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Abstract
CSL is a well-known temporal logic for specifying properties of real-time stochastic systems, such
as continuous-time Markov chains. We introduce PCSL, an extension of CSL that allows using
existentially quantified parameters in timing constraints, and investigate its expressiveness and
decidability over properties of continuous-time Markov chains. Assuming Schanuel’s Conjecture, we
prove the decidability of model checking the one-parameter fragment of PCSL on continuous-time
Markov chains. Technically, the central problem we solve (relying on Schanuel’s Conjecture) is to
decide positivity of real-valued exponential polynomial functions on bounded intervals. A second
contribution is to give a reduction of the Positivity Problem for matrix exponentials to the PCSL
model checking problem, suggesting that it will be difficult to give an unconditional proof of the
decidability of model checking PCSL.
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1 Introduction

Continuous-time Markov chains (CTMC) have been intensively investigated for a long time,
especially because they are simple stochastic models with a wide range of real life applications,
being suitable for modelling properties such as expected failure time for systems or expected
time between system events. Given the omnipresence of continuous-time Markov chains,
it has been natural to seek a logical formalism to describe their properties. A popular
example is Continuous Stochastic Logic (CSL), introduced by Aziz et al in [2]. CSL is
a branching-time, temporal logic, that allows expressing quantitative bounds on certain
properties of continuous-time Markov chains.

Let us consider the CTMC M in Figure 1 modelling the state transitions of a simple
system. One can express the property that the probability of encountering an error in the
continuous time interval [0, 4] is greater than 0.5 in CSL by the following state formula:

ϕ := P>0.5(trueU[0,4]s3). (1)

1 Most of the research was done as part of Andrei’s dissertation while he was an undergraduate student
at the University of Oxford working under the supervision of James Worrell.
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Figure 1 A simple CTMC modelling a system which is considered to run properly in states s1

and s2, and to malfunction in state s3.

Another natural property that one might want to express is whether there exists a
“dangerous” short period in [0, 4], say of length 0.1, in which our example system fails with
probability at least 0.3. This could then lead to isolating such periods and taking appropriate
action. However, CSL does not allow expressing such properties. This is why we extend CSL
to allow existential quantifiers over time bounds, giving rise to the logic Parametric CSL
(PCSL), in which we can express the desired property by a state formula:

ψ := ∃t ∈ [0, 3.9] · P>0.3(trueU[t,t+0.1]s3). (2)

In general, checking if mathematical models satisfy certain properties is a central part of
formal verification. This gives rise to model checking problems, in which we want to find
procedures to determine if a model verifies properties that are usually expressed formally
within a logic. In CSL, the model checking problem consists of deciding if properties expressed
by state formulas are true or false in certain states of a CTMC. The main result of [2] is
that CSL model checking is decidable. The proof is non-trivial, as it employs results in
algebraic and transcendental number theory such as the Lindemann-Weierstrass theorem
[10]. There exist state-of-the-art model checking software, such as PRISM [8], which allow
verifying properties of systems, including CTMCs, expressed formally by logics like CSL,
PCTL. However, in this project we deal theoretically with the fundamental problem regarding
PCSL model checking.

We define the model checking problem of PCSL similarly to the one of CSL, with the
simple exception that we allow state formulas to be evaluated over initial distributions instead
of states. Therefore, we want to decide if a CTMC together with an initial distribution
entail a PCSL state formula2. We show that the model checking problem for the fragment
of PCSL consisting of formulae with only one existential quantifier, such as 2 above, is
decidable assuming Schanuel’s Conjecture, a conjecture which generalizes important results
in transcendental number theory, including the Lindemann-Weierstrass Theorem. The latter
was used in [2] to prove CSL model checking decidability. We also discuss why PCSL model
checking decidability is non-trivial and employs a strong number theoretical result.

2 Note that this simply allows for checking entailment in a certain state by setting its initial probability
to 1.
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2 PCSL Syntax and Semantics

We extend the original CSL formulation of Aziz et al by allowing existentially quantified
parameters. Sticking to the terminology in [2], we call a “path” through a CTMC M a
function on domain [0,∞) with values in the state set S, which associates to each time step
a state and follows the transitions in M . For any state s we denote by Us the set of paths
starting at s. Similarly, we denote by UM the set of paths starting at any state in M . For
any set of paths Γ starting at the same state s we denote its probability by µs(Γ).

For any initial distribution π and for any set of paths Φ, not necessarily starting from the
same state, we denote its probability by µπ(Φ), where the probability of the initial vertex is
determined according to the initial distribution π of M :

µπ(Φ) :=
∑
s∈S

π(s)µs(Us ∩ Φ). (3)

We now give the syntax and semantics of our extension, which we name “Parametric
Continuous Stochastic Logic” (PCSL). For clarity, we use in PCSL state names instead of
state labels in the formulas, while the authors of the original CSL papers use state labels.
We also define the satisfaction relation for state formulas over initial distributions instead
of states, to allow a wider class of verifiable models. Apart from this, CSL can be seen as
the PCSL restriction when using no quantified parameters in the definitions below. We also
define PCSLn, for n ∈ N, to be the restriction of PCSL with at most n nested existential
quantifiers.

2.1 PCSL Syntax
First, let T = {t1, t2, . . . } be a countably infinite set of free variables to which we have access.
These variables will represent existentially quantified real numbers. We define a parametric
term over a finite set of free variables T ′ ⊂ T as a linear combination of free variables in T ′
with rational coefficients:
1. c is a parametric term, for any c ∈ Q,
2. τ + qt is a parametric term, for any parametric term τ , q ∈ Q, and t ∈ T ′.

Let M be a CTMC with state set S. As in CSL, there are two types of PCSL formulas:
state formulas and path formulas.

State formulas are evaluated in states, or over initial distributions3, and their syntax is
given by:
1. s, for s ∈ S (the atomic state formula),
2. If f1 and f2 are state formulas, then so are ¬f1 and f1 ∨ f2, 4

3. If g is a path formula using parametric terms over free variables {t1, . . . tr}, then ∃t1 ∈
[x1, y1] . . . ∃tr ∈ [xr, yr] · P>c(g) is a state formula, where c ∈ Q, and for i = 1, . . . , r:
xi, yi ∈ Q, and 0 ≤ xi ≤ yi. 5

Path formulas are evaluated along paths, and their syntax is :

3 In CSL, the state formulas are only evaluated in states. Our extension allows evaluation over initial
distributions as well.

4 f1 ∧ f2 and f1 → f2 can be written using only these definitions
5 Note that we allow as well no free variables, so no quantifiers at all in such a formula. PCSL differs
from CSL specifically by allowing these ∃ operators.

TIME 2020
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1. f1U[a1,b1]f2U[a2,b2] . . . fn, where f1, f2, . . . , fn are state formulas, and all a1, . . . , an−1
and b1, . . . , bn−1 are parametric terms over a finite set of free variables.

