Open Web Ontobud: An Open Source RDF4J
Frontend

Francisco José Moreira Oliveira
University of Minho, Braga, Portugal
a78416@alunos.uminho.pt

José Carlos Ramalho
Department of Informatics, University of Minho, Braga, Portugal
jer@Qdi.uminho.pt

—— Abstract

Nowadays, we deal with increasing volumes of data. A few years ago, data was isolated, which
did not allow communication or sharing between datasets. We live in a world where everything is
connected, and our data mimics this. Data model focus changed from a square structure like the
relational model to a model centered on the relations. Knowledge graphs are the new paradigm to
represent and manage this new kind of information structure.

Along with this new paradigm, a new kind of database emerged to support the new needs, graph
databases! Although there is an increasing interest in this field, only a few native solutions are
available. Most of these are commercial, and the ones that are open source have poor interfaces,
and for that, they are a little distant from end-users.

In this article, we introduce Ontobud, and discuss its design and development. A Web application
that intends to improve the interface for one of the most interesting frameworks in this area: RDF4.J.
RDF4J is a Java framework to deal with RDF triples storage and management.

Open Web Ontobud is an open source RDF4J web frontend, created to reduce the gap between
end users and the RDF4J backend. We have created a web interface that enables users with a basic
knowledge of OWL and SPARQL to explore ontologies and extract information from them.

2012 ACM Subject Classification Information systems — Web Ontology Language (OWL); Infor-
mation systems — Ontologies; Computing methodologies — Ontology engineering; Information
systems — Graph-based database models

Keywords and phrases RDF4J, Frontend, Open Source, Ontology, REST API, RDF, SPARQL,
Graph Databases

Digital Object Identifier 10.4230/0OASIcs.SLATE.2020.15

Category Short Paper

1 Introduction

An ontology [32] comprises a formal naming, representation and definition of the categories,
properties and relations between the concepts, data and entities/individuals that substantiate
one or many domains. Ontologies are very easy to visualize as a graph, where nodes represent
concepts/entities, and edges represent relations between the concepts. Using these formalities,
knowledge can be defined in a simple way. Because of this, computers can use rules and
logic, like the syllogisms to extract additional knowledge using inference[13].

RDF4J [24] is an open source Java framework developed to manipulate and/or access
RDF data. This framework enables the storage of RDF based ontologies (RDF [17], RDFS [5],
and OWL [1]) and their exploitation and management with SPARQL [27] (W3C language
and protocol for querying web ontologies). RDF4J works both locally and remotely thanks to
its REST API and implements a SPARQL endpoint for all the ontologies stored in it. RDF4J
fully supports SPARQL1.1 [28], all mainstream RDF file formats, and RDFS inference.

? Francisco José Mmjeira Oliveira, ar‘fd José Carlos Ramalho;
5v icensed under Creative Commons License CC-BY
9th Symposium on Languages, Applications and Technologies (SLATE 2020).
Editors: Alberto Simoes, Pedro Rangel Henriques, and Ricardo Queirés; Article No. 15; pp. 15:1-15:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:a78416@alunos.uminho.pt
https://orcid.org/0000-0002-8574-1574
mailto:jcr@di.uminho.pt
https://doi.org/10.4230/OASIcs.SLATE.2020.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

15:2

Open Web Ontobud: An Open Source RDF4J Frontend

SPARQL is a query language designed to explore RDF ontologies, and SPARQL 1.1 is an
improvement over the original by adding update queries, capable of manipulating an ontology.
Inference [14] uses a reasoner and a set of rules to generate new relations between resource in
the ontology. These relations are often known as implicit triples. RDFS inference mechanism
looks only at RDFS vocabulary within the ontology when generating new relations.

These basic features make RDF4J a versatile and capable tool, which many databases
such as GraphDB, Amazon Neptune and Virtuoso have used as their foundation and then
improved with additional features [24].

Despite being often used as a stepping stone framework, RDF4J remains a useful RDF
Store, still receiving updates and new versions, and its Server and Workbench can be used by
anyone thanks to its Open Source license [25, 8]. However the updates focus heavily on bug
fixes and sometimes a few new features for the RDF4J Server, while the RDF4.J Workbench
remains untouched [26].

