Universal Solutions in Temporal Data Exchange

Zehui Cheng
University of California Santa Cruz, CA, USA
zecheng@ucsc.edu

Phokion G. Kolaitis

University of California Santa Cruz, CA, USA
IBM Research, Almaden, CA, USA
kolaitis@ucsc.edu

—— Abstract
During the past fifteen years, data exchange has been explored in depth and in a variety of different
settings. Even though temporal databases constitute a mature area of research studied over several
decades, the investigation of temporal data exchange was initiated only very recently. We analyze
the properties of universal solutions in temporal data exchange with emphasis on the relationship
between universal solutions in the context of concrete time and universal solutions in the context
of abstract time. We show that challenges arise even in the setting in which the data exchange
specifications involve a single temporal variable. After this, we identify settings, including data
exchange settings that involve multiple temporal variables, in which these challenges can be overcome.

2012 ACM Subject Classification Information systems — Data management systems; Theory of
computation — Data exchange; Information systems — Temporal data

Keywords and phrases temporal databases, database dependencies, data exchange, universal solu-
tions, abstract time, concrete time, Allen’s relations

Digital Object Identifier 10.4230/LIPIcs. TIME.2020.8
Funding The research of Phokion Kolaitis is partially supported by NSF Grant I1S-1814152.

Acknowledgements We thank Jing Ao and Rada Chirkova for numerous fruitful conversations

concerning temporal data exchange.

1 Introduction and Summary of Results

Data exchange is concerned with the transformation of data structured under one schema,
called the source schema, into data structured under a different schema, called the target
schema. Since the original formalization of the data exchange problem between relational
schemas in [9] about fifteen years ago, an extensive study of data exchange has been carried
out in several different settings, including XML data exchange [4], data exchange between
graph databases [6], and relational to RDF data exchange [7]; an overview of the main results
in this area can be found in the monograph [3]. Temporal databases constitute a mature
area of research that has been studied in depth over several decades; for overviews, see, e.g.,
the book [13] or the book chapter [8]. Data exchange and temporal databases have advanced
independently and, rather surprisingly, their paths did not cross until very recently, when
Golshanara and Chomicki [11] published the first paper on temporal data exchange, that is,
data exchange between temporal databases.

Data exchange is formalized using schema mappings, i.e., tuples of the form M = (S, T, X),
where S is the source schema, T is the target schema, and ¥ is a finite set of constraints
in some suitable logical formalism that describe the relationship between source and target.
Every fixed schema mapping M gives rise to the data exchange problem with respect to
M = (S, T,X): given a source instance I, find a solution for I, that is, a target instance J so
that (I,J) = X. In general, no solution for I may exist or multiple solutions for I may exist.
? Zehui Cheng and l?hokion G. Kolafitis;

5v icensed under Creative Commons License CC-BY
27th International Symposium on Temporal Representation and Reasoning (TIME 2020).
Editors: Emilio Mufioz-Velasco, Ana Ozaki, and Martin Theobald; Article No. 8; pp. 8:1-8:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1655-2080
mailto:zecheng@ucsc.edu
mailto:kolaitis@ucsc.edu
https://doi.org/10.4230/LIPIcs.TIME.2020.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Universal Solutions in Temporal Data Exchange

In [9], the concept of a universal solution was introduced and a case was made that universal
solutions are the “best” solutions to materialize, provided solutions exist. In a precise sense
(formalized using homomorphisms), a universal solution is a most general solution, thus it
embodies no more and no less information than what the constraints in ¥ specify. By now,
universal solutions have been widely adopted as the preferred semantics in data exchange;
furthermore, a concerted research effort has been dedicated to discovering when universal
solutions exist and how to compute them. The main tool for computing universal solutions
is the chase algorithm [9] and its variants (see [12] for a survey).

In temporal databases, there are two different models of time, namely, concrete time and
abstract time; in the first model, time is represented by time intervals, while in the second
by time points [8, 15]. Concrete temporal databases can be converted to abstract temporal
databases using the semantic function! [.], which takes as input a concrete temporal database
D and returns as output the abstract temporal database [D] where intervals of time in D are
replaced by all points of time in them. The semantic function is often deployed to transfer
results about concrete temporal databases to results about abstract temporal databases.

As already mentioned, Golshanara and Chomicki [11] are the first to investigate temporal
data exchange. Specifically, they considered temporal schema mappings M = (S, T, Xy, X;),
where X;; is a set of temporal source-to-target tuple-generating dependencies (temporal s-t
tgds) and 3; is a set of temporal target equality-generating dependencies (temporal target
egds) with the restriction that each such constraint contains exactly one temporal variable.
This means that each constraint in X is of the form VxVt(¢(x,t) — Jyv(x,y,t)), where
t is the only temporal variable, ¢(x,t) is a conjunction of source atoms, and ¥ (x,y,t) is a
conjunction of target atoms. Also, each constraint in X is of the form VxVt(0(x,t) — xp = x;),
where ¢ is the only temporal variable and 6(x,t) is a conjunction of target atoms.

Let M = (S, T, X4, ;) be a temporal schema mapping as above. The main result in [11]
is the discovery of a variant of the chase algorithm that has the following properties: (a) it
runs in polynomial time; (b) given a concrete source instance I, it detects if I has a solution
with respect to M; and (c) if I has such a solution, then it produces a concrete target
instance J such that J is semantically adequate for I, i.e., the abstract target instance [J] is
a universal solution for the abstract source instance [I]. In the sequel, we call normalizing
chase the variant of the chase used in [11]. It is a natural extension of the chase algorithm
to temporal dependencies, but with the twist that first a normalization step is performed
on the given concrete source instance I and then the temporal s-t tgds are applied to the
resulting normalized instance A(I); after this, a second normalization step is performed on
the resulting concrete target instance and then the temporal target egds are applied.

Summary of Results. Our investigation began when we noticed that Golshanara and
Chomicki [11] do not address the question of whether or not the normalizing chase always
produces a universal solution for a given concrete source instance, provided a solution exists
(in fact, the notion of a universal solution for a concrete source instance is never introduced
n [11]). We first show that the normalizing chase need not produce a universal solution for
a given concrete source instance. Actually, we establish a stronger negative result: there is a
temporal schema mapping M* = (S, T, X%, X}) as above and a concrete source instance I*
that has a solution with respect to M™*, but there is no concrete universal solution J for I'*
or for the normalized instance A/ (I*) that is semantically adequate for I* (in particular, the
result of the normalizing chase on I* cannot be a universal solution for I*).

! In the temporal databases literature, [] is called the semantic mapping. Here, we chose to call it the
semantic function to avoid confusion with the term schema mapping, which will be used repeatedly
throughout this paper.

Z. Cheng and P. G. Kolaitis

The preceding state of affairs motivates the following question: which temporal schema
mappings admit semantically adequate concrete universal solutions? We make progress
towards answering this question by identifying sufficient conditions that guarantee the
existence of semantically adequate concrete universal solutions. To this effect, we show that
if the temporal target egds have at most one temporal atom in their left-hand side (and any
number of non-temporal atoms), then the output of the normalizing chase on a given concrete
instance I is a concrete universal solution for M'(I) and is also semantically adequate for I. In
a sense, this is an optimal result because the temporal schema mapping M™* above contains
a temporal target egd with two temporal atoms in its left-hand side, hence this result cannot
be extended to the class of schema mappings studied by Golshanara and Chomicki [11].