For any k ∈ N, the syntax of PCSLk is the same as of PCSL, with the exception of the
path formula rule 1, which for PCSLk is:
1. f1U[a1,b1]f2U[a2,b2] . . . fn, where f1, f2, . . . , fn are state formulas, and all a1, . . . , an−1

and b1, . . . , bn−1 are parametric terms over a set of free variables of size at most k.

2.2 PCSL Semantics
Let M be a CTMC, with state set S, and initial distribution π0. Let f and g be PCSL state,
respectively path formulas.

We say that a state s satisfies a state formula f if, for a distribution π′ such that π′(s) = 1,
we have M,π′ |= f according to the definitions below. Let us denote by JfKM the set of
states satisfying f . We also denote by g[t← d] the path formula obtained by substituting
the occurrences of the free variable t in parametric terms of g by the non-negative real d.
We define the satisfaction relation M,π |= f for a general rational distribution π, using
structural induction over the state formula f :
1. f is of the form s (s ∈ S): M,π |= f iff π(s) = 1,
2. f is of the form ¬f1: M,π |= f iff M,π 6|= f1,
3. f is of the form f1 ∨ f2: M,π |= f iff M,π |= f1 or M,π |= f2,
4. f is of the form ∃t1 ∈ [x1, y1] . . . ∃tr ∈ [xr, yr] · P>c(g): M,π |= f iff there exist non-

negative reals c1 ∈ [x1, y1], . . . , cr ∈ [xr, yr] such that

µπ({ρ ∈ UM |M,ρ |= g[t1 ← c1][t2 ← c2] . . . [tr ← cr]}) > c,

By notation abuse, we define the satisfaction relation M,ρ |= g for path formulas g and for
any path ρ:
1. g is a path formula with no free variables (i.e. all parametric terms are numbers) of

the form f1U[a1,b1]f2U[a2,b2] . . . fn and ρ is a path through M : M,ρ |= g iff there exist
positive reals α1, . . . , αn−1 such that for each integer in [1, n− 1] we have ai ≤ αi ≤ bi
and for any β ∈ [αi−1, αi) we have π(β) ∈ JfiKM , and π(αn−1) ∈ JfnKM . 6

We further overwrite the satisfaction relation as follows:
we define M |= f iff M,π0 |= f , where π0 is the initial distribution of M ,
for any s ∈ S, we define M, s |= f iff M,π′ |= f , where distribution π′ is chosen over S
such that π′(s) = 1 and π′(s′) = 0, for any s′ 6= s.

2.3 PCSL Formulas Examples
The PCSL formula

φ3 := s1 ∧ ∃t ∈ [0, 5] · P>0.5(trueU[t,t]s2)

expresses the property that the system is initially in state s1 and there exists an instantaneous
moment t ≤ 5 during which the probability of being in state s2 is greater than 0.5. The
formula φ3 is in PCSL1, but not in CSL. Note that it is different from the CSL formula
φ4 := s1 ∧ P>0.5(trueU[0,5]s2), which expresses the property of being in state s1 initially and
transitioning to s2 at any moment before 5.0 with probability greater than 0.5.

6 The real number α0 is defined to be 0 for convenience. There are other ways to define the semantics for
the path formula, but we want to be consistent with [2].
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A more interesting example is motivated by the following situation. Suppose we have
a system and we want a state formula ϕ to hold with high probability (> 0.8) before time
t = 5, but we do not want the state formula to be too biased towards any short period, i.e.,
we do not want there to be any continuous time period of length 0.1 such that ϕ holds with
probability greater than 0.2. This can be modelled in PCSL (in PCSL1) as:

φ5 := P>0.8(trueU[0,5]ϕ) ∧ ¬∃t ∈ [0, 4.9] · P>0.2(trueU[t,t+0.1]ϕ).

The following formula is in PCSL2, but (syntactically) not in PCSL1, as it contains a
path formula with two free variables:

φ6 := ∃t1 ∈ [0, 1]∃t2 ∈ [3, 4] · P>0.5(trueU[t1,t1]s1U[t1,t2]trueU[t2,t2]s2).

Formula φ6 expresses the property that there are some moments t1 ∈ [0, 1] and t2 ∈ [3, 4]
such that the probability of being in state s1 at time t1 and in state s2 at time t2 is greater
than 0.5.

3 Mathematical Background

3.1 Exponential Polynomials
I Definition 1. An exponential polynomial is a function f(t) =

∑m
i=1 Pi(t)eαit, where

Pi ∈ C[t] are polynomials with complex coefficients and α1, . . . , αm are complex numbers. We
call the coefficients of polynomials P1, . . . , Pm and the numbers α1, . . . , αm the coefficients of
the exponential polynomial f .

Exponential polynomials often arise when writing the explicit solutions of ordinary linear
differential equations and when modelling probability distributions in dynamic systems, such
as continuous-time Markov chains [4, 2, 3]. We will mainly be concerned with exponential
polynomials with algebraic coefficients that are real-valued over reals, i.e., if t is real, then
f(t) is real. We simply refer to such functions as real-valued.

The following result, a standard linear algebra result (see [3, 2] for a detailed proof), will
later on give the relation between transition probabilities of continuous-time Markov chains
and exponential polynomials:

I Lemma 2. Let A be an n × n matrix with rational (algebraic) entries. Then, for any
α, β ∈ Q, the entries of the exponential matrix f(t) := exp(A(αt + β)) are real-valued
exponential polynomials with algebraic coefficients.

3.2 Schanuel’s Conjecture
Schanuel’s Conjecture is a unifying conjecture in the field of trasncendental number the-
ory, having as consequences important results about exponential functions over both real
and complex numbers, such as in the work of Zilber [12], and in model theory, such as
decidability of the first-order theory Thexp(R) of the field of real numbers with exponentials
〈R,+,×, exp, 0, 1〉 [9], and decidability of the Continuous Skolem Problem [4].

Schanuel’s Conjecture has the following form:

I Conjecture 1. (Schanuel’s Conjecture) Given any n complex numbers z1, . . . , zn that are
linearly independent over Q, the extension field Q(z1, . . . , zn, e

z1 , . . . , ezn) has transcendence
degree at least n over Q.

Schanuel’s Conjecture states that, for zi’s as above, among z1, . . . , zn, e
z1 , . . . , ezn there are at

least n numbers which are not related by any non-trivial polynomial with rational coefficients.
Schanuel’s Conjecture is a generalisation of Lindemann-Weierstrass theorem, which lies

at the heart of the decidability proof of CSL in [2], the logic that we extend into PCSL.

