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Preface

This volume constitutes the post-proceedings of the 25th International Conference on Types
for Proofs and Programs, TYPES 2019, held in Oslo, Norway, 11–14 June 2019.

The TYPES meetings are a forum to present new and on-going work in all aspects of
type theory and its applications, especially in formalised and computer assisted reasoning
and computer programming. The meetings from 1990 to 2008 were annual workshops of
a sequence of five EU-funded networking projects. Since 2009, TYPES has been run as
an independent conference series. Previous TYPES meetings were held in Antibes (1990),
Edinburgh (1991), Båstad (1992), Nijmegen (1993), Båstad (1994), Torino (1995), Aussois
(1996), Kloster Irsee (1998), Lökeberg (1999), Durham (2000), Berg en Dal near Nijmegen
(2002), Torino (2003), Jouy-en-Josas near Paris (2004), Nottingham (2006), Cividale del
Friuli (2007), Torino (2008), Aussois (2009), Warsaw (2010), Bergen (2011), Toulouse (2013),
Paris (2014), Tallinn (2015), Novi Sad (2016), Budapest (2017), and Braga (2018).

The TYPES areas of interest include, but are not limited to: foundations of type theory
and constructive mathematics; applications of type theory; dependently typed programming;
industrial uses of type theory technology; meta-theoretic studies of type systems; proof
assistants and proof technology; automation in computer-assisted reasoning; links between
type theory and functional programming; formalizing mathematics using type theory.

The TYPES conferences are of open and informal character. Selection of contributed
talks is based on short abstracts; reporting work in progress and work presented or published
elsewhere is welcome. A formal post-proceedings volume is prepared after the conference;
papers submitted to that volume must represent unpublished work and are subjected to a
full peer-review process.

TYPES 2019 was held in parallel with HoTT-UF, the workshop on Homotopy Type
Theory and Univalent Foundations, 12–14 June 2019, in Oslo. Wednesday 12 June the
two events had a joint programme. Both events were part of the Special Year 2018/19 on
Homotopy Type Theory and Univalent Foundations at the Centre for Advanced Study (CAS)
at the Norwegian Academy of Science and Letters.

The program of the conference consisted of 50 contributed short presentations and four
invited lectures of one hour. The invited lecturers were: Adam Chlipala, Conor McBride,
Assia Mahboubi and Stephanie Weirich. The combined events TYPES 2019 and HoTT-UF
gathered 115 participants from around 20 countries.

There were 12 submissions to this open post-proceedings volume, the large majority
related to presentations at the conference. After a thorough peer-review procedure of two
rounds, 10 submissions could be accepted for publication. We thank all authors, reviewers,
and members of the program committee for their contribution to this volume.

Sponsors

The Centre for Advanced Study (CAS) at the Norwegian Academy of Science and Letters
provided generous support, both financial and administrative, which we gratefully acknow-
ledge. We are also grateful for the support of COST Action CA15123 EUTypes and of the
Research Council of Norway, project 240810 Computational Aspects of Univalence (2015–
2020).

Marc Bezem and Assia Mahboubi, July 2020
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Abstract
The libraries of proof assistants like Isabelle, Coq, HOL are notoriously difficult to interpret by
external tools: de facto, only the prover itself can parse and process them adequately. In the case of
Isabelle, an export of the library into a FAIR (Findable, Accessible, Interoperable, and Reusable)
knowledge exchange format was already envisioned by the authors in 1999 but had previously proved
too difficult.

After substantial improvements of the Isabelle Prover IDE (PIDE) and the OMDoc/Mmt
format since then, we are now able to deliver such an export. Concretely we present an integration
of PIDE and Mmt that allows exporting all Isabelle libraries in OMDoc format. Our export covers
the full Isabelle distribution and the Archive of Formal Proofs (AFP) – more than 12 thousand
theories and locales resulting in over 65GB of OMDoc/XML.

Such a systematic export of Isabelle content to a well-defined interchange format like OMDoc
enables many applications such as dependency management, independent proof checking, or library
search.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Isabelle, PIDE, OMDoc, MMT, library, export

Digital Object Identifier 10.4230/LIPIcs.TYPES.2019.1

Supplementary Material The translated libraries are available at https://gl.mathhub.info/Isabelle
as compressed OMDoc files.

Funding The authors were supported by DFG grant RA-18723-1 OAF and EU grant Horizon 2020
ERI 676541 OpenDreamKit.

1 Introduction and Related Work

Motivation. A critical bottleneck in the field of interactive theorem proving is the lack of
interoperability between proof assistants and related tools. This leads to a duplication of
efforts: both formalizations and auxiliary tool support (e.g., for automated proving, library
management, user interfaces) cannot be easily shared between systems. This situation is
well-understood by the community and has persisted for decades despite occasional attempts
to achieve interoperability by standardization or library translations.

The story of this article started in 1999, when one author (Kohlhase, who worked on the
OMDoc interchange format [27] for formal libraries) wrote an email to another one (Wenzel,
who worked on the Isabelle proof assistant [43, 44]) asking about the status of ongoing efforts
to export Isabelle theories in some format that could be further transformed into OMDoc.
Just 19 years later, Wenzel replied to the same email announcing that an Isabelle→OMDoc
export now works routinely. Critically, this export was enabled by the PIDE and Mmt
infrastructures developed for Isabelle by Wenzel resp. for OMDoc by Rabe in the interim.

© Michael Kohlhase, Florian Rabe, and Makarius Wenzel;
licensed under Creative Commons License CC-BY
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1:2 Making Isabelle Content Accessible in Knowledge Representation Formats

Despite this massive groundwork laid in the last two decades, the export itself still required
about 9 person-months to implement. This paper tells the story of how we achieved this
export after such a long time.

Isabelle99 (October 1999) was a rather small experimental proof assistant for multiple
object logics, with≈ 1MB source text the for Isabelle/ZF library and≈ 3MB for Isabelle/HOL.
The ZF library was particularly interesting for Kohlhase at that time and considered large. In
contrast, Isabelle2020 (April 2020) includes ≈ 2MB material for ZF and ≈ 30MB for HOL,
or rather ≈ 160MB if the Archive of Formal Proofs (AFP) is included. The PIDE/Mmt
work flow described in this paper requires a server-class machine to handle all this material:
80GB RAM, 8 CPU cores, and 22 h elapsed time (this includes theory and proof processing
by Isabelle). Thus, a major portion of publicly known Isabelle content1 becomes accessible
as XML in the OMDoc format: 65GB uncompressed or 300MB with XZ compression.

Related Work. In both formalizations and auxiliary tool support, previous work has shown
significant potential for knowledge sharing. Regarding sharing among proof assistants, library
translations such as [41, 23, 26, 34] have been used to transport theorems across systems.
An unusual approach is virtualization of HOL4 in Isabelle [18], where the ML environment
of Isabelle is carefully instrumented to load the HOL4 library sources (also in ML) and
reconstruct theories and proofs within the Isabelle/Pure inference kernel.

Most of these approaches produce an isolated image of the source library within the target
library. Alignments [21] have been used to match pragmatically corresponding concepts
defined in different libraries [10]. In contrast, [18] connects interesting results via lifting and
transfer, where only the signatures of the main conclusions need to be taken into account.

Regarding sharing among proof assistants and auxiliary tools, Isabelle/Sledgehammer
[35, 44] integrates different automation tools generically, and Dedukti [7] has been used
as independent checker for various proof assistant libraries. Premise selection tools use,
e.g., machine-learning [22], to reduce the search space when running automated provers on
subgoals. In all cases, a single tool could be used for every proof assistant – provided the
language and library are available in a universal format that can be plugged into it.

Unfortunately, the latter point – the universal format – is often prohibitively expensive for
many interesting applications. Firstly, it is extremely difficult to design a format that strikes
a good trade-off between simplicity and universality. And secondly, even in the presence of
such a format, it is difficult to implement the export of a library into it. Here it is important
to realize that any export attempt is doomed that uses a custom parser or type checker
for the library – only the internal data structures maintained by the proof assistant are
informative enough for most use cases. Consequently, only expert developers can perform
this step, and of these, each proof assistant community only has very few.

In previous work, the authors have developed such a universal format [27, 48, 29] for formal
knowledge: OMDoc is an XML language geared towards making formula structure and
context dependencies explicit while remaining independent of the underlying logical formalism.
We also built a strong implementation – the Mmt system – and a number of generic services,
e.g., [46, 30]. In the DFG-funded OAF Project (Open Archive of Formalization), we have
developed export for Mizar [17], HOL Light [24], IMPS [6], PVS [28], and Coq in [38]. In
what we now call the OAF approach, we systematically
(i) defined the logic of the proof assistant in a logical framework by hand,
(ii) instrumented the proof assistant to export its libraries, and
(iii) use the instrumented prover to export the libraries

1 In the Isabelle community, contributions are usually submitted to AFP for long-term maintenance, and
thus become centrally accessible. Only a few exceptional projects are maintained independently (e.g.
seL4 https://sel4.systems or IsaFoR http://cl-informatik.uibk.ac.at/isafor).

https://sel4.systems
http://cl-informatik.uibk.ac.at/isafor
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for all these exports. Mmt provides the semantics that ties together the three involved levels
(logical framework, logic, and library) and provides a uniform high-level API for further
processing. [32] gives on overview over the theoretical, technical, and social challenges of the
OAF exports.

In the work reported here, we follow this basic recipe with a few modifications. Firstly,
because Isabelle already includes a logical framework, we do not encode Isabelle in yet another
one. Instead, we extend the existing LF formalization in Mmt to obtain one for the Pure
framework of Isabelle. There are two reasons for this choice: it is conceptually appropriate
as it puts the logics defined in Isabelle on the same levels as those defined in other logical
frameworks (e.g., Mmt/LF/HOL Light and Mmt/Isabelle/HOL); it also improves scalability
by avoiding another layer of logical framework-encoding. Secondly, Isabelle is extremely
complex, and a large portion of our work went to streamlining Isabelle components to enable
step (ii) above, notably the Isabelle PIDE infrastructure for incremental processing of proof
documents. Thirdly, the resulting exports of the Isabelle libraries were significantly larger
than any exports we had handled previously. Therefore, we had to develop new optimizations
both on the Isabelle and on the Mmt side to be able to carry out step (iii) above.

Repeating such an advanced Mmt integration for other proof assistants must revisit
the particular technology found there. In particular, proof assistants can vary widely in
how the building of large projects and of dependencies between projects are handled. For
example, Coq uses a decentralized library with hundreds of repositories and consequently
uses sophisticated tools for repository management and continuous integration, e.g., the
piCoq tool [42] to manage build processes in a fine-grained manner. Thus, the corresponding
problem is more complex for Coq as it is for Isabelle, where the library is more centralized
and the build management is tightly integrated with the kernel. piCoq already involves some
Java-based components, which might help integrate it with the Mmt Scala API.

Contribution and Overview. We apply our approach to Isabelle [44]: we present a definition
of the Isabelle logical framework in Mmt and an export feature for Isabelle logics and
libraries. We exemplify the latter by exporting the standard Isabelle distribution [19]
and the Archive of Formal Proofs [1]. The translated libraries are available at https:
//gl.mathhub.info/Isabelle as compressed OMDoc files.

We present preliminaries about Isabelle and PIDE as well as OMDoc and Mmt in
Sections 2 and 3. Then we describe the logical and the technical aspects of the export in
Sections 4 and 5. We sketch some applications enabled by the export in Section 6.

It is difficult to estimate the total workload covered by this paper because it builds
on decades of implementation work in both Isabelle and Mmt, much of which was never
published in itself. But concretely for this particular export, we spent about 1 person-month
on the overall design of the translation and the implementation, 6 person-months on the
implementation on the Isabelle side, 1 on the Mmt side, and 1 on administrative parts and
dissemination of the results.

2 Isabelle and PIDE

The Isabelle Platform. Isabelle [43, 44] is a generic platform for formal logic tools. Its
foundation is the Pure logical framework by Paulson [43] based on a minimal intuitionistic
higher-order logic with declarative natural deduction proofs. Isabelle/Pure is used to represent
object-logics like Isabelle/FOL, Isabelle/ZF, and the most widely used Isabelle/HOL based
on Church’s simple type theory and Gordon’s HOL [11].

TYPES 2019
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1:4 Making Isabelle Content Accessible in Knowledge Representation Formats

Extra-logical tools are implemented in the Meta Language (ML) in LCF style [12].
Isabelle/ML has full access to the symbolic representation of the logic and provides many
add-ons such as concrete syntax and context management for proof tools. The ML compiler
and toplevel environment are managed within the same formal context as the logic, so ML
declarations follow the structure of theory specifications and proofs.

ML is mainly used for pure mathematical programming with limited access to the physical
world. Additionally, Scala (running on the Java platform) is used for external tooling: it
manages ML processes, formal sources, and the resulting content, and provides an outer shell
for Isabelle systems programming with access to GUI frameworks, TCP servers, database
engines, etc. The programming style of Isabelle/Scala resembles Isabelle/ML, and some
important modules are available on both sides (e.g. formatting of pretty-printed text).

Isabelle’s Prover IDE framework PIDE [49] integrates all development into the semantic
text editor Isabelle/jEdit [52]. While the user is composing text, PIDE provides real-time
markup about its meaning – rendered as, e.g., text color, squiggly underline, tooltips,
hyperlinks, icons in the border. The Prover IDE supports ML development as well: users
can edit theory sources with embedded ML modules directly, while the ML compiler does
static checking and dynamic evaluation on the spot. Thus Isabelle has no need for externally
compiled modules, in contrast to, e.g., Coq plugins.

More recently, Isabelle/PIDE has been refined to support headless mode, which lets
a function in Isabelle/Scala observe this markup while a formal library is processed in
Isabelle/ML. Compared to traditional batch-builds, headless PIDE provides more detailed
feedback from the prover and more flexibility in dynamic loading and unloading of theories.
In particular, it allows the processing of Isabelle content for other purposes than editing it in
a GUI. This is the central interface that we use in the work reported in this article.

Isabelle Libraries. The standard distribution of Isabelle includes the Isabelle/HOL library
with many examples, but the bulk of applications is in the Archive of Formal Proofs (AFP),
which is organized like a scientific online journal. In April 2020, AFP had 528 articles by 347
authors, comprising a total of 130MB of source text in 5343 theory files.

Formal processing of the Isabelle distribution plus AFP requires ≈ 46h CPU time or 13h
elapsed time, using standard hardware with 8 CPU cores and 16GB RAM. Such isabelle
build jobs [53] produce heap images for the internal state of Isabelle/ML and optional
HTML/PDF documents that resemble conventional mathematical texts.

Library Structure. Isabelle libraries consist of formal documents [50] structured according
to session definitions, theory imports, and commands within theories:

A session is a collection of theories with optional LATEX document preparation. It may
refer to a single parent session and multiple import sessions (to reuse some of their
theories by reloading their sources within the original session name space). For example,
the session HOL is the basis for most applications, and the session HOL-Analysis is a
substantial library of standard mathematics. In the AFP, each entry (or “article”) usually
corresponds to a single session with its own setup for the published PDF document.
A theory is a linear arrangement of commands corresponding to definition–statement–
proof in conventional mathematical texts. The theory header imports multiple parent
theories, taking a strictly monotonic merge of existing theories as basis for the new one.
For example, theories like HOL.Nat, HOL.List are stepping stones towards Main and
Complex_Main, which have global names and are the key entry-points for applications.
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A command is a functional update on the theory context (or proof state) using concrete
syntax within the source file. Command syntax may embed embed user-defined sublangua-
ges delimited as so-called “cartouches”, e.g. ML 〈val a = 1 〉. Theories may define new
commands at any time – even Isabelle/Pure itself is defined in user-space relying only on
theML command for bootstrapping. For example, the commands definition, inductive,
fun define constants and automatically prove characteristic theorems over them, while
lemma, proof, qed, by are for proofs written in the Isar proof language.

The overall graph of sessions and theories is managed by Isabelle to exploit parallel
processing within multithreaded ML (and Scala). For example, a theory could already be
finished on the surface but some of its proofs still pending in parallel forks. Isabelle/Scala
provides operations to explore sources down to command spans (keyword with argument
tokens), without requiring a prover process to interpret them in the formal context.

Library Processing. The library sources are processed by feeding them to the Isabelle/ML
session managed by Isabelle/Scala. This constructs formal meaning that is a-priori opaque,
i.e., a matter of the private context of the logic or user-defined sublanguage. In order to
expose some aspects of the meaning, Isabelle/ML supports several formal message channels:

Output of regular messages, warnings, errors, etc. with text that typically refers to logical
types and terms. Pretty-printing with blocks and breaks is supported by default: the
front-end usually does the formatting based on precise window and font sizes. For example,
the command term turns its source argument into an internal term and pretty-prints
the result with markup to link constants to their definitions.
Reports to assign markup to existing input sources (with precise positions). For example,
after reading a term from the source text its precise positions of free and bound variables
are reported as XML markup elements <free/> and <bound/>. The editor turns this
into the usual Isabelle color scheme of blue vs. green variables.
Exports to attach arbitrary blobs to a theory (with hierarchic names separated by
slash). For example, the command export_code turns Isabelle/HOL specifications into
program source (for SML, OCaml, Scala), and the result becomes an export artifact of
the enclosing theory. Thus the current version of input sources (e.g., an open buffer
in Isabelle/jEdit) is augmented by the result of export_code seen as a mathematical
function; the editor shows the result via the virtual file-system URL isabelle-export:
within its File Browser, independently of the accidental state of the physical file-system.

The exposed aspects of document meaning are stored within the session database. For
conventional batch-builds, that is an SQLite database file used like an archive with XZ-
compressed entries, and the command-line tool isabelle export lists and extracts its
content. For PIDE processing, the database consists of Scala values within the document
snapshot and may be explored via user-provided Scala functions, e.g., for GUI painting of
annotated document source. It is also possible to write out the data to another database
(e.g., PostgreSQL is supported routinely), or in a completely different application, which is
what we do in the OAF-style export reported on in this article.

To support the latter, Wenzel has modified the processing to allow for application-
specific ML functions for presentation. Whenever a theory node with all its imports is
fully consolidated (parallel proofs finished), user-defined ML functions can access its list of
commands paired with the internal theory context at each step.

Isabelle/Pure and Isabelle/HOL provide standard presentation functions to expose core
material from the logical context, guarded by option export_theory. Results are exported to
the session database, using a private XML representation, Isabelle YXML transfer syntax, and
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XZ compression of the resulting blob. This works both for batch sessions (isabelle build)
and for headless PIDE sessions (isabelle dump). Thus, with the current infrastructure, the
request by Kohlhase from 1999 could be fulfilled on the spot via isabelle dump -B ZF, but
instead of digesting raw XML/YXML data it is better to use typed APIs in Isabelle/Scala
(by using module Export_Theory as we do in Section 5.1).

3 OMDoc and MMT

Language. OMDoc [27] (short for Open Mathematical Documents) is a semantics-
oriented XML-based markup format for STEM-related documents. It conceptualizes mathe-
matical objects in three levels as seen in Table 1: the object level for mathematical formulas
and their presentations, the statement level for definitions, theorems, proofs, etc, and the
theory level for collections of statements. Each level comes in two dimensions for the formal
representations of the content addressed to mathematical software systems and the narrative
structure addressed to humans. Higher levels may contain expressions of lower ones, and
mixtures of dimensions are allowed, leading to a overall format that can handle flexible levels
of formality (see [31] for a discussion).

Table 1 Three level & two dimensions in OMDoc.

level formal narrative

object OpenMath presentation MathML
statement sequents paragraphs + cues
theory theories/views sections, etc.

Even at the early state in 1999, OMDoc already had this general architecture and was
therefore well-suited in principle for representing Isabelle content, in particular the Isar
proof language [54] that was new at the time. But the formal part of OMDoc was purely
descriptive and lacked a rigorous semantics. In particular, the role of the logical systems
needed for formally stating mathematical properties was almost fully unspecified beyond the
idea – inherited from OpenMath – that logics are theories as well.

Later Mmt (Meta Meta Theories) [48] re-conceptualized and refined the formal fragment
of OMDoc, greatly enhancing both rigor and expressivity. It models formal objects and
statements using logical frameworks, in particular the judgments-as-types paradigm, and
bases OMDoc’s theory level on the category of theories and theory morphisms following the
development graphs approach [2]. The former allows for fine-grained specifications of the
semantics of individual objects, and the latter allows for inducing and translating knowledge
across theories. A new meta-theory relation links a logical framework to the logics defined in
it, thus formalizing the “logics-as-theories” approach.

The Mmt System. The OMDoc/Mmt language is implemented in the Mmt system
(Meta Meta Toolset; see [47]), which provides an API for the language constructs at all levels
and provides both logical services such as type reconstruction and rewriting and knowledge
management services such as IDE and HTML presentation and browsing of libraries.

Because it avoids committing to a specific semantics or logical foundation, foundation-
dependent services and features (e.g., type reconstruction) are implemented by splitting
the algorithms into a foundation-independent kernel that is user-extensible with foundation-
specific rules. For example, the logical framework LF [15] is implemented using about 10
rules taking only a few lines of code each.
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Theory Graphs. Theory graphs are diagrams in the categories of theories and morphisms.
The possible morphisms in Mmt are inclusions, which import all declarations from the
domain to the co-domain, structures, which are like includes but copy and translate all
declarations, views, which are semantics-preserving translations from domain to codomain,
and the meta-theory-relation, which behaves like an include for most purposes.

LF LF + X

FOL HOL

Monoid CGroup Ring

ZFC

f2h

add

mult

folsem

mod

Figure 1 Meta-Levels in OMDoc/MMT.

Figure 1 shows an example of a typical setup of formalizations in Mmt: Dotted lines
represent the meta-theory-relation, hooked arrows are includes, squiggly arrows represent
views, and the normal arrows represent named structures. Here LF is used as a logical
framework to define some logics, which are then used as meta-theories for algebraic theories.
We see three pragmatic levels: the logical frameworks at the top, logics in the middle, and
the domain theories at the bottom. Meaning trickles down from the theories at the top (the
ones without meta-theories), which are implemented directly in Mmt/Scala as described
for LF above. This setup can even encode model theory theory morphisms into semantic
theories like ZFC set theory.

4 Logical Aspects of the Translation

The logical basis of our export is a definition of Pure in the Mmt system. Mmt allows defining
a wide variety of logical frameworks, and we use PLF as a starting point, a polymorphic
variant of LF [15] that already exists in the Mmt standard library [37].

4.1 Type System and Logic
Types, Terms, Propositions. We use a shallow embedding of Pure in PLF. Besides
simplicity, this has a critical scalability advantage: a deep embedding would lead to
substantially larger PLF-expressions when already our shallow embedding ended up yielding
the largest export size we had ever attempted (since then eclipsed only by our analogous
export for Coq [38]). Consequently, as Pure uses shallow polymorphism (type variables
bound at the outside of declarations), we cannot use LF itself but need to extend it with
shallow polymorphism. That is why we use PLF instead.

Using a shallow embedding, most Pure primitives are represented as their PLF-counterparts:
Pure-types and terms are represented as PLF-types and terms. This includes in particular
Pure’s simple function types, λ-abstractions, and application.

The remaining primitives can simply be declared as PLF-constants. That yields a
PLF-theory containing in particular the constants

prop : type for the type of propositions,
ded : prop→ type mapping each proposition ϕ to the type dedϕ of proofs of ϕ.

That is the bare minimum to connect Isabelle/Pure to PLF: the remaining connectives are
produced from the regular export of the Pure theory itself, yielding further constants:
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Pure.eq : Πa:type a→ a→ prop polymorphic equality (with implicit αβη-conversion),
Pure.all : Πa:type (a→ prop)→ prop for the polymorphic binder for local parameters,
Pure.imp : prop→ prop→ prop for the constructor for logical entailment.

Relative to these declarations, it is straightforward to translate all Isabelle types, terms, and
propositions.

Proof Terms. Like LF but unlike Pure, PLF offers dependent types. These are not needed
for representing the simply-typed Pure language but are helpful to concisely represent
Pure-proofs as PLF-terms in Curry-Howard style. Thus, Pure proof terms can be exported
analogously to types, terms, and propositions. However, in practice, we only export proof
terms for small examples because proof terms for actual Isabelle/HOL are far too big. After
our work on Isabelle, we conducted a similar export for Coq in [38]. Here we included proof
terms, and the sizes, while large, remained manageable. But due to the lack of Coq-style
implicit computation, we expect Pure proof terms to be even larger.

However, there is a separate, deeper reason to defer proof exports: it is still unclear what
the best way to export proofs is. The export of low-level proof terms is straightforward, but
the proof objects are huge and have only limited value (independent proof checking being
the main one). The high-level proofs seen by the user are much more interesting but lack
the information inferred by the prover.

Therefore, we opted for exporting all proofs as dummy terms that carry only the
information that the theorem was checked by Isabelle and which dependencies were used.
Additionally, we include, as an informal narrative text, the command-source of the Isar text:
this treats the whole proof as one unit, without the hierarchical structure of Isar proofs (see
also the discussion in 4.4 and 6.5 below).

4.2 Declarations

Foundational Declarations. It is straightforward to represent the foundational declarations
of Pure theories as PLF-declarations as follows:

Pure-type operators a of arity n as n-ary PLF-constants

a : type→ . . .→ type→ type

Polymorphic Pure-terms c of type A using type variables a1, . . . , an as PLF-constants

c : Πa1:type . . .Πan:type A

Polymorphic Pure-axioms s with type parameters a1, . . . , an asserting proposition F as
PLF-constants

s : Πa1:type . . .Πan:type dedF

All three kinds of declarations may carry definitions, which can be represented by giving
the PLF-constant a definiens. This is used only for type operators and term abbreviations.
HOL type definitions are a special case of high-level declarations as described below, and
Pure term definitions are mapped to definition-less constants with defining axioms (multiple
ones in case of overloading). Additionally, theorems are represented using the proof as the
definiens (as described above).
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Identifiers. Isabelle assigns to each foundational declaration a unique identifier. It uses
separate namespaces for types, terms, and theorems and usually qualifies their names by
the base name of the enclosing theory. Every theory exists within an Isabelle session, whose
name usually qualifies the theory’s base name. Both qualification schemes are optional –
there is no strict enforcement.

For reusability, it is preferable to use a single namespace (to ensure globally unique
identifiers for all declarations) and to use a uniform naming schema for all identifiers.
Moreover, Mmt requires all names to be globally unique by qualifying them with an
ownership-defining URI. So we have chosen the following naming scheme for all declarations:

https://isabelle.in.tum.de?long-theory-name?entity-name|entity-kind

where long-theory-name is the session-qualified theory name, entity-name the declaration
name within the theory context, and entity-kind its name space: notably type, const, thm,
or other name spaces of user-defined concepts. For example,

https://isabelle.in.tum.de?HOL.Nat?Nat.nat|type

refers to the type nat of natural numbers in the theory Nat in the session HOL of the main
Isabelle library. The seemingly redundant repetition of Nat is needed to cover corner cases,
including some unqualified names in Isabelle/Pure.

High-Level Declarations. Isabelle provides a user-extensible set of high-level specification
elements, whose semantics is defined by elaboration into foundational ones. Examples
include HOL-type definitions or the definition of inductive data types and recursive functions.
Similarly, the high-level specification contexts of locales and type-classes (see below) are
elaborated into primitive concepts of the logic. Both are already covered by exporting their
elaboration, but that results in representations without the high-level structure seen by users.

Mmt provides a similar extensible declaration pattern mechanism [16, 39] so that we
can use them to represent Isabelle’s high-level declarations in a structure-preserving way.
We have so far carried out this effort only for locales and leave other elements to future
work: it could be done by a generic Isabelle/ML interface for such specification elements
such that the export works uniformly for all its instances. Then a manageable separate
implementation effort would be needed for each specification element. However, because
the individual specification elements were implemented by different authors and can be very
complex, no single person could retrofit them to implement this interface, and a long-term
community effort is required.

4.3 Module System
Theories. The Mmt module system subsumes the expressivity of Isabelle theories and
is available for every language defined in Mmt such as PLF. Thus, all Isabelle theories
(including those for logics like HOL) are represented straightforwardly as PLF-theories.

Locales. As the Isabelle logical framework lacks primitive support for “little theories”, a
locale definition is elaborated into a constant definition (predicate) for the logical specification,
together with extra-logical management of the resulting context and conclusions produced
within it [25]; similar techniques are used for Isabelle type classes [13] on top of locales.
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Without any special care, the export of locales merely shows these predicate definitions
with theorems depending on additional parameters and premises. But this low-level
elaboration is not what Isabelle users users expect. Instead we refer to exported information
about the original structure of locale specifications and map that to first-class theories in
Mmt. Subsequently, we illustrate this approach by a representative example.

Semigroups. Consider the following locale for semigroups. It declares (fixes) the binary
operation (where we write x*y for op x y), assumes the associativity axiom, defines the
squaring function, and states a simple theorem:

locale sg =
fixes op :: ’a → ’a → ’a ( infixl * 70)
assumes assoc: ∀ x y z. (x * y) * z = x * (y * z)

begin
definition sq :: ’a → ’a where sq x = x * x
theorem sqsq: sq (sq x) = x * sq x * x <proof >

end

Note that the universe of the semigroup is not declared explicitly. Instead, Isabelle locales
treat any type variable that remains uninstantiated after type-checking as a type fixed in the
locale. In our PLF representation, this convention is made explicit by declaring the universe
a as a type and then treating all fixed types and operations uniformly. In the sequel, we use
the words structure to refer to a tuple of values interpreting the fixed types and operations,
and instance for a structure that satisfies the assumed axioms.

Translation by Elaboration. The locale’s elaboration is represented as the following set of
PLF-constants (where we again write x ∗ y for op x y but op is now always a bound variable):

one membership predicate that ranges over structures and a defining axiom for it that
makes it true for instances:

sg : Πa:type Πop:a→a→a prop

sg_def : Πa:type Πop:a→a→a ded (sg a op)⇔ ∀x, y, z.(x ∗ y) ∗ z = x ∗ (y ∗ z)

for every definition, a global constant and a defining axiom for it, both abstracting over
structures:

sg.sq : Πa:type Πop:a→a→a a→ a

sg.sg_def : Πa:type Πop:a→a→a ded d = λx:a x ∗ x

for every theorem, a global theorem abstracting over structures and relativized to instances:

sg.sqsq : Πa:type Πop:a→a→a ded (sg a op)⇒ ∀x.SQ (SQx) = x ∗ (SQx) ∗ x
:= (proof omitted)

(abbreviating sq.sq a op as SQ).

Note that Isabelle’s elaboration introduces the function sg.sq for all structures even
though it is only defined for instances. This is sound in the special case of Isabelle because
function types are simple and all types are non-empty (which makes adding unspecified
operations conservative) and because all locale theorems are relativized to instances.
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Reconstruction of Isabelle Locales s MMT Theories. By elaborating locales into global
declarations, some information about the modular structure is lost. To allow for preserving
that structure, we additionally and redundantly export every locale as a PLF-theory with
the following local declarations:

a primitive constant for all fixed types and operations and assumed axioms:

a : type

op : a→ a→ a

assoc : ded ∀x, y, z.(x ∗ y) ∗ z = x ∗ (y ∗ z)

(writing x ∗ y for op x y),
a defined constant for each definition and theorem:

sq : a→ a := λx:a x ∗ x

sqsq : ded ∀x.sq (sq x) = x ∗ (sq x) ∗ x := [proof omitted]

This nicely conforms to the intention of Isabelle locales as extra-logical add-ons to the Pure
logic. We represent sublocale relations and locale interpretations as PLF theory morphisms
accordingly (by re-using exported information from Isabelle locale management).

Type Classes. Type classes are a special case of locales with some add-on infrastructure,
notably for type inference. A locale may become a type class if it has exactly one free type
variable ’a.

If sg is instead declared as a type class, the following additional declarations are present:
for every fixed operation, a global constant abstracting only over the single fixed type:

sg_class.op : Πa:type a→ a→ a

for every assumed axiom, a corresponding global axiom relativized by the membership
predicate sg of the locale (instantiating the fixed operation op with sg_class.op a):

sg_class.assoc : Πa:type ded sg a (sg_class.op a)⇒ ∀x, y, z.(x ∗ y) ∗ z = x ∗ (y ∗ z)

(writing x ∗ y for sg_class.op a x y)
for every definition, a corresponding global constant with a defining axiom,
for every theorem, a corresponding global theorem.

4.4 Ontology
The description above covers the translation of all logical content. But it is useful to
additionally export a high-level abstraction of the library ontology in semantic web style.
This includes all named entities (locales, theorems, etc.) and their interrelations but excludes
all complex objects (types, terms, proofs).

Such an ontology export is easier to maintain efficiently, e.g., using RDF triple stores.
And it is sufficient for many important applications such as querying the dependency relation
between declarations. Additionally, it can easily include metadata such as check times.

Isabelle/MMT performs such an RDF/XML export as well, see also 5.3 for the amount
of relational information. We originally presented this RDF export in [9] together with an
Upper Library Ontology (ULO) that describes and provides a uniform vocabulary of classes
and relations for all proof assistants; therefore, we mention only a few recent improvements
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here. The relational ontology also captures some aspects of inductive and primitive recursive
definitions (via the binary relation ulo:inductive-on). Most importantly, our export now
fully covers dependencies, spanning a large dependency graph over the source text: it relates
via the binary relation ulo:uses every theorem statement with every used constant and
every proofs with every used theorem.

5 Technical Aspects of the Translation

The majority of the export is not OMDoc-specific and carried out on the Isabelle side;
this appeared first in the official release Isabelle2019 (June 2019), but the present paper
uses the reworked and simplified version of Isabelle2020 (April 2020). Being integrated into
Isabelle has the advantage that most of our work can be immediately reused for exports into
other formats than OMDoc. Only little OMDoc-specific code is necessary for building and
serializing the XML objects in OMDoc format. For this, we use the Mmt API for OMDoc,
which is also written in Scala and therefore directly callable from PIDE. This code is now
part of the Mmt distribution (first in release 14 from November 2018).

The resulting inter-dependency between the code bases is handled as follows: if the Mmt
directory is registered to Isabelle as component, it provides a tool isabelle mmt_build (shell
script) to build MMT with Isabelle support enabled. The resulting mmt.jar will provide
further tools isabelle mmt_import and isabelle mmt_server (in Scala) to perform the
import and view its results. Users merely need to invoke, e.g., isabelle mmt_import -B ZF.

5.1 Export from Isabelle
Isabelle/Scala provides a standard module Export_Theory to expose theory content to other
tools via a statically typed API that imitates Isabelle/ML datatypes for types and terms.
The communication between Isabelle/ML and Isabelle/Scala works via untyped XML trees,
without any special tricks about meta-programming. Instead, sources in both languages
reside next to each other in the official Isabelle repository, are manually updated accordingly.

A first version of the Isabelle export facility appeared in Isabelle2018 (August 2018). It was
originally motivated by early versions of Isabelle/MMT, and has grown into an independent
Isabelle service. It is supported by command-line tools like isabelle export and isabelle
dump [53]; isabelle build with option export_theory exposes logical content as follows.

Foundational theory content of the Isabelle/Pure logical framework: types (base types
and type constructors), term constants (including functions, binders, quantifiers as
higher-order constants), axioms (including equational axioms that count as primitive
definitions), and theorems (propositions with a proof). Actual proofs are not exported
by default – they are prohibitively large. The option export_standard_proofs provides
proof terms in a standardized format that facilitates import in other tools, but this only
works for small examples so far.
Constant definitions of Isabelle/Pure, as a relation between a single constant with multiple
axioms. Overloading in Isabelle means that a polymorphic entity is characterized on
multiple (non-overlapping) type instances. The majority of constants are non-overloaded,
with exactly one equational axiom to express its definition. This relation of constants to
their defining axioms is exported, too.
Type definitions of Isabelle/HOL in the sense of Gordon and Pitts [45]. This axiomatization
scheme can be interpreted definitionally within the standard semantics of the HOL logic.
Isabelle/HOL provides a separate module to create new types via that mechanism. Some
key information is exported: the old representing type, the new abstract type, the name
of the morphisms between the two with the axiom stating the relation.
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This allows recovering HOL typedefs faithfully, where Pure theory content would only
show the individual particles. It also serves as an example to “query” derived specification
mechanisms in Isabelle/ML, to expose its own level of abstraction to the exporter.
Term constants with indication of derived specifications mechanisms, e.g. primrec
functions, inductive or coinductive relations. This works by querying generic informa-
tion in Isabelle/Pure about functional or relation specifications (also known as “Spec
Rules”). The Isabelle/HOL implementations provide this data on their own account.
This merely provides a rough classification of term constants at a very abstract level.
The full complexity of Isabelle/HOL specification mechanisms is more difficult to capture:
it would mean to follow many implementation details, including ones that have changed
fundamentally over the years of ongoing Isabelle development.
Dependencies of proven theorems wrt. types, consts, theorems, as recorded by the Isabelle
inference kernel: This spans a large dependency graph over the document in terms of the
primitive logic – extra-logical aspects are missing (e.g., dependency on notation). Partial
support for these proof constants had been part of the Isabelle codebase over many years,
but we had to rework this substantially to make it suitable for our application.
Locales in the sense of Ballarin [3] and type classes as special locale interpretations in
the sense of Haftmann and Wenzel [13, 14]: The export of locales preserves some of its
internal structure, notably the locale dependency relation stemming from the construction
of locales and sub-locales (by definition), as well as later locale interpretations (by proof).
These are then exported as Mmt theory morphisms. For type classes, the export shows
the canonical locale interpretation but without an explicit connection to the type class.
This would have to be a type-indexed family of Mmt theory morphisms.
The order-sorted algebra of type classes (subclass relation) and type arities (image
behavior of type constructors wrt. type class domains and ranges) in the sense of [40]:
This allows reconstructing Isabelle’s built-in type class reasoning by an external program
(for example, an application could give it to a separate process running Isabelle/Pure
and reuse the original implementation in module Sorts Isabelle/ML). An alternative is
to imitate these operations in a different programming language.2

Formal entities have two name components: kind (to distinguish the namespace) and
full name (usually with the theory base name as qualifier). In addition, there is an external
name for printing (partially qualified according to standard namespace policies), a source
position, and a command span identifier. The latter allows in particular arranging the content
according to the order in which it occurs in the source text so that exported types, constants,
theorems appear as a digest for each specification element in the text (e.g. for definition).

Moreover, if the target format of the export supports references to the original source,
this can be used to attach such a reference or even the entire source fragment to each formal
entity. We do that for our OMDoc export.

5.2 Import into Mmt
The entities listed in Section 5.1 can be serialized almost directly as Mmt constants relative
to the PLF framework as described in Section 4. That is not surprising as much of that
work motivated by the present export in the first place. Figure 2 shows the Mmt browser
displaying an example that is very small and thus includes proof terms. Note how every
formal declaration is preceded with an informal narrative fragment containing the original
source text, this is for the orientation for Isabelle users.

2 Isabelle/Scala does not provide any type-class reasoning on its own, because it is meant to be for
external system management only. Logical operations are done properly in Isabelle/ML.
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In the sequel, we describe a few specific adaptations of the term language that were
required to reconcile traditional Isabelle/ML representations with the more conventional
λ-calculus of PLF in Mmt.

Type arguments for constants. The traditional representation of polymorphic constants
in Isabelle and the HOL family [45] is to give the full type instance at each occurrence in
a term, instead of the type arguments that produce the instantiation of the general type
schema. For example, constant id :: ’a => ’a occurs in particular terms as the pair (id,
τ => τ) for the respective type τ . This is both redundant (because the type instances are
usually bigger than the type arguments) and inconvenient (because it is more difficult to
obtain the type arguments from the instantiations than the other way around). In contrast,
PLF treats id as a function with dependent type Πa:type a → a and occurrences are just
applications (id τ).

Isabelle/ML provides operations to switch between the two representations within a given
context of constant declarations. Our theory export always uses the second form with type
arguments: this reduces the size of exported material and allows importing terms into PLF
without again referring to the environment of constant declarations.

Variable names. Isabelle variables come in various flavors: free variables (e.g., x), schematic
variables with index (e.g., ?x10), and bound variables (e.g., x in λx::τ. x) which is notation
for the de-Bruijn index abstraction Abs (x, τ, B.0) where x is retained as a comment).

To fit smoothly into the λ-calculus of PLF, schematic variables are renamed to fresh
free variables. Since schematic variables are morally like a universal quantifier prefix, this
preserves the logical meaning of a statement. And bound variable comments in abstractions
are renamed locally to avoid clashes with free variables in the same scope. Thus the Abs
comment can be used literally in PLF as a named abstraction ignoring the unnamed de-Bruijn
index representation of Isabelle.

Type class constraints. Isabelle type variables are decorated with type class constraints,
e.g., ’a::order for types that belong to the class order defined in the Isabelle/HOL library
(e.g., nat with its standard order): this links certain operations to overloaded term constants
(e.g., less :: ’a => ’a => bool) and ensures logical premises on these operations (e.g.,
stating that less is a strict order on the type).

Isabelle type class operations are managed by extra-logical means to eliminate the implicit
overloading. In PLF this merely results in multiple constant definitions for different type
arguments. Class premises become logical constraints in a straight-forward manner: a type
class is a predicate over types in PLF. So ’a::c means that the predicate c applied to
type ’a holds. Statements with class constraints ϕ(’a::c) are augmented by a prefix of
preconditions ’a::c =⇒ ϕ(’a), effectively eliminating the constraint within the logic.

5.3 Statistics for Isabelle/AFP
Our test hardware for the Mmt export of Isabelle/AFP is a server machine with 40 CPU cores
(80 hardware threads), 128GB RAM (2 NUMA nodes), and fast SSD storage. Below, we give
an overview of the material for Isabelle2020 (April 2020) with MMT/52adb5e338811e [20]
and AFP/91f1cdbeefc0 [1]: These sources consist of 680 sessions distributed over 7,027 files
comprising 160MB of theory text (30MB XZ-compressed). The exported content comprises

7,027 theories and 5,291 locales (“little theories”), including 1,236 type classes,
2,116,638 individuals (11,724 type, 204,404 const, 236,186 axiom, 1,497,689 thm).
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400,996,957 relations, including 386,325,246 ulo:uses (i.e. the overall dependency graph
of type, const and thm items)
65GB OMDoc/XML (310MB XZ-compressed)3

The entire process of Isabelle/PIDE document checking, export to Mmt, and serialization as
XZ-compressed XML requires 80GB RAM, 8 CPU cores, and 22h30 elapsed time. Thus,
compared to an elementary batch-build, our export requires around 2 times the memory
and 2–5 times the elapsed time (mainly because Isabelle/Mmt uses less parallelization than
isabelle build). We emphasize that these resource figures are for the entire AFP, including
the special sessions tagged as slow or large which are often omitted because they take a lot
of resources to process.

The size of the exported OMDoc data structures is linear in the size of the original
sources, increased by about factor 10 in XZ-compressed form. This increase in size is a
gain, not a deficiency – it stems from the fact that the exported XML contains substantial
additional information that is implicit in the sources but extremely difficult to infer: all
occurrences of symbols are disambiguated and exported with their unique URIs; the exported
XML elements carry source references, i.e., URIs that link to the corresponding location
in the source; all type arguments of occurrences of polymorphic constants and all types of
bound variables are included in the XML even if omitted in the sources; and all theorems
automatically generated by Isabelle are included in the export. We could suppress some of
this information, but that would defeat the purpose of our export: only Isabelle can infer all
details, and handing it to other tools is our export’s main value. The uncompressed XML
files are much larger because they are very verbose and optimized for context-free processing.
But we never write the XML directly to the file-system: all reading and writing of XML is
filtered through XZ compression.

5.4 Maintainability
When developing proof assistant library exports, the challenge of maintainability is often
overlooked or underestimated. This is partly caused by the incentives of the academic system
that rewards quickly published results rather than long-term sustainable ones. We have
consciously taken several steps to ensure maintainability.

Firstly, we use statically-typed Scala APIs as much as possible, both in the export from
Isabelle and in the import into Mmt. Almost all the new code we wrote for the occasion
was immediately integrated with the existing abstract interfaces. The remaining glue code
that connects Isabelle’s abstract export with Mmt’s abstract import comprises only a few
thousand straightforward lines of code.