Open Web Ontobud is a web frontend that brings all the RDF4J features to the user in
a simple and complete interface, creating an appealing and easy to use workbench. With
its simplicity any user with a basic RDF/OWL and SPARQL knowledge is able to analyze,
extract and manipulate information from ontologies.

This section introduced ontologies, RDF4J, its qualities and shortcomings, and the
motivation to develop Ontobud. Section 2 presents currently existing frameworks, discusses
and compares their strengths and flaws. Section 3 shows the current state of Ontobud and
its components, explains its design choices and each component purpose. In Section 4 the
paper is concluded and future work is presented.

2 Existing Ontology Frameworks and Databases

Before developing a new web frontend, we analyzed the already existing options. Firstly,
some RDF Stores do not have a workbench or frontend, and others provide only a SPARQL
query editor. Secondly, we would prefer an open source solution.

The next subsections will talk about some of the existing options that provide an interface
and list what features they lack and why they were not chosen.

2.1 GraphDB

GraphDB is a highly efficient, robust, and scalable graph database [10], owned by Ontotext.
GraphDB is built on top of the RDF4J framework, using it for storage and querying, and
has ample support for query languages, such as SPARQL and SeRQL, and RDF syntax’s,
like Turtle, RDF/XML, N3, and many others [10]. The usage of all the support provided by
RDF4J makes GraphDB easy to use and compatible with industry standards.

It adds the capacity to execute OWL reasoning [12] and is one of the few RDF databases
that can perform semantic inferencing at scale, handling heavy query loads and real time
inferencing [11].

To support different user demands, GraphDB comes with three commercial editions:
GraphDB Free, GraphDB Standard Edition and GraphDB Enterprise Edition [11]. Unfor-
tunately, the commercial nature of GraphDB goes against our desire for an open source
solution and prevents us from selecting it as a valid option. Out of all the options provided,
only the Free Edition would be viable, but it is still not entirely open source. GraphDB has
a good interface, targeting the maintenance and exploitation of stored ontologies, but its
main focus is the speed optimizations, allowing fast operations even for massive volumes of
data. On the other side, there is a lack of user-centered options. For example, SPARQL
queries can only be stored globally, which is not the best way since they are often ontology
dependent.

F. J. M. Oliveira and J. C. Ramalho

2.2 Blazegraph

Blazegraph is an open source [3], ultra-high-performance graph database used in commercial
and government applications [2, 4].

Blazegraph supports different operating modes (triples, provenance, and quads), and
RDF/SPARQL API, allowing its use as a RDF Store, and covers application needs from
small to large applications, up to 50GB statements stored in NanoSparqlServer [4].

Despite its incredible performance and adaptability, Blazegraph workbench provides
only basic tools, such as executing a SPARQL Query and Update, exploring a resource by
URI, and listing namespaces. Blazegraph focus is its database features, speed, and size,
resulting in a poor workbench, making its management harder. This is a noticeable problem
as Wikidata [33, 34], one of Blazegraph biggest users, does not use the default Blazegraph
workbench and instead uses the CodeMirror [6] framework to build its workbench, which
offers more features such as premade query templates, history, among others.

2.3 Neodj

Neo4j is an open source, NoSQL native graph database, and comes with a Community
and Enterprise edition [20]. In terms of speed, Neo4j delivers constant time traversals for
both depth and breadth thanks to its efficient representation of nodes and relationships, all
while maintaining a flexible property graph schema that can be adapted and changed at any
time [20].

To explore stored ontologies, NeodJ uses Cypher [20]. Cypher is a declarative query
language similar to SQL but optimized for graphs, currently used by other databases such as
SAP HANA Graph and Redis graph via the openCypher project. However, when compared
with SPARQL, it is much more low level. Additionally, up to version 3 (version 4 was recently
released), Neo4J only allowed the storage of one single ontology. Fortunately, version 4 fixed
this limitation.

