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Preface

The 27th International Symposium on Temporal Representation and Reasoning (TIME 2020)
was planned to be in Bozen-Bolzano, Italy, from the 23rd to the 24th of September, 2020.
However, due to the special circumstances related to COVID-19, the conference was held
virtually. This year’s edition was organized as a part of the Bolzano Summer of Knowledge
(BOSK 2020). TIME is a well-established symposium series that brings together researchers
interested in reasoning about temporal aspects of information in all areas of computer
science. The symposium aims to be interdisciplinary and to attract attendees from artificial
intelligence, database management, logic and verification, and beyond.

TIME 2020 received 23 research paper submissions from Austria, Canada, Germany,
India, Italy, Poland, Romania, Russia, South Africa, Spain, United Kingdom, and the United
States, written by 59 different authors. We would like to thank all authors for submitting
outstanding contributions to the conference. The submissions were carefully evaluated by the
23 members of the program committee, who deserve warm thanks for their high-quality and
timely handling of the reviews. Each submission was reviewed by at least three PC members.
In the end, 16 contributions were accepted for inclusion in the conference proceedings and
presentation at the conference.

The TIME 2020 scientific program includes also three keynote presentations given,
respectively, by Clare Dixon (University of Manchester, United Kingdom), Pedro Cabalar
(University of Corunna, Spain), and Johann Eder (Alpen-Adria Universität Klagenfurt,
Austria). We are delighted that all of them accepted our invitations and we are very grateful
for their scientific contribution.

Finally, we would like to acknowledge the excellent work of all the people involved in the
organization of the conference, in particular, the local chairs Alessandro Artale and Johann
Gamper. Their support was indispensable for a smooth organization and preparation of the
conference. Deep thanks also to Dr. Wagner and the LIPIcs team for the support during the
preparation of the conference proceedings.

Emilio Muñoz-Velasco
Ana Ozaki

Martin Theobald
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Verifying Autonomous Robots: Challenges and
Reflections
Clare Dixon
Department of Computer Science, The University of Manchester, UK
https://www.research.manchester.ac.uk/portal/clare.dixon.html
clare.dixon@manchester.ac.uk

Abstract
Autonomous robots such as robot assistants, healthcare robots, industrial robots, autonomous
vehicles etc. are being developed to carry out a range of tasks in different environments. The robots
need to be able to act autonomously, choosing between a range of activities. They may be operating
close to or in collaboration with humans, or in environments hazardous to humans where the robot is
hard to reach if it malfunctions. We need to ensure that such robots are reliable, safe and trustworthy.
In this talk I will discuss experiences from several projects in developing and applying verification
techniques to autonomous robotic systems. In particular we consider: a robot assistant in a domestic
house, a robot co-worker for a cooperative manufacturing task, multiple robot systems and robots
operating in hazardous environments.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks; Software and its engineering → Software verification and validation; Theory
of computation → Logic

Keywords and phrases Verification, Autonomous Robots

Digital Object Identifier 10.4230/LIPIcs.TIME.2020.1

Category Invited Talk

Funding Clare Dixon: This work was funded by the Engineering and Physical Sciences Research
Council (EPSRC) under the grants Trustworthy Robot Systems (EP/K006193/1) and Science of
Sensor Systems Software (S4 EP/N007565/1) and by the UK Industrial Strategy Challenge Fund
(ISCF), delivered by UKRI and managed by EPSRC under the grants Future AI and Robotics Hub
for Space (FAIR-SPACE EP/R026092/1) and Robotics and Artificial Intelligence for Nuclear (RAIN
EP/R026084/1).

Acknowledgements The work discussed in this document was carried out collaboratively with
researchers on the following funded research projects: Trustworthy Robot Systems1; Science of
Sensor Systems Software2; Future AI and Robotics Hub for Space3; and Robotics and Artificial
Intelligence for Nuclear4.

1 Formal Verification of Autonomous Robots

Autonomous robots are being developed for many purposes across society. These may be
autonomous cars or pods, home robot assistants, warehouse robots, museum guides, delivery
robots, companion robots, agricultural robots etc. Whilst these robots have the potential to
be of great use to society, improving our lives, we need to make sure that they are reliable,
safe, robust and trustworthy. We discuss work from several projects about experiences
verifying autonomous robots.

1 www.robosafe.org
2 www.dcs.gla.ac.uk/research/S4/
3 www.fairspacehub.org
4 rainhub.org.uk
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1:2 Verifying Autonomous Robots: Challenges and Reflections

Formal verification is a mathematical analysis of all behaviours using logics and tools such
as theorem provers or model checkers. Formal verification is often applied to an abstraction
of the real system to obtain a discrete and finite system that is not too large. There has
been recent interest in applying formal verification to autonomous robot systems, see for
example [14] for a overview.

Here we focus on temporal verification using automatic tools and techniques such as
model checking and deduction (see for example [8]) that do not require user interaction.
Model checking [4, 12, 3] is a fully automatic, algorithmic technique for verifying the temporal
properties of systems. Input to the model checker is a model of the system and a property
to be checked on that model specified in temporal logic. For temporal deduction both the
system (S) and the property (P ) are specified in logic and a calculus is applied to check that
P is a logical consequence of S.

2 Domestic Robot Assistants

Robots can be used in healthcare or elderly care environments enabling people who need
assistance to continue living in their own homes. Such robots can help carrying things,
provide reminders to drink water or take medicine, inform the user when something in the
house needs attention such as the doorbell is ringing or the bath is overflowing, or provide
alerts to care givers if the person is not responding.

We considered a personal robot assistant located in the robot house at the University
of Hertfordshire [16]. The house has sensors that provide information to the robot about
the kettle or the television being on, the fridge door being left open, someone sitting on
the sofa etc. The robot is controlled by a set of “if-then” rules (with priorities) where the
“if” part checks whether a condition on the sensor data or internal Boolean flags is satisfied
and the “then” part contains actions for the robot to execute and flags to be set. We
modelled the decision making rules using a model checker, checking properties relating to
the expected execution of the rules. We considered two different approaches: one modelling
the system using Brahms [17] a human agent modelling language translated into the model
checker Spin [20, 19]; and the other via direct modelling in the NuSMV model checker [5, 9].
Experiments with real robots were also carried out considering whether mistakes by the
robot affected people’s trust in them [15].

3 Collaborative Manufacture

A second use case for robot assistants is in collaborative manufacture. We considered a robot
co-worker with a scenario of a handover task for collaboratively constructing a table [21].
We considered this scenario using three types of verification: formal verification using model
checking, simulation based testing [1] and user experiments with the robot.

We modelled the scenario using probabilistic timed automata and carried out verification
using the PRISM model checker [11]. Simulation based testing involved developing a
simulation of the system under consideration and generating and executing tests systematically
that cover interesting parts of the state space. Also experiments with the robot and users
were carried out. Issues found using one form of verification were used to improve the
models and therefore the verification for the others. Some properties were more amenable to
verification with some of these methods rather than others.
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4 Swarm Robots and Wireless Sensor Networks

A robot swarm is a collection of simple, often identical, robots working together to carry
out some task. Each robot has a small set of behaviours, is typically able to interact with
other nearby robots and with its environment usually without a central controller. Robot
swarms are often thought to be fault tolerant in that it may be possible to design a swarm
so that the failure of some of the robots will not endanger the success of the overall mission.
Wireless sensor networks are similar being a collection of simple, often identical, sensors with
no centralised control.

We have modelled and verified properties of swarm robots relating to coherence [6] and
energy optimisation for foraging robots [13] and relating to synchronisation properties for
wireless sensor networks [10, 18] enabling us to detect cases and parameter settings where
the required property does not (or is unlikely to) hold.

5 Robots in Dangerous Environments

In certain environments it may be preferable or we may need to use robots to carry out tasks
because they are dangerous or hard to access for example underwater, space or nuclear clear
up. Ensuring such robots are reliable and robust is particularly important as we may not
be able to access them to reset or repair them if they go wrong. Here we advocate using
different types of verification for different components [7, 2].

6 Conclusions

We have discussed experiences in verifying autonomous robots from robot assistants in
the home and for collaborative manufacture, to swarm robots and robots in hazardous
environments. We believe that the decision making aspects of the robot should be separated
from other components to allow verification and explainability of the decisions made. We
advocate using a range of verification techniques including formal verification, simulation
based testing and end user experiments to improve the reliability of such systems. Different
components or different types of property may require different types of verification. We
believe better verification will lead to improvements not only in their safety and reliability
but may also be used as evidence of this to regulators and improve trust in them by the
public. Many challenges remain including how to verify systems that learn, designing systems
in a modular way amenable to verification, modelling the environment, and how to provide
evidence to certify autonomous robotics.
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Abstract
Based on the answer set (or stable model) semantics for logic programs, Answer Set Programming
(ASP) has become one of the most successful paradigms for practical Knowledge Representation
and problem solving. Although ASP is naturally equipped for solving static combinatorial problems
up to NP complexity (or ΣP

2 in the disjunctive case) its application to temporal scenarios has
been frequent since its very beginning, partly due to its early use for reasoning about actions and
change. Temporal problems normally suppose an extra challenge for ASP for several reasons. On
the one hand, they normally raise the complexity (in the case of classical planning, for instance,
it becomes PSPACE-complete), although this is usually accounted for by making repeated calls
to an ASP solver. On the other hand, temporal scenarios also pose a representational challenge,
since the basic ASP language does not support temporal expressions. To fill this representational
gap, a temporal extension of ASP called Temporal Equilibrium Logic (TEL) was proposed in and
extensively studied later. This formalism constitutes a modal, linear-time extension of Equilibrium
Logic which, in its turn, is a complete logical characterisation of (standard) ASP based on the
intermediate logic of Here-and-There (HT). As a result, TEL is an expressive non-monotonic modal
logic that shares the syntax of Linear-Time Temporal Logic (LTL) but interprets temporal formulas
under a non-monotonic semantics that properly extends stable models.
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Based on the answer set (or stable model) semantics [12] for logic programs, Answer Set
Programming [4] (ASP) has become one of the most successful paradigms for practical
Knowledge Representation and problem solving. Although ASP is naturally equipped for
solving static combinatorial problems up to NP complexity (or ΣP

2 in the disjunctive case) its
application to temporal scenarios has been frequent since its very beginning, partly due to its
early use for reasoning about actions and change [13]. Temporal problems normally suppose
an extra challenge for ASP for several reasons. On the one hand, they normally raise the
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complexity (in the case of classical planning, for instance, it becomes PSPACE-complete [5]),
although this is usually accounted for by making repeated calls to an ASP solver. On the
other hand, temporal scenarios also pose a representational challenge, since the basic ASP
language does not support temporal expressions.

To fill this representational gap, a temporal extension of ASP called Temporal Equilibrium
Logic (TEL) was proposed in [7] and extensively studied later on [1]. This formalism
constitutes a modal, linear-time extension of Equilibrium Logic [15] which, in its turn, is
a complete logical characterisation of (standard) ASP based on the intermediate logic of
Here-and-There (HT) [14]. As a result, TEL is an expressive non-monotonic modal logic that
shares the syntax of Linear-Time Temporal Logic (LTL) [16] but interprets temporal formulas
under a non-monotonic semantics that properly extends stable models. This semantics is
based on the idea of selecting some LTL temporal models of a theory Γ that satisfy some
minimality condition, when examined under the weaker logic of temporal HT (THT). Thus,
a temporal stable model of Γ is a kind of selected LTL model of Γ, and so, it has the form of
an infinite sequence of states, usually called a trace. To put an example, the Yale Shooting
scenario [] where we must shoot a loaded gun to kill a turkey, can be encoded in TEL as:

�(loaded ∧ ◦shoot → ◦dead) (1)
�(loaded ∧ ◦shoot → ◦unloaded) (2)

�(load → loaded) (3)
�(dead → ◦dead) (4)

�(loaded ∧ ¬◦unloaded → ◦loaded) (5)
�(unloaded ∧ ¬◦loaded → ◦unloaded) (6)

In this way, under TEL semantics, implication α→ β has a similar behaviour to a directional
inference rule, normally reversed as β ← α or β :− α in logic programming notation. The
last two rules, (5)-(6), encode the inertia law for fluents loaded and unloaded, respectively.
Note the use of ¬ in these two rules: it actually corresponds to default negation, that is, ¬α
is read as “there is no evidence about α.” For instance, (5) is read as “if the gun was loaded
and we cannot prove that it will become unloaded then it stays loaded.”

Computation of temporal stable models is a complex task. THT-satisfiability has been
classified [8] as Pspace-complete, that is, the same complexity as LTL-satisfiability, whereas
TEL-satisfiability rises to ExpSpace-completeness, as proved in [3]. In this way, we face a
similar situation as in the non-temporal case where HT-satisfiability is NP-complete like
SAT, whereas existence of equilibrium model (for arbitrary theories) is ΣP

2 -complete (like
disjunctive ASP). There exist a pair of tools, STeLP [6] and ABSTEM [9], that allow computing
(infinite) temporal stable models (represented as Büchi automata). These tools can be used
to check verification properties that are usual in LTL, like the typical safety, liveness and
fairness conditions, but in the context of temporal ASP. Moreover, they can also be applied
for planning problems that involve an indeterminate or even infinite number of steps, such
as the non-existence of a plan. The tool ABSTEM also accepts pairs of theories to decide
different types of equivalence: LTL-equivalence, TEL-equivalence (i.e. coincidence in the
set of TS-models) and strong equivalence (i.e., THT-equivalence). Moreover, when strong
equivalence fails, ABSTEM obtains a context, that is, an additional formula that added to the
compared theories makes them behave differently.

The original definition of TEL was thought as a direct non-monotonic extension of
standard LTL, so that models had the form of infinite traces. However, this rules out
computation by ASP technology and is unnatural for applications like planning, where plans
amount to finite prefixes of one or more traces [11]. In a recent line of research [10], TEL
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was extended to cope with finite traces (which are closer to ASP computation). On the one
hand, this amounts to a restriction of THT and TEL to finite traces. On the other hand, this
is similar to the restriction of LTL to LTLf advocated by [11]. Our new approach, dubbed
TELf , has the following advantages. First, it is readily implementable via ASP technology.
Second, it can be reduced to a normal form which is close to logic programs and much simpler
than the one obtained for TEL. Finally, its temporal models are finite and offer a one-to-one
correspondence to plans. Interestingly, TELf also sheds light on concepts and methodology
used in incremental ASP solving when understanding incremental parameters as time points.

Another distinctive feature of TELf is the inclusion of future as well as past temporal
operators. When using the causal reading of program rules, it is generally more natural to
draw upon the past in rule bodies and to refer to the future in rule heads. As well, past
operators are much easier handled computationally than their future counterparts when it
comes to incremental reasoning, since they refer to already computed knowledge.

TELf is implemented in the telingo system, extending the ASP system clingo to
compute the temporal stable models of (non-ground) temporal logic programs. To this end,
it extends the full-fledged input language of clingo with temporal operators and computes
temporal models incrementally by multi-shot solving using a modular translation into ASP.
telingo is freely available at github1. The interested reader might have a good time playing
with the examples given in the examples folder at the same site. For instance, under telingo
syntax, our theory (1)-(6) would be represented2 as

#program dynamic.
dead :- shoot, ’loaded.
unloaded :- shoot, ’unloaded.
loaded :- load.
dead :- ’dead.
loaded :- ’loaded, not unloaded.
unloaded :- ’unloaded, not loaded.

The telingo input language actually allows the introduction of arbitrary LTL formulas in
constraints or past formulas in the rule bodies (conditions).

Similar to the extension of LTLf to its (linear) dynamic logic counterpart LDLf [11], we
just introduced in [2] a dynamic extension of HT that draws up upon this linear version of
dynamic logic. We refer to the resulting logic as (Linear) Dynamic logic of Here-and-There
(DHT for short). As usual, the equilibrium models of DHT are used to define temporal
stable models and induce the non-monotonic counterpart of DHT, referred to as (Linear)
Dynamic Equilibrium Logic (DEL). In doing so, we actually parallel earlier work extending
HT with LTL, ultimatly leading to THT and TEL. To put an example in DEL, the formula
[¬help∗](¬help→ sos) behaves as a logic program rule that repeats sending an sos while no
evidence of help has been received along a sequence of states. DEL is general enough to cover
LDL, as it shares the same syntax but introduces non-monotonicity with the definition of
temporal stable models. It also covers LTL and TEL as particular cases, since LTL temporal
operators can be defined as particular cases of DEL expressions: for instance �α (i.e. α
always holds) can be represented in DEL as [>∗]α. The satisfiability problem in DEL is
ExpSpace-complete; it thus coincides with that of TEL but goes beyond that of LDL and
LTL, both being PSpace-complete.

1 https://github.com/potassco/telingo
2 The left upper commas are read as previously and correspond to the past operator dual of next “◦”.
The � operator is implicit in all dynamic rules.
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These recent results open several interesting topics for future study. First, the version of
DEL for finite traces, DELf , seems a natural step to follow, similar to the relation of LDL
and LDLf . We plan to propose and analyse this variation in an immediate future. As a
second open topic, it would be interesting to adapt existing model checking techniques (based
on automata construction) for temporal logics to solve the problem of existence of temporal
stable models. This was done for infinite traces in [8, 6], but no similar method has been
implemented for finite traces on TELf or DELf yet. The importance of having an efficient
implementation of such a method is that it would allow deciding non-existence of a plan in a
given planning problem, something not possible by current incremental solving techniques.
Another interesting topic is the optimization of grounding in temporal ASP specifications as
those handled by telingo. The current grounding of telingo is inherited from incremental
solving in clingo and does not exploit the semantics of temporal expressions that are
available now in the input language. Finally, we envisage to extend the telingo system
with features of DEL in order to obtain a powerful system for representing and reasoning
about dynamic domains, not only providing an effective implementation of TEL and DEL
but, furthermore, a platform for action and control languages.
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Abstract
Processes have been successfully introduced for modeling dynamic phenomena in many areas like
business, production, health care, etc. Many of these applications require to adequately deal with
temporal aspects. Process models need to express temporal durations, temporal constraints like
allowed time between events, and deadlines. For checking the correctness of process definitions
with temporal constraints, different notions and algorithms have been developed. Schedules for the
execution of processes can be computed and proactive time management supports process managers
to avoid time failures during the execution of a process. We present an overview of the problems
and the requirements for treating time in business processes and the solutions achieved by applying
results and techniques of research in temporal representation and reasoning. We reflect where
expectations have not yet been met and sketch challenges in temporal representation and reasoning
for addressing advanced requirements of the management of business processes.
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1 Introduction

Processes have been successfully introduced for modeling dynamic features in many areas like
trade, production, health care, etc. in various forms like workflows [27], extended transactions
[30], business processes [15], web-service orchestrations [12], distributed workflows [24], etc.
In many of these application areas, temporal aspects are crucial for the correct and admissible
execution of processes. This observation led to a substantial body of research to master
the plenitude of temporal aspects of process engineering: expressing temporal aspects in
process models, formulating different notions of correctness of process models with temporal
constraints, checking the temporal correctness of process definitions, computing execution
schedules for processes, recognizing and handling temporal exceptions, and supporting process
controllers to adhere to temporal constraints at run-time with proactive time management
(see [5, 20, 28] for overviews).

Managing business processes means to make decisions, and it is the duty of time manage-
ment to support the different actors to make these decisions well informed. The primary
actors within a BPMS (Business Process Management System) are process participants,
process managers and process designer.
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Support of process design achieved probably most attention. Process designers need
formalisms to express temporal aspects of business processes. This includes representing
temporal constraints such as deadlines, durations of activities, descriptive and prescriptive
constraints. Descriptive constraints allow modeling temporal facts about the environment
which is not controllable by the process manager, while prescriptive constraints denote
goals, temporal properties which the process controller has to achieve. For an example,
the constraint “money transfer lasts between 1 and 4 days” is a prescriptive constraint for
banking processes, while it is a descriptive constraint for trading processes, giving the trading
partners temporal restrictions but also temporal guarantees. Workflow time patterns [34]
collected different patterns and notions for expressing various forms of temporal constraints.
Process designers also need tools and techniques to check whether a process definition is
feasible, in particular, whether it leads to a violation of temporal constraints.

Process participants need support for selecting items from work-lists. For this decision they
need to know when each work item should be finished (internal deadline), and how important
work items or process instances are. Information about the consequences of finishing work
items late can lead to better decisions. Information about current and upcoming load can
help to keep oversight and in particular to make decisions whether to accept additional
obligations.

Process managers are responsible for the execution of business processes. They need
support for decisions and policies scheduling and dispatching process instances and work-
items to participants, Role resolution policies and capacity planning and management. A
particular duty of process managers is to deal with exceptions including temporal exceptions
and time - failures.

Many of these activities are already supported by current techniques of temporal rep-
resentation and reasoning. The current state-of-the-art in support for temporal aspects of
business process management is outlined in the next section. Then we will analyze some
problems reducing broad acceptance of these technologies and sketch some areas where
further research is needed.

2 State-of-the-Art

In the last two decades, a number of works on time management have appeared in the
BPM community. These works mainly focus either on modeling aspects, or on reasoning
aspects. However, despite the numerous efforts, no modeling or reasoning standards, or
unified approaches, have been achieved yet.

Only in recent years a notable contribution has emerged under the modeling perspective,
with the work on time patterns [34]. It systematically identifies and classifies a number of
recurring temporal constraint patterns in BPM. This work has particularly high relevance,
since it is based on the rigorous analysis of a vast number of real world processes, taken
from different application domains (healthcare, administration, industry, finance). Time
patterns are supported by a formal foundation. However, awareness from process designers
and managers around time patterns for a uniform approach to time management is still
missing.

Is there any promising formal framework, which may be adopted to both encode time
patterns, and support temporal reasoning, thus highlighting the benefits of a standardized
representation and fostering a uniform approach to process time management?

Various specializations of Temporal Constraint Networks (TCNs) are among the most
refined formalisms available for modeling and solving temporal problems. A first formalization
can be found in [13], where the Simple Temporal Network (STN) is introduced for modeling
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and solving the Simple Temporal Problem, i.e. verifying whether a given set of time-
constrained time points admits an assignment of timestamps which fulfills all temporal
constraints. To model uncertainties, the STN was extended into STN with Uncertainty
(STNU) [35, 45], featuring contingent durations, and into Conditional STN (CSTN) [29, 43],
including observed conditions. These networks were then combined into the CSTNU [29],
which models unpredictability of both durations and conditions. Further extensions with
increased expressiveness have been proposed in recent years, such as those which introduce
decision time points to the CSTNU (CSTNUD) [46], or a degree of flexibility for reducing
contingent durations to the STNU (STNPSU) [10, 33], or resources (CSTNUR) [11].

Contextually, the traditional notion of satisfiability of a set of temporal constraints is
challenged by more advanced definitions of temporal correctness. Strong, weak, history-
dependent, and dynamic controllability [9, 16, 44] are regarded as the most noteworthy
such properties. They respond to the need to know whether correct schedules are possible,
despite uncertainties. Techniques to verify such properties for TCNs have been proposed
and improved over the years (e.g., [4]). Constraint propagation is among the most advanced
and efficient of these techniques, with the added benefit that it makes implicit temporal
knowledge explicit.

In the light of these advancements, in the last decade the BPM community started
developing TCN-based approaches to represent the temporal aspect of processes, and to
perform temporal reasoning on it, e.g. to verify temporal correctness [8, 17]. These approaches,
however, were not met by widespread adoption yet.

3 Challenges

As outlined above, significant progress in research was made in the last two decades. Nev-
ertheless, many of these techniques are not yet widespread in applications of BPM, and in
some areas current approaches do not take into account recent developments in temporal
representation and reasoning. For an example, predictive monitoring of processes [14], which
among other issues tries to forecast whether a process will meet its deadline, is still based on
satisfiability or consistency rather than on controllability ([3]). Most techniques for predictive
monitoring rely nowadays on correlations derived by process mining [42] rather than on
analytical temporal reasoning, using neural networks [41] rather than temporal constraint
networks [32]. While it might be alright for highly repetitive processes, there is a considerable
need for reasoning techniques for processes, with fewer instances, for frequently changing
processes and for processes with a high number of variants, and for new processes. All these
types of processes have in common that the relevant process logs are frequently too small for
advanced process mining techniques.

Major roadblocks for the wider adoption of research results from temporal representation
and reasoning seem to include the following:

the inherent difficulty of some of the developed formalisms which are not popular with
process designers
popular constructs for the definition of processes (advanced control structures) are not
supported, in particular loops, iterations, repetitions, and exception handling are not yet
supported adequately
focus on asymptotic complexity of algorithms rather than consideration of actual per-
formance of algorithm for the typical size of real world application scenarios and without
distinguishing between design time computations and the much higher performance and
scalability requirements at run-time.
connection of temporal aspects with other aspects of process execution, in particular
capacity management, resource constraints, and cost.

TIME 2020
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Continuing, we will highlight a few of the areas, where considerable research needs are
identified from the requirements of process management, which have the potential to further
the adoption of temporal reasoning techniques.

3.1 Advanced Control Structures

BPMN, the Business Process Modeling Notation [36], for the better or the worse developed
as the major notion for describing business processes in practice. Any technique for temporal
representation and reasoning for business processes will have to support the control structures
available in BPMN. This includes, in particular, loops and other repetitive structures.
Unbounded loops (“while loops”) currently are not really supported by temporal reasoning
techniques. A process with a while loop is neither controllable nor dynamically controllable.
We have to develop notions for the correctness of temporally constrained processes definitions
which also include loops in an adequate way. Temporal control structures [37] and probabilistic
controllability are candidate approaches.

BPMN features a plenitude of control structures and modelling notations. There are
several research endeavours under way (e.g. [38]) to extend formalisms for temporal reasoning
to include structures found in BPMN.

3.2 Temporal Data

Both data of type time (e.g. age) and addressing the need to know about the history of data
(e.g. price of item when the order was sent, rather the actual process)

The data dimension is one of the major aspects of business processes requiring definitions
of data flows and the relationships between data and decisions about the control flow, the
production and usage of data as well as the formulation of execution constraints based on data
[40] and data aspects in general are quite well developed. Comparatively little attention was
paid to data of type time or timestamp, which can combine data constraints with temporal
constraints and offer new possibilities for dealing with temporal aspects [25].

In addition, as processes are usually long-running, data might change over time, leading
to the necessity of dealing with different versions of data, and managing these data in the
sense of temporal data representations [7].

3.3 Conflicting Requirements

In practical applications designers and process managers face the problem of conflicting
requirements or constraints. There is a need to support detecting, which constraints are
(potentially) in conflict and to provide means to resolve conflicts, e.g., by assigning different
priorities to constraints such as in [31], or by reasoning over the effects of constraint violations.

Not all requirements are created equal, in particular prescriptive requirements are fre-
quently derived through negotiations, or are the result of designing service offerings for
particular markets. Designers need tools and techniques to reason about which constraints
are acceptable without losing controllability and for computing trade-offs between different
constraints, such as in [26] for the design phase. Similar procedures are also needed for the
run-time support for process managers to make decisions when reacting to exceptions and
escalations.
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3.4 Probabilistic Controllability
Currently, the most elaborated notion of correctness is the controllability, resp. dynamic
controllability of process definitions [6]. These notions, however, have the disadvantage that
they are binary properties, i.e. a process is either controllable or not. In addition, checking
controllability relies only on the minimum and maximum duration of activities. We do not
represent whether the maximum, resp. minimum duration is a rare exception.

In many practical applications, the strict notion of controllability is too strong, as
frequently some risk is taken, when the process is started, that, e.g., it will violate temporal
constraints. However, to rationally reflect on this risk, it is important to know how likely
such a time failure is.

For many practical applications it is therefore desirable to extend this notion to capture
more information. We envision to extend process model by including a distribution function
for each (contingent) activity, representing the probability that an activity requires a certain
amount of duration. And we extend the notion of controllability to express the probability
that a temporal constraint is violated. Earlier approaches focused primarily on the risk of a
deadline violation ([21, 22], but it is necessary to extend this to all temporal constraints.

A definition of (dynamic) probabilistic controllability should express whether there is
a (dynamic) execution strategy which allows the execution of a process, such that the
probability of violating any temporal constraint is below a given threshold.

Probabilistic controllability, by the way, is also a promising approach for overcoming the
problem of (dynamic) controllability of processes with loops.

3.5 Process Evolution
Temporal representation of process definitions and their evolution creating temporal variants
and versions are necessary. Process logs might be more difficult to treat with process mining
procedures, if the underlying process definitions, or the process environment, or the context,
resp. the environment of the process execution is changing [18]. Some of these problems
have been recognized, e.g., in [1]. The adequate representation both of evolving processes
models, the relationship between log entries and these temporal process models, as well as
the time-related representation of process mining results, still need research.

Such representations are also needed for correct checking of the compliance of process
instances to the evolving process models and constraints [28]. One of the difficulties is here
that the evolution of processes frequently leads to a manifold of hybrid process instances
which are partly conform to the old process definitions and partly accord to the new one.
Temporal reasoning is also necessary to check the correctness of the evolution steps and the
transformation regulations of process evolution steps [39]. Long running processes might
even be affected by several succeeding schema evolutions. And it is important to recognize
that processes are constantly in a need of adaptation, optimization, and further development
[2], and therefore require adequate support of the continuous progress.

3.6 Temporal Aspects in Combination of Other Dimensions
Temporal aspects and temporal constraints can frequently not be considered in isolation,
but they have to be treated in combination with other types of constraints. Recently, a
combined representation and reasoning of temporal constraints with resource constraints was
reported (e.g. [11]). With the consideration of resources, the consideration of their capacity
is a next step. This also leads to the management of the capacity and the agenda of workflow
participants, such as in [23].
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Moreover, we have to see that mutual influences of durations and cost, which have to be
considered together, lead to a notion of affordable controllability, meaning that there is an
execution strategy within the budgetary limits avoiding any temporal constraint.

Another important dimension for planning process executions is the representation of
risks that process activities cannot be executed as planned, or that assumptions about the
environment do not hold [19] and the consequences of such risks for constraint satisfiability.

4 Conclusions

Representing temporal constraints and reasoning about the temporal properties of business
processes, steering their execution and supporting their management, have come a long way
since the first approaches to deal with temporal aspects of workflow system more than 2
decades ago. And the TIME community contributed many valuable results - mainly notions
for the representation of temporal aspects, and formalisms and algorithms for temporal
reasoning. Yet, still there are many requirements of Business Process Management which are
not supported in a satisfactory way. It was the aim of this presentation to highlight some of
the research needs and some ongoing research efforts, to address the challenges of a better
support of temporal aspects in Business Process Management.
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Abstract
Cross-organizational business processes emerge from the cooperation of intra-organizational business
processes through exchange of messages. The involved parties agree on communication protocols,
which contain in particular temporal constraints: as obligations on one hand, and as guarantees on
the other hand. These constraints form also requirements for the design of the hidden implementation
of the processes and are the basis for control decisions for each party. We present a comprehensive
methodology for modeling the temporal aspects of cross-organizational business processes, checking
dynamic controllability of such processes, and supporting the negotiation of temporal commitments.
We do so by computing the consequences of temporal constraints in choreographies, and by computing
the weakest preconditions for the dynamic controllability of a participating process.
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1 Introduction

Cross-organizational business processes [13, 17, 20, 30] emerge from an ensemble of local
processes communicating through process views [6]. Process views abstract from the internals
of the process implementation, and describe the communication interfaces of the processes.
The design of choreographies can thus be solely based on these process views. Such an
architecture achieves the desired low coupling between the processes, and facilitates keeping
business secrecy of process internals as far as possible. A widely adopted approach models
cross-organizational processes by a protocol for exchanging messages governed by Service Level
Agreements [28]. Formulating, checking, and enforcing temporal properties - characteristics,
obligations, commitments, and objectives - for cross-organizational p2p-processes requires
distributed algorithms for checking and/or computing temporal properties [14].

Temporal parameters [11] encode events, and can be exchanged via messages between
the partners of a collaboration to communicate event timestamps, without having to expose
process internals in the process views. The exchange of temporal parameters has been shown
to enable an effective way for expressing cross-organizational temporal constraints, while
preserving business secrets encoded in the local processes. Thus, temporal parameters foster
lean interfaces caring for loose coupling of the involved processes [16].

Temporal constraints for the execution of processes can be formulated as relations between
time-points of message exchanges and/or ranges for the temporal parameters. Such constraints
(e.g. the time interval for the reaction to the receipt of a message) can be descriptive for
one party (“when can I expect an answer from the other party”) and prescriptive for the
other party (“when do I have to send an answer?”). These temporal constraints are part
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of the negotiation of the communication protocols (choreography), respectively of Service
Level Agreements, which are part of the specification for cross-organizational processes. For
process designers it is, therefore, of paramount importance to verify at design time, whether
at run time it is possible to avoid any violation of these temporal obligations in the contracts,
independent of uncertainties, when other parties are sending messages within their agreed
time frames. Technically, this means that process designers need to check the dynamic
controllability [26] of their processes. Basically, a process is dynamically controllable, if the
execution environment is able to dynamically schedule its tasks in response to all foreseeable
circumstances, in such a way that all temporal constraints can be met.

These computations are, however, also a necessary part of the negotiation step for the
design of cross-organizational processes. In particular, it is necessary, for the negotiators, to
calculate the consequences of any temporal obligation, and to compute which uncertainties
(e.g. duration intervals) in the constraints of other parties are acceptable. In a nutshell, there
is a need to calculate the trade-offs between temporal constraints to support the negotiation
of temporal commitments.

In [11] we have shown how to check, at design time, whether a single process with temporal
parameters is dynamically controllable. In [15] we have shown how to check, whether a given
set of constraints on the temporal parameters ensures dynamic controllability of a service
composition. For cross-organizational processes this problem is more complex, due to the
distributed design and execution, and the potentially different requirements of each partner.
So now we ask: how to achieve contracts between the parties of a cross-organizational business
process, with adequate restrictions on temporal parameters, admitting schedules free from
time failures?

The main contributions of this paper are:
A cross-organizational process model based on process views and message exchanges,
featuring temporal parameters for temporal constraints.
A procedure for checking the dynamic controllability of cross-organizational processes
with temporal parameters at design time.
An algorithm for negotiating restrictions for temporal parameters of a cross-organizational
process in a fully distributed way, such that these restrictions yield dynamic controllability.

The remainder of this paper is structured as follows: in Section 2 we provide a motivating
example. Sect. 3 introduces the process model for cross-organizational processes. In Sect. 4 we
show a procedure for negotiating temporal parameter restrictions with dynamic controllability
guarantees, and we evaluate the procedure under correctness and complexity dimensions.
Sect. 5 (Related work) and Sect. 6 (Conclusions) conclude the paper.

2 Motivating Example

Consider the BPMN (Business Process Modeling Notation) choreography diagram depicted
in Fig. 1, which models a simplified procurement process. Three organizations are involved:
a distributor D of medical equipment, a factory F manufacturing surgical masks, and a
supplier S of raw materials. The process starts at D with the request to F for a batch of
masks. For simplicity, let us focus on the interactions between D and F only.

The process model includes three cross-organizational temporal constraints, which restrict
the times of events in the local processes of D and F . These constraints are realized
through the exchange of messages between D and F , which include temporal data specifying
requirements.
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Figure 1 BPMN choreography diagram for a cross-organizational process.

A first constraint c1 is internal to the process of D, and it requires that the masks are
produced between 6 and 10 days after the order is placed. A second constraint c2 in the
process of F , however, requires the production to take place 9 to 11 days after the order is
placed. A third constraint c3 requires F to complete the delivery of the masks at most 2
days after they have been produced.

Here c1, c2 and c3 are cross-organizational constraints, since they restrict events in
processes of different organizations, to occur within specified bounds with respect to each
other. These constraints can be enforced by contracts, which specify an earliest or latest
date for completion of a task. However, to guarantee the fulfilment of the constraints, a
negotiation needs to take place to ensure an agreement on the requirements. For example, c1
and c2 here are conflicting, since they require different time intervals for the same event, e.g.,
D would not accept that F produces the masks 11 days after the order is placed.

On the other hand, temporal constraints may as well influence each other. For instance,
if F is convinced by D to produce the masks earlier than intended, the need to ship them
within 2 days (from c3) may be unattended because shipment is already scheduled for a
certain date.

So to make sure that the local processes can coordinate and execute meeting all constraints,
D and F need to find an agreement on what they can expect from each other, as well as on
what they can offer. Our aim is to provide the partners of a cross-organizational process a
protocol for negotiating temporal parameter restrictions, which lead to agreed constraints
with no risk of time failure.

3 Cross-Organizational Processes

Cross-organizational processes emerge from local processes interacting by exchanging messages
according to some choreography. Here we do not focus on the definition of process views and
the alignment of process views with choreographies or global processes, but we assume that
a choreography or message exchange protocol has been defined already. We focus on the
definition of temporal constraints for the process model. Temporal constraints may depend
on each other and there may be trade-offs between different temporal constraints.

We consider a cross-organizational process from the viewpoint of one party: a process
model in which some of the steps are used for receiving and sending messages. Temporal
constraints from such a viewpoint are local constraints and choreography constraints. Cho-
reography constraints can only be formulated using the elements (events, temporal variables)
which are known by both parties, i.e. elements of the process view. Local constraints can
also include local events and local temporal variables [16].

In such a cross-organizational process, the local processes need to agree on the choreo-
graphy constraints such that the cross-organizational process can be executed without time
failures for all foreseeable situations.
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3.1 Local Process Model

We consider here a standard (local) process model, such as the model we introduced in
previous work [16], to which we refer for details on the architecture and assumptions.

Basically, the model is a standard process model derived from workflow nets, consisting of
steps connected by precedence relationships. It features the most commonly used control flow
elements as identified in [33]: start and end events, tasks, sequence, exclusive split, parallel
split, and their corresponding joins. In addition, it has 2 specialties: (i) communication
steps: some of the steps send or receive messages, and (ii) temporal parameters: some of the
parameters in the message payload may encode temporal information. In [16] we argued in
detail about the use of temporal parameters for exchanging temporal information, and on
the use of temporal parameters for formulating cross-organizational temporal constraints.
According to the state-of-the-art and to avoid design flaws [8], we consider here acyclic
block-structured processes, assume that variables are available when they ought to be sent,
and that no deadlocks occur. Discussions about these assumptions for well-formedness are
out of scope for this paper.

We formally define the local process model as follows:

IDefinition 1 (Local Process Model). A local process model P is a tuple (proc_id,N,E,V,C,Ω),
where:

proc_id is a unique process id.
N is a set of nodes. A node n has type n.type ∈ {start, activity, xor − split, par −
split, xor− join, par− join, send, receive, end}, and start and end events n.s, resp. n.e.
For each node n:
n.I is the set of input variables;
n.O is the set of output variables;
n.t (to) is the id of the receiver for send nodes;
n.f (from) is the id of the sender for receive nodes.

E ⊆ N ×N is a set of edges defining precedence constraints.
V is a set of temporal variables, partitioned in disjoint sets V I , V O, Ne:
V I is the set of input parameters of P :
V I =

⋃
n∈N{v ∈ n.I|n.type = receive};

V O is the set of output parameters of P :
V O =

⋃
n∈N{v ∈ n.O|n.type = send};

Ne is the set of variables for start and end events of nodes: Ne =
⋃

n∈N{n.s, n.e}.
C is a set of temporal constraints consisting of

duration constraints for each n ∈ N : d(n, dmin, dmax), with n.type = activity, where
dmin, dmax ∈ N with dmin ≤ dmax; for all other nodes, dmin = dmax = 0;
range constraints for temporal variables v ∈ V I ∪ V O : r(v, vmin, vmax), where
vmin, vmax ∈ N with vmin ≤ vmax;
upper-bound constraints: ubc(a, b, δ), where a, b ∈ V, δ ∈ N, requiring that b ≤ a+ δ;
lower-bound constraints: lbc(a, b, δ), where a, b ∈ V, δ ∈ N, requiring that b ≥ a+ δ.

Ω is the maximum process duration.

Given the definition of the local process model, we can now illustrate in detail its temporal
aspect, and define its temporal semantics.
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Figure 2 BPMN collaboration diagram for the process of Fig. 1 from the viewpoint of the Factory.

3.2 Temporal Aspect of the Local Process Model
The temporal aspect of the process model includes time points for events, durations of nodes,
temporal parameters, and temporal constraints as relations between timepoints and/or
durations. Each process node n is associated with two events, n.s and n.e, representing the
start and end of the respective node.

Duration constraints specify minimum and maximum bounds for the actual durations of
activities. Without loss of generality [12] we consider all activities as contingent, i.e. their
actual duration cannot be controlled, but only be observed at run time, but it can be assumed
to be within the interval specified by the minimum and maximum duration.

Temporal parameters are data elements containing a timestamp value. They can be sent
to some other process via a communication channel. Input parameters are received from
another process by a receiving node; output parameters are sent to another process by a
sending node.

Temporal constraints restrict the points in time when events may occur. By imposing
temporal constraints between parameters and events, it is possible to constrain the occurrence
of local events, or events at other local processes.

A special temporal constraint is defined by Ω, which requires that the overall process
duration is less than the value specified by Ω.

Constraints can only be formulated between the elements in the process model. Hence
constraints between events in different processes can only be formulated, if information about
event is sent to the other process in form of temporal parameters.

In Fig. 2 we show the BPMN collaboration diagram for the choreography diagram from
Fig. 1, enriched with an explicit representation of the temporal constraints as dotted arrows.
We stress the problem of not being able to access the internals of other local processes, by
showing the diagram from the viewpoint of the factory F , with the other processes modeled
as black boxes. In the example, D must include the date she requires for mask production,
as part of the message sent with the first choreography task (see Fig. 1). In its local process
definition, F would use such a date, which is an input parameter, in a constraint binding the
time for completing mask production.

3.3 Negotiation of Temporal Commitments
Parties in a cross-organizational process have to agree on temporal commitments, i.e. on
constraints defined on admissible timepoints of communication events (sending and receiving
messages) and on the ranges for the temporal parameters. The goal is to agree on a set
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Figure 3 STNU derived from the local process of F in Fig. 1.

of constraints, such that time failures can be avoided for all possible process instances,
i.e. if all local processes with temporal parameters are dynamically controllable, then the
cross-organizational process is dynamically controllable.

For the receiving process, a range of an input parameter is a guarantee that the values of
the parameter will be within the range. On the other hand, it is an obligation for the sending
process to send a value within the agreed range. If the range of an input variable is wider,
then the uncertainty for the receiving process is higher, and it is more difficult to avoid time
failures. However, if the range of an output parameter is smaller, it is more difficult to send
a valid parameter. Every parameter is both output for some process and input for some
other process.

Moreover, the ranges of the input parameters influence the possible ranges of the output
parameters, and dynamic controllability also depends on these ranges. Therefore, these
ranges have to be negotiated between the different parties. Additionally, there might be
inter-dependencies between parameters, leading to trade-offs between the ranges, i.e. a
broader range for one parameter may reduce the ranges of other parameters.

In negotiating parameter restrictions, each party has to understand the dependencies
and trade-offs between different ranges and other constraints. Since these dependencies are
distributed over all the participating processes, these dependencies and their consequences
can only be calculated with a distributed procedure.

For the negotiations, the following computations are necessary:
1. which ranges of the input parameters can be accepted,
2. which ranges of the output parameters can be guaranteed,
3. which constraints have to hold between parameters.

For the input parameters, we aim to compute the widest possible ranges; for the output
parameters, the most narrow ranges (cf. contra-variant subtyping [5]). In addition, the
computations need to determine the constraints between parameters, representing the above
mentioned trade-offs.

For checking dynamic controllability, and for computing admissible restrictions for tem-
poral parameters, we map process models into temporal constraint networks, and resort to the
temporal reasoning capabilities of temporal constraint networks. In particular, we currently
consider Simple Temporal Networks with Uncertainty (STNUs) as the formal apparatus,
instead of more expressive networks (e.g., CSTNUs): this may lead to stricter results, but
the reasoning algorithms have lower complexity. In Fig. 3 we show the STNU equivalent
to the process of F from Fig. 2, with abbreviated activity names for better readability. For
details on STNUs, and how to map process models into STNUs, we refer to Appendix A.
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4 Constraint Negotiation

Process models and the problem of negotiating constraints are mapped into terms of temporal
constraint networks. Thus, here we present a framework for the negotiation of temporal
constraints, which is based on temporal networks as the formal apparatus for inferring
temporal constraints. For solving the negotiation problem outlined above, we developed new
inference mechanisms for STNUs. Finally, we map the solution back into process model
terms.

In the following we consider only STNUs which are verified to be dynamically controllable.

4.1 Computing Constraints for Temporal Parameters
Recently, an efficient method for checking dynamic controllability of STNUs has been proposed
in [3]. It applies three rules for inferring implicit constraints, and checks for contradictions
in form of negative cycles in the STNU. For dynamic controllability, however, the possible
values of a node might depend on all the nodes which have smaller values. Thus, the value
of a parameter node might depend on the observed duration of contingent activities. This
is unacceptable for parameter nodes, whose timestamps have to be fixed when they are
communicated. We even require that possible ranges for these parameter nodes are defined
at design time as part of the negotiations outlined above. We address this requirement by
proposing three rules, which infer constraints on nodes such that they are independent of
observed durations of contingent activities.

Another challenge is that there is no central STNU, but there is a set of communicating
STNUs and an infrastructure for communicating constraints between these STNUs in the
design phase. All possible algorithms have to take into account that local STNUs do not
expose their internal structure and internal constraints, and only communicate the constraints
on parameters to their peers.

We solve these problems by first introducing basic rules for inferring constraints, which
make parameter nodes independent of observed contingent durations. Then we propose a
procedure to compute restrictions on input and output parameters for a local STNU. Finally,
we discuss a framework for the communication of constraints to come up with an agreement
on parameter restrictions, which are compatible with the dynamic controllability of each
participating STNU.

4.2 Basic Inference Rules
We propose three basic rules (P-Relax, P-Upper, and P-Lower, shown in Fig. 4) for the
deduction of constraints in form of non-contingent STNU edges implicitly contained in an
STNU, such that the derived constraints for parameters are independent of any contingent
duration.

P-Relax: This rule is applied when three time points are connected by a sequence of two
consecutive non-contingent edges with weights v and w, respectively. It introduces a new
non-contingent edge with weight v + w between the time point origin of the first edge and
the time point destination of the second edge.

I Lemma 2. P-Relax derives the broadest non-contingent constraint between time point P
and time point R.

Proof. Since P-Relax is defined as Relax in the RUL system, for the proof we refer to [3]. J
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P Q R
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(a) P-Relax rule.
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(c) P-Upper rule.

Figure 4 Constraint inference rules. The derived constraints are dotted.

P-Lower: This rule is applied when a time point P is the target of an upper-bound
constraint with origin the contingent time point of a contingent link. Given the minimum
contingent duration l, and the upper-bound constraint bound w, the rule derives an upper-
bound constraint from the activation time point of the contingent link to P , with bound
w + l.

I Lemma 3. P-Lower derives the broadest non-contingent constraint c = (P ≤ AC + w + l)
between time point AC and time point P in a dynamically controllable STNU S, which makes
the constraint (P ≤ C + w) between C and P redundant.

Proof. Redundancy: the introduction of c in S requires to satisfy P ≤ AC + w + l. ∀d : l ≤
d ≤ u,AC + d ≤ C. So P ≤ AC + w + l =⇒ P ≤ C + w.

Broadness: suppose that the derived constraint between AC and P is less strict, e.g.
P ≤ AC + w + l + 1. Then in the scenario in which P = AC + w + l + 1 and the contingent
link takes its minimum duration (C = AC + l), the requirement that P ≤ C + w from the
original constraint is violated by 1 time unit. Therefore P ≤ AC + w + l is the most lenient
constraint which can be set between AC and P without contradicting the one between C
and P . J

P-Upper: This rule is applied when a time point P is the origin of an upper-bound
constraint with target the contingent time point of a contingent link. Given the maximum
contingent duration u, and the upper-bound constraint bound v, the rule derives an upper-
bound constraint from P to the activation time point of the contingent link, with bound
w − u.

I Lemma 4. P-Upper derives the broadest non-contingent constraint c = (AC ≤ P +w − u)
between time point P and time point AC in a dynamically controllable STNU S, which makes
the constraint (C ≤ P + w) between P and C redundant.

Proof. Redundancy: the introduction of c in S requires to satisfy AC ≤ P + w − u, i.e.
AC + u ≤ P + w. ∀d : l ≤ d ≤ u,AC + d ≤ C. So AC ≤ P + w − u =⇒ C ≤ P + w.

Broadness: suppose that the derived constraint is less strict, e.g., AC ≤ P + w − u+ 1.
Then the scenario in which P = AC − w + u− 1 and the contingent link takes its maximum
duration (C = AC +u), the original constraint C ≤ P+w is violated by 1 time unit. Therefore
AC ≤ P +w− u is the most lenient constraint between P and AC without contradicting the
constraint between P and C. J
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With these basic inference rules we can now define a procedure for inferring parameter
ranges and restrictions through iterated application of these rules.

4.3 Local Inference of Parameter Restrictions
The inference procedure iteratively applies the basic inference rules to a dynamically con-
trollable STNU S until quiescence (i.e. no new edge can be derived). We call the resulting
STNU the closure of S.

I Lemma 5. The inference procedure is sound and complete.

Proof. (1) The procedure always terminates, as each rules only adds constraints, no rule has
the absence of a constraint as condition, increments in constraints are always multiples of 1
chronon, and there is an overall deadline. (2) The correctness of a derived constraint is an
immediate consequence of the correctness of each of the three rules. (3) As each of the rules
derives a constraint which is at least as strict as a constraint derived by the rules in [3] but
is the weakest constraint satisfying the requirements (Lemma 1-3) completeness follows from
the completeness of the rules in [3]. J

The closure can now be analyzed to extract parameter restrictions. We are mainly
interested in the derived links between a parameter and zero and between 2 parameters. For
a node n, a non-contingent edge (zero, n, w) means that n is allowed to take at most value
w, for the STNU to be dynamically controllable. A non-contingent edge (n, zero,−v) means
that n has to take a value greater or equal to v, for the STNU to be dynamically controllable.
We call [v, w] the range restriction for n.

I Lemma 6. Let S be the closure of the STNU for a process P . Let p ∈ param(S) (p is a
temporal parameter of P ) such that ∀q ∈ param(S) @(p, q, δ), (q, p, δ′) ∈ S. Let (zero, p, w),
(p, zero,−v) be edges in S. Then [v, w] is the broadest range of values for p which is compatible
with the dynamic controllability of S.

Proof. Let us assume that S as above is dynamically controllable. It is easy to see, that
fixing p (by introducing edges (zero, p, p) and (p, zero,−p)) to any value p either smaller
than v, or larger than w, would introduce a negative loop in the STNU, thus making it not
dynamically controllable. Now let us assume that S is dc but there is a value v ≤ p ≤ w

for p,such that S′ =S cup {(zero, p, p), (p, zero,−p))} is not dc, i.e there is a negative cycle
in S′. Then with the Decomposability theorem [10] we can conclude that the negative
cycle was already in S - which is a contradiction to the assumption that S is dynamically
controllable. J

STNU edges derived between any two nodes m and n, represent constraints restricting
the values for the timestamps of these nodes with respect to each other, which as well need
to be fulfilled, in order for the STNU to be dynamically controllable. For instance, a derived
edge (m,n, 20) would mean the timestamp of n must be no more than 20 time units after the
timestamp of m.

I Lemma 7. Let S be the closure of the STNU for a process P . Let p and q be nodes in S for
temporal parameters. Let (p, q, w) be an edge in S. Then q ≤ p+w is the broadest constraint
between the timestamps of p and q which is compatible with the dynamic controllability of S.

Proof. It is easy to see, that fixing q (by introducing edges (zero, q, q) and (q, zero,−q)) to
any value q violating q ≤ p+ w, would introduce a negative loop in S, thus making it not
dynamically controllable.
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Listing 1 Compute, distribute, and receive parameter restrictions
repeat

S’ := S;
S’ := infer_restrictions (S);
for (n in N | n.type = receive )

transmit_restrictions (n);
end for
for (n in N | n.type = send)

S’ := S’ ∪ receive_restrictions (n);
end for

until S’ = S;
for (n in N | n.type = receive )

make_contingent (S, n);
end for

Now suppose that q is fixed (by introducing edges as above) to any value q fulfilling
q ≤ p+w and all other constraints on q, and that a negative cycle is in S. Then the negative
cycle must be due to some other configuration of constraints, which is a contradiction since
S is dynamically controllable. J

4.4 Communicating and Negotiating Constraints
A local STNU communicates the inferred restrictions to the senders resp. receivers of the
parameters, with the aim of deriving a shared set of restrictions leading to a constellation of
communicating STNUS each of which is dynamically controllable.

A difficulty for such a procedure are inter-dependencies between parameters. Consider,
as an example, a local STNU LP0, which receives two input parameters: parameter p1
is received from a STNU LP1, and parameter p2 from a different STNU LP2. Through
inference, it is discovered that, for the dynamic controllability of LP0, both p1 and p2 have
to take values in the range [15, 20]; and p2 must be at least equal to p1 − 1, and at most
equal to p1 + 1. So it is not sufficient that LP0 asks LP1 and LP2 to provide parameters
with values in the ranges, since, e.g., p1 = 16 and p2 = 20 would be invalid instantiations.

In Listing 1 we provide a general formulation of an algorithm for deriving a shared set of
restrictions on parameters. For each local STNU S, restrictions for its parameters can be
derived by applying the procedure for range inference. Then, all inferred restrictions for input
parameters are sent to the respective senders. Restrictions to output parameters computed
at the receivers are then received and corresponding non-contingent edges are added to the
STNU. The procedure repeats until no change occurs at any local STNU. The procedure
assumes that all parameter restrictions are shared between all STNUs, and, therefore, each
local STNU can observe when a fix-point is reached or a contradiction is derived. Nonetheless,
the algorithm does not require exposing internal constraints of local STNUs.

There are several variants for implementing this basic procedure, with different effects
and assumptions, e.g.:
1. Global choreography for the cross-organizational process, with shared parameter space:

“everybody knows all parameter constraints";
2. A central coordinator, with full access to all parameter restrictions acts as mediator

between local processes, and recognizes, when a fix-point is reached;
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3. Global hierarchical process without a global view or central coordinator: a partial order
of parameter and process dependencies can be constructed;

4. Fully distributed procedure based on distributed cycle detection (e.g. [2, 27]) for addressing
dependencies between parameters.

A discussion of each of these variants and a comparison of their advantages and dis-
advantages is out of the scope of this paper, and we reserve it for future work. Future
work also includes the development of algorithms, which are adaptive to the topology of the
communication structure.

4.5 Interpreting the Results
If in the procedures described any STNU gets to a negative cycle, then the cross-organizational
process is not dynamically controllable.

Otherwise, the algorithm in Listing 1 results in a set of dynamically controllable STNUs
which are coherent in their constraints on the shared temporal parameters. The restrictions
on these parameters can now be interpreted as follows: the constraints on input parameters
define for which constellation of parameter values the network is dynamically controllable and
are thus requirements sending processes have to fulfill. The restrictions on output parameters
are guarantees which the receiving processes are allowed to assume. Constraints between
parameters show the trade-offs to be resolved by further negotiations.

4.6 Correctness and Complexity of the Procedure
We observe that the correctness of the algorithm in Listing 1 is based (1) on the correctness
of the procedure for inferring parameter restrictions called in line 4, and (2) on the fact
that introducing contingent edges specifying the ranges for input parameters in line 13 does
not violate dynamic controllability. For (1), an informal sketch of proof is based on the
inference procedure deriving ranges which are not less restrictive than the ones derived by
the more general rules of [3]. Thus, if a closure of the STNU can be computed, the STNU is
dynamically controllable. For (2), we give proof to the following Lemma:

I Lemma 8. Let P be a process; let S be the STNU for P . Let p1, ..., pn be input parameters,
and ri = [pimin

, pimax
] be range restrictions for each pi derived from the closure of S. Then

S
⋃

i(zero, pimin
, pimax

, pi) is dynamically controllable.

Proof. For parameters for which only range restrictions are derived in the closure, the proof
directly follows from Lemma 6. For parameters having additional restrictions, the proof
follows from Lemma 7, and the requirement that all derived restrictions are enforced by the
senders, in whose STNU these restrictions are non-contingent edges. J

At the basis of the algorithm in Listing 1 is the repeated application of the procedure
for inferring restrictions. From previous results [25], the complexity of STNU constraint
propagation algorithms is polynomial in the number of STNU nodes O(N4). Existing figures
[11] for the local application of such procedures to STNUs derived from process definitions
indicate the practical applicability of the approach at design time. The local execution of the
algorithm may invoke several times the inference procedure, if re-computation is necessary.
However, each new invocation only restricts previously computed bounds, and the procedure
stops in case a negative cycle is found. Thus, the overall complexity of the distributed
execution of the algorithm in Listing 1 at each local participant, is given by O(N4), with N
the number of nodes in the global STNU.
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5 Related Work

A substantial body of research is devoted to time management for business processes: general
overviews of works in the area can be found in [7, 9, 14]. Checking whether deadlines and
time constraints can be fulfilled in time-constrained process definitions is addressed by early
works such as [1, 24], which are based on network analysis, scheduling, or constraint networks.
The specific case of cross-organizational processes and service compositions is addressed
by works such as [4, 18]; modularized processes are addressed in [21]. However, none of
these approaches considers using temporal parameters for expressing temporal properties or
temporal requirements; here we have shown how temporal parameters enable the expression
of temporal constraints crossing the scope of a single intra-organizational process.

Pro-active monitoring of the compliance of process instances to their process model, which
is considered in, e.g., [19, 22], plays an essential role in the management of timed processes
in general. Collaborative processes in particular are addressed in [23], which is based on
timed automata and model checking techniques. However, all these approaches consider
satisfiability rather than dynamic controllability as the notion for temporal correctness.

Here we showed an algorithm for computing constraints on parameters, which is based
on inferring knowledge from the temporal aspect of a local process definition, and the
communications with other local process definitions, with no visibility of their internals.
Alternatively, process mining techniques [29] may be used to derive missing temporal qualities
for a model; however, this is only possible if there is a sufficient number of traces available in
the process logs. In contrast to such an approach, here we focus on new process definitions,
and on a design time check of their temporal properties.

As an implementation for the proposed algorithm, we showed an approach based on
mapping process definitions to Simple Temporal Networks with Uncertainty (STNUs) [26].
Considerable research efforts have been devoted in the last decades both to developing different
notions of controllability and more expressive network models [21, 31, 32]. Considering the
increasing complexity for verifying dynamic controllability of these more refined networks, we
regard STNUs as a suitable formalism for representing the temporal dimension of a process
model and deriving missing temporal information at design time.

6 Conclusions

Temporal parameters proved as a highly adequate means for expressing temporal obligations
and guarantees between the participants of a cross-organizational business process. Negoti-
ating constraints on temporal parameters has to respect the need for keeping internals of
the participating processes secret, while arriving at a solution, which allows the distributed
control of processes in a way that no temporal constraint is violated.

The procedures proposed in this paper are a first attempt to successfully support the
negotiation of temporal commitments through the computation of maximum ranges for input
parameters and minimum ranges for output parameters in an effective way. These parameter
ranges serve as obligations and guarantees of temporal properties for the participants in the
cross-organizational business process. Additionally, they build the basis for the distributed
and autonomous scheduling of the participating processes, without risking time failures and
temporal exceptions.
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A Mapping Process Models into STNUs

Previous works have already shown how to map a process model into an equivalent temporal
network, such as the Simple Temporal Networks with Uncertainty (STNU), for expressing
the temporal semantics and verifying temporal correctness of the process model [11, 16]. The
advantage of mapping to temporal networks is that it is an established formalism with sound
and complete procedures for temporal reasoning. To be self-contained, we report here a brief
definition of the STNU, and the rules which allow mapping the process model of Def. 1 into
a STNU.

A.1 STNU
A STNU S = (T , C,L) is a directed weighted graph, in which nodes (set T ) represent time
points, and edges (sets C,L) represent temporal constraints between pairs of time points. A
special node zero (Z) marks the reference in time after which all other time points occur.
Two types of edges exist: non-contingent (set C), and contingent (set L). Non-contingent
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STNU edges between time points A and B have the form (A,B, δ): they require to assign A
and B timestamps, such that B ≤ A+ δ holds. A contingent STNU edge (also called link)
between from a time point AC (called the activation time point) to a contingent time point
C have the form (AC , l, u, C): they state that the timestamp of C will be observed to fall
between AC + l and AC + u.

Dynamic controllability of a STNU requires the existence of a dynamic execution strategy,
which assigns values to the non-contingent nodes, such that all temporal constraints are met,
for all possible assignment of values to the contingent nodes. A frequently adopted approach
to check the dynamic controllability of a STNU is based on propagating its constraints.
Constraint propagation derives new edges according to a number of propagation rules.
Different systems of rules have been proposed over the years, e.g., [3, 26]. A STNU is
dynamically controllable if it is not possible to derive any negative loop through constraint
propagation.

A.2 Mapping Rules
Given the process model of Def. 1, we show here how to map it into a STNU. We formulate
the mapping in terms of mapping rules as follows:

I Definition 9 (Mapping to STNU). Let P = (proc_id,N,E, V,C,Ω) be a process defined
as in Def. 1. The STNU S = (T , C,L), equivalent to P , is obtained by applying the following
rules:
1. Each n ∈ N with n.s, n.e ∈ Ne is mapped into corresponding time points n.s, n.e ∈ T ;
2. Each v ∈ V I ∪ V O is mapped into a corresponding time point v ∈ T ;
3. Each e = (m,n) ∈ E is mapped into a corresponding non-contingent edge (n.s,m.e, 0) ∈ C;
4. (start.s, zero, 0) ∈ C, and (zero, end.e,Ω) ∈ C;
5. Each duration constraint d(n, dmin, dmax) ∈ C is mapped into a corresponding contingent

link (n.s, dmin, dmax, n.e) ∈ L;
6. Each range constraint r(v, vmin, vmax) ∈ C, with v ∈ V I , is mapped into a corresponding

contingent link (zero, vmin, vmax, v) ∈ L;
7. Each range constraint r(v, vmin, vmax) ∈ C, with v ∈ V O, is mapped into corresponding

non-contingent edges (zero, v, vmax), (v, zero,−vmin) ∈ C;
8. Each ubc(a, b, δ) ∈ C, is mapped into a corresponding non-contingent edge (a, b, δ) ∈ C;
9. Each lbc(a, b, δ) ∈ C, is mapped into a corresponding non-contingent edge (b, a,−δ) ∈ C.

To keep the STNU compact and without loss of generality, process nodes with duration 0
can be collapsed into a single STNU node; process control nodes may not be included in
the STNU, by linking their predecessors to their successors; similarly, we may make start
coincide with zero (see Fig. 2 and Fig. 3).

We use the mapping rules of Def. 9 to bring the definition of the temporal aspect of a
process model into STNU terms for further temporal reasoning, such as checking its dynamic
controllability, and deriving missing temporal information.
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Abstract
Branching Algebra is the natural branching-time generalization of Allen’s Interval Algebra. As in
the linear case, the consistency problem for Branching Algebra is NP-hard. Being relatively new,
however, not much is known about the computational behaviour of the consistency problem of its
sub-algebras, except in the case of the recently found subset of convex branching relations, for which
the consistency of a network can be tested via path consistency and it is therefore deterministic
polynomial. In this paper, following Nebel and Bürckert, we define the Horn fragment of Branching
Algebra, and prove that it is a sub-algebra of the latter, being closed under inverse, intersection, and
composition, that it strictly contains both the convex fragment of Branching Algebra and the Horn
fragment of Interval Algebra, and that its consistency problem can be decided via path consistency.
Finally, we experimentally prove that the Horn fragment of Branching Algebra can be used as an
heuristic for checking the consistency of a generic network with a considerable improvement over the
convex subset.
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1 Introduction

In the context of temporal reasoning, Allen’s Interval Algebra [1] (IA) is certainly one of
the most important formalisms. Applications of the IA are widespread, and range from
scheduling, to planning, database theory, and natural language processing, among others.
In Allen’s IA we consider the domain of all intervals on a linear order, and define thirteen
basic relations (IAbasic) between pairs of intervals (such as, for example, meets or before);
a constraint between two intervals is any disjunction of basic relations, and a network of
constraints is defined as a set of variables plus a set of constraints between them, interpreted
as a logical conjunction. Among the problems that emerge naturally in this field, checking
the consistency of a network N of constraints is probably the most relevant one, and consists
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5:2 The Horn Fragment of Branching Algebra

of deciding whether N can be realized, that is, deciding if every variable can be instantiated
to an interval without violating any constraint. The consistency problem is archetypical of
the class of constraints satisfaction problems (CSP), because a network is a conjunction of
constraints. The consistency problem for the IA is NP-complete, and classical approaches to
efficient implementations are based either on clever brute-force enumerating algorithms (see,
e.g. [8, 18]), or on tractable fragments of the algebra, which are interesting both on their
own [9] and as heuristics to reduce the branching factor in branch-and-bound approaches
for the full algebra [10, 13]. Two important fragments of the IA are the convex fragment
(IAconvex), introduced by van Beek and Cohen [23], and encompassing 82 relations, and the
more general ORD-Horn fragment (or, simply, the Horn fragment - IAHorn), introduced
by Nebel and Bürckert in [14], with 868 relations. In particular, to prove the tractability of
the latter, Nebel and Bürckert identify a suitable point-based language that allows one to
translate every relation of the Horn fragment of IAHorn to a conjunction of Horn clauses;
then, they prove that IAHorn is closed under inverse, intersection, and composition, and
that path consistency is complete for it.

In [15], the authors define a branching version of Allen’s IA, which we refer to as
Branching Algebra (BA), and introduce two possible sets of basic relations that may hold
between two intervals on a tree-like partial order. One of these sets, composed of 24 mutually
exclusive and jointly exhaustive basic relations, and also studied from the (first-order)
expressive power point of view in [5], is characterized by basic relations whose semantics
cannot be always written in the language of endpoints, therefore requiring quantification. By
joining some of these relations via disjunction, one obtains a second set of 19, still mutually
exclusive and jointly exhaustive, relations (BAbasic), each of which is translatable to the
language of endpoints without using quantification. The consistency problem for a network of
constraints in the algebra that emerges from these relations is, quite obviously, still NP-hard,
and, in general, computationally more difficult than the one for IA. In [6], the authors
presented the subset BAconvex of convex BA-relations, inspired by the convex fragment of
the IA (IAconvex). The fragment BAconvex, that encompasses 91 relations, unlike its linear
analogous, is not a subalgebra of BA, as it is not closed under composition; yet, it is closed
on the (less restricting) operation of path consistency, which is also complete (w.r.t. deciding
consistency) for it, making BAconvex the first non-trivial tractable fragment of BA. In this
paper, we follow Nebel and Bürckert’s approach, and define, first, a first order Horn theory
(TORD-Horn), whose models can be interpreted as trees and in which BA-relations can be
translated; then, we enumerate the subset of all and only BA-relations that can be translated
in the language of TORD-Horn; finally, we prove, by enumeration, that such a subset (which
we call BAHorn) is closed under inverse, intersection, and composition, and it is therefore a
subalgebra of BA. Finally, in the spirit of [6, 17], we implement a simple branch-and-bound
algorithm for BA-networks to empirically study the expected improvement in computation
time when the splitting is driven by BAHorn-relations instead of basic relations.

2 Preliminaries

Notation. Let (T , <) be a partial order, whose elements are generally denoted by a, b, . . .,
and where a||b (resp., a lin b) denotes that a and b are incomparable (resp., comparable)
with respect to the ordering relation <. We use x, y, . . . to denote variables in the domain of
points, and x ≤ y to denote x < y ∨ x = y. A partial order (T , <), often denoted by T , is a
future branching model of time (or, simply, a branching model) if for all a, b ∈ T there is a
greatest lower bound of a and b in T , and, if a||b then there exists no c ∈ T such that c > a
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Figure 1 A pictorial representation of the four basic branching point relations, where a = b,
a < c, d > c, and d||e (left-hand side), and an example of two situations that require quantification
to be distinguished in the language of endpoints (right-hand side).

Table 1 Composition of basic branching relations between points.

◦ < > = ||

< {<} lin {<} {||, <}
> ? {>} {>} {||}
= {<} {>} {=} {||}
|| {||} {>, ||} {||} ?

and c > b (that is, it is a tree). There are four basic relations that may hold between two
points on a branching model: equals (=), incomparable (‖), less than (<), and greater than
(>); the first two are symmetric, while the last two are inverse of each other. These relations
are depicted in Figure 1 (left-hand side), and are called basic branching point relations. The
set of basic branching point relations is denoted by BPAbasic. In the linear setting, the set
of basic relations has only three elements, <,=, and >, and it is called PAbasic (basic point
relations). An interval in T is a pair [a, b] where a < b, and [a, b] = {x ∈ T : a ≤ x ≤ b}.
Intervals are generically denoted by I, J, . . .. For an interval I (resp., X), we use I−, I+ to
denote its endpoints. Following [5], one can describe 24 basic branching relations based on
the possible relative position of two pairs of ordered points on a branching model, that is,
by directly generalizing the universally known set of 13 basic interval relations [1] (IAbasic).
While towards a precise study of the expressive power of branching relations in a first-order
context this is an optimal choice, this is no longer true when studying the computational
properties of the consistency problem. In particular, some of these relations require first-order
quantification to be defined: for example, in Figure 1 (right-hand side) we see that, in order
to distinguish the two situations, we need to quantify of the existence, or non-existence,
of a point between a and c. To overcome this problem, that becomes relevant when we
study the behaviour of branching relations in association with the behaviour of branching
point relations (that is, by studying the properties of their point-based translations), Ragni
and Wölfl [15] introduce a set of coarser relations, characterized by being translatable to
point-based relations using only the language of endpoints, without quantification. These
19 relations are depicted in Figure 2, and form the set of basic branching interval relations
(BAbasic); for each relation, the symbol in parentheses corresponds to its inverse, if the
relation is not symmetric. A relation in the set BAbasic is either a linear relation, or the
relation u (unrelated), or it corresponds to the disjunction between a pair of finer relations
from the set of 24 [5]. For example, the relation ib is the disjunction of the two relations in
Figure 1.

Operations and algebras. In general, given the basic relations r1, . . . , rl, we denote by
R = {r1, . . . , rl} the disjunctive relation r1 ∨ . . . ∨ rl; thus, a relation is seen as a set, and
a basic relation as a singleton. As the set IAbasic contains 13 elements, the set IA of all
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b (bi) I before J I+ < J−
I− I+ J− J+

m (mi) I meets J I+ = J−
I− I+

J−
J+

o (oi) I overlaps J I− < J− < I+ < J+ I− I+

J− J+

d (di) I during J J− < I− < I+ < J+ J− J+

I− I+

s (si) I starts J I− = J− < I+ < J+ J− J+

I− I+

f (fi) I finishes J J− < I− < I+ = J+ I− I+

J− J+

e I equals J I− = J− < I+ = J+ I− I+

J− J+

ib (ibi) I init. before J I− < J− ‖ I+ I−

I+
J−

J+

im (imi) I init. meets J I− < J− < I+ ‖ J+ I− J−
I+

J+

ie I init. equals J I− = J− < I+ ‖ J+ I−

J−

I+

J+

u I unrelated J I− ‖ J−
I−

J−

I+

J+

Figure 2 A pictorial representation of the nineteen basic branching interval relations. In this
picture, in which I = [I−, I+] and J = [J−, J+], we assume I− < I+ and J− < J+. Solid lines
are actual intervals, dashed lines complete the underlying tree structure. We use aR1bR2c as a
shorthand for aR1b and bR2c.

interval relations in the linear setting encompasses 213−1 elements; similarly, the set BAbasic

of 19 basic relations entails 219 − 1 interval relations in the branching setting. A constraint
is an object of the type xRy, where x, y are point variables and R is a relation. There are
three basic operations with relations: (Boolean) intersection, inverse, and composition. The
inverse of a relation R = {r1, . . . , rl} is the relation R−1 = {r−1

1 , . . . , r−1
l }, where, for each

basic relation r, r−1 is its inverse. In our notation, for example, bi (later) denotes the inverse
of the basic relation b (before). The composition of two basic relations r1, r2 is defined as
follows: for variables s, t, z, we say that s is in the composed relation r1 ◦ r2 with t, denoted
s(r1 ◦ r2)t, if there exists z such that sr1z and zr2t. The composition of two relations R1, R2
is defined component-wise: R1 ◦ R2 = {r | ∃r1 ∈ R1∃r2 ∈ R2(r = r1 ◦ r2)}. When a set
of relations A is closed under inverse, intersection, and composition, we call it an algebra.
Clearly, to compute the composition of two non-basic relations we base ourselves on the
composition between basic relations, and to compute the latter in the interval ontology,
both in the linear and the branching setting, we use the composition between basic relations
in the point ontology. The latter can be easily computed “by hand” (see Table 1 for the
branching case). The entire composition table between two intervals in the branching case is
fully reported in [16] (and in [2] in the linear case). Given a set A of relations, an A-network
is a directed graph N = (V,E), where V is a set of variables and E ⊆ V × V is a set of
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A-constraints between pairs of variables. To denote a constraint between the variables s and
t in a network, we use indistinctly the notation (s, t) or the infix notation sRt (when we
want to specify the relation). Given a network N = (V,E), we say that N ′ is a sub-network
of N if N ′ = (V ′, E′), V ′ ⊆ V , and E′ is the projection of E on the variables in V ′. Given a
network, we say that it is consistent if there exists a model such that each variable can be
mapped (realized) to a concrete element so that every constraint is respected; establishing if
an A-network is consistent is the A-consistency problem.

Tractability and local consistency. Consistency problems such as those for IA, BA, and
their fragments are often approached via popular heuristics such as constraint propagation and
local consistency. A network N is said to be k-consistent if, given any consistent realization
of k − 1 variables, there exists an instantiation of any k-th variable such that the constraints
between the subset of k variables can be satisfied together. Because of the particular nature
of networks of constraints in temporal algebras, they are always 1-consistent (also called
node consistent) and 2-consistent (also called arc consistent), by definition. Enforcing path
consistency, that is, 3-consistency, in a network N , corresponds to apply the following simple
algorithm: for every triple (s, t, z) of variables in N = (V,E) such that sRt, sR1z, tR2z ∈ E,
replace sRt by s(R ∩ (R1 ◦ R2))t. Clearly, if enforcing path consistency results in at least
one empty constraint, the entire network N is not consistent. But, in general, enforcing
path consistency (in fact, k-consistency for any constant k < |V |) does not imply consistency,
and, indeed checking the consistency of a IA-network is a NP-hard problem [9]. Much effort
has been devoted to identify, and classify, the relevant fragments of the IA for which the
consistency problem becomes tractable. Besides the fragment of basic relations only, IAbasic,
which is trivially tractable, two important tractable fragments are the convex fragment
(IAconvex), introduced by van Beek and Cohen [23], and encompassing 82 relations, and the
more general ORD-Horn fragment (or, simply, the Horn fragment - IAHorn), introduced
by Nebel and Bürckert in [14], encompassing 868 relations. Both IAconvex and IAHorn are
subalgebras of the IA, and in both cases checking path consistency is a complete method for
checking the consistency.

In analogy with the linear case, Ragni and Wölfl [15] proved that also checking the
consistency of a BA-network is at least NP-hard, and observed that the set of basic BA-
relations only constitutes a tractable fragment (although not an algebra); also, in [6], the
authors presented the branching version of the fragment IAconvex, called BAconvex, which
is tractable, but, unlike its linear homologous, not closed under composition, and therefore
not an algebra. Tractable fragments are not only important per se. As a matter of fact, the
consistency problem for the full IA and BA alike is NP-complete, thanks to the fact that
it can be decided by a simple branch-and-bound algorithm based on basic relations, and
the completeness of path consistency for a fragment has another interesting consequence:
improving the performances of such an algorithm. A branch-and-bound consistency checking
algorithm is a backtracking algorithm that enforces path-consistency in each node of the
search tree (more detail is in Section 5). At each step, the algorithm tries one basic relation
for each relation. If at any step one relation results in the empty relation, it backtracks to
the last choice; otherwise it proceeds to the next relation in the network. Fragments of the
full algebra, both in the linear and the branching case, whose consistency can be decided via
path consistency can be used to drive the splitting in such an algorithm, as a heuristics to
speed up the branch-and-bound process: if, at any step, one ends up with a network whose
labels are all contained in any such a fragment, that particular branch can be decided by
simply enforcing path consistency. This has been done with both IAconvex and IAHorn in
the linear case, and with BAconvex in the branching case.
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3 Applying Branching Algebra

Interval algebra has been known for 30 years, and its role in planning and database theory
is universally accepted. Temporal reasoning in a branching setting is also a very well-
established research area, at least at the logical level. Therefore, studying interval algebra in
the branching setting is very natural. Possible application fields include the following ones.

Planning with errors. The use of IA, and in particular of IA-networks of constraints, to
model planning problems is ubiquitous in the literature (see, e.g. [11, 12, 24]). A typical
modelling exercise involves a set of tasks to be executed in order for a goal to be reached.
Plans that are modelled with linear time, however, allow no margin for error: once the
plan is being followed, every task must be executed. Using branching time we can develop
plans that have alternative routes that can be taken in case some action fails. While we are
following an (initial) part of the plan with actions that have no possibility of failing (in our
abstract model), the underlying temporal model is linear; as soon as we encounter a task
that may fail, the underlying model becomes branching, and, from that moment onward,
different plans may be followed. In this sense, different branches will never join again; so,
the underlying model is in fact tree-like, and a network of constraints that takes mistakes or
obstacles into account is naturally modelled in BA.

Automatic generation of narrative. Generation of narrative is a modern application of
artificial intelligence, and, more specifically, of natural language processing [22]. While
the classical applications of automatically generated narratives include weather reports,
instructions, descriptions of museum artifacts, narratives can be also used as the basis of
automatic storytelling and plot generation [19]. Many modern and classic science-fiction
stories, movies, and even video games make substantial use of parallel, incomparable timelines.
To keep an adequate cause-effect consistency, however, in presence of non-trivial literary
escamotage (such as time travel, for example), modelling the basic elements with BA may
be a solution. The generated narrative can be checked for consistency to ensure that, while
being possibly non-linear, it is internally coherent.

Verification of parallel programs. Some techniques for program verification make use of
IA (see, e.g. [20]). Verifying parallel programs is a challenging task [4] which may take
advantage from a branching interval algebra such as BA, in which the typical fork constructs
can be modelled in a natural way. Consistency, in this case, can be interpreted as the absence
of temporal contradictions in the executions of (sub)routines.

4 The Horn Fragment of BA

Horn branching relations. Every basic relation of IA, interpreted on a linear model (T , <)
can be translated into a conjunction of formulas of the language of endpoints. Every non-basic
relation, obviously, gives rise to a disjunction of such conjunctions, which, in turn, can be
re-written into a conjunction of disjunctions, that is, of clauses. Thus, a network of constraints
can be translated into a conjunction of clauses. Let us denote by Π(r) (resp., Π(R), Π(N))
the translation of a basic relation (resp., non-basic relation, network), and by C,D, . . . (resp.,
C,D) a generic clause (resp., set of clauses). As observed in [14], some translations of relations
have the additional property that their corresponding set of clauses are Horn, that is, each
clause has at most one positive literal; these are called IAHorn-relations. By associating
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such a translation to a first-order Horn theory, called ORD-Horn, whose models can be
interpreted as linear orders, one obtains that:
(i) for a network N of IAHorn-constraint, N is consistent if and only if Π(N)∧ORD-Horn

is satisfiable, and
(ii) checking the satisfiability of Π(N) ∧ORD-Horn is a tractable problem, for example

via positive unit resolution [7].

In order to define the branching equivalent of IAHorn, we need to construct the branching
equivalent of ORD-Horn, which we denote by TORD-Horn. First, we need to define the
language of TORD-Horn; then, we shall specify its axioms, and prove that every model of
TORD-Horn can be interpreted as future branching models of time; finally, we can check
which subset of relations of BA can be translated to the language of TORD-Horn, and
that such subset forms an algebra.

I Definition 1. The language of TORD-Horn encompasses an enumerable set of vari-
ables X,Y, . . . and the binary relations .= (equality), � ( less or equal), ∼ ( linear), q
( incomparable), and ≺q ( less or incomparable).

In this context, the theory of future branching models of time cannot be (fully) axiomatized
in the standard way, because some of the necessary properties are not in form of Horn
formulas (e.g., X ∼ Y defined as X � Y ∨ Y � X). However, to our purposes it suffices to
have models that can be extended to tree-like orderings.

I Definition 2. The theory TORD-Horn is characterized by the following axioms:

1. X .= X (reflexivity of .=);
2. X .= Y → Y

.= X (symmetry of .=);
3. X .= Y ∧ Y .= Z → X

.= Z (transitivity of .=);
4. X � X (reflexivity of �);
5. X � Y ∧ Y � X → X

.= Y (antisymmetry of �);
6. X � Y ∧ Y � Z → X � Z (transitivity of �);
7. X 6 q X (irreflexivity of q);
8. X q Y → Y q X (symmetry of q);
9. X ∼ X (reflexivity of ∼);
10. X ∼ Y → Y ∼ X (symmetry of ∼);
11. X 6≺q X (irreflexivity of ≺q);
12. X ≺q Y ∧ Y ≺q X → X q Y (antisymmetry of ≺q);
13. X .= Y → X � Y ∧ Y � X ∧X ∼ Y (weakening of .=);
14. X � Y → X ∼ Y (weakening of �);
15. X q Y → X ≺q Y ∧ Y ≺q X (weakening of q);
16. X q Y → X 6� Y ∧ Y 6� X (compatibility of q and �);
17. X ∼ Y → X 6 q Y (compatibility of ∼ and q);
18. X ≺q Y → Y 6� X (compatibility of ≺q and �);
19. X q Y ∧ Y � Z → X q Z (tree-likeness).
In the following, we denote by TORD-Horn the set of axioms 1-191; observe that TORD-
Horn is a Horn theory. We use the language of TORD-Horn to translate certain relations
of BA; as we have recalled, such a translation is correct if and only if the resulting model can

1 We do not claim these axiom are minimal; having a minimal set of axioms, however possible, would
probably hid some of the underlying structure.
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5:8 The Horn Fragment of Branching Algebra

be interpreted as a future branching model of time. It turns out that, in order to guarantee
that this is possible, we need to further limit the use of the language of TORD-Horn in
translations, and, in particular, we say that C is an admissible clause if it uses only literals
with the positive relations .=,�,∼, q,≺q, and the negative relation 6 .=. Observe that limiting
the use of certain relations does not decrease the (semantic) expressive power of the language,
as X 6� Y (resp., X 6∼ Y , X 6 q Y , X 6≺q Y ) can be written as Y ≺q X (resp., X q Y , X ∼ Y ,
Y � X).

I Theorem 3. Every model (M,
.=,�,∼, q,≺q) of TORD-Horn ∪ C, where C is a set of

admissible clauses, can be represented as a branching model of time.

It is important to remark that the use of an extended signature to specify the properties
of a tree-like model is justified by the need of such a specification to be Horn. Admissible
Horn clauses, as it can be proved by computer-assisted enumeration, are expressive enough
to translate a subset of BA-relations that form an algebra, and allowing any of the forbidden
symbols would require some non-Horn axiom.

I Definition 4. The set BAHorn is the subset of BA of all and only the relations that can
be translated to the language of TORD-Horn using only admissible Horn clauses.

I Theorem 5. BAHorn is an algebra, that is, it is closed under inverse, intersection, and
composition.

The set BAHorn can be computed automatically, and it consists of 4510 relations. Although
it covers less than 1% of the entire algebra, it is about 50 times more extended than BAconvex.

Completeness of path consistency. Let us consider a network N of BAHorn-constraints.
By the above results, we know that N is consistent if and only if Π(N) ∧ TORD-Horn
is satisfiable. Now, we ask ourselves if the consistency of N can also be checked by path
consistency, in the same way in which the consistency of a network of IAHorn-constraints
can. Again following [14], proving that path consistency is complete for BAHorn boils down
to proving that, given a path consistent network N , the empty clause cannot be derived
from Π(N) ∧TORD-Horn; to show the latter, one can restrict the attention to derivations
that use positive unit resolution, which is complete for Horn clauses [7].

Let N be a path consistent BAHorn-network. Let Π(N) = {ϕ1, ϕ2, . . . , } be the Horn
formulas of the signature TORD-Horn that are the result of translating the BAHorn-
constraints of N = {IR1J,KR2Z, . . .}; each ϕi is a conjunction of Horn clauses. The
following observation will be relevant for us: by exhaustive exploration of all clauses that
can be obtained from translating BAHorn-relations, we realize that they either are unary or
of the type:

(X � Y ∨X 6 .= Y ) or (Y �X ∨X 6 .= Y ),

where � ∈ {�, q,≺q}. In the following we assume that each formula ϕi is explicit, that is, it
explicitly contains all consequences of every axiom of TORD-Horn, and that each clause
Cj ∈ ϕi is minimal, that is, it contains no redundant literal; a set Π(N) in which every
formula is explicit, and every clause in every formula is minimal will be called explicit and
clause-minimal. We want to prove that if N is path consistent and contains no empty relation,
then positive unit resolution cannot deduce the empty clause from Π(N) ∧TORD-Horn.

I Theorem 6. Let N be a path consistent BAHorn-network. Then, if Π(N) is explicit and
clause-minimal, then the empty clause cannot be obtained from Π(N) ∧ TORD-Horn by
positive unit resolution.
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Algorithm 1 Backtracking algorithm.
1: function Consistent(P, Split)
2: enforce generalized arc consistency on P
3: if there is a variable νXY such that DXY = ∅ then
4: return false
5: else
6: choose an unprocessed variable νXY such that DXY /∈ Split
7: if there is no such variable then
8: return true
9: {D1, . . . ,Dp}=Partition(DXY , Split)
10: for all Di ∈ {D1, . . . ,Dp} do
11: P ′ = PDXY /Di

12: if Consistent(P ′, Split) then
13: return true
14: return false

I Corollary 7. Path consistency is complete for checking the consistency of a network of
BAHorn-relations.

