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Abstract
Multiple research disciplines, from cognitive sciences to biology, finance, physics, and the social
sciences, as well as many companies, believe that data-driven and intelligent solutions are neces-
sary. Unfortunately, current artificial intelligence (AI) and machine learning (ML) technologies
are not sufficiently democratized – building complex AI and ML systems requires deep expertise
in computer science and extensive programming skills to work with various machine reasoning
and learning techniques at a rather low level of abstraction. It also requires extensive trial and
error exploration for model selection, data cleaning, feature selection, and parameter tuning.
Moreover, there is a lack of theoretical understanding that could be used to abstract away these
subtleties. Conventional programming languages and software engineering paradigms have also
not been designed to address challenges faced by AI and ML practitioners. In 2016, companies
invested $26–39 billion in AI and McKinsey predicts that investments will be growing over the
next few years. Any AI/ML-based systems will need to be built, tested, and maintained, yet
there is a lack of established engineering practices in industry for such systems because they are
fundamentally different from traditional software systems.

This Dagstuhl Seminar brought together two rather disjoint communities together, software
engineering and programming languages (PL/SE) and artificial intelligence and machine learning
(AI-ML) to discuss open problems on how to improve the productivity of data scientists, software
engineers, and AI-ML practitioners in industry.
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Any AI- and ML-based systems will need to be built, tested, and maintained, yet there is
a lack of established engineering practices in industry for such systems because they are
fundamentally different from traditional software systems. Building such systems requires
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extensive trial and error exploration for model selection, data cleaning, feature selection,
and parameter tuning. Moreover, there is a lack of theoretical understanding that could be
used to abstract away these subtleties. Conventional programming languages and software
engineering paradigms have also not been designed to address challenges faced by AI and ML
practitioners. This seminar brainstormed ideas for developing a new suite of ML-relevant
software development tools such as debuggers, testers and verification tools that increase
developer productivity in building complex AI systems. It also discussed new innovative AI
and ML abstractions that improve programmability in designing intelligent systems.

The seminar brought together a diverse set of attendees, primarily coming from two
distinct communities: software engineering and programming languages vs. AI and machine
learning. Even within each community, we had attendees with various backgrounds and a
different emphasis in their research. For example, within software engineering the profile
of our attendees ranged from pure programming languages, development methodologies, to
automated testing. Within, AI, this seminar brought together people on the side of classical
AI, as well as leading experts on applied machine learning, machine learning systems, and
many more. We also had several attendees coming from adjacent fields, for example attendees
whose concerns are closer to human-computer interaction, as well as representatives from
industry. For these reasons, the first two days of the seminar were devoted to bringing all
attendees up to speed with the perspective that each other field takes on the problem of
developing, maintaining, and testing AI/ML systems.

On the first day of the seminar, Ahmed Hassan and Tim Menzies represented the field
of software engineering. Their talks laid the foundation for a lot of subsequent discussion
by presenting some key definitions in software engineering for machine learning (SE4ML),
identifying areas where there is a synergy between the fields, informing the seminar about
their experiences dealing with industry partners, and listing some important open problems.
Sameer Singh and Christopher Ré took care of the first day’s introduction to machine learning.
Christopher Ré described recent efforts in building machine learning systems to help maintain
AI/ML systems, specifically for managing training data, and monitoring a deployed system
to ensure it keeps performing adequately. Sameer Singh’s talk focused on bug finding, and
debugging machine learning systems, either by inspecting black-box explanations, generating
realistic adversarial examples in natural language processing (NLP), and doing behavioral
testing of NLP models to make them more robust.

The second day of the seminar continued to introduce the attendees to some prominent
approaches for tackling the SE4ML problem. Elena Glassman presented her work at the
intersection of human-computer interaction and software engineering, while Jie Zhang gave
an overview of software testing for ML, based on her recent survey of the field. Significant
attention during the seminar was spent on the problem of deploying machine learning
models in environments that change over time, where the behavior of the AI/ML system
diverges from the intended behavior when the model was first developed. For example, such
issues were discussed by Barbara Hammer in her talk on machine learning in non-stationary
environments. Isabel Valera introduced the seminar to another important consideration
when developing AI/ML-based systems: interpretability and algorithmic fairness. Andrea
Passerini’s talk was aimed at explaining some of the basic principles of machine learning for
a non-machine learning audience; for example generalization, regularization, and overfitting,
as well as some recent trands in combining learning with symbolic reasoning.

