the previous two equalities

∆s(mj−1) = ∆s(mi) + 2± 6− 3
π
βj .

Recall, that the angle βj ∈ [−2π/3, 2π/3], that 0 ≤ ∆s(mi) ≤ 1 by the assumption of the
lemma, and that ∆s(mj−1) ≤ s. If the polygon defined by P is traversed counter-clockwise,
then

∆s(mj−1) = ∆s(mi) + 8− 3
π
βj ≥ 0 + 8− 2 = 6 ,

which implies that s(mj−1) is out of the range of valid states, as mj−1 must have moved
more times as its initial state. Else, if the polygon P is traversed clockwise, then

∆s(mj−1) = ∆s(mi)− 4− 3
π
βj ≤ 1− 4 + 2 = −1 ,

which again implies that s(mj−1) is out of the range of valid states, as mj−1 must have
moved in the wrong direction. In either case we contradict that the state s(mj−1) is in the
range of valid states, and, therefore, the monomer mi is not blocked. J

I Lemma 12. Let Lsn be a line-rotating Turning Machine with s ≤ 5. Let c be a reachable
configuration of Lsn where each monomer mi in c has sc(mi) < s. Then the line-rotating
Turning Machine Ls−1

n has a reachable configuration c′ such that for every mi, sc′(mi) =
sc(mi) and the geometry (chain of positions) of c is equal to that of the rotation of c′ by π/3
around the origin.

Proof. Consider the sequence ρc rule applications (moves) that brings the initial configuration
of Lsn to configuration c. We claim that ρc can be converted into another sequence ρc′ , of
the same length, in which the first n− 1 moves are by monomers in state s.

First, we claim: for any two consecutive moves, where the second move is applied to a
monomer in state s, swapping the two moves results in a valid sequence of moves transforming
the Turning Machine into the same configuration. Let the first move be applied to monomer
mi which transitions from state s′ to s′ − 1, and the second move be applied to monomer mj

which transitions from state s to s− 1. Suppose for the sake of contradiction that swapping
the moves results in at least one of the monomers mi or mj being blocked. We begin by
attempting to apply the move to monomer mj , but, by Lemma 11, that move is not blocked.
Then we attempt to apply a move to monomer mi, but that is not blocked either since the
coordinates of all monomers before and after swapping the two moves are exactly the same;
i.e. the resulting configuration is a valid (non-self-intersecting) configuration in both cases.
Hence neither monomer is blocked.

Thus, the original sequence of moves resulting in configuration c, can be converted into
another sequence where the first n − 1 moves are applied to monomers in state s. Then,
after the first n− 1 moves the configuration of Lsn is equivalent to the initial configuration of
Lsn but rotated by π/3 and with all monomers in state s− 1. Hence equivalent to the initial
configuration of Ls−1

n rotated by π/3.
Applying the remaining moves to Ls−1

n will transform it into configuration c′. J

5 Line rotation to 5π/3

In this section we show that for 1 ≤ s ≤ 5 the line-rotation Turning Machine Lsn computes
its target configuration of a sπ/3 rotated line (Theorem 13), and does so in expected time
O(logn) (Theorem 14). In addition to those results for any state s ≤ 5, in Appendix A we

I. Kostitsyna, C. Wood, and D. Woods 11:11

= 1

= 0

= 3

= 2

Figure 6 Example trajectory of the Turning Machine L3
n that rotates a line of east-pointing

monomers by an angle of π. Illustration for Theorem 14 with s = 3 (and for Lemma 20 and
Theorem 21 in Appendix A). Seven configurations are shown, the initial configuration has all
monomers in state 3 (blue), final in state 0 (yellow). Darker shading indicates later in time. A red
bond (edge) indicates a blocked monomer. The proof of Lemma 20 shows that only monomers in
state 1 are ever blocked and only when they are adjacent to a monomer in state 3, and that all such
blockings are temporary – if we wait long enough they become unblocked.

include stand-alone proofs for each of s = 1, s = 3, and s = 4 which showcase a variety of
geometric techniques for analysing Turning Machine movement, but are not needed to prove
our main results. Also, the cases of s = 1 and s = 3 are illustrated in Figures 3 and 6.

I Theorem 13. For each n ∈ N and 1 ≤ s ≤ 5, the line-rotation Turning Machine Lsn
computes its target configuration.

Proof. We prove by induction on 1 ≤ s ≤ 5 that any reachable configuration c of Lsn is not
permanently blocked.

Base case s = 1. In any configuration reachable by L1
n, monomers have either state s = 1

or 0. Monomers in state s = 1 cannot be permanently blocked by Lemma 11. Thus, any
non-final configuration is not permanently blocked.

Assume for s− 1 the claim is true, i.e. it holds for Ls−1
n . We will prove that for s it is

also true, i.e. it holds for Lsn. Suppose, for the sake of contradiction, there is a permanently
blocked configuration c of Lsn for some n ∈ N and s ≤ 5. If there is no monomer in c in state
s, then by Lemma 12 there exists a corresponding configuration c′ in Ls−1

n with monomers
m′0,m

′
1, . . . ,m

′
n−1, such that, for any monomer mi in c with state si < s the corresponding

monomer m′i in c′ has the same state si. Configurations c and c′ form chains equal up to
rotation by angle π/3. Configuration c′ is not blocked by the induction hypothesis, thus
configuration c cannot be blocked either.

