
Temporal Modalities in Answer Set Programming
Pedro Cabalar
University of Corunna, Spain
cabalar@udc.es

Abstract
Based on the answer set (or stable model) semantics for logic programs, Answer Set Programming
(ASP) has become one of the most successful paradigms for practical Knowledge Representation
and problem solving. Although ASP is naturally equipped for solving static combinatorial problems
up to NP complexity (or ΣP

2 in the disjunctive case) its application to temporal scenarios has
been frequent since its very beginning, partly due to its early use for reasoning about actions and
change. Temporal problems normally suppose an extra challenge for ASP for several reasons. On
the one hand, they normally raise the complexity (in the case of classical planning, for instance,
it becomes PSPACE-complete), although this is usually accounted for by making repeated calls
to an ASP solver. On the other hand, temporal scenarios also pose a representational challenge,
since the basic ASP language does not support temporal expressions. To fill this representational
gap, a temporal extension of ASP called Temporal Equilibrium Logic (TEL) was proposed in and
extensively studied later. This formalism constitutes a modal, linear-time extension of Equilibrium
Logic which, in its turn, is a complete logical characterisation of (standard) ASP based on the
intermediate logic of Here-and-There (HT). As a result, TEL is an expressive non-monotonic modal
logic that shares the syntax of Linear-Time Temporal Logic (LTL) but interprets temporal formulas
under a non-monotonic semantics that properly extends stable models.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Constraint and logic programming; Computing methodologies → Nonmonotonic,
default reasoning and belief revision; Computing methodologies → Logic programming and answer
set programming; Computing methodologies → Temporal reasoning

Keywords and phrases Logic Programming, Temporal Logic, Answer Set Programming, Modal
Logic

Digital Object Identifier 10.4230/LIPIcs.TIME.2020.2

Category Invited Talk

Funding Pedro Cabalar : research partially supported by MINECO (grant TIN2017-84453-P) and
Xunta de Galicia (grant GPC ED431B 2019/03), Spain.

Acknowledgements This document is a summary of a long term project jointly developed by the
Knowledge Representation group (inside IRLab) at the University of Corunna, Spain, led by Pedro
Cabalar and the Potassco group at the University of Potsdam, Germany, directed by Torsten
Schaub. This includes joint work with, among others, Felicidad Aguado, Martín Diéguez, Roland
Kaminski, Fançois Laferriere, Philip Morkisch, Gilberto Pérez, Anna Schuhmann and Concepción
Vidal. Authors from other universities that have undoubtely contributed to the project are David
Pearce, Philip Balbiani, Luis Fariñas and Jorge Fandinno.

EXTENDED ABSTRACT

Based on the answer set (or stable model) semantics [12] for logic programs, Answer Set
Programming [4] (ASP) has become one of the most successful paradigms for practical
Knowledge Representation and problem solving. Although ASP is naturally equipped for
solving static combinatorial problems up to NP complexity (or ΣP

2 in the disjunctive case) its
application to temporal scenarios has been frequent since its very beginning, partly due to its
early use for reasoning about actions and change [13]. Temporal problems normally suppose
an extra challenge for ASP for several reasons. On the one hand, they normally raise the

© Pedro Cabalar;
licensed under Creative Commons License CC-BY

27th International Symposium on Temporal Representation and Reasoning (TIME 2020).
Editors: Emilio Muñoz-Velasco, Ana Ozaki, and Martin Theobald; Article No. 2; pp. 2:1–2:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7440-0953
mailto:cabalar@udc.es
https://doi.org/10.4230/LIPIcs.TIME.2020.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Temporal Modalities in Answer Set Programming

complexity (in the case of classical planning, for instance, it becomes PSPACE-complete [5]),
although this is usually accounted for by making repeated calls to an ASP solver. On the
other hand, temporal scenarios also pose a representational challenge, since the basic ASP
language does not support temporal expressions.

To fill this representational gap, a temporal extension of ASP called Temporal Equilibrium
Logic (TEL) was proposed in [7] and extensively studied later on [1]. This formalism
constitutes a modal, linear-time extension of Equilibrium Logic [15] which, in its turn, is
a complete logical characterisation of (standard) ASP based on the intermediate logic of
Here-and-There (HT) [14]. As a result, TEL is an expressive non-monotonic modal logic that
shares the syntax of Linear-Time Temporal Logic (LTL) [16] but interprets temporal formulas
under a non-monotonic semantics that properly extends stable models. This semantics is
based on the idea of selecting some LTL temporal models of a theory Γ that satisfy some
minimality condition, when examined under the weaker logic of temporal HT (THT). Thus,
a temporal stable model of Γ is a kind of selected LTL model of Γ, and so, it has the form of
an infinite sequence of states, usually called a trace. To put an example, the Yale Shooting
scenario [] where we must shoot a loaded gun to kill a turkey, can be encoded in TEL as:

�(loaded ∧ ◦shoot → ◦dead) (1)
�(loaded ∧ ◦shoot → ◦unloaded) (2)

�(load → loaded) (3)
�(dead → ◦dead) (4)

�(loaded ∧ ¬◦unloaded → ◦loaded) (5)
�(unloaded ∧ ¬◦loaded → ◦unloaded) (6)

In this way, under TEL semantics, implication α→ β has a similar behaviour to a directional
inference rule, normally reversed as β ← α or β :− α in logic programming notation. The
last two rules, (5)-(6), encode the inertia law for fluents loaded and unloaded, respectively.
Note the use of ¬ in these two rules: it actually corresponds to default negation, that is, ¬α
is read as “there is no evidence about α.” For instance, (5) is read as “if the gun was loaded
and we cannot prove that it will become unloaded then it stays loaded.”

Computation of temporal stable models is a complex task. THT-satisfiability has been
classified [8] as Pspace-complete, that is, the same complexity as LTL-satisfiability, whereas
TEL-satisfiability rises to ExpSpace-completeness, as proved in [3]. In this way, we face a
similar situation as in the non-temporal case where HT-satisfiability is NP-complete like
SAT, whereas existence of equilibrium model (for arbitrary theories) is ΣP

2 -complete (like
disjunctive ASP). There exist a pair of tools, STeLP [6] and ABSTEM [9], that allow computing
(infinite) temporal stable models (represented as Büchi automata). These tools can be used
to check verification properties that are usual in LTL, like the typical safety, liveness and
fairness conditions, but in the context of temporal ASP. Moreover, they can also be applied
for planning problems that involve an indeterminate or even infinite number of steps, such
as the non-existence of a plan. The tool ABSTEM also accepts pairs of theories to decide
different types of equivalence: LTL-equivalence, TEL-equivalence (i.e. coincidence in the
set of TS-models) and strong equivalence (i.e., THT-equivalence). Moreover, when strong
equivalence fails, ABSTEM obtains a context, that is, an additional formula that added to the
compared theories makes them behave differently.

The original definition of TEL was thought as a direct non-monotonic extension of
standard LTL, so that models had the form of infinite traces. However, this rules out
computation by ASP technology and is unnatural for applications like planning, where plans
amount to finite prefixes of one or more traces [11]. In a recent line of research [10], TEL



P. Cabalar 2:3

was extended to cope with finite traces (which are closer to ASP computation). On the one
hand, this amounts to a restriction of THT and TEL to finite traces. On the other hand, this
is similar to the restriction of LTL to LTLf advocated by [11]. Our new approach, dubbed
TELf , has the following advantages. First, it is readily implementable via ASP technology.
Second, it can be reduced to a normal form which is close to logic programs and much simpler
than the one obtained for TEL. Finally, its temporal models are finite and offer a one-to-one
correspondence to plans. Interestingly, TELf also sheds light on concepts and methodology
used in incremental ASP solving when understanding incremental parameters as time points.

Another distinctive feature of TELf is the inclusion of future as well as past temporal
operators. When using the causal reading of program rules, it is generally more natural to
draw upon the past in rule bodies and to refer to the future in rule heads. As well, past
operators are much easier handled computationally than their future counterparts when it
comes to incremental reasoning, since they refer to already computed knowledge.

TELf is implemented in the telingo system, extending the ASP system clingo to
compute the temporal stable models of (non-ground) temporal logic programs. To this end,
it extends the full-fledged input language of clingo with temporal operators and computes
temporal models incrementally by multi-shot solving using a modular translation into ASP.
telingo is freely available at github1. The interested reader might have a good time playing
with the examples given in the examples folder at the same site. For instance, under telingo
syntax, our theory (1)-(6) would be represented2 as

#program dynamic.
dead :- shoot, ’loaded.
unloaded :- shoot, ’unloaded.
loaded :- load.
dead :- ’dead.
loaded :- ’loaded, not unloaded.
unloaded :- ’unloaded, not loaded.

The telingo input language actually allows the introduction of arbitrary LTL formulas in
constraints or past formulas in the rule bodies (conditions).

Similar to the extension of LTLf to its (linear) dynamic logic counterpart LDLf [11], we
just introduced in [2] a dynamic extension of HT that draws up upon this linear version of
dynamic logic. We refer to the resulting logic as (Linear) Dynamic logic of Here-and-There
(DHT for short). As usual, the equilibrium models of DHT are used to define temporal
stable models and induce the non-monotonic counterpart of DHT, referred to as (Linear)
Dynamic Equilibrium Logic (DEL). In doing so, we actually parallel earlier work extending
HT with LTL, ultimatly leading to THT and TEL. To put an example in DEL, the formula
[¬help∗](¬help→ sos) behaves as a logic program rule that repeats sending an sos while no
evidence of help has been received along a sequence of states. DEL is general enough to cover
LDL, as it shares the same syntax but introduces non-monotonicity with the definition of
temporal stable models. It also covers LTL and TEL as particular cases, since LTL temporal
operators can be defined as particular cases of DEL expressions: for instance �α (i.e. α
always holds) can be represented in DEL as [>∗]α. The satisfiability problem in DEL is
ExpSpace-complete; it thus coincides with that of TEL but goes beyond that of LDL and
LTL, both being PSpace-complete.