The remainder of the seminar was centered around various breakout sessions and working
groups, including sessions on (1) Specifications and Requirements, (2) Debugging and Testing,
(3) Model Evolution and Management, and (4) Knowledge Transfer and Education. There
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were extended discussions on the question “what is a bug?” in an AI/ML setting, what is
a taxonomy of such bugs, and can we list real-world examples of such bugs happening in
practice. Interleaved with these working groups, there were several demand-driven talks,
designed to answer questions that came up during the discussions. For example, Steven
Holtzen and Parisa Kordjamshidi introduced the seminar to efforts in the AI community to
build higher-level languages for machine learning, in particular probabilistic programming and
declaritive learning-based programming. Christian Kästner shared his insights from teaching
software engineering for AI/ML-based systems using realistic case studies. Molham Aref
gave his unique view on developing such systems from industry, which was a tremendously
valuable perspective to include in these discussions.

Overall, this seminar produced numerous new insights into how complex AI-ML systems
are designed, debugged, and tested. It was able to build important scientific bridges between
otherwise disparate fields, and has spurred collaborations and follow-up work.
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3 Overview of Talks

3.1 Machine Learning in non-stationary environments
Barbara Hammer (Universität Bielefeld, DE)

License Creative Commons BY 3.0 Unported license
© Barbara Hammer

Joint work of Michael Biehl, Viktor Losing, Benjamin Paassen, Alexander Schulz, Heiko Wersing

One of the main assumptions of classical machine learning is that data are generated by a
stationary concept. This, however, is violated in practical applications e.g. in the context of
life long learning, for the task of system personalisation, or whenever sensor degradation or
non-stationary environments cause a fundamental change of the observed signals. Within the
talk, we will give an overview about recent developments in the field of learning with concept
drift, and we will address two particular challenges in more detail: (1) How to cope with
a fundamental change of the data representation which is caused e.g. by a misplacement
or exchange of sensors? (2) How to deal with heterogeneous concept drift, i.e. mixed rapid
or smooth, virtual or real drift, e.g. caused by a real-life non-stationary environment? We
will present novel intuitive distance-based classification approaches which can tackle such
settings by means of suitable metric learning and brain-inspired adaptive memory concepts,
respectively, and we will demonstrate their performance in different application domains
ranging from computer vision to the control of protheses.

References
1 Viktor Losing, Taizo Yoshikawa, Martina Hasenjäger, Barbara Hammer, Heiko Wersing:

Personalized Online Learning of Whole-Body Motion Classes using Multiple Inertial Meas-
urement Units. ICRA 2019: 9530-9536

2 Michiel Straat, Fthi Abadi, Christina Göpfert, Barbara Hammer, Michael Biehl: Statistical
Mechanics of On-Line Learning Under Concept Drift. Entropy 20(10): 775 (2018)

3 Viktor Losing, Barbara Hammer, Heiko Wersing: Incremental on-line learning: A review
and comparison of state of the art algorithms. Neurocomputing 275: 1261-1274 (2018)

4 Benjamin Paaßen, Alexander Schulz, Janne Hahne, Barbara Hammer: Expectation max-
imization transfer learning and its application for bionic hand prostheses. Neurocomputing
298: 122-133 (2018)

5 Viktor Losing, Barbara Hammer, Heiko Wersing: Tackling heterogeneous concept drift
with the Self-Adjusting Memory (SAM). Knowl. Inf. Syst. 54(1): 171-201 (2018)

6 Viktor Losing, Barbara Hammer, Heiko Wersing: Self-Adjusting Memory: How to Deal
with Diverse Drift Types. IJCAI 2017: 4899-4903

7 Viktor Losing, Barbara Hammer, Heiko Wersing: Personalized maneuver prediction at
intersections. ITSC 2017: 1-6

3.2 Data Driven Decision Making for the Development of Trustworthy
Software

Ahmed E. Hassan (Queen’s University – Kingston, CA)

License Creative Commons BY 3.0 Unported license
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Software systems produce an enormous amount of rich data while being used (e.g., crashes,
logs, telemetry data, and user reviews) and while being developed (e.g., historical code
changes, test results, and feature requests). Leveraging such rich data through machine
learning (ML), we can deliver better software in a cost-effective manner.
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In this talk, I share my team’s experience working closely with industrial partners over
the past decade to address software development and operation (e.g., AIOps) challenges
using ML. Then I discuss essential technical and non-technical goals to ensure the long-term
successful integration of such ML solutions into daily practice.