Secondly, wherever possible we wrote new code in the Isabelle repository rather than
the Mmt repository. This forces future Isabelle development to maintain our abstract code,
in particular when PIDE data structures change. Concretely, we pushed only the parts of
the code that actually depend on the Mmt data structures to the Mmt repository. That
portion consists of only about 2000 lines of code, mostly straightforward code for creating
instances of the Mmt data structures. The rest of the export code is generally reusable
for other Isabelle exports and pushed to the Isabelle repository and already released as an
official Isabelle feature. In fact, this design has already proved beneficial as Wenzel was able
to reuse the Isabelle part of our code in a recent export to Dedukti (still unpublished).

3 https://gl.mathhub.info/Isabelle/Distribution/commit/db1009a326c8 and https://gl.mathhub.
info/Isabelle/AFP/commit/346f28873c9f

https://gl.mathhub.info/Isabelle/Distribution/commit/db1009a326c8
https://gl.mathhub.info/Isabelle/AFP/commit/346f28873c9f
https://gl.mathhub.info/Isabelle/AFP/commit/346f28873c9f
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Finally, the fact that Isabelle and Mmt can communicate via the Java VM has proved a
huge advantage for maintainability. We were able to design the code in such a way that Mmt
is an optional plugin component for Isabelle and vice versa. Thus, users running Isabelle can
simply register Mmt as a plugin with Isabelle and then run isabelle mmt_import on the
command-line.

Whenever a new Isabelle release is published, it will be a matter to update some statically-
typed Scala functions for Isabelle/MMT. Informed by our experience of multiple similar
exports, we judge this one to be the most maintainable export of a proof assistant library so
far, in fact by a wide margin.

6 Enabled Applications

Our work now allows exporting entire Isabelle libraries into a format that can be easily read
by third-party applications in a robustly maintainable way. A major motivation for this
work was enabling applications that use this exported data. However, it remains open which
applications should be better realized directly in Isabelle and which should be based on Mmt.
Critically, our export abstracts from most idiosyncrasies of Isabelle’s logic, implementation,
and library structure. That has advantages and disadvantages.

On the positive side, any application that does not significantly depend on Isabelle’s
code base (e.g., search or dependency management) or explicitly rejects using it (e.g.,
representations in a logical framework or external proof checking) benefits from the uniform
representation in the relatively simple language of Mmt. On the negative side, any application
that should be tightly integrated with Isabelle may be better realized natively in Isabelle.
This includes in particular applications that offer proof advice or rewrites/generates Isabelle
data structures or Isabelle sources.

In some cases combined approaches may be indicated such as a small native addition
to Isabelle that connects to a service implemented on top of the Mmt representation (and
possibly running on a high-performance remote server). For example, search services could
be realized well in this way. However, even when a native implementation that ignores the
import into Mmt is indicated, our work can provide substantial benefits. Any such native
implementation will likely benefit from our streamlining and scaling up of Isabelle’s export
capabilities that allow integrating such applications with Isabelle.

Ultimately, the assessment which of these effects dominate must be made on a case-by-case
basis for every application. In the sequel, we sketch some applications enabled by our work
where we expect the advantages to dominate.

6.1 Clarification of Isabelle/Pure in Terms of MMT/PLF
The Isabelle/Pure framework [43] is historically connected to Edinburgh LF, but it has
its own distinctive style that can obscure important aspects. The documentation [51, §2]
refers to related formulations of λHOL within the setting of Pure Type Systems (PTS) due
to Barendregt and Geuvers [4] and gives informal explanations (in LATEX) about how to
understand Isabelle-specific concepts like schematic variables or type-classes.

Instead of Isabelle folklore and informal explanations in the documentation, our translation
to PLF within Mmt elucidates many concepts of Pure more formally. In particular:

The three levels of λ-calculus for function spaces (higher-order abstract syntax), universal
binding of local parameters (quantification), logical entailment of rule statements (implica-
tion) become just one dependently-typed λ-calculus.
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Implicit polymorphism becomes explicit as abstraction and quantification over types.
Up to scalability issues, proof terms – which are an optional add-on to the Pure logic –
become plain λ-terms as definiens for theorems.
Type class constraints become explicit as predicates applied to types. Concretely, there
are two possible representations for extra-logical constraints: ’a::c and intra-logical
predication OFCLASS(’a, c_class). Both are turned into the obvious term c a for
c :: type => prop in PLF).

Still lacking in our export is the explicit treatment of type class parameters: as in
Isabelle/Pure, the PLF theory treats instance-specific definitions as a collection of axioms
that are associated with a generically typed constant. A more sophisticated translation could
try to make a dictionary construction, to turn type class parameters into explicit function
parameters everywhere.

6.2 External Proof Checking
An often asked-for application of an Isabelle export is independent re-verification. It may
appear straightforward to use our export as the input of a separate application that specializes
on re-checking proofs. However, while this is certainly one of the intended uses, it would
be naive to assume that our work is more than the first of multiple steps towards this goal.
In the sequel, we describe the remaining two obstacles: scalability and adequacy. These
obstacles are not inherent to our approach. We expect any future solution to external proof
checking to build on our approach or to recreate something comparable.

Regarding scalability, it is indeed straightforward to write a proof-checker for the Pure
logic underlying Isabelle. In fact, the Mmt formalization of Pure induces a proof-checker
for Isabelle out of the box. Similar framework-induced checkers can be built easily in
implementations of LF-like frameworks such as Dedukti. Moreover, the complexity of these
checkers would typically be linear in the size of the proofs and thus very feasible. It is even
possible that checking the proofs could be faster than the file-system access needed to read
the proofs in the first place.

But we do not expect such straightforward checkers to be able to handle the size of
the proofs in the library: the size of individual proofs, if naively encoded, may very well
exceed the memory capacity of typical checkers.4 Thus, additional investments are needed for
handling large proofs, such as structure sharing, inferring omitted trivial steps, or streamed
processing that can check a proof without loading it in its entirety. These technologies are
known in principle, but applying them to Isabelle/AFP remains substantial future work.

Regarding adequacy, note that our export is foundational in the sense that it exports the
representation relative to the Pure logic in Isabelle’s kernel, which arises from the original user
input through a series of highly non-trivial transformations (elaboration). Fully re-checking
the proofs that result from elaboration is only one of two necessary conditions. The other one
is conservativity of elaboration, i.e., the requirement that elaboration does not translate an
unprovable statement to a provable one. Depending on how many advanced Isabelle features
are used in a problem statement, trusting the conservativity of elaboration may be a bigger
leap than trusting the correctness of the proofs.

But conservativity is extremely difficult to establish. The most direct way would be
to specify the semantics of Isabelle’s surface syntax and then prove Isabelle’s elaboration
algorithms correct relative to it. Given the complexity of elaboration, this remains out of
reach in the foreseeable future.

4 Early experiments conducted with parts of the Main theory context of Isabelle/HOL produce hundreds
of megabytes of proof terms in textual representation.
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6.3 Dependency Management
The classic model of Isabelle/PIDE [49] document markup merely provides a record of formal
entities that are explicitly visible in the source text. Due to some reworking of the inference
kernel by Wenzel, there is now a detailed record of all type / const / thm entities that are
implicitly used. This spans a rather large dependency graph over the original source: for
Isabelle/AFP there are 400 million edges for 130MB of theory text.

In the past, users have occasionally attempted to approximate this information for their
own purposes, e.g. in the Levity tool [8], which exploits dependencies to move lemmas to
adequate locations in the theory hierarchy.

Our ontological export (see Section 4.4) now includes a detailed record of both explicit
source dependencies and implicit logical dependencies. With this information available in
a standard format, more ambitious (and more robust) refactoring tools can be realized for
Isabelle. Optionally, such refactoring tools can even be built in OMDoc/Mmt to work
uniformly for all systems that have exports similar to the one reported in this article.

6.4 Search
Because our export includes all logical information of the Isabelle content, it enables multiple
search applications. For example, this would allow searching for expressions or names that
are not explicitly part of the sources and only occur in inferred information. It also enables
applying generic search systems to the Isabelle libraries.

As an example, we sketch a unification-based search service for the entire AFP based
on MathWebSearch [33]. MathWebSearch maintains a substitution tree index that allows
efficient unification queries over large collections of terms. Because it can index Mmt terms,
it can be directly applied to our export. Thus, users can explore the full background library
without having it loaded into the prover process (which might require too much memory), or
even without installing the prover at all (e.g., by using a web service for the AFP).

Concretely, the queries would be terms with free variables over some AFP theory, and
the search results would be terms in the AFP that unify with the query. Because our export
includes source references for all entities, these results can be linked to other resources (e.g.,
the location in the official AFP web site) or directly imported into PIDE.

The main remaining technical hurdle is the processing of the user’s query. In order to
match anything in the library, formal objects in the query must be processed and exported in
the same way as the library. This includes the use of special forms for pattern matching, lists
enumeration and comprehension etc. as well as type inference and type matching (with type
classes). Moreover, the user must provide the right context in which to interpret the query.

An intermediate solution could run a prover session of reasonable size that contains the
most relevant notation (e.g., HOL-Analysis) and process queries relative to it. These queries
could then be exported and matched against the entire AFP.

We estimate that such a system is within reach of an ambitious Master’s thesis.

6.5 Enabling Cross-Library Knowledge Management
Isabelle/MMT is one of multiple large exports of proof assistant libraries that we have
conducted over the last few years. One of the original motivations of these efforts was to
obtain multiple libraries in a uniform format in order to then develop develop cross-library
and cross-prover knowledge management solutions.

These efforts are still at an experimental stage, and we only cite a few early results that
could be extended to the Isabelle export:
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We have used alignments [21] to relate corresponding concepts in different libraries.
These can be annotated manually or found by machine learning techniques [10]. Given a
sufficient alignment coverage, we can then translate terms between libraries and use this
to make systems interoperable.
With the relational RDF/XML export of Section 4.4, we can use SPARQL queries using
the Upper Library Ontology (see [9] for details) that return results from multiple libraries.
[5] presents an architecture for multi-aspect search based on these ideas.
In [36] we have presented first steps towards finding views between different theorem
prover libraries automatically.

7 Conclusion and Future Work

Summary. In this article, we report on the conclusion of a research objective that seemed
quite immediate two decades ago, but was not: the export of a theorem prover library
(Isabelle) into a FAIR [55] knowledge exchange format (OMDoc). To make this undertaking
feasible at all, both the source and target system had to evolve considerably: Isabelle had to
add its Scala and PIDE infrastructure to manage and expose document-oriented information
in an instrumentable way, and the OMDoc format had to be re-engineered, extended, and
implemented in the Mmt system. Of course, the growth of the Isabelle library during this
time induced further scalability problems, which we had to solve for our export.

Exports of theorem prover libraries have received substantial attention for the last 10–20
years. Our work is the first comprehensive export for Isabelle: we demonstrate current
Isabelle/Scala export technology and explore remaining theoretical and practical challenges.

Even ignoring the potential applications of this particular export, our infrastructure for
exporting Isabelle libraries in general will prove beneficial to future improvements to Isabelle
itself and to the reuse of Isabelle content in other systems. In fact, the improvements of
Isabelle that were needed for our export have already shown benefits for the wider Isabelle
community. The headless PIDE session and isabelle dump tool have become particularly
important: we are in personal contact with two different projects to build content-oriented
search engines on top of these systems. Another emerging application of this technology is
a similar export of Isabelle to Dedukti [7]: this aims at re-checking the Isabelle/AFP and
therefore includes proof terms but excludes PIDE document markup.

The current export facility is mostly based on code that is maintained within the Isabelle
repository, and thus updated by the core developers. We have already published Isabelle/Mmt
for Isabelle2019 and Isabelle2020 based on a straight-forward process that users can easily
recreate themselves: build Mmt within the Isabelle system environment, turn it into an
Isabelle component, and use the standard Isabelle release tool to build a stand-alone variant
of Isabelle that includes Mmt. Users can then rerun our export themselves on the spot (via
the isabelle mmt_import command). We judge that this makes our Isabelle export the
most easily reproducible and maintainable among all existing prover library exports.

Future Work. Besides realizing and scaling up the applications described in Section 6, we
want to mention two important avenues for future work:

The current export does not include proof objects as these would increase its size by an
order of magnitude. Instead, we restrict ourselves to the dependency relation induced
by the proofs, which already enables many applications, but not, e.g., re-verification of
proofs. To obtain scalable proof exports, we must investigate how to shrink the size of
the proofs, e.g., by developing a new language for high-level proofs.
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In a similar vein we want to preserve the structure of more high-level declarations – e.g.
HOL-type definitions, inductive types. As discussed in Section 4.2, this is supported by
Mmt and would allow a structurally more similar and thus more understandable export.
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Abstract
Dependently typed languages such as Coq and Agda can statically guarantee the correctness of our
proofs and programs. To provide this guarantee, they restrict users to certain schemes – such as
strictly positive datatypes, complete case analysis, and well-founded induction – that are known
to be safe. However, these restrictions can be too strict, making programs and proofs harder to
write than necessary. On a higher level, they also prevent us from imagining the different ways the
language could be extended.

In this paper I show how to extend a dependently typed language with user-defined higher-order
non-linear rewrite rules. Rewrite rules are a form of equality reflection that is applied automatically
by the typechecker. I have implemented rewrite rules as an extension to Agda, and I give six
examples how to use them both to make proofs easier and to experiment with extensions of type
theory. I also show how to make rewrite rules interact well with other features of Agda such as
η-equality, implicit arguments, data and record types, irrelevance, and universe level polymorphism.
Thus rewrite rules break the chains on computation and put its power back into the hands of its
rightful owner: yours.
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tion → Equational logic and rewriting; Theory of computation → Type theory

Keywords and phrases Dependent types, Proof assistants, Rewrite rules, Higher-order rewriting,
Agda
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Supplementary Material The official documentation of rewrite rules in Agda is available in the user
manual at https://agda.readthedocs.io/en/v2.6.1/language/rewriting.html. The full source
code of Agda (including rewrite rules) is available on Github at https://github.com/agda/agda/.

1 Introduction

In the tradition of Martin-Löf Type Theory [19], each type former is declared by four sets of
rules:

The formation rule, e.g. Bool : Set
The introduction rules, e.g. true : Bool and false : Bool
The elimination rules, e.g. if P : Bool → Set, b : Bool, pt : P true, and pf : P false,
then if b then pt else pf : P b

The computation rules, e.g. if true then pt else pf = pt and if false then pt else pf = pf

When working in a proof assistant or dependently typed programming language, we
usually do not introduce new types directly by giving these rules. That would be very unsafe,
as there is no easy way to check that the given rules make sense. Instead, we introduce new
rules through schemes that are well-known to be safe, such as strictly positive datatypes,
complete case analysis, and well-founded induction.
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However, users of dependently typed languages or researchers who are experimenting with
adding new features to them might find working within these schemes too restrictive. They
might be tempted to use postulate to simulate the formation, introduction, and elimination
rules of new type formers. Yet in intensional type theories there is one thing that cannot be
added by using postulate: the computation rules.

This paper shows how to extend a dependently typed language with user-defined re-
write rules, allowing the user to extend the definitional equality of the language with
new computation rules. Concretely, I extend the Agda language [22] with a new op-
tion --rewriting. When this option is enabled, you can register a proof (or a postulate)
p : ∀x1 . . . xn → f u1 . . . un ≡ v (where the ∀ quantifies over the free variables x1 . . . xn

of u1 . . . un and v, and ≡ is Agda’s built-in identity type) as a rewrite rule with a pragma
{-# REWRITE p #-}. From this point on, Agda will automatically reduce instances of the
left-hand side f u1 . . . un (i.e. for specific values of x1 . . . xn) to the corresponding instance
of v. As a silly example, if f : A→ A and p : ∀x→ f x ≡ x, then the rewrite rule will replace
any application f u with u, effectively turning f into the identity function λx→ x (which is
the Agda syntax for the lambda term λx. x).

Since rewrite rules enable you as the user of Agda to turn propositional (i.e. proven)
equalities into definitional (i.e. computational) ones, rewrite rules can be seen as a restricted
version of the equality reflection rule from extensional type theory, thus they do not impact
logical soundness of Agda directly. However, they can break other important properties of
Agda such as confluence of reduction and strong normalization. Checking these properties
automatically is outside of the scope of this paper, but some potential approaches are
discussed in Sect. 6.

Instead, the main goal of this paper is to specify in detail one possible way to add a
general notion of rewrite rules to a real-world dependently typed language. This is meant to
serve at the same time as a specification of how rewrite rules are implemented in Agda and
also as a guideline how they could be added to other languages.

Contributions

I define a core type theory based on Martin-Löf’s intensional type theory extended with
user-defined higher-order non-linear rewrite rules.
I describe how rewrite rules interact with several common features of dependently typed
languages, such as η-equality, data and record types, parametrized modules, proof
irrelevance, universe level polymorphism, and constraint solving for metavariables.
I implement rewrite rules as an extension to Agda and show in six examples how to use
them to make writing programs and proofs easier and to experiment with new extensions
to Agda.

The official documentation of rewrite rules in Agda is available in the user manual1.
The source code of Agda is available on Github2, the code dealing with rewrite rules
specifically can be found in the files Rewriting.hs3 (418 lines), NonLinPattern.hs4 (329
lines), NonLinMatch.hs5 (422 lines), and various other places in the Agda codebase.

1 https://agda.readthedocs.io/en/v2.6.1/language/rewriting.html
2 https://github.com/agda/agda/
3 https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting.hs
4 https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting/

NonLinPattern.hs
5 https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Rewriting/

NonLinMatch.hs
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Note on the development of rewrite rules in Agda. When the development of rewrite
rules in Agda started in 2016, it was expected to be used mainly by type theory researchers
to experiment with new computation rules without modifying the implementation of the
language itself. For this use case, accepting a large class of rewrite rules is more important
than having strong guarantees about (admittedly important) metatheoretical properties such
as subject reduction, confluence, or termination, which can be checked by hand if necessary.
This is the basis for the rewrite rules as described in the paper.

More recently, Agda users also started using this rewriting facility to enhance Agda’s
conversion checker with new (proven) equalities, as showcased by the examples in Sect. 2.1
and Sect. 2.2. For this class of users having strong guarantees about subject reduction,
confluence and termination is more important. In the future, I would like to extend the
support for these users further as outlined in Sect. 6.

Outline of the paper. Sect. 2 consists of examples of how to use rewrite rules to go beyond
the usual boundaries set by Agda and define your own computation rules. After these
examples, Sect. 3 shows more generally how to add rewrite rules to a dependently typed
language, and Sect. 4 shows how rewrite rules interact with other features of Agda. Related
work and future work are discussed in Sect. 5 and Sect. 6, and Sect. 7 concludes.

2 Using rewrite rules

With the introduction out of the way, let us start with some examples of things you can do
with rewrite rules. I hope at least one example gives you the itch to try rewrite rules for
yourself. There are some restrictions on what kind of equality proofs can be turned into
rewrite rules, which will be explained later in general. Until then, the examples should give
an idea of the kind of things that are possible.

All examples in this section are accepted by Agda 2.6.1 [1]. We start with some basic
options and imports. For the purpose of this paper, the two most important ones are the
--rewriting flag and the import of Agda.Builtin.Equality.Rewrite, which are both required
to make rewrite rules work. Meanwhile, the --prop flag enables Agda’s Prop universe6 [16],
which will be used in some of the examples.

{−# OPTIONS --rewriting --prop #−}

open import Agda.Primitive
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite

The examples in this paper make use of generalizable variables7 to avoid writing many
quantifiers and make the code more readable.

6 https://agda.readthedocs.io/en/v2.6.1/language/prop.html
7 https://agda.readthedocs.io/en/v2.6.1/language/generalization-of-declared-variables.

html
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variable
` `1 `2 `3 `4 : Level
A B C : Set `
P Q : A → Set `
x y z : A
f g h : (x : A) → P x
b b1 b2 b3 : Bool
k l m n : Nat
xs ys zs : List A
R : A → A → Prop

We use the following helper function to annotate terms with their types:

El : (A : Set `) → A → A
El A x = x

infix 5 El
syntax El A x = x ∈ A

To avoid reliance on external libraries, we also need two basic properties of equality:

cong : (f : A → B) → x ≡ y → f x ≡ f y
cong f refl = refl

transport : (P : A → Set `) → x ≡ y → P x → P y
transport P refl p = p

2.1 Overlapping pattern matching
To start, let us look at a question that is asked by almost every newcomer to Agda: why
does 0 + m compute to m, but m + 0 does not? Similarly, why does (suc m) + n compute
to suc (m + n) but m + (suc n) does not? This problem manifests itself for example when
trying to prove commutativity of _+_ (the lack of highlighting is a sign that the code is not
accepted by Agda):

+comm : m + n ≡ n + m
+comm {m = zero} = refl
+comm {m = suc m} = cong suc (+comm {m = m})

Here Agda complains that n 6= n + zero. The problem is usually solved by proving
the equations m + 0 ≡ m and m + (suc n) ≡ suc (m + n) and using an explicit rewrite8
statement in the proof of +comm.

Despite solving the problem, this solution is rather disappointing: if Agda can tell that
0 + m computes to m, why not m + 0? During my master thesis, I worked on overlapping
computation rules [14] to make this problem go away without adding any explicit rewrite
statements. By using rewrite rules, we can simulate this solution in Agda. First, we need to
prove that the equations we want hold as propositional equalities:

8 Agda’s rewrite keyword should not be confused with rewrite rules, which are added by a REWRITE
pragma.
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+zero : m + zero ≡ m
+zero {m = zero} = refl
+zero {m = suc m} = cong suc +zero

+suc : m + (suc n) ≡ suc (m + n)
+suc {m = zero} = refl
+suc {m = suc m} = cong suc +suc

Then we mark the equalities as rewrite rules with a REWRITE pragma:

{−# REWRITE +zero +suc #−}

Now the proof of commutativity works exactly as we wrote before:

+comm : m + n ≡ n + m
+comm {m = zero} = refl
+comm {m = suc m} = cong suc (+comm {m = m})

Without rewrite rules there is no way to make this proof go through unchanged: it is
essential that _+_ computes both on its first and second arguments, but there is no way to
define _+_ in such a way using Agda’s regular pattern matching.

2.2 New equations for neutral terms
Allais, McBride, and Boutillier [2] extend classic functions on lists such as map, _++_
(concatenation), and fold with new equational rules for neutral expressions. In Agda, we can
prove these rules and then add them as rewrite rules. For example, here are their rules for
map and _++_:

map : (A → B) → List A → List B
map f [] = []
map f (x :: xs) = (f x) :: (map f xs)

infixr 5 _++_
_++_ : List A → List A → List A
[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

map−id : map (λ x → x) xs ≡ xs
map−id {xs = []} = refl
map−id {xs = x :: xs} = cong (x ::_) map−id

map−fuse : map f (map g xs) ≡ map (λ x → f (g x)) xs
map−fuse {xs = []} = refl
map−fuse {xs = x :: xs} = cong (_ ::_) map−fuse

map−++ : map f (xs ++ ys) ≡ (map f xs) ++ (map f ys)
map−++ {xs = []} = refl
map−++ {xs = x :: xs} = cong (_ ::_) (map−++ {xs = xs})

{−# REWRITE map−id map−fuse map−++ #−}

TYPES 2019
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These rules look simple, but can be quite powerful. For example, below we show that
the expression map swap (map swap xs ++ map swap ys) reduces to xs ++ ys, without
requiring any induction on lists.

record _×_ (A B : Set) : Set where
constructor _,_
field

fst : A
snd : B

open _×_

swap : A × B → B × A
swap (x , y) = y , x

test : map swap (map swap xs ++ map swap ys) ≡ xs ++ ys
test = refl

To compute the left-hand side of the equation to the right-hand side, Agda makes use
of map−++ (step1), map−fuse (step2), built-in η-equality of _×_ (step3), the definition of
swap (step4), and finally the map−id rewrite rule (step5).

step1 : map swap (map swap xs ++ map swap ys)
≡ map swap (map swap xs) ++ map swap (map swap ys)

step1 = refl

step2 : map swap (map swap xs) ≡ map (λ x → swap (swap x)) xs
step2 = refl

step3 : map (λ x → swap (swap x)) xs ≡ map (λ x → swap (swap (fst x , snd x))) xs
step3 = refl

step4 : map (λ x → swap (swap (fst x , snd x))) xs ≡ map (λ x → (fst x , snd x)) xs
step4 = refl

step5 : map (λ x → (fst x , snd x)) xs ≡ xs
step5 = refl

2.3 Higher inductive types
The original motivation for adding rewrite rules to Agda had little to do with adding new
computation rules to existing functions as in the previous examples. Instead, its purpose
was to experiment with defining higher inductive types [30]. In particular, it was meant as
an alternative for people using clever (but horrible) hacks to make higher inductive types
compute.9

A higher inductive type is similar to a regular inductive type D with some additional
path constructors, which construct an element of the identity type a ≡ b where a : D and
b : D. A classic example is the Circle type, which has one regular constructor base and one
path constructor loop (note that Set in Agda corresponds to Type rather than hSet from
HoTT):

9 https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assis-
tant/
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postulate
Circle : Set
base : Circle
loop : base ≡ base

postulate
Circle−elim : (P : Circle → Set `) (base∗ : P base) (loop∗ : transport P loop base∗ ≡ base∗)

→ (x : Circle) → P x
elim−base : ∀ (P : Circle → Set `) base∗ loop∗ → Circle−elim P base∗ loop∗ base ≡ base∗
{−# REWRITE elim−base #−}

To specify the computation rule for Circle−elim applied to loop, we need the dependent
version of cong, which is called apd in the book [30].

apd : (f : (x : A) → P x) (p : x ≡ y) → transport P p (f x) ≡ f y
apd f refl = refl

postulate
elim−loop : ∀ (P : Circle → Set `) base∗ loop∗ → apd (Circle−elim P base∗ loop∗) loop ≡ loop∗
{−# REWRITE elim−loop #−}

Without the rewrite rule elim−base, the type of elim−loop is not well-formed. So without
rewrite rules, it is impossible to even state the computation rule of Circle−elim on the path
constructor loop without adding extra transports that would influence its computational
behaviour.

2.4 Quotient types
One of the well-known weak spots of intensional type theory is its poor handling of quotient
types. One of the more promising attempts at adding quotients to Agda is by Guillaume
Brunerie in the initiality project10, which uses a combination of rewrite rules and Agda’s
Prop universe. Unlike Prop in Coq or hProp in HoTT (but like sProp in Coq), Prop in Agda
is a universe of definitionally irrelevant propositions, which means any two proofs of a type
in Prop are definitionally equal.

Before I can show this definition of the quotient type, we first need to define the Prop-
valued equality type _ .=_. We also define its corresponding notion of transport, which has to
be postulated due to current limitations in the implementation of Prop. To make transportR
compute in the expected way, we add it as a rewrite rule transportR−refl.

data _ .=_ {A : Set `} (x : A) : A → Prop ` where
refl : x .= x

postulate
transportR : (P : A → Set `) → x .= y → P x → P y
transportR−refl : transportR {x = x} {y = x} P refl z ≡ z
{−# REWRITE transportR−refl #−}

Note that the rewrite rule transportR−refl is non-linear in its two implicit arguments x
and y.

10 https://github.com/guillaumebrunerie/initiality/blob/reflection/quotients.agda
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Now we are ready to define the quotient type _//_. Given a type A and a Prop-valued
relation R : A → A → Prop, the type A // R consists of elements proj x where x : A, and
proj x is equal to proj y if and only if R x y holds.

postulate
_//_ : (A : Set `) (R : A → A → Prop) → Set `
proj : A → A // R
quot : R x y → proj {R = R} x .= proj {R = R} y

The elimination principle //−elim allows us to define functions that extract an element
of A from a given element of A // R, provided a proof quot∗ that the function respects the
equality on A // R. The computation rule //−beta allows //−elim to compute when it is
applied to a proj x.

//−elim : (P : A // R → Set `) (proj∗ : (x : A) → P (proj x))
→ (quot∗ : {x y : A} (r : R x y) → transportR P (quot r) (proj∗ x) .= proj∗ y)
→ (x : A // R) → P x

//−beta : {R : A → A → Prop} (P : A // R → Set `) (proj∗ : (x : A) → P (proj x))
→ (quot∗ : {x y : A} (r : R x y) → transportR P (quot r) (proj∗ x) .= proj∗ y)
→ {u : A} → //−elim P proj∗ quot∗ (proj u) ≡ proj∗ u

{−# REWRITE //−beta #−}

Compared to the more standard way of defining the quotient type as a higher inductive
type, this definition behaves better with respect to definitional equality: the argument quot∗
to the eliminator is definitionally irrelevant, so it does not matter what equality proof we give.
Consequently, there is no need to add an additional constructor to truncate the quotient
type.

2.5 Exceptional type theory
First-class exceptions are a common feature of object-oriented programming languages such
as Java, but in the world of pure functional languages they are usually frowned upon.
However, recently Pédrot and Tabareau have proposed an extension of Coq with first-class
exceptions [23]. With the exceptional power of rewrite rules, we can also encode (part of)
their system in Agda.

First, we postulate a type Exc with any kinds of exceptions we might want to use (here
we just have a single runtimeException for simplicity). We then add the possibility to raise
an exception, producing an element of an arbitrary type A.

postulate
Exc : Set
runtimeException : Exc
raise : Exc → A

Note that raise makes the type theory inconsistent. In their paper, Pédrot and Tabareau
show how to build a safe version of exceptions on top of this system, using parametricity to
enforce that all exceptions are caught locally. Here that part is omitted for brevity.

By adding the appropriate rewrite rules for each type former, we can ensure that exceptions
are propagated appropriately. For positive types such as Nat, exceptions are propagated
outwards, while for negative types such as function types, exceptions are propagated inwards.
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postulate
raise−suc : {e : Exc} → suc (raise e) ≡ raise e
raise−fun : {e : Exc} → raise {A = (x : A) → P x} e ≡ λ x → raise {A = P x} e
{−# REWRITE raise−suc raise−fun #−}

To complete the system, we add the ability to catch exceptions at specific types. This
takes the shape of an eliminator with one additional method for handling the case where the
element under scrutiny is of the form raise e.

postulate
catch−Bool : (P : Bool → Set `) (pt : P true) (pf : P false)

→ (h : ∀ e → P (raise e)) → (b : Bool) → P b

catch−true : ∀ (P : Bool → Set `) pt pf h → catch−Bool P pt pf h true ≡ pt
catch−false : ∀ (P : Bool → Set `) pt pf h → catch−Bool P pt pf h false ≡ pf
catch−exc : ∀ (P : Bool → Set `) pt pf h e → catch−Bool P pt pf h (raise e) ≡ h e
{−# REWRITE catch−true catch−false catch−exc #−}

As shown by this example, rewrite rules can be used to extend Agda with new primitive
operations, including ones that compute according to the type of their arguments. Currently
the user has to add new rewrite rules manually for each datatype and function symbol, so
using this in practice is quite tedious. In the future, it might be possible to leverage Agda’s
reflection framework to generate these rewrite rules automatically.

2.6 Observational equality
Rewrite rules also allow us to define type constructors that compute according to the type
they are applied to. This is a core part of observational type theory (OTT) [3]. OTT
replaces the usual identity type with an observational equality type (here called _∼=_) that
computes according to the type of the elements being compared. For example, an equality
proof between pairs of type (a , b) ∼= (c , d) is a pair of proofs, one of type a ∼= c and one of
type b ∼= d.

Below, I show how to extend Agda with a fragment of OTT. Since OTT has a proof-
irrelevant equality type, I use Agda’s Prop to get the same effect. First, we need some basic
types in Prop:

record > {`} : Prop ` where constructor tt

data ⊥ {`} : Prop ` where

record _∧_ (X : Prop `1 ) (Y : Prop `2 ) : Prop (`1 t `2 ) where
constructor _,_
field

fst : X
snd : Y

open _∧_

The open statement makes the constructor and the fields of the records available in the
remainder of the module.

The central type of OTT is observational equality _∼=_, which should compute according
to the types of the elements being compared. Here I give the computation rules for Bool and
for function types:

TYPES 2019
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infix 6 _∼=_
postulate
_∼=_ : {A : Set `1} {B : Set `2} → A → B → Prop (`1 t `2 )

postulate
refl−Bool : (Bool ∼= Bool) ≡ >
refl−true : (true ∼= true) ≡ >
refl−false : (false ∼= false) ≡ >
conflict−tf : (true ∼= false) ≡ ⊥
conflict−ft : (false ∼= true) ≡ ⊥
{−# REWRITE refl−Bool refl−true refl−false conflict−tf conflict−ft #−}

postulate
cong−Π : ((x : A) → P x) ∼= ((y : B) → Q y)

≡ (B ∼= A) ∧ ((x : A)(y : B) → y ∼= x → P x ∼= Q y)
cong−λ : {A : Set `1} {B : Set `2} {P : A → Set `3} {Q : B → Set `4}

→ (f : (x : A) → P x) (g : (y : B) → Q y)
→ ((λ x → f x) ∼= (λ y → g y)) ≡ ((x : A) (y : B) (x∼=y : x ∼= y) → f x ∼= g y)

{−# REWRITE cong−Π cong−λ #−}

According to cong−Π, an equality proof between function types computes to a pair of
equality proofs between the domains and the codomains respectively. Though not necessary,
it is convenient to swap the sides of the equality proofs in contravariant positions (B ≡ A

and y ≡ x). Meanwhile, an equality proof between two functions computes to an equality
proof between the functions applied to heterogeneously equal variables x : A and y : B.

To reason about equality proofs, OTT adds two more notions: coercion and cohesion.
Coercion _[_〉 transforms an element from one type to the other when both types are
observationally equal, and cohesion _||_ states that coercion is computationally the identity.

infix 10 _[_〉 _||_

postulate
_[_〉 : A → (A ∼= B) → B
_||_ : (x : A) (Q : A ∼= B) → (x ∈ A) ∼= (x [ Q 〉 ∈ B)

Here the ∈ annotations are just there to help Agda’s type inference algorithm.
Again, we need rewrite rules to make sure coercion computes in the right way when

applied to specific type constructors. On the other hand, We do not need rewrite rules for
coherence since the result is of type _ ∼= _ which is a Prop, so the proof is anyway irrelevant.

Coercing an element from Bool to Bool is easy.

postulate
coerce−Bool : (Bool∼=Bool : Bool ∼= Bool) → b [ Bool∼=Bool 〉 ≡ b
{−# REWRITE coerce−Bool #−}

To coerce a function from (x : A)→ P x to (y : B)→ Q y we need to:

1. Coerce the input from y : B to x : A
2. Apply the function to get an element of type P x

3. Coerce the output back to an element of Q y
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In the last step, we need to use coherence to show that x and y are (heterogeneously)
equal.

postulate
coerce−Π : {A : Set `1} {B : Set `2} {P : A → Set `3} {Q : B → Set `4} {f : (x : A) → P x}
→ (ΠAP∼=ΠBQ : ((x : A) → P x) ∼= ((y : B) → Q y))
→ f [ ΠAP∼=ΠBQ 〉
≡ (λ (y : B) →

let B∼=A = fst ΠAP∼=ΠBQ
x = y [ B∼=A 〉
Px∼=Qy = snd ΠAP∼=ΠBQ x y (_||_ {B = A} y B∼=A)

in f x [ Px∼=Qy 〉 ∈ Q y)
{−# REWRITE coerce−Π #−}

Here the syntax {B = A} instantiates the implicit argument B of _||_ to the value A.
Of course this is just a fragment of the whole system, but implementing all of OTT would

go beyond the scope of this paper. In principle, observational equality can be used as a full
replacement for Agda’s built-in equality type. So rewrite rules are even powerful enough to
experiment with replacements for core parts of Agda.

3 Type theory with user-defined rewrite rules

In the previous section, I gave several examples of how to use rewrite rules in Agda to make
programming and proving easier and to experiment with new extensions to type theory. The
next two sections go into the details of how rewrite rules work in general.

Instead of starting with a complex language like Agda, I start with a small core language
and gradually extend it by adding more features to the rewriting machinery step by step. In
the next section, I will extend this language with other features that you are used to from
Agda. The full rules of the language can be found in Appendix A.

3.1 Syntax
We use a simplified version of the internal syntax used by Agda [22]. The syntax has five
constructors: variables, function symbols, lambdas, pi types, and universes.

u, v, A, B ::= x ū (variable applied to zero or more arguments)
| f ū (function symbol applied to zero or more arguments)
| λx. u (lambda abstraction)
| (x : A)→ B (dependent function type)
| Seti (ith universe)

(1)

As in the internal syntax of Agda, there is no way to represent a β-redex in this syntax.
Instead, substitution uσ is defined to eagerly reduce β-redexes on the fly. Since terms are
always in β-normal form, our rewrite system is a HRS (Higher-Order Rewrite system) in the
spirit of Mayr and Nipkow [20].

Contexts are right-growing lists of variables annotated with their types.

Γ,∆ ::= · (empty context)
| Γ(x : A) (context extension) (2)

TYPES 2019
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Patterns p, q share their syntax with regular terms, but must satisfy some additional
restrictions. To start with, the only allowed patterns are unapplied variables x and applica-
tions of function symbols to other patterns f p̄. This allows us for example to declare rewrite
rules like plus x zero −→ x and plus x (suc y) −→ suc (x+ y).

3.2 Declarations
There are two kinds of declarations: function symbols (corresponding to a postulate in Agda)
and rewrite rules (corresponding to a postulate together with a {-# REWRITE #-} pragma).

d ::= f : A (function symbol)
| ∀∆. f p̄ : A −→ v (rewrite rule)

(3)

When the user declares a new rewrite rule, the following properties are checked:

Linearity. Each variable in ∆ must occur exactly once in the pattern p̄ (this will later be
relaxed to “at least once”).

Well-typedness. The left- and right-hand side of the rewrite rule must be well-typed and
have the same type, i.e. ∆ ` f p̄ : A and ∆ ` v : A.

Neutrality. The left-hand side of the rewrite rule should be neutral, i.e. it should not reduce.

The first restriction ensures that all variables of a rewrite rule are bound by the left-hand
side. This ensures that reduction can never introduce variables that are not in scope, which
would break well-scopedness of expressions. The second restriction ensures that applying
a rewrite rule does not change the type of a well-typed expression.11 It is possible to go
without the third restriction, but in practice this would mean that the rewrite rule would
never be applied.12

Requiring rewrite rules to be well-typed has in some cases the unfortunate side-effect
of introducing non-linearity where it is not really necessary, for example when defining the
computation rule of the J eliminator as a rewrite rule. This non-linearity slows down the
reduction unneccessarily and greatly complicates confluence checking. It would be interesting
to investigate how to remove this unneccessary non-linearity, e.g. as proposed by Blanqui [8].

3.3 Reduction and matching
To reduce a term f ū, we look at the rewrite rules with head symbol f to see if any of them
apply. In the rule below and all rules in the future, we assume a fixed global signature Σ
containing all (preceding) declarations.

(∀∆.f p̄ : A −→ v) ∈ Σ [ū // p̄]⇒ σ

f ū −→ vσ
(4)

Matching a term u against a pattern p [u // p]⇒ σ (or [ū // p̄]⇒ σ for matching a list
of terms against a list of patterns) produces – if it succeeds – a substitution σ. In contrast to
the first-match semantics of clauses of a regular definition by pattern matching, all rewrite
rules are considered in parallel, so there is no need for separate notion of a failing match.

11To prove type preservation we also need confluence of reduction, see the future work section for more
details.

12 If the rewrite system is globally confluent and strongly normalizing, it does not matter that we never
apply a certain rewrite rule. Global confluence ensures that even if we apply a different rewrite rule,
the result will still be the same, and strong normalization ensures that termination does not depend on
the choice of rewrite rule either. Hence as a user one does not have to worry about the precise rewrite
strategy implemented by Agda, but only about confluence and termination of the rewrite system.
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[u // x]⇒ [u /x]
u −→∗ f v̄ [v̄ // p̄]⇒ σ

[u // f p̄]⇒ σ

[· // ·]⇒ []
[u // p]⇒ σ1 [ū // p̄]⇒ σ2

[u; ū // p; p̄]⇒ σ1 ] σ2

Figure 1 Basic rules for the matching algorithm used for rewriting.

The basic matching algorithm is defined by the rules in Fig. 1. Matching a term against
a pattern variable produces a substitution that assigns the given value to the variable.
Matching an expression against a pattern f p̄ evaluates the expression until it becomes of the
form f v̄ (here −→∗ is the reflexive and transitive closure of −→). It then recursively matches
the arguments v̄ against the patterns p̄, combining the results of each match by taking the
disjoint union σ1 ] σ2. Since matching can reduce the term being matched, matching and
reduction are mutually recursive.

3.4 Higher-order matching
With the basic set of rewrite rules introduced in the previous section, we can already declare
a surprisingly large number of rewrite rules for first-order algebraic structures. From the
examples in Sect. 2, it handles all of Sect. 2.1, rules map−fuse and map−++ from Sect. 2.2,
all of Sect. 2.3, rule //−beta from Sect. 2.4, rules catch−true, catch−false, and catch−exc
from Sect. 2.5, and the rules dealing with Bool in Sect. 2.6.

Most of the examples that are not yet handled use λ and/or function types in the
pattern of a rewrite rule. This brings us to the issue of higher-order matching.13 To support
higher-order matching, we extend the pattern syntax with the following patterns:

A lambda pattern λx. p

A function type pattern (x : p)→ q

A bound variable pattern y p̄ , where y is a variable bound locally in the pattern by a
lambda or function type
A pattern variable x ȳ applied to locally bound variables

During matching we must keep the (rigid) bound variables separate from the (flexible)
pattern variables. For this purpose, the algorithm keeps a list Φ of all rigid variables. This
list is not touched by any of the rules of Fig. 1, but any variables bound by a λ or a function
type are added to it.

The extended matching rules for higher-order patterns are given in Fig. 2. Note the strong
similarity between the third rule and the rule for matching a function symbol f. This is not
a coincidence: both function symbols and bound variables act as rigid symbols that can be
matched against. The first three rules in Fig. 2 extend the pattern syntax to allow for bound
variables in patterns, and allow for rules such as map− id : map (λ x→ x) xs ≡ xs. However,
alone they do not yet constitute true higher-order matching (such as used in rules raise−fun,
cong−Π, and cong−λ). For this we also consider pattern variables applied to zero or more

13 See also https://github.com/agda/agda/issues/1563 for more examples where higher-order matching
is needed.
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u −→∗ λx. v Φ, x ` [v // p]⇒ σ

Φ ` [u // λx. p]⇒ σ

A −→∗ (x : B)→ C Φ ` [B // p]⇒ σ1 Φ, x ` [C // q]⇒ σ2

Φ ` [A// (x : p)→ q]⇒ σ1 ] σ2

u −→∗ x v̄ x ∈ Φ Φ ` [v̄ // p̄]⇒ σ

Φ ` [u // x p̄]⇒ σ

x 6∈ Φ FV (v) ∩ Φ ⊆ ȳ
Φ ` [v // x ȳ]⇒ [(λȳ. v) / x]

Figure 2 Rules for higher-order pattern matching.

arguments. Allowing arbitrary patterns as arguments to pattern variables is well known
to make matching undecidable, so we restrict patterns to Miller’s pattern fragment [21] by
requiring pattern variables to be applied to distinct bound variables. Matching against a
pattern variable in the Miller fragment is implemented by the fourth rule in Fig. 2. Since all
the arguments of x are variables, we can construct the lambda term λȳ. v. To avoid having
out-of-scope variables in the resulting substitution, the free variables in v are checked to be
included in ȳ, otherwise matching fails.

3.5 Eta equality
The attentive reader may have noticed a flaw in the matching for λ-patterns: it does not
respect η-equality. With η-equality for functions, any term u : (x : A) → B x can always
be expanded to λx. u x, so it should also match a pattern λx. p. A naive attempt to add
η-equality would be to η-expand on the fly whenever we match something against a λ-pattern:

Φ, x ` [u x // p]⇒ σ

Φ ` [u // λx. p]⇒ σ
(5)

This is however not enough to deal with η-equality in general. It is possible that the
pattern itself is underapplied as well, e.g. when we match a term of type (x : A) → B x

against a pattern f p̄ or x p̄. For example, when we have symbols f : (Nat→ Nat)→ Bool
and g : Nat → Nat with rewrite rules f g −→ true and ∀(x : Nat). g x −→ x, then we
want f (λx. x) to reduce to true, but with the above rule matching is stuck on the problem
[λx. x // g].