5 Experiments

In order to assess the usefulness of the fragment BAHorn to improve the experimental
computation time for checking the consistency of a network of BA-constraints, we devised a
series of tests.

Constraint satisfaction problems. We designed a simple algorithm based on encoding the
temporal network into a constraint satisfaction problem (CSP) using the classical dual CSP
approach by Condotta et al. [3], based on the fact that enforcing path consistency on the
original qualitative temporal network corresponds to enforcing generalized arc consistency
on the corresponding dual CSP.

I Definition 8. Given a BA-network N = (V,E), its dual CSP is a triple P = (V,D,C),
where V is a set of variables, D is a set of variable domains, and C is a set constraints,
such that:
(i) V contains a variable νXY for each pair of nodes X,Y ∈ V ;
(ii) D contains a domain DXY for each variable in V, which corresponds to the constraint

XRY ∈ E, and
(iii) C contains a binary constraint inverse(νXY , νY X) for each pair of nodes X,Y ∈ V , sat-

isfied by all pairs (r, r−1), where r ∈ BAbasic, and a ternary constraint
composition(νXY , νY Z , νXZ) for each triple of nodes X,Y, Z ∈ V , which encodes the
composition table and is satisfied by all triples (r1, r2, r3) such that r3 = r2 ◦ r1.

Since path consistency is not complete for consistency checking of general networks, it is
typically associated to a search algorithm, such as the one depicted in Algorithm 1 [6, 13].
Algorithm 1 checks the consistency of a general network; moreover, when there is a known
fragment which is tractable through path consistency, Algorithm 1 can exploit it to speedup
the search. The family of sets Split represents exactly such a tractable fragment. If no
tractable fragment is known, the set Split contains just basic relations (as singleton sets),
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Figure 3 Running time of the backtracking algorithm varying the number of nodes n of the
network. Each point represents the geometric mean of 100 instances, with density d = 70%. Different
lines represent different fragments as Split set.
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Figure 4 Fraction of instances that incurred in a timeout varying the number of nodes n of the
network and fixing the density to d = 70%. Different lines represent different fragments as Split set.

and the algorithm amounts to selecting a variable of the CSP, then splitting its domain
into the basic relations (function Partition), nondeterministically assigning it one of the
basic relations in its domain, enforcing path consistency on the obtained network, and
recursively solving the remaining part of the CSP. On backtracking, another basic relation
is selected, and so on; the search stops when all the variables of the CSP are assigned a
basic relation in their domain. This is sound in the case of BA, since path consistency is
complete for consistency for the set of basic BA-relations [15]. In case a larger fragment (e.g.,
BAconvex [6], or BAHorn) is known to be solvable by path consistency, such fragment can
be effectively used. Again, a variable of the CSP is selected, and its domain is partitioned
into subsets, each belonging to the family Split. Since the subsets are no longer required to
be singleton, the branching factor can be reduced; in general, the larger the fragment, the
better the algorithm is expected to behave. Function Partition requires the solution of a
set-partitioning problem, which is itself NP-hard, in the general case. In our case the trivial
solution that splits a domain into its singletons is always feasible, and it can be computed
in polynomial time; however such solution is useless, as Algorithm 1 would not exploit the
tractable fragment. As in [6], we used a trie to store the tractable fragment, and a greedy
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Figure 5 Running time of the backtracking algorithm varying the density d of the network. Each
point represents the geometric mean of 50 instances, with number of nodes n = 16. Different lines
represent different fragments as Split set.
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Figure 6 Cactus plot showing the number of solved instances varying the solving time. Instances
have been generated with a number n of nodes varying from 15 to 20 and a constraint density d

varying from 55% to 100%. Different lines represent different fragments as Split set in backtracking
algorithm.

algorithm to quickly find a partition of the domain. Algorithm 1 was implemented in the
Constraint Logic Programming environment ECLiPSe [21], that is a declarative language
with built-in libraries for constraint satisfaction problems.

Experimental setting and results. In this experiment, random instances are generated as
in [6], with a technique derived from [17]. Each instance is characterized by three parameters:
the number of nodes n, the network density d, and the probability of a constraint p. Given
the three parameters, for each given cardinality n, we generate a graph with n nodes, then
we select dn(n−1)

2 edges at random. For each selected edge, we generate its domain by
choosing with probability p each of the basic relations in BAbasic. Edges not selected are
associated with the universal relation. Our experiments aim to assess the improvement of the
backtracking algorithm when the BAHorn fragment is used as Split heuristics as opposed to
use the BAconvex fragment or using basic relations only.
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In Figure 3 each point represents the geometric mean of 100 problem instances with
density of the network fixed to 70%. The results suggest that using the BAHorn fragment
positively influences the computation time, not only with respect to not using it but also
with respect to using the BAconvex fragment. Figure 4 where the fraction of instances that
incurred in a timeout is plotted, confirm this observation. Figure 5 shows the running time
of the backtracking algorithm varying the density of the network, while fixing the number
of nodes to 16. Each point represents the geometric mean of 50 instances. The shape of
the curves shows the phase transition as shown by BAconvex fragment in [6]: low density
networks are easily satisfiable, while in high density networks the unsatisfiability is easily
provable. Note that the new fragment improves in particular in the hardest region, at a
density between 70% and 80%, in which both satisfiability and unsatisfiability are hard to
prove. Finally, we generated 3000 random instances varying the number of nodes n from 15
to 20 and varying the constraint density d from 55% to 100%; also the cactus plot in Figure 6
shows that exploiting the BAHorn fragment leads to an improvement in computation time.
All experiments were run on ECLiPSe v. 7.0, build #54, with a time limit of 600s on Intel®
Xeon® E5-2630 v3 CPUs running at 2.4GHz on CentOS Linux 7, using only one core and
with 1GB of reserved memory.

6 Conclusions

Branching Algebra is the natural branching-time generalization of Allen’s Interval Algebra.
Being relatively new, not much is known about the computational behaviour of the consistency
problem of its sub-algebras. Branching Algebra has been introduced in [15], where it has
been proven that the consistency problem for the subset that includes only basic relations is
tractable. Later, in [6], the subset of convex branching relations was introduced, showing that
path consistency is complete for consistency in that case as well. In this paper, following Nebel
and Bürckert [13], we further extended the convex fragment to obtain the Horn fragment
of the Branching Algebra. We proved that it is a subalgebra, being closed under inverse,
intersection, and composition, and that its consistency problem is treatable; we also proved
that path consistency is complete for consistency in this case as well. Finally, we designed
and conducted a series of experiments on randomly generated networks of constraints in the
full algebra, to evaluate the improvement in computation time that comes from using the
Horn fragment as heuristics.

This paper constitutes yet another step towards the complete classification between
tractable/intractable fragments of Branching Algebra. At the moment, the Horn fragment
is the biggest tractable known fragment, and our initial investigation points towards its
maximality w.r.t. the tractability of the consistency problem. Yet, other, incomparable
fragments may exist. The algebra of intervals is traditionally applied to task scheduling. In
the branching case, applications are more difficult to visualize; yet, the Branching Algebra
can be applied to a variety of situations in which multiple, incomparable timelines co-exist.
In this paper, we have suggested a series of possible application scopes, but our list can be
certainly extended and further explored.
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A Appendix

Proof. (of Theorem 3) Since .= is an equivalence relation, we can take the quotientM/ .=,
denoted T , and equipped with the canonical equivalence =. In the following, we denote
by x, y, . . ., rather than [X]/ .=, [Y ]/ .=, the elements of T . We define the binary relation ≤
between classes:

x ≤ y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X � Y ),

and, consequently, x < y as x ≤ y ∧ x 6= y. We want to prove that (T , <) can be extended
to a branching model of time.

≤ is an ordering relation. Clearly, ≤ is reflexive and antisymmetric because so is �.
Moreover, assume that x ≤ y and y ≤ z for some x, y, z. This means that X � Y and
Y ′ � Z for some X,Y, Y ′, Z such that X ∈ x, Y, Y ′ ∈ y, and Z ∈ z. But since Y, Y ′ ∈ y,
we have that Y .= Y ′, and by axiom 13 we know that Y � Y ′. Since � is transitive, we
obtain that X � Z, implying that x ≤ z. So, ≤ is also transitive. This also implies that
< is a strict pre-order, as it is irreflexive (because .= is reflexive).
≤ can be extended to a tree-like order. To see this, observe that tree-likeness could be
violated by having x 6≤ y, y 6≤ x, y ≤ z, and either x ≤ z or z ≤ x for some x, y, z, but
6≤ simply cannot be generated by the set C, since it contains only admissible clauses.
Because we need to interpret every symbol of the language of TORD-Horn, let us define
the incomparable relation between classes, as:

x ‖ y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X q Y ),

which is well-defined thanks to axiom 7 and axiom 8. To ensure that (T , <) can be
extended to a tree-like ordering, we also have to guarantee that the introduction of ‖
does not generate any contradictions. So, suppose that x ‖ y, x ≤ z, and y ≤ t for some
x, y, z, t. By definition, for some X ∈ x and Y ∈ y we have that X q Y . Moreover, since
x ≤ z, for some X ′ ∈ x and Z ∈ z we have that X ′ � Z. But this implies, by axiom 13,
that X � Z. So, axiom 19 applies, implying that Y q Z. The same argument can be
re-applied, leading us the conclusion that Z q T . By definition, this implies that z ‖ t. By
contradiction, assume now that x ‖ y and x ≤ y for some x, y. This means that X q Y
and X ′ � Y ′ for some X,X ′ ∈ x and Y, Y ′ ∈ y. By axiom 13 and axiom 6, this implies
that X � Y , which is in contradiction with axiom 16. As a consequence of these two
facts we have that x ‖ y ↔ (x 6≤ y ∧ y 6≤ x) is realizable in (T , <). Now define:

x lin y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X ∼ Y ),

Clearly lin is reflexive and symmetric because so is ∼, which implies that it is well-defined.
Once again, we need to make sure that introducing lin does not generate contradictions.
So, suppose, by contradiction, that x lin y and x ‖ y hold for some x, y. This means that
X ∼ Y and X ′ q Y ′ for some X,X ′ ∈ x and Y, Y ′ ∈ y. By axiom 13, this implies that
X q Y , which is in contradiction with axiom 17. Similarly, assume that x ≤ y for some
x, y (the case in which y ≤ x or x = y are similar). This means that X � Y for some
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X ∈ x and Y ∈ y. By axiom 14, this implies that X ∼ Y , leading us to conclude that
x lin y. Finally, since C is admissible, x 6lin y ∧ x 6 ‖ y cannot occur. As a consequence, we
have that x lin y ↔ (x ≤ y ∨ y ≤ x ∨ x = y) is realizable in (T , <). Finally, let us define:

x <‖ y =def ∃X,Y (X ∈ x ∧ Y ∈ y ∧X ≺q Y ),

which is well-defined thanks to axiom 11, 12, and 15. Suppose that, for some x, y it is the
case that x <‖ y and y ≤ x. This means that X ≺q Y and Y ′ � X ′ for some X,X ′ ∈ x
and Y, Y ′ ∈ y. But since X,X ′ ∈ x and Y, Y ′ ∈ y, we have that X .= X ′ and Y .= Y ′, and
by axiom 13 and axiom 6, we know that X � Y , which is in contradiction with axiom 18.
Moreover, since C is admissible, x 6<‖ y ∧ y 6≤ x cannot occur. As a consequence, we have
that x <‖ y ↔ x < y ∨ x ‖ y is realizable in (T , <).

In conclusion, the structure (T , <) can be extended to a branching model of time, as we
wanted. J

Proof. (of Theorem 6) We prove a stronger claim, that is, we prove that if N is a path
consistent BAHorn-network, and Π(N) is explicit and clause-minimal, then no new positive
unit clauses at all can be deduced by positive unit resolution from Π(N)∧TORD-Horn. As
a matter of fact, to deduce a new unit clause, it must be the case that Π(N)∧TORD-Horn
contains one clause C = ¬L1∨¬L2∨ . . .∨¬Lq∨L (where L1, L2, . . . are propositional atoms),
and a sequence of positive unit clauses C1 = L1, C2 = L2, . . . , Cq = Lq, but does not contain
the clause C = L. Moreover, it must also be the case that q ≤ 2, as we have observed that
clauses of Π(N) are at most binary, and instances of axioms are at most ternary. We proceed
by case analysis.

Suppose, first, that C and C1, . . . , Cq belong to Π(N). If their variables are endpoints of
different interval variables, then no resolution step can be applied. Suppose, then, that
they contain the same endpoint variables; therefore, they also belong to the same formula
ϕi. So, it must be the case that C = X � Y ∨X 6 .= Y , C1 = X

.= Y , and q = 1 (because,
as we have observed, � must be positive). But, as it turns out, � /∈ { .=,�,∼}, otherwise
Π(N) could not be explicit, and � /∈ {q,≺q}, otherwise Π(N) could not be clause-minimal.
Therefore, C,C1, . . . , Cq cannot all belong to Π(N).
Suppose, then, that C is an instance of some transitivity axiom (3 or 6). Then, no Cj

can be an instance of some irreflexivity axiom (7 or 11), because it would not be positive,
neither can be an instance of any other axiom except 1,4, and 9, because it would not be
unitary; no resolution step can be carried on with 9, because ∼ is not transitive, and the
only possible resolution steps that could be completed with the reflexivity of .= and �
would lead to tautologies. Therefore, every Cj must belong to Π(N). If they are all clauses
of the same formula ϕ, then either C1 = X � Y , C2 = Y � Z, and q = 2, in which case
C = X � Z ∈ ϕ as well because ϕ is explicit, or C1 = X

.= Y , C2 = Y
.= Z, and q = 2,

in which case C = X
.= Z ∈ ϕ for the same reason. Therefore, C1 belongs to ϕ1, which

translates some constraint IR1J , and C2 belongs to ϕ2, which translates some constraint
JR2K (if the constraints referred to completely different interval variables, then the
endpoints variables would be different, and no resolution step could be performed). As
before, either C1 = X � Y and C2 = Y � Z, or C1 = X

.= Y and C2 = Y
.= Z, and

in both cases q = 2. Because N is path consistent, the constraint IR3K exists, and
R3 ⊆ R1 ◦R2. Thus, Π(N) also contains its translation ϕ3. Since

(i) R3 is stronger than R1 ◦R2,
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(ii) composition is the systematic application of the transitivity axiom(s) and the tree-
likeness axiom (see Table 1), and

(iii) L (which is either X � Z or X .= Z) can be deduced from C,C1, and C2,
it must be the case that L ∈ ϕ3, so, also in this case, no new deduction can be performed.
Assume, therefore, that C is an instance of the tree-likeness axiom. Then no Cj can be
an instance of some reflexivity axiom (1 or 4), because L would not be new, nor can it
be an instance of some irreflexivity axiom (7 or 11), because it would not be positive.
Also, Cj can never be the instance of any other axiom because it would not be unitary.
Therefore, every Cj must belong to Π(N). If they are all clauses of the same formula
ϕ, then C1 = X q Y , C2 = Y � Z, and q = 2, in which case we have that X q Z ∈ ϕ as
well, because ϕ is explicit. Therefore, C1 belongs to ϕ1, which translates some constraint
IR1J , and C2 belongs to ϕ2, which translates some constraint JR2K (if the constraints
referred to completely different interval variables, then the endpoints variables would
be different, and no resolution step could be performed). As above, C1 = X q Y and
C2 = Y � Z, and q = 2. Because N is path consistent, there exists a constraint IR3K,
and R3 ⊆ R1 ◦R2. Thus, Π(N) also contains its translation ϕ3. Since

(i) R3 is stronger than R1 ◦R2,
(ii) composition is the systematic application of the transitivity axiom(s) and the tree-

likeness axiom, and
(iii) L (which is X � Z)) can be deduced from C,C1, C2,

it must be the case that L ∈ ϕ3, so, also in this case, no new deduction can be performed.
Finally, suppose that C is any other axiom. C cannot be an instance of a reflexivity
axiom (1 or 4), because it would be unitary and positive, and it cannot be an instance
of any irreflexivity axiom (7 or 11) because C1 would not be admissible. C cannot be
the instance of any symmetry axiom (2, 8, or 10), because this would entail q = 1, which
is to say C1 would suffice for a deduction, but if C1 belongs to some formula ϕ, then
the latter must also contain L because it is explicit. Finally, if C is an instance of some
antisymmetry axiom (5 or 12), then both C1 and C2 must refer to the same two endpoints
as C, that is, they must belong to the same formula ϕ; therefore, since ϕ is explicit, L
already belongs to ϕ, and if it is the instance of some weakening axiom (13, 14, or 15), or
the instance of some compatibility axiom (16, 17, or 18), then C1 must refer to the same
two endpoints as C, and the same argument applies.

Therefore, no deduction can be performed on the translation of a path consistent network.
J
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Abstract
We introduce extensions of the standard temporal logics CTL and LTL with a recursion operator that
takes propositional arguments. Unlike other proposals for modal fixpoint logics of high expressive
power, we obtain logics that retain some of the appealing pragmatic advantages of CTL and LTL,
yet have expressive power beyond that of the modal µ-calculus or MSO. We advocate these logics by
showing how the recursion operator can be used to express interesting non-regular properties. We
also study decidability and complexity issues of the standard decision problems.
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1 Introduction

Temporal logic is a well-established formalism for the specification of the behaviour of dynamic
systems, typically separated into two classes: linear-time vs. branching-time, reflecting the
philosophical question of whether the future is determined of not [31]. There is a direct
correspondence in computer science: the linear-time view regards programs as being stand-
alone with input given at the beginning and a computation running without further interaction
with the program’s environment; in the branching-time view programs may be reactive, i.e.
able to react to input as it occurs during a computation. The most prominent member of the
linear-time family is LTL [29], the most prominent members of the branching-time family
are CTL [8] and CTL∗ [10].

The classification into linear-time and branching-time typically has consequences with
regards to expressiveness and computational complexity of the two major decision problems:
satisfiability and model checking. For genuine linear-time logics, these two are closely related
as model checking is a generalisation of validity checking, and validity checking can express
model checking of finite-state systems. For LTL, these problems are PSPACE-complete
[30]. The picture for branching-time logics is different: here, model checking is typically
easier than satisfiability checking, for instance P- vs. EXPTIME-complete for CTL [9] and
PSPACE- vs. 2EXPTIME-complete for CTL∗ [10, 11, 33].

Various extensions of these logics have been investigated for purposes of higher expressive-
ness: there are “semantic” extensions like action-based [21], dynamic logic [12], real-time [1],
metric [18] and probabilistic temporal logics [13] for instance, as well as combinations thereof.
Then there are “syntactic” extensions like the modal µ-calculus (Lµ) [19] with its explicit
least and greatest fixpoint operators. It extends the expressive power to full regularity, i.e.
that of Monadic Second-Order Logic [16] (up to bisimilarity).

Extensions in expressive power beyond that are possible, and sometimes even necessary
for particular purposes. For instance, Lµ– and therefore temporal logics embeddable into it –
have the finite model property [20]. Hence, they cannot be used to reason about inherent
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6:2 Temporal Logic with Recursion

properties of infinite-state systems. Such an observation has led to the investigation of
Propositional Dynamic Logic of Non-Regular Programs (PDL[CFL]) [15] for instance. It
uses context-free instead of regular languages as in ordinary PDL and, thus, can express
some non-regular properties but not all regular ones. When restricted to visibly pushdown
languages (PDL[VPL]), it even becomes decidable [26]. Other extensions include Fixpoint
Logic with Chop (FLC) [28], integrating process-algebraic operations into the modal µ-
calculus, or Higher-Order Fixpoint Logic (HFL) [34] which incorporates a simply-typed
λ-calculus into Lµ.

High expressive power also comes at a high price in two regards. First, it is tightly
linked to high computational complexity including undecidability. In fact, the satisfiability
checking problems for all the logics mentioned above here, capable of expressing non-regular
properties, are (highly) undecidable. The second downside concerns pragmatics. Already
Lµ is commonly seen as unsuitable for a non-expert as writing temporal properties using
least and greatest fixpoints is cumbersome and error-prone. This holds even more so for
extensions like FLC and HFL.

We introduce extensions of LTL and CTL in order to make the formal specification of
non-regular properties more widely available through temporal logics with a more intuitive
syntax. We introduce a recursion operator, resulting the logics Recursive LTL, resp. CTL
(RecLTL, RecCTL). The standard temporal operators from LTL and CTL are preserved
even though the recursion operator is expressive enough to mimic these. Note that temporal
operators like Until can be seen as abbreviations of infinite Boolean combinations of basic
propositional and modal formulas. The recursion operator can be used to construct more
complex infinite Boolean connections and, thus, express interesting properties, including
non-regular ones. Semantically, it is defined via least fixpoints of monotone functions of order
1 over the powerset lattice of the underlying labelled transition systems. The model-theoretic
design of RecLTL and RecCTL is inspired by the machinery underlying a complex logic like
HFL, yet their pragmatics aims at more understandable and usable temporal specification
languages.

In Sect. 2 we introduce RecCTL and RecLTL formally but also try to build intuition
about what they can be used for and how to use them. In Sect. 3 we study the expressive
power of RecCTL and RecLTL formally by placing them into the hierarchy of the those logics
mentioned above. In Sect. 4 we show that model checking RecCTL is EXPTIME-complete
whereas model checking RecLTL and satisfiability checking for both is undecidable. We also
present a decidable fragment of RecCTL. The paper concludes with remarks on further work
in Sec. 5.

2 Designing Temporal Logics of Higher Expressiveness

We assume familiarity with the standard temporal logics CTL and LTL.

Labelled Transition Systems. Let P be a finite set of atomic propositions. A labeled
transition system (LTS) is a tuple T = (S,−→ , `) where S is a (potentially infinite) set of
states, −→ ⊆ S × S is the transition relation that is assumed to be total in the sense that
for every s ∈ S there is a t ∈ S s.t. s−→ t. Finally, ` : S → 2P labels each state with the
set of propositions that hold at this state. A path is an infinite sequence π = s0, s1, . . . s.t.
si−→ si+1 for all i ≥ 0. We write π(i) to denote the ith state on this path.
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Infinitary modal logic. Infinitary modal logic adds infinitary junctors
∧
i∈I , resp.

∨
i∈I for

arbitrary sets I to modal logic with the operators ♦ and � or, EX and AX as they are usually
written in the temporal setting. Hence, formulas can become infinitely wide, but every path
in the syntax tree is still of finite length.

Over any set of LTS, any standard propositional temporal logic can be translated into
infinitary modal logic. For instance, the CTL formula EFq expressing reachability of a q-state
is equivalent to ϕ1 :=

∨
i≥0 EXiq, even uniformly over the class of all LTS.

Not every infinitary modal formula corresponds to a (finite) temporal formula, though.
For instance, ϕ2 :=

∨
i≥0 AXiq is not expressible in CTL, or even the modal µ-calculus [7].

Patterns of infinitary formulas expressible in temporal logics. The reason for the fact
that ϕ1 is expressible in CTL but ϕ2 is not, is given by the interplay of two principles:

First, the operator EX commutes with disjunctions – EXϕ ∨ EXψ ≡ EX(ϕ ∨ ψ) – but AX
does not. Hence, we have

ϕ1 =
∨
i≥0

EXiq = q ∨
∨
i≥1

EXiq ≡ q ∨ EX
∨
i≥0

EXiq = q ∨ EXϕ1 . (1)

Second, the fixpoint operators in CTL, LTL and Lµ are propositional, i.e. (monadic) second-
order. In other words, they can only be used to define a least or greatest fixpoint recursion
over an operator that is a modal formula itself (disregarding nested fixpoints for the moment).
Eq. 1 shows that ϕ1 ≡ µZ.q ∨ EXZ in Lµ terms with q ∨ EXZ for a propositional variable Z
describing the evaluation in each iteration of the fixpoint recursion.

Now consider ϕ2 again. It is simply not possible to rewrite it in a way like ϕ1, obtaining
an Lµ formula because AXϕ ∨ AXψ 6≡ AX(ϕ ∨ ψ). Most importantly, ϕ2 6≡ µZ.q ∨ AXZ.

This is not to say that the infinitary modal formula representing ϕ2 could not be built up
in a recursive way using fixpoints, as it is equivalent to the FLC formula (µZ.τ ∨ (Z; AX)); q.
The syntax is not easily understood – see the literature on FLC for a detailed introduction
[28, 23] – especially with AX becoming a 0-ary operator. The main point to observe here,
though, is the structure of the formula τ ∨ (Z; AX) defining the fixpoint iteration using a
recursion anchor Z. It is, in a sense, left-linear as opposed to the right-linear recursion
schemes definable in Lµ.

Adding recursion to temporal logics. The aim of this paper is to design expressive exten-
sions of CTL and LTL that retain their nice pragmatic features, in particular an intuitive and
readable syntax. Likewise, the semantics needs to be – at the same time – mathematically
sound. We aim for a moderate increase in expressive power in the sense of the example above:
on top of standard CTL and LTL, it should be possible to express certain additional patterns
of infinitary modal formulas, for instance infinitary disjunctions over uniform families of
AX-formulas.

As an example, recall that two paths π = s0, s1, . . . and π′ = s′0, s
′
1, . . . of an LTS

T = (S,−→, `) are called trace-equivalent iff `(si) = `(s′i) for all i ≥ 0. The existence of two
non-trace-equivalent paths can be expressed in infinitary modal logic as

ϕnonlin :=
∨
p∈P

∨
i≥0

EXip ∧ EXi¬p

In other words, ¬ϕnonlin states that all paths beginning in the state of evaluation, are
trace-equivalent or, equivalently, that the LTS (from that state) is bisimilar to a word.

TIME 2020



6:4 Temporal Logic with Recursion

Note that in ϕnonlin, the EX-operators are “guarded” by a conjunction. It is therefore not
possible to rewrite this formula into a least fixpoint recursion of Lµ in the style of Eq. 1.
In order to capture such patterns of infinitary modal logic, a temporal logic would have to
provide operators which allow the build-up of modal formulas “behind” the recursion anchor,
similar to the FLC formula equivalent to ϕ2 above.

An appropriate mechanism for creating such effects can be borrowed from HFL: it lifts
the recursion anchor from the propositional level to a higher one. In HFL, this can be a
function of arbitrary order; here we restrict ourselves to order 1 to keep the resulting logic
reasonably simple. The recursion anchor then becomes a function whose arguments are
temporal formulas. In order to manipulate the arguments, we use propositional variables as
symbolic names for the argument values in each recursive call.

Thus, our recursive temporal logic should have a recursion operator which defines a
recursion anchor in the form of a variable, say F . At the same time, it needs to provide
symbolic names for some arguments to F , say x1, . . . , xn, and then the definition of the
recursion can use these as standard temporal formulas, as well as F applied to n formulas.
Likewise, the entire recursion formula would have to be applied to n propositional formulas,
which are just the initial arguments for the recursive iteration. Such a formula could look like

ϕp :=
(

recF(y, z).(y ∧ z) ∨ F(EXy, EXz)︸ ︷︷ ︸
Ψ

)
(p,¬p) .

From a pragmatic point of view, recursion can be read in a natural way using unfolding and
replacement of symbolic argument variables, i.e. using β-reduction. Here, we would get

ϕp ≡(p ∧ ¬p) ∨Ψ(EXp, EX¬p) ≡ (p ∧ ¬p) ∨ (EXp ∧ EX¬p) ∨Ψ(EXEXp, EXEX¬p)

≡ . . . ≡
∨
i≥0

EXip ∧ EXi¬p .

In other words, such an extension of CTL (with appropriately defined semantics) would be
able to express ϕnonlin via

∨
p∈P ϕp.

The formal syntax. Let P = {p, q, . . .} be a finite set of atomic propositions, V1 = {x, y, . . .}
and V2 = {F ,G, . . .} be sets of propositional, resp. recursion variables. Formulas of Recursive
CTL (RecCTL) are given by the grammar

ϕ,ψ ::= p | x | ϕ ∧ ψ | ¬ϕ | EXϕ | E(ϕ U ψ) | Φ(ϕ, . . . , ϕ)
Φ ::= F | recF(x1, . . . , xk).ϕ

where p ∈ P, k ≥ 0, x, x1, . . . , xk ∈ V1 and F ∈ V2. The formulas derived from ϕ,ψ are
called propositional, those derived from Φ are called first-order.

Other Boolean and temporal operators are defined in the usual way, for instance AXϕ :=
¬EX¬ϕ, EFϕ := E(tt U ϕ), AGϕ := ¬EF¬ϕ, and will be used freely henceforth. The notions of
a subformula, a free or bound occurrence of a variable are the usual ones.

The semantics of the recursion operator will be explained later on using least fixpoints in
complete function lattices. This makes the Bekic̀ Lemma [5] available which allows formulas
with mutual dependencies between recursion variables to be written down in a more readable
form. A formula in vectorial form, cf. [3] for its use in Lµ, is a

rec i

 F1(x1, . . . , xk1) . ϕ1
...

Fn(x1, . . . , xkn
) . ϕn

 (ψ1, . . . , ψk)



F. Bruse and M. Lange 6:5

s.t. 1 ≤ i ≤ n and k = ki. Informally, this defines not just one but several functions
F1, . . . ,Fn which may all depend on each other in a mutually recursive way formalised in the
ϕj ’s. In the end, the function named by Fi is applied to the initial arguments ψ1, . . . , ψk.

We will also write fun(x1, . . . , xk).ϕ instead of recF(x1, . . . , xk).ϕ when F does not
occur in ϕ.

Well-formed formulas. Clearly, not every formula generated by the formal grammar above is
meaningful. For instance, in (recF(x).x ∧ F(EXx))(p,¬p) the number of formal parameters
of F does not match the number of given parameters. Such mistakes are easy to spot;
henceforth, we assume that all formulas are well-formed in this respect.

However, further restrictions need to be imposed before a formal semantics can be given,
since the addition of the recursion operator requires careful handling of negations.

Consider ϕp from above. Its subformula Ψ can be seen as a function mapping a pair
of propositions to a proposition. When interpreted over an LTS with state set S, such a
function is an object of type 2S × 2S → 2S =: M1,2 (functions of order 1 with 2 arguments).
Note that M1,2 is a complete lattice when equipped with the point-wise order where f ≤ g
iff f(x, y) ≤ g(x, y) for all x, y ∈ 2S . This also is true when restricted to just monotonic
functions from M1,2. Since recursion should be explained using least fixpoints, we are
interested in the function f : M1,2 →M1,2 that maps a (monotonic) function F : M1,2 to the
function (y, z) 7→ (y ∩ z) ∪ F(EXy, EXz) : M1,2. All operators used here are monotonic in the
usual powerset lattice 2S and, hence, if F is monotonic, so is f . Thus, the Knaster-Tarski
Theorem [32, 17] yields that f has a least fixpoint F , which is a natural candidate for the
semantics of Ψ.

Having negation in a specification logic is desirable, yet negation is clearly not a monotonic
operator. This is not problematic in CTL and LTL, where negation can only occur in places
where the implicit recursion in e.g. the operator U is not affected by negation in one of
its arguments. Already Lµ does not allow unrestricted use of negation, since µX.¬X for
instance cannot be given a proper semantics. The solution is to restrict the syntax to only
allow negation in front of non-variable atoms, or to require that recursion variables only
occur under an even number of negations in the defining fixpoint formula.

The first way is also viable mathematically here, but it would restrict the pragmatics of
this logic strongly since one may often want to specify undesired properties, i.e. use negation
on top level for instance. Hence, we aim for a syntactic criterion that allows negation to be
used as freely as possible. Unfortunately, the comparatively simple rule used in Lµ does not
generalise so easily.

Consider the toy example (recF(x). (fun y.¬y)(F(x))) p. It appears to be harmless, since
negation occurs only in front of the propositional variable y but not any recursion variable.
However, unfolding and β-reducing this to (recF(x).¬F(x)) p reveals that the negation in
front of F was simply hidden away in the anonymous function fun y.¬y which is clearly not
monotonic.

While the use of this antitonic function violates the monotonicity requirement of the
function defined by F , functions that are antitonic in one of their arguments are not necessarily
problematic in general. In fact, much of the expressive power of RecCTL and RecLTL would
be lost if antitonic functions were forbidden in general. Consider

ϕunbound := ¬
(

recF(x, y).(x ∧ ¬y) ∨ F(EXx, EXy)
)
(p, EXp)

stating that there is no n such that p can be reached in n steps but not in n+ 1. Clearly,
the function F is antitonic in its second argument. However, the function F 7→ ((x, y) 7→
(x ∩ y) ∪ F(EXx, EXy) is indeed monotonic in F and therefore has a least fixpoint which is
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6:6 Temporal Logic with Recursion

why the recursion in ϕunbound is well-defined in this case. In this instance, we make use of the
fact that M1,2 stays a complete lattice when restricted to functions that are monotonic in
their first argument, and antitonic in the second argument, whence any monotonic function
that maps a function from this sublattice back into the sublattice has a least fixpoint. In
fact, this holds for all M1,j and all partitions of the arguments into monotonic and antitonic.

In the following we will devise a syntactic criterion that allows antitonic functions to be
used in a harmless way, i.e. such that a formal semantics can still be given via least fixpoints.
The criterion is necessarily more complex than the Lµ one about occurrence under an even
number of negations as seen above; on the other hand we also do not require an entire type
system as it is the case in HFL.

We will call a formula well-formed if, in addition to the constraint on matching numbers
of arguments, it is possible to separate each list of formal and given parameters into two
parts of monotonically and antitonically used arguments, such that based on this separation
we can establish that the former ones are only used positively and the latter ones are only
used negatively. In the following we will make the meaning of this precise. For the moment,
suppose that recursive definitions and calls are written as(

recF(x1, . . . , xk | y1, . . . , yk′). ϕ
)

resp. F(ϕ1, . . . , ϕk | ψ1, . . . , ψk′) .

Either part of such a list can also be empty. For example, we woudl write ϕunbound as

¬
(

recF(x | y).(x ∧ ¬y) ∨ F(EXx | EXy)
)
(p | EXp)

declaring, in particular, x to be used monotonically and y to be used antitonically. The other
possibilities for separating the arguments would not pass the following check about positive,
resp. negative use. We say that x ∈ V1 is used positively in x and F ∈ V2 is used positively
in F(x1, . . . , xk | y1, . . . , yk′). Moreover, x, or F is used

positively, resp. negatively in ϕ1∧ϕ2, EXϕ1, E(ϕ1Uϕ2) or recF(x1, . . . , xk | y1, . . . , yk′). ϕ1,
if it is used positively, resp. negatively in ϕ1 or ϕ2;
positively, resp. negatively in ¬ϕ if it is used negatively, resp. positively in ϕ;
positively in G(ϕ1, . . . , ϕk | ψ1, . . . , ψk′) or

(
recG(. . .). ϕ

)
(ϕ1, . . . , ϕk | ψ1, . . . , ψk′) if it

is used positively in one of the ϕi, or negatively in one of the ψi;
negatively in G(ϕ1, . . . , ϕk | ψ1, . . . , ψk′) or

(
recG(. . .). ϕ

)
(ϕ1, . . . , ϕk | ψ1, . . . , ψk′) if it

is used negatively in one of the ϕi, or positively in one of the ψi.
Intuitively, the polarity of use switches at an actual negation, and when the subformula in
question is an argument right of the separator in a recursive call. Having defined a notion of
positive and negative occurrences, we can restrict the syntax accordingly to ensure that the
following semantics will be well-defined. Note that x or F can be used both positively and
negatively in a formula.

I Definition 1. A formula of RecCTL is called well-formed if it is possible to separate the
formal and given arguments of recursive definitions and calls into two lists each such that
the following conditions hold.

If
(

recF(x1, . . . , xk | y1, . . . , yk′). ϕ
)
(ϕ1, . . . , ϕl | ψ1, . . . , ψl′) is a recursive definition,

then k = l and k′ = l′, and if F(ϕ1, . . . , ϕm | ψ1, . . . , ψm′) is a recursive call of the same
variable, then k = m and k′ = m′,
If recF(x1, . . . , xk | y1, . . . , yk′). ϕ is a recursive definition then none of the xi is used
negatively in ϕ, and none of the yi is used positively in ϕ, and
If recF(x1, . . . , xk | y1, . . . , yk′). ϕ is a recursive definition then F is not used negatively
in ϕ.
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The formal semantics. Let T = (S,−→, `) be an LTS, let ϕ0 be a well-formed formula of
RecCTL. An environment is a function from η : V1 ∪ V2 → 2S ∪

⋃
j≥0M1,j where the value

of a variable matches its type in ϕ0 and the declared monotonicity, resp. antitonicity of its
arguments. Here M1,j is the space of order-1 functions with j arguments.

The formal semantics assigns a proposition, i.e. set of states to each propositional
subformula ϕ of ϕ0, and a first-order function to each first-order subformula Φ of ϕ of as
follows.

JpKTη = {s ∈ S | p ∈ `(s)}
JxKTη = η(x)

Jϕ ∧ ψKTη = JϕKTη ∩ JψKTη
J¬ϕKTη = S \ JϕKTη

JEXϕKTη = {s ∈ S | there exists t ∈ JϕKTη such that s−→ t}
JE(ϕ U ψ)KTη = {s ∈ S | there exists path π, integer i such that

s = π(0), π(i) ∈ JψKTη and π(j) ∈ JϕKTη for all 0 ≤ j < i}
JFKTη = η(F)

JrecF(x1, . . . , xk). ϕKTη = LFP f 7→
(
(S1, . . . , Sk) 7→ JϕKTη[F→f,x1 7→S1,...,xk 7→Sk]

)
JΦ(ϕ1, . . . , ϕk)KTη = JΦKTη (Jϕ1KTη , . . . , JϕkK

T
η )

Notions like satisfaction (T , s |= ϕ), satisfiability and equivalence (ϕ ≡ ψ) are defined as
usual.

The following lemma states that this semantics is well-defined, in particular, that least
fixpoints as used in the second to last clause do indeed exist. This is guaranteed by well-
formedness of ϕ0 which in turn guarantees monotonicity of the function whose least fixpoint
is used to give meaning to the recursion operator in the penultimate clause.

I Lemma 2. Let ϕ be a well-formed RecCTL sentence, let η be an environment and let T
be an LTS. Then JψKTη is well-defined.

Since JϕKTη does not depend on η, we simply write JϕKT and drop the environment. The
lemma’s proof is purely technical but standard by induction on the structure of ϕ.

We also state a fundamental equivalence which is very helpful for understanding formulas.
The proof is simply by combining the well-known equivalence-preserving principles of fixpoint
unfolding and β-reduction, and is therefore omitted. As usual, ϕ[ψ1/x1, . . . ψk/xk] denotes
the simultaneous replacement of every free occurrence of xi by ψi.

I Lemma 3. For any ϕ,ψ1, . . . , ψk we have

(recF(x1, . . . , xk).ϕ)(ψ1, . . . , ψk) ≡ ϕ[ψ1/x1, . . . , ψk/xk, recF(x1, . . . , xk).ϕ/F ]

The linear-time case. RecLTL is obtained from RecCTL syntactically by removing the
path quantifiers E and A just like the syntax of LTL can be obtained from CTL in this way.
A RecLTL formula is interpreted over a linear-time structure π, i.e. a transition system with
a single path only. The semantics is defined in the same way as for RecCTL. Given a RecLTL
formula ϕ, an LTS T with state s, and a path π, we write π |= ϕ to denote that the path π
satisfies ϕ. We write T , s |= ϕ iff all paths starting in s satisfy ϕ. In other words, the usual
for-all-paths semantics for linear-time formulas can also be applied to the richer language
RecLTL.

It is not hard to see that Lemmas 2 and 3 as well as previously worked out concepts like
well-formedness etc. hold for RecLTL as well.
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no finite model property

finite model property

HFL1

RecCTL RecLTL

FLC

LµPDL[CFL]

CTL∗PDL[VPL]

CTL LTLPDL

vpRecCTL
triv.

triv.

Thm. 6

Thm. 5

Cor. 15

Figure 1 Placing RecCTL and RecLTL into the hierarchy of temporal logics w.r.t. expressive
power.

3 The Power of Recursion in Temporal Logics

Recall the RecCTL example ϕnonlin above and remember that ¬ϕnonlin states that all paths
emerging from the state under consideration are trace-equivalent, i.e. indistinguishable
through the sequence of their propositional labels. This gives an easy satisfiability-preserving
reduction from RecLTL into RecCTL.

I Theorem 4. For every ϕ ∈ RecLTL there is an equi-satisfiable ϕ′ ∈ RecCTL such that
|ϕ′| = O(|ϕ|).

Proof. Simply take ϕ′ := ϕ̂ ∧ ¬ϕnonlin where ϕ̂ results from ϕ by replacing every subformula
of the form Xψ with AXψ. The second conjunct requires a model of ϕ′ to only have trace-
equivalent paths which are of infinite length by assumption. Thus, if ϕ has a model π then
this is clearly a model of ϕ′. Moreover, any path of an LTS model for ϕ′ is a model for ϕ. J

Next we place RecCTL and RecLTL into the expressiveness hierarchy of well-known
(and some lesser known) temporal and modal fixpoint logics. Note that the models under
consideration here are transition systems without edge labels, as they are usually used for
temporal logics like CTL and LTL. The results of this section are presented for this class
of structures, even though logics like Lµ are typically interpreted over the richer class of
transition system with edge labels. The results can easily be extended to this richer class,
provided that the syntax of RecCTL and RecLTL is extended to speak about a-successors
rather than just successors, for example by replacing EX with EXa for any edge label.

This hierarchy is shown in Fig. 1. It contains the standard temporal logics CTL and LTL
as fragments of CTL∗, which in turn is known to be embeddable into Lµ. Above, there are
the expressive logics mentioned in the introduction, namely

Fixpoint Logic with Chop (FLC): it interprets every formula as a predicate transformer
mapping a set of states to a set of states of an LTS. Predicates, the basic semantic objects
of Lµ, can be seen as constant predicate transformers which explains why FLC extends
Lµ [28].
Higher-Order Fixpoint Logic (HFL): it allows functions of arbitrary higher-order to be
built from modal and Boolean operators as well as fixpoints. Its fragment HFL1 is
obtained by restricting all functions to first order. This includes predicate transformers as
they can be seen as unary functions of order 1. Hence, FLC is embeddable into HFL1 [34].
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The graph also includes the dynamic logic PDL as it is closely related to CTL and its non-
regular extension PDL[CFL], in order to complete the picture of expressiveness of temporal
logics, in particular to give a better feeling for the power of RecCTL and RecLTL. The
embedding of PDL[CFL] into FLC was shown in [25]. At last, it includes the fragment
vpRecCTL of RecCTL which will be discussed in Sect. 4 in the context of decidability
questions.

The picture also draws the distinguishing line of regularity vs. non-regularity in terms
of possessing the finite model property (FMP). It is lost for all of these logics that are not
embeddable into Lµ [23].

RecCTL can be placed between FLC and HFL1. We refrain from presenting the full (and
sometimes cumbersome) syntax and semantics of these two logics here. Instead we refer to
the existing literature for full details [28, 34] and only give the main ideas here.

I Theorem 5. Every RecCTL formula can equivalently be expressed in HFL1.

Proof. (Sketch) Well-formed formulas can straight-forwardly be translated. The only inter-
esting case is that of a recursive first-order formula (recF(x1, . . . , xk | y1, . . . , yk′).ϕ). It is
equivalent to the HFL1 formula µFτ .λx•1. . . . .λx•k.ϕ with type annotation τ = •+ → . . .→
•+ → •− → . . .→ •− → •. J

For the lower bound we need to quickly recall FLC. Its formulas are built from basic
literals p, ¬p and the modal ♦ and �. Note that they receive no fixed argument, as they
are being interpreted not as predicates but as predicate transformers, i.e. a function of type
2S → 2S over a state space S of some LTS.

The syntax has conjunctions and disjunctions and a chop operator “;” which is interpreted
as the functional composition of two predicate transformers, and another atomic formula
τ which is interpreted as the neutral element to composition, i.e. the identity predicate
transformer. On top of this, fixpoint quantifiers are added which are interpreted as fixpoints
in the complete lattice of pointwise-ordered predicate transformers.

I Theorem 6. Every FLC formula can equivalently be expressed in RecCTL.

Proof. We devise a translation ·̂ : FLC → RecCTL that preserves equivalence using, for
every FLC fixpoint variable X, a unique recursion variable FX .

p̂ := funx.p ϕ̂ ∨ ψ := funx.ϕ̂(x) ∨ ψ̂(x) ♦̂ := funx.EXx

¬̂p := funx.¬p ϕ̂ ∧ ψ := funx.ϕ̂(x) ∧ ψ̂(x) �̂ := funx.AXx

τ̂ := funx.x ϕ̂;ψ := funx.ϕ̂(ψ̂(x))

X̂ := FX µ̂X.ϕ := recFX(y).ϕ̂(y) ν̂X.ϕ := ¬ recFX(y).¬ϕ̂[¬FX/FX ](y)

where [¬FX/FX ] denotes the substitution of any (FX(y).ψ)(ψ′) with ¬((FX(y).ψ)(ψ′)).
A straight-forward induction on the structure of an FLC formula ϕ shows that ϕ̂ denotes

the same predicate transformer as ϕ under any variable assignment that maps X and FX to
the same predicate transformer. We then get that the FLC formula ϕ is equivalent to the
RecCTL formula ϕ̂(tt) by virtue of the way that the semantics of FLC turns a predicate
transformer into a predicate. J

I Corollary 7. Neither RecCTL nor RecLTL have the finite model property.

Proof. For RecCTL this is a consequence of Thm. 6 since FLC does not have the finite
model property [28]. For RecLTL consider the formula ϕsteps(p) to be defined next. It is
easily seen to be satisfiable, yet unsatisfiable on any finitely represented linear structure. J
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4 Satisfiability and Model Checking

In this section we investigate the issues of decidability and computational complexity of
the two most important reasoning problems for temporal logics: satisfiability and model
checking.

Undecidability results. Consider the RecLTL formula (scheme)

ϕsteps(ψ) := ψ ∧ Xψ ∧ XX¬ψ ∧ XXXψ

∧ G
(
ψ → X

(
recH(x).(ψ ∧ Xx) ∨ (¬ψ ∧ XH(¬ψ ∧ Xx))︸ ︷︷ ︸

ΦH

)
(¬ψ ∧ Xψ)

)
.

For brevity, let X+χ abbreviate ψ∧ Xχ and X−χ abbreviate ¬ψ∧ Xχ. Note that the argument
to ΦH is X−ψ in this respect, and that ΦH can be written as recH(x).(X+x) ∨ X−H(X−x).
We also have X−(χ1 ∨ χ2) ≡ X−χ1 ∨ X−χ2 in general. Then consider ΦH(X−ψ). We have

ΦH(X−ψ) ≡ X+X−ψ ∨ X−ΦH(X−X−ψ)
≡ X+X−ψ ∨ X−(X+X−X−ψ ∨ X−ΦH(X−X−X−ψ))
≡ X+X−ψ ∨ X−X+X−X−ψ ∨ X−X−ΦH(X−X−X−ψ)
≡ X+X−ψ ∨ X−X+X−X−ψ ∨ X−X−(X+X−X−X−ψ ∨ X−ΦH(X−X−X−X−ψ))

≡ . . . ≡
∨
n≥0

X− . . . X−︸ ︷︷ ︸
n

X+ X− . . . X−︸ ︷︷ ︸
n+1

ψ

The first and second equivalence and every second after that uses Lemma 3. The others
simply use the the commutation of X− with disjunctions.

The first conjuncts in ϕsteps(ψ) fix the values of ψ on a possible model in the first four
states, namely to hold at positions 0, 1 and 3. Since ψ holds at positions 1 and 3 but not at
2, G(ψ → XΦH(X−ψ)) forces ψ to furthermore hold at position 6 but not at 4 and 5. This can
be iterated now with position 3 to see that the next moment at which ψ holds is 10. Hence,
ϕsteps(ψ) forces ψ to hold at the initial point of a model and then at distances increasing by
1 in each step. This can be used in the proof of the next result.

I Theorem 8. The satisfiability problem for RecLTL is undecidable (Σ1
1-hard).

Proof. The following problem, known as the recurrent octant tiling problem, is Σ1
1-hard [14]:

given a tiling system T = (T,H, V, t0, t∞) where T is a finite set of tile types, H,V ⊆ T 2

and t0, t∞ ∈ T , is there a tiling τ : {(i, j) | 0 ≤ i ≤ j} → T of the octant plane, such that
τ(0, 0) = t0, (initial tile set properly)
for all i, j with j > i: (τ(i, j), τ(i+ 1, j)) ∈ H, (no horizontal mismatch)
for all i, j with j ≥ i: (τ(i, j), τ(i, j + 1)) ∈ V , (no vertical mismatch)
there are infinitely many j such that τ(0, j) = t∞? (recurrence)

Such a tiling τ can be represented straight-forwardly as a linear-time model over the set of
propositions T by listing it row-wise:

τ(0, 0), τ(0, 1), τ(1, 1), τ(0, 2), τ(1, 2), τ(2, 2), τ(0, 3), . . . , τ(3, 3), τ(0, 4), . . .
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Moreover, the conditions on a successful tiling can be formalised in RecLTL as follows, using
one additional proposition fst to mark the beginnings of each row.

ϕT := t0 ∧ G(
∧
t∈T

t→
∧
t′ 6=t
¬t′) ∧ ϕsteps(fst) ∧ G(X¬fst→

∨
(t,t′)∈H

t ∧ Xt′)

∧ G
(

fst→ ¬
∨

(t,t′)∈T 2\V

(
recH(x, y).(x ∧ X(¬fst U (fst ∧ y))) ∨H(X(¬fst ∧ x), Xy)

)
(t, t′)

)
∧ GF(fst ∧ t∞)

The first conjunct enforces the initiality condition, the second ensures that each position
is occupied by exactly one tile. The third conjunct ensures that exactly the positions of
the form τ(0, j) for any j are marked using fst, using ϕsteps constructed above. The fourth
ensures horizontal matching by comparing adjacent positions apart from those where the
succeeding one is the beginning of the next row. The fifth conjunct states that it is impossible
to find the beginning of some row j, a vertically non-matching pair of tiles (t, t′), and an
i ≤ j such that t is the tile i steps after that beginning of the row, and t′ is found i steps
after the next state satisfying fst. Note that these are exactly the positions that are vertically
adjacent in the octant plane.

The last conjunct ensures the recurrence condition. Now a successful tiling τ for T
induces a linear time model for ϕT in the shape as described and vice-versa. J

An immediate consequence of Thms. 4 and 8 is the (high) undecidability of RecCTL.

I Corollary 9. The satisfiability problem for RecCTL is Σ1
1-hard.

Also, it is well-known that model checking for linear-time logics under the usual all-paths-
semantics is closely related to the validity problem.

I Corollary 10. The model checking problem for RecLTL over transition systems is Π1
1-hard.

In contrast, the model checking problem for RecCTL over finite transition systems is
decidable.

I Theorem 11. The model checking problem for RecCTL over finite transition systems is
EXPTIME-complete.

Proof. A deterministic exponential-time upper bound can be derived from a naïve bottom-
up algorithm that computes the semantics JϕKT of a given formula ϕ over a given LTS
T using fixpoint iteration. The EXPTIME upper bound also follows from the (linear)
embedding of RecCTL into HFL1 (Thm. 5) whose model checking problem is known to be
EXPTIME-complete [4].

A matching lower bound is inherited from FLC using Thm. 6 since the model checking
problem for FLC is known to be EXPTIME-complete as well [24]. J

A natural question that arises concerns the decidability of model checking RecCTL over
classes of infinite-state transition systems. A consequence of Thm. 6 is the negative result
that this problem is already undecidable for the class BPA (Basic Process Algebra) [6] –
in some sense the smallest class of context-free processes – as this is undecidable for FLC
[28, 22].

I Corollary 12. The model checking problem for RecCTL over classes of infinite-state
transition systems subsuming BPA is undecidable.
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A decidable fragment of RecCTL. The undecidability of the satisfiability problem for
temporal logics beyond regularity can often be seen by observing that such a logic, for
example FLC, can both express context-free properties, and is closed under conjunctions.
Since closure under Boolean operators is highly desirable, a restriction of the recursion process
to a class strictly below the context-free languages is unavoidable if one wants to recuperate
decidability. A natural candidate are the visibly pushdown languages (VPL) [2], which are
closed under intersection and complement and, hence, not problematic if mixed with full
closure under Boolean operators. In particular, it is known that PDL[VPL] is decidable and
2EXPTIME-complete [26]. We refer to the literature for a detailed introduction into VPL
and PDL[VPL].

I Definition 13. Let P be a set of propositions. We write B(P) for the set of all Boolean com-
binations of these variables. Let Bc,Br,Bi ⊆ B(P) be mutually exclusive, i.e. the conjunction
of two formulas from these sets is satisfiable only if they are from the same set.

Formulas of the fragment vpRecCTL of RecCTL are given by the grammar

ϕ ::= tt | ϕ ∧ ϕ | ¬ϕ | rec i

 F1(x1) . ψ1
...

Fn(xn) . ψn

 (ϕ)

where each ψj is a disjunction of formulas of the forms xj, EX(βi ∧ Fk(xj)) or EX
(
βc ∧

Fk(EX(βr ∧ Fk′(xj)))
)
, with βc ∈ Bc, βr ∈ Br and βi ∈ Bi. Note that formulas derived from ϕ

contain no free variables from V2.

I Theorem 14. The satisfiability problem for vpRecCTL is 2EXPTIME-complete.

Proof. (sketch) It is possible to devise a satisfiability-preserving linear translation from
vpRecCTL into PDL[VPL]. From Bc,Br,Bi we construct a visibly pushdown alphabet A :=
Ac ∪ Ar ∪ Ai with Ac := {aβ | β ∈ Bc} and likewise for Ar and Ai.

The key is then to see that the structure of a functional formula Φ = (rec iF1(x1).ψ1, . . . ,

Fn(xn).ψn) in vectorial form resembles a context-free grammar G with EX
(
βc ∧ Fk(EX(βr ∧

Fk′(xj)))) in the definition of some Fi for instance corresponding to a production of the
form Fi → aβcFkaβrFk′ . The structure of Φ then ensures that the resulting grammar is in
fact a visibly-pushdown grammar GΦ [2], and so Φ(ϕ) can be translated into 〈GΦ〉(ϕ̂) where
ϕ̂ is the translation of ϕ.

The lower bound follows equally from PDL[VPL]’s 2EXPTIME-completeness [26], as the
translation can easily be reversed into one from PDL[VPL] to vpRecCTL. J

An equivalence-preserving translation from vpRecCTL into PDL[VPL] is not possible
since PDL[VPL] is defined over edge-labelled LTS, and the partition of edge labels into
a visibly pushdown alphabet plays a key role in the definition of the logic. Without the
shift from node- to edge-labels – keeping each β as a propositional formula rather than
transforming it into an alphabet symbol aβ – the translation would indeed be equivalence
preserving but the resulting formula would “only” be in PDL[CFL].

I Corollary 15. Every vpRecCTL can equivalently be expressed in PDL[CFL].
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5 Conclusion & Further Work

We have presented an expressive extension of the framework of standard temporal logics.
The aim is to make the specification and verification of complex systems and properties
beyond regular ones more accessible through temporal logics with a reasonably intuitive
syntax and semantics, such as CTL and LTL are.

High expressive power is achieved through the introduction of a recursion operator which
takes formulas as arguments. The mathematical concepts underlying the formal semantics
are borrowed from higher-order logics like HFL without having to involve rather cumbersome
tools like proof systems. Instead, only a relatively simple monotonicity requirement for
recursion variables has to be obeyed. This way, RecCTL and RecLTL achieve a reasonable
balance between expressive power and pragmatic usability.

We have studied the computational complexities of the most important decision problems
of model and satisfiability checking of these logics. The increase compared to CTL and LTL
is in line with what one can expect to pay for additional expressiveness.

There are various routes for further work on such logics. For instance, model checking
procedures that are optimised for practical purposes need to be sought. There is also potential
in extending the fragment vpRecCTL by large amounts without losing the decidability
property. Take for instance the infinitary modal formula

∨
n≥i ♦

n�nq, stating that for some
n there is a path of length n such that all successive paths of that same length end in a q-state.
This cannot be stated in PDL[VPL] even though it intuitively uses the VPL {anbn | n ≥ 1},
but PDL-based logics can only combine languages with a single modality. The property is,
however, easily formalisable in RecCTL as EX(recF(x).x ∨ EXF(AXx))(AX q).

We conjecture that it is possible to allow mixtures of EX- and AX-operators in vpRecCTL,
achieving higher expressiveness and yet not losing decidability. We believe that satisfiability in
such an extended fragment can also be reduced to the problem of solving a visibly-pushdown
game [27].
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Abstract
CSL is a well-known temporal logic for specifying properties of real-time stochastic systems, such
as continuous-time Markov chains. We introduce PCSL, an extension of CSL that allows using
existentially quantified parameters in timing constraints, and investigate its expressiveness and
decidability over properties of continuous-time Markov chains. Assuming Schanuel’s Conjecture, we
prove the decidability of model checking the one-parameter fragment of PCSL on continuous-time
Markov chains. Technically, the central problem we solve (relying on Schanuel’s Conjecture) is to
decide positivity of real-valued exponential polynomial functions on bounded intervals. A second
contribution is to give a reduction of the Positivity Problem for matrix exponentials to the PCSL
model checking problem, suggesting that it will be difficult to give an unconditional proof of the
decidability of model checking PCSL.
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1 Introduction

Continuous-time Markov chains (CTMC) have been intensively investigated for a long time,
especially because they are simple stochastic models with a wide range of real life applications,
being suitable for modelling properties such as expected failure time for systems or expected
time between system events. Given the omnipresence of continuous-time Markov chains,
it has been natural to seek a logical formalism to describe their properties. A popular
example is Continuous Stochastic Logic (CSL), introduced by Aziz et al in [2]. CSL is
a branching-time, temporal logic, that allows expressing quantitative bounds on certain
properties of continuous-time Markov chains.

Let us consider the CTMC M in Figure 1 modelling the state transitions of a simple
system. One can express the property that the probability of encountering an error in the
continuous time interval [0, 4] is greater than 0.5 in CSL by the following state formula:

ϕ := P>0.5(trueU[0,4]s3). (1)

1 Most of the research was done as part of Andrei’s dissertation while he was an undergraduate student
at the University of Oxford working under the supervision of James Worrell.
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s3 : Error

s1 :
Routine 1

s2 :
Routine 2

1.2

0.03

0.7

0.1

0.6

0.6

Figure 1 A simple CTMC modelling a system which is considered to run properly in states s1

and s2, and to malfunction in state s3.

Another natural property that one might want to express is whether there exists a
“dangerous” short period in [0, 4], say of length 0.1, in which our example system fails with
probability at least 0.3. This could then lead to isolating such periods and taking appropriate
action. However, CSL does not allow expressing such properties. This is why we extend CSL
to allow existential quantifiers over time bounds, giving rise to the logic Parametric CSL
(PCSL), in which we can express the desired property by a state formula:

ψ := ∃t ∈ [0, 3.9] · P>0.3(trueU[t,t+0.1]s3). (2)

In general, checking if mathematical models satisfy certain properties is a central part of
formal verification. This gives rise to model checking problems, in which we want to find
procedures to determine if a model verifies properties that are usually expressed formally
within a logic. In CSL, the model checking problem consists of deciding if properties expressed
by state formulas are true or false in certain states of a CTMC. The main result of [2] is
that CSL model checking is decidable. The proof is non-trivial, as it employs results in
algebraic and transcendental number theory such as the Lindemann-Weierstrass theorem
[10]. There exist state-of-the-art model checking software, such as PRISM [8], which allow
verifying properties of systems, including CTMCs, expressed formally by logics like CSL,
PCTL. However, in this project we deal theoretically with the fundamental problem regarding
PCSL model checking.

We define the model checking problem of PCSL similarly to the one of CSL, with the
simple exception that we allow state formulas to be evaluated over initial distributions instead
of states. Therefore, we want to decide if a CTMC together with an initial distribution
entail a PCSL state formula2. We show that the model checking problem for the fragment
of PCSL consisting of formulae with only one existential quantifier, such as 2 above, is
decidable assuming Schanuel’s Conjecture, a conjecture which generalizes important results
in transcendental number theory, including the Lindemann-Weierstrass Theorem. The latter
was used in [2] to prove CSL model checking decidability. We also discuss why PCSL model
checking decidability is non-trivial and employs a strong number theoretical result.

2 Note that this simply allows for checking entailment in a certain state by setting its initial probability
to 1.
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2 PCSL Syntax and Semantics

We extend the original CSL formulation of Aziz et al by allowing existentially quantified
parameters. Sticking to the terminology in [2], we call a “path” through a CTMC M a
function on domain [0,∞) with values in the state set S, which associates to each time step
a state and follows the transitions in M . For any state s we denote by Us the set of paths
starting at s. Similarly, we denote by UM the set of paths starting at any state in M . For
any set of paths Γ starting at the same state s we denote its probability by µs(Γ).

For any initial distribution π and for any set of paths Φ, not necessarily starting from the
same state, we denote its probability by µπ(Φ), where the probability of the initial vertex is
determined according to the initial distribution π of M :

µπ(Φ) :=
∑
s∈S

π(s)µs(Us ∩ Φ). (3)

We now give the syntax and semantics of our extension, which we name “Parametric
Continuous Stochastic Logic” (PCSL). For clarity, we use in PCSL state names instead of
state labels in the formulas, while the authors of the original CSL papers use state labels.
We also define the satisfaction relation for state formulas over initial distributions instead
of states, to allow a wider class of verifiable models. Apart from this, CSL can be seen as
the PCSL restriction when using no quantified parameters in the definitions below. We also
define PCSLn, for n ∈ N, to be the restriction of PCSL with at most n nested existential
quantifiers.

2.1 PCSL Syntax
First, let T = {t1, t2, . . . } be a countably infinite set of free variables to which we have access.
These variables will represent existentially quantified real numbers. We define a parametric
term over a finite set of free variables T ′ ⊂ T as a linear combination of free variables in T ′
with rational coefficients:
1. c is a parametric term, for any c ∈ Q,
2. τ + qt is a parametric term, for any parametric term τ , q ∈ Q, and t ∈ T ′.

Let M be a CTMC with state set S. As in CSL, there are two types of PCSL formulas:
state formulas and path formulas.

State formulas are evaluated in states, or over initial distributions3, and their syntax is
given by:
1. s, for s ∈ S (the atomic state formula),
2. If f1 and f2 are state formulas, then so are ¬f1 and f1 ∨ f2, 4

3. If g is a path formula using parametric terms over free variables {t1, . . . tr}, then ∃t1 ∈
[x1, y1] . . . ∃tr ∈ [xr, yr] · P>c(g) is a state formula, where c ∈ Q, and for i = 1, . . . , r:
xi, yi ∈ Q, and 0 ≤ xi ≤ yi. 5

Path formulas are evaluated along paths, and their syntax is :

3 In CSL, the state formulas are only evaluated in states. Our extension allows evaluation over initial
distributions as well.

4 f1 ∧ f2 and f1 → f2 can be written using only these definitions
5 Note that we allow as well no free variables, so no quantifiers at all in such a formula. PCSL differs
from CSL specifically by allowing these ∃ operators.
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1. f1U[a1,b1]f2U[a2,b2] . . . fn, where f1, f2, . . . , fn are state formulas, and all a1, . . . , an−1
and b1, . . . , bn−1 are parametric terms over a finite set of free variables.

For any k ∈ N, the syntax of PCSLk is the same as of PCSL, with the exception of the
path formula rule 1, which for PCSLk is:
1. f1U[a1,b1]f2U[a2,b2] . . . fn, where f1, f2, . . . , fn are state formulas, and all a1, . . . , an−1

and b1, . . . , bn−1 are parametric terms over a set of free variables of size at most k.

2.2 PCSL Semantics
Let M be a CTMC, with state set S, and initial distribution π0. Let f and g be PCSL state,
respectively path formulas.

We say that a state s satisfies a state formula f if, for a distribution π′ such that π′(s) = 1,
we have M,π′ |= f according to the definitions below. Let us denote by JfKM the set of
states satisfying f . We also denote by g[t← d] the path formula obtained by substituting
the occurrences of the free variable t in parametric terms of g by the non-negative real d.
We define the satisfaction relation M,π |= f for a general rational distribution π, using
structural induction over the state formula f :
1. f is of the form s (s ∈ S): M,π |= f iff π(s) = 1,
2. f is of the form ¬f1: M,π |= f iff M,π 6|= f1,
3. f is of the form f1 ∨ f2: M,π |= f iff M,π |= f1 or M,π |= f2,
4. f is of the form ∃t1 ∈ [x1, y1] . . . ∃tr ∈ [xr, yr] · P>c(g): M,π |= f iff there exist non-

negative reals c1 ∈ [x1, y1], . . . , cr ∈ [xr, yr] such that

µπ({ρ ∈ UM |M,ρ |= g[t1 ← c1][t2 ← c2] . . . [tr ← cr]}) > c,

By notation abuse, we define the satisfaction relation M,ρ |= g for path formulas g and for
any path ρ:
1. g is a path formula with no free variables (i.e. all parametric terms are numbers) of

the form f1U[a1,b1]f2U[a2,b2] . . . fn and ρ is a path through M : M,ρ |= g iff there exist
positive reals α1, . . . , αn−1 such that for each integer in [1, n− 1] we have ai ≤ αi ≤ bi
and for any β ∈ [αi−1, αi) we have π(β) ∈ JfiKM , and π(αn−1) ∈ JfnKM . 6

We further overwrite the satisfaction relation as follows:
we define M |= f iff M,π0 |= f , where π0 is the initial distribution of M ,
for any s ∈ S, we define M, s |= f iff M,π′ |= f , where distribution π′ is chosen over S
such that π′(s) = 1 and π′(s′) = 0, for any s′ 6= s.

2.3 PCSL Formulas Examples
The PCSL formula

φ3 := s1 ∧ ∃t ∈ [0, 5] · P>0.5(trueU[t,t]s2)

expresses the property that the system is initially in state s1 and there exists an instantaneous
moment t ≤ 5 during which the probability of being in state s2 is greater than 0.5. The
formula φ3 is in PCSL1, but not in CSL. Note that it is different from the CSL formula
φ4 := s1 ∧ P>0.5(trueU[0,5]s2), which expresses the property of being in state s1 initially and
transitioning to s2 at any moment before 5.0 with probability greater than 0.5.

6 The real number α0 is defined to be 0 for convenience. There are other ways to define the semantics for
the path formula, but we want to be consistent with [2].
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A more interesting example is motivated by the following situation. Suppose we have
a system and we want a state formula ϕ to hold with high probability (> 0.8) before time
t = 5, but we do not want the state formula to be too biased towards any short period, i.e.,
we do not want there to be any continuous time period of length 0.1 such that ϕ holds with
probability greater than 0.2. This can be modelled in PCSL (in PCSL1) as:

φ5 := P>0.8(trueU[0,5]ϕ) ∧ ¬∃t ∈ [0, 4.9] · P>0.2(trueU[t,t+0.1]ϕ).

The following formula is in PCSL2, but (syntactically) not in PCSL1, as it contains a
path formula with two free variables:

φ6 := ∃t1 ∈ [0, 1]∃t2 ∈ [3, 4] · P>0.5(trueU[t1,t1]s1U[t1,t2]trueU[t2,t2]s2).

Formula φ6 expresses the property that there are some moments t1 ∈ [0, 1] and t2 ∈ [3, 4]
such that the probability of being in state s1 at time t1 and in state s2 at time t2 is greater
than 0.5.

3 Mathematical Background

3.1 Exponential Polynomials
I Definition 1. An exponential polynomial is a function f(t) =

∑m
i=1 Pi(t)eαit, where

Pi ∈ C[t] are polynomials with complex coefficients and α1, . . . , αm are complex numbers. We
call the coefficients of polynomials P1, . . . , Pm and the numbers α1, . . . , αm the coefficients of
the exponential polynomial f .

Exponential polynomials often arise when writing the explicit solutions of ordinary linear
differential equations and when modelling probability distributions in dynamic systems, such
as continuous-time Markov chains [4, 2, 3]. We will mainly be concerned with exponential
polynomials with algebraic coefficients that are real-valued over reals, i.e., if t is real, then
f(t) is real. We simply refer to such functions as real-valued.

The following result, a standard linear algebra result (see [3, 2] for a detailed proof), will
later on give the relation between transition probabilities of continuous-time Markov chains
and exponential polynomials:

I Lemma 2. Let A be an n × n matrix with rational (algebraic) entries. Then, for any
α, β ∈ Q, the entries of the exponential matrix f(t) := exp(A(αt + β)) are real-valued
exponential polynomials with algebraic coefficients.

3.2 Schanuel’s Conjecture
Schanuel’s Conjecture is a unifying conjecture in the field of trasncendental number the-
ory, having as consequences important results about exponential functions over both real
and complex numbers, such as in the work of Zilber [12], and in model theory, such as
decidability of the first-order theory Thexp(R) of the field of real numbers with exponentials
〈R,+,×, exp, 0, 1〉 [9], and decidability of the Continuous Skolem Problem [4].

Schanuel’s Conjecture has the following form:

I Conjecture 1. (Schanuel’s Conjecture) Given any n complex numbers z1, . . . , zn that are
linearly independent over Q, the extension field Q(z1, . . . , zn, e

z1 , . . . , ezn) has transcendence
degree at least n over Q.

Schanuel’s Conjecture states that, for zi’s as above, among z1, . . . , zn, e
z1 , . . . , ezn there are at

least n numbers which are not related by any non-trivial polynomial with rational coefficients.
Schanuel’s Conjecture is a generalisation of Lindemann-Weierstrass theorem, which lies

at the heart of the decidability proof of CSL in [2], the logic that we extend into PCSL.
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3.3 The Positivity Problem
I Definition 3. An instance of the Positivity Problem for exponential polynomials is a
real-valued exponential polynomial f(t) =

∑m
j=1 Pj(t)eλjt with algebraic coefficients, together

with an interval [c, d], where c, d ∈ Q+ (d ≥ c ≥ 0). We want to answer the question: does
there exist t ∈ [c, d] such that f(t) > 0?

We show in the appendix that deciding whether a real-valued exponential polynomial
with algebraic coefficients is strictly positive at some point in a given bounded interval
with rational endpoints is decidable under Schanuel’s Conjecture. This decision problem
is of particular interest because it arises naturally in continuous linear dynamical systems,
as we will see in our CSL extension. We mainly build our proof on top of the one in [4],
which shows that we can decide, subject to Schanuel’s Conjecture, whether a real-valued
exponential polynomial with algebraic coefficients has a zero in a given bounded interval.
The additional complexity in the current problem comes from the fact that detecting sign
changes for a real-valued exponential polynomial is based on the behaviour of all its factors
together, unlike detecting roots, where only the behaviour of one of its factors matters.

I Theorem 4. The Positivity Problem for exponential polynomials is decidable assuming
Schanuel’s Conjecture.

The following is a proof outline of Theorem 4; full details can be found in the Appendix.
Suppose that we want to decide whether a given real-valued exponential polynomial f is
positive throughout an interval [c, d]. We reduce this problem to deciding the existence
of zeros of exponential polynomials on bounded intervals, which is known to be decidable
conditional on Schanuel’s Conjecture [4]. In fact the reduction itself uses several of the ideas
developed in [4]. To carry out the reduction we first compute the sign of f at the endpoints c
and d. Suppose that f is negative at both endpoints. We then compute a factorisation of f
in the form f = fα1

1 · · · f
αk

k , where the factors fi are real-valued exponential polynomials that
do not share any common zeros. Then determining whether f changes sign from negative to
positive on [c, d] reduces to determining whether one of its factors fi with odd exponent αi
changes sign. To solve this last problem we give an effectively decidable categorisation of the
factors into two types.

We show that factors of the first type are always nonnegative and factors g of second
type are such that g and g′ have no common zeros, i.e., they always sign at every zero. Thus
f becomes positive on [c, d] iff it has a factor of the second type that has a zero in [c, d]. The
role of Schanuel’s conjecture in the above argument is to rule out the existence of common
zeros of the different factors of f and common zeros of certain factors and their derivatives.

I Remark 5. Given a function f and an interval [c, d] that are an instance of the Positivity
Problem for exponential polynomials, a decision procedure for this problem trivially implies
a decision procedure for checking in a similar setup if there exists t ∈ [c, d] such that f(t) > q,
for any given rational q. This follows as we can let g(t) := f(t)− q, so g is an exponential
polynomial with algebraic coefficients as well, therefore we can use a decision procedure for
the Positivity Problem for exponential polynomials on input function g and interval [c, d]
and decide if there exists t ∈ [c, d] such that f(t) > q.

The Positivity Problem for exponential polynomials is a hard problem, as it is trivially
inter-reducible with the Non-negativity Problem for exponential polynomials [3], which has
the same setup as the Positivity Problem for exponential polynomials, but asks whether for
all t ∈ [c, d] it is true that f(t) ≥ 0. Concretely, decidability of any of the two problems
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implies decidability of the other as well:

∀t ∈ [c, d].f(t) ≥ 0⇔ ¬∃t ∈ [c, d].(−f(t) > 0), (4)
∃t ∈ [c, d].f(t) > 0⇔ ¬∀t ∈ [c, d].(−f(t) ≥ 0). (5)

However, decidability of the Non-negativity Problem for exponential polyonimals is open [3],
so decidability of the Positivity Problem for exponential polynomials is a hard mathematical
task. In fact, comparing exponential polynomials with 0 is a hard task [4, 9, 3], and decision
problems related to this would have considerable new implications in both model theory and
number theory [4]. This motivates us to work under the assumption of Schanuel’s Conjecture,
which is often assumed in model theory [4, 12], as the unconditional decidability currently
seems out of reach.

4 Model Checking Decidability of PCSL

A central problem in formal verification for any logic describing dynamic systems is the
model checking problem. Intuitively, it asks whether a model of a certain system satisfies a
specification, usually expressed withing a logical formalism.

We introduce the PCSL model checking problem below.

I Definition 6 (Model checking problem for PCSL). An instance of the model checking problem
for PCSL is given by a continuous-time Markov chain M , a distribution π with rational
entries over the states of M , and a PCSL formula ϕ. We want to answer the question: is it
the case that M,π |= ϕ?

The model checking problem for PCSLn, for any n ∈ N, is defined similarly, with the
exception that ϕ is a PCSLn formula in Definition 6. We prove in subsection 4.1 that PCSL1
model checking is decidable assuming Schanuel’s Conjecture. We also show in subsection 4.2
that unconditional PCSL1 model checking is hard from a mathematical point of view, by
reducing a well-known hard problem to it.

4.1 Decidability of the model checking problem for PCSL1 assuming
Schanuel’s Conjecture

We show that PCSL1 model checking is decidable assuming Schanuel’s Conjecture. For this,
we prove that the decidability of the Positivity Problem for exponential polynomials implies
PCSL1 model checking decidability. As discussed in Section 3.3, Schanuel’s Conjecture
implies decidability of the Positivity Problem for exponential polynomials, therefore we get
our result.

Given any Markov chain M with state set S = {s1, . . . , sk} and rational transition rate
matrix Q, and an initial rational distribution π, we proceed by structural induction over
PCSL1 formula ϕ to show that there exists a model checking procedure to determine if
M,π |= ϕ.

Let us first deal with the trivial cases.
If ϕ is an atom (state) s, then M,π |= ϕ iff π(s) = 1.
If ϕ = ϕ1 ∨ ϕ2, we have M,π |= ϕ iff M,π |= ϕ1 or M,π |= ϕ2.
If ϕ = ¬ϕ1, we have M,π |= ϕ iff M,π 6|= ϕ1.
If ϕ = P>c(ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn), as we can model check formulas

ϕ1, . . . , ϕn by induction, the decidability follows from the same proof used by Aziz et al in
[2] to show that classic CSL is decidable, by only using the Lindemann-Weierstrass theorem.
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Now, we have to deal with the case

ϕ = ∃t ∈ [a, b] · P>c(ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn),

where a, b, c ∈ Q, and a1, b1, . . . , an−1, bn−1 are parametric terms over {t} (functions in t of
the form αt+ β, with α, β ∈ Q). We therefore need to reason about the quantity

f(t) := µπ({paths ρ ∈ UM |M,ρ |= ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn}). (6)

In fact, we are interested if there exists some t ∈ [a, b] such that f(t) > c. We further show
that f(t) is an exponential polynomial that we can algorithmically compute, which gives us
the sought conditional decidability result.

Assume for the moment that for any t ∈ [a, b] we have

0 ≤ a1 ≤ b1 ≤ · · · ≤ an−1 ≤ bn−1. (7)

By the structural induction hypothesis, we can compute the sets of states Jϕ1KM , . . . , JϕnKM
satisfying subformulas ϕ1, . . . ϕn. For any subset of states H ⊆ S, let its complement be
Hc := S \H.

We show how to compute the probability function f(t), by similar constructions to the
ones in [2]. Let us construct the following matrices, where for any matrix A we refer to its
entry on row i and column j as A(i, j).

Let Qi,i be a transition rate matrix that models states in JϕiKcM as absorbing states, and
is everywhere else identical to Q:

Qi,i(j, k) :=
{
Q(j, k), if sj ∈ JϕiKM ,
0, if sj ∈ JϕiKcM .

This matrix is used to model a run of M which remains in states satisfying ϕi. Also,
let Pi,i(t) := exp(Qi,it) be the transition matrix for time t corresponding to the Markov
chain described by Qi,i.
Let Qi,i+1 be a transition rate matrix obtained from Q that only models transitions from
JϕiKM to JϕiKM ∪ Jϕi+1KM , and from Jϕi+1KM to Jϕi+1KM :

Qi,i+1(j, k) :=


Q(j, k), if sj ∈ JϕiKM and sk ∈ JϕiKM ∪ Jϕi+1KM ,
Q(j, k), if sj ∈ Jϕi+1KM and sk ∈ Jϕi+1KM ,
0, otherwise.

.

This matrix is used to model transitions from states satisfying ϕi to states satisfying
ϕi+1. Also, let Pi,i+1(t) := exp(Qi,i+1t) be the transition matrix for time t corresponding
to the Markov chain described by Qi,i+1.
Let Ii be an indicator matrix of states in JϕiKM :

Ii(j, k) :=
{

1, if sj = sk ∈ JϕiKM ,
0, otherwise.

This matrix is used to filter out states not satisfying ϕi at certain times.
Finally, let En be a matrix obtained from Q which treats states in JϕnK as absorbing
states:

En(j, k) :=
{

0, if sj ∈ JϕnKM ,
Q(j, k), otherwise.
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This matrix is used at the end of the formula to “collect” all the probability mass of
paths which have satisfied the path formula ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn. Also,
let Fn(t) := exp(Ent) be the transition matrix for time t corresponding to the Markov
chain described by En.

It is not hard to see that the probability of paths starting in M according to the initial
probability π which satisfy the path formula

ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn,

as defined in (6) above, has the expression:

f(t) = π> · P0,0(a1) · I0 · P0,1(b1 − a1) · I1 · P1,1(a2 − b1) · I1 · P1,2(b2 − a2)
·I2 · · · · In−1 · Fn(bn − an) · In · 1.

(8)

All matrix functions parameters (a1, b1 − a1, a2 − b1, . . . ) are of the form αt + β, for
α, β ∈ Q. By Lemma 2 we get that all entries implied in the product at (8) are exponential
polynomials with algebraic coefficients. As exponential polynomials with algebraic coefficients
are closed under product and sum, we get that f(t) is an exponential polynomial with algebraic
coefficients, which we can compute algorithmically, by using classic representation methods
of algebraic numbers (see [5, Section 4.2]).

Therefore, by our result - Theorem 4, we get that assuming Schanuel’s Conjecture we can
decide if there exists t ∈ [a, b] such that f(t)− c > 0, as f(t)− c is a real-valued exponential
polynomial with algebraic coefficients. Therefore, under Schanuel’s Conjecture, we can also
model check ϕ in the case when

ϕ = ∃t ∈ [a, b] · P>c(ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn).

In conclusion, we have covered all forming rules of state formulas in PCSL1, and proved
by structural induction that Schanuel’s Conjecture implies the existence of a model checking
procedure for PCSL1.
I Remark 7. Let us briefly discuss the assumption (7). We assumed that the parametric
terms a1, b1, . . . , an−1, bn−1 in {t}, which are linear functions in t, satisfy for all t ∈ [a, b]:
a1 ≤ b1 ≤ · · · ≤ an−1 ≤ bn−1. Let us write them explicitly as ai = xi(t), bi = yi(t), for
i = 1, . . . , n − 1. First, it is easy to see that, as all parametric terms are linear functions
in t with rational coefficients, there is some maximal interval [c, d] ⊆ [a, b], with t, c ∈ Q,
such that all 0 ≤ x1(t) ≤ y1(t), 0 ≤ x2(t) ≤ y2(t), . . . 0 ≤ xn−1(t) ≤ yn−1(t) hold for all
t ∈ [c, d], and at least one of them doesn’t hold for any t ∈ [a, b]\ [c, d]. Then, we can just seek
some value of t in [c, d] that satisfies the formula, as outside this interval the formula is not
syntactically valid. Now, in order to be able to also assume the inequalities yi(t) ≤ xi+1(t),
we can split the interval [c, d] in intervals in which either yi(t) ≤ xi+1(t), or yi(t) ≥ xi+1(t)
holds, and deal with all possible cases separately. The full details for this part are rather
technical, and mostly follow the technique in [2].

4.2 Hardness of the model checking problem for PCSL1

To show hardness of deciding the model checking problem for PCSL1, therefore showing
hardness of deciding the model checking problem for PCSL implicitly, we proceed in two
steps.

First, we introduce a hard decision problem - the Positivity Problem for matrix exponentials.
This is a hard problem as it is inter-reducible with the Positivity Problem for exponential
polynomials (by simple algebraic manipulation, see [3] for details). We have discussed in
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subsection 3.3 why the Positivity Problem for exponential polynomials is a hard problem:
it would imply decidability of the Non-negativity Problem for exponential polynomials,
which is currently open [3]. We show that the Positivity Problem for matrix exponentials
is reducible to a decision problem regarding CTMC properties - the Threshold Problem for
continuous-time Markov chains.

Second, we show that PCSL1 model checking decidability implies decidability of the
Threshold Problem for continuous-time Markov chains. Therefore, decidability of the
model checking problem for PCSL1 implies decidability of the Positivity Problem for matrix
exponentials. This stands as hardness evidence for a PCSL1 model checking decision
procedure, and for a PCSL model checking decision procedure as well, because PCSL1 is a
fragment of PCSL.

4.2.1 Reduction of a Hard Problem to the Threshold Problem for
Continuous-Time Markov Chains

We introduce below the Threshold Problem for continuous-time Markov chains and the
Positivity Problem for matrix exponentials.

I Definition 8 (Threshold Problem for continuous-time Markov chains). I = (〈u,R,v〉, 〈a, b〉)
is an instance of the Threshold Problem for continuous-time Markov chains, where
u ∈ Qk is a stochastic vector7, v ∈ {0, 1}k, R ∈ Qk×k is a rate matrix (for some k ∈ N),
and a, b ∈ Q such that 0 ≤ a ≤ b. We want to answer the question: does there exist some
real t ∈ [a, b] such that u>eRtv > 1

2?

Intuitively, in the Threshold Problem for continuous-time Markov chains, u represents the
initial distribution and R represents the rate matrix of a CTMC. Then, we ask if at some
moment during a given interval [a, b] the probability of being in a state from a given set, that
is described by 1-entries of v, is greater than 1

2 .

IDefinition 9 (Positivity Problem for matrix exponentials). I = (〈u,A,v〉, 〈a, b〉) is an instance
of the Positivity Problem for matrix exponentials, where u,v ∈ Qk, A ∈ Qk×k (for
some k ∈ N), and a, b ∈ Q+, with 0 ≤ a ≤ b. We want to answer the question: does there
exist some real t ∈ [a, b] such that u>eAtv > 0?

Note that the Positivity Problem for matrix exponentials can be seen as a generalization
of the Threshold Problem for continuous-time Markov chains, both because the former
has much more general instances, but also because its decidability implies decidability of
the latter. To see this, let (〈u,R,v〉, 〈a, b〉) be an instance of the Threshold Problem for
continuous-time Markov chains, then eRt is a stochastic matrix8, so u>eRt is a stochastic
row vector, therefore u>eRt1 = 1. Then, we could obtain a decision procedure for this
problem by applying a decision procedure for the Positivity Problem for matrix exponentials
on instance (〈u,R,v− 1

21〉, 〈a, b〉):

∃t ∈ [a, b] such that u>eRtv > 1
2 ⇔

∃t ∈ [a, b] such that u>eRt(v− 1
21) > 0.

7 Has positive entries that sum up to 1.
8 Its rows are probability distributions.



C.-A. Ilie and J. B. Worrell 7:11

Furthermore, as eRt is a stochastic matrix, we would expect the Threshold Problem
for continuous-time Markov chains to be considerably easier, as eigenvalues of stochastic
matrices are well-behaved9.

Surprisingly, we show that the Positivity Problem for matrix exponentials is reducible to
the Threshold Problem for continuous-time Markov chains, thus making the two decision
problems equivalently hard.

I Theorem 10. The Positivity Problem for matrix exponentials is reducible to the Threshold
Problem for continuous-time Markov chains.

Proof. The full proof is given in the appendix. Using algebraic manipulations, we construct
a rate transition matrix O and some vectors u1 and v3, and then a rate transition matrix
R, a stochastic vector ũ and a vector ṽ with only 0 and 1 entries such that

∃t ∈ [a, b] such that u>eAtv > 0 ⇐⇒

∃t ∈ [a, b] such that u1
>eOtv3 >

1
2 ⇐⇒

∃t ∈ [a, b] such that ũ>eRtṽ > 1
2 .