On the other hand, if there is a monomer mi in configuration c in state s, then by
Lemma 11 it is unblocked, and configuration c, again, is not blocked.

Hence the induction hypothesis holds for s, and Lsn does not have a reachable permanently
blocked configuration. J

I Theorem 14. For each n ∈ N and 1 ≤ s ≤ 5, the line-rotation Turning Machine Lsn
computes its target configuration in expected O(logn) time.

Proof. By Theorem 13, Lsn computes its target configuration. For the time analysis we use
a proof by induction on u ∈ {0, 1, . . . , s}, in decreasing order.

The induction hypothesis is that for a reachable configuration cu of Lsn with maximum
state value u (there may be states < u in the configuration), the expected time to reach a
configuration cu−1 with maximum state u− 1 is O(logn).

DNA 26

11:12 Turning Machines

For the base case we let u = s and assume c is such that all monomers are in state u.
Hence c is an initial configuration and hence, by definition, is reachable. By Lemma 11,
monomers in state s are never blocked and hence we claim that the first configuration with
maximum state u− 1 appears after expected time O(logn). To see this claim, note that for
each monomer mi in state s(mi) = u the rule application that sends mi to state u− 1 occurs
at rate 1, independently of the states and positions of the other monomers (by Lemma 11,
there is no blocking of a monomer in state u = s). Since there are n monomers in state u,
the expected time for all n to transition to u− 1 is [13]:

n∑
k=1

1
k

= O(logn) . (2)

We assume the inductive hypothesis is true for 0 < u+ 1 ≤ s, and we will prove it holds
for u. Thus, there exists a reachable configuration cu where the maximum state value is u ≤ s,
which is reachable from cu+1 in expected O(logn) time. Let there be n′ ≤ n monomers in
state u in cu. By Lemma 12, there is a line-rotating Turning Machine Lun that has a reachable
configuration c′u such that for every mi in cu, sc′

u
(mi) = scu

(mi) and the positioning of cu is
equal to the rotation of c′u by π/3 around the origin. By Lemma 11 monomers in state u in
Lun are never blocked, hence monomers in state u in cu are not blocked either. Setting n = n′

in Equation (2), and noting that O(logn′) = O(logn), proves the inductive hypothesis for u.
Since we need to apply the inductive argument at most s ≤ 5 times, by linearity of

expectation, the expected finishing time for the s processes is their sum, 5 · O(logn) =
O(logn). J

6 Line rotation to 2π is impossible

I Theorem 15. For all n ∈ N, n ≥ 7, the line-rotating Turning Machine L6
n does not

compute its target configuration. In other words, there is a permanently blocked reachable
configuration.

Proof. Figure 7, looking only at blue monomers and edges, shows a valid trajectory of L6
7 ,

then ends in a permanently blocked configuration, hence the lemma holds for n = 7.
Let n > 7, and in Figure 7 let the red line segment denote a straight line `n−7 of n− 7

monomers co-linear with the red line segment. By inspection, it can be verified that (a) in
all 25 configurations the line ` does not intersect any blue monomer, and moreover (b) the
transitions from configurations 1 through 14, configurations 17 through 23, and configuration
24 to 25 are all valid, meaning that the length n− 7 line `n−7 does not block the transition.
The transitions for configurations 14 through 17 are valid by Theorem 13 (with s = 3) and
the fact that the last blue monomer (the origin of `n−7) is strictly above all other blue
monomers (hence the 180◦ rotation of `n−7 proceeds without permanent blocking by blue
monomers). The transition for configuration 23 to 24 is valid by applying Lemma 5 (or
Theorem 13, with s = 1) reflected through a horizontal line that runs through the last blue
monomer, and the fact that the last blue monomer (the origin of `n−7) is strictly below all
other blue monomers (hence the 60◦ rotation of `n−7 proceeds without permanent blocking).
Thus all transitions are valid and the permanently blocked configuration is reachable, giving
the lemma statement. J

I. Kostitsyna, C. Wood, and D. Woods 11:13

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(17)

(18)

Figure 7 Impossibility of 360◦ line rotation, by showing that for all n ∈ N, the line-rotation
Turning Machine L6

n has a reachable but permanently blocked configuration. Looking at the evolution
of the first seven monomers (i.e. ignore the rotation of the red line segment) we see one trajectory of
the Turning machine that exhibits permanent blocking in the final (bottom-right) configuration,
which has respective states 6,4,3,2,1,0,0. We imagine the red line segment as representing an arbitrary
long sequence of monomers running collinear with it, and transitions 14–16, 22–23, and 24–25, each
representing the (many step) rotation of the red line by consecutive angles of 60◦. These rotations of
the red line can proceed by two applications of Theorem 13 (first with s = 3, then with s = 1) and
the fact that the first monomer of the red line is strictly above, or below, the first seven monomers.
Hence the final, permanently blocked, configuration is reachable no matter what length the red
line is.