3.3 Probabilistic Programming
Steven Holtzen (UCLA, US)

License Creative Commons BY 3.0 Unported license
© Steven Holtzen

This talk provides a gentle introduction to probabilistic modeling and probabilistic programs.
First, we ask what is a probabilistic program and how can they be used to solve problems?
After some motivating examples, we discuss challenges in automating probabilistic infer-
ence. We highlight several example probabilistic programming languages and their diverse
approaches to probabilistic inference, including (1) Stan [1], (2) Problog [2], (3) Dice [3], and
(4) Figaro [4]. We close with a discussion of existing systems and prospects for integrating
probabilistic programs and software engineering.

References
1 Bob Carpenter, Andrew Gelman, Matt Hoffman, Daniel Lee, Ben Goodrich, Michael Betan-

court, Michael A Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2016. Stan: A prob-
abilistic programming language. Journal of Statistical Software (2016)

2 Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann,
Ingo Thon, Gerda Janssens, and Luc De Raedt. 2013. Inference and learning in probab-
ilistic logic programs using weighted Boolean formulas. J. Theory and Practice of Logic
Programming 15(3) (2013), 358 – 401.

3 Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Dice: Compiling Discrete
Probabilistic Programs for Scalable Inference. arXiv preprint arXiv:2005.09089.

4 Avi Pfeffer. 2009. Figaro: An object-oriented probabilistic programming language. Charles
River Analytics Technical Report 137 (2009).

3.4 Declarative Learning-Based Programming as an Interface to AI
Systems

Parisa Kordjamshidi (Michigan State University – East Lansing, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Parisa Kordjamshidi, Kristian Kersting, Dan Roth
Main reference Parisa Kordjamshidi, Dan Roth, Kristian Kersting: “Declarative Learning-Based Programming as

an Interface to AI Systems”, CoRR, Vol. abs/1906.07809, 2019.
URL https://arxiv.org/abs/1906.07809

Data-driven approaches are becoming more common as problem-solving techniques in many
areas of research and industry. In most cases, machine learning models are the key component
of these solutions, but a solution involves multiple such models, along with significant levels
of reasoning with the models’ output and input. Current technologies do not make such
techniques easy to use for application experts who are not fluent in machine learning nor
for machine learning experts who aim at testing ideas and models on real-world data in the
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context of the overall AI system. We review key efforts made by various AI communities to
provide languages for high-level abstractions over learning and reasoning techniques needed
for designing complex AI systems. We classify the existing frameworks based on the type
of techniques and the data and knowledge representations they use, provide a comparative
study of the way they address the challenges of programming real-world applications, and
highlight some shortcomings and future directions.

3.5 Teaching Software Engineering for AI-enabled Systems
Christian Kästner (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
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Main reference Christian Kästner, Eunsuk Kang: “Teaching Software Engineering for AI-Enabled Systems”, 2020.
URL https://arxiv.org/abs/2001.06691.9

Software engineers have significant experience to offer when building intelligence systems,
drawing on decades of methods for building systems that scale and are robust, even when
built on unreliable components. Systems with AI/ML components raise new challenges
and require careful engineering, for which we designed a new course. We specifically go
beyond traditional ML courses that teach modeling techniques under artificial conditions and
focus on realism with large and changing datasets, robust and evolvable infrastructures and
requirements engineering that considers also ethics and fairness. We share all course material

Software Engineering for AI-Enabled Systems (SE4AI)
https://ckaestne.github.io/seai/
Software Engineering for AI/ML – An Annotated Bibliography
https://github.com/ckaestne/seaibib

3.6 SE for (AI+SE)
Tim Menzies (North Carolina State University – Raleigh, US)

License Creative Commons BY 3.0 Unported license
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What should this community tell the world abut SE and AI? What are our “seven deadly
sins” and our “dozen” best practices?