(9)

However, a decision procedure for the Threshold Problem for continuous-time Markov
chains would specifically allow us to answer queries such as ∃t ∈ [a, b] such that ũ>eRtṽ > 1

2 ,
therefore it would give a decision procedure for the Positivity Problem for matrix exponentials
as well. J

4.2.2 Expressing the Threshold Problem for Continuous-Time Markov
Chains in PCSL1

Let I = (〈u,R,v〉, 〈a, b〉) be an instance of the Threshold Problem for continuous-time
Markov chains. Recall that u ∈ Qk is a stochastic vector, R ∈ Qk×k is a rate matrix,
v ∈ {0, 1}k, and 0 ≤ a ≤ b are rationals, and we want to answer whether there exists t ∈ [a, b]
such that u>eRtv > 1

2 .
Let M be the continuous-time Markov chain corresponding to rate matrix R, with initial

probability distribution π0 := u, and with state set S such that |S| = k. The probability
distribution over states at time t is given by u>eRt. Therefore, as v ∈ {0, 1}k, we can
see the expression u>eRtv as summing up the probability distribution at time t of states
corresponding to 1-entries in v.

Let the states from S that correspond to 1-entries of v be S′ = {s1, . . . , si}. If S′ is
empty, then v = 0, and we have u>eRtv = 0, so the Threshold Problem for continuous-time
Markov chains instance is a negative instance, and we trivially have:

∃t ∈ [a, b] such that u>eRtv > 1
2 ⇔M |= s ∧ ¬s, for some s ∈ S. (10)

Otherwise, if S′ is not empty, we get:

∃t ∈ [a, b] such that u>eRtv > 1
2 ⇔

M,π0 |= ∃t ∈ [a, b] · P>1/2(trueU[t,t](s1 ∨ · · · ∨ si)).
(11)

9 Standard linear algebra results imply that 1 is always an eigenvalue of any stochastic matrix, and all
the eigenvalues have absolute value less or equal to 1.
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Thus, for any instance I of the Threshold Problem for continuous-time Markov chains,
there exists a continuous-time Markov chain M and some PCSL1 formula ϕ such that I is a
yes-instance of the Threshold Problem for continuous-time Markov chains if and only if the
PCSL1 satisfaction relation M |= ϕ holds.

In conclusion, a PCSL1 model checking procedure (that decides if PCSL1 statements of
the form M |= ϕ hold) would yield the existence of a decision procedure for the Threshold
Problem for continuous-time Markov chains. As we have shown in Section 4.2.1, this would
imply the decidability of the Positivity Problem for matrix exponentials, which, as discussed,
is a hard problem and is not currently known to be decidable. Therefore, the unconditional
decidability of PCSL1 model checking, and thus of PCSL model checking, seems to be a hard
problem.

5 Conclusions

5.1 Overview

We introduced PCSL, a powerful parametric logic for formally expressing temporal properties
of continuous-time Markov chains. We investigated the model checking problem of our logic,
proving that its unconditional decidability is a hard problem, and showed that Schanuel’s
Conjecture implies decidability of the model checking problem for an expressive fragment
of PCSL. The last result relies on a technical proof that Schanuel’s Conjecture implies the
decidability of the Positivity Problem for exponential polynomials, which is an important
achievement in the field.

The logic could have simply been extended to allow operators of the form Pr&c, where &
could be any of ≤,≥, <,>,=, or 6=, instead of only allowing Pr>c. All our results would still
hold, as [4] proves the conditional decidability of verifying whether exponential polynomials
are equal to a given constant in some given interval, and this together with our proofs would
suffice for obtaining the same consequences about model checking PCSL. We restricted our
attention to PCSL using only operators of the form Pr>c, which makes our arguments more
concise, while presenting all the fundamental mathematical problems we have tackled.

5.2 Future Work

We propose two main directions for future work on our project.

5.2.1 General Conditional Decidability of PCSL

We have shown decidability of PCSL1 model checking assuming Schanuel’s Conjecture, by
proving conditional decidability of the Positivity Problem for exponential polynomials. In
general, the decidability of model checking PCSLn reduces to the decidability of the Positivity
Problem for exponential polynomials in n variables. In fact, we found out that using the
polynomial resultant for eliminating variables in the two variable case reduces the decidability
of the model checking problem for PCSL2 to a purely algebraic problem. We believe that
decidability of model checking PCSLn also follows assuming Schanuel’s Conjecture, and
therefore we propose seeking a general proof for conditional decidability of model checking
PCSL.
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5.2.2 Practical Model Checking of PCSL
We have mainly been concerned with the fundamental problem of PCSL decidability, however
in practice we expect that the malicious cases we encountered theoretically should not
represent too much of a risk in real-life applications. As we have seen interesting classes
of properties that are expressible in PCSL, it is worthy to further investigate the practical
aspects of model checking PCSL and possible optimizations for an actual procedure.
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A Proof of Thereom 4

Let f(t) =
∑m
j=1 Pj(t)eλjt, together with the interval [c, d] be an instance of the Positivity

Problem for exponential polynomials. Let K be the number field generated by the coefficients
of polynomials P1, . . . , Pm and by λ1, . . . , λm over Q. We can algorithmically determine a
basis {a1, . . . , ar} over Q of the real parts of λi’s, and a basis {b1, . . . , bs} over Q of the
imaginary parts of λi’s [7].

Without loss of generality, assume that all real and imaginary parts of λ1, . . . , λm can be
written as linear combinations of {a1, . . . , ar}, respectively of {b1, . . . , bs} that use integer
coefficients instead of rational coefficients (this follows as we can pick a suitable N ∈ N and
write f1(t) := f(Nt) =

∑m
j=1 Pj(Nt)e(λjN)t).

It follows that we can write f(t) as a polynomial in the field of Laurent polynomials R,
with multiplicative units the non-zero monomials in y1, . . . , yr, z1, . . . , zs:

R := K[x, y1, y
−1
1 , . . . , yr, y

−1
r , z1, z

−1
1 , . . . , zs, z

−1
s ].

TIME 2020



7:14 Parametric Continuous Stochastic Logic

We write f(t) = P (t, ea1t . . . , eart, eb1it . . . , ebsit), where P is a polynomial with non-
negative power in its first argument, and with any integer power in the others.

Being a localisation of the polynomial ring A := K[x, y1, . . . , yr, z1, . . . , zs], R is a unique
factorisation domain (this is a standard result; see [6, Theorem 10.3.7]) and has an effective
procedure for factoring it into irreducible polynomials [11]. We extend the conjugation over
R, by defining a ring automorphism (·)∗ which acts on P to yield P ∗ as below:

P (x, y1, . . . yr, z1, . . . zs) =
∑
i

αix
βiy

γ1,i

1 . . . yγr,i
r z

δ1,i

1 . . . zδs,i
s

P ∗(x, y1, . . . yr, z1, . . . zs) :=
∑
i

αix
βiy

γ1,i

1 . . . yγr,i
r z

−δ1,i

1 . . . z−δs,i
s .

(12)

The motivation behind this definition is that for f(t) = P (t, ea1t . . . , eart, eb1it . . . , ebsit) we
have f(t) = P ∗(t, ea1t . . . , eart, eb1it . . . , ebsit). For such a real-valued f , we have P = P ∗.

As (·)∗ is a ring automorphism over the unique factorization domain R, we get that
if a polynomial Q in R divides P , then there exists some R in R such that P = QR, so
P ∗ = Q∗R∗. Therefore, Q∗ also divides P ∗, but as P = P ∗ we have that Q∗ divides P .
Therefore, factors of P come in ∗-conjugated pairs.

We will use Schanuel’s Conjecture through the following result, which follows from it by
using the concept of resultant of two polynomials and basic algebraic manipulations [4]:

I Lemma 11. Let r, s be non-negative integers, and let {a1, . . . , ar} and {b1, . . . , bs} be
Q−linearly independent sets of algebraic numbers. Let P,Q ∈ R be polynomials with algebraic
coefficients that are coprime in R. Then the following equations have no common solution
t ∈ R \ {0}: P (t, ea1t, . . . , eart, eb1t, . . . , ebst) = 0, Q(t, ea1t, . . . , eart, eb1t, . . . , ebst) = 0

We say that two polynomials P,Q ∈ R are associates if Q = zuP , where zu is a monomial
in z1, . . . , zs (note that the associate relation is symmetric by the definition of R).

We have seen that we can write the exponential polynomial as a Laurent polynomial in R:
f(t) = P (t, ea1t . . . , eart, eb1t . . . , ebst). As f(t) is real-valued, it can be factored in irreducible
polynomials from K that are either real valued, or come with their conjugate pair in the
factorization of f . Therefore, there exist some irreducible polynomials Q1, . . . , Qk in R that
come in pair with their conjugates and some irreducible polynomials R1, . . . , Rl in R and
positive integers α1 . . . αk, β1, . . . , βl such that we can write P =

∏k
i=1(QiQ∗i )αi ·

∏l
j=1 R

βj

j .
Define the functions ui(t) := Qi(t, ea1t . . . , eart, eb1it . . . , ebsit), which are not real-valued

and come in pairs with their conjugates; and vj(t) := Rj(t, ea1t . . . , eart, eb1t . . . , ebst), which
are real-valued. Let wi(t) := ui(t)ui(t), for t ∈ R. Then f(t) =

∏k
i=1 wi(t)αi ·

∏l
j=1 vj(t)βj ,

where functions w1, . . . , wk, v1, . . . , vj are real-valued, analytic functions.
Recall that the decision problem asks whether f(t) is strictly positive for some value of

t in [c, d], for some given c, d ∈ Q. If f(t) has a trivial form (i.e., if f(t) is a polynomial
in K[x], with no exponentials) we can easily decide this problem by approximating its
roots in [c, d] and classifying the sign on f between them (using, for example, the Sturm
sequence of the polynomial). Otherwise, by Lindemann-Weierstrass Theorem (see [2]), we
get that f(t) =

∑m
j=1 Pj(t)eλjt can be 0 in an algebraic point t if and only if Pj(t) = 0, for

all j ∈ {1, . . . ,m}. We can use standard factorization algorithms for computing common
algebraic roots of the Pj polynomials. If there is any common algebraic root t∗, then f(t∗) = 0.
As all the derivatives of f are also exponential polynomials, we can determine in a similar
way the smallest M such that the M th derivative of f is non-zero at t∗. By Taylor’s Theorem,
for any t, there exists some ε between t and t∗ such that f(t) = f(t∗) + f(M)(ε)

M ! (t− t∗)M .



C.-A. Ilie and J. B. Worrell 7:15

If M is odd, then f changes sign at t∗. Otherwise, there is no sign change at t∗. We can
therefore deal with common roots of all polynomials Pj(t). Then, we can assume without
loss of generality that the Pj polynomials have no common root in (c, d).

We can trivially get rid of the case when all the polynomials Pj(t) have c as a common
root by dividing them by the highest power of (t − c) that divides all of them. This can
be done safely, as changing signs at c does not makes sense within the interval [c, d] and
as (t− c) is always positive for t > c, so this division does not affect potential sign changes
of f(t) anywhere in [c, d]. The same holds for d. Therefore, we can assume without loss of
generality that the Pj polynomials have no common root in [c, d].

As Pj ’s cannot all be 0 at the same (algebraic) point, , by Lindemann-Weierstrass Theorem
we get that f is non-zero in any rational point. In particular, f(c) and f(d) are non-zero, so
we can use any standard approximation procedure until we can compare f(c), f(d) with 0
(for example, see [2, Lemma 2]). If either of f(c), f(d) is strictly greater than 0, then we are
done. Therefore, assume from now on that both f(c) and f(d) are strictly negative.

No two different functions from w1(t), . . . , wk(t), v1(t), . . . , vl(t) can have a common real
zero in [c, d], as this would imply that two of the polynomials Q1, . . . , Qk, R1, . . . , Rl have a
common solution of the form (t, ea1t . . . , eart, eb1it . . . , ebsit), which contradicts Lemma 11,
as all the listed polynomials are irreducible (and not associates) and as t = 0 cannot be a
solution of such functions, because of Lindemann-Weierstrass Theorem (as we have dealt
with algebraic roots above, which are common roots of all Pj ’s). This means that it is enough
to decide whether there exists some function among wi’s and vj ’s with odd exponent in f
that changes its sign in [c, d], as we can just consider the one which changes its sign at the
least τ ∈ [c, d]. If we let this function be g, we have g(τ) = 0 and we then know that no other
function among the wi’s and vj ’s has a solution at τ , so there is some interval I = (τ−ε, τ+ε)
such that g has exactly opposite signs on (τ − ε, ε) and (τ, τ + ε), and no other function
equals 0 on I. It is easy then to see that deciding whether f(t) > 0 for some t ∈ [c, d] is
equivalent to deciding whether any of the real-valued functions with odd exponent in f

among wi’s and vj ’s changes its sign in [c, d]. This follows easily as the real-valued functions
with even exponents are always non-negative and cannot change sign. Therefore, we can
assume without loss of generality that all exponents are 1, so f(t) =

∏k
i=1 wi(t) ·

∏l
j=1 vj(t).

In general, classical numerical algorithms should work in most of the cases for our decision
problem. However, when an exponential polynomial has a tangential zero, detecting it
through such procedures requires infinite precision. The difficulty in solving our problem
comes exactly from dealing with cases of such tangential zeros.

Let us now see how to decide if any of the vj ’s or wis changes its sign on [c, d].
Case 1: Decide if some vj changes sign on [c, d].
Recall that vj(t) = Rj(t, ea1t . . . , eart, eb1t . . . , ebst) is a real-valued function (Rj = R∗j ).

Also, recall that we ruled out the case of f(c) = 0, so we can approximate arbitrarily close
vj(c) to decide if it is positive or negative. Assume without loss of generality that vj(c) < 0.
Then, as vj(d) 6= 0, if we get by approximating it that vj(d) > 0, we are trivially done, so
assume that vj(d) < 0. We want to decide if there exists some t ∈ [c, d] such that vj(t) > 0.

In this case, we claim that deciding if there is some zero of vj in [c, d] is equivalent to
deciding if it changes sign, i.e., the equations vj(t) = 0, v′j(t) = 0 have no common solution.
So, if vj(t) = 0 for some t ∈ [c, d], there is a least such t (by continuity on a bounded interval),
and it is easy to see that, if v′j(t) 6= 0, we get that v′j changes sign at t, from negative to
positive.

TIME 2020
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To see that vj(t) = 0, v′j(t) = 0 have no common solution, write v′j(t) as a polynomial in
t, ea1t, . . . , eart, eb1t, . . . , ebst and get by a simple degree chasing argument that it is coprime
with the polynomial Rj(t, ea1t . . . , eart, eb1t . . . , ebst) = vj(t), thus getting a contradiction
with Lemma 11 (see Type-2 polynomial argument in [4] for details).

In conclusion, we can use the decision procedure described in [4] for zero finding for the
purpose of deciding sign changing.

Case 2: Decide if some wi changes sign on [c, d].
Recall that, for t ∈ R:

wi(t) = ui(t)ui(t).

Note that wi(t) cannot change sign at any real t, therefore this case is trivial, as wi(t) ≥ 0.
In conclusion, the Positivity Problem for exponential polynomials is decidable assuming

Schanuel’s Conjecture.

B Proof of Theorem 10

Proof. Let (〈u,A,v〉, 〈a, b〉) be an instance of the Positivity Problem for matrix exponentials.
Let D ∈ Qk×k be a diagonal matrix such that D = diag(d1, · · · , dk), where di := 1 if vi =
0 and di := vi, otherwise. Note that di ≥ 0 for any i.

Now, by letting v̄ ∈ Qk be such that if vi = 0 then v̄i := 0, and otherwise v̄i := 1, it is
clear that v = Dv̄. By denoting B := D−1AD and ū := D>u, we get:

u>eAtv = u>DD−1eAtDv̄ = u>DeD−1ADtv̄ = ū>eBtv̄ (13)

We adopt the following construction and map used in [1] for a related reduction in the
discrete case: let P ∈ Q2k×2k be a matrix obtained by replacing each entry bij of B by the

symmetric matrix
[
pij qij
qij pij

]
, where pij = max{bij , 0} and qij = max{−bij , 0}. Let ρ be a

map which sends
[
a b

b a

]
to a− b and, applied to a matrix which can be partitioned in blocks

of the form before, sends each block to the according difference. It is easy to check that ρ is
a (surjective) homomorphism from the ring of matrices in Q2k×2k (which can be partitioned

in 2× 2 blocks of the form
[
a b

b a

]
) to the ring of matrices in Qk×k.

By looking at the power series expansion of the matrix exponential eX, because of its
convergence we get eρ(M) = ρ(eM). Recall (13): u>eAtv = ū>eBtv̄. As ρ(P) = B, we get:

u>eAtv = ū>eρ(P)tv̄ = ū>ρ(ePt)v̄. (14)

Write ū =: (α1, . . . , αk)> and v̄ =: (β1, . . . , βk)>. Given w1, . . . , wk ∈ Q, define x ∈ Q2k by

x := (α1 + w1, w1, α2 + w2, w2, . . . , αk + wk, wk)>.

Let us also define y ∈ Q2k by

y := (β1,−β1, β2,−β2, . . . , βk,−βk)>.

B Claim 12. For all w1, . . . , wk ∈ Q it holds that x>ePty = u>eAtv for all t ∈ R.
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Proof. Let us fix a positive real t. Denote the elements of eAt =:

e11 e12 . . . e1k
...

...
. . .

...
ek1 ek2 . . . ekk

 and,

as eAt = ρ(ePt), we can write:

ePt =


f11 g11 f12 g12 . . . f1k g1k
g11 f11 g12 f12 . . . g1k f1k
...

...
. . .

...
fk1 gk1 fk2 gk2 . . . fkk gkk
gk1 fk1 gk2 fk2 . . . gkk fkk

 , (15)

where fij − gij = eij for all i, j. Then, we get:

x>ePty =
k∑
i=1

k∑
j=1

((αi + wi)fijβj − (αi + wi)gijβj + wigijβj − wifijβj)

=
k∑
i=1

k∑
j=1

(αi(fij − gij)βj) =
k∑
i=1

k∑
j=1

(αieijβj)

=u>eAtv.

As t ∈ R was arbitrary, we get that the claim holds. � C

Choose wi’s such that x has only positive entries: w1 = · · · = wk := max(|α1|, . . . , |αk|)+1.
Let S > 0 be the sum of x’s entries; and let z := 1

Sx. Then, by Claim 12, we have:
u>eAtv > 0 ⇐⇒ x>ePty > 0 ⇐⇒ ( 1

Sx)>ePty > 0 ⇐⇒ z>ePty > 0.
Note that we reduced the Positivity Problem for matrix exponentials to the one above,

where z is a stochastic vector. Also, y’s entries are either −1, 0, or 1.
Let the entries of P be pij . Let us now pick a number r that is greater than the sum of

any row of P: r >
∑2k
j=1 pij , for each 1 ≤ i ≤ 2k. Let qi := r−

∑2k
j=1 pij , for each 1 ≤ i ≤ 2k,

and let Q be a diagonal matrix: Q := diag(q1, . . . , q2k).

Let us define O :=
[
P− rI Q

0 0

]
, where each of the four blocks of O is a 2k × 2k matrix.

We note that O is a rate matrix. By inspection of the block multiplications, it is easy to see
that the top left block of On is (P− rI)n. Hence, by the power series expansion of eX and

by setting u1 :=
[
z
0

]
, v1 :=

[
y
0

]
, we get: u1

>eOtv1 = z>e(P−rI)ty = 1
ert z>ePty, so

z>ePty > 0 ⇐⇒ u1
>eOtv1 > 0.

Thus, we reduced the initial problem to the existence of a t in [a, b] such that u1
>eOtv1 > 0,

where u1 is stochastic, O is a rate matrix and v1 has entries in {−1, 0, 1}.
By letting v2 := v1 + 1: u1

>eOtv1 > 0 ⇐⇒ u1
>eOtv2 > u1

>eOt1 = 1. Furthermore,
u1
>eOtv2 > 1 ⇐⇒ u1

>eOtv3 >
1
2 , where v3 := 1

2v2, so v3’s entries are in {0, 1
2 , 1}.

We have reduced the problem whether there exists some t in [a, b] such that u>eAtv > 0,
where u,v are any vectors and A is any matrix, to the problem whether there exists some
t in [a, b] such that u1

>eOtv3 >
1
2 , where u1 is stochastic, O is a rate matrix and v3 has

entries in {0, 1
2 , 1}.
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This last problem asks for a given continuous-time Markov chain whether there exists a
moment t in [a, b] such that summing the probabilities of being in certain states at time t
with fixed weights in {0, 1

2 , 1} yields a result greater than 1
2 . We reduce this problem to a

similar one with coefficients in {0, 1} by splitting the states in the former problem that have
weight 1

2 in two identical states that, seen together as a black box, act as the original state.
More formally, if a state si has associated coefficient 1

2 in v3, we split it into states si,1
and si,2 and modify the transition rates:

for any state sj having a strictly positive transition rate rj,i to si: delete this transition
and add two new transition rates to si,1 and si,2, both with rate rj,i

2 ,
for any state sj such that there is a strictly positive transition rate ri,j from si to sj :
delete this transition and add two new transition rates from si,1 and si,2 to sj , both with
rate rj,i.

Note that by being in state si,1 or si,2 in the new Markov chain we get the same behaviour
as being in si in the original Markov chain (all the outgoing outgoing rates from si,1 or si,2
stay the same as the outgoing rates from si). We also modify the initial distribution: if
the initial probability of si was pi, set the new initial probability in si to 0 and both initial
probabilities of si,1 and si,2 to pi

2 .
By regarding the cluster of states si,1 and si,2 as a “black-box state”, it behaves equivalently

to state si in the original Markov chain. Because of the symmetry, the probability of being
in si,1 at time t equals the probability of being in state si,2 at time t, which is equal to half
of the probability of being in state si at time t in the original Markov chain.

Starting from the CTMC with rate transition matrix O, initial distribution u1 and
coefficient vector v3, we can iteratively apply the described splitting process, by going
through all the states having weights in the original formulation equal to 1

2 . We then get a
sequence of new continuous-time Markov chainsM1, . . . ,MN with rate matrices R1, . . . ,RN

and with initial distributions ũ1, . . . ũN , and new weight vectors ṽ1, . . . ṽN defined as follows:
0/1 in the corresponding positions in ṽi+1 of states having previous coefficients 0/1 in ṽi,
0 in the corresponding positions in ṽi+1 of the most recent split state having previous
coefficient 1/2 in ṽi,
1 in the corresponding position in ṽi+1 of the first newly created state by splitting (of
the form si,1) and 0 to the second such state (of the form si,2),
1
2 in the corresponding position in ṽi+1 of all other states having previous coefficients 1

2
in ṽi.

We have the invariant ũ>i eRitṽi = ũ>i+1e
Ri+1tṽi+1. Let M := MN be the CTMC

obtained after the iterative splitting process described above, with rate matrix R := RN

and initial distribution ũ := ũN , and let the final coefficient vector be ṽ := ṽN . It is clear
now that u1

>eOtv3 = ũ>eRtṽ.
Consequently, ∃t ∈ [a, b] s.t. u>eAtv > 0 ⇐⇒ ∃t ∈ [a, b] s.t. ũ>eRtṽ > 1

2 , where ũ
is a stochastic vector, R is a rate matrix and ũ has entries in {0, 1}. We conclude that
the Positivity Problem for matrix exponentials is reducible to the Threshold Problem for
continuous-time Markov chains. J
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During the past fifteen years, data exchange has been explored in depth and in a variety of different
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1 Introduction and Summary of Results

Data exchange is concerned with the transformation of data structured under one schema,
called the source schema, into data structured under a different schema, called the target
schema. Since the original formalization of the data exchange problem between relational
schemas in [9] about fifteen years ago, an extensive study of data exchange has been carried
out in several different settings, including XML data exchange [4], data exchange between
graph databases [6], and relational to RDF data exchange [7]; an overview of the main results
in this area can be found in the monograph [3]. Temporal databases constitute a mature
area of research that has been studied in depth over several decades; for overviews, see, e.g.,
the book [13] or the book chapter [8]. Data exchange and temporal databases have advanced
independently and, rather surprisingly, their paths did not cross until very recently, when
Golshanara and Chomicki [11] published the first paper on temporal data exchange, that is,
data exchange between temporal databases.

Data exchange is formalized using schema mappings, i.e., tuples of the formM = (S,T,Σ),
where S is the source schema, T is the target schema, and Σ is a finite set of constraints
in some suitable logical formalism that describe the relationship between source and target.
Every fixed schema mapping M gives rise to the data exchange problem with respect to
M = (S,T,Σ): given a source instance I, find a solution for I, that is, a target instance J so
that (I, J) |= Σ. In general, no solution for I may exist or multiple solutions for I may exist.
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8:2 Universal Solutions in Temporal Data Exchange

In [9], the concept of a universal solution was introduced and a case was made that universal
solutions are the “best” solutions to materialize, provided solutions exist. In a precise sense
(formalized using homomorphisms), a universal solution is a most general solution, thus it
embodies no more and no less information than what the constraints in Σ specify. By now,
universal solutions have been widely adopted as the preferred semantics in data exchange;
furthermore, a concerted research effort has been dedicated to discovering when universal
solutions exist and how to compute them. The main tool for computing universal solutions
is the chase algorithm [9] and its variants (see [12] for a survey).

In temporal databases, there are two different models of time, namely, concrete time and
abstract time; in the first model, time is represented by time intervals, while in the second
by time points [8, 15]. Concrete temporal databases can be converted to abstract temporal
databases using the semantic function1 J.K, which takes as input a concrete temporal database
D and returns as output the abstract temporal database JDK where intervals of time in D are
replaced by all points of time in them. The semantic function is often deployed to transfer
results about concrete temporal databases to results about abstract temporal databases.

As already mentioned, Golshanara and Chomicki [11] are the first to investigate temporal
data exchange. Specifically, they considered temporal schema mappingsM = (S,T,Σst,Σt),
where Σst is a set of temporal source-to-target tuple-generating dependencies (temporal s-t
tgds) and Σt is a set of temporal target equality-generating dependencies (temporal target
egds) with the restriction that each such constraint contains exactly one temporal variable.
This means that each constraint in Σst is of the form ∀x∀t(ϕ(x, t) → ∃yψ(x,y, t)), where
t is the only temporal variable, ϕ(x, t) is a conjunction of source atoms, and ψ(x,y, t) is a
conjunction of target atoms. Also, each constraint in Σt is of the form ∀x∀t(θ(x, t)→ xk = xl),
where t is the only temporal variable and θ(x, t) is a conjunction of target atoms.

LetM = (S,T,Σst,Σt) be a temporal schema mapping as above. The main result in [11]
is the discovery of a variant of the chase algorithm that has the following properties: (a) it
runs in polynomial time; (b) given a concrete source instance I, it detects if I has a solution
with respect to M; and (c) if I has such a solution, then it produces a concrete target
instance J such that J is semantically adequate for I, i.e., the abstract target instance JJK is
a universal solution for the abstract source instance JIK. In the sequel, we call normalizing
chase the variant of the chase used in [11]. It is a natural extension of the chase algorithm
to temporal dependencies, but with the twist that first a normalization step is performed
on the given concrete source instance I and then the temporal s-t tgds are applied to the
resulting normalized instance N (I); after this, a second normalization step is performed on
the resulting concrete target instance and then the temporal target egds are applied.

Summary of Results. Our investigation began when we noticed that Golshanara and
Chomicki [11] do not address the question of whether or not the normalizing chase always
produces a universal solution for a given concrete source instance, provided a solution exists
(in fact, the notion of a universal solution for a concrete source instance is never introduced
in [11]). We first show that the normalizing chase need not produce a universal solution for
a given concrete source instance. Actually, we establish a stronger negative result: there is a
temporal schema mappingM∗ = (S,T,Σ∗st,Σ∗t ) as above and a concrete source instance I∗
that has a solution with respect toM∗, but there is no concrete universal solution J for I∗
or for the normalized instance N (I∗) that is semantically adequate for I∗ (in particular, the
result of the normalizing chase on I∗ cannot be a universal solution for I∗).

1 In the temporal databases literature, J.K is called the semantic mapping. Here, we chose to call it the
semantic function to avoid confusion with the term schema mapping, which will be used repeatedly
throughout this paper.



Z. Cheng and P. G. Kolaitis 8:3

The preceding state of affairs motivates the following question: which temporal schema
mappings admit semantically adequate concrete universal solutions? We make progress
towards answering this question by identifying sufficient conditions that guarantee the
existence of semantically adequate concrete universal solutions. To this effect, we show that
if the temporal target egds have at most one temporal atom in their left-hand side (and any
number of non-temporal atoms), then the output of the normalizing chase on a given concrete
instance I is a concrete universal solution for N (I) and is also semantically adequate for I. In
a sense, this is an optimal result because the temporal schema mappingM∗ above contains
a temporal target egd with two temporal atoms in its left-hand side, hence this result cannot
be extended to the class of schema mappings studied by Golshanara and Chomicki [11].

All aforementioned results concern temporal schema mappings in which each constraint
contains at most one temporal variable. Here, we embark on an investigation of temporal
data exchange using schema mappings specified by constraints that may contain several
different temporal variables. Such constraints may also contain comparisons between temporal
variables using the well known Allen’s relations, thus they can capture richer data exchange
scenarios. This expansion of the landscape, however, comes with a number of complications,
since, among other things, constraints in the concrete model of time need to be carefully
translated into constraints in the abstract model of time (constraints with at most one
temporal variable do not change, only the interpretation of the temporal variables does).

In the setting of multiple temporal variables, we consider temporal full schema mappings
M = (S,T,Σst,Σt), i.e., schema mappings in which no existential quantifiers occur in the
consequent of constraints in Σst. We show that if each temporal target egd has at most one
temporal atom in its left-hand side, then we can produce concrete target instances that are
both universal solutions and semantically adequate, provided solutions exist. Finally, we
introduce another variant of the chase, which we call the coalescing chase, and show that for
arbitrary temporal full schema mappings, the coalescing chase on concrete source instances
always produces semantically adequate solutions, provided solutions exist.

2 Preliminaries

This section contains the definitions of the basic concepts and some background material.

Models of Time. Let N = {1, 2, . . .} be the set of all natural numbers. In the abstract model
of time, natural numbers represent time points. In the concrete model of time, closed-open
intervals [s, e) = {t ∈ N : s ≤ t < e}, where s and e are natural numbers with s < e, represent
time intervals. Unbounded time intervals of the form [s,∞) are also allowed.

Temporal Databases. A relational schema is a finite collection R of relation symbols of
the form R(A1, . . . , Ak), where A1, . . . , Ak are the attributes of R and k is its arity. An
R-instance I is a finite collection of finite relations RI , one for each relation symbol R in R
and such that the arity of RI matches that of R.

A temporal relation symbol is a relation symbol R in which one or more of its attributes
are designated as temporal attributes, i.e., they can only take temporal values. In this paper,
we assume that every temporal relation symbol has exactly one temporal attribute, which,
without loss of generality, is the last attribute in the list. A temporal relational schema is a
relational schema R containing at least one temporal relation symbol. For such a schema R,
an abstract R-instance is an R-instance in which the values of the temporal attributes are
time points. A concrete R-instance is an R-instance in which the values of the temporal
attributes are time intervals. We will use the term temporal database to refer to both abstract
instances and concrete instances.
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Constraints and Schema Mappings. Let S and T be two relational schemas, called, re-
spectively, the source schema and the target schema, where S and T have no relation symbols
in common. Data exchange from S to T is formalized using constraints in some logical
formalism that describe the relationship between these two schemas [9]. The most widely
used such constraints are source-to-target tuple-generating dependencies (s-t tgds) and target
equality-generating dependencies (target egds). A s-t tgd is a first-order sentence of the
form ∀x(ϕ(x)→ ∃yψ(x,y)), where ϕ(x) is a conjunction of source atoms, and ψ(x,y) is a
conjunction of target atoms. Such constraints can express a variety of data transformation
tasks, including copying a relation, projecting a relation, augmenting a relation with an
extra column, and joining two or more relations, where, in each case, the result of the
transformation is moved to the target [14]. A target egd is a first-order sentence of the form
∀x(θ(x) → xk = xl), where θ(x) is a conjunction of target atoms and xk, xl are variables
occurring in x. Target egds include target key constraints as an important special case.

The first step in formalizing data exchange between temporal relational schemas is to
extend the concepts of s-t tgds and target egds to incorporate time. As stated in Section 1,
Golshanara and Chomicki [11] initiated the study of temporal data exchange by considering
temporal s-t tgds of the form ∀x∀t(ϕ(x, t) → ∃yψ(x,y, t)) and temporal target egds of
the form ∀x∀t(θ(x, t) → xk = xl), where t is the only temporal variable that occurs in
these formulas (in particular, the consequent of temporal s-t tgds contains no existentially
quantified temporal variables).

In Section 4, we will explore a much richer framework for temporal data exchange in
which the constraints considered may contain multiple temporal variables. We introduce
the basic notions for this richer framework in this section (of course, these notions apply to
the framework studied by Golshanara and Chomicki [11] as well). Specifically, we consider
temporal s-t tgds of the form ∀x∀t(ϕ(x, t)→ ∃yψ(x,y, t)) and temporal target egds of the
form ∀x∀t(θ(x, t)→ xk = xl), where t is a (possibly empty) tuple of temporal variable; all
other variables are non-temporal, thus the consequent of such temporal s-t tgds contains
no existentially quantified temporal variables. We regard s-t tgds and target egds as the
special cases of their temporal counterparts in which no temporal variable occurs (i.e., the
tuple t is empty). In what follows, we will use the term temporal schema mapping for a tuple
M = (S,T,Σst,Σt), where S and T are disjoint temporal relational schemas, Σst is a finite
set of temporal s-t tgds, and Σt is a finite set of temporal target egds, as above.

Values in Source and Target Instances. In data exchange between relational schemas, the
source instances contain values from a countable domain Const of objects, called constants,
while the target instances may contain values from the union Const ∪Null, where Null
is a countable set of distinct labelled nulls N1, N2, . . ., which are typically used to witness
the existentially quantified variables in the right-hand sides of s-t tgds. Thus, a labelled
null represents some unknown value. In temporal data exchange, the values occurring in
source and target instances may also be time points or time intervals, depending on the
model of time used. Furthermore, the use of null values in target instances requires delicate
handling because such null values may need to take into account the temporal context in
which they are introduced. For this reason, temporal target instances may contain values
that are constants, time points in the abstract model of time (or time intervals in the concrete
model of time), labelled nulls N1, N2, . . ., and time-stamped nulls, that is, null values of the
form N t

1 , N
t
2 , . . ., where t is a finite sequence of time points (or a finite sequence of time

intervals). Two such time-stamped nulls are equal if and only if they have the same subscript
(label) and the same time-stamp. Intuitively, a time-stamped null represents unknown values
in the context of its time-stamp. For example, a time-stamped null N [2,5)

j represents three
unknown values, one at time-point 2, one at time-point 3, and one at time-point 4.
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Homomorphisms, Solutions, and Universal Solutions. Let T be a temporal target schema
and let J and J ′ be two temporal target databases over the same model of time (i.e., both
are abstract or both are concrete). As discussed above, the relations in J and J ′ may contain
constants, labelled nulls, and time-stamped nulls as values.

A homomorphism from J to J ′ is a function h from the active domain2 of J to the active
domain of J ′ such that: (a) if v is a constant or a time value (time point or time interval),
then h(v) = v; (b) if v is a labelled null Nj , then h(v) is either a constant or a labelled null
Nk; (c) if v is a time-stamped null N t

j , then h(N t
j ) is a constant or a null N t

k with the same
time-stamp or a labelled null Nk (without a time-stamp); (d) if a tuple (v1, . . . , vm) belongs
to a relation RJ of J , then (h(v1), . . . , h(vm)) belongs to the relation RJ′ of J ′.

The intuition behind this definition is that if there is a homomorphism from J to J ′, then
J is “more general” than J ′. Time-stamped nulls are “more general” than labelled nulls,
since the latter represent a single unknown value, while the former may represent multiple
unknown values, depending on the time-stamp used. This explains the different treatment of
labelled nulls and time-stamped nulls in conditions (b) and (c), respectively, in the definition.

LetM = (S,T,Σst,Σt) be a temporal schema mapping and I a concrete source instance.
A concrete target instance J is a solution for I w.r.t.M if the following conditions hold:

If ∀x(ϕ(x)→ ∃yψ(x,y)) is a (non-temporal) s-t tgd in Σst and if a is a tuple from the
active domain of I such that I |= ϕ(a), then there is a tuple b that consists of constants
and/or labelled nulls such that J |= ψ(a,b).
If ∀x∀t(ϕ(x, t)→ ∃yψ(x,y, t)) is a temporal s-t tgd in Σst and if a is a tuple of constants
and i is a tuple of intervals such that I |= ϕ(a, i), then there is a tuple b that consists of
constants, labelled nulls, and time-stamped nulls such that every time-stamped null in b
has i as its time-stamp and J |= ψ(a,b, i).
If ∀x∀t(θ(x, t)→ xk = xl) is a temporal target egd in Σt and if a and i are tuples such
that J |= θ(a, i), then ak = al, which means that ak and al are the same constant or the
same labelled null Nj or the same time-stamped null N i

j .
A concrete target instance J is a universal solution for I w.r.t.M if J is a solution for I
w.r.t.M and, for every solution J ′ for I w.r.t.M, there a homomorphism from J to J ′.

The Chase and its Variants. In the case of (standard) data exchange, universal solutions
are produced using the chase procedure [9]. Intuitively, given a source instance I, the chase
procedure attempts to produce a target instance J by starting with the empty target instance,
repeatedly applying the constraints of the given schema mapping, and generating new tuples
in the current target instance as needed, so that eventually either the current target instance
satisfies all the constraints of the schema mappingM = (S,T,Σst,Σt) or a conflict arises
in which case there is no solution for I w.r.t.M. We now describe at a high level how the
chase algorithm can be adapted to the setting of temporal data exchange.

Let K be the current concrete target instance in the run of the chase.
If ∀x(ϕ(x)→ ∃yψ(x,y)) is a (non-temporal) s-t tgd in Σst and if a is a tuple from the
active domain of I such that I |= ϕ(a), but K 6|= ∃yψ(a,y), then the chase generates a
tuple b of distinct labelled nulls for the variables in y and adds tuples to the relations in
K so that the resulting instance K ′ satisfies ψ(a,b). (Same as in standard chase.)
If ∀x∀t(ϕ(x, t) → ∃yψ(x,y, t)) is a temporal s-t tgd in Σst and if a and i are such
that I |= ϕ(a, i), but K 6|= ∃yψ(a,y, i), then the chase generates a tuple b of distinct
time-stamped labelled nulls for the variables in y all of which have the same time-stamp i
and adds tuples to the relations in K so that the resulting instance K ′ satisfies ψ(a,b, i).

2 The active domain of a database is the set of all values occurring in the relations of that database.
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After the concrete source instance I has been chased with the constraints in Σst, then
the concrete target instance K produced thus far is chased with the constraints in Σt.
Specifically, if ∀x∀t(θ(x, t) → xk = xl) is a temporal target egd in Σt and a and i are
tuples such that K |= θ(a, i), then the following cases are considered: (1) if both ak and
al are labelled nulls or both are time-stamped nulls with the same time-stamp, then one
of the two is replaced by the other throughout K; (2) if one of ak and al is a constant
and the other is a labelled null or a time-stamped null, then the labelled null or the
time-stamped null is replaced by the constant throughout K; (3) if one of ak, al is a
labelled null and the other is a time-stamped null, then the time-stamped null is replaced
by the labelled null throughout K; (4) if ak and al are time-stamped nulls with different
time-stamps or if ak and al are different constants, then the chase fails.

In what follows, we will use the term the concrete chase algorithm to refer to the algorithm
just described. In their study of temporal data exchange, Golshanara and Chomicki [11]
considered a variant of the chase algorithm, which here we will call the concrete n-chase
algorithm. There are two main differences between these two algorithms:

In [11], all temporal schema mappings have s-t tgds with exactly one temporal variable,
which implies that (standard) s-t tgds are not allowed. As a result, the target instances
produced by the concrete n-chase algorithm contain no labelled nulls, but, of course, they
may contain time-stamped nulls in which the time-stamp is a single interval.
The concrete n-chase algorithm performs a normalization step before the constraints in
Σst are applied and another normalization step before the constraints in Σt are applied.
In particular, the concrete n-chase algorithm does not chase the given concrete source
instance I with Σst, but, instead, chases the normalized instance N (I) with Σst. We
refer the reader to Section 4.2 in [11] for the definition of normalization.

In what follows, ifM is a temporal schema mapping and I is a concrete source instance, we
will write c-chaseM(I) and n-chaseM(I) to denote the concrete target instance produced by
the concrete chase algorithm and, respectively, the concrete n-chase algorithm on I.

Semantic Functions and Semantic Adequacy. As mentioned in Section 1, concrete in-
stances are converted to abstract instances using the semantic function J.K.

If µ = (c1, . . . , cm, [s, e)) is a tuple in which each ck is a constant and [s, e) is an interval,
then JµK = {(c1, . . . , cm, t) : s ≤ t < e}.
If I = (R1, . . . , Rn) is a concrete source instance, then JIK is the abstract source instance
JIK = (JR1K, . . . , JRnK), where JRlK =

⋃
µ∈Rl

JµK, for 1 ≤ l ≤ n.

We say that a tuple ν = (a1, . . . , am, [s, e)) is compatible if each ak is a constant or
a labelled null or a time-stamped null N [s1,e1),...,[sp,ep)

j such that [s, e) is one of the
intervals in the time-stamp, and all time-stamped nulls in ν have the same time-stamp.
If ν is a compatible tuple, then JνK is the set of all tuples (b1, . . . , bm, t) such that the
following conditions hold: if al is a constant or a labelled null, then bl = al; if al is
a time-stamped null N [s1,e1),...,[sp,ep)

j , then bj is a time-stamped null N t1,...,tp
j , where

s1 ≤ t1 < e1, . . . , sp ≤ tp < ep; and, finally, s ≤ t < e.
Let J = (T1, . . . , Tm) be the concrete target instance produced by the concrete chase
algorithm or by the concrete n-chase algorithm on a source instance I. It is easy to verify
that every tuple occurring in one of the relations of J is compatible. Then JJK is the
abstract target instance JJK = (JT1K, . . . , JTmK), where JTlK =

⋃
ν∈Tl

JνK, for 1 ≤ l ≤ m.

Let M = (S,T,Σst,Σt) be a temporal schema mapping with exactly one temporal
variable per constraint and let I be a concrete source instance. We say that a concrete
target instance J is semantically adequate for I if the abstract target instance JJK is a
universal solution for JIK w.r.t.M.
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We are now ready to state the main result in [11].

I Theorem 1. (Theorem 19 in [11]) LetM = (S,T,Σst,Σt) be a temporal schema mapping,
such that each relational symbol in S and T has one temporal attribute and each constraint
in Σst ∪ Σt has exactly one temporal variable. If I is a concrete source instance, then the
following statements are true.

If the concrete n-chase algorithm on I fails, then there is no solution for I w.r.t.M.
If the concrete n-chase algorithm on I does not fail, then the concrete target instance
n-chaseM(I) produced by the algorithm is semantically adequate for I.

We note that the normalization steps in the concrete n-chase algorithm guarantee that
there is a homomorphism from the left-hand side of a constraint in Σst or in Σt to a concrete
instance K, provided there is a homomorphism from the left-hand side of that constraint to
the abstract instance JKK.

3 Temporal Data Exchange with a Single Temporal Variable

In this section, we explore aspects of data exchange for temporal schema mappingsM =
(S,T,Σst,Σt) in which each constraint in Σst ∪ Σt contains at most one temporal variable.
In what follows, we will also assume that all concrete source instances I are coalesced, that is,
if c1, . . . , cm are constants and i, i′ are intervals such that (c1, . . . , cm, i) and (c1, . . . , cm, i′)
belong to the same relation of I, then i and i′ are disjoint intervals. Clearly, every concrete
source instance can be easily transformed to an “equivalent” coalesced one [8].

3.1 No Semantically Adequate Concrete Universal Solutions
We begin by focusing more narrowly on schema mappings in the setting of Golshanara
and Chomicki [11], that is, temporal schema mappingsM = (S,T,Σst,Σt) such that each
relational symbol in S and T has one temporal attribute and each constraint in Σst ∪Σt has
exactly one temporal variable (hence, this variable occurs in every atom of the consequent
of every s-t tgd). This class of schema mappings does not contain standard (non-temporal)
schema mappings as a special case. Several remarks are in order now.
1. Such a schema mappingM is meaningful in both the concrete model of time and the

abstract model of time without changing the constraints in Σst ∪ Σt. In the first case,
the temporal variable is ranging over time intervals and in the second over time points.

2. Every abstract source instance can be viewed as a sequence of snapshots, that is, as a
sequence of non-temporal source instances parameterized by time points. One can then
drop the temporal variable from the constraints in Σst ∪Σt, chase each snapshot with the
resulting standard schema mapping, produce a universal solution for each snapshot (if a
solution exists for each snapshot), and then consolidate the resulting target snapshots
into an abstract target instance, which is an abstract universal solution for the given
abstract source instance3 - see [11] for formal details.

3. Let I be a concrete source instance. The concrete chase algorithm described in Section 2
produces a concrete universal solution for I w.r.t.M, if a solution exists; if the concrete
chase fails, no solution for I w.r.t.M exists. This follows from Theorem 5 in Section 4.

As mentioned in Section 1, Golshanara and Chomicki [11] do not address the question of
whether or not their concrete n-chase algorithm produces a concrete universal solution. In
fact, the notion of a concrete universal solution is not introduced in [11]. Our first result
provides a strong negative answer to this question.

3 If the chase fails on one of the snapshots, then no solution for the given abstract source instance exists.
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I Theorem 2. There is a temporal schema mappingM∗ = (S,T,Σ∗st,Σ∗t ) with one temporal
variable in each constraint in Σ∗st ∪ Σ∗t and there is a concrete source instance I∗ such that
the following properties hold:
1. The concrete target instance n-chaseM∗(I∗) returned by the concrete n-chase algorithm on

I∗ is neither a solution for I∗ nor for the normalized instance N (I∗) w.r.t.M∗.
2. There is a concrete universal solution for I∗ w.r.t.M∗, but there is no concrete universal

solution for I∗ w.r.t.M∗ that is semantically adequate for I∗.
3. There is a concrete universal solution for N (I∗) w.r.t. M∗, but there is no concrete

universal solution for N (I∗) w.r.t.M∗ that is semantically adequate for N (I∗).

Proof. LetM∗ = (S,T,Σ∗st,Σ∗t ) be the schema mapping where Σ∗st consists of the constraints
∀n, s, c, t(E(n, c, t) ∧ S(n, s, t)→ Emp(n, c, s, t))
∀n, c, p, t(P (n, p, t)→ ∃cEmpPos(n, c, p, t))

and Σ∗t consists of the constraint
∀n, c1, c2, s, p, t(Emp(n, c1, s, t) ∧ EmpPos(n, c2, p, t)→ c1 = c2).

Let I∗ be the concrete source instance whose relations are depicted in Table 1. After
normalizing I∗ w.r.t. Σ∗st (see [11] for the precise definition of normalization), we obtain the
normalized instance N (I∗) whose relations are depicted in Table 2.

Table 1 The relations E, S, and P of the concrete source instance I∗.

(a) E.

Name Company Time
Ada IBM [2013, 2018)
Bob IBM [2012, 2015)

(b) S.

Name Salary Time
Ada 18000 [2014, 2018)
Bob 13000 [2013, 2015)

(c) P .

Name Position Time
Ada Manager [2015, 2017)
Bob Consultant [2012, 2015)

Table 2 The relations E, S, and P of the normalized instance N (I∗).

(a) E.

Name Company Time
Ada IBM [2013, 2014)
Ada IBM [2014, 2018)
Bob IBM [2012, 2013)
Bob IBM [2013, 2015)

(b) S.

Name Salary Time
Ada 18000 [2014, 2018)
Bob 13000 [2013, 2015)

(c) P .

Name Position Time
Ada Manager [2015, 2017)
Bob Consultant [2012, 2015)

Let n-chaseM∗(I∗) be the concrete target instance produced by the concrete n-chase
algorithm on I∗; its relations are depicted in Table 3. It is easy to see that n-chaseM∗(I∗) is
neither a solution for I∗ nor a solution for N (I∗). This proves the first part of the theorem.

Table 3 The relations Emp and EmpP os of the concrete target instance n-chaseM∗(I∗).

(a) Emp.

Name Company Salary Time
Ada IBM 18000 [2014, 2015)
Ada IBM 18000 [2015, 2017)
Ada IBM 18000 [2017, 2018)
Bob IBM 13000 [2013, 2015)

(b) EmpP os.

Name Company Position Time
Ada IBM Manager [2015, 2017)
Bob N

[2012,2013)
2 Consultant [2012, 2013)

Bob IBM Consultant [2013, 2015)

Let c-chaseM∗(I∗) and c-chaseM∗(N (I∗)) be the concrete target instances produced
by the concrete chase algorithm on I∗ and on N (I∗). The relations of c-chaseM∗(I∗) are
depicted in Table 4, and those of c-chaseM∗(N (I∗)) in Table 5. Note that c-chaseM∗(I∗) is
a universal solution for I∗, while c-chaseM∗(N (I∗)) is a universal solution for N (I∗).
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Table 4 The relations Emp and EmpP os of the concrete target instance c-chaseM∗(I∗).

(a) Emp.

Name Company Salary Time

(b) EmpP os.

Name Company Position Time
Ada N

[2015,2017)
1 Manager [2015, 2017)

Bob N
[2012,2015)
2 Consultant [2012, 2015)

Table 5 The relations Emp and EmpP os of the concrete target instance c-chaseM∗(N (I∗)).

(a) Emp.

Name Company Salary Time
Ada IBM 18000 [2014, 2018)
Bob IBM 13000 [2013, 2015)

(b) EmpP os.

Name Company Position Time
Ada N

[2015,2017)
1 Manager [2015, 2017)

Bob N
[2012,2015)
2 Consultant [2012, 2015)

Let a-chaseM∗(JI∗K) be the abstract target instance produced by chasing the snapshots
of JI∗K; its relations are depicted in Table 6.

Table 6 The relations Emp and EmpP os of the abstract target instance a-chaseM∗(JI∗K).

(a) Emp.

Name Company Salary Time
Ada IBM 18000 2014
Ada IBM 18000 2015
Ada IBM 18000 2016
Ada IBM 18000 2017
Bob IBM 13000 2013
Bob IBM 13000 2014

(b) EmpP os.

Name Company Position Time
Ada IBM Manager 2015
Ada IBM Manager 2016
Bob N2012

3 Consultant 2012
Bob IBM Consultant 2013
Bob IBM Consultant 2014

As shown in [11], a-chaseM∗(JI∗K) is a universal solution for JI∗K w.r.t.M∗. It is now
easy to verify that Jc-chaseM∗(I∗)K is not homomorphically equivalent to a-chaseM∗(JI∗K).
It follows that c-chaseM∗(I∗) is not semantically adequate for I∗. Furthermore, it is not
hard to show that if J and J ′ are universal solutions for I∗ w.r.t.M∗, then JJK and JJ ′K are
homomorphically equivalent. Therefore, no concrete universal solution for I∗ is semantically
adequate for I∗. This proves the second part of the theorem. A similar argument with
c-chaseM∗(N (I∗)) in place of c-chaseM∗(I∗) proves the third part of the theorem. J

3.2 Semantically Adequate Concrete Universal Solutions
Theorem 2 tells that in the temporal data exchange setting studied in [11], there are rather
simple temporal schema mappings and temporal source instances for which no concrete
universal solution is semantically adequate for these instances or for their normalized versions.
A close scrutiny of the proof of Theorem 2 reveals that the root cause for this state of affairs
appears to be the presence of two temporal atoms in the antecedent of the temporal target
egd in Σ∗t . Our next result tells that if the temporal target egds contain at most one temporal
atom in the antecedent, then normalized instances have concrete universal solutions that are
also semantically adequate concrete. Moreover, this result holds if each temporal constraint
has at most one temporal variable, instead of exactly one temporal variable as in [11]; such
constraints contain standard (non-temporal) s-t tgds and target egds as a special case.

I Theorem 3. LetM = (S,T,Σst,Σt) be a temporal schema mapping such that (a) each s-t
tgd contains at most one temporal variable; (b) if a s-t tgd contains a temporal variable, then
that temporal variable occurs in every atom of its consequent; (c) each target egd contains
at most one temporal atom in its antecedent. If I is a concrete source instance, then the
following statements hold:

TIME 2020
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1. If a solution for I w.r.t. M exists, then n-chaseM(I) = c-chaseM(N (I)), that is, the
concrete target instance returned by the concrete n-chase algorithm coincides with the
concrete target instance returned by the concrete chase algorithm on N (I). Consequently,
N (I) has a semantically adequate concrete universal solution.

2. If the concrete chase algorithm fails on N (I), then there is no solution for JIK w.r.t.M.

Proof. (Hint) The key observation is that if every constraint in Σt contains at most one
temporal atom in its antecedent, then the second normalization step in the concrete n-chase
algorithm does not change the temporal target instance produced by chasing N (I) with the
constraints in Σst. It follows that n-chaseM(I) = c-chaseM(N (I)). It can also be shown that
n-chaseM(I) is semantically adequate, even in this setting where each constraint in Σst ∪ Σt
contains at most one temporal variable (instead of exactly one such variable as in [11]). J

It should be pointed out that there are a schema mappingM′ that satisfies the hypothesis
in Theorem 3 and a concrete source instance I ′ such that no semantically adequate concrete
universal solution for I ′ w.r.t.M′ exists. This is shown in the next proposition.

I Proposition 4. There is a temporal schema mapping M′ = (S,T,Σ′st,Σ′t) where each
constraint in Σ′st ∪ Σ′t contains at most one temporal variable and each constraint in Σ′t
contains at most one temporal atom in its antecedent, and there is a concrete source instance
I ′, such that there exists a concrete universal solution for I ′ w.r.t. M′, but there is no
concrete universal solution for I ′ w.r.t.M′ that is semantically adequate for I ′.

Proof. LetM′ = (S,T,Σ′st,Σ′t) be the schema mapping where Σ′st consists of the constraints
∀n, s, c, t(E(n, c, t) ∧ S(n, s, t)→ Emp(n, c, s, t))
∀n, c, p(P (n, p)→ ∃c EmpPos(n, c, p))

and Σ′t consists of the constraint
∀n, c1, c2, s, p, t(Emp(n, c1, s, t) ∧ EmpPos(n, c2, p)→ c1 = c2).

Let I ′ be the concrete source instance whose relations are depicted in Table 7. After
applying the semantic function on I ′, we obtain the abstract source instance JI ′K whose
relations are depicted in Table 8.

Table 7 The relations E, S, and P of the concrete source instance I ′.

(a) E.

Name Company Time
Ada IBM [2013, 2018)
Bob IBM [2012, 2015)

(b) S.

Name Salary Time
Ada 18000 [2014, 2018)
Bob 13000 [2013, 2015)

(c) P .

Name Position
Ada Manager
Bob Consultant

Table 8 The relations E, S, and P of the abstract source instance JI ′K.

(a) E.

Name Company Time
Ada IBM 2013
Ada IBM 2014
Ada IBM 2015
Ada IBM 2016
Ada IBM 2017
Bob IBM 2012
Bob IBM 2013
Bob IBM 2014

(b) S.

Name Salary Time
Ada 18000 2014
Ada 18000 2015
Ada 18000 2016
Ada 18000 2017
Bob 13000 2013
Bob 13000 2014

(c) P .

Name Position
Ada Manager
Bob Consultant
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Let c-chaseM′(I ′) be the concrete target instances produced by the concrete chase al-
gorithm on I ′. The relations of c-chaseM′(I ′) are depicted in Table 9. Note that c-chaseM′(I ′)
is a universal solution for I ′.

Table 9 The relations Emp and EmpP os of the concrete target instance c-chaseM′(I ′).

(a) Emp.

Name Company Salary Time

(b) EmpP os.

Name Company Position
Ada N1 Manager
Bob N2 Consultant

Let a-chaseM′(JI ′K) be the abstract target instance produced by chasing the snapshots of
JI ′K; its relations are depicted in Table 10.

Table 10 The relations Emp and EmpP os of the abstract target instance a-chaseM′(JI ′K).

(a) Emp.

Name Company Salary Time
Ada IBM 18000 2014
Ada IBM 18000 2015
Ada IBM 18000 2016
Ada IBM 18000 2017
Bob IBM 13000 2013
Bob IBM 13000 2014

(b) EmpP os.

Name Company Position
Ada IBM Manager
Bob IBM Consultant

As shown in [11], a-chaseM′(JI ′K) is a universal solution for JI ′K) w.r.t.M′. It is now easy
to verify that Jc-chaseM′(I ′)K is not homomorphically equivalent to a-chaseM′(JI ′K). From
this, it follows that c-chaseM′(I ′) is not semantically adequate for I ′. Furthermore, it is
not hard to show that if J and J ′ are universal solutions for I ′ w.r.t. M′, then JJK and
JJ ′K are homomorphically equivalent. Consequently, no concrete universal solution for I ′ is
semantically adequate for I ′. This completes the proof of the proposition. J

4 Temporal Data Exchange with Multiple Temporal Variables

In this section, we initiate the study of temporal data exchange for schema mappings whose
constraints may contain multiple temporal variables. Such constraints make it possible to
model more complex transformations of temporal data. In the presence of multiple temporal
variables, it is natural to also allow comparisons between different temporal variables. In the
concrete model of time, this means that the antecedents of the s-t tgds and the target egds
may also contain Boolean combinations of the well known Allen’s relations between time
intervals [1, 2], such as m (meets), o (overlaps), ≺ (before) , � (after), and =. Thus, in this
section, we consider temporal schema mappingsM = (S,T,Σst,Σt) in which each constraint
in Σst is of the form ∀x∀t(ϕ(x, t) ∧ π(t)→ ∃yψ(x,y, t)), where the only temporal variables
are those in t; ϕ(x, t) is a conjunction of source atoms; π(t) is a Boolean combination of
Allen’s relations involving variables from t; and ψ(x,y, t) is a conjunction of target atoms
(in particular, no temporal variable is existentially quantified). By the same token, each
constraint in Σt is of the form ∀x∀t(θ(x, t) ∧ ρ(t) → xk = xl), where the only temporal
variables are those in t; θ(x, t) is a conjunction of target atoms; ρ(t) is a Boolean combination
of Allen’s relations involving variables from t; and xk, xl are among the variables in x.

The next result extends Theorem 3.3 in [9] from the case of (standard) data exchange to
a restricted case of temporal data exchange.
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I Theorem 5. Let M = (S,T,Σst,Σt) be a temporal schema mapping, such that one of
the following two conditions holds: (a) Every s-t tgd is full (i.e., its consequent contains no
existential quantifiers); (b) If a s-t tgd is not full and if it contains a temporal variable, then
this is the only temporal variable in that s-t tgd, and it occurs in every atom of the consequent
of the s-t tgd; moreover, every target egd contains at most one temporal variable. If I is a
concrete source instance, then the following statements hold:
1. If the concrete chase algorithm does not fail on I, then the concrete target instance

c-chaseM(I) returned by this algorithm is a concrete universal solution for I w.r.t.M.
2. If the concrete chase algorithm fails on I, there is no solution for I w.r.t.M.
The running time of the concrete chase algorithm is bounded by a polynomial in the size of I.

Next, we explore the interplay between the concrete and the abstract models of time with
focus on the existence of semantically adequate concrete universal solutions. In the presence
of multiple temporal variables, concrete s-t tgds and concrete target egds must be converted
to “essentially equivalent” abstract s-t tgds and to abstract target egds, respectively, because
the concrete ones involve Allen’s relations while the abstract ones involve suitable formulas of
first-order logic over time points compared with the < relation. Due to space limitations, we
do not include here the precise definition of this conversion. Instead, we describe the precise
sense in which this conversion transforms concrete constraints to “essentially equivalent”
abstract constraints, and also illustrate this conversion in the proof of Proposition 7.

We will use the terms concrete schema mapping and abstract schema mapping for a
schema mapping consisting of concrete constrains and, respectively, of abstract constraints.
If σ is a concrete s-t tgd or a concrete target egds, then we write a(σ) for the abstract s-t
tgd or the abstract target egd resulting from σ via the aforementioned conversion. Every
concrete schema mapping M = (S,T,Σst,Σt) gives rise to an abstract schema mapping
Ma = (S,T,Σast,Σat ), where Σast = {a(σ) : σ ∈ Σst} and Σat = {a(σ) : σ ∈ Σt}.

Let x = (x1, . . . , xm) be a tuple of non-temporal variables and let t = (t1, . . . , tk) be
a tuple of temporal variables. A concrete (respectively, an abstract) assignment to the
tuple (x, t) is a function p defined on the set {x1, . . . , xm, t1, . . . , tk} such that p(xi) = ci
is a constant, 1 ≤ i ≤ m, and p(tj) = [sj , ej) is an interval (respectively, p(tj) = αj
is a time point), 1 ≤ j ≤ k. If p is a concrete assignment as above, we will use the
notation p(x, t) = (c1, . . . , cm, [s1, e1), . . . , [sk, ek)) to denote it. Similarly, if p is an abstract
assignment, it will be denoted as p(x, t) = (c1, . . . , cm, α1, . . . , αk).

The semantic function J.K on concrete assignments is defined as follows: if p(x, t) =
(c1, . . . , cm, [s1, e1), . . . , [sk, ek)) is a concrete assignment, then J(p(x, t))K is the set of all
abstract assignments q(x, t) = (c1, . . . , cm, α1, . . . , αk), where sj ≤ αj < ej and 1 ≤ j ≤ k.
The next proposition describes the properties of the conversion from concrete formulas to
“essentially equivalent” abstract formulas.

I Proposition 6. Assume that ψ(x, t) is a formula of the form ψ(x, t) = ϕ(x, t)∧π(t), where
the variables in t are the only temporal variables, ϕ(x, t) is a conjunction of atoms over a
temporal schema S, and π(t) is a Boolean combination of Allen’s relations involving variables
from t. Let ψa(x, t) be the formula obtained by converting ψ(x, t) from the concrete model
of time to the abstract model of time. Given a coalesced concrete instance I and a concrete
assignment p(x, t) taking values in I, the following statements are equivalent:

I, p(x, t) |= ψ(x, t).
For every abstract assignment q(x, t) ∈ Jp(x, t)K, we have that JIK, q(x, t) |= ψa(x, t).

Furthermore, for every abstract assignment q(x, t) such that JIK, q(x, t) |= ψa(x, t), there is a
unique concrete assignment p(x, t) such that q(x, t) ∈ Jp(x, t)K and I, p(x, t) |= ψ(x, t).
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Earlier, we defined the notion of semantic adequacy for temporal schema mappings in
which each constraint had (at most) one temporal variable. We now extend this notion to
temporal schema mappings in which constraints may have any number of temporal variables
If M is a concrete schema mapping and I is a concrete source instance, then a concrete
target instance J is semantically adequate for I if JJK is a universal solution for JIK w.r.t.Ma.
Ideally, we would like to have concrete universal solutions for I that are also semantically
adequate for I. As we have seen in Section 3, however, this is not possible in general, even
for temporal schema mappingsM with a single temporal variable (where we haveM =Ma).
In what follows, we identify a sufficient condition for semantic adequacy.

A concrete s-t tgd is full if its consequent contains no existentially quantified variables,
i.e., it is of the form ∀x∀t(ϕ(x, t) ∧ π(t)→ ψ(x, t)). A concrete schema mapping is full if
all its concrete s-t tgds are full. Full schema mappings are also known as Global-as-View or
GAV schema mappings, because each full s-t tgd is logically equivalent to a finite set of s-t
tgds with a single atom in their consequents.

As an example of a concrete full schema mapping, letM = (S,T,Σst,Σt) be the schema
mapping in which Σst consists of the concrete full s-t tgds

σ1
st = ∀x1, x2, x3, t1(R1(x1, x2, x3, t1)→ T1(x1, x2, t1)),

σ2
st = ∀x1, x2, x3, x4, t1, t2(R2(x1, x2, x3, t1) ∧R3(x1, x4, t2) ∧ (t2 m t1)→ T2(x1, x3, t2))

and Σt consists of the concrete target egds

σ1
t = ∀x1, x2, x3, t1(T1(x1, x2, t1) ∧ T1(x1, x3, t1)→ x2 = x3),

σ2
t = ∀x1, x2, x3, t1, t2(T1(x1, x2, t1) ∧ T2(x1, x3, t2) ∧ (t1 o t2)→ x2 = x3).

In standard data exchange, full schema mappings have been extensively studied and
have been shown to possess a variety of good structural and algorithmic properties (see,
e.g., [10, 14]). Unfortunately, as our next result shows, these good properties do not include
semantic adequacy.

I Proposition 7. There are a concrete full schema mapping M+ = (S,T,Σ+
st,Σ+

t ) and a
concrete source instance I+ such that the following statements hold:
1. There is a concrete universal solution for I+ w.r.t.M+.
2. There is no solution for JI+K w.r.t.M+a; therefore, no concrete universal solution for

I+ w.r.t.M+ is semantically adequate for I+.

Proof. LetM+ = (S,T,Σ+
st,Σ+

t ) be a concrete schema mapping where Σ+
st consists of the

concrete s-t tgds

σ1
st = ∀x1, x2, x3, t1(R1(x1, x2, x3, t1)→ T1(x1, x2, t1))

σ2
st = ∀x1, x2, x3, x4, t1, t2(R2(x1, x2, x3, t1) ∧R3(x1, x4, t2) ∧ (t2 m t1)→ T2(x1, x3, t2))

and Σ+
t consists of the concrete target egd

σt = ∀x1, x2, x3, t1(T1(x1, x2, t1) ∧ T2(x1, x3, t1)→ x2 = x3).

Let M+a = (S,T,Σ+a
st ,Σ+a

t ) be the abstract schema mapping obtained from M+ by
converting the concrete constraints ofM to abstract constraints. In this case, Σ+a

st consists
of the following abstract s-t tgds a(σ1

st) and a(σ2
st) obtained from σ1

st and σ2
st, respectively:

a(σ1
st) = ∀x1, x2, x3, t1(R1(x1, x2, x3, t1)→ T1(x1, x2, t1))
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a(σ2
st) =∀x1, x2, x3, x4, t1, t2

(
R2(x1, x2, x3, t1) ∧R3(x1, x4, t2) ∧ ∃t−1 , t

+
1 , t
−
2 , t

+
2

(
R2(x1, x2, x3, t

−
1 ) ∧R3(x1, x4, t

−
2 ) ∧R2(x1, x2, x3, t

+
1 ) ∧R3(x1, x4, t

+
2 )∧

(t−1 ≤ t1 ≤ t
+
1 ) ∧ (t−2 ≤ t2 ≤ t

+
2 ) ∧ ∀t

′

1, t
′

2

(
((t−1 ≤ t

′

1 ≤ t+1 ) ∧ (t−2 ≤ t
′

2 ≤ t+2 )→

R2(x1, x2, x3, t
′

1) ∧R3(x1, x4, t
′

2)) ∧ (R2(x1, x2, x3, t
′

1) ∧R3(x1, x4, t
′

2)→

(t
′

1 6= t−1 − 1) ∧ (t
′

1 6= t+1 + 1) ∧ (t
′

2 6= t−2 − 1) ∧ (t
′

2 6= t+2 + 1))
)
∧ (t+2 + 1 = t−1 )

)
→ T2(x1, x3, t2)

)
.

Moreover, Σ+a
t consists of the following abstract target egd a(σt) obtained from σt:

a(σt) =∀x1, x2, x3, t1, t2

(
T1(x1, x2, t1) ∧ T2(x1, x3, t2) ∧ ∃t−1 , t

+
1 , t
−
2 , t

+
2

(
T1(x1, x2, t

−
1 )∧

T2(x1, x3, t
−
2 ) ∧ T1(x1, x2, t

+
1 ) ∧ T2(x1, x3, t

+
2 ) ∧ (t−1 ≤ t1 ≤ t

+
1 ) ∧ (t−2 ≤ t2 ≤ t

+
2 )

∧ ∀t
′

1, t
′

2

(
((t−1 ≤ t

′

1 ≤ t+1 ) ∧ (t−2 ≤ t
′

2 ≤ t+2 )→ T1(x1, x2, t
′

1) ∧ T2(x1, x3, t
′

2))

∧ (T1(x1, x2, t
′

1) ∧ T2(x1, x3, t
′

2)→ (t
′

1 6= t−1 − 1) ∧ (t
′

1 6= t+1 + 1)

∧ (t
′

2 6= t−2 − 1) ∧ (t
′

2 6= t+2 + 1))
)
∧ (t−1 = t−2 ∧ t

+
1 = t+2 )

)
→ x2 = x3

)
.

Before completing the proof of the proposition, we provide some intuition about the
conversion of the concrete temporal constraints ofM to the abstract temporal constraints of
M+a. To begin with, a(σ1

st) is the same as σ1
st because σ1

st has a single temporal variable and
no Allen’s relations. In contrast, a(σ2

st) is quite different from σ2
st because it has two temporal

variables and one atomic formula involving Allen’s relation m (meets). The sub-formula
∃t−1 , t

+
1 , t
−
2 , t

+
2

(
R2(x1, x2, x3, t

−
1 )∧ . . .∧ (t+2 + 1 = t−1 )

)
of a(σ2

st) asserts that: (i) the abstract
variables t1 and t2 belong to intervals that meet each other (this is the purpose of the
sub-formula (t+2 + 1 = t−1 ); (ii) all temporal values t′1 and t′2 in these intervals have the
property that R2(x1, x2, x3, t

′
1) and R3(x1, x4, t

′
2) hold; and (iii) there are no bigger intervals

for which (i) and (ii) hold. A similar intuition applies to the construction of the abstract
target egd a(σt). The correctness of this conversion (i.e., that the abstract constraints a(σ1

st),
a(σ2

st), and a(σt) are “essentially equivalent” to the concrete constraints σ1
st, σ2

st, and σt)
uses the fact that we use coalesced concrete source instances.

Let I+ be the concrete source instance whose relations are depicted in Table 11. By
applying the semantic function on I+, we obtain the abstract instance JI+K, whose relations
are depicted in Table 12.

Let c-chaseM+(I+) be the target instance produced by the concrete chase algorithm on
I+. The relations of c-chaseM+(I+) are depicted in Table 13. According to Theorem 5,
c-chaseM+(I+) is a universal solution for I+ w.r.t.M+.

Table 11 The relations R1, R2, and R3 in the coalesced concrete source instance I+.

(a) R1.

name school position Ptime
a1 c1 d1 [1, 3)
a1 c1 d2 [2, 4)

(b) R2.

name address school Stime
a1 b1 c2 [4, 6)

(c) R3.

name city Ctime
a1 e1 [1, 4)

We claim that the abstract chase algorithm w.r.t. M+ fails on JI+K. To see this, let
a-chaseΣ+a

st
(JI+K) be the target instance produced by chasing JI+K with the abstract s-t

tgds in Σ+a
st . The relations of a-chaseΣ+a

st
(JI+K) are depicted in Table 14. If we now chase
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Table 12 The relations R1, R2 and R3 in the abstract source instance JI+K.

(a) R1.

name school position Ptime
a1 c1 d1 1
a1 c1 d1 2
a1 c1 d2 2
a1 c1 d2 3

(b) R2.

name address school Stime
a1 b1 c2 4
a1 b1 c2 5

(c) R3.

name city Ctime
a1 e1 1
a1 e1 2
a1 e1 3

Table 13 The relations T1 and T2 in the target instance c-chaseM+ (I+).

(a) T1.

name school Ptime
a1 c1 [1, 3)
a1 c1 [2, 4)

(b) T2.

name school Ctime
a1 c2 [1, 4)

Table 14 The relations T1 and T2 in the abstract target instance a-chaseΣ+a
st

(JI+K).

(a) T1.

name school Ptime
a1 c1 1
a1 c1 2
a1 c1 3

(b) T2.

name school Ctime
a1 c2 1
a1 c2 2
a1 c2 3

a-chaseΣ+a
st

(JI+K) with the abstract target egd in Σ+a
t , then the abstract chase algorithm

fails. This is because the tuple (a1, b1, c1, 1) in the relation T1 and the tuple (a1, c2, 1) in
the relation T2 of a-chaseΣ+a

st
(JI+K) trigger the antecedent of the abstract target egd a(σt)

in Σ+a
t , hence the abstract chase algorithm fails because it attempts to equate the distinct

constants c1 and c2. It follows that there is no solution for JI+K w.r.t.M+a. Furthermore,
it is not hard to show that if J and J ′ are universal solutions for I+ w.r.t.M+, then JJK
and JJ ′K are homomorphically equivalent. Consequently, no concrete universal solution for
I+ w.r.t.M+ is semantically adequate for I+ (in particular, the concrete universal solution
c-chaseM+(I+) of I+ w.r.t.M+ is not semantically adequate for I+). This completes the
proof of the proposition. J

Observe that the temporal target egd σt ofM+ had two temporal atoms in its antecedent.
Our next result tells that semantically adequate universal solutions exist for full schema
mappings whose temporal target egds have at most one temporal atom in their antecedent.

I Theorem 8. Let M = (S,T,Σst,Σt) be a concrete full schema mapping such that each
constraint in Σt contains at most one temporal atom. If I is a concrete source instance, then
the following statements hold:
1. If a solution for I w.r.t.M exists, then the concrete target instance c-chaseM(I) returned

by the concrete chase algorithm is semantically adequate for I.
2. If the concrete chase algorithm fails on I, then there is no solution for JIK w.r.t. to the

abstract schema mappingMa.

According to Proposition 7, if M is a concrete full schema mapping, then there may
exist concrete source instances I for which no concrete universal solution is semantically
adequate. As discussed earlier, Golshanara and Chomicki [11] used the concrete n-chase
algorithm to construct semantically adequate concrete target instances in the setting of
temporal schema mappings with exactly one temporal variable. It is not all clear whether
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or not the concrete n-chase algorithm can be extended to temporal schema mappings with
multiple temporal variables. Instead, we introduce a different variant of the chase, which we
call the coalescing chase algorithm. This algorithm proceeds along the lines of the concrete
chase algorithm by introducing labelled nulls or time-stamped nulls as needed when temporal
s-t tgds are considered or by equating two values when temporal target egds are considered.
However, after each such chase step, the resulting target instance is transformed to a coalesced
one before the next chase step is applied (in general, a chase step on a coalesced instance
may produce a non-coalesced instance). Note that the concrete n-chase algorithm applies
only two normalization steps, while the number of coalescing steps applied by the coalescing
chase algorithm is not fixed.

Our final result asserts that the coalescing chase algorithm produces semantically adequate
target instances in the setting of concrete full schema mappings.

I Theorem 9. LetM = (S,T,Σst,Σt) be a concrete full schema mapping. If I is a concrete
source instance, then the following statement hold:
1. If the coalescing chase does not fail on I, then the concrete target instance returned by

the coalescing chase is semantically adequate for I.
2. If the coalescing chase fails on I, then there is no solution for JIK w.r.t. to the abstract

schema mappingMa.

5 Concluding Remarks

The work reported here contributes to the development of temporal data exchange. Our main
focus was on the pursuit of semantically adequate universal solutions. We showed that such
solutions may not exist even for temporal schema mappings with a single temporal variable.
Nonetheless, we identified classes of schema mappings for which such solutions exist and also
classes of schema mappings for which semantically adequate target instances exist. Along
the way, we expanded the original framework of temporal data exchange studied in [11] by
considering temporal schema mappings with multiple temporal variables and exploring some
of the issues involved in the translation from the concrete model of time to the abstract.

We conclude by describing two directions for further research in this area.
Explore temporal data exchange for schema mappings that also have target tuple-
generating dependencies. Several challenges arise in this case, including the translation
of the constraints from the concrete model of time to the abstract model of time, the
management of time-stamped nulls, and the design of a suitable chase algorithm.
Explore temporal data exchange for schema mappings in which the constraints have
existentially quantified variables. Several challenges of different nature arise in this case,
some of which are similar to challenges in answering queries over temporal data with the
help of ontologies (see [5] for a comprehensive survey of that area).
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Abstract
Multivariate temporal, or time, series classification is, in a way, the temporal generalization of
(numeric) classification, as every instance is described by multiple time series instead of multiple
values. Symbolic classification is the machine learning strategy to extract explicit knowledge from a
data set, and the problem of symbolic classification of multivariate temporal series requires the design,
implementation, and test of ad-hoc machine learning algorithms, such as, for example, algorithms
for the extraction of temporal versions of decision trees. One of the most well-known algorithms
for decision tree extraction from categorical data is Quinlan’s ID3, which was later extended to
deal with numerical attributes, resulting in an algorithm known as C4.5, and implemented in many
open-sources data mining libraries, including the so-called Weka, which features an implementation of
C4.5 called J48. ID3 was recently generalized to deal with temporal data in form of timelines, which
can be seen as discrete (categorical) versions of multivariate time series, and such a generalization,
based on the interval temporal logic HS, is known as Temporal ID3. In this paper we introduce
Temporal C4.5, that allows the extraction of temporal decision trees from undiscretized multivariate
time series, describe its implementation, called Temporal J48, and discuss the outcome of a set of
experiments with the latter on a collection of public data sets, comparing the results with those
obtained by other, classical, multivariate time series classification methods.
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1 Introduction

A labelled data set D = {D1, . . . , Dm} is a set of instances described by a set of numerical
and/or categorical attributes A = {A1, . . . , An} and associated to a set of classes C =
{C1, . . . , Cq}. Supervised symbolic classification is the machine learning strategy for extracting
an explicit (logical) theory that describes a labelled data set D. It is usually opposed to
supervised functional classification, which includes linear regression, logistic regression, neural
networks, and many other black-box and function-extraction mechanisms. There are many
symbolic classification methods, which can be broadly distinguished into tree-based and
rule-based. Tree-based classification models can be single or multiple; multiple tree-based
models, however, while still symbolic in nature, are not interpretable in the same sense as
single trees are. Tree-based classification models are also known as decision trees, and they
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can be described in a very abstract (inductive) way: a decision tree is a class, or it is a
k-ways decision followed by k decision trees. The introduction of decision trees can be dated
back to [10, 11]. The problem of extracting the optimal decision tree from a data set is
NP-hard [9], which justifies the use of sub-optimal approaches. The ID3 algorithm [10] is a
greedy approach to decision tree extraction; it is based on a simple concept: given a labelled
data set D, one takes a decision by choosing the attribute Ai and the value(s) on the domain
Ai that return(s) the highest information, obtaining, in general, a k-ways partition of D
in D1, . . . ,Dk. The information is measured in terms of the classes that occur in D and
in D1, . . . ,Dk. Each decision can be expressed as a propositional letter; since alternative
branches can be seen as logical (exclusive) disjunctions, and successive decisions on the same
branches can be seen as logical conjunctions, a decision tree as a whole can be seen as a set
of propositional formulas. In other words, a decision tree is a propositional description of the
data set on which it is learned.

A time series is a set of variables that change over time, and they can be univariate
or multivariate. Each variable of a multivariate time series is an ordered collection of N
real values, instead of a single value. So, a labelled temporal data set T = {T1, . . . , Tm} is
a set of temporal instances described by a set of temporal attributes A = {A1, . . . , An},
each being a N -points time series, and associated to a set of classes C = {C1, . . . , Cq}.
Multivariate time (or temporal) series emerge in many application contexts. The temporal
history of some hospitalized patient can be described by the time series of the values of
his/her temperature, blood pressure, and oxygenation; the pronunciation of a word in sign
language can be described by the time series of the relative and absolute positions of the ten
fingers w.r.t. some reference point; different sport activities can be distinguished by the time
series of some relevant physical quantities. In the current literature, time series classification
algorithms can be instance-based, feature-based, and timeline-based. Instance-based methods
are essentially all built on the notion of distance between two time series, by means of which
a time series can be classified using, e.g., the Nearest Neighbor (NN) algorithm. The most
widely accepted notions of distances are the Euclidean Distance (ED) and the Dynamic
Time Warping (DTW) [14]. Intuitively, ED is a one-to-one alignment method, while DTW is
one-to-many, as it allows one to compare time series even of different scales. Such methods
have been systematically applied to a variety of multivariate time series data sets in [2] (the
univariate case is dealt with by the same authors in [3]). Feature-based methods, on the
other hand, consist of flattening the time series, and describe each one of them via a set
of values (e.g., mean, variance, maximum, minimum). These descriptions, in turn, can be
used as the input of a static learning algorithm. Feature-based techniques are widespread
in the data science community, because they are conceptually simple, and allow one to use
familiar learning methods; unfortunately, the theories obtained in this way are not always
interpretable, and the quality of the models in term of performances is not always acceptable.
An extensive comparison between instance-based and feature-based methods can be found
in [7], in which the authors also present an algorithm that allows one to automatically choose
the best features to represent a time series data set for it to be classified. Finally, A timeline
can be considered as the discretized version of a multivariate time series. For each single
variable, one produces a set of propositional letters that describe the values of that variable,
or its (first, second, . . . ) derivative, on every possible interval of time, and then describes a
multivariate time series on a single line by joining the propositional, interval description of all
variables. A general method to translate a multivariate time series into a timeline is described
in [13], and Temporal ID3 [5] can be considered an example of timeline-based classification
of multivariate time series, that uses the interval temporal logic HS [8] to describe a decision
tree.
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[x, y]RA[x′, y′]⇔ y = x′
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[x, y]RB [x′, y′]⇔ x = x′, y′ < y

[x, y]RE [x′, y′]⇔ y = y′, x < x′

[x, y]RD[x′, y′]⇔ x < x′, y′ < y

[x, y]RO[x′, y′]⇔ x < x′ < y < y′

Graphical representation
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x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Figure 1 Allen’s interval relations and HS modalities.

In this paper we design a decision tree learning algorithm, Temporal C4.5, that generalizes
Temporal ID3 in the same way in which the algorithm C4.5 [12] generalizes ID3, that is,
by introducing the possibility of learning from continuous attributes. In this case, however,
(non-discretized) time series are described only by continuous (time-changing) values, so,
in the current version, Temporal C4.5 does not admit categorical attributes. We consider
one of the most representative implementations of C4.5, called J48, available in the Weka
open-source learning suite [15], and we modify it by introducing decisions based on the
interval temporal logic HS. The main contributions of this paper are:
(i) the definition of a general theory of decision trees, which is used to guide our generaliz-

ation from the static to the temporal case;
(ii) the first implementation of a symbolic classification algorithm for time series that deals

with the raw data (i.e., without applying any pre-abstraction method), whose extracted
theory is expressed in the interval temporal logic HS;

(iii) a comparison of the performances of our implementation against existing methods on
the public data used in [2].

2 Preliminaries

Classification of multivariate temporal series. A time series is a set of variables that
change over time, and they can be univariate or multivariate. Each variable (or channel) of
a multivariate time series is an ordered collection of N real values, instead of a single value,
so that a single time series can be described as follows:

T =


A1 = a1,1, a1,2, . . . , a1,N
A2 = a2,1, a2,2, . . . , a2,N
. . . . . .

An = an,1, an,2, . . . , an,N .

(1)

So, a labelled temporal data set T = {T1, . . . , Tm} is a set of temporal instances described
by a set of temporal attributes A = {A1, . . . , An}, each being a N -points time series, and
associated to a set of classes C = {C1, . . . , Cq}. A temporal data set can be viewed as a
m × n matrix where the ith row, 1 ≤ i ≤ m, is a multivariate time series and the jth
column, 1 ≤ j ≤ n, is an attribute. The multivariate time series supervised classification
problem is the problem of finding a formula (symbolic classification) or a function (functional
classification) that associates multivariate time series to classes.

TIME 2020
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Timelines and interval temporal logic. Amultivariate time series can be discretized without
eliminating the temporal component. In [13] the authors introduce the notion of timeline
and present a procedure that transforms multivariate time series into timelines. Time series
describe continuous processes; when discretized, it makes little sense to model their values at
each point, but, instead, they are naturally represented in a interval-based ontology. Thus,
if a static numerical data set is naturally represented in propositional logic, a multivariate
time series is naturally represented in an interval temporal logic.

Let [N ] an initial subset of N of length N . An interval over [N ] is an ordered pair [x, y],
where x, y ∈ [N ] and x < y, and we denote by I([N ]) the set of all intervals over [N ]. If we
exclude the identity relation, there are 12 different Allen’s relations between two intervals
in a linear order [1]: the six relations RA (adjacent to), RL (later than), RB (begins), RE
(ends), RD (during), and RO (overlaps), depicted in Figure 1, and their inverses, that is,
RX̄ = (RX)−1, for each X ∈ X , where X = {A,L,B,E,D,O}. Halpern and Shoham’s
modal logic of temporal intervals (HS) is defined from a set of propositional letters AP , and
by associating a universal modality [X] and an existential one 〈X〉 to each Allen’s relation
RX . Formulas of HS are obtained by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ | 〈X̄〉ϕ, (2)

where p ∈ AP and X ∈ X . The other Boolean connectives and the logical constants, e.g.,
→ and >, as well as the universal modalities [X], can be defined in the standard way, i.e.,
[X]p ≡ ¬〈X〉¬p. For each X ∈ X , the modality 〈X̄〉 (corresponding to the inverse relation
RX̄ of RX) is said to be the transpose of the modalities 〈X〉, and vice versa. The semantics
of HS formulas is given in terms of timelines T = 〈I([N ]), V 〉1, where V : AP → 2I([N ]) is a
valuation function which assigns to each atomic proposition p ∈ AP the set of intervals V (p)
on which p holds. The truth of a formula ϕ on a given interval [x, y] in an interval model T
is defined by structural induction on formulas as follows:

T, [x, y]  p if [x, y] ∈ V (p), for p ∈ AP;
T, [x, y]  ¬ψ if T, [x, y] 6 ψ;
T, [x, y]  ψ ∨ ξ if T, [x, y]  ψ or T, [x, y]  ξ;
T, [x, y]  〈X〉ψ if there is [w, z] s.t [x, y]RX [w, z] and T, [w, z]  ψ;
T, [x, y]  〈X̄〉ψ if there is [w, z] s.t [x, y]RX̄ [w, z] and T, [w, z]  ψ.

