
bOWL: A Pluggable OWL Browser
Alberto Simões
2Ai, School of Technology, IPCA, Barcelos, Portugal
asimoes@ipca.pt

Ricardo Queirós
CRACS – INESC, LA, Porto, Portugal
uniMAD – ESMAD, Polytechnic of Porto, Portugal
http://www.ricardoqueiros.com
ricardoqueiros@esmad.ipp.pt

Abstract
The Web Ontology Language (OWL) is a World Wide Web Consortium standard, based on the
Resource Description Format standard. It is used to define ontologies. While large ontologies are
useful for different applications, some tools require partial ontologies, based mostly on a hierarchical
relationship of classes. In this article we present bOWL, a basic OWL browser, with the main goal
of being pluggable into others, more significant, web applications. The tool was tested through its
integration on LeXmart, a dictionary editing tool.

2012 ACM Subject Classification Information systems → Web Ontology Language (OWL)

Keywords and phrases OWL, Web Plugin, OWL Browser, Ontology

Digital Object Identifier 10.4230/OASIcs.SLATE.2020.18

Category Short Paper

Funding This work was partly founded by Portuguese national funds (PIDDAC), through the
FCT – Fundação para a Ciência e Tecnologia and FCT/MCTES under the scope of the projects
UIDB/05549/2020 and UIDB/50014/2020.

1 Introduction

With the Semantic Web, there has been a widespread of ontologies, linked data, and other
resources. This is excellent, as these resources are encoded in machine readable formats,
allowing their processing automatically. Nevertheless, while large data-sets are released every
week, there are some specific tools that can benefit from smaller and simpler ontologies. In
fact, any website that we currently use, and that is known as being Web 2.0, can use an
ontology: blog software allows the use of trees of concepts, photo galleries allow tagging
images with classes. All these structures could be codified as ontologies. But unfortunately,
the way these sites treat classification is quite limited.

The main reason for using simple trees for classification (something that is quite near the
taxonomy) is the relatively simple way they are built. While we lack proof, a reason might
be the quite complicated way ontologies are presented. Indeed, ontologies are complicated
structures, but at their core, they use a backbone which is (almost) a tree. In fact, the
most used ontology building software (Protégé1) uses an interface that emphasis this specific
structure.

In this paper, we explore how a simple ontology can be built using any external editor
and used in a Web application, where the user can navigate it to classify individuals, and
can only perform basic operations on top of the ontology directly.

1 https://protege.stanford.edu/

© Alberto Simões and Ricardo Queirós;
licensed under Creative Commons License CC-BY

9th Symposium on Languages, Applications and Technologies (SLATE 2020).
Editors: Alberto Simões, Pedro Rangel Henriques, and Ricardo Queirós; Article No. 18; pp. 18:1–18:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6961-2660
mailto:asimoes@ipca.pt
https://orcid.org/0000-0002-1985-6285
http://www.ricardoqueiros.com
mailto:ricardoqueiros@esmad.ipp.pt
https://doi.org/10.4230/OASIcs.SLATE.2020.18
https://protege.stanford.edu/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


18:2 bOWL: A Pluggable OWL Browser

Some sites already allow the navigation on an ontology, but our main contribution is to
build this ontology browser (and minimal visualizer) as a plug-in, to be easily embedded in
larger applications, and with a small code footprint.

2 The OWL Standard and OWL Editors

The Web Ontology Language [6] is a language designed by the World Wide Web Consortium
(W3C) on top of the Resource Description Framework (RDF) specification. Its specification
allows different dialects. One of the basic exportation formats by tools like Protégé [2] and
its Web variant, Webprotégé [5] is a flat format, that describes the ontology classes, its
annotation properties, and relations, one at a time.

2.1 The OWL Standard
In this section, we describe a few of the structures that the OWL standard allows, that are
crucial for the tool being developed. Although we are aware that the OWL standard is a
larger whole world, we currently are targeting a small subset, that might be expanded in the
future.