7 Folding zig-zag squares and y-monotone shapes

As a demonstration of our techniques, in this section we show how to build two shapes with
Turning Machines: an n× n square, and any y-monotone shape.

We first define a specific curve which fills a square row by row in a zig-zag fashion. An
example is shown in Figure 8 (left).

I Definition 16 (n× n zig-zag square). For any n ∈ N, an n× n zig-zag square is the length
n2 configuration such that the position of monomer mi is given by the following expression:

pos(mi) =
{

(i%n, b inc) , if i%(2n) < n ,

(n− 1− i%n, b inc) , if i%(2n) ≥ n ,

where i%n denotes the remainder of i divided by n.

We now show that the zig-zag square can be built by a Turning Machine.

DNA 26

11:14 Turning Machines

= 1

= 0

= 3

= 2

Figure 8 Left: A target n× n zig-zag square, for n = 8. Right: an intermediate configuration c
after all 1-monomers have moved (for 0 ≤ k ≤ 3, a k-monomer begins in state k). The horizontal
lines (in red) subdivide the T zz

n into independent subchains equivalent to n separate line-rotating
Turning Machines L3

n.

I Theorem 17. For any n ∈ N, let T zz
n be an n2-monomer Turning Machine with initial

configuration having all monomers positioned on the x-axis (pos(mi) = (i, 0) ∈ Z2) and
pointing to the east, with initial state sequence

S =
{

(0n−113n−11) n
2−10n−113n−10, if n is even ,

(0n−113n−11)(n−1)/20n, if n is odd .

Then, T zz
n computes the n× n zig-zag square (Definition 16) in expected time O(logn).

Proof. For notation, we let k-monomers be the monomers whose initial state is k. Thus, the
Turning Machine consists of sequences of 0- and 3-monomers, separated by single 1-monomers.
Observe that all 1-monomers are never blocked. Thus, after expected O(logn) time they all
move to their final orientation along the y-axis. Consider such a configuration c, in which all
1-monomers are in state 0. The remaining rules can only be applied to 3-monomers. Consider
a set of horizontal lines passing through the midpoint of the unit-length line-segment that
spans from the position pos(mi) of each 1-monomer mi to pos(mi+1). These lines separate
consecutive sequences of 0-monomers and sequences of 3-monomers from one another in the
R2 plane. This implies, that after the two adjacent 1- monomers have moved, the full segment
M of 3-monomers in between them moves independently of the rest of the configuration. We
claim that the evolution of these processes is modelled by the computation of a line-rotating
Turning Machine L3

n. Before its left-bordering 1-monomer has moved, the segment M of
3-monomers acts as a length n instance of L3

n+1, with an additional 1-monomer, its first
monomer, that simply has not moved yet. Since we know that monomer is first released after
O(logn) time, this does not (asymptotically) change the expected time bound for the L3

n+1
machine.

By Theorem 14, each of the sequences of 3-monomers will evolve into their target
configuration in O(logn) expected time independent of one another, which would naively
give an overall expected time of O(log2 n) time. However, by Lemma 11 we know that no
3-monomer that is in state 3 or state 2, and no 1-monomer, is ever blocked. Hence, we can

I. Kostitsyna, C. Wood, and D. Woods 11:15

Figure 9 A y-monotone shape in R2 approximated with a zig-zag chain on the triangular grid.

analyse all n2 monomers as one system, noting that all such monomers complete in time
O(logn), at which point we have a reachable configuration that has all 3-monomers in either
state 0 and 1 (all others in state 0) which in turn finishes in O(logn) expected time.7 J

I Definition 18 (y-monotone shape). A set A ⊂ R2 is y-monotone, if any horizontal line h
intersects S along one continuous segment of h.

Similarly to the construction of the zig-zag square presented above, we can build an
approximation of any y-monotone shape A by discretizing it and filling the resulting shape
row by row in a zig-zag manner (refer to Figure 9). The resulting state sequence of the
Turning Machine T zz

n consists of intervals of 0-monomers and 3-monomers of various lengths
separated by single 1-monomers.

We conclude with the following theorem statement. In it we assume that the state
sequence S is such that the final configuration approximates some given y-monotone shape A.
The proof is the same as that for Theorem 17 (but using a variety of horizontal segment
lengths n).

I Theorem 19. Let T y−mon
n be a Turning Machine with initial configuration having all

monomers positioned on the x-axis (pos(mi) = (i, 0) ∈ Z2) and pointing to the east, with
initial state sequence S consisting of intervals of 0- and 3-monomers separated by single
1-monomers. Then T y−mon

n computes its target configuration in O(logn) expected time.

References
1 Greg Aloupis, Sébastien Collette, Mirela Damian, Erik D Demaine, Robin Flatland, Stefan

Langerman, Joseph O’Rourke, Suneeta Ramaswami, Vera Sacristán, and Stefanie Wuhrer.
Linear reconfiguration of cube-style modular robots. Computational Geometry, 42(6-7):652–663,
2009.

2 Greg Aloupis, Sébastien Collette, Erik D. Demaine, Stefan Langerman, Vera Sacristán, and
Stefanie Wuhrer. Reconfiguration of cube-style modular robots using O(log n) parallel moves.
In International Symposium on Algorithms and Computation, pages 342–353. Springer, 2008.