TIME 2020
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3.3 The Positivity Problem
I Definition 3. An instance of the Positivity Problem for exponential polynomials is a
real-valued exponential polynomial f(t) =

∑m
j=1 Pj(t)eλjt with algebraic coefficients, together

with an interval [c, d], where c, d ∈ Q+ (d ≥ c ≥ 0). We want to answer the question: does
there exist t ∈ [c, d] such that f(t) > 0?

We show in the appendix that deciding whether a real-valued exponential polynomial
with algebraic coefficients is strictly positive at some point in a given bounded interval
with rational endpoints is decidable under Schanuel’s Conjecture. This decision problem
is of particular interest because it arises naturally in continuous linear dynamical systems,
as we will see in our CSL extension. We mainly build our proof on top of the one in [4],
which shows that we can decide, subject to Schanuel’s Conjecture, whether a real-valued
exponential polynomial with algebraic coefficients has a zero in a given bounded interval.
The additional complexity in the current problem comes from the fact that detecting sign
changes for a real-valued exponential polynomial is based on the behaviour of all its factors
together, unlike detecting roots, where only the behaviour of one of its factors matters.

I Theorem 4. The Positivity Problem for exponential polynomials is decidable assuming
Schanuel’s Conjecture.

The following is a proof outline of Theorem 4; full details can be found in the Appendix.
Suppose that we want to decide whether a given real-valued exponential polynomial f is
positive throughout an interval [c, d]. We reduce this problem to deciding the existence
of zeros of exponential polynomials on bounded intervals, which is known to be decidable
conditional on Schanuel’s Conjecture [4]. In fact the reduction itself uses several of the ideas
developed in [4]. To carry out the reduction we first compute the sign of f at the endpoints c
and d. Suppose that f is negative at both endpoints. We then compute a factorisation of f
in the form f = fα1

1 · · · f
αk

k , where the factors fi are real-valued exponential polynomials that
do not share any common zeros. Then determining whether f changes sign from negative to
positive on [c, d] reduces to determining whether one of its factors fi with odd exponent αi
changes sign. To solve this last problem we give an effectively decidable categorisation of the
factors into two types.

We show that factors of the first type are always nonnegative and factors g of second
type are such that g and g′ have no common zeros, i.e., they always sign at every zero. Thus
f becomes positive on [c, d] iff it has a factor of the second type that has a zero in [c, d]. The
role of Schanuel’s conjecture in the above argument is to rule out the existence of common
zeros of the different factors of f and common zeros of certain factors and their derivatives.

I Remark 5. Given a function f and an interval [c, d] that are an instance of the Positivity
Problem for exponential polynomials, a decision procedure for this problem trivially implies
a decision procedure for checking in a similar setup if there exists t ∈ [c, d] such that f(t) > q,
for any given rational q. This follows as we can let g(t) := f(t)− q, so g is an exponential
polynomial with algebraic coefficients as well, therefore we can use a decision procedure for
the Positivity Problem for exponential polynomials on input function g and interval [c, d]
and decide if there exists t ∈ [c, d] such that f(t) > q.

The Positivity Problem for exponential polynomials is a hard problem, as it is trivially
inter-reducible with the Non-negativity Problem for exponential polynomials [3], which has
the same setup as the Positivity Problem for exponential polynomials, but asks whether for
all t ∈ [c, d] it is true that f(t) ≥ 0. Concretely, decidability of any of the two problems
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implies decidability of the other as well:

∀t ∈ [c, d].f(t) ≥ 0⇔ ¬∃t ∈ [c, d].(−f(t) > 0), (4)
∃t ∈ [c, d].f(t) > 0⇔ ¬∀t ∈ [c, d].(−f(t) ≥ 0). (5)

However, decidability of the Non-negativity Problem for exponential polyonimals is open [3],
so decidability of the Positivity Problem for exponential polynomials is a hard mathematical
task. In fact, comparing exponential polynomials with 0 is a hard task [4, 9, 3], and decision
problems related to this would have considerable new implications in both model theory and
number theory [4]. This motivates us to work under the assumption of Schanuel’s Conjecture,
which is often assumed in model theory [4, 12], as the unconditional decidability currently
seems out of reach.

4 Model Checking Decidability of PCSL

A central problem in formal verification for any logic describing dynamic systems is the
model checking problem. Intuitively, it asks whether a model of a certain system satisfies a
specification, usually expressed withing a logical formalism.

We introduce the PCSL model checking problem below.

I Definition 6 (Model checking problem for PCSL). An instance of the model checking problem
for PCSL is given by a continuous-time Markov chain M , a distribution π with rational
entries over the states of M , and a PCSL formula ϕ. We want to answer the question: is it
the case that M,π |= ϕ?

The model checking problem for PCSLn, for any n ∈ N, is defined similarly, with the
exception that ϕ is a PCSLn formula in Definition 6. We prove in subsection 4.1 that PCSL1
model checking is decidable assuming Schanuel’s Conjecture. We also show in subsection 4.2
that unconditional PCSL1 model checking is hard from a mathematical point of view, by
reducing a well-known hard problem to it.

4.1 Decidability of the model checking problem for PCSL1 assuming
Schanuel’s Conjecture

We show that PCSL1 model checking is decidable assuming Schanuel’s Conjecture. For this,
we prove that the decidability of the Positivity Problem for exponential polynomials implies
PCSL1 model checking decidability. As discussed in Section 3.3, Schanuel’s Conjecture
implies decidability of the Positivity Problem for exponential polynomials, therefore we get
our result.

Given any Markov chain M with state set S = {s1, . . . , sk} and rational transition rate
matrix Q, and an initial rational distribution π, we proceed by structural induction over
PCSL1 formula ϕ to show that there exists a model checking procedure to determine if
M,π |= ϕ.

Let us first deal with the trivial cases.
If ϕ is an atom (state) s, then M,π |= ϕ iff π(s) = 1.
If ϕ = ϕ1 ∨ ϕ2, we have M,π |= ϕ iff M,π |= ϕ1 or M,π |= ϕ2.
If ϕ = ¬ϕ1, we have M,π |= ϕ iff M,π 6|= ϕ1.
If ϕ = P>c(ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn), as we can model check formulas

ϕ1, . . . , ϕn by induction, the decidability follows from the same proof used by Aziz et al in
[2] to show that classic CSL is decidable, by only using the Lindemann-Weierstrass theorem.

TIME 2020
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Now, we have to deal with the case

ϕ = ∃t ∈ [a, b] · P>c(ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn),

where a, b, c ∈ Q, and a1, b1, . . . , an−1, bn−1 are parametric terms over {t} (functions in t of
the form αt+ β, with α, β ∈ Q). We therefore need to reason about the quantity

f(t) := µπ({paths ρ ∈ UM |M,ρ |= ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn}). (6)

In fact, we are interested if there exists some t ∈ [a, b] such that f(t) > c. We further show
that f(t) is an exponential polynomial that we can algorithmically compute, which gives us
the sought conditional decidability result.