To respect eta equality for functions and record types, we need to make matching type-
directed. We also need contexts with the types of the free and bound variables. Thus we
extend the matching judgement to Γ; Φ ` [u : A// p]⇒ σ where A is the type of u (note: not
necessarily the same as the type of p) and Γ and Φ are now contexts of pattern variables and
bound variables respectively.

The type information is used by the matching algorithm to do on-the-fly η-expansion of
functions whenever the type is (or computes to) a function type:

A −→∗ (x : B)→ C Γ; Φ(x : B) ` [u x : C // p x]⇒ σ

Γ; Φ ` [u : A// p]⇒ σ
(6)

Here p x is only defined if the result is actually a pattern, otherwise the rule cannot be
applied.
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Having access to the type of the expression being matched is not only useful for η-equality
of functions, but also for non-linear patterns (Sect. 3.6), η-equality for records (Sect. 4.1),
and irrelevance (Sect. 4.4). While type-directed matching might slow down the reduction
in some cases, I believe in many cases the benefits outmatch this disadvantage. Moreover,
using irrelevance to avoid unneccessary conversion checks might even make up for the lost
performance.

3.6 Non-linearity and conditional rewriting

Sometimes it is desirable to declare rewrite rules with non-linear patterns, i.e. where a
pattern variable occurs more than once. As an example, this allows us to postulate an
equality proof trustMe : (x y : A)→ x ≡ y with a rewrite rule trustMe x x ≡ refl. This can be
used in a similar way to Agda’s built-in primTrustMe14. Another example where non-linearity
is used is the rule transportR−refl from the example in Sect. 2.4, which is non-linear in its
two implicit arguments x and y.15

Non-linear matching is a specific instance of conditional rewriting. For example, the
non-linear rule trustMe x x ≡ refl can be seen equivalently as the linear rule trustMe x y ≡ refl
with an extra condition x = y : A.

Using conditional rewriting, we can not only allow non-linear patterns but also patterns
that contain arbitrary terms that do not fall in the pattern fragment. Like for non-linear rules,
these “non-pattern” parts of the pattern are replaced by a fresh variable and a constraint
that enforces this variable to be definitionally equal to the actual term. The only restriction
is that all variables must be bound at least once in a pattern position.

This use of conditional rewriting is similar to to inaccessible patterns (also known as dot
patterns in Agda) used in dependent pattern matching, with the important difference that
inaccessible patterns are guaranteed to match by the type system, while the constraints for
conditional rewriting have to be checked.

To check the equality constraints of conditional rewrite rules, the matching algorithm
needs to decide whether two given terms are definitionally equal. This means reduction
and matching are now mutually recursive with conversion checking.16 We make use of a
type-directed conversion judgement Γ ` u = v : A (see the appendix for the full conversion
rules). The new judgement form of matching is now Γ; Φ ` [v : A// p]⇒ σ; Ψ, where Ψ is a
set of constraints of the form Φ ` u ?= v. We extend the matching algorithm with the ability
to generate new constraints:

Γ; Φ ` [v : A// p]⇒ []; {Φ ` v ?= p : A}
(7)

14 https://agda.readthedocs.io/en/v2.6.1/language/built-ins.html#primtrustme
15 It also needs irrelevance for Prop, see Sect. 4.4 for more details.
16To actually change the implementation of Agda to make the matching depend on conversion checking

took quite some effort (see https://github.com/agda/agda/pull/3589). The reason for this difficulty
was that reduction and matching are running in one monad ReduceM, while conversion was running in
another monad TCM (short for “type-checking monad”). The new version of the conversion checker is
polymorphic in the monad it runs in. This means the same piece of code implements at the same time
a pure, declarative conversion checker and a stateful constraint solver.
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All other rules just gather the set of constraints, taking the union whenever matching
produces multiple sub-problems. When matching concludes, the constraints are checked
before the rewrite rule is applied:

f : Γ→ A ∈ Σ (∀∆.f p̄ : B −→ v) ∈ Σ
[ū : Γ[ū] // p̄]⇒ σ; Ψ ∀(Φ ` v ?= p : A) ∈ Ψ. Φ ` v = pσ : A

f ū −→ vσ
(8)

When checking a constraint we apply the final substitution σ to the pattern p but not
to the term v or the type A. This makes sense because the term being matched does not
contain any pattern variables in the first place (and neither does its type).

4 Interaction with other features

Adding rewrite rules to an existing language such as Agda is quite an undertaking. Re-
write rules often interact with other features in a non-trivial matter, and it takes work to
resolve these interactions in a satisfactory way. In this section, I describe the interaction
of rewrite rules with several other features of Agda: record types with eta equality, data-
types, parametrized modules, definitional irrelevance, universe polymorphism, and constraint
solving.

4.1 Eta equality for records

Agda has η-equality not just for function types, but also for record types. For example,
any term u : A×B is definitionally equal to (fst u, snd u). Since η-equality of records is a
core part of Agda, we extend the matching algorithm to deal with it.17 As for η-equality of
functions, we make use of the type of the expression to η-expand terms and patterns during
matching.

Let R : Seti be a record type with fields π1 : A1, . . ., πn : An. We have the following
matching rule:

Γ; Φ ` [πi u : Ai[πj u / πj
j<i

] // πi p]⇒ σ (i = 1 · · ·n)
Γ; Φ ` [u : R // p]⇒ σ

(9)

Since records can be dependent, each type Ai may depend on the previous fields
π1, . . . , πi−1, so we need to substitute the concrete values πj u for πj in Ai for each j < i.

In the case where n = 0, this rule says that a term of the unit record type > (with no
fields) matches any pattern. So the matching algorithm even handles the notorious η-unit
types.

4.2 Datatypes and constructors

An important question is how rewrite rules interact with datatypes such as Nat, List, and
_≡_. Can we simply add rewrite rules to (type and/or term) constructors? The answer is
actually a bit more complicated.

17See https://github.com/agda/agda/issues/2979 and https://github.com/agda/agda/issues/
3335.

https://github.com/agda/agda/issues/2979
https://github.com/agda/agda/issues/3335
https://github.com/agda/agda/issues/3335
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If we allow rewriting of datatype constructors, we could (for example) postulate an
equality proof of type Nat ≡ Bool and register it as a rewrite rule. However, this would mean
zero : Bool, violating an important internal invariant of Agda that any time we have c ū : D
for a constructor c and a datatype D, c is actually a constructor of D.18 For this reason, it is
not allowed to have rewrite rules on datatypes or record types.

For constructors of datatypes there is no a priori reason why they cannot have rewrite
rules attached to them. This would actually be useful to define a “definitional quotient
type” where some of the constructors may compute. Unfortunately, there is another problem:
internally, Agda does not store the constructor arguments corresponding to the parameters
of the datatype. For example, the constructors [] and _::_ of the List A type do not store
the type A as an argument. This is important for efficient representation of parametrized
datatypes. However, this means that rewrite rules that match on constructors cannot match
against arguments in those positions, or bind pattern variables in them.

When a rewrite rule is added with a constructor as the head symbol, we have to take care
that the rewrite rule is not applied too generally. For example, a rewrite rule for [] : List Nat
should not be applied to [] : List A where A 6= Nat19. To avoid unwanted reductions like
these, it is only allowed to add a rewrite rule to a constructor if the parameters are fully
general, i.e. they must be distinct variables. This ensures that rewrite rules are only applied
to terms whose type matches the type of the rewrite rule.

4.3 Parametrized modules and “where” blocks

A parametrized module is a collection of declarations parametrized over a common telescope
Γ. In one sense, parametrized modules can be thought of as λ-lifting all the definitions inside
the module: if a module with parameters Γ contains a definition of f : A, then the real
type of f is Γ→ A. But this does not quite capture the intuition that definitions inside a
parametrized module should be parametric in the parameters. So module parameters should
be treated as rigid symbols like postulates rather than as flexible variables.

For this reason, module parameters play a double role on the left-hand side of a rewrite rule:
As long as the parameter is in scope (i.e. inside the module), it has to match “on the
nose” (i.e. it cannot be instantiated by matching).
Once the parameter goes out of scope (i.e. outside of the module), it is treated as a
regular pattern variable that can be instantiated by matching.

For example, inside a module parametrized over n : Nat, a rewrite rule f n −→ zero only
applies to terms definitionally equal to f n. On the other hand, outside of the module the
rewrite rule applies to any expression of the form f u.

This intuition of module parameters as rigid symbols also applies to Agda’s treatment of
where blocks, which are nothing more than modules parametrized over the pattern variables
of the clause (you can even give a name to the where module using the module M where
syntax20). Here a rewrite rule declared in a where block should only apply for the specific
arguments to the function that are used in the clause, not those of a recursive call21.

18 See https://github.com/agda/agda/issues/3846.
19 See https://github.com/agda/agda/issues/3211.
20 https://agda.readthedocs.io/en/v2.6.1/language/let-and-where.html#where-blocks
21 https://github.com/agda/agda/issues/1652
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4.4 Irrelevance and Prop
Another feature of Agda is definitional irrelevance, which comes in the two flavours of
irrelevant function types .A→ B22 and the universe Prop of definitionally proof-irrelevant
propositions23. For rewrite rules with irrelevant parts in their patterns matching should
never fail because this would mean a supposedly irrelevant term is not actually irrelevant.
However, it should still be allowed to bind a variable in an irrelevant position, since we might
want to use that variable in (irrelevant positions of) the right-hand side.24 This means in
irrelevant positions we allow:
1. pattern variables x ȳ where ȳ are all the bound variables in scope, and
2. arbitrary terms u that do not bind any variables.

Both of these will always match any given term: the former because ȳ is required to consist
of all bound variables, and the latter because two irrelevant terms are always considered
equal by the conversion checker. However, only the former can bind a variable.

Together with the ability to have non-linear patterns, this allows us to have rewrite
rules such as transportR− refl : transportR P refl x ≡ x where transportR : (P : A→ Set`)→
x
.= y → P x → P y and x .= y is the equality type in Prop. The constructor refl here is

irrelevant, so this rule does not actually match against the constructor refl. Instead, Agda
checks that the two arguments x and y are definitionally equal, and applies the rewrite rule
if this is the case.

4.5 Universe level polymorphism
Universe level polymorphism allows Agda programmers to write definitions that are poly-
morphic in the universe level of a type parameter. Since the type Level of universe levels is a
first-class type in Agda, it interacts natively with rewrite rules: patterns can bind variables
of type Level just as any other type. This allows us for example to define rewrite rules such
as map− id that work on level-polymorphic lists.

The type Level supports two operations lsuc : Level → Level and _ t_ : Level →
Level→ Level. These operations have a complex equational structure: _t_ is associative,
commutative, and idempotent, and lsuc distributes over _t_, just to name a few of the laws.
This causes trouble when a rewrite rule matches against one of these symbols: how should it
determine whether a given level matches a t b when _t_ is commutative?25 For this reason
it is not allowed to have rewrite rules that match against lsuc or _t_.

This restriction on patterns of type Level seems reasonable enough, but it is often not
satisfied by rewrite rules that match on function types – like the cong−Π rule we used in
the encoding of observational type theory (Sect. 2.6). The problem is that if A : Set`1 and
B : Set`2 , then the function type (x : A) → B has type Set`1 t `2 , so there is no sensible
position to bind the variables `1 and `2.

To allow rewrite rules such as cong−Π, we need to find a different position where these
variables of type Level can be bound. In the internal syntax of Agda, function types
(x : A)→ B are annotated with the sorts of A and B. So the “real” function type of Agda

22 https://agda.readthedocs.io/en/v2.6.1/language/irrelevance.html
23 https://agda.readthedocs.io/en/v2.6.1/language/prop.html
24 See https://github.com/agda/agda/issues/2300.
25 Issue #2090 (https://github.com/agda/agda/issues/2090) and issue #2299 (https://github.com/

agda/agda/issues/2299) show some of the things that would go wrong.

https://agda.readthedocs.io/en/v2.6.1/language/irrelevance.html
https://agda.readthedocs.io/en/v2.6.1/language/prop.html
https://github.com/agda/agda/issues/2300
https://github.com/agda/agda/issues/2090
https://github.com/agda/agda/issues/2299
https://github.com/agda/agda/issues/2299
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is of the form (x : A : Set`1) → (B : Set`2). This means that if we allow rewrite rules to
bind pattern variables in these hidden annotations, we are saved.26 The matching rule for
function types now becomes:

Γ; Φ ` [A : Set `1 // p]⇒ σ1; Ψ1 Γ; Φ ` [`1 : Level // q]⇒ σ2; Ψ2
Γ; Φ(x : A) ` [B : Set `2 // r]⇒ σ3; Ψ3 Γ; Φ ` [`2 : Level // s]⇒ σ4; Ψ4

Γ; Φ ` [(x : A : Set `1)→ (B : Set `2) // (x : p : Setq)→ (r : Sets)]
⇒ (σ1 ] σ2 ] σ3 ] σ4); (Ψ1 ∪Ψ2 ∪Ψ3 ∪Ψ4)

(10)

Thanks to this rule, also the universe-polymorphic version of the rewrite rules in Sect. 2.6
are accepted by Agda.

4.6 Metavariables and constraint solving
To automatically fill in the values of implicit arguments, Agda inserts metavariables as their
placeholders. These metavariables are then solved during typechecking by the constraint
solver. A full description of Agda’s constraint solver is out of the scope of this paper, but let
me discuss the most important ways it is impacted by rewrite rules.

4.6.1 Blocking tags
The constraint solver needs to know when a reduction is blocked on a particular metavariable.
Usually it is possible to point out a single metavariable, but this is no longer the case when
rewrite rules are involved:

With overlapping rewrite rules, reduction can be blocked on a set of metavariables. For
example, if we try to reduce the expression X + Y where X and Y are metavariables of
type Nat and _+_ is defined with the rewrite rules from Sect. 2.1, then this expression
might reduce further when either X or Y is instantiated to a constructor. So a postponed
constraint involving this expression has to be woken up when either metavariable is
instantiated.
For higher-order matching, matching checks whether a particular variable occurs freely
in the body of a lambda or pi. When metavariables are involved, a variable occurrence
may be flexible: whether or not the variable occurs depends on the instantiation of a
particular metavariable27. In this case reduction is blocked on the set of all metavariables
with potentially unbound variables in their arguments.
When a conditional rewrite rule is blocked on the conversion check because of an unsolved
metavariable, reduction can be blocked on the metavariable that is preventing the
conversion check from succeeding.2829

Currently the Agda implementation uses only an approximation of the set of metavariables
it encounters, i.e. only the first metavariable encountered. This is harmless because the
current implementation of Agda will eventually try again to solve all postponed constraints.
If in the future Agda would be changed to be more careful in when it decided to wake
up postponed constraints, a more precise tracking of blocking metavariables would also be
desirable.

26 See also https://github.com/agda/agda/issues/3971.
27 https://github.com/agda/agda/issues/1663
28 https://github.com/agda/agda/issues/1987
29 https://github.com/agda/agda/issues/2302

TYPES 2019

https://github.com/agda/agda/issues/3971
https://github.com/agda/agda/issues/1663
https://github.com/agda/agda/issues/1987
https://github.com/agda/agda/issues/2302


2:20 Type Theory Unchained: Extending Agda with User-Defined Rewrite Rules

4.6.2 Pruning and constructor-like symbols
When adding new rewrite rules, we also keep track of what symbols are constructor-like.
This is important for the pruning phase of the constraint solver. For example, let us consider
a constraint X ?= Y (f x). Since the metavariable X does not depend on the variable x, the
constraint solver attempts to prune the dependency of Y on x. If f is a regular postulate
without any rewrite rules, there is no way that Y could depend on f x without also depending
on x, so the dependency of Y on its first argument is pruned away. However, if there is a
rewrite rule where f plays the role of a constructor – say a rule g (f y) −→ true – then the
assignment X := true and Y := λy. g y is a valid solution to the constraint where Y does
depend on its argument, so it should not be pruned away. In general, an argument should
not be pruned if the head symbol is constructor-like, i.e. if there is at least one rewrite rule
that matches against the symbol.

5 Related work

The idea of extending dependent type theory with rewrite rules is not new and has been
studied from many different angles. The groundwork of all this work was laid in 1988 by
Breazu-Tannen [29], who extended simply typed lambda calculus with first-order and higher-
order rewrite rules (but not higher-order matching). In what follows, I give an overview
of some important milestones, focussing on languages that combine dependent types and
higher-order rewrite rules.

The idea of extending dependent type theory with rewrite rules originates in the work
by Barbanera, Fernandez, and Geuvers [5]. They present the algebraic λ-cube, an extension
of the λ-cube with algebraic rewrite rules, and study conditions for strong normalization.
Since the left-hand sides of rewrite rules must be algebraic terms, this work does not include
higher-order matching.

Several lines of work investigate possible ways to integrate rewrite rules into the Calculus
of Constructions, with or without inductive datatypes:

Walukiewicz-Chrza̧szcz [31] extends the calculus of constructions with inductive types and
rewrite rules, and gives a termination criterion based on HORPO (higher-order recursive
path ordering). Later, Walukiewicz-Chrza̧szcz and Chrza̧szcz also discuss the question of
completeness and consistency of this system [32], and consider the addition of rewrite
rules to the Coq proof assistant [12].
The Open Calculus of Constructions [26, 27] integrates features from the Calculus of
Constructions (CoC) with conditional rewrite rules, as well as other kinds of equational
reasoning. It provides many of the same benefits as our system and is even more powerful
when it comes to conditional rewrite rules. However it again does not provide higher-order
matching or η-equality. It has a prototype implementation using the Maude language [13].
The Calculus of Algebraic Constructions (CAC) [7] is another extension of the Calculus
of Constructions with functions and predicates defined by higher-order rewrite rules.
Compared to our implementation of rewrite rules, CAC is more limited in that it does
not allow higher-order matching, but it provides criteria for checking subject reduction
and strong normalization of the rewrite rules.

Coq modulo theory (CoqMT) [28] and the newer version CoqMTU [6, 18] extend the
Coq proof assistant with a decidable theory. The equational theory in CoqMTU must be
first-order, but can include equational rules such as commutativity, which cannot be expressed
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as rewrite rules. CoqMTU also provides strong guarantees for confluence, subject reduction,
strong normalization, and consistency of the theory. Unfortunately, the implementation of
CoqMTU30 has not been updated to work with the current version of Coq.

Our extension of dependent type theory with rewrite rules resembles in many ways the
Dedukti system [15, 24, 10, 4]. Both systems support dependent types and higher-order
non-linear rewrite rules. There are however some important differences:

Dedukti was built up from the ground based on rewrite rules. In contrast, we start from
a general dependently typed language (Agda) and extend it with rewrite rules.
Dedukti is based on the Logical Framework (LF) [17], while our language is build from
Martin-Löf’s intuitionistic type theory [19], which includes several features not present in
LF such as sigma types, W-types, identity types, and a universe hierarchy.
Dedukti has universes à la Tarski: a universe is a set of codes that can be interpreted
as types by an interpretation function. In contrast, Agda uses universes à la Russell:
elements of a universe are types without need of an interpretation function.
Dedukti uses an untyped conversion algorithm, while Agda uses a typed one. Hence we
can support η-equality for functions and record types, which is not possible (directly) in
Dedukti.
Dedukti provides external tools for checking confluence and termination of the rewrite
system given by the user. Applying the same strategy to rewrite rules in Agda would
be difficult because several features cannot be translated into standard rewrite systems,
e.g. copattern matching, eta-equality, irrelevance, and universe levels. All of these features
introduce additional definitional equalities that should be taken into account when
computing critical pairs. A confluence checker that does not would not detect all critical
pairs and thus only be of limited use. Instead, we are currently working on integrating a
confluence checker into Agda directly.31

The Zombie language [25] is another dependently typed language where definitional
equality can be extended with user-provided equations that are applied automatically by
the typechecker. Instead of rewrite rules, Zombie computes the congruence closure of the
given equations and uses this during conversion checking. An important difference with our
approach is that the definitional equality in Zombie does not include β-equality, which makes
it easier to extend it in other directions. The congruence closure algorithm used by Zombie
is untyped, which means it cannot handle η-equality of functions or records. It also does not
include higher-order matching.

Our treatment of rewrite rules in parametrized modules is very similar to the one given
by Chrza̧szcz [11]. The main difference is that Chrza̧szcz considers modules parametrized by
other modules, while in Agda modules are parametrized by term variables. So our system is
a bit simpler since we cannot have rewrite rules as parameters.

6 Future work

Safe(r) rewrite rules

This paper is about how to add rewrite rules to Agda or similar languages. By their design
rewrite rules are a very unsafe feature of Agda. Compared to using postulate, rewrite rules
by themselves do not break logical soundness of the theory, since it can only be used to turn

30 https://github.com/strub/coqmt
31The development version of Agda already includes an experimental flag --confluence-check, checking
local confluence of rewrite rules.
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propositional equalities into definitional ones. Logical consistency of the system thus follows
from the consistency of extensional type theory. While several of our examples do introduce
equalities that were previously unprovable (specifically higher inductive types, quotient types,
exceptions, and observational equality), they do so by first explicitly postulating the required
propositional equality and then registering it as a rewrite rule. Hence as long as the postulates
preserve logical soundness, we can trust that turning them into rewrite rules does not break
soundness either.

On the other hand, rewrite rules can break core assumptions of Agda such as confluence
of reduction and even type preservation. So using rewrite rules is like building your own type
theory, which means you have to do your own meta-theory to make sure everything is safe.
Ideally, Agda would be able to detect if a given set of rewrite rules is “safe”, in the sense
that they do not break the usual properties of Agda programs such as subject reduction and
decidable typechecking. The development version of Agda 2.6.1 includes an experimental flag
--confluence-check, which checks the local confluence of the declared rewrite rules. We are
currently working to improve this confluence checker to also enforce global confluence of the
rewrite rules. This would allow us to prove injectivity of Π types, and hence subject reduction
of our type theory. For checking termination – and hence decidability of typechecking – we
could make use of the dependency pairs criterion as done by SizeChangeTool for Dedukti [9].

Local rewrite rules

When programming in a dependently typed language, we rely on terms computing to their
values. However, this fails when we work with abstract values (e.g. module parameters):
until they are instantiated, they are opaque symbols without any computational behaviour.
This actively encourages users to work with concrete values and discourages abstraction.

To improve this situation, we could allow local rewrite rules on module parameters to
be added to the context. For example, we could parametrize a module over a value ∅ and
a binary operation _ ·_ together with rewrite rules ∅ · y −→ y and x · ∅ −→ x. When
instantiating the module parameters, we have to check that that the given instantiation of
the parameters satisfies each of the rewrite rules as a definitional equality.

Having local rewrite rules greatly complicates checking of confluence and termination.
So the future will have to point out if there is a reasonable way to allow local rewrite rules
while maintaining subject reduction of the language.

Custom η rules

Rewrite rules allow us to add custom β rules to our type theory, but it would be useful to
also allow custom η rules. This would for example allow us to add η-rules for datatypes such
as Vec, making any vector of length zero definitionally equal to [].

Where rewrite rules allow extending the reduction relation of the theory, custom η

rules would allow extending the conversion checker directly. Since conversion in Agda is
type-directed, it would make sense to allow custom η rules that match against the type of a
constraint. Thus much of the matching algorithm in this paper could be reused for η rules.

7 Conclusion

This paper documents the process of integrating user-defined rewrite rules into a general-
purpose dependently typed language, and all the weird interactions that I encountered along
the way. Rewrite rules allow you to extend the power of a dependently typed language on a
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much deeper level than normally allowed. They can be used as a convenient feature to make
more terms typecheck without using explicit rewrite statements, and they allow advanced
users to experiment with new evaluation rules, without actually modifying the typechecker.
If you are an Agda user, I hope reading this paper has given you a deeper understanding of
rewrite rules and allows you to harness their power responsibly. And if you are implementing
your own dependently typed language, I hope you consider adding rewrite rules as a way to
make it both easier to use and more extensible.
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A Complete rules of type theory with user-defined rewrite rules

A.1 Syntax
Terms. u, v, w,A,B,C, p, q

u, v, w,A,B,C, p, q ::= x ū (variable applied to zero or more arguments)
| f ū (function symbol applied to zero or more arguments)
| λx. u (lambda abstraction)
| (x : A)→ B (dependent function type)
| Seti (ith universe)

Substitutions. Substitutions σ are lists of variable-term pairs [u1 / x1, . . . , un / xn]. Ap-
plication of a substitution to a term uσ is defined as usual, avoiding variable capture by
α-renaming where necessary.

Application. Application u v is a partial operation on terms and is defined as follows:

(x ū) v = x (ū; v)
(f ū) v = f (ū; v)

(λx. u) v = u[v / x]

Contexts. Γ,∆,Φ,Ξ

Γ,∆,Φ,Ξ ::= · (empty context)
| Γ(x : A) (context extension)
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Declarations. d

d ::= f : A (function symbol)
| ∀∆. f p̄ : A −→ v (rewrite rule)

A.2 Typing rules
We assume a global signature Σ containing declarations and rewrite rules, which is implicit
in all the judgements.

Typing. Γ ` u : A

x : A ∈ Γ
Γ ` x : A

f : A ∈ Σ
Γ ` f : A

Γ(x : A) ` u : B
Γ ` λx. u : (x : A)→ B

Γ ` u : (x : A)→ B Γ ` v : A
Γ ` u v : B[v / x]

Γ ` A : Seti Γ(x : A) ` B : Setj

Γ ` (x : A)→ B : Setitj Seti : Set1+i

Γ ` A = B : Seti Γ ` u : A
Γ ` u : B

Conversion. Γ ` u = v : A

Γ ` u −→ u′ Γ ` u′ = v : A
Γ ` u = v : A

Γ ` v −→ v′ Γ ` u = v′ : A
Γ ` u = v : A

x : A ∈ Γ
Γ ` x = x : A

f : A ∈ Σ
Γ ` f = f : A

Γ(x : A) ` u x = v x : B
Γ ` u = v : (x : A)→ B

Γ ` u1 = u2 : (x : A)→ B Γ ` v1 = v2 : A
Γ ` u1 v1 = u2 v2 : B[v1 / x]

Γ ` A1 = A2 : Seti Γ(x : A1) ` B1 = B2 : Setj

Γ ` (x : A1)→ B1 = (x : A2)→ B2 : Setitj

Reduction. Γ ` u −→ v

f : B ∈ Σ (∀Ξ.f p̄ : C −→ v) ∈ Σ
ΓΞ; · ` [(• : B) ū // p̄]⇒ σ; Ψ ∀(Φ ` v ?= p : A) ∈ Ψ. ΓΦ ` v = pσ : A

Γ ` f ū −→ vσ

Matching. Γ; Φ ` [u : A// p]⇒ σ; Ψ

x : B ∈ Γ
Γ; Φ ` [u : A//x]⇒ [u /x]; ∅ Γ; Φ ` [u : A// v]⇒ []; {Φ ` u ?= v : A}

ΓΦ ` u −→∗ f v̄ f : B ∈ Σ Γ; Φ ` [(• : B) v̄ // p̄]⇒ σ; Ψ
Γ; Φ ` [u : A// f p̄]⇒ σ; Ψ

ΓΦ ` u −→∗ x v̄ x : B ∈ Φ Γ; Φ ` [(• : B) v̄ // p̄]⇒ σ; Ψ
Γ; Φ ` [u : A//x p̄]⇒ σ; Ψ

ΓΦ ` A −→∗ (x : B)→ C Γ; Φ(x : B) ` [u x : C // p x]⇒ σ; Ψ
Γ; Φ ` [u : A// p]⇒ σ; Ψ

ΓΦ ` A −→∗ (x : B)→ C Γ; Φ ` [B // p]⇒ σ1; Ψ1 Γ; Φ(x : B) ` [C // q]⇒ σ2; Ψ2

Γ; Φ ` [A : D// (x : p)→ q]⇒ σ1 ] σ2; Ψ1 ∪Ψ2
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Spine matching. Γ; Φ ` [(• : A) ū // p̄]⇒ σ; Ψ

Γ; Φ ` [(• : A) · // ·]⇒ []; ∅

ΓΦ ` A −→∗ (x : B)→ C Γ; Φ ` [u : B // p]⇒ σ1; Ψ1
Γ; Φ ` [(• : C[u /x]) ū // p̄]⇒ σ2; Ψ2

Γ; Φ ` [(• : A) u; ū // p; p̄]⇒ σ1 ] σ2; Ψ1 ∪Ψ2

A.3 Checking declarations
A declaration of a function symbol f : A is valid if Γ ` A : Seti. A declaration of a rewrite
rule ∀∆. f p̄ : A −→ v is valid if:

Each variable in ∆ occurs at least once in a pattern position in p̄.
∆ ` f p : A and ∆ ` v : A
There is no term w such that ∆ ` f p̄ −→ w.
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Abstract
This paper shows that the recent approach to quantitative typing systems for programming languages
can be extended to pattern matching features. Indeed, we define two resource-aware type systems,
named U and E , for a λ-calculus equipped with pairs for both patterns and terms. Our typing
systems borrow some basic ideas from [19], which characterises (head) normalisation in a qualitative
way, in the sense that typability and normalisation coincide. But, in contrast to [19], our systems
also provide quantitative information about the dynamics of the calculus. Indeed, system U provides
upper bounds for the length of (head) normalisation sequences plus the size of their corresponding
normal forms, while system E , which can be seen as a refinement of system U , produces exact
bounds for each of them. This is achieved by means of a non-idempotent intersection type system
equipped with different technical tools. First of all, we use product types to type pairs instead of
the disjoint unions in [19], which turn out to be an essential quantitative tool because they remove
the confusion between “being a pair” and “being duplicable”. Secondly, typing sequents in system E

are decorated with tuples of integers, which provide quantitative information about normalisation
sequences, notably time (cf. length) and space (cf. size). Moreover, the time resource information is
remarkably refined, because it discriminates between different kinds of reduction steps performed
during evaluation, so that beta, substitution and matching steps are counted separately. Another
key tool of system E is that the type system distinguishes between consuming (contributing to time)
and persistent (contributing to space) constructors.
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1 Introduction

Pattern matching mechanisms are used in several modern programming languages and proof
assistants as they provide an efficient way to process and decompose data. However, the
semantics of programming languages usually focus on λ-calculi –a much more basic formalism–
thus causing a conceptual gap between theory and practice, simply because some properties
of the λ-calculus do not translate directly to languages with matching primitives. Several
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3:2 A Quantitative Understanding of Pattern Matching

examples of this mismatch can be cited, e.g. solvability [19], standardisation for pattern
calculi [37], and neededness [15]. It is then crucial to study the semantics of programming
languages with pattern matching features by means of formal calculi equipped with built-in
patterns, referred to as pattern calculi (e.g. [21, 35, 32, 37, 6]).

The notion of λ-abstraction in pattern-calculi is generalised to functions of the form λp.t,
where p is a pattern specifying the expected structure of their arguments. For instance, in
calculi equipped with pair constructors for both patterns and terms, the term λ〈x, y〉.x
becomes a valid abstraction, to be only successfully evaluated against pairs, i.e. arguments
of the form 〈u, v〉, and yielding the first projection of this pair, i.e. the first component u of
the pair. In this work we focus on such a pattern calculus. This can be seen as a simplified
form of algebraic pattern matching, but still powerful enough to reason about the most
interesting features of existing syntactical matching mechanisms.

Type information, and in particular the size of arbitrary type derivations in some special
type disciplines, has been used as a powerful quantitative tool to reason about time ( length
of evaluation sequences) and space ( size of normal forms). More precisely, when t evaluates
to t′, then the size of the type derivation of t′ is smaller than that of t, thus the size of type
derivations provides an upper bound for the length of normalisation sequences as well as
for the size of their corresponding normal forms. This was first done for the (call-by-name)
notions of head and leftmost evaluation implemented by two variants of the Krivine’s abstract
machine (KAM) [22, 23, 44], and it was later appropriately extended to other formalisms,
e.g. [8, 20, 25, 38].

Now we discuss some interesting features of the underlying type system that we use
in this paper. While (idempotent) intersection types [11] allow terms to be typed with
distinct types by means of an intersection operator ∩, which verifies not only associativity
and commutativity but also idempotency given by σ ∩ σ = σ, non-idempotent intersection
types distinguishes between σ ∩ σ and σ, thus also discriminating quantitative information
in type derivations. For this reason, idempotent (resp. non-idempotent) types are often
represented by sets (resp. multisets). For example, the term λx.λy.xyy can be typed with
{{σ} → {σ} → τ} → {σ} → τ in the first model, while the non-idempotent version becomes
[[σ] → [σ] → τ ] → [σ, σ] → τ . As a consequence, a type derivation for (λx.λy.xyy)uv : τ
in the idempotent system only depends on one type derivation for u : {σ} → {σ} → τ and
another one for v : σ, while for its reduct uvv : τ , two derivations for v : σ are needed. In
contrast, a type derivation in the non-idempotent system already requires two derivations
for v : σ to correctly infer (λx.λy.xyy)uv : τ . Therefore, while type derivations may increase
after reductions in the former, they decrease in the latter.

Non-idempotent intersection (also called nowadays quantitative) type systems, have
been independently introduced in the framework of the λ-calculus by Gardner [27] and
Kfoury [43]. Although widely unnoticed, the quantitative power of such systems turned out
to be crucial in several resource aware consumption investigations. It was only after [16] that
this quantitative feature was highlighted, and since De Carvalho’s thesis in 2007 (see also [22])
its relation with linear logic [28] and quantitative relational models has been deeply explored.
As its idempotent counterpart, non-idempotent intersection type systems may characterise
different notions of normalisation (such as head, weak and strong) [23, 13, 20] but, instead of
using some semantical argument (e.g. reducibility) to prove such a characterisation, simple
combinatorial arguments are enough to guarantee normalisation of typable terms.

If instead of upper bounds one wants to obtain exact bounds, then the crucial point is to
measure only minimal typing derivations, which give the notion of all and only information
for typings (cf. [56] for an abstract definition). Syntactic notions of minimal typings were
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supplied for the head evaluation strategy implemented by the KAM [22], then for the
maximal evaluation strategy [13] for the λ-calculus. The technique was further developed
in [2] with the introduction of an appropriate notion of tightness capturing minimal typings,
thus systematically broadening the definition of exact bounds for different evaluation strategy
of the λ-calculus. In all these works, it is possible to extract from a (minimal) type derivation,
both the length of the reduction sequence to normal form as well as the size of this normal
form. The tightness technique was also applied for call-by-value [3], call-by-need [4], linear
head evaluation [3], as well as for several evaluation strategies in classical logic [42]. Our
paper extends these results to a λ-calculus with pair pattern matching by providing two
sound and complete typing systems, named U and E , that respectively provide upper bounds
an exact measures for the length of (head) normalisation sequences, as well as for the size of
the corresponding reached normal forms.

Contributions
The first contribution of this paper is to go beyond the qualitative characterisation of head
normalisation for pair pattern calculi [19] by providing a typing system U being able to
compute upper bounds for head evaluation. To achieve this, we have introduced different key
tools on the untyped side –the reduction calculus– as well as on the typed side –the type
system itself.

On the untyped side, one of the main reasons why the type system in [19] fails to provide
upper bounds or exact measures for head normalisation is because commuting conversions
are considered as independent rules of the reduction relation associated to the underlying
pattern calculus. A typical example is the commuting rule t[p\v]u 7→σ (tu)[p\v] pushing
out an explicit matching from an application when there is no capture of free variables.
Indeed, the size of type derivations is not strictly decreasing w.r.t. commuting conversions.
We solve this problem by integrating these (structural) commuting conversions into the
non-structural operational reduction rules, so that the resulting system, based on explicit
matchings, implements reduction at a distance [5]. Thus for example, the operational Beta-rule
(λp.t)u 7→ t[p\u] in [19] becomes here L[[λp.t]]u 7→ L[[t[p\u]]], which combines the commuting
conversion 7→σ with the (non-structural) Beta-reduction rule into a single rule. Even more
interesting cases are presented in Sec. 2. Moreover, our presentation provides a suitable
deterministic head evaluation strategy which is complete w.r.t. the (non-deterministic) notion
of head-normalisation defined in [19], in the sense that both notions turn out to be equivalent,
thus answering one of the open questions in [19].

On the typed side, we adopt standard product types specified by means of a pair
type. This stands in contrast to the disjoint unions used in [19], which have an important
undesirable consequence, because multisets of types in this model carry two completely
different meanings: being a pair (but not necessarily a duplicable pair), or being a duplicable
term (but not necessarily a pair). Our product types restore a crucial idea in non-idempotent
type theory: multisets of types are only assigned to terms that are going to be duplicated
during evaluation.

The new specification of the deterministic reduction system at a distance is now well-
behaved w.r.t. our first type system U : if t is well typed in U , then the size of its type
derivation gives an upper bound to the (deterministic) head-reduction sequence from t to its
(head) normal form. Our system U can then be seen as a form of quantitative (relational)
model for the pair pattern calculus (Sec. 4), following the lines of [17, 18, 48].

The second contribution of this paper is to go beyond upper bounds by providing a typing
system E being able to provide exact bounds for head evaluation. This is done by using
several key tools.
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3:4 A Quantitative Understanding of Pattern Matching

An important notion used in system E is the clear distinction between consuming and
persistent constructors. This has some intuition coming from the theory of residuals [10],
where any symbol occurring in a normal form can be traced back to the original term. A
constructor is consuming (resp. persistent) if it is consumed (resp. not consumed) during
head-reduction. For instance, in (λz.z)(λz.z) the first abstraction is consuming while the
second one is persistent. This dichotomy between consuming/persistent constructors has
already been highlighted in [41, 42] for the λµ-calculus, and it is adapted here for the
pattern calculus. Indeed, patterns and terms are consumed when the pair constructor is
destroyed during the execution of the pattern matching rule. Otherwise, patterns and pairs
are persistent, and they do appear in the normal form of the original term. For example,
in the term (λz.(λ〈x, y〉.I)zz)〈u, v〉, the pair 〈u, v〉 is going to be duplicated, but only one
of its copies is going to be consumed by the matching operations. The other copy will be
persistent and contribute to the normal form of the term.

Another major ingredient of our approach is the use of tight types, inspired by [2], and the
corresponding notion of tight (cf. minimal) derivations. This is combined with the introduction
of counters in the typing judgements, which are now of the form Γ `(b,e,m,f) t : σ. These
counters are used to discriminate between the different sorts of reduction steps performed
during evaluation, so that firing beta (b), computing substitution (e) or matching (m) steps are
exactly and independently counted for each tight type derivation. More precisely, soundness
of our system E guarantees that if a judgement Γ `(b,e,m,f) t : σ is tightly derivable, then b
(resp e and m) corresponds to the number of beta firing (resp. substitution and matching)
rules used to head evaluate the term t, while f is exactly the size of the corresponding normal
form. Moreover, completeness, given by the reverse implication of the previous statement,
also holds.

The following list summarises our contributions:
A deterministic head-strategy for the pattern calculus which is complete w.r.t. the notion
of head-normalisation.
A sound and complete type system U , which provides upper bounds for the length of
head-normalisation sequences plus the size of its corresponding normal forms.
Refinement of system U to a sound and complete system E , being able to provide
independent exact bounds for both the length of head-normalisation sequences and the
size of its corresponding normal forms.

Other Related Works
Non-idempotent intersection types have been applied to the λ-calculus for the characterisation
of termination with respect to a variety of evaluation strategies, such as call-by-value [25, 3],
call-by-need [36, 8, 4] and (linear) head reduction [27, 2]. They have been well-adapted
also to some explicit resource calculi [13, 38, 39], as well as to pattern calculi [12, 19, 9],
proof-nets [24], classical logic [40, 42] and call-by-push-value [26, 29].

Closer to our work, non-idempotent intersection types have been used to characterise
strong normalisation in a calculus with fix-point operators and pattern matching on con-
structors [12]. Similarly, a strong call-by-need strategy for a pattern matching language was
defined in [9], and completeness of the strategy was shown by means of non-idempotent
intersection types by extending the technique introduced in [36, 8]. In both cases, despite
the use of non-idempotent types, the result was qualitative, as no quantitative results were
obtained by means of the typing system.

Even closer to our work, [19] studied the solvability property in a pair pattern calculus,
the main result being that solvability is equivalent to typability plus inhabitation in a non-
idempotent intersection type system. One of the contributions of [19] is a characterisation of
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(non-deterministic) head-normalisation by means of typability, which is merely qualitative,
as it does not give any upper bound/exact measure for head-evaluation, as discussed in the
previous subsection.

More practical type-based approaches (i.e. mostly sound but not necessarily complete) to
quantitative analysis are sized-types [49, 54, 7, 45, 46] and (automatic) amortised resource
analysis [33, 53, 30, 34, 31, 51].

Sized Types. This line of work is based on the use of types indexed by sizes, which are
essentially ordinals. The approach is based on the fact that the compiler checks if the program
is typed with the correct size, so that resource usages of programs can be derived from the
sized types informations.

While space cost is determined in [54], upper bounds for both space and time costs are
obtained in [49, 7]. In particular, sized types are used in [7] to obtain space bounds, while
time bounds are computed by using a kind of clock, achieved by means of ticking monadic
transformations, originally introduced in [55] as ticking monads to get time complexity for lazy
languages. This is done for a call-by-value functional language with (a fixed set of) inductive
datatypes, enriched with index polymorphism: functions can be polymorphic in their size
annotations. In this respect, sized types enriched with intersection types have been used in
[52] to handle time costs for a call-by-value strategy in a more restricted language. Sized
types are also extended in [14] to guarantee termination of general higher-order rewriting.
Yet another approach based on (first-order) size indices is given by linear dependent types
[45, 46], where time and space bounds are obtained by establishing a relation with linear
logic, a key tool used to define quantitative types through non-idempotent intersection
types. Completeness depends on an oracle for the first order theory on indices describing the
semantical properties of the function symbols, so the approach cannot be fully turned into
an automatic tool.

Amortised resource analysis. This line of work is motivated by the fact that the worst-case
run time analysis per operation, rather than per algorithm, can lead to very pessimistic
complexity bounds. This is then replaced by an approach considering both the costly and less
costly operations together over the whole set of operations of the algorithm. Automatisation
of amortised resource analysis has been achieved in a series of works [33, 30, 53, 34, 31, 51],
including space usage [53] and more general usages [31], all regarding a lazy functional
language. The pioneer work in [30] has evolved to more sophisticated tools, leading today to
RAML [50], a language applied to an industrial strength compiler [31]. Lazy evaluation is
not handled in RAML, however, [51] proposes a practical tool to estimate resource usage for
Haskell expressions.
Road-map: Sec. 2 introduces the pattern calculus. Sec. 3 presents the typing system U ,
together with some of its quantitative properties, and Sec. 4 suggests a relational model
for our pattern calculus based on the type system. In Sec. 5, we refine U to extract exact
bounds, which leads to the definition of our second typing system E . The soundness (resp.
completeness) proof for E is given in Sec. 6 (resp. Sec. 7). Conclusions and future work are
discussed in Sec. 8. All proofs are presented in the Appendix.

2 The Pattern Calculus

In this section we introduce the pattern calculus, an extension of the λ-calculus where
abstraction is extended to pair patterns and terms are extended to pairs. We start by
introducing the syntax of the calculus.
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Terms and contexts of the pattern calculus are defined by means of the following
grammars:

(Patterns) p, q ::= x | 〈p, q〉
(Terms) t, u, v ::= x | λp.t | 〈t, u〉 | tu | t[p\u]
(List Contexts) L ::= 2 | L[p\u]
(Contexts) C ::= 2 | λp.C | 〈C, t〉 | 〈t, C〉 | Ct | tC | C[p\t] | t[p\C]

where x, y, z, w . . . range over a countable set of variables, and every pattern p is assumed to
be linear, i.e. every variable appears at most once in p. The term x is called a variable, λp.t is
an abstraction, 〈t, u〉 is a pair, tu is an application and t[p\u] is a closure, where [p\u] is
an explicit matching operator. Special terms are I := λz.z, ∆ := λz.zz and Ω := ∆∆. As
usual we use the abbreviation λp1 . . . pn.t1 . . . tm for λp1(. . . (λpn.((t1t2) . . . tm)) . . .), n ≥ 0,
m ≥ 1.