Unfortunately, Neo4J natively does not have any inference engine and does not support
SPARQL. There are some attempts to work around this problem using plugins such as
GraphScale [19], which shows promising results but still has limitations and is currently
working on improvements [16].

3 Development of Open Web Ontobud

After analyzing the currently available options and their features, we concluded that no one
fulfilled our requirements. This conclusion gave the motivation and led us to propose and
develop the Open Web Ontobud, an Open Source RDF4J Frontend.

Ontobud is not just a simple frontend, being divided into four main components: Frontend,
Backend, MongoDB, and RDF4J Server, as can be seen in Figure 1. Each of these components,
which will be discussed in detail in the following subsections, can be deployed using Docker,
or if Docker is not available, a Dockerless deployment is also possible.

The frontend, as the main component, is intended to provide the interface the user will
use to interact with and to manipulate his ontologies. The backend exists, most importantly,
to manage the authentication process for the users and their access control, but also adds
some new queries and facilitates the communication between frontend and databases.

RDF4J was the chosen RDF Store for this project. It can be any RDF4J Server, but a
version 3.x or higher is advised, as a few Ontobud functionalities are not supported by earlier
RDF4J versions. MongoDB stores all information that RDF4J cannot handle, such as user
account information, preferences, context, and saved queries.

15:3

SLATE 2020

15:4

Open Web Ontobud: An Open Source RDF4J Frontend

Frontend Backend Databases
(%’docker
mongoDB.
Nege| 4
(azf,
@ ‘ @ docker
Erdfll] / server
Vue + Vuetify Node.js + Express _)

Figure 1 Ontobud Architecture.

3.1 Frontend

The frontend goal is to have an intuitive user interface capable of providing some statistical
information for any given ontology, and easy access to frequently queried data. This way, new
users to RDF/OWL and SPARQL can use this readily available information while learning
the workings and the SPARQL queries behind it. Furthermore, experienced users can benefit
from easy access to information by running fewer SPARQL queries.
Vue [30] and Vuetify [31] are the frameworks used to develop Ontobud frontend. Vue
is a JavaScript Framework for the development of reactive web frontends. Vuetify is a
JavaScript and CSS framework developed for Vue that adds new components with many
possible configurations.
Currently, the frontend allows many operations, most notably:
Account creation, allowing access to saved queries;
Repository list and management (add and delete);
Repository information such as explicit and implicit statement number, used namespaces
and a list of existing classes;
Import and export repository (accepts multiple RDF syntaxes);
SPARQL 1.1 Query and Update execution, including:
SPARQL Query syntax verification (using PEG.js [23] and following the SPARQL
Grammar [29]);
Query results search, export, and navigation;
Saved queries:
repository specific (not global) or usable in all repositories (global);
management (user can add, reuse, edit and delete).

Figure 2a shows the results of a query placed in a table and Figure 2b shows the navigation
table, where we can see all triples related to a specific URI. All URI are links that can be
clicked and appear underlined to distinguish from literals, which cannot be clicked. This
allows the user to navigate the ontology from any query result or resource.

By using a web browser as an interface, which is commonly pre-installed on most computers
nowadays, Ontobud Frontend comes with no pre-requisites allowing any person to use the
frontend. This enables anyone to use this platform anywhere, including cellphones and
tablets, as the responsive nature of Vue allows the page to fit the screen with small changes
to the original code.

The frontend is only a component in this project, and due to its open source nature,
anyone can modify the original design, improve it, or fix bugs. It would be possible to create
alternate interface designs, such as a design oriented to users unfamiliar with SPARQL, or a

F. J. M. Oliveira and J. C. Ramalho

Query
select * where {

Resource: type

Namespace: http:/www.w3.0org/1999/02/22-
rdf-syntax-ns

URI: http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

?s?p 70

}
limit 50

Show Namespace

@ Search

Use Prefix

Inferencing

Export File
EXPORT RESULTS json
SUBJECT PREDICATE OBJECT

Sort by

rdf:Alt rdf:type rdfs:Resource rdf:type rdf:type rdfs:Resource

rdf:Alt rdf:type rdfs:Class rdf-type rdftype rdf-Property

rdf:Alt rdfs:subClagsOf rdfs:Resource rdf-type rdfs:domain rdfs:Resource

rdf:Alt rdfs:subClassOf rdfs:Container rdf:type rdfs:range rdfs:Class

rdf:Alt rdfs:subClassOf rdf:Alt rdf-type rdfs:subPropertyOf rdf:type

Rows per page: 5 1-5 of 50

Rows per page: 5

(a) Query results. (b) Navigation.