Assume for the moment that for any t ∈ [a, b] we have

0 ≤ a1 ≤ b1 ≤ · · · ≤ an−1 ≤ bn−1. (7)

By the structural induction hypothesis, we can compute the sets of states Jϕ1KM , . . . , JϕnKM
satisfying subformulas ϕ1, . . . ϕn. For any subset of states H ⊆ S, let its complement be
Hc := S \H.

We show how to compute the probability function f(t), by similar constructions to the
ones in [2]. Let us construct the following matrices, where for any matrix A we refer to its
entry on row i and column j as A(i, j).

Let Qi,i be a transition rate matrix that models states in JϕiKcM as absorbing states, and
is everywhere else identical to Q:

Qi,i(j, k) :=
{
Q(j, k), if sj ∈ JϕiKM ,
0, if sj ∈ JϕiKcM .

This matrix is used to model a run of M which remains in states satisfying ϕi. Also,
let Pi,i(t) := exp(Qi,it) be the transition matrix for time t corresponding to the Markov
chain described by Qi,i.
Let Qi,i+1 be a transition rate matrix obtained from Q that only models transitions from
JϕiKM to JϕiKM ∪ Jϕi+1KM , and from Jϕi+1KM to Jϕi+1KM :

Qi,i+1(j, k) :=


Q(j, k), if sj ∈ JϕiKM and sk ∈ JϕiKM ∪ Jϕi+1KM ,
Q(j, k), if sj ∈ Jϕi+1KM and sk ∈ Jϕi+1KM ,
0, otherwise.

.

This matrix is used to model transitions from states satisfying ϕi to states satisfying
ϕi+1. Also, let Pi,i+1(t) := exp(Qi,i+1t) be the transition matrix for time t corresponding
to the Markov chain described by Qi,i+1.
Let Ii be an indicator matrix of states in JϕiKM :

Ii(j, k) :=
{

1, if sj = sk ∈ JϕiKM ,
0, otherwise.

This matrix is used to filter out states not satisfying ϕi at certain times.
Finally, let En be a matrix obtained from Q which treats states in JϕnK as absorbing
states:

En(j, k) :=
{

0, if sj ∈ JϕnKM ,
Q(j, k), otherwise.
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This matrix is used at the end of the formula to “collect” all the probability mass of
paths which have satisfied the path formula ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn. Also,
let Fn(t) := exp(Ent) be the transition matrix for time t corresponding to the Markov
chain described by En.

It is not hard to see that the probability of paths starting in M according to the initial
probability π which satisfy the path formula

ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn,

as defined in (6) above, has the expression:

f(t) = π> · P0,0(a1) · I0 · P0,1(b1 − a1) · I1 · P1,1(a2 − b1) · I1 · P1,2(b2 − a2)
·I2 · · · · In−1 · Fn(bn − an) · In · 1.

(8)

All matrix functions parameters (a1, b1 − a1, a2 − b1, . . . ) are of the form αt + β, for
α, β ∈ Q. By Lemma 2 we get that all entries implied in the product at (8) are exponential
polynomials with algebraic coefficients. As exponential polynomials with algebraic coefficients
are closed under product and sum, we get that f(t) is an exponential polynomial with algebraic
coefficients, which we can compute algorithmically, by using classic representation methods
of algebraic numbers (see [5, Section 4.2]).

Therefore, by our result - Theorem 4, we get that assuming Schanuel’s Conjecture we can
decide if there exists t ∈ [a, b] such that f(t)− c > 0, as f(t)− c is a real-valued exponential
polynomial with algebraic coefficients. Therefore, under Schanuel’s Conjecture, we can also
model check ϕ in the case when

ϕ = ∃t ∈ [a, b] · P>c(ϕ1U[a1,b1]ϕ2U[a2,b2] . . .U[an−1,bn−1]ϕn).

In conclusion, we have covered all forming rules of state formulas in PCSL1, and proved
by structural induction that Schanuel’s Conjecture implies the existence of a model checking
procedure for PCSL1.
I Remark 7. Let us briefly discuss the assumption (7). We assumed that the parametric
terms a1, b1, . . . , an−1, bn−1 in {t}, which are linear functions in t, satisfy for all t ∈ [a, b]:
a1 ≤ b1 ≤ · · · ≤ an−1 ≤ bn−1. Let us write them explicitly as ai = xi(t), bi = yi(t), for
i = 1, . . . , n − 1. First, it is easy to see that, as all parametric terms are linear functions
in t with rational coefficients, there is some maximal interval [c, d] ⊆ [a, b], with t, c ∈ Q,
such that all 0 ≤ x1(t) ≤ y1(t), 0 ≤ x2(t) ≤ y2(t), . . . 0 ≤ xn−1(t) ≤ yn−1(t) hold for all
t ∈ [c, d], and at least one of them doesn’t hold for any t ∈ [a, b]\ [c, d]. Then, we can just seek
some value of t in [c, d] that satisfies the formula, as outside this interval the formula is not
syntactically valid. Now, in order to be able to also assume the inequalities yi(t) ≤ xi+1(t),
we can split the interval [c, d] in intervals in which either yi(t) ≤ xi+1(t), or yi(t) ≥ xi+1(t)
holds, and deal with all possible cases separately. The full details for this part are rather
technical, and mostly follow the technique in [2].

4.2 Hardness of the model checking problem for PCSL1

To show hardness of deciding the model checking problem for PCSL1, therefore showing
hardness of deciding the model checking problem for PCSL implicitly, we proceed in two
steps.

First, we introduce a hard decision problem - the Positivity Problem for matrix exponentials.
This is a hard problem as it is inter-reducible with the Positivity Problem for exponential
polynomials (by simple algebraic manipulation, see [3] for details). We have discussed in
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7:10 Parametric Continuous Stochastic Logic

subsection 3.3 why the Positivity Problem for exponential polynomials is a hard problem:
it would imply decidability of the Non-negativity Problem for exponential polynomials,
which is currently open [3]. We show that the Positivity Problem for matrix exponentials
is reducible to a decision problem regarding CTMC properties - the Threshold Problem for
continuous-time Markov chains.

Second, we show that PCSL1 model checking decidability implies decidability of the
Threshold Problem for continuous-time Markov chains. Therefore, decidability of the
model checking problem for PCSL1 implies decidability of the Positivity Problem for matrix
exponentials. This stands as hardness evidence for a PCSL1 model checking decision
procedure, and for a PCSL model checking decision procedure as well, because PCSL1 is a
fragment of PCSL.

4.2.1 Reduction of a Hard Problem to the Threshold Problem for
Continuous-Time Markov Chains

We introduce below the Threshold Problem for continuous-time Markov chains and the
Positivity Problem for matrix exponentials.