We write var(p) to denote the variables in the pattern p. Free and bound variables
of terms and contexts are defined as expected, in particular fv(λp.t) := fv(t) \ var(p),
fv(t[p\u]) := (fv(t) \ var(p)) ∪ fv(u) and bv(λp.t) := bv(t) ∪ var(p), bv(t[p\u]) := bv(t) ∪
var(p) ∪ bv(u). We also define the domain of a list context as dlc(2) = ∅ and
dlc(L[p\u]) = dlc(L) ∪ var(p). We write p#q if var(p) and var(q) are disjoint. As usual,
terms are considered modulo α-conversion, so that for example λ〈x, y〉.xz =α λ〈x′, y′〉.x′z
and x[〈x, y〉\z] =α x

′[〈x′, y′〉\z]. Given a list context L and a term t, L[[t]] denotes the term
obtained by replacing the unique occurrence of � in L by t, possibly allowing the capture
of free variables of t. We use t{x\u} to denote the meta-level substitution operation which
replaces all the free occurrences of x in t by the term u. As usual, this operation is performed
modulo α-conversion so that capture of free variables is avoided. We use the predicate abs(t)
when t is of the form L[[λp.u]]. The reduction relation −→p on terms is given by the closure
over all contexts of the following rewriting rules.

L[[λp.t]]u 7→ L[[t[p\u]]] dlc(L) ∩ fv(u) = ∅
t[〈p1, p2〉\L[[〈u1, u2〉]]] 7→ L[[t[p1\u1][p2\u2]]] dlc(L) ∩ fv(t) = ∅
t[x\u] 7→ t{x\u}

The reduction relation −→p defined above is related to that in [19], called −→Λp
, in the

following sense: −→Λp
contains two subsystem relations, one to deal with clashes, which are

not handled by the reduction system in the present calculus since we consider typable terms
only (cf. Lem. 6), and another one containing the following five rules:

(λp.t)u 7→ t[p\u]
t[〈p1, p2〉\〈u1, u2〉] 7→ t[p1\u1][p2\u2]
t[x\u] 7→ t{x\u}
t[p\v]u 7→ (tu)[p\v] fv(u) ∩ var(p) = ∅
t[〈p1, p2〉\u[q\v]] 7→ t[〈p1, p2〉\u][q\v] fv(t) ∩ var(q) = ∅

The two last rules can be seen as commuting conversions, which are integrated in the
first (two) rules of our reduction system −→p by using the substitution at a distance
paradigm [5]. It is worth noticing that t −→p t

′ can be simulated by t→+
Λp
t′. For instance,

(λp.t)[p1\u1][p2\u2]u −→p t[p\u][p1\u1][p2\u2] can be simulated by:

(λp.t)[p1\u1][p2\u2]u −→Λp
((λp.t)[p1\u1]u)[p2\u2] −→Λp

((λp.t)u)[p1\u1][p2\u2]

−→Λp
t[p\u][p1\u1][p2\u2]
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Our formulation of the pattern calculus at a distance, given by the relation −→p , as well
as the corresponding head strategy that we present below, are one of the essential untyped
tools used in this paper to get quantitative results about head-normalisation (cf. Sec. 3 and
Sec. 5).

Although the reduction relation −→p is non-deterministic, it can easily been shown to be
confluent, for example using the same technique in [19]. However, in order to study exact
bounds of evaluation, we need to define a deterministic strategy for the pattern calculus,
i.e. a subrelation of −→p that is able to compute the same normal forms. Fig. 1 gives an
operational semantics for the pattern calculus, which turns out to be an extension of the
well-known notion of head-reduction for λ-calculus, then also named head-reduction, and
denoted by −→h. In the following inductive definition t −→h u means that t head-reduces to u,
and t 6−→h means that t is a head normal-form, i.e. there is no u such that t −→h u.

dlc(L) ∩ fv(u) = ∅
(b)

L[[λp.t]]u −→h L[[t[p\u]]]

t 6−→h dlc(L) ∩ fv(t) = ∅
(m)

t[〈p1, p2〉\L[[〈u1, u2〉]]] −→h L[[t[p1\u1][p2\u2]]]

t 6−→h
(e)

t[x\u] −→h t{x\u}

t −→h t
′

λp.t −→h λp.t
′

t −→h t
′ ¬abs(t)

tu −→h t
′u

t −→h t
′

t[p\u] −→h t
′[p\u]

t 6−→h p 6= x u −→h u
′

t[p\u] −→h t[p\u′]

Figure 1 The head-reduction strategy for the pattern calculus.

Rule b fires the computation of terms by transforming an application of a function
to an argument into a closure term. Decomposition of patterns and terms is performed
by means of rule m, when a pair pattern is matched against a pair term. Substitution is
performed by rule e, i.e. an explicit (simple) matching of the form [x\u] is executed. This
form of syntactic pattern matching is very simple, and does not consider any kind of failure
result, but is already expressive enough to specify the well-known mechanism of successful
matching. Context closure is similar to the call-by-name λ-calculus case, but not exactly
the same. Indeed, head-reduction is performed on the left-hand side of applications and
closures whenever possible. Otherwise, arguments of explicit matching operators must be
head-reduced in order to unblock these operators, i.e. in order to decompose [p\u] when p
is a pair pattern but u is still not a pair. Notice however that when u is already a pair,
no head-reduction inside u can take place, thus implementing a lazy strategy for pattern
matching. Standardisation of calculi as the one in this paper has been studied in [37].

Given any (one-step) reduction relation −→R , we use −→∗R , or more precisely→k
R (k ≥ 0)

to denote the reflexive-transitive closure of −→R, i.e. the composition of k R-steps. In the case
of head-reduction, we may use the alternative notation →(b,e,m)

h to emphasize the number of
reduction steps in a given reduction sequence, i.e. if ρ : t→(b,e,m)

h u, then there are exactly b
b-steps, e e-steps and m m-steps in the reduction sequence ρ. We will often use the notation
−→b to explicitly refer to a b-step (resp. −→e and −→m for e and m steps). The reduction
relation −→h is in fact a function:

I Proposition 1. The relation −→h is deterministic.
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I Example 2. Let us consider the combinators I := λz.z and K := λx1.λy1.x1. Then we
have (λ〈x, y〉.x(Iy))[z\I](I〈K, w〉)→(4,6,1)

h λy1.w:

(λ〈x, y〉.x(Iy))[z\I](I〈K, w〉) −→b (x(Iy))[〈x, y〉\I〈K, w〉][z\I]
−→b (x(Iy))[〈x, y〉\z[z\〈K, w〉]][z\I] −→e (x(Iy))[〈x, y〉\〈K, w〉][z\I]
−→m (x(Iy))[x\K][y\w][z\I] −→e (K(Iy))[y\w][z\I]
−→b (λy1.x1)[x1\Iy][y\w][z\I] −→e (λy1.Iy)[y\w][z\I]
−→b (λy1.z[z\y])[y\w][z\I] −→e (λy1.y)[y\w][z\I]
−→e (λy1.w)[z\I] −→e λy1.w

Head normal-forms may contain ill-formed terms called (head) clashes not representing a
desired result for a computation, i.e. (head) terms not syntactically well-formed. For example,
a pair applied to another term 〈u1, u2〉v, or a matching between a pair pattern and a function
t[〈p1, p2〉\λp.u] are considered to be (head) normal clashes. Formally, a term is said to be a
(head) clash if it is generated by the following grammar:

(Head Clash) U ::= c | λp.U | Ut | U[p\t] | t[〈p1, p2〉\U]
(Clash) c ::= L[[〈u1, u2〉]]v | t[〈p1, p2〉\L[[λp.u]]]

Then, a term t is said to be (head) clash-free if t does not head-reduce to a (head) clash,
i.e. if there is no u ∈ U such that t −→∗h u. Remark in particular that every pair is (head)
clash-free. A rewriting system raising a warning (i.e. a failure) when detecting a (head) clash
has been defined in [19], allowing to restrict the attention to a smaller set of terms, called
canonical terms, that are intended to be the (head) clash-free terms that are not reducible
by the relation −→h . Canonical terms can be characterised inductively as follows:

(canonical forms) M ::= λp.M | 〈t, t〉 | M[〈p1, p2〉\N ] | N
(pure canonical forms) N ::= x | N t | N [〈p1, p2〉\N ]

In summary, canonical terms and irreducible terms are related as follows:

I Proposition 3. t ∈M if and only if t is (head) clash-free and t 6−→h .

Size of canonical terms is given by: |x| := 0, |〈t, u〉| := 1, |N t| := |N | + 1, |λp.M| :=
|M| + 1, and |M[〈p1, p2〉\N ]| := |M| + |N | + 1. As an example, the terms λ〈x, y〉.〈x, I〉
and λx.y(〈x, z〉I) are canonical forms of size 2 while xΩ and z[〈z, w〉\xΩ] are pure canonical
terms of size 1 and 2 respectively. The term 〈x, I〉w is none of them, and the term Ix can
head-reduce to the canonical term x.

Finally, we define a term t to be head-normalisable if there exists a canonical form
u ∈ M such that t −→∗p u. Moreover, t is said to be head-terminating if there exists a
canonical form u ∈ M and an integer k ≥ 0 such that t →k

h u. The relation between
the non-deterministic reduction relation −→p and the deterministic strategy −→h will be
established later, but we can already say that, while t head-terminating immediately implies
t head-normalisable, the completeness of the head-strategy w.r.t. head-normalisation is not
trivial (Thm. 7).

3 The U Typing System

In this section we introduce our first typing system U for the pattern calculus. We start by
defining the sets of types and multiset types, given by means of the following grammars:

(Product Types) P ::= ×(A1,A2)
(Types) σ ::= • | P | A → σ

(Multiset Types) A ::= [σk]k∈K
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where • is an atomic type, K is a (possibly empty) finite set of indexes, and a multiset type is
an unordered list of (not necessarily different) elements, where [ ] denotes the empty multiset.
We write |A| to denote the number of elements of the multiset A. For example [•, [ ]→ •, •]
is a multiset type of 3 elements, representing the intersection type (•∩ ([ ]→ •))∩•, where ∩
is an associative, commutative and non-idempotent intersection type constructor. We write
t to denote multiset union. Multiset types are used to specify how programs consume terms:
intuitively, the empty multiset is assigned to terms that are erased during (head) reduction,
while duplicable terms are necessarily typed with non-empty multisets. As usual the arrow
type is right-associative.

A product type, representing the type of a pair, is defined as the product of two (possibly
empty) multisets of types. This formulation of product types turns out to be a key tool in
our quantitative framework, and constitutes an essential difference with the product types
proposed in [19], which are modeled by disjoint unions, so that any pair 〈t, u〉 of typed terms
t and u has necessarily at least two types, one of the form ×1(σ) where σ is the type of t, and
one of the form ×2(τ), where τ is the type of u. Indeed, in op. cit., multiset types carry two
completely different meanings: being a pair (but not necessarily a pair to be duplicated), or
being a duplicable term (but not necessarily a pair). Our specification of products can then
be interpreted as the use of the exponential isomorphism !(AOB) ≡!A⊗!B of multiplicative
exponential linear logic [28].

A typing context Γ is a map from variables to multiset types, such that only finitely
many variables are not mapped to the empty multiset [ ]. We write dom(Γ) to denote the
domain of Γ, which is the set {x | Γ(x) 6= [ ]}. We may write Γ#∆ if and only if dom(Γ) and
dom(∆) are disjoint. Given typing contexts {Γi}i∈I we write ∧i∈IΓi for the context that
maps x to ti∈IΓi(x). One particular case is Γ ∧∆. We sometimes write Γ; ∆ instead of
Γ ∧∆, when Γ#∆, and we do not distinguish Γ;x : [ ] from Γ. The typing context Γ|p is
such that Γ|p(x) = Γ(x), if x ∈ var(p) and [ ] otherwise. The typing context Γ\\V is defined
by (Γ\\V)(x) = Γ(x) if x /∈ V and [ ] otherwise. Finally, Γ ⊆ ∆ means that dom(Γ) ⊆ dom(∆)
and Γ(x) v ∆(x) for every x ∈ dom(Γ), where v denotes multiset inclusion.

The type assignment system U is given in Fig. 2 and can be seen as a natural extension
of Gardner’s system [27] to explicit matching operators, pairs and product types. It assigns
types (resp. multiset types) to terms, using an auxiliary (sub)system that assigns multiset
types to patterns. We use Φ.Γ ` t : σ (resp. Φ.Γ ` t : A) to denote term type derivations
ending with the sequent Γ ` t : σ (resp. Γ ` t : A), and Π . Γ 
 p : A to denote pattern
type derivations ending with the sequent Γ 
 p : A. The size of a derivation Φ, denoted
by sz (Φ), is the number of all the typing rules used in Φ except many1 (this is particularly
appropriate in the proof of the substitution lemma).

Note that when assigning types (multiset types) to terms, we only allow the introduction
of multiset types on the right through the many rule.

Most of the rules for terms are straightforward. Rule match is used to type the explicit
matching operator t[p\u] and can be seen as a combination of rules app and abs. Rule patv

is used when the pattern is a variable x. Its multiset type is the type declared for x in the
typing context. Rule pat× is used when the pattern has a product type, which means that
the pattern will be matched with a pair. The condition p#q ensures linearity of patterns.
Note that any pair term can be typed, in particular, with ×([ ], [ ]).

The system enjoys the key property of relevance:

1 An equivalent type system can be presented without the many rule, for example [19]. However, the
inductive proofs in the current presentation turn to be more elegant.
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(patv)
x : A 
 x : A

Γ 
 p : A ∆ 
 q : B p#q
(pat×)

Γ ∧∆ 
 〈p, q〉 : [×(A,B)]

(ax)
x : [σ] ` x : σ

(Γk ` t : σk)k∈K
(many)

∧k∈KΓk ` t : [σk]k∈K

Γ ` t : σ Γ|p 
 p : A
(abs)

Γ\\ var(p) ` λp.t : A → σ

Γ ` t : A → σ ∆ ` u : A
(app)

Γ ∧∆ ` t u : σ

Γ ` t : A ∆ ` u : B
(pair)

Γ ∧∆ ` 〈t, u〉 : ×(A,B)
Γ ` t : σ Γ|p 
 p : A ∆ ` u : A

(match)
(Γ\\ var(p)) ∧∆ ` t[p\u] : σ

Figure 2 Typing System U .

I Lemma 4 (Relevance). Let Φ . Γ ` t : σ. Then, dom(Γ) ⊆ fv(t).

Proof. By induction on Φ (cf. App. A). J

Moreover, typing is stable by reduction and expansion, and the size of derivations is
decreasing (resp. strictly decreasing) for −→p reduction (resp. −→h reduction).

I Lemma 5. Let Φ . Γ ` t : σ. Then,
1. (Upper Subject Reduction). t −→p t

′ implies there is Φ′ . Γ ` t′ : σ s.t. sz (Φ) ≥ sz (Φ′),
and t −→h t

′ implies there is Φ′ . Γ ` t′ : σ s.t. sz (Φ) > sz (Φ′).
2. (Upper Subject Expansion). t′ −→p t implies there is Φ′.Γ ` t′ : σ such that sz (Φ′) ≥ sz (Φ)

and t′ −→h t implies there is Φ′ . Γ ` t′ : σ such that sz (Φ′) > sz (Φ).

Proof. By induction on Φ, item 1 (resp. item 2) uses a substitution (resp. anti-substitution)
lemma (see Lem.22 and Lem. 23 in App. A for details). J

Typed terms are (head) clash-free, i.e. they cannot head reduce to a clash.

I Lemma 6 (Clash-Free). Let Φ . Γ ` t : σ. Then t is (head) clash-free.

Proof. By induction on Φ (cf. App. A). J

Although the system in [19] already characterises head-normalisation in the pattern
calculus, it does not provide upper bounds for the length of the head strategy. This is mainly
due to the fact that the reduction system in [19] does not always decrease the measure of
the typed terms, even when reduction is performed in the so-called typed occurrences. We
can recover this situation, as witnessed by the following soundness and completeness result:

I Theorem 7 (Characterisation of Head-Normalisation and Upper Bounds). Let t be a term in
the pattern calculus. Then (1) t is typable in system U iff (2) t is head-normalisable iff (3) t
is head-terminating. Moreover, if Φ . Γ ` t : σ, then the head-strategy terminates on t in at
most sz (Φ) steps.
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Proof. The statement (1) ⇒ (3) holds by upper subject reduction (Lem. 5.1) for −→h . The
statement (3) ⇒ (2) is straightforward since −→h is included in −→p . Finally, the statement
(2) ⇒ (1) holds by the fact that canonical terms are typable (easy), and by using upper
subject expansion for −→p (Lem. 5.2). J

The previous upper bound result is especially possible thanks to the upper subject
reduction property, stating in particular that reduction −→h strictly decreases the size of
typing derivations. It is worth noticing that the reduction relation in [19] does not enjoy
this property, particularly in the case of the rule t[p\v]u −→ (tu)[p\v], which is a permuting
conversion rule, (slightly) changing the structure of the type derivation, but not its size.

4 Towards a Relational Model for the Pattern Calculus

Denotational and operational semantics have tended to abstract quantitative information
(e.g. time and space) as computational resource consumption. Since the invention of Girard’s
linear logic [28], where formulas are interpreted as resources, quantitative interpretation of
programs, such as relational models [17, 18, 22], have been naturally defined and studied by
following the simple idea that multisets are used to record the number of times a resource
is consumed. Thus, relational models for the λ-calculus use multisets to keep track of how
many times a resource is used during a computation.

In this brief section we emphasize a semantical result that is implicit in the previous
section. Since relational models are often presented by means of typing systems [48, 47], our
system U suggests a quantitative model for our pair pattern calculus in the following way.
Indeed, consider a term t such that fv(t) ⊆ {x1, . . . , xn}, in which case we say that the list
~x = (x1, . . . , xn) is suitable for t. Then, given ~x = (x1, . . . , xn) suitable for t, define the
interpretation of a term t for ~x as

[[t]]~x = {((A1, . . . ,An), σ) | there exists Φ . x1 : A1, . . . , xn : An ` t : σ}

A straightforward corollary of upper subject reduction and expansion properties (Lem. 5.1
and Lem. 5.2, respectively) is that t =p u implies [[t]]~x = [[u]]~x, where =p is the equational
theory generated by the reduction relation −→p . Thus, p-equivalent programs have the same
meaning.

5 The E Typing System

In this section we introduce our second typing system E for the pattern calculus, which is
obtained by refining the System U presented in Sec. 3.

(Product Types) P ::= ×(A1,A2)
(Tight Types) t ::= •N | •M
(Types) σ ::= t | P | A → σ

(Multiset Types) A ::= [σk]k∈K

Types in t, which can be seen as a refinement of the base type • of System U , denote the
so-called tight types. The constant •M denotes the type of any term head reducing to a
canonical form, while •N denotes the type of any term head reducing to a pure canonical form.
We write tight(σ), if σ is of the form •M or •N (we use • to denote either form). We extend
this notion to multisets of types and typing contexts as expected, that is, tight([σi]i∈I) if
tight(σi) for all i ∈ I, and tight(Γ) if tight(Γ(x)), for all x ∈ dom(Γ).
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The crucial idea behind the grammar of types is to distinguish between consuming
constructors typed with standard types, and persistent constructors typed with tight types,
as hinted in the introduction. A constructor is consuming (resp. persistent) if it is consumed
(resp. not consumed) during head-reduction. Indeed, the pair constructor is consumed (on
the pattern side as well as on the term side) during the execution of the pattern matching
rule m. Otherwise, patterns and pairs are persistent, and they do appear in the normal
form of the original term. This dichotomy between consuming and persistent constructors,
inspired from [41, 42], is reflected in the typing system by using different typing rules to type
them, notably for the abstraction, the application, the pair terms and the pair patterns.

The type assignment system E , given in Fig. 3, is based on sequents for terms
(resp. patterns) with counters having the form Γ `(b,e,m,f) t : σ or Γ `(b,e,m,f) t : A
(resp. Γ 
(e,m,f) p : A). Intuitively, if Γ `(b,e,m,f) t : σ is “tightly” derivable (defined
below), then t→(b,e,m)

h v, where b is the number of b-steps, e the number of e-steps, m the
number of m-steps and f is the size of the head normal-form v. Similarly, the derivability
of Γ 
(e,m,f) p : A means that the pattern p generates e substitution e-steps, m matching
m-steps and f symbols contributing to the normal form.

We write Φ . Γ `(b,e,m,f) t : σ (resp. Φ . Γ `(b,e,m,f) t : A) to denote term type
derivations ending with the sequent Γ `(b,e,m,f) t : σ (resp. Γ `(b,e,m,f) t : A), and
Π.Γ 
(e,m,f) p : A to denote pattern type derivations ending with the sequent Γ 
(e,m,f)

p : A. Often in examples, we will use the notation Φ(b,e,m,f) (resp. Π(e,m,f)) to refer to a
term derivation (resp. pattern derivation) ending with a sequent annotated with indexes
(b, e,m, f) (resp. (e,m, f)).

As mentioned in the introduction, exact bounds can only be extractable from minimal
derivations. In our framework this notion is implemented by means of tightness [2]. We
say that a derivation Φ . Γ `(b,e,m,f) t : σ (resp. Φ . Γ `(b,e,m,f) t : A) is tight, denoted by
tight(Φ), if and only if tight(Γ) and tight(σ) (resp. tight(A)). The size of derivations is
defined as in System U .

We now give some intuition behind the typing rules in Fig. 3, by addressing in particular
the consuming/persistent paradigm.

Rule ax: Since x is itself a head normal-form, it will not generate any b, e or m steps, and
its size is 0.
Rule abs: Used to type abstractions λp.t to be applied (i.e. consumed), therefore it has a
functional type A → σ. Final indexes of the abstraction are obtained from the ones of
the body and the pattern, and 1 is added to the first index since the abstraction will be
consumed by a b-reduction step.
Rule absp: Used to type abstractions λp.t that are not going to be applied/consumed
(they are persistent). Only the last index (size of the normal form) is incremented by one
since the abstraction remains in the normal form (the abstraction is persistent). Note
that both the body t and the variables in p should be typed with a tight type.
Rule app: Types applications tu where t will eventually become an abstraction, and thus
the application constructor will be consumed. Indexes for tu are exactly the sum of the
indexes for t and u. Note that we do not need to increment the counter for b steps, since
this was already taken into account in the abs rule.
Rule appp: Types applications tu where t is neutral, therefore will never become an
abstraction, and the application constructor becomes persistent. Indexes are the ones for
t, adding one to the (normal term) size to count for the (persistent) application.
Rule pair: Types pairs consumed during some matching step. We add the indexes for
the two components of the pair without incrementing the number of m steps, since it is
incremented when typing a consuming abstraction, with rule abs.
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(patv)
x : A 
(1,0,0) x : A

Γ 
(ep,mp,np) p : A ∆ 
(eq,mq,nq) q : B p#q
(pat×)

Γ ∧∆ 
(ep+eq,1+mp+mq,np+nq) 〈p, q〉 : [×(A,B)]

dom(Γ) ⊆ var(〈p, q〉) tight(Γ)
(patp)

Γ 
(0,0,1) 〈p, q〉 : [•N ]

(ax)
x : [σ] `(0,0,0,0) x : σ

Γ `(bt,et,mt,ft) t : σ Γ|p 
(ep,mp,fp) p : A
(abs)

Γ\\ var(p) `(bt+1,et+ep,mt+mp,ft+fp) λp.t : A → σ

Γ `(b,e,m,f) t : t tight(Γ|p)
(absp)

Γ\\ var(p) `(b,e,m,f+1) λp.t : •M

(Γk `(bk,ek,mk,fk) t : σk)k∈K
(many)

∧k∈KΓk `(+k∈Kbk,+k∈Kek,+k∈Kmk,+k∈Kfk) t : [σk]k∈K

Γ `(bt,et,mt,ft) t : A → σ ∆ `(bu,eu,mu,fu) u : A
(app)

Γ ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t u : σ

Γ `(bt,et,mt,ft) t : •N
(appp)

Γ `(bt,et,mt,ft+1) t u : •N

Γ `(bt,et,mt,ft) t : A ∆ `(bu,eu,mu,fu) u : B
(pair)

Γ ∧∆ `(bt+bu,et+bu,mt+mu,ft+fu) 〈t, u〉 : ×(A,B)

(pairp)
`(0,0,0,1) 〈t, u〉 : •M

Γ `(bt,et,mt,ft) t : σ Γ|p 
(ep,mp,fp) p : A ∆ `(bu,eu,mu,fu) u : A
(match)

(Γ\\ var(p)) ∧∆ `(bt+bu,et+eu+ep,mt+mu+mp,ft+fu+fp) t[p\u] : σ

Figure 3 Typing System E .

Rule pairp: Used to type pairs that are not consumed in a matching step (they are
persistent), therefore appear in the head normal-form. Since the pair is already a head
normal-form its indexes are zero except for the size, which counts the pair itself.
Rule match: Note that we do not need separate cases for consuming and persistent explicit
matchings, since in both cases typable occurrences of u represent potential head reduction
steps for u, which need to be taken into account in the final counter of the term.
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Rule patv: Typed variables always generate one e and zero m steps, even when erased.
Rule pat×: Used when the pattern has a product type, which means that the pattern
will be matched with a pair. We add the counters for the two components of the pair
and increment the counter for the m steps.
Rule patp: Used when the pattern has a tight type, which means that it will not be
matched with a pair and therefore will be blocked (it is persistent). This kind of pairs
generate zero e and m steps, and will contribute with one blocked pattern to the size of
the normal form.

The system also enjoys the relevance and clash-free properties, easily proved by induction:

I Lemma 8 (Relevance). Let Φ . Γ `(b,e,m,f) t : σ. Then, dom(Γ) ⊆ fv(t).

I Lemma 9 (Clash-Free). Let Φ . Γ `(b,e,m,f) t : σ. Then, t is (head) clash-free.

We now discuss two examples.

I Example 10. Let us consider t0 = (λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉, with the following
head-reduction sequence:

(λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉 −→b ((λ〈w, z〉.wyz)x)[〈x, y〉\〈〈K, a〉, b〉]
−→b (wyz)[〈w, z〉\x][〈x, y〉\〈〈K, a〉, b〉] −→m (wyz)[〈w, z〉\x][x\〈K, a〉][y\b]
−→e (wyz)[〈w, z〉\〈K, a〉][y\b] −→m (wyz)[w\K][z\a][y\b]
−→e (Kyz)[z\a][y\b] −→b ((λy1.x1)[x1\y]z)[z\a][y\b]
−→b x1[y1\z][x1\y][z\a][y\b] −→e x1[x1\y][z\a][y\b]
−→e y[z\a][y\b] −→e y[y\b]
−→e b

Note that, there are two matching steps in the head-reduction sequence, but the second step
is only created after the substitution of x by 〈K, a〉. Our method allows us to extract this
information from the typing derivations because of the corresponding types for 〈x, y〉 and
〈w, z〉. Indeed, both patterns are typed with a product type (cf. the forthcoming tight typing
derivations), and therefore the corresponding pairs are consumed and not persistent.

Since t0 = (λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉 →(4,6,2)
h b, the term t0 should be tightly

typable with counter (4, 6, 2, 0), where 0 is the size of b. In the construction of such tight
derivation we proceed by pieces. Let TK = [•N ]→ [ ]→ •N . We first construct the following
pattern derivation for 〈w, z〉:

Π〈w,z〉 .
w : [TK] 
(1,0,0) w : [TK] 
(1,0,0) z : [ ]
w : [TK] 
(2,1,0) 〈w, z〉 : [×([TK], [ ])]

In the following T〈w,z〉 = [×([TK], [ ])]. We construct a similar pattern derivation for 〈x, y〉:

Π〈x,y〉 .
x : T〈w,z〉 
(1,0,0) x : T〈w,z〉 y : [•N ] 
(1,0,0) y : [•N ]
x : T〈w,z〉; y : [•N ] 
(2,1,0) 〈x, y〉 : [×(T〈w,z〉, [•N ])]

In the rest of the example T〈x,y〉 = [×(T〈w,z〉, [•N ])]. We build a type derivation for
λ〈x, y〉.(λ〈w, z〉.wyz)x, where Γw = w : [TK], Γy = y : [•N ], Γ = Γw; Γy, and Γx = x : T〈w,z〉.
Furthermore, in this example and throughout the paper, we will use (0) to denote the tuple
(0, 0, 0, 0).
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Φ1 .

Γw `(0) w : TK Γy `(0) y : [•N ]

Γ `(0) wy : [ ]→ •N `(0) z : [ ]

Γ `(0) wyz : •N Π(2,1,0)
〈w,z〉

Γy `(1,2,1,0) λ〈w, z〉.wyz : T〈w,z〉 → •N Γx `(0) x : T〈w,z〉
Γy; Γx `(1,2,1,0) (λ〈w, z〉.wyz)x : •N Π(2,1,0)

〈x,y〉

`(2,4,2,0) λ〈x, y〉.(λ〈w, z〉.wyz)x : T〈x,y〉 → •N

ΦK .

x1 : [•N ] `(0) x1 : •N 
(1,0,0) y1 : [ ]
x1 : [•N ] `(1,1,0,0) λy1.x1 : [ ]→ •N x1 : [•N ] 
(1,0,0) x1 : [•N ]

`(2,2,0,0) K : TK

From Φ1 and ΦK we build the final tight derivation for t0 =(λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉:

Φ .
Φ(2,4,2,0)

1

Φ(2,2,0,0)
K

`(2,2,0,0) K : [TK] `(0) a : [ ]
`(2,2,0,0) 〈K, a〉 : ×([TK], [ ])
`(2,2,0,0) 〈K, a〉 : T〈w,z〉 b : [•N ] `(0) b : [•N ]
b : [•N ] `(2,2,0,0) 〈〈K, a〉, b〉 : ×(T〈w,z〉, [•N ])
b : [•N ] `(2,2,0,0) 〈〈K, a〉, b〉 : [×(T〈w,z〉, [•N ])]

b : [•N ] `(4,6,2,0) (λ〈x, y〉.(λ〈w, z〉.wyz)x)〈〈K, a〉, b〉 : •N

Therefore, Φ(4,6,2,0) gives the expected exact bounds. It is worth noticing that the pair
〈〈K, a〉, b〉 is typed here with a singleton multiset, while it would be typable with a multiset
having at least two elements in the typing system proposed in [19], even if the term is not
going to be duplicated.

I Example 11. We now consider the term t1 = (λz.(λ〈x, y〉.I)zz)〈u, v〉, having the following
head-reduction sequence to head normal-form:

(λz.(λ〈x, y〉.I)zz)〈u, v〉 −→b ((λ〈x, y〉.I)zz)[z\〈u, v〉]
−→b (I[〈x, y〉\z]z)[z\〈u, v〉] −→b w[w\z][〈x, y〉\z][z\〈u, v〉]
−→e z[〈x, y〉\z][z\〈u, v〉] −→e 〈u, v〉[〈x, y〉\〈u, v〉]
−→m 〈u, v〉[x\u][y\v] −→e 〈u, v〉[y\v]
−→e 〈u, v〉

We have 3 b-steps, 4 e-steps, and 1 m-step to the normal form 〈u, v〉 of size 1. Note that
the pair 〈u, v〉 is copied twice during the reduction, but only one of the copies is consumed
by a matching. The copy of the pair that is not consumed will persist in the term, therefore
it will be typed with •M. The other copy will be consumed in a matching step, however
its components are not going to be used, therefore we will type it with [o], where o denotes
×([ ], [ ]).

Since t1 = (λz.(λ〈x, y〉.I)zz)〈u, v〉 →(3,4,1)
h 〈u, v〉, we need to derive a tight derivation for

t1 decorated with counter (3, 4, 1, 1). We first consider the following derivation:

Φ1 .

w : [•M] `(0) w : •M w : [•M] 
(1,0,0) w : [•M]
`(1,1,0,0) I : [•M]→ •M


(1,0,0) x : [ ] 
(1,0,0) y : [ ]

(2,0,0) 〈x, y〉 : [o]

`(2,3,1,0) λ〈x, y〉.I : [o]→ [•M]→ •M
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From Φ1 we obtain the following derivation Φ2, where A0 = [o, •M]:

Φ2 .

Φ(2,3,1,0)
1 z : [o] `(0) z : [o]

z : [o] `(2,3,1,0) (λ〈x, y〉.I)z : [•M]→ •M z : [•M] `(0) z : [•M]
z : A0 `(2,3,1,0) (λ〈x, y〉.I)zz : •M z : A0 


(1,0,0) z : A0

`(3,4,1,0) λz.(λ〈x, y〉.I)zz : A0 → •M

Using Φ2 we obtain the final tight derivation, and its expected counter:

Φ(3,4,1,0)
2

...

`(0) 〈u, v〉 : o `(0,0,0,1) 〈u, v〉 : •M
`(0,0,0,1) 〈u, v〉 : A0

`(3,4,1,1) (λz.(λ〈x, y〉.I)zz)〈u, v〉 : •M

6 Soundness of System E

This section studies the implication “tight typability implies head-normalisable”. The two key
properties used to show this implication are minimal counters for canonical forms (Lem. 13)
and the exact subject reduction property (Lem. 15). Indeed, Lem. 13 guarantees that a tight
derivation for a canonical form t holds the right counter of the form (0, 0, 0, |t|). Lem. 15
gives in fact an (exact) weighted subject reduction property, weighted because head-reduction
strictly decreases the counters of typed terms, and exact because only one counter is decreased
by 1 for each head-reduction step. Subject reduction is based on a substitution property
(Lem. 14). We start with a key auxiliary lemma.

I Lemma 12 (Tight Spreading). Let t ∈ N . Let Φ � Γ `(b,e,m,f) t : σ be a typing
derivation such that tight(Γ). Then σ is tight and the last rule of Φ does not belong
to {app, abs, absp, pair, pairp}.

Proof. By induction on t ∈ N , taking into account the fact that t is not an abstraction nor
a pair (cf. App. B). J

I Lemma 13 (Canonical Forms and Minimal Counters). Let Φ � Γ `(b,e,m,f) t : σ be a tight
derivation. Then t ∈M if and only if b = e = m = 0.

Proof. The left-to-right implication is by induction on the definition of the setM, using the
tight spreading property (Lem. 12) for the cases of application and explicit matching. The
right-to-left implication is by induction on Φ and also uses Lem. 12 (cf. App. B). J

I Lemma 14 (Substitution for System E ). If Φt . Γ;x : A `(bt,et,mt,ft) t : σ, and Φu .

∆ `(bu,eu,mu,fu) u : A, then there exists Φt{x\u} .Γ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : σ.

Proof. By induction on Φt (cf. App. B). J

I Lemma 15 (Exact Subject Reduction). If Φ . Γ `(b,e,m,f) t : σ, and t −→h t
′ is an s-step,

with s ∈ {b, e, m}, then Φ′ . Γ `(b′,e′,m′,f) t′ : σ, where
s = b implies b′ = b− 1, e′ = e, m′ = m.
s = e implies b′ = b, e′ = e− 1, m′ = m.
s = m implies b′ = b, e′ = e, m′ = m− 1.

Proof. By induction on −→h , using the substitution property (Lem. 14) (cf. App. B). J
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The exact subject reduction property provides a simple argument to obtain the implication
“tightly typable implies head-normalisable”: if t is tightly typable, and reduction decreases
the counters, then head-reduction necessarily terminates. But the soundness implication is
in fact more precise than that. Indeed:

I Theorem 16 (Soundness). Let Φ .Γ `(b,e,m,f) t : σ be a tight derivation. Then there exists
u ∈M and a head reduction sequence ρ such that ρ : t→(b,e,m)

h u and |u| = f .

Proof. By induction on b+ e+m.
If b+ e+m = 0 (i.e. b = e = m = 0), then canonical forms and minimal counters property

(Lem. 13) gives t ∈M, so that t 6−→h holds by Prop. 3. We let u := t and thus t→(0,0,0)
h t. It

is easy to show that tight derivations Φ . Γ `(0,0,0,f) t : σ for terms inM verify |t| = f .
If b+ e+m > 0, we know by Lem. 13 that t /∈M, and we know by the clash-free property

(Lem. 9) that t is (head) clash-free. Then, t turns to be head-reducible by Prop. 3, i.e. there
exists t′ such that t −→h t

′. By the exact subject reduction property (Lem. 15) there is a
derivation Φ′ .Γ `(b′,e′,m′,f) t′ : σ such that b′+e′+m′+1 = b+e+m. The i.h. applied to Φ′
then gives t′ →(b′,e′,m′)

h u and |u| = f . We conclude with the sequence t→h t
′ →(b′,e′,m′)

h u,
with the counters as expected. J

7 Completeness for System E

In this section we study the reverse implication “head-normalisable implies tight typability”.
In this case the key properties are the existence of tight derivations for canonical forms
(Lem. 17) and the subject expansion property (Lem. 19). As in the previous section these
properties are (exact) weighted in the sense that Lem. 17 guarantees that a canonical form
t has a tight derivation with the right counter, and Lem. 19 shows that each step of head-
expansion strictly increases exactly one of the counters of tightly typed terms. Subject
expansion relies on an anti-substitution property (Lem. 18).

I Lemma 17 (Canonical Forms and Tight Derivations). Let t ∈ M. There exists a tight
derivation Φ � Γ `(0,0,0,|t|) t : t.

Proof. We generalise the property to the two following statements:
If t ∈ N , then there exists a tight derivation Φ � Γ `(0,0,0,|t|) t : •N .
If t ∈M, then there exists a tight derivation Φ � Γ `(0,0,0,|t|) t : t.

The proof then proceeds by induction on N ,M, using relevance (Lem. 8). J

I Lemma 18 (Anti-Substitution for System E ). Let Φ . Γ `(b,e,m,f) t{x\u} : σ. Then, there
exist derivations Φt, Φu, integers bt, bu, et, eu,mt,mu, ft, fu, contexts Γt,Γu, and multitype A
such that Φt .Γt;x : A `(bt,et,mt,ft) t : σ, Φu .Γu `(bu,eu,mu,fu) u : A, b = bt+ bu, e = et+eu,
m = mt +mu, f = ft + fu, and Γ = Γt ∧ Γu.

Proof. By induction on Φ (cf. App. C). J

I Lemma 19 (Exact Subject Expansion). If Φ′ .Γ `(b′,e′,m′,f ′) t′ : σ, and t −→h t
′ is an s-step,

with s ∈ {b, e, m}, then Φ . Γ `(b,e,m,f) t : σ, where
s = b implies b = b′ + 1, e′ = e, m′ = m.
s = e implies b′ = b, e = e′ + 1, m′ = m.
s = m implies b′ = b, e′ = e, m = m′ + 1.

Proof. By induction on −→h, using the anti-substitution property (Lem. 18) (cf. App. C). J
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The previous lemma provides a simple argument to obtain the implication “head-
normalisable implies tightly typable”, which can in fact be stated in a more precise way:

I Theorem 20 (Completeness). Let t be a head-normalising term such that t →(b,e,m)
h u,

u ∈M. Then there exists a tight derivation Φ . Γ `(b,e,m,|u|) t : t.

Proof. By induction on b+ e+m.
If (b + e + m) = 0 then t = u ∈ M, therefore Γ `(0,0,0,|t|) t : t, by the canonical forms
and tight derivations property (Lem. 17).
If (b+ e+m) > 0, then t −→h t

′ →(b′,e′,m′)
h u, where b′ + e′ +m′ + 1 = b+ e+m. By the

i.h. Γ `(b′,e′,m′,|u|) t′ : t. Then from the exact subject expansion property (Lem. 19), it
follows that Γ `(b,e,m,|u|) t : t. J

In summary, soundness and completeness do not only establish an equivalence between
tight typability and head-normalisation, but they provide a much refined equivalence property
stated as follows:

I Corollary 21. Given a term t, the following statements are equivalent
There is a tight derivation Φ . Γ `(b,e,m,f) t : t.
There exists a canonical form u ∈M such that t→(b,e,m)

h u and |u| = f .

8 Conclusion

This paper provides a quantitative insight of pattern matching by using type systems to
study some of its dynamical properties. Indeed, our typing system U (resp. E ) provides
upper bounds (resp. exact measures) about time and space properties related to (dynamic)
computation. More precisely, the tuple of integers in the conclusion of a tight E -derivation
for a term t provides the exact length of the head-normalisation sequence of t and the size
of its normal form. Moreover, the length of the normalisation sequence is discriminated
according to different kind of steps performed to evaluate t.

Future work includes generalisations to more powerful notions of (dynamic) patterns, and
to other reduction strategies for pattern calculi, as well to programs with recursive schemes.
Inhabitation for our typing system is conjectured to be decidable, as the one in [19], but this
still needs to be formally proved, in which case the result “solvability = typing+ inhabitation”
in opt. cit. would be restated in a simpler framework. The quest of a general notion of
model for pattern calculi also remains open, particularly for dynamic pattern calculi [32, 6].

Last, but not least, time cost analysis of a language with constructors and pattern
matching is studied in [1], where it is shown that evaluation matching rules other than
β-reduction may be negligible, depending on the reduction strategy and the specific notion
of value. We expect the type-based quantitative technical tools we provide in this paper to
be helpful in such a kind of quantitative analysis.

References
1 Beniamino Accattoli and Bruno Barras. The negligible and yet subtle cost of pattern matching.

In APLAS, volume 10695 of LNCS, pages 426–447. Springer, 2017.
2 Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split

bounds. PACMPL, 2(ICFP):94:1–94:30, 2018.
3 Beniamino Accattoli and Giulio Guerrieri. Types of fireballs. In APLAS, volume 11275 of

LNCS, pages 45–66. Springer, 2018.



S. Alves, D. Kesner, and D. Ventura 3:19

4 Beniamino Accattoli, Giulio Guerrieri, and Maico Leberle. Types by need. In ESOP, volume
11423 of LNCS, pages 410–439. Springer, 2019.

5 Beniamino Accattoli and Delia Kesner. Preservation of strong normalisation modulo permuta-
tions for the structural lambda-calculus. Logical Methods in Computer Science, 8(1), 2012.
doi:10.2168/LMCS-8(1:28)2012.

6 Sandra Alves, Besik Dundua, Mário Florido, and Temur Kutsia. Pattern-based calculi with
finitary matching. Logic Journal of the IGPL, 26(2):203–243, 2018.

7 Martin Avanzini and Ugo Dal Lago. Automating sized-type inference for complexity analysis.
PACMPL, 1(ICFP):43:1–43:29, 2017.

8 Thibaut Balabonski, Pablo Barenbaum, Eduardo Bonelli, and Delia Kesner. Foundations of
strong call by need. PACMPL, 1(ICFP):20:1–20:29, 2017.

9 Pablo Barenbaum, Eduardo Bonelli, and Kareem Mohamed. Pattern matching and fixed
points: Resource types and strong call-by-need: Extended abstract. In PPDP, pages 6:1–6:12.
ACM Press, 2018.

10 Hendrik Pieter Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103
of Studies in logic and the foundation of mathematics. North-Holland, Amsterdam, revised
edition, 1984.

11 Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types.
Perspectives in logic. Cambridge University Press, 2013.

12 Alexis Bernadet. Types intersections non-idempotents pour raffiner la normalisation forte avec
des informations quantitatives. PhD thesis, École Polytechnique, 2014.

13 Alexis Bernadet and Stéphane Lengrand. Non-idempotent intersection types and strong
normalisation. Logical Methods in Computer Science, 9(4), 2013.

14 Frédéric Blanqui. Size-based termination of higher-order rewriting. Journal of Functional
Programming, 28:e11, 2018.

15 Eduardo Bonelli, Delia Kesner, Carlos Lombardi, and Alejandro Ríos. Normalisation for
dynamic pattern calculi. In RTA, volume 15 of LIPIcs, pages 117–132. Schloss Dagstuhl, 2012.