Figure 2 Query results and navigation.

one-page design if the users want. The room for customization and improvement is there.

With multiple interface designs, each user could run their favorite frontend design, made by
themselves or someone else, in their computer while connected to a remote backend.

Running the frontend on your computer can be done using Docker [7] or NPM [21], both
simple options with few requirements.

3.1.1 SPARQL syntax parser using PEG.js

Using PEG.js [23] online, we defined a parser to detect SPARQL Query syntax errors. For
this, we followed the SPARQL Grammar [29] as a reference. SPARQL Update is currently not

included in this parser, and the frontend will warn the user about it, as shown in Figure 3c.

We then downloaded the parser from PEG.js and integrated it into the frontend. This
allowed us to notify the user about errors in real-time, as the warning is updated whenever
the query changes, and not when executed. This can be seen in Figure 3b. Figure 3c shows
a warning, notifying the user that we cannot verify SPARQL Update queries, namely inserts
and deletes, and Figure 3a shows a correct SPARQL Query, and therefore no warning is
displayed.

3.2 Backend

Access control and user authentication are the main focus of the backend. The frameworks
used are Node.js [21], and Express [9]. User accounts require an email (account ID), password,
and account name. The created account will be processed, having its password encrypted
using the NPM [21] package berypt [22], and then be saved in MongoDB.

15:5

SLATE 2020

15:6

Open Web Ontobud: An Open Source RDF4J Frontend

Query

select * where {

?s7p 70

}
limit 50

(a) SPARQL Query without errors.

Query Query
select * where { insert data {
?s?p 70

}

XS XpXxo

(b) SPARQL Query with error. (c) SPARQL Update notification.

Figure 3 SPARQL Query editor.

User authentication requires the account email and password. Upon authentication
success, the backend will return a JSON Web Token [15] (JWT), which will be used for access
control, created using asymmetric encryption. The returned JWT will allow the backend to
verify if an authenticated user has permission to execute its request.

At this time, the authentication is implemented, and the user access control is currently
in development. The access control will mainly allow admins access to special features, such
as non-admin account management, and no restrictions in their actions. It also enables
request verification from non-admins, for example, preventing userA from deleting an userB
saved query.

Furthermore, the backend has its own REST API, divided into authentication, MongoDB,
and RDF4J routes. The first two manage the user accounts and access to MongoDB
information, respectively. The RDF4J grants access to the repositories and its routes were
inspired by the original REST API, but are not all identical. We did this in an attempt to
create a more friendly and simple API for users unfamiliar with the original one or interacting
with API in general. Currently, not all routes provided by RDF4J are mapped into the
backend, only the most common and necessary for the frontend, but direct access to the
RDF4J Server is possible if needed.

The frontend uses most of the existing API to supply its functionalities but some of the
provided backend routes remain unused, in particular:

Account information — Returns a JSON object containing user information, such as,
account name, email and other information fields to be added;

Delete user account — Allow an user to delete its account or an admin to delete any
account;

Repository configuration information — Return information about a repository, such as,
repository name and ID, which storage type is using and if it is using inference;

Repository contexts — Returns a list context identifiers from a repository;

F. J. M. Oliveira and J. C. Ramalho

3.3 Databases

For data persistence two databases were chosen. The ontologies are stored in RDF4J [24]
and the remaining information is stored in MongoDB [18]. Most notably, Ontobud uses the
REST API to access the SPARQL endpoints, allowing all its components to run locally or in
different machines.