I Definition 8 (Threshold Problem for continuous-time Markov chains). I = (〈u,R,v〉, 〈a, b〉)
is an instance of the Threshold Problem for continuous-time Markov chains, where
u ∈ Qk is a stochastic vector7, v ∈ {0, 1}k, R ∈ Qk×k is a rate matrix (for some k ∈ N),
and a, b ∈ Q such that 0 ≤ a ≤ b. We want to answer the question: does there exist some
real t ∈ [a, b] such that u>eRtv > 1

2?

Intuitively, in the Threshold Problem for continuous-time Markov chains, u represents the
initial distribution and R represents the rate matrix of a CTMC. Then, we ask if at some
moment during a given interval [a, b] the probability of being in a state from a given set, that
is described by 1-entries of v, is greater than 1

2 .

IDefinition 9 (Positivity Problem for matrix exponentials). I = (〈u,A,v〉, 〈a, b〉) is an instance
of the Positivity Problem for matrix exponentials, where u,v ∈ Qk, A ∈ Qk×k (for
some k ∈ N), and a, b ∈ Q+, with 0 ≤ a ≤ b. We want to answer the question: does there
exist some real t ∈ [a, b] such that u>eAtv > 0?

Note that the Positivity Problem for matrix exponentials can be seen as a generalization
of the Threshold Problem for continuous-time Markov chains, both because the former
has much more general instances, but also because its decidability implies decidability of
the latter. To see this, let (〈u,R,v〉, 〈a, b〉) be an instance of the Threshold Problem for
continuous-time Markov chains, then eRt is a stochastic matrix8, so u>eRt is a stochastic
row vector, therefore u>eRt1 = 1. Then, we could obtain a decision procedure for this
problem by applying a decision procedure for the Positivity Problem for matrix exponentials
on instance (〈u,R,v− 1

21〉, 〈a, b〉):

∃t ∈ [a, b] such that u>eRtv > 1
2 ⇔

∃t ∈ [a, b] such that u>eRt(v− 1
21) > 0.

7 Has positive entries that sum up to 1.
8 Its rows are probability distributions.
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Furthermore, as eRt is a stochastic matrix, we would expect the Threshold Problem
for continuous-time Markov chains to be considerably easier, as eigenvalues of stochastic
matrices are well-behaved9.

Surprisingly, we show that the Positivity Problem for matrix exponentials is reducible to
the Threshold Problem for continuous-time Markov chains, thus making the two decision
problems equivalently hard.

I Theorem 10. The Positivity Problem for matrix exponentials is reducible to the Threshold
Problem for continuous-time Markov chains.

Proof. The full proof is given in the appendix. Using algebraic manipulations, we construct
a rate transition matrix O and some vectors u1 and v3, and then a rate transition matrix
R, a stochastic vector ũ and a vector ṽ with only 0 and 1 entries such that

∃t ∈ [a, b] such that u>eAtv > 0 ⇐⇒

∃t ∈ [a, b] such that u1
>eOtv3 >

1
2 ⇐⇒

∃t ∈ [a, b] such that ũ>eRtṽ > 1
2 .

(9)

However, a decision procedure for the Threshold Problem for continuous-time Markov
chains would specifically allow us to answer queries such as ∃t ∈ [a, b] such that ũ>eRtṽ > 1

2 ,
therefore it would give a decision procedure for the Positivity Problem for matrix exponentials
as well. J

4.2.2 Expressing the Threshold Problem for Continuous-Time Markov
Chains in PCSL1

Let I = (〈u,R,v〉, 〈a, b〉) be an instance of the Threshold Problem for continuous-time
Markov chains. Recall that u ∈ Qk is a stochastic vector, R ∈ Qk×k is a rate matrix,
v ∈ {0, 1}k, and 0 ≤ a ≤ b are rationals, and we want to answer whether there exists t ∈ [a, b]
such that u>eRtv > 1

2 .
Let M be the continuous-time Markov chain corresponding to rate matrix R, with initial

probability distribution π0 := u, and with state set S such that |S| = k. The probability
distribution over states at time t is given by u>eRt. Therefore, as v ∈ {0, 1}k, we can
see the expression u>eRtv as summing up the probability distribution at time t of states
corresponding to 1-entries in v.

Let the states from S that correspond to 1-entries of v be S′ = {s1, . . . , si}. If S′ is
empty, then v = 0, and we have u>eRtv = 0, so the Threshold Problem for continuous-time
Markov chains instance is a negative instance, and we trivially have:

∃t ∈ [a, b] such that u>eRtv > 1
2 ⇔M |= s ∧ ¬s, for some s ∈ S. (10)

Otherwise, if S′ is not empty, we get:

∃t ∈ [a, b] such that u>eRtv > 1
2 ⇔

M,π0 |= ∃t ∈ [a, b] · P>1/2(trueU[t,t](s1 ∨ · · · ∨ si)).
(11)

9 Standard linear algebra results imply that 1 is always an eigenvalue of any stochastic matrix, and all
the eigenvalues have absolute value less or equal to 1.
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7:12 Parametric Continuous Stochastic Logic

Thus, for any instance I of the Threshold Problem for continuous-time Markov chains,
there exists a continuous-time Markov chain M and some PCSL1 formula ϕ such that I is a
yes-instance of the Threshold Problem for continuous-time Markov chains if and only if the
PCSL1 satisfaction relation M |= ϕ holds.

In conclusion, a PCSL1 model checking procedure (that decides if PCSL1 statements of
the form M |= ϕ hold) would yield the existence of a decision procedure for the Threshold
Problem for continuous-time Markov chains. As we have shown in Section 4.2.1, this would
imply the decidability of the Positivity Problem for matrix exponentials, which, as discussed,
is a hard problem and is not currently known to be decidable. Therefore, the unconditional
decidability of PCSL1 model checking, and thus of PCSL model checking, seems to be a hard
problem.

5 Conclusions

5.1 Overview

We introduced PCSL, a powerful parametric logic for formally expressing temporal properties
of continuous-time Markov chains. We investigated the model checking problem of our logic,
proving that its unconditional decidability is a hard problem, and showed that Schanuel’s
Conjecture implies decidability of the model checking problem for an expressive fragment
of PCSL. The last result relies on a technical proof that Schanuel’s Conjecture implies the
decidability of the Positivity Problem for exponential polynomials, which is an important
achievement in the field.

The logic could have simply been extended to allow operators of the form Pr&c, where &
could be any of ≤,≥, <,>,=, or 6=, instead of only allowing Pr>c. All our results would still
hold, as [4] proves the conditional decidability of verifying whether exponential polynomials
are equal to a given constant in some given interval, and this together with our proofs would
suffice for obtaining the same consequences about model checking PCSL. We restricted our
attention to PCSL using only operators of the form Pr>c, which makes our arguments more
concise, while presenting all the fundamental mathematical problems we have tackled.