16 Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A semantics for lambda calculi
with resources. Mathematical Structures in Computer Science, 9(4):437–482, 1999.

17 Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics:
the exponentials. Annals of Pure and Applied Logic, 109(3):205–241, 2001.

18 Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. A relational semantics for
parallelism and non-determinism in a functional setting. Annals of Pure and Applied Logic,
163(7):918–934, 2012.

19 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Observability for pair
pattern calculi. In TLCA, volume 38 of LIPIcs, pages 123–137, 2015.

20 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

21 Horatiu Cirstea and Claude Kirchner. The rewriting calculus — Part I. Logic Journal of the
Interest Group in Pure and Applied Logics, 9(3):427–463, 2001.

22 Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Phd thesis, Université
Aix-Marseille II, 2007.

23 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Mathematical Structures in Computer Science, 28(7):1169–1203, 2018.

24 Daniel de Carvalho and Lorenzo Tortora de Falco. A semantic account of strong normalization
in linear logic. Information and Computation, 248:104–129, 2016.

25 Thomas Ehrhard. Collapsing non-idempotent intersection types. In CSL, volume 16 of LIPIcs,
pages 259–273. Schloss Dagstuhl, 2012.

26 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus
generalizing call-by-name and call-by-value. In PPDP, pages 174–187. ACM Press, 2016.

27 Philippa Gardner. Discovering needed reductions using type theory. In TACS, volume 789 of
LNCS, pages 555–574. Springer, 1994.

TYPES 2019

https://doi.org/10.2168/LMCS-8(1:28)2012


3:20 A Quantitative Understanding of Pattern Matching

28 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

29 Giulio Guerrieri and Giulio Manzonetto. The bang calculus and the two girard’s translations.
In Linearity-TLLA, volume 292 of EPTCS, pages 15–30, 2018.

30 Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource aware ML. In CAV, volume
7358 of LNCS, pages 781–786. Springer, 2012.

31 Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic resource bound analysis
for ocaml. In POPL, pages 359–373. ACM Press, 2017.

32 Barry Jay and Delia Kesner. First-class patterns. Journal of Functional Programming,
19(2):191–225, 2009.

33 Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. Static determina-
tion of quantitative resource usage for higher-order programs. In POPL, pages 223–236. ACM
Press, 2010.

34 Steffen Jost, Pedro B. Vasconcelos, Mário Florido, and Kevin Hammond. Type-based cost
analysis for lazy functional languages. Journal of Automated Reasoning, 59(1):87–120, 2017.

35 Wolfram Kahl. Basic pattern matching calculi: a fresh view on matching failure. In FLOPS,
volume 2998 of LNCS, pages 276–290. Springer, 2004.

36 Delia Kesner. Reasoning about call-by-need by means of types. In FoSSaCS, volume 9634 of
LNCS, pages 424–441. Springer, 2016.

37 Delia Kesner, Carlos Lombardi, and Alejandro Ríos. Standardisation for constructor based
pattern calculi. In HOR, volume 49, page 58–72, 2011.

38 Delia Kesner and Daniel Ventura. Quantitative types for the linear substitution calculus. In
IFIP TCS, volume 8705 of LNCS, pages 296–310. Springer, 2014.

39 Delia Kesner and Daniel Ventura. A resource aware computational interpretation for Herbelin’s
syntax. In ICTAC, volume 9399 of LNCS, pages 388–403. Springer, 2015.

40 Delia Kesner and Pierre Vial. Types as resources for classical natural deduction. In FSCD,
volume 84 of LIPIcs, pages 24:1–24:17. Schloss Dagstuhl, 2017.

41 Delia Kesner and Pierre Vial. Extracting exact bounds from typing in a classical framework.
25th International Conference on Types for Proofs and Programs, 2019.

42 Delia Kesner and Pierre Vial. Consuming and persistent types for classical logic. In LICS.
IEEE Computer Society, 2020.

43 Assaf Kfoury. A linearization of the lambda-calculus and consequences. Journal of Logic and
Computation, 10(3):411–436, 2000.

44 Jean Louis Krivine. Lambda-Calculus, Types and Models. Masson, Paris, and Ellis Horwood,
Hemel Hempstead, 1993.

45 Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative completeness. Logical
Methods in Computer Science, 8(4), 2011.

46 Ugo Dal Lago and Barbara Petit. Linear dependent types in a call-by-value scenario. Science
of Computer Programming, 84:77–100, 2014.

47 C.-H. Luke Ong. Quantitative semantics of the lambda calculus: Some generalisations of the
relational model. In LICS, pages 1–12. IEEE Computer Society, 2017.

48 Luca Paolini, Mauro Piccolo, and Simona Ronchi Della Rocca. Essential and relational models.
Mathematical Structures in Computer Science, 27(5):626–650, 2017.

49 Álvaro J. Rebón Portillo, Kevin Hammond, Hans-Wolfgang Loidl, and Pedro B. Vasconcelos.
Cost analysis using automatic size and time inference. In IFL, volume 2670 of LNCS, pages
232–248. Springer, 2002.

50 RaML. Resource Aware ML. URL: http://raml.co.
51 Franz Siglmüller. Type-based resource analysis on haskell. In DICE-FOPARA, volume 298 of

EPTCS, pages 47–60, 2019.
52 Hugo R. Simões, Kevin Hammond, Mário Florido, and Pedro B. Vasconcelos. Using intersection

types for cost-analysis of higher-order polymorphic functional programs. In TYPES, volume
4502 of LNCS, pages 221–236. Springer, 2006.

https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
http://raml.co


S. Alves, D. Kesner, and D. Ventura 3:21

53 Hugo R. Simões, Pedro B. Vasconcelos, Mário Florido, Steffen Jost, and Kevin Hammond.
Automatic amortised analysis of dynamic memory allocation for lazy functional programs. In
ICFP, pages 165–176. ACM Press, 2012.

54 Pedro B. Vasconcelos and Kevin Hammond. Inferring cost equations for recursive, polymorphic
and higher-order functional programs. In IFL, volume 3145 of LNCS, pages 86–101. Springer,
2003.

55 Philip Wadler. The essence of functional programming. In POPL, pages 1–14. ACM Press,
1992.

56 Joe B. Wells. The essence of principal typings. In ICALP, volume 2380 of LNCS, pages
913–925. Springer, 2002.

A The U Typing System

I Lemma 4 (Relevance). Let Φ . Γ ` t : σ. Then, dom(Γ) ⊆ fv(t).

Proof. Let Φ . Γ ` t : σ. By straightforward induction on Φ. Note that Γ = (Γ\\ var(p)); Γ|p
in both (abs) and (match) rules. J

I Lemma 22 (Substitution for System U ). If Φt . Γ;x : A ` t : σ, and Φu .∆ ` u : A, then
there exists Φt{x\u} . Γ ∧∆ ` t{x\u} : σ such that sz

(
Φt{x\u}

)
= sz (Φt) + sz (Φu)− |A|.

Proof. We generalise the statement as follows: Let Φu .∆ ` u : A.
If Φt . Γ;x : A ` t : σ, then there exists Φt{x\u} . Γ ∧∆ ` t{x\u} : σ.
If Φt . Γ;x : A ` t : B, then there exists Φt{x\u} . Γ ∧∆ ` t{x\u} : B.

In both cases sz
(
Φt{x\u}

)
= sz (Φt) + sz (Φu)− |A|.

The proof then follows by induction on Φt.
If Φt is (ax), then we consider two cases:
t = x: then Φx . x : [σ] ` x : σ and Φu . ∆ ` u : [σ], which is a consequence of
∆ ` u : σ. Then x{x\u} = u, and we trivially obtain Φt{x\u} . ∆ ` u : σ. We have
sz

(
Φt{x\u}

)
= 1 + sz (Φu)− 1 as expected.

t = y: then Φy . y : [σ];x : [ ] ` y : σ and Φu . ∅ ` u : [ ] by the (many) rule.
Then y{x\u} = y, and we trivially obtain Φt{x\u} . y : [σ] ` y : σ. We have
sz

(
Φt{x\u}

)
= 1 + 0− 0 as expected.

If Φt ends with (many), then it has premises of the form (Φi
t . Γi;x : Ai ` t : σi)i∈I ,

where Γ = ∧i∈IΓi, A = ∧i∈IAi and B = [σi]i∈I . The derivation Φu can also be
decomposed into subderivations (Φiu .∆i ` u : Ai)i∈I where ∆ = ∧i∈I∆i. The i.h. gives
the derivations (Φi

t{x\u} . Γi ∧∆i ` t{x\u} : σi)i∈I . Then we apply rule (many) to get
Φt{x\u} . Γ ∧∆ ` t{x\u} : B. The statement about sz (_) works as expected by the i.h.
If Φt ends with (abs), so that t = λp.t′ then, without loss of generality, one can always
assume that (fv(u) ∪ {x}) ∩ var(p) = ∅. The result will follow easily by induction and
relevance of the typing system. The statement about sz (_) works as expected by the i.h.

If Φt ends with (app), so that t = t′u′, then Φt′u′ is of the form

Φt′ . Γt′ ;x : At′ ` t′ : B → σ Φu′ . Γu′ ;x : Au′ ` u′ : B
Γt′ ∧ Γu′ ;x : At′ ∧ Au′ ` t′u′ : σ

Also, Φu . ∆ ` u : A is a consequence of (∆k ` u : σk)k∈K , with A = [σk]k∈K and
∆ = ∧k∈K∆k. Note that A = At′ ∧Au′ = [σi]i∈Kt′ ∧ [σi]i∈Ku′ , with K = Kt′ ]Ku′ , from
which one can obtain both ∆t′ ` u : At′ and ∆u′ ` u : Au′ , through the (many) rule. By
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the i.h. we then have Γt′ ∧∆t′ ` t′{x\u} : B → σ and Γu′ ∧∆u′ ` u′{x\u} : B. Finally,
Γt′ ∧ Γu′ ∧ ∆t′ ∧ ∆u′ ` (t′{x\u})(u′{x\u}) : σ by the app rule. The statement about
sz (_) works as expected by the i.h.
If Φt ends with (pair) or (pairp), so that t = 〈t′, u′〉, then the result is obtained by
induction following the same reasoning used in rule app. The statement about sz (_)
works as expected by the i.h.
If Φt ends with (match), so that t = t′[p\u′], then the proof is similar to the application
case since t′[p\u′]{x\u} = (t′{x\u})[p\u′{x\u}] and we can assume that (fv(u) ∪ {x}) ∩
var(p) = ∅. The statement about sz (_) works as expected by the i.h. J

I Lemma 23 (Anti-Substitution for System U ). Let Φ . Γ ` t{x\u} : σ. Then, there
exist derivations Φt, Φu, contexts Γt,Γu, and multitype A such that Φt . Γt;x : A ` t : σ,
Φu . Γu ` u : A and Γ = Γt ∧ Γu. Moreover, sz (Φ) = sz (Φt) + sz (Φu)− |A|.

Proof. As in the case of the substitution lemma, the proof follows by generalising the
property for the two cases where the type derivation Φ assigns a type or a multiset type:

Let Φ . Γ ` t{x\u} : σ. Then, there exist derivations Φt, Φu, contexts Γt,Γu, and
multitype A such that Φt . Γt;x : A ` t : σ, Φu . Γu ` u : A and Γ = Γt ∧ Γu.
Let Φ . Γ ` t{x\u} : B. Then, there exist derivations Φt, Φu, contexts Γt,Γu, and
multitype A such that Φt . Γt;x : A ` t : B, Φu . Γu ` u : A and Γ = Γt ∧ Γu.

In both cases sz (Φ) = sz (Φt) + sz (Φu)− |A| holds.
We will reason by induction on Φ and cases analysis on t. For all the rules (except many),

we will have the trivial case t{x\u}, where t = x, in which case t{x\u} = u, for which we
have a derivation Φ . Γ ` u : σ. Therefore Φt . x : [σ] ` x : σ and Φu . Γ ` u : [σ] is obtained
from Φ using the (many) rule. We conclude since sz (Φ) = 1 + sz (Φu)− 1. We now reason
on the different cases assuming that t 6= x.

If Φ is (ax) then Φ . y : [σ] ` y : σ and, since t 6= x, t = y 6= x. Then we take A = [ ],
Φt . y : [σ];x : [ ] ` y : σ, and Φu . ∅ ` u : [ ] from rule (many). We conclude since
sz (Φ) = 1 + 0− 0.
If Φ ends with (many), then Φ . ∧k∈KΓk ` t{x\u} : [σk]k∈K follows from the derivation
Φk . Γk ` t{x\u} : σk, for each k ∈ K. By the i.h. there exist Φk

t , Φk
u, contexts Γkt , Γku

and multitype Ak, such that Φk
t . Γkt ;x : Ak ` t : σk, Φk

u . Γku ` u : Ak, Γk = Γkt ∧ Γku.
Taking A = ∧k∈KAk and using rule many we get ∧k∈KΓkt ;x : A ` t : [σk]k∈K . From the
premises of Φk

u for k ∈ K, applying the many rule, we get ∧k∈KΓku ` u : A. Note that
Γ = ∧k∈KΓk = (∧k∈KΓkt ) ∧ (∧k∈KΓku). The statement about sz (_) works as expected
by the i.h.
If Φ ends with (abs), then t = λp.t′, therefore Φ . Γ\\ var(p) ` λp.(t′{x\u}) : B → σ

follows from Φ′ . Γ ` t′{x\u} : σ and Πp . Γ|p 
 p : B. Note that, one can always assume
that var(p)∩fv(u) = ∅ and x /∈ var(p). By the i.h., Φt′ .Γt′ ;x : A ` t′ : σ, Φu.Γu ` u : A,
with Γ = Γt′ ∧ Γu. Then using abs we get Φt . Γt′\\ var(p);x : A ` λp.t′ : B → σ. Note
that (Γt′ ;x : A)\\ var(p) = Γt′\\ var(p);x : A and Γ\\ var(p) = (Γt′\\ var(p)) ∧ Γu. The
statement about sz (_) works as expected by the i.h.
The remaining cases for (app), (pair) and (match) also hold by the i.h. and do not
present any special difficulty. J

I Lemma 5. Let Φ . Γ ` t : σ. Then,
1. (Upper Subject Reduction). t −→p t

′ implies there is Φ′ . Γ ` t′ : σ s.t. sz (Φ) ≥ sz (Φ′),
and t −→h t

′ implies there is Φ′ . Γ ` t′ : σ s.t. sz (Φ) > sz (Φ′).
2. (Upper Subject Expansion). t′ −→p t implies there is Φ′.Γ ` t′ : σ such that sz (Φ′) ≥ sz (Φ)

and t′ −→h t implies there is Φ′ . Γ ` t′ : σ such that sz (Φ′) > sz (Φ).
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Proof. Let Φ . Γ ` t : σ.
1. By induction on −→p (resp. −→h ) and the substitution property (Lem. 22). The first

three cases represent the base cases for both reductions, where the size relation is strict.
t = L[[λp.v]]u −→p/h L[[v[p\u]]] = t′. The proof is by induction on the list L. We only show
the case of the empty list as the other one is straightforward. The typing derivation Φ
is necessarily of the form

Γv ` v : σ Γv|p 
 p : A
Γv\\ var(p) ` λp.v : A → σ Γu ` u : A

Γv\\ var(p) ∧ Γu ` (λp.v)u : σ

We then construct the following derivation Φ′:
Γv ` v : σ Γv|p 
 p : A Γu ` u : A

Γv\\ var(p) ∧ Γu ` v[p\u] : σ

Moreover, sz (Φ) = sz (Φ′) + 1.
t = v[x\u] −→p v{x\u} = t′. Then Φ has two term premises Φv . Γv;x : A ` v : σ,
Φu . Γu ` u : A, and one pattern premise Πx . x : A 
 x : A, where Γ = Γv ∧ Γu and
sz (Φ) = sz (Φv) + sz (Φu) + sz (Πx) + 1. Lem. 22 then gives a derivation Φ′ ending
with Γv ∧ Γu ` v{x\u} : σ, where |A| ≥ 0 and sz (Πx) = 1 imply

sz (Φ′) = sz (Φv) + sz (Φu)− |A| < sz (Φv) + sz (Φu) + sz (Πx) < sz (Φ)

When t = v[x\u] −→h v{x\u} = t′, where v 6−→h , the same results hold.
t = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→p L[[v[p1\u1][p2\u2]]] = t′. Let us write p = 〈p1, p2〉 and
u = 〈u1, u2〉. The typing derivation Φ is necessarily of the form

Φv . Γv ` v : σ Πp . Γv|p 
 〈p1, p2〉 : A Φu . Γu ` L[[〈u1, u2〉]] : A
Γv\\ var(〈p1, p2〉) ∧ Γu ` v[〈p1, p2〉\L[[〈u1, u2〉]]] : σ

Moreover, A = [×(A1,A2)] and sz (Φ) = sz (Φv) + sz (Πp) + sz (Φu) + 1.
Then Πp is of the form:

Πp1 . Γv|p1 
 p1 : A1 Πp2 . Γv|p2 
 p2 : A2 p1#p2

Γv|p 
 〈p1, p2〉 : [×(A1,A2)]

and sz (Πp) = sz (Πp1) + sz (Πp2) + 1
The proof is then by induction on the list L.

For L = 2 we have Φu of the form:
Φu1 . Γu1 ` u1 : A1 Φu2 . Γu2 ` u2 : A2

Γu ` 〈u1, u2〉 : ×(A1,A2)
Γu ` 〈u1, u2〉 : A

where Γu = Γu1 ∧ Γu2 and sz (Φu) = sz (Φu1) + sz (Φu2) + 1. We first construct
the following derivation:

Φv . Γv ` v : σ Πp1 . Γv|p1 
 p1 : A1 Φu1 . Γu1 ` u1 : A1

Γv\\ var(p1) ∧ Γu1 ` v[p1\u1] : σ

By using Lem. 4 and α-conversion, we construct a derivation Φ′ with conclusion
Γv\\ var(p1)\\ var(p2) ∧ Γu1 ∧ Γu2 ` v[p1\u1][p2\u2] : σ. Note that p1#p2 im-
plies Γv\\ var(〈p1, p2〉) = Γv\\ var(p1)\\ var(p2). Thus, we finally obtain sz (Φ′) =
sz (Φv) + sz (Πp) + sz (Φu) < sz (Φ).
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Let L = L′[q\s]. Then Φu is necessarily of the following form:

ΦL′ .∆u ` L′[[〈u1, u2〉]] : ×(A1,A2) Πq .∆u|q 
 q : B Φs .∆s ` s : B
Γu ` L′[[〈u1, u2〉]][q\s] : ×(A1,A2)

Γu ` L′[[〈u1, u2〉]][q\s] : A

where Γu = ∆u\\ var(q) ∧∆s.
We will apply the i.h. on the reduction step v[p\L′[[u]]] −→p L′[[v[p1\u1][p2\u2]]], in
particular we type the left-hand side term with the following derivation Ψ1:

Φv Πp

ΦL′ .∆u ` L′[[〈u1, u2〉]] : ×(A1,A2)
∆u ` L′[[〈u1, u2〉]] : A

Γv\\ var(p) ∧∆u ` v[〈p1, p2〉\L′[[〈u1, u2〉]]] : σ

The i.h. gives a derivation Ψ2 . Γv\\ var(p) ∧∆u ` L′[[v[p1\u1][p2\u2]]] : σ verifying
sz (Ψ2) < sz (Ψ1). Let Λ = Γv\\ var(p) ∧ ∆u. We conclude with the following
derivation Φ′:

Ψ2 Πq .∆u|q 
 q : B Φs .∆s ` s : B
Λ\\ var(q) ∧∆s ` L′[[v[p1\u1][p2\u2]]][q\s] : σ

Indeed, we first remark that Λ|q = ∆u|q holds by relevance and α-conversion.
Secondly, Γv\\ var(p)∧Γu = Γv\\ var(p)∧ (∆u\\ var(q))∧∆s = Λ\\ var(q)∧∆s also
holds by Lem. 4 and α-conversion. Last, we have

sz (Φ′) = sz (Ψ2) + sz (Πq) + sz (Φs) + 1 <

sz (Ψ1) + sz (Πq) + sz (Φs) + 1 =
sz (Φv) + sz (Πp) + sz (ΦL′) + 1 + sz (Πq) + sz (Φs) + 1 =
sz (Φv) + sz (Πp) + sz (Φu) + 1 = sz (Φ)

When t = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→h L[[v[p1\u1][p2\u2]]] = t′, where v 6−→h , the same
results hold.
Most of the inductive cases are straightforward. We only detail here two interesting
cases.
t = v[p\u] −→p v[p\u′] = t′, where u −→p u

′. The proof holds here by the i.h. In
particular, when p = x and x /∈ fv(v), then by relevance we have x of type [ ] as
well as u of type [ ]. This means that both u and u′ are typed by a (many) rule with
no premise, and in that case we get sz (Φ) = sz (Φ′).
t = v[p\u] −→h v[p\u′] = t′, where v 6−→h and p 6= x and u −→h u

′. By construction
there are typing subderivations Φv .Γv ` v : σ, Πp .Γv|p 
 p : A and Φu .Γu ` u : A
such that Γ = Γv\\ var(p) ∧ Γu. Since p is not a variable then Πp ends with rule
pat×. In which case A contains exactly one type, let us say A = [σu]. Then Φu has
the following form

Γu ` u : σu
Φu . Γu ` u : [σu]

The i.h. applied to the premise of Φu gives a derivation Γu ` u′ : σu and having the
expected size relation. To conclude we build a type derivation Φ′ for v[p\u′] having
the expected size relation.
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2. By induction on −→p (resp. −→h ) and the anti-substitution property (Lem. 23).
t′ = L[[λp.v]]u −→p/h L[[v[p\u]]] = t. The proof is by induction on the list L. We consider
the case L = 2, since the other case follows straightforward by i.h. The typing derivation
Φ is necessarily of the form:

Γv ` v : σ Γv|p 
 p : A Γu ` u : A
Γv\\ var(p) ∧ Γu ` v[p\u] : σ

We then construct the following derivation Φ′:

Γv ` v : σ Γv|p 
 p : A
Γv\\ var(p) ` λp.v : A → σ Γu ` u : A

Γv\\ var(p) ∧ Γu ` (λp.v)u : σ

Moreover, sz (Φ′) = sz (Φ) + 1.
t′ = v[x\u] −→p v{x\u} = t. Then by Lem. 23, there exist derivations Φv,Φu, contexts
Γv,Γu and a multitype A, such that Φv .Γv;x : A ` v : σ, Φu .Γu ` u : A, Γ = Γv∧Γu,
and sz (Φ) = sz (Φv) + sz (Φu)− |A|. Furthermore, one has Πx . x : A 
 x : A Then
one can construct the following derivation Φ′.

Γv;x : A ` v : σ x : A 
 x : A Γu ` u : A
Γv ∧ Γu ` v[x\u] : σ

Furthermore, sz (Φ′) = sz (Φv) + sz (Πx) + sz (Φu) > sz (Φv) + sz (Φu)− |A|, since
|A| ≥ 0 and sz (Πx) = 1. The same result holds for t = v[x\u] −→h v{x\u} = t′, where
v 6−→h .
t′ = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→p L[[v[p1\u1][p2\u2]]] = t. Let us write p = 〈p1, p2〉 and
u = 〈u1, u2〉. The proof is by induction on the list L.

L = 2, then the typing derivation Φ is necessarily of the form:

Γv ` v : σ Γv|p1 
 p1 : A1 Γ1 ` u1 : A1

(Γv\\ var(p1)) ∧ Γ1 ` v[p1\u1] : σ ((Γv\\ var(p1)) ∧ Γ1)|p2 
 p2 : A2 Γ2 ` u2 : A2

(((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) ∧ Γ2 ` v[p1\u1][p2\u2] : σ

where Γ = (((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) ∧ Γ2. Moreover, the following equality
holds (((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) = ((Γv\\ var(p1))\\ var(p2) ∧ Γ1\\ var(p2)),
since (Γv\\ var(p1))\\ var(p2) = Γv\\ var(p) and Γ1\\ var(p2) =L.4 Γ1. Similarly,
((Γv\\ var(p1)) ∧ Γ1)|p2 =L.4 (Γv\\ var(p1))|p2 and, by linearity of patterns, we have
(Γv\\ var(p1))|p2 = Γv|p2 . Hence, we conclude with the following derivation Φ′:

Γv ` v : σ
Γv|p1 
 p1 : A1 Γv|p2 
 p2 : A2

Γv|p 
 p : [×(A1,A2)]

Γ1 ` u1 : A1 Γ2 ` u2 : A2

Γ1 ∧ Γ2 ` u : ×(A1,A2)
Γ1 ∧ Γ2 ` u : [×(A1,A2)]

(Γv\\ var(p)) ∧ (Γ1 ∧ Γ2) ` v[p\u] : σ

Furthermore,

sz (Φ) = sz (Φv) + sz (Πp1) + sz (Φu1) + 1 + sz (Πp2) + sz (Φu2) + 1 =
sz (Φv) + sz (Πp1) + sz (Πp2) + 1 + sz (Φu1) + sz (Φu2) + 1 <

sz (Φv) + sz (Πp) + sz (Φu) + 1 = sz (Φ′)
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If L = L′[q\s], then t′ = v[〈p1, p2〉\L′[q\s][[〈u1, u2〉]]] −→p L′[q\s][[v[p1\u1][p2\u2]]] =
L′[[v[p1\u1][p2\u2]]][q\s] = t, and Φ is of the form:

ΦL′ . ΓL′ ` L′[[v[p1\u1][p2\u2]]] : σ Πq . ΓL′ |q 
 q : A Φs . Γs ` s : A
ΓL′\\ var(q) ∧ Γs ` L′[[v[p1\u1][p2\u2]]][q\s] : σ

From v[〈p1, p2〉\L′[[〈u1, u2〉]]] −→p L′[[v[p1\u1][p2\u2]]] and ΦL′ by the i.h. one gets
Φ′L′ . ΓL′ ` v[〈p1, p2〉\L′[[〈u1, u2〉]]] : σ with sz (Φ′L′) > sz (ΦL′). Furthermore Φ′L′ is
necessarily of the form:

Φv . Γv ` v : σ Πp . Γv|p 
 p : [×(A1,A2)]
Φu . Γu ` L′[[u]] : ×(A1,A2)

Γu ` L′[[u]] : [×(A1,A2)]
Γv\\ var(p) ∧ Γu ` v[p\L′[[u]]] : σ

Then one can construct the following derivation Φ′u:

Γu ` L′[[u]] : ×(A1,A2) Γu|q 
 q : A Φs
Γu\\ var(q) ∧ Γs ` L′[q\s][[u]] : ×(A1,A2)

Γu\\ var(q) ∧ Γs ` L′[q\s][[u]] : [×(A1,A2)]

From which we build Φ′:

Γv ` v : σ Γv|p 
 p : [×(A1,A2)] Γu\\ var(q) ∧ Γs ` L′[q\s][[u]] : [×(A1,A2)]
Γv\\ var(p) ∧ Γu\\ var(q) ∧ Γs ` v[p\L′[q\s][[u]]] : σ

With Γv\\ var(p)∧ Γu\\ var(q)∧ Γs = (Γv\\ var(p)∧ Γu)\\ var(q)∧ Γs = Γ. Further-
more

sz (Φ) = sz (ΦL′) + sz (Πq) + sz (Φs) + 1 <i.h.
sz (Φ′L′) + sz (Πq) + sz (Φs) + 1 =
sz (Φv) + sz (Πp) + sz (Φu) + sz (Πq) + sz (Φs) + 1 + 1 =
sz (Φv) + sz (Πp) + sz (Φ′u) + 1 = sz (Φ′)

The same result holds for t′ = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→p L[[v[p1\u1][p2\u2]]] = t, where
v 6−→h .
Most of the inductive cases are straightforward. We only detail here two interesting
cases.
t′ = v[p\u′] −→p v[p\u] = t, where u′ −→p u. The proof holds by the i.h. In particular,
when p = x and x /∈ fv(v), then by relevance we have x of type [ ] as well as u of
type [ ]. This means that u, u′ are typed by a (many) rule with no premise, and in
that case we get sz (Φ) = sz (Φ′).
t′ = v[p\u′] −→h v[p\u] = t, where v 6−→h and p 6= x and u′ −→h u. By construction
there are subderivations Φv . Γv ` v : σ, Πp . Γv|p 
 p : A and Φu . Γu ` u : A for
some multiset A and Γ = (Γv\\ var(p)) ∧ Γu. Since p is not a variable then Πp ends
with rule (pat×), in which case A contains only one type, let us say A = [σu]. Then
Φu has the following form:

Φu .
Γu ` u : σu

Γu ` u′ : [σu]
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The i.h. applied to the premise of Φu gives a derivation Γu ` u′ : σu. Therefore, we
construct the following derivation Φ′:

Γv ` v : σ Γv|p 
 p : [σu] Γu ` u′ : σu
Γv\\ var(p) ∧ Γu ` v[p\u′] : σ

Furthermore,

sz (Φ) = sz (Φv) + sz (Πp) + sz (Φu) + 1 <i.h.
sz (Φv) + sz (Πp) + sz (Φu′) + 1 = sz (Φ′) J

I Lemma 6 (Clash-Free). Let Φ . Γ ` t : σ. Then t is (head) clash-free.

Proof. Let Φ . Γ ` t : σ. By induction on sz (Φ), using the syntax-directed aspect of
system U .

The base case for rule (ax) is trivial.
The cases for rules (many) and (abs) are straightforward from the i.h.
The case for (pair) is also straightforward since every pair is (head) clash-free.
Let us consider the case for (match), where Φ has the following form:

Γt ` t : σ Γt|p 
 p : A ∆ ` u : A
(match)

(Γt\\ var(p)) ∧∆ ` t[p\u] : σ

If t −→h t
′ for some t′, so that t[p\u] −→h t

′[p\u], then the size of the typing derivation
of t′[p\u] is smaller than that of Φ by Upper Subject Reduction. The i.h. then gives
t′[p\u] (head) clash-free and thus t[p\u] is (head) clash-free.
If t 6−→h then there are two cases.
∗ If p is a variable x, then t[x\u] −→h t{x\u} and by Upper Subject Reduction t{x\u}

has a type derivation strictly smaller than that of Φ, thus by the i.h. t{x\u} is
(head) clash-free and so is t[x\u].

∗ Otherwise p is a pair, so that A 6= [ ] (i.e. A = [×(A1,A2)]).
· If u −→h u

′ then t[p\u] −→h t[p\u′], so that the size of the typing derivation of
t[p\u′] is smaller than that of Φ by Upper Subject Reduction. The i.h. then gives
t[p\u′] (head) clash-free and thus t[p\u] is (head) clash-free.

· If u6−→h then t[p\u] is a head-normal form. In order to guarantee that t[p\u] is
(head) clash-free note that u cannot be of the form L[[λq.v]], which can only be
typed with a multiset of functional types.

Let us consider the case for rule (app), where Φ has the following form

Φu . Γu ` u : A → σ Φv . Γv ` v : A
Γu ∧ Γv ` u v : σ

Note that u cannot be of the form L[[〈u1, u2〉]] because it is typed with a functional type,
thus it is either L[[x]] or L[[λp.u′]].
If u is L[[x]], then u is (head) clash-free by the i.h. and thus uv is necessarily (head)
clash-free.
If u is L[[λp.u′]] then t = L[[λp.u′]]v −→h L[[u′[p\v]]] = t′ and the size of the type derivation
of t′ is strictly smaller than the size of Φ by Upper Subject Reduction. The i.h. gives t′
(head) clash-free, and thus t is also (head) clash-free. J
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B Soundness of System E

I Lemma 12 (Tight Spreading). Let t ∈ N . Let Φ � Γ `(b,e,m,f) t : σ be a typing
derivation such that tight(Γ). Then σ is tight and the last rule of Φ does not belong
to {app, abs, absp, pair, pairp}.

Proof. First note that, since t ∈ N , then t is not an abstraction nor a pair, therefore one
cannot apply any of the rules {abs, absp, pair, pairp, emptypair}. We now examine the
remaining rules.

t = x. Then Φ is an axiom x : [t] `(0,0,0,0) x : t so the property trivially holds.
t = uv, with u ∈ N . Then Φ has a (left) subderivation Φu � Γu `(b,e,m,f) u : σu, and
since Γu ⊆ Γ, then Γu is necessarily tight. Therefore, by the i.h., σu = •N , from which
follows that σ = •N by applying rule (appp). Note that one cannot apply rule (app) to
type uv, since t would have to be an arrow type, which contradicts the i.h.
t = u[p\v], with u ∈ N , v ∈ N . Then Φ follows from Φu . Γu `(bu,eu,mu,fu) u : σ,
Φp . Γu|p 
(ep,mp,fp) p : A and Φv .∆ `(bv,ev,mv,fv) v : A, where Γ = (Γu\\ var(p)) ∧∆.
Since (Γu\\ var(p)) ∧∆ is tight, then ∆ is tight. By the i.h. on v one gets a derivation
∆ `(bv,ev,mv,fv) v : •N so that ∆ `(bv,ev,mv,fv) v : [•N ] follows from many and Γu|p 
(0,0,1)

p : [•N ] necessarily follows from rule (patp). This implies Γu|p is tight, therefore Γu is
tight. Since u ∈ N the i.h. gives σ ∈ t as expected. J

I Lemma 13 (Canonical Forms and Minimal Counters). Let Φ � Γ `(b,e,m,f) t : σ be a tight
derivation. Then t ∈M if and only if b = e = m = 0.

Proof. By induction on Φ � Γ `(b,e,m,f) t : σ, where Φ is tight (right-to-left implication),
and by induction on t ∈M (left-to-right implication). The latter is presented below.

t = λp.u, with u ∈ M. Then Φ cannot end with rule (abs) because σ is tight. The
last rule of Φ is necessarily (absp). The i.h. then applies and gives b = e = m = 0 and
f − 1 = |u|. We conclude since f = |u|+ 1 = |t|.
t = 〈t1, t2〉. Then Φ necessarily ends with rule (pairp) and the counters are as required.
t = u[p\v], with u ∈ M, v ∈ N . Then Φ ends with rule (match), so that u (resp. v) is
typable with some context Γu (resp. Γv), where Γ = (Γu\\ var(p)) ∧ Γv. Let us consider
the type A of u in the premise of rule (match). Since Γv is tight and v ∈ N , then Lem. 12
guarantees that every type of v in A is tight, and every counter typing v is of the form
(0, 0, 0, |v|). This same multitype A types the pattern p, so that there are in principle
two cases:

Either p is a variable typable with rule (patv), but then t /∈M since t is still reducible.
Contradiction.
Or p is typable with rule (patp), so that its counter is (0, 0, 1), its type is [•N ] and its
context is Γu|p necessarily tight by definition of rule (patp).

Since Γu\\ var(p) is tight by hypothesis, then the whole context Γu is tight. We can then
apply the i.h. to u and obtain counters for u of the form bu = eu = mu = 0 and fu = |u|.
On the other side, since the type of p is [•N ] (rule patp), there is only one premise to
type v, which is necessarily of the form ∆ `(0,0,0,|v|) v : •N . We then conclude that the
counters typing u[p\v] are b = e = m = 0 and f = fu + fv + 1 = |u|+ |v|+ 1 = |t|, as
required.
t ∈ N . We have three different cases.
t = x. This case is straightforward.
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t = uv, with u ∈ N . Since Φ is tight, then Γ is tight and we can apply Lem. 12. Then
Φ necessarily ends with rule (appp). The i.h. then applies to the premise typing u, thus
giving counters b = e = m = 0 and f − 1 = |u|. We conclude since f = |u|+ 1 = |t|.
t = u[p\v], with u ∈ N , v ∈ N . This case is similar to the third case. J

I Lemma 14 (Substitution for System E ). If Φt . Γ;x : A `(bt,et,mt,ft) t : σ, and Φu .

∆ `(bu,eu,mu,fu) u : A, then there exists Φt{x\u} .Γ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : σ.

Proof. We generalise the statement as follows: Let Φu .∆ `(bu,eu,mu,fu) u : A.
If Φt . Γ;x : A `(bt,et,mt,ft) t : σ, then there exists
Φt{x\u} . Γ ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : σ.
If Φt . Γ;x : A `(bt,et,mt,ft) t : B, then there exists
Φt{x\u} . Γ ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : B.

The proof then follows by induction on Φt.
If Φt is (ax), then we consider two cases:
t = x: then Φx . x : [σ′] `(0,0,0,0) x : σ′ and Φu . ∆ `(bu,eu,mu,fu) u : [σ′], which is
a consequence of ∆ `(bu,eu,mu,fu) u : σ′. Then x{x\u} = u, and we trivially obtain
Φt{x\u} .∆ `(0+bu,0+eu,0+mu,0+fu) u : σ′.
t = y: then Φy . y : [σ];x : [ ] `(0,0,0,0) y : σ and Φu . ∅ `(0,0,0,0) u : [ ]. Then
y{x\u} = y, and we trivially obtain Φt{x\u} . y : [σ] `(0+0,0+0,0+0,0+0) y : σ.

If Φt ends with (many), then it has premises (Φit . Γi;x : Ai `(bi
t,e

i
t,m

i
t,f

i
t ) t : σi)i∈I , where

Γ = ∧i∈IΓi, A = ∧i∈IAi, bt = +i∈Ib
i
t, et = +i∈Ie

i
t, mt = +i∈Im

i
t, ft = +i∈If

i
t and

B = [σi]i∈I . The derivation Φu can also be decomposed into several subderivations
(Φi

u . ∆i `(bi
u,e

i
u,m

i
u,f

i
u) u : Ai)i∈I , where bu = +i∈Ib

i
u, eu = +i∈Ie

i
u, mu = +i∈Im

i
u,

fu = +i∈If
i
u, ∆ = ∧i∈I∆i. We can apply the i.h. and we thus obtain derivations

(Φit{x\u} . Γi ∧∆i `(bi
t+bi

u,e
i
t+ei

u,m
i
t+mi

u,f
i
t +fi

u) t{x\u} : σi)i∈I . Then we apply rule (many)
to get Φt{x\u} . Γ ∧∆ `(bt+bu,et+eu,mt+mu,ft+fu) t{x\u} : B.
If Φt ends with (app), so that t = t′u′, then

Φt′u′ . Γt′ ∧ Γu′ ;x : At′ ∧ Au′ `(bt′ +bu′ ,et′ +eu′ ,mt′ +mu′ ,ft′ +fu′ ) t′u′ : σ,

which follows from the two term premises Γt′ ;x : At′ `(bt′ ,et′ ,mt′ ,ft′ ) t′ : B → σ and
Γu′ ;x : Au′ `(bu′ ,eu′ ,mu′ ,fu′ ) u′ : B. Also, Φu . ∆ `(bu,eu,mu,fu) u : A is a consequence
of (∆k `(bk

u,e
k
u,m

k
u,f

k
u ) u : σk)k∈K , with A = [σk]k∈K , ∆ = ∧k∈K∆k and bu = +k∈Kb

k
u,

eu = +k∈Ke
k
u, mu = +k∈Km

k
u and fu = +k∈Kf

k
u . Note on the other hand that

A = At′ ∧ Au′ = [σi]i∈Kt′ ∧ [σi]i∈Ku′ , with K = Kt′ ]Ku′ , from which one can obtain
(using the many rule):

∆t′ `(Bt′ ,Et′ ,Mt′ ,Ft′ ) u : At′
∆u′ `(Bu′ ,Eu′ ,Mu′ ,Fu′ ) u : Au′

where bu = Bt′ +Bu′ = (+i∈Kt′ b
i
u)+(+i∈Ku′ b

i
u), eu = Et′ +Eu′ = (+i∈Kt′ e

i
u)+(+i∈Ku′ e

i
u),

mu = Mt′ +Mu′ = (+i∈Kt′m
i
u) + (+i∈Ku′m

i
u), fu = Ft′ +Fu′ = (+i∈Kt′ f

i
u) + (+i∈Ku′ f

i
u).

By the i.h. we have:

Γt′ ∧∆t′ `(bt′ +Bt′ ,et′ +Et′ ,mt′ +Mt′ ,ft′ +Ft′ ) t′{x\u} : B → σ

Γu′ ∧∆u′ `(bu′ +Bu′ ,eu′ +Eu′ ,mu′ +Mu′ ,fu′ +Fu′ ) u′{x\u} : B
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Finally, applying the app rule we obtain:

Γt′ ∧ Γu′ ∧∆t′ ∧∆u′ `(b,e,m,f) (t′{x\u})(u′{x\u}) : σ

with b = bt′ + bu′ + bu, e = et′ + eu′ + eu, m = mt′ +mu′ +mu and f = ft′ + fu′ + fu, as
expected.
If Φt ends with (abs), (absp), (appp) or (match) the result follows from the i.h. by
assuming α-conversion whenever necessary.
If Φt ends with (pair) or (pairp), so that t = 〈t′, u′〉, then we have two cases. The case
for pairp, follows from Φt being of the form x : [ ] `(0,0,0,1) 〈t′, u′〉 : •M, which implies
Φu. `(0,0,0,0) u : [ ]. Therefore ∅ `(0+0,0+0,0+0,1+0) 〈t′{x\u}, u′{x\u}〉 : •M holds. The
case for pair follows by induction following the same reasoning used in rule app. J

I Lemma 15 (Exact Subject Reduction). If Φ . Γ `(b,e,m,f) t : σ, and t −→h t
′ is an s-step,

with s ∈ {b, e, m}, then Φ′ . Γ `(b′,e′,m′,f) t′ : σ, where
s = b implies b′ = b− 1, e′ = e, m′ = m.
s = e implies b′ = b, e′ = e− 1, m′ = m.
s = m implies b′ = b, e′ = e, m′ = m− 1.

Proof. By induction on −→h .
t = L[[λp.v]]u −→h L[[v[p\u]]] = t′. The proof is by induction on the list context L. We only
show the case of the empty list as the other one is straightforward. The typing derivation
Φ is necessarily of the form

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : A
Γv\\ var(p) `(bv+1,ev+ep,mv+mp,fv+fp) λp.v : A → σ Γu `(bu,eu,mu,fu) u : A

Γv\\ var(p) ∧ Γu `(bv+1+bu,ev+ep+eu,mv+mp+mu,fv+fp+fu) (λp.v)u : σ

We then construct the following derivation Φ′:

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : A Γu `(bu,eu,mu,fu) u : A
Γv\\ var(p) ∧ Γu `(bv+bu,ev+ep+eu,mv+mu+mp,fv+fp+fu) v[p\u] : σ

The counters are as expected because the first one has decremented by 1.
t = v[x\u] −→h v{x\u} = t′, where v 6−→h . Then Φ has two premises Γv;x : A `(bv,ev,mv,fv)

v : σ and Γu `(bu,eu,mu,fu) u : A, where Γ = Γv ∧ Γu, b = bv + bu, e = ev + eu + 1,
m = mv +mu + 0, and f = fv + fu + 0.
Lem. 14 then gives a derivation ending with Γv∧Γu `(bv+bu,ev+eu,mv+mu,fv+fu) v{x\u} : σ.
The context, type, and counters are as expected.
t = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→h L[[v[p1\u1][p2\u2]]] = t′, where v 6−→h .
Let p = 〈p1, p2〉 and u = 〈u1, u2〉. The typing derivation Φ is necessarily of the form

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : A Γu `(bu,eu,mu,fu) L[[u]] : A
Γv\\ var(p) ∧ Γu `(bv+bu,ev+eu+ep,mv+mu+mp,fv+fu+fp) v[〈p1, p2〉\L[[u]]] : σ

Then A = [×(A1,A2)], for some multitypes A1 and A2, and so the pattern 〈p1, p2〉 is
typable as follows:

Γv|p1 

(e1,m1,f1) p1 : A1 Γv|p2 


(e2,m2,f2) p2 : A2

Γv|p 
(e1+e2,1+m1+m2,f1+f2) 〈p1, p2〉 : [×(A1,A2)]

where ep = e1 + e2, mp = 1 + m1 + m2 and fp = f1 + f2. The proof then follows by
induction on list L:
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For L = 2 we have term u typable as follows:

Γ1 `(b′
1,e

′
1,m

′
1,f

′
1) u1 : A1 Γ2 `(b′

2,e
′
2,m

′
2,f

′
2) u2 : A2

Γu `(bu,eu,mu,fu) 〈u1, u2〉 : ×(A1,A2)
Γu `(bu,eu,mu,fu) 〈u1, u2〉 : A

where Γu = Γ1 ∧ Γ2 and (bu, eu,mu, fu) = (b′1 + b′2, e
′
1 + e′2,m

′
1 +m′2, f

′
1 + f ′2).