Prefix definition:

<Prefix name="rdf" IRI="http: // www.w3.org /1999/02/22 - rdf -syntax -ns#"/>

These are single elements, that describe some IRI prefixes which can be abbreviated in
the document. This allows that some elements have a IRI attribute, with a full IRI, and
some others have an abbreviatedIRI attribute, that uses the prefix notation.
Classes definition:

<Declaration >
<Class IRI="http: // webprotege . stanford .edu/ agricultura "/>

</ Declaration >

These declarations are used to define which classes are recognized by the ontology. Each
declaration includes just the class IRI.
Data properties definition:

<Declaration >
<DataProperty IRI="http: // webprotege . stanford .edu/ abbreviation "/>

</ Declaration >

Similar to the classes definition, these structures declare all data properties that can be
used in the ontology. Data properties are treated as entities very similar to classes as we
will see, as they can also have relations and properties.
There are two different kind of sub classes definitions. The first one, for standard ontology
classes hierarchy, OWL describe them as:

<SubClassOf >
<Class IRI="http: // webprotege . stanford .edu/ citologia "/>
<Class IRI="http: // webprotege . stanford .edu/ biologia "/>

</ SubClassOf >

Thus, in this example, the class “citologia” [citology] is a subclass of “biologia” [biology].
The relationship between classes and data properties are also described as a SubClassOf
element, as in the next example:



A. Simões and R. Queirós 18:3

<SubClassOf >
<Class IRI="http: // webprotege . stanford .edu/ citologia "/>
<DataHasValue >

<DataProperty IRI="http: // webprotege . stanford .edu/ abbreviation "/>
<Literal >citol.</ Literal >

</ DataHasValue >
</ SubClassOf >

These structures describe a relation from a class with a literal (a string) by a data property
previously defined.
OWL treats data properties as classes. Therefore, they can have their own hierarchy.
Also, as they define relationships between elements, it is possible to describe their domain
and range:
<SubDataPropertyOf >

<DataProperty IRI="http: // webprotege . stanford .edu/ abbreviation "/>
<DataProperty abbreviatedIRI =" owl:topDataProperty "/>

</ SubDataPropertyOf >
<DataPropertyDomain >

<DataProperty IRI="http: // webprotege . stanford .edu/ abbreviation "/>
<Class abbreviatedIRI =" owl:Thing "/>

</ DataPropertyDomain >
<DataPropertyRange >

<DataProperty IRI="http: // webprotege . stanford .edu/ abbreviation "/>
<Datatype abbreviatedIRI =" xsd:string "/>

</ DataPropertyRange >

The first block describes the abbreviation relation as a child to a top level data property.
The second block defines its domain (any class child of owl:Thing). Finally, the latter,
describes the range or co-domain of the relation: strings.
Finally, there are annotation assertions, that annotate classes and relations with external
objects. These are similar to relations whose range are strings:
<AnnotationAssertion >

<AnnotationProperty abbreviatedIRI =" rdfs:label "/>
<IRI >http: // webprotege . stanford .edu/ abbreviation </IRI >
<Literal xml:lang ="pt">abbreviation </ Literal >

</ AnnotationAssertion >
<AnnotationAssertion >

<AnnotationProperty abbreviatedIRI =" rdfs:label "/>
<IRI >http: // webprotege . stanford .edu/ agricultura </IRI >
<Literal xml:lang ="pt">agricultura </ Literal >

</ AnnotationAssertion >

These two examples show that annotations assertions can be defined both for properties
(first example) or to classes (second example). For each, a relation (property) is defined,
and a target language for the literal annotating the element.

These structures comprise a small subset of the OWL standard. Nevertheless, they are
the kind of structures that we expect to be useful to embed on a pluggable Web widget.

2.2 OWL Libraries and Editors for the Web
There are two main types of tools to handle OWL in the Web: libraries to be used by
programmers, and online editors, to be used by end-users.

As a library, we can find some JavaScript modules to handle RDF/OWL, and perform
queries on them. Their main goal is not to allow the creation of the ontology, but to reason
over it.

SLATE 2020



18:4 bOWL: A Pluggable OWL Browser

There are some of the libraries available that are written to be run in the browser (and
not as a server library, running on node.js). Most are prepared only as triple stores, to load
RDF documents and allow queries using SPARQL [1]:

rdfstore-js2 is built as a triple store, supporting the SPARQL query language. While
it might be useful as a library, it is over complicated for our intents. Also, given bOWL
is a plugin for other applications, it is important to use to keep it with a small footprint.
rdflib.js3 has similar goals as rdfstore-js, allowing the loading of RDF in different
formats, and performing queries using SPARQL. Its versatility makes it a huge library to
be embedded in a web application.
SPARQL.js4 as expected from its name, is another triple store library. In fact, it is more
devoted to the parsing of the SPARQL language than on the processing of RDF.
rdfquery5 is not maintained for more than 10 years, and its main goal is to be used as a
query library for RDF documents.

Regarding editors, there is not much choice. The main used editor for OWL is Protégé [2],
that includes a web version, WebProtégé [5]. But this is a full blown web application, and is
not prepared to be plugged into other applications, as a simple module to manage the main
ontology hierarchical structure.