All aforementioned results concern temporal schema mappings in which each constraint
contains at most one temporal variable. Here, we embark on an investigation of temporal
data exchange using schema mappings specified by constraints that may contain several
different temporal variables. Such constraints may also contain comparisons between temporal
variables using the well known Allen’s relations, thus they can capture richer data exchange
scenarios. This expansion of the landscape, however, comes with a number of complications,
since, among other things, constraints in the concrete model of time need to be carefully
translated into constraints in the abstract model of time (constraints with at most one
temporal variable do not change, only the interpretation of the temporal variables does).

In the setting of multiple temporal variables, we consider temporal full schema mappings
M= (S, T, X,3%,), ie., schema mappings in which no existential quantifiers occur in the
consequent of constraints in ¥5;. We show that if each temporal target egd has at most one
temporal atom in its left-hand side, then we can produce concrete target instances that are
both universal solutions and semantically adequate, provided solutions exist. Finally, we
introduce another variant of the chase, which we call the coalescing chase, and show that for
arbitrary temporal full schema mappings, the coalescing chase on concrete source instances
always produces semantically adequate solutions, provided solutions exist.

2 Preliminaries

This section contains the definitions of the basic concepts and some background material.

Models of Time. Let N={1,2 ...} be the set of all natural numbers. In the abstract model
of time, natural numbers represent time points. In the concrete model of time, closed-open
intervals [s,e) = {t € N: s <t < e}, where s and e are natural numbers with s < e, represent
time intervals. Unbounded time intervals of the form [s, c0) are also allowed.

Temporal Databases. A relational schema is a finite collection R of relation symbols of
the form R(Aj,...,Ay), where Ay,..., Ay are the attributes of R and k is its arity. An
R-instance I is a finite collection of finite relations R!, one for each relation symbol R in R
and such that the arity of R’ matches that of R.

A temporal relation symbol is a relation symbol R in which one or more of its attributes
are designated as temporal attributes, i.e., they can only take temporal values. In this paper,
we assume that every temporal relation symbol has exactly one temporal attribute, which,
without loss of generality, is the last attribute in the list. A temporal relational schema is a
relational schema R containing at least one temporal relation symbol. For such a schema R,
an abstract R-instance is an R-instance in which the values of the temporal attributes are
time points. A concrete R-instance is an R-instance in which the values of the temporal
attributes are time intervals. We will use the term temporal database to refer to both abstract
instances and concrete instances.

8:3

TIME 2020

8:4

Universal Solutions in Temporal Data Exchange

Constraints and Schema Mappings. Let S and T be two relational schemas, called, re-
spectively, the source schema and the target schema, where S and T have no relation symbols
in common. Data exchange from S to T is formalized using constraints in some logical
formalism that describe the relationship between these two schemas [9]. The most widely
used such constraints are source-to-target tuple-generating dependencies (s-t tgds) and target
equality-generating dependencies (target egds). A s-t tgd is a first-order sentence of the
form Vx(p(x) — Jyy(x,y)), where ¢(x) is a conjunction of source atoms, and ¥ (x,y) is a
conjunction of target atoms. Such constraints can express a variety of data transformation
tasks, including copying a relation, projecting a relation, augmenting a relation with an
extra column, and joining two or more relations, where, in each case, the result of the
transformation is moved to the target [14]. A target egd is a first-order sentence of the form
Vx(0(x) — x = x1), where 0(x) is a conjunction of target atoms and xzy,x; are variables
occurring in x. Target egds include target key constraints as an important special case.

The first step in formalizing data exchange between temporal relational schemas is to
extend the concepts of s-t tgds and target egds to incorporate time. As stated in Section 1,
Golshanara and Chomicki [11] initiated the study of temporal data exchange by considering
temporal s-t tgds of the form VxVi(¢(x,t) — Jyy(x,y,t)) and temporal target egds of
the form VxVt(6(x,t) — xp = x;), where ¢ is the only temporal variable that occurs in
these formulas (in particular, the consequent of temporal s-t tgds contains no existentially
quantified temporal variables).

In Section 4, we will explore a much richer framework for temporal data exchange in
which the constraints considered may contain multiple temporal variables. We introduce
the basic notions for this richer framework in this section (of course, these notions apply to
the framework studied by Golshanara and Chomicki [11] as well). Specifically, we consider
temporal s-t tgds of the form VxVt(p(x,t) — Jyy(x,y,t)) and temporal target egds of the
form VxVt(0(x,t) — x = x;), where t is a (possibly empty) tuple of temporal variable; all
other variables are non-temporal, thus the consequent of such temporal s-t tgds contains
no existentially quantified temporal variables. We regard s-t tgds and target egds as the
special cases of their temporal counterparts in which no temporal variable occurs (i.e., the
tuple t is empty). In what follows, we will use the term temporal schema mapping for a tuple
M= (S, T,Xs,%;), where S and T are disjoint temporal relational schemas, ¥, is a finite
set of temporal s-t tgds, and ¥; is a finite set of temporal target egds, as above.

Values in Source and Target Instances. In data exchange between relational schemas, the
source instances contain values from a countable domain CONST of objects, called constants,
while the target instances may contain values from the union CONST U NULL, where NULL
is a countable set of distinct labelled nulls N1, No, ..., which are typically used to witness
the existentially quantified variables in the right-hand sides of s-t tgds. Thus, a labelled
null represents some unknown value. In temporal data exchange, the values occurring in
source and target instances may also be time points or time intervals, depending on the
model of time used. Furthermore, the use of null values in target instances requires delicate
handling because such null values may need to take into account the temporal context in
which they are introduced. For this reason, temporal target instances may contain values
that are constants, time points in the abstract model of time (or time intervals in the concrete
model of time), labelled nulls Ny, Na, ..., and time-stamped nulls, that is, null values of the
form N¥, N& ..., where t is a finite sequence of time points (or a finite sequence of time
intervals). Two such time-stamped nulls are equal if and only if they have the same subscript
(label) and the same time-stamp. Intuitively, a time-stamped null represents unknown values

,5)

in the context of its time-stamp. For example, a time-stamped null NV j[z represents three

unknown values, one at time-point 2, one at time-point 3, and one at time-point 4.

Z. Cheng and P. G. Kolaitis

Homomorphisms, Solutions, and Universal Solutions. Let T be a temporal target schema
and let J and J’ be two temporal target databases over the same model of time (i.e., both
are abstract or both are concrete). As discussed above, the relations in J and J’ may contain
constants, labelled nulls, and time-stamped nulls as values.

A homomorphism from .J to J' is a function h from the active domain? of J to the active
domain of J’ such that: (a) if v is a constant or a time value (time point or time interval),
then h(v) = v; (b) if v is a labelled null N, then h(v) is either a constant or a labelled null
Ny; (c) if v is a time-stamped null N}, then h(N}) is a constant or a null Nf with the same
time-stamp or a labelled null Ny (without a time-stamp); (d) if a tuple (vy,...,v,) belongs
to a relation R” of .J, then (h(v1),...,h(v,)) belongs to the relation R7 of .J'.

The intuition behind this definition is that if there is a homomorphism from J to J’, then
J is “more general” than J’. Time-stamped nulls are “more general” than labelled nulls,
since the latter represent a single unknown value, while the former may represent multiple
unknown values, depending on the time-stamp used. This explains the different treatment of
labelled nulls and time-stamped nulls in conditions (b) and (c), respectively, in the definition.