5.2 Future Work

We propose two main directions for future work on our project.

5.2.1 General Conditional Decidability of PCSL

We have shown decidability of PCSL1 model checking assuming Schanuel’s Conjecture, by
proving conditional decidability of the Positivity Problem for exponential polynomials. In
general, the decidability of model checking PCSLn reduces to the decidability of the Positivity
Problem for exponential polynomials in n variables. In fact, we found out that using the
polynomial resultant for eliminating variables in the two variable case reduces the decidability
of the model checking problem for PCSL2 to a purely algebraic problem. We believe that
decidability of model checking PCSLn also follows assuming Schanuel’s Conjecture, and
therefore we propose seeking a general proof for conditional decidability of model checking
PCSL.
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5.2.2 Practical Model Checking of PCSL
We have mainly been concerned with the fundamental problem of PCSL decidability, however
in practice we expect that the malicious cases we encountered theoretically should not
represent too much of a risk in real-life applications. As we have seen interesting classes
of properties that are expressible in PCSL, it is worthy to further investigate the practical
aspects of model checking PCSL and possible optimizations for an actual procedure.
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A Proof of Thereom 4

Let f(t) =
∑m
j=1 Pj(t)eλjt, together with the interval [c, d] be an instance of the Positivity

Problem for exponential polynomials. Let K be the number field generated by the coefficients
of polynomials P1, . . . , Pm and by λ1, . . . , λm over Q. We can algorithmically determine a
basis {a1, . . . , ar} over Q of the real parts of λi’s, and a basis {b1, . . . , bs} over Q of the
imaginary parts of λi’s [7].

Without loss of generality, assume that all real and imaginary parts of λ1, . . . , λm can be
written as linear combinations of {a1, . . . , ar}, respectively of {b1, . . . , bs} that use integer
coefficients instead of rational coefficients (this follows as we can pick a suitable N ∈ N and
write f1(t) := f(Nt) =

∑m
j=1 Pj(Nt)e(λjN)t).

It follows that we can write f(t) as a polynomial in the field of Laurent polynomials R,
with multiplicative units the non-zero monomials in y1, . . . , yr, z1, . . . , zs:

R := K[x, y1, y
−1
1 , . . . , yr, y

−1
r , z1, z

−1
1 , . . . , zs, z

−1
s ].
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7:14 Parametric Continuous Stochastic Logic

We write f(t) = P (t, ea1t . . . , eart, eb1it . . . , ebsit), where P is a polynomial with non-
negative power in its first argument, and with any integer power in the others.

Being a localisation of the polynomial ring A := K[x, y1, . . . , yr, z1, . . . , zs], R is a unique
factorisation domain (this is a standard result; see [6, Theorem 10.3.7]) and has an effective
procedure for factoring it into irreducible polynomials [11]. We extend the conjugation over
R, by defining a ring automorphism (·)∗ which acts on P to yield P ∗ as below:

P (x, y1, . . . yr, z1, . . . zs) =
∑
i

αix
βiy

γ1,i

1 . . . yγr,i
r z

δ1,i

1 . . . zδs,i
s

P ∗(x, y1, . . . yr, z1, . . . zs) :=
∑
i

αix
βiy

γ1,i

1 . . . yγr,i
r z

−δ1,i

1 . . . z−δs,i
s .

(12)

The motivation behind this definition is that for f(t) = P (t, ea1t . . . , eart, eb1it . . . , ebsit) we
have f(t) = P ∗(t, ea1t . . . , eart, eb1it . . . , ebsit). For such a real-valued f , we have P = P ∗.

As (·)∗ is a ring automorphism over the unique factorization domain R, we get that
if a polynomial Q in R divides P , then there exists some R in R such that P = QR, so
P ∗ = Q∗R∗. Therefore, Q∗ also divides P ∗, but as P = P ∗ we have that Q∗ divides P .
Therefore, factors of P come in ∗-conjugated pairs.

We will use Schanuel’s Conjecture through the following result, which follows from it by
using the concept of resultant of two polynomials and basic algebraic manipulations [4]:

I Lemma 11. Let r, s be non-negative integers, and let {a1, . . . , ar} and {b1, . . . , bs} be
Q−linearly independent sets of algebraic numbers. Let P,Q ∈ R be polynomials with algebraic
coefficients that are coprime in R. Then the following equations have no common solution
t ∈ R \ {0}: P (t, ea1t, . . . , eart, eb1t, . . . , ebst) = 0, Q(t, ea1t, . . . , eart, eb1t, . . . , ebst) = 0

We say that two polynomials P,Q ∈ R are associates if Q = zuP , where zu is a monomial
in z1, . . . , zs (note that the associate relation is symmetric by the definition of R).

We have seen that we can write the exponential polynomial as a Laurent polynomial in R:
f(t) = P (t, ea1t . . . , eart, eb1t . . . , ebst). As f(t) is real-valued, it can be factored in irreducible
polynomials from K that are either real valued, or come with their conjugate pair in the
factorization of f . Therefore, there exist some irreducible polynomials Q1, . . . , Qk in R that
come in pair with their conjugates and some irreducible polynomials R1, . . . , Rl in R and
positive integers α1 . . . αk, β1, . . . , βl such that we can write P =

∏k
i=1(QiQ∗i )αi ·

∏l
j=1 R

βj

j .
Define the functions ui(t) := Qi(t, ea1t . . . , eart, eb1it . . . , ebsit), which are not real-valued

and come in pairs with their conjugates; and vj(t) := Rj(t, ea1t . . . , eart, eb1t . . . , ebst), which
are real-valued. Let wi(t) := ui(t)ui(t), for t ∈ R. Then f(t) =

∏k
i=1 wi(t)αi ·

∏l
j=1 vj(t)βj ,

where functions w1, . . . , wk, v1, . . . , vj are real-valued, analytic functions.
Recall that the decision problem asks whether f(t) is strictly positive for some value of

t in [c, d], for some given c, d ∈ Q. If f(t) has a trivial form (i.e., if f(t) is a polynomial
in K[x], with no exponentials) we can easily decide this problem by approximating its
roots in [c, d] and classifying the sign on f between them (using, for example, the Sturm
sequence of the polynomial). Otherwise, by Lindemann-Weierstrass Theorem (see [2]), we
get that f(t) =

∑m
j=1 Pj(t)eλjt can be 0 in an algebraic point t if and only if Pj(t) = 0, for

all j ∈ {1, . . . ,m}. We can use standard factorization algorithms for computing common
algebraic roots of the Pj polynomials. If there is any common algebraic root t∗, then f(t∗) = 0.
As all the derivatives of f are also exponential polynomials, we can determine in a similar
way the smallest M such that the M th derivative of f is non-zero at t∗. By Taylor’s Theorem,
for any t, there exists some ε between t and t∗ such that f(t) = f(t∗) + f(M)(ε)

M ! (t− t∗)M .
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If M is odd, then f changes sign at t∗. Otherwise, there is no sign change at t∗. We can
therefore deal with common roots of all polynomials Pj(t). Then, we can assume without
loss of generality that the Pj polynomials have no common root in (c, d).