(3)

A time series can be seen as a timeline based on a suitable propositional signature.
As for example, consider a time series that records medical values of some hospitalized
patient: temperature, blood pressure, and oxygenation, as in Figure 2, top. The information
can be adequately subsumed into a timeline such as in Figure 2, bottom, provided that a
suitable propositional signature is given. In our example, we (arbitrarily) decided that, for
instance, the value 38 is an informative splitting point, and a propositional letter (Te ≤ 38)
can be created. In [13], a methodology that allows one to perform such discretization is
presented, and in [5], a temporal decision tree extraction method (Temporal ID3), that
takes a temporal data set in form of timelines and extracts a decision tree whose edges are
labelled with decisions written in HS, is studied. The main limitation of such an approach
is that the discretization method does not take into account the predictive capabilities of
the decisions (that is, of the propositional letters), because it is run off-line, so to say: in
machine learning terms, it is a filter. Temporal C4.5 is aimed to close precisely this gap,
allowing the propositional signature to emerge during the decision tree extraction, not before,
precisely as C4.5 does on non-temporal data.

1 We deliberately use the symbol T to indicate both a timeline and a time series.
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time O2-sat (O2) art. press. (Pr) temp (Te)
1 88 105 37
2 89 107 37
3 90 110 39
4 85 108 39
5 82 102 37

⇓

1 2 3 4 5

O2 > 86
Te ≤ 38

Pr > 105

Figure 2 Using timelines to discretize multivariate time series: an example with a single time
series.

3 A Theory of Decision Trees

A theory of static decision trees. Decision trees are a very well-known construct. While
in the literature there has been a great effort to improve their implementation, versatility,
and applicability, a formal definition of the structure and semantics of decision trees is
necessary to correctly define their temporal generalization. In this section, for the sake of
simplicity of explanation, we restrict our attention to the case of binary decision trees for
binary classification, both in the static and the temporal case. Generalizing our approach to
the case of k-ary trees and multiple classes is immediate.

Consider a labelled static data set D = {D1, . . . , Dm} described by the set of attributes
A = {A1, . . . , An} and associated to the classes C = {Y es,No}. We denote the domain of
an attribute A by dom(A). The language of static decision trees encompasses a set S of
propositional decisions:

S = {A ./ a | A ∈ A, a ∈ dom(A)}, (4)

where ./∈ {≤,=}. Binary static decision trees are formulas of the following grammar:

ϕ̂ ::= (S ∧ ϕ̂) ∨+ (¬S ∧ ϕ̂) | C. (5)

where C ∈ C and S ∈ S. The symbol ∨+ indicates the exclusive or, while the symbol ∧
indicates the classical propositional and. Every non-leaf node of a decision tree has two
children and every edge is decorated with a decision. Leaves are decorated with a class. A
decision S is interpreted over a single instance D using classical propositional logic. We say
that D satisfies the decision A ≤ a (resp., A = a) if the attribute A has a value less than
or equal to (resp., equal to) a ∈ dom(A) in D, and we use the symbol D |= (A ≤ a) (resp.,
D |= (A < a)).

A decision tree is interpreted over a labelled data set D via the semantic relation |̂=θ,
which generalizes |= from single instances to data sets: we need to define the notion of a
data set satisfying ϕ̂ with parameter θ, that is, D|̂=θϕ̂. Unlike the classical propositional
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logic, in this case the truth relation is parametric; the parameter θ formalizes the notion of
how well a decision tree ϕ̂ represents D. Let D an instance of D. We denote by C(D) the
true class of D, and by ϕ̂(D) the class that ϕ̂ predicts for D. The generic performance of
ϕ̂ on D can be measured in terms of its confusion matrix, which, for each given instance,
expresses one of four possible, mutually exclusive, indicators (true positive, true negative,
false positive, and false negative) by comparing C(D) and ϕ̂(D):

C(D) = No C(D) = Y es

ϕ̂(D) = No True Negative (TN) False Negative (FN)
ϕ̂(D) = Y es False Positive (FP) True Positive (TP)

(6)

The root of a tree ϕ̂ is associated with the data set D on which it is interpreted, and, in
general, each node of the tree is associated with a subset D′ ⊂ D and a binary decision S. A
set D′ is partitioned into two subsets D′1 and D′2, that contain, respectively the instances
that satisfy S and those that do not. The subset of D associated with a leaf is also labelled
with a class C, meaning that every instance in it is classified with C, generating a certain
amount of misclassifications. From the leaves, one can inductively compute the confusion
matrix of each node. The confusion matrix of the root is the one we associate with the tree
itself. The rules for |̂=θ are now immediate:

D |̂=θNo if θ = |DNo| |D| − |DNo|
0 0 , where

DNo = {D ∈ D | C(D) = No},

D |̂=θY es if θ = 0 0
|D| − |DY es| |DY es|

, where

DY es = {D ∈ D | C(D) = Y es},
D |̂=θ(S ∧ ϕ̂1) ∨+ (¬S ∧ ϕ̂2) if θ = θ1 + θ2,D1 |̂=θ1

ϕ̂1, and D2 |̂=θ2
ϕ̂2, where

D1 = {D ∈ D | D |= S},D2 = {D ∈ D | D |= ¬S},
D = D1 ∪ D2, and D1 ∩ D2 = ∅.

(7)

Observe that computing the confusion matrix on a node generalizes every classical notion of
performance, such as accuracy, precision, recall, among others.

A theory of temporal decision trees. On the basis of the above notions, we can now define
the concept of temporal decision tree.

Let us now consider a labelled temporal data set T = {T1, . . . , Tn}, in which every
instance is described by the time series A = {A1, . . . , An} (recall that each attribute is a
univariate time series, in this case) and, as before, classified in one of two classes from the set
C = {Y es,No}. We assume that all attributes have the same temporal length, N . Because
time series describe continuous processes, our decisions will be taken on the value of a single
channel over an interval of time, and we describe such decisions using propositional interval
temporal logic. Unlike static attributes, however, temporal attributes can be analyzed over
multiple dimensions. Consider an interval of time [x, y] and an attribute A that varies on
it. As in the static case we can ask the question A ./ a over the entire interval, where
./∈ {≤,=}, which is positively answered if every value of A in the interval [x, y] respects
the given constraint. But unlike the static case, we do not ask if A ./ a only in the current
interval but also if there exists an interval, related to the current one, in which that holds, so
that the decision becomes 〈X〉(A ./ a). This implies, among other things, that the relation
> cannot be defined as the negation of ≤: when we apply the negation, indeed, we negate
both 〈X〉 and ./, which amounts to say that if we want to check if 〈X〉(A > a) we have
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to do it explicitly. Therefore, in this case, ./∈ {≤,=, >}. Moreover, in order to allow a
certain degree of uncertainty, we may relax the requirement A ./ a over a given interval [x, y]
by asking that at least a certain fraction of the values of A in the interval [x, y] meet this
condition; we denote this relaxed decision by A ./α a, where α ∈ (0, 1] is a real parameter.
Finally, we need to remember that in certain applications the values may not be as important
as the trends, that is, the value of the discrete derivative of A at a certain degree. We denote
the discrete derivative of A at degree z by Az (identifying A0 with A), and, consequently,
a generic temporal decision by 〈X〉(Az ./α a), with a ∈ dom(Az). Thus, the language of
temporal decision trees encompasses the following set of temporal decisions:

S = {〈X〉(Az ./α a), 〈X̄〉(Az ./α a) | X ∈ X , A ∈ A, a ∈ dom(Az)}∪
{Az ./α a | A ∈ A, a ∈ dom(Az)}, (8)

where X = {A,L,B,E,D,O} are interval operators of the language of HS. Temporal decision
trees are formulas obtained from (5), in which propositional decisions have been replaced by
temporal decisions. A temporal decision is interpreted over a single multivariate time series T
and interval [x, y], by using the notion of semantic relation  recalled in Section 2; therefore,
we use the notation T, [x, y]  〈X〉(Az ./α a) or T, [x, y]  〈X̄〉(Az ./α a). Formally, given a
point t, we denote by Az(t) the value of the z-th discrete derivative of the attribute A at the
point t, and given an interval [x, y], we denote by [x, y]Az./a the following set:

[x, y]A
z./a = {t | x ≤ t ≤ y,Az(t) ./ a}. (9)

Therefore we have:

T, [x, y]  〈X〉(Az ./α z) if there is [w, z] s.t [x, y]RX [w, z] and
|[w, z]Az./a| ≥ dα · (z − w + 1)e. (10)

We now want to define the notion of a temporal data set satisfying ϕ̂ with parameter θ,
that is, T ̂θϕ̂. In the static case, from a data set D one computes immediately the two data
sets D1 and D2 entailed by a decision S. In the temporal case, however, this requires more
effort. Every instance of the temporal data set T associated with the root of ϕ̂ is assigned
the reference interval [0, 1] by default; observe that, since the language of HS encompasses a
set of jointly exhaustive operators, this requirement does not decrease the expressive power
of temporal decisions. Given a temporal decision S over T , computing the set T1 of all
instances that do satisfy S implies assigning to each instance T ∈ T1 a potentially different
reference interval; on the contrary, computing T2 implies leaving the reference interval of
its members unchanged. So, for example, given T , in which every instance T is assigned a
reference interval [xT , yT ], and given the decision S = 〈A〉(A ≤ a), we say that:

T1 = {T ∈ T | ∃[yT , zT ](yT < zT ∧ T, [yT , zT ]  (A ≤ a))}
T2 = {T ∈ T | ∀[yT , zT ](yT < zT → T, [yT , zT ] 6 (A ≤ a))}. (11)

In the particular case in which S is static, the reference interval does not change for T1,
either. For a temporal decision S, we use the notation T  S (resp., T  ¬S) to identify
the members of T1 (resp., T2). Observe that S entails unique T1 and T2, but not unique
(new) reference intervals for the members of T1; however, this choice is implementative, not
theoretical. At this point, the notion of how well a temporal data set T satisfies a decision
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tree ϕ̂ becomes immediate, and completely equivalent to the static case:

T ̂θNo if θ = |TNo| |T | − |TNo|
0 0 , where

TNo = {T ∈ T | C(T ) = No},

T ̂θY es if θ = 0 0
|T | − |TY es| |TY es|

, where

TY es = {T ∈ T | C(T ) = Y es},
T ̂θ(S ∧ ϕ̂1) ∨+ (¬S ∧ ϕ̂2) if θ = θ1 + θ2, T1 ̂θ1 ϕ̂1, and T2 ̂θ2 ϕ̂2, where

T1 = {T ∈ T | T  S}, T2 = {T ∈ T | T  ¬S},
T = T1 ∪ T2, and T1 ∩ T2 = ∅.

(12)

Analogously to the static case, C(T ) indicates the true class of the multivariate time series
T , and ϕ̂(T ) indicates the class assigned by ϕ̂.

4 Temporal J48

Entropy-based learning. In [9], it has been proved that computing the optimal decision tree
is an NP-hard problem, where the notion of optimality is expressed as the relation between
the height and the performance of the tree. In the perspective of practical applications of
decision trees to real-life data, this justifies the use of algorithms that return sub-optimal
trees, such as ID3 [10]. ID3 is designed for static, categorical data, at it encompasses k-ary
splits, but, without loss of generality, we focus our attention on binary splits only.

ID3 is able to learn a tree from a purely categorical data set (i.e., ./∈ {=} in Equation (4)),
and it uses the concepts of information gain and entropy to select the best decision at every
node. By identifying frequencies with probabilities, one defines the information conveyed by
D (or entropy of D) by first measuring the amount of instances in D that belong to each
class Ci (let us denote this subset with DCi

), and, then, by computing:

Info(D) = −
i=2∑
i=1

( |DCi
|

|D|
log( |DCi

|
|D|

)). (13)

Intuitively, the entropy is inversely proportional to the purity degree of D with respect to
the class values. Splitting, which is the main greedy operation in learning a decision tree with
ID3, is performed over a specific attribute A. When restricted to categorical attributes and
binary splits, a split depends on a particular attribute A and a particular value a ∈ dom(A),
which entail two subsets D1 and D2; the former (resp. the latter) contains all those instances
D such that D |= (A = a) (resp., D |= (A 6= a) - see Equation (7)). Thus, we can compute
the splitting information of the pair A, a as follows:

InfoSplit(A, a,D) =
i=2∑
i=1

|Di|
|D|

Info(Di), (14)

which implies that the entropy of attribute A is defined as:

InfoAtt(A,D) = min
a∈dom(A)

{InfoSplit(A, a,D)}, (15)

and, finally, that the information gain of A is defined as:

Gain(A,D) = Info(D)− InfoAtt(A,D). (16)
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The algorithm ID3 is based on the idea of recursively splitting the data set over the attribute
and the value of its domain that guarantee the greatest information gain, until a certain
stopping criterion is met. When non-binary splits are allowed, the concept of splitting
information must be slightly modified, but the underlying ideas remain. Given a temporal
data set T , one can use the abstraction algorithm presented in [13] to obtain a discretized
version of T , in which every mutivariate time series becomes a timeline (as explained in
Section 2). The algorithm Temporal ID3 [5] is able to extract a temporal decision tree
that follows the general theory explained in the previous section using the same principles
of entropy and information gain. As time series are represented in the form of timelines,
Temporal ID3 takes decisions of the type 〈X〉(A = a), where A is a discretized attribute and
a is one of the possible propositions that emerged from the discretization, and establishes
the interval relation, attribute, and propositional letter over which the split is performed
according to the entropy principle. In other words, we have:

InfoSplit(A,X, a, T ) =
i=2∑
i=1

|Ti|
|D|

Info(Ti), (17)

where X takes values in X ∪ {eq}, eq being the interval temporal relation that captures the
current interval only, and T1, T2 are computed as explained in the previous section (with
α = 1 and z = 0), and:

InfoAtt(A, T ) = min
X∈X∪{eq},a∈dom(A)

{InfoSplit(A,X, a, T )}. (18)

The algorithm C4.5 [11] is designed to allow ID3 to cope with numerical data. C4.5 uses
exactly the same principles of entropy and information gain introduced for ID3. The main
difference, in the static case, lies in allowing ./ to take values in {≤,=} in propositional
decisions; indeed, if A is numeric, the natural propositional decision is of the type A ≤ a:

InfoSplit(A, a, ./,D) =
i=2∑
i=1

|Di|
|D|

Info(Di), (19)

where ./∈ {≤,=}, and:

InfoAtt(A,D) = min
./∈{≤,=},a∈dom(A)

{InfoSplit(A, a, ./,D)}. (20)

Incidentally, the obtained tree gives a new kind of information, that is, the values of the
splitting points that give the most information. If we consider a temporal data set T , in which
multivariate time series are non-discretized, we obtain a similar result in the temporal case by
simply allowing, as above, ./∈ {≤,=, >}; we may call the resulting algorithm Temporal C4.5.
Observe that, as explained in the previous section, Temporal C4.5 has two new parameters,
that is:

InfoSplit(A,X, a, ./, α, z, T ) =
i=2∑
i=1

|Ti|
|D|

Info(Ti), (21)

where X takes values in X ∪ {eq}, and T1, T2 are computed as explained in the previous
section (but, this time, varying α ∈ (0, 1] and z ≥ 0), and

InfoAtt(A, T ) = min
X∈X∪{eq},α∈(0,1],

0≤z≤Maxz,a∈dom(A)

{InfoSplit(A,X, a, ./, α, z, T )}, (22)

where Maxz must be fixed beforehand.
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Table 1 A summary of resampled datasets from [2].

Dataset Train cases Test cases Channels Length Classes
AtrialFibrillation (AF) 24 6 2 150 3

FingerMovements (FM) 104 26 28 50 2
Libras (LI) 180 45 2 45 15
LSST (LS) 168 42 6 36 14

NATOPS (NA) 96 24 24 51 6
RacketSports (RS) 96 24 6 30 4

SelfRegulationSCP1 (S1) 96 24 6 150 2
SelfRegulationSCP1 (S2) 96 24 7 150 2

UWaveGestureLibrary (UW) 96 24 3 150 8

A working implementation. The open-source learning suite Weka [15] offers the implement-
ation the algorithm C4.5 in Java, called J48. The most important distinctive characteristic
of one specific implementation over the others is the stopping condition; different stopping
conditions may lead to different trees. J48 uses a very intuitive principle: having decided a
minimal purity degree (i.e., a minimal value of Info(D), where D is associated to a leaf), the
base case of the learner is fired on a node if its purity degree is high enough.

Being object-oriented, such an implementation is ideal to test the predictive capabilities
of the trees learned following the schema in Section 3 with minimal (yet, non-trivial)
modifications. As a matter of fact, we can keep the entire structure of J48: model construction,
stopping condition, and training/test performance indicator calculation and displaying. There
are two main modifications required:
(i) input data representation, and
(ii) splitting management.

As far as the first point is concerned, we used an internal representation based on the string
data type, that implicitly assumes that all temporal attributes have the same length and
that there are no missing data. Strings have a simple internal structure, in which each value
is separated from the next one by a semicolon. Splitting, on the other hand, is taken care by
simply building the necessary Java classes that take care of the possible cases. Temporal
J48, as we call the resulting implementation, requires the following parameters in addition to
those already required by J48:
(i) the value of α (which in this first experiment we did not optimized at each decision,

unlike the general theory suggests);
(ii) the value of Maxz;
(iii) the reference intervals policy;
(iv) the subset of the language HS that one allows during the learning phase.

5 Experiments and Results

Data sets. In order to design a first systematic test aimed to establish the predictive
capabilities of Temporal J48, we considered the public temporal data set from [2]. From
it, we have extracted nine data sets, which contain problems that vary from the medical
context, to automatic recognition of sing language words, to classification of different racket
sports based on the movements performed by the athletes. Some adaptations were necessary,
taking into account two aspects:
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Table 2 Test results in terms of accuracy. Underlined results are the best ones in the group, and
starred results are the absolute best ones.

Dataset AF FM LI LS NA RS S1 S2 UW
J48 1, 0, 0, 0 83.33 50.00 40.00 30.95 79.17 70.83 66.67 50.00 66.67
J48 1, 1, 0, 0 83.33 42.31 51.11 30.95 75.00 87.50∗ 66.67 54.17 62.50
J48 1, 1, 1, 1 83.33 42.31 64.44 38.10 62.50 79.17 66.67 62.50 54.17

EDI 83.33 76.92 86.67 42.86∗ 70.83 79.17 66.67 66.67 87.50
DTWI 100.00∗ 65.38 91.11∗ 33.33 87.50∗ 75.00 66.67 66.67 91.67
DTWD 83.33 57.69 91.11∗ 40.48 87.50∗ 83.33 83.33∗ 66.67 95.83∗

T. J48 0.5 66.67 57.69 80.00 23.81 83.33 70.83 83.33∗ 54.17 62.50
T. J48 0.6 66.67 57.69 71.11 26.19 79.17 79.17 66.67 75.00∗ 58.33
T. J48 0.7 66.67 53.85 73.33 23.81 75.00 66.67 66.67 66.67 62.50
T. J48 0.8 83.33 80.77∗ 75.56 26.19 75.00 62.50 66.67 62.50 66.67
T. J48 0.9 66.67 80.77∗ 71.11 23.81 66.67 62.50 66.67 70.83 66.67

(i) the intrinsic computational inefficiency of Temporal J48 compared with existing methods,
due to the substantial amount of information that can be extracted from its results,
and

(ii) the intrinsic unbalance between training and test cardinalities in the original settings
in [2].

We modified the data sets as the result of several initial tests by:
(i) trimming the number of temporal points for those data sets with too long time series,

and, in particular, by limiting all time series to N = 150, and
(ii) re-sampling training and test instances to obtain a more standard 80%− 20% ratio.

The resulting situation is summarized in Table 1.

Experimental settings, results, and discussion. We tested the effectiveness of Temporal
J48 against feature-based and distance-based methods, in terms of test accuracy only. This is
a highly limited comparison, as the major strength of our approach lies in the interpretability
of the (temporal component of the) resulting model, and such a characteristics does not
emerge from a purely numeric performance test. Yet, it is interesting to see how good
Temporal J48 performs against non-interpretable methods. The results are summarized in
Table 2: underlined results are the best ones for the category (feature-based, distance-based,
or symbolic), and starred results are the absolute best ones. As for feature-based models, we
considered the standard J48 executed on three combinations of abstractions of the temporal
data set; for each channel or attribute we computed mean, standard deviation, skewness,
and kurtosis, and we combined them in three different ways, each expressed in Table 2 as a
bit mask. So, for example, J48 with mask 1,1,0,0 means running the standard decision tree
extraction algorithm on a abstracted data set with exactly two attributes per channel, namely
mean and standard deviation. As for distance-based methods, we considered the standard,
open-source available methods EDI , DTWI , and DTWD, which require no parametrization.
Finally, the parameter that we have used for Temporal J48 are: 0.5 ≤ α ≤ 0.9, with 0.1 step,
Maxz = 0, and full HS.

As it can be seen, different temporal data set are best dealt with different approaches. In
five out nine cases distance-based methods behaved best; in one case feature-based behaved
best, using, in particular, only mean and standard deviation. In all other cases, three,
there was a run of Temporal J48 that performed better than every other method. As we
have explained, obtaining the highest accuracy was not our initial motivation; nonetheless,
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comparing our method against the others in terms of (test) accuracy is a good proxy for its
performance. Yet, as a matter of fact, our approach overcame our expectations: we obtained
an interpretable classification model of each of the data sets, and in three cases our model
was also the most performing one, indicating that our approach is worth pursuing further.
In this first experiment we did not examined all possible parametrization that Temporal
J48 offers; in particular, decisions were taken only on the 0-th derivative (so no trends, and
no acceleration/decelerations of trends were taken into account), and the uncertainty value
α was fixed at the same value for all intervals. This suggests that a further analysis of
the predictive capabilities of Temporal J48 may result in even better performances. More
importantly, in some of the cases, Temporal J48 obtained a nearly perfect classification of
some of the classes (i.e., individual ROC curve close to 1); these cases give rise to temporal
formulas (which can be read on the resulting tree) which, in a way, describe those classes
from the temporal logic point of view.

6 Conclusions

In this paper we approached the problem of multivariate time series classification. Existing
methods for classification of multivariate time series present good performances in terms
of accuracy, but the extracted models are not interpretable, in particular in the temporal
component. Distance-based methods are based on the concept of distance between series, and
feature-based methods, while compatible with interpretable classifiers, flatten the temporal
component of the data set. Based on a recently proposed algorithm (Temporal ID3), which is
able to classify previously discretized multivariate time series, we developed Temporal C4.5
and realized its implementation, Temporal J48, following the same principle of describing
time series using interval temporal logic. Temporal J48 is compatible with the well-known
data mining suite Weka.

The initial results show that the interval temporal logic HS is able to correctly describe
the behaviour of multivariate time series. As a matter of fact, the predictive capabilities
of Temporal J48 are comparable with those of existing methods, and superior to them in
some cases, notwithstanding the fact that temporal decision tree models are interpretable
even in the temporal component, and therefore undergo a very constrained learning phase
(unlike non-interpretable methods, which are notoriously more adaptable). This suggests that
temporal symbolic learning may be a promising topic, taking into account that, by examining
the temporal component in an explicit way, several new learning parameters emerge that can
be adjusted to improve the performances of the extracted models. Future developments of
this line include, but are not limited to, exploring the predictive capabilities of variants of the
language HS, and studying the possibility of adapting other well-known symbolic learning
algorithms in the same way.
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A Appendix

Listing 1 One of the Temporal J48 models trained on data set RacketSports.
1 <L> var5 <= −2.756591
2 | <InvA> var5 <= 0 . 3 0 8 9 5 1
3 | | <=> var2 > −0.916901
4 | | | <InvB> var0 <= 2 . 8 3 2 2 4 3 : Badminton_Clear ( 6 . 0 )
5 | | | [ InvB ] var0 > 2 . 8 3 2 2 4 3 : Badminton_Smash ( 1 . 0 )
6 | | [ = ] var2 <= −0.916901
7 | | | <B> var3 <= −0.207743
8 | | | | <InvB> var0 > 4 . 1 1 5 4 2 6
9 | | | | | <D> var0 > 1 . 4 5 2 1 1 3 : Squash_ForehandBoast ( 3 . 0 )

10 | | | | | [D] var0 <= 1 . 4 5 2 1 1 3 : Squash_BackhandBoast ( 1 . 0 )
11 | | | | [ InvB ] var0 <= 4 . 1 1 5 4 2 6
12 | | | | | <InvB> var0 <= −0.215688: Badminton_Smash ( 2 . 0 )
13 | | | | | [ InvB ] var0 > −0.215688: Badminton_Clear ( 3 . 0 )
14 | | | [ B ] var3 > −0.207743: Squash_ForehandBoast ( 1 4 . 0 )
15 | [ InvA ] var5 > 0 . 3 0 8 9 5 1
16 | | <InvB> var5 <= −2.27452
17 | | | <InvA> var0 <= −1.044682: Squash_BackhandBoast ( 3 . 0 / 1 . 0 )
18 | | | [ InvA ] var0 > −1.044682: Squash_ForehandBoast ( 7 . 0 )
19 | | [ InvB ] var5 > −2.27452: Squash_BackhandBoast ( 2 1 . 0 )
20 [ L ] var5 > −2.756591
21 | <A> var0 <= 0 . 0 9 8 7 7 3
22 | | <InvB> var0 > −0.960139
23 | | | <B> var4 <= 0 . 6 2 5 8 9 3 : Badminton_Smash ( 1 6 . 0 )
24 | | | [ B ] var4 > 0 . 6 2 5 8 9 3 : Badminton_Clear ( 1 . 0 )
25 | | [ InvB ] var0 <= −0.960139: Badminton_Clear ( 2 . 0 )
26 | [A] var0 > 0 . 0 9 8 7 7 3
27 | | <L> var4 > 8 . 7 0 3 9 0 1 : Badminton_Smash ( 4 . 0 )
28 | | [ L ] var4 <= 8 . 7 0 3 9 0 1 : Badminton_Clear ( 1 2 . 0 )
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Time series classification methods. We briefly review the literature of time series classi-
fication. We used some of the available techniques, described here, for a comparison against
Temporal J48.

Univariate time series classification is a well-studied problem in the literature; the reader
can refer to [3] for an in-depth analysis on state-of-the-art methods for univariate time series
classification. For the multivariate case, the classical accepted methods in the literature
are feature-based or distance-based. Feature-based methods are very simple to understand
as they are based on extracting numerical or categorical descriptions from each channel.
Such descriptions can be simple statistical values (e.g., mean, minimum, maximum, variance,
skewness) or yes/no values that refer to the presence of certain patterns (e.g., shapelets).
The collection of all descriptions can be then used as input to a classical, static learning
algorithm [16]. In some cases, algorithms can be adapted to natively extract patterns from
the temporal data sets, as it is the case of [4]. The most widely accepted distance-based
methods for multivariate time series classification is the classical Nearest Neighbour (NN)
algorithm [6] equipped with a proper notion of distance. In the univariate case, given two
time series T1 = a1, a2, . . . , aN and T2 = b1, b2, . . . , bN , the Euclidean distance (ED) between
T1 and T2 is simply the sum of the Euclidean distance between each pair (ai, bi). The dynamic
time warping distance (DTW) generalizes such concept by means of an alignment procedure
that consists in constructing a N ×N distance matrix, computed via dynamic programming,
that allows one to find the alignment that minimizes the point-to-point Euclidian distance.
In other words, DTW generalizes the notion of Euclidean distance from single points to single
time series. In the multivariate case, in [14] this notion of distance is further generalized
in two versions, named DTWI (independent DTW) and DTWD (dependent DTW), which
differ by how the different channels are combined into a single distance. Thus, distance-
based multivariate time series classification is traditionally solved via EDI (the independent
multivariate generalization of the Euclidean distance), DTWI , or DTWD. Feature-based
and distance-based methods present similar drawbacks: feature-based extract an explicit
theory of a temporal data set, but such a theory is hardly interpretable, as it is written in
the language of abstract indicators, and non-temporal, as the temporal component plays
no role, while distance-based methods solve the classification problem in a black-box way,
without extracting any symbolic theory at all. So, the methods of both groups are, in a way,
non-interpretable. Finally, using Temporal ID3 (Section 2) to classify previously discretized
multivariate time series can be thought of as a timeline-based classification method. In this
particular taxonomy, Temporal C4.5 is a symbolic time series classification method.

Temporal J48 internal representation. In Figure 3, we see how data are represented in
Temporal J48. Data are abstractly represented as at the top of the figure; the same data
present naturally as a matrix, as at the bottom-left of the figure. Finally, we internally
represent using a string data type, as in the bottom-right of the figure.

A decision tree learned by Temporal J48. Let analyze, more in depth, some of the results
of our test with Temporal J48.

Consider the temporal data set RacketSports (see Section 5), in which each multivariate
time series describes the movements of an athlete playing badminton or squash whilst
wearing a smart watch, which relayed the X,Y, Z coordinates for both a gyroscope and
an accelerometer to a smart phone. More in particular, four classes are identified, two
movements during the activity of playing squash, that is, back-hand boast and fore-hand
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T1 =

 A1 = a1,1, a1,2, . . . , a1,N

A2 = a2,1, a2,2, . . . , a2,N

. . .

C1

T2 =

 A1 = b1,1, b1,2, . . . , b1,N

A2 = b2,1, b2,2, . . . , b2,N

. . .

C2

. . . . . .

A1 A2 . . . C

a1,1 a1,2 . . . C1

a2,1 a2,2 . . . C1

. . . . . . . . . C1

b1,1 b1,2 . . . C2

b2,1 b2,2 . . . C2

. . . . . . . . . . . .

. . . . . . . . . . . .

A1 A2 . . . C

a1,1; a1,2; . . . a2,1; a2,2; . . . . . . C1

b1,1; b1,2; . . . b2,1; b2,2; . . . . . . C2

. . . . . . . . . . . .

Figure 3 Representation of a temporal data set: original data set (top), natural, tabular
representation (bottom, left), and Temporal J48 internal representation (bottom, right).

Table 3 Test performances for the RacketSports data set.

TP FP Prec. Rec. F-M MCC ROC PRC Class
0.66 0.05 0.80 0.66 0.72 0.65 0.80 0.61 Smash, badminton
0.83 0.11 0.71 0.83 0.76 0.68 0.86 0.63 Clear, badminton
0.66 0.00 1.00 0.66 0.80 0.77 0.83 0.75 Fore-hand boast, squash
1.00 0.11 0.75 1.00 0.85 0.81 0.94 0.75 Back-hand boast, squash

boast, and two movement during the activity of playing badminton, that is, smash and clear.
These movements are described by six channels, which contain the values of the sensors
attached for each physical dimension at each moment of time. These variables are codified
as follows: V ar0, V ar1, and V ar2 (resp., V ar3, V ar4, and V ar5) are the gyroscope (resp.,
accelerometer) values for X,Y and Z. Run with α = 0.6 on this data set, Temporal J48
returned the tree in Listing 1, which has, in test phase, the performances shown in Tab. 3.
By focusing on the squash back-hand boast movement only, which has a 0.94 ROC area,
one can extract from Listing 1 a formula of HS, shown in Figure 4, that describes such a
movement along the temporal component. This proves that our model extraction method
allows one to interpret the underlying theory. In opposition, feature-based methods flatten
the temporal component, so while a symbolic theory is extracted, it is not temporal, and
distance-based methods do not extract a theory at all.
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Back-hand boast, squash

Back-hand boast, squash

〈L〉(zacc ≤ −2.756591)

〈Ā〉(zacc ≤ 0.308931)

zgyr ≤ −0.916901)

〈B〉(xacc ≤ −0.207743)

〈B̄〉(xgyr > 4.115426)

[D](xgyr ≤ 1.452113)

[Ā](zacc > 0.308931)

〈B̄〉(zacc ≤ −2.27452)

〈Ā〉(xgyr ≤ −1.044482)

Figure 4 Extracted theory for the movement of back-hand boast during squash.
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Abstract
Streaming systems often use slices to share computation costs among overlapping windows. However
they are limited to instantaneous events where only one point represents the event. Here, we extend
streams to events that come with a duration, denoted as spanning events. After a short review of
the new constraints ensued by event lifespan in a temporal sliding-window context, we propose a
new structure for dealing with slices in such an environment, and prove that our technique is both
correct and effective to deal with such spanning events.
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1 Introduction

Windows have become a pillar of streaming systems. By keeping only the most recent
data, they transform infinite flows of data into finite data sets, allowing aggregate functions.
These aggregates continuously summarize the data, providing useful insights on the data
at a low memory cost. Sliding windows advance across time, and, in many cases, two
successive windows share events, leading to redundancy in computation between consecutive
or intersecting windows. This redundancy can be avoided. Techniques such as slicing allow
to pre-compute aggregates on sub-parts of the windows which can then be shared among
several others.

However, these optimisations, and streaming systems in general, were, up to now, limited
to instantaneous events only, i.e., points in time (denoted PES). In this paper, we extend
streaming systems and their slicing techniques to spanning-event streams (denoted SES)
where events are not assigned to a single point in time but rather to a time interval. This
extension cannot be done trivially, as lifespan of events imposes a cost on slice computations.
Indeed, one spanning event can appear in several slices, which implies that aggregates, such
as the count of events, cannot be deduced from the associated slices.

Figure 1 illustrates this problem, the first window contains five events, while the sum of
events we can deduce from the associated slices is nine. With point events, both the direct
sum of events and the sum from the slices return three.
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2 4 3 3 3 2 1

Events:

Windows with count:

Slices with count: 1 1 1 1 1 1 1

SPANNING EVENTS: INSTANTANEOUS EVENTS:

3

3

3

5

5

3

Figure 1 Slices and windows with point vs. spanning events.

Applications of these spanning events can be found in particular in monitoring systems
dealing with spanning events like telecommunications or transportation. Let us consider a
telecommunication network with spanning events like phone calls, and antennas transmitting
them. Antenna monitoring consists in retrieving, every five minutes, the number of devices
connected to an antenna during the last fifteen minutes. With point events we have either the
connection or disconnection of a device to an antenna as an indicator, but cannot use both
at the same time. With spanning events we can use the phone call interval, hence improving
the accuracy of our metric. In that case, events with device connection, disconnection, or
on-going call, can all three be counted correctly as connected to the antenna.

In this paper, we propose a novel slicing technique designed for SES. This technique
(1) adapts its structure to aggregate functions, (2) changes the workflow for event insertion to
comply with the constraints of event lifespan, and (3) can be plugged into various stream slicer
techniques. In order to do so, Section 2 reviews prior work done in the stream optimization
field. Then, Section 3 provides background information and extends streams and windows to
spanning events. This allows for presenting and extending slice structure to spanning events
in Section 4. In Section 5 we study algorithms and complexity which can be achieved with
this new structure, and experiment with it in Section 6. We conclude in Section 7.

2 Related Work

Commonly, in a stream, data is processed in an append-only continuous flow of point events
which cannot be stored. To compute aggregates on this stream, we need to bound it in time,
which allows for finite data set [2]. This is the rationale for windows. Many window flavors
exist [5, 14] and this paper focuses on temporal sliding windows. These windows have the
particularity to advance with time independently from the stream, using two parameters:
the size or range ω, and the step β which determines how fast the window advances in time.
Overlaps can happen in such windows as soon as ω > β, e.g., a window of size ω = 15 minutes
advancing each β = 5 minutes.

Many techniques have been proposed to improve the performances of sliding windows
on PES systems: buffers, buckets, aggregate trees, slices, and their compositions [21]. Naïve
techniques keep all the events: buffers do just that, whereas Buckets [12] split them into
sets (e.g., one per window). Buckets are especially used for out-of-order processing [13].
With overlapping windows, these methods lead to redundancy in computations as well as to
spikes in the system when aggregates are released. Other techniques improve the system
efficiency with shared computations among windows. Aggregate trees store partial aggregates
in a hierarchical data structure. Slices divide the stream into finite non-overlapping sets
of data, keeping only one aggregate value for each slice, on which the final aggregates are
then computed. Slices can then be shared among windows. Further applicable optimization
techniques depend on the window type used and on the presence of out-of-order events [19, 21].
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In this paper, we are particularly interested in slicing techniques for which inner window
optimizations can be adapted to spanning events, and their specific constraints. Several
methods have been proposed for slices, which differ mainly in the way they create and release
slices. Panes [11] provides a first “naïve” implementation, which partitions the stream into
constant size slices, equal to gcd(β, ω). This technique generates a high number of slices when
the range is not divisible by the step. This led to defining new methods. Pairs [10] creates
at most two slices per step. Compared to Panes, this method reduces by a factor of two
the number of slices [17]. These two techniques allow to deal with out-of-order streams [22].
Cutty [5] starts new slices at the beginning of windows, and final aggregation executes when
needed, without closing any slice, which reduces the number of slices per window by a factor
of two compared to Pairs. However, this comes at a cost and reduces effective bandwidth of
the stream by sending additional events called punctuation which mark each slice start. As
this technique does not separate slices when window ends, it does not allow for out-of-order
events [22]. Last but not least, Scotty [22] takes into account out-of-order events with another
enrichment of the stream that indicates the start of slices as well as the release of windows,
and a system to update slices for which end time has passed when out-of-order events arrive.
It also has the specificity of being able to deal with both sliding and session windows, where
window bounds are defined by activity and inactivity.

These techniques can be further improved with final aggregation techniques. They define
how to merge slice sub-aggregates. Naïve techniques iterate over all the slices (as done in
this communication), however this leads to bottlenecks when computing final results. Other
techniques compensate this by using aggregate trees or indexes, e.g., B-Int [3], FlatFAT [20],
FlatFIT [16], TwoStacks [7], and DABA [18], SlickDeque [17].

3 Preliminaries

3.1 Time, time intervals, and time-interval comparisons
In this paper, we introduce and use time intervals. Time is represented as an infinite, totally
ordered, discrete set (T,≺T), where each time point c is called a chronon [4]. (Discrete)
intervals are expressed with a lower and an upper bound, as pairs (`, u) ∈ T × T with
` ≺T u. By convention, an interval is written as a left-closed–right-opened interval [`, u).
We denote by I ⊂ T × T the set of time intervals. For any t ∈ I, `(t) ∈ t and u(t) /∈ t are
respectively the lower and upper bounds of the interval t. A chronon c can be represented
by the interval [c, c+ 1).

Two intervals can be compared with the thirteen Allen’s predicates [1]. We introduce
three new predicates as a combination of Allen’s base predicates, which will prove useful
hereafter. They are illustrated in Figure 2. Their corresponding formal definitions are:

P∩(a, b) := `(a) < u(b)∧ `(b) < u(a), i.e., time intervals a and b have at least one chronon
in common;
Pa(a, b) := `(b) < u(a) ≤ u(b), i.e., time interval a ends in b, an asymmetric relation;
P→(a, b) := `(a) < u(b) < u(a), i.e., a overlaps and goes beyond b, asymmetric too.

3.2 Spanning-event Stream
Within our SES framework, we consider that each event comes with a time interval, adding the
notion of lifespan to events. Instantaneous events can still be modelled with a single-chronon
interval. We consider that events are received after their ending.

TIME 2020
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(a,b)

: interval can extend further in this direction: interval

a a
b

a
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∩ →P (a,b)P (a,b)P

Figure 2 The three interval comparison predicates used in this paper.

Spanning-event stream (SES) is defined in Equation 1 shown below. Ω corresponds to
any set of values, either structured or not, that brings the contents of each event e ∈ S, and
t is the time interval of an event e. We denote by t(e) this value for an event e.

S = (ei)i∈N with ei = (x, t) ∈ Ω× I (1)

The order of events in the stream obeys the constraint: ∀(e, e′) ∈ S2, e < e′ ⇔
u(t(e)) ≺T u(t(e′)), which means that events are ordered by their end-time. In this paper,
only on-time events are considered. This implies that events are received as soon as their
upper bound is reached, at time u(t(e)). The set of streams is denoted by S.

3.3 Aggregate Functions
In streaming systems, data load often makes it impossible to process data individually by an
end-user application. A common solution is to use aggregates. Many aggregate functions exist,
which can often be studied by categories rather than individually. We use two classifications,
based on their properties about slices and spanning events.

Table 1 presents how common aggregate functions [7, 20] are classified.
One can distinguish several algebraic properties [3, 6, 8, 9, 17] such as: distributive: a

stream can be split into sub-streams and some functions allow to compute an aggregate from
sub-aggregates, e.g., a sum can be computed from a set of sub-sums; algebraic: an aggregate
can be computed from a list of distributive aggregates, e.g., a mean can be computed from
sum’s and corresponding count’s sub-aggregates; holistic: some functions do not belong to
any of the above categories, e.g., median. No constant bound on storage applies for the last
category of functions. This leads to using specifically tailored algorithms. For this reason,
this last category is not studied in this paper.

One can also distinguish among accumulative properties [15]: cumulative: an aggreg-
ate is an accumulation of all the events, e.g., count adds one for each event; selective: an
aggregate keeps only one event, in its original form, e.g., max keeps only the biggest value.
Cumulative functions are sensitive to event duplicates. These do happen as a consequence of
working with SES. Therefore, we shall study these categories separately.

3.4 Temporal Sliding Window with SES
Windows, in general, allow stream computations by dividing the stream into time intervals
of interest where consecutive events can be aggregated. Sliding windows in particular
are associated to a time interval. This time interval is defined in advance thanks to two
parameters: the range ω, and the step β. Window life-cycle goes through several steps:
window creation is triggered when the window lower bound is reached, and window release is
triggered as soon as the upper bound is reached. Between these two triggers, the window
accumulates all the incoming events of interest. At window release, the system computes the
aggregate related to this window.
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Table 1 Classification of most common aggregate functions.

Aggregate function Algebraic property Accumulative property
sum-like count, sum distributive cumulative

mean, standard-deviation algebraic cumulative
max-like max, min distributive selective

argmax, argmin algebraic selective
maxCount, minCount algebraic cumulative

collect-like collect, concatenate (string) holistic cumulative
ith-youngest holistic selective

median-like median, percentile holistic cumulative
ith-smallest holistic selective

We define such a set of windows in Equation 2. Swi is a finite sub-stream of S containing
the events that occurred in window wi, and ti is the time interval, also denoted t(wi).

WS = (wi)i∈N with wi = (Swi
, ti) ∈ S × I (2)

However, SES obliges us to investigate modifications for temporal sliding windows. Firstly,
window creation is not impacted by SES as the bounds of the window, t(w), are independent
from the stream contents. When a new event arrives, it is assigned to the current window.
In contrast, and due to its duration, an incoming event may need to be assigned to past
windows too. Thus, triggering a window release at its upper bound would lead to loosing
events for this window because they are still on-going and will be known only in the future.

To overcome this problem, we introduce a time-to-postpone (TTP). Its role is to delay
the window release, with a trigger now happening at the window upper bound plus the TTP.
Of course, this value needs to be chosen very carefully as long-standing events could still
arrive after the TTP. Several ways exist to define this value, from a fixed user-defined value
to an evolving value continuously learned by the system. Accurate definition of the TTP
is outside of the scope of this paper, as our topic here is centered on slicing optimizations.
Hence we only consider the simplest case of a pre-assigned TTP larger than the largest event
expected. With this delay, an event can now be taken into account by any unreleased window.
Event affiliation to a window is defined accordingly to the intersection predicate P∩ from
Section 3.1.

4 Slices

4.1 Point-event Slices
Slicing techniques divide windows into slices into which events are kept in the form of
continuously updated sub-aggregates. These sub-aggregates are then combined in order to
compute the window aggregate. Advantages of slices are numerous: (1) they limit memory
usage by requiring only one aggregate per slice instead of buffering all the events, and (2) they
reduces spikes in the system at window release since only partial aggregates need to be
computed, and (3) they allow for computation sharing among windows [5, 11, 22].

We define a sequence of slices in Equation 3. φ ∈ Φ is an internal slice structure that
stores the partial aggregate value, and t is the slice interval, also denoted by t(γ). The
internal slice structure φ changes depending on the aggregate function used, e.g., sum would
keep a sum for each slice, whereas mean would keep a sum and a count. A list of internal
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structures for all common aggregate functions can be found in [20].

ΓW,S = (γi)i∈N with γi = (φ, t) ∈ Φ× I (3)

Slices obey two properties. They ensure that ΓW,S is a time partitioning of the stream S,
w.r.t. a family window W . These properties are:
P1 ∀(i, j) ∈ N2, i 6= j → ¬P∩(t(γi), t(γj)): two slices cannot overlap;
P2 u(t(γi)) = `(t(γi+1)): two successive slices meet, in Allen’s meaning.

To use our slices, we adopt the incremental aggregation method introduced by Tang-
wongsan et al. [20] and re-used in [21]. This approach is based on three functions. They are
illustrated in Figure 3, and informally described as follows:

lift : S → Φ transform events for a future insertion in slices. It is used when an event
arrives in the system, and transforms it into the internal slice structure.
combine : Φ2 → Φ gathers two slices internal structures into a new one. This operation is
used both at event insertion and at window release, as shown in Figure 3.
lower : Φ→ Agg: computes the final aggregate from a slice internal structure, in order to
actually release a window.

AT NEW EVENT: AT WINDOW RELEASE:

: Point Event

lift

combine

update
lowercombine combine

window size

: Internal Slice Structure

: Final Aggregate

: from event, : from slice, : after combine

: Slice

( )

Figure 3 Usage of functions lift, lower and combine to insert events and release aggregates in
PES.

As an example, we want to know, every 5 minutes, the number of device disconnections
and the maximum call duration for an antenna for the past 15 minutes. For such a query, the
slice structure would consist of partial counts and max. An illustrated scenario is as follows:

In the initial structure, n represents the partial counts, and max the partial maximums
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time
n

max

0 5 10 15 20 25 30 35

When a new event with a call duration of 18 minutes arrives at time 34, then:
The event is transformed by lift, giving (n = 1,max = 18);
This lifted event is combine’d to the last slice, as illustrated below.
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time
n

max
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Finally, at window release, we apply two final steps:
We use combine incrementally for the first three slices. A first combine is applied on
the two first slices and gives (n = 27,max = 63). Then a second combine on the
previous result and third slice results in (n = 42,max = 63).
We apply lower to output a count of 42 and a maximum of 63.
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4.2 Spanning-event Slices
Now, we have to adapt slicing technique to SES. With spanning events, one event can find
itself in several slices as shown in Figure 1, which is not the case for point events since slices
are non-overlapping. Hence, the first adaptation is to give the possibility to update several
slices during the insertion, at the combine level. However, this quickly leads to a duplication
problem which we need to leverage. As their sensitivity to duplication varies, we shall study
selective and cumulative aggregate functions separately.

4.2.1 Selective Aggregate Functions
The former is the simpler. With selective functions, e.g., max, duplication of events is not
a problem, as only one event is kept. Hence, we can mostly compute selective aggregate
functions with the same slice structure used with point-event streams. Figure 4 illustrates
the slicing workflow for selective aggregate functions. We can see that only the combine step
at event insert-time is modified. Now, all the slices that have a non-empty intersection with
the event need to be updated, not only the last one.

: Internal Slice Structure

AT NEW EVENT: AT WINDOW RELEASE:

lift

combine

update

window size

: Spanning Event : Final Aggregate

Event intersects 4 slices

: from event, : from slice, : after combine

lowercombine combine

: Slice

( )

Figure 4 Usage of functions lift, lower, and combine to insert events and release aggregates in
SES with selective aggregate functions.

Back to our example, we keep the selective function part and compute the maximum call
duration with SES as follows:

In the initial structure, the partial maximums are associated to each slice.

20 63 19 33 12 47 14

time 0 5 10 15 20 25 30 35

max

When a new event arrives, say a call duration of 18 minutes at time 34:
The event is lift’ed into (18);
This lifted event is combine’d to each related slice, the last four slices here.

20 63 19 33 18 47 18

time 0 5 10 15 20 25 30 35

max

Finally, at window release, we apply the two final steps:
We use combine for the three first slices. This gives (63) after the first combine, next
(63) again after the second one.
We apply lower to output a maximum of 63.

4.2.2 Cumulative Aggregate Functions
Cumulative functions accumulate the data, hence they are sensitive to event duplication
among slices. To compensate for this problem, we duplicate the internal structure, as shown
in Equation 4. We propose the (φ, ϕ)−structure to distinguish between events that end
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in the slice, defined with Pa(t(e), t(γ)), from events that follow after the slice, defined by
P→(t(e), (t(γ)). To show that our extension performs the expected computations, it is worth
to note that P∩ = Pa ∨P→ and Pa ∧P→ = ⊥. In other words, an event that overlaps a
given time interval, either finishes inside its time range or goes beyond.

ΓW,S = (γi)i∈N with γi = (φ, ϕ, t) ∈ Φ2 × I (4)

The aggregation process uses modified versions of the lift, combine, and lower operators as
described in Section 4.1. This is illustrated in Figure 5. A formal definition of these modified
versions is given in Table 2. The new functions operate in the following way:

lift∗ : S, I→ ΓW,S : classifies each event to the (φ, ϕ) slice structure. To select which part
will be initialized the Pa and P→ conditions are used, resp. for φ and ϕ. Each event is
eligible to only one of them, and the non-eligible part is let empty. Basically, as one can
see in Figure 5, the last part of the event will contribute to the φ part of the last slice,
and to the ϕ part of all other intersecting slices. This implies that the lift∗ operation
depends on the interval of the slice, and should be computed for each slice;
combine∗ : Γ2

W,S → ΓW,S : behaves differently depending on the moment it is triggered.
When combine∗ is triggered at event insertion, it will rely on the raw combine operator
from [20] to update as much φ as ϕ. We can however note, as shown in Figure 5, that
only one of them will be updated as the event cannot contribute to both at the same
time during the lift∗ phase. When combine∗ is triggered at window release it will ignore
the ϕ part of the oldest slice to prevent event duplication. We are sure that an event in ϕ
will contribute to the next slice, either in φ or ϕ. Hence keeping only the more recent ϕ
ensures us neither to duplicate the event nor to forget it. This behavior can be seen in
Figure 5 where, at each combine∗, only the ϕ of the most recent slice is kept.
lower∗ : ΓW,S → Agg: merges the distinct parts φ and ϕ to provide the exact aggregate
value.

AT NEW EVENT: AT WINDOW RELEASE:

lift*

combine*

update lower*

window size

Event intersects 4 slices

2

combine*
3

combine*

: empty: Internal Slice Structure

: Spanning Event : Final Aggregate

: from event, : from slice, : after combine,

: Slice

( )

1 2 3

Figure 5 Usage of functions lift∗, lower∗ and combine∗ to insert events and release aggregates in
SES with cumulative aggregate functions. The Internal structure is duplicated to keep track of: the
events which end in the slice φ on the left, and the events which end after the slice ϕ on the right.

As neither event duplication nor omission are possible with the (φ, ϕ)−structure we claim
that all popular cumulative aggregate functions can be used with this new structure.

We continue our example with the cumulative function part, and use these new functions
to count the number of devices connected to an antenna with spanning events.
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In the initial structure, φ and ϕ represent partial counts.
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When a new event arrive, the phone call with a duration of 18 minutes at time 34:
The event is transformed with lift∗ into (φ = 1, ϕ = 0) for the most recent slice, whereas
it gives (φ = 0, ϕ = 1) for the three previous slices;
This lifted event is combined with each related slice, which are the last four slices.
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Finally, at window release, we apply the two final steps:
We use combine∗ for the three first slices. This gives (φ = 27, ϕ = 18) after the first
combine∗, then (φ = 42, ϕ = 12) after the second.
We apply lower to output a (correct) count of 54.

Table 2 Extension (∗−form) of slice operators to the (φ, ϕ)−structure for SES.
lift∗(e : S, t : I)→ (φ, ϕ, t) : ΓW,S lower∗((φ, ϕ,_) : ΓW,S)→ y : Agg

φ = lift(e) if Pa(t(e), t) else 0Agg y = lower(combine(φ, ϕ))
ϕ = lift(e) if P→(t(e), t) else 0Agg

combine∗((φa, ϕa, a) : ΓW,S , (φb, ϕb, b) : ΓW,S)→ (φ, ϕ, a ∪ b) : ΓW,S
assert u(a) = `(b) or u(b) = `(a) or a = b

φ = combine(φa, φb)
ϕ = combine(ϕa, ϕb) if a = b else ϕmax{a,b}

5 Stream Slicer

5.1 Algorithms applicable to SES
We are now able to insert events into slices in order to compute correctly window aggregates
from the slices. Next, we need a system able to create such slices from the window parameters
and the stream. We saw that for sliding windows several such systems already exist to
address PES. However one of our requirements is to be able to update past windows, i.e.,
windows for which their upper bounds are located in the past. Therefore, in our stream slicer
each window end must coincide with a slice end. For this purpose, the algorithms Panes [11]
and Pairs [10] are good candidates, while Cutty[5] is unsuitable. However, Panes creates twice
as much slices than Pairs. As the goal of a stream slicer is to produce as few slices as possible,
in order to reduce insertion and release costs [22], Pairs is more appropriate. Scotty [22]
produces slices for each new window start or end, which makes the method equivalent to
Pairs. Hence, we shall use the Pairs technique in this paper.

5.2 Slicing Algorithms
For this section we consider cumulative aggregate functions, and each entering event is
directly transformed into our aggregate (φ, ϕ)-structure, as defined in Section 4.2.

We use the Pairs technique to separate our input stream into slices. It creates up to
two slices per step where the first slice is of size |t(γ1)| = ω mod β and the second one of
size |t(γ2)| = β − |t(γ1)|. This leads to nβ = 2 slices per step if ω mod β > 0 else 1, and
nω = d2ω/βe slices per window if ω mod β > 0 else dω/βe.
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Our slice-based SES aggregation process, as exposed in Algorithm 1, uses “an-event-at-a-
time” execution model. In this algorithm, one considers τ ∈ T as the clock, i.e., an infinite
time counter starting from 0T. The nω and nβ values are initialized (line 3 - init_nb_slices)
with the above formulas. The tests for the window start and end times (resp. lines 5 and
7) are performed with a T−mark incremented by β each time it is reached. δ corresponds
to the TTP and delays window release. read_stream(S, τ) (line 9) retrieves the event e at
current time τ if it exists, or nothing. add_slices in Algorithm 2 creates the missing slices
for a new window, the total size of which is β. release_window in Algorithm 3 combines
nω slices, corresponding to all the slices in a window, and then lowers the results to release
a final aggregate. It also deletes the first nβ slices (line 4), to advance the slices structure
in time of a size β. insert_event in Algorithm 4 insert the event in each applicable slice,
starting with the more recent, and stopping as soon as it reaches a non intersecting slice.

Algorithm 1 SES Slice Aggregation.
input :S ∈ S, ω ∈ N, β ∈ N, δ ∈ N

1 τ : T← 0T
2 Γ : List<(Φ,Φ, I)> as Slices ← ()
3 nω,nβ : N2 ← init_nb_slices(ω, β)
4 while True do
5 if window_begins_at(τ) then
6 add_slices(Γ, τ, ω, β)
7 if window_ends_at(τ − δ) then
8 release_window(Γ,nω,nβ)
9 if e← read_stream(S, τ) then

10 insert_event(Γ, e)
11 τ ← τ + 1

Algorithm 2 add_slices.
input : Γ ∈ Slices, τ ∈ T, ω ∈ N, β ∈ N

1 if ω mod β > 0 then
2 add (0, 0, [τ, τ + ω mod β[) to Γ
3 add (0, 0, [τ + ω mod β, τ + β[) to Γ

Algorithm 3 release_window.
input : Γ ∈ Slices, nω ∈ N,nβ ∈ N

1 γ : (Φ,Φ, I)← Γ[0]
2 for i ∈ [0,nω[ do
3 γ ← combine∗(γ,Γ[i])
4 delete slice 0 to nβ −1 from Γ
5 print lower∗(γ)

Algorithm 4 insert_event.
input : Γ ∈ Slices, e ∈ S

1 i : N← |Γ | − 1
2 γ : (Φ,Φ, I)← ⊥
3 while P∩(t(e), t(Γ[i])) ∧ i ≥ 0 do
4 γ ← combine∗(γ, lift∗(e, t(Γ[i])))
5 i← i− 1

5.3 Complexity Analysis
We now compare complexities between the Buckets method and the slicing one. Results are
shown in Table 3, for each of the functions given in Algorithms 2, 3 and 4.

The Buckets method allocates one bucket per window. Then, it stores all the N events
intersecting a window to its associated bucket. We here store the events in their original
form, withtout any pre-aggregation as in the Tuple Buckets technique [21]. The events are
hence duplicated for each bucket of every non-closed window they are in. The number of
such windows depends on the TTP δ, and is dδ/βe. Then, the aggregate is computed from
all the N events in the bucket, only at window release. No sharing can improve complexities
in this case.

The slicing technique on the other hand create two slices per step. Initially the cost per
window of adding slices is the number of slices per window, 2dω/βe. Nonetheless, because
the slices are shared among windows, the cost of adding slices is shared too, one slice being
used in dω/βe windows. This leads to a cost of 2 per window for slice addition.

Event insertion in SES has initially a worst case complexity in 2 · O(dω/βe ·N) because
all slices could receive all events. However, we assume that most of the time, event size is
smaller than the window size. Hence the event needs not be inserted to all slices of a window,
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and we prefer to consider the average event size µe to analyze the number of impacted slices.
The complexity becomes then 2 · O(dµe/βe ·N) Again, slice sharing allows us to reduce the
cost, which becomes 2 · O(dµe/ωe · N) with an upper bound in 2 · O(N). The best-case
complexity is in O(N/dω/βe) when each event is inserted into only one slice. Hence the
behavior of event insertion varies depending on the size of the events.

The final aggregate computation represents the main improvement of our slicing technique,
with a complexity depending only on window parameters. The complexity of window release
is there reduced from the number N of events to the number 2dω/βe of slices per window,
i.e., a constant value.

Finally, we can note that, when ω mod β = 0, only one slice is created per step and all
complexities are divided by two (see Table 3).

Table 3 Complexity overview (time cost per window), w.r.t. N , the number of events in a window.

Algorithm add_slices release_window insert_event
Buckets ∅ N N

SE-Slices (ω mod β > 0) 2 2dω/βe 2dµe/ωe ·N
SE-Slices (ω mod β = 0) 1 dω/βe dµe/ωe ·N

The space complexity per window is also greatly improved by the slicing technique.
Buckets keeps all then events and hence has a space complexity in O(N). In contrast, our
slicing technique keeps only one pre-aggregate for each slice, with a complexity in O(dω/βe),
and only in O(1) when taking slice sharing into account. Notice that if the size is reduced, it
also becomes bounded with the slicing technique.

6 Experiments

6.1 Experimental Setup

This series of experiment intends to demonstrate the performance improvements with slices
compared to buckets. Throughput in these experiments is achieved by letting the program
absorb as many events as it can.

Data Set. We used two data sets. Firstly, a generated data set where each event size is
determined by a random number generated with a normal distribution (µ is given as average
event size parameter, σ = 10). The system creates a non-delayed stream with one event
per chronon, totalling 2M events. Next, the SS7 data set replays a real-world telephony
network with one minute of anonymized data containing a stream of 3.2M events. Each
event contains 119 fields from which we extract the start and stop times to generate event
intervals. δ represents the TTP.

Aggregates. For each window we computed three aggregates: two cumulative functions,
namely count and sum, and one selective function, max.

Setup. All experiments were executed on a single core Intel(R) Core(TM) i7-8650U
CPU @ 1.90GHz with 16 GB of RAM under Linux Debian 10.

Implementation. Implementation has been coded in modern C++. Algorithms for the
slicing method SE-Slices are shown in Section 5.2 for count and sum. max uses a similar
algorithm, with a non-duplicated slice structure. For Buckets, we only store event pointers.

TIME 2020
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6.2 Results
As expected from the complexity review, and as illustrated in Figure 6a, event size has an
impact on throughput, for both methods, with SE-Slices performing better than Buckets in
all cases. The smaller the event, the best SE-Slices performs. SE-Slices shows an increase in
performance for all step sizes when ω mod β = 0 (see Figure 6b). In particular, a significant
improvement appears for smaller steps (as long as they are not too close to one), which
shows SE-Slices advantage with overlapping windows. When ω mod β > 0, as in Figure 6c,
performance improvement is smaller due to the increase in complexity, but slices still perform
better than buckets. With real data, and for all window sizes, SE-Slices performs at least
40% better than Buckets (see Figure 6d). In summary, all the experiments show significant
improvement in using the slicing technique compared to the bucket one.
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Figure 6 Throughput metrics comparing slices and bucket techniques.

7 Conclusion

This article extends the problem of aggregate sharing among overlapping windows to spanning-
event streams (SES for short). Dealing with spanning events brings new constraints, since
events intersect the on-going window as much as past windows. Concerning slicing techniques,
dealing with SES implies that adjacent slices can both contain the very same event. Hence,
operations sensitive to duplication would provide inaccurate results, and common slicing
techniques cannot not be used directly.

Therefore, we extended slicing structures and algorithms depending on the properties
of the aggregate functions. When functions are insensitive to event duplicates, we keep the
structure and workflow previously used with point events, with a difference however. At
event insertion, we update all the intersecting slices instead of only the last one. When
functions do have this sensitivity, we duplicate the structure to separate events that ends in
the slice from the ones that continue afterwards.



A. Suzanne, G. Raschia, J. Martinez, and D. Tassetti 10:13

As expected from complexity analyses, slicing techniques with spanning events are
computationally more costly than with point events, but they stay, in average, lower than
with the buckets technique. Nevertheless, experiments show that the use of slices with
spanning events results in significant improvements in throughput. However, when the range
is not divisible by the step, performances are only slightly better than with simpler techniques,
such as the bucket approach. Hence more advanced techniques need to be experimented in
order to circumvent this limiting constraint. Our structure would be of great interest for all
techniques which purpose is to partially aggregate spanning events. Eventually, the impact
of out-of-order event streams should be studied in our framework.
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Abstract
A Conditional Simple Temporal Network with Uncertainty and Decisions (CSTNUD) is a formalism
that tackles controllable and uncontrollable durations as well as controllable and uncontrollable
choices simultaneously. In the classic top-down model-based engineering approach, a designer builds
a CSTNUD to model, validate and execute some temporal plan of interest. Instead, in this paper,
we investigate the bottom-up approach by providing a deterministic polynomial time algorithm to
mine a CSTNUD from a set of execution traces (i.e., a log). This paper paves the way for the design
of controllable temporal networks mined from traces that also contain information on uncontrollable
events.
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1 Introduction

Temporal networks are a possible framework to model temporal plans and check the coherence
of their temporal constraints imposing delays and deadlines between the occurrences of pairs
of events in the plan [7]. The main components of a temporal network are time points and
constraints. Time points are real variables modeling temporal events. Executing time points
means to assign them real values to fix “when” the corresponding temporal events occurred.
Constraints are linear inequalities imposing minimal and maximal temporal distances between
pairs of time points.

Over the years the core formalism of Simple Temporal Networks [7] has been extended
in several ways to cope with uncontrollable durations [17], uncontrollable and controllable
choices [5, 13] and, more recently, with combinations of them (see, e.g., [3, 11, 12, 18, 19]).
The most expressive formalisms of temporal networks are those that simultaneously handle
all such features. Moreover, such formalisms give rise to several, different, taxonomies in
which sub-formalisms belonging to them can be ordered by expressive power. As a result,
solving any problem for a top-level formalism (e.g., checking consistency or controllability)
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results in solving the same problem for every sub-formalism in the corresponding hierarchy.
Conditional Simple Temporal Networks with Uncertainty and Decisions (CSTNUDs, [19, 22])
is a recent formalism tackling controllable and uncontrollable durations as well as controllable
and uncontrollable choices simultaneously. CSTNUDs define a hierarchy of temporal networks
in which any combination of features can be considered by focusing on the corresponding
sub-formalism.

Like any model-based engineering approach, creating a temporal network is a complex,
time-consuming, and error-prone task, where typically discrepancies between the actual
process and the obtained network might eventually emerge asking the designer for refinement
or abstraction of the model being created. This is a top-down, trial-and-error approach.
Instead, the opposite, bottom-up, approach is known in the literature under the name of
process mining and it aims to mine (i.e., synthesize) process descriptions (or, more reasonably,
model approximations) from execution traces (i.e., process logs).

A trace formalizes a run of a process, and the set of all available traces can be thought
of as a log of a process carried out many times by humans that base their actions on their
experience only. As a result, since such actions may not follow any particular rule, we have
no guarantee of consistency or controllability of the underlying process overall. One of the
first contributions in process mining is that of Agrawal, Gunopulos, and Leymann [1], but,
after this seminal work, many others have come by focusing on different process description
languages [6, 8, 14, 15, 16]. However, to the best of our knowledge, the problem of mining
temporal networks subject to uncontrollable parts has not received particular attention.
Despite the current trend in process mining calls for machine learning techniques, we shall
see that the well-founded mathematical structure of temporal networks allows us to solve
this problem correctly and efficiently, because of a strong underlying monotonicity.

Contribution. We provide a deterministic polynomial time algorithm to mine a CSTNUD
from a finite set of execution traces. By construction, every trace in the set will satisfy
the constraints of the mined CSTNUD, therefore the CSTNUD is correct, complete and
significant, meaning that every temporal event, (un)controllable duration and (un)controllable
choice belonging to some processed trace occurs in it.

Organization. Section 2 discusses background and related work. Section 3 adapts CSTNUDs
for the purpose of this paper. Section 4 defines the problem of mining significant CSTNUDs
and provides a correct algorithm for it. In Section 5 we conclude by summing up and
discussing future work.

2 Background and Related Work

Simple Temporal Networks (STNs) [7] model fully controllable and non-disjunctive temporal
plans but they cannot deal with (un)controllable choices nor with uncontrollable durations.
To bridge such gaps some extensions were put forth over the years. Simple Temporal Networks
with Uncertainty (STNUs) [17] extend STNs with uncontrollable (but bounded) durations
by means of contingent links. A contingent link consists of an activation (time) point,
whose execution is under control, a contingent (time) point, whose execution is not, and a
closed interval specifying the minimal and maximal duration of the link. Conditional Simple
Temporal Networks (CSTNs) [10] (formerly, Conditional Temporal Problem (CTP) [13])
extend STNs with uncontrollable choices. Constraints are labeled by sets of consistent literals
over a finite set of uncontrollable Boolean variables, or booleans, which describe when the
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(a) A hierarchy of STNs.

A B C D
[1, 2]

{} : −1

{} : 1
{c} : 2
{d} : 1

{¬c} : −3
{¬d} : −4

(b) CSTNUD.

Figure 1 Hierarchy (left) and an example of CSTNUD (right). STNDs, STNUDs and CSTNDs
are further frameworks implicitly arising from CSTNUDs. Any acronym speaks for what the
corresponding framework supports: “C” (uncontrollable choices), “D” (controllable choices), “U”
(contingent links).

components labeled by them are relevant for an execution. The truth value assignments
to these booleans are out of control and take place upon the execution of specific time
points. Initially, labels were on both time points and constraints but later it was proved
that having labels on constraints only does not limit the expressiveness of the network [2].
Temporal networks with labels on constraints only are called streamlined. Conditional Simple
Temporal Networks with Uncertainty (CSTNUs) [9] merge STNUs and CTPs/CSTNs, whereas
Conditional Simple Temporal Networks with Uncertainty and Decisions (CSTNUDs) [19, 22]
extend CSTNUs with controllable choices (i.e., controllable booleans). Figure 1a shows the
hierarchy of CSTNUDs. Figure 1b gives an example of CSTNUD that we discuss in Section 3.
Other formalisms were built on top of STNs (e.g., [3, 5, 11, 12, 18]) but are not employed in
this work.

Process mining has been approached by several authors. Agrawal, Gunopulos and
Leymann first introduced the problem of producing a process description from unstructured
executions in a log [1]. Cook and Wolf investigated similar issues in the context of software
engineering processes [6]. They described three methods for process discovery: one based on
neural networks, one based on a purely algorithmic approach, and one based on a Markovian
approach. In particular, in the second approach, they built a finite state machine where
states are fused whenever their futures (in terms of possible behavior in the next k steps)
are identical. In [8], Herbst addresses the issue of process mining in the context of workflow
management using an inductive (machine learning based) approach. Finally, in [14], Van
Der Aalst proposes an algorithm to extract a workflow network from logs of a hospital. The
results of the experiments highlight that the proposed method can discover processes whose
underlying models are acyclic and sound workflow nets, involving parallel, conditional and
sequential workflow blocks.

3 Conditional STNUs with Decisions

When uncontrollable parts are supported, the corresponding planning and scheduling problem
modeled by the underlying network can be seen as a two-player game between Controller
(representing the executor) and Nature (representing the environment). Controller executes
controllable time points and assigns truth values to controllable booleans. Nature does the
same for uncontrollable time points and uncontrollable booleans. Controller aims to satisfy
all constraints. Nature aims to have Controller violate at least one of them. In other words,
we are the Controller and everything else is Nature.

TIME 2020
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I Definition 1. A Conditional Simple Temporal Network with Uncertainty and Decisions
(CSTNUD) is a tuple 〈T ,B, TB , β,L, C〉, where:
T = TC∪̇TU = {A, . . . , Z} is a finite set of time points disjointly partitioned in control-
lable time points (those executed by Controller) and uncontrollable time points (those
executed by Nature), respectively.
B = BC∪̇BU = {a, . . . , z} is a finite set of booleans disjointly partitioned in controllable
booleans (those assigned by Controller) and uncontrollable booleans (those assigned by
Nature), respectively.
TB ⊆ TC is the set of controllable time points having booleans associated according to β.
β : TB → B is a bijection assigning to any A ∈ TB the boolean β(A). Once a time point
A ∈ TB is executed, the truth value of β(A) is set by Controller (if β(A) ∈ BC) or by
Nature (if β(A) ∈ BU ).
L is a set of contingent links each having the form (A, `, u,B) where A ∈ TC , B ∈ TU ,
`, u ∈ R with 0 < ` ≤ u. Once A is executed by Controller, B is executed by Nature
guaranteeing that the temporal distance between A and B falls in [`, u]. Contingent links
do not share uncontrollable time points.
C is a set of temporal constraints having the form S : B −A ≤ k, where S, the label of
the constraint, is a consistent set of literals over B, B,A ∈ T and k ∈ R. Many temporal
constraints Si : B − A ≤ ki may be defined for the same pair of time points (w.r.t. the
same direction1) provided Si is different. Any pair S1 : B −A ≤ k1 and S2 : B −A ≤ k2
with S1 = S2, implies S1 : B−A ≤ min{k1, k2} (tightening). Temporal constraints labeled
by S = ∅ are unconditional (i.e., they must always hold). Those labeled by S 6= ∅ are
conditional: they hold only if all literals in S are satisfied by the truth value assignment
to the booleans.

Definition 1 differs from that given in [19] as follows. First, our CSTNUDs are streamlined.
Second, we allow the intervals of contingent links to be a single point; despite this resembles
no uncertainty, it is an extension that does not break the current semantics (we just know
what Nature will do in that case). Third, we no longer differentiate between observation and
decision time points2 but we just focus on controllable and uncontrollable booleans.

We graphically represent a CSTNUD as a directed graph whose set of nodes coincides
with the set of time points and whose set of edges divides in double and single edges. A
double edge A ⇒ B labeled by [`, u] models a contingent link (A, `, u,B). A single edge
A→ B labeled by S : k models a temporal constraint S : B − A ≤ k. Figure 1b shows an
example of CSTNUD where we highlight uncontrollable parts in red. This network contains
three controllable time points A,C,D, one uncontrollable time point B, one contingent link
(A, 1, 2, B), a controllable boolean d associated to D, an uncontrollable boolean c associated
to C, two unconditional temporal constraint ∅ : C − B ≤ 1 and ∅ : B − C ≤ −1 and
four conditional ones {¬c} : C − D ≤ −3, {¬d} : C − D ≤ −4, {c} : D − C ≤ 2 and
{d} : D − C ≤ 1. A few problems are associated to CSTNUDs. For example, when BU and
TU are both empty, the network does not have uncontrollable parts; in this case, we may
ask whether the network is consistent. On the other hand, when at least one among BU

and TU is nonempty, then the network has at least one uncontrollable part, and consistency
is no longer a well-defined problem. In this case, we worry about controllability, that is,

1 Regardless of S and k, a constraint on a pair of time points A,B has two possible “directions”:
S : B −A ≤ k and S : A−B ≤ k.

2 Historically, time points associated to controllable (resp., uncontrollable) booleans were called decisions
(resp., observations).



G. Sciavicco, M. Zavatteri, and T. Villa 11:5

if we can find an execution strategy for the CSTNUD, according to different assumptions
on Nature’s behavior. Given a CSTNUD Z = 〈T ,B, TB , β,L, C〉, we say that a (partial)
mapping t : T → R assigning real values to the time points is a schedule if it enforces that
for each (A, `, u,B) ∈ L, if B ∈ dom(t), then A ∈ dom(t) and t(B) ∈ [t(A) + `, t(A) + u].
Furthermore, let P be a consistent set of literals over B, that is, a (partial) instantiation of
truth values to the booleans of a network. We call 〈P, t〉 a model. 〈P, t〉 is total iff dom(t) = T
and for each a ∈ B either a or ¬a is in P.

I Definition 2. Let Z = 〈T ,B, TB , β,L, C〉 be a CSTNUD. We say that the model 〈P, t〉
satisfies a network Z (in symbols, 〈P, t〉 |= Z) if and only if for each S : B − A ≤ k ∈ C,
whenever S ⊆ P and A,B ∈ dom(t), then t(B)− t(A) ≤ k.

I Definition 3. Let Z = 〈T ,B, TB , β,L, C〉 be a CSTNUD. We say that:
Z is weakly controllable if whenever Nature tells Controller (before starting the execution)
what durations and truth values she is going to assign to contingent links and uncontrollable
booleans, Controller can generate a schedule and a consistent set of literals that contain
the information given by Nature and satisfy all constraints.
Z is strongly controllable if Controller can find a unique schedule for controllable time
points and a unique consistent set of literals over controllable booleans that will satisfy all
constraints regardless of any possible extension that Nature can provide for uncontrollable
time points and uncontrollable booleans.
Z is dynamically controllable if Controller can dynamically generate a schedule over
controllable time points and a consistent set of literals over controllable booleans depending
on which extension Nature is providing for uncontrollable time points and uncontrollable
booleans.

The CSTNUD shown in Figure 1b is weakly, dynamically but not strongly controllable.
We provide an example of dynamic execution strategy. Controller executes A at 0. Then,
Nature executes B at a time falling in [1, 2]. After that, Controller executes C exactly 1 after
B and Nature chooses a truth value for c. If c is true, then Controller executes D within 1
after C and assigns true to d. If c is false, then Controller executes D after 4 since C and
assigns false to d.

4 Mining Significant CSTNUDs

As we explained in Section 2, a CSTNUD models a temporal plan in a compact way. The
problems that are associated with a network allow one to study intrinsic properties of the
network itself. In real-world cases, often the network is not given, but, on the contrary, it
must be hand-craftily designed. In this section, we approach this problem: given a finite set
of execution traces (e.g., a log) of the underlying temporal plan, we solve the problem of
automatically mine a “good” CSTNUD that describes it.

I Definition 4. A trace τ is a sequence of these statements:
A = tA, where tA ∈ R≥0. This statement models the execution of a controllable time
point A at time tA.
B(A) = tB, where tB ∈ R≥0. This statement models the execution of an uncontrollable
time point B at time tB whose corresponding activation is A (contingent link).
a! (resp., ¬a!). This statement models that the controllable boolean a was assigned true
(resp., false).
a? (resp., ¬a?). This statement models that the uncontrollable boolean a was assigned
true (resp., false).

Controllable and uncontrollable booleans are identified by the suffixes ! and ?, respectively.
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The following are example of traces:
τ1: Z = 0, A = 0, ¬a?
τ2: Z = 0, A = 0, ¬a?, E(A) = 5
τ3: Z = 0, A = 0, a?, B = 2, b!
τ4: Z = 0, A = 0, a?, C = 1, B = 2, ¬b!, D = 4
τ5: Z = 0, B = 0, b!, C = 2, E(A) = 2, A = 3, a?, D = 4
τ6: Z = 0, A = 0, a?, B = 1, b!, C = 4, D = 6, E(A) = 7
τ7: Z = 0, A = 0, a?, D = 5, B = 5, ¬b!

I Definition 5. A trace τ is well-defined if it is finite, starts with Z = 0, and:
Any time point (resp., any boolean) appearing in τ is assigned a real value (resp., truth
value) exactly once.
If B(A) = tB appears in τ , then A = tA appears in τ before B(A) = tB.
If any of a!,¬a!, a?,¬a? appears in τ , then the statement appearing immediately before it
is A = tA, meaning that β(A) = a, whereas that appearing immediately after it (if any) is
either A′ = tA′ or A′(A′′) = tA′ .
If a statement B = tB (or B(B′) = tB) appears after a statement A = tA (or A(A′) = tA),
then tB ≥ tA.

I Definition 6. A pair of traces is coherent if and only if:
Any time point appearing in both traces is of the same type, and, if such a time point is
uncontrollable, then it also refers to the same activation.
Any boolean appearing in both traces is of the same type, and it is associated to the same
time point.

A set of traces is coherent if every pair of traces in it is coherent.

I Definition 7. A CSTNUD Z is significant for a well-defined trace τ if the following
conditions hold.

If A = tA ∈ τ , then A ∈ TC

If B(A) = tB ∈ τ , then B ∈ TU and (A, `, u,B) ∈ L for some `, u ∈ R, 0 ≤ ` ≤ u such
that tB − tA ∈ [`, u].
If a! = > ∈ τ or a! = ⊥ ∈ τ (resp., a? = > ∈ τ or a? = ⊥ ∈ τ), then a ∈ BC (resp.,
a ∈ BU ) and β(A) = a; moreover, if A = tA is the statement before it, then β(A) = a.
〈P, t〉 |= Z, where P and t are the consistent set of literals and schedule arising from τ ,
respectively.

The set I = {τ1τ2, τ3, τ4, τ5, τ6, τ7} in the example above is coherent and contains well-
defined traces.

Problem. Given a finite set of well-defined and coherent traces, mine a significant
CSTNUD.

CstnudMiner (Algorithm 1) starts by creating a CSTNUD containing the zero-time point
Z only. After processing a trace, Z contains all time points, booleans, contingent links
and temporal constraints specified by that trace. After processing a set of traces, Z
is such that all traces in that set satisfy it, and once a trace is processed, it can be
forgotten. CstnudMiner internally uses the rules WeakenTC and WeakenCL on
temporal constraints and contingent links, respectively. Table 1 shows these weakening rules.
The aim of these two sub-procedures is to add temporal constraints and contingent links
if they do not exists in Z or to weaken them otherwise (to allow new traces to satisfy Z
as well). Before proceeding we introduce some useful notation. Given a pair of time point
A,B and a set of literals S, let L(B,A) = {S | S : B −A ≤ k ∈ C} be the set of labels of all
temporal constraints going from A to B and let:
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Table 1 Weakening rules for Algorithm 1.

WeakenTC(S : B −A ≤ k)

Case T1: L1(S, B,A) = {S1, . . . ,Sn} 6= ∅.

A B

. . .
S1 : k1 . . . Sn : kn

. . .
A B

. . .
S1 : max{k1, k} . . . Sn : max{kn, k}

. . .

Example: WeakenTC({a, b} : C − Z ≤ 7)

Z C

{¬c,¬a} : 6 {b} : 8

{a} : 3
Z C

{¬c,¬a} : 6 {b} : 8

{a} : 7

Case T2: L2(S, B,A) = {S1, . . . ,Sn} 6= ∅.

A B

. . .
S1 : k1 . . . Sn : kn

. . .
A B

. . .
S : max{K2(S, B,A), k}

. . .

Example: WeakenTC({b} : Z − C ≤ −7)

Z C

{¬c, b} : −8 {¬b,¬a} : −6

{a, b} : −3
Z C

{¬b,¬a} : −6

{b} : −3

Case T3: L1(S, B,A) = L2(S, B,A) = ∅.

A B
. . .

A B
. . . S : k . . .

Example: WeakenTC({b} : C − Z ≤ 5)

Z C

{a,¬b} : 8

{¬b} : 3
Z C

{a,¬b} : 8 {b} : 5

{¬b} : 3

WeakenCL(A, k, k,B)

Case L1: contingent link between A and B exists

A B
[`, u]

A B
[min{l, k},max{u, k}]

Case L2: no contingent link between A and B

A B A B
[k, k]

L1(S, B,A) = {Si | Si ∈ L(B,A),Si ⊆ S} be the set of labels in L(B,A) contained in S.
L2(S, B,A) = {Si | Si ∈ L(B,A),S ⊂ Si} be the set of labels in L(B,A) strictly
containing S.
L3(S, B,A) = L(B,A) \ (L1 ∪ L2) be the set of all other labels in L(B,A) neither in L1
nor in L2.
Ki(S, B,A) = {kj | Sj : B − A ≤ kj ∈ C,Sj ∈ Li(S, B,A)} be the set of weights of all
constraints from A to B labeled by Sj ∈ Li(S, B,A) for i = 1, 2, 3.
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Algorithm 1 CstnudMiner.

Input: A set I of well-defined and coherent traces.
Output: A significant CSTNUD.

1 Z = 〈{Z}, ∅, ∅, β, ∅, ∅〉 . “Initial CSTNUD”
2 foreach τ ∈ I do
3 S ← ∅
4 foreach statement in τ do
5 if the statement is A = tA then
6 TC ← TC ∪ {A}
7 WeakenTC(S : A− Z ≤ tA)
8 WeakenTC(S : Z −A ≤ −tA)
9 if the statement is B(A) = tB then

10 TU ← TU ∪ {B}
11 Let tA be the execution time of A.
12 WeakenCL(A, tB − tA, tB − tA, B)
13 if the statement is a! or ¬a! or a? or ¬a? then
14 Let A = tA be the previous statement.
15 if the suffix is ! then BC ← BC ∪ {a} ;
16 else BU ← BU ∪ {a} ;
17 β(A) = a

18 if the prefix is ¬ then S ← S ∪ {¬a};
19 else S ← S ∪ {a};

20 return Z

WeakenTC works on a temporal constraint S : B −A ≤ k. When called, WeakenTC
first computes L1(S, B,A), L2(S, B,A) and L3(S, B,A). Then, it handles three cases as
follows:
Case T1. This case applies whenever L1(S, B,A) 6= ∅. In such a case, each weight ki

associated to a constraint going from A to B labeled by any Si ∈ L1(S, B,A) is possibly
weakened (meaning raised) to k if k > ki.

Case T2. This case applies whenever L2(S, B,A) 6= ∅. In such a case, we add a sin-
gle constraint labeled by S whose numeric weight is the maximum value in the set
K2(S, B,A) ∪ {k}. Finally, we remove each constraint labeled by any Si ∈ L2(S, B,A).

Case T3. This case applies whenever L1(S, B,A) = L2(S, B,A) = ∅ (i.e., whenever neither
Case T1 nor Case T2 does). In such a case we just add S : A−B ≤ k.

WeakenCL, on the other hand, works on a contingent link (A, k, k,B) by means of two
mutually-exclusive cases:
Case L1. This case applies whenever (A, `, u,B) already exists. In such a case, we weaken

(meaning lower) ` to k if k < ` or weaken (meaning raise) u to k if u < k (note that at
most one among ` and u is weakened).

Case L2. This case applies whenever (A, `, u,B) does not exist. In such a case, we add
(A, k, k,B).

We provide application examples for WeakenTC in Table 1. We omit those for WeakenCL
due to their triviality. Figure 2 shows the result of applying CstnudMiner on the previous
discussed set of traces I = {τ1, . . . , τ7}.
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Z

A

{} : 0{} : 0

(a) Mining after τ1.

Z

A E

{} : 0{} : 0

[5, 5]

(b) Mining after τ2.

Z

A

B

E

{} : 0{} : 0
{a} : 2

{a} : −2

[5, 5]

(c) Mining after τ3.

Z

A

B

C

E
[5, 5]

D

{} : 0{} : 0

{a} : 2

{a} : −2

{a} : 1{a} : −1

{a,¬b} : 4

{a,¬b} : −4

(d) Mining after τ4.

Z

A

B

C

D

E
[2, 5]

{} : 3{} : 0

{} : 2

{} : 0

{b} : 2
{a} : 1

{b} : −2
{a} : −1

{a, b} : 4
{a,¬b} : 4

{a, b} : −4
{a,¬b} : −4

(e) Mining after τ5.

Z

A

B

C

D

E
[2, 7]

{} : 3{} : 0

{} : 2

{} : 0

{b} : 4
{a} : 4

{b} : −2
{a} : −1

{a, b} : 6
{a,¬b} : 4

{a, b} : −4
{a,¬b} : −4

(f) Mining after τ6.

Z

A

B

C

D

E
[2, 7]

{} : 3{} : 0

{} : 5

{} : 0

{b} : 4
{a} : 4

{b} : −2
{a} : −1

{a} : 6

{a} : −4

(g) Mining after τ7.

Figure 2 Mining a significant CSTNUD from execution traces.

We are left to discuss invariants, correctness and complexity of CstnudMiner. Let Z
be the CSTNUD being mined.

I Invariant 1. Cases T1,T2 and T3 of WeakenTC are mutually-exclusive. So are cases
L1 and L2 of WeakenCL.

Proof. We only need to focus on WeakenTC, as cases L1 and L2 of WeakenCL are
mutually-exclusive by definition (either a contingent link exists or it doesn’t). When
CstnudMiner starts, the invariant is trivially true as no constraints exist (so only case T3
is enable). Now assume that Invariant 1 holds and let S be the set of literals collected in the
current trace τ being processed. Moreover, assume the current processed statement is A = tA.
If Case T1 applies, only the weights of the constraints labeled by some Si ∈ L1(S, B,A)
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are (possibly) modified. After processing the statement, L(B,A) remains the same, thus
Invariant 1 still holds. If Case T2 applies, all constraints labeled by some Si ∈ L2(S, B,A) are
thrown away and replaced by a single constraint labeled by S. After processing the statement,
(the new) L(B,A) contains S but does not contain any Si in the previous L2(S, B,A). Note
that S is not a superset of any other Si ∈ L(B,A), Si 6= S as if it were, so would each set in
L2(S, B,A) before processing the statement (invariant contradiction). If Case T3 applies,
a constraint labeled by S is merely added. After that, the new L(B,A) contains S, and
Invariant 1 still holds. J

I Theorem 8. CstnudMiner mines a significant CSTNUD.