Protégé is implemented in Java, and WebProtégé is a simple Web wrapper to the Protégé
library. They both use the OWL Api6 Java library to generate and parse OWL files. While
there is an attempt to port this library to JavaScript7, it does not run in a browser, neither
in node.js.

3 Implementation Details

The main goal when deciding for the implementation of a new tool to browse ontologies was
making it embeddable, as independent as possible from other tools, and event oriented. It
should also support basic edition capabilities.

3.1 bOWL internal OWL representation
Figure 1 shows the class diagram for bOWL. As it can be observed, we are focusing on very
specific constructions. While in the future there might be the option to add new features, at
the moment the main goal is to have it working for basic ontologies that define, mostly, a
kind-of taxonomy.

Currently bOWL stores information about prefixes – in order to be able to expand
or compact abbreviated URIs –, information about classes, and information about data
properties.

For each class, its IRI is stored along with its parents (using the subClass relation) and
its data and annotation properties. Each annotation property has the respective literal and
the used language for that literal. Regarding data properties, only the IRI for the property
relation and the value are stored.

The information about data properties define their IRI along with their domain and
range, and annotation properties.

2 https://github.com/antoniogarrote/rdfstore-js
3 https://github.com/linkeddata/rdflib.js
4 https://github.com/RubenVerborgh/SPARQL.js
5 https://code.google.com/archive/p/rdfquery/
6 https://github.com/owlcs/owlapi
7 https://github.com/cmungall/owljs

https://github.com/antoniogarrote/rdfstore-js
https://github.com/linkeddata/rdflib.js
https://github.com/RubenVerborgh/SPARQL.js
https://code.google.com/archive/p/rdfquery/
https://github.com/owlcs/owlapi
https://github.com/cmungall/owljs


A. Simões and R. Queirós 18:5

OWL

Data Properties Def

IRI

Domain

Range

Annotation Properties

Class

IRI

Parents

Data Properties

Annotation Properties

Annotation Property

Property

Literal

Language

Prefixes

Label

IRI Prefix

Data Property

IRI

Value

Figure 1 bOWL class diagram.

3.2 bOWL interface

bOWL is prepared to work by HTTP requests (using a GET request to fetch the ontology
and a POST request to save it) or to work directly with the internal browser storage. In the
future we will also implement a synchronization tool that guarantees that the ontology in
the browser storage is up to date with a remote master ontology.

Given bOWL uses, internally, a JSON representation, the load and save mechanisms
allow to fetch OWL directly, or to use bOWL internal JSON representation.

The communication from the world with bOWL is defined in three events/methods (see
Table 1):

The constructor, responsible for loading the ontology and showing it inside a specific
element; The ontology can be load from the internal storage (in that case the constructor
parameter is a string, representing the ontology name) or from a remote server (in that
case, the constructor receives an URI). To make the tool more usable, the constructor
can receive a second parameter with a default prefix for all created classes. This prefix
will not be added in the OWL as a standard prefix: all classes will have their IRI fully
qualified.
bOWL allows simple editing of new classes (further edition capabilities are planned).
Therefore, when closing the bOWL widget, the programmer might want to call a method
to save the data. For saving it, the programmer might supply an URI, where the full
ontology will be sent as a POST request, a string with the name of the ontology to be
saved in the browser storage, or a code reference that will be run with the ontology
representation as a string. A second parameter can be used to supply the saving format.
One of the main goals is to make bOWL usable as a classification widget, allowing the
user to open a popup window with the ontology and choose a class she wants to apply to
some document. Thus, by default, and “apply” button is presented in the widget. When
clicking this button, an event will be triggered, calling a user defined callback with that
selected element data.

SLATE 2020



18:6 bOWL: A Pluggable OWL Browser

Table 1 bOWL programming interface.

Method Description

Bowl load (URI [, prefix]) Receives an URI/Key as parameter and an optional prefix.
Returns the bOWL object. Mime-type (json or xml) is
automatically detected.

Object get (event) Associates an event that will be triggered when the user
clicks the “Apply” button. It returns an object with the
selected class data.

save (URI [, format]) Given an URI/Key as parameter (treated like in the load
method), stores the full ontology. By default, saving in
local storage will use JSON while saving remotely will use
OWL. This can be overridden with a second parameter.
This method can also define a specific code callback to be
called that should be responsible for the data save process.

3.3 Supporting technologies
bOWL is implemented using ECMAScript 8. For the XML parsing we use js2xml8, that
converts the XML file into a JSON data structure. Then, JSONPath Plus9 is used to traverse
the data structure and extract the required information.