Let M = (S, T, X4, X;) be a temporal schema mapping and I a concrete source instance.
A concrete target instance J is a solution for I w.r.t. M if the following conditions hold:

If Vx(p(x) — Jyy(x,y)) is a (non-temporal) s-t tgd in X and if a is a tuple from the

active domain of I such that I = p(a), then there is a tuple b that consists of constants

and/or labelled nulls such that J = ¢ (a,b).

If VxVt(o(x,t) — Jyw(x,y,t)) is a temporal s-t tgd in Xy and if a is a tuple of constants

and i is a tuple of intervals such that I = ¢(a, i), then there is a tuple b that consists of

constants, labelled nulls, and time-stamped nulls such that every time-stamped null in b

has i as its time-stamp and J = ¢(a, b, i).

If VxVt(0(x,t) — z = ;) is a temporal target egd in 3; and if a and i are tuples such

that J = 0(a, i), then ax = a;, which means that a; and a; are the same constant or the

same labelled null N; or the same time-stamped null NV ;
A concrete target instance J is a universal solution for I w.r.t. M if J is a solution for I
w.r.t. M and, for every solution J’ for I w.r.t. M, there a homomorphism from J to J’.

The Chase and its Variants. In the case of (standard) data exchange, universal solutions
are produced using the chase procedure [9]. Intuitively, given a source instance I, the chase
procedure attempts to produce a target instance J by starting with the empty target instance,
repeatedly applying the constraints of the given schema mapping, and generating new tuples
in the current target instance as needed, so that eventually either the current target instance
satisfies all the constraints of the schema mapping M = (S, T, Xy, %) or a conflict arises
in which case there is no solution for I w.r.t. M. We now describe at a high level how the
chase algorithm can be adapted to the setting of temporal data exchange.

Let K be the current concrete target instance in the run of the chase.

If Vx(p(x) — Jyy(x,y)) is a (non-temporal) s-t tgd in X and if a is a tuple from the

active domain of I such that I | p(a), but K (= Jyy(a,y), then the chase generates a

tuple b of distinct labelled nulls for the variables in y and adds tuples to the relations in

K so that the resulting instance K’ satisfies ¢)(a, b). (Same as in standard chase.)

If vxVt(p(x,t) — Jy(x,y,t)) is a temporal s-t tgd in ¥ and if a and i are such

that I = ¢(a,i), but K [~ Jyy(a,y,i), then the chase generates a tuple b of distinct

time-stamped labelled nulls for the variables in y all of which have the same time-stamp i

and adds tuples to the relations in K so that the resulting instance K’ satisfies ¢ (a, b, 1).

2 The active domain of a database is the set of all values occurring in the relations of that database.

8:5

TIME 2020

8:6

Universal Solutions in Temporal Data Exchange

After the concrete source instance I has been chased with the constraints in X, then
the concrete target instance K produced thus far is chased with the constraints in ;.
Specifically, if VxVt(0(x,t) — xp = x;) is a temporal target egd in X; and a and i are
tuples such that K |= 6(a, i), then the following cases are considered: (1) if both a; and
a; are labelled nulls or both are time-stamped nulls with the same time-stamp, then one
of the two is replaced by the other throughout K; (2) if one of aj and q; is a constant
and the other is a labelled null or a time-stamped null, then the labelled null or the
time-stamped null is replaced by the constant throughout K; (3) if one of ag, a; is a
labelled null and the other is a time-stamped null, then the time-stamped null is replaced
by the labelled null throughout K; (4) if ax and a; are time-stamped nulls with different
time-stamps or if a; and a; are different constants, then the chase fails.
In what follows, we will use the term the concrete chase algorithm to refer to the algorithm
just described. In their study of temporal data exchange, Golshanara and Chomicki [11]
considered a variant of the chase algorithm, which here we will call the concrete n-chase
algorithm. There are two main differences between these two algorithms:
In [11], all temporal schema mappings have s-t tgds with exactly one temporal variable,
which implies that (standard) s-t tgds are not allowed. As a result, the target instances
produced by the concrete n-chase algorithm contain no labelled nulls, but, of course, they
may contain time-stamped nulls in which the time-stamp is a single interval.
The concrete n-chase algorithm performs a normalization step before the constraints in
Ys¢ are applied and another normalization step before the constraints in ¥; are applied.
In particular, the concrete n-chase algorithm does not chase the given concrete source
instance I with X4, but, instead, chases the normalized instance N (I) with X,. We
refer the reader to Section 4.2 in [11] for the definition of normalization.
In what follows, if M is a temporal schema mapping and I is a concrete source instance, we
will write c-chaseaq (/) and n-chasen(I) to denote the concrete target instance produced by
the concrete chase algorithm and, respectively, the concrete n-chase algorithm on I.

Semantic Functions and Semantic Adequacy. As mentioned in Section 1, concrete in-
stances are converted to abstract instances using the semantic function [.].
If u=1(c1,...,Cm,[s,€)) is a tuple in which each ¢ is a constant and [s, e) is an interval,
then [u] = {(c1,...,em,t) 1 s <t <e}.
If I =(Ry,...,R,) is a concrete source instance, then [I] is the abstract source instance
[1] = ([R1],-- -, [Rn]), where [Ri] = U [u], for 1 <1< n.
€R,
We say that a tuple v = (aq,... 7amu7 [s,€)) is compatible if each ay is a constant or
a labelled null or a time-stamped null Nj[sl’el)""’[s”’e”) such that [s,e) is one of the
intervals in the time-stamp, and all time-stamped nulls in v have the same time-stamp.
If v is a compatible tuple, then [v] is the set of all tuples (by,...,bm,t) such that the
following conditions hold: if a; is a constant or a labelled null, then b; = a;; if a; is
a time-stamped null Nj[sl’el)""’[Sp’ep), then b; is a time-stamped null N;l""’t", where
s1 <t <eq,...,sp <ty <ep;and, finally, s <t <e.
Let J = (T1,...,T,,) be the concrete target instance produced by the concrete chase
algorithm or by the concrete n-chase algorithm on a source instance I. It is easy to verify
that every tuple occurring in one of the relations of J is compatible. Then [J] is the

abstract target instance [J] = ([T1], ..., [Tm]), where [T;] = U [v], for 1 <1 < m.
veT,
Let M = (S, T,X,%;) be a temporal schema mapping with exactly one temporal

variable per constraint and let I be a concrete source instance. We say that a concrete
target instance J is semantically adequate for I if the abstract target instance [J] is a
universal solution for [/] w.r.t. M.

Z. Cheng and P. G. Kolaitis

We are now ready to state the main result in [11].

» Theorem 1. (Theorem 19 in [11]) Let M = (S, T, X4, 3¢) be a temporal schema mapping,
such that each relational symbol in S and T has one temporal attribute and each constraint
in Ng U Xy has exactly one temporal variable. If I is a concrete source instance, then the
following statements are true.

If the concrete n-chase algorithm on I fails, then there is no solution for I w.r.t. M.

If the concrete n-chase algorithm on I does not fail, then the concrete target instance

n-chasen(I) produced by the algorithm is semantically adequate for I.