7 This is similar to the technique used in the proof of Theorem 14.

DNA 26

11:16 Turning Machines

3 Ho-Lin Chen, David Doty, Dhiraj Holden, Chris Thachuk, Damien Woods, and Chun-Tao Yang.
Fast algorithmic self-assembly of simple shapes using random agitation. In DNA20: The 20th
International Conference on DNA Computing and Molecular Programming, volume 8727 of
LNCS, pages 20–36, Kyoto, Japan, September 2014. Springer. Full version: arXiv:1409.4828.

4 Moya Chen, Doris Xin, and Damien Woods. Parallel computation using active self-assembly.
Natural Computing, 14(2):225–250, 2014. arXiv version: arXiv:1405.0527.

5 Kenneth C. Cheung, Erik D. Demaine, Jonathan R. Bachrach, and Saul Griffith. Programmable
assembly with universally foldable strings (moteins). IEEE Transactions on Robotics, 27(4):718–
729, 2011.

6 Yen-Ru Chin, Jui-Ting Tsai, and Ho-Lin Chen. A minimal requirement for self-assembly of
lines in polylogarithmic time. Natural Computing, 17(4):743–757, 2018.

7 Robert Connelly, Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Stefan Langerman,
Joseph S.B. Mitchell, Ares Ribó, and Günter Rote. Locked and unlocked chains of planar
shapes. Discrete & Computational Geometry, 44(2):439–462, 2010.

8 Nadine Dabby and Ho-Lin Chen. Active self-assembly of simple units using an insertion
primitive. In SODA: The 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1526–1536, January 2012.

9 Rachel E. Dawes-Hoang, Kush M. Parmar, Audrey E. Christiansen, Chris B. Phelps, Andrea H.
Brand, and Eric F. Wieschaus. Folded gastrulation, cell shape change and the control of
myosin localization. Development, 132(18):4165–4178, 2005.

10 Erik D. Demaine, Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers, Nicolas
Schabanel, Shinnosuke Seki, and Hadley Thomas. Know when to fold’em: self-assembly of
shapes by folding in oritatami. In DNA: International Conference on DNA Computing and
Molecular Programming, pages 19–36. Springer, 2018.

11 Cody Geary, Pierre-Étienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Programming
biomolecules that fold greedily during transcription. In MFCS: The 41st International
Symposium on Mathematical Foundations of Computer Science. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2016.

12 Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, Christian
Scheideler, and Thim Strothmann. Forming tile shapes with simple robots. Natural Computing,
pages 1–16, 2019.

13 Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics, 1989.
14 Benjamin Hescott, Caleb Malchik, and Andrew Winslow. Tight bounds for active self-assembly

using an insertion primitive. Algorithmica, 77:537–554, 2017.
15 Benjamin Hescott, Caleb Malchik, and Andrew Winslow. Non-determinism reduces con-

struction time in active self-assembly using an insertion primitive. In COCOON: The 24th
International Computing and Combinatorics Conference, pages 626–637. Springer, 2018.

16 Chun-Ying Hou and Ho-Lin Chen. An exponentially growing nubot system without state
changes. In International Conference on Unconventional Computation and Natural Computa-
tion, pages 122–135. Springer, 2019.

17 Adam C Martin, Matthias Kaschube, and Eric F Wieschaus. Pulsed contractions of an
actin–myosin network drive apical constriction. Nature, 457(7228):495–499, 2008.

18 Othon Michail, George Skretas, and Paul G. Spirakis. On the transformation capability of
feasible mechanisms for programmable matter. Journal of Computer and System Sciences,
102:18–39, 2019.

19 Hamid Ramezani and Hendrik Dietz. Building machines with DNA molecules. Nature Reviews
Genetics, pages 1–22, 2019.

20 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.
Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In ITCS:
The 4th conference on Innovations in Theoretical Computer Science, pages 353–354. ACM,
2013. Full version: arXiv:1301.2626 [cs.DS].

http://arxiv.org/abs/1409.4828
http://arxiv.org/abs/1405.0527
http://arxiv.org/abs/1301.2626

I. Kostitsyna, C. Wood, and D. Woods 11:17

A Line rotation by π/3, π and 4π/3

In this appendix we present proofs that line-rotating Turning Machine for respective angles
of π/3, π and 4π/3 terminates in expected time O(logn). These claims are superseded by
the results in the main paper, but we include the proofs as they give a number of techniques
to analyse the Turning Machine model.

A.1 Line rotation by π/3: L1
n

The following proof of line rotation by π/3 radians is intended to be a simple example
worked out in detail. Let L1

n be the Turning Machine defined in Definition 2 with σ = 1, as
illustrated in Figure 3 (left).

I Lemma 5. For each n ∈ N, the line-rotating Turning Machine L1
n computes its target

configuration, and does so in expected O(logn) time.