MongoDB is a NoSQL document database, storing data in JSON-like documents [18].
MongoDB is used to store all information RDF4J cannot handle. This includes information
such as user account, preferences, information, context and saved queries. User accounts
exist to enable access control while saved queries assist the user in its work. We decided to
save queries on the server-side because this allows the user access to them on any computer.
Creating an account is fast, meaning new users can quickly start saving queries.

4 Conclusion

Along the paper we discussed the development of a frontend for RDF4J. The intent behind
this project, which led us to propose and implement Ontobud, was to create an open source
and easy to use platform. We compared the possible ontology frameworks and selected the
one fitting our requirements.

The application introduced in this paper aims to improve the user experience, for both
new and experienced users in the ontology domain, by providing an intuitive interface without
cutting on functionalities and an easy access to analytic information about the ontology. We

will test it in the context of an academic class with students recently introduced to ontologies.

4.1 Future work

As future work, we aim to finish the user access control, improving the safety in a multi-user
environment, and implement a graph visualization and navigation component for a more
natural exploration and understanding of any given ontology. The current navigation system
presents information in tables by returning triples where a given resource URI is defined as a
subject, predicate or object, but this can be confusing and overwhelming to new users.
Additionally, we plan to improve the inference mechanism of Ontobud. RDF4J can make
RDFS inferences on uploaded ontologies but lacks OWL inference. This issue is already being
worked on another project of our team, where we are using SPARQL Construct queries to

simulate inference. A Construct query has two parts, a select clause, and a construct clause.

By selecting the axiom conditions and constructing the axiom consequences, we effectively
obtain inferred triples from the ontology. Afterward, we inject this inferred triples in the
ontology with an Insert query. This process could be added to Ontobud, equipping it with a
simple and powerful OWL inference mechanism built with the technology already in place.

—— References

1 Sean Bechhofer, Frank Van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuinness,

Peter F Patel-Schneider, Lynn Andrea Stein, et al. OWL web ontology language reference.

W38C recommendation, 10(02), 2004.
2 The Eclipse BlazeGraph framework. https://rdf4j.org/about/. Accessed: 2020-04-19.

3 BlazeGraph License. https://github.com/blazegraph/database/blob/master/LICENSE.

txt. Accessed: 2020-04-19.
4 BlazeGraph Wiki. https://github.com/blazegraph/database/wiki. Accessed: 2020-04-19.

15:7

SLATE 2020

https://rdf4j.org/about/
https://github.com/blazegraph/database/blob/master/LICENSE.txt
https://github.com/blazegraph/database/blob/master/LICENSE.txt
https://github.com/blazegraph/database/wiki

15:8 Open Web Ontobud: An Open Source RDF4J Frontend

~

10

11

12

13

14
15
16

17

18
19

20

21
22
23
24
25
26
27
28
29

30
31
32

33
34

Dan Brickley, Ramanathan V Guha, and Brian McBride. Rdf schema 1.1. W3C recom-
mendation. World Wide Web Consortium, February, 2014. Accessed: 2020-02-04. URL:
https://www.w3.org/TR/rdf-schema/.

CodeMirror. https://codemirror.net/. Accessed: 2020-04-19.

Docker. https://www.docker.com/. Accessed: 2020-04-19.

Eclipse Public License — v 1.0. https://wuw.eclipse.org/org/documents/epl-v10.php.
Accessed: 2020-04-06.

Express. https://expressjs.com/. Accessed: 2020-04-19.

GraphDB Free. http://graphdb.ontotext.com/documentation/free/. Accessed: 2020-04-
07.

GraphDB Free -~ About. http://graphdb.ontotext.com/documentation/free/
about-graphdb.html. Accessed: 2020-04-07.

GraphDB Free — Free Version. http://graphdb.ontotext.com/documentation/free/free/
graphdb-free.html. Accessed: 2020-04-07.

Aidan Hogan. Linked data and the semantic web standards. In Linked Data and the Semantic
Web Standards. Chapman and Hall/CRC Press, 2013.

Inference. https://www.w3.org/standards/semanticweb/inference. Accessed: 2020-04-23.
JWT. https://jwt.io/. Accessed: 2020-04-30.