We note that the normalization steps in the concrete n-chase algorithm guarantee that
there is a homomorphism from the left-hand side of a constraint in 3 or in ¥; to a concrete
instance K, provided there is a homomorphism from the left-hand side of that constraint to
the abstract instance [K].

3 Temporal Data Exchange with a Single Temporal Variable

In this section, we explore aspects of data exchange for temporal schema mappings M =
(S, T, X4, X¢) in which each constraint in X4 U X contains at most one temporal variable.
In what follows, we will also assume that all concrete source instances I are coalesced, that is,
if ¢1,...,cn, are constants and 4,4 are intervals such that (c1,...,¢m,4) and (¢1,. .., Cm, 1)
belong to the same relation of I, then 7 and 4’ are disjoint intervals. Clearly, every concrete
source instance can be easily transformed to an “equivalent” coalesced one [8].

3.1 No Semantically Adequate Concrete Universal Solutions

We begin by focusing more narrowly on schema mappings in the setting of Golshanara
and Chomicki [11], that is, temporal schema mappings M = (S, T, ¥, 3;) such that each
relational symbol in S and T has one temporal attribute and each constraint in ¥4 U ¥4 has
ezactly one temporal variable (hence, this variable occurs in every atom of the consequent
of every s-t tgd). This class of schema mappings does not contain standard (non-temporal)
schema mappings as a special case. Several remarks are in order now.

1. Such a schema mapping M is meaningful in both the concrete model of time and the
abstract model of time without changing the constraints in >4 U ¥;. In the first case,
the temporal variable is ranging over time intervals and in the second over time points.

2. Every abstract source instance can be viewed as a sequence of snapshots, that is, as a
sequence of non-temporal source instances parameterized by time points. One can then
drop the temporal variable from the constraints in 4 U X, chase each snapshot with the
resulting standard schema mapping, produce a universal solution for each snapshot (if a
solution exists for each snapshot), and then consolidate the resulting target snapshots
into an abstract target instance, which is an abstract universal solution for the given
abstract source instance® - see [11] for formal details.

3. Let I be a concrete source instance. The concrete chase algorithm described in Section 2
produces a concrete universal solution for I w.r.t. M, if a solution exists; if the concrete
chase fails, no solution for I w.r.t. M exists. This follows from Theorem 5 in Section 4.

As mentioned in Section 1, Golshanara and Chomicki [11] do not address the question of

whether or not their concrete n-chase algorithm produces a concrete universal solution. In

fact, the notion of a concrete universal solution is not introduced in [11]. Our first result
provides a strong negative answer to this question.

3 If the chase fails on one of the snapshots, then no solution for the given abstract source instance exists.

8:7

TIME 2020

8:8

Universal Solutions in Temporal Data Exchange

» Theorem 2. There is a temporal schema mapping M* = (S, T, ¥%,, £}) with one temporal

variable in each constraint in X%, U X and there is a concrete source instance I* such that

the following properties hold:

1. The concrete target instance n-chasep~ (I*) returned by the concrete n-chase algorithm on
I* is neither a solution for I* nor for the normalized instance N'(I*) w.r.t. M*.

2. There is a concrete universal solution for I'* w.r.t. M*, but there is no concrete universal
solution for I w.r.t. M* that is semantically adequate for I*.

3. There is a concrete universal solution for N(I*) w.r.t. M*, but there is mno concrete
ungversal solution for N'(I*) w.r.t. M* that is semantically adequate for N'(I'*).

Proof. Let M* = (S, T, X%, ¥;) be the schema mapping where 3%, consists of the constraints
Vn, s,c,t(E(n,c,t) A S(n,s,t) = Emp(n,c,s,t))
Vn, ¢, p, t(P(n,p,t) = IeEmpPos(n, ¢, p,t))
and X consists of the constraint
Vn, 1, ¢2, 8,0, t(Emp(n, c1,8,t) A EmpPos(n, ca,p,t) — ¢1 = ca).
Let I* be the concrete source instance whose relations are depicted in Table 1. After
normalizing I* w.r.t. 3%, (see [11] for the precise definition of normalization), we obtain the
normalized instance N (I*) whose relations are depicted in Table 2.

Table 1 The relations F, S, and P of the concrete source instance ™.

a . . (o} .
E b) S P
Name | Company Time Name | Salary Time Name Position Time
Ada IBM [2013,2018) Ada 18000 | [2014,2018) Ada Manager [2015,2017)
Bob IBM [2012,2015) Bob 13000 | [2013,2015) Bob | Consultant | [2012,2015)

Table 2 The relations E, S, and P of the normalized instance N'(I*).

(a) B. (b) S. (c) P.

Name | Company Time Name | Salary Time Name Position Time
Ada IBM [2013,2014) Ada 18000 | [2014,2018) Ada Manager [2015,2017)
Ada IBM [2014,2018) Bob 13000 | [2013,2015) Bob | Consultant | [2012,2015)
Bob IBM [2012,2013)

Bob IBM [2013,2015)

Let n-chasep- (I*) be the concrete target instance produced by the concrete n-chase
algorithm on I*; its relations are depicted in Table 3. It is easy to see that n-chasepq« (I*) is
neither a solution for I* nor a solution for A/(I*). This proves the first part of the theorem.

Table 3 The relations Emp and EmpPos of the concrete target instance n-chasep(1*).

(a) Emp. (b) EmpPos.
Name | Company | Salary Time Name Company Position Time
Ada IBM 18000 | [2014,2015) Ada IBM Manager [2015,2017)
Ada IBM 18000 | [2015,2017) Bob | NP2 | Consultant | [2012,2013)
Ada IBM 18000 | [2017,2018) Bob IBM Consultant | [2013,2015)
Bob IBM 13000 | [2013,2015)

Let c-chasep (I*) and c-chasep (N (I*)) be the concrete target instances produced
by the concrete chase algorithm on I'* and on N (I*). The relations of c-chasep (I*) are
depicted in Table 4, and those of c-chase+ (N (I*)) in Table 5. Note that c-chasep« (I*) is
a universal solution for I*, while c-chase« (N (I*)) is a universal solution for N (I*).

Z. Cheng and P. G. Kolaitis

Table 4 The relations Emp and EmpPos of the concrete target instance c-chasep=(I*).

(a) Emp. (b) EmpPos.

‘ Name ‘ Company ‘ Salary ‘ Time ‘ Name | Company Position Time
Ada | NPT NManager | [2015,2017)
Bob | NPP22019 [Consultant | [2012, 2015)

Table 5 The relations Emp and EmpPos of the concrete target instance c-chaseq= (N (1¥)).

(a) Emp. (b) EmpPos.
Name | Company | Salary Time Name | Company Position Time
Ada IBM 18000 | [2014,2018) Ada | NPT Manager | [2015,2017)
Bob IBM 13000 | [2013,2015) Bob | NP9 1 Consultant | [2012, 2015)

Let a~chase = ([I*]) be the abstract target instance produced by chasing the snapshots
of [I*]; its relations are depicted in Table 6.

Table 6 The relations Emp and EmpPos of the abstract target instance a-chasea= ([17]).

(a) Emp. (b) EmpPos.