We first construct the following derivation:

Γv `(bv,ev,mv,fv) v : σ Γv|p1 

(e1,m1,f1) p1 : A1 Γ1 `(b′

1,e
′
1,m

′
1,f

′
1) u1 : A1

Γv\\ var(p1) ∧ Γ1 `(bv+b′
1,ev+e′

1+e1,mv+m′
1+m1,fv+f ′

1+f1) v[p1\u1] : σ

By using relevance and α-conversion to assume freshness of bound variables, we can
construct a derivation with conclusion

Γv\\ var(p1)\\ var(p2) ∧ Γu `(b′,e′,m′,f) v[p1\u1][p2\u2] : σ

where (b′, e′,m′, f) = (bv + bu, ev + eu + e1 + e2,mv +mu +m1 +m2, fv + fu + f1 + f2).
In order to conclude we remark the following facts:
∗ Γv\\ var(〈p1, p2〉) = Γv\\ var(p1)\\ var(p2)
∗ bv + bu = bv + b′1 + b′2
∗ ev + eu + ep = ev + e′1 + e′2 + e1 + e2
∗ mv +mu +mp = mv +m′1 +m′2 + 1 +m1 +m2
∗ fv + fu + fp = fv + f ′1 + f ′2 + f1 + f2
Then the context, type and counters are as expected.
Let L = L′[q\s]. Then Φu is necessarily of the following form:

∆u `(b′
u,e

′
u,m

′
u,f

′
u) L′[[u]] : ×(A1,A2) ∆u|q 
(eq,mq,fq) q : B ∆s `(bs,es,ms,fs) s : B

Γu `(b′
u+bs,e

′
u+es+eq,m

′
u+ms+mq,f

′
u+fs+fq) L′[[u]][q\s] : ×(A1,A2)

Γu `(b′
u+bs,e

′
u+es+eq,m

′
u+ms+mq,f

′
u+fs+fq) L′[[u]][q\s] : A

where Γu = ∆u\\ var(q) ∧∆s, bu = b′u + bs, eu = e′u + es + eq, mu = m′u +ms +mq

and fu = f ′u + fs + fq.
We will apply the i.h. on the reduction step v[p\L′[[u]]] −→p L′[[v[p1\u1][p2\u2]]], in
particular we type the left-hand side term with the following derivation Ψ1:

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : A
∆u `(b′

u,e
′
u,m

′
u,f

′
u) L′[[u]] : ×(A1,A2)

∆u `(b′
u,e

′
u,m

′
u,f

′
u) L′[[u]] : A

Γv\\ var(p) ∧∆u `(bv+b′
u,ev+e′

u+ep,mv+m′
u+mp,fv+f ′

u+fp) v[p\L′[[u]]] : σ

where b1 = bv + b′u, e1 = ev + e′u + ep, m1 = mv +m′u +mp and f1 = fv + f ′u + fp. The
i.h. gives a derivation Ψ2 . Γv\\ var(p)∧∆u `(b2,e2,m2,f2) L′[[v[p1\u1][p2\u2]]] : σ where
b2 = b1, e2 = e1, m2 = m1 − 1 and f2 = f1. Let Λ = Γv\\ var(p) ∧∆u. We conclude
with the following derivation Φ′:

Ψ2 ∆u|q 
(eq,mq,fq) q : B ∆s `(bs,es,ms,fs) s : B
Λ\\ var(q) ∧∆s `(b2+bs,e2+es+eq,m2+ms+mq,f2+fs+fq) L′[[v[p1\u1][p2\u2]]][q\s] : σ

Indeed, we first remark that Λ|q = ∆u|q holds by relevance and α-conversion. Secondly,
Γv\\ var(p) ∧ Γu = Γv\\ var(p) ∧ (∆u\\ var(q)) ∧∆s = Λ\\ var(q) ∧∆s also holds by
relevance and α-conversion. Last, we conclude with the following remarks:
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∗ b′ = b2 + bs = b1 + bs = bv + bu = b

∗ e′ = e2 + es + eq = e1 + es + eq = ev + eu + ep = e

∗ m′ = m2 +ms +mq = m1 − 1 +ms +mq = mv +mu +mp − 1 = m− 1
∗ f ′ = f2 + fs + fq = f1 + fs + fq = fv + fu + fp = f

Most of the inductive cases are straightforward, so we only show the interesting one. Let
t = v[p\u] −→h v[p\u′] = t′, where v 6−→h and p 6= x and u −→h u

′. By construction there
are typing subderivations Φv . Γv `(bv,ev,mv,fv) v : σ, Φp . Γv|p 
(ep,mp,fp) p : A and
Φu . Γu `(bu,eu,mu,fu) u : A. Since p is not a variable then Φp ends with rule patp or
pat×. In both cases A contains only one type, let us say A = [σu]. Then Φu has the
following form

Γu `(bu,eu,mu,fu) u : σu
Φu . Γu `(bu,eu,mu,fu) u : [σu]

The i.h. applied to the premise of Φu gives a derivation Γu `(b′
u,e

′
u,m

′
u,fu) u′ : σu and

having the expected counters. To conclude we build a type derivation Φ′ for v[p\u′]
having the expected counters. J

C Completeness for System E

I Lemma 17 (Canonical Forms and Tight Derivations). Let t ∈ M. There exists a tight
derivation Φ � Γ `(0,0,0,|t|) t : t.

Proof. We generalise the property to the two following statements, proved by structural
induction on t ∈ N , t ∈M, respectively, using relevance (Lem. 8).

If t ∈ N , then there exists a tight derivation Φ � Γ `(0,0,0,|t|) t : •N :
If t = x, then x:[•N ] `(0,0,0,0) x : •N by (ax), where |x| = 0.
If t = u v where u ∈ N , then |t| = |u| + 1 and by i.h. there is a tight derivation
Φu � Γu `(0,0,0,|u|) u : •N . Then

Γu `(0,0,0,|u|) u : •N
Γu `(0,0,0,|u|+1) u v : •N

The result then holds for Γ := Γu.
If t = u[〈p1, p2〉\v] where u, v ∈ N , then |t| = |u| + |v| + 1 and by i.h. there
are tight derivations Φu � Γu `(0,0,0,|u|) u : •N , Φv � Γv `(0,0,0,|v|) v : •N . Then,
Φ′v � Γv `(0,0,0,|v|) v : [•N ] and

Φu Γu|〈p1,p2〉 

(0,0,1) 〈p1, p2〉 : [•N ] Φ′v

(Γu\\ var(〈p1, p2〉)) ∧ Γv `(0,0,0,|u|+|v|+1) u[〈p1, p2〉\v] : •N

The result then holds for Γ := (Γu\\ var(〈p1, p2〉)) ∧ Γv, since by i.h. tight(Γu) and
tight(Γv) thus tight(Γ).

If t ∈M, then there exists a tight derivation Φ � Γ `(0,0,0,|t|) t : t.
If t ∈ N then by the previous item the result holds for t := •N .
If t = 〈u, v〉 then |t| = 1 and `(0,0,0,1) 〈u, v〉 : •M by (pairp). The result then holds
for Γ := ∅.
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If t = λp.u where u ∈ M then |t| = |u| + 1 and, by i.h., there is a tight derivation
Φu � Γu `(0,0,0,|u|) u : t. Then

Φu � Γu `(0,0,0,|u|) u : t

Γu\\ var(p) `(0,0,0,|u|+1) λp.u : •M

The result then holds for Γ := Γu\\ var(p). Observe that, since by i.h. tight(Γu) holds,
and Γu\\ var(p) ⊆ Γu then tight(Γu\\ var(p)) trivially holds.
If t = u[〈p1, p2〉\v] where u ∈M and v ∈ N then |t| = |u|+ |v|+ 1. Moreover, by the
previous item there is a tight Φv�Γv `(0,0,0,|v|) v : •N (so that tight(Γv)) and, by i.h.,
there is a tight derivation Φu � Γu `(0,0,0,|u|) u : t. Then, Φ′v � Γv `(0,0,0,|v|) v : [•N ]
and

Φu (Γu)|〈p,q〉 
(0,0,1) 〈p, q〉 : [•N ] Φ′v
(Γu\\ var(〈p1, p2〉)) ∧ Γv `(0,0,0,|u|+|v|+1) u[〈p1, p2〉\v] : t

The result then holds for Γ := (Γu\\ var(〈p1, p2〉)) ∧ Γv, since tight(Γv) as remarked,
and by i.h. tight(Γu), thus tight(Γ). J

I Lemma 18 (Anti-Substitution for System E ). Let Φ . Γ `(b,e,m,f) t{x\u} : σ. Then, there
exist derivations Φt, Φu, integers bt, bu, et, eu,mt,mu, ft, fu, contexts Γt,Γu, and multitype A
such that Φt .Γt;x : A `(bt,et,mt,ft) t : σ, Φu .Γu `(bu,eu,mu,fu) u : A, b = bt+ bu, e = et+eu,
m = mt +mu, f = ft + fu, and Γ = Γt ∧ Γu.

Proof. As in the case of the substitution lemma, the proof follows by generalising the
property for the two cases where the type derivation Φ assigns a type or a multiset type.

Let Φ.Γ `(b,e,m,f) t{x\u} : σ. Then, there exist derivations Φt, Φu, integers bt, bu, et, eu,
mt, mu, ft, fu, contexts Γt,Γu, and multitype A such that Φt .Γt;x : A `(bt,et,mt,ft) t : σ,
Φu . Γu `(bu,eu,mu,fu) u : A, b = bt + bu, e = et + eu, m = mt + mu, f = ft + fu, and
Γ = Γt ∧ Γu.
Let Φ.Γ `(b,e,m,f) t{x\u} : B. Then, there exist derivations Φt, Φu, integers bt, bu, et, eu,
mt, mu, ft, fu, contexts Γt,Γu, and multitype A such that Φt .Γt;x : A `(bt,et,mt,ft) t : B,
Φu . Γu `(bu,eu,mu,fu) u : A, b = bt + bu, e = et + eu, m = mt + mu, f = ft + fu, and
Γ = Γt ∧ Γu.

We will reason by induction on Φ. For all the rules (except many), we will have the trivial
case t{x\u}, where t = x, in which case t{x\u} = u, for which we have a derivation
Φ . Γ `(b,e,m,f) u : σ. Therefore Φt . x : [σ] `(0,0,0,0) x : σ and Φu . Γ `(b,e,m,f) u : [σ] is
obtained from Φ using the (many) rule. The conditions on the counters hold trivially. We
now reason on the different cases assuming that t 6= x.

If Φ is (ax), therefore Φ . y : [σ] `(0,0,0,0) y : σ. We only consider the case where t = y

and y 6= x. Then we take A = [ ], Φt . y : [σ];x : [ ] `(0,0,0,0) y : σ and Φu. `(0,0,0,0) u : [ ],
using rule (many). The conditions on the counters follow trivially.
If Φ ends with (many), then Φ.∧k∈KΓk `(+k∈Kbk,+k∈Kek,+k∈Kmk,+k∈Kfk) t{x\u} : [σk]k∈K
follows from Φk . Γk `(bk,ek,mk,fk) t{x\u} : σk, for each k ∈ K. By the i.h. there exist
Φk
t , Φk

u, bkt , bku, ekt , eku, mk
t , mk

u, fkt , fku , contexts Γkt , Γku and multitype Ak, such that
Φk
t . Γkt ;x : Ak `(bk

t ,e
k
t ,m

k
t ,f

k
t ) t : σk, Φk

u . Γku `(bk
u,e

k
u,m

k
u,f

k
u ) u : Ak, Γk = Γkt ∧ Γku,

bk = bkt + bku, ek = ekt + eku, mk = mk
t +mk

u, fk = fkt + fku .
Taking A = ∧k∈KAk and using the (many) rule on the derivations (Φkt )k∈K we get now
∧k∈KΓkt ;x : A `(+k∈Kb

k
t ,+k∈Ke

k
t ,+k∈Km

k
t ,+k∈Kf

k
t ) t : [σk]k∈K . From the premises (Φku)k∈K ,

by applying again the (many) rule, we get ∧k∈KΓku `(+k∈Kb
k
u,+k∈Ke

k
u,+k∈Km

k
u,+k∈Kf

k
u ) u : A.
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Note that Γ = ∧k∈KΓk = (∧k∈KΓkt ) ∧ (∧k∈KΓku), b = +k∈Kbk = (+k∈Kb
k
t ) + (+k∈Kb

k
u),

e = +k∈Kek = (+k∈Ke
k
t ) + (+k∈Ke

k
u), m = +k∈Kmk = (+k∈Km

k
t ) + (+k∈Km

k
u) and

f = +k∈Kfk = (+k∈Kf
k
t ) + (+k∈Kf

k
u ), as expected.

If Φ ends with (abs), then t = λp.t′, therefore

Φ . Γ\\ var(p) `(bt+1,et+ep,mt+mp,ft+fp) λp.(t′{x\u}) : B → σ

follows from Γ `(bt,et,mt,ft) t′{x\u} : σ and Γ|p 
(ep,mp,fp) p : B. On the other side
one can always assume that var(p) ∩ fv(u) = ∅ and x /∈ var(p). We can then apply
the i.h. to obtain Φt′ . Γt′ ;x : A `(b′

t,e
′
t,m

′
t,f

′
t) t′ : σ, Φu . Γu `(bu,eu,mu,fu) u : A, with

Γ = Γt′ ∧ Γu, bt = bt′ + bu, et = et′ + eu, mt = mt′ + mu, ft = ft′ + fu. Then using
rule (abs) we get Φt . Γt′\\ var(p);x : A `(bt′ +1,et′ +ep,mt′ +mp,ft′ +fp) λp.t′ : B → σ. And
Γ\\ var(p) = (Γt′\\ var(p)) ∧ Γu, bt + 1 = b′t + 1 + bu, et = et′ + eu, mt = mt′ +mu and
ft = ft′ + fu, as expected.
If Φ ends with (app) then t = t′u′, and the derivation

Φ . Γ ∧∆ `(bt′ +bu′ ,et′ +eu′ ,mt′ +mu′ ,ft′ +fu′ ) t′{x\u}u′{x\u} : σ

follows from Γ `(bt′ ,et′ ,mt′ ,ft′ ) t′{x\u} : B → σ and ∆ `(bu′ ,eu′ ,mu′ ,fu′ ) u′{x\u} : B. By
the i.h. there exist Φt′ ,Φu

t′ , bt′′ , but′ , et′′ , eut′ , mt′′ , mu
t′ , ft′′ , fut′ , contexts Γt′ , Γut′ and

multitype At′ , such that

Φt′ . Γt′ ;x : At′ `(bt′′ ,et′′ ,mt′′ ,ft′′ ) t′ : B → σ Φut′ . Γut′ `(bu
t′ ,e

u
t′ ,m

u
t′ ,f

u
t′ ) u : At′

where bt′ = bt′′ + but′ , et′ = et′′ + eut′ , mt′ = mt′′ +mu
t′ , ft′ = ft′′ + fut′ and Γ = Γt′ ∧ Γut′ .

And by the i.h. applied to the second premise of Φ, there exist Φu′ ,Φu
u′ , bu′′ , buu′ , eu′′ ,

euu′ , mu′′ , mu
u′ , fu′′ , fuu′ , contexts Γu′ , Γuu′ and multitype Au′ , such that

Φu′ .∆u′ ;x : Au′ `(bu′′ ,eu′′ ,mu′′ ,fu′′ ) u′ : B Φuu′ .∆u
u′ `(bu

u′ ,e
u
u′ ,m

u
u′ ,f

u
u′ ) u : Au′

where bu′ = bu′′ +buu′ , eu′ = eu′′ +euu′ ,mu′ = mu′′ +mu
u′ , fu′ = fu′′ +fuu′ and ∆ = ∆u′∧∆u

u′ .
Now, taking A = At′ ∧ Au′ , and using the (app) rule, one gets a derivation of the
form Φt′u′ . Γt′ ∧ ∆u′ ;x : At′ ∧ Au′ `(bt′′ +bu′′ ,et′′ +eu′′ ,mt′′ +mu′′ ,ft′′ +fu′′ ) t′ : B → σ

and applying the (many) rule to the premises of Φu
t′ and Φu

u′ one gets a derivation
of the form Φu . Γut′ ∧ ∆u

u′ `(bu
t′ +bu

u′ ,e
u
t′ +eu

u′ ,m
u
t′ +mu

u′ ,f
u
t′ +fu

u′ ) u : A. Note that Γ ∧ ∆ =
(Γt′∧Γut′)∧(∆u′∧∆u

u′) = (Γt′∧∆u′)∧(Γut′∧∆u
u′) and b = bt′ +bu′ = (bt′′ +but′)+(bu′′ +buu′) =

(bt′′ + bu′′) + (but′ + buu′) as expected (the same happens for the remaining counters).
If Φ ends with (absp), (appp) or (match) the result follows from the inductive hypothesis,
as in the previous cases.
If Φ ends with (pair) or (pairp), so that t = 〈t′, u′〉, then we have two cases. The case
for pairp, follows from Φ being of the form `(0,0,0,1) 〈t′{x\u}, u′{x\u}〉 : •M. We then
take A = [ ], Φ〈t′,u′〉 . x : [ ] `(0,0,0,1) 〈t′, u′〉 : •M and Φu. `(0,0,0,0) u : [ ] follows trivially
from the (many) rule. Then conditions on counters and contexts hold trivially. The case
for (pair) follows by induction using the same reasoning as in rule (app). J

I Lemma 19 (Exact Subject Expansion). If Φ′ .Γ `(b′,e′,m′,f ′) t′ : σ, and t −→h t
′ is an s-step,

with s ∈ {b, e, m}, then Φ . Γ `(b,e,m,f) t : σ, where
s = b implies b = b′ + 1, e′ = e, m′ = m.
s = e implies b′ = b, e = e′ + 1, m′ = m.
s = m implies b′ = b, e′ = e, m = m′ + 1.
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Proof. By induction on −→h, using Lem. 18.
t = L[[λp.v]]u −→h L[[v[p\u]]] = t′. The proof is by induction on the list context L.
If L = 2 then by construction there are derivations Φv � Γv `(bv,ev,mv,fv) v : σ and
Φu � Γu `(bu,eu,mu,fu) u : A for some multitype A, and Φ′ is of the form

Φv (Γv)|p 
(ep,mp,fp) p : A Φu
(Γv\\ var(p)) ∧ Γu `(b′,e′,m′,f) v[p\u] : σ

where Γ = (Γv\\ var(p)) ∧ Γu, b′ = bv + bu, e′ = ev + eu + ep, m′ = mv +mu +mp and
f = fv + fu + fp. Then

Φ .

Φv (Γv)|p 
(ep,mp,fp) p : A
Γv\\ var(p) `(bv+1,ev+ep,mv+mp,fv+fp) λp.v : A → σ Φu

(Γv\\ var(p)) ∧ Γu `((bv+1)+bu,(ev+ep)+eu,(mv+mp)+mu,(fv+fp)+fu) (λp.v)u : σ

where b = (bv + 1) + bu = b′ + 1, e = (ev + ep) + eu = e′ and m = (mv +mp) +mu = m′.
If L 6= 2 the proof from the i.h. is straightforward.
t = v[x\u] −→h v{x\u} = t′, where v 6−→h . Then by the anti-substitution property (Lem. 18)
there exist derivations Φv, Φu, integers bv, bu, ev, eu,mv,mu, fv, fu, contexts Γv,Γu, and
multitype A such that Φv . Γv;x : A `(bv,ev,mv,fv) v : σ, Φu . Γu `(bu,eu,mu,fu) u : A,
b′ = bv + bu, e′ = ev + eu, m′ = mv +mu, f = fv + fu, and Γ = Γv ∧ Γu. Then,

Φ .
Φv (Γv;x : A)|x 
(1,0,0) x : A Φu

Γv ∧ Γu `(bv+bu,ev+eu+1,mv+mu+0,fv+fu+0) v[x\u] : σ

where b = bv + bu = b′, e = ev + eu + 1 = e′ + 1 and m = mv + mu = m′. Note that
(Γv;x : A)\\ var(x) = Γv.
t = v[〈p1, p2〉\L[[〈u1, u2〉]]] −→h L[[v[p1\u1][p2\u2]]] = t′, where v 6−→h . Let us abbreviate
p = 〈p1, p2〉 and u = 〈u1, u2〉. The proof is by induction on the list L.

L = 2, then there are Φv . Γv `(bv,ev,mv,fv) v : σ, Φ1 . Γ1 `(b1
u,e

1
u,m

1
u,f

1
u) u1 : A1 and

Φ2 . Γ2 `(b2
u,e

2
u,m

2
u,f

2
u) u2 : A2 where

Φv[p1\u1] .
Φv Γv|p1 


(e1,m1,f1) p1 : A1 Φ1

(Γv\\ var(p1)) ∧ Γ1 `(bv+b1
u,ev+e1

u+e1,mv+m1
u+m1,fv+f1

u+f1) v[p1\u1] : σ

and

Φ′ .
Φv[p1\u1] ((Γv\\ var(p1)) ∧ Γ1)|p2 


(e2,m2,f2) p2 : A2 Φ2

Γ `(b′,e′,m′,f) v[p1\u1][p2\u2] : σ

where b′ = bv +i=1,2 b
i
u, e′ = ev +i=1,2 e

i
u + ei, m′ = mv +i=1,2 m

i
u + mi, f =

fv +i=1,2 f
i
u + fi and Γ = (((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) ∧ Γ2.

Moreover, (((Γv\\ var(p1)) ∧ Γ1)\\ var(p2)) = ((Γv\\ var(p1))\\ var(p2) ∧ Γ1\\ var(p2)),
where (Γv\\ var(p1))\\ var(p2) = Γv\\ var(〈p1, p2〉) and Γ1\\ var(p2) =L. 8 Γ1. Simi-
larly, ((Γv\\ var(p1)) ∧ Γ1)|p2 =Lem. 8 (Γv\\ var(p1))|p2 and, by linearity of patterns,
(Γv\\ var(p1))|p2 = Γv|p2 . Hence,

Φ〈p1,p2〉 .
Γv|p1 


(e1,m1,f1) p1 : A1 Γv|p2 

(e2,m2,f2) p2 : A2

Γv|p1 ∧ Γv|p2 

(e1+e2,1+m1+m2,f1+f2) 〈p1, p2〉 : [×(A1,A2)]

where Γv|p1 ∧ Γv|p2 = Γv|〈p1,p2〉, and Φ〈u1,u2〉 . Γ1 ∧ Γ2 `(b1
u+b2

u,e
1
u+e2

u,m
1
u+m2

u,f
1
u+f2

u)

〈u1, u2〉 : [×(A1,A2)]. Therefore,
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Φ .
Φv Φ〈p1,p2〉 Φ〈u1,u2〉

(Γv\\ var(〈p1, p2〉)) ∧ (Γ1 ∧ Γ2) `(b,e,m,f) v[〈p1, p2〉\〈u1, u2〉] : σ

where b = bv+i=1,2 b
i
u = b′, e′ = ev+i=1,2e

i
u+ei = e′ and m = 1+mv+i=1,2m

i
u+mi =

m′ + 1.
If L = L′[q\s], then Φ′ is of the form:

ΓL′ `(b′
l,e

′
l,m

′
l,f

′
l ) L′[[v[p1\u1][p2\u2]]] : σ ΓL′ |q 
(eq,mq,fq) q : A Γs `(bs,es,ms,fs) s : A

ΓL′\\ var(q) ∧ Γs `(b′
l+bs,e

′
l+es+eq,m

′
l+ms+mq,f

′
l +fs+fq) L′[[v[p1\u1][p2\u2]]][q\s] : σ

where b′ = b′l + bs, e′ = e′l + es + eq, m′ = m′l + ms + mq, f ′ = f ′l + fs + fq
and Γ = ΓL′\\ var(q) ∧ Γs. From v[〈p1, p2〉\L′[[〈u1, u2〉]]] −→h L′[[v[p1\u1][p2\u2]]] and
derivation Φ′L′ for the leftmost premise by the i.h. one gets ΦL′ . ΓL′ `(bl,el,ml,fl)

v[〈p1, p2〉\L′[[〈u1, u2〉]]] : σ where bl = b′l, el = e′l, ml = m′l+1 and fl = f ′l . Furthermore
ΦL′ is necessarily of the form:

Γv `(bv,ev,mv,fv) v : σ Γv|p 
(ep,mp,fp) p : [×(A1,A2)]

Γu `(b′
u,e′

u,m′
u,f ′

u) L′[[u]] : ×(A1,A2)

Γu `(b′
u,e′

u,m′
u,f ′

u) L′[[u]] : [×(A1,A2)]

Γv\\ var(p) ∧ Γu `(bv+b′
u,ev+e′

u+ep,mv+m′
u+mp,fv+f ′

u+fp) v[p\L′[[u]]] : σ

where bl = bv + b′u, el = ev + e′u + ep, ml = mv + m′u + mp, fl = fv + f ′u + fp
and ΓL′ = Γv\\ var(p) ∧ Γu. Note that, by relevance and α-conversion we have that
ΓL′ |q = Γu|q. Then one can construct the following derivation Φu:

Γu `(b′
u,e

′
u,m

′
u,f

′
u) L′[[u]] : ×(A1,A2) Γu|q 
(eq,mq,fq) q : A Φs

Γu\\ var(q) ∧ Γs `(b′
u+bs,e

′
u+es+eq,m

′
u+ms+mq,f

′
u+fs+fq) L′[q\s][[u]] : ×(A1,A2)

Γu\\ var(q) ∧ Γs `(b′
u+bs,e

′
u+es+eq,m

′
u+ms+mq,f

′
u+fs+fq) L′[q\s][[u]] : [×(A1,A2)]

where bu = b′u + bs, eu = e′u + es + eq, mu = m′u + ms + mq and fu = f ′u + fs + fq.
From Φv . Γv `(bv,ev,mv,fv) v : σ and Πp . Γv|p 
(ep,mp,fp) p : [×(A1,A2)] we build Φ:

Φv Πp Γu\\ var(q) ∧ Γs `(bu,eu,mu,fu) L′[q\s][[u]] : [×(A1,A2)]

Γv\\ var(p) ∧ Γu\\ var(q) ∧ Γs `(bv+bu,ev+eu+ep,mv+mu+mp,fv+fu+fp) v[p\L′[q\s][[u]]] : σ

With Γv\\ var(p)∧Γu\\ var(q)∧Γs = (Γv\\ var(p)∧Γu)\\ var(q)∧Γs = Γ. Furthermore,
∗ b = bv + bu = bv + b′u + bs = bl + bs = b′

∗ e = ev + eu + ep = ev + e′u + es + eq + ep = el + es + eq = e′

∗ m = mv +mu +mp = mv +m′u +ms +mq +mp = ml +ms +mq = m′ + 1
∗ f = fv + fu + fp = fv + f ′u + fs + fq + fp = fl + fs + fq = f ′

Most of the inductive cases are straightforward, so we only show the interesting one.
Let t = v[p\u] −→h v[p\u′] = t′, where v 6−→h and p 6= x and u −→h u

′. By construction
there are subderivations Φv . Γv `(bv,ev,mv,fv) v : σ, Γv|p 
(ep,mp,fp) p : A and Φu′ .

Γu′ `(bu′ ,eu′ ,mu′ ,fu′ ) u′ : A for some multiset A and Γ = (Γv\\ var(p)) ∧ Γu′ . Since p is
not a variable then Φp ends with rule (patp) or (pat×). In both cases A contains only
one type, let us say A = [σu′ ]. Then Φu′ has the following form

Φu′ .
Γu′ `(bu′ ,eu′ ,mu′ ,fu′ ) u′ : σu′

Γu′ `(bu′ ,eu′ ,mu′ ,fu′ ) u′ : [σu′ ]

The i.h. applied to the premise of Φu′ gives a derivation Γu′ `(bu,eu,mu,fu) u : σu′ and
having the expected counters. To conclude we build a type derivation Φ′ for v[p\u′]
having the expected counters. J
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1 Introduction

1.1 Normalisation
In the context of typed lambda-calculi, normalisation refers to the process of computing
a canonical representative, called normal form, in each βη-equivalence class of terms. A
very general definition of normalisation, previously used in e.g. [6, 3, 7], is the following.
Normalisation is given by a set of normal forms and two (computable) maps: norm from
terms to normal forms, and an embedding p_q of normal forms into terms, satisfying

soundness If u 'βη v, then norm u = norm v

completeness1 For every term u, pnorm uq 'βη u
stability For every normal form n, norm pnq = n

The traditional way to define a normalisation function is through rewriting theory. One
proves that βη-reduction is confluent, and terminates2 on typed terms. Normal forms are
defined as terms which can not be βη-reduced, and normalisation is done by reducing a
term until reaching a normal form. Termination and confluence ensure the correctness of
the definition. Soundness also follows from confluence, while completeness and stability
are immediate. See for instance [16] for a detailed proof of this result for the simply-typed
lambda-calculus and some variants (System F, System T). Unfortunately, problems arise for

1 The choice of the words soundness and completeness comes from viewing normal forms as a model.
2 We do not use the words strong or weak normalisation to refer to termination of the rewriting process,

so as to avoid ambiguity with the generalised notion of normalisation introduced.
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some other variants of the lambda-calculus. For instance, the lambda-calculus with explicit
substitutions does not terminate in the strong sense [22], and the lambda-calculus with
coproduct types (i.e. disjoint union) is not confluent [14]. While some of these issues can
be worked around, for instance by using weak termination and more restrictive reductions,
these problems have lead to the development of other methods.

One of them is normalisation by evaluation (NBE), introduced by Berger and Schwichten-
berg [9] for the simply-typed lambda-calculus. The idea is to evaluate terms into a semantic
model, meaning for instance that λ-abstractions (syntactic functions) are interpreted by
actual (semantic) functions. A map from the model into normal forms is then defined, giving
rise to the normalisation function by composition with evaluation. This method was for
instance used to prove decidability of equivalence for the lambda-calculus with coproducts [4].

1.2 Big Step Normalisation
Big step normalisation (BSN) is a purely syntactic normalisation method, proposed in [3]
by Chapman and the first author for the simply-typed lambda-calculus. The normalisation
algorithm is in two parts. First, terms are evaluated by an environment machine, yielding
syntactic values. Then, values are mapped to normal forms by a function named quote.
Normalisation norm is done by evaluating in the identity environment, then applying quote
on the resulting value. The embedding p_q is the inclusion of normal forms into terms.

Evaluation and quote both have fairly simple definitions, but are not structurally recursive,
hence their termination is not obvious. To prove termination, a Tait-style predicate [25]
called strong computability (SC) is defined on values:

A value v of the base type is strongly computable if normalisation terminates on v.
A value f of a function type is SC if it preserves SC when applied to an argument.

The following results can then be proved.
quote terminates on any SC value, and conversely any neutral value (i.e. a value which is
not a λ-abstraction) on which quote terminates is SC.
In a SC environment, evaluation terminates and yields SC results.

Termination of norm follows from these results. Completeness and stability are straightforward.
The proof of soundness is more involved, and shares some similarities with the proof of
termination, but replaces strong computability with a binary relation on values.

1.3 BSN for Type Theory and Quotiented Syntax
Chapman also considered BSN for dependent type theory in [10], but did not provide a full
proof of correctness, due to the syntactic complexity added by dependent types.

In this work, we propose some methods to simplify the proof of BSN in the case of
dependent types, allowing us to complete it. Notably, we use the quotiented syntax of type
theory proposed in [8]. By only considering terms quotiented by βη-equivalence, the syntax
becomes significantly lighter. For instance, the coercion constructors which form a large part
of the syntactic boilerplate encountered in [10] become unnecessary.

With a quotiented syntax, the notion of normalisation changes slightly. If 'βη is replaced
with equality of quotiented terms in the first definition of a normalisation function, then
soundness simply states that norm is correctly defined on the quotiented syntax, while
completeness and stability state that norm and p_q are inverse of each other. This leads to
the following definition proposed in [7]: a normalisation function is simply an isomorphism
between quotiented terms and normal forms. Obviously, this definition requires a sensible
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notion of normal forms – one can not consider quotiented terms to be normal forms, and
identity to be normalisation. Thus, we require normal forms to have a simple inductive
definition, which ensures decidability of equality.3

1.4 Structure of the Paper
Section 2 presents the metatheory, notation, and conventions used in this paper. Section 3
presents the quotiented syntax of type theory. Section 4 introduces a notion of weakening
of contexts. Section 5 defines big step normalisation itself. Because it is not a priori clear
that BSN defines a correct function (termination for instance is problematic) we formally
define normalisation by its big step semantics, i.e. as a relation between inputs and output.
Section 6 focuses on the two major correctness proofs: termination and soundness. The
proof of termination remains similar to the case of simple types. The main difference is
that we develop a simplified and generalised induction principle for types, which allows us
to manipulate dependent types in almost the same way as simple types during the proof.
The proof of soundness for an unquotiented syntax seems much harder to adapt, we instead
provide a simple proof using soundness of NBE. Finally, Section 7 explains how the proof of
BSN can be adapted to a cubical metatheory, using higher inductive types to encode quotient
inductive types.

1.5 Related Work
Big step semantics have previously been used for the purpose of normalisation. For instance
T. Coquand uses a big step relation to decide conversion in type theory [12], but relies
on considerations on untyped terms, and focuses on deciding conversion, rather than fully
normalising terms. P.B. Levy uses Tait’s method to prove termination of a big step semantics
in the case of a simple programming language [21]. Big step normalisation was developed
by Chapman and the first author for a combinatory calculus [2], and for the simply-typed
lambda-calculus [3]. A generalisation to type theory was proposed [10], but without a full
proof of correctness. The present paper can be seen as a continuation of these works.

An important difference compared to previous works on big step normalisation is that
we use a quotiented syntax of type theory. This builds upon the work by Kaposi and the
first author which provides a concise, quotiented syntax of type theory within (a larger) type
theory [8], and formalises normalisation by evaluation in this syntax [7]. This quotiented
syntax is closely related to categories with families [15, 18], in that the syntax is essentially
an initial category with families. The syntax is formalised using quotient inductive-inductive
types (QIIT), which were previously used in [24] – although not under that name – to e.g.
define Cauchy reals in type theory. More recently, the precise notion and semantics of QIIT
has been the subject of work such as [1, 13, 20].

2 Metatheory and Notations

The present work has been formalised using a cubical metatheory [11] implemented by
Agda [23]. This cubical theory provides a simple way to define quotient inductive inductive
types (QIIT, cf. [8]) as a special case of higher inductive types. However, for simplicy, we

3 In the unquotiented case, the embedding of normal forms into terms (which can be proved to be injective)
ensures that equality of normal forms is decidable, hence why no such restriction was required.
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4:4 Big Step Normalisation for Type Theory

prefer to present this paper in a strict, intentional Martin-Löf Type Theory, extended with
QIIT. Functional extensionality is assumed, and can in fact be proved using the interval
quotient type. See Section 7 for a discussion of the implementation in a cubical metatheory.

Our metatheoretic notations are loosely based on the syntax of Agda. Function types
are written as (x : A) → B, or simply A → B for non-dependent functions. We use infix
arguments denoted by underscores, e.g. _,_ applied to x and y is written as x, y. Functions
with implicit arguments are defined as f : {x : A} → B, and the argument can be either
omitted, or given in subscript as fx. Sum types (dependent pairs) are denoted by Σ(x : A), B.
We denote by Set the universe of types, and by Prop the universe of mere propositions, i.e.
the types in which all elements are equal. The equality type is denoted by x ≡ y, while = is
only used in definitions. The transport of x : P a along an equality p : a ≡ b is denoted by
p∗x : P b. If p : a ≡ b, the type of dependent equalities between x : P a and y : P b lying over
p is denoted by x ≡p y. For simplicity and readability, transports and dependent equality
types will be omitted starting from Section 4.

Inductive types are introduced by data, the sort of the defined type, and the signatures
of the constructors. Inductive functions are defined by pattern-matching. For instance:

data N : Set where _ + _ : N→ N→ N

0 : N
S : N→ N

n+ 0 = n

n+ (S m) = S (n+m)

We allow a very general form of mutual induction, called inductive-inductive definitions. A
good example is the following fragment of the syntax of dependent types from next section.

data Con : Set where data Ty : Con→ Set where
• : Con
_,_ : (Γ : Con)→ Ty Γ→ Con

U : Ty Γ
Π : (A : Ty Γ)→ Ty (Γ, A)→ Ty Γ

In addition to Con and Ty being defined simultaneously, note that Ty is a family indexed by
Con, and the signature of the constructor Π form Ty uses the constructor _,_ from Con.

QIIT furthermore allow equality or quotient constructors, which build of equalities in the
defined type. For example the interval type is defined by two endpoints and an equality:

data I : Set where
a : I
b : I
p : a ≡ b

A function defined by induction on a QIIT must be defined inductively on regular constructors,
and must respect all quotient constructors, meaning that it must map the elements equated
by a quotient constructors to images which are provably equal. For instance, to define a
function by induction on I, one must specify the images f(a) and f(b), then prove that
f(a) ≡ f(b). The reader may refer to [8] for more details on QIIT.

Finally, all free variables in definitions and lemmas are implicitly universally quantified.
Omitted types can be inferred from the context and the naming conventions.

3 Quotiented Syntax of Type Theory

This section introduces the syntax of type theory based on QIIT proposed by Kaposi and
the first author in [8, 7]. The reader should refer to the former for further details.
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This syntax is intrinsically typed, with De Bruijn indices, and explicit substitutions.
Contexts, types, substitutions and terms are mutually defined. We denote contexts by
Γ,∆,Θ,Φ, types by A,B,C, substitutions by σ, ν, δ, and terms by s, t, u.

data Con : Set Con is the set of contexts
data Ty : Con→ Set Ty Γ are the types in context Γ
data Sub : Con→ Con→ Set Sub Γ ∆ are the substitutions from ∆ to Γ
data Tm : (Γ : Con)→ Ty Γ→ Set Tm Γ A are the terms of type A in Γ

Syntax constructors follow closely the definition of a category with families [15, 18] with
product types. Contexts and substitutions form a category, types are a presheaf, and terms
are a family of presheaves over types. The constructor for dependent function types is
denoted by Π. There is a base type U, and a base dependent family El indexed by U. One
may see U as a universe, i.e. a type whose elements are types, when interpreted through El –
this is reflected by the names of the constructors. Because we consider a minimalist type
theory, it is only an abstract universe, meaning that no element of U can be built in a closed
context. However, one may use contexts to postulate the existence of types in U.

The syntax constructors are listed below, with regular constructors on the left, and
equality constructors on the right.

data Con where
• : Con
_,_ : (Γ : Con)→ Ty Γ→ Con

data Ty where data Ty where
_[_] : Ty ∆→ Sub Γ ∆→ Ty Γ
U : Ty Γ
El : Tm Γ U→ Ty Γ
Π : (A : Ty Γ)→ Ty (Γ, A)→ Ty Γ

[id] : A[id] ≡ A
[◦] : A[σ ◦ ν] ≡ A[σ][ν]
U[] : U[σ] ≡ U
El[] : (El u)[σ] ≡ El(U[]∗u[σ])
Π[] : (Π A B)[σ] ≡ Π(A[σ])(B[σ↑A])

data Sub where data Sub where
id : Sub Γ Γ
_ ◦_ : Sub ∆ Θ→ Sub Γ ∆ → Sub Γ Θ
ε : Sub Γ •
_,_ : (σ : Sub Γ ∆)→ Tm Γ A[σ]

→ Sub Γ (∆, A)
π1 : Sub Γ (∆, A)→ Sub Γ ∆

id◦ : id ◦ σ ≡ σ
◦ id : σ ◦ id ≡ σ
◦ ◦ : (σ ◦ ν) ◦ δ ≡ σ ◦ (ν ◦ δ)
εη : {σ : Sub Γ •} → σ ≡ ε
π1β : π1(σ, u) ≡ σ
πη : π1 σ, π2 σ ≡ σ
, ◦ : (σ, u) ◦ ν ≡ (σ ◦ ν), ([◦]−1∗u[ν])

data Tm where data Tm where

π2 : (σ : Sub Γ (∆, A))→ Tm Γ (A[π1σ])
_[_] : Tm ∆ A→ (σ : Sub Γ ∆)

→ Tm Γ A[σ]
λ : Tm (Γ, A) B → Tm Γ (Π A B)
app : Tm Γ (Π A B)→ Tm (Γ, A) B

π2β : π2(σ, u) ≡π1β u

β : app (λu) ≡ u
η : λ(appu) ≡ u

λ[] : (λu)[σ] ≡Π[] λ(u[σ↑A])
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Equations Π[] and λ[] use the lifting of a substitution by a type, defined as follows.

_↑_ : (σ : Sub Γ ∆)→ (A : Ty ∆)→ Sub (Γ, A[σ]) (∆, A)
σ↑A = (σ ◦ π1 id), ([◦]−1∗π2 id)

This syntax uses a categorical application constructor app, which is essentially the inverse
of λ. One may understand app f as the application of f to a fresh variable. In order to
obtain the usual application, denoted _$_, this fresh variable must be substituted by the
argument. We denote this substitution of the last variable in the context by < _ >.

< _ > : Tm Γ A→ Sub Γ (Γ, A)
< u > = id , [id]−1∗u

_$_ : Tm Γ (Π A B)→ (u : Tm Γ A)→ Tm Γ (B[< u >])
f $ u = (app f)[< u >]

As a simple example, let us translate the lambda term λxA.λyB .x to this syntax. We
assume that A is type in context Γ, and B a type in context (Γ, A) (or in short Γ : Con,
A : Ty Γ, B : Ty (Γ, A)), so that (Γ, A,B) is a context. We start with id, intuitively the
substitution containing all variables in context.

id : Sub (Γ, A,B) (Γ, A,B)

The second to last variable in the context, corresponding to x, is retrieved through projections.

π2(π1 id) : Tm (Γ, A,B) A[π1 id]

Finally, the lambda-abstractions are added.

λ(λ(π2(π1 id))) : Tm Γ (Π A (Π B A[π1 id]))

4 Weakenings

In this section, we introduce variables and weakenings of contexts. The presentation is the
same as in [7], except that the latter uses the name “renamings” instead.

Variables, denoted by x, y, z, are defined as typed De Bruijn indices, with constructors vz
and vs standing for “0” and successor. Variables can be embedded into terms by applying
projections to id – intuitively, id is the substitution formed by all the variables in context.

data Var : (Γ : Con)→ Ty Γ→ Set where p_q : Var Γ A→ Tm Γ A

vz : Var (Γ, A) (A[π1 id])
vs : Var Γ A→ Var (Γ, B) (A[π1 id])

pvzq = π2 id
pvsxq = pxq[π1 id]

Weakening substitutions (or simply weakenings), denoted by α, β, γ, are substitutions com-
posed only of variables. This regroups the usual notions of weakening (i.e. forgetting a
variable), contraction, and reordering of independent variables. Note that constructors ε and
_,_ are overloaded due to the similarity with substitutions.

data Wk : Con→ Con→ Set where p_q : Wk Γ ∆→ Sub Γ ∆
ε : Wk Γ •
_,_ : (α : Wk Γ ∆)→ Var Γ A[pαq]→Wk Γ (∆, A)

pεq = ε

pα, xq = pαq, pxq



T. Altenkirch and C. Geniet 4:7

Unlike regular substitutions, identity and composition of weakenings are not constructors,
but inductive definitions. Some auxiliary functions are required: wk weakens the context
of a weakening substitution by a type A, and _[_] applies a weakening substitution to a
variable. These functions all commute with embeddings of variables and weakenings. We
omit the inductive definitions and proofs, which are simple.

wk : (A : Ty Γ)→Wk Γ ∆→Wk (Γ, A) ∆
id : {Γ : Con} →Wk Γ Γ
_[_] : Var ∆ A→ (α : Wk Γ ∆)→ Var Γ (A[pαq])
_ ◦_ : Wk ∆ Θ→Wk Γ ∆→Wk Γ Θ

pwkq : pwk A αq ≡ pαq ◦ (π1 id)
pidq : p id q ≡ id
p[]q : px[α]q ≡ pxq[pαq]
p◦q : pα ◦ βq ≡ pαq ◦ pβq

Contexts and weakenings form a category with these operations. Types, terms, and substitu-
tions can be weakened by applying a weakening substitution, seen as a regular substitution
through embedding. These operations respects identity and composition, that is types and
substitutions are presheaves on the category of weakenings, while terms are a family of
presheaves over types. Definitions are below, with the lemmas on the right (proofs omitted).