Proof. We need to prove the following: first, that WeakenTC and WeakenCL are sound
meaning that any constraint and uncontrollable duration for contingent links that held before
applying the rules keeps holding after applying them, and, second, that CstnudMiner mines
the same CSTNUD regardless of the ordering in which traces are processed.

Soundness of the rules. From Invariant 1 we know that all cases in Table 1 are
mutually exclusive. Therefore, we analyze each case of each rule in isolation. Consider a
call to WeakenTC(S : B −A ≤ k). In Case T1 only the numeric weights of all constraints
Si : B −A ≤ ki where Si ∈ L1(S, B,A) are (possibly) modified. For each Si ∈ L1(S, B,A),
let ki be the weight of the constraint Si : B − A ≤ ki. After the rule applies we have
that the new weight is max{ki, k}. It is clear that the initial constraint still holds as
Si ⊆ S : B − A ≤ ki ≤ max{ki, k}. All remaining constraints in the CSTNUD hold as
well as they are left untouched. In Case T2 all constraints labeled by some some set in
L2(S, B,A) are thrown away and replaced by a single constraint labeled by S. After the rule
applies we have that S : B−A ≤ max(K2(S, B,A)∪{k}) is added. Each removed constraint
Si : B−A ≤ ki still holds as S ⊂ Si : B−A ≤ ki ≤ max(K2(S, B,A)∪{k}). Once again, all
remaining constraints in the CSTNUD hold as well as they are left untouched. In Case T3
no existing constraint is modified. Now, consider a call to WeakenCL(A, k, k,B). We only
need to focus on the part of the durations related to this link as all other parts of such
durations are left untouched. In Case L1 a contingent link (A, `, u,B) already exists.

After applying the rule, either ` is lowered to k (if k < `) or u is raised to k (if u < k)
or both are left untouched (if ` ≤ k ≤ u). Let `′ and u′ be the new minimal and maximal
durations after the rule is applied. It is clear that `′ ≤ ` ≤ u ≤ u′, therefore all previous
durations are still possible. In Case L2 the contingent link does not exist yet, therefore we
have nothing to verify.

Processing order of traces. CstnudMiner processes each trace once. Processing a
trace means to process each statement in it. Whenever a time point does not exist, the
algorithm adds it to the CSTNUD associating it to the right activation if the time point is
uncontrollable. Likewise, whenever a boolean does not exist, the algorithm adds it to the
CSTNUD and sets β accordingly. Also, the significance of the resulting CSTNUD (constraints
and contingent links) follows from the soundness of the rules. J

We are left to discuss the complexity of CstnudMiner. Let I be the set of well-defined
and coherent traces in input.

I Theorem 9. CstnudMiner runs in polynomial time.

Proof. We focus on WeakenTC since the operations carried out by WeakenCL are neg-
ligible (no partitioning of contingent links is done). Instead, WeakenTC hides internally
inner cycles to compute L1(S, B,A), L2(S, B,A) and L3(S, B,A) every time that it is called.
The worst case happens when CstnudMiner applies WeakenTC as much as possible as
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L3(S, B,A) keeps growing. We show how to build a set of traces I that leads to this situation.
Let B be a finite set of booleans and T = {Z,X} ∪ {Yb | b ∈ B} a finite set of time points.
In this way every boolean in b can be associated to a time point in T \ {Z,X}. We shall
see that it is enough to have |I| ≤ 2|B|. In our construction, if B = {a1, . . . , a|B|}, then any
trace has the form Z = 0, Ya1 = 0, a = �, . . . , Ya|B| = 0, a|B| = �, X = 0 where � ∈ {>,⊥}
with trace specifying a different set of literals S.

In this way, each trace τ ∈ I has length |τ | = 2 + 2× |T \ {Z,X}|. Each trace specifies
a different truth value assignment for the booleans in B. When the last statement of each
trace is processed, CstnudMiner can only add a new constraint between Z and X (for
each direction). As a result, the maximum number of constraints that appear between
Z and X (in any direction) is |I|. However, when the “X = 0” of the |I|th trace is
processed, we know (from the proof of Theorem 8) that WeakenTC(S : X − Z ≤ 0) (resp.,
WeakenTC(S : Z − X ≤ 0)) partitions the set of constraints between Z and X (resp.,
between Z and X) in L1(S, X, Z), L2(S, X, Z), L3(S, X, Z) (resp., L1(S, Z,X), L2(S, Z,X),
L3(S, Z,X)). The cost of this operation is 2 × (|I| − 1) (the number of constraints that
are currently between Z and X in both directions). Eventually, when all traces have been
processed, the overall cost of this operation is 2×

∑|I|−1
i=0 n = 2× ((|I|−1)×|I|)/2 = O(|I|2).

Since this term is greater of any other number of analyzed constraints between Z and any Yb

in the trace, an upper bound for the algorithm is given by O(|I|2 × |τ |). J

5 Conclusions and Future Work

Like any model-based engineering approach, creating a temporal network is a complex,
time-consuming, and error-prone task. Along the lines of the bottom-up approach in the
field of process mining, we proposed CstnudMiner, an algorithm for mining significant
CSTNUDs from execution traces that also contain information on uncontrollable events. A
CSTNUD is significant if it contains all time points, booleans and uncontrollable durations in
the processed traces and each partial instantiation of a schedule and consistent set of literals
arising from any processed trace satisfies all constraints involving those components. We
proved that CstnudMiner runs in polynomial time with respect to the size of the set of
input traces, and the length of each trace. Since in our approach once a trace is processed
it can be forgotten, this paves the way for future “streaming” versions of the algorithm.
As future work, we plan to carry out a thorough analysis of the properties of the mined
CSTNUDs as well as adapting the algorithm for other classes of constraint networks involving
resources either in isolation [20, 21, 23] or in conjunction with time [4].
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Abstract
We introduce and evaluate dynamic branching strategies for solving Qualitative Constraint Networks
(QCNs), which are networks that are mostly used to represent and reason about spatial and temporal
information via the use of simple qualitative relations, e.g., a constraint can be “Task A is scheduled
after or during Task C”. In qualitative constraint-based reasoning, the state-of-the-art approach to
tackle a given QCN consists in employing a backtracking algorithm, where the branching decisions
during search are governed by the restrictiveness of the possible relations for a given constraint
(e.g., after can be more restrictive than during). In the literature, that restrictiveness is defined a
priori by means of static weights that are precomputed and associated with the relations of a given
calculus, without any regard to the particulars of a given network instance of that calculus, such
as its structure. In this paper, we address this limitation by proposing heuristics that dynamically
associate a weight with a relation, based on the count of local models (or local scenarios) that the
relation is involved with in a given QCN; these models are local in that they focus on triples of
variables instead of the entire QCN. Therefore, our approach is adaptive and seeks to make branching
decisions that preserve most of the solutions by determining what proportion of local solutions agree
with that decision. Experimental results with a random and a structured dataset of QCNs of Interval
Algebra show that it is possible to achieve up to 5 times better performance for structured instances,
whilst maintaining non-negligible gains of around 20% for random ones.
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1 Introduction

Qualitative Spatial and Temporal Reasoning (QSTR) is a major field of study in AI that
deals with the fundamental cognitive concepts of space and time in a human-like manner, via
simple qualitative constraint languages [18, 8]. Such languages consist of abstract, qualitative,
expressions like inside, before, or north of to spatially or temporally relate two or more
objects to one another, without involving any quantitative information. Thus, QSTR offers
tools for efficiently automating common-sense spatio-temporal reasoning and, hence, further
boosts research to a plethora of application areas and domains that deal with spatio-temporal
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Task A Task C

Task B

���
�:unfeasibleduring ∨ after

meets ∨ after after

Figure 1 The static weighting scheme in the literature dictates that relation during is less
restrictive than relation after in general for the IA calculus and, hence, during should be preferred
over after in branching decisions [39, Figure 9], but in the above simplified QCN during cannot
appear in any solution; such schemes are defined for other calculi as well [13].

information, such as cognitive robotics [10], deep learning [17], visual explanation [37]
and sensemaking [36], semantic question-answering [35], qualitative simulation [5], modal
logic [21, 3, 20, 16, 11], temporal diagnosis [12], and stream reasoning [6, 14].

Qualitative spatial or temporal information may be modeled as a Qualitative Constraint
Network (QCN), which is a network where the vertices correspond to spatial or temporal
entities, and the arcs are labeled with qualitative spatial or temporal relations respectively.
For instance x ≤ y can be a temporal QCN over Z. Given a QCN N , the literature is
particularly interested in its satisfiability problem, which is the problem of deciding if there
exists a spatial or temporal interpretation of the variables of N that satisfies its constraints,
viz, a solution of N . For instance, x = 0 ∧ y = 1 is one of the infinitely many solutions of
the aforementioned QCN, and x < y is the corresponding scenario that concisely represents
all the cases where x is assigned a lesser value than y. In general, for most widely-adopted
qualitative calculi the satisfiability problem is NP-complete [9]. In the sequel, we will be
using Interval Algebra (IA) [1] as an illustrative example of a qualitative calculus.

Motivation & Contribution. The state-of-the-art constraint-based approach for tackling a
given QCN consists in employing a backtracking algorithm, where each branching decision
during search is guided by the restrictiveness of the possible relations for a given constraint.
Currently, that restrictiveness is defined a priori by means of entirely precomputed static
weights that are associated with the relations of a given calculus. That static strategy has
two major problems: it assumes a uniform use of relations in QCNs (as weights are computed
by equally considering all the relations of a calculus); and it does not exploit any structure
that may exist in QCNs (a relation that is used to form more than one constraints in a given
QCN, which is typically the case, may exhibit different levels of restrictiveness among those
constraints). A simple example of how this scheme can be problematic is detailed in Figure 1.
In this paper, we address this limitation by proposing a dynamic branching mechanism via
heuristics that dynamically associate a weight with a relation during search, based on the
count of local models, i.e., scenarios pertaining to triples of variables, that the relation is
involved with in a given QCN. This makes our approach similar to a counting-based one for
CSPs [24], as it too is adaptive and it too seeks to make branching decisions that preserve
most of the solutions by determining what proportion of local solutions agree with that
decision. Further inspiration was drawn from a recent work in [32], where it was observed
that a scenario of a QCN may often be constructed collectively by relations that appear in
many scenarions individually, i.e., a scenario of a QCN may often be constructed by selecting
the most popular relation for each constraint. Finally, through an evaluation with a random
and a structured dataset of QCNs of IA, we show that we may achieve up to 5 times better
performance for structured instances, and gains of about 20% for random ones.
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Figure 2 The base relations of IA; ·i denotes the converse of ·.

The rest of the paper is organized as follows. In Section 2 we give some preliminaries on
QSTR. Next, in Section 3 we propose our dynamic approach, discuss some dynamic heuristics
that are used internally, and present the related algorithms. Then, in Section 4 we evaluate
our approach with random and structured QCNs of IA and comment on the outcome. Finally,
in Section 5 we draw some conclusive remarks and give directions for future work.

2 Preliminaries

A binary qualitative spatial or temporal constraint language, is based on a finite set B of jointly
exhaustive and pairwise disjoint relations, called the set of base relations [19], that is defined
over an infinite domain D. The base relations of a particular qualitative constraint language
can be used to represent the definite knowledge between any two of its entities with respect
to the level of granularity provided by the domain D. The set B contains the identity relation
Id, and is closed under the converse operation (−1). Indefinite knowledge can be specified
by a union of possible base relations, and is represented by the set containing them. Hence,
2B represents the total set of relations. The set 2B is equipped with the usual set-theoretic
operations of union and intersection, the converse operation, and the weak composition
operation denoted by the symbol � [19]. For all r ∈ 2B, we have that r−1 =

⋃
{b−1 | b ∈ r}.

The weak composition (�) of two base relations b, b′ ∈ B is defined as the smallest (i.e.,
strongest) relation r ∈ 2B that includes b ◦ b′, or, formally, b � b′={b′′ ∈ B | b′′∩(b ◦ b′) 6= ∅},
where b◦b′={(x, y) ∈ D×D | ∃z ∈ D such that (x, z) ∈ b∧(z, y) ∈ b′} is the (true) composition
of b and b′. For all r, r′ ∈ 2B, we have that r � r′ =

⋃
{b � b′ | b ∈ r, b′ ∈ r′}.

As an illustration, consider the well-known qualitative temporal constraint language of
Interval Algebra (IA), introduced by Allen [1]. IA considers time intervals (as temporal
entities) and the set of base relations B = {eq, p, pi, m, mi, o, oi, s, si, d, di, f , fi} to

TIME 2020
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Figure 3 Figurative examples of QCN terminology using IA.

encode knowledge about the temporal relations between intervals on the timeline, as depicted
in Figure 2. Specifically, each base relation represents a particular ordering of the four
endpoints of two intervals on the timeline, and eq is the identity relation Id.

Notably, most of the well-known and well-studied qualitative constraint languages, such
as Interval Algebra [1] and RCC8 [25], are in fact relation algebras [9].

The problem of representing and reasoning about qualitative spatial or temporal informa-
tion can be modeled as a qualitative constraint network, defined as follows:

I Definition 1. A qualitative constraint network (QCN) is a tuple (V,C) where:
V = {v1, . . . , vn} is a non-empty finite set of variables, each representing an entity of an
infinite domain D;
and C is a mapping C : V × V → 2B such that C(v, v) = {Id} for all v ∈ V and
C(v, v′) = (C(v′, v))−1 for all v, v′ ∈ V , where

⋃
B = D× D.

An example of a QCN of IA is shown in Figure 3a; for clarity, converse relations as well
as Id loops are not mentioned or shown in the figure.

I Definition 2. Let N = (V,C) be a QCN, then:
a solution of N is a mapping σ : V → D such that ∀(u, v) ∈ V × V , ∃b ∈ C(u, v) such
that (σ(u), σ(v)) ∈ b (see Figure 3b);
N is satisfiable iff it admits a solution;
a sub-QCN N ′ of N , denoted by N ′ ⊆ N , is a QCN (V,C ′) such that C ′(u, v) ⊆ C(u, v)
∀u, v ∈ V ; if in addition ∃u, v ∈ V such that C ′(u, v) ⊂ C(u, v), then N ′ ⊂ N ;
N is atomic iff ∀v, v′ ∈ V , C(v, v′) is a singleton relation, i.e., a relation {b} with b ∈ B;
a scenario S of N is an atomic satisfiable sub-QCN of N (see Figure 3c);
the constraint graph of N is the graph (V,E) where {u, v} ∈ E iff C(u, v) 6= B and u 6= v;
N is trivially inconsistent, denoted by ∅ ∈ N , iff ∃v, v′ ∈ V such that C(v, v′) = ∅;
N is the empty QCN on V , denoted by ⊥V , iff C(u, v) = ∅ for all u, v ∈ V .

Given a QCN N = (V,C) and v, v′ ∈ V , we introduce the following operation that
substitutes C(v, v′) with a relation r ∈ 2B to produce a new, modified, QCN: N[v,v′]/r

with r ∈ 2B yields the QCN N ′ = (V,C ′), where C ′(v, v′) = r, C ′(v′, v) = r−1 and
C ′(u, u′) = C(u, u′) ∀(u, u′) ∈ (V × V ) \ {(v, v′), (v′, v)}.

We recall the definition of �G-consistency [4] (cf [27]), which entails consistency for all
triples of variables in a QCN that form triangles in an accompanying graph G, and is a basic
and widely-used local consistency for reasoning with QCNs.

I Definition 1. Given a QCN N = (V,C) and a graph G = (V,E), N is said to be
�
G-consistent iff ∀{vi, vj}, {vi, vk}, {vk, vj} ∈ E we have that C(vi, vj) ⊆ C(vi, vk) �C(vk, vj).
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We note here that if G is complete, �G-consistency becomes identical to �-consistency [27],
and, hence, �-consistency is a special case of �G-consistency. In the sequel, given a QCN
N = (V,C) of some calculus and a graph G = (V,E), we assume that �G(N ) is computable.
This assumption holds for most widely-adopted qualitative calculi [9].

3 Approach

In qualitative constraint-based reasoning, the state-of-the-art approach to check the sat-
isfiability of a given QCN N , consists in splitting every relation r that forms a constraint
between two variables in N into a subrelation r′ ⊆ r that belongs to a set of relations A over
which the QCN becomes tractable [29]. In particular, for most widely-adopted qualitative
calculi [9], such split sets are either known or readily available [26], and tractability is then
achieved via the use of some local consistency in backtracking fashion; after every refinement
of a relation r into a subrelation r′, the local consistency is enforced to know whether the
refinement is valid or backtracking should occur and another subrelation should be chosen
at an earlier point [29, Section 2]. One of the most essential and widely-used such local
consistencies is �G-consistency, where G is either the complete graph on the variables of
N [27], or a triangulation (chordal completion) of the constraint graph of N [4].2

As an illustration, the subset HIA of the set of relations of Interval Algebra [23] is tractable
for �G-consistency, i.e., �G-consistency is complete for deciding the satisfiability of any QCN
defined over HIA with respect to a triangulation G of its constraint graph [4]. That subset
contains exactly those relations that are transformed to propositional Horn formulas when
using the propositional encoding of Interval Algebra [23]. To further facilitate the reader, let
us consider the constraint C(x3, x4) in the QCN of Interva Algebra in Figure 4. The relation
{mi, di, si, p,m, d, s} that is associated with that constraint does not appear in the subset
HIA and hence tractability is not guaranteed in general, but it can be split into subrelations
{mi}, {di, si}, {p,m}, {d, s} with respect to HIA; each of those subrelations belongs to HIA.

Dynamic Selection of Subrelations via Counting Local Models

It is standard practice in the qualitative constraint-based reasoning community, and the
constraint programming community in general, that, given a constraint of some QCN, a
subrelation that is most likely to lead to a solution should be prioritized [39, 28]; in the context
of finite-domain CSPs, this strategy is known as the least-constraining value heuristic [7].

Currently, the state of the art in qualitative constraint-based reasoning implements that
selection strategy in a completely static manner. In particular, base relations of a calculus are
assigned static weights a priori, and the overall weight that is associated with a subrelation
corresponds to the sum of the weights of its base relations [39, 28]. In detail, a weight for
a base relation is obtained by successively composing it with every possible relation and
calculating the sum of the cardinalities of the results, which is then suitably scaled. Thus,
the bigger the weight for a base relation is, the less restrictive that base relation is. For
example, the weights of base relations d and s in Interval Algebra are 4 and 2 respectively
and, consequently, the weight of relation {d,s} is 4 + 2 = 6 [39, Figure 9].

2 Please refer to [15] for the properties that are needed to exploit triangulations of QCNs in terms of
tractability preservation.

TIME 2020
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Figure 4 Given the above QCNN = (V,C) of IA, a partition of C(x3, x4) with respect to the subset
HIA [23] is {{mi}, {di, si}, {p,m}, {d, s}}; for this QCN, heuristics dynamic_avg and dynamic_sum
would prioritize relation {p,m}, and heuristics static [39], dynamic_max, and dynamic_min would
prioritize relations {d, s}, {di, si}, and {mi} respectively.

Two major problems with the aforementioned static strategy is that it assumes a uniform
use of relations in QCNs (since weights are computed by equally considering all the relations
of a calculus), and it does not exploit any structure that may be present in QCNs (a relation
that is used to form more than one constraints in a given QCN, which is typically the case,
may exhibit different levels of restrictiveness among those constraints).

In this paper, we propose the selection of subrelations to be dynamic and, in particular,
based on the count of local models that the individual base relations of a subrelation are part
of. Let N↓V ′ , with V ′ ⊆ V , denote the QCN N = (V,C) restricted to V ′, we formally define
the notion of local models as follows:

I Definition 3 (local models). Given a QCN N = (V,C), a graph G = (V,E), and a constraint
C(v, v′) with {v, v′} ∈ E, the local models of a base relation b ∈ C(v, v′) are the scenarios S
= (V ′, C ′) of N↓V ′ , with V ′ = {v, v′, u}, such that {v, u}, {u, v′} ∈ E and C(v, v′) = {b}.

Simply put, given a QCN (V,C), a graph G = (V,E), and a constraint C(v, v′) with
{v, v′} ∈ E, we count how many times a given base relation b ∈ C(v, v′) participates in the
scenarios of each triangle in G that involves variables v and v′, i.e., the local models from
our perspective. In that sense, our approach can be seen as being similar to a counting-based
one for CSPs [24], which, as our own method, formalizes a framework that is adaptive and
seeks to make branching decisions that preserve most of the solutions by determining what
proportion of local solutions agree with that decision. We devise the following strategies for
choosing a subrelation from a given set of subrelations:

dynamic_f: for each subrelation r′ find the f count of local models among each base
relation b ∈ r′, where f ∈ {max,min, avg, sum}, then choose the subrelation for which the
highest such count was obtained.

In the context of counting local models, dynamic_max, dynamic_min, dynamic_avg,
and dynamic_sum prioritize the subrelation with the best most, least, on avegare, and in
aggregate supportive base relation respectively. At this point, let us revisit the QCN of
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Algorithm 1 Refinement(N , G, A, f).

in :A QCN N = (V,C), a graph G = (V,E), a subset A ⊆ 2B, and a function
f ∈ {max,min, avg, sum}.

out :A refinement of N with respect to G over A, or ⊥V .
1 begin
2 N ← �

G(N );
3 if ∅ ∈ �G(N ) then
4 return ⊥V ;
5 if ∀{v, v′} ∈ E, C(v, v′) ∈ A then
6 return N ;
7 (v, v′) ← {v, v′} ∈ E such that C(v, v′) 6∈ A;
8 foreach r ∈ dynamicSelection(N , G, A, (v, v′), f) do
9 result ← Refinement(N[v,v′]/r, G, A, f);

10 if result 6= ⊥V then
11 return result;

12 return ⊥V ;

Algorithm 2 dynamicSelection(N , G, A, (v, v′), f).

in :A QCN N = (V,C), a graph G = (V,E), a subset A ⊆ 2B, a pair of variables
(v, v′), and a function f ∈ {max,min, avg, sum}.

out :A relation r ∈ A.
1 begin
2 counter ← hashTable();
3 foreach r ∈ {r1, r2, . . . , rn ∈ A | {r1, r2, . . . , rn} is a partition of C(v, v′)} do
4 counter[r] ← f{localModels(b,N , G, (v, v′)) | b ∈ r};
5 while counter is not empty do
6 r ← counter key paired with the maximum value;
7 remove r from counter;
8 yield r;

Interval Algebra in Figure 4, where the relation {mi, di, si, p,m, d, s} that is associated with
the constraint C(x3, x4) is split into subrelations {mi}, {di, si}, {p,m}, {d, s} with respect to
subset HIA. By viewing the table that lists the count of local models for each base relation
in C(x3, x4) on the right-hand side of the figure, the reader can verify that each strategy
correctly prioritizes its subrelation of choice according to its objective; as a reminder, the
weights associated with the static strategy detailed earlier are provided in [39, Figure 9].

Tackling QCNs via Incorporating Dynamic Branching
For reference, a variation of the state-of-the-art backtracking algorithm for solving a QCN
is provided in Algorithm 1, the main diffence to the one appearing in the literature [29,
Section 2] being the use of dynamic selection of subrelations, in line 8, instead of selection
based on static weights. Another difference is the use of a graph as a parameter, but, over
the past few years, this has become a standard way of generalizing the original algorithm to
exploit certain properties of a calculus that relate to graphs, see [34] and references therein.

The dynamic strategies that we described earlier are formally presented in Algorithms 2
and 3. In particular, in lines 2–4 of Algorithm 2 we calculate the count of local models for
each base relation of each subrelation that pertains to a given constraint. This calculation

TIME 2020
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Algorithm 3 localModels(b,N , G, (v, v′)).

in :A base relation b, a QCN N = (V,C), a graph G = (V,E), and a pair of variables
(v, v′).

out :An integer.
1 begin
2 count ← 0;
3 foreach u ∈ NG(v) ∩ NG(v′) do
4 foreach (b′, b′′) ∈ C(v, u)× C(u, v′) do
5 if b ∈ b′ � b′′ then
6 count ← count + 1;

7 return count;

is performed via a call to Algorithm 3. After obtaining the count of models for each such
base relation, we implement the chosen strategy by applying the respective function among
{max,min, avg, sum} on the results. Now, each subrelation is associated with a number,
a dynamic weight, and in lines 5–8 the subrelation with the highest dynamic weight is
prioritized each time there is a need for a new subrelation to be tried out in an assignment.

Complexity Analysis. Given the fact that for a calculus the number of its base relations,
i.e., |B|, can be viewed as a constant, Algorithm 2 calculates the count of local models for
a base relation in a given constraint in linear time in the maximum degree of the graph G
that is used as a parameter; each subsequent prioritization of a subrelation based on those
calculated counts (lines 5–8) takes constant time. In particular, given a QCN N = (V,C)
and a graph G = (V,E), Algorithm 2 runs in Θ(∆(G)) time. In practice, there was no
noticable slowdown for the dataset that we consider in this paper (see Section 4), which is
not surprising, as the search space for solving a QCN is O(|B||E|) in general.

4 Evaluation

In this section we evaluate the proposed dynamic branching heuristics, as well as the
state-of-the-art static branching strategy that appears in the literature, with respect to the
fundamental reasoning problem of satisfiability checking of QCNs. Specifically, we explore
the efficiency of the involved heuristics in determining the satisfiability of a given network
instance when used in the standard backtracking algorithm (see Algorithm 1), and investigate
their fitness score too, which is the difference “% of times a heuristic f is the best choice” −
“% of times a heuristic f is the worst choice” ; clearly, fitness score ∈ [−100%, 100%]. Finally,
we also present results for two virtual portfolios of reasoners that always make the best and
worst choice of a heuristic respectively for a given network instance.

Technical specifications. The evaluation was carried out on a computer with an Intel
Core i7-8565U processor, 16 GB of RAM, and the Ubuntu 18.04.4 LTS x86_64 OS. All
algorithms were coded in Python and run using the PyPy intepreter under version 5.10.0,
which implements Python 2.7.13. Only one CPU core was used per run.

Dataset. We generated 7 000 random instances of Interval Algebra using model H(n =
40, d) [22], 1 000 for each constraint graph degree value d ∈ {9, 10, 11, 12, 13, 14, 15} specifically,
and 4 000 structured instances of Interval Algebra using model BA(n = 80,m, 3CNF) [31],
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Figure 5 Fitness score of each strategy for the instances of Table 1; “% of times a heuristic f is
the best choice” − “% of times a heuristic f is the worst choice”.

1 000 for each constraint graph preferential attachment [2] value m ∈ {4, 5, 6, 7} specifically.
In both of the aforementioned generation models, constraints were picked from the set of
relations expressible in 3CNF when transformed into first-order formulae [22], in order to
increase the branching factor in the search tree as much as possible. Finally, regarding
the graphs that were given as input to our algorithms, the maximum cardinality search
algorithm [38] was used to obtain triangulations of the constraint graphs of our QCNs.

Results. Regarding the generation model H(n = 40, d), the main results are presented in
Table 1. The dynamic strategies of dynamic_min and dynamic_avg are up to 20% faster on
average than the static one in the phase transition of the tested instances.3 Specifically, the
phase transition covers mostly the case where d = 12, and a little less the case where d = 13.
With respect to the rest of the dynamic heuristics, viz., dynamic_max and dynamic_sum,
the results suggest that dynamic_max outperforms static by a small margin on average in
the phase transition, whilst dynamic_sum almost mimics the performance of static, if not
arguably being a little worse than static overall. This last finding informs us that relying too
much on the number of base relations of a relation (viz., the cardinality of a relation) is a
bad choice in general, i.e., it is better to focus on few base relations individually, where each
one appears in many local models (quality), than on many base relations aggregately, where
each one appears in few local models (quantity). The aforementioned results are depicted
from a different perspective and complemented in Figure 5, where the fitness score for each
heuristic is detailed. The superiority of heuristics dynamic_min and dynamic_avg among all
strategies becomes even more so clear, and the marginal performance gains of dynamic_max,
and dynamic_sum at times with respect to static in the phase transition are well-captured
by their fitness scores too. Finally, at this point, it is interesting to observe the performance
of the virtual portfolios of reasoners best and worst; as a reminder these always make the best

3 Even though the improvement for this particular dataset may not seem that drastic, bear in mind that
the instances of this dataset have little to no structure as their constraint graphs are regular graphs.



M. Sioutis and D. Wolter 12:11

4 5 6 7
preferential attachment (m)

-60%

-40%

-20%

0%

20%

40%

60%

80%

fit
ne

ss
 sc

or
e

static
dynamic_max
dynamic_min
dynamic_avg
dynamic_sum

Figure 6 Fitness factor of each strategy for the instances of Table 2; “% of times a heuristic f is
the best choice” − “% of times a heuristic f is the worst choice”.

and worst choice of a heuristic respectively for a given network instance. The performance
of portfolio best in particular allows us to be optimistic about future research in dynamic
strategies, since it shows that there is still a lot of room for improvement. Specifically,
research could be carried out both in terms of defining new dynamic strategies and in terms
of devising selection protocols that choose among already existing strategies.

Regarding the generation model BA(n = 80,m, 3CNF), the results are presented in Table 2
and Figure 6. Here, dynamic_min and dynamic_avg are up to 3 and 5 times faster on
average respectively than the static one in the phase transition of the tested instances, which
appears for m = 6. The rest of the results are qualitative similar to the previous dataset.

Since the runtime distribution is heavy-tailed for both datasets, the interested reader
may want to look into the 0.5th percentile of most difficult instances pertaining to Tables 1
and 2 for each strategy, depicted in Figures 7 and 8 respectively in Appendix A.

5 Conclusion and Future Work

We introduced and evaluated dynamic branching strategies for solving QCNs via backtracking
search, based on the count of local models (or local scenarios) that a possible relation for
a given constraint is involved with in a considered QCN. Thus, we addressed a limitation
in the state of the art in qualitative constraint-based reasoning, where the selection of a
possible relation for a given contraint is dictated a priori by precomputed static weights,
without any regard to the particulars of a given network instance of that calculus, such as its
structure. Our approach is adaptive and seeks to make branching decisions that preserve
most of the solutions by determining what proportion of local solutions agree with that
decision. An evaluation with a random and a structured dataset of QCNs of Interval Algebra
showed that up to 5 times better performance may be achieved for structured instances,
whilst non-negligible gains of around 20% are maintained for random ones.

As this is a new approach, there are many directions for future work. In particular, we aim
to devise selection protocols that choose among different strategies, as the performance of the
virtual portfolio best in our evaluation, which always makes the best choice of a heuristic for

TIME 2020
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a given network instance, revealed that there is still a lot of room for improvement. Further,
more sophisticated dynamic heuristics could be developed by going beyond triples of variables,
which currently form the local models, and engaging larger parts of an instance. Finally, we
would like to pair this approach with ongoing research on singleton consistencies [33, 30], and
implement adaptive reasoners where the level of consistency checking during search would be
adjusted according to the count of local models pertaining to a given constraint.
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Figure 7 Insight into the 0.5th percentile of most difficult instances of Table 1 for each strategy.
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1 Introduction

Resources sharing is a topic of particular interest, notably in safety-critical real-time research,
which is challenging for multi-core architectures. These systems are usually bound to stringent
timing constraints: failure to perform a computation within a well-specified time interval
contributes to the system failure [16]. As failure is not an option, industrials usually rely on a
strategy of time provisioning, where predefined slices of time are dedicated to computations,
with an additional safety margin. For example, this concept is described as a system of
time frames in the ARINC-653P1 specification, which is used in the avionic industry [11].
Determining a strict upper bound of the computation time is known as the Worst-Case
Execution Time (WCET) problem: the execution times of a sequence of computations may
vary between multiple runs. This variability of execution times is caused by multiple factors,
such as the hardware implementation [30, 13], the physical environment in which the hardware
operates or the implementation of the software and the interactions software-hardware [32].

To reduce the development and production costs of their systems, as well as the time-
to-market, industrials usually rely on commercially available Components Off-The-Shelf
(COTS) instead of designing and manufacturing their own hardware [6]. Hardware COTS are
produced by a different industry that targets a wider audience. As a result, most architectures
are designed in order to minimize average execution times, rather than worst-case execution
times. In addition to time-interferences induced by a single core, simultaneous accesses to a
same hardware resource (e.g. the shared memory or a peripheral) made by multiple cores
causes the hardware to arbitrate these concurrent accesses and to serialize them, effectively
introducing additional time-interferences [31]. It is estimated that the current WCET analysis
techniques would yield the WCET to be multiplied by a value close to the number of cores
activated [24, 22, 8]. Such pessimistic estimates lead to over-constrained systems, wasting
computing resources, causing higher development and production costs with an unnecessarily
increased power consumption.

Contributions. This paper proposes a technique for safe multi-core systems design that is
based on an offline temporal partitioning. It allows a system designer to specify windows
of computations that shall never be executed simultaneously. Such property would be of
great importance for safety-critical avionics systems [1, 29]. After reviewing related work
in Section 2, we detail the model of computation our work is based on in Section 3. We
then improve this model in Section 4 to express simultaneity, and in Section 5 we devise
state-of-the-art algorithms to verify that non-simultaneity constraints always hold. An
illustrative proof-of-concept is then provided in Section 6 before we conclude in Section 7.

2 Related Work

As summarized in [28], resources sharing can either be limited or avoided by design to
ensure the absence of interferences, or controlled during the execution of the system through
dedicated services. We advocate for the first proposition, however other interesting research
has been conducted in different directions and are worth mentioning.

2.1 Hardware Design
In this paper, we focus only on off-the-shelf processors because they are intensively used by
industrials. However, it should be noted that hardware solutions have been devised, notably
with PRET machines [13] or the MERASA project [30], with the goal to design specific
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hardware that are better suited towards time-sensitive applications. For example, Reineke et
al. [26] have designed a DRAM controller that aims at eliminating contention for shared
resources.

2.2 Runtime Mitigations

Mancuso et al. [20] have proposed the Single Core Equivalence framework, that can be
applied on COTS platforms to partition shared resources and, as a result dynamically provide
isolation between the different cores. To achieve this goal, the authors rely mainly on three
techniques: colored cache lockdown [19], MemGuard [34] and PALLOC [33]. These have been
implemented on a Linux kernel and are well suited for dynamic systems by assigning portions
of cache to tasks, regulating memory bandwidth and allocating memory pages based on the
affinity of DRAM banks with tasks. Bak et al. [5] build on the PREM model of execution [23]
by taking advantage of predictable intervals that distinguish memory and execution phases.
Memory phases are dedicated to access shared memories, while execution phases shall not
(by contract) access these. This allows to dynamically schedule tasks so two memory phases
do not execute simultaneously, effectively removing sources of inter-core interferences. If
these approaches effectively contribute to improving resources sharing, they do not provide
strict design guarantees, because the resolution of resources sharing is determined at runtime.

2.3 Time-Division Multiplexing

Time-Division Multiplexing (TDM) has been extensively studied because of its inherent
predictability and improved composability [16, 4]. Because immutable time slices are statically
reserved in TDM, this time-division scheme presents the downside to cause underutilization
of resources [14]. This is however a useful safety guarantee for safety-critical systems, because
it offers greater failure detection capabilities [15].

TDM are enforced at run-time by an execution model, which usually consists in a tasks
scheduler based on a source of time. Because they are difficult to build by hand, multiple
solutions have been devised to generate them. Boniol et al. [9] propose an approach in
which they instantiate a scheduling plan in which time slices are dedicated either to access
the shared memory or to execute code that does not use shared resources. Their system is
generated from a model of the hardware and a static analysis of WCET. Similar works have
been conducted by Becker et al. [7].

David et al. [12], Chabrol et al. [10] and Lemerre et al. [18] rely on a model of computation
that can be instantiated to express temporal constraints. From instances of this model of
computation, data configuring an execution model are produced. This execution model
ensures that the specified temporal constraints are enforced at run-time. This model has been
formalized as a time-constrained automata [17]. It has also been explicitly used by Jan et al.
[15] to automatically generate a TDM scheme allowing the control of a real-time network
bus from communication specifications that were expressed in the model of computation.
Our contribution follows the same path, by improving their model of computation with
non-simultaneity semantics; effectively enabling to design critical sections driven by the time-
triggered paradigm. It differs from critical sections used in imperative and non-temporized
programming models [25] in that the dates at which each critical section start and end are
precisely known at compile-time, offering additional safety properties, such as the guaranteed
absence of deadlocks.

TIME 2020
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S A B C D

Figure 1 Example of a trivial time-constrained automaton that describes a periodic behavior.
After starting at node S, the node A is accepted. Then the sequence of nodes B, C and D is
periodically repeated.

3 Time-Constrained Automata

The model proposed in this paper is based on the model of computation formalized by
Lemerre et al.: time-constrained automata [17]. We extend it later in Section 4.2, but we
start by explaining briefly its foundations. This formalism defines a block as a sequence of
computations that are time-bounded by at least one of the following constraints:

after that indicates that a block may only start from a given date; and

before that indicates that a block must end before a given date.
They respectively define the earliest start date and deadline of a batch of blocks, with
homogeneous time units. Such automata are formalized as directed graphs, where arcs
represent the blocks and nodes represent the temporal constraints that are applied to the
arcs joining them (hence constraining the blocks). A node may carry both constraints, but
only one constraint for each type. Therefore, three types of time-constrained node exist.
They can either be a representation of:

a single after constraint, denoted by , which can be seen in Figure 1 as the node S.

a single before constraint, usually denoted by , but not represented in this paper as it is
never used as the sole constraint of a node;

both a before and an after constraints, denoted by , which can be seen in Figure 1 as
the nodes A, B, C and D. This particular node is named synchronization.

I Definition 1 (Trivial time-constrained automaton). A time-constrained automaton is trivial
if and only if every node of the automaton has exactly one output arc. Otherwise, the
automaton is said non-trivial.

There exist several graph simplification techniques that allow to detect impossible graphs
or to remove redundant constraints. They are formally defined in the original paper, and we
only assume their existence and that graphs can possibly be re-written to a simpler form
or proved impossible. In the following of this paper, we assume that all time-constrained
automata are valid and reduced to their most simplified form.

An interesting application of time-constrained automata is the ability to derive execu-
tion models (i.e. scheduling schemes) that preserves the temporal constraints that bound
computation blocks. The ability to transform a mathematical model to a concrete result
that can be embedded on a hardware target asserted our choice to build on top of this
model. The authors of the original paper designed and implemented a variation of the EDF
(Earliest Deadline First) algorithm, called EDF-dyn, which has been proved optimal for
time-constrained sequences of blocks on single processors. However, our approach is not
limited to one specific scheduling algorithm, since verification algorithms are applied on the
model of computation, and not on the model of execution.
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4 System Model

The model of computation we propose is based on time-constrained automata described in
Section 3. We insist on the separation of model of computation that embodies the design
space and the model of execution that embodies the run-time of the designed application on
a specific execution platform (e.g. an embedded COTS system).

4.1 Non-Simultaneity as a Design Constraint
In this paper, we define the simultaneity as applied to windows of computations that execute
within a known and bounded time span. Simultaneity between two windows of computations
describes that their execution may overlap in time.

In Section 2.3, it has been shown that scheduling plans implementing critical sections
driven by the time-triggered paradigm can be generated from constraints deduced from
characteristics of the system. In approaches that do not rely on a model of computation,
there is no guarantee that a feasible schedule exists, because simultaneity is yet another
parameter involved in scheduling algorithms. In such cases, it is necessary to tweak multiple
parameters of the scheduling algorithm to hope for a viable solution to be found. This
process is not guaranteed to converge towards a solution.

Considering a model of computation during the design phase that is implemented by a
model of execution allows to divide the global scheduling problem into independent ones.
As the model of computation deals with temporal constraints, simultaneity can be verified
regardless of the actual execution times of the tasks. If the application does not respect these
new design constraints, then only the original design has to be modified. On the contrary, if
such errors were detected later, fixing them would jeopardize the whole application: both its
design and implementation.

To the best of our knowledge, there exist no methodology in time-triggered resource
sharing that allows to model simultaneity as an explicit design constraint integrated to a
model of computation. We think that addressing this early in the design phase contributes
to safer and more robust multi-core applications.

4.2 Augmenting Time-Constrained Automata
This paper claims to add a new semantic to time-constrained automata, which is detailed in
this section.

Temporal transitions. Let a clock be a structure that causes the global time to advance; a
time-constrained automaton is bound to exactly one clock. We define a temporal transition
as the ordered set of blocks encompassed within exactly one after and one before constraints.
It is associated with the time span of the computations, which corresponds to the time
difference between the deadline (carried by the before constraint) and the earliest start date
(carried by the after constraint). This time span, denoted by t may only be strictly positive
and is expressed as a finite number of clock ticks. As such, a temporal transition is formally
written as the time interval τ+t. The time span can be omitted for brevity; in this case a
temporal transition is only denoted by its name (e.g. τ).

Isochronous Time-Constrained Automata. Let us consider time-constrained automata
where every sequence of blocks is bounded by exactly one after and one before constraints.
They are composed of an entry node and a connected graph of synchronization nodes, in
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S A B

C

τ+1
0

τ+1
1
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4

(a) Non-trivial time-constrained automata with
each temporal transition is bounded by a before
and an after node.

τ0
τ1

τ3

τ2

τ2

τ4

(b) Isochronous equivalent of the automaton in
Figure 2a.

Figure 2 Representations of a non-trivial time-constrained automaton (Figure 2a) and its
isochronous equivalent (Figure 2b). From the start node S, only one temporal transition is allowed:
τ0, which is performed in one clock tick. After A is reached, either B or C is reachable, respectively
through τ1 in one tick and τ2 in two ticks. A is then activated from either B or C in one tick through
either τ3 or τ4, depending on the previous transition. This behavior is then infinitely repeated.

which each node has at least one output arc. As a result, there exists at least one cycle in
this graph. The entry node is an after node, which represents the unique entry point of the
automaton. It is connected to the graph of synchronization nodes by at least one output
arc, and it accepts no input arc. Such automata can be made isochronous by splitting each
temporal transition into a sequence of successive transitions of unitary length, such that the
sum of lengths of the resulting transitions equals the time span of the original transition.
In the underlying graphical representations, these additional nodes are denoted by . We
define such automata as isochronous time-constrained automata. Figure 2 illustrates how the
non-trivial time-constrained automaton with labeled temporal transitions shown in Figure 2a
can be represented as an isochronous time-constrained automaton in Figure 2b.

Time-Constrained Applications. A time-constrained application is defined as a fixed set of
isochronous time-constrained automata that share a same unique base clock. More specifically,
at each clock tick a new temporal transition is simultaneously completed by all the automata
that compose the application: because they share the same clock, they are synchronous. A
software implementation of time-constrained applications is required to implement bound
multi-processing: each task described by an isochronous time-constrained automaton must
be statically assigned to one execution unit (i.e. a CPU core).

An application is associated with a set of exclusion groups, an exclusion group being
a fixed set of temporal transitions that shall not overlap in time. These are specified by
the designer of the application after a preliminary analysis. The property that temporal
transitions of a given exclusion group do not overlap in time is a safety property (“bad things
do not happen during execution of a program” [2]). For a given exclusion group, this property
must be verified on the result of the composition of every automata that has at least one
temporal transition belonging to this exclusion group.

Exclusion groups model the non-simultaneity within a system. When part of a set, they
translate the requirement that the simultaneous execution of their associated windows of
computation is forbidden.
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τA0
τA2

τA1

(a) Automaton A, allocated to core cA, which de-
scribes a periodic behavior: after τA0 has been
taken, the sequence τA1 and τA2 is repeated.

τB0 τB1 τB3τB2

τB4

(b) Automaton B, allocated to core cB , which de-
scribes a periodic behavior: after τB0 has been
taken, the sequence τB1 , τB2 , τB3 and τB4 is re-
peated.

Figure 3 Example of time-constrained application composed of two trivial isochronous time-
constrained automata A and B respectively allocated to cores cA and cB such that cA 6= cB . The
temporal transitions τA1 , τB2 and τB4 shall not overlap in time.

τA0 τA2 τA2 τA2τA1 τA1τA1 τA1

τB0 τB1 τB3 τB1 τB3τB2 τB4 τB2

Figure 4 Infinite “unfolding” of automata A (above) and B (below). It hints towards a periodic
pattern where temporal transition in the exclusion group G = {τA1 , τB2 , τB4 } cannot overlap in
time, because of the temporal specfication of A and B.

4.3 Example
Figure 3 shows an example of a simple time-constrained application that consists in two trivial
time-constrained automata A and B that are allocated to two different CPU cores. Each
automaton defines its own set of temporal transitions: τA0 , τA1 and τA2 for A and τB0 , τB1 ,
τB2 , τB3 and τB4 for B. One exclusion group is arbitrarily defined here: G = {τA1 , τB2 , τB4}:
these temporal transitions shall not overlap in time.

In this example, the temporal design of automata A and B allows for the exclusion
group G to hold: since isochronous time-constrained automata within a time-constrained
application are synchronous and since temporal transitions are isochronous, one can observe
that when A runs τA1 , B simultaneously runs either τB1 or τB3 , but never τB2 nor τB4 . This
is illustrated by Figure 4, which shows that “unfolding” A and B hints towards thinking
that temporal transitions listed in the exclusion group G cannot overlap in time. In the next
section, we show how this problem can be automatically verified.

5 Validating the simultaneity constraints

We have introduced in Section 4 the notions of time-constrained applications and of exclusion
groups, that specify the property that the temporal transitions they contain must not execute
simultaneously. In this section, we propose algorithms that verify this property.

5.1 Formalization of the problem
Time-constrained automata may exhibit an infinite possibility of temporal behaviors, because
a task embodying the software implementation of an automaton virtually does not have an
upper bound of running time. The dates at which a transition can be activated may result
from all the infinite possible sequences of these cycles. As an illustration of this complexity,
Figure 5 shows all the possible temporal behaviors of the time-constrained automaton shown
in Figure 2b between clock ticks zero and seven.

Because a time-constrained application is composed of isochronous time-constrained
automata and because they all share the same clock, they are also synchronous. As a result,
each clock tick causes a temporal transition to be activated in each automata. This implies

TIME 2020



13:8 Non-Simultaneity as a Design Constraint

τ0

τ2 τ2 τ4

τ2 τ2 τ4
τ2

τ1

τ1 τ3
τ2 τ2

τ1 τ3

τ1 τ3

τ2 τ2 τ4
τ2 τ2

τ1 τ3

τ1 τ3

τ2 τ2 τ4

τ1 τ3
τ2

τ1

Figure 5 Tree that results from the “unfolding” of temporal behaviors of the non-trivial time-
constrained automaton shown in Figure 2b after seven clock ticks. The transition τ0 is activated at
date zero and each arc represents the occurrence of a clock tick.

that a temporal transition can be activated for a possibly infinite set of dates, where a date
is represented by a natural number. For example, in Figure 3a, τA0 can only be activated
at date zero, whereas τA1 can be activated for all dates that are odd. An isochronous
time-constrained automaton can therefore be understood as a finite automaton, where:

each state but the initial one can be marked as accepting;
the increment of time, associated to all the temporal transitions can be seen as the symbol
of a unary alphabet (isochronous property);
the set of dates at which a state can be reached is given by set of the lengths of the words
that lead to this state. Note that this set may be infinite, if the state is included in a
cycle.

The set of dates at which a state can be reached can therefore be expressed as the regular
language over a unary alphabet accepted by the automaton where only this state is marked
as accepting. It is known that each regular unary language can be represented as the union
of a finite number of arithmetic progressions of the form {c+ dk|k ∈ N} where c and d are
positive constants specifying their offset and period [27]. They can also be written as the
pair (c, d).

Temporal transitions that originate from a state are reachable at this set of dates.
Therefore, the set of dates at which a temporal transition can be activated is the union of
set of dates at which their respective states are reachable.

5.2 Determination of dates of reachability for every transitions
Notations. Let a unary, non-deterministic finite automaton (UNFA) A with n ≥ 2 states
and m transitions, such that A = (Q, δ, I, F ) where Q is the finite set of states (|Q| = n),
δ ⊆ Q×Q is a transition relation, I ⊆ Q is the set of initial states of the automaton and
F ⊆ Q is the set of accepting states. Using the notations defined in [27], q x−→ q′ denotes that
there exist a path of length x from q ∈ Q to q′ ∈ Q. On a UNFA, a path of length x can
be seen as a word x; as such, a word of length x is accepted by A if there exists a path of
length x from qi ∈ I to qf ∈ F , and the language L(A) accepted by A is the set of all the
words accepted by A.

Expressing L(A). Sawa proposes in [27] the algorithm UNFA-Arith-Progressions that
processes a UNFA A to construct a finite set of arithmetic progressions R describing the
language L(A), with a space complexity in O(n+m) and a time complexity in O(n2(n+m)).
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Applied to isochronous time-constrained automata, the result of this algorithm consists in the
exhaustive set of dates at which a given state can be reached. The essence of the algorithm
relies on expressing a path α from qi ∈ I to qf ∈ F via q ∈ Q so that qi

c1−→ q
c2−→ qf . If q

belongs to a cycle of length d, then the length of α can be expressed as the pair (c1 + c2, d);
otherwise it is simply (c1 + c2, 0). As such, R = R1 ∪ R2 with |R1| ≤ n2 and |R2| ≤ n. R1
contains every word of length x < n2 written (x, 0) whereas R2 contains all the other words
of L(A) (with x ≥ n2) expressed as arithmetic progressions (at most n).

Tailoring the algorithm. Running the algorithm unmodified for each of the n − 1 states
that can be marked as accepting1 would yield a total time complexity of O(n3(n+m)). We
propose a modified version of this algorithm to specifically determine the set of reachability
dates of temporal transitions without degrading the time complexity:

For q ∈ Q, the value sl(q) is defined as the length of the shortest loop that can be done
in q. If q is not part of a loop, then sl(q) is undefined.
A state q is called important if q belongs to a nontrivial strongly connected component C
(implying that sl(q) is defined) and the value sl(q) is minimal for all states in C.
The sets Si are computed so each set contains all states reachable from the initial state s
by i steps: Si = {q ∈ Q : s i−→ q} for i ∈ [0, n2).
Let Imp the set of important states of A.
Let Qimp = Sn−1 ∩ Imp the important states that can be reached after exactly n − 1
steps from the initial state s.
Let D = {sl(q)|q ∈ Qimp} the set of the shortest loop lengths among the important states
in Qimp.
Since there is only one initial state s to isochronous time-constrained automata, I can be
written as I = {s}.
We re-define F as the set of states that can be marked as accepting. By definition,
F = Q\{s}.
We define Tq the set of temporal transitions that can be activated at state q, that is the
outgoing vertices.

From the definition of isochronous time-constrained automata, we can propose a new
formulation of the set R1, such that R1 = {(i, 0)|i ∈ [1, n2)}. This allows to build a first set
of dates at which states are reachable. In this case, we can re-use this formula to determine
an initial set of dates for each temporal transition D1,τ as shown in Algorithm 1. Because
the original formula excludes the initial state, we add that the transitions reachable from the
initial state are all reachable at date zero (by definition). We just associate the temporal
transitions activated at a state q with the date at which q is reached. This is possible because
each state is associated with a date.

The second set of dates R2 is built around the sets Ti that contain all states from which
some final state can be reached by i steps. They are defined as in Equation (1). Then the
pair (c′ + n − 1, d) is added to R2 for c′ ∈ [n2 − 2n, n2 − n − 1] and each d ∈ D such that
c′ ≥ n2 − n− d, if there exists some q ∈ Qimp with sl(q) = d such that q ∈ Tc′ .

Ti = {q ∈ Q|∃qf ∈ F : q i−→ qf} for i ∈ [0, n2 − n− 1] (1)

A consequence of this formulation in the original algorithm is that the different temporal
transitions leading to qf ∈ F are entangled in the construction of the sets Ti in Equation (1).

1 the initial state cannot be reached from another state
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Algorithm 1 Construction of the first set of dates D1,τ that contains dates at which each
temporal transition τ is activated.

for τ ∈ Ts do
D1,τ = {(0, 0)}

for i ∈ [1, n2) do
for q ∈ Si do

for τ ∈ Tq do
D1,τ = D1,τ ∪ {(i, 0)}

To preserve dates specific to temporal transitions, we can instead propose the creation of the
sets that discriminate temporal transitions, as written in Equation (2).

Ti,qf
= {q ∈ Q : q i−→ qf} for i ∈ [0, n2 − n− 1] and qf ∈ F (2)

Considering each qf ∈ F , and each τ ∈ Tqf
, the same algorithm can be re-used to

compute D2,τ as in Algorithm 2 by substituting Ti with Ti,qf
. Finally the set of dates Dτ

for which each temporal transition τ is activated can be computed as Dτ = D1,τ ∪D2,τ .
Instead of running the original algorithm for each of the n− 1 accepting states, we build

the sets Ti,qf
once. Furthermore, constructing the sets Ti,qf

requires the same operations
than the sets Ti as only data organization changes. Thus, we can preserve the overall time
complexity of the original algorithm (O(n2(n+m))) since the application of Algorithm 2
does not increase it.

Algorithm 2 Construction of the second set of dates D2,τ that contains dates at which
each temporal transition τ is activated.

for q ∈ Qimp do
for c′ ∈ [n2 − 2n, n2 − n− 1] do

for qf ∈ F do
if q ∈ Tc′,qf

and c′ ≥ n2 − n− sl(q) then
for τ ∈ Tqf

do
D2,τ = D2,τ ∪ {(c′ + n− 1, sl(q))}

Special case of trivial time-constrained automata. The structure of trivial time-con-
strained automata allows major simplifications of this algorithm. The dates at which a state
can be reached can be written as a single arithmetic progression. If we consider the graph
representation of the automaton, nodes that are not part of a cycle can be written as (i, 0)
where i can be trivially found by exploring the automaton until the node is reached. Nodes
that are part of a cycle can be written as (c, d) where c is the first date at which the node
is reached and d is the length of the loop. For example, in Figure 3a, dates at which the
temporal transition τA1 is activated are {1 + 2k|k ∈ N}. Similarly, they are {2 + 2k|k ∈ N}
for τA2 and {0} for τA0 .
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5.3 Intersection of dates

We have shown earlier how to compute the set of dates Dτ at which each temporal transition
τ is activated. This set can be defined as a union of:

singletons; and
arithmetic progressions expressed as {c+ dk|k ∈ N}.

For a given exclusion group G, verifying that the intersection of the dates that characterize
temporal transitions belonging to different automata is empty is equivalent to verify the
safety property that temporal transitions within G cannot overlap in time, and as a result
cannot be executed simultaneously. We now show the conditions that apply on two dates
Da and Db for them to intersect. Different techniques may be used depending on whether
Da and Db represent constants or arithmetic progressions.
Intersection of dates for two constants: let Da = ha and Db = hb two constant dates. In

this trivial case, they share a date in common if and only if ha = hb.
Intersection of dates for arithmetic progressions: let Da = {ca + dak|k ∈ N} and Db =
{cb + dbk|k ∈ N} two arithmetic progressions. Their intersection is not empty if and only
if the following linear diophantine equation has a solution: αx+ βy = γ for x ∈ Z and
y ∈ Z, with α = da, β = −db and γ = cb − ca. Linear diophantine equations are well-
known structures that have been extensively studied; the problem of testing the existence
of solutions as well as finding them has long been solved [3]. This linear diophantine
equation admits a solution in Z2 if and only if the greatest common denominator of α
and β divides γ. If this equation has no solution then the intersection of Da and Db is
empty. Otherwise, if there exists a solution in Z2 then Da and Db have in common an
infinite set of dates since for any solution (x0, y0) of the equation, the set of solutions
{(x0 + dbk, y0 + dak)|k ∈ Z} can always be built (this set of solutions in Z2 contains an
infinite number of pairs where both members are natural integers).

Intersection of dates for a constant and an arithmetic progression: if Da = {ha} is a
singleton and Db = {cb + dbk|k ∈ N} is an infinite set representing an arithmetic
progression, they may intersect at most once, if Da ⊂ Db, that is when they exist x ∈ N
such that ha = cb + dbx. We find that this is true when ha ≥ cb and db divides ha − cb.

6 Proof of Concept

Implementation and Reproducibility. The model defined in Section 4 has been integrated
to the ASTERIOS suite, developed by the Krono-Safe company. It relies on a programming
model detailed by Methni et al. in [21] to instantiate a model of computation, in which
support for simultaneity has been added. The algorithms presented in Section 5 and the
method to validate the intersection of dates have been implemented in a standalone executable
that has been open-sourced2 under the Apache-2.0 license. It takes as inputs a specification
of the different tasks that compose an application with the list of exclusion groups to be
checked, and generates a report containing the dates at which each temporal transition can
be activated, as well as a graphical representation of the time-constrained application and
either the validation of exclusion groups or a counter-example. The proof-of-concept in this
section is based on the open-source version.

2 https://github.com/krono-safe/mcti-detect/

TIME 2020

https://github.com/krono-safe/mcti-detect/


13:12 Non-Simultaneity as a Design Constraint

E10 E9

E11

E7

E5

E0

E8

E13 E12

E3E4E14E15

E1E2

E6

E16

G14G15

G13

G9

G11

G16

G3

G0

G17

G6

G10 G2 G12G7

G4

G1

G8

G5

Figure 6 Design in which E2, E4, E6, E11, G3, G6, G8 and G14 are used to access the shared
resource. However it is found that E11 and G6 can be simultaneously reached at the same date.
This is therefore an example of a design that does not guarantee safe resources sharing.

Table 1 Counter-example showing traces leading for E11 and G6 to overlap in time at tick 12.

Tick 0 1 2 3 4 5 6 7 8 9 10 11 12
Task E E0 E1 E4 E12 E6 E7 E8 E10 E11 E7 E8 E10 E11

Task G G0 G1 G10 G11 G9 G5 G6 G1 G12 G17 G13 G15 G6

Sharing resources between two parallel tasks. For this illustrative proof-of-concept, let’s
consider a simple application that uses two non-trivial tasks E and G, each implanted on
a different CPU core. The requirements of this application impose they exchange data
through a shared resource (e.g. shared memory). In this specific use case, we assume the
temporal constraints are fixed: nodes cannot be added nor removed. When considering an
incremental design, this may not be the case. The end goal is to guarantee that accesses to
the shared resources are performed during temporal transitions that never overlap in time.
The occurrence of unwanted simultaneous accesses may result in data corruption (e.g. the
two tasks write at the same memory address) or in increased execution times caused by
additional contention.

Exposing an invalid design. A first design can be seen in Figure 6, which represents a
time-constrained application composed of two non-trivial tasks where accesses to the shared
resource are performed during the temporal transitions E2, E4, E6, E11, G3, G6, G8 and
G14. However, we find that temporal transitions E11 and G6 may overlap in time, as shown
in Table 1. This small example showcases that checking for absence of simultaneity is not a
trivial process and highlights the importance of automated validation.

Towards a safe design. If the design in Figure 6 does not guarantee safe resources sharing,
it is possible to try other design candidates. If the functional requirements of the application
allow it, the shared resource could be accessed from G5 and G15 and the retrieved data made
available to G6. This modified design is checked as in Figure 7 and the new set of temporal
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Figure 7 Design in which E2, E4, E6, E11, G3, G5, G8, G14 and G15 are used to access the
shared resource. It is found that they never overlap in time. This is therefore an example of a design
that guarantees safe resources sharing, given that accesses to the shared resource happen only during
these temporal transitions.

transitions that access the shared resource (E2, E4, E6, E11, G3, G5, G8, G14 and G15) have
been found to never overlap in time. Implementing such design removes entire classes of
problems that could comprise data integrity or negatively impact execution times, while
allowing for a better use of overall computing resources.

7 Conclusion and Perspectives

We have presented a model of computation based on time-constrained automata, that can
be used to express non-simultaneity as a design constraint in a model of computation. This
allows to express a safety property over parallel systems, which, if verified, ensures that
litigious sequences of computations can never run simultaneously. Designing such systems
with non-simultaneity as a constraint from the ground-up is believed to bring significant
safety benefits, notably for safety-critical real-time systems. We have then shown that this
safety property could be automatically verified, with reasonable complexity, by standalone
and open-sourced algorithms that extend the state of the art. As for future work, it would be
interesting to propose more advanced techniques to help the designer to interactively explore
the traces leading to a violation of its design constraints, for a more efficient convergence
towards a safe design. It seems also important to explore techniques to determine the sources
of time-interferences when they occur.
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Abstract
When building tableau for temporal logic formulae, applying a two-pass construction, we first check
the validity of the given tableaux input by creating a tableau graph, and then, in the second “pass”,
we check if all the eventualities are satisfied. In one-pass tableaux checking the validity of the
input does not require these auxiliary constructions. This paper continues the development of
one-pass tableau method for temporal logics introducing tree-style one-pass tableau systems for
Computation Tree Logic (CTL) and shows how this can be extended to capture Extended CTL
(ECTL). A distinctive feature here is the utilisation, for the core tableau construction, of the concept
of a context of an eventuality which forces its earliest fulfilment. Relevant algorithms for obtaining
a systematic tableau for these branching-time logics are also defined. We prove the soundness and
completeness of the method. With these developments of a tree-shaped one-pass tableau for CTL
and ECTL, we have formalisms which are well suited for the automation and are amenable for the
implementation, and for the formulation of dual sequent calculi. This brings us one step closer
to the application of one-pass context-based tableaux in certified model checking for a variety of
CTL-type branching-time logics.
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1 Introduction

In this paper we continue our investigation of tableaux-based deductive techniques for
temporal logic having in mind their potential application in model checking, more specifically,
in certified model checking [16], which aims to generate proofs as certificates of the properties
that are verified, as well as counterexamples for those properties that are invalidated. There
are two known ways to build tableau constructions for temporal logic formulae (for the
survey of tableau method for temporal logic we refer an interested reader to [13]). Two-
pass constructions check the validity of the given tableaux input in two passes - in the
first pass a tableau graph is obtained and the second “pass” checks the satisfiability of
all eventualities. In one-pass tableaux checking the validity of the input does not require
these auxiliary constructions. This paper continues the development of one-pass tableau
method for temporal logics [11, 4], this time for Computation Tree Logic (CTL) and Extended
Computation Tree Logic (ECTL) introduced, respectively, in [6] and [10]. The core tableau
construction is based on the concept of a context of an eventuality, which is a set of formulae
that “accompanies” the eventuality in the label of the node of a tableaux graph. Our specific
tableau rules that involve context force the earliest fulfilment of eventualities. In previous
works such a context-based one-pass tableaux approach has been developed for propositional
linear-time temporal logic, PLTL [11], and for the branching-time logic ECTL# [4], which
introduces a new class of fairness constraints utilising the “until” temporal operator. It
has also been shown how, in the linear-time case, the method, being mingled with a SAT
solver, can be invoked as part of the certified model checking for PLTL [2]. Aiming at similar
developments for branching-time cases, in particular for CTL, we make two observations.

Firstly, the satisfiability of a property ϕ in PLTL can be reduced to checking if a complete
transition system satisfies ¬ϕ (since any counter-model of ¬ϕ is a model of ϕ) and both the
satisfiability and model checking are PSPACE-complete [18]. However, the CTL satisfiability
problem cannot be reduced to the CTL model checking. In particular, a model checking
algorithm for CTL properties (for example [5] implemented in NuSMV) cannot be adapted for
testing CTL satisfiability: the model checking problem for CTL is known to be P-complete [7],
while the satisfiability problem for CTL is EXPTIME-complete [9]. However, any decision
procedure of CTL satisfiability can be used to perform model checking tasks.

Secondly, note that in our previous work one-pass tableaux method was developed for a
richer logic - ECTL# [4]. However, the application of such model checking procedure for CTL
simply based on the existing one-pass tableaux for ECTL# would become too “non-intuitive”
due to the complexity of its rules that are needed for this richer logic. We also note that the
distinguished (and unavoidable) feature of one-pass technique for ECTL# is the utilisation
of two types of context, unlike in the case of PLTL. Here the so-called “outer” (similar to
PLTL) context is a collection of state formulae, and is complemented by so called “inner”
context, a collection of path formulae. Subsequently, the development of a simpler one-pass
method for CTL is an important task. In our tableau method for CTL, similarly to PLTL, we
only need the “outer” context, yet, similar to ECTL# the generated tableaux are AND-OR
trees. Our results provide an intuitive tableau method that serves as a decision procedure of
CTL satisfiability and can also be used in certified model checking of CTL properties hence
the method presented in the paper would enable a subsequent study and implementation
of a certified model checker. With the development of tree-shaped one-pass tableaux for
CTL and ECTL, this paper has proved the effectiveness of the approach which now covers
both linear-time and a range of branching-time logics. Moreover, the results of this paper
give us formalisms which are well suited for the automation and are amenable for the
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implementation, and for the formulation of a dual sequent calculi - all these bring us one step
closer to the application of these developments in certified model checking for a variety of
branching-time logics. Additionally, aiming at the extension of the certified model checking
to the branching-time framework, a proof system, e.g. sequent calculus, is required to check
the proof certificates in the branching-time setting.

Our extensive search for tableau methods for CTL has not shown a great variety of
systems. For example, [3] presents a two-pass tableau, where in the first pass the tableau
rules are applied creating a cyclic graph. In the second pass, “bad loops” are pruned (where
a “bad loop” is a loop containing some eventuality that is not fulfilled along it). In [1, 12]
the authors introduce a single-pass tableaux decision procedure for CTL. It is based on
Schwendimann’s one-pass procedure for PLTL [17]. This tableau method uses an additional
mechanism for collecting information on the set of formulae in the nodes, and passing it,
to subsequent nodes along branches. The information on previously generated nodes helps
detecting “bad loops” without constructing the whole graph. Finally, we note that we have
not found an explicit formulation of a tableaux (one or two pass) method for ECTL.

To ensure that the presentation of quite technical details in the paper is clear and self-
contained, we supply all major technical details in the text. This determines the following
structure of the paper. In §2 we give CTL and ECTL syntax and semantics as sublogics of
CTL?. The formulation of the tableau method is presented in §3, where we first give some
preliminaries and then overview the tableau construction as an AND-OR tree and provide
examples. A systematic tableau construction is introduced in §4. In §5 we show further
extension of the method for ECTL. In §6 we draw the conclusions and prospects of future
work that the presented results open. Finally, in Appendix A we briefly recall the cyclic
models characterization of satisfiability in branching temporal logics. The soundness and
completeness of our tableau methods are proved in Appendix B. Finally, in Appendix C we
depict the complete tableau for the running example in the paper.

2 Syntax and Semantics of CTL and ECTL

The language of branching-time logic extends the language of classical propositional logic
by future time temporal operators ◦ - “at the next moment of time”, ♦ - “eventually”, � -
“always” and U - “until”, together with paths quantifiers A - “for all paths” quantifier, and E
- “there exists a path” quantifier.

The hierarchy of CTL-type family of Branching-time logics (BTL) is defined by releasing
restrictions on the concatenations of temporal operators and paths quantifiers which define
classes of admissible state formulae distinguished for these logics. As in CTL every temporal
operator must be preceded by a path quantifier, this logic cannot express fairness which
requires at least the concatenation of � and ♦. These are tackled by ECTL [9] which enables
simple fairness constraints but not their Boolean combinations. ECTL+ [10] further extends
the expressiveness of ECTL allowing Boolean combinations of temporal operators and ECTL
fairness constraints (but not permitting their nesting). The logic ECTL# [4] extends ECTL+

by allowing the combinations �(AUB) or AU�B, referred to as modalities �U and U�. The
logic CTL?, often considered as the “full branching-time logic” overcomes all these restrictions
on syntax allowing any arbitrary combinations of temporal operators and path quantifiers.
For the sake of generality, as all logics we are interested in are subsumed by CTL?, we first
recall CTL? syntax and then, by restricting it, derive the syntax for each of ECTL#, ECTL+,
ECTL and CTL.

TIME 2020
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I Definition 1 (Syntax of CTL?). Given Prop is a fixed set of propositions, and p ∈ Prop,
we define sets of state (σ) and path (π) CTL? formulae over Prop as follows: σ ::= T | p |
σ1 ∧ σ2 | ¬σ | Eπ and πCTL? ::= σ | π1 ∧ π2 | ¬π | ◦π | πUπ.

Observe that in Definition 1 for the set of path formulae we deliberately used an index
CTL? and did not use any index for the set of state formulae: the syntax of CTL? sublogics
we will define later, will be distinguished exactly by specific to these logics path formulae
constructions, while the set of state formulae is preserved from the definition of CTL? syntax.
Other usual Boolean operators can be derived from those introduced in the standard way while
the “release” (R ), ♦ and � operators can be defined as follows: ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2),
♦ϕ ≡ TUϕ, and �ϕ ≡ ¬♦¬ϕ.

We consider a Kripe-style semantics of CTL?: a Kripke structure, K, is a triple (S,R,L)
where S 6= ∅ is a set of states, R ⊆ S × S is a total binary relation, called the transition
relation, and L : S → 2Prop is a labelling function. Our Kripke structures are labelled directed
graphs that correspond to Emerson’s R-generable structures, i.e. the transition relation R
is suffix, fusion and limit closed [8]. A path x through a Kripke structure K is an infinite
sequence of states si, si+1, si+2 . . . such that (sj , sj+1) ∈ R for any j ≥ i. A fullpath x

through a Kripke structure K is an infinite sequence of states s0, s1, s2 . . . , where s0 is the
root. Given a path x = si, si+1, . . . and a state sk ∈ x such that k > i, we denote its finite
prefix x≤k = si, si+1 . . . , sk and its infinite suffix x≥k = sk, sk+1, . . . . The notation K �x(i)
denotes a Kripke structure with the set of states of K restricted to those that are R-reachable
from x(i) and fullpaths(K) is the set of all fullpaths in K. Given the structure K = (S,R,L),
the relation |= evaluates path formulae in a given path x and state formulae at the state index
i of x and is defined on atoms by K, x, i |= p iff p ∈ L(x(i)). Omitting standard definitions
for Booleans, we present the relation |= for temporal connectives and path quantifier E:

K, x, i |= Eπ iff there exists a path y ∈ fullpaths(K �x(i)) such that K, y |= π.

K, x, i |= ◦π iff K, x, i+ 1 |= π.

K, x, i |= π1Uπ2 iff there exists k ≥ i with K, x≥k |= π2 and K, x≥j |= π1 for all 0 ≤ j ≤ k − 1.

For any set Σ of state formulae, K, x, i |= Σ iff K, x, i |= σ, for all σ ∈ Σ. Moreover, if for
any fullpath x ∈ fullpaths(K), we have K, x, 0 |= Σ, then we simply write K |= Σ. For a state
formula ϕ, the set of its models, Mod(ϕ), is formed by all triples (K, x, i) such that K, x, i |= ϕ.
Then ϕ is satisfiable (Sat(ϕ)) if Mod(ϕ) 6= ∅, otherwise ϕ is unsatisfiable (UnSat(ϕ)). For
state formulae ϕ and ϕ′, if Mod(ϕ) = Mod(ϕ′) then ϕ and ϕ′ are logically equivalent denoted
as ϕ ≡ ϕ′. Satisfiability and logical equivalence are generalised to sets of state formulae Σ,
in the natural way (formally by substituting ϕ with Σ in the relevant definitions and stating
that Σ is satisfied when all its formulae are satisfied).

For each of BTL logics ECTL#, ECTL+, ECTL and CTL its syntax is defined over a fixed
set of propositions Prop, such that the definition of state formulae is the same as for CTL?

(Def. 1), and the eventuality ♦ϕ is the abbreviation for TUϕ. The specific for these logics
restrictions on the CTL? grammar in Definition 1 generate the corresponding sets for path
formulae, as in Definition 2. For technical convenience, here we define � as the basic language
operator.

I Definition 2 (Paths formulae for ECTL#,ECTL+, ECTL and CTL).
πECTL# ::= σ | π1 ∧ π2 | ¬π | ◦σ | σU(σ ∧ ♦σ) | �(σ ∨ �σ) | σU(�σ) | �(σUσ)
πECTL+ ::= σ | π1 ∧ π2 | ¬π | ◦σ | σUσ | �σ | �♦σ | ♦�σ.

πECTL ::= σ | ¬π | ◦σ | σUσ | �σ | �♦σ | ♦�σ.

πCTL ::= σ | ¬π | ◦σ | σUσ | �σ.
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IDefinition 3 (Literals). Let Prop be a fixed set of CTL (ECTL) propositions, and let ρ ∈ Prop.
Then the set of CTL(ECTL) literals is defined as Lit ::= F | T | ρ | ¬ρ.

It is well known that any given branching-time formula ϕ can be converted to a formula
NNF(ϕ) - the Negation Normal Form of ϕ obtained by pushing negations inwards until they
only apply to literals. The conversion is based on well-known equivalences which ensure that
ϕ and NNF(ϕ) have exactly the same models, i.e. are logically equivalent. Consequently,
we assume that inputs for the tableaux procedure in CTL and ECTL are given in NNF. For
simplicity, we will write ∼ϕ instead of NNF(¬ϕ). Also, for a finite set Φ = {ϕ1, . . . , ϕn}, we
let ∼Φ = NNF(¬

∧n
i=1 ϕi).

Further, it is important to note that the nesting of “pure path formulae”, totally un-
restricted in CTL?, is now restricted in its sublogics by relevant grammar cases for paths
formulae. For example, a CTL? formula (1) is not an ECTL# formula. Rewriting it as
A(TU(◦p ∧ E◦¬p)) we can see

A♦(◦p ∧ E◦¬p) (1)

that ◦p ∧ E◦¬p is neither a state formula nor of the form �σ. Note that the validity of (1)
which is indicative for CTL?, is directly linked to the limit closure property [8]. Similarly, a
ECTL# formula A((pU�q) ∧ (sU�¬q)) is not an ECTL+ formula because pU�q and sU�¬q,
hence their conjunction, are not admissible ECTL+ formulae. Further, an ECTL+ formula
(2) does not belong to ECTL

E(�♦q ∧♦�¬q) (2)

as �♦q ∧ ♦�¬q is not an admissible ECTL path formula. Finally, the fairness constraint (3)
expressible in ECTL cannot be constructed in CTL syntax as every temporal operator

E�♦q (3)

in a CTL formula must be preceded by a path quantifier. Note that it is important to
distinguish the problem if a formula of a superlogic belongs to a sublogic and the problem
if a formula of a superlogic can be expressed in a sublogic. For example, E(�♦q ∨ ♦�¬q),
similarly to formula (2) does not belong to ECTL but unlike (2), it is expressible in this logic,
as E(�♦q ∨ ♦�¬q) ≡ E�♦q ∨ E♦�¬q which is an ECTL formula if we define ∨ via ∧.

Table 1 Classification of context-based tableaux systems for CTL-type logics and relevant difficult
cases of concatenations of temporal operators and path quantifiers.

BTL Logics E�♦q E(�♦q ∧ ♦�¬q) A((pU�q)
∨ (sU�¬r))

A♦(◦p ∧ E◦¬p) One-pass
Tableaux

B(U ,◦) (CTL) X X X X This paper

B(U ,◦,�♦) (ECTL)
√

X X X This paper

B+(U ,◦,�♦) (ECTL+)
√ √

X X
√

B+(U ,◦,U�) (ECTL#)
√ √ √

X
√

B?(U ,◦) (CTL?)
√ √ √ √

X

Table 1 represents BTL logics classified by their expressiveness using “B” for “Branching”,
followed by the set of only allowed modalities as parameters; B+ indicates admissible Boolean
combinations of the modalities and B? reflects “no restrictions” in either concatenations
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of the modalities or Boolean combinations between them following the notation initially
proposed in [8] and further tuned in [15]. The top row of the figure represents the indicative
formulae (1)-(3) for the listed logics. The last column in Table 1 reflects the development of
the context-based one-pass tableaux technique for CTL-type logics: the method has been
developed for ECTL# ([4] where the motivation was to tackle complex cases of fairness).
In this paper we introduce the technique for CTL and ECTL, while the case of ECTL+ can
be tackled effectively by the technique developed for ECTL#. Indeed, ECTL+ and ECTL#

have similar cases of the Boolean combination of eventualities in the scope of A and E,
namely disjunctions of the eventualities in the scope of the A quantifier and conjunctions
of eventualities in the scope of the E quantifier, see [4] for details. Thus, Table 1 also
reflects syntactical cases of concatenations of temporal operators and path quantifiers that
are difficult for context-based one-pass tableaux. To tackle these cases, in addition to α- and
β-rules, that are standard to the tableaux, novel β+-rules which use the context to force
the eventualities to be fulfilled as soon as possible, were introduced. As ECTL# is more
expressive than ECTL+ in allowing new type of fairness constraints that use the U operator,
the relevant rules introduced in [4] would cover all difficult concatenations of operators in
ECTL+. Hence, simply treating the case of one-pass context-based tableaux for ECTL+ as
solved by the relevant development for a richer logic ECTL#, in this paper we concentrate on
bridging the gap in our roadmap in supplying BTL logics by this technique, by developing the
method for CTL and ECTL. The ultimate target of this roadmap - the one-pass context-based
tableaux for CTL? remains extremely difficult and an open problem.

3 Context-based One-pass Tableau Method for CTL

We precede the presentation of the method by the introduction of a number of important
concepts. Firstly, we introduce a concept of basic modality which reflects the restrictions
on forming the basic admissible combinations of temporal operators in the scope of a path
quantifier. Recall that formulae of CTL and ECTL logics are written in NNF. Abbreviating
by Q either of the path quantifiers A or E, we consider a basic modality of CTL or ECTL
logic to be of the form QT, where T is a temporal operator. The structure QT is generated
by the grammar rules for these logics in Def. 2. We can identify all basic modalities in a
given formula ϕ by finding its most embedded modality(es), say M1, then looking at the
next basic modality in which M1 is embedded, etc. For example, basic modalities for CTL
are structures Q◦,QU , and Q� while for ECTL these will be Q◦,QU , Q�, Q♦� and Q�♦. If
we analyse a CTL formula E◦A◦p then the most embedded basic modality, M1, would be
A◦p, which is embedded as E◦M1. These are generalised in Definition 4.

I Definition 4 (ECTL#,ECTL+, ECTL and CTL Basic Modalities).
MECTL ::= c | Q◦M | Q(MUM) | Q�M | Q�♦M | Q♦�M.
MCTL ::= c | Q◦M | Q(MUM) | Q�M.

where c stands for a purely classical formula (we can consider a purely classical formula as a
zero-degree basic modality) and M stands for any basic modality of CTL in the definition of
MCTL and of ECTL in the definition of MECTL. Note that we have “derived” cases of basic
modalities for ♦M and MRM. In what follows, every CTL modality QU or Q♦ is called
eventuality.

CTL tableau rules are based on fixpoint characterisation of its basic modalities: (in the
equations below ν and µ stand for “minimal fixpoint” and “maximal fixpoint” operators,
respectively)
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E�ϕ = νρ(ϕ ∧ E◦ρ) E(ϕRψ) = νρ(ψ ∧ (ϕ ∨ E◦ρ))
A�ϕ = νρ(ϕ ∧ A◦ρ) A(ϕRψ) = νρ(ψ ∧ (ϕ ∨ A◦ρ)) (4)

E♦ϕ = µρ(ϕ ∨ E◦ρ) E(ϕUψ) = µρ(ψ ∨ (ϕ ∧ E◦ρ))
A♦ϕ = µρ(ϕ ∨ A◦ρ) A(ϕUψ) = µρ(ψ ∨ (ϕ ∧ A◦ρ)) (5)

This fixpoint characterisation of basic CTL and ECTL modalities as maximal or minimal
fixpoints give rise to their analytical classification as α- or β-formulae which are associated,
in the tableau with α- and β-rules: Q�, and QR as maximal fixpoints are classified as
α-formulae while Q♦ and QU as minimal fixpoints are β-formulae. This is also reflected in
the known equivalences:

E�ϕ = ϕ ∧ E◦E�ϕ E(ϕRψ) = ψ ∧ (ϕ ∨ E◦E(ϕRψ))
A�ϕ = ϕ ∧ A◦A�ϕ A(ϕRψ) = ψ ∧ (ϕ ∨ A◦A(ϕRψ)) (6)

E♦ϕ = ϕ ∨ E◦E♦ϕ E(ϕUψ) = ψ ∨ (ϕ ∧ E◦E(ϕUψ))
A♦ϕ = ϕ ∨ A◦A♦ϕ A(ϕUψ) = ψ ∨ (ϕ ∧ A◦A(ϕUψ)) (7)

The tableau method determines if a given set of CTL state formulae is satisfiable or not. We
precede the formal introduction of the technique by its informal overview. The initial node of
the tableaux is labelled by a CTL formula in NNF. To expand the root, and any subsequent
node, we apply one of the following rules: α- and β-rules, the “next-state” rule, which reflects
a “jump” from a “state” to a “pre-state”, and, finally, characteristic to our approach, β+-rules,
where the use of the context (of an eventuality) is essential. The use of the context in these
rules, which is a collection of state formulae accompanying the eventuality in the label of the
node, forces the soonest fulfillment of eventualities. We apply α-, β-, and β+-rules repeatedly
until we reach a node labelled by F or by an inconsistent set of formulae, or a node whose
labels have already occurred within the path under consideration. In the former case the
expansion of the given branch terminates with ⊥ as its leaf. In the latter case, a repetitive
node in the branch means that the branch has a loop – where some subformulae of the given
formula are satisfied forever – which could be “bad” or “good”. A loop is “bad” when it has
a node which contains an unfulfilled eventuality, i.e. none of the nodes of the loop satisfies
it. In our procedure, the application of β+-rules to eventualities is essential to distinguish
between “good” and “bad” loops - if β+-rules have already been applied to every eventuality
occurring in the branch then we have a ’good loop’ and this branch represents a model for
the given formula. Otherwise, we choose an eventuality to which a corresponding β+-rule
has not been applied.

I Definition 5 (Syntactically Consistent Set of Formulae). A set Σ of state formulae σ is
syntactically consistent abbreviated as Σ> if F 6∈ Σ and {σ,∼ σ} 6⊆ Σ for any σ; otherwise, Σ
is inconsistent denoted as Σ⊥.

I Definition 6 (Tableau, Consistent Node, Closed branch). A tableau for a set of CTL state
formulae Σ is a labelled tree 〈T, τ,Σ〉, where T is a tree, and τ is a mapping of the nodes of
T to the state formulae, elements of Σ, such that the following two conditions hold: (i) The
root is labelled by the set Σ. (ii) For any other node m ∈ T , its label τ(m) is a set of state
formulae obtained as the result of the application of one of the rules in Figures 1, 2 and 4 to
its parent node n. Given the applied rule is R, we term m an R-successor of n. A node n of
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a tree T is consistent, abbreviated as n>, if its label, τ(n), is a syntactically consistent set of
formulae (see Def. 5), else n is inconsistent, abbreviated as n⊥. If a branch b of τ , contains
n⊥ ∈ b, then b is closed else b is open.

(∧) Σ, σ1 ∧ σ2

Σ, σ1, σ2
(Q�) Σ,Q�σ

Σ, σ,Q◦Q�σ

(∨) Σ, σ1 ∨ σ2

Σ, σ1 | Σ, σ2
(QU) Σ,Q(σ1Uσ2)

Σ, σ2 | Σ, σ1,Q◦Q(σ1Uσ2)

(QR ) Σ,Q(σ1Rσ2)
Σ, σ1, σ2 | Σ, σ2,Q◦Q(σ1Rσ2) (Q♦) Σ,Q♦σ

Σ, σ | Σ,Q◦Q♦σ

Figure 1 α- and β-Rules.

The rules in Figure 1 follow the standard for the tableaux classification of rules into
α-rules and β-rules that for the formulae with CTL modalities are based on their analytic
classification reflected in Equations (6)-(7). Thus, if a node, n, in the tableau graph is
labelled by a set of formulae, Σ, ϕ, and a designated formula for the application of tableau
rules, ϕ, is an α-formula - Q� or QR , then a corresponding α-rule applies, while if ϕ is a
β-formula - Q♦ or QU then a corresponding β-rule applies. In the latter case we treat Σ
as a (possibly empty) context for the eventuality ϕ. These applications of α- and β-rules
generate a set of formulae in the conclusion as a label for the successor node, n+ 1, in case
of an α-rule, or as labels of two successors of n, in case of a β-rule.

When a node n is labelled by an elementary set of formulae – i.e. a set which exclusively
formed by literals and formulae of the form Q◦σ – then this structure is analogous to the
construction to a “state” in the terminology of [19]; it enables us to construct the successors
of n corresponding to “pre-states” [19]. According to the next proposition we are guaranteed
to reach such a tree structure, where the last node of every branch, at this stage of the
construction, is a state.

I Proposition 7. Any set of CTL state formulae has a tableau T such that the last node of
every branch is labelled by an elementary set of state formulae.

Proof. Repeatedly apply to every expandable node any applicable α- or β-rule until all
expandable nodes are elementary. Then, the next-state rule must be applied to every
expandable node. J

(Q◦) Σ,A◦σ1, . . . ,A◦σ`,E◦σ′1, . . . ,E◦σ′k,
σ1, . . . , σ`, σ

′
1 & . . . & σ1, . . . , σ`, σ

′
k

where Σ is a set of literals.

Figure 2 Next-state Rule. (“&” joins AND-successors in the conclusion.)

Proposition 7 enables the application of the so-called “next-state rule” depicted in Figure 2.
Applying this rule we split the current branch at node n where the set Σ,A◦σ1, . . . ,A◦σ`,E◦σ′1,
. . . ,E◦σ′k is satisfied, into k branches (i.e. into the number of branches equal to the number of
E◦ constraints) where the successors of n along these branches are AND-successors, and are
labelled each by a different set σ1, . . . , σ`, σ

′
i, for i ∈ {1, . . . , k}. This rule splits branches in a

“conjunctive” way, and we use the symbol & to represent the generation of AND-successors of
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node n. Thus, the graphs generated by the tableaux with the application of the “next-state”
rule are AND-OR trees. The subsequent construction of a tableau, additionally, involves
rules that are applied to so called “uniform sets of formulae”.