We can trivially get rid of the case when all the polynomials Pj(t) have c as a common
root by dividing them by the highest power of (t − c) that divides all of them. This can
be done safely, as changing signs at c does not makes sense within the interval [c, d] and
as (t− c) is always positive for t > c, so this division does not affect potential sign changes
of f(t) anywhere in [c, d]. The same holds for d. Therefore, we can assume without loss of
generality that the Pj polynomials have no common root in [c, d].

As Pj ’s cannot all be 0 at the same (algebraic) point, , by Lindemann-Weierstrass Theorem
we get that f is non-zero in any rational point. In particular, f(c) and f(d) are non-zero, so
we can use any standard approximation procedure until we can compare f(c), f(d) with 0
(for example, see [2, Lemma 2]). If either of f(c), f(d) is strictly greater than 0, then we are
done. Therefore, assume from now on that both f(c) and f(d) are strictly negative.

No two different functions from w1(t), . . . , wk(t), v1(t), . . . , vl(t) can have a common real
zero in [c, d], as this would imply that two of the polynomials Q1, . . . , Qk, R1, . . . , Rl have a
common solution of the form (t, ea1t . . . , eart, eb1it . . . , ebsit), which contradicts Lemma 11,
as all the listed polynomials are irreducible (and not associates) and as t = 0 cannot be a
solution of such functions, because of Lindemann-Weierstrass Theorem (as we have dealt
with algebraic roots above, which are common roots of all Pj ’s). This means that it is enough
to decide whether there exists some function among wi’s and vj ’s with odd exponent in f
that changes its sign in [c, d], as we can just consider the one which changes its sign at the
least τ ∈ [c, d]. If we let this function be g, we have g(τ) = 0 and we then know that no other
function among the wi’s and vj ’s has a solution at τ , so there is some interval I = (τ−ε, τ+ε)
such that g has exactly opposite signs on (τ − ε, ε) and (τ, τ + ε), and no other function
equals 0 on I. It is easy then to see that deciding whether f(t) > 0 for some t ∈ [c, d] is
equivalent to deciding whether any of the real-valued functions with odd exponent in f

among wi’s and vj ’s changes its sign in [c, d]. This follows easily as the real-valued functions
with even exponents are always non-negative and cannot change sign. Therefore, we can
assume without loss of generality that all exponents are 1, so f(t) =

∏k
i=1 wi(t) ·

∏l
j=1 vj(t).

In general, classical numerical algorithms should work in most of the cases for our decision
problem. However, when an exponential polynomial has a tangential zero, detecting it
through such procedures requires infinite precision. The difficulty in solving our problem
comes exactly from dealing with cases of such tangential zeros.

Let us now see how to decide if any of the vj ’s or wis changes its sign on [c, d].
Case 1: Decide if some vj changes sign on [c, d].
Recall that vj(t) = Rj(t, ea1t . . . , eart, eb1t . . . , ebst) is a real-valued function (Rj = R∗j ).

Also, recall that we ruled out the case of f(c) = 0, so we can approximate arbitrarily close
vj(c) to decide if it is positive or negative. Assume without loss of generality that vj(c) < 0.
Then, as vj(d) 6= 0, if we get by approximating it that vj(d) > 0, we are trivially done, so
assume that vj(d) < 0. We want to decide if there exists some t ∈ [c, d] such that vj(t) > 0.

In this case, we claim that deciding if there is some zero of vj in [c, d] is equivalent to
deciding if it changes sign, i.e., the equations vj(t) = 0, v′j(t) = 0 have no common solution.
So, if vj(t) = 0 for some t ∈ [c, d], there is a least such t (by continuity on a bounded interval),
and it is easy to see that, if v′j(t) 6= 0, we get that v′j changes sign at t, from negative to
positive.

TIME 2020



7:16 Parametric Continuous Stochastic Logic

To see that vj(t) = 0, v′j(t) = 0 have no common solution, write v′j(t) as a polynomial in
t, ea1t, . . . , eart, eb1t, . . . , ebst and get by a simple degree chasing argument that it is coprime
with the polynomial Rj(t, ea1t . . . , eart, eb1t . . . , ebst) = vj(t), thus getting a contradiction
with Lemma 11 (see Type-2 polynomial argument in [4] for details).

In conclusion, we can use the decision procedure described in [4] for zero finding for the
purpose of deciding sign changing.

Case 2: Decide if some wi changes sign on [c, d].
Recall that, for t ∈ R:

wi(t) = ui(t)ui(t).

Note that wi(t) cannot change sign at any real t, therefore this case is trivial, as wi(t) ≥ 0.
In conclusion, the Positivity Problem for exponential polynomials is decidable assuming

Schanuel’s Conjecture.

B Proof of Theorem 10

Proof. Let (〈u,A,v〉, 〈a, b〉) be an instance of the Positivity Problem for matrix exponentials.
Let D ∈ Qk×k be a diagonal matrix such that D = diag(d1, · · · , dk), where di := 1 if vi =
0 and di := vi, otherwise. Note that di ≥ 0 for any i.

Now, by letting v̄ ∈ Qk be such that if vi = 0 then v̄i := 0, and otherwise v̄i := 1, it is
clear that v = Dv̄. By denoting B := D−1AD and ū := D>u, we get:

u>eAtv = u>DD−1eAtDv̄ = u>DeD−1ADtv̄ = ū>eBtv̄ (13)

We adopt the following construction and map used in [1] for a related reduction in the
discrete case: let P ∈ Q2k×2k be a matrix obtained by replacing each entry bij of B by the

symmetric matrix
[
pij qij
qij pij

]
, where pij = max{bij , 0} and qij = max{−bij , 0}. Let ρ be a

map which sends
[
a b

b a

]
to a− b and, applied to a matrix which can be partitioned in blocks

of the form before, sends each block to the according difference. It is easy to check that ρ is
a (surjective) homomorphism from the ring of matrices in Q2k×2k (which can be partitioned

in 2× 2 blocks of the form
[
a b

b a

]
) to the ring of matrices in Qk×k.

By looking at the power series expansion of the matrix exponential eX, because of its
convergence we get eρ(M) = ρ(eM). Recall (13): u>eAtv = ū>eBtv̄. As ρ(P) = B, we get:

u>eAtv = ū>eρ(P)tv̄ = ū>ρ(ePt)v̄. (14)

Write ū =: (α1, . . . , αk)> and v̄ =: (β1, . . . , βk)>. Given w1, . . . , wk ∈ Q, define x ∈ Q2k by

x := (α1 + w1, w1, α2 + w2, w2, . . . , αk + wk, wk)>.