Thorsten Liebig, Vincent Vialard, Michael Opitz, and Sandra Metzl. GraphScale: Adding
Expressive Reasoning to Semantic Data Stores. In International Semantic Web Conference
(Posters & Demos), 2015. Accessed: 2020-01-09. URL: http://ceur-ws.org/Vol-1486/
paper_117.pdf.

Frank Manola, Eric Miller, Brian McBride, et al. RDF primer. WS8C recommen-
dation, 10(1-107):6, 2014. Accessed: 2020-01-01. URL: http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/.

MongoDB. https://wuw.mongodb.com/. Accessed: 2020-04-20.

Neo4j: A Reasonable RDF Graph Database & Reasoning Engine [Community Post]. https:
//neo4j.com/blog/neodj-rdf-graph-database-reasoning-engine/. Accessed: 2020-04-07.
Neo4j Overview. https://neodj.com/developer/graph-database/#neo4j-overview. Ac-
cessed: 2020-04-08.

Node.js. https://nodejs.org/en/. Accessed: 2020-04-19.

NPM bcrypt package. https://www.npmjs.com/package/bcrypt. Accessed: 2020-04-30.
PegJS. https://pegjs.org/. Accessed: 2020-04-30.

The Eclipse RDF4J framework. https://rdf4j.org/about/. Accessed: 2020-04-06.

RDF4J License. https://rdf4j.org/download/#license. Accessed: 2020-04-06.

RDF4J Release notes. https://rdf4j.org/release-notes/. Accessed: 2020-04-07.
SPARQL. https://www.w3.org/TR/rdf-sparql-query/. Accessed: 2020-04-23.

SPARQL 1.1. https://wuw.w3.org/TR/sparqlil-overview/. Accessed: 2020-04-23.
SPARQL Grammar. https://www.w3.org/TR/sparqlll-query/#rQueryUnit. Accessed:
2020-04-30.

Vue. https://vuejs.org/. Accessed: 2020-04-19.

Vuetify. https://vuetifyjs.com/en/. Accessed: 2020-04-19.

W3 Standards — Ontology. https://www.w3.org/standards/semanticweb/ontology. Ac-
cessed: 2020-07-01.

Wikidata. https://www.wikidata.org/wiki/Wikidata:Main_Page. Accessed: 2020-04-19.
Wikidata Query. https://query.wikidata.org/. Accessed: 2020-04-19.

https://www.w3.org/TR/rdf-schema/
https://codemirror.net/
https://www.docker.com/
https://www.eclipse.org/org/documents/epl-v10.php
https://expressjs.com/
http://graphdb.ontotext.com/documentation/free/
http://graphdb.ontotext.com/documentation/free/about-graphdb.html
http://graphdb.ontotext.com/documentation/free/about-graphdb.html
http://graphdb.ontotext.com/documentation/free/free/graphdb-free.html
http://graphdb.ontotext.com/documentation/free/free/graphdb-free.html
https://www.w3.org/standards/semanticweb/inference
https://jwt.io/
http://ceur-ws.org/Vol-1486/paper_117.pdf
http://ceur-ws.org/Vol-1486/paper_117.pdf
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
https://www.mongodb.com/
https://neo4j.com/blog/neo4j-rdf-graph-database-reasoning-engine/
https://neo4j.com/blog/neo4j-rdf-graph-database-reasoning-engine/
https://neo4j.com/developer/graph-database/#neo4j-overview
https://nodejs.org/en/
https://www.npmjs.com/package/bcrypt
https://pegjs.org/
https://rdf4j.org/about/
https://rdf4j.org/download/#license
https://rdf4j.org/release-notes/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-query/#rQueryUnit
https://vuejs.org/
https://vuetifyjs.com/en/
https://www.w3.org/standards/semanticweb/ontology
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://query.wikidata.org/

	Introduction
	Existing Ontology Frameworks and Databases
	GraphDB
	Blazegraph
	Neo4j

	Development of Open Web Ontobud
	Frontend
	SPARQL syntax parser using PEG.js

	Backend
	Databases

	Conclusion
	Future work