I Definition 8 (Uniform Set of Formulae). A set of CTL state formulae Σ is uniform iff Σ is
exclusively formed by literals and basic CTL modalities and it has at most one E-formula.

Applying Proposition 7 to construct a tableau with all its expandable nodes labelled by
elementary sets of formulae, and then applying the rule (Q◦) (to every expandable node),
and finally, repeatedly applying (to every expandable node) the rules (∧) and (∨), we can
prove Proposition 9 which states that we can also reach the stage where the last nodes of
tableaux branches are labelled by uniform sets of formulae.

I Proposition 9. Any set of CTL state formulae Σ has a tableau T such that labels of all its
expandable nodes are uniform sets of formulae.

I Definition 10 (Uniform Tableau). For any set Σ of CTL state formulae, the tableau for Σ
provided by Proposition 9 is denoted Uniform_Tableau(Σ).

Now we illustrate the procedure by a running example and in the subsequent text will
gradually explain its main steps with illustrative figures for some parts. The whole tableau
is depicted in Appendix C.

A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q

A◦A(FR¬q),E◦E(pUq),E◦¬q

A(FR¬q),E(pUq) A(FR¬q),¬q

(∧)

(Q◦)

Figure 3 Example of uniform tableau.

I Example 11. The given set of formulae {A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q} is not uniform.
Hence, by applying the rules (∧) and (◦), we obtain the tableau in Figure 3. The two AND-
successors created by the “next-state” rule (Q◦) are respectively labelled by the uniform sets:
A(FR¬q),E(pUq) and A(FR¬q),¬q.

We extend our set of tableau rules with the new two rules named as β+-rules (Figure 4).
Note that the (Q♦)+ rule can be derived from the application of the (QU)+ to the CTL
formula TUσ. These rules, similarly to β-rules, also split a branch into two branches. These
two β+-rules are the only rules in our system that make use of the context - their application
force the eventualities to be satisfied as soon as possible (from the point of the tableau
construction where an eventuality is selected to be expanded with a β+-rule). The context is
given by the sets Σ that contain state formulae. In the conclusion of a β+-rule we add to the
conclusion of the corresponding β-rule, a conjunct ∼ Σ′. Recall that this is an NNF of the
negation of the conjunction of all formulae in Σ′ that are left from Σ after performing the
set-theoretical difference constraint indicated in the formulation of the rule. The idea now is
that ∼ Σ′ should also be satisfied until σ2 becomes satisfied. This prevents the repetition of
the context while σ2 is “delayed”. Note that Σ′ does not include the A� (with any prefix of
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sequence of A◦) because these formulas would be necessarily repeated along any branch -
indeed, if we use ∼ Σ instead of ∼ Σ′ we will generate a branch for each A� that will be
immediately closed.

(QU)+ Σ,Q(σ1Uσ2)
Σ, σ2 | Σ, σ1,Q◦Q((σ1∧ ∼Σ′)Uσ2) (Q♦)+ Σ,Q♦σ

Σ, σ | Σ,Q◦Q((∼Σ′)Uσ)

where Σ′ = Σ \ {(A◦)iA�σ | i ≥ 0 and (A◦)iA�σ ∈ Σ} and (A◦)i stands for i times A◦.

Figure 4 β+-Rules.

I Definition 12 (Next-Step Variant). A state formula Q(∼Σ′Uσ) obtained by the application
of a β+-rule to formula Q(σ1Uσ2) or Q♦σ is called the next-step variant of Q(σ1Uσ2).

A(FR¬q), E(pUq)

A(FR¬q), q A(FR¬q), p,E◦ E((p ∧ E(TUq))Uq)
(EU)+

Figure 5 Application of rule (EU)+ (we mark in grey the eventuality to which the β+-rule
applies).

I Example 13. Figure 5 reflects the application of the rule (EU)+ to the left-most expandable
node in Figure 3 (labelled by E(pUq),A(F R¬q)). Here, the context of the eventuality
E(pUq) is the AR -formula. The rule (EU)+ splits the tableau into two branches. The
left successor is labelled by q,A(F R¬q) and the right successor is labelled by p,E◦E(p ∧
E(TUq))Uq),A(F R¬q), where the middle formula E◦E(p ∧ E(TUq))Uq) is the next-step
variant of the eventuality E(pUq) and it contains the NNF of the negation of the context for
this eventuality, i.e. E(TUq) = NNF¬A(F R¬q).

4 Systematic Tableau Construction

In this section we define an algorithm, Asys, that constructs a systematic tableau. Let us
observe that, due to the rule (Q◦), any open tableau should have a collection of open branches
including all the (Q◦)-successors of any node labelled by an elementary set of formulae.
These collections of branches are called bunches. Any open bunch of the systematic tableau,
constructed by the algorithm Asys introduced in this section, enables the construction of a
model for the initial set of formulae.

The algorithm Asys constructs an expanded tableau (see Definition 25) for the given
input. Asys applied to the input Σ0, denoted as Asys(Σ0), returns a systematic tableau
Asys

Σ0
. Intuitively, “expanded” means “complete” in the sense that any possible rule has

been already applied at every node. Though the best way to implement this algorithm
is a depth-first construction, for clarity, we formulate it as a breadth-first construction of
a collection of subtrees. The procedure Uniform_Tableau, in the above Algorithm 1, was
introduced in Definition 10 along with the notion of a uniform set of state formulae. The
notation T1[`← T2] stands for the tableau T1 where the expandable ` is substituted by the
tableau T2. In particular, T [`←Uniform_Tableau(Σ)] is the tableau T where the expandable
` is substituted by the Uniform_Tableau(Σ). Procedure Eventuality_Selection chooses an
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Algorithm 1 Systematic Tableau Construction.

1: procedure systematic_Tableau(Σ0) . where Σ0: set of CTL state formulae
2: if Σ0 is not uniform then T := Uniform_Tableau(Σ0)
3: while T has at least one expandable node do
4: . Invariant: Any expandable node of T is labelled by an uniform set
5: Choose any node ` in T such that τ(`) is expandable . τ(`) is uniform
6: if there is no eventuality in τ(`) then T := T [`←Uniform_Tableau(τ(`))]
7: else
8: Eventuality_Selection(τ(`))
9: Apply_β+-rule(τ(`))
10: Let `1, `2 the two children of `
11: for i = 1 .. 2 do
12: if `i is expandable and τ(`i) is not uniform then
13: T := T [`i ←Uniform_Tableau(τ(`i))]

eventuality to which the corresponding β+-rule ((QU)+ or (Q♦)+) can be applied. Procedure
Apply_β+-rule(Σ) applies the corresponding β+-rule to the selected eventuality, it also keeps
as . the next-step variant (Definition 12) of such eventuality.

E(pUq) ,A(FR¬q)

q,A(FR¬q)

q,F,¬q q,¬q,A◦A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,F,¬q

p,E◦ E((p ∧ E(TUq))Uq) ,¬q,A◦A(FR¬q)

E((p ∧ E(TUq))Uq) ,A(FR¬q)

q,A(FR¬q)

q,F,¬q q,¬q,A◦A(FR¬q)

p ∧ E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

(EU)+

(AR )

⊗ ⊗

(AR )

⊗

(◦)

(EU)+

(AR )

⊗ ⊗

(∧)

⊗

Figure 6 A closed tableau for {E(pUq),A(FR¬q)}.

I Example 14. The application of the Algorithm 1 to the set {E(pUq),A(FR¬q)} shown in
Figure 6 selects the eventuality E(pUq) and applies the rule (EU)+ as explained in Example
13. The left successor node is labelled by q,A(F R¬q). Further expansion of this node by
applying the rule (AR ) generates two inconsistent successor nodes. Applying the AR -rule
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to the right successor, we obtain the left successor node which is inconsistent and a right
successor whose label is an elementary set. Thus, we apply the “next-state” rule generating
the successor labelled by the set of two formulae - arguments of E◦ and A◦. In this “pre-state”
we select the eventuality EU and generate two successor nodes applying again the β+-rule.
The left successor is subsequently expanded by two inconsistent successors of the AR -rule.
The right successor is expanded by the ∧-rule and then, since NNF(¬E(TUq)) = A(FR¬q),
the node is syntactically inconsistent, because it contains E(TUq)) and ∼ E(TUq)) (see
Definition 5).

A tableau for E(pUq),A(F R¬q) is also exhibited in [1, 12]. Note the direct correspondence
between our context-based tableau (Figure 6) and the one in [1, 12]- they have exactly the
same nodes. The right-most branch, in our case, closes by (syntactical) inconsistency, likewise
all the other branches. The difference is that, in this branch, the inconsistency comes from
the use of the context in the selected eventuality. The corresponding branch in the tableau in
[1, 12] is closed by the detection of a “bad loop”. Intuitively, whenever the tableau in [1, 12]
detects a “bad loop”, our tableau is closed by contradiction.

When the input is a satisfiable set, the systematic tableau aims to obtain a loop-node
that makes branches eventuality-covered. Next, we define both concepts.

I Definition 15 (Loop-node). Let b be a tableau branch and ni ∈ b (0 ≤ i). Then ni is a
loop-node if there exists nj ∈ b (0 ≤ j < i) such that τ(ni) ⊆ τ(nj). We say that nj is a
companion node of ni.

I Definition 16 (Eventuality-covered Branch). A tableau branch b = n0, n1, . . . , ni is eventu-
ality-covered if ni is a loop-node, with a companion node nj (0 ≤ j < i), both labelled by a
uniform set Σ such that every eventuality in τ(ni) is selected in some node nk (j ≤ k < i).

The procedure Eventuality_Selection performs in some fair way that ensures that any open
branch will ever be eventuality-covered.

I Definition 17 (Non-expandable Node). A node n is non-expandable if τ(n) = Σ⊥ or n is a
loop-node of branch b which is eventuality-covered. Otherwise, n is expandable.

Consequently, an expandable node is either a node that is not a loop-node or a loop-node
whose branch is not eventuality-covered.

I Definition 18 (Bunch in a Tableau, Closed Bunch and Tableau). A bunch b is a collection
of branches that is maximal with respect to (Q◦)-successor, i.e. every (Q◦)-successor of any
node in b is also in b. A bunch b is a closed bunch if, and only if, at least one of its branches
is closed, otherwise it is open. A tableau is closed if, and only if, all its bunches are closed.

Therefore, any open tableau has at least one open bunch, formed by one or more open
branches. Open branches are ended in a loop node. Open bunches represent models,
specifically cyclic models as defined in Appendix A.

5 Extending the Tableau from CTL to ECTL

In this section we explain a (relatively easy) way to extend the CTL tableau method to the
more expressive logic ECTL. This is achieved by adding the new rules given in Figure 7. The
α-rule (Q�♦) and the β-rule (Q♦�) that respectively correspond to the following logical
equivalences for the basic modalities that extend CTL to ECTL:

E�♦σ ≡ E♦σ ∧ E◦E�♦σ E♦�σ ≡ E�σ ∨ (E♦σ ∧ E◦E♦�σ)
A�♦σ ≡ A♦σ ∧ A◦A�♦σ A♦�σ ≡ A�σ ∨ (A♦σ ∧ A◦A♦�σ)

(8)
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There are no additional β+-rules: eventualities Q♦σ introduced by the rules in Figure 7 are
CTL-modalities handled by the β+-rules of the method for CTL.

(Q�♦) Σ,Q�♦σ
Σ,Q♦σ,Q◦Q�♦σ

(Q♦�) Σ,Q♦�σ

Σ,Q�σ | Σ,Q♦σ,Q◦Q♦�σ

Figure 7 Rules for extending CTL to ECTL.

To complete the extension, let us recall that in [4] some (subsumption-like) simplification rules
are needed to ensure the termination of the tableau method for the logic ECTL#. Though
the method for CTL does not need any of such rules, the handling of the more expressive
modalities in ECTL – by the rules in Figure 7 – combined with our β+-rules, requires the
following simplification rule:

(<QU) {Q((σ1 ∧ χ)Uσ2),Q(σ1Uσ2)} −→ {Q((σ1 ∧ χ)Uσ2)} (9)

By means of this rule, any next-step variant of an eventuality ϕ subsumes the original
eventuality ϕ that could appear repeatedly after the application of one of the rules in
Figure 7.

p,E�♦p,A♦�p

p,E�♦p,A�p

p, E♦p ,E◦E�♦p,A�p

p,E◦E�♦p,A�p

p,E◦E�♦p,A◦A�p

E�♦p,A�p

p,E◦ E(¬pUp) ,E◦E�♦p,A�p

p,E�♦p, A♦p ,A◦A♦�p

(A♦�)

(E�♦)

(E♦)+

(A�)

(Q◦)

...

...

Figure 8 ECTL tableau for {p,E�♦p,A♦�p} (
... means this branch expansion is not depicted).

I Example 19. Figure 8 shows an open tableau with the application of the two rules added
to extend CTL to ECTL. We outline a single branch where the ECTL-rules of Figure 7
exclusively apply in the first two steps whilst the rest of steps always apply CTL-rules. We
only show the left-most branch because it is an expanded open branch from which the model
〈p〉ω can be constructed.

6 Conclusion

We introduced a one-pass context-based tableau method for temporal logics CTL and ECTL,
providing the soundness and completeness arguments and illustrating the method on a
number of examples. The distinctive feature of the method presented in the paper, is that the
core tableau construction is based on the concept of a context of an eventuality. The method
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developed in the paper is much simpler than the analogous technique obtained earlier for a
richer logic - ECTL# where two types of context (both outer and inner contexts) are used.
The construction in this paper only uses the “outer” context, however, similar to ECTL#,
generates tableaux as AND-OR trees.

Our results provide intuitive tableau methods that serve as decision procedures of CTL
and ECTL satisfiability. The results of this paper also give us formalisms which are well
suited for the automation and are amenable for the implementation, and for the formulation
of a dual sequent calculi. All these enable a potential application of the developed tableau
methods in certified model checking.

The two tableau methods presented here have double-exponential time worst case com-
plexity. Indeed, a trivial adaptation of [11] allows us to say that the so-called closure – the
set of all formulas that could appear in a tableau – has in the worst case size O(2O(2n)),
where n is the input formula size (this complexity characterisation matches the one of [1, 12]).
However, in practice the worst case is very unusual. More often, for example when the
context of an eventuality mostly contains modalities A� (which is typical in reactive systems
specifications), the number of possible contexts is much smaller and consequently performance
is much better.
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A Interpretation of CTL-type Logics Over Cyclic Structures

In this appendix we define cyclic models and discuss their ability to characterise satisfiability
in branching temporal logics.

I Definition 20 (Cyclic Sequence, Cyclic Path and Cyclic Kripke structure). Let z be a
finite sequence of states z = s0, s1, . . . , sj such that, for every 0 ≤ k < j, (sk, sk+1) ∈ R.
Then, z is cyclic iff there exists si, 0 ≤ i ≤ j such that (sj , si) ∈ R. Let z be a finite
cyclic sequence, the subsequence si, . . . , sj of z is called a loop and si is called the cycling
element. We denote the loop as 〈si, . . . , sj〉ω. A cyclic path over z is an infinite sequence
path(z) = s0, s1, . . . , si−1〈si, si+1, . . . , sj〉ω. A Kripke structure K is cyclic if every fullpath
is a cyclic path over a cyclic sequence of states.

Cyclic paths are also known as ultimately periodic paths.
The fact that CTL (ECTL) satisfiability can be reduced to the interpretation over cyclic

models only is derived from the existence of the finite model property [9], see also [14].
Hence, for any CTL (ECTL) formula ϕ, such that Mod(ϕ) 6= ∅, there always exists a model
K ∈ Mod(ϕ) such that K is cyclic. Therefore, when speaking about the satisfiability in CTL
(hence ECTL) we can consider cyclic Kripke structures.
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B Soundness and Completeness

Since CTL and ECTL are sublogics of ECTL# and the tableau method presented here is the
adaptation of the method in [4], in this section we essentially adapt to CTL the soundness
and completeness proofs developed in [4]. We firstly prove the soundness and completeness
of the tableau method for CTL, and then we extend both results to ECTL.

To prove the soundness of our tableau method for CTL (Theorem 22), we show that every
tableau rule in Figures 1, 2 and 4 are sound (or preserve satisfiability) in the sense of the
next Lemma 21.

I Lemma 21 (Soundness of the Tableau Rules for CTL). Consider all the rules in Figures 1,
and 2 and 4.

1. For any α-rule Σ
Σ′ : Sat(Σ) if and only if Sat(Σ′).

2. For any β- and β+-rule Σ
Σ1|Σ2

: Sat(Σ) if and only if Sat(Σ1) or Sat(Σ2).

3. If Σ is a set of consistent literals, then Sat(Σ,A◦σ1, . . . ,A◦σ`,E◦σ′1, . . . ,E◦σ′k) if and
only if Sat(σ1, . . . , σ`, σ

′
i) for all 1 ≤ i ≤ k.

Proof. All the items follows very easily by the “systematic” application of the semantic
definitions of the modalities, except the “if” direction for the two of β+-rules. We will prove
here the “if” direction of the rules (QU)+ for Q = E and Q = A, because the rules (Q♦)+

are particular cases by abbreviation ♦σ = TUσ.
For the “if” direction of rule (EU)+, let K |= Σ,E(σ1Uσ2) and let x be the path in K such
that K, x, i |= Σ,E(σ1Uσ2). Then, let j be the least i ≥ 0 such that K, x, i |= σ2. If j = i = 0,
then K, x, 0 |= Σ, σ2. Otherwise, if j > 0 then K, x,m |= σ1, for all 0 ≤ m < j. Consider k
to be the greatest such m for which K, x, k |= Σ. Hence, K, x, h |=∼Σ, for all h such that
k + 1 ≤ h < j. In particular, by definition of Σ′ (obtained from Σ) it is easy to see that
K, x, h |= σ for every σ ∈ (Σ\Σ′) and for all h such that 0 ≤ h < j. Therefore, K, x, h |=∼Σ′,
for all h such that k + 1 ≤ h < j. Thus, K, x, k |=, σ1,E◦E((σ1∧ ∼Σ′)Uσ2).
For the “if” direction of rule (AU)+, let us suppose that

UnSat(Σ, σ2) and UnSat(Σ, σ1,A◦A((σ1∧ ∼Σ′)Uσ2)).

We will show that UnSat(Σ,A(σ1Uσ2)). For that, let us consider any arbitrary K such that
K |= Σ to show that K 6|= A(σ1Uσ2). By the above unsatisfiability hypothesis, if K |= Σ,
then both K 6|= σ2 and K 6|= σ1 ∧ A◦A((σ1∧ ∼ Σ′)Uσ2). Then, there are two possible
cases. First, if K |= ¬σ1 ∧ ¬σ2, then it is obvious that K 6|= A(σ1Uσ2). Second, if K |=
¬σ2∧¬A◦A((σ1∧ ∼Σ′)Uσ2), then there exists x1 ∈ fullpaths(K) and i1 > 0 that satisfy both
K, x1, j |= ¬σ2 for all j such that 0 ≤ j ≤ i1, and K, x1, i1 |= ¬σ1 ∨Σ′. Since all the formulae
in Σ \ Σ′ are satisfied in all states along all paths, indeed K, x1, i1 |= ¬σ1 ∨ Σ. Therefore,
if K, x1, i1 |= ¬σ1, then obviously K 6|= A(σ1Uσ2). Otherwise, if K, x1, i1 |= Σ, applying the
same reasoning for K �x1(i1) as we did above for K, we can conclude that there should be a
path x2 ∈ fullpaths(K �x1(i1)) and some i2 > 0 such that either K �x1(i1), x2, j |= ¬σ2 for all
j such that i1 ≤ j ≤ i2 and K �x1(i1), x2, i2 |= ¬σ1 ∨ Σ. Hence, if K �x1(i1), x2, i1 |= ¬σ1,
then trivially K 6|= A(σ1Uσ2). Otherwise, K �x1(i1), x2, i1 |= Σ. Hence, there are two possible
scenarios: 1.) After a finite number of iterations we get a path y = x≤i1

1 x≤i2
2 · · ·x≤ik

k such
that K, y, j |= ¬σ2 for all j such that 0 ≤ j ≤ ik and K, y, ik |= ¬σ1. 2.) The infinite iteration
of the second case yields a path y = x≤i1

1 x≤i2
2 · · ·x≤ik

k · · · (that exists by the limit closure
property) such that K, y, i |= ¬σ2 for all i ≥ 0. In both scenarios we have K 6|= A(σ1Uσ2)
holds for any arbitrary K that satisfies Σ. Thus, UnSat(Σ,A(σ1Uσ2)). J
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I Theorem 22 (Soundness of the Tableau Method for CTL). Given any set of state formulae
Σ, if there exists a closed tableau for Σ then UnSat(Σ).

Proof. In a closed tableau for Σ, the set of formulae labelling at least one leaf in each bunch
is inconsistent and therefore unsatisfiable. Then, by Lemma 21, the labelling of the root
node, Σ, is unsatisfiable. J

Next, we prove the refutational completeness of the tableau method for CTL (Theorem 29).
For that, we firtsly define the notion of stage and prove some auxiliary properties on the
stages and bunches of the systematic tableau, that are necessary to prove that every open
bunch in the systematic tableau represents a model of the initial set of formulae (Lemma 28).

I Definition 23 (Stage). Given a branch, b of a tableau T , a stage in T is every maximal
subsequence of successive nodes ni, ni+1, . . . , nj in b such that τ(nk) is not a (Q◦)-child of
τ(nk−1), for all k such that i < k ≤ j. We denote by stages(b) the sequence of all stages of
b. The successor relation on stages(b) is induced by the successor relation on b. The labelling
function τ is extended to stages as the union of the original τ applied to every node in a
stage.

I Definition 24 (αβ+-saturated Stage). We say that a stage s = ni, . . . , nj in Asys
Σ is

αβ+-saturated if and only if it satisfies the following conditions:
1. For all σ1 ∧ σ2 ∈ τ(s): {σ1, σ2} ⊆ τ(s).
2. For all Q�σ ∈ τ(s): {σ,Q◦Q�σ} ⊆ τ(s).
3. For all σ1 ∨ σ2 ∈ τ(s): σ1 ∈ τ(s) or σ2 ∈ τ(s).
4. For all Q(σ1Rσ2) ∈ τ(s) : {σ1, σ2} ⊆ τ(s) or {σ2,Q◦Q(σ1Rσ2)} ⊆ τ(s).
5. For all Q(σ1Uσ2) ∈ τ(s): σ2 ∈ τ(s) or {σ1,Q◦Q(σ1Uσ2)} ⊆ τ(s) or

{σ1,Q◦Q((σ1∧ ∼Σ′)Uσ2)} ⊆ τ(s)
where Σ′ = (τ(ni) \ {Q(σ1Uσ2)}) \ {(A◦)iA�ϕ | i ≥ 0 and (A◦)iA�ϕ ∈ τ(ni)}.

6. For all Q(♦σ) ∈ τ(s) : σ ∈ τ(s) or {Q◦Q(♦σ)} ⊆ τ(s) or {Q◦Q((∼Σ′)Uσ)} ⊆ τ(s)
where Σ′ = (τ(ni) \ {Q♦σ}) \ {(A◦)iA�ϕ | i ≥ 0 and (A◦)iA�ϕ ∈ τ(ni)}.

I Definition 25 (Expanded Bunch and Tableau). An open branch b is expanded if each stage
s ∈ stages(b) is αβ+-saturated and b is eventuality-covered. A bunch is expanded if all its
open branches are expanded. A tableau is expanded if all its open bunches are expanded.

The construction of the systematic tableau applies exactly one β+-rule to exactly one selected
eventuality (if any) at the first node of the stage, and then applies exhaustively all the
applicable α- and β-rules to the formulas in the stage, until the branch closes, or its leaf
is labelled by an elementary set, or it contains a loop-node. Consequently, the following
Proposition 26 holds which can be trivially proved by construction.

I Proposition 26. Given any set of state formulae Σ, the systematic tableau Asys
Σ is expanded.

Next we prove a crucial property of the systematic tableau management of eventualities
by means of the selection policy.

I Proposition 27. Let b be an open branch of Asys
Σ and let Q(σ1Uσ2) be a formula that is

selected at some stage si ∈ stages(b). Then, there exists some stage sk ∈ stages(b) (for some
k ≥ i) such that σ2 ∈ τ(sk) and σ1 ∈ τ(sj) for all j ∈ {i, . . . , k − 1}.

Proof. By construction, the uniform set labelling the first node at each stage sj (j ≥ i) of b has
the form Σsj ,Q((σ1∧(∼Σsi∧· · · ∧ ∼Σsj−1))Uσ2) where each Σsj is the context of the selected
formula containing the next-step variant of Q(σ1Uσ2) at the first node of each stage sj . Since
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no other β+-rule is applied each Σsj is a subset of the finite set formed by all state formulae
that are subformulae of some formula in Σsi

and their negations. Hence, there are a finite
number of different Σsj

. Therefore, after finitely many applications of the β+-rule, Σsh
= Σsj

,
for some h >= i, for some j ∈ {i, . . . , h − 1}, and σ1 ∧ (∼ Σsi ∧ · · · ∧ ∼ Σsh−1) ∈ τ(sh).
In particular, ∼Σsh

∈ τ(sh), hence, Σsh
must be inconsistent. Since b is open, this is a

contradiction. This means that, for some k ≥ i the application of the corresponding β+-rule
should force that σ2 ∈ τ(sk). In addition, by Proposition 26 and Definition 24(5), σ1 ∈ τ(sj)
for all j ∈ {i, . . . , k − 1}. J

I Lemma 28 (Model Existence). Let Σ be any set of formulae. For any expanded bunch H
of Asys

Σ , there exists a Kripke structure KH such that KH |= Σ.

Proof. Let H be any expanded bunch of Asys
Σ . We define KH = (S,R,L) such that

S =
⋃

b∈H stages(b) and for any s ∈ S: L(s) = {p | p ∈ τ(n) ∩ Prop for some node n ∈ s};
and R is the relation induced in stages(b) for each b ∈ H. Any branch in b ∈ H is open,
hence b ends in a loop-node. Moreover, every eventuality has been selected in some stage
of b. Hence, there exists a (possibly empty) uniform set Σ` such that for some i ≥ 0:
b = s0, s1, . . . , si−1, si, si+1, . . . , sj , n`, where each sh stands for a stage and n` is a non-
expandable loop-node labelled by Σ` whose companion node is the first node at stage si. We
are going to prove the following fact:

KH , sa, 0 |= σ for any a ∈ {0, . . . , j} and any formula σ in L(sa)

by structural induction on the formula σ.
The base of the induction, for σ = p ∈ Prop, follows by definition of KH .
The cases where σ has one of the forms σ1 ∧ σ2, Q�σ, σ1 ∨ σ2 and Q(σ1Rσ2) are trivial by
Definition 24 and the induction hypothesis. Hence, to complete the inductive proof we will
show that KH , sa, 0 |= Q(σ1Uσ2) for any Q(σ1Uσ2) ∈ L(sa). The case for all Q♦σ ∈ L(sa)
follows as a particular case by ♦σ ≡ TUσ.
Consider any Q(σ1Uσ2) ∈ L(sa). Since b is eventuality-covered and n` is a loop-node,
Q(σ1Uσ2) must be the selected eventuality at some node between the states sa and sj .
Hence, by Proposition 27 and the definition of KH , there should be a state sk ∈ S (for
some a ≤ k ≤ j) such that σ2 ∈ L(sk) and σ1 ∈ L(sz) for all z ∈ {a, . . . , k − 1}. Then, by
induction hypothesis, KH , sk, 0 |= σ2 and KH , sz, 0 |= σ1 for all z ∈ {a, . . . , k− 1}. Therefore,
KH , sa, 0 |= Q(σ1Uσ2).
To complete the proof, we show that the successor relation between states in KH is well-
defined. For that, consider any tableau node in any stage sa that is labelled by an elementary
set

{Σ,A◦σ1, . . . ,A◦σn,E◦σ′1, . . . ,E◦σ′k}
where Σ is a consistent set of literals, by rule (Q◦), sa has (in KH) a successor state si

a+1,
for each i ∈ {1, . . . , k}, such that L(si

a+1) = {σ1, . . . , σn, σ
′
i}. We can assume (by the above

proved fact) that KH , s
i
a+1, 0 |= {σ1, . . . , σn, σ

′
i} for all i ∈ {1, . . . , k}. Therefore, we can

infer that KH , sa, 0 |= {Σ,A◦σ1, . . . ,A◦σn,E◦σ′1, . . . ,E◦σ′k}. J

Next, we prove the refutational completeness of the tableau method.

I Theorem 29 (Refutational Completeness for CTL). For any set of state formulae Σ, if
UnSat(Σ) then there exists a closed tableau for Σ.
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Proof. Suppose the contrary, that there exists no closed tableau for Σ. Then the systematic
tableau Asys

Σ is open. Hence, there is at least one expanded bunch H in Asys
Σ . By Lemma

28, there exists a Kripke structure KH such that KH |= Σ. Consequently, Sat(Σ). J

Finally, we prove the completeness of our tableau method for CTL.

I Theorem 30 (Termination of the Tableau Method for CTL). For any set of state formulae
Σ , the construction of the expanded tableau Asys

Σ terminates.

Proof. Tableau rules produce a finite branching, hence König’s Lemma, applies. Therefore,
it suffices to prove that every branch is finite. By Proposition 27, the application of a β+-rule
to a selected formula stops after a finite number of steps. Since the number of selectable
eventualities in any open branch is finite, any open branch is eventuality-covered after a finite
number of eventuality selections. Recall that we assume the eventuality selection strategy to
be fair. J

I Theorem 31 (Completeness of the Tableau Method for CTL). For any set of state formulae
Σ, if Σ is satisfiable then there exists a (finite) open expanded tableau for Σ.

Proof. The existence of the systematic tableau Asys
Σ suffices to prove this fact, by Theorem

30. J

Now, we explain how the proofs of these metatheorems for CTL can be extended to ECTL.
Firstly, we extend the soundness of the tableau rules, in the sense of Lemma 21, to the rules
in Figure 7.

I Lemma 32. For any ECTL set of state formulae Σ and any state formula σ:
1. Sat(Σ,Q�♦σ) if and only if Sat(Σ,Q♦σ,Q◦Q�♦σ).
2. Sat(Σ,Q♦�σ) if and only if Sat(Σ,Q�σ) or Sat(Σ,Q♦σ,Q◦Q♦�σ).

Proof. It follows by “systematic” application of the semantic definitions of the modalities
Q�♦ and Q♦� given by the equivalences (8) in Section 5. J

To extend the refutational completeness result to ECTL, we firstly extend the Definition
24 with the following additional conditions for a stage to be αβ+-saturated:
7. For all Q�♦σ ∈ τ(s): {Q♦σ,Q◦Q�♦σ} ⊆ τ(s).
8. For all Q♦�σ ∈ τ(s): {Q�σ} ⊆ τ(s) or {Q♦σ,Q◦Q♦�σ} ⊆ τ(s).
It is obvious that these two additional conditions are satisfied in any stage of the systematic
tableau by construction. Using these conditions, it is routine to prove that KH defined in
Lemma 28 satisfies the fact that: KH , sa, 0 |= σ for any a ∈ {0, . . . , j} and any formula of
the forms Q�♦σ,Q♦�σ that belongs to L(sa). Therefore, refutational completeness (i.e.
Theorem 29) extends to ECTL.

Finally, to extend the termination result (see proof of Theorem 30), it suffices to ensure
that the rules in Figure 7 do not affect the behaviour of the β+-rules on the selected
eventualities in the sense that Proposition 27 is preserved. Since each application of a rule
in Figure 7 introduces a new Q♦σ, in Section 5 we have introduced the simplification rule
(<QU) (see (9) to subsume any occurrence of the eventuality ϕ by any next-step variant of
ϕ. Therefore, Proposition 27 holds and hence Theorem 30 trivially extends to ECTL.
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C The Running Example Tableau

In Figure 9 we depict the whole tableau for the running example we use in the paper. Note
that the Q rule at step 2, denoted with a big circle generates two AND-successors, where the
left successor has the closed tableau - this is explained in the paper. Hence, the bunch is
closed, in spite of the open tableau at the right successor of the AND-node.

A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q

A◦A(FR¬q),E◦E(pUq),E◦¬q

E(pUq) ,A(FR¬q)

q,A(FR¬q)

q,F,¬q q,¬q,A◦A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E◦ E((p ∧ E(TUq))Uq) ,F,¬q

p,E◦ E((p ∧ E(TUq))Uq) ,¬q,A◦A(FR¬q)

E((p ∧ E(TUq))Uq) ,A(FR¬q)

q,A(FR¬q)

q,F,¬q q,¬q,A◦A(FR¬q)

p ∧ E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

p,E(TUq),E◦ E((p ∧ E(TUq))Uq) ,A(FR¬q)

A(FR¬q),¬q

F,¬q ¬q,A◦A(FR¬q)

A(FR¬q)

(∧)

(Q◦)

(EU)+

(AR )

⊗ ⊗

(AR )

⊗

(◦)

(EU)+

(AR )

⊗ ⊗

(∧)

⊗

(AR )

⊗ (Q◦)

Figure 9 A closed tableau for {A◦A(FR¬q),E◦E(pUq) ∧ E◦¬q}.
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Abstract
Real-time and distributed systems are increasingly finding their way into critical embedded systems.
On one side, computations need to be achieved within specific time constraints. On the other side,
computations may be spread among various units which are not necessarily sharing a global clock.
Our study is focused on a specification language – named TESL – used for coordinating concurrent
models with timed constraints. We explore various questions related to time when modeling systems,
and aim at showing that TESL can be introduced as a reasonable balance of expressiveness and
decidability to tackle issues in complex systems. This paper introduces (1) an overview of the TESL
language and its main properties (polychrony, stutter-invariance, coinduction for simulation), (2)
extensions to the language and their applications.
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1 Introduction

Designing and modeling systems nowadays still raise open problems. A very expressive
language or framework can be useful to model a complex system where events are not trivially
interleaved. On the opposite, an excessively expressive language is the reason for prohibitive
slow-downs or even undecidability. As such, a reasonable balance between expressiveness
and decidability needs to be found. In the current industrial trend for critical embedded
systems, grows an increasing need for two kinds of systems:

Real-Time Systems where an external input is followed by an output delivered within a
specified time, named deadline. The correct behavior of such systems must be ensured at
both logical and temporal levels.
Distributed Systems where autonomous nodes communicate and cooperate to perform a
common computation.

A distributed real-time system (DRTS) [34, 14] belongs to both categories and consists
in autonomous computing nodes where specific timing constraints must be met. DRTS are
essential as they describe more closely common real-time applications by providing fault
tolerance and load sharing [35, 34, 14]. An example of a DTRS is a modern car using CAN
buses [14]. In such a setting, a middle gateway connects two CAN buses. One of them is
high-speed and connects the engine, the suspension and the gearbox control. The other one
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is low-speed and connects the lights, seat and door control units. The aviation industry also
exhibits an increasing need for DTRS as shown by recent developments in interoperable
gateways ED-247 [21].

On the side of formal modeling, various environments have emerged to tackle the issue of
modeling and verifying complex systems. Some are industrial products, such as Matlab/Sim-
ulink [15], Wolfram SystemModeler [33], SCADE [7]. Some others are academic experiments,
such as Ptolemy II [13], TimeSquare [12], ModHel’X [20]. Our study is centered around
the inner formalisms that drive these environments, and in particular the TESL language.
The main question this paper addresses is: Can we provide a uniform framework to model
distributed and real-time systems?. The paper is organized as follows: Section 2 introduces the
TESL language which we believe can answer the main problem. Section 3 introduces its main
properties, in terms of polychronous clocks, stutter-invariance and coinductive unfolding.
Finally, in Section 4 we present some extensions and aim at showing their relevance in the
scope we address.

2 The TESL language

The Tagged Events Specification Language (TESL) [8] originates from the idea of coordinating
the execution of heterogeneous inner-parts of a model as components of the ModHel’X
modeling and simulation environment. The language is inspired by CCSL [16, 26], the
Tagged Signal Model [25] and from the constructive semantics of Esterel [6, 5] for the original
simulation solver. In this setting, an event is modeled by a clock, with an associated time scale.
Considering a continuous system, its behavior is discretized into a sequence of observation
instants. At each instant, a clock admits a timestamp (also called tag), that stands for the
metric time measured on this clock. Besides, a clock also admits a tick which indicates an
occurrence of the event at this instant. The domain for timestamps can possibly be any
totally ordered set. We emphasize the fact that the language handles chronometric time
constraints, which are different from logical time constraints. Chronometric time constraints
are given on durations measured between timestamps. Two forms of constraints may be
specified in TESL:

Event-triggered causality. Events may occur due to the occurrence of other events. For
instance “I have a coffee because my office mate prepares some coffee”.
Time-triggered causality. Events may occur because a time threshold has been reached.
For instance “I have a coffee because it is 9am”.

2.1 Illustrating the Language
Let us model in TESL the simple behavior of a radiotherapy machine used in cancer treatment.
The patient has a prescription of 2 Gy of radiation in low-dose-rate of 1.5 Gy.h−1.

Listing 1 Radiotherapy machine
1 rational-clock hr // Time unit in hours
2 rational-clock gy // Radiation unit in Gray
3 unit-clock start sporadic () // Start emitting rays
4 unit-clock stop // Stop emitting rays
5 unit-clock emstop // Emergency stop
6 time relation gy = 1.5 * hr
7 start time delayed by 2.0 on gy implies stop
8 emstop implies stop
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hr

gy

start

stop

emstop

0.0

0.0

()

1.33

2.0

()

0 1
(a) Normal situation.

hr

gy

start

stop

emstop

0.0

0.0

()

0.5

0.75

()

()

1.33

2.0

()

0 1 2
(b) Emergency stop.

Figure 1 Two partially satisfying runs.

Lines 1 to 5 declare clocks hr and gy with rational timestamps, and clocks start, stop
and emstop with the unit timestamp (so there is no chronometric scale associated to them).
The constraint sporadic enforces the occurrence of a tick on start. Line 6 specifies that
time on hr flows 1.5 times as fast as on gy. Line 7 specifies that each time clock start ticks,
clock stop will tick after a delay of 2.0 measured on the time scale of clock gy. Line 8
requires that each time the emstop clock ticks, the stop clock instantaneously ticks as well.
The syntax of such expressions is detailed in Subsection 2.3.

Two behaviors are illustrated in Figure 1. They show possible execution traces or runs
satisfying the TESL specification. A run consists in a sequence of synchronization instants
(vertical dashed line with blue numbers). Each of them contains ticks (in red) along with
timestamps (in green) on the time-scales of the clocks hr, gy, start, stop and emstop.

2.2 Clocks, runs and timestamps
I Definition 1. Let K be the set of clocks, B the set of booleans and T the ordered domain
of timestamps. The set of runs is denoted Σ∝ and defined by

Σ∝ = N→ K→ (B× T)

Additionally, we define two projections that extract the components of an event occurrence:

ticks(ρ n K) ticking predicate of clock K in run ρ at instant n (first projection)
time(ρ n K) time value on clock K in run ρ at instant n (second projection)

I Example 2. Let ρFig.1a be the run shown in Figure 1a, we have ticks(ρFig.1a 0 start) = true
and time(ρFig.1a 1 gy) = 2.0.

2.3 Quick overview of the syntax
We briefly introduce some expressions of the language which serve the purpose of this paper.
The reader may refer to the official website of TESL1 for an exhaustive description of all the
features of the language. A TESL specification Φ is described by the following grammar:

1 https://wdi.centralesupelec.fr/software/TESL/
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Φ ::= 〈atom〉 ∧ . . . ∧ 〈atom〉
〈atom〉 ::= 〈clock〉 sporadic 〈timestamp〉 on 〈clock〉

| 〈clock〉 implies 〈clock〉
| time relation (〈clock〉, 〈clock〉) ∈ 〈relation〉
| 〈clock〉 time delayed by 〈duration〉 on 〈clock〉 implies 〈clock〉

where 〈clock〉 ∈ K, 〈timestamp〉 ∈ T, 〈duration〉 ∈ T and 〈relation〉 ⊆ T× T.
To provide a quick understanding, we briefly and informally explain the semantics:
K sporadic τ on Kmeas requires a tick on clock K at an instant where the timestamp
on Kmeas is τ ;
Kmaster implies Kslave models instantaneous causality by specifying that at each instant
where Kmaster ticks, Kslave ticks as well ;
time relation (K1, K2) ∈ R relates the time frames of clocks K1 and K2 by specifying
that at each instant, the timestamps on K1 and K2 have to be in relation R ;
Kmaster time delayed by δτ on Kmeas implies Kslave stands for delayed causality by
duration. At each instant k where Kmaster ticks, it requires a tick on Kslave at an instant
where the timestamp on Kmeas is τ ′, with τ ′ the sum of δτ and the timestamp on Kmeas
at instant k. In other words, it states that each tick on Kmaster must be followed by a
tick on Kslave after a delay δτ measured on the time scale of Kmeas.

3 Properties of the language

3.1 Polychronous clocks and time islands
One of the most prominent properties of the TESL language lies in polychronous clocks [23],
a global clock does not necessarily drive the system. In the context of distributed systems,
there exists as many clocks as there are computing nodes: all run at different rates and their
clocks may possibly drift along. This is why, an additional mechanism of synchronization is
necessary to coordinate these subworkers to achieve a common desired computation.

Metric level. There are similarities with time dilation as in special relativity [19] where
time seems to flow more slowly for a stationary observer than for a moving observer. The
drift increases with the speed of the moving observer. For instance, GPS satellites suffer
from time drifting and it is necessary to take into account these effects.
Temporal level. Modern computing also exhibits this idea where temporal cycles may
speed up or slow down. Current predominant processors adjust their clock speed with
respect to environmental variables (energy, heat, noise), this is called throttling. Today’s
multicore processors consist of multiple computing units which may run faster or slower
for these reasons, while possibly being used to achieve a distributed computation.

We illustrate this statement with the running example by adding an independent comput-
ing unit used for auxiliary computation needs. Whenever its computation is finished, it will
trigger an event to indicate that it is ready. Let us simply declare a clock aux whenever this
computing unit yields its signal. Besides, we can also create a scenario where we require this
to occur at timestamp 0.5. The following line can be added to the specification in Listing 1:

rational-clock aux sporadic 0.5
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In this setting, clocks hr and gy are said to belong to the same time island as their
timeframes are arithmetically related. On the other hand, clock aux belongs to another
independent time island. There may also be other clocks living around as the specification is
permissive and allows other clocks to exist even though they were not specified.

aux
× 1.5 gyhr

Figure 2 Graphic representation of time islands.

Let us consider the specification in Listing 1, with the additional aux clock as declared
above. Figure 3 depicts three runs which satisfy this specification. For presentation purposes,
only three clocks hr, gy and aux are displayed. On the leftmost figure, we observe that aux
ticks at 0.5 when it is 0.0 on hr. On the center figure, aux ticks at 0.5 when it is between
0.0 and 0.5 on hr. On the rightmost figure, aux ticks at 0.5 when it is 0.5 on hr. We see
therefore that there exists an infinite number of satisfying runs as the timeframe on clock aux
is left completely unrelated to the other time frames. However, we developed a simulation
solver for TESL that supports symbolic runs, and hence captures this infinity of runs in a
finite number of symbolic runs using symbolic timestamps.

hr

gy

aux

0.0

0.0

0.5

0.5

0.75

1.33

2.0

0 1 2

hr

gy

aux

0.0

0.0

0.5

0.5

0.75

1.33

2.0

0 1 2 3

hr

gy

aux

0.0

0.0

0.5

0.75

0.5

1.33

2.0

0 1 2

Figure 3 Examples of satisfying runs with additional clock aux in an independent time island.

3.2 Stutter Invariance
A fundamental concept of concurrent and distributed systems is stutter invariance. In
finite-state model checking, it is an essential requirement for partial-order reduction tech-
niques. When composing automata, the addition of stutter, or silent instants, allows the
accommodation for their different alphabets. From a point of view in language theory, the
membership of any word in a language shall be preserved even if a letter is duplicated. In
our setting to model and compose submodels, we need stutter invariance in order to provide
compositionality. For instance, when composing two specifications, we may have to add
observation instants to a run that satisfies a specification in order to observe events on
clocks that belong to the other specification. In other words, stuttering in necessary to refine
specifications [22]. Stutter invariance also allows one to observe a model more often than
necessary without changing its behavior.

In TESL, composing specifications is simply performed by the conjunction of TESL-
formulae. To illustrate the idea of stutter-invariance with the running example, let us assume
that we require the system to trigger some refresh mechanism every 10 minutes. We would
add the following lines to the specification:

TIME 2020
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refresh sporadic 0.0 on hr
refresh time delayed by <10/60 > on hr implies refresh

If we consider the run from Figure 1b and wish to compose it with this refreshing
mechanism, a satisfying run is shown in Figure 4. The top of the figure shows the original
run as in Figure 1b, whereas the bottom depicts a run where new instants have been added.
A one-to-one correspondence is observed between run instants in the top and the bottom
figure. Both runs exhibit the same first instant where start is triggered, with refresh
additionally ticking in the second run. However, the second instant of the second run exists
due to the refreshing requirement at 0.166 on clock hr, which is not present on top.

Stutter-invariance is illustrated by the fact that a run may be dilated and new instants
added while still satisfying the specification.

hr

gy

start

stop

emstop

refresh

0.0

0.0

()

0.166

0.25

0.333

0.5

0.5

0.75

0.666

1.0

0.833

1.25

1.0

1.5

1.166

1.75 2.0

1.333

1 2 3 4 5 6 7 80

hr

gy

start

stop

emstop

0.0

0.0 0.0

0.75 2.0

1.333

0 1 2

()

() () () () () () () ()

()

()

()

()

()

()

()

Figure 4 The example of radiotherapy run dilated.

3.3 Unfolding Specifications
The language allows the specification of runs that can be constructed and described by
operational rules. In [29], we introduced an operational semantics of the language whose
main ideas are summarized in Figure 5. The general concept of the operational semantics
revolves around a 3-component pattern past-present-future. The past component contains
the run we are constructing (which we also call the run context), the present component
contains TESL-formulae to consume for the construction of the current instant, while the
future component contains TESL-formulae to consume for future instants. The system
considers each TESL formula as a consumable resource, and its consumption produces a
“smaller” resource, which allows to constructively build the past component. Finally, the past
component is a symbolic run and contains logical primitives which are sent to a SMT-solver
in order to decide the satisfiability of the constructed run. Put differently, we reduced the
problem of solving a TESL specification to a simpler constraint solving problem.
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OPERATIONAL
RULES

PAST PRESENT FUTURE

satisfying run
non-satisfying run

CONSTRAINT
SOLVING

Figure 5 Usage of the operational semantics.

4 Extensions

In this section, we propose two extensions of the language. From the original implementation
of TESL, we have experimentally broadened its scope by adding two features on formulae and
clocks. The addition of such has increased the language expressiveness without compromising
constraint solving. To provide an insight, we illustrate them with an application example.
We designed and experimented their semantics by implementing them into an experimental
solver, named Heron2 [29]. This implementation is a path-exhaustive multicore simulation
solver built with MLton/MPL [36, 37]. It directly implements the operational semantics and
the presented extensions. It can also be used for system testing and monitoring.

4.1 Precedence formula (and timed automata)
The first extension we propose is built around the precedence operator as found in CCSL.
A appreciable motivation lies in modeling Synchronous Dataflows [24, 26]. In this model,
each component provides an interface with inputs and outputs, and respectively a number of
input tokens (to be read) and another of output tokens (to be written). When wiring two
components, it is necessary that the n-th output writing event will precede the n-th input
reading event. Precedence allows to specify this kind of indexed requirement over the order
of event occurrence.

We extend the syntax of TESL as shown in Subsection 2.3 with

〈atom〉 ::= . . .

| 〈clock〉 weakly precedes 〈clock〉
| 〈clock〉 strictly precedes 〈clock〉

Informally, K1 weakly precedes K2 means that each tick on clock K2 may be uniquely
mapped to a tick on K1 in the past or current instants (as a one-to-one correspondence).
K1 strictly precedes K2 is analogous but maps to instants that are strictly in the past.

I Remark 3. Mallet et al. showed that the decidability of this type of formula could be
handled with counter automata [27]. In our framework, we modeled this formula in a similar
way by embedding run contexts with arithmetic constraints containing counter expressions.
Again, we reduced this problem to a constraint solving problem.

2 https://github.com/heron-solver/heron
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To illustrate our interest in this operator, we consider timed automata [2, 1] as introduced
by Alur and Dill. An additional and distinct mechanism made of clocks (also referred as
chronometers) is used to store and specify metric timing constraints. On the implementation
side, they extend classical finite-state automata with timing constraints. This formalism
allows time to progress inside states while transitions are instantaneous, meaning that
transitioning from one state to another is fast enough to be abstracted. In this subsection, we
describe how this model of computation can be encoded with TESL extended with precedence.
Let us give in Figure 6 a simple timed automaton (extracted from [4]) which models a system
in which an alarm is triggered whenever the delay between receiving two messages is less
than 5 seconds.

initstart verif alarm
msg, c := 0

c ≥ 5, msg, c := 0

c < 5, msg

Figure 6 An example of timed automata from [4].

To model the timed automaton in Figure 6, we declare TESL-clocks that will simulate
the events occurring at a lower level (suffixed by _enter and _leave). Other clocks are also
declared for transitions.

// Set of states : {init , verif , alarm}
unit-clock state_init_enter
unit-clock state_init_leave
unit-clock state_verif_enter
unit-clock state_verif_leave
unit-clock state_alarm_enter
unit-clock state_alarm_leave

We also need to declare TESL-clocks related to the behavior of TA-clocks, in particular
when resetting them.

// Set of clocks : {c}
unit-clock c_reset
rational-clock c sporadic 0.0

Likewise, we need a TESL-clock to model the reading of a symbol (so-called action).

// Set of actions : {msg}
unit-clock read_msg

We proceed by encoding in TESL each transition of the timed automaton. We model the
first transition from init to verif, which must read symbol msg and reset clock c, as:

// Transition t1 = init -> verif: msg , c:= 0
state_init_leave when read_msg implies trigger_t1
trigger_t1 implies state_verif_enter
trigger_t1 implies c_reset

The second transition from verif to itself can be triggered when reading msg if time on
clock c is greater than or equal to 5, which will eventually lead to resetting c. This means
that the transition can be triggered if more than 5.0 units of time have elapsed on c since
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the last time c has been reset. When using this transition, one will remain in state verif
while resetting c to 0 each time a message has been read.

// Transition t2 = verif -> verif: c>=5, msg , c:= 0
c_reset time delayed by 5.0 on c with reset on trigger_t3

implies trigger_t2_min
trigger_t2_min weakly precedes trigger_t2
state_verif_leave ∧ read_msg implies trigger_t2 ∨ trigger_t3
trigger_t2 implies state_verif_enter
trigger_t2 implies c_reset

The third transition from verif to alarm is triggered when a new message has been
received before 5.0 units of time have elapsed. We model this as:

// Transition t3 = verif -> alarm: c<5, msg
c_reset time delayed by 5.0 on c with reset on trigger_t2

implies trigger_t3_max
trigger_t3 strictly precedes trigger_t3_max
state_verif_leave ∧ read_msg implies trigger_t2 ∨ trigger_t3
trigger_t3 implies state_alarm_enter

Figure 7 shows a run prefix exhibiting the behavior of our encoding of the timed automaton.
At instant 0, time on clock c is 0.0 and we enter in state init. At instant 1, 5.0 units of time
have elapsed. At instant 2, 5.0 additional units of time have elapsed and read_msg has been
triggered, thus the transition is triggered (trigger_t1). The TA-clock c is reset and leaves
state init to enter verif. Also, a minimum limit has been set on triggering transition t2 as
it can only be fired after elapsing at least 5.0 units of time (as depicted by trigger_t2_min
at instant 4). At instant 4, symbol msg is read and transition t2 is triggered to re-enter in
the same state verif. Finally, at instant 5, the symbol msg is read again and transition t3 is
triggered to enter alarm. A tick on trigger_t3 is possible as it precedes trigger_t3_max.
Likewise, trigger_t3_max defines a maximum limit to ensure any t3-transition triggering
only before.

4.2 Previous operator (and PID controllers)
Another useful operator is pre with similar syntax and semantics as in Lustre [18]. This
operator simply allows to refer to the previous timestamp on a clock. Hence, a substantial
part of feedback systems can be modeled accurately as they require registers to store previous
values. The power of computation is significantly augmented and allows us to model more
complex systems, such as mathematical sequences and series (e.g., Fibonacci), differential
calculus (derivatives, Euler’s integrator), or digital filters.

Since this operator refers to the value of a signal at a previous instant, we generalized
TESL clocks as flows. A flow is a clock where timestamps are no longer required to be
monotonic. As a matter of fact, these “timestamps” are simply called values.

We extend the syntax of TESL as shown in Subsection 2.3, with:

〈clock〉 ::= K ∈ K
| pre 〈clock〉

This extension is useful at modeling feedback systems. Let us illustrate this with the
ubiquitous algorithm of automatic control theory: the Proportional-integral-derivative (PID)
controller [39]. In this theory, a PID controller delivers a control signal to a process in order
to bring a process output closer to a reference setpoint (e.g., cruise control in cars, autopilots
in airplanes).

TIME 2020
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c

c_reset

state_init_enter

state_init_leave

state_verif_enter

state_verif_leave

state_alarm_enter

state_alarm_leave

read_msg

trigger_t1

trigger_t2_min

trigger_t2

trigger_t3

trigger_t3_max

0.0 5.0 10.0 15.0 17.0 20.0 22.0

0 1 2 3 4 5 6

Figure 7 A satisfying run prefix to encode a timed automaton.

PID Controller

Σ
err

Σ
setpt out meas

×(−1)

Proportional

Integral

Derivative

Plant

Figure 8 General diagram of a process using a PID controller.

The block diagram in Figure 8 shows the structure of the controller. Basically, the system
receives as input the error signal err, i.e. the difference between the reference setpoint
setpt and the process output out, and computes a control signal based on the sum of a term
proportional to the error, an integral term and a derivative term. Each of the three terms
is parameterized by a multiplying factor, respectively Kp, Ki and Kd, which are commonly
called gains. Thereafter, the controller output enters a transfer function which translates
the control signal out into the process output meas. For instance in automotive control
theory, this occurs when converting the position of the gas pedal into the generated car
velocity. This new output will be used to feed the error back at the next computing cycle. It
is possible to describe this system straightforwardly in TESL as in Listing 2.
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Listing 2 The PID controller
// Time
time relation dt = 1.0
time relation t = [0.0] -> (pre t) + dt
// Gain
time relation Kp = 0.1
time relation Ki = 0.2
time relation Kd = 0.2
// Setpoint
time relation setpt = 40.0
// Control signal
time relation err = setpt - meas
time relation integr = [0.0] -> (pre integr ) + (err * dt)
time relation derivat = [0.0] -> (err - (pre err )) / dt
time relation out = (Kp * err) + (Ki * integr ) + (Kd * derivat )
// Simple actuation
time relation meas = [0.0] -> (pre meas) + (pre out)

When running this example, the solver yields the output shown by the extract in Listing 3.

Listing 3 An extract of the satisfying run found by Heron of the PID controller
### Solver has successfully returned 1 model
## Simulation result [0 x1ADAB ]:

meas err integr derivat out
[1] 0.0 40.0 0.0 0.0 4.0
[2] 4.0 36.0 36.0 -4.0 10.0
[3] 14.0 26.0 62.0 -10 .0 13.0
[4] 27.0 13.0 75.0 -13 .0 13.0
[5] 40.0 -1.0 74.0 -14 .0 12.0
...

Additionally, the values of the flows meas, err and out are plotted in Figure 9. As
expected, we observe that the process output meas is brought closer to the reference setpoint
setpt = 40.0. Besides, the error signal and the control signal out gradually decrease to 0.0
as the need to damp out oscillations progressively decreases.

0 20 40 60 80 100

0

20

40

60
meas

0 20 40 60 80 100

−20

0

20

40 err
out

Figure 9 Plotting values for meas, err and out.

5 Related Work

In the family of synchronous programming languages [3], Lustre [18], Esterel [6, 5] and
Signal [17] are known to provide polymorphic time (time domains of various type). However,
their time model is purely logical, which is not suited when dealing with modeling non-
discretizable systems. Prelude [32] and Zélus [9] overcome this with continuous dynamics.
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All these previous models derive clocks from a global root clock, which constrains models
to flow from a single reaction clock. Polychrony (clocks possibly living in various independent
timeframes) overcomes this restriction by allowing specifications with more relaxed and
concurrent execution of systems. This feature can be observed in the Signal language or
polychronous automata [23]. Compared to TESL, they do not allow metric time constraints.

TESL is also inspired by CCSL which supports asynchronous constraints on events. It
admits an executable [38] and denotational semantics [11, 28]. However, time in CCSL is
purely logical and durations are counted as a number of ticks on a clock.

On a more theoretical-side, timed automata [2, 1] support both discrete events and metric
time. However, clocks are global and uniform, they necessarily progress at the same rate.

All in all, TESL attempts to overcome these limitations and provides a general-purpose
specification language of synchronous and asynchronous constraints with clocks over poly-
morphic time while supporting polychrony, and mixing logical and metric time.

6 Future work

The outcome of our study leads us to various future opportunities:
An effort is currently running towards a machine-checkable formalization of the operational
and denotational semantics into the Isabelle/HOL proof assistant [31, 30]. We successfully
proved that the operational semantics was correct and complete with respect to the
denotational semantics. Proving both extensions of the paper is a future direction.
Numerous questions about model-checking remain unanswered. In our experiments, we
have observed that unfolded specifications could be refolded with abstract interpretation
techniques. This would offer a finite-representation of these infinite-state systems, thereby
providing means to decide safety and liveness properties of such systems.
In addition, the TESL language seems to be suited for modeling and simulation of systems
with time of various kind. With the new extensions we propose and their implementation
in an existing efficient solver, we believe TESL can become a relevant asset as a simulation
engine for simulation platforms, such as the GEMOC Studio [10].

7 Conclusion

This study introduces a language – named TESL – suited for the modeling and simulation
of complex systems with multi-level time considerations. For this purpose, we illustrated
how the language is suited for various applications of time in models. We first illustrated the
main properties of the language (absence of a global root clock, stutter invariance). Then,
we introduced two extensions of the language along with two applications depicted by (1) an
encoding of timed automata, and (2) an implementation of a PID controller.

Most of the widely used formalisms suffer from restrictions in their model of time, which
we attempt to address. Some consider time as purely logical and may not be suited for
real-time systems as computing cycles may not necessarily flow at a fixed rate. Some other
consider time as global which is restrictive towards distributed systems where time does not
flow at the same rate in the different components, and may not be synchronized. We believe
our approach is complementary to state-of-the-art environments and may help to circumvent
their drawbacks by considering time in its whole nature.
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Abstract
The timeline-based approach to automated planning was originally developed in the context of space
missions. In this approach, problem domains are expressed as systems consisting of independent
but interacting components whose behaviors over time, the timelines, are governed by a set of
temporal constraints, called synchronization rules. Although timeline-based system descriptions
have been successfully used in practice for decades, the research on the theoretical aspects only
started recently. In the last few years, some interesting results have been shown concerning both its
expressive power and the computational complexity of the related planning problem. In particular,
the general problem has been proved to be EXPSPACE-complete. Given the applicability of the
approach in many practical scenarios, it is thus natural to ask whether computationally simpler but
still expressive fragments can be identified. In this paper, we study the timeline-based planning
problem with the restriction that only qualitative synchronization rules, i.e., rules without explicit
time bounds in the constraints, are allowed. We show that the problem becomes PSPACE-complete.
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1 Introduction

Timeline-based planning is an approach to automated planning and scheduling that arose
in connection to space operations [16]. In this setting, planning domains are modeled as
systems made of independent but interacting components, whose behavior over time, the
timelines, is governed by a set of temporal constraints. Compared to other well-established
action-based planning formalisms such as STRIPS [7] and PDDL [15], timelines conform to
the declarative paradigm, and are very effective in modeling the behavior of complex systems
where multiple components have to interact to obtain a common goal rather than scenarios
where the target of the planning process is a single agent. Moreover, being born in a context
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16:2 Complexity of Qualitative Timeline-Based Planning

where scheduling of operations is often as important as planning, timeline-based languages
are particularly tailored to temporal reasoning, and to the modeling of real-time systems.
These features have proven to be quite useful in practice, as timeline-based planning systems
have being successfully deployed both at NASA [2,3] and ESA [8,9] for short- to long-term
mission planning over the last three decades [4, 6].

From a theoretical perspective, timeline-based modeling languages are interesting for
their rich syntax and powerful semantics. However, the study of their expressiveness and
computational complexity has started only recently. The expressive power of the language has
been compared with action-based counterparts [11] and the general plan-existence problem
for timeline-based planning has been proved to be EXPSPACE-complete [5, 12]. Timeline-
based games [13], where some of the components are under control of the environment
and the controller has to ensure the satisfaction of the constraints independently from the
environment’s choices, have also been studied to formalize and extend the practice of flexible
timelines used in current timeline-based planning systems. Deciding whether there is a
winning strategy for a timeline-based game has been proved to be 2EXPTIME-complete.

Despite the high computational complexity of the related decision problems, timeline-
based models have been routinely and successfully used in complex real-world scenarios for
decades. This apparent paradox indeed suggests the existence of interesting fragments of
the general theory with more tractable complexities that are still suitable for meaningful
real-world applications. Starting from this observation, this paper identifies the qualitative
fragment of the timeline-based planning problems, i.e., problems where the system behavior
is described without referring to explicit time bounds. This restriction is nevertheless suitable
for many practical scenarios as also testified by the plethora of approaches based on qualitative
time models in many application domains including automated planning [10].

We prove that the plan-existence problem for this fragment is PSPACE-complete as
opposed to the EXPSPACE-completeness of the general problem. The proof is given by
means of an automata-theoretic construction that builds on the technique developed by
Della Monica et al. [5] to prove the complexity in the general case. We also discuss some
interesting consequences that this result brings to the table.

The paper is structured as follows. Section 2 recalls the basic syntax and semantics
of timeline-based planning problems, and introduces the qualitative fragment studied here.
Then, Section 3 proves that the problem can be solved in polynomial space, while Section 4
proves that it is also PSPACE-hard. Section 5 discusses the consequences of these results
together with some interesting future developments.

2 Qualitative timeline-based planning

In this section, we introduce the notion of qualitative timeline-based planning. To this end,
we recall the main definitions about timeline-based planning. We start with the definition of
state variable, which is the basic building block of the framework.

I Definition 1 (State variable). A state variable is a tuple x = (Vx, Tx, Dx), where:
Vx is the finite domain of the variable;
Tx : Vx → 2Vx is the value transition function, which maps each value v ∈ Vx to the set
of values that can (immediately) follow it;
Dx : Vx → N+×(N+∪{+∞}) is a function that maps each v ∈ Vx to the pair (dx=v

min, d
x=v
max)

of minimum and maximum durations allowed for intervals where x = v.

The behavior of a state variable x over time is modeled by a timeline, i.e., a finite sequence
of tokens each one denoting a value v and a time interval d meaning that x evaluates to v
within d. Formally:
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I Definition 2 (Timelines). A token for x is a tuple τ = (x, v, d), where x is a state variable,
v ∈ Vx is the value held by the variable, and d ∈ N+ is the duration of the token. A timeline
for a state variable x = (Vx, Tx, Dx) is a finite sequence T = 〈τ1, . . . , τk〉 of tokens for x.

For any token τi = (x, vi, di) in a timeline T = 〈τ1, . . . , τk〉 we can define the functions
start-time(T, i) =

∑i−1
j=1 dj and end-time(T, i) = start-time(T, i) + di, hence mapping each

token to the corresponding time interval [start-time, end-time) (right endpoint excluded).
The horizon of a timeline T is defined as the end time end-time(T, k) of its last token τk.
When there is no ambiguity, we write start-time(τi) and end-time(τi) to denote, respectively,
start-time(T, i) and end-time(T, i).

The problem domain and the goal are modeled by a set of temporal constraints, called
synchronization rules. A synchronization rule is of the form:

rule := a0[x0 = v0]→ E1 ∨ E2 ∨ . . . ∨ Ek, with
Ei := ∃a1[x1 = v1]a2[x2 = v2] . . . an[xn = vn] . Ci

where x0, . . . , xn are state variables, v0, . . . , vn are values, with vi ∈ Vxi for all i, a0, . . . , an ∈
N are symbols from a set of token names, and C is a conjunction of atomic clauses as
described below. The semantics of synchronization rules is only informally recalled because
of space concerns (see [13, Definitions 7 and 8] for a formal definition). Each rule consists of
a trigger (a[x0 = v0]) and a disjunction of existential statements. It is satisfied if for each
token satisfying the trigger, at least one of the disjuncts is satisfied. The trigger can also be
empty (>), in which case the rule is said to be triggerless and asks for the satisfaction of the
body without any precondition. Each existential statement requires the existence of some
tokens such that the clause C is satisfied. The clause is in turn a conjunction of atoms, that
is, atomic relations between endpoints of the quantified tokens, of the form:

term := start(a) | end(a) | t atom := term ≤[l,u] term

where a ∈ N , l ∈ N, t ∈ N, and u ∈ N∪{+∞}. As an example, the atom start(a) ≤[l,u] end(b)
relates the two mentioned endpoints of the tokens a and b by stating that the distance between
them must be at least l and at most u. When u = +∞, there is no upper bound on the
distance between endpoints. In this case, the atom is said to be unbounded, and bounded
otherwise. An atom term ≤[l,u] term with l = 0 and u = +∞ is said to be qualitative, and
the subscript is usually omitted in this case. An endpoint of a token can also be related with
an absolute time point (e.g. start(a) ≤[0,3] 4). Such an atom is called a time-point atom.

A timeline-based planning problem consists of a set of state variables and a set of rules
that represent the problem domain and the goal.

I Definition 3 (Timeline-based planning problem). An instance of a timeline-based planning
problem, commonly referred to as a timeline-based planning problem, is a pair P = (SV, S),
where SV is a set of state variables and S is a set of synchronization rules over SV.

A solution plan for a given timeline-based planning problem is a set of timelines, one for
each state variable.

I Definition 4 (Solution plan). A solution plan for a problem P = (SV, S) is a set of timelines
Γ = {Tx | x ∈ SV}, one for each x ∈ SV, all with the same horizon, such that vi+1 ∈ Tx(vi)
and dx=vi

min ≤ di ≤ dx=vi
max for all tokens τi = (x, vi, di) ∈ Tx, and all the rules in S are satisfied.

We know from [12] that the problem of deciding whether there exists a solution plan for
a given timeline-based planning problem is EXPSPACE-complete. In this paper, we focus on
the qualitative version of timeline-based planning problems.

TIME 2020
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a[xcam = on]→ ∃b[xdir = ↓] . a during b

> → ∃a[xcam = on] b[xcam = off] c[xcam = on] . a meets b ∧ end(a) ≤ start(c)

xcam
off on off on off

xdir
↑ ← ↓ → ↑ ← ↓ →

Figure 1 An example of timeline-based planning problem. Two state variables are used to
represent the on/off state of a camera (xcam) and its pointing direction (xdir). The transition function
of xdir forces the camera to only move counterclockwise.

I Definition 5 (Qualitative timeline-based planning problem). A timeline-based planning
problem P = (SV, S) is qualitative if Dx(v) = (1,+∞) for each x ∈ SV and v ∈ Vx, and all
the synchronization rules in S make only use of qualitative atoms, and no time-point atoms.

Qualitative synchronization rules do not allow one to express real-time constraints, but they
are still a quite expressive formalism. Equalities between endpoints and between whole tokens
are definable, i.e., start(a) = start(b) can be written as start(a) ≤ start(b)∧start(b) ≤ start(a)
and a = b as start(a) = start(b) ∧ end(a) = end(b). Moreover, one can express non-strict
versions of all Allen’s interval relations [1]: one can define a meets b as end(a) = start(b),
a during b as start(a) ≤ start(b) ∧ end(b) ≤ end(a), and so on.

Figure 1 shows a possible solution for a problem with two state variables, xcam and xdir,
with Vxcam = {on, off} and Vxdir = {↑,←, ↓,→}, that respectively represent the on/off state of a
camera and its pointing direction. The transition function Txdir of xdir is such that the camera
can only stay still or move counterclockwise, e.g. Txdir (←) = {←, ↓}. The rules are built on
the set N = {a, b, . . .} of token names. The first rule requires the camera to point down every
time it is switched on (e.g., to point towards ground from an airplane). The objective of the
system is to perform two shoots, provided that the camera is switched off between them in
order to cool down. This goal is encoded by the second triggerless synchronization rule.

3 Complexity of qualitative timeline-based planning

In this section, we give a polynomial-space algorithm to decide whether there exists a solution
plan for a given qualitative timeline-based planning problem.

Given a qualitative timeline-based planning problem P , we show how to build a non-
deterministic finite automaton (NFA) A whose accepted words correspond to the solution
plans of P . The approach, inspired by the one adopted by Della Monica et al. [5] for the
general case, has been not only tailored to the qualitative setting but also refined to obtain
the desired complexity result.

3.1 Plans as words
Let P = (SV, S) be a qualitative timeline-based planning problem and let V =

⋃
x∈SV Vx.

Without loss of generality, we consider only qualitative timeline-based planning problems
whose state variables have trivial transition functions, i.e., for each x ∈ SV and v ∈ Vx, either
Tx(v) = Vx or Tx(v) = ∅. The first step is to encode timelines and plans as words that can
be fed to an automaton. Let the alphabet associated with P be ΣP = {σ : SV→ V ∪ {	} |
σ(x) ∈ Vx ∪ {	}}, i.e., symbols map each state variable x to a value within its domain Vx
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or to a special symbol 	. By fixing an ordering among the variables, we will also denote
such maps as tuples in the standard way. Observe that the size of the alphabet is at most
exponential in the size of P , precisely |ΣP | ≤ (|V |+ 1)|SV|.

Let the set of initial symbols be defined as ΣI
P = {σ ∈ ΣP | ∀x ∈ SV . σ(x) 6= 	}. Each

plan can be encoded with a word in ΣIPΣ∗P , and vice versa, where each occurrence of v ∈ Vx
denotes a time point where x is updated to v and each occurrence of 	 a time point where
the value of x stays unchanged. Formally, let σ = 〈σ0, . . . , σ|σ|−1〉 be a word in ΣIPΣ∗P . Given
a state variable x ∈ SV, let {i0, i1, . . . , ik−1} = {i | σi(x) 6= 	}, with ij−1 < ij for all j ∈
{1, . . . , k−1}, i.e., the ordered set of positions where the value of x changes. Then, the word σ
induces a timeline Tx defined as Tx = 〈(x, vi0 , i1−i0), (x, vi1 , i2−i1), . . . , (x, vik−1 , ik−ik−1)〉,
where vi = σi(x) and ik = |σ|, as the timeline for x induced by σ, while the plan induced by
σ is the set of all timelines, one for each x ∈ SV, induced by σ. A converse correspondence
of plans to words can be defined accordingly.

3.2 Blueprints and viewpoints
A key concept in our construction is the blueprint: a description of a possible way to satisfy a
synchronization rule. Here, we use a significantly revised notion of blueprint with the respect
to the one introduced in [5]. This new notion allows us to gain in succinctness and plays a
crucial role in achieving the wished complexity bound.

We begin with some notation and terminology. Let P be a preorder over its domain
dom(P). For every x ∈ dom(P), we define pred(P, x) as the set of immediate predecessors of
x in P and succ(P, x) as the set of immediate successors of x in P. We define maximals(P)
as the set of elements of dom(P) with no successors in P and minimals(P) as the set of
elements of dom(P) with no predecessors in P . Finally, given K ⊆ dom(P), we say that K is
P-complete if for every x ∈ dom(P) there is y ∈ K such that x �P y or y �P x and that K
is minimally P-complete if it is P-complete and its elements are pairwise incomparable in P .

We assume, w.l.o.g., that at least one rule with a[x = v] as trigger belongs to S for each
x ∈ SV and v ∈ Vx. Now, fix a synchronization rule R ≡ a0[x0 = v0] → E1 ∨ . . . ∨ Em,
and one of its existential statements E ≡ ∃a1[x1 = v1] · · · an[xn = vn] . C, i.e., E = Ej for
some j ∈ {1, . . . ,m}. We assume, w.l.o.g., that the atom start(ai) ≤ end(ai) occurs in C
for all i ∈ {0, . . . , n}; we also assume that, for every i, j with xi = xj and i 6= j, if one
among start(ai) ≤ start(aj), end(ai) ≤ end(aj), and start(ai) ≤ end(aj) occurs in C, then
end(ai) ≤ start(aj) occurs in C as well. Recall that vi ∈ Vxi for all i ∈ {0, . . . , n}. Then, E
defines a preorder PE over the domain dom(PE) = {start(ai), end(ai) | i ∈ {0, . . . , n}}, i.e.,
over the set of endpoints of all the tokens quantified by E . Intuitively, a blueprint for E ,
denoted by BE , is an extension of the preorder defined by E where an additional element
is inserted between any pair of comparable elements, and before and after minimal and
maximal elements, respectively. Such additional elements, denoted pumps(BE), are called
the pumping points of BE . Formally, blueprints are defined as follows.

I Definition 6 (Blueprint). Let E be an existential statement. A blueprint for E is a preorder
BE defined as:
1. dom(BE) = dom(PE) ∪ pumps(BE) where

pumps(BE) = {〈y|x〉 | x ∈ dom(PE) \minimals(PE), y ∈ pred(PE , x)}
∪ {〈−|x〉 | x ∈ minimals(PE)} ∪ {〈x|−〉 | x ∈ maximals(PE)};

2. for all x, y ∈ dom(PE), x �BE y if and only if x �PE y, i.e., the ordering relation is
unchanged over elements of dom(PE);

TIME 2020
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3. for every x ∈ dom(PE) \ minimals(PE) and y ∈ pred(PE , x), we have y �BE 〈y|x〉 and
〈y|x〉 �BE x;

4. for every x ∈ minimals(PE), we have 〈−|x〉 �BE x; and
5. for every x ∈ maximals(PE), we have x �BE 〈x|−〉.

Blueprints statically describe the syntactic structure of the rules. A viewpoint pairs a
blueprint with a set of pointers to its pumping points. It is the dynamic structure that keeps
track of how the rules are matching on the specific word being read.

I Definition 7 (Viewpoint). A viewpoint is a pair V = 〈BE ,K〉, where BE is a blueprint
for an existential statement E and K ⊆ pumps(BE) is a subset of its pumping points that is
minimally BE -complete.

Given V = 〈BE ,K〉, K is the frontier of V, and its elements are its frontier points. Moreover,
V is said to be minimal or maximal if K = minimals(BE) or K = maximals(BE), respectively.

A viewpoint keeps track of how a blueprint is being matched over a plan encoding; in
particular, its frontier separates the already matched part from the rest of the blueprint
that still needs to be matched. When a symbol is read, each frontier point can either pump
(i.e., stay unchanged) or step (i.e., advance to point to other pumping points). Formally, a
viewpoint V = 〈BE ,K〉 can evolve into another viewpoint V′ = 〈BE ,K ′〉, written V → V′,
if and only if for all k ∈ K either k ∈ K ′ (i.e., k pumps) or k′ 6∈ K ′ for all k′ such that
k′ �BE k (i.e., k steps). If V = 〈BE ,K〉 evolves into V′ = 〈BE ,K ′〉, the points of PE that
move into the matched part define the set of points that are consumed over V→ V′, namely:

consumed(V,V′) = {x ∈ dom(PE) | y �BE x �BE y′ for some y ∈ K, y′ ∈ K ′}.
We say that a state variable x ∈ SV is open in V if there is some i ∈ {0, . . . , n} and some

k ∈ K such that xi = x and start(ai) �BE k �BE end(ai), i.e., the frontier says that the
start of a token for x has matched but its end has not.

Depending on which symbol is currently being read, only some of the possible evolutions
of a viewpoint are admissible.

I Definition 8 (Evolution of a viewpoint). Let V = 〈BE ,K〉 and V′ = 〈BE ,K ′〉 be two
viewpoints over the blueprint BE of some existential statement E and let σ ∈ ΣP . We say
that V can evolve into V′ when reading σ, written V σ→ V′, if the following conditions hold:
1. if σ(x) 6= 	 and x is open in V, then end(ai) ∈ consumed(V,V′) for some i with xi = x,
2. if Txi(vi) = ∅, then end(ai) 6∈ consumed(V,V′),
3. consumed(V,V′) is compatible with σ, that is:

a. σ(xi) = vi for every start(ai) ∈ consumed(V,V′),
b. σ(xi) 6= 	 for every end(ai) ∈ consumed(V,V′), and
c. if start(ai) ∈ consumed(V,V′), then end(ai) 6∈ consumed(V,V′).

3.3 Automaton construction
The above notions allow us to build the automaton AP for a given qualitative timeline-based
planning problem P = (SV, S). The states of the automaton consist of sets of viewpoints
over the rules of P . However, in order to keep the size of the states small, some combinations
of viewpoints are excluded a priori by forcing a total order on the viewpoints of a state that
are built on the same blueprint.

Formally, let V = 〈BE ,K〉 and V′ = 〈BE ,K ′〉 be two viewpoints over the same blueprint.
We define V � V′ if and only if for every k ∈ K there is a k′ ∈ K ′ such that k �BE k′.
Let Vmax

E = 〈BE ,maximals(BE)〉. Then, V is said to be final for BEi if consumed(V,Vmax
E )

contains only elements of the form end(a) for some a ∈ N .
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b[xb = vb]→ ∃a[xa = va] c[xc = vc] . b during a ∧ c during a

start(a)

start(b) end(b)

start(c) end(c)

end(a) start(a)

start(b) end(b)

start(c) end(c)

end(a)

∈ dom(PE)
∈ pumps(BE)
∈ K
∈ SV

6∈ K
6∈ SV

xa
va

xb
vb vb

xc
vc vc

Figure 2 Two incomparable viewpoints for the same rule (on the top) and a plan where the rule
is triggered twice. The current time-point in the plan is represented by the dotted line. The left
(resp., right) viewpoint takes care of the satisfaction of the rule when triggered by the first (resp.,
second) occurrence of vb. The incomparability is due to the left viewpoint trying to satisfy a rule
triggered by an earlier occurrence of vb by using a latter occurrence of vc and, vice versa, the right
viewpoint trying to satisfy a rule triggered by a latter occurrence of vb by using an earlier occurrence
of vc. We will show that these situations can be avoided.

Now, let ΥP be the set of all the viewpoints of the existential statements of the rules of
P . The automaton AP is defined as follows.

I Definition 9 (Automaton construction). Let P = (SV, S) be a qualitative timeline-based
planning problem. The NFA AP = (QP ,ΣP , qIP , QFP ,∆P ) associated with P is such that:
1. the set of states consists of the initial state qIP 6⊆ ΥP and a selection of the subsets of ΥP :

QP = {qIP } ∪ {Υ ⊆ ΥP | V � V′ or V′ � V for all V = 〈BE ,K〉,V′ = 〈BE ,K ′〉 ∈ Υ};

2. the final states QFP are defined as follows:
a. Υ ∈ QFP if and only if Υ is made of final viewpoints and for every triggerless rule > →
E1∨ . . .∨Ek in S, there is i ∈ {1, . . . , k} such that Υ contains a final viewpoint for BEi ;

b. if there are no triggerless rules, then qIP ∈ QFP ;
3. for all Υ,Υ′ ⊆ QP \ {qIP } and σ ∈ ΣP , (Υ, σ,Υ′) ∈ ∆P iff:

a. for every V ∈ Υ, there is a V′ ∈ Υ′ such that V σ→ V′;
b. for every V′ ∈ Υ′, there is a V ∈ Υ such that V σ→ V′; and
c. if there is a synchronization rule a0[x0 = v0]→ E1 ∨ E2 ∨ . . .∨ Ek in S and σ(x0) = v0,

then there are V ∈ Υ and V′ ∈ Υ′ such that:
V = 〈BEi ,K〉 for some i ∈ {1, . . . , k};
V σ→ V′;
start(a0) ∈ consumed(V,V′);

4. for all Υ′ ⊆ QP \ {qIP } and σ ∈ ΣP , (qIP , σ,Υ′) ∈ ∆P iff σ ∈ ΣI
P and (ΥI , σ,Υ′) ∈ ∆P

for some set ΥI of minimal viewpoints.

Note that if any possible set of viewpoints were a valid state, the size of the automaton
would be doubly exponential. Instead, the symmetry-breaking condition imposed by Item 1
of Definition 9, i.e., for every Υ ∈ QP and every V = 〈BE ,K〉,V = 〈BE ,K ′〉 ∈ Υ, we have
V � V′ or V′ � V, allows us to shrink the size of AP to be only exponential in the size of P .
Figure 2 shows an example of incomparable viewpoints. We will show that these situations
can be avoided, thus obtaining an automaton of at most exponential size.
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I Lemma 10 (Automaton size). Let P be a qualitative timeline-based planning problem. The
size of its associated automaton AP is at most exponential in the size of P .

Proof. Let P = (SV, S) be a qualitative timeline-based planning problem and consider
the set QP of states of its associated automaton AP as defined in Definition 9. For each
viewpoint V = 〈BE ,K〉, let SV = {x ∈ dom(PE) | ∃k ∈ K . x �BE k} be the set of elements
covered by V, i.e., those elements of the blueprint BE that have already been matched over
the word, as witnessed by V. Notice that V � V′ implies SV ⊆ SV′ . Moreover, the sets of
covered elements for all the viewpoints V for a blueprint BE form a lattice with regard to
set inclusion, where ⊥ = ∅ (which is the set of elements covered by the minimal viewpoint
V⊥ = 〈BE ,minimals(BE)〉), and > = dom(PE) (which is the set of elements covered by the
maximal viewpoint V> = 〈BE ,maximals(BE)〉). According to the definition of the automaton
states (Item 1 of Definition 9), the viewpoints for a blueprint BE included in any state Υ ∈ QP
form a total order. Since the number of disjuncts occurring in P as well as the distance from
⊥ to > in the aforementioned lattice is polynomial in the size of P (in fact, it is linear), the
size of Υ is polynomial, and the size of QP is thus at most exponential in the size of P . J

3.4 Soundness and completeness
Here we prove that the automaton construction of Definition 9 correctly captures qualitative
timeline-based planning problems.

Let P = (SV, S) be a qualitative timeline-based planning problem that admits a solution
plan Γ = {Tx | x ∈ SV}. For each R ∈ S, if R is not triggerless, then we denote by T RΓ
the set of tokens in Γ triggering R; if R is triggerless, we let T RΓ = {>R} (this notation
is useful to handle triggerless rules uniformly). Moreover, we denote TΓ =

⋃
R∈S T RΓ the

set of all the triggers occurring in Γ, plus one fictitious token >R for each triggerless rule
R ∈ S, which is said to be triggered by >R. Now, let R ≡ a0[x0 = v0]→ E1 ∨ E2 ∨ . . . ∨ Ek
be a rule in S. Since Γ is a solution plan, for each token τ ∈ T RΓ , we can identify a disjunct
R(τ) ∈ {E1, . . . , Ek} such that R(τ) is satisfied for τ in Γ.

In order to link the words accepted by an automaton to the solution plans for P , we need
to specify how blueprints are connected to timelines and plans.

I Definition 11 (Blueprint instantiation). Let P = (SV, S) be a qualitative timeline-based
planning problem and let Γ = {Tx | x ∈ SV} be a solution plan for P .

For every R ∈ S and τ ∈ T RΓ , a blueprint instantiation for τ in R is a labeling function
LR(τ)
τ : dom(PR(τ))→ N that maps every element x in the domain of the preorder PR(τ) to

a time point LR(τ)
τ (x) such that:

1. x �PR(τ) y implies LR(τ)
τ (x) ≤ LR(τ)

τ (y) for every x, y ∈ dom(PR(τ));
2. for every start(ai), end(ai) ∈ dom(PR(τ)), there is a (unique) token τ ′ = (xi, vi, d) ∈ Txi

such that start-time(τ ′) = LR(τ)
τ (start(ai)) and end-time(τ ′) = LR(τ)

τ (end(ai)).

When clear from the context, we omit the superscript when referring to blueprint
instantiations. Intuitively, Lτ is a witness of the satisfaction of R when triggered by some
τ ∈ T RΓ . We define a partial order over blueprint instantiations such that L1 ≤ L2 if and only
if dom(L1 ) = dom(L2 ) and L1(x) ≤ L2(x) for each x ∈ dom(L1 ). The following statement
is fundamental in proving that the symmetry-breaking condition given for the automaton
states in Definition 9 does not affect the completeness of the construction.

I Lemma 12. Let P = (SV, S) be a timeline-based planning problem that admits a solution
plan Γ. Moreover, given R ∈ S, let τ1, τ2 ∈ T RΓ be two tokens that trigger R, such that
end-time(τ1) ≤ start-time(τ2) and R(τ1) = R(τ2).

There exist two blueprint instantiations, Lτ1 for τ1 and Lτ2 for τ2, such that Lτ1 ≤ Lτ2 .
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Proof. Since Γ is a solution plan for P , there are two blueprint instantiations, Lτ1 for τ1 and
Lτ2 for τ2. If Lτ1 6≤ Lτ2 , then we define blueprint instantiation L′τ1

for τ1 such that L′τ1
≤ Lτ2 .