Proof. The initial configuration (Figure 3, left) of L1
n is a line of n−1 monomers in state 1 with

an additional final monomer in state 0, i.e. at time 0 the n states are s(m0)s(m1) · · · s(mn−1) =
1n−10. Since monomer states only change by decrementing from 1 to 0, any configuration on
any trajectory of L1

n has its (composite) state of the form {0, 1}n−10. Consider a configuration
c in a trajectory of evolution of L1

n, and the corresponding state8 x ∈ {0, 1}n−10. Let mc
i

denote the ith monomer of L1
n in configuration c. For any i ∈ {0, 1, . . . , n − 2} such that

s(mc
i) = 1, consider the unique configuration c′ where c → c′ and s(mc′

i) = 0 (and, by
definition of next configuration step, j 6= i implies s(mc′

j) = s(mc
j)).

We claim that tail(mc
i) does not share any positions with head→(mc

i), in other words,
that c′ is a non-self-intersecting configuration. To show this, consider a horizontal line
`i through monomer mc

i and observe that in c′ (and in c), the monomers tail(mc
i) =

mc
0,m

c
1, . . . ,m

c
i lie on or below `i (because the path pos(mc

0),pos(mc
1), . . . ,pos(mc

i) is con-
nected and consists of unit length segments each at an angle of either 0◦ or 60◦ clock-
wise relative to the x-axis), but the monomers head→(mc

i) = mc′

i+1,m
c′

i+2, . . . ,m
c′

n−1 lie
strictly above `i (because pos(mc′

i+1) is strictly higher than pos(mc
i), and because the path

pos(m′i+1),pos(m′i+2), . . . ,pos(mc′

n−1) is connected and consists of unit length segments each
at an angle of 0◦ or 60◦ to the x-axis). Hence there are no blocked configurations reachable
by L1

n (neither permanent nor temporary blocking).
At each reachable configuration c, starting from the initial configuration, we can choose i

independently from the set of non-zero states. The expected time for the first rule application
is 1/(n− 1) since it is the expected time of the minimum of n− 1 independent exponential
random variables each with rate 1. The next is 1/(n − 2), and so on. By linearity of
expectation, the expected value of the total time T is E[T] =

∑n−1
k=1

1
k = O(logn), where the

sum is the (n − 1)th partial sum of the harmonic series, known to have a O(logn) bound.
Hence L1

n completes in expected O(logn) time. J

A.2 Line rotation by π: L3
n

Next, we analyse line rotation of π radians.

I Lemma 20. Let L3
n be a line-rotating Turning machine, then:

(i) any reachable configuration of L3
n has no more than 2n/3 blocked monomers, and

(ii) there exists a configuration of L3
n that has exactly 2n/3 blocked monomers.

8 In fact any x ∈ {0, 1}n−10 is the state of a reachable configuration, but we don’t need to prove that.

DNA 26

11:18 Turning Machines

Proof. Consider any reachable configuration c of L3
n, and let monomer mi be blocked in c.

By Lemma 11, monomers in state 2 and 3 are never blocked. By definition, monomers in
state 0 are not blocked. Thus if mi is blocked it is in state 1, i.e. s(mi) = 1. We claim that
in this case either s(mi−1) = 3 or s(mi+1) = 3 (or both). Consider the following two cases
for s(mi+1):
1. If s(mi+1) ∈ {1, 2}, then by Lemma 6 all monomers of head→(mi), except its first monomer

m′i+1, lie strictly above `i, and since tail(mi) lies on or below `i, we get that tail(mi) does
not intersect head→(mi), except possibly at pos(m′i+1). Whether pos(m′i+1) intersects
tail(mi) depends on the state of mi−1:
(a) If s(mi−1) ∈ {1, 2}, then all monomers of tail(mi) lie strictly below `i (except its first

monomer mi which is not at position pos(m′i+1)), hence pos(m′i+1) cannot intersect
tail(mi). Then mi cannot be blocked.

(b) If s(mi−1) = 0, then m′i+1 does not intersect tail(mi): Indeed, pos(mi−1) = pos(mi)+
~x = pos(m′i+1) + 2~x 6= pos(m′i+1). Furthermore, let mj , mj+1, ..., mi−1 be the
longest consecutive subsequence of monomers in state 0 preceding monomer mi. Then
pos(mj), pos(mj+1), ..., pos(mi+1) are all strictly to the west of pos(mi). If j−1 ≥ 0,
the non-zero-state9 monomer mj−1 enforces that the monomers m0, m1, ..., mj−1 lie
strictly below `i. Thus mi is not blocked.

Therefore, monomer mi−1 can only be in state 3.
2. If s(mi+1) = 0: Both head→(mi) and tail(mi) have monomers on `i, but we claim the

positions of head→(mi) do not intersect those of tail(mi). If s(mi−1) ∈ {1, 2}, then all
monomers of tail(mi) exceptmi lie strictly below `i, and thus head→(mi) does not intersect
tail(mi) (and recall that head→(mi) does not intersect pos(mi) because configurations are
simple). If s(mi−1) = 0 then the monomers M = {mi−1,mi,m

′
i+1} lie along `i (pointing

west). Note that a prefix of M is a suffix of tail(mi) and a (disjoint) suffix of M is a
prefix of head→(mi). Hence, in order for tail(mi) to intersect head→(mi), one or both
must depart from `i, but, by Lemma 6, tail(mi) can only do so by having monomers
strictly below `i, and head→(mi) can only do so by having monomers strictly above `i.
Thus, monomer mi−1 can only be in state 3.