Name | Company | Salary | Time Name | Company Position Time
Ada IBM 18000 | 2014 Ada IBM Manager 2015
Ada IBM 18000 | 2015 Ada IBM Manager 2016
Ada IBM 18000 | 2016 Bob N3Ot2 Consultant | 2012
Ada IBM 18000 | 2017 Bob IBM Consultant | 2013
Bob IBM 13000 2013 Bob IBM Consultant | 2014
Bob IBM 13000 | 2014

As shown in [11], a-chase« ([I*]) is a universal solution for [I*] w.r.t. M*. It is now

easy to verify that [c-chasep-(I*)] is not homomorphically equivalent to a-chaseaq« ([1*]).

It follows that c-chaseaq~(I*) is not semantically adequate for I*. Furthermore, it is not
hard to show that if J and J’ are universal solutions for I* w.r.t. M*, then [J] and [J'] are
homomorphically equivalent. Therefore, no concrete universal solution for I* is semantically
adequate for I*. This proves the second part of the theorem. A similar argument with
c-chase - (N'(I*)) in place of c-chase - (I*) proves the third part of the theorem. <

3.2 Semantically Adequate Concrete Universal Solutions

Theorem 2 tells that in the temporal data exchange setting studied in [11], there are rather
simple temporal schema mappings and temporal source instances for which no concrete

universal solution is semantically adequate for these instances or for their normalized versions.

A close scrutiny of the proof of Theorem 2 reveals that the root cause for this state of affairs
appears to be the presence of two temporal atoms in the antecedent of the temporal target
egd in ¥¥. Our next result tells that if the temporal target egds contain at most one temporal
atom in the antecedent, then normalized instances have concrete universal solutions that are
also semantically adequate concrete. Moreover, this result holds if each temporal constraint
has at most one temporal variable, instead of ezactly one temporal variable as in [11]; such
constraints contain standard (non-temporal) s-t tgds and target egds as a special case.

» Theorem 3. Let M = (S, T, X, %) be a temporal schema mapping such that (a) each s-t
tgd contains at most one temporal variable; (b) if a s-t tgd contains a temporal variable, then
that temporal variable occurs in every atom of its consequent; (c) each target egd contains
at most one temporal atom in its antecedent. If I is a concrete source instance, then the
following statements hold:

8:9

TIME 2020

8:10

Universal Solutions in Temporal Data Exchange

1. If a solution for I w.r.t. M exists, then n-chasep(I) = c-chasep(N(I)), that is, the
concrete target instance returned by the concrete n-chase algorithm coincides with the
concrete target instance returned by the concrete chase algorithm on N(I). Consequently,
N(I) has a semantically adequate concrete universal solution.

2. If the concrete chase algorithm fails on N'(I), then there is no solution for [I] w.r.t. M.

Proof. (Hint) The key observation is that if every constraint in ¥, contains at most one
temporal atom in its antecedent, then the second normalization step in the concrete n-chase
algorithm does not change the temporal target instance produced by chasing A(I) with the
constraints in Y. It follows that n-chasex(I) = c-chasen((N(I)). It can also be shown that
n-chase (1) is semantically adequate, even in this setting where each constraint in g U 3,
contains at most one temporal variable (instead of exactly one such variable as in [11]). <

It should be pointed out that there are a schema mapping M’ that satisfies the hypothesis
in Theorem 3 and a concrete source instance I’ such that no semantically adequate concrete
universal solution for I’ w.r.t. M’ exists. This is shown in the next proposition.

/

» Proposition 4. There is a temporal schema mapping M’ = (S, T, %", %) where each
constraint in X, U E; contains at most one temporal variable and each constraint in X}
contains at most one temporal atom in its antecedent, and there is a concrete source instance
I', such that there exists a concrete universal solution for I' w.r.t. M’, but there is no
concrete universal solution for I' w.r.t. M’ that is semantically adequate for I'.
Proof. Let M’ = (S, T, ¥/,,3}) be the schema mapping where ¥, consists of the constraints
Vn, s, c,t(E(n,c,t) AS(n,s,t) = Emp(n,c,s,t))
Vn, ¢, p(P(n, p) — 3¢ EmpPos(n, ¢, p))
and ¥} consists of the constraint
Vn, c1,co, 8,0, t(Emp(n,c1, s,t) A EmpPos(n, ca,p) — ¢1 = ¢2).

Let I’ be the concrete source instance whose relations are depicted in Table 7. After
applying the semantic function on I’, we obtain the abstract source instance [I'] whose
relations are depicted in Table 8.

Table 7 The relations E, S, and P of the concrete source instance I'.

(a) B. (b) S. (c) P.
Name | Company Time Name | Salary Time Name Position
Ada IBM [2013,2018) Ada 18000 | [2014,2018) Ada Manager
Bob IBM [2012,2015) Bob 13000 | [2013,2015) Bob Consultant

Table 8 The relations E, S, and P of the abstract source instance [I'].

(a) B. (b) S. (c) P.
Name | Company | Time Name | Salary | Time Name Position

Ada IBM 2013 Ada 18000 | 2014 Ada Manager
Ada IBM 2014 Ada 18000 | 2015 Bob Consultant
Ada IBM 2015 Ada 18000 | 2016
Ada IBM 2016 Ada 18000 | 2017
Ada IBM 2017 Bob 13000 | 2013
Bob IBM 2012 Bob 13000 | 2014
Bob IBM 2013
Bob IBM 2014

Z. Cheng and P. G. Kolaitis

Let c-chasep (I') be the concrete target instances produced by the concrete chase al-
gorithm on I’. The relations of c-chase (I') are depicted in Table 9. Note that c-chase (1)
is a universal solution for I'.

Table 9 The relations Emp and EmpPos of the concrete target instance c-chaseaq (I”).

(a) Emp. (b) EmpPos.
‘ Name ‘ Company ‘ Salary ‘ Time ‘ Name | Company Position
Ada N1 Manager
Bob N> Consultant

Let a~chaseq ([I']) be the abstract target instance produced by chasing the snapshots of
[I']; its relations are depicted in Table 10.

Table 10 The relations Emp and EmpPos of the abstract target instance a-chaseq ([I']).

(a) Emp. (b) EmpPos.

Name | Company | Salary | Time Name | Company Position

Ada IBM 18000 | 2014 Ada IBM Manager

Ada IBM 18000 | 2015 Bob IBM Consultant
Ada IBM 18000 | 2016

Ada IBM 18000 | 2017

Bob IBM 13000 | 2013

Bob IBM 13000 | 2014

As shown in [11], a-chasea ([I']) is a universal solution for [I']) w.r.t. M’. It is now easy
to verify that [c-chasenq (I')] is not homomorphically equivalent to a-chasea ([I']). From
this, it follows that c-chaseaq (I') is not semantically adequate for I’. Furthermore, it is
not hard to show that if J and J’ are universal solutions for I’ w.r.t. M’, then [J] and
[J'] are homomorphically equivalent. Consequently, no concrete universal solution for I’ is
semantically adequate for I’. This completes the proof of the proposition. |

4 Temporal Data Exchange with Multiple Temporal Variables

In this section, we initiate the study of temporal data exchange for schema mappings whose
constraints may contain multiple temporal variables. Such constraints make it possible to
model more complex transformations of temporal data. In the presence of multiple temporal
variables, it is natural to also allow comparisons between different temporal variables. In the
concrete model of time, this means that the antecedents of the s-t tgds and the target egds
may also contain Boolean combinations of the well known Allen’s relations between time
intervals [1, 2], such as m (meets), o (overlaps), < (before) , = (after), and =. Thus, in this
section, we consider temporal schema mappings M = (S, T, X, X;) in which each constraint
in Xy is of the form VxVt(p(x,t) A 7(t) — Iy (x,y,t)), where the only temporal variables
are those in t; ¢(x,t) is a conjunction of source atoms; 7(t) is a Boolean combination of
Allen’s relations involving variables from t; and ¥ (x,y,t) is a conjunction of target atoms
(in particular, no temporal variable is existentially quantified). By the same token, each
constraint in ¥; is of the form VxVt(0(x,t) A p(t) — x = x;), where the only temporal
variables are those in t; 6(x, t) is a conjunction of target atoms; p(t) is a Boolean combination
of Allen’s relations involving variables from t; and xy, x; are among the variables in x.