Note that, since R(τ1) = R(τ2), dom(Lτ1 ) = dom(Lτ2 ). We define L′τ1
: dom(Lτ1 )→ N as

follows. For every x ∈ dom(Lτ1 ):

L′τ1
(x) =

{
Lτ1(x) if Lτ1(x) ≤ Lτ2(x)
Lτ2(x) if Lτ2(x) < Lτ1(x)

It is clear that L′τ1
≤ Lτ2 . We have to show that L′τ1

is a blueprint instantiation for τ1. To
see that Item 1 of Definition 11 holds, let x �PR(τ1) y. We distinguish three cases:
1. if both L′τ1

(x) = Lτ1(x) and L′τ1
(y) = Lτ1(y) or both L′τ1

(x) = Lτ2(x) and L′τ1
(y) =

Lτ2(y), then L′τ1
(x) ≤ L′τ1

(y) holds due to Lτ1 and Lτ2 being blueprint instantiations;
2. if L′τ1

(x) = Lτ1(x) and L′τ1
(y) = Lτ2(y), then Lτ1(x) ≤ Lτ2(x) holds by definition. By

x �PR(τ) y, we know that Lτ2(x) ≤ Lτ2(y), hence Lτ1(x) ≤ Lτ2(y), thus L′τ1
(x) ≤ L′τ1

(y);
3. if L′τ1

(x) = Lτ2(x) and L′τ1
(y) = Lτ1(y), then Lτ2(x) < Lτ1(x) holds by definition. By

x �PR(τ) y, we know that Lτ1(x) ≤ Lτ1(y), hence Lτ2(x) < Lτ1(y), thus L′τ1
(x) ≤ L′τ1

(y).
To see that Item 2 holds, consider start(ai), end(ai) ∈ dom(PR(τ1 )). Note that it cannot
be the case that L′τ1

(start(ai)) = Lτ1(start(ai)) but L′τ1
(end(ai)) = Lτ2(end(ai)) (or vice

versa), because that would imply that Lτ1(start(ai)) ≤ Lτ2(start(ai)) ≤ Lτ2(end(ai)) <
Lτ1(end(ai)), which is impossible because, by hypothesis, Lτ1 maps start(ai) and end(ai)
into the endpoints of a single token τ , that cannot contain another token for the same variable.
Thus, we have either L′τ1

(start(ai)) = Lτ1(start(ai)) and L′τ1
(end(ai)) = Lτ1(end(ai)) or

L′τ1
(start(ai)) = Lτ2(start(ai)) and L′τ1

(end(ai)) = Lτ2(end(ai)), and the thesis follows since
Lτ1 and Lτ2 are blueprint instantiations themselves. J

We can now prove the direct correspondence between solution plans and accepted words.

I Lemma 13. Given a qualitative timeline-based planning problem P and its associated
automaton AP , there is a solution plan for P if and only if L(AP ) 6= ∅.

Proof. Let P = (SV, S) be a qualitative timeline-based planning problem, and let AP =
(QP ,ΣP , qIP , qFP ,∆P ) be the automaton associated with P by Definition 9. It is easy to see
that, given a word σ accepted by AP , the plan encoded by σ is a solution plan for P . We
thus focus only on the proof of the other direction.

Fix a solution plan Γ = {Tx | x ∈ SV} for P , and denote σ = 〈σ0, . . . , σm〉 the
corresponding word. We wish to prove that σ is accepted by AP . This direction of the proof
needs some care because of the symmetry-breaking condition of Item 1 of Definition 9: we
have to prove that it does not make AP lose some essential solutions.

We proceed by inductively defining a particular sequence Υ = 〈Υ0, . . . ,Υm+1〉 of sets
of viewpoints. Then, we prove that each Υi is a state of AP , and that Υ is an accepting
run of AP . We also define (again, inductively) a sequence of covers of TΓ, which will be
used for the inductive construction of Υ: for i ∈ {0, . . . ,m}, we define the cover {T iV}V∈Υi of
TΓ, where, intuitively, T iV is the set of tokens in TΓ whose satisfaction is being taken care
of by V in Υi. At first, we define Υ0 = {(BR(τ),minimals(BR(τ))) | R ∈ S, τ ∈ T RΓ } i.e.,
the set of minimal viewpoints over the blueprints of the existential statements involved in
the satisfaction of P by Γ, and we define the cover {T 0

V }V∈Υ0 of TΓ as follows: for every
R ∈ S and τ ∈ T RΓ , τ ∈ T(BR(τ),minimals(BR(τ))). Then, for all i ∈ {0, . . . ,m}, we choose the
following elements of the sequence as follows. For each V = 〈BE ,K〉 ∈ Υi and τ ∈ T iV let
us define the set F τ,Vi = {x ∈ dom(BE) | LEτ (x) = i}. It is possible to show that for each
V ∈ Υi and τ ∈ T iV there is a unique viewpoint, denoted by next(V, τ), such that V σi→ V′
and consumed(V,V′) = F τ,Vi . Then, we take Υi+1 = {next(V, τ) | V ∈ Υi, τ ∈ T iV}, and we
define the cover {T i+1

V }V∈Υi+1 of TΓ as follows: for each V ∈ Υi and τ ∈ T iV, τ ∈ next(V, τ).
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Now, we argue that each Υi satisfies the symmetry-breaking condition (Item 1 of Defini-
tion 9). Let V = 〈BE ,K〉,V′ = 〈BE ,K ′〉 ∈ Υi, with K 6= K ′, and let τ ∈ T iV and τ ′ ∈ T iV′ .
We can suppose w.l.o.g. that end-time(τ) ≤ start-time(τ ′). By Lemma 12, we can suppose
as well that Lτ ≤ Lτ ′ . Now, let SV and SV′ be the set of elements covered by K and K ′,
respectively, i.e., SV = {x ∈ dom(PE) | ∃k ∈ K . x �BE k}. For any x ∈ dom(PE), Lτ (x) ≤ i
iff x ∈ SV and Lτ ′(x) ≤ i iff x ∈ S′V, thanks to the way in which we defined Υi. Then, it
follows that SV′ ⊆ SV, which implies that K dominates K ′, hence V′ � V.

As a consequence, Υ is a sequence of AP states and we can check that (Υi, σi,Υi+1) ∈ ∆P

for all i ∈ {0, . . . ,m}. Thus, Υ identifies a run of AP if we replace Υ0 with qIP .
To conclude the proof, we only need to show that the above run is accepting, i.e., that

Υm+1 contains only final viewpoints. This is indeed ensured by construction, since Lτ (x) ≤ m
for every token τ ∈ T RΓ , every R ∈ S, and every x ∈ dom(PR(τ)). Therefore, the word σ is
accepted by AP . J

We can now finally state our main result.

I Theorem 14 (Complexity of qualitative timeline-based planning). Whether a qualitative
timeline-based planning problem P admits a solution plan can be decided in polynomial space.

Proof. Given P = (SV, S), let AP be its associated automaton as specified by Definition 9.
By Lemma 13, we know that L(AP ) 6= ∅ if and only if P admits a solution plan. Then,
we can build AP and check for the emptiness of its language, which in turn consists of
checking for the reachability of the final states. By Lemma 10, the size of AP is at most
exponential in the size of P . Since this automaton can be constructed on-the-fly and solving
reachability requires logarithmic space in the size of the automaton, we get that the qualitative
timeline-based planning can be decided in polynomial space. J

4 Hardness

In this section, we show that qualitative timeline-based planning is PSPACE-hard. The proof
is by a reduction from the emptiness problem for the intersection of n finite automata that
is known to be PSPACE-complete (see [14]).

I Theorem 15 (Qualitative timeline-based planning is PSPACE-hard). Let P = (SV, S) be a
qualitative timeline-based planning problem. Deciding whether P admits any solution plan is
PSPACE-hard.

Proof. We provide a reduction from the emptiness problem for the intersection of n finite
automata. For the main definitions on finite automata, we refer the reader to [14].

For i ∈ {1, . . . , n}, let Ai = (Σ, Qi, q0
i , δi, q

∗
i ) be a deterministic finite automaton, where

Σ is a finite alphabet, Qi is a finite set of states, q0
i is the initial state, δi: Qi × Σ→ Qi is

the transition function, and q∗i is the final state.
Denote by A = A1× . . .×An the finite automaton obtained by the standard construction

to capture the intersection of the languages L(A1), . . . ,L(An), where, for i ∈ {1, . . . , n},
L(Ai) denotes the language accepted by Ai. Thus, L(A) = L(A1) ∩ . . . ∩ L(An).

We build a qualitative timeline-based planning problem P such that P admits a solution
plan if and only if L(A) 6= ∅. The overall idea is to model each finite automaton as a different
state variable and then express intersection and acceptance by synchronization rules. More
specifically, P = (SV, S) is defined as follows.
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The set of state variables is SV = {xi | i ∈ {1, . . . , n}}, i.e., we take a variable xi for each
finite automaton Ai, with i ∈ {1, . . . , n}. Each variable xi is equal to (Vi, Ti, Di), where:
1. Vi = Qi × Σ;
2. Di(v) = (1,+∞), for all v ∈ Vi;
3. Ti((q, σ)) = {δi(q, σ)} × Σ, for all (q, σ) ∈ Vi.
The transition function of each state variable mirrors the transition function of the corres-
ponding automaton, while handling the fact that automata are meant to read words over Σ
while state variables only represent state machines, with no language recognition semantics.

The set S contains the following synchronization rules, which are designed in such a way
that state variables change their values synchronously.

The first rule requires the existence of two sets of tokens, each containing exactly a
token from each state variable and such that (i) the first set maps an initial state for each
automaton, (ii) the second set maps a final state for each automaton, (iii) the tokens from
the first set precede those from the second set, and (iv) the tokens in each set start and end
at the same time. Formally:

> →
∨

σ,σ′∈Σ
∃a0

1[x1 = (q0
1 , σ)] · · · a0

n[xn = (q0
n, σ)]a∗1[x1 = (q∗1 , σ′)] · · · a∗n[xn = (q∗n, σ′)] .

end(a0
1) ≤ start(a∗1) ∧

n−1∧
i=1

a0
i = a0

i+1 ∧
n−1∧
i=1

a∗i = a∗i+1. (1)

The remaining rules just synchronize the different state variables so that they are aligned
over tokens that refer to the same input symbol for the corresponding automaton:

ai[xi = (qi, σ)]→
∨

qi+1∈Qi+1

∃ai+1[xi+1 = (qi+1, σ)] . ai = ai+1 (2)

for each qi ∈ Qi, σ ∈ Σ and i ∈ {1, . . . , n− 1}.
To complete the proof, it suffices to show that the above construction is correct, that is,

P admits a solution plan if and only if L(A) 6= ∅
We first show that if L(A) 6= ∅, then P admits a solution plan. To this end, consider

a word σ = σ1 . . . σm accepted by A. By definition, for i ∈ {1, . . . , n}, we know that σ is
accepted by Ai. Let qi = 〈q0

i , . . . , q
m
i 〉 be the sequence of states visited along the run of Ai

over σ. Since σ is accepted by Ai, qmi must be the final state q∗i .
Now, for all i ∈ {1, . . . , n}, let:

Ti = 〈(xi, (q0
i , σ

1), 1), (xi, (q1
i , σ

2), 1), . . . , (xi, (qm−1
i , σm), 1), (xi, (qmi , σ∗), 1)〉

be the timeline corresponding to σ. It can be observed that, by construction, Ti satisfies the
transition function of xi. Moreover, the synchronization rule (1) defined above is satisfied,
since each timeline Ti starts with a token where xi = (q0

i , σ
1) and ends with a token where

xi = (q∗i , σ∗). Moreover, by construction, the tokens are all of the same duration, and
overlapping tokens have the same σ component; thus, the second set of synchronization rules
(2) is satisfied as well. Hence, the plan consisting of the Ti timelines is a solution plan for P .

In order to show that if P admits a solution plan, then L(A) 6= ∅, consider a solution plan
for P consisting of a set of timelines Ti = 〈τ1

i , . . . , τ
mi
i 〉, one for each xi ∈ SV. By the rules

(2), all the tokens of these timelines can be seen as being aligned one over the other forming
a grid, where each column shares a common symbol σ. Moreover, by the triggerless rule (1),
there are two columns of such a grid, say them h and k, with h < k, containing, respectively,
the initial states and the final states for the respective automata Ai. Let σ = σh . . . σk−1

be the sequence of symbols occurring in columns h to k − 1 and let qji be the state of Ai

TIME 2020



16:12 Complexity of Qualitative Timeline-Based Planning

associated with token τ ji , for i ∈ {1, . . . , n} and j ∈ {h, . . . , k}. Finally, by construction,
at each step the transition function of each state variable enforces the token following any
token of the form (q, σ) to be of the form (q′, σ′), where q′ = δ(q, σ), i.e., the evolution of
the timeline mirrors the transition function of the automaton. Thus, for all i ∈ {1, . . . , n},
qi = 〈qhi , . . . , qki 〉 is an accepting run of Ai over σ. Thus, we conclude that σ ∈ L(A). J

5 Concluding remarks

In this paper, we show that the problem of checking the existence of a plan for the qualitative
fragment of timeline-based planning is PSPACE-complete.

The key step in the decision procedure builds a finite automaton that accepts a word
encoding a plan if and only if the plan is a solution of the given instance of the planning
problem. The construction is inspired by the one used by Della Monica et al. [5] to prove
the EXPSPACE-completeness of the general quantitative problem, but adapted to exploit the
distinctive features of the qualitative setting. In particular, blueprints were linear orders
in the general case, accounting for all possible combinations of distances between pairs
of endpoints satisfying the quantitative constraints of the problem. Here, blueprints are
preorders, which compactly represent all the possible ways of matching a particular disjunct
of a rule, leading to a smaller automaton.

The automata-theoretic construction of our solution has some interesting consequences. It
provides a direct algorithm to generate a solution plan by exploiting the standard machinery to
decide the emptiness of finite automata and, moreover, it can be used as a basis for interesting
future research directions. For example, one may show how to perform model checking of
timeline-based systems against Linear Temporal Logic (LTL), still in polynomial space.

The achieved result sheds some light on how a problem of such a high complexity could
form the basis of planning systems that have been deployed in real-world scenarios for the
last three-decades. The quantitative aspect of the problem accounts for a great part of the
complexity, and while temporal reasoning is predominant in these applications, the magnitude
of the involved timestamps does not need to be significantly high. A proper parameterized
complexity analysis of the problem would complete the picture in this regard.

Last but not least, the qualitative fragment appears to be a quite expressive language on
its own, powerful enough to express an interesting class of linear-time temporal properties
including those captured by LTL. It would be interesting to establish the exact relationship
with LTL and possibly characterize this logic in terms of a proper fragment of timeline-based
planning. From a logical standpoint, the synchronization rules can be seen as a fragment of
first-order logic with one successor relation and one quantifier alternation (specifically, with
∀∃ alternation). A key aspect that can be observed is that disjunctions are only allowed
between existentially quantified formulas and, by relaxing this limitation, the complexity
lower bound seems to rise to EXPSPACE again even in the qualitative setting.
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Abstract
We consider the satisfiability problem for the two-variable fragment of first-order logic extended with
counting quantifiers, interpreted over finite words with data, denoted here with C2[≤, succ,∼, πbin ].
In our scenario, we allow for using arbitrary many uninterpreted binary predicates from πbin, two
navigational predicates ≤ and succ over word positions as well as a data-equality predicate ∼. We
prove that the obtained logic is undecidable, which contrasts with the decidability of the logic
without counting by Montanari, Pazzaglia and Sala [27]. We supplement our results with decidability
for several sub-fragments of C2[≤, succ,∼, πbin], e.g. without binary predicates, without successor
succ, or under the assumption that the total number of positions carrying the same data value in a
data-word is bounded by an a priori given constant.
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1 Introduction

Finite data-words [8], i.e. finite words, where each position carries letters from a finite
alphabet as well as a data value from some countably-infinite data domain, are ubiquitous in
formal verification. They can be used to describe executions of array-accessing programs [1],
runs of counter machines [18], outputs of timed systems [9] or database transaction logs [28].
However, reasoning about them is not simple: the main obstacle is the unboundedness of the
data domain. We discuss some of the recently proposed approaches to solve the problem.

The first solution is stemming from automata theory. To deal with data-words, the notion
of class automata [5, 3], data automata [4], register automata [22] or session automata [7]
were proposed. Usually, these are automata equipped with a set of registers, used to store the
current data value in the memory. Of course, such registers must be suited to store information
of unknown size and must be properly restrained: one can easily fall into a trap that the
proposed automata model can simulate zero tests, which usually causes undecidability [26].
Unfortunately, proposed automata models lack good algorithmic properties. By way of
example, the emptiness problem for class memory automata is equivalent to reachability
in vector-addition systems and hence, non-elementary [16]. Moreover, the model of class
automata is not closed under complementation, which results in an undecidable equivalence
problem. Some weaker subclasses of class automata were considered e.g. in [15].

Thus, in this paper, we rather focus on declarative models like logics. Being aware of
the plethora of different automata models proposed in the past, it is not hard to conclude
that a similar situation should occur for logics. The most famous frameworks, tailored to
reason about data-words, are temporal logics and fragments of first-order logics. The former
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ones were well-developed in the recent years: e.g. LTL with freeze quantifier, which can be
used as a logical counterpart of a register, was proposed in [19]. Other examples are the
temporal logic of repeating values [18], the PathLog [21] and LTL data quantification [32],
just to mention a few of them. As far as the existential monadic second-order logic [6] and
first-order logic are considered [4], the logics were rather neglected, probably due to their
high complexity or even undecidability. The logics generally allows for quantification over
words’ positions, to compare elements with navigational predicates and to check whether
data values of two elements coincide by means of data-equality predicate. The logics FO
or EMSO are immediately undecidable. The only known decidable fragments are the two-
variable fragments: FO2[succ,∼], FO2[≤,∼] and FO2[≤, succ,∼], where ≤ is a linear order
over words’ positions, succ is its induced successor relation and ∼ is a data-equality predicate.
The first two logics are known to be NExpTime-complete [28, 4], while the last one is known
to be interreducible to the reachability problem in vector addition systems with states. Our
work will focus on extending FO2 to make the logic more expressive yet decidable.

We encourage the reader to check the latest surveys on the topic [17, 13] or PhD
theses [24, 28, 14] to improve his understanding of the state-of-the-art of the problem and to
get a glimpse of the maze of data languages.

1.1 Our motivation
We aim at extending the framework of the two-variable logic FO2 on data-words to the
realm of quantitative properties. Our goal is very modest: we would like to understand the
behaviour of FO2 under the extensions of counting quantifiers. Such quantifiers can be used
to express basic quantitative properties like: “there are at least five data repartitions in the
run of the machine” or “each request has exactly one corresponding grant with the same data
value”. The techniques dealing with counting quantifiers were well-developed in the least 10
years, see e.g. [29, 30, 12, 11], hence there is a hope that they work well also in the context of
data-word reasoning. We hope our work will lay the foundation on an expressive specification
language for data-words involving an interplay between counting capabilities and data values.

1.2 Our contribution
We study satisfiability problems for C2[≤, succ,∼, πbin], i.e. the two-variable logic with
counting quantifiers admitting a linear order predicate ≤, its induced successor relation succ,
a data-equality predicate ∼ and a set of uninterpreted binary symbols πbin. Our results are:

In Section 3 we show that C2[≤, succ,∼, πbin] is undecidable, in sharp contrast to the
logic without counting [27]. The proof reuses ideas from [2] on how to encode runs of
Minsky Machines on data-words. The key property is the existence of C2 formula imposing
that a fresh binary relation is a one-to-one matching of domain elements, whilst being a
refinement of ∼. We also discuss how the undecidability result transfers to similar logics,
e.g. to C2[≤,∼, πbin]. Negative results are supplemented by several decidability results.
In Section 4 we show that both C2[succ,∼, πbin] and C2[≤,∼] logics are NExpTime-
complete. The NExpTime lower-bound is trivially inherited from FO2, but the upper
bounds are less trivial. For the former logic, we provide a reduction to the appropriate
logic on data-trees [11], for which the NExpTime-completeness was recently shown by
the second author and his colleagues. For the latter logic, namely, for C2[≤,∼], we show
that any satisfiable formula has a model with only exponentially many equivalence classes.
Such a property allows us to replace the data-equality tests with equi-satisfiability of
polynomially many unary predicates, which encodes the class number in binary. Finally,
the tight NExpTime upper bound is obtained by employing as a black-box an algorithm
from [12] for deciding finite satisfiability for the logic on words without data values.
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In Section 5 we deal with the finite satisfiability of C2[≤, succ,∼]. We employ a counting-
quantifier elimination technique to get rid of seemingly more expressive concepts from
the logic. The logic C2[≤, succ,∼] turned out to be Vass-complete, i.e. complete for the
class of all problems elementarily reducible to the reachability in Vector Addition Systems
(solvable in Ackermann time [25] with a non-elementary Tower lower bound [16]).
Finally, in the last section, we establish the most technically challenging result of this
paper, namely the Vass-completeness of C2[≤, succ,∼, πbin] under the restriction that
each equivalence class has a uniform bound k on their sizes. Differently phrased, it means
that a single data value can occur in a data-word only, a priori given, constant number of
times. In those logics, we allow for using data-equality predicate with ∼k instead of the
full data-equality ∼. To solve the satisfiability problem, we propose a translation from
C2[≤, succ,∼k, πbin ] to C2[≤, succ, πbin ], that is the logic without ∼k. The main problem
is that transitivity is not expressible with only two variables, and hence we cannot hope
for an “easy” translation. To achieve our goal we take an input formula ϕ and link it
with some formulae imposing a colouring of the structure with some fresh letters smartly
encoding information to which class given elements belong.

2 Preliminaries

Let Σ be a finite alphabet (i.e. a set of unary predicates) and let D be a countably-infinite
data domain. A data word is an element from (2Σ×D)∗. A language is a set of data words. In
our setting, we are interested in fragments of first-order logic describing data-words. We agree
that the formulae have direct access to the alphabet Σ, allowing to use the letters as unary
predicates. To the contrary, the data-values from D are stored implicitly: the only allowed
operation is a comparison of data-values between positions with an equivalence relation ∼
called the data equality predicate. In the paper, we follow the usual notations [4].

2.1 Logics

The two-variable1 logic FO2[≤, succ,∼] interpreted over finite data-words is a fragment of
first-order logic featuring only two variables x, y and equipped with a vocabulary of arbitrary
many unary predicates (aka letters), two navigational predicates over the words’ positions,
namely a linear order ≤ and its induced successor relation succ, and ∼. Whenever x ≤ y

holds, we say that x is to the left of y. Additionally, we extend the logic with an arbitrarily
large set of uninterpreted binary predicates πbin

2, forming the logic FO2[≤, succ,∼, πbin ]. In
this paper, we mostly work with counting extensions of FO2, denoted here with C2. Such
logics extend the previous ones with the so-called counting quantifiers ∃≥k,∃≤k, with their
natural meaning, i.e. ∃≥kx.ϕ is satisfied in a data-word w if at least k positions, when
substituted as x, satisfy ϕ.

We are interested in the finite satisfiability problem phrased as “given a formula ϕ is
there a data word satisfying ϕ?”. The current state-of-the-art of the problem is presented in
the table below. All of the claimed bounds are tight and the appropriate reference is cited
(with [H] we indicate that the result is shown in this paper).3

1 With σ in L[σ] we indicate what kinds of binary relations can be in the logic.
2 They can be used with counting quantifiers e.g. to express Presburger constraints over universes [31].
3 Recall that Vass complexity class is composed of all problems elementarily reducible to VASS-reachability.
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Table 1 The complexity of the satisfiability problem for FO2 and C2 over finite data words. All
stated complexity bounds are tight.

[], [≤, succ] [succ,∼, πbin] [≤,∼] [≤, succ,∼] [≤,∼, πbin] [≤, succ,∼, πbin]
FO2 NExp [20] NExp [28] NExp [4] Vass [4] NExp [27] Vass [27]
C2 NExp [12] NExp [11] NExp [H] Vass [H] Undecidable [H]

2.2 Normal Forms
It is usually very convenient to work with the formulae in tailored normal forms. In the
paper we will present two of them. Reducing a formula into such forms is usually simple and
requires well-known techniques, cf. [23, 29]. Hence, routine proofs are omitted.

We employ two types of Scott-normal forms for C2, the latter being tailored especially
for construction in Section 5. In the remaining sections we employ weak normal forms. Their
main advantage is that they are computable in polynomial time cf. [12].

ϕ = ∀x∀y χ ∧
n∧
i=1
∀x∃./iCiy χi, (1)

with ./i∈ {≤,≥}, quantifier-free χ, χi and with all Ci being natural numbers. A 1-type is a
maximal consistent set of literals over Σ involving only the variable x. Note that the number
of 1-types is over Σ is exponential in the size of Σ. Likewise, a 2-type is a maximal consistent
set of literals over Σ involving only the variables x and y and containing the literal x 6= y. In
Section 5 we use the following normal form.

ϕ = ∀x∀y α ∧
n∧
i=1
∀x
(
πi(x)→ ∃./iCiy βi

)
∧

n′∧
i=1
∀x
(
π′i(x)→ ∃./iC

′
iy γi

)
, (2)

where α is quantifier-free formula, ./i∈ {≤,=,≥}, πi, π′i are 1-types and βi, γi are 2-types
and each βi contains x ∼ y and each γi contains x 6∼ y. Its main feature is the presence of
1-types and 2-types, i.e. since each element has a unique 1-type, the types and location of its
witnesses y are given explicitly in the 2-types βi.

3 Undecidability of the full logic

For a moment we move to a slightly more general framework, namely, we assume that each
position of a data word carries a pair of data (d1, d2) from a product of two countably
infinite sets D1 and D2, rather than just a single datum. In this scenario, we allow to use two
equivalence relations ∼1 and ∼2, responsible, respectively, for the data tests of first and of
the second coordinate. It is known that even the most natural logic for this setting, namely
FO2[≤, succ,∼1,∼2], becomes immediately undecidable [4]. Moreover, the FO2 logic remains
undecidable even when the second datum is treated as a refinement of the first one, i.e. when
a formula ∀x∀y x ∼2 y → x ∼1 y is a tautology [2]. Here we explain how to modify the
undecidability proof from [2, Appendix A.1] to infer undecidability of C2[≤, succ,∼, πbin].

To prove undecidability of FO2[≤, succ,∼1,∼2] (under the proviso that ∼2 is a refine-
ment of ∼1), the authors of [2] provided a reduction from the halting problem for Minsky
Machines [26]. They encoded successful runs of a machine as data words from L, where:

L = s1s2(i1 + i2 + d1 + d2 + e1s1 + e2s2)∗e2e1.

An intuition behind such language is fairly simple: the letters ik and dk correspond to the
incrementation and the decrementation of the k-th counter, while the letters sk and ek
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correspond to zero tests. Then the subwords composed of all positions between each sk
and ek are assumed to have the equal first datum, i.e. are in the same ∼1 equivalence
class. As the next step, the relation ∼2 was employed to match each incrementation ik with
an appropriate dk from the same ∼1-class. Finally, consistency between two neighbouring
configurations was handled with a two-variable formula without any data-equality predicates.

Note that the equivalence relation ∼2 was only used to match occurrences of ik with
occurrences of dk and vice-versa. The same property can be stated with a single one-to-one
binary relation required to be a subset of ∼1. And such a property is easily expressible in C2:

∀x (∀y x ∼2 y → x ∼ y) ∧ ∀x
(
∃≤1y x ∼2 y ∧ ∃≤1y y ∼2 x

)
With such an interpretation of ∼2, the undecidability proof of [2] can be read without

any changes as an undecidability proof for C2[≤, succ,∼, πbin]. Thus we conclude:

I Theorem 1. Satisfiability of C2[≤, succ,∼, πbin ] over finite data-words is undecidable, even
if πbin contains only a single binary relation and the only allowed counting quantifier is ∃≤1.

Note that in the presence of uninterpreted binary symbols in the language, the successor
relation succ can be defined in C2[≤,∼, πbin] cf. [12, Lemma 3.1]. Hence we can also infer
the undecidability of the logic without the successor relation.

I Theorem 2. Satisfiability of C2[≤,∼, πbin] over finite data-words is undecidable.

4 When only one navigational binary relation is allowed

As a first step towards decidability, we consider sublogics of C2[≤, succ,∼, πbin] without
uninterpreted binary symbols πbin and with only a single binary navigational predicate.

For the case when only the succ relation is allowed, we reuse a recent result on C2

interpreted over trees with data. It was shown in [11] that the logic C2[↓,∼, πbin ], namely C2

with two distinguished relations interpreted, respectively, as a parent-child relation in a tree
and as an equivalence relation is NExpTime-complete. Note that a word can be seen as a tree,
where each node has at most one child. Moreover, by employing the formula ∀x∃≤1y x ↓ y we
can enforce that the intended tree models are actually words. Hence from [11] we conclude:

I Theorem 3. The satisfiability for C2[succ,∼] and C2[succ,∼, πbin ] is NExpTime-complete.

To obtain a tight NExpTime upper bound for the next logic, namely for C2[≤,∼], we
closely follow the line of NExpTime-completeness proof for FO2[≤,∼] from [4, Lemma 19].

We first show that any satisfiable C2[≤,∼] formula ϕ has a model with at most exponen-
tially many equivalence classes. This is done by taking an arbitrary model and performing
some surgery on it. More precisely, we first mark an appropriate number of equivalence
classes at the beginning (together with an appropriate number of their elements) as well
as on the end. Then, if any non-marked element needs a witness, it should find one in an
equivalence class of some marked element. Once such a lemma is shown, we can assign
some number to each of the equivalence classes. Since there are only exponentially many of
them, their numbers can be encoded with only polynomially many bits represented with
only polynomially many fresh unary predicates. Thus in that setting, testing whether two
positions carry the same data-value boils down to checking the number of their equivalence
classes and it can be handled easily in FO2. Finally, we rewrite the formula into a ∼-free one
and use a black-box an NExpTime algorithm for solving C2[≤] from [12]. Now we show:

I Lemma 4. Any satisfiable C2[≤,∼]-formula ϕ has a model, in which the total number
of ∼-equivalence classes eq(ϕ) is bounded exponentially in |ϕ|.
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Proof. Assume that ϕ is in the weak normal form (cf. Eq. 1). Let C be the maximal number
appearing in the counting quantifiers and let t be the number of all possible 1-types over the
vocabulary of ϕ. Note that both C and t are exponential in |ϕ|. In the forthcoming proof,
we will show how to construct a model of ϕ with at most t · 2(C+1) different classes.
Let A be a model of ϕ. For each 1-type α we mark the first C+1 positions of A with type α
from mutually different classes [or all of them if there are less than C+1 of them in A].
Analogously we repeat the process for the last C+1 positions of type α. Let B be a subword
of A composed of only those positions of A, which has the same data as some marked element.

We will show that B |= ϕ. Since the described construction preserves 1-types, we conclude
that B satisfies the ∀x∀y χ part of ϕ (because the satisfaction of χ depends only on 1-types
realized in a model). Moreover, the satisfaction of all subformulae of the form ∀∃≤Ci are
preserved too, due to the fact that B is a substructure of A. The tricky part here is show
preservation of satisfaction of ∀x∃≥Ciy χi(x, y) formulae. Take an arbitrary position p from B

and consider what kind of witnesses y it has in A to satisfy χ(x, y). All possible y from the
same class as p are preserved in the construction, so they can still serve as witnesses for p. It
could be also the case that p had k (where k ≤ C) witnesses from a different class, to the
right of p. But since at least k classes were marked during the construction, then p can take
as witnesses some k elements from those marked classes (in the worst case such elements
coincide with the original ones). For witnesses to the left of p we proceed analogously. Thus,
by considering all sub-cases, we infer B |= ϕ. The total number of different classes in B is
bounded by t · 2(C+1), and hence is only exponential in |ϕ|. J

Let p0, p1, . . . , pm be fresh unary predicates, such that 2m+1 ≥ eq(ϕ) > 2m holds for eq(ϕ)
obtained from the above lemma. As we have already mentioned, once the number of equi-
valence classes is bounded, checking whether two elements x and y are related by ∼ boils
down to checking whether they encode the same number on pi predicates. Hence, we can
replace all subformulae of the form x ∼ y in ϕ with a formula ∧mi=0(pi(x) ↔ pi(y)). The
formulae obtained in this way are (purely) C2[≤] formulae and are of polynomial size. Thus
by employing an NExpTime algorithm for deciding fin-sat of C2[≤] from [12] we obtain:

I Theorem 5. Satisfiability for C2[≤,∼] over finite data-words is NExpTime-complete.

5 When uninterpreted relations are disallowed

In this section, we focus on the most expressive variant of data logics without binary
predicates, namely on C2[≤, succ,∼]. It is known that its FO2 version is Vass-complete [4].
Here we show that the Vass-completeness transfers also to its C2 counterpart, which will
be done by a model-preserving translation from C2[≤, succ,∼] to FO2[≤, succ,∼]. Note that
since FO2[≤, succ,∼] is non-elementary, we do not need to care too much about how complex
complexity-wise the reduction will be, as long as its size is bounded by some elementary
function. Before we start, we will assume that the input formula is in the Scott-like normal
form (2) defined in Section 2.2. Our plan is to gradually remove all ∀∃./ conjuncts from
ϕ, replacing them with some equisatisfiable formulae without counting quantifiers. Let
C = 1 + maxni=1{Ci} and let us proceed as follows. Observe that any ∀∃./ψ conjunct requires,
for a fixed x, at most C witnesses for its satisfaction. Hence, once we would know in advance
how many witnesses for ψ the element x has, we would immediately know whether the
∀∃./ψ formula is satisfied or not. Thus, we aim at providing such information. In order to do
that, we introduce fresh unary predicates labelling the elements of the model, both globally
and locally in every equivalence class, numbering occurrences the certain 1-types (from the
start and from the end of the model) up to the threshold C. It will suffice to eliminate the
counting.
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To explain the technique, let us first consider the case of
∧n
i=1 ∀x

(
πi(x)→ ∃./iCiy βi

)
conjuncts, which we prefer to call class conjuncts, since they speak about witnesses y from
the same equivalence class as x. For each 1-type π and i ∈ {1, 2, . . . , C+1} we introduce fresh
unary predicates cl-leftπi and cl-rightπi and we impose their interpretation, e.g. that cl-leftπi (x)
holds iff x is the i-th occurrence (counted from 1 from the beginning of the model) of the
1-type π in the equivalence class of x. Writing the formulae imposing such interpretation is
easy, e.g. to impose that cl-leftπ2 means the second occurrence of the type π, we write:

∀xcl-leftπ2 (x)↔ (π(x) ∧ ∃y.(y < x ∧ y ∼ x ∧ π(y)) ∧ ∀y (y < x ∧ y ∼ x ∧ π(x)→ cl-leftπ1 (y)))

I Fact 6. There is an FO2[≤, succ,∼] formula ϕcl such that for every model A |= ϕcl and
every 1 ≤ i ≤ C we have that cl-leftπi (x) (resp. cl-rightπi (x)) holds iff x is the i-th occurrence
from the beginning of the model (resp. the end) of the 1-type π in the equivalence class of x.

The above fact allows us to eliminate counting quantifiers from the class conjuncts from ϕ. By
way of example, consider the formula π(x) → ∃≤Ciy. (π′(y) ∧ x ∼ y ∧ y < x ∧ ¬succ(x, y)),
which states that each x of the 1-type π should see at most Ci elements of the type π′
(in its equivalence class) strictly to its left. By employing Fact 6 we can rewrite it into:
π(x)→ ¬∃y.(y < x ∧ x ∼ y ∧ ¬succ(x, y) ∧ cl-leftCi+1(x)). Other cases are treated similarly.

I Lemma 7. Any C2[≤, succ,∼] formula ϕ in the normal form can be transformed into
equisatisfiable C2[≤, succ,∼] formula ϕ′ without counting quantifiers in the class conjuncts.

Now we discuss how to eliminate counting quantifiers in the non-class conjuncts. The me-
thod will be similar to the previous one, but the introduced labelling will be more involved. By
way of example, consider the formula π(x) → ∃≥Ciy. (π′(y) ∧ x 6∼ y ∧ x < y ∧ ¬succ(y, x)),
which states that each x of the 1-type π requires at least Ci witnesses, outside the equivalence
class of x, of the 1-type π′ strictly to the right of x. It would be tempting to claim that the
global labelling of the last C elements with the 1-type π′ would be sufficient for our purposes.
Unfortunately, it is not: it could be the case that the last C elements are in the same class.
To omit such difficulties, we label up C2 elements with the type π in total (from the left
and from the right) with the predicates gl-leftπi , gl-rightπi , but we require that no more than
C elements from the same class is marked (i.e. in our numbering we simply skip elements
from the class containing C labelled elements). In means that if an element needs to find
witnesses from outside of its class, it should find them among the marked elements. Once
again, providing such a labelling is an easy exercise in FO2[≤, succ,∼].

I Fact 8. There is an FO2[≤, succ,∼] formula ϕgl such that for every model A |= ϕgl and
every 1 ≤ i ≤ C2 we have that gl-leftπi (x) (resp. gl-rightπi (x)) holds iff x is the i-th occurrence
from the beginning of the model (resp. the end) of the 1-type π, skipping in the enumeration
all the elements already having C elements labelled with some gl-leftπj (x) (resp. gl-rightπj (x))
in their equivalence class.

Now we will discuss how to employ such a labelling to eliminate counting quantifiers in the non-
class conjuncts. Recall the toy formula: π(x)→ ∃≥Ciy. (π′(y) ∧ x 6∼ y ∧ x < y ∧ ¬succ(y, x)).
We need to state that an element x can see at least C elements of the 1-type π′ to its right,
outside its equivalence class. Observe that we already enumerated elements of the 1-type π′
inside the equivalence class of x. Hence if there are j elements of the type π′ to the right
of x, i.e. cl-rightπ

′

j (y) is satisfied for some y > x having the same data-value as x, it suffices
to state that x can see to its right an element labelled with gl-rightπ

′

Ci+j . And this can be
defined with an FO2[≤, succ,∼] formula. By applying analogous reasoning, one can eliminate
counting quantifiers also in the other cases. Hence we conclude the following lemma:
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I Lemma 9. Any C2[≤, succ,∼] formula ϕ in the normal form can be transformed into
equisatisfiable C2[≤, succ,∼] formula ϕ′ without counting quantifiers in the non-class con-
juncts. Moreover, ϕ′ does not introduce any counting quantiers in the class conjuncts.

By employing Lemma 7, Lemma 9 and Vass-completeness of FO2[≤, succ,∼] we establish
the main theorem of this section.

I Theorem 10. For any C2[≤, succ,∼] formula ϕ there exists an equisatisfiable FO2[≤
, succ,∼] formula ϕ′ of an elementary size in |ϕ| and hence, C2[≤, succ,∼] is Vass-complete.

6 C2 with full linear order and bounded data-tests

In this section we prove that the decidability of the full logic can be regained, under a
reasonable assumption that no more than k (for a fixed number k) elements in the model
share the same data-value. To express such a restriction in the logical terms, we employ the
relation ∼k, interpreted as an equivalence relation with equivalence classes of size at most k.
We show that the logic C2[≤, succ,∼k, πbin ] is Vass-complete. The proof goes via a reduction
to C2[≤, succ, πbin]. Since the latter logic is Vass-complete [12] we conclude the result.

More precisely, given a C2[≤, succ,∼k, πbin] formula ϕ we will produce an equisatisfiable
C2[≤, succ, πbin] formula ϕtr by adding to ϕ conjuncts that encode some ∼k properties and
enable model transformations that preserve satisfiability of ϕ and the interpretations of ≤ and
succ. The essential part of the reduction will be to use these transformations on an arbitrary
model of ϕtr to produce a model of ϕ in which ∼k is interpreted as a bounded equivalence
relation. By W(≤, succ, πbin) denote the class of all words and by W(≤, succ,∼k, πbin) its
subclass where ∼k is interpreted as described above.

6.1 Plethora of types
We make extensive use of the notions of (atomic) 1- and 2-types. In both cases, we take the
notion of consistency to incorporate the constraint that the distinguished predicate ∼k is
interpreted as a reflexive and a symmetric relation (note that transitivity would require three
variables and thus cannot be enforced in the same way). If τ is a 2-type, we denote by τ−1 the
2-type obtained by exchanging the variables x and y in τ , and call τ−1 the inverse of τ . We
denote by tp1(τ) the 1-type obtained by removing from τ any literals containing y; and we
denote by tp2(τ) the 1-type obtained by first removing from τ any literals containing x, and
then replacing all occurrences of y by x. Evidently, tp2(τ) = tp1(τ−1). We equivocate freely
between finite sets of formulae and their conjunctions; thus, we treat 1-types and 2-types as
formulae, where convenient. Let A be any structure interpreting Σ. If a ∈ A, then there exists
a unique 1-type π such that A |= π[a]; we denote π by tpA[a] and say that a realizes π. If, in
addition, b ∈ A \ {a}, then there exists a unique 2-type τ such that A |= τ [a, b]; we denote
τ by tpA[a, b] and say that the pair a, b realizes τ . Evidently, in that case, τ−1 = tpA[b, a];
tp1(τ) = tpA[a]; and tp2(τ) = tpA[b]. For a fixed C2 formula in normal form (1) a ϕ-ray-type
is a 2-type ρ such that |= ρ→

∨n
h=1 χi. If A |= ρ[a, b] for distinct elements a, b, then we say

that the pair 〈a, b〉 is a ϕ-ray. We call a ϕ-ray-type ρ ϕ-invertible if ρ−1 is also a ϕ-ray-type.
We call a 2-type τ ϕ-silent if neither τ nor τ−1 is a ϕ-ray-type.

We now construct an apparatus for describing the “local environment” of elements in
structures. Let the ϕ-ray-types be listed in some fixed order (depending on Σ) as ρ1, . . . , ρJ . A
ϕ-star-type is an (J+1)-tuple σ = 〈π, v1, . . . , vJ〉, where π is a 1-type over Σ and the vj are non-
negative integers such that vj 6= 0 implies tp1(ρj) = π for all j (1 ≤ j ≤ J). We denote the 1-
type π by tp(σ). To motivate this terminology, suppose A is a structure interpreting Σ. For any
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a ∈ A, we define stA(a) = 〈tpA[a], v1, . . . , vJ〉 ,where vj = |{b ∈ A : b 6= a and tpA[a, b] = ρj}|.
Evidently, stA[a] is a star-type; we call it the ϕ-star-type of a in A, and say that a realizes
stA[a]. Intuitively, the star-type of an element records the number of rays of each type emitted
by that element. It helps to think, informally, of a star-type σ as emitting a collection of rays
of various types, and of nodes as accepting rays. When ϕ is known from a context or arbitrary,
we will simply write ray-, invertible-, silent- or star-type instead of ϕ-ray-, ϕ-invertible-,
ϕ-silent- or ϕ-star-type. We say that a structure A realizes a set of 2-types (resp. star-types)
Φ if every pair of nodes (resp. every node) in A realizes a 2-type (resp. a star-type) from Φ.
Importance of the above notions of 2-, ray- and star-types is summarized in the following.

I Proposition 11. Let A be a structure such that A |= ϕ. If B is a structure interpreting
the same signature, and realizing the same set of 2-types and the same set of star-types as A,
then B |= ϕ.

Thus, the satisfiability of C2 formulae is invariant under arbitrary transformations of
structures that preserve sets of realized 2-types and star-types. Our transformations are more
constrained; for every element of a model they preserve its star-type by only allowing changes
of targets of emitted ray-types. Special care must be taken in order not to emit a ray from
a source node to a node which already emits a ray back to the source node. Therefore we
introduce a restriction allowing to only modify rays that are invertible (rigidity), and another
restriction that a node cannot emit an invertible ray-type and another (invertible- or not)
ray-type to two nodes with the same 1-type (superchromaticity). This way, we may select an
invertible ray-type τ , edges τ(e1, e) τ(e′1, e′) and replace them by edges τ(e′1, e) and τ(e1, e

′)
preserving star-types of all involved nodes and not introducing duplicate rays. Furthermore,
during the entire procedure we employ additional precautions to preserve both linear order
and its successor.

6.2 Towards Vass-completeness of C2[≤, succ,∼k, πbin]
Fix a C2[≤, succ,∼k, πbin] formula ϕ in normal form (1) and its interpretation A. We say
that A is ϕ-rigid if A |= a ∼k b implies that 〈a, b〉 is an invertible ray. We say that ϕ is
rigid if all models of ϕ are ϕ-rigid. Define ωk as ∀x∃≤ky.x ∼k y. Formulae ϕ and ϕ ∧ ωk are
equivalent over W(≤, succ,∼k, πbin). Moreover, the latter formula is rigid. We say that A
is ϕ-semichromatic if no ray is emitted and accepted by nodes of the same 1-type. We say
that A is ϕ-superchromatic if it is ϕ-semichromatic and no element emits two or more rays
at least one of which is invertible, having the same absorption-type as each other. We say
that ϕ is ϕ-semichromatic (resp. ϕ-superchromatic) if all models of ϕ are ϕ-semichromatic
(resp. ϕ-superchromatic). The proof of the following lemma is standard (see [10]).

I Lemma 12. There is a C2 formula χϕ such that ϕ and ϕ ∧ χϕ are equisatisfiable on
W(≤, succ,∼k, πbin) and ϕ∧ χϕ is superchromatic. Moreover, if ϕ is rigid then ϕ∧ χϕ is so.

Now we define formulae that encode ∼k. Fix a set of star-types st. For σ, ρ ∈ st we write
σ ∼k ρ if there exists an invertible ray type τ such that τ ∈ σ, τ−1 ∈ ρ and ∼k (x, y) ∈ τ .

Let A be a rigid W(≤, succ,∼k, πbin)-structure over st. Structure A consists of disjoint
substructures, each generated by an equivalence class of ∼A

k . We call such a substructure
a class in A. For a class C in A we call the set {σ ∈ st | σ is realized in C} the class type
of C and denote it by ct(C). Thus ct(C) is a subset of st. However, not every subset of st
corresponds to a class type in a W(≤, succ,∼k, πbin)-structure. A subset ct of st is called
a class type wrt. st if there is a bijection b from c to the k-clique Kk = (V,E) such that
(b(σ), b(ρ)) ∈ E if and only if σ ∼k ρ. Thus, we may identify ct with a relational structure, a
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clique, being an equivalence class of ∼k. Observe that if C is a class in A then ct(C) is a class
wrt. st. Thus every class wrt. st is potentially a class in some word over st. Since the size
of each class type is bounded by k, the number of class types is bounded by

(|st|
k

)
. For any

e ∈ C we denote with ctA(e) its class type in A, equal to ct(C).
Having the above definitions at hand, we may define a two-variable formula ψst that

specifies necessary conditions for ∼k to interpret a bounded equivalence relation in a structure
that realizes st. Formula ψst expresses that every node has precisely one class type, that two
nodes connected by ∼k relation share the same class type, and that a node with a class type
c realizes some star-type σ ∈ c. The last property together with ϕ-semichromaticity implies
that star-types of elements within every equivalence class are unique. The entire formula
implies that for every node in a structure we may find a set of nodes that together could
form an equivalence class. Indeed, we say ‘could‘ since it is not necessary the immediate case,
and forming equivalence class may require structure transformations.

For ϕ in normal form (1) by st(ϕ) denote the set of star-types compatible with ϕ.

I Lemma 13. Any model of a C2[≤, succ,∼k, πbin] formula ϕ can be expanded to a model
of ψst(ϕ) by interpreting fresh unary predicates.

For a fixed ϕ to be checked for satisfiability, we set ϕtr ::= ϕ∧ωϕ∧χϕ∧ωϕ∧ψst(ϕ∧ωϕ∧χϕ∧ωϕ ).

I Lemma 14. If a C2[≤, succ,∼k, πbin ] formula ϕ is satisfiable in W(≤, succ,∼k, πbin) then
the translation ϕtr is satisfiable in W(≤, succ, πbin).

Proof. Let A be a model of ϕ such that A ∈ W(≤, succ,∼k, πbin). We will expand A by
interpreting some fresh unary predicates to obtain a model of ϕtr. First, observe that A

models ωϕ, as each equivalence class of ∼A
k has at most k elements. Using Lemma 12, after

interpreting some fresh unary predicates, A becomes a model of χϕ∧ωϕ
. Then, using Lemma 13,

again by interpreting some fresh unary predicates, A becomes a model of ψst(ϕ∧ωϕ∧χϕ∧ωϕ ).
The obtained structure remains in classW(≤, succ,∼k, πbin) and thus also inW(≤, succ, πbin)
and satisfies ϕtr. J

We now define structure transformations. First, we define a switch, whose aim is only to
preserve the order of elements. Let us write a�A b iff a ≤A b holds and succA(a, b) does not.

I Definition 15. Let A be a W(≤, succ, πbin) structure and e1, e, e′, be elements of A such
that e1 �A e and e�A e′. Define (e1, e, e

′)–switch of A as the structure B which is identical
to A with the exception that tpB(e1, e) = tpA(e1, e

′) and tpB(e1, e
′) = tpA(e1, e).

Observe that relative order of e1, e and e′ is preserved after the switch and thus both succA
and ≤A are preserved. The transformation we use is a sequence of two switches, as described
by the following lemma.

I Lemma 16 (Switching lemma). Let A be a superchromatic W(≤, succ, πbin) structure, e′1,
e1, e, e′ be elements of A such that e1 �A e, e′1 �A e, e�A e′, and 2-types tpA(e′1, e′) and
tpA(e1, e) are both the same invertible ray type. The structure B obtained by the (e1, e, e

′)–
switch of A followed by the (e′1, e, e′)–switch belongs to W(≤, succ, πbin) and realizes the same
set of star- and 2-types as A.

Proof. Structure A satisfying assumptions of the Lemma is depicted on Fig 1(left). Note
that tpA(e′1, e) and tpA(e1, e

′) are silent, as otherwise A would violate the superchromaticity
condition. E.g. tpA(e′1, e) cannot be a ray type, as tpA(e′1, e′) is invertible and tpA(e′) = tpA(e).
The equality of 1-types hold as a conclusion of tpA(e′1, e) = tpA(e1, e

′). In a similar way
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tpA(e, e′1) cannot be a ray type, thus the tpA(e′1, e) is silent. In a similar way tpA(e1, e
′) can

be proven silent. After switching we obtain the structure on Fig 1(right), whose star types
and 2-types are the same as in A. J

e′1 e1

e
e′

τ

τ

e′1 e1

e
e′

τ

τ

Figure 1 Structure A before switching (left) and after switching (right).

The following lemma is the main lemma of this section. There we transform a model of
ϕtr to another model, where ∼k is interpreted as a bounded equivalence relation, and where
the order is preserved. We decompose the model into substructures generated by elements
connected by succ and sharing the same class type (thus any class type also decomposes
into components). We show that elements within the same component in the model are
necessarily connected by ∼k predicate. Then we employ structure transformations defined
above (i.e. switches) to show that elements of distinct components of the same class type
can be pairwise connected by ∼k to form equivalence classes.

I Lemma 17. If the formula ϕtr is satisfiable in W(≤, succ, πbin) then the formula ϕ is
satisfiable in W(≤, succ,∼k, πbin).

Proof. Let A be a finite model of ϕtr such that A ∈ W(≤, succ, πbin). We will transform A to
a W(≤, succ,∼k, πbin) structure while ensuring that every element of A retains its star-type
and the set of realized 2-types is preserved. Since A |= ϕ, by Proposition 11, the obtained
structure will still be a model of ϕ. Observe that ϕtr ensures reflexivity and symmetry of
∼k. Thus to obtain a W(≤, succ,∼k, πbin) structure we only need to make ∼k transitive.
During the transformation the linear order (that is both succA and ≤A) remains fixed, while
particular 2-types emitted and accepted by structure nodes may change.

Recall that we may identify each class type c with a relational structure (a clique). By
component of c we mean any maximal subgraph d of c such that any node of d emits a
succ edge to some other node of d Thus graph c consists of (at most k) linearly ordered
components, each consisting of at most k elements. Let σ1, . . . σl be all nodes of d listed in
order succ (all these star-types are distinct as all star-types in any class-type are distinct).
Since A |= ψst(ϕ∧ωϕ∧χϕ∧ωϕ ), components of class-types correspond to substructures of A in
the following way. If e1 ∈ A is such that ct(e1) = c and stA(e1) = σ1 then there exists l − 1
nodes e2, . . . el ∈ A such that ct(ei) = c, stA(ei) = σi for i ∈ {1, . . . , l}, and succA(ei, ei+1)
for i ∈ {1, . . . , l − 1}. By definition of d we thus have ei ∼A

k ei+1 for i ∈ {1, . . . , l − 1}. We
call the substructure D of A generated by e1, . . . , el a component of A corresponding to d.
We define co(D) = d (the component-type of D) and ct(D) = c (the class-type of D).

We will transform A so to form equivalence classes of ∼k. These classes will be k-cliques
composed of components. Thus, we need to ensure that two conditions hold:

if two nodes belong to the same component then they are connected by ∼k edge,
for every component Di of A such that all components of ct(Di) listed in order are
d1, . . . di, . . . dl, for some numbers i and l, we have the following. There exist l components
D1, . . .Di, . . .Dl of A such that co(Di) = di and if ei ∈ Di and ej ∈ Dj then ei ∼A

k ej ,
for some numbers i, j.
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First, we will show that every two elements of a given component of A are related by ∼A
k ,

i.e. that every component of A is a clique. We will consider components of A in the order
defined by ≤A, assuming that all components visited so far satisfy the required property.
Let D be a component of A currently under inspection, let c be the class type of D and
let d be the component type of D. Take any a, b ∈ D such that a ≤A b. Let the star-types
of a, b in A be resp. σa and σb. Ad absurdum, assume that a 6∼A

k b holds. Since a and b

belong to the same component D, star-types σa and σb belong to the component d. Since
d is a clique graph, there exists ray-type τ such that x ≤ y ∈ τ , x ∼k y ∈ τ , τ ∈ σa, and
τ−1 ∈ σb. Since the star-type of b is σb, there exists a′ ∈ A′ such that tpA(a′, b) = τ . Since
A |= ψst(ϕ∧ωϕ∧χϕ∧ωϕ ), class-type of a′ is the same as the class-type of b, i.e. ct(a′) = c. Since
1-types within class-types are unique, we have stA(a′) = σa and a′ belongs to a component
D′ of A such that the component type of D′ is d, D′ 6= D and D′ occurs in A earlier (wrt.
≤A) than D. By the inductive assumption all elements of D′ are connected by ∼k. Since the
component type of D′ is d, there exits a b′ ∈ D′ such that stA(b′) = σb. Thus tpA(a′, b′) = τ .
But, simultaneously tpA(a′, b) = τ . Because of superchromaticity this can only be true if
b′ = b, but these nodes belong to disjoint substructures D′ and D of A. Contradiction. Thus
a ∼A

k b holds implying, that any two elements of the same component of A are related by ∼A
k .

Now we must switch edges of A so to ensure that elements of distinct components are
connected by ∼k edges to form equivalence classes of ∼A

k . We traverse components of A in
the order defined by succA restoring ∼k relations between their nodes, when necessary, by
employing Lemma 16. J

Since the finite satisfiability for C2[≤, succ, πbin] is Vass-complete [12], by Lemma 14 and
Lemma 17 we immediately conclude:

I Theorem 18. C2[≤, succ,∼k, πbin] is Vass-complete.

7 Conclusions

We considered counting extensions of the two-variable logic on finite data-words. While our
main logic, namely C2[≤, succ,∼, πbin] turned out to be undecidable, we identified several
decidable sub-logics, with complexities ranging from NExpTime to Vass, depending on the
allowed binary relations in the vocabularies. We hope that the outcome of the paper might
be interesting for the two-variable community and that the established decidability results
can be later generalised to capture even more expressive forms of quantitative properties.
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Abstract
Many sources of data have temporal start and end attributes or are created in a time-ordered
manner. Hence, it is only natural to consider joining datasets based on these temporal attributes.
To do so efficiently, several internal-memory temporal join algorithms have recently been proposed.
Unfortunately, these join algorithms are designed to join entire datasets and cannot efficiently join
skewed datasets in which only few events participate in the join result.

To support high-performance internal-memory temporal joins of skewed datasets, we propose
the skip-join algorithm, which operates on stab-forests. The stab-forest is a novel dynamic data
structure for indexing temporal data that allows efficient updates when events are appended in a
time-based order. Our stab-forests efficiently support not only traditional temporal stab-queries,
but also more general multi-stab-queries. We conducted an experimental evaluation to compare the
skip-join algorithm with state-of-the-art techniques using real-world datasets. We observed that the
skip-join algorithm outperforms other techniques by an order of magnitude when joining skewed
datasets and delivers comparable performance to other techniques on non-skewed datasets.
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1 Introduction

In practice, most sources of data have temporal attributes. Examples include news events,
air travel records, employment records, and event logs. Temporal attributes also play a role
in data that does not have explicit temporal attributes: e.g., in versioned databases the time
of creation and replacement of each data element is recorded such that the evolution of the
database is maintained. Given that temporal data is so ubiquitous, applications naturally
expect support from DBMSs for efficient operations based on these temporal attributes.
Examples of such operations are stab-queries and the temporal join:

I Example 1.1. Consider complex systems in which events are logged by (start, end)-time
intervals. We want to use the event log to diagnose failures in the complex system. More
specifically, if a failure at time t needs to be diagnosed, one does not want to search through
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the entire event log, but use more directed ways to look for causes. A first step would be to
perform a stab-query at time t to find all events that are active when the failure happened.
A next step would be to combine event logs of the failed system with event logs of another
system via a (windowed) temporal join that yields pairs of events that were active at the
same time (and could have influenced each other) in a 24 h-window around time t.

Efficient temporal join algorithms are at the basis of many other efficient temporal
operations. E.g., selecting all events in a dataset that occur during a given set of windows in
time is equivalent to a temporal join between the dataset and these windows. Unfortunately,
state-of-the-art techniques fail to cope with skewed datasets or fail to deliver high performance:

Temporal join algorithms. Many temporal join algorithms proposed in the literature fine-
tune the usage of traditional relational database storage and join techniques towards temporal
joining [3, 7, 13, 15, 26]. These relational-oriented temporal join algorithms are not optimized
for high-performance internal-memory operations and achieve only acceptable performance.

Separately from these relational-oriented approaches, a few dedicated internal-memory
join algorithms have been proposed that operate on ordered arrays of events. These algorithms
use merge-join style methods that employ either sweeping-based techniques or forward-scan
techniques [3, 6, 7, 13, 15, 21, 26]. Based on these merge-join style algorithms, Piatov et
al. [21] recently introduced the endpoint join algorithm, a cache-friendly internal-memory
temporal join algorithm. Due to the timestamp-based representation of events used by the
endpoint join algorithm, the algorithm needs complicated data structures to maintain active
lists of events while joining them. Bourus et al. [6] showed that a traditional forward-scan
algorithm [7] operating on a simple event list will attain similar performance without all the
complexities of the endpoint join algorithm. Unfortunately, these merge-join style algorithms
inspect the entire dataset, due to which their performance degrades when the join output is
restricted to a small window in time and when the datasets only have few overlapping events,
the lather limiting their usability on skewed datasets.

Temporal data structures. Besides relying on temporal joins, one can also consider index
structures that support answering temporal operations. Unfortunately, existing index struc-
tures either do not support temporal operations efficiently, are statically built or complex
to maintain, or fail to provide high-performance cache-friendly internal-memory operations.
Indeed, to support temporal operations over interval data, traditional relational indices
such as binary search trees, B-trees, and range-trees cannot be effectively used, as these
structures lack the information to efficiently perform stab-queries and other basic temporal
operations [5, 13, 22, 26]. Alternatively, one can use specialized static interval data structures
developed for geometric applications [1, 4, 5, 16, 18, 23]. Examples include interval trees,
segment trees, and priority search trees [11, 12, 17]. These statically built data structures all
support efficient stab-queries, but do not support any form of updates.

Unfortunately, dynamic general-purpose versions of these statically-built interval data
structures are highly complex, have expensive maintenance algorithms, and rely completely
on pointer-based tree structures [4, 9, 20]. The usage of such complex pointer-based data
structure prevents cache-friendly traversal and, hence, prevent them from supporting high-
performance internal-memory operations [4, 14, 24]. A few external memory interval data
structures have been proposed, but these either place many restrictions on the inserted
data [19, 25] or are highly complex and have not yet proven themselves in practice [4].
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Our proposal: the skip-join algorithm. To address the shortcomings of existing techniques,
we propose the skip-join algorithm (Section 2). Our skip-join algorithm is an efficient
temporal join algorithm that can deal with all datasets and, additionally, supports windowed
temporal joins. To do so, the skip-join algorithm uses the stab-forest, a novel temporal index
data structure that is designed to efficiently support stab-queries and, more importantly,
multi-stab-queries that yield the combined results of multiple stab-queries in a highly efficient
manner (Section 3 and Section 4). We also present efficient ways to maintain stab-forests
when events are appended (Section 5).

To show the effectiveness of the skip-join algorithm, we evaluate the performance of our
algorithm using real-world datasets (Section 6). Our evaluation shows that the skip-join
algorithm outperforms state-of-the-art join algorithms by an order of magnitude when joining
skewed datasets. On dense datasets, the performance of the skip-join algorithm is comparable
to the state-of-the-art.

2 The Skip-Join Algorithm

Before we propose the skip-join algorithm, we first introduce some event-related terminology.
A timestamp represents a single point in time. We assume that timestamps are non-negative
integers. An event is a pair 〈v, w〉 of timestamps that represents the interval [v, w] in time. If
e = 〈v, w〉 is an event, then v is the start-time and w is the end-time and we write e.start
and e.end to denote v and w, respectively. If e.start ≤ t ≤ e.end, then we also say
that e is active at t. If e1 and e2 are events, then the intersection e1 ∩ e2 is empty if
e1.end < e2.start or e2.end < e1.start. We say that e1 and e2 overlap if e1 ∩ e2 6= ∅.

I Definition 2.1. Let R and S be sets of events. The temporal join of R and S, denoted by
R on S, is defined by

R on S = {(e1,e2) ∈ R× S | e1 ∩ e2 6= ∅}.

Our skip-join algorithm relies on the ability to efficiently perform sequences of stab-queries:

I Definition 2.2. Let S be a set of events, let t be a timestamp, and let φ be a sorted sequence
of timestamps. The stab-query of S by t is defined by

Stab(S, t) = {e ∈ S | e.start ≤ t ≤ e.end},

and the multi-stab-query of S by φ is defined by

MultiStab(S, φ) =
⋃
t∈φ Stab(S, t).

Several high-performance internal-memory temporal join algorithms have been proposed,
most of which use a merge-join style method that employs either sweeping-based techniques
or forward-scan techniques [3, 6, 7, 13, 15, 21, 26]. Unfortunately, these merge-join style
algorithms cannot efficiently support windowed temporal joins or deal with skewed datasets.

To efficiently support windowed temporal joins and deal with skewed datasets, we will
present our skip-join algorithm. To simplify presentation, we build skip-join on top of the
forward-scan algorithm, the simplest among the merge-join style algorithms. Our techniques
can, however, easily be translated to endpoint-based join algorithms, e.g., the algorithm of
Piatov et al. [21].
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Algorithm 1 Algorithm FwdScan, outputs R on S (R and S sorted in ascending start-time
order).

Algorithm FwdScan(R, S):
1: i, j := 0, 0
2: while i < |R| and j < |S| do
3: if R[i].start ≤ S[j].start then
4: k := j #(Join R[i] with S[j . . . ]).
5: while k < |S| and S[k].start ≤ R[i].end do
6: Output (R[i], S[k])
7: k := k + 1
8: i := i + 1
9: else analogous (swap roles of R and S)

0 1 2 3 4 5 6 7 8 9 10 11 12

R0
R1 R2 R3

R4

S0
S1 S2

S3

Figure 1 Two lists of events R and S visualized on an explicit timestamp scale.

The forward-scan temporal join algorithm. The forward-scan algorithm is a cache-friendly
temporal join algorithm that can efficiently join non-skewed datasets represented by ordered
lists of events (e.g., sorted arrays of events) [3, 6, 7, 13, 15, 21, 26]. The outline of such a
forward-scan algorithm is shown in Algorithm 1.

I Example 2.3. Let R = [〈0, 10〉, 〈1, 2〉, 〈4, 7〉, 〈8, 11〉, 〈11, 12〉] and S = [〈0, 2〉, 〈1, 3〉, 〈9, 10〉,
〈10, 12〉] be the lists of events visualized in Figure 1. We compute R on S using Algo-
rithm FwdScan. First, we join R0 with S[0 . . . ], and output (R0, S0), (R0, S1), (R0, S2).
Next, we join S0 with R[1 . . . ], and output (R1, S0). Next, we join R1 with S[1 . . . ], and
output (R1, S1). Next we join S1 with R[2 . . . ], and output nothing. Next, we join R2 with
S[2 . . . ], and output nothing. Next, we join R3 with S[2 . . . ], and output (R3, S2), (R3, S3).
Next, we join S2 with R[4 . . . ], and output nothing. Next, we join S3 with R[4 . . . ], and
output (R4, S3). Finally, we stop, as we have reached the end of S.

If the event-list is implemented as an array, then these forward-scan algorithms will have
high performance when most events in R and S are part of the join result:

I Proposition 2.4. Let R and S be lists of events sorted in ascending start-time order. The
algorithm FwdScan(R, S) computes R on S in worst-case O(|R|+ |S|+ |output|).

Dealing with skew in temporal joins. In practice, one can expect some skew in the data
that causes standard forward-scan algorithm to waste time inspecting parts of R and/or S
that are not part of the join result. To deal with this form of data skew, we need a way
to detect and skip over parts of R and S that are irrelevant to the join result. To do so,
we augment the forward-scan algorithm with the ability to use stab-queries to jump over
irrelevant events: if, e.g., we are at an event R[i] that ends before the event S[j] starts, then
we simply jump in R until we find the first event R[i′] that starts after S[j]. By jumping
over events in R, we might miss events in R[i . . . i′] that end after S[j].start. To assure we
do not miss such events, we jump over events in R via a stab-query and join the output of
the stab-query with S[j . . . ]. This approach results in the skip-join algorithm of Algorithm 2.

I Example 2.5. Consider the lists of events R and S of Example 2.3 and visualized in
Figure 1. We compute R on S using the SkipJoin algorithm. First, we join R0 with S[0 . . . ],
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Algorithm 2 Algorithm SkipJoin, outputs R on S (R and S sorted in ascending start-time order).

Algorithm SkipJoin(R, S):
1: i, j := 0, 0
2: while i < |R| and j < |S| do
3: if R[i].start ≤ S[j].start then
4: if S[j].start ≤ R[i].end then
5: Join R[i] with S[j . . . ] (see Algorithm 1, Lines 4–8)
6: i := i + 1
7: else
8: (i, L) := Stab(R[i . . . ], R[i].start)
9: For each event e ∈ L, join e with S[j . . . ] (see Algorithm 1, Lines 4–8)

10: else analogous (swap roles of R and S)

and output (R0, S0), (R0, S1), (R0, S2). Next, we join S0 with R[1 . . . ], and output (R1, S0).
Next, we join R1 with S[1 . . . ], and output (R1, S1). Next we join S1 with R[2 . . . ], and
output nothing. Next, when we process the event R2 = 〈4, 7〉, we detect that the event
S2 = 〈9, 10〉, the first event in S[2 . . . ], starts after R2.end as 7 = R2.end < S3.start = 9.
Hence, we perform Stab(R[2 . . . ], 9), which yields the list [R3] and the index 4 in R. We
output (R3, S2) and continue with joining R[4 . . . ] and S[2 . . . ], which only yields (R4, S3).

The SkipJoin algorithm will only be efficient if the sequence of stab-queries can be
performed efficiently. Obviously, such an ordered sequence of stab-queries can be seen as a
single multi-stab-query (whose evaluation is interleaved with running the join algorithm).
In Section 3, we introduce the stab-forest data structure which we will use to answer such
multi-stab-queries efficiently, and in Section 4, we show how to efficiently query stab-forests.

I Theorem 2.6. Let R and S be lists of events sorted in ascending start-time order. The
algorithm SkipJoin(R, S) computes R on S in worst-case O(M(R,S) +M(R,S) + |output|),
in which M(A,B) denotes the cost of either a multi-stab-query with |A| timestamps on B or
of fully traversing B, whichever is smaller.

We notice that the focus of the skip-join algorithm is on supporting temporal joins of
skewed datasets. The skip-join algorithm can easily be tuned to also support windowed
temporal joins that only output events restricted to some window 〈v, w〉 in time, however:
one simply starts with stab-queries to determine which events are active at v and stops
whenever encountering events that start after w.

3 The Stab-Forest Data Structure

In the previous section, we introduced the SkipJoin algorithm. This algorithm requires an
efficient manner to perform multi-stab-queries. To provide this, we introdce a novel index
structure, the stab-forest. The stab-forest is a triple S = (E , I, itail) with E an event-list
ordered lexicographically on (start, end)-times, I an index over the head of the event-list,
and itail the tail pointer that holds the offset of the first event in E not yet part of I. We call
the part of the event-list starting at itail the tail. We define |S | = |E|. Next, we introduce
stab-trees, which are at the basis of index I. Then, we introduce the forest structure of I,
which stitches together the stab-trees used to index the event-list. Finally, we discuss the
relevant parts of the physical layout we use for the index.

The stab-tree. A stab-tree is a binary tree that shares similarities with binary search
trees and interval trees. First, we introduce the standard binary tree terminology and
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notation. Let S = (E , I, itail) be a stab-forest and let T be a stab-tree indexing a portion
of E . We write root(T ) to denote the root node of T . Let n be a node in T . By left(n) and
right(n), we denote the left and right child of n. We call n a leaf if n does not have children
(left(n) = right(n) = ⊥). By height(T ), we denote the height of the tree T , which we define
as the number of nodes on the longest downward path from the root of the tree to a leaf
node (the height of a tree without nodes is 0 and the height of a tree with a single node is 1).

Each node n has a navigation key and a data key, denoted by nkey(n) and dkey(n),
respectively. The key dkey(n) is a timestamp present as the start-time of an event in the
event-list. The data pointer idata(n) holds the offset of the first event in E with start-time
dkey(n). The key nkey(n) is the smallest timestamp such that no event in the event-list has
a start-time in the range [nkey(n), dkey(n)).

Each node of a stab-tree represents events in E via the data key and data pointer: the
node n represents those events e ∈ E with e.start = dkey(n). The navigation key nkey(n)
is derived from the event preceding E [idata(n)]. Based on the definition of nkey(n), the only
timestamp in [nkey(n), dkey(n)] that has events e ∈ E starting at it is dkey(n) – these are
exactly the events represented by n. In Section 4, we will explain how the data and navigation
keys are used while querying stab-forests. We define

min(n) = min{nkey(n′) | n′ in the subtree rooted at n};
max(n) = max{dkey(n′) | n′ in the subtree rooted at n}.

The scope of n is defined by scope(n) = [nkey(n), dkey(n)] and the cover by cover(n) =
[min(n),max(n)]. We say that timestamp t is in the scope of n if t ∈ scope(n) and is covered
by n if t ∈ cover(n). For answering stab-queries, each node n is augmented with a left-list

LEFT(n) = {〈v, w〉 ∈ E | min(n) ≤ v ≤ dkey(n) ∧ nkey(n) ≤ w ≤ max(n)}.

Intuitively, the left-list LEFT(n) contains all events that are active in the scope of n, while
starting and ending in the cover of n.

I Example 3.1. Consider the list of events [〈0, 3〉, 〈0, 11〉, 〈1, 2〉, 〈2, 3〉, 〈4, 5〉, 〈5, 5〉, 〈5, 6〉,
〈6, 8〉, 〈7, 7〉, 〈7, 9〉]. This list is indexed by the stab-tree T visualized in Figure 2, left. We have
height(T ) = 3. For the root node r = root(T ), we have nkey(r) = 3, dkey(r) = 4, min(r) = 0,
max(r) = 7, scope(r) = 〈3, 4〉, cover(r) = 〈0, 7〉, and LEFT(r) = [〈0, 3〉, 〈2, 3〉, 〈4, 5〉].

Every node n in a stab-tree in I must satisfy the following four structural invariants:
(i) nkey(n) ≤ dkey(n);
(ii) if e ∈ E with e.start ∈ scope(n), then e.start = dkey(n);
(iii) if left(n) 6= ⊥, then nkey(n) = 1 + max(left(n)); and
(iv) if right(n) 6= ⊥, then dkey(n) = min(right(n))− 1.
To use the stab-trees for answering stab-queries efficiently, we also need to provide strong
upper-bounds on the height of stab-trees. To do so, we put the following structural invariant
on each stab-tree T used in I:
(v) T has exactly 2height(T ) − 1 nodes.
Invariants i-iv imply the binary-search-tree property and Invariant v implies that each
stab-tree is balanced and complete.

Let t be a timestamp. We say that a stab-tree T covers t if root(T ) covers t. We say that
an event e ∈ E is covered by a stab-tree node or stab-tree if e.start is covered by it. Given
a stab-tree T and a timestamp t covered by T , Invariants i-iv guarantee that there exists
exactly one node n in T that has t in its scope. Likewise, if e ∈ E is covered by T , then there
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Figure 2 Examples of stab-trees and stab-forests. Left, a stab-tree indexing ten events. For each
node n, the keys are visualized as (nkey(n), dkey(n)) and the left-list is only included if LEFT(n) 6= ∅.
Right, three forest-points over the same dataset, each with its own stab-tree, dummy stab-tree node,
and max-list. Observe that the last forest-point’s stab-tree is empty.

exists exactly one node n in T with dkey(n) = e.start. Given this node n, idata(n) holds
the offset of the first event in E with start-time e.start. In this case, either e is part of
exactly one left-list of a node n′, ancestor of n, in T or e.end > max(root(T )).

I Example 3.2. Consider the stab-tree T in Example 3.1, visualized in Figure 2, left. The
timestamps 0, . . . , 7 are covered by T . More specifically, the timestamp 3 is covered by
root(T ), even though no event starts at 3. the timestamp 5 is covered by the leaf node with
data key 5. No timestamp at-or-after 8 is covered by T , even though some events covered by
T end at-or-after timestamp 8.

The stab-forest index. We require that all stab-trees are balanced and complete. Conse-
quently, it is in most cases impossible to cover all events by a single stab-tree. Alternatively,
we can cover consecutive parts of the event-list by a forest of stab-trees of decreasing heights.
To use this forest of stab-trees for query answering, we need to maintain some metadata per
stab-tree. This metadata is stored in forest-points.

Let S = (E , I, itail) be a stab-forest. A forest-point in I is a pair F = (T,m), with
T a stab-tree and m a dummy stab-tree node without left-list augmentation. We define
height(F ) = 1 + height(T ),

min(F ) =
{

nkey(m) if height(T ) = 0;
min(root(T )) if height(T ) 6= 0,

and max(F ) = dkey(m). Each forest-point F is augmented with a max-list

MAX(F ) = {〈v, w〉 ∈ E | min(m) ≤ v ≤ dkey(m) ∧ nkey(m) ≤ w}.

If we interpret root(T ) as the left child of m, then, intuitively, the max-list MAX(F ) contains
all events that are active in the scope of m while starting in the cover of m (but not necessary
ending in the cover of m). Hence, conceptually, forest-points and their max-lists can be seen
as open-ended versions of stab-tree nodes and their left-lists: MAX(m) is a superset of a
conceptual left-list of m with left child root(T ) and with a yet undetermined right child. If a
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sufficient number of events is appended to the event-list, then one is capable of constructing
an appropriate right child for m, after which MAX(F ) provides all the candidate events that
might be part of LEFT(m).

I Example 3.3. Consider the event-list E = [〈0, 3〉, 〈0, 11〉, 〈1, 2〉, 〈2, 3〉, 〈4, 5〉, 〈5, 5〉, 〈5, 6〉,
〈6, 8〉, 〈7, 7〉, 〈7, 9〉, 〈8, 10〉]. This list is indexed by the stab-forest S visualized in Figure 2,
right. The stab-forest S has three forest-points, F1 = (T1,m1), F2 = (T2,m2), and
F3 = (T3,m3). Let r1 = root(T1). For the first forest-point, we have nkey(r1) = dkey(r1) = 1,
nkey(m1) = 3, dkey(m1) = 4, and MAX(F1) = [〈0, 3〉, 〈0, 11〉, 〈2, 3〉, 〈4, 5〉]. For the third
forest-point, we observe that stab-tree T3 is empty. Not all events are part of the index, as
the tail-pointer points to the last event e10 = 〈8, 10〉. We observe that these forest-points
cover the same set of events as the single stab-tree of Example 3.1. Due to the structural
invariants we will place on stab-forests, the provided set of events does not yet contain
sufficient information to merge these three forest-points to the stab-tree of Example 3.1,
however.

We say that a forest-point covers timestamp t if either T or m covers t, we say that
index I covers timestamp t if a forest-point F ∈ I covers t, and we say that the tail covers
t if t is larger than any timestamp covered by I. We say that an event e ∈ E is covered
by a forest-point, index, or tail if e.start is covered by it. We write events(F ), events(T ),
events(n), and events(itail) to denote the set of events in the E covered by forest-point F ,
stab-tree T , stab-tree node n, or the tail, respectively.

To guarantee that I covers all events in E up to itail and that the index structure has
strong upper-bounds on its size, we put the following structural invariants on the index:
(vi) the first forest-point in I covers the first event in E ;
(vii) all events in E at-or-after itail have the same start-time;
(viii) if E 6= ∅, then itail is the offset of the first event e ∈ E not covered by I;
(ix) if (T,m) ∈ I with height(T ) 6= 0, then nkey(m) = 1 + max(root(T )); and
(x) if F2 ∈ I directly follows F1 ∈ I, then height(F1) > height(F2) and min(F2) =

1 + max(F1).
We observe that the Invariants vi–x combined with Invariants i-iv guarantee that, for every
event e ∈ E before offset itail, there exists exactly one forest-point F ∈ I that covers e. If
e ∈ E and e is covered by F = (T,m), then either e is part of exactly one left-list of a node
in T or e ∈ MAX(F ). Combining Invariant v with Invariant x allows us to upper bound the
number and height of forest-points: if E has N distinct start-times and F ∈ I is the i-th
forest-point in I, 0 ≤ i < |I|, then |I| ≤ dlogNe and height(F ) ≤ dlogNe − (i+ 1).

Physical representation. The index structure will be used to support multi-stab-queries.
To do so efficiently, we use specialized materializations of the left-lists and max-lists. Let n
be a stab-tree node and let F = (T,m) be a forest-point. The lists LEFT(n) and MAX(F )
are each stored in two parts:

LEFTn,↓(n) = {〈v, w〉 ∈ LEFT(n) | v < nkey(n)}; LEFTd,↓(n) = LEFT(n) \ LEFTn,↓(n);
MAXn,↓(F ) = {〈v, w〉 ∈ MAX(F ) | v < nkey(m)}; MAXd,↓(F ) = MAX(F ) \MAXn,↓(F ).

In the above, each part is sorted on descending end-time order. We also maintain copies
LEFTn,↑(n) and MAXn,↑(F ) of LEFTn,↓(n) and MAXn,↓(F ) that are sorted on ascending
start-time order.

I Proposition 3.4. Let L be a list of events. The stab-forest S indexing L can be stored in
worst-case O(|L|) space.
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4 Query Evaluation on Stab-Forests

Previously, we discussed the structure of the stab-forest. Next, we show how the stab-
forest supports answering multi-stab-queries efficiently. The definition of multi-stab-queries
suggests a straightforward way to answer them: by simply executing multiple stab-queries
and combining the results. This approach can become unnecessary inefficient if the dataset
has events that appear in several of these stab-queries, as we have to explicitly eliminate
duplicates.

I Example 4.1. Consider the stab-forest S of Example 3.3. We consider the multi-stab-
query MultiStab(S , [0, 2, 5]). We have Stab(S , 0) = {〈0, 3〉, 〈0, 11〉}, Stab(S , 2) =
{〈0, 3〉, 〈0, 11〉, 〈1, 2〉, 〈2, 3〉}, and Stab(S , 5) = {〈0, 11〉, 〈4, 5〉, 〈5, 5〉}. By combining the re-
sults, we obtain MultiStab(S , [0, 2, 5]) = {〈0, 3〉, 〈0, 11〉, 〈1, 2〉, 〈2, 3〉, 〈4, 5〉, 〈5, 5〉}. Observe
that 〈0, 3〉 appears in two stab-query results and 〈0, 11〉 appears in all stab-query results.

To improve on this situation, we will present a direct multi-stab-query procedure that cir-
cumvents the need of deduplication. Let φ = [t1, . . . , t|φ|] be a sorted sequence of timestamps,
let Ri = Stab(S , ti), 1 ≤ i ≤ |φ|, let S1 = R1, and let Sj = Rj \Rj−1, 2 ≤ j ≤ |φ|. Notice
that MultiStab(S , φ) =

⋃
1≤i≤|φ| Ri =

⋃
1≤i≤|φ| Si. By definition, the sets S1, . . . , S|φ|

are all pair-wise disjoint. Hence, we can answer multi-stab-queries efficiently if we can
compute the sets Si, 1 ≤ i ≤ |φ|, efficiently. Observe that an event is in Sj if and only if it
is active at tj but not at tj−1 (or any other timestamp in [t1, . . . , tj−1]). First, we describe
how to find parts of Sj stored in forest-points and the tail. Then, we describe how to find
parts of Sj stored in a stab-tree, Finally, we provide necessary implementation details and
analyze the complexity of the described multi-stab-query procedure. All details necessary to
answer stab-queries efficiently can be derived from this multi-stab-query procedure.

Searching in forest-points and the tail. Let S = (E , I, itail). To simplify presentation, we
assume that E 6= ∅ and tj is at-or-after the start of the first event in E . (If these assumptions
do not hold, we have Sj = ∅). We also assume that tj−1 = −∞ if tj = t1. Under these
assumptions, we need to search in the stab-forest to find all events in Sj . The first step is
to identify if there exists a forest-point that covers tj . If tj−1 is smaller than the start-time
of any event in E , then we start at the first forest-point in I. Otherwise, we start at the
forest-point that covers tj−1. When visiting a forest-point F = (T,m), we have one of the
following four cases:
1. F only covers events that start before tj. In this case, max(F ) < tj and events in

events(T ) start before-or-at max(F ). Hence, events(F ) ∩ Sj = MAX(F ) ∩ Sj . We have
events(F ) ∩ Sj 6= ∅ only when tj−1 < max(F ). In this case, we compute events(F ) ∩ Sj
by traversing both MAXn,↓(F ) and MAXd,↓(F ) and stop when we find the first event that
stops before tj . During this traversal, we may encounter events already active at tj−1;
we skip over these events by not outputting them again. As an optimization, we notice
that MAX(F ) ∩ Sj ⊆ MAXd,↓(F ) if nkey(m) ≤ tj−1 < dkey(m). In this case, we can skip
traversing MAXn,↓(F ). After processing this forest-point, proceed to the next forest-point.

2. F represents events that start at tj and tj is covered by T . In this case, min(F ) ≤ tj <
nkey(m) and events(F )∩Sj = (MAX(F )∪ events(T ))∩Sj . Due to tj < dkey(m), we have
MAX(F ) ∩ Sj = MAXn,↑(F ) ∩ Sj . We compute MAXn,↑(F ) ∩ Sj by traversing MAXn,↑(F )
and stop when we find the first event that starts after tj . Traversing MAXn,↑(F ), we
encounter events in MAX(F ) that start before-or-at tj−1, followed by those that start
after tj−1 and before-or-at tj , followed by those that start after tj . Hence, to avoid
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unnecessary deduplication, we traverse MAXn,↑(F ) starting at the first event that starts
after tj−1 (we detail how to do so later). Next, we search for all events in events(T ) ∩ Sj .
After searching in T , we have completed the computation of Sj .

3. F represents events that start at tj and tj is not covered by T . In this case, nkey(m) ≤ tj ≤
dkey(m). Events in events(T ) start before nkey(m). Hence, events(F )∩Sj = MAX(F )∩Sj .
We compute events(F ) ∩ Sj by traversing MAXn,↓(F ) as in Case 1. If tj = dkey(m), we
also include MAXd,↓(F ) entirely. We completed the computation of Sj .

4. F only covers events that start after tj. In this case, tj < min(F ). We have events(F ) ∩
Sj = ∅, and, as we process forest-points ordered on the events they cover, this forest-point
will not be reached.

We have events(itail)∩Sj 6= ∅ only if tj is greater than any timestamp covered by I. Let e be
the event pointed at by itail. We have events(itail) ∩ Sj 6= ∅ only if tj−1 < e.start ≤ tj . In
this case, we find all events in the tail that are active at tj by traversing E backwards starting
at the end and stopping at either itail or at the first event that stops before tj , whichever
comes first. We notice that this traversal is a traversal on descending end-time order.

Searching in a stab-tree. The above only details how to process the max-lists of forest-
points and the tail. To handle Case 2 above, we also need to describe how to compute
events(T ) ∩ Sj . Assume that tj ∈ cover(F ) and tj < nkey(m). We perform a binary-search-
tree search on T until we find the node n with t ∈ scope(n). For each node n′ visited during
this search, we have one of the following three cases:
5. If t < nkey(n′), then we need to continue the search in left(n′). We have events(n′)∩Sj =

(events(left(n′)) ∪ LEFT(n′)) ∩ Sj . We compute LEFT(n′) ∩ Sj by traversing LEFTn,↑(n′)
and stop when we find the first event that starts after tj . Traversing LEFTn,↑(n′), we
encounter events in LEFT(n′) that start before-or-at tj−1, followed by those that start
after tj−1 and before-or-at tj , followed by those that start after tj . Hence, to avoid
unnecessary deduplication, we traverse LEFTn,↑(n′) starting at the first event that starts
after tj−1 ((we detail how to do so later).

6. If nkey(n′) ≤ t ≤ dkey(n′), then we have found node n. We have events(n′) ∩ Sj =
LEFT(n′) ∩ Sj . We compute events(n′) ∩ Sj by traversing LEFTn,↓(n′) and stop when
we find the first event that stops before tj . During this traversal, we may encounter
events already active at tj−1; we skip over these events by not outputting them again. If
tj = dkey(n′), we also include LEFTd,↓(n′) entirely. We completed the search in T .