To answer these questions, I offer (tiny) summaries of SE and AI practice. The focus
here will be “what are the surprises?”, i.e., what are the new things we know now that we
didn’t know before. For example

“Programmers” do much more than programming. And in fact, social factors between
programming can be just as predictive for bugs as any programming language feature.
Some (not all) SE data is inherently low dimensional and we can exploit that great
benefit.

For more on this talk, see http://tiny.cc/se4ml
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3.7 Some Machine Learning Basics + Random Stuff
Andrea Passerini (University of Trento, IT)

License Creative Commons BY 3.0 Unported license
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I will give a quick overview of the basic concepts used in machine learning from generalisation
to regularized loss minimizations to model selection. I will quickly present how to use the
scikit learn framework to train multiple classifiers and give a bird’s eye view of deep learning.
I will end up presenting some work of mine focused on the combination of learning and
constraints.

3.8 Experiences Building & Maintaining Software 2.0 Systems.
Christopher Ré (Stanford University, US)

License Creative Commons BY 3.0 Unported license
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This talk describes our group’s recent working building and maintaining a new breed of
ML software systems. The talk focusses on how engineer time is spent in building and
maintaining these systems. Two main example systems were discussed.
1. Snorkel. A system to make creating and maintaining training sets a 1st class problem in

both software and statistical theory.
2. Overton A system built at Apple that focused engineer time on maintaining supervision

and monitoring its output quality – not more building.

3.9 Testing and Finding Bugs in NLP Models
Sameer Singh (University of California – Irvine, US)

License Creative Commons BY 3.0 Unported license
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Current evaluation of NLP systems, and much of ML, consists of measuring accuracy on
held-out instances. Since held-out instances are gathered using similar annotation process
as the training data, they include the same biases, providing “shortcuts” to NLP models.
Further, single aggregate metric hides the actual strengths and weaknesses of the model,
making it difficult to focus engineering and research efforts.

In this talk, I presented a few approaches we are exploring to perform a more thorough
evaluation of NLP systems.
1. I will introduce our work on generating black-box explanations for ML models (LIME and

Anchors) and their use in finding bugs.
2. I will describe automatic techniques for perturbing instances to identify shortcuts via

semantic adversarial examples.
3. I will propose novel ML paradigms that introduce “testing for ML”, in particular Checklist

for creating behavioral tests for NLP.

The talk will be grounded in latest NLP benchmarks such as QA, sentiment analysis, and
textual entailment, on SOTA models like BERT.
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3.10 ML for Consequential Decision Making
Isabel Valera (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 3.0 Unported license
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This talk provided a brief overview of fairness and interpretability in ML, painting out
the main challenges in the topic. Then, I introduce an example of how formal verification
approaches can help explainable ML by providing with a model and similarity agnostic, as
well as modular framework to generate (nearest) counterfactual explanations for the outcomes
of algorithmic decision making systems. This example was later extended with some existing
work on software engineering for adversarial robustness in ML. We close the presentation
opening up questions on how software engineering may be helpful to define, test, and verify
specification on the ethics of ML

Some references on Counterfactual explanations:
https://arxiv.org/pdf/1905.11190.pdf
https://arxiv.org/abs/2002.06278
Some work on fairness:
http://jmlr.org/papers/v20/18-262.html
https://arxiv.org/abs/1902.02979

3.11 Software Testing for Machine Learning
Jie Zhang (University College London, GB)

License Creative Commons BY 3.0 Unported license
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Main reference J. M. Zhang, M. Harman, L. Ma, Y. Liu: “Machine Learning Testing: Survey, Landscapes and
Horizons”, IEEE Transactions on Software Engineering, pp. 1–1, 2020.

URL https://doi.org/10.1109/TSE.2019.2962027

Machine learning systems are a type of software. This talk builds the connection between
software testing and machine learning.

I first gave a brief introduction on software testing. Software testing aims to evaluate a
software to check whether its behaviors meet the requirements. I introduced the properties of
interest, the testing component, the testing workflow, and some key techniques in automated
software testing.

Based on traditional software testing, I introduced machine learning testing (MLT). MLT
detects the imperfections in machine learning systems that violate the expectation. The
properties of interest may include correctness, fairness, privacy, security, interpretability.
Different from traditional software testing, MLT bugs may exist in the data, learning programs,
or frameworks. Many traditional testing techniques can be adopted in MLT.