The next result extends Theorem 3.3 in [9] from the case of (standard) data exchange to
a restricted case of temporal data exchange.

8:11

TIME 2020

8:12

Universal Solutions in Temporal Data Exchange

» Theorem 5. Let M = (S, T, X, %) be a temporal schema mapping, such that one of
the following two conditions holds: (a) Every s-t tgd is full (i.e., its consequent contains no
existential quantifiers); (b) If a s-t tgd is not full and if it contains a temporal variable, then
this is the only temporal variable in that s-t tgd, and it occurs in every atom of the consequent
of the s-t tgd; moreover, every target egd contains at most one temporal variable. If I is a
concrete source instance, then the following statements hold:

1. If the concrete chase algorithm does not fail on I, then the concrete target instance

c-chasep (I) returned by this algorithm is a concrete universal solution for I w.r.t. M.

2. If the concrete chase algorithm fails on I, there is no solution for I w.r.t. M.

The running time of the concrete chase algorithm is bounded by a polynomial in the size of I.

Next, we explore the interplay between the concrete and the abstract models of time with
focus on the existence of semantically adequate concrete universal solutions. In the presence
of multiple temporal variables, concrete s-t tgds and concrete target egds must be converted
to “essentially equivalent” abstract s-t tgds and to abstract target egds, respectively, because
the concrete ones involve Allen’s relations while the abstract ones involve suitable formulas of
first-order logic over time points compared with the < relation. Due to space limitations, we
do not include here the precise definition of this conversion. Instead, we describe the precise
sense in which this conversion transforms concrete constraints to “essentially equivalent”
abstract constraints, and also illustrate this conversion in the proof of Proposition 7.

We will use the terms concrete schema mapping and abstract schema mapping for a
schema mapping consisting of concrete constrains and, respectively, of abstract constraints.
If o is a concrete s-t tgd or a concrete target egds, then we write a(o) for the abstract s-t
tgd or the abstract target egd resulting from o via the aforementioned conversion. Every
concrete schema mapping M = (S, T, X4, ;) gives rise to an abstract schema mapping
M® = (S, T,3%,%%), where £% = {a(0) : 0 € Es} and 3¢ = {a(o) : 0 € X }.

Let x = (x1,...,%,) be a tuple of non-temporal variables and let t = (t1,...,tx) be
a tuple of temporal variables. A concrete (respectively, an abstract) assignment to the
tuple (x,t) is a function p defined on the set {z1,...,%m,t1,...,t;} such that p(z;) = ¢
is a constant, 1 < i < m, and p(t;) = [s;,e;) is an interval (respectively, p(t;) = «;
is a time point), 1 < j < k. If p is a concrete assignment as above, we will use the
notation p(x,t) = (c1,...,¢m,[S1,€1),.-.,[Sk, ex)) to denote it. Similarly, if p is an abstract
assignment, it will be denoted as p(x,t) = (c1,...,Cm,Q1,..., Q).

The semantic function [.] on concrete assignments is defined as follows: if p(x,t) =
(c1y.--yCm,[s1,€1),- -, [SK,€k)) IS a concrete assignment, then [(p(x,t))] is the set of all
abstract assignments ¢(x,t) = (¢1,...,¢m,@1,...,ar), where s; < o <e; and 1 < j < k.
The next proposition describes the properties of the conversion from concrete formulas to
“essentially equivalent” abstract formulas.

» Proposition 6. Assume that ¥ (x, t) is a formula of the form ¥(x, t) = o(x, t) A7 (t), where
the variables in t are the only temporal variables, o(x, t) is a conjunction of atoms over a
temporal schema S, and w(t) is a Boolean combination of Allen’s relations involving variables
from t. Let v*(x, t) be the formula obtained by converting ¢ (x, t) from the concrete model
of time to the abstract model of time. Given a coalesced concrete instance I and a concrete
assignment p(x, t) taking values in I, the following statements are equivalent:

L, p(, &) = (x, 1)

For every abstract assignment q(z, t) € [p(z, t)], we have that [I], q(x, t) = (=, t).
Furthermore, for every abstract assignment q(x, t) such that [I]), q(x, t) = ¢¥*(x, t), there is a
unique concrete assignment p(x, t) such that q(z, t) € [p(x, t)] and I,p(z, t) = ¥(x, t).

Z. Cheng and P. G. Kolaitis

Earlier, we defined the notion of semantic adequacy for temporal schema mappings in
which each constraint had (at most) one temporal variable. We now extend this notion to
temporal schema mappings in which constraints may have any number of temporal variables
If M is a concrete schema mapping and I is a concrete source instance, then a concrete
target instance J is semantically adequate for I if [J] is a universal solution for [I] w.r.t. M®.
Ideally, we would like to have concrete universal solutions for I that are also semantically
adequate for I. As we have seen in Section 3, however, this is not possible in general, even
for temporal schema mappings M with a single temporal variable (where we have M = M?).
In what follows, we identify a sufficient condition for semantic adequacy.

A concrete s-t tgd is full if its consequent contains no existentially quantified variables,
i.e., it is of the form VxVt(p(x,t) A 7(t) — ¥(x,t)). A concrete schema mapping is full if
all its concrete s-t tgds are full. Full schema mappings are also known as Global-as-View or
GAV schema mappings, because each full s-t tgd is logically equivalent to a finite set of s-t
tgds with a single atom in their consequents.

As an example of a concrete full schema mapping, let M = (S, T, X, X;) be the schema
mapping in which ¥,; consists of the concrete full s-t tgds

ol =Vr1, 20, 23, t1 (R (21, 22, 3, t1) — Th (21, 32, 11)),

0% = Va1, 32, 3,04, b1, ta(Ro(21, T2, 3, 11) A R(w1, 24, t2) A (t2 m t1) = To(x1, 23, t2))

and X; consists of the concrete target egds
of =Vry, @2, 23, t1(T1 (21,02, t1) ATy (21,23, t1) = T2 = x3),

0} = Va1, 72,73, t1, t2(T1 (21, T2, t1) A To(w1, 23, t2) A (t1 0 ta) — 9 = T3).

In standard data exchange, full schema mappings have been extensively studied and
have been shown to possess a variety of good structural and algorithmic properties (see,
e.g., [10, 14]). Unfortunately, as our next result shows, these good properties do not include
semantic adequacy.

» Proposition 7. There are a concrete full schema mapping M*T = (8, T, E;’;,E?‘) and a

concrete source instance 1T such that the following statements hold:

1. There is a concrete universal solution for IT w.r.t. M7,

2. There is no solution for [IT] w.r.t. MT2; therefore, no concrete universal solution for
I w.r.t. MT is semantically adequate for IT.