1 https://github.com/potassco/telingo
2 The left upper commas are read as previously and correspond to the past operator dual of next “◦”.
The � operator is implicit in all dynamic rules.

TIME 2020

https://github.com/potassco/telingo


2:4 Temporal Modalities in Answer Set Programming

These recent results open several interesting topics for future study. First, the version of
DEL for finite traces, DELf , seems a natural step to follow, similar to the relation of LDL
and LDLf . We plan to propose and analyse this variation in an immediate future. As a
second open topic, it would be interesting to adapt existing model checking techniques (based
on automata construction) for temporal logics to solve the problem of existence of temporal
stable models. This was done for infinite traces in [8, 6], but no similar method has been
implemented for finite traces on TELf or DELf yet. The importance of having an efficient
implementation of such a method is that it would allow deciding non-existence of a plan in a
given planning problem, something not possible by current incremental solving techniques.
Another interesting topic is the optimization of grounding in temporal ASP specifications as
those handled by telingo. The current grounding of telingo is inherited from incremental
solving in clingo and does not exploit the semantics of temporal expressions that are
available now in the input language. Finally, we envisage to extend the telingo system
with features of DEL in order to obtain a powerful system for representing and reasoning
about dynamic domains, not only providing an effective implementation of TEL and DEL
but, furthermore, a platform for action and control languages.

References

1 F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, and C. Vidal. Temporal equilibrium logic: a
survey. Journal of Applied Non-Classical Logics, 23(1-2):2–24, 2013.

2 A. Bosser, P. Cabalar, M. Diéguez, and T. Schaub. Introducing temporal stable models for
linear dynamic logic. In M. Thielscher, F. Toni, and F. Wolter, editors, Proceedings of the
Sixteenth International Conference on Principles of Knowledge Representation and Reasoning
(KR’18), pages 12–21. AAAI Press, 2018.

3 Laura Bozzelli and David Pearce. On the complexity of temporal equilibrium logic. In Pro-
ceedings of the 30th Annual ACM/IEEE Symposium of Logic in Computer Science (LICS’15),
Kyoto, Japan, 2015. (to appear).

4 G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Communica-
tions of the ACM, 54(12):92–103, 2011.

5 Tom Bylander. The computational complexity of propositional strips planning. Artificial
Intelligence, 69(1):165–204, 1994. doi:10.1016/0004-3702(94)90081-7.

6 P. Cabalar and M. Diéguez. STELP - a tool for temporal answer set programming. In
LPNMR’11, volume 6645 of Lecture Notes in Computer Science, pages 370–375, 2011.

7 P. Cabalar and G. Perez. Temporal Equilibrium Logic: A First Approach. In Proceedings
of the 11th International Conference on Computer Aided Systems Theory (EUROCAST’07),
page 241–248, 2007.

8 Pedro Cabalar and Stéphane Demri. Automata-based computation of temporal equilibrium
models. In 21st International Symposium on Logic-Based Program Synthesis and Transforma-
tion (LOPSTR’11), 2011.

9 Pedro Cabalar and Martín Diéguez. Strong equivalence of non-monotonic temporal theories.
In Proceedings of the 14th International Conference on Principles of Knowledge Representation
and Reasoning (KR’14), Vienna, Austria, 2014.

10 Pedro Cabalar, Roland Kaminski, Torsten Schaub, and Anna Schuhmann. Temporal answer
set programming on finite traces. Theory and Practice of Logic Programming, 18(3-4):406–420,
2018.

11 G. De Giacomo and M. Vardi. Linear temporal logic and linear dynamic logic on finite traces.
In F. Rossi, editor, Proceedings of the Twenty-third International Joint Conference on Artificial
Intelligence (IJCAI’13), pages 854–860. IJCAI/AAAI Press, 2013.

https://doi.org/10.1016/0004-3702(94)90081-7


P. Cabalar 2:5

12 M. Gelfond and V. Lifschitz. The Stable Model Semantics For Logic Programming. In Proc.
of the 5th International Conference on Logic Programming (ICLP’88), page 1070–1080, Seattle,
Washington, 1988.

13 Michael Gelfond and Vladimir Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17(2/3&4):301–321, 1993.

14 A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen
Akademie der Wissenschaften. Physikalisch-mathematische Klasse, 1930.

15 D. Pearce. A New Logical Characterisation of Stable Models and Answer Sets. In Proc. of
Non-Monotonic Extensions of Logic Programming (NMELP’96), pages 57–70, Bad Honnef,
Germany, 1996.

16 A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science, pages 46–57. IEEE Computer Society Press, 1977.

TIME 2020