Therefore, if mi is blocked, then either mi−1 or mi+1 is in state 3, and thus is unblocked.
Hence, there cannot be three monomers in a row which are blocked, resulting in Conclusion
(i) of the lemma.

For Conclusion (ii), consider a line-rotating Turning Machine L3
n with n = 3k for some k.

The configuration c with state sequence S = (131)k−1130 has exactly 2n/3 blocked monomers,
as every monomer in state 1 is either blocked by a preceding monomer in state 3, or by a
following monomer in state 3. J

I Theorem 21 (Rotate a line by π). For each n ∈ N, the line-rotating Turning Machine L3
n

computes its target configuration, and does so in expected time O(logn).

Proof. By Lemma 20, no configuration has a permanently blocked monomer, hence every
trajectory of L3

n ends in the target configuration.
At the initial step, the rate of rule applications is n − 1 (there are n − 1 monomers

in state 3). Over time, for successive configurations along a trajectory, the rate of rule
applications may decrease for two reasons: (a) some monomers may be temporary blocked,
and (b) after a monomer transitions to state 0 no more rules are applicable to it. We reason
about both:

9 Which must be in state 1 or 2, since 3 would give a self-intersection along the configuration.

I. Kostitsyna, C. Wood, and D. Woods 11:19

(a) Lemma 20(ii) shows that a configuration with state sequence s = (131)n/3−1130 has
2n/3 blocked monomers, and Lemma 20(i) states that no configuration has more than 2n/3
blocked monomers for n divisible by 3. Using that fact, and in order to simplify the proof,
we shall analyse a new, possibly slower, system where for any configuration c that has n′ ≤ n
monomers in state 6= 0, we “artificially” block 2n′/3 monomers.10 Since this assumption
merely serves to slow the system, it is sufficient to give an upper bound on the expected time
to finish.

(b) A second “slowdown” assumption will be applied during the analysis and is justified
as follows. Intuitively, the number of monomers transitioning to state 0 increases with
time, and since monomers in state 0 have no applicable rules, this causes a decrease in
the rate of rule applications. Consider a hypothetical continuous-time Markov system M ,
with 3n steps with rate decreasing by 1 every third step, that is, with successive rates
n, n, n, n− 1, n− 1, n− 1, n− 2, . . . , 2, 1, 1, 1. By linearity of expectation, the expected value
of the finishing time T is the sum of the expected times E[ti] for each of the individual steps
i ∈ {1, 2, . . . , 3n}:

E[T] =
3n∑
i=1

E[ti] =
n∑

m=1
3 · 1

m
= 3

n∑
m=1

1
m

= 3Hn ≤ 3(ln(n) + 1) = O(logn) , (3)

where Hn is the nth partial sum of the harmonic series
∑∞
m=1

1
m with Hn ≤ ln(n) + 1

(see [13]). Since, in L3
n, it requires at least 3 steps to send a monomer from state 3 (the

initial state) to state 0, no trajectory sends monomers to state 0 at a faster rate than a
(hypothetical) trajectory where a transition to state 0 appears at every third configuration
(step). Hence, if there were no blocking whatsoever, then the expected time for L3

n would be
no larger than 3Hn (given by Equation (3)).

Taking the blocking “slowdown assumption” in (a) into account, if the rate at step i is ri,
then the slowed down rate is 1

3ri giving an expected time of

E[T] =
3n∑
i=1

E[ti] =
n∑

m=1
3 · 3

1 ·
1
m

= 9
n∑

m=1

1
m

= 9Hn ≤ 9(ln(n) + 1) = O(logn) . (4)

Since our two assumptions merely serve to define a new system that is necessarily slower
than L3

n, we get the claimed expected time upper bound of O(logn) for L3
n. J

A.3 Line rotation by 4π/3: L4
n

I Lemma 22. Let mi be a blocked monomer in some reachable configuration c of a line
rotation Turning Machine Lsn with n ∈ N and 1 ≤ s ≤ 4, and let mj ∈ head(mi) and
mk ∈ tail(mi) be a pair of monomers which block the movement of mi, then in the subchain
of Lsn from mk to mj−1 the number of unblocked monomers is at least half the number of
blocked monomers.

Proof. Similarly to the proof of Lemma 11, consider the closed chain P = pos(mk), ...,
pos(mj), pos(mk). Let x(mi) denote the x-coordinate of the position of monomer mi, and
y(mi) denote the y-coordinate of the position of monomer mi. Note, that for any `,

10The monomers are not necessarily geometrically blocked, we are merely stopping any rule from being
applied to them. No configuration in a trajectory of L3

n witnesses a larger slowdown due to blocking
than the slowdown we have imposed on the configurations of T ′n.

DNA 26

11:20 Turning Machines

if s(m`) = s, then x(m`+1) = x(m`) + 1 and y(m`+1) = y(m`),
if s(m`) = s− 1, then x(m`+1) = x(m`) and y(m`+1) = y(m`) + 1,
if s(m`) = s− 2, then x(m`+1) = x(m`)− 1 and y(m`+1) = y(m`) + 1,
if s(m`) = s− 3, then x(m`+1) = x(m`)− 1 and y(m`+1) = y(m`),
if s(m`) = s− 4, then x(m`+1) = x(m`) and y(m`+1) = y(m`)− 1.