I gave an overview of the related work in MLT so far. The details of the related work can
be found in our survey: Machine Learning Testing: Survey, Landscapes, and Horizons (TSE
2020)

The last part of my talk is about my two recent practices in improving ML systems.
Perturbation Validation (PV) is a compliment for out-of-sample validation in model
validation. It does not use validation or test but checks whether the learner detects a
small ratio of incorrect labels in training data.
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Black-box repair fixes machine translation problems without model retraining, so it is
automatic, fast, light-weight, and can target and repair specific cases without touching
other well-formed translations.

4 Working groups

4.1 Agile Development of AI/ML-based Systems
Andreas Metzger (Universität Duisburg – Essen, DE), Christian Kästner (Carnegie Mellon
University – Pittsburgh, US), and Daniel Speicher (Universität Bonn, DE)

License Creative Commons BY 3.0 Unported license
© Andreas Metzger, Christian Kästner, and Daniel Speicher

This breakout working session aimed at identifying how typical management and engineering
practices of agile methods may be affected when developing AI/ML-based systems. To this
end, typical practices of XP (eXtreme Programming [1]) were used to serve to structure the
discussions. The main outcomes of this session were open questions that may provide an
opportunity for further investigation, such as empirical studies.

The practice of the planning game in XP allows customers and developers to steer the work
towards the most useful system the team can deliver. Functionality or quality increments
are described, often estimated for the required implementation effort, and finally selected.
Customers contribute their knowledge about the business value of increments. Developers
contribute their knowledge about technical complexity and risks. Questions regarding the
planning game included: (1) Is effort planning for AI/ML components more challenging and
less precise (e.g., since creating an AI/ML model may be more explorative and experimental)?
(2) How to assess the value contribution of AI/ML components? (3) Can sufficiently small
work items (i.e., user stories) be defined?

The practice of pair programming (worth its own book [2]) has several goals, such as
knowledge diffusion and skill transfer within the team. This keeps the team in the position
to evolve every part of the system even when a member of the team leaves. The practice
of collective code ownership allows all team members to (carefully) change any part of the
system. Questions regarding pair programming and collective code ownership were: (1) How
can AI/ML experts and software engineers work together? (2) Given joint teams of AI/ML
experts and software engineers, what may happen if either may change a machine learning
model and program code? (3) Do we need these practices for AI/ML components at all (e.g.,
concerns such as technical debt may be addressed via AutoML etc.)?

The practice of simple design encourages developers to stay with simple solutions. Simpler
solutions lead to faster results and allow earlier customer feedback. Unnecessary technological
complexity may burden future change and development. “Simplicity” here is not an absolute
term, but relative to the team’s knowledge and experience. The central question regarding
simple design was: How to make a trade-off between deep learning and “shallow” learning?
While deep learning may generally lead to less interpretable and explainable AI/ML models
than “shallow” learning, deep learning requires less feature engineering and thus requires less
engineering effort.

The practice of refactoring has the goal to keep the design simple and to maintain code
quality (such as maintainability, changeability, understandability). To guide refactoring,
developers have described refactoring opportunities, often called “code smells”. Questions
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regarding refactoring included: (1) How can AI/ML model quality be defined in the first
place? (2) How to refactor towards good AI/ML model quality? (3) As AI/ML models are
generated and not hand-crafted, is refactoring needed at all?

The practice of test-driven development has the goal to establish a solid base of automated
tests and to guide development. Also, automated tests safeguard existing functionality during
refactoring and functionality addition. The key question regarding test-driven development
was: How to define feasible test cases up-front (and not just non-functional constraints on the
output of the AI/ML model)? We realized that the answer to this question was very much
tied to the problem of how to specify AI/ML-based systems and whether machine learning
may be requirements engineering – a topic that was discussed throughout the seminar [3].

References
1 Kent Beck. Extreme Programming Explained: Embrace Change. Second Edition. Addison-

Wesley, Reading, MA, 2005
2 Laurie Williams, Robert Kessler. Pair programming illuminated. Addison-Wesley Longman

Publishing Co., Inc., 2002.
3 Christian Kästner. “Machine Learning is Requirements Engineering – On

the Role of Bugs, Verification, and Validation in Machine Learning”, Me-
dium post, Accessed April 25, 2020. https://medium.com/analytics-vidhya/
machine-learning-is-requirements-engineering-8957aee55ef4
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