7. If dkey(n′) < t, then we need to continue the search in right(n′). We have events(n′)∩Sj =
(events(right(n′))∪LEFT(n′))∩Sj . We have LEFT(n′)∩Sj 6= ∅ only when tj−1 < dkey(n′).
In this case, we compute LEFT(n′) ∩ Sj by traversing both LEFTn,↓(n′) and LEFTd,↓(n′)
and stop when we find the first event that stops before tj . During this traversal,
we may encounter events already active at tj−1; we skip over these events by not
outputting them again. As an optimization, we notice that LEFT(n′) ∩ Sj ⊆ LEFTd,↓(n′)
if nkey(n′) ≤ tj−1 < dkey(n′). In this case, we can skip traversing LEFTn,↓(n′).

Analysis of multi-stab-queries. To implement Cases 2 and 5 efficiently, we need to do some
bookkeeping. For the relevant nodes n′ and forest-point F on which Cases 2 and 5 applied
while computing Sj , we need to keep track of the position of the first events in LEFTn,↑(n′)
and MAXn,↑(F ) that start after tj . In total, we need to keep track of at most dlog|S |e
different positions.

I Example 4.2. We repeat the query MultiStab(S , [0, 2, 5]) of Example 4.1 on the stab-
forest S of Example 3.3. When stabbing with 0, we traverse MAXn,↑(F1) and output the first
two events 〈0, 3〉 and 〈0, 11〉. While searching in the stab-tree T1, we do not find any further
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events. Next, we stab with 2. When traversing MAXn,↑(F1) we start at the third event,
〈2, 3〉, which we output. Next, we search in the stab-tree T1, where we find 〈1, 2〉. During
the stab with 5, we recognize that 5 is not covered by F1. Hence, we traverse MAXn,↓(F1)
and MAXd,↓(F1) to find any events that are still active at 5. The first event in MAXd,↓(F1)
is 〈4, 5〉, which we output. The first event in MAXn,↓(F1) is 〈0, 11〉, which we skip over. We
then search in F2 to find and output 〈5, 6〉 and 〈5, 5〉.

We observe that the above multi-stab-query procedure will, in the worst case, read every
event in the output of the multi-stab-query twice; once in a max-list or left-list that is sorted
on ascending start-time order and once in a max-list or left-list that is sorted on descending
end-time order. If the index I has N stab-tree nodes, then the approach to compute Sj
will navigate through up to dlogNe forest-points and stab-tree nodes. The multi-stab-query
approach for computing Sj described above can easily be extended to also yield a pointer pj
to the first event in the event-list that starts after tj , as used by the SkipJoin algorithm.

We can also compute Sj by traversing the event-list from the first event starting after
tj−1 until the first event that starts after tj . As long as this traversal of E performs at
most dlogNe memory operations, traversing E will be faster. To choose between these two
methods to compute Sj , we can use a simple test. Let q be the position of the first event
starting after tj−1. Let c be the threshold constant representing the number of events one can
read from the event-list in a single memory operation. To choose between the two approaches
to compute Sj , we check if the event at position q + cdlogNe does not exists or, otherwise,
starts at-or-after tj+1. With this approach, we need to change the processing of left-lists and
max-lists to, additionally, skip over any events we found by traversing the event-list. Hence,
with this change, the above process will read every event in the output at-most thrice.
I Theorem 4.3. Let S be a stab-forest and let φ be a sorted sequence of timestamps.
MultiStab(S , φ) can be answered in O(min(|φ| log|S |, |φ|+ |S |) + |output|).

5 Stab-Forest Maintenance

The stab-forest is designed to be a dynamic data structure to which events can be appended
efficiently. Here, we show how to append events using the assumption that events are
appended in lexicographical order on (start, end)-time. In Appendix A, we generalize the
principles of the stab-forest to support less-restrictive semantics in equally efficient ways.

To support appending events that are ordered lexicographically on (start, end)-times,
we start by describing an algorithm to put appended events in newly created forest-points.
When appending a new event e′ to stab-forest S = (E , I, itail), we distinguish the following
cases:
1. If |E| = 0, then append event e′ to the end of E and set itail := 0, the offset of e′ in E .
2. Else, if E [itail].start = e′.start, then append event e′ to the end of E .
3. In all other cases, E [itail].start < e′.start. Let L be the list of events in the event-list

starting at itail. Create a fresh leaf node l and a fresh forest-point F = (T, l) in I with T
an empty tree. We set

dkey(l) = e.start; idata(l) = itail;
left(l) = ⊥; right(l) = ⊥;

LEFT(l) = ∅; MAX(F ) = L.

If |I| = ∅, then set nkey(l) = dkey(l). Else, set nkey(l) = max(F ′) + 1, with F ′ the last
forest-point in I. After constructing F , append F to the end of I. Finally, append e′ to
E and set itail := |E| − 1, the offset of e′ in E .
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Figure 3 The stab-forest obtained after adding event 〈9, 11〉 to the stab-forest of Figure 2, right.

Remember that the event-list is ordered lexicographically on (start, end)-times and that
the current tail L only has events with a start-time e.start. Hence, by reversing L, we
can directly construct MAXd,↓(F ), and, in this case, we have MAXd,↓(F ) = MAX(F ).

We observe that the above algorithm might invalidate Invariant x (Section 3), as a newly
added forest-point can have the same height as the previous last forest-point in I. To restore
Invariant x, we will repeatedly merge the last two forest-points in I until they no longer
have the same height. Let F1 = (T1,m1) and F2 = (T2,m2) be adjacent forest-points with
h = height(F1) = height(F2) and min(F2) = max(F1) + 1. We merge these forest-points into
a single forest-point F = (T,m2) with

root(T ) = m1;
left(m1) = root(T1);

right(m1) = root(T2);
LEFT(m1) = {e ∈ MAX(F1) | e.end ≤ max(T2)};

MAX(F ) = (MAX(F1) \ LEFT(m1)) ∪MAX(F2).

In the above, the necessary parts of LEFT(m1) and MAX(F ) can be constructed via straight-
forward merge-procedures on the parts of MAX(F1) and MAX(F2).

I Example 5.1. Consider the stab-forest of Example 3.3. We add the event 〈9, 11〉, resulting
in the stab-forest visualized in Figure 3.

One can show that the above forest-point merge maintains the Invariants i–iv, v, and ix
(Section 3). Using this result, it is straightforward to prove that the described append method
is sound. We conclude:

I Theorem 5.2. Let L be a list of events ordered lexicographically on (start, end)-times.
The structure obtained from starting with an empty stab-forest and appending each of the
events in L in order is a stab-forest. This stab-forest is constructed in O(|L| log|L|) and will
use O(|L|) storage. Additional events can be added to the stab-forest in amortized O(log|L|).

Notice that the maintenance algorithm only operates on forest-points and does not change
the stab-forests stored within them. Indeed, the constructed stab-trees are static, while
merging of forest-points can be implemented via efficient array-merge-operations on their
max-lists.
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6 Empirical Evaluation

Finally, we provide an empirical study to showcase the practical performance of the stab-
forest and the skip-join algorithm. We have implemented the stab-forest, the temporal query
operations, and the temporal join algorithms presented in this paper in C++. Open-source
code of the full implementation of the data structures, algorithms, and supporting tooling
used can be found at https://jhellings.nl/projects/skipjoin/. In our implementation,
we used 32bit unsigned integers to represent timestamps. The programs were compiled with
the Microsoft C/C++ Compiler Version 19.13.26132 for x64, part of Visual Studio 2017, and
run on a workstation with an Intel Core i5-4670 processor and 16GB of internal memory.
In each experiment, the algorithms used write out their query results to a dynamic array
(implemented by the standard vector data structure).

As a baseline for comparison, we implemented the forward-scan algorithm FwdScan,
which is reported to be among the fastest internal-memory temporal join algorithms [6]. As
our SkipJoin algorithm is based on FwdScan, our experiments not only showcase how
SkipJoin performs compared to the state-of-the-art, but also allows for a detailed look at
the benefits and costs of SkipJoin. To further examine the behavior of SkipJoin in detail,
we tested with three variants; namely SkipJoin-E that uses the event-list exclusively for
answering stab-queries, SkipJoin-I that uses the stab-forest index exclusively for answering
stab-queries, and normal SkipJoin that uses a threshold constant c = 16 to choose between
using the event-list and the stab-forest index.

In our experiments, we used two real-world datasets. The first real-world dataset we used
is the Airline On-Time Performance Data (AOTPD) dataset [8], which contains flight-events
(takeoff and duration) over a ten-year period. The second real-world dataset we used is
the Civil Unrest Event Data (CUED) dataset [10], a set of civil unrest events in recent
human history. The details of both datasets can be found in Figure 4, left. We also used a
synthetically generated gap dataset. This dataset consists of two lists R and S that contain
consecutive non-overlapping groups of G events (the gap size) that are placed alternatingly
in either R or S . Figure 4, right, visualizes such a dataset with twelve events grouped in
groups of G = 3 events.

AOTPD [8] CUED [10]

Number of Events 61, 100, 539 62, 141
Start date July, 2007 February, 1946
End date June, 2017 November, 2005
Minimal duration 0 minutes 0 days
Maximum duration 1, 350 minutes 18, 407 days

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4 The datasets used in our evaluation. Left, statistics on the real-life datasets used. Right,
gap datasets R and S with gap size 3.

Temporal joins on sparse datasets. First, we investigated the performance of temporal
join algorithms in cases where only a few events are part of the join result, the situation for
which our SkipJoin algorithm is designed. We used the temporal join algorithms to select a
set of days from the AOTPD dataset. The temporal join algorithms select these specified
days by joining the AOTPD dataset with a filter dataset that contains the to-be-selected
days. As an additional point of reference, we compared the temporal join algorithms with a
dedicated multi-window-query implementation that selects the same days. In this experiment,
we selected the 7-th day from each of the first n out of 120 months. The results of our
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Figure 5 Temporal joins on sparse and dense datasets. On the left, we use temporal joins to
select events from specific days in the AOTPD dataset. We compare these sparse temporal joins
with a dedicated multi-window-query implementation to select the specific days. In the middle and
on the right, we present the join performance on dense datasets, joining parts of the AOTPD dataset
(middle) and parts of the CUED dataset (right). In these two cases, all three algorithms perform
approximately the same.
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Figure 6 The behavior of SkipJoin: temporal join performance on sparse gap datasets, in which
the gap-size determines the amount of data SkipJoin can skip over.

measurements can be found in Figure 5, left. As expected, SkipJoin benefits heavily from
skipping over the non-relevant portions of the event-list. We also observe that the gain in
performance comes from the usage of the stab-forest index, as SkipJoin-E only performs
slightly better than FwdScan. Finally, we observe that the performance of SkipJoin
comes close to our dedicated algorithm; showing that the performance of SkipJoin is even
acceptable for implementing more specialized operators.

Temporal joins on dense datasets. Next, we investigated the performance of temporal
join algorithms in cases where most events are part of the join result, e.g., in which almost
every event in each dataset joins with an event in the other dataset. This is the situation
for which the traditional FwdScan algorithm is designed. In this experiment, we used two
datasets, namely the CUED dataset and a randomly selected fragment of 2, 500, 000 events
from the AOTPD dataset. For this experiment, we took a dataset, split that dataset into
two halves R and S, shuffled R, and joined the first 0%, 10%, . . . , 100% of the shuffled R
with the entirety of S. The results of our measurements can be found in Figure 5, middle
and right. We observe that in the setting of joining densely correlated datasets, there is no
real difference between the SkipJoin-family of algorithms and the FwdScan algorithm,
even though the SkipJoin-family of algorithms have higher complexity and overhead.

The behavior of SkipJoin. Third, we investigated the exact behavior of SkipJoin in
situations where the algorithm is triggered to skip over data. To have full control over
the amount of skipping possible, we used gap datasets with 64 · 220 events and a gap
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Figure 7 The costs of the stab-forest: construction time (left) and memory usage (right) of the
stab-forest in comparison to various other data structures.

size of G = 20, 21, . . . , 220. We ran the SkipJoin algorithm with threshold constants
c ∈ {1, 2, 4, 8, 16, 32, 64}, and compared the SkipJoin algorithm with FwdScan, SkipJoin-
E , and SkipJoin-I. The results of our measurements can be found in Figure 6. From the
measurements, we conclude that the SkipJoin-family of algorithms is favorable as soon as
they can skip over at least 4 events (the performance gain of skipping over a single event
does not justify the overhead introduced by skipping). Skipping over events via the event-list,
as SkipJoin-E does, provides a small improvement over FwdScan. Skipping over events
via the index, as SkipJoin-I does, can provide order-of-magnitudes improvements over
FwdScan, but only if sufficient events are skipped over. Due to this, it is important to use
a threshold constant that is well-suited to the details of the underlying hardware. For our
setting, the threshold constant c = 16, as used in SkipJoin, provides acceptable performance
in all cases as it usually provides performance that is close to the fastest algorithm.

The costs of the stab-forest. In our final experiment, we looked at the costs of stab-forest
maintenance. More specifically, we investigated the construction cost (by appending events
one-by-one) and the memory consumption of a fully constructed stab-forest. We compared the
construction of the stab-forest with the construction of three standard C++ data structures:
1. vector. We use a vector, a bare bones dynamic array implementation, as a lower bound

for representing the underlying event data without any indices.
2. multiset. We use a multiset, which is implemented as a self-balancing binary search

tree. The multiset provides a lower bound on the cost of constructing and maintaining
dynamic general-purpose interval data structures, as all dynamic general-purpose interval
data structures are built using self-balancing binary search trees at their core [4, 9, 20].

3. multiset(∗). Finally, we use a multiset in which each insert operation uses placement
hints to allow the data structure to optimize for the append-only workload we provided.
This multiset implementation provides a lower bound on the cost of constructing and
maintaining dynamic general-purpose interval data structures that provide optimized
append operations. We denote this usage of the multiset by multiset(∗).

In this experiment, we used the AOTPD dataset. For each of the data structures, we
measured the time it took to append the first N events from this dataset to the data
structure (N = 5 · 106, 10 · 106, . . . , 60 · 106). The results of our measurements can be found
in Figure 7. Unsurprisingly, appending data to the stab-forest is slower than appending
to a vector, as the vector is the underlying representation of the event-list. The cost of
appending to a stab-forest is on-par with the cost of appending to a multiset(∗) binary
search tree, showing that the stab-forest construction only incurs minimal overhead. Finally,
appending to a fully dynamic multiset binary search tree, which provides the lower bound
for dynamic general-purpose interval data structures, is much more costly than appending to
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stab-forests. This supports our choice for designing stab-forests with append-only semantics.
With respect to memory usage, we see that the stab-forest is much more compact than a
binary search tree (even with all time-based augmentations), as it only requires a single
stab-tree node per start-time, whereas the multiset uses a single search tree node per event.

7 Conclusion

We set out to develop high-performance internal-memory temporal join algorithms for
dynamically generated heavily skewed data. Towards this goal, we proposed the stab-forest,
the multi-stab-query, and the skip-join temporal join algorithm. In our evaluation, we showed
that the skip-join algorithm is capable of significantly speeding up temporal joins of heavily
skewed data. Our experiments also showed that the overhead of the skip-join algorithm when
joining non-skewed data is insignificant, making our algorithm highly performant in all cases.
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A Variants of Stab-Forests and their Maintenance

The stab-forest is designed to be a dynamic data structure to which events can be appended
efficiently. In the main text, we showed how stab-forests support appending events using the
assumption that events are appended in lexicographical order on (start, end)-time. Here, we
the principles of the stab-forest to support two less-restrictive semantics in equally efficient
ways.

Increasing start-time order semantics. The ordering on end-times is only used to assure
that the tail is always lexicographically ordered on (start, end)-times: we only need to keep
the tail ordered on end-times as all events in the tail have the same start-time. Hence, we
can support appending events only ordered on start-time if we store the tail in a search tree.
We then simply copy over the tail to the event-list whenever appending an event triggers the
construction of a fresh forest-point.

One can also opt to not keep the tail sorted on end-times, but only enforce this ordering
when creating a fresh forest-point. In such a design, queries can only access a history of the
data that does not include the current events in the tail. This approach can also be used to
support streams of events for which watermarks provide an after-the-fact guarantee on the
ordering of past events [2].
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Timestamp-based semantics. In streaming data processing and in versioned databases,
the start-time and end-time of events are usually known when the event starts and ends,
respectively [22]. For these applications, it is natural to append the start- and end-times when
they happen, as separate operations. The stab-forest can be generalized to support these
applications. In specific, we show how a stab-forest can support the following timestamp-based
semantics. When an event starts, it is appended to the stab-forest by registering its start-time.
On successful registration, the stab-forest returns an event-handle that can be used to update
the event. When the event ends, one uses the event-handle to update the end-time of the
event. We assume that all start- and end-times are appended and updated on increasing
timestamps.

I Example A.1. Consider a versioned database. At t1 record r gets created, at t2 record
r gets updated, and, finally, at t3 record r gets deleted. At t1, we append an event e1
representing record r with start-time t1 (and no end-time). At t2, we update e1 by setting
the end-time t2. We create a new event e2 representing the updated record r with start-time
t2 (and no end-time). Finally, at t3, we update e2 by setting the end-time t3.

Stab-forests with timestamp-based semantics are an obvious choice when adding skip-join
style techniques to endpoint-based join algorithms, e.g., the algorithm of Piatov et al. [21].

To maintain all the invariants under the timestamp-based semantics, we need to make a
few changes to the stab-forest structures. We represent open-ended events with start-time
v and without an end-time by e = 〈v,∞〉. Each copy of such an open-ended event e in
the event-list and in max-lists keeps a reference to the event-handle, which we describe
in detail later. Each stab-tree node n, which represents events with start-time dkey(n), is
augmented with an ∞-pointer i∞(n) that holds the offset of the first open-ended event in
E with start-time dkey(n) (if such an event exists). Each forest-point F is augmented with
∞-pointers i∞(MAXn,↓(F )) and i∞(MAXd,↓(F )) that hold the offsets of the last open-ended
events in MAXn,↓(F ) and MAXd,↓(F ) (if such events exist). Finally, we use an ∞-pointer
i∞-tail to hold the offset of the first open-ended event in the tail.

For every open-ended event e = 〈v,∞〉, we maintain an event-handle

handle(e) = (iE , n, F, iMAXn,↓(F ), iMAXd,↓(F ), iMAXn,↑(F )),

in which iE is the offset of the copy of e in E , n is a reference to the stab-tree node with
dkey(n) = v (if e is not in the tail), F is the reference to the forest-point that has e in its
max-list (if e is not in the tail), and iMAXn,↓(F ), iMAXd,↓(F ), and iMAXn,↑(F ) are offsets of the
copies of e in these max-lists (if such copies exist).

When a start-time v is appended to the stab-forest, the event e = 〈v,∞〉 and event-handle
handle(e) are constructed and e is appended to the tail. Appending an event to the tail can
cause the construction and merging of forest-points. During this forest-point maintenance,
the event-handles of open-ended events need to be kept up-to-date, which can be done in
constant time per involved event. Finally, a reference to handle(e) is returned.

When an end-time w for open-ended event e is updated in the stab-forest, one uses the
reference to event-handle handle(e) = (iE , n, F, iMAXn,↓(F ), iMAXd,↓(F ), iMAXn,↑(F )). First, we
consider the steps necessary to update the end-time when e is not in the tail:
1. The copy of e in E is updated by setting E [iE ].end := w. Then, to restore the lexicographic

order on (start, end)-times in E , the event at E [iE ] is swapped with the event at E [i∞(n)].
Next, the offsets iE in the handles of the swapped events are updated. Finally, i∞(n) is
incremented by setting i∞(n) := i∞(n) + 1.
This sequence of steps will update E and restore the lexicographic order in E . Observe that
the end-times arrive in order. Hence, the end-time w of e comes after all earlier-updated
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e1 e2 e3 e4 e5

〈2, 3〉 〈2, 5〉 〈2,∞〉〈2,∞〉〈2,∞〉

i∞(n)

n
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handle(e3) iE

handle(e5)

e1 e2 e5 e4 e3

〈2, 3〉 〈2, 5〉 〈2, 7〉 〈2,∞〉〈2,∞〉

i∞(n)

n

iE

handle(e3)

Figure 8 Updating an event by setting the end-time. On the left, the stab-forest before the
update. On the right, the situation after setting e5.end := 7. In this sketch, only details relevant to
the update are included.

end-times and swapping e to offset i∞(n) puts e directly after all other events with the
same start-time and with a smaller end-time. All other open-ended events with the same
start-time (including the event that got swapped with e) follow e and, hence, are still in
a valid order. Consequently, incrementing i∞(n) will assure that i∞(n) once again points
to the first open-ended event with start-time dkey(n) (if such an event exists).

2. If a copy of e is in a max-list MAXn,↑(F ), then this copy of e is updated by setting
MAXn,↑(F )[iMAXn,↑(F )] := w. This update does not affect the start-time ordering of events
in MAXn,↑(F ), hence, no further change to MAXn,↑(F ) is necessary.

3. If a copy of e is in a max-list MAXn,↓(F ), then this copy of e is updated by set-
ting MAXn,↓(F )[iMAXn,↓(F )] := w. This update does affect the end-time ordering of
events MAXn,↓(F ). Similar to how the ordering of E is restored by a swap, the or-
dering in MAXn,↓(F ) is restored by swapping value MAXn,↓(F )[iMAXn,↓(F )] and value
MAXn,↓(F )[i∞(MAXn,↓(F ))], updating the relevant handles, and, finally, decrementing
i∞(MAXn,↓(F )) by setting i∞(MAXn,↓(F )) := i∞(MAXn,↓(F ))− 1.

4. Finally, if a copy of e is in a max-list MAXd,↓(F ), then this copy is updated analogous to
the previous case.

When e is in the tail, a swap of E [iE ] and E [i∞-tail], followed by incrementing i∞-tail suffices
(once again similar to how the ordering of E is restored by a swap). After updating the
end-time w for event e, the handle handle(e) can be destroyed.

I Example A.2. Consider a stab-tree node n with dkey(n) = 2, pointing to an event-list
with events 〈2, 3〉, 〈2, 5〉, 〈2,∞〉, 〈2,∞〉, and 〈2,∞〉. We wish to update the last event,
e5 = 〈2,∞〉, by setting its end-time to 7. In Figure 8, left and right, we sketched this setting
before and after updating end-time 7.
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Abstract
Linear Temporal Logic (LTL) has found extensive applications in Computer Science and Artificial
Intelligence, notably as a formal framework for representing and verifying computer systems that
vary over time. Non-monotonic reasoning, on the other hand, allows us to formalize and reason
with exceptions and the dynamics of information. The goal of this paper is therefore to enrich
temporal formalisms with non-monotonic reasoning features. We do so by investigating a preferential
semantics for defeasible LTL along the lines of that extensively studied by Kraus et al. in the
propositional case and recently extended to modal and description logics. The main contribution of
the paper is a decidability result for a meaningful fragment of preferential LTL that can serve as the
basis for further exploration of defeasibility in temporal formalisms.
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1 Introduction

Specification and verification of dynamic computer systems is an important task, given
the increasing number of new computer technologies being developed. Recent examples
include blockchain technology and various existing tools for home automation of the different
production chains provided by Industry 4.0. Therefore, it is fundamental to ensure that
systems based on them have the desired behavior but, above all, satisfy safety standards.
This becomes even more critical with the increasing deployment of artificial intelligence
techniques as well as the need to explain their behaviors.

Several approaches for qualitative analysis of computer systems have been developed.
Among the most fruitful are the different families of temporal logic. The success of these is
due mainly to their simplified syntax compared to that of first-order logic, their intuitive
syntax, semantics and their good computational properties. One of the members of this
family is Linear Temporal Logic [15, 19], known as LTL, is wildly used in formal verification
and specification of computer programs.
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Despite the success and wide use of linear temporal logic, it remains limited for modeling
and reasoning about the real aspects of computer systems or those that depend on them.
In fact, computer systems are not either 100% secure or 100% defective, and the properties
we wish to check may have innocuous and tolerable exceptions, or conversely, exceptions
that must be carefully addressed in order to guarantee the overall reliability of the system.
Similarly, the expected behavior of a system may be correct not for all possible execution,
but rather for its most “normal” or expected executions.

It turns out that LTL, because it is a logical formalism of the so-called classical type,
whose underlying reasoning is that of mathematics and not that of common sense, does not
allow at all to formalize the different nuances of the exceptions and even less to treat them.
First of all, at the level of the object language (that of the logical symbols), it has operators
behaving monotonically, and at the level of reasoning, posses a notion of logical consequence
which is monotonic too, and consequently, it is not adapted to the evolution of defeasible
facts.

Non-monotonic reasoning (NMR), on the other hand, allows to formalize and reason with
exceptions, it has been widely studied by the AI community for over 40 years now. Such is
the case of Kraus et al. [12] , known as the KLM approach.

However, the major contributions in this area are limited to the propositional framework.
It is only recently that some approaches to non-monotonic reasoning, such as belief revision,
default rules and preferential approaches, have been studied for more expressive logics than
propositional logic, including modal [3, 5] and description logics [4, 9]. The objective of
our study is to establish a bridge between temporal formalisms for the specification and
verification of computer systems and approaches to non-monotonic reasoning, in particular
the preferential one, which satisfactorily solves the limitations raised above.

In this paper, we define a logical framework for reasoning about defeasible properties of
program executions, we investigate the integration of preferential semantics in the case of
LTL, hereby introducing preferential linear temporal logic LTL˜. The remainder of the
present paper is structured as follows: In Section 3 we set up the notation and appropriate
semantics of our language. In Sections 4, 5 and 6, we investigate the satisfiability problem of
this formalism. The appendix contains proofs of results in this paper. The remaining proofs
can be viewed in https://github.com/calleann/Preferential_LTL.

2 Preliminaries: LTL and the KLM approach to NMR

Let P be a finite set of propositional atoms. The set of operators in the Linear Temporal
Logic can be split into two parts: the set of Boolean connectives (¬,∧), and that of temporal
operators (�,♦,©,U), where � reads as always, ♦ as eventually, © as next and U as until.
The set of well-formed sentences expressed in LTL is denoted by L. Sentences of L are built
up according to the following grammar: α ::= p | ¬α | α ∧ α | α ∨ α | �α | ♦α | ©α | αUα.

Let the set of natural numbers N denote time points. A temporal interpretation I is
a mapping function V : N −→ 2P which associates each time point t ∈ N with a set
of propositional atoms V (t) corresponding to the set of propositions that are true in t.
(Propositions not belonging to V (t) are assumed to be false at the given time point.) The
truth conditions of LTL sentences are defined as follows, where I is a temporal interpretation
and t a time point in I:

I, t |= p if p ∈ V (t); I, t |= ¬α if I, t 6|= α;
I, t |= α ∧ α′ if I, t |= α and I, t |= α′; I, t |= α ∨ α′ if I, t |= α or I, t |= α′;

https://github.com/calleann/Preferential_LTL
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I, t |= �α if I, t′ |= α for all t′ ∈ N s.t. t′ ≥ t; I, t |= ♦α if I, t′ |= α for some t′ ∈ N s.t.
t′ ≥ t;
I, t |= ©α if I, t+ 1 |= α;
I, t |= αUα′ if I, t′ |= α′ for some t′ ≥ t and for all t ≤ t′′ < t′ we have I, t′′ |= α.

We say α ∈ L is satisfiable if there are I and t ∈ N such that I, t |= α.

We now give a brief outline to Kraus et al.’s [12] approach to non-monotonic reasoning.
A propositional defeasible consequence relation |∼ [12] is defined as a binary relation on
sentences of an underlying propositional logic. The semantics of preferential consequence
relation is in terms of preferential models: A preferential model on a set of atomic propositions
P is a tuple P def= (S, l, g ) where S is a set of elements called states, l : S −→ 2P is a mapping
which assigns to each state s a single world m ∈ 2P and g is a strict partial order on S

satisfying smoothness condition. Intuitively, the states that are lower down in the ordering
are more plausible, normal or in a general case preferred, than those that are higher up. A
statement of the form α |∼ β holds in a preferential model iff he minimal α-states are also
β-states.

3 Preferential LTL

In this paper, we introduce a new formalism for reasoning about time that is able to
distinguish between normal and exceptional points of time. We do so by investigating a
defeasible extension of LTL with a preferential semantics. The following example introduces
a case scenario we shall be using in the remainder of this section, with the purpose of giving
a motivation for this formalism and better illustrating the definitions in what follows.

I Example 1. We have a computer program in which the values of its variables change
with time. In particular, the agent wants to check two parameters, say x and y. These two
variables take one and only one value between 1 and 3 on each iteration of the program. We
represent the set of atomic propositions by P = {x1, x2, x3, y1, y2, y3} where xi (resp. yi) for
all i ∈ {1, 2, 3} is true iff the variable x (resp. y) has the value i in a current iteration. Figure
1 depicts a temporal interpretation corresponding to a possible behaviour of such a program:

x1, y1 x2, y3 x3, y3 x2, y1 x1, y2 x2, y3 · · ·

0 1 2 3 4 5

Figure 1 LTL interpretation V (for t > 5, V (t) = V (5) = {x2, y3}).

Under normal circumstances, the program assigns the value 3 to y whenever x = 2. We
can express this fact using classical LTL as follows: �(x2 → y3), with x2 → y3 is defined by
¬x2 ∨ y3. Nevertheless, the agent notices that there is one exceptional iteration (Iteration 3)
where the program assigns the value 1 to y when x = 2.

Some might consider that the current program is defective at some points of time. In LTL,
the statement �(x2 → y3)∧♦(x2 ∧ y1) will always be false, since y cannot have two different
values in an iteration where x = 2. Nonetheless we want to propose a logical framework
that is exception tolerant for reasoning about a system’s behaviour. In order to express this
general tendency (x2 → y3) while taking into account that there might be some exceptional
iterations that are expected.
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3.1 Introducing defeasible temporal operators
Britz & Varzinczak [5] introduced new modal operators called defeasible modalities. In their
setting, defeasible operators, unlike their classical counterparts, are able to single out normal
worlds from those that are less normal or exceptional in the reasoner’s mind. Here we extend
the vocabulary of classical LTL with the defeasible temporal operators �∼ and ♦∼. Sentences
of the resulting logic LTL˜ are built up according to the following grammar:

α ::= p | ¬α | α ∧ α | α ∨ α | �α | ♦α | ©α | αUα | �∼α | ♦∼α

The intuition behind these new operators is the following: �∼ reads as defeasible always and
♦∼ reads as defeasible eventually.

I Example 2. Going back to our example 1, we can describe the normal behaviour of the
program using the statement �∼(x2 → y3)∧♦(x2 ∧ y1). In all normal future time points, the
program assigns the value 3 to y when x = 2. Although unlikely, there are some exceptional
time points in the future where x = 2 and y = 1. But those are ‘ignored’ by the defeasible
always operator.

The set of all well-formed LTL˜ sentences is denoted by L˜ . It is worth to mention
that any well-formed sentence α ∈ L is a sentence of L ˜ . We denote a subset of our
language that contains only Boolean connectives, the two defeasible operators �∼, ♦∼ and their
classical counterparts by L?. Next we shall discuss how to interpret statements that have
this defeasible aspect and how to determine the truth values of each well-formed sentence
in L˜ .

3.2 Preferential semantics
First of all, in order to interpret the sentences of L˜ we consider, as stated on the preliminaries,
(N, <) to be a temporal structure. Hence, a temporal interpretation that associates each
time point t with a truth assignment of all propositional atoms.

The preferential component of the interpretation of our language is directly inspired by
the preferential semantics proposed by Shoham [17] and used in the KLM approach [12].
The preference relation g is a strict partial order on our points of time. Following Kraus et
al. [12], t g t′ means that t is more preferred than t′. The reasoner has now the tools to
express the preference between points of time by comparing them w.r.t. each other, with
time points lower down the order being more preferred than those higher up.

I Definition 3. Let g be a strict partial order on a set N and N ⊆ N. The set of the minimal
elements of N w.r.t. g , denoted by min g (N), is defined by min g (N) def= {t ∈ N | there is no
t′ ∈ N such that t′ g t}.

I Definition 4 (Well-founded set). Let g be a strict partial order on a set N. We say N is
well-founded w.r.t. g iff min g (N) 6= ∅ for every ∅ 6= N ⊆ N.

I Definition 5 (Preferential temporal interpretation). An LTL˜ interpretation on a set of
propositional atoms P, also called preferential temporal interpretation on P, is a pair I def=(V, g )
where V is a temporal interpretation on P, and g ⊆ N×N is a strict partial order on N such
that N is well-founded w.r.t. g . We denote the set of preferential temporal interpretations by
I.

In what follows, given a preference relation g and a time point t ∈ N, the set of preferred
time points relative to t is the set min g ([t,+∞[) which is denoted in short by min g (t). It
is also worth to point out that given a preferential interpretation I = (V, g ) and N, the set
min g (t) is always a non-empty subset of [t,+∞[ at any time point t ∈ N.
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Preferential temporal interpretations provide us with an intuitive way of interpreting
sentences of L˜. Let α ∈ L˜, let I = (V, g ) be a preferential interpretation, and let t be a
time point in I in N. Satisfaction of α at t in I, denoted I, t |= α, is defined as follows:

I, t |= �∼α if I, t′ |= α for all t′ ∈ min g (t);
I, t |= ♦∼α if I, t′ |= α for some t′ ∈ min g (t).

The truth values of Boolean connectives and classical modalities are defined as in LTL.
The intuition behind a sentence like �∼α is that α holds in all preferred time points that
come after t. ♦∼α intuitively means that α holds on at least one preferred time point relative
in the future of t.

We say α ∈ L˜ is preferentially satisfiable if there is a preferential temporal interpretation I
and a time point t in N such that I, t |= α. We can show that α ∈ L˜ is preferentially
satisfiable iff there is a preferential temporal interpretation I s.t. I, 0 |= α. A sentence α ∈ L˜
is valid (denoted by |= α) iff for all temporal interpretation I and time points t in N, we
have I, t |= α.

I Example 6. Going back to Example 1, we can see that the time points 5 and 1 are
more “normal” than iteration 3. By adding preferential preference g := {(5, 3), (1, 3)}, we
denote the preferential temporal interpretation by I = (V, g ). We have that I, 0 6|= �(x2 →
y3) ∧ ♦(x2 ∧ y1) and I, 0 |= �∼(x2 → y3) ∧ ♦(x2 ∧ y1).

We can see that the addition of g relation preserves the truth values of all classical
temporal sentences. Moreover, for every α ∈ L, we have that α is satisfiable in LTL if and
only if α is preferentially satisfiable in LTL˜.

We discuss some properties of these defeasible modalities next. In what follows, let
α, β be well-formed sentences in L˜ . We have duality between our defeasible operators:
|= �∼α↔ ¬ ♦∼¬α. We also have |= �α→ �∼α and |= ♦∼α→ ♦α. Intuitively, This property
states that if a statement holds in all of future time points of any given point of time t, it holds
on all our future preferred time points. As intended, this property establishes the defeasible
always as “weaker” than the classical always. It can commonly be accepted since the set of
all preferred future states are in the future. This is why we named �∼ defeasible always. On
the other hand, we see that ♦∼ is “stronger” than classical eventually, the statement within
♦∼ holds at a preferable future.

The axiom of distributivity (K) can be stated in terms of our defeasible operators.
We can also verify the validity of these two statements |= �∼(α ∧ β) ↔ (�∼α ∧ �∼β) and
|= (�∼α ∨ �∼β)→ �∼(α ∨ β), the converse of the second statement is not always true.

The reflexivity axiom (T) for the classical operators does not hold in the case of defeasible
modalities. We can easily find an interpretation I = (V, g ) where I, t 6|= �∼α→ α. Indeed,
since we can have t 6∈ min g (t) for a temporal point t, we can have I, t |= �∼α and I, t |= ¬α.

One thing worth pointing out is the set of future preferred time points changes dynamically
as we move forward in time. Given three time points t1 ≤ t2 ≤ t3, t3 6∈ min g (t1) whilst
t3 ∈ min g (t2) could be true in some cases. Hence, if I, t |= �∼�∼α does not imply that for
all t′ ∈ min g (t), I, t

′ |= �∼α. Therefore, the transitivity axiom (4) does not hold also in
our defeasible modalities. On the other hand, given those three time points, t3 6∈ min g (t1)
implies that t3 6∈ min g (t2).

3.3 State-dependent preferential interpretations
We define a class of well-behaved LTL˜ interpretations that are useful in the remainder of
the paper.
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I Definition 7 (State-dependent preferential interpretations). Let I = (V, g ) ∈ I. I is
state-dependent preferential interpretation iff for every i, j, i′, j′ ∈ N, if V (i′) = V (i) and
V (j′) = V (j), then (i, j) ∈ g iff (i′, j′) ∈ g .

In what follows, Isd denotes the set of all state-dependent interpretations. The intuition
behind setting up this restriction is to have a more compact form of expressing preference
over time points. In a way, time points with similar valuations are considered to be identical
with regards to g , they express the same preferences towards other time points. Moreover,
we have some interesting properties that do not in the general case. In particular, we have
the following property :

I Proposition 8. Let I = (V, g ) ∈ Isd and let i, i′, j, j′ ∈ N s.t. i ≤ i′, i′ ≤ j′ and
j ∈ min g (i). If V (j) = V (j′), then j′ ∈ min g (i

′).

This property is specific to the class of state-dependent interpretations. However, the
following proposition is true for every I ∈ I.

I Proposition 9. Let I = (V, g ) ∈ I and let i, j ∈ N s.t. j ∈ min g (i). For all i ≤ i′ ≤ j,
we have j ∈ min g (i

′).

4 A useful representation of preferential structures

One of the objectives of this paper is to establish some computational properties about the
satisfiability problem. In order to do this, we introduce into the sequel different structures
inspired by the approach followed by Sistla and Clarke in [18]. They observe that in every
LTL interpretation, there is a time point t after which every t-successor’s valuation occurs
infinitely many times. This is an obvious consequence of having an infinite set of time points
and a finite number of possible valuations. That is the case also for LTL˜ interpretations.

I Lemma 10. Let I = (V, g ) ∈ I. There exists a t ∈ N s.t. for all l ∈ [t,+∞[, there is a
k > l where V (l) = V (k).

For an interpretation I ∈ I, we denote the first time point where the condition set in
Lemma 10 is satisfied by tI . We can split each temporal structure into two intervals: an
initial and a final part.

I Definition 11. Let I = (V, g ) ∈ I. We define: init(I) def= [0, tI [; final(I) def= [tI ,+∞[;
range(I) def= {V (i) | i ∈ final(I)}; val(I) def= {V (i) | i ∈ N}; size(I) def= length(init(I)) +
card(range(I)), where length(·) denotes the length of a sequence and card(·) set cardinality.

In the size of I we count the number of time points in the initial part and the number of
valuations contained in the final part. In what follows, we discuss some properties concerning
these notions and state dependent interpretations.

I Proposition 12. Let I = (V, g ) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in final(I) s.t.
V (j) = V (j′). Then we have j ∈ min g (i) iff j′ ∈ min g (i

′).

I Lemma 13. Let I = (V, g ) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) = V (i′).
Then for every α ∈ L?, we have I, i |= α iff I, i′ |= α.

I Definition 14 (Faithful Interpretations). Let I = (V, g ) ∈ Isd, I ′ = (V ′, g ′) ∈ Isd be two
interpretations over the same set of atoms P. We say that I, I ′ are faithful interpretations
if val(I) = val(I ′) and, for all i, j, i′, j′ ∈ N s.t. V ′(i′) = V (i) and V ′(j′) = V (j), we have
(i, j) ∈ g iff (i′, j′) ∈ g ′.
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Throughout this paper, we write init(I) .= init(I ′) as shorthand for the condition that
states: length(init(I)) = length(init(I ′)) and for each i ∈ init(I) we have V (i) = V ′(i).

I Lemma 15. Let I = (V, g ) ∈ Isd, I ′ = (V ′, g ′) ∈ Isd be two faithful interpretations over
P such that V ′(0) = V (0) (in case init(I) is empty), init(I) .= init(I ′), and range(I) =
range(I ′). Then for all α ∈ L?, we have that I, 0 |= α iff I ′, 0 |= α.

Lemma 15 implies that the ordering of time points in final(·) does not matter, and what
matters is the range(·) of valuations contained within it. It is worth to mention that Lemma
13 and 15 hold only in the case interpretations in Isd and they are not always true in the
general case.

Sistla & Clarke [18] introduced the notion of acceptable sequences. The general purpose
behind it is the ability to build, from an initial interpretation, other interpretations. We
adapt this notion for preferential temporal structures. We then introduce the notion of
pseudo-interpretations that will come in handy in showing decidability of the satisfiability
problem in L? in the upcoming section.

In the sequel, the term temporal sequence or sequence in short, will denote a sequence of
ordered integer numbers. A sequence allows to represent a set of time points. Sometimes,
we will consider integer intervals as sequences. Moreover, given two sequences N1, N2, the
union of N1 and N2, denoted by N1 ∪N2, is the sequence containing only elements of N1 and
N2. An acceptable sequence is a temporal sequence that is built relatively to a preferential
temporal interpretation I as follows:

I Definition 16 (Acceptable sequence w.r.t. I). Let I = (V, g ) ∈ I and N be a sequence of
temporal time points. N is an acceptable sequence w.r.t. I iff for all i ∈ N ∩ final(I) and for
all j ∈ final(I) s.t. V (i) = V (j), we have j ∈ N .

The particularity we are looking for is that any picked time point in init(·) (resp. final(·))
will remain in the initial (resp. final) part of the new interpretation. It is worth pointing
out that an acceptable sequence w.r.t. a preferential temporal interpretation can be either
finite or infinite. Moreover, N is an acceptable sequence w.r.t. any interpretation I ∈ I. The
purpose behind the notion of acceptable sequence is to construct new interpretations starting
from an LTL˜ interpretation.

Given N an acceptable sequence w.r.t. I, if N has a time point t in final(I), then all
time points t′ that have the same valuation as t must be in N . Thus, we have an infinite
sequence of time points. As such, we can define an initial part and a final part, in a similar
way as LTL˜ interpretations. We let init(I,N) be the largest subsequence of N that is a
subsequence of init(I). Note that if N does not contain any time point of final(I), then N is
finite.

I Definition 17. Let I = (V, g ) ∈ I, and let N be an acceptable sequence w.r.t. I. We define:
init(I,N) def=N ∩ init(I); final(I,N) def=N \ init(I,N); range(I,N) def= {V (t) | t ∈ final(I,N)};
val(I,N) def= {V (t) | t ∈ N}; size(I,N) def= length(init(I,N)) + card(range(I,N)).

It is worth mentioning that, thanks to Definition 16, given an acceptable sequence w.r.t.
I, we have size(I,N) ≤ size(I).

I Definition 18 (Pseudo-interpretation over N). Let I = (V, g ) ∈ I and N be an acceptable
sequence w.r.t. I. The pseudo-interpretation over N is the tuple IN def= (N,V N , g N ) where:

V N : N −→ 2P is a valuation function over N , where for all i ∈ N , we have V N (i) =
V (i),
g N⊆ N ×N , where for all (i, j) ∈ N2, we have (i, j) ∈ g N iff (i, j) ∈ g .
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The truth values of L? sentences in pseudo-interpretations are defined in a similar fashion
as for preferential temporal interpretations. With |=P we denote the truth values of sentences
in a pseudo-interpretation. We highlight truth values for classical and defeasible modalities.

IN , t |=P �α if IN , t′ |=P α for all t′ ∈ N s.t. t′ ≥ t;
IN , t |=P ♦α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ≥ t;
IN , t |=P �∼α if for all t′ ∈ N s.t. t′ ∈ min g N (t), we have IN , t |=P α;
IN , t |=P ♦∼α if IN , t′ |=P α for some t′ ∈ N s.t. t′ ∈ min g N (t).

I Proposition 19. Let I = (V, g ) ∈ I, N1, N2 be two acceptable sequences w.r.t. I. Then
N1 ∪N2 is an acceptable sequence w.r.t. I s.t. size(I,N1 ∪N2) ≤ size(I,N1) + size(I,N2).

I Proposition 20. Let I = (V, g ) ∈ I and N be an acceptable sequence w.r.t. I. If
for all distinct t, t′ ∈ N , we have V (t′) = V (t) only when both t, t′ ∈ final(I,N), then
size(I,N) ≤ 2|P|.

5 Bounded-model property

The main contribution of this paper is to establish certain computational properties regarding
the satisfiability problem in L?. The algorithmic problem is as follows: Given an input
sentence α ∈ L?, decide whether α is preferentially satisfiable. In this section, we show that
this problem is decidable.

The proof is based on the one given by Sistla and Clarke to show the complexity of
propositional linear temporal logic [18]. Let L? be the fragment of L˜ that contains only
Boolean connectives and temporal operators (�, �∼,♦, ♦∼). Let α ∈ L?, with |α| we denote
the number of symbols within α. The main result of the present paper is summarized in the
following theorem, of which the proof will be given in the remainder of the section.

I Theorem 21 (Bounded-model property). If α ∈ L? is Isd-satisfiable, then we can find an
interpretation I ∈ Isd such that I, 0 |= α and size(I) ≤ |α| × 2|P|.

Hence, given a satisfiable sentence α ∈ L?, there is an interpretation satisfying α of which
the size is bounded. Since α is Isd-satisfiable, we know I, 0 |= α. From I we can construct an
interpretation I ′ also satisfying α, i.e., I ′, 0 |= α, which is bounded on its size by |α| × 2|P|.
The goal of this section is to show how to build said bounded interpretation. Let α ∈ L? and
let I ∈ Isd be s.t. I, 0 |= α. The first step is to characterize an acceptable sequence N w.r.t.
I such that N is bounded first of all, and “keeps” the satisfiability of the sub-sentences α1 of
α i.e., if I, t |= α1, then IN , t |=P α1 (see Definition 18). We do so by building a bounded
pseudo-interpretation step by step by selecting what to take from the initial interpretation
I for each sub-sentence α1 contained in α to be satisfied. In what follows, we introduce
Anchors(·) as a strategy for picking out the desired time points.

I Definition 22 (Acceptable sequence transformation). Let I = (V, g ) ∈ I and let N be a
sequence of time points. Let N ′ be the sequence of all time points t′ in final(I) for which there
is t ∈ N ∩ final(I) with V (t′) = V (t). With AS(I,N) def= N ∪N ′ we denote the acceptable
sequence transformation of N w.r.t. I.

The sequence AS(I,N) is the acceptable sequence transformation of N w.r.t. I. In the
previous definition, N ′ is the sequence of all time points t′ having the same valuation as some
time point t ∈ N that is in final(I). It is also worth to point out that N ′ can be empty in
the case of there being no time point t ∈ N that is in final(I). N is then a finite acceptable
sequence w.r.t. I where AS(I,N) = N . This notation is mainly used to ensure that we are
using the acceptable version of any sequence.
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I Definition 23 (Chosen occurrence w.r.t. α). Let I = (V, g ) ∈ I, α ∈ L ˜ and N be an
acceptable sequence w.r.t. I s.t. there exists a time point t in N with I, t |= α. The chosen
occurrence satisfying α in N , denoted by tI,Nα , is defined as follows:

tI,Nα
def=

{
min<{t ∈ final(I,N) | I, t |= α}, if {t ∈ final(I,N) | I, t |= α} 6= ∅

max<{t ∈ init(I,N) | I, t |= α}, otherwise.

Notice that < above denotes the natural ordering of the underlying temporal structure.
The strategy to pick out a time point satisfying a given sentence α in N is as follows. If said
sentence is in the final part, we pick the first time point that satisfies it, since we have the
guarantee to find infinitely many time points having the same valuations as tI,Nα that also
satisfy α (see Lemma 13). If not, we pick the last occurrence in the initial part that satisfies
α. Thanks to Definition 23, we can limit the number of time points taken that satisfy the
same sentence.

I Definition 24 (Selected time points). Let I = (V, g ) ∈ I, N be an acceptable sequence
w.r.t. I and α ∈ L˜ s.t. there is t in N s.t. I, t |= α. With ST(I,N, α) def= AS(I, (tI,Nα )) we
denote the selected time points of N and α w.r.t. I. (Note that (tI,Nα ) is a sequence of only
one element.)

Given a sentence α ∈ L˜ and an acceptable sequenceN w.r.t. I s.t. there is at least one time
point t where I, t |= α, the sequence ST (I,N, α) is the acceptable sequence transformation
of the sequence (tI,Nα ). If tI,Nα ∈ init(I), the sequence ST(I,N, α) is the sequence (tI,Nα ).
Otherwise, the sequence ST (I,N, α) is the sequence of all time points t in final(I) that have
the same valuation as tI,Nα . In both cases, we can see that size(I,ST (I,N, α)) = 1.

Given an interpretation I = (V, g ) andN an acceptable sequence w.r.t I, the representative
sentence of a valuation v is formally defined as αv def=

∧
{p | p ∈ v} ∧

∧
{¬p | p 6∈ v}.

IDefinition 25 (Distinctive reduction). Let I = (V, g ) ∈ I and let N be an acceptable sequence
w.r.t. I. With DR(I,N) def=

⋃
v∈val(I,N) ST (I,N, αv) we denote the distinctive reduction of N .

Given an acceptable sequence N w.r.t. I, DR(I,N) is the sequence containing the chosen
occurrence tI,Nαv

that satisfies the representative αv in N for each v ∈ val(I,N). In other
words, we pick the selected time points for each possible valuation in val(I,N). There are two
interesting results with regard to DR(I,N). The first one is that DR(I,N) is an acceptable
sequence w.r.t. I. This can easily be proven since ST (I,N, αv) is also an acceptable sequence
w.r.t. I, and the union of all ST (I,N, αv) is an acceptable sequence w.r.t. I (see Proposition
19). The second result is that size(I,DR(I,N)) ≤ 2|P|. Indeed, thanks to Proposition
19, we can see that size(I,DR(I,N)) ≤

∑
v∈val(I,N) size(ST(I,N, αv)). Moreover, we have

size(I,ST (I,N, αv)) = 1 for each v ∈ val(I,N). On the other hand, there are at most 2|P|

possible valuations in val(I,N). Thus, we can assert that
∑
v∈val(I,N) size(I,ST (I,N, αv)) ≤

2|P|, and then we have size(I,DR(I,N)) ≤ 2|P|.

I Definition 26 (Anchors). Let a sentence α ∈ L? starting with a temporal operator, let
I = (V, g ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for all t ∈ T we
have I, t |= α. The sequence Anchors(I, T, α) is defined as: Let α1 ∈ L?.

Anchors(I, T,♦α1) def= ST (I,N, α1);
Anchors(I, T,�α1) def= ∅;
Anchors(I, T, ♦∼α1) def=

⋃
t∈T ST (I,AS(I,min g (t)), α1);

Anchors(I, T, �∼α1) def= DR(I,
⋃
t∈T AS(I,min g (t))).
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Given an acceptable sequence T w.r.t. I ∈ Isd where all of its time points satisfy α, where
α is a sentence starting with a temporal operator, Anchors(I, T, α) is an acceptable sequence
w.r.t. I. This is due thanks to the notion of selected time points and distinctive reduction
(see Definition 24 and 25). Anchors(I, T, α) contains the selected time points satisfying the
sub-sentence α1 of α (except for �α1). Our goal is to have the selected time points that
satisfy α1 for each t ∈ T .

It is worth to point out that the choice of Anchors(I, T,�α1) = ∅ is due to the fact α1 is
satisfied starting from the first time t0 ∈ T i.e., for all t ≥ t0, we have I, t |= α. So no matter
what time point t we pick after t0, we have I, t |= α1. On the other hand, by the nature of
the semantics of �∼α1, all t ∈

⋃
ti∈T AS(I,min g (ti)) satisfy α1. The acceptable sequence

Anchors(I, T, �∼α1) contains only the selected time points for each distinct valuation in⋃
ti∈T AS(I,min g (ti)).

I Lemma 27. Let α1 ∈ L? be a sentence starting with a temporal operator, I = (V, g ) ∈
Isd and let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have
I, t |= ♦∼α1. Then for all t, t′ ∈ Anchors(I, T, ♦∼α1) s.t. V (t) = V (t′) and t 6= t′, we have
t, t′ ∈ final(I,Anchors(I, T, ♦∼α1)).

I Proposition 28. Let α ∈ L? be a sentence starting with a temporal operator, I = (V, g ) ∈
Isd. Let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have I, t |= α.
Then, we have size(I,Anchors(I, T, α)) ≤ 2|P|.

I Proposition 29. Let α1 ∈ L?, I = (V, g ) ∈ Isd, let T be a non-empty acceptable sequence
w.r.t. I s.t. for all t ∈ T we have I, t |= �∼α1, with α1 ∈ L?. For all acceptable sequences
N w.r.t. I s.t. Anchors(I, T, �∼α1) ⊆ N and for all ti ∈ N ∩ T , we have the following: Let
IN = (V N , g N ) be the pseudo-interpretation over N and t′ ∈ N , if t′ 6∈ min g (ti), then
t′ 6∈ min g N (ti).

The strategy of building Anchors(·) is explained by the fact that we want to preserve the
truth values of defeasible sub-sentences of α in the bounded interpretation.

With Anchors(·) defined, we introduce the notion of Keep(·). This function will help us
compute recursively starting from the initial satisfiable sentence α down to its literals, the
selected time points to pick in order to build our pseudo-interpretation.

I Definition 30 (Keep). Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be an acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. The sequence Keep(I, T, α) is defined
as ∅, if T = ∅; otherwise it is recursively defined as follows:

Keep(I, T, `) def= ∅, where ` is a literal;
Keep(I, T, α1 ∧ α2) def= Keep(I, T, α1) ∪Keep(I, T, α2);
Keep(I, T, α1 ∨ α2) def= Keep(I, T1, α1) ∪ Keep(I, T2, α2), where T1 ⊆ T (resp. T2 ⊆ T ) is
the sequence of all t1 ∈ T (resp. t2 ∈ T ) s.t. I, t1 |= α1 (resp. I, t2 |= α2);
Keep(I, T,♦α1) def= Anchors(I, T,♦α1) ∪Keep(I,Anchors(I, T,♦α1), α1);
Keep(I, T,�α1) def= Keep(I, T, α1);
Keep(I, T, ♦∼α1) def= Anchors(I, T, ♦∼α1) ∪Keep(I,Anchors(I, T, ♦∼α1), α1);
Keep(I, T, �∼α1)def=Anchors(I, T, �∼α1)∪Keep(I, T ′, α1), whereT ′ =

⋃
ti∈T AS(I,min g (ti)).

With µ(α) we denote the number of classical and non-monotonic modalities in α.

I Proposition 31. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-
empty acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have
size(I,Keep(I, T, α)) ≤ µ(α)× 2|P|.
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Given an acceptable sequence N w.r.t. I, we need to make sure when a time point t ∈ N
in our acceptable sequence s.t. I, t |= α, then IN , t |=P α. The function Keep(I, T, α) returns
the acceptable sequence of time s.t. if Keep(I, T, α) ⊆ N and t ∈ T , then said condition is
met. We prove this in Lemma 32.

I Lemma 32. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-empty acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable sequences N w.r.t. I,
if Keep(I, T, α) ⊆ N , then for every t ∈ N ∩ T , we have IN , t |=P α.

Since we build our pseudo-interpretation IN by adding selected time points for each
sub-sentence α1 of α, we need to make sure that said sub-sentence remains satisfied in IN .

I Definition 33 (Pseudo-interpretation transformation). Let I = (V, g ) ∈ Isd and let N be
an infinite acceptable sequence w.r.t. I. The pseudo-interpretation IN = (V N , g N ) can be
transformed into a preferential interpretation I ′ = (V ′, g ′) ∈ Isd as follows:

for all i ≥ 0, we have V ′(i) = V N (ti);
for all i, j ≥ 0, ti, tj ∈ N , we have (ti, tj) ∈ g N iff (i, j) ∈ g ′.

Proof of Theorem 21. We assume that α ∈ L? is Isd-satisfiable. The first thing we notice
is that |α| ≥ µ(α) + 1. Let α′ be the NNF of the sentence α. As a consequence of
the duality rules of L?, we can deduce that µ(α′) = µ(α). Let I = (V, g ) ∈ Isd s.t.
I, 0 |= α′. Let T0 = AS(I, (0)) be an acceptable sequence w.r.t. I. We can see that
size(I, T0) = 1. Since for all t ∈ T0 we have I, t |= α′ (see Lemma 13), we can compute
recursively U = Keep(I, T0, α

′). Thanks to Proposition 31, we conclude that U is an
acceptable sequence w.r.t. I s.t. size(I, U) ≤ µ(α′) × 2|P|. Let N = T0 ∪ U be the union
of T0 and U and let IN = (N,V N , g N ) be its pseudo-interpretation over N . Thanks to
Proposition 19, we have size(I,N) ≤ 1 +µ(α′)×2|P|. Thanks to Lemma 32, since 0 ∈ N ∩T0
and Keep(I, T0, α

′) ⊆ N , we have IN , 0 |=P α′. In case N is finite, we replicate the last time
point tn infinitely many times. Notice that size(I,N) does not change if we replicate the
last element. We can transform the pseudo interpretation IN to I ′ ∈ Isd by changing the
labels of N into a sequence of natural numbers minding the order of time points in N (see
Definition 33). We can see that size(I ′) = size(I,N) and I ′, 0 |= α. Consequently, we have
size(I ′) ≤ 1 + µ(α′)× 2|P|. Hence, from a given interpretation I s.t. I, 0 |= α we can build
an interpretation I ′ s.t. I ′, 0 |= α and size(I ′) ≤ 1 + µ(α′)× 2|P|. Without loss of generality,
we conclude that size(I ′) ≤ |α| × 2|P|. J

6 The satisfiability problem in L?

We now provide an algorithm allowing to decide whether a sentence α ∈ L? is Isd-satisfiable
or not. For this purpose, first we focus on particular interpretations of the class Isd, namely
the ultimately periodic interpretations (UPI in short), and a finite representation of these
interpretations, called ultimately periodic pseudo-interpretation (UPPI in short). As we will
see in the second part of this section, to decide the Isd-satisfiability of a sentence α ∈ L?, the
proposed algorithm guesses a bounded UPPI in a first step. Then, it checks the satisfiability
of α by the UPI of the guessed UPPI.

I Definition 34 (UPI). Let I = (V, g ) ∈ Isd and let π = card(range(I)). We say I is an
ultimately periodic interpretation if:

for every t, t′ ∈ [tI , tI + π[ s.t. t 6= t′ (see Definition 10), we have V (t) 6= V (t′),
for every t ∈ [tI ,+∞[, we have V (t) = V (tI + (t− tI) mod π).
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A UPI I is a state dependent interpretation s.t. each time point’s valuation in final(I) is
replicated periodically. Given a UPI, π = card(range(I)) denotes the length of the period
and the interval [tI , tI + π[ is the first period which is replicated periodically throughout the
final part. It is worth pointing out that for every t ∈ final(I), we have V (t) ∈ {V (t′) | t′ ∈
[tI , tI + π[}, which is one of the consequences of the definition above. Thanks to Lemma 15,
we can prove the following proposition.

I Proposition 35. Let P be a set of atomic propositions, I = (V. g ) ∈ Isd, i = length(init(I))
and π = card(range(I)). There exists an ultimately periodic interpretation I ′ = (V ′, g ′) ∈ Isd

s.t. I, I ′ are faithful interpretations over P (Definition 14), init(I ′) .= init(I), range(I ′) =
range(I) and V ′(0) = V (0). Moreover, for all α ∈ L?, we have I, 0 |= α iff I ′, 0 |= α.

It is worth to point out that the size of an interpretation and that of its UPI counterparts
are equal. It can easily be seen that these interpretations have the same initial part and the
same range of valuations in the final part. We can see that I and I ′ are faithful and that
init(I ′) .= init(I), range(I ′) = range(I) and V ′(0) = V (0). Therefore, I and I ′ satisfy the
same sentences.

I Definition 36 (UPPI). A model structure is a tuple M = (i, π, VM , g M ) where: i, π are
two integers such that i ≥ 0 and π > 0 (where i is intended to be the starting point of the
period, π is the length of the period); VM : [0, i+ π[−→ 2P , and g M ⊆ 2P × 2P is a strict
partial order. Moreover, (I) for all t ∈ [i, i+ π[, we have VM (t) 6= VM (i− 1); and (II) for all
distinct t, t′ ∈ [i, i+ π[, we have VM (t) 6= VM (t′).

The reason behind setting properties (I) and (II) is that we can build a UPPI from a UPI,
and back. Given a UPPI M = (i, π, VM , g M ), we define the size of M by size(M) def= i+ π.
From a UPPI we define a UPI in the following way:

I Definition 37. Given a UPPI M = (i, π, VM , g M ), let I(M) def= (V, g ), where for every
t ≥ 0, V (t) def= VM (t), if t < i, and V (t) def= VM (i+ (t− i) mod π), otherwise, and g def= {(t, t′) |
(V (t), V (t′)) ∈ g M}.

Given a UPPI M = (i, π, VM , g M ), the interval [0, i[ of a UPPI corresponds to the initial
temporal part of the underlying interpretation I(M) and [i, i+π[ represents a temporal period
that is infinitely replicated in order to determine the final temporal part of the interpretation.

I Definition 38 (UPPI’s preferred time points). Let M = (i, π, VM , g M ) be a UPPI and
a time point t ∈ [0, i + π[. The set of preferred time points of t w.r.t. M , denoted by
min g M

(t), is defined as follows: min g M
(t) def= {t′ ∈ [min<{t, i}, i + π[ | there is no t′′ ∈

[min<{t, i}, i+ π[ with (VM (t′′), VM (t′)) ∈ g M}.

I Proposition 39. Let M = (i, π, VM , g M ) be a UPPI, I(M) = (V, g ) and t, t′, tM , t′M ∈ N
s.t.:

tM =
{

t, if t < i;

i+ (t− i) mod π, otherwise.
t′M =

{
t′, if t′ < i;

i+ (t′ − i) mod π, otherwise.

We have the following: t′ ∈ min g (t) iff t′M ∈ min g M
(tM ).

Now that UPPI is defined, we can move to the task of checking the satisfiability of a
sentence α. We define for a UPPI M = (i, π, VM , g M ) and a sentence α ∈ L? a labelling
function labMα (·) which associates a set of sub-sentences of α to each t ∈ [0, i+ π[.
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I Definition 40 (Labelling function). Let M = (i, π, VM , g M ) be a UPPI, α ∈ L?. The set
of sub-sentences of α for t ∈ [0, i+ π[, denoted by labMα (t), is defined as follows:

p ∈ labMα (t) iff p ∈ VM (t); ¬α1 ∈ labMα (t) iff α1 6∈ labMα (t);
α1 ∧ α2 ∈ labMα (t) iff α1, α2 ∈ labMα (t); α1 ∨ α2 ∈ labMα (t) iff α1 ∈ labMα (t) or α2 ∈
labMα (t);
♦α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for some t′ ∈ [min<{t, i}, i+ π[;
�α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for all t′ ∈ [min<{t, i}, i+ π[;
♦∼α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for some t′ ∈ min g M

(t);
�∼α1 ∈ labMα (t) iff α1 ∈ labMα (t′) for all t′ ∈ min g M

(t).

I Lemma 41. Let a UPPI M = (i, π, VM , g M ), α ∈ L? and t ∈ N, I(M), 0 |= α iff
α ∈ labMα (0).

I Proposition 42. Let α ∈ L?. We have that α is Isd-satisfiable iff there exists a UPPI M
such that I(M), 0 |= α and size(I(M)) ≤ |α| × 2|P|.

Hence, to decide the satisfiability of a sentence α ∈ L?, we can first guess a UPPI M
bounded by |α| × 2|P|. Next, using the labelling function of M , we check the satisfiability of
α by the UPI I(M).

I Theorem 43. Isd-satisfiability problem for L? sentences is decidable.

7 Concluding remarks

In this paper, we have introduced LTL˜, a meaningful extension of linear temporal logic
featuring defeasible temporal operators. These are given an intuitive semantics in terms of
preferential temporal interpretations in which time points are ordered according to their
likelihood (or normality). The main research question of the paper is the decidability of the
resulting framework. Here we have defined the class of state-dependent interpretations Isd
and the fragment L?, and we have shown that Isd-satisfiability in the referred fragment is a
decidable problem.

We are aware that the upper bound established in this paper is intractable in practice.
One of our immediate next steps is to tighten the complexity results for the class of state-
dependent interpretations. We envisage two options: either the complexity remains the same,
in which case we shall explore other well-behaved fragments of LTL˜ ; or we show reasoning
with L? remains in the same class of LTL, in which case we shall add defeasible counterparts
to © and U together with a notion of defeasible conditional à la KLM to our framework,
thereby depicting a complete picture of defeasible model checking. In both cases, the results
here established will prove useful.

An outstanding task in the study of preferential temporal reasoning is the definition of a
sound and complete analytical tableau method for LTL˜ . For that, we can benefit from the
work of Giordano et al. [10] and Britz and Varzinczak [5, 6] in similarly-structured logics.
Nevertheless, in the case of preferential LTL, the task is far from being an easy one. The first
hurdle we need to overcome is in the definition of appropriate tableau rules for our defeasible
operators �∼ and ♦∼. Indeed, given their non-monotonic semantics, we cannot make use of a
recursive rewriting similar to that in Wolper’s rules [19] in order to get rid of nested classical
modalities. To witness, we have 6|= �∼α↔ α ∧ ©�∼α and 6|= ♦∼α↔ α ∨ © ♦∼α.
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A Proofs of results in Section 3 and Section 4

I Proposition 8. Let I = (V, g ) ∈ Isd and let i, i′, j, j′ ∈ N s.t. i ≤ i′, i′ ≤ j′ and
j ∈ min g (i). If V (j) = V (j′), then j′ ∈ min g (i

′).

Proof. Let I = (V, g ) ∈ Isd and let i, j, i′, j′ be four time points s.t. i ≤ i′, i′ ≤ j′ and
j ∈ min g (i). We assume that V (j) = V (j′) and we suppose that j′ 6∈ min g (i

′). Following
our supposition, j′ 6∈ min g (i

′) means that there exists k ∈ [i′,+∞[ where (k, j′) ∈ g . From
Definition 7, if (k, j′) ∈ g and V (j) = V (j′), then (k, j) ∈ g . Since (k, j) ∈ g , we have
j 6∈ min g (i). This conflicts with our assumption of j ∈ min g (i). We conclude that if
V (j) = V (j′) then j′ ∈ min g (i

′). J

I Proposition 9. Let I = (V, g ) ∈ I and let i, j ∈ N s.t. j ∈ min g (i). For all i ≤ i′ ≤ j,
we have j ∈ min g (i

′).

Proof. Let I = (V, g ) ∈ I and let i, i′, j ∈ N s.t. j ∈ min g (i) and i ≤ i′ ≤ j. Since
j ∈ min g (i), there is no j′ ∈ [i,+∞[ s.t. (j′, j) ∈ g . Moreover, we have i ≤ i′, we conclude
that there is no j′ ∈ [i′,+∞[ s.t. (j′, j) ∈ g . Therefore, we have j ∈ min g (i

′). J

I Proposition 12. Let I = (V, g ) ∈ Isd and let i ≤ j ≤ i′ ≤ j′ be time points in final(I) s.t.
V (j) = V (j′). Then we have j ∈ min g (i) iff j′ ∈ min g (i

′).

Proof. Let I = (V, g ) ∈ Isd. We have four time points i ≤ j ≤ i′ ≤ j′ ∈ final(I), this proof
is divided in two parts:

For the only-if part, we suppose that j ∈ min g (i) and we prove that j′ ∈ min g (i
′).

We have i ≤ i′, i′ ≤ j′, V (j) = V (j′) and j ∈ min g (i). Thanks to Proposition 8,
j′ ∈ min g (i

′).
For the if part, we suppose that j′ ∈ min g (i′) and we prove that j ∈ min g (i). We use a
proof by contradiction. We assume that j′ ∈ min g (i′) and we suppose that j 6∈ min g (i).
This implies that there exists k ∈ [i,+∞[ such that (k, j) ∈ g .

Case 1: k ∈ [i′,+∞[. From Definition 7, since V (j) = V (j′) and (k, j) ∈ g , then
(k, j′) ∈ g thus j′ 6∈ min g (i

′). This conflicts with our assumption that j′ ∈ min g (i
′).

Case 2: k ∈ [i, i′[. From Lemma 10, since k ∈ final(I), then there exists k′ ∈ [i′,+∞[
such that V (k′) = V (k). From Definition 7, since we have V (j′) = V (j), V (k′) = V (k)
and (k, j) ∈ g , then (k′, j′) ∈ g , thus j′ 6∈ min g (i′). This conflicts with our assumption
that j′ ∈ min g (i

′). J

I Lemma 13. Let I = (V, g ) ∈ Isd and i ≤ i′ be time points of final(I) where V (i) = V (i′).
Then for every α ∈ L?, we have I, i |= α iff I, i′ |= α.

Proof. Let I = (V, g ) ∈ Isd and i ≤ i′ in final(I) such that V (i) = V (i′). We prove that
I, i |= α iff I, i′ |= α using structural induction on α.

Base: α is an atomic proposition p. For the only-if part, we know that I, i |= p iff p ∈ V (i).
Since V (i) = V (i′), we have p ∈ V (i′), thus I, i′ |= p. Same reasoning applies for the if
part.
α = ♦∼α1. For the only-if part, we assume that I, i |= ♦∼α1. Following our assumption,
I, i |= ♦∼α1 means that there exists j ∈ [i,+∞[ s.t. j ∈ min g (i) and I, j |= α1. Thanks
to Lemma 10. Since j ∈ final(I), there exists j′ ∈ [i′,+∞[ such that V (j′) = V (j).
Thanks to the induction hypothesis, if V (j) = V (j′) and I, j |= α1 then (I) I, j′ |= α1.
Thanks to Proposition 8, V (j) = V (j′), i ≤ i′, i′ ≤ j′ and j ∈ min g (i) means that (II)
j′ ∈ min g (i

′). From (I) and (II), we conclude that I, i′ |= ♦∼α1.
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For the if part, we assume that I, i′ |= ♦∼α1. I, i′ |= ♦∼α1 means that there is a
j′ ∈ [i′,+∞[ such that j′ ∈ min g (i

′) and (I) I, j′ |= α1. We need to prove that
j′ ∈ min g (i) . We suppose that j′ 6∈ min g (i). It means that there exists k ∈ [i,+∞[
such that (k, j′) ∈ g . From Lemma 10, since k ∈ final(I), that means there is k′ ∈ [i′,+∞[
such that V (k) = V (k′). Following the condition set in Definition 7, since (k, j′) ∈ g and
V (k′) = V (k), then (k′, j′) ∈ g and thus j′ 6∈ min g (i

′), conflicting with our assumption
of j′ ∈ min g (i′), thus (II) j′ ∈ min g (i) . From (I) and (II), we conclude that I, i |= ♦∼α.

J

B Proofs of results in Section 5

I Lemma 27. Let α1 ∈ L? be a sentence starting with a temporal operator, I = (V, g ) ∈
Isd and let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have
I, t |= ♦∼α1. Then for all t, t′ ∈ Anchors(I, T, ♦∼α1) s.t. V (t) = V (t′) and t 6= t′, we have
t, t′ ∈ final(I,Anchors(I, T, ♦∼α1)).

Proof. Let α1 ∈ L?, let T be a non-empty acceptable sequence w.r.t. I ∈ Isd where
for all t ∈ T we have I, t |= ♦∼α1. Just as a reminder, we have Anchors(I, T, ♦∼α1) =⋃
ti∈T ST(I,AS(I,min g (ti)), α1). Thus, there exists ti ∈ T such that t ∈

ST(I,AS(I,min g (ti)), α1). Suppose that there exist t, t′ ∈ Anchors(I, T, ♦∼α1) with
t 6= t′ such that t is in init(I,Anchors(I, T, ♦∼α1)) and V (t) = V (t′). Notice that t ∈ init(I),
since t ∈ init(I,Anchors(I, T, ♦∼α1)). Without loss of generality, we assume that t < t′. From

Definition 24, we have t ∈ AS(I, (t
I,AS(I,min g (ti))
α1 )). Thanks to Definition 22 and Definition

23, the fact that t′ ∈ init(I), we can see that : (1) there is no t′′ ∈ final(I, AS(I,min g (ti))) s.t.

I, t′′ |= α1 and (2) t = t
I,AS(I,min g (ti))
α1 = max<{t′′ ∈ init(I, AS(I,min g (ti))) | I, t

′′ |= α1}.
On the other hand, thanks to Proposition 8, since t′ < t′′ and t′ ∈ min g (ti), we have
t′′ ∈ min g (ti). Hence t′′ ∈ AS(I,min g (ti)). Since t′′ ∈ Anchors(I, T, ♦∼α1), we also
have I, t′′ |= α1. From this and the property (1) we can assert that t′ does not belong to
final(I, AS(I,min g (ti))). It follows that t′ ∈ init(I, AS(I,min g (ti))). From the property (2)
we can assert that t ≥ t′, which leads to a contradiction since t < t′. Therefore, for all t, t′ ∈
Anchors(I, T, ♦∼α1) s.t. V (t) = V (t′), we must have t, t′ ∈ final(Anchors(I, T, ♦∼α1)). J

I Proposition 28. Let α ∈ L? be a sentence starting with a temporal operator, I = (V, g ) ∈
Isd. Let T be a non-empty acceptable sequence w.r.t. I where for all t ∈ T we have I, t |= α.
Then, we have size(I,Anchors(I, T, α)) ≤ 2|P|.

Proof. Let I = (V, g ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for
all t ∈ T we have I, t |= α. . We show that is the case for our temporal operators:

T is an acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= ♦∼α1. From
Proposition 27, for all t′i, t′j ∈ Anchors(I, T, ♦∼α1) s.t. V (t′i) = V (t′j) we have t′i, t′j ∈
final(I,Anchors(I, T, ♦∼α1)). From Proposition 20, we can conclude that
size(Anchors(I, T, ♦∼α1)) ≤ 2|P|.
Going back to Definition 26, we have Anchors(I, T,�∼α1)=DR(I,

⋃
ti∈T AS(I,min g (ti))).

We denote the acceptable sequence
⋃
ti∈T AS(I,min g (ti)) by N . From Definition

25 we have Anchors(I, T, �∼α1) = DR(I,N) =
⋃
v∈val(I,N) ST(I,N, αv). Moreover,

we know that size(ST(I,N, αv)) = 1 for all v ∈ val(I,N). Consequently, thanks
to Proposition 19, we have size(

⋃
v∈val(I,N) ST(I,N, αv)) ≤ card(val(I,N)). We can

see that card(val(I,N)) ≤ 2|P|, we can conclude that size(Anchors(I, T, �∼α1)) =
size(

⋃
v∈val(I,N) ST (I,N, αv)) ≤ 2|P|. J
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I Proposition 29. Let α1 ∈ L?, I = (V, g ) ∈ Isd, let T be a non-empty acceptable sequence
w.r.t. I s.t. for all t ∈ T we have I, t |= �∼α1, with α1 ∈ L?. For all acceptable sequences
N w.r.t. I s.t. Anchors(I, T, �∼α1) ⊆ N and for all ti ∈ N ∩ T , we have the following: Let
IN = (V N , g N ) be the pseudo-interpretation over N and t′ ∈ N , if t′ 6∈ min g (ti), then
t′ 6∈ min g N (ti).

Proof. Let I = (V, g ) ∈ Isd, let T be a non-empty acceptable sequence w.r.t. I s.t. for all
t ∈ T we have I, t |= �∼α1, with α1 ∈ L?. Let N be an acceptable sequence w.r.t. I s.t.
Anchors(I, T, �∼α1) ⊆ N . Let ti ∈ N ∩ T . Let t′ ∈ N be a time point s.t. t′ 6∈ min g (ti), we
discuss these two cases:

t′ 6∈ [ti,+∞[: Since t′ 6∈ [ti,+∞[, then t′ 6∈ [ti,+∞[∩N . Therefore, we conclude that
t′ 6∈ min g N (ti).
t′ ∈ [ti,+∞[: Since g satisfies the well-foundedness condition, t′ 6∈ min g (ti) im-
plies that there exists a time point t′′ ∈ min g (ti) s.t. (t′′, t′) ∈ g . Let αt′′ be the
representative sentence of V (t′′). For the sake of readability, we shall denote the se-
quence

⋃
t∈T AS(I,min g (t)) with M . Notice that there exists V ∈ val(I,M) such that

V = V (t′′) since ti ∈ T and t′′ ∈ min g (ti). Thanks to Definition 25, since DR(I,M) =⋃
v∈val(I,M) ST (I,M,αv) and V (t′′) ∈ val(I,M), we can find t′′′ ∈ ST (I,M,αt′′) where

t′′′ ∈ DR(I,M) ⊆ N , V (t′′′) = V and t′′′ ≥ t′′. Since (t′′, t′) ∈ g , I ∈ Isd and V (t′′′) =
V (t′′), we have (t′′′, t′) ∈ g . Moreover, we have t′′′, t′ ∈ N , and therefore (t′′′, t′) ∈ g N .
Since t′′′ ∈ [ti,+∞[∩N and (t′′′, t′) ∈ g N , we conclude that t′ 6∈ min g N (ti). J

I Proposition 31. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-
empty acceptable sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. Then, we have
size(I,Keep(I, T, α)) ≤ µ(α)× 2|P|.

Proof. Let I = (V, g ) ∈ Isd, and let T be a non-empty acceptable sequence w.r.t. I s.t. for
all t ∈ T we have I, t |= α which α ∈ L?.

We use structural induction on T and α in order to prove this property.
Base α = p or α = ¬p. Keep(I, T, α) = ∅. Since size(I, ∅) = 0 ≤ µ(α) × 2|P| = 0, then
the property holds on atomic propositions.
α = ♦∼α1. First of all, we proved in Proposition 28 that (I) size(I,Anchors(I, T, ♦∼α1)) ≤
2|P|. On the other hand, thanks to Definition 26 it is easy to see that Anchors(I, T, ♦∼α1)
is a non-empty acceptable sequence w.r.t. I s.t. for all t′ ∈ Anchors(I, T, ♦∼α1) we have
I, t′ |= α1. By the induction hypothesis on Anchors(I, T, ♦∼α1) and α1, we have (II)
size(I,Keep(I,Anchors(I, T, ♦∼α1), α1)) ≤ µ(α1)× 2|P|. Thanks to Proposition 19, from
(I) and (II), we conclude that size(I,Keep(I, T, ♦∼α1)) ≤ (1+µ(α1))×2|P| = µ(♦∼α1)×2|P|.
α = �∼α1. First of all, we proved in Proposition 28 that (I) size(I,Anchors(I, T, �∼α1)) ≤
2|P|. On the other hand, from definition30, we have T ′ =

⋃
ti∈T AS(I,min g (ti)). It

is easy to see that for all t′ ∈ T ′ we have I, t′ |= α1 and that T ′ is a non-empty
acceptable sequence w.r.t. I. By the induction hypothesis on T ′ and α1, we have (II)
size(I,Keep(I, T ′, α1)) ≤ µ(α1)× 2|P|. Thanks to Proposition 19, form (I) and (II) we
conclude that size(I,Keep(I, T, �∼α1)) ≤ (1 + µ(α1))× 2|P| = µ(�∼α1)× 2|P|. J

I Lemma 32. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-empty acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. For all acceptable sequences N w.r.t. I,
if Keep(I, T, α) ⊆ N , then for every t ∈ N ∩ T , we have IN , t |=P α.
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Proof. Let α ∈ L? be in NNF, I = (V, g ) ∈ Isd, and let T be a non-empty acceptable
sequence w.r.t. I s.t. for all t ∈ T we have I, t |= α. We consider N to be an acceptable
sequence w.r.t. I s.t. Keep(I, T, α) ⊆ N and t ∈ N ∩ T . Let IN = (N,V N , g N ) be the
pseudo-interpretation over N .

We use structural induction on T and α in order to prove this property.

α = p or α = ¬p. Since I, t |= p (resp. ¬p), it means that p ∈ V (t) (resp. p 6∈ V (t)). We
know that V N (t) = V (t). We conclude that IN , t |=P p (resp. ¬p).
α = ♦∼α1. We have I, t |= ♦∼α1 and we need to prove that IN , t |=P ♦∼α1. I, t |= ♦∼α1
means that there exists t′ ∈ min g (t) such that I, t′ |= α1, therefore Anchors(I, T, ♦∼α1) is
non-empty (see Definition 26). We know that Anchors(I, T, ♦∼α1) ⊆ Keep(I, T, ♦∼α1) ⊆ N ,
consequently Anchors(I, T, ♦∼α1) ∩N is non-empty. Thanks to Definition 26 it is easy to
see that for all t1 ∈ Anchors(I, T, ♦∼α1) we have I, t1 |= α1. By the induction hypothesis on
Anchors(I, T, ♦∼α1) and α1, since Keep(I, T1, α1) ⊆ N with T1 = Anchors(I, T, ♦∼α1), and
T1 is an acceptable sequence where I, t′ |= α1 for all t′ ∈ T1, we conclude that IN , t′ |=P α1
(I). Thanks to the construction of the pseudo-interpretation IN , since t′ ∈ min g N (t),
therefore t′ ∈ min g (t) (II). From (I) and (II), we conclude that IN , t |=P ♦∼α1.
α = �∼α1. We have I, t |= �∼α1 and we need to prove that IN , t |=P �∼α1. I, t |=
�∼α1 means that for all t′ ∈ min g (t) we have I, t′ |= α1, therefore for all t′ ∈ T ′ =⋃
ti∈T AS(I,min g (ti)) we have I, t′ |= α1. In addition, thanks to the well-foundedness

condition on g , T ′ is non-empty. We know that Anchors(I, T, �∼α1) ⊆ Keep(I, T, �∼α1) ⊆
N and that Anchors(I, T, �∼α1) = DR(I, T ′) consequently T ′ ∩ N is non-empty. We
use proof by contradiction. Suppose that IN , t 6|=P �∼α1, which means there exists
t′ ∈ min g N (ti) s.t. IN , t′ 6|=P α1. Thanks to Proposition 29, if t′ ∈ min g N (ti), then
t′ ∈ min g (ti). Just a reminder, we have T ′ =

⋃
ti∈T AS(I,min g (ti)) where for all t′′ ∈ T ′

we have I, t′′ |= α1 (Note that T ′ is a non-empty acceptable sequence w.r.t. I). By the
induction hypothesis on T ′ and α1, since Keep(I, T ′, α1) ⊆ N , and t′ ∈ AS(I,min g (t)) ⊆
T ′, therefore IN , t′ |=P α1. This conflicts with our supposition. We conclude that there
is no t′ ∈ min g N (t) s.t. IN , t′ 6|=P α1, and therefore IN , t |=P �∼α1. J

C Proof of results in Section 6

NB: The results marked (∗) are introduced here, while they are omitted in the main text.

I Proposition 39. Let M = (i, π, VM , g M ) be a UPPI, I(M) = (V, g ) and t, t′, tM , t′M ∈ N
s.t.:

tM =
{

t, if t < i;

i+ (t− i) mod π, otherwise.
t′M =

{
t′, if t′ < i;

i+ (t′ − i) mod π, otherwise.

We have the following: t′ ∈ min g (t) iff t′M ∈ min g M
(tM ).

Proof. Let M = (i, π, VM , g M ) be a UPPI, I(M) = (V, g ) and t, t′ ∈ N.
For the only-if part, we assume that t′ ∈ min g (t). Following our assumption, there is
no t′′ ∈ [t,+∞[ s.t. (t′′, t′) ∈ g . We use a proof by contradiction. Suppose that t′M 6∈
min g M

(tM ), which means there exists t′′M ∈ [min<{tM , i}, i+π[ with (VM (t′′M ), VM (t′M ))∈
g M . Going back to Definition 37, VM (t′M ) = V (t′) and . Consequently, (V (t′′M ), VM (t′)) ∈
g M . Thanks to Definition 37, (I) (t′′M , t′) ∈ g . There are two possible cases for t, . If
t ∈ [0, i[ then tM = t and (II) t′′M ∈ [t, i+ π[. From (I) and (II), there exists t′′M > t such
that (t′′M , t′) ∈ g . This conflicts with our supposition. If t ∈ [i,+∞[, then t′′M ∈ [i, i+ π[
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and t, t′, t′′ are in final(I(M)). Thanks to proposition 10, there exists t′′ > t such that
V (t′′) = V (tM ). Since I(M) ∈ Isd and (t′′M , t′) ∈ g then (t′′, t) ∈ g . Consequently, there
exists t′′ > t such that (t′′, t) ∈ g . This conflicts with our supposition.
For the if part, we assume that t′M ∈ min g M

(tM ). Following our assumption, there is no
t′′M ∈ [min<{tM , i}, i+π[ with (VM (t′′M ), VM (t′M )) ∈ g M . We use proof by contradiction.
Suppose that t′ 6∈ min g (t), which means there exists t′′′ > t such that (t′′′, t′) ∈ g . Let
t′′′M be defined as follows:

t′′′M =
{

t′′′, if t′′′ < i;

i+ (t′′′ − i) mod π, otherwise.

Thanks to definition 37, V (t′′′) = VM (t′′′M ), V (t′) = VM (t′M ) and since (t′′′, t′) ∈ g then
(V (t′′′), V (t′)) ∈ g M . Consequently, (I) (V (t′′′M ), V (t′M )) ∈ g M . . From (I) and (II), we
have t′M 6∈ min g M

(tM ). This conflicts with our supposition. J

I Proposition 42. Let α ∈ L?. We have that α is Isd-satisfiable iff there exists a UPPI M
such that I(M), 0 |= α and size(I(M)) ≤ |α| × 2|P|.

Proof. Let α ∈ L?.

For the only if part, let α be Isd-satisfiable. Thanks to Theorem 21 and Proposition 35,
there exists a UPI I = (V, g ) ∈ Isd s.t. I, 0 |= α and size(I) ≤ |α| × 2|P|. We define the
UPPI M(I) from I. It can be checked that I(M(I)) = I. Therefore, from Isd-satisfiable
sentence α, we can find a UPPI M such that I(M), 0 |= α and size(I(M)) ≤ |α| × 2|P|.
For the if part, let M = (i, π, VM , g M ) be a UPPI s.t. I(M), 0 |= α. Since I(M) ∈ Isd,
therefore α is Isd-satisfiable. J
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