Proof. Let Mt = (S, T, X/, 5;]) be a concrete schema mapping where X7, consists of the
concrete s-t tgds

ol = V1,30, 73, t1 (R1 (21, 72, 3, t1) — Th (21, 72, 11))

02, = V11,0, 3, Ta, t1, to(Ra (21, T2, T3, 1) A Ra(21, T4, t2) A (t2 m t1) — Ta(21,23,12))
and ;' consists of the concrete target egd

op = Vo, w2, 23,0 (T1 (21, w2, t1) AT (21,23, t1) = 22 = 3).

Let MT® = (S, T, %) be the abstract schema mapping obtained from M by
converting the concrete constraints of M to abstract constraints. In this case, £1,* consists
of the following abstract s-t tgds a(cl,) and a(0?,) obtained from o, and o2, respectively:

a(ol,) = Va1, 2, 3, t1 (R (21, T2, 23, t1) = Ti (21, 22, 1))

8:13

TIME 2020

8:14

Universal Solutions in Temporal Data Exchange

a(0?) =Ny, xo, 23, T4, 11, 1o (Rg(xl,xg,xg,tl) A Rs(x1,x4,t2) A Eltf,tf,t;,t;<
Ro(x1, 2, x3,t7) A Rg(x1, 24,15) A Ra(xy, xg,xg,ti”') A R3($17x4,t;)/\
(7 <t <) A <t <6 AV G((T S <H) A <t < 1) =
R2($1,$2,$37t;) A R3(x17x4,tl2)) A (Rg(l'hxg,l'g,t/l) A Rg(Il,I4,t/2) —
(AT = DAL AT+ DA A — DA A+ D)) AW +1=1))
— Tg(xl,xg,tg)).

Moreover, ¥ consists of the following abstract target egd a(o;) obtained from o;:

a(oy) =Va1, @, 3,11, ta (Tl(ajl,xg,tl) ATy(z1,m3,t0) ALt 15, g (Tl(acl,acg,tf)/\
To(w1, 3,15) ATy (21, 22, t7) A To(z1, w3, 85) A (8] <t <) A (t; <to <tF)
AVt (((tf <t SH)A(ty Sty <t5) = Ti(wn, oo, ty) A To(a1, 23, ty))
A (T1 (1, 22,10) ATo(w1,23,15) = (6 £ 17 — DA (G £ +1)
Aty 15 = 1) At At + 1)) AT =t5 A t] =) = 22 = 23).

Before completing the proof of the proposition, we provide some intuition about the
conversion of the concrete temporal constraints of M to the abstract temporal constraints of
MTe. To begin with, a(cl,) is the same as o}, because o}, has a single temporal variable and
no Allen’s relations. In contrast, a(c?2,) is quite different from o2, because it has two temporal
variables and one atomic formula involving Allen’s relation m (meets). The sub-formula
3ty 0t (R2<x17 T, 3,)AL A(HS 1= tl_)) of a(0?,) asserts that: (i) the abstract
variables t; and ty belong to intervals that meet each other (this is the purpose of the
sub-formula (tJ + 1 = ¢;); (ii) all temporal values ¢} and t} in these intervals have the
property that Ro(x1, 22, x3,t]) and Rs(z1,x4,t5) hold; and (iii) there are no bigger intervals
for which (i) and (ii) hold. A similar intuition applies to the construction of the abstract
target egd a(o;). The correctness of this conversion (i.e., that the abstract constraints a(o},),

1 2
o> 05, and oy)

a(0?,), and a(o;) are “essentially equivalent” to the concrete constraints o
uses the fact that we use coalesced concrete source instances.

Let It be the concrete source instance whose relations are depicted in Table 11. By
applying the semantic function on I, we obtain the abstract instance [I7], whose relations
are depicted in Table 12.

Let c-chase+ (IT) be the target instance produced by the concrete chase algorithm on
I™. The relations of c-chase+(IT) are depicted in Table 13. According to Theorem 5,

c-chaseq+ (I") is a universal solution for I w.r.t. M™.

Table 11 The relations R1, Rz, and R3 in the coalesced concrete source instance I7.

(a) Rl. (b) Rz. (C) R3,
name | school | position | Ptime name | address | school | Stime name | city | Ctime
ay c1 dy [1,3) a1 by c2 [4,6) ai e1 [1,4)
ai C1 d2 [274)

We claim that the abstract chase algorithm w.r.t. M™ fails on [I*]. To see this, let
a—chasezta([[f *]) be the target instance produced by chasing [IT] with the abstract s-t

tgds in B1*. The relations of a-chasey+a ([17]) are depicted in Table 14. If we now chase

Z. Cheng and P. G. Kolaitis

Table 12 The relations R1, R2 and R3 in the abstract source instance [[Iﬂ}.

(a) Rl. (b) RQ. (C) R3.
name | school | position | Ptime name | address | school | Stime name | city | Ctime
ay c1 dy 1 a1 by co 4 ay e1 1
a1 1 dy 2 ay b1 ca 5 a1 el 2
ai c1 d> 2 ay el 3
a c1 do 3

Table 13 The relations 77 and 7% in the target instance c-chase+ (I*).

(a) T1. (b) Tg.
name | school | Ptime name | school | Ctime
a1 a [1,3) a s [1,4)
a) c1 [2,4)

Table 14 The relations T3 and T in the abstract target instance a-chaseg+a ([I1]).
st

(a) Tu. (b) To.
name | school | Ptime name | school | Ctime
ay ci 1 ay Cca 1
a c1 2 a Cco 2
ai C1 3 ay c2 3

a—chasezjta([[l +]) with the abstract target egd in 3%, then the abstract chase algorithm
fails. This is because the tuple (a1,b1,c1,1) in the relation T} and the tuple (a,c2,1) in
the relation Ty of a-chasezy([[l"‘]}) trigger the antecedent of the abstract target egd a(oy)
in ©;*, hence the abstract chase algorithm fails because it attempts to equate the distinct
constants ¢; and c3. It follows that there is no solution for [I*] w.r.t. M. Furthermore,
it is not hard to show that if J and J’ are universal solutions for It w.r.t. M™, then [J]
and [J'] are homomorphically equivalent. Consequently, no concrete universal solution for
I w.rt. M™T is semantically adequate for I (in particular, the concrete universal solution
c-chasep+(I1) of I'T w.r.t. M™* is not semantically adequate for 7). This completes the
proof of the proposition. <

Observe that the temporal target egd oy of M™ had two temporal atoms in its antecedent.

Our next result tells that semantically adequate universal solutions exist for full schema
mappings whose temporal target egds have at most one temporal atom in their antecedent.

» Theorem 8. Let M = (S, T, X, %) be a concrete full schema mapping such that each

constraint in X; contains at most one temporal atom. If I is a concrete source instance, then

the following statements hold:

1. If a solution for I w.r.t. M exists, then the concrete target instance c-chasep(I) returned
by the concrete chase algorithm is semantically adequate for I.

2. If the concrete chase algorithm fails on I, then there is no solution for [I] w.r.t. to the
abstract schema mapping M.