Let x(mk)− x(mj) = εx and y(mk)− y(mj) = εy, with εx, εy ∈ {−1, 0, 1}. The total change
in x-coordinate and the total change in y-coordinate, when traversing P , is zero, that is,

j−1∑
`=k

(x(`+ 1)− x(`)) + εx = 0 ,

j−1∑
`=k

(y(`+ 1)− y(`)) + εy = 0 .

(5)

Considering the first part of Equation (5), and taking into account that the x-coordinate
increases only when traversing monomers in state s, and the x-coordinate decreases only
when traversing monomers in state s− 2 or s− 3, we get #(s) + εx = #(s− 2) + #(s− 3),
where #(u) denotes the number of monomers with state u in the subchain from mk to mj−1.
Observe, by Lemma 11, monomers in states s and s− 1 cannot be blocked, and since s ≤ 4,
only the monomers in states s − 2 or s − 3 can be blocked. This implies, that within the
subchain from mk to mj−1, the number of blocked monomers is at most within an additive
factor 1 from the number of unblocked monomers.

Suppose, for a given subchain from mk to mj−1, the number of monomers in state s
is strictly positive (that is, #(s) ≥ 1). Then, #(s) ≥ 1

2 (#(s − 2) + #(s − 3)), that is, in
the subchain, the number of unblocked monomers is at least half the number of blocked
monomers.

Now suppose that the number of monomers in state s in the subchain is zero (that is,
#(s) = 0). As the blocked monomer mi has state either s − 2 or s − 3, the x-coordinate
decreases by 1 when traversing it. The x-coordinate only increases when traversing monomers
in state s. Therefore, if there are no monomers in state s, εx has to be 1, and, besides the
blocked monomer mi, the subchain from mk to mj−1 consists only of monomers in states
s− 4 and s− 1.

Furthermore, as εx = 1, we have that pos(mk) = pos(mj) − ~w (that is, mi is in state
s − 3). We claim that there is at least one monomer in state s − 1 in the subchain from
mk to mj−1. Indeed, consider the second part of Equation|5. Traversing the edge between
monomers mk and mj changes the y-coordinate by εy = y(mj) − y(mk) = y(−~w) = −1.
Thus there has to be at least one monomer traversing which increases the y-coordinate. This
can only be a monomer in state s − 1. Thus, in the subchain from mk to mj−1, there is
one blocked monomer mi and at least one unblocked monomer in state s− 1, and the total
number of unblocked monomers is at least the number of blocked monomers. J

I Theorem 23. For each n ∈ N and 1 ≤ s ≤ 4, the line rotation Turning Machine Lsn
computes its target configuration in O(logn) steps.

Proof. By Theorem 13 the Turning Machine Lsn computes its target configuration. That
it computes the target configuration in O(logn) steps follows from the claim that in any
intermediate configuration c, the number of blocked monomers is not greater than 3n/4.

To prove this claim, consider a reachable configuration c of Lns , and consider all blocked
monomers B = {mi : mi is blocked}. Let ej,k be the edge connecting the positions of two
monomers mj and mk which block the movement of some monomer mi ∈ B (note, that mi

I. Kostitsyna, C. Wood, and D. Woods 11:21

mj

mk

Figure 10 Subdivision D′ of the plane consists of chain Ln
s (shown in blue), and all edges (shown

in red), connecting pairs of monomers blocking the movement of some monomer, such that these
edges are incident to the outer face of D′.

can be blocked by more than one pair of monomers). Let E = {ej,k} be the set of all such
edges for all pairs mj and mk which block some monomer in Lns . Observe, that no two edges
in E cross each other, as they are unit segments in the triangular graph, and for the same
reason no edge in E crosses the chain Lns . Let the chain Lns together with the set of edges E
partition the plain into plane subdivision D (refer to Figure 10). The bounded faces of D
are formed of subchains of Lns and edges from E. Now, remove the edges of E from D which
are not incident to the outer face, resulting in a plane subdivision D′. In it, every bounded
face is formed by a single subchain of Lns and a single edge from E.

Observe, that all monomers of Lns which are blocked are incident to at least one bounded
face. Otherwise, there would be two monomers mj and mk blocking the move with the edge
ej,k not in E, thus contradicting the definition of E.

For each bounded face fi in D′, by Lemma 22, we have #i(unblocked) ≥ 1
2 #i(blocked),

where #i(unblocked) denotes the number of unblocked monomers incident to the face fi,
and #i(blocked) denotes the number of blocked monomers incident to the face fi.

Note, that each unblocked monomer can be incident to at most two bounded faces of D′,
and recall that each blocked monomer is incident to at least one bounded face of D′. Then,

#(unblocked) ≥ 1
2

∑
fi∈D′

#i(unblocked) ≥ 1
2

1
2

∑
fi∈D′

#i(blocked)

 ≥ 1
4#(blocked) ,

where the sums are over the bounded faces of D′, and #(unblocked) denotes the total number
of unblocked monomers in Lns , and #(blocked) denotes the total number of blocked monomers
in Lns .