For the front-end, jstree10 was chosen for its versatility and easy of use. While an
ontology is not necessarily a tree, it can be shown as such, repeating an element as a child of
multiple parents. This is the current approach used by other tools like Protégè.

4 Proof of Concept

Our case-study is LeXmart [4, 3], a Web editor for general language dictionaries. It is
developed as a Web application on top of eXist-DB11, using Web Standards like XQuery for
the application development, HTML5 and CSS for the frontend, and JavaScript for dynamic
content. LeXmart features an integrated TEI editor, based on Xonomy12.

One of the features under work, allowing the lexicographer to link dictionary senses with
ontology concepts, required the ability to both show a basic ontology structure (specially its
bare-bone taxonomy) and to navigate and edit it. This way, bOWL was projected as a simple
JavaScript library to be integrated into LeXmart, but to be as independent as possible from
it, allowing its integration with other tools.

Figure 2 shows an example of the widget in use. There is the main tree, where classes
are presented in hierarchy accordingly with their OWL structure, and their rdfs:label
annotations. When selecting an element it can be used as a parent to create a new subclass,
as shown in the modal window. There, the user needs to add the IRI and the label. The
parent class is automatically selected. Finally, the “Apply” button is used to send the control
back to the hosting application, together with the information of the selected class.

8 https://github.com/x2js/x2js
9 https://github.com/s3u/JSONPath
10 https://www.jstree.com/
11 https://exist-db.org/
12 https://github.com/michmech/xonomy

https://github.com/x2js/x2js
https://github.com/s3u/JSONPath
https://www.jstree.com/
https://exist-db.org/
https://github.com/michmech/xonomy


A. Simões and R. Queirós 18:7

Figure 2 bOWL widget showing a (still flat) ontology from a dictionary.

5 Conclusions

At the moment bOWL is just a prototype. Nevertheless, we think it is useful for very different
Web applications, and therefore, it should not be built tighten up with the underlying code.
The library should be as versatile and independent as possible, in order to be pluggable in
different scenarios.

As future work, we plan to improve the functionalities, but also OWL support. While
some properties from the OWL data will be ignored (as they will not have a direct impact
with the bOWL interface), we intend that bOWL should be able to store everything in order
that, loading an ontology and saving it back is, always, the identify function.

References
1 Steven Harris and Andy Seaborne. SPARQL 1.1 query language. W3C recommendation,

W3C, 2013. URL: http://www.w3.org/TR/2013/REC-sparql11-query-20130321/.
2 Natalya Fridman Noy, Monica Crubézy, Ray W Fergerson, Holger Knublauch, Samson W Tu,

Jennifer Vendetti, and Mark A Musen. Protégé-2000: an open-source ontology-development
and knowledge-acquisition environment. In AMIA Annual Symposium Proceedings, volume
2003, pages 953–953, 2003.

3 Alberto Simões, José João Almeida, and Ana Salgado. Building a Dictionary using XML
Technology. In Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira, editors, 5th
Symposium on Languages, Applications and Technologies (SLATE), volume 51 of OASIcs,
pages 14:1–14:8, Germany, 2016. Schloss Dagstuhl. doi:10.4230/OASIcs.SLATE.2016.14.

4 Alberto Simões, Ana Salgado, Rute Costa, and José João Almeida. LeXmart: A smart tool
for lexicographers. In I. Kosem, T. Zingano Kuhn, M. Correia, J. P. Ferreira, M. Jansen,
I. Pereira, J. Kallas, M. Jakubíček, S. Krek, and C. Tiberius, editors, Electronic lexicography
in the 21st century. Proceedings of the eLex 2019 conference, pages 453–466, 2019.

5 Tania Tudorache, Jennifer Vendetti, and Natalya Fridman Noy. Web-protege: A lightweight
owl ontology editor for the web. In OWLED, volume 432, page 2009, 2008.

6 W3C OWL Working Group. OWL 2 web ontology language document overview (2nd edition).
W3C recommendation, World Wide Web Consortium, December 2012. URL: http://www.w3.
org/TR/2012/REC-owl2-overview-20121211/.

SLATE 2020

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.4230/OASIcs.SLATE.2016.14
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/
http://www.w3.org/TR/2012/REC-owl2-overview-20121211/

	Introduction
	The OWL Standard and OWL Editors
	The OWL Standard
	OWL Libraries and Editors for the Web

	Implementation Details
	bOWL internal OWL representation
	bOWL interface
	Supporting technologies

	Proof of Concept
	Conclusions