_ +_ : Ty ∆→Wk Γ ∆→ Ty Γ
A+α = A[pαq]
_ +_ : Tm ∆ A→ (α : Wk Γ ∆)→ Tm Γ A+α

u+α = u[pαq]
_ +_ : Sub ∆ Θ→Wk Γ ∆→ Sub Γ Θ
σ+α = σ ◦ pαq

+id : A+id ≡ A

+◦ : A+(α◦β) ≡ (A+α)+β

+id : u+id ≡ u

+◦ : u+(α◦β) ≡ (u+α)+β

+id : σ+id ≡ σ

+◦ : σ+(α◦β) ≡ (σ+α)+β

This will be a general pattern in later constructions and proofs: families of sets (e.g.
values, normal forms, . . . ) have a presheaf-like structure, which simply means that the
elements can be weakened coherently. Similarly, functions are natural transformations, i.e.
commute with weakening, and predicates are sub-presheaves, i.e. are stable under weakening.
The corresponding definitions and proofs are typically straightforward, and we will often not
mention them. We abusively denote all applications of weakenings by _ +_.

Finally, given a type A, one may consider wk A id : Wk (Γ, A) Γ, the weakening of the
context Γ by A. We abuse notations and write u+A for u+(wk A id).

5 Normalisation Relation

This section defines the big step normalisation algorithm using the previous syntax of type
theory. As further explained in Section 5.2, this algorithm can not yet be formally defined as
a function. Thus, it is defined as a relation in order to carry out the correctness proof.

We first define values and the evaluation from terms to values, then normal forms and
the function quote mapping values to normal forms. Normalisation is done by applying
evaluation followed by quote.

5.1 Values
A value is either a closure, corresponding to the delayed evaluation of a lambda-abstraction,
or a neutral value, that is the stuck application of a variable to values. We define mutually
values (denoted by v, w), neutral values (denoted by n), and environments (substitutions
composed of values, denoted by ρ, ω), together with the associated embeddings.
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data Val : (Γ : Con)→ Ty Γ→ Set where p_q : Val Γ A→ Tm Γ A

neu : NV Γ A→ Val Γ A

clos : Tm (∆, A) B → (ρ : Env Γ ∆)
→ Val Γ ((Π A B)[pρq])

pneu nq = pnq

pclos u ρq = (λu)[pρq]

data NV : (Γ : Con)→ Ty Γ→ Set where p_q : NV Γ A→ Tm Γ A

var : Var Γ A→ NV Γ A

app : NV Γ (Π A B)→ (v : Val Γ A)
→ NV Γ (B[< pvq >])

pvar xq = pxq

papp n vq = pnq $ pvq

data Env : Con→ Con→ Set where p_q : Env Γ ∆→ Sub Γ ∆
ε : Env Γ •
_,_ : (ρ : Env Γ ∆)→ Val Γ (A[pρq])→ Env Γ (∆, A)

pεq = ε

pρ, vq = pρq, pvq

This definition has an issue when used with a quotiented syntax: values can be equivalent as
terms (formally, have equal embeddings), but not equal. For instance, in a closure clos u ρ,
if the body u never refers to the environment ρ, then modifying ρ yields a distinct but
equivalent value. Then, evaluation would map equivalent terms to distinct values, hence
could not be defined on the quotiented syntax. This is fixed by forcing equivalent values to
be equal with the following quotient constructor.

data Val where
qVal : (v w : Val Γ A)→ pvq ≡ pwq→ v ≡ w

The corresponding result for environments can be proved by induction on contexts.

qEnv : (ρ ω : Env Γ ∆)→ pρq ≡ pωq→ ρ ≡ ω

Weakening is defined by induction on values, neutral values, and environments, we omit
the definitions and the associated lemmas. Finally, the identity environment is defined by
induction on the context, and uses weakening of environments.

idenv : {Γ : Con} → Env Γ Γ
idenv• = ε

idenvΓ,A = idenvΓ
+A , neu (var vz)

5.2 Evaluation
The first stage of normalisation is an environment machine, which evaluate terms in an
environment, and returns values. It consists of three mutually defined functions: eval and
evals evaluate terms and substitutions respectively in an environment, while _@_ computes
the application of a value to another.

eval : Tm ∆ A→ (ρ : Env Γ ∆)→ Val Γ A[pρq]
eval (π2 σ) ρ = let (ω, v) = (evals σ ρ) in v

eval (u[σ]) ρ = eval u (evals σ ρ)
eval (λu) ρ = clos u ρ
eval (app u) (ρ, v) = (eval u ρ) @ v
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evals : Sub ∆ Θ→ Env Γ ∆→ Env Γ Θ
evals id ρ = ρ

evals (σ ◦ ν) ρ = evals σ (evals ν ρ)
evals ε ρ = ε

evals (σ, u) ρ = (evals σ ρ), (eval u ρ)
evals (π1 σ) ρ = let (ω, v) = (evals σ ρ) in ω

_@_ : Val Γ (Π A B)→ (v : Val Γ A)→ Val Γ B[< pvq >]
(clos u ρ) @ v = eval u (ρ, v)
(neu n) @ v = neu (app n v)

Most cases are straightforward. Note how evaluation of a lambda simply returns a closure,
delaying the evaluation of the body. The latter occurs in the first case of _@_, as the
application of a closure to a value is computed by evaluating the body of the closure in the
extended environment. Evaluation of the projections π1, π2 performs a projection on an
environment, expressed through the let . . . in construct with an obvious meaning.

However, there are several problems with this presentation of the evaluator. Firstly, the
functions are defined by recursion on terms and substitutions, which are QIIT, but we did
not bother to verify that equality constructors are respected. Perhaps more worryingly, the
function is not structurally recursive: the last case of eval applies _@_ to eval u p, which a
priori is an arbitrary value. Thus it is not clear that the evaluator terminates.

The proof of correctness of this algorithm is not trivial, and is the subject of Section 6.
For now, we will only define the algorithm, i.e. we consider the previous definition as a
programming function, rather than an (incorrect) mathematical function. In order to formally
define this algorithm, we represent it by its big step semantics, that is the relation between
inputs and outputs of the evaluator. For instance, we denote by eval t ρ ⇓ v the proposition
“t evaluates to v in environment ρ”.

data eval__ ⇓ _ : Tm ∆ A→ Env Γ ∆→ Val Γ B → Prop where
evalπ2 : evals σ ρ ⇓ (ω, v)→ eval (π2 σ) ρ ⇓ v
eval[] : evals σ ρ ⇓ ω → eval u ω ⇓ v → eval (u[σ]) ρ ⇓ v
evalλ : eval (λu) ρ ⇓ (clos u ρ)
evalapp : eval f ρ ⇓ g → g @ v ⇓ w → eval (app f) (ρ, v) ⇓ w

data evals__ ⇓ _ : Sub ∆ Θ→ Env Γ ∆→ Env Γ Θ→ Prop where
evalsid : evals id ρ ⇓ ρ
evals◦ : evals ν ρ ⇓ ω → evals σ ω ⇓ ξ → evals (σ ◦ ν) ρ ⇓ ξ
evalsε : evals ε ρ ⇓ ε
evals, : evals σ ρ ⇓ ω → eval u ρ ⇓ v → evals (σ, u) ρ ⇓ (ω, v)
evalsπ1 : evals σ ρ ⇓ (ω, v)→ eval (π1 σ) ρ ⇓ ω

data _@_ ⇓ _ : Val Γ A→ Val Γ B → Val Γ C → Prop where
@clos : eval u (ρ, v) ⇓ w → (clos u ρ) @ v ⇓ w
@neu : (neu n) @ v ⇓ (neu (app n v))

The types of the above relations may seem surprisingly imprecise. For instance, the type of
eval does not give any information on the type of the return value – it is a value of some
unknown type B – whereas we know that it should have type A[< pρq >] when evaluating
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in environment ρ. Similarly, we do not even require the first argument of @ to be a function.
It would be possible to define the evaluation relation with more restrictive types, but this
would only complicate later proofs by requiring many additional transports. This choice may
be compared to heterogeneous equality, which can similarly simplify proofs merely by being
less restrictive than dependent equality types.

Of course, the expected type restrictions on evaluation can still be proved as lemmas.

I Lemma 1.
eval u ρ ⇓ v
pvq ≡ u[pρq]

evals σ ρ ⇓ ω
pωq ≡ σ ◦ pρq

f @ v ⇓ w
pfq $ pvq ≡ pwq

Proof. By simultaneous induction on the definitions of the relations eval, evals, and @. J

A soundness property follows.

I Lemma 2.

eval u ρ ⇓ v eval u ρ ⇓ w
v ≡ w

evals σ ρ ⇓ ω evals σ ρ ⇓ δ
ω ≡ δ

f @ u ⇓ v f @ u ⇓ w
v ≡ w

Proof. Using Lemma 1, and that embeddings of values and environments are injective by
qVal and qEnv. J

5.3 Normal Forms
Having defined the evaluator, we continue with the function quote which maps values to
normal forms. The classic notion of η-long β-normal forms (see for instance [19]) is used,
which interestingly is shared with normalisation by evaluation (cf. [7]).

Like values, normal forms are defined mutually with neutral normal forms, i.e. the
application of a variable to normal forms. An important difference is that not all neutral
normal forms are normal forms: it is only true for neutral normal forms of the base types
(i.e. U and El). This restriction ensures that normal forms are sufficiently η-expanded.

data Nf : (Γ : Con)→ Ty Γ→ Set where p_q : Nf Γ A→ Tm Γ A

λ : Nf (Γ, A) B → Nf Γ(Π A B)
neuU : NN Γ U→ Nf Γ U
neuEl : NN Γ (El u)→ Nf Γ (El u)

pλnq = λ pnq

pneuU nq = pnq

pneuEl nq = pnq

data NN : (Γ : Con)→ Ty Γ→ Set where p_q : NN Γ A→ Tm Γ A

var : Var Γ A→ NN Γ A

app : NN Γ (Π A B)→ (n : NN Γ A)
→ NN Γ (B[< pnq >])

pvar xq = pxq

papp m nq = pmq $ pnq

Note that normal forms are indexed by regular types, we do not use a notion of normal
types. Indeed, normalising types and terms simultaneously only seems to complicate matters,
and it is easier to first normalise a term without worrying about its type, then recursively
normalise the type. A disadvantage of this choice is that equality of normal forms is not
a priori decidable, because it would require to test equality of types, and in turn equality
of terms. This issue can be solved once the normalisation function is defined by proving
decidability of equality for terms, normal forms, and types simultaneously, as shown in [7].
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5.4 Quote
The function quote is defined by induction on the type of the value, together with quoten
which maps neutral values to neutral normal forms by recursively applying quote. Like the
evaluator, we begin with an informal definition as a function, which is then translated to a
relation.

quote : {A : Ty} → Val Γ A→ Nf Γ A

quoteU (neu v) = neuU (quoten v)
quote(El u) (neu v) = neuEl (quoten v)

quote(Π A B) f = λ(quote (f+A @ neu (var vz)))

quoten : NV Γ A→ NN Γ A

quoten (var x) = var x
quoten (app f v) = app (quoten f) (quote v)

A value of a base type is necessarily neutral, hence it suffice to use quoten in that case. For
function types, the definition of normal forms requires the result to be an abstraction. This is
done by η-expending the value, and applying quote to the body of the resulting abstraction.
The η-expansion is somewhat technical to define. First, the function is weakened as f+A

to allow the introduction of a new variable of type A represented by the De Bruijn index
vz. This variable is turned into a value by the var and neu constructors, and the weakened
function is applied using @, giving the body of the η-expansion.

Beside the problems of termination and correctness with regards to quotient constructors
which already appeared in the evaluator, one may note that quote is not defined on the _[_]
type constructor. We will later show that the definition for _[_] can in fact be inferred
from the other cases and the equality constraints. For now we again ignore all issues by
considering the big step semantics of quote.

data quote : Val Γ A→ Nf Γ A→ Prop where
quoteU : {v : NV U} → quoten v ⇓ n→ quote (neu v) ⇓ (neu n)
quoteEl : {v : NV (El t)} → quoten v ⇓ n→ quote (neu v) ⇓ (neu n)
quoteΠ : f+A @ (neu (var vz)) ⇓ v → quote v ⇓ n→ quote f ⇓ (λ n)

data quoten : NV Γ A→ NN Γ A→ Prop where
quotenvar : quoten (var x) ⇓ (var x)
quotenapp : quoten f ⇓ m→ quote v ⇓ n→ quoten (app f v) ⇓ (app m n)

A coherence result in the style of Lemma 1 is proved by induction on the relation.

I Lemma 3.
quote v ⇓ n
pnq ≡ pvq

quoten m ⇓ n
pnq ≡ pmq

5.5 Normalisation
Finally, terms are normalised by evaluating in the identity environment and applying quote.

norm u ⇓ n = Σ(v : Val Γ A) eval u idenv ⇓ v ∧ quote v ⇓ n

With this definition, stability and completeness of BSN can already be proved.
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I Theorem 4 (Completeness).

norm u ⇓ n
pnq ≡ u

Proof. Immediate by Lemmas 1 and 3. J

I Theorem 5 (Stability).

n : Nf Γ A
norm pnq ⇓ n

n : NN Γ A
Σ(v : NV Γ A) eval pnq ⇓ (neu v) ∧ quoten v ⇓ n

Proof. By simultaneous induction on normal forms and neutral normal forms. J

6 Correctness of BSN

Two main results must be proved in order to establish the correctness of BSN. Termination
states that the normalisation relation is defined on every term.

∀(u : Tm Γ A), ∃(n : Nf Γ A), norm u ⇓ n

Soundness states that normalisation can only give one result for each term.

norm u ⇓ n norm u ⇓ m
n ≡ m

Termination and soundness together imply that the normalisation relation defines a function
from terms to normal forms, and the remaining coherence properties (completeness and
stability) have already been proved in the previous section.

In this section, we first provide a short proof of soundness using known results on NBE.
Next, we define a partial normalisation of types, and the notion of skeleton of a type.

Together, they give a very simple induction principle for the syntax of dependent types.
Using this simplified induction principle, it is fairly straightforward to adapt the proof of
termination for simple types [3], based on the strong computability predicate.

6.1 Soundness, by NBE
The original presentation of BSN for the simply-typed lambda-calculus proves soundness using
a logical binary relation, similar to the use of strong computability for termination presented
later in this section. Unfortunately, this proof seems hard to adapt to the quotiented syntax.

However there is an alternative proof, much shorter if not as interesting. The key
observation is that BSN uses the same notion of normal forms as normalisation by evaluation
(cf. [7] for a formal proof of NBE for type theory – we use the very same syntax and definition
of normal forms). A direct consequence of the existence of a normalisation function such as
NBE is that there is exactly one normal form in each equivalence class of terms, which in
the quotiented syntax means that the embedding of normal forms is injective.

I Theorem 6.
n,m : Nf Γ A pnq ≡ pmq

n ≡ m
Proof. By soundness and stability of normalisation by evaluation. J

I Theorem 7 (Soundness).

norm u ⇓ n norm u ⇓ m
n ≡ m
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Proof. Immediate by Theorems 4 and 6. J

It can of course be argued that defining a normalisation function using another normal-
isation function defeats the object. However we think that it is interesting to consider BSN
not so much as alternative normalisation function than as an alternative definition for the
function which can also be obtained through NBE. This proof of soundness becomes more
sensible from this point of view: as soon as we prove that the functions defined by NBE
and BSN coincide (for which completeness of BSN is a key result), all correctness properties
which are known to hold for NBE – in particular soundness – transfer to BSN.

6.2 Substitution-Free Types
An interesting issue was mentioned while defining quote: the natural definition is by induction
on types, but only considers the constructors U, El, and Π, forgetting both _[_] and the
quotient constructors. In this subsection, we show that this type of definition is in fact
always correct, by defining substitution-free types, and proving that they are isomorphic to
regular types.

Substitution free types are defined together with their embedding into regular types.

data Tysf : Con→ Set where p_q : Tysf Γ→ Ty Γ
U : Tysf Γ
El : Tm Γ U→ Tysf Γ
Π : (A : Tysf Γ)→ Tysf (Γ, pAq)→ Tysf Γ

pUq = U
pEl uq = El u
pΠ A Bq = Π pAq pBq

We will now define an evaluation function from types to substitution-free types, which
will be the inverse of the embedding p_q. This requires to interpret every remaining type
constructors in substitution-free types.

First, the application of a substitution to a substitution-free type is defined inductively.

_[_] : Tysf ∆→ Sub Γ ∆→ Tysf Γ
U[σ] = U
(El u)[σ] = El(u[σ])
(Π A B)[σ] = Π (A[σ]) (B[σ↑pAq])

The definition directly follows the equations U[], El[], and Π[] from the syntax of regular
types. The remaining equations can be proved by induction.

A : Tysf Γ
A[id] ≡ A

A : Tysf Θ σ : Sub ∆ Θ ν : Sub Γ ∆
A[σ ◦ ν] ≡ A[σ][ν]

Put together, this defines the evaluation function: U, El, and Π are interpreted by the
respective constructors, substitutions are applied using the previous recursive definition, the
equations U[], El[], and Π[] hold trivially, and we just verified that [id] and [][] are respected.
It is easy to verify that this evaluation function is indeed the inverse of the embedding,
therefore regular and substitution-free types are isomorphic.

This gives an alternative, much simpler induction principle for types.

I Lemma 8. To define a function on types, it suffice to define it inductively for the con-
structors U, El, and Π.

Proof. The hypothesis of the lemma corresponds exactly to a definition of the function
on substitution-free types. This function is then extended to regular types through the
isomorphism previously defined. J
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6.3 Type Skeletons

If we were to immediately define strong computability, we would face a second issue regarding
the induction principle for types: it will often be the case that when proving a result by
induction on types and considering a type Π A B, we need to apply the induction hypothesis
not on B, but instead on B[σ] for some substitution σ, which is not allowed by the induction
principle of types. However, if we were to forget substitutions altogether, then B or B[σ]
would be the same. This is exactly the idea behind the skeleton of a type: by deleting all
substitutions, we obtain a well-founded notion of size of types, for which B and B[σ] are
equivalent.

Formally, a type skeleton correspond to the non-dependent structure of types: either a
base type or a function type.

data Sk : Set where
base : Sk
Π : Sk→ Sk→ Sk

Defining the skeleton of a type is straightforward, and all quotient constructors are clearly
respected.

skeleton : Ty Γ→ Sk
skeleton U = base
skeleton (El u) = base
skeleton (Π A B) = Π (skeleton A) (skeleton B)
skeleton (A[σ]) = skeleton A

Using the skeleton of types as size indicators for induction, the example of problematic
induction given at the beginning of this subsection becomes valid.

I Lemma 9. To define a function f on types, it suffice to
Define f on the base types U and El.
Define f on any type Π A B, while assuming that f is defined on C for any type C with
the same skeleton as either A or B.

Proof. The proof is the same as for Lemma 8, but additionally uses the skeletons as size
indicators to ensure that the inductive definition is well-founded. Formally, this means that
the function is defined by induction on type skeletons, then by pattern matching on the types
of a given skeleton. J

6.4 Strong Computability

The proof of termination is based on a Tait-style [25] predicate on values, called strong
computability. This subsection introduces strong computability, together with some important
lemmas.

Strong computability is defined by induction on types, using Lemma 9
A value v of a base type is SC if quote terminates on v.
A value f of type Π A B is SC if the application of f to a SC value v of type A gives a
SC result of type B.
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scv : {A : Ty} → Val Γ A→ Set
scvU v = Σ(n : Nf Γ U) quote v ⇓ n
scv(El u) v = Σ(n : Nf Γ (El u)) quote v ⇓ n
scv(Π A B) f = ∀(α : Wk ∆ Γ)(v : Val ∆ A+α)→ scv v →

Σ(C : Ty ∆) Σ(w : Val ∆ C)
(f+α @ v ⇓ w) ∧ (scv w) ∧ (skeleton C ≡ skeleton B)

Some remarks can be made regarding the case of function types. Firstly, stability under
application is understood up to weakening, i.e. the argument v need not be in the same
context Γ as the function f , but may instead come from a weaker context ∆, where the
weakening α : Wk ∆ Γ expresses that ∆ is weaker than Γ.

Secondly, as in the definition of the evaluation relation, we prefer not to restrict the result
type to simplify the upcoming proofs, hence we merely require that there exist a value w of
some type C. However, the definition would not be well-founded without any restriction on
C, since we inductively refer to strong computability at type C. Thus, we ask for C to have
the same skeleton as B. In this way, strong computability for Π A B is defined based on
strong computability for types with the same skeleton as either A or B.

Strong computability is extended to environments pointwise.

sce : Env Γ ∆→ Set
sce ε = >
sce (ρ, v) = sce ρ ∧ scv v

Let us now prove some lemma on strong computability. Throughout this subsection, we
implicitly use Lemma 9 when proceeding by induction on types.

I Lemma 10. Strong computability is stable under weakening:

v : Val Γ A scv v α : Wk ∆ Γ
scv v+α

ρ : Env Γ Θ sce ρ α : Wk ∆ Γ
sce ρ+α

Proof. For values, the proof is by induction on the type. For base types, stability of quote
under weakening is used. For function types, the proof is immediate, since the definition of
strong computability already accounts for weakening.

For environments, the proof is trivial by induction. J

I Lemma 11. Strong computability is a mere proposition, i.e. any two proofs of strong
computability are equal.

p, q : scv v
p ≡ q

p, q : sce ρ
p ≡ q

Proof. For values, the proof is by induction on the type. For base types, we use soundness
of quote, that is

quote v ⇓ n quote v ⇓ m
n ≡ m

which follows easily from Lemma 3 and Theorem 6. For function types, Lemma 2 is used.
For environments, the proof is trivial by induction. J

The most important lemma regarding strong computability is that it implies termination
of quote. A form of the converse for neutral values is proved simultaneously.
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I Lemma 12.
v : Val Γ A scv v (quote)

Σ(n : Nf Γ A), quote v ⇓ n
v : NV Γ A Σ(n : NN Γ A), quoten v ⇓ n

(unquote)
scv (neu v)

Proof. By mutual induction on the type A. The base cases are trivial by definition of strong
computability. Consider a function type Π A B.

For the case (quote), let f be a strongly computable value of type Π A B. Following the
definition of quote for function types, we need to prove that there exist some v : Val (Γ, A) B
and n : Nf (Γ, A) B such that

f+A @ neu (var vz) ⇓ v ∧ quote v ⇓ n

In this expression, the variable vz has type A[π1id]. Furthermore quoten trivially terminates
on variables, hence (unquote) implies that neu (var vz) is strongly computable by induction
hypothesis. Then by definition of strong computability f+A @ neu (var vz) ⇓ v holds for
some strongly computable v, and we may verify using Lemma 1 that v has type B. Since v
is strongly computable of type B, there exist by induction hypothesis n : Nf (Γ, A) B such
that quote v ⇓ n. Therefore, quote f ⇓ (λ n).

Inversely, for the case (unquote), assume quoten f ⇓ n with f : NV Γ (Π A B), and let
us prove that neu f is strongly computable. Let α : Wk ∆ Γ and v : Val ∆ A+α strongly
computable. Let us prove that neu (app f+α v) satisfies the conditions of the definition of
strong computability for function types. Firstly,

(neu f+α) @ v ⇓ (neu (app f+α v))

is immediate since f is neutral. Furthermore, by induction hypothesis (unquote) and
definition of quoten, to prove that neu (app f+α v) is strongly computable, it suffice to check
that quoten terminates on f+α and quote terminates on v. The former holds by hypothesis
using that quoten is stable by weakening, while the latter holds by induction hypothesis
(quote). Finally, one may verify that the type of neu (app f+α v) can be expressed as B with
some substitutions and weakenings applied, hence its skeleton is the same as B. It follows
that f is strongly computable. J

I Lemma 13. The identity environment is strongly computable.
Γ : Con

sce idenvΓ

Proof. Lemma 12 implies that all variables are strongly computable because they are neutral
values for which quoten trivially terminates. The result follows by induction on Γ, using
Lemma 10. J

6.5 Termination
All the tools are now available to prove the main termination result.

I Theorem 14. Evaluation in a strongly computable environment terminates, and yields a
strongly computable result.

u : Tm Γ A ρ : Env ∆ Γ sce ρ
Σ(B : Ty ∆)Σ(v : Val ∆ B) eval u ρ ⇓ v ∧ scv v
σ : Sub Γ Θ ρ : Env ∆ Γ sce ρ
Σ(ν : Env Γ Θ) evals σ ρ ⇓ ν ∧ sce ν
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The theorem is proved by induction on terms and substitutions. Regular constructors are
unproblematic, in the sense that the proofs does not change significantly compared to the
case of an unquotiented syntax. However, we also need to verify that quotient constructors
are respected, i.e. that for every equality constructor u ≡ v, the proof (seen as a function) of
Theorem 14 gives equal results on u and v.

A simple way to ensure this is to prove that the types corresponding to Theorem 14 are
mere propositions. In that case, when considering an equality constructor u ≡ v, the result
of a proof of Theorem 14 on u and v will necessarily be equal since both are elements of the
same mere proposition.

I Lemma 15. For any u : Tm Γ A, σ : Sub Γ Θ and ρ : Env ∆ Γ, the following types are
mere propositions.

Σ(B : Ty ∆)Σ(v : Val ∆ B) eval u ρ ⇓ v ∧ scv v
Σ(ν : Env Γ Θ) evals σ ρ ⇓ ν ∧ sce ν

Proof. By Lemma 2, a term can only evaluate to a single value v. Furthermore, the types
eval u ρ ⇓ v and scv v are mere propositions, by definition and by Lemma 11 respectively.
The result follows. The proof is similar in the case of substitutions. J

Proof of Theorem 14. By induction on terms and substitutions. We split the constructors
into three groups:

All quotient constructors are respected by Lemma 15.
Almost all regular constructors are very straightforward: the result of evaluation is
obtained by following the definition of the evaluator and applying the induction hypotheses,
and strong computability of the result comes directly from the hypotheses. The exceptions
to this pattern are λ and app, for which we give more detailed proofs below.
For an abstraction λu of type Π A B evaluated in a strongly computable environment
ρ : Env ∆ Γ, evaluation is trivial since it simply yields the closure clos u ρ. Let us show
that this closure is strongly computable.
Let α : Wk Θ ∆, and v : Val Θ (A[pρq]+α) strongly computable. Then by Lemma 10,
(ρ+α, v) is a strongly computable environment, hence by induction hypothesis there exists
w strongly computable such that eval u (ρ+α, v) ⇓ w. It follows that (clos u ρ)+α @ v ⇓ w.
Finally, we may verify using Lemma 1 that the type of w must have the same skeleton as
B. It follows that clos u ρ is strongly computable.
Consider an application app u with u : Tm Γ (Π A B) evaluated in a strongly computable
environment (ρ, v) : Env ∆ (Γ, A). By induction hypothesis, there exists f strongly
computable such that eval u ρ ⇓ f . It can be verified using Lemma 1 that f has type
Π (A[pρq]) (B[pρq ↑A]). Hence, because f and v are strongly computable, there exist
w strongly computable such that f @ v ⇓ w. Then we obtain by the definition of the
evaluation relation that eval (app u) (ρ, v) ⇓ w, proving the result. J

I Theorem 16 (Termination). Normalisation terminates.

u : Tm Γ A
Σ(n : Nf Γ A), norm u ⇓ n

Proof. Let u : Tm Γ A. By Lemma 13 and Theorem 14, there exist v strongly computable
such that eval u idenv ⇓ v. By Lemma 1, one may verify that v has type A. Finally, by
Lemma 12, there exist n : Nf Γ A such that quote v ⇓ n. It follows that norm u ⇓ n. J
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By Theorems 7 and 16, norm defines a function from quotiented terms to normal forms,
and by Theorems 4 and 5, it is the inverse of the embedding of normal forms. Therefore, we
have proved that big step normalisation defines a normalisation function.

7 Formalisation of BSN in a Cubical Type Theory

Most of the present work has been formalised [5] using Agda [23]. Precisely, Sections 3 to 5
have been fully formalised, and Section 6 partially so – what remains to do in the latter is
equality reasoning. This formalisation is expressed in a cubical type theory (CTT, cf. [11])
using the cubical mode of Agda. This differs from the present paper, which uses a strict
type theory for simplicity. The choice of CTT allows to easily express QIIT as a special
case of higher inductive types (HIT, cf. [24]), which from the technical point of view is a
notable improvement over previous implementations of QIIT in non-cubical Agda, which
had to introduce all quotient constructors as additional axioms (e.g. [7, 8]).

As explained in [8], simply considering a QIIT as a special case of HIT leads to unexpected
results. For instance, in the case of the quotiented syntax, U[] and [id] give two proofs of
U[id] ≡ U, and these proofs are distinct in a non-strict type theory. Therefore, this naive
implementation of QIIT leads to a syntax which is not a set in the type theoretic sense, i.e.
uniqueness of identity proofs (UIP) does not holds. It follows by Hedberg’s theorem [17] that
equality is undecidable in this syntax, which is definitively not what was expected.

The solution is to truncate the syntax to a set, by the addition of the following constructors:

setTy : {A B : Ty Γ} (p q : A ≡ B)→ p ≡ q
setSub : {σ ν : Sub Γ ∆} (p q : σ ≡ ν)→ p ≡ q
setTm : {s t : Tm Γ A} (p q : s ≡ t)→ p ≡ q

Note that the corresponding constructor for contexts is unnecessary, because it can be proved
that contexts form a set from the fact that types are a family of sets.

In order to adapt the proof of big step normalisation to CTT with this implementation
of QIIT, there are two problems to solve:

The proof of BSN uses the UIP axiom of the strict type theory.4 Since we lose this axiom
in CTT, its uses must be replaced.
The additional truncation constructors of QIIT must be taken into account whenever we
use induction on a QIIT.

Both problems can be solved together by proving that all the types considered in the proof
of BSN are in fact sets. Indeed, any use of the UIP axiom can then be replaced by the proof
of UIP for the appropriate type, and when defining a function by induction on a QIIT, the
set-truncation constructor can be mapped to the proof that the codomain is a set.

We will not detail all the proofs of UIP because they are fairly repetitive, but we will
explain the general techniques used. There are some trivial cases: all QIIT (terms, types,
values) are explicitly truncated to sets. Mere propositions (the big step relations, strong
computability) are always sets. What remains are regular inductive types, such as variables,
normal forms, substitution-free types. . . For such types, Hedberg’s theorem [17] is an

4 While we never explicitly refer to the UIP axiom in this presentation of the proof, it is used whenever we
prove a lemma of the form L : (x : A)→ f(x) ≡ g(x) by induction on a QIIT A. Indeed, for a quotient
constructor of type a ≡ b in A, we need to provide an equality between equalities L(a) ≡ L(b). This is
trivial with UIP – hence why such cases are neglected in the proof – but is in general problematic in a
non-strict metatheory. An example is the coherence lemmas for weakening of values.
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extremely useful tool. For instance, it is easy to verify that equality of variables is decidable,
which implies that they are a set. Even for types which do not a priori have decidable
equality (e.g. normal forms), it is still possible to adapt the techniques and lemmas used for
Hedberg’s theorem to prove UIP.

8 Conclusion and Further Work

We have formalised big step normalisation for a simple dependent type theory, and proved its
correctness. Crucially, a quotiented syntax of type theory based on QIIT is used to reduce
the complexity of this proof. While the proof of BSN for type theory shares many similarities
with the case of the simply-typed lambda-calculus, it requires some additional steps, for
instance a simplified induction principle for the syntax of types.

This work is also an interesting application of the QIIT syntax of type theory, since
it provides an example in which using this syntax has an important impact on the proof.
The implementation of the QIIT syntax using HIT in cubical Agda, and its use in the
formalisation of BSN is also a practical validation of ideas which were developed in [8].

Since we have only considered a minimalist type theory in this work, it is natural to try
to extend it. A first step in this direction could be the addition of some inductive types. This
was already done in the non-dependently typed case in [3], by adding integers (System T). In
order to handle inductive types in BSN, the general idea is to add the inductive constructors
to values and normal forms, and add the elimination principles to neutral values and neutral
normal forms, adapting eval and quote accordingly. A next step could then be to add
W -types, so as to allow the use of arbitrary inductive types. Another equally interesting
extension would be to replace the abstract universe U – which contains no closed terms –
with a more useful universe equipped with type constructors.
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Abstract
Cube categories are used to encode higher-dimensional categorical structures. They have recently
gained significant attention in the community of homotopy type theory and univalent foundations,
where types carry the structure of higher groupoids. Bezem, Coquand, and Huber [8] have presented
a constructive model of univalence using a specific cube category, which we call the BCH cube
category.

The higher categories encoded with the BCH cube category have the property that all morphisms
are invertible, mirroring the fact that equality is symmetric. This might not always be desirable:
the field of directed type theory considers a notion of equality that is not necessarily invertible.

This motivates us to suggest a category of twisted cubes which avoids built-in invertibility. Our
strategy is to first develop several alternative (but equivalent) presentations of the BCH cube category
using morphisms between suitably defined graphs. Starting from there, a minor modification allows
us to define our category of twisted cubes. We prove several first results about this category, and
our work suggests that twisted cubes combine properties of cubes with properties of globes and
simplices (tetrahedra).
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1 Introduction and Motivation

A cube category is a category whose objects are (or represent) finite-dimensional cubes, and
whose morphisms are mappings of some sort between these cubes. There are many different
cube categories [1, 5, 8, 9, 20], and they are used to encode higher categorical structures.
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Figure 1 Kan-filling condition of a 2-cube (left), a proof of invertibility introduced by the
Kan-filling condition (middle), and how to remove such the invertibility (right).

Homotopy type theory [28] is a variation of Martin-Löf’s intensional type theory. The
characteristic and novel view adapted in homotopy type theory is that types carry the
structure of higher categories, or, to be precise, higher groupoids (i.e. all morphisms are
invertible). This view supports Voevodsky’s univalence principle which should be seen
as a central concept of homotopy type theory. The first model of such a type theory,
given by Voevodsky [29] (see also the presentation by Kapulkin and Lumsdaine [16]), uses
simplicial sets. However, it is still an open question how simplicial sets can be used to build
a constructive model of type theory with univalent universes [13]. Using cubical sets, this has
been achieved by Bezem, Coquand, and Huber [8]. Starting from there, cubes have gathered
a lot of attention in the type theory community, leading to various cubical type theories
which have univalence not as an axiom but as a built-in derivable principle [3, 6, 12, 23].
Many different cube categories have been considered in this context.

The important cube category used by Bezem, Coquand, and Huber [8] (from now on
referred to as the BCH cube category) uses finite sets of variable names as objects, and a
morphism from a set I to a set J is a function f : I → J ∪ {0, 1} which is “injective on the
left part”, i.e. f (i1) = f (i2) = j with j : J implies i1 = i2. One goal of this paper is to develop
several alternative presentations of this category, mainly using graph morphisms. We have
two main motivations to do this. The first is that, as we hope, our alternative and intuitive
(but equivalent) definitions enable new views on the category and facilitate the discovery of
further observations. The second motivation is that a minor change in the definition will
allow us to construct a new cube category, the twisted cubes from the title. We will come
back to this in a moment.

The standard way to create models (of both higher categories and type theories) using
simplicial or cubical index categories is to take presheaves and equip them with certain
Kan-filling conditions. These filling conditions entail composition of morphisms as well
as associativity and all higher coherence laws that one needs. A typical such Kan-filling
condition for the 2-cube1, as shown on the left of Figure 1, says that, given the “partial
square” of three solid edges on the right, one can always find the dashed edge (together with
an actual filler for the square).

One important observation here is that, in the case of the BCH cube category and other
cube categories, invertibility of morphisms is built-in. Consider the partial square, as shown
on the middle of Figure 1, where two of the three solid edges are identities and the third is
an actual non-trivial morphism (or equality) p from x to y . Using the Kan filling operation
described above, we get a morphism from y to x , which serves as the inverse of p.

The invertibility of morphisms is useful for most forms of type theory, where equaliy is
symmetric. This however is not always the case, cf. the proposals for directed type theories
by Licata and Harper [18], Nuyts [22], Riehl and Shulman [25], North [21], and others. Their

1 While Bezem, Coquand, and Huber [8] define their index category to have finite sets of variables as
objects, it is possible to simply use natural numbers as objects. The n-cube, or n-dimensional cube, is
then the object of the presheaf category that is represented by the object n of the index category.
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Figure 2 An illustration of the thickening-and-twisting process of the twisted n-cube for 1 6 n 6 3.
The process expands the twisted (n−1)-cube (left column) along the new dimension (middle column)
and reverse all other dimensions at the starting point of the new dimension (right column).

aim is to generalise type theory by replacing (higher) groupoids by general (higher) categories.
In a nutshell, this means that “equality” (or whatever takes the place of equality) is not
necessarily invertible.

We think that a very valuable long-term goal would be to make the connection of directed
type theories with cubical type theories and create some sort of directed cubical type theory.
This is at the moment certainly out of reach, and we do not know how such a type theory
could be built. Nevertheless, it motivates us to explore variations of the BCH cube category
which do not have the described built-in equality.

To avoid invertibility, we “twist” the left-most edge of the 2-dimensional cube, as shown
on the right of Figure 1, to ensure that the construction from before becomes impossible.
This might seems artificial and specific to the 2-dimensional case but by using our graph
morphisms that we develop for the BCH cube category, it becomes very easy to define the
twisting version for cubes of all dimensions.

To construct a twisted n-cube from a twisted (n − 1)-cube, we first expand the original
cube along a new dimension (we call this thickening): this is same as constructing a standard
n-cube form a standard (n − 1)-cube, which is just a construction of its cylinder object. We
then reverse all dimensions at the starting point of the new dimension (we call this twisting).
Figure 2 illustrates this thickening-and-twisting process up to dimension 3, where the existing
dimensions are shifted by one in order to allow the new dimension to be the first dimension.

One important property of standard cubes which twisted cubes retain is that every face
of a [twisted] n-cube is a [twisted] (n− 1)-cube. An interesting example is the case n = 3: In
order to construct a twisted 3-cube, we thicken the twisted 2-cube as illustrate in Figure 2
where the left and the right face are already twisted 2-cubes, while the rest are thickened
1-cubes. The right face is unaffected during the twisting, but the left face is reversed entirely.
Nevertheless, it is still a 2-cube (just flipped backwards).

TYPES 2019
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Figure 3 The 3-dimensional twisted cube using parallel and perspective projections. On the left,
the lid (i.e. the last face which can be recovered by filling) is shaded. On the right, this face is the
small middle square. The lid can be seen as the composite of the other faces.
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Figure 4 The 4-dimensional twisted cube using parallel and perspective projections. The lid is
shadowed on the left. It is the biggest cube on the right.

Twisted cubes do not only remove the discussed source of invertibility, but they also
change the way we view composition of morphisms. The filling of a “standard” square can
be interpreted as saying that the composition of two edges equals the composition of the
other two edges, and if we want to see the lid as the composite of the three other edges, then
one has to be inverted. In contrast, in the twisted square, the lid can be seen directly as the
single composite of the three other edges. The right half of Figure 3 shows the projection of
the twisted 3-cube, and the smallest square (011, 001, 101, 111) is the lid. As for the square,
this lid should be seen as the composite of the other (here five) faces. Intuitively, one starts
with the biggest square, composes it with the top and the bottom squares, then with the left
and the right square, and thus arrives at the smallest square. Figure 4 shows the analogous
situation for the 4-dimensional twisted cube, where one starts with the inner 3-cube, then
extends to the front and the back, to the top and the bottom, and finally to the left and
the right.

The “twisting” pattern also appears in the twisted arrow category [17], also known as the
category of factorisations [7]. However, it is unclear how to generalise this idea to more than
squares; it has been developed to solve a different problem.

In the main body of the paper, we first introduce the framework of graph morphisms
for standard (non-twisted) cubes. We consider the properties of meet/join and dimension
preservation of graph morphisms, and conclude that both of these are suitable refinements
to ensure that the category of graph morphisms matches the BCH cube category. The proof
of this is the main result of Section 2. We use this development to introduce and examine
twisted cubes in Section 3. We will see that they have many characteristic properties that
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standard cubes are lacking. Some of them, such as a Hamiltonian path through the cube and
the fact that vertices are totally ordered, are familiar from simplicial structures but not from
cubical ones. Another interesting feature, neither familiar from cubical nor from simplicial
but from globular structures, is that surjective maps are unique (i.e. there is only one way
to degenerate a twisted cube). These and other observations allow us to define a further
representation of the category of twisted cubes which does not make use of graphs.

Setting. We use a standard version of Martin-Löf’s dependent type theory as our meta-
language. We assume function extensionality, but we do not require other axioms or features
since we mostly work with finite sets, which are extremely well-behaved by default. In
particular, it does not matter for us whether UIP/Axiom K is assumed or not, and the
development would be identical in extensional dependent type theory.

Summary of Contributions. Our main contributions are as follows:
We give several alternative but equivalent presentations of the BCH cube category.
We introduce twisted cubes, a variation of the BCH cube category which allows for filling
conditions without built-in invertibility.
We show several results about twisted cubes. These include connections to simplices
(a unique Humiliation path and the property of being a Reedy category) and to globes
(unique surjective maps and degeneracies).

2 A Standard Cube Category

In this section, we discuss various representations of the cube category �BCH. This
category was used by Bezem, Coquand, and Huber to present a constructive model of
univalence [8]. In Section 3, we will see how minimal modifications lead to a category of
twisted cubes.

Keeping in mind that we use type theory as the language in which the results are presented
(i.e. as our meta-theory), we use the following notations: N are the natural numbers, including
0. For n : N, the set n is the finite set with elements {0, 1, ... , n − 1}. In particular, 2 is
the set of booleans. As usual, nm is simply the function set m → n. We denote elements
of 2n by binary sequences as in 0 · 1 · 1 · 0. This means such a function f is denoted by
f (0) · f (1) · f (2) ... f (n − 1). If there is no risk of confusion, we omit the · and simply use
juxtaposition as in 0110.

In several situations, we want to consider a type of functions into a coproduct which is
injective “on the left part of the codomain”. To make this precise, we introduce a notation:

I Definition 1 (↪ left−−→). Assume A, B, and C are given types. For a function f : A→ (B +C),
we say that f is injective on the left part if

left-inj(f ) :≡ Π(x , y : A, z : B).(f (x) = inl(z))→ (f (y) = inl(z))→ x = y . (1)

We write the type of functions which are injective on the left part as

(A ↪
left−−→ B + C) :≡ Σ(f : A→ (B + C)).left-inj(f ). (2)

TYPES 2019
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In the next lemma, a function f : A→ B + 1 is called a partial function, with 1 being the
“undefined” part.2 The following simple but useful (and well-known) result will be necessary.
It could be formulated in higher generality, but a version which is sufficient for us is this:

I Lemma 2. Given m, n : N, injective partial functions from m to n are in bijection with
injective partial functions from n to m. In other words, we have an equivalence(

m ↪
left−−→ n + 1

)
'
(
n ↪ left−−→ m + 1

)
. (3)

Proof. The equivalence can be constructed directly. Given an f : m ↪
left−−→ n + 1, we have to

construct a function g : n ↪ left−−→ m + 1. For i : n, we can decide whether there is a k such
that f (k) = inl(i). If so, then this k is unique due to injectivity, and we set g(i) :≡ inl(k);
otherwise, we set g(i) :≡ inr(0). Checking that this is an equivalence is routine. J

The presentation of the cube category in question that we start with is the one given by
Bezem, Coquand, and Huber [8] (which is the same as in Huber’s PhD thesis [15]). Since it
is sufficient for our purposes, we use a skeletal variation: our objects are not finite sets but
rather natural numbers.