Let us also define y ∈ Q2k by

y := (β1,−β1, β2,−β2, . . . , βk,−βk)>.

B Claim 12. For all w1, . . . , wk ∈ Q it holds that x>ePty = u>eAtv for all t ∈ R.
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Proof. Let us fix a positive real t. Denote the elements of eAt =:

e11 e12 . . . e1k
...

...
. . .

...
ek1 ek2 . . . ekk

 and,

as eAt = ρ(ePt), we can write:

ePt =


f11 g11 f12 g12 . . . f1k g1k
g11 f11 g12 f12 . . . g1k f1k
...

...
. . .

...
fk1 gk1 fk2 gk2 . . . fkk gkk
gk1 fk1 gk2 fk2 . . . gkk fkk

 , (15)

where fij − gij = eij for all i, j. Then, we get:

x>ePty =
k∑
i=1

k∑
j=1

((αi + wi)fijβj − (αi + wi)gijβj + wigijβj − wifijβj)

=
k∑
i=1

k∑
j=1

(αi(fij − gij)βj) =
k∑
i=1

k∑
j=1

(αieijβj)

=u>eAtv.

As t ∈ R was arbitrary, we get that the claim holds. � C

Choose wi’s such that x has only positive entries: w1 = · · · = wk := max(|α1|, . . . , |αk|)+1.
Let S > 0 be the sum of x’s entries; and let z := 1

Sx. Then, by Claim 12, we have:
u>eAtv > 0 ⇐⇒ x>ePty > 0 ⇐⇒ ( 1

Sx)>ePty > 0 ⇐⇒ z>ePty > 0.
Note that we reduced the Positivity Problem for matrix exponentials to the one above,

where z is a stochastic vector. Also, y’s entries are either −1, 0, or 1.
Let the entries of P be pij . Let us now pick a number r that is greater than the sum of

any row of P: r >
∑2k
j=1 pij , for each 1 ≤ i ≤ 2k. Let qi := r−

∑2k
j=1 pij , for each 1 ≤ i ≤ 2k,

and let Q be a diagonal matrix: Q := diag(q1, . . . , q2k).

Let us define O :=
[
P− rI Q

0 0

]
, where each of the four blocks of O is a 2k × 2k matrix.

We note that O is a rate matrix. By inspection of the block multiplications, it is easy to see
that the top left block of On is (P− rI)n. Hence, by the power series expansion of eX and

by setting u1 :=
[
z
0

]
, v1 :=

[
y
0

]
, we get: u1

>eOtv1 = z>e(P−rI)ty = 1
ert z>ePty, so

z>ePty > 0 ⇐⇒ u1
>eOtv1 > 0.

Thus, we reduced the initial problem to the existence of a t in [a, b] such that u1
>eOtv1 > 0,

where u1 is stochastic, O is a rate matrix and v1 has entries in {−1, 0, 1}.
By letting v2 := v1 + 1: u1

>eOtv1 > 0 ⇐⇒ u1
>eOtv2 > u1

>eOt1 = 1. Furthermore,
u1
>eOtv2 > 1 ⇐⇒ u1

>eOtv3 >
1
2 , where v3 := 1

2v2, so v3’s entries are in {0, 1
2 , 1}.

We have reduced the problem whether there exists some t in [a, b] such that u>eAtv > 0,
where u,v are any vectors and A is any matrix, to the problem whether there exists some
t in [a, b] such that u1

>eOtv3 >
1
2 , where u1 is stochastic, O is a rate matrix and v3 has

entries in {0, 1
2 , 1}.
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7:18 Parametric Continuous Stochastic Logic

This last problem asks for a given continuous-time Markov chain whether there exists a
moment t in [a, b] such that summing the probabilities of being in certain states at time t
with fixed weights in {0, 1

2 , 1} yields a result greater than 1
2 . We reduce this problem to a

similar one with coefficients in {0, 1} by splitting the states in the former problem that have
weight 1

2 in two identical states that, seen together as a black box, act as the original state.
More formally, if a state si has associated coefficient 1

2 in v3, we split it into states si,1
and si,2 and modify the transition rates:

for any state sj having a strictly positive transition rate rj,i to si: delete this transition
and add two new transition rates to si,1 and si,2, both with rate rj,i

2 ,
for any state sj such that there is a strictly positive transition rate ri,j from si to sj :
delete this transition and add two new transition rates from si,1 and si,2 to sj , both with
rate rj,i.

Note that by being in state si,1 or si,2 in the new Markov chain we get the same behaviour
as being in si in the original Markov chain (all the outgoing outgoing rates from si,1 or si,2
stay the same as the outgoing rates from si). We also modify the initial distribution: if
the initial probability of si was pi, set the new initial probability in si to 0 and both initial
probabilities of si,1 and si,2 to pi

2 .
By regarding the cluster of states si,1 and si,2 as a “black-box state”, it behaves equivalently

to state si in the original Markov chain. Because of the symmetry, the probability of being
in si,1 at time t equals the probability of being in state si,2 at time t, which is equal to half
of the probability of being in state si at time t in the original Markov chain.

Starting from the CTMC with rate transition matrix O, initial distribution u1 and
coefficient vector v3, we can iteratively apply the described splitting process, by going
through all the states having weights in the original formulation equal to 1

2 . We then get a
sequence of new continuous-time Markov chainsM1, . . . ,MN with rate matrices R1, . . . ,RN

and with initial distributions ũ1, . . . ũN , and new weight vectors ṽ1, . . . ṽN defined as follows:
0/1 in the corresponding positions in ṽi+1 of states having previous coefficients 0/1 in ṽi,
0 in the corresponding positions in ṽi+1 of the most recent split state having previous
coefficient 1/2 in ṽi,
1 in the corresponding position in ṽi+1 of the first newly created state by splitting (of
the form si,1) and 0 to the second such state (of the form si,2),
1
2 in the corresponding position in ṽi+1 of all other states having previous coefficients 1

2
in ṽi.

We have the invariant ũ>i eRitṽi = ũ>i+1e
Ri+1tṽi+1. Let M := MN be the CTMC

obtained after the iterative splitting process described above, with rate matrix R := RN

and initial distribution ũ := ũN , and let the final coefficient vector be ṽ := ṽN . It is clear
now that u1

>eOtv3 = ũ>eRtṽ.
Consequently, ∃t ∈ [a, b] s.t. u>eAtv > 0 ⇐⇒ ∃t ∈ [a, b] s.t. ũ>eRtṽ > 1

2 , where ũ
is a stochastic vector, R is a rate matrix and ũ has entries in {0, 1}. We conclude that
the Positivity Problem for matrix exponentials is reducible to the Threshold Problem for
continuous-time Markov chains. J
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