Since there is a constant fraction of unblocked monomers in any configuration, the total
expected time it takes Lsn to compute its target configuration is O(logn). J

DNA 26

	p000-Frontmatter
	Preface
	Organization

	p001-Mohammed
	Introduction
	Preliminaries
	Surfaces
	Graphs

	Unknotted Scaffold Routings
	Knotted Scaffold Routings
	Conclusion

	p002-Johnson
	Introduction
	Two-stranded motifs
	Chemical Reaction Network implementations
	Correctness of the schemes
	Discussion

	p003-Hashemi
	Introduction
	The CRN Model and Obliviously-Computable Functions
	Notation
	Chemical Reaction Networks and Stable Function Computation
	Obliviously-Computable Functions As Quilt-Affine Functions
	Obliviously-Computable Functions As Well-Ordered Quilt-Affine Functions

	Superadditive, Obliviously-Computable Functions as Quilt-Affine Functions
	A Leaderless Output-Oblivious CRN for Superadditive, Obliviously-Computable Functions
	Input-Consuming Reactions
	Merge Reactions
	Exchange Reactions
	Correctness

	Conclusion
	Appendix

	p004-Vasic
	Introduction
	Modeling CRNs in Alloy
	CRN Enumeration and Search
	CRN Analysis
	New Results
	Related Work
	Conclusion
	Proof of Rate Independence
	Background: Alloy
	Autocatalytic Reactions
	ReLU Minimality
	Optimizing Analysis
	Symmetry breaking

	p005-Lathrop
	Introduction
	Chemical Reaction Networks
	Single Phase Transition
	Coupled Phase Transitions
	Implications for Verification
	Simulation
	Model Checking
	Differential Equations
	Theorem Proving

	Conclusion
	Proof of Fair Termination Lemma

	p006-Klinge
	Introduction
	Preliminaries
	The ALCH Programming Language
	Boolean Expressions and Variable Assignment
	Conditionals and Loops
	Tile Addition, Removal, Activation, and Deactivation
	Nondeterministic Branch Construct

	Strict Self-Assembly of the Discrete Sierpinski Triangle
	Scaffold Construction
	Adding Structure Tiles with the Probe
	Constructing the Upper Symmetric Triangle

	Conclusion
	Strict DST Construction: Details
	Tile Types
	Structure Tiles
	Scaffold Tiles
	Probe Tiles

	Initialization
	Outer Loop
	Initialization: building the scaffold
	Guaranteeing correct added tile position
	Choosing the correct tile

	Cleaning Up the Diagonal
	Constructing the Upper Symmetric Triangle

	p007-Lankinen
	Introduction
	Direct Action of Molecular Catalysts
	ACDC: A Duplex-Based Catalytic DSD Framework
	Domain-based constraints in ACDC Networks
	Realisability of Motifs in the ACDC formalism
	Motifs Without Loops
	Motifs With Loops

	Overcoming the Cascade Leak Reaction and Introducing Hidden Thermodynamic Drive
	A Compiler for ACDC Networks
	Discussion
	Conclusion
	Notation For ACDC Species and Reactions
	Proofs of Theorems and Lemmas 8 - 22

	p008-Matsumura
	Introduction
	Self-assembly model of polyominoes
	Outline
	Square unit
	Polyomino
	Movement of polyomino
	Polyomino species
	Agent
	Simulation state
	Cluster
	Potential energy
	Time development of the simulation state

	Design automation
	Criteria
	Outline
	Evaluation of polyomino species
	Search of polyomino species with low loss value

	Result
	Discussion
	Appendix
	Movements
	Glue type assignment

	p009-Doty
	Introduction
	DNA origami and cadnano
	scadnano
	Related work
	Paper outline

	Data model and file format
	scadnano data model
	scadnano file format
	Comparison to cadnano file format

	Features
	Features shared with cadnano v2
	Copy and paste
	Scripting library
	Hiding helices to aid 3D design
	Single-stranded loopouts
	DNA modifications
	Unused fields
	Gridless helix placement
	Interoperability with cadnano

	Software architecture
	Two codebases
	Unidirectional data flow in graphical user interface code

	Conclusion

	p010-Caballero
	Introduction
	Previous Work
	Our Contributions

	Model and Definitions
	States, tiles, and assemblies
	Tile Automata model (TA)

	One Dimensional Turing Machine
	Freezing Systems

	Shapebuilding and the Largest Assembly Problem
	General
	Freezing
	Largest Finite Assembly Problem

	Unique Assembly Verification
	Undecidability

	Affinity Strengthening UAV
	Non-Freezing
	Freezing

	Conclusion

	p011-Kostitsyna
	Introduction
	Turning machines
	Turning machines: the main programming challenge
	Results
	Related and future work

	Turning machine model definition
	Classes of Turning Machines: line rotation and square
	Tools for reasoning about Turning machines
	Line rotation to 5pi/3
	Line rotation to 2pi is impossible
	Folding zig-zag squares and y-monotone shapes
	Line rotation by pi/3, pi and 4pi/3
	Line rotation by pi/3: {L_{n}^{1}}
	Line rotation by pi: {L_{n}^{3}}
	Line rotation by 4pi/3: {L_{n}^{4}}