According to Proposition 7, if M is a concrete full schema mapping, then there may
exist concrete source instances I for which no concrete universal solution is semantically
adequate. As discussed earlier, Golshanara and Chomicki [11] used the concrete n-chase
algorithm to construct semantically adequate concrete target instances in the setting of
temporal schema mappings with exactly one temporal variable. It is not all clear whether

8:15

TIME 2020

8:16

Universal Solutions in Temporal Data Exchange

or not the concrete n-chase algorithm can be extended to temporal schema mappings with
multiple temporal variables. Instead, we introduce a different variant of the chase, which we
call the coalescing chase algorithm. This algorithm proceeds along the lines of the concrete
chase algorithm by introducing labelled nulls or time-stamped nulls as needed when temporal
s-t tgds are considered or by equating two values when temporal target egds are considered.
However, after each such chase step, the resulting target instance is transformed to a coalesced
one before the next chase step is applied (in general, a chase step on a coalesced instance
may produce a non-coalesced instance). Note that the concrete n-chase algorithm applies
only two normalization steps, while the number of coalescing steps applied by the coalescing
chase algorithm is not fixed.

Our final result asserts that the coalescing chase algorithm produces semantically adequate
target instances in the setting of concrete full schema mappings.

» Theorem 9. Let M = (S, T, X, %) be a concrete full schema mapping. If I is a concrete

source instance, then the following statement hold:

1. If the coalescing chase does not fail on I, then the concrete target instance returned by
the coalescing chase is semantically adequate for I.

2. If the coalescing chase fails on I, then there is no solution for [I] w.r.t. to the abstract
schema mapping M*®.

5 Concluding Remarks

The work reported here contributes to the development of temporal data exchange. Our main
focus was on the pursuit of semantically adequate universal solutions. We showed that such
solutions may not exist even for temporal schema mappings with a single temporal variable.
Nonetheless, we identified classes of schema mappings for which such solutions exist and also
classes of schema mappings for which semantically adequate target instances exist. Along
the way, we expanded the original framework of temporal data exchange studied in [11] by
considering temporal schema mappings with multiple temporal variables and exploring some
of the issues involved in the translation from the concrete model of time to the abstract.
We conclude by describing two directions for further research in this area.
Explore temporal data exchange for schema mappings that also have target tuple-
generating dependencies. Several challenges arise in this case, including the translation
of the constraints from the concrete model of time to the abstract model of time, the
management of time-stamped nulls, and the design of a suitable chase algorithm.
Explore temporal data exchange for schema mappings in which the constraints have
existentially quantified variables. Several challenges of different nature arise in this case,
some of which are similar to challenges in answering queries over temporal data with the
help of ontologies (see [5] for a comprehensive survey of that area).

—— References

1 James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832—
843, 1983. doi:10.1145/182.358434.

2 James F. Allen. Time and time again: The many ways to represent time. Int. J. Intell. Syst.,
6(4):341-355, 1991. doi:10.1002/int.4550060403.

3 Marcelo Arenas, Pablo Barceld, Leonid Libkin, and Filip Murlak. Foundations of Data Ezx-
change. Cambridge University Press, 2014. URL: http://www.cambridge.org/9781107016163.

4 Marcelo Arenas and Leonid Libkin. XML data exchange: Consistency and query answering.
J. ACM, 55(2):7:1-7:72, 2008. doi:10.1145/1346330.1346332.

https://doi.org/10.1145/182.358434
https://doi.org/10.1002/int.4550060403
http://www.cambridge.org/9781107016163
https://doi.org/10.1145/1346330.1346332

Z. Cheng and P. G. Kolaitis

10

11

12

13

14

15

Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. Ontology-mediated query answering over temporal data: A survey
(invited talk). In Sven Schewe, Thomas Schneider, and Jef Wijsen, editors, 24th International
Symposium on Temporal Representation and Reasoning, TIME 2017, October 16-18, 2017,
Mons, Belgium, volume 90 of LIPIcs, pages 1:1-1:37. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017. doi:10.4230/LIPIcs.TIME.2017.1.

Pablo Barcelé, Jorge Pérez, and Juan L. Reutter. Schema mappings and data exchange for
graph databases. In Wang-Chiew Tan, Giovanna Guerrini, Barbara Catania, and Anastasios
Gounaris, editors, Joint 2013 EDBT/ICDT Conferences, ICDT ’18 Proceedings, Genoa, Italy,
March 18-22, 2013, pages 189-200. ACM, 2013. doi:10.1145/2448496.2448520.

Iovka Boneva, Jose Lozano, and Slawomir Staworko. Relational to RDF data exchange
in presence of a shape expression schema. In Dan Olteanu and Barbara Poblete, editors,
Proceedings of the 12th Alberto Mendelzon International Workshop on Foundations of Data
Management, Cali, Colombia, May 21-25, 2018, volume 2100 of CEUR Workshop Proceedings.
CEUR-WS.org, 2018. URL: http://ceur-ws.org/Vol-2100/paper6.pdf.

Jan Chomicki and David Toman. Temporal databases. In Michael Fisher, Dov M.
Gabbay, and Lluis Vila, editors, Handbook of Temporal Reasoning in Artificial Intelli-
gence, volume 1 of Foundations of Artificial Intelligence, pages 429-467. Elsevier, 2005.
doi:10.1016/S1574-6526(05)80016-1.

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data exchange:
semantics and query answering. Theor. Comput. Sci., 336(1):89-124, 2005. doi:10.1016/j.
tcs.2004.10.033.

Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Composing schema
mappings: Second-order dependencies to the rescue. ACM Trans. Database Syst., 30(4):994—
1055, 2005. doi:10.1145/1114244.1114249.

Ladan Golshanara and Jan Chomicki. Temporal data exchange. Inf. Syst., 87, 2020. doi:
10.1016/j.1is.2019.07.004.

Gosta Grahne and Adrian Onet. Anatomy of the chase. Fundam. Inform., 157(3):221-270,
2018. doi:10.3233/FI-2018-1627.

Abdullah Uz Tansel, James Clifford, Shashi K. Gadia, Sushil Jajodia, Arie Segev, and
Richard T. Snodgrass, editors. Temporal Databases: Theory, Design, and Implementation.
Benjamin/Cummings, 1993.

Balder ten Cate and Phokion G. Kolaitis. Structural characterizations of schema-mapping
languages. Commun. ACM, 53(1):101-110, 2010. doi:10.1145/1629175.1629201.

David Toman. Point vs. interval-based query languages for temporal databases. In Richard
Hull, editor, Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, June 3-5, 1996, Montreal, Canada, pages 58—67. ACM Press,
1996. doi:10.1145/237661.237676.

8:17

TIME 2020

https://doi.org/10.4230/LIPIcs.TIME.2017.1
https://doi.org/10.1145/2448496.2448520
http://ceur-ws.org/Vol-2100/paper6.pdf
https://doi.org/10.1016/S1574-6526(05)80016-1
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1145/1114244.1114249
https://doi.org/10.1016/j.is.2019.07.004
https://doi.org/10.1016/j.is.2019.07.004
https://doi.org/10.3233/FI-2018-1627
https://doi.org/10.1145/1629175.1629201
https://doi.org/10.1145/237661.237676

	Introduction and Summary of Results
	Preliminaries
	Temporal Data Exchange with a Single Temporal Variable
	No Semantically Adequate Concrete Universal Solutions
	Semantically Adequate Concrete Universal Solutions

	Temporal Data Exchange with Multiple Temporal Variables
	Concluding Remarks