I Definition 3 (category �BCH [8, 15]). The category �BCH has natural numbers as objects
and, for m, n : N, a morphism in �BCH(m, n) is a function f : m→ n + 2 which is injective
on the n-part. In type-theoretic notation:

obj(�BCH) :≡ N �BCH(m, n) :≡ m ↪
left−−→ n + 2 (4)

Composition g ◦ f is defined to be the set-theoretic composition (g + id2) ◦ f .

What we will need is the opposite of this category, �op
BCH. While the above definition is

short and abstract, a description close to the intuitive idea of cubes is helpful for our later
developments. Let us consider graphs G = (V ,E ) of nodes (vertices) and edges, where V is a
set with decidable equality and E is a subset of V × V . A standard way to implement this
is to let E be a family of “mere propositions”3, indexed twice over V . However, we write
(s, t) : E for E (s, t) and assume that E is given in the “total space” formulation. Furthermore,
in our cases E will always be a decidable subset.

E being a subset means that our graphs do not have multiple parallel edges, i.e. for any
pair of vertices, there is at most one edge between them, and it is decidable whether there is
an edge between two given vertices.

Given a graph, we construct a new graph as follows. Note that the “total space” of the
edges of the new graph is E + E + V , but in order to make clear which vertices these new
edges connect, we use “set theory style” notation:

I Definition 4. Given G = (V ,E ), the graph-prism of G, denoted as
prism (G) :≡ (prism (V ), prism (E )) is another graph where

prism (V ) :≡ 2× V (5)
prism (E ) :≡ { ( (0, s), (0, t) ) | (s, t) : E} (6)

∪ { ( (1, s), (1, t) ) | (s, t) : E} (7)
∪ { ( (0, v), (1, v) ) | v : V }. (8)

2 Technically, these are of course only the partial functions from A to B with decidable support. Since we
only work with finite types, it is not surprising that we only need to consider the decidable case.

3 Recall that a mere proposition, or a subsingleton, is a type with at most one element.
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This allows us to define the standard cube as a graph:4

I Definition 5. Given n : N, the standard cube Cn is defined as follows:

C0 :≡ (1, {(0, 0)}) Cn+1 :≡ prism (Cn) (9)

Another way of defining Cn, without recursion, is the following. Here, we give the “total
space” of edges edges(Cn) together with functions src, trg : edges(Cn)→ nodes(Cn):

I Definition 6. In the following, our convention is that −1 is empty (i.e. the same as 0):

nodes(Cn) :≡ 2n (10)
edges(Cn) :≡ 2n +

(
n × 2n−1) (11)

src(inl(v)) :≡ trg(inl(v)) :≡ v (12)
src(inr(i , x0x1 ... xn−2)) :≡ x0x1 ... xi−10xi ... xn−2 (13)
trg(inr(i , x0x1 ... xn−2)) :≡ x0x1 ... xi−11xi ... xn−2 (14)

The number of total edges in (11) comes from the following calculation. We have n
dimension, thus 2n nodes, which come with self-loops giving rise to the summand 2n. For
ever node, we further have an edge in each dimension. Avoiding double counting, this gives
the summand n × 2n−1. Figure 5 shows drawings for C0 to C3.

I Lemma 7. Definition 5 and Definition 6 define isomorphic graph structures. J

This observation allows us to use whichever is more convenient in any given situation.
A graph morphism from G = (V ,E ) to G ′ = (V ′,E ′) is, as usual, a function between the

node types which preserves the edges:

grp-hom
(
(V ,E ), (V ′,E ′)

)
:≡ Σ(f : V → V ′).Π(v0, v1 : V ).E (v0, v1)→ E ′(f (v0), f (v1)) (15)

We can now consider the following category:

I Definition 8 (category �grp). The category �grp has natural numbers as objects.
A morphism between m and n is a graph morphism from Cm to Cn, as in:

obj(�grp) :≡ N �grp(m, n) :≡ grp-hom (Cm,Cn) (16)

Composition is composition of graph morphisms.

4 Most of graphs in this paper are reflexive graphs to support degeneracies as graph morphisms.
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Figure 5 An illustration of Cn for n 6 3. The labels on the vertices and edges are in accordance
with (10) and (11). The identity loops are omitted. This allows us to unambiguously hide the
constructor inr as well.
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The category �grp has more morphisms than �op
BCH. One example would be the morphism

in grp-hom (C2,C1) which maps the three nodes 00, 01, 10 all to 0 and 11 to 1. Another
example is the morphism which maps 00 to 0, and 01, 10, 11 all to 1. Both of these morphisms
do not have analogues in �op

BCH. In other words, �grp has connections. Since, in the current
paper, we are looking for alternative definitions of the category �op

BCH, we refine the definition
of the morphisms in �grp to resolve the mismatch. Let us formulate the following auxiliary
definitions.

IDefinition 9 (free preorder on a graph). For a given graph G = (V ,E ), we write G∗ = (V ,E∗)
for the free preorder generated by it. G∗ has V as objects and, for v , u : V , we have v 6 u if
there is a chain of edges starting in v and ending in u.

When talking about nodes in G, we borrow the notions of meet (product) and join
(coproduct) from preorders. If they exist in G∗, we write them as v u u and v t u.

It is easy to see that, in the case of Cn, all meets and joins exist and can be calculated
directly: From the programming perspective, they correspond to the bitwise operators ′&′
and ′|′. Thus, when talking about Cn, we can view u and t as actual functions calculating
the binary meet and join:

u,t : V × V → V (17)

Given a graph morphism g : grp-hom (Cm,Cn), it is easy to define what it means that it
preserves binary meets resp. joins:

pres-meet(g) :≡ Π(u, v : 2m).g(u u v) = g(u) u g(v) (18)
pres-join(g) :≡ Π(u, v : 2m).g(u t v) = g(u) t g(v) (19)

Note that preserving meets and joins is a property (a “mere proposition”) of morphisms. For
general morphisms between graphs which might not have all meets or joins, the definition
is more subtle but still straightforward; one can always define the property of being a meet
(join) and then say that any vertex which has this property is mapped to one which also has
it. We omit the precise type-theoretic formulation.

The two mentioned examples of morphisms which are “too much” in �grp do not preserve
binary meets resp. joins.

I Definition 10 (category �cont). The category �cont has N as objects and, as morphisms,
graph morphisms between standard cubes which preserve meets and joins (cont for continuous):

obj(�cont) :≡ N (20)
�cont(m, n) :≡ Σ(g : grp-hom (Cm,Cn)).pres-meet(g)× pres-join(g) (21)

This gives us a category which is indeed equivalent (in fact isomorphic) to �op
BCH:

I Theorem 11. The categories �op
BCH and �cont are isomorphic. The isomorphism on the

object part is the identity, i.e. the equivalence is given by a family e as in:

e : Π(m, n : N).�op
BCH(m, n) ' �cont(m, n). (22)

Before giving a proof, we formulate the following:

I Lemma 12. Consider the full subgraph of Cn which has exactly (n + 1) vertices, namely
the “origin” 00 ... 0 and the “base vectors” which have exactly one 1. We call this subgraph
Bn, where the B stands for “base”, and it comes with the inclusion i : Bn ↪→ Cn. For any m,
“forgetting” the property of preserving the joins and composing with i as in

λg .i ◦ (proj1(g)) : (Σ(g : grp-hom (Cm,Cn) .pres-join(g)) → grp-hom (Bm,Cn) (23)

is an equivalence. Moreover, g preserves meets if and only if i ◦ (proj1(g)) does.
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Proof. The only binary joins that Bm has are trivial, so every morphism grp-hom (Bm,Cn)
is join-preserving. Thus, the first claim of the lemma is that every such morphism can be
extended in a unique way as shown in the diagram to the right. Every node of Cm which is
not in Bm, i.e. every node which is not the origin or a base vector, can be written as a join of
base vectors. Since we need to preserve joins, it is therefore determined where the node has
to be sent to. The map defined in this way preserves all binary joins, and it preserves binary
meets if and only if the input does. J

Bm Cn

Cm

Proof of Theorem 11. We first give the overview of the argument as a chain of equivalences,
then we justify each step [S1 – S5].

�cont(m, n)
≡ Σ(g : grp-hom (Cm,Cn)).pres-meet(g)× pres-join(g)

[S1] ' Σ(g : grp-hom (Bm,Cn)).pres-meet(g)

[S2] ' Σ(z : 2n, d : m ↪
left−−→ n + 1).Π(i : m, j : n).(d(i) = inl(j))→ (z(j) = 0)

[S3] ' Σ(z : 2n, e : n ↪ left−−→ m + 1).Π(i : m, j : n).(e(j) = inl(i))→ (z(j) = 0)
[S4] ' Σ(z : 2n, e : n→ (m + 1)).left-inj(e)× Π(i : m, j : n).(e(j) = inl(i))→ (z(j) = 0)
[S5] ' Σ

(
α : Π(j : n).Σ(e : m + 1, z : 2).Π(i : m).(e = inl(i))→ z = 0

)
.left-inj(proj1 ◦ α)

[S6] ' Σ
(
α : Π(j : n).m + 2

)
.left-inj(α)

≡ �op
BCH(m, n)

Step 1 holds by Lemma 12. Let us look at Step 2. Giving a graph homomorphism between
Bm and Cn corresponds to choosing where the origin is mapped to, and choosing where each
(non-trivial) edge of Bm is mapped to. For the origin, we use the component z : 2n. There
are m non-trivial edges in Bm, and z is an endpoint (or starting point) of n non-trivial edges
and one trivial edge in Cn. This gives us up to m→ n + 1 possible functions, but since we
only consider meet-preserving morphisms, every function needs to be injective on the left
part, leading to d : m ↪

left−−→ n + 1. Moreover, if d(i) = inl(j) for some i , j, then the image of
the origin must be the starting point of the edge in dimension j, i.e. z(j) = 0. Step 3 is an
application of Lemma 2 (it essentially swaps the roles of m and n). Step 4 only unfolds the
definition of ↪ left−−→.

In Step 5, the usual distributivity between Σ and Π (under the propositions-as-types view
referred to as the “axiom of choice”) is used: z , e, and the unnamed last component can all
be seen as (dependent) functions with domain n. The dependent function α combines them
into a single dependent function with domain n and a codomain that consists of multiple
components which, again, are called e, z , with the last one being unnamed. Only the
component expressing the “injectivity on the left part”-property cannot be seen as a function
in n. In Step 6, we massage the codomain of α: We have e : m + 1 and also z : 2, but the
condition says that z is determined unless e = inr(0); thus, the type is equivalent to m + 2.

We omit the calculation which shows that the constructed equivalence preserves composi-
tion of morphisms in the categories. J
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In Section 3, we will switch from standard cubes to twisted cubes. The directions of some
edges will be reversed. It is therefore an advantage to formulate a condition similar to the
one about meets and joins without referring to the direction of edges. This is indeed possible:

I Definition 13 (dimension preserving morphisms; category �dim). Given the standard cube
Cn, where we use the non-recursive definition as in Definition 6, the dimension of an edge is
defined as follows:

dim : edges(Cn)→ n + 1 dim(inl(v)) :≡ inr(0) (24)
dim(inr(i , x0 ... xn−2) :≡ inl(i) (25)

We say that a morphism f : grp-hom (Cm,Cn) is dimension-preserving if f maps edges of the
same dimension to edges of the same dimension,

dim-pres(f ) :≡ Π(e1, e2 : edges(Cn)).(dim(e1) = dim(e2))→ (dim(f (e1)) = dim(f (e2))). (26)

The category �dim makes use of these concepts:

obj(�dim) :≡ N �dim(m, n) :≡ Σ(g : grp-hom (Cm,Cn)).dim-pres(g) (27)

As pres-meet(g) and pres-join(g), preserving the dimension as in (26) is a proposition in
the sense of homotopy type theory (has at most one proof).
I Remark 14. For a graph morphism f as in the definition above, the following condition
says that f is “injective on dimensions” (on the non-trivial part):

dim-inj(f ) :≡ Π(e1, e2 : edges(Cm), j : n).
(
dim(f (e1)) = inl(j)× dim(f (e2)) = inl(j)

)
→ (dim(e1) = dim(e2)).

However, note that this follows directly from dim-pres(f ): Assume e1, e2 are edges such that
dim(f (e1)) and dim(f (e2)) are equal and non-trivial. If e1 and e2 are not “parallel” (i.e. not
in the same dimension), then we can find e′1 in the same dimension as e1 such that e′1 and e2
are adjacent (i.e. the endpoint of one is the starting point of the other). It is clear that f (e′1)
and f (e2) cannot go into the same non-trivial direction, since we can only go one step into a
given direction before going back.

The connection to meet- and join-preserving is given by the following result:

I Lemma 15. A morphism f : grp-hom (Cm,Cn) is join-and-meet-preserving exactly if it is
dimension-preserving.

Proof. This follows easily by going via morphisms grp-hom (Bm,Cn) as in Lemma 12. The
graph Bm has exactly one edge for every non-trivial dimension, and the proof is analogous to
the one of Lemma 12. J

I Corollary 16 (Section summary). The categories �op
BCH, �cont, and �dim are isomorphic. J

3 A Category of Twisted Cubes

As discussed in the introduction, we build on our framework of graph morphisms to define
a category of twisted cubes. A variation of Definition 4 gives us these twisted cubes. The
critical change can be seen in (29), which should be compared with (6):
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I Definition 17. Given a graph G = (V ,E ), the twisted graph-prism of G,
denoted as tw-prism (G) :≡ (tw-prism (V ), tw-prism (E )) is the graph defined by

tw-prism (V ) :≡ 2× V (28)
tw-prism (E ) :≡ { ( (0, t), (0, s) ) | (s, t) : E} (29)

∪ { ( (1, s), (1, t) ) | (s, t) : E} (30)
∪ { ( (0, v), (1, v) ) | v : V }. (31)

We then define:

I Definition 18. Given n : N, the twisted cube Tn is defined as follows:

T0 :≡ (1, {(0, 0)}) Tn+1 :≡ tw-prism (Tn) (32)

Alternatively, we can tweak Definition 5 to get a non-recursive definition. As before, the
convention is that −1 is empty.

I Definition 19. The non-recursive definition of Tn is as follows:

nodes(Tn) :≡ 2n (33)
edges(Tn) :≡ 2n +

(
n × 2n−1) (34)

src(inl(v)) :≡ trg(inl(v)) :≡ v (35)
src(inr(i , x0x1 ... xn−2)) :≡ x0x1 ... xi−1 · b · xi ... xn−2 (36)
trg(inr(i , x0x1 ... xn−2)) :≡ x0x1 ... xi−1 · (1− b) · xi ... xn−2 (37)

where b = 1 if the total number of zeros in x0x1 ... xi−1 is odd, and b = 0 otherwise.

This means that an edge is reversed (compared to the standard cubes discussed before)
exactly if the number of zeros in dimensions that come before the edge is odd (note that the
condition talks about xi−1, not xn−2). The twisted cubes of dimension up to 3 are illustrated
in Figure 6; see also Figures 3 and 4 in the introduction.

I Lemma 20. Definition 18 and Definition 19 define isomorphic graph structures. J

Tn has an interesting property that the standard cube Cn does not have: The induced
preorder T ∗n on the vertices is a total order. This observation was originally suggested
by Paolo Capriotti and Jakob von Raumer in a discussion with the first author of this
paper. Note that this observation should not be misunderstood to mean that Tn itself is
uninteresting. Its edges give it a unique structure, as visualised in Figure 7.
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Figure 6 An illustration of Tn where n 6 3.
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Figure 7 Linear drawings of the twisted cubes T0, T1, T2, and T3, demonstrating that the
underlying preorders are total orders. The binary sequences on top are the values of gn from the
proof of Theorem 21. See also Remark 22.

The idea behind this result is that tw-prism preserves the property of having a preorder
that is total. To elaborate on this, if G∗ is a total order, then (tw-prism G)∗ consists of
two copies of G∗, where the first copy is “turned around”. One of the edges added in (31)
links the largest node in the first copy to the smallest node in the second copy, thus every
element of the second copy is larger than all the elements of the first copy. In other words,
(tw-prism G)∗ is the join of the two copies.5

I Theorem 21. For all n : N, the preorder T ∗n is isomorphic to the total order (2n,<).

Note that Theorem 21 is a property which one usually expects for simplicial structures,
but not for cubical ones.

I Remark 22. There are two binary numbers for each node in Figure 7. The bottom one
represents each node name according to Definition 19 whereas the top one represents the
total order of T3. It is impossible to unify these two binary numbers for n > 2 since, for each
edge e, the numbers src(e) and src(e) only differ by (at most) one single bit by Definition 19,
while incrementing a binary number can flip more than one bit.

Another related observation is that we can find a path from the smallest vertex to the
largest vertex of Tn which respects the direction of the edges, and which visits each vertex
exactly once. Recall that such a path is called a Hamiltonian path. We record this:

I Theorem 23. For all n : N, there is exactly one Hamiltonian path through Tn+1. This
path contains exactly one edge in the first dimension (i.e. the one which is added when going
from Tn to Tn+1). Moreover, this single edge in the new dimension connects the Hamiltonian
paths through the two copies of Tn of which Tn+1 consists by definition, cf. (28).

Proof of Theorem 21 and Theorem 23. As before, we denote elements of 2n as sequences
such as 00101 (binary representation with most significant bit first) or, for clarity, by 0·0·1·0·1.
We use the endofunction neg on 2n, which simply replaces each 0 in a sequence by a 1 and
vice versa; i.e. it sends the number i to 2n−1− i (note that neg does not reverse the sequence,
but the ordering on 2n).

5 Join in the sense of the join of categories [19], which should not be confused with the join (coproduct)
of objects in a preorder (cf. Definition 9).
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Let us define endofunctions fn and gn on 2n, by induction on n. Note that, at this point,
we do not talk about graph morphisms but only about functions between sets. The base
cases of the induction are uniquely determined. We define f and g by

fn+1(0 · ~x) :≡ 0 · fn(neg(~x)) gn+1(0 · ~x) :≡ 0 · neg(gn(~x)) (38)
fn+1(1 · ~x) :≡ 1 · fn(~x) gn+1(1 · ~x) :≡ 1 · gn(~x). (39)

It is easy to calculate that, by induction, f and g are inverse to each other. We want to
show that they extend to morphisms between preorders,

f̂n : (2n,<)→ T ∗n ĝn : T ∗n → (2n,<). (40)

To construct f̂n and the Hamiltonian path through the cube, it suffices to show: for x , y : 2n

with x + 1 = y , we have an edge fn(x)→ fn(y).
We do induction on n. For n = 0, this is vacuously true (such x , y do not exist). For

n = n′ + 1, there are multiple cases:
case x = 0 · x ′ and y = 0 · y ′: Then, the assumption gives us x ′ + 1 = y ′ and we have to
find an edge 0 · fn(neg(x ′))→ 0 · fn(neg(y ′)). Looking at Definition 17, we can get this if
we have fn(neg(y ′))→ fn(neg(x ′)). This holds by induction, since neg reverses the order
which gives us neg(y ′) + 1 = neg(x ′).
case x = 1 · x ′ and y = 1 · y ′: Similar to the previous case, but nothing gets reversed.
case x = 0 ·x ′ and y = 1 ·y ′: In this case, we have x = 0111 ... and y = 1000 .... We need to
find an edge 0 · f (neg(111 ...))→ 1 · f (000 ...), which simplifies to 0 · f (000 ...)→ 1 · f (000 ...).
This edge is directly given in (31).
case x = 1 · x ′ and y = 0 · y ′: Contradicts with the assumption x + 1 = y .

This shows that there is a Hamiltonian path, and it is given by f̂n. The definition of f as in
(38,39) also shows that fn+1 consists of two copies of fn, implying the last claim of Theorem 23.
In order to prove Theorem 21, we need to construct ĝn. It is enough to show that, for an
edge from u to v in Tn, we have g(u) 6 g(v). This follows by straightforward induction,
going through the edges in Definition 17. But Theorem 21 implies that there is at most one
Hamiltonian path. J

I Remark 24. Note that every vertex v in Tn is an endpoint of n non-trivial edges. The
number of zeros in the binary representation in the “order number” of v (i.e. the value gn(v)
in the proof of Theorem 21) equals the number of outgoing edges. Figure 7 shows this.

Analogously to Definition 8, we can now define the category of twisted graph morphisms:

I Definition 25 (category 1grp). The category 1grp has natural numbers as objects, and
morphisms from m to n are graph morphisms between twisted cubes:

obj(1grp) :≡ N 1grp(m, n) :≡ grp-hom (Tm,Tn) (41)

It is easy to see that the category 1grp has a version of connections. Since we are
looking for a “twisted analogue” of �op

BCH, we need to refine it further. In Section 2, we
have discussed the restriction to (meet and join)-preserving morphisms, and to dimension-
preserving morphisms. It follows directly from Theorem 21 that every morphism in 1grp
preserves all binary meets and joins, so this condition becomes trivial; it does not avoid
connections. However, preserving dimensions is still a non-trivial condition which does avoid
connections. The definition of equation (26) still works.
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I Definition 26 (category 1dim). The category 1dim has dimension-preserving maps between
twisted cubes as morphisms:

obj(1dim) :≡ N 1dim(m, n) :≡ Σ(g : grp-hom (Tm,Tn)).dim-pres(g) (42)

Note that the explanation of Remark 14 holds for the twisted cube category as well.
A consequence of Theorem 21 is that morphisms in 1dim cannot “swap dimensions”. But

an even stronger result holds, namely that surjective morphisms are unique:

I Theorem 27. There is exactly one surjective morphism in 1dim(m, n) for m > n.
(Clearly, there is none if m < n.)

Proof. The key to the proof is Theorem 23. Clearly, the Hamiltonian path in Tm goes
through all vertices. Due to surjectivity, its image has to go through all vertices of Tn. In
other words, the Tm-Hamiltonian path has to be mapped to the Tn-Hamiltonian path. Since
the graph morphisms that we consider preserve the dimension, the only edge in the Tm-path
which can be mapped to the single edge in the first dimension in the Tn-path is just this
single edge in the first dimension in the Tm-path; i.e. the middle edge has to be mapped
to the middle edge. From here, it follows by induction that there can only be at most one
surjective graph morphism.

What is left to show is that there actually is a surjective graph morphism if m > n. It
is enough to construct a surjective graph morphism f : 1dim(n + 1, n), from where we get
any other by (m − n)-fold composition (0-fold composition is the identity). Such a graph
morphism is given by

f (x0 ... xn−1xn) :≡ (x0 ... xn−1). (43)

Since the directions of the edges do not depend on the very last dimension, this works
(cf. Definition 19). J

An important consequence of the above result is that there is a unique way to degenerate
a twisted cube. We do not go into the details here, but see the conclusions at the end of the
paper. For now, we go into a different direction.

Let us write intv (“interval”) for the finite set {0, 1, ?}. Of course, intv is isomorphic to 3,
but referring to the last element as ? helps the intuition, we hope.

I Definition 28. A face of the twisted n-cube Tn is a function f : n→ intv. The dimension
of a face, written dim(f ), equals the number of times f takes ? as value (i.e. the size of
f −1(?)). The type of faces of dimension k is written as faces(n, k).

The face f : n→ intv represents the full subgraph of Tn of vertices on which f “matches”
(a vertex x0x1 ... xn−1 is matched if, for every i , we have f (i) = xi or f (i) = ?).

I Lemma 29. The image of f : 1dim(m, n) is a face.

Proof. This follows from the property of preserving the dimension as defined in (26). J

I Lemma 30. The m-faces are the only injective maps 1dim(m, n):

faces(n,m) ' Σ(f : 1dim(m, n)).is-inj(f ). (44)

Proof. Every face gives rise to a canonical injective dimension-preserving morphism in the
sense of Definition 13, as dictated by the inclusion of the full subgraph that the face represents
into Tn. The fact that these are the only ones follows from Theorem 21 (we cannot “swap
dimensions”) and Lemma 29. J
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As with Theorem 21 before, Lemma 30 is a result which is usually found in simplicial
structures, but not in cubical ones. In any case, we now easily get:

I Lemma 31 (factorisation of dimension preserving morphisms). Given a morphism f :
1dim(m, n), there is exactly one way to write it as the composition f = inj(f ) ◦ surj(f ) of a
surjective dimension preserving graph morphism followed by an injective one. This means
that the map(

Σ(k : N). (Σ(h : 1dim(k, n)).is-inj(h))× (Σ(g : 1dim(m, k)).is-surj(g))
)
→ 1dim(m, n) (45)

(k, (h, i), (g , s)) 7→ h ◦ g (46)

is an equivalence. Moreover, morphisms 1dim(m, n) are in 1-to-1 correspondence with faces
of Tn of dimension 6 m.

Proof. A consequence of Lemma 29 is that the factorisation on the level of sets of vertices
works. The second claim follows from the first: In (45), the k and the surjective map are
uniquely determined (i.e. contractible components) by Theorem 27. By Lemma 30, injective
maps correspond to faces. J

I Remark 32. It follows from Lemma 31 and the proof of Theorem 27 that all the non-empty
fibres of a dimension-preserving morphism between twisted cubes have the same size. The
reverse is the case as well: a morphism between twisted graphs where all non-empty fibres
have the same size is dimension-preserving.

Another consequence of the above results is that 1dim can be given the structure of a
Reedy category (cf. [14]). Recall that a Reedy category is a category R with a degree function
d : obj(1dim)→ N and two subcategories R+ and R−, such that:6

both subcategories are wide, i.e. contain all the objects of R;
every nonidentity morphism in R+ raises the degree;
every nonidentity morphism in R− lowers the degree;
and every morphism of R can be written as a morphisms in R− followed by a morphism
in R+ in a unique way.

The reason why Reedy categories are interesting is that they enable certain inductive
constructions. In the setting of type theory, they have been discussed by Shulman [26].

I Theorem 33. The category 1dim is a Reedy category where the degree of an object is the
object itself (recall that objects are natural numbers). 1+

dim is the subcategory of injective
morphisms, and 1−dim is the subcategory of surjective morphisms.

Proof. The first three properties are clear, and the factorisation is given by Lemma 31. J

Finally, let us record an alternative representation of the category 1dim which does not
go via graph morphisms.

I Definition 34 (ternary notation: category 1tri). The category 1tri has natural numbers as
objects, and a morphism from m to n is a function n→ intv which takes ? at most m times
as image:

obj(1tri) :≡ N 1tri(m, n) :≡ Σ(f : n→ intv).f −1(?) 6 m (47)

6 Degrees can more generally be arbitrary ordinals, but N is sufficient in our case.
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The identity morphisms are the functions that are constantly ?. To define the composition of
f : 1tri(k,m) and g : 1tri(m, n), we need to define a function g ◦ f : n→ intv (which is ? at
most k times). We define (g ◦ f )(i) by recursion on i, simultaneously with the values i ′ and
bi , as follows:

(g ◦ f )(i) :≡


g(i) if g(i) ∈ {0, 1}
(f (i ′)) xor bi if g(i) = ? and f (i ′) ∈ {0, 1}
? if g(i) = ? and f (i ′) = ?

(48)

where
i ′ is the number of occurrences of ? in the sequence g(0), g(1), ... , g(i − 1);
bi is 1 if the number of zeros in the sequence (g ◦ f )(0), (g ◦ f )(1), ... , (g ◦ f )(i − 1) is odd,
and 0 if it is even.

Note that a morphism in 1tri(m, n) can be represented as a sequence such as 01?0?10 of
length n which contains the symbol ? at most m times, which is why we refer to it as ternary
notation.
I Remark 35. There is a category of twisted semi-cubes, denoted by 1+

tri, which is exactly
the same as 1tri except that the number of ? in the sequence must be exactly m, i.e. “6”
is changed to “=” in the definition of 1tri(m, n). This category is equivalent to the sub-
category of 1dim, denoted as 1+

dim, which consists of injective dimension-preserving graph
homomorphisms. Note that this injectivity condition is equivalent to removing the reflexive
edges from Definition 18.

If we remove the expression (xor bi) in the definition of morphisms of 1+
tri, then the

category becomes equivalent to the category of standard cubes but without degeneracies and
swapping dimensions. In other words, the expression (xor bi) characterises “twisted-ness”.

I Theorem 36. The categories 1dim, and 1tri are isomorphic, with the object part being the
identity. In particular, we have:

1dim(m, n) ' 1tri(m, n) (49)

Proof. As the following chain of equivalences:

1dim(m, n)
[Lemma 31] ' Σ(k : N). (Σ(h : 1dim(k, n)).is-inj(h))× (Σ(g : 1dim(m, k)).is-surj(g))

[Theorem 27] ' Σ(k : N). (Σ(h : 1dim(k, n)).is-inj(h))× (k 6 m)
[Lemma 30] ' Σ(k : N). faces(n, k)× (k 6 m)

[simplification] ' Σ(f : n→ intv).f −1(?) 6 m
≡ 1tri(m, n)

When transported along this isomorphism, the composition of 1dim gets mapped to the
composition of 1tri, as required. J

4 Conclusions and Future Directions

We have suggested new representations of the BCH cube category and introduced a category of
twisted cubes. It is natural to further study the similarities and differences between standard
and twisted cube categories, and some new results will be presented in the upcoming PhD
thesis of the first author.
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As future work, we plan to examine algebraic descriptions via generators and relations.
Such presentations exist for many different cube categories in the literature but, as far as
we are aware, not for the BCH cube category. The closest suggestions available are the
presentations by Antolini [5] and Newstead [20], which seem to be fairly easy to adapt to
the BCH cube category. Interestingly, further adapting the generators to the twisted setting
simplifies them significantly, which mirrors the fact that morphisms between twisted cubes
cannot swap dimensions. Moreover, our Theorem 27 implies that degeneracies are unique:
there is only one single way in which a twisted n-cube can be degenerated to get a twisted
(n + 1)-cube. A consequence is that we do not need to impose relations between different
degeneracies.

This, we hope, will make it possible to develop the higher categorical structures that can
be encoded as presheaves on the category of twisted cubes. An ultimate goal would be to
model some form of directed cubical type theory mirroring the model by Bezem, Coquand,
and Huber [8].

Another possible application of our twisted cube categories might be building a syntax
for a parametric type theory or cubical type theory without an interval as suggested by
Altenkirch and Kaposi [2]. A major difficulty in their development was the presence of
multiple degeneracies, a problem which does not occur in the current work.

A further direction which may be worth exploring is to not consider set-valued presheaves,
but type-valued presheaves instead. To facilitate this, we can consider the category of twisted
semi-cubes mentioned in Remark 35. From there, type-valued presheaves can be encoded as
Reedy-fibrant diagrams in a known style [27]. We can then add a condition reminiscent of
Rezk’s Segal-condition [24] by stating that the projection from twisted semi-cubical types
to the sequence of types along the Hamiltonian path is an equivalence. This corresponds
to saying that the partial n-cube with missing inner part and lid (cf. Figure 3) have a
contractible type of fillers. It seems that this could be a first step towards the construction
of composition and higher coherences, although further conditions seem to be necessary. The
relation to the (complete) semi-Segal types by Capriotti and others [4, 10, 11] remains to be
studied.
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Abstract
Inductive-inductive types (IITs) are a generalisation of inductive types in type theory. They allow
the mutual definition of types with multiple sorts where later sorts can be indexed by previous ones.
An example is the Chapman-style syntax of type theory with conversion relations for each sort where
e.g. the sort of types is indexed by contexts. In this paper we show that if a model of extensional
type theory (ETT) supports indexed W-types, then it supports finitely branching IITs. We use a
small internal type theory called the theory of signatures to specify IITs. We show that if a model of
ETT supports the syntax for the theory of signatures, then it supports all IITs. We construct this
syntax from indexed W-types using preterms and typing relations and prove its initiality following
Streicher. The construction of the syntax and its initiality proof were formalised in Agda.
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1 Introduction

Many mutual inductive types can be reduced to indexed inductive types, where the index
disambiguates different sorts. For example, consider the mutual inductive datatype with two
sorts isEven and isOdd, defined by the following constructors.

isEven : N→ Set
isOdd : N→ Set
zeroEven : isEven zero
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sucEven : (n : N)→ isOddn→ isEven (sucn)
sucOdd : (n : N)→ isEvenn→ isOdd (sucn)

This can be reduced to the following single inductive family where isEven? true represents
isEven and isEven? false represent isOdd.

isEven? : Bool→ N→ Set
zeroEven : isEven? true zero
sucEven : (n : N)→ isEven? falsen→ isEven? true (sucn)
sucOdd : (n : N)→ isEven? truen→ isEven? false (sucn)

Inductive-inductive types (IITs [26]) allow the mutual definition of a type and a family of
types over the first one. IITs were originally introduced to represent the well-typed syntax of
type theory itself, and a prominent example is still Chapman’s [13] syntax for a type theory.
A minimised version is the IIT of contexts and types given by the following constructors.

Con : Set
Ty : Con→ Set
empty : Con
ext : (Γ : Con)→ Ty Γ → Con
U : (Γ : Con)→ Ty Γ
El : (Γ : Con)→ Ty (ext Γ (U Γ))

This type has two sorts, Con and Ty. The ext constructor of Con refers to Ty and the Ty-
constructor U refers to Con, hence the two sorts have to be defined simultaneously. Moreover,
Ty is indexed over Con. This precludes a reduction analogous to the reduction of isEven–isOdd,
as we would get a type indexed over itself. Another unique feature of IITs (which also holds
for higher inductive types [29]) is that later constructors can refer to previous constructors:
in our case, El mentions ext.

The elimination principle for the above IIT has the following two motives (one for each
sort) and four methods (one for each constructor).

ConD : Con→ Set
TyD : ConD Γ → Ty Γ → Set
emptyD : ConD empty
extD : (ΓD : ConD Γ)→ TyD ΓD A→ ConD (ext Γ A)
UD : (ΓD : ConD Γ)→ TyD ΓD (U Γ)
ElD : (ΓD : ConD Γ)→ TyD (extD ΓD (UD ΓD)) (El Γ)

Above we used implicit quantifications for Γ : Con and A : Ty Γ to ease readability, e.g. TyD
has an implicit parameter Γ before its explicit parameter of type ConD Γ .

Given the above motives and methods the elimination principle provides two functions

elimCon : (Γ : Con)→ ConD Γ
elimTy : (A : Ty Γ)→ TyD (elimCon Γ)A

with the following computation rules.
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elimCon empty = emptyD

elimCon (ext Γ A) = extD (elimCon Γ) (elimTyA)
elimTy (U Γ) = UD (elimCon Γ)
elimTy (El Γ) = ElD (elimCon Γ)

The functions elimCon and elimTy are an example of a recursive-recursive definition (using
nomenclature from [26]). This means two mutually defined functions where the type of the
second function depends on the first function. The proof assistant Agda [28] allows defining
such functions (even from non-IITs) and is currently the only proof assistant supporting
IITs1.

Reducing IITs to inductive types (more precisely, to indexed W-types) is an open problem.
Forsberg [26] presented a reduction in extensional type theory, however, this only provides
a simpler, non-recursive-recursive elimination principle. Hugunin [19] reduced several IITs
to inductive types, working inside a cubical type theory, but he also only constructed the
simple eliminator. To illustrate the difference, we list the motives, methods and the simple
elimination principle for the Con–Ty example. Again, we use implicit quantifications.

ConS : Con→ Set
TyS : Ty Γ → Set
emptyS : ConS empty
extS : ConS Γ → TyS A→ ConS (ext Γ A)
US : ConS Γ → TyS (U Γ)
ElS : ConS Γ → TyS (El Γ)
selimCon : (Γ : Con)→ ConS Γ
selimTy : (A : Ty Γ)→ TyS A

This simple elimination principle is not capable of defining standard (metacircular) interpret-
ation [4] of our small syntax. Using pattern matching notation, this interpretation is the
following:

J–K : Con→ Set1

J–K : JΓK→ Set1

JemptyK := >
Jext Γ AK := (γ : JΓK)× JAK γ

JU ΓK γ := Set
JEl ΓK (γ,X) := X

The reason that we need the general elimination principle to define J–K is that J–K for types
refers to J–K for contexts, hence this function is recursive-recursive.

Kaposi, Kovács, and Altenkirch [21] introduced a small type theory, called the theory of
signatures, to describe quotient inductive-inductive types (QIIT). QIITs are generalisations
of IITs where equality constructors are also allowed. A QIIT signature is a context in

1 An experimental version of Coq with IITs is also available on GitHub.
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the theory of QIIT signatures, for example natural numbers are specified by the context
(Nat : U, zero : Nat, suc : Nat → Nat) of length three (Nat, zero and suc are variable
names). The theory of QIIT signatures is itself a QIIT. In ibid., it is proved that if a model
of extensional type theory supports the theory of QIIT signatures, then it supports all QIITs.

By omitting the equality type former from the theory of QIIT signatures, we obtain a
theory of IIT signatures and the construction is still valid. It follows that if a model of
extensional type theory supports the theory of IIT signatures, it supports all IITs.

In this paper we show that any model of extensional type theory with indexed W-types
supports the theory of IIT signatures, and as a consequence all IITs. The difficulty in this
construction is that the theory of IIT signatures is itself a QIIT, it is both inductive-inductive
and has equality constructors. However, it can be seen as the well-typed syntax of a small
type theory without any computation rules. Hence we can represent the syntax of normal
forms without quotienting. We construct this well-typed normal syntax using preterms and
typing relations from indexed W-types. Finally, we prove the elimination principle in the
style of the initiality proof of Streicher.

Streicher [30] constructs the syntactic model of type theory using well-typed preterms
and then shows initiality of this model by (1) defining a partial map to any other model
by induction on preterms and (2) showing that whenever this partial function receives a
well-typed preterm on its input it actually gives an output. Instead of defining a partial
function, we define the graph of the same function as a relation and then show that it is
functional as a second step. This can be seen as an indexed variant of the construction using
partial functions.

Just as [21], we only consider finitary IITs, that is, constructors can only have a finite
number of recursive arguments. An example constructor for Con–Ty which is not allowed is
the following:

Π∞ : (Γ : Con)→ (N→ Ty Γ)→ Ty Γ

Structure of paper and list of contributions

We describe related work in Section 1.1, and explain our notation and Agda formalisaton in
Section 1.2. Then the following three sections describe our three contributions:

Section 2. We define what it means for a model of extensional type theory (ETT,
Definition 1) to support all inductive-inductive types (IITs): Definition 12. The novel
contribution here is a (predicative) Church encoding of signatures following [8].
Section 3. In Theorem 23, we show that if a model of ETT supports the theory of IIT
signatures (Definition 15), then it supports IITs. This is an adaptation of a proof in [21].
Section 4. Our main contribution is showing that if a model of ETT supports indexed
W-types, then it supports the theory of IIT signatures (Theorem 57), and hence, all IITs
(Corollary 58).

We list further work in Section 5.
The contents of this paper were presented at the TYPES 2019 conference in Oslo [22].

1.1 Related Work
The current work builds heavily on the work of Kaposi et al. [21] on finitary quotient
inductive-inductive types (QIITs); we reuse both QIIT syntax and semantics by restricting
to IITs, and we reuse the term model construction of QIITs as well. We also make use of the
extension to infinitary QIITs [24] to derive the specification of the elimination principle for
the theory of IIT signatures.
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IITs (although not by this name) were first used to describe the well-typed syntax of type
theory [15, 13]. Agda supported these general inductive definitions even before they were
named IITs and given semantics by Nordvall Forsberg and Setzer [27]. Nordvall Forsberg’s
thesis [26] contains a specification similar in style to Dybjer and Setzer’s codes for inductive-
recursive types [17]. He also develops a categorical semantics based on dialgebras and provides
a reduction of IITs to indexed inductive types, however only constructs the simple elimination
principle as opposed to the general one. Altenkirch et al. [2] define signatures for QIITs
(thus IITs as well) and their categorical semantics, however without proving existence of
initial algebras. Their notion of signature, like Nordvall Forsberg’s, involves more encoding
overhead than ours.

Cartmell [12] introduced generalised algebraic theories using a type-theoretic syntax.
Removing equations from his signatures and only considering finite signatures, we obtain
finitary IIT signatures similar to ours. He does not consider constructing initial algebras
using simpler classes of inductive types.

Hugunin [19] constructs several IITs in cubical Agda from inductive types. In this setting,
the lack of UIP makes constructions significantly more involved, and essentially involves
coinductive-coinductive well-formedness predicates defined as homotopy limits. Hugunin
does not consider a generic syntax of IITs and only works on specific examples (although the
examples vary greatly). He also only constructs simple elimination principles.

Streicher [30] presents an interpretation of the well-formed presyntax of a type theory
into a categorical model, which is an important ingredient in constructing an initial model,
although he does not present details on the construction of the term model or its initiality
proof. Our initiality proof can be seen as an indexed variant of his construction (see
Subsection 4.2 for a comparison).

Voevodsky was interested in constructing initial models of type theories from presyntaxes.
Inspired by this, Brunerie et al. [10] formalised Streicher’s proof in Agda for a type theory
with Π, Σ, N, identity types and an infinite hierarchy of universes. They used UIP, function
extensionality and quotient types in the formalisation. In this paper we construct a type
theory without computation rules, hence we avoid using quotients.

Intrinsic (well-typed) syntaxes for type theories were constructed using IITs [13], inductive-
recursive types [15, 6] and QIITs [4]. In this paper we avoid using such general classes of
inductive types as our goal is to reduce IITs to indexed inductive types.

Reducing general classes of inductive types to simpler classes has a long tradition in type
theory. Indexed W-types were reduced to W-types [3] (using the essentially Streicher’s idea
of preterms and a typing predicate), small inductive-recursive types to indexed W-types [25],
mutual inductive types to indexed W-types [23], W-types to natural numbers and quotients
[1]. (Q)IITs can be reduced to quotient inductive types using the reduction of generalised
algebraic theories to essentially algebraic theories [12]. Using the same reduction as mutual
inductive types to indexed inductive types, (Q)IITs with more than two sorts can be reduced
to (Q)IITs with only two sorts [20].

Awodey, Frey and Speight [8] construct inductive types using a restricted Church encoding
in a type theory with an impredicative universe. We use the predicative version of their
encoding to define IIT signatures.

Our reduction of IITs to indexed inductive types goes through two steps: first we construct
a concrete QIIT using inductive types, then we construct all IITs from this particular QIIT.
A more direct approach is proposed by [5]: here the initial algebra would be constructed
directly for any IIT signature without going through an intermediate step.

TYPES 2019
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1.2 Notation and Formalisation
I Definition 1 (Model of extensional type theory (ETT)). By a model of ETT we mean a
category with families (CwF) [16, 18] with a countable predicative hierarchy of universes
closed under the following type formers: Π, Σ, > and an identity type with uniqueness of
identity proofs and equality reflection.

We will use Agda-like type theoretic syntax to work in the internal language of models
of ETT:

Universes are written Seti. We usually omit level indices in this paper.
Π types are notated as (x : A)→ B, or as A→ B when non-dependent. We sometimes
omit function arguments, by implicitly generalising over variables.
Σ-types, notated either as (x : A)×B, or as

∑
x
B when we want to leave the type of the

first projection implicit. Projections are either named or given by proj1 and proj2. We
use A×B for non-dependent pairs.
The unit type > has the constructor tt which is definitionally equal to all elements of >.
The equality (identity) type is written t = u, it has a constructor refl : t = t, and equality
reflection, hence we use the same = sign for definitional equality. We occasionally indicate
by e1,...,en#t that t is well-typed thanks to the equalities e1,. . . ,en. To construct proofs,
sometimes we write equational reasoning, e.g. fa e= fb where e : a = b. We also have
uniqueness of identity proofs (UIP), expressing (e : t = t)→ e = refl. Note that function
extensionality, expressing ((x : A)→ f x = g x)→ f = g is derivable.

The contents of Section 4 were formalised in Agda, the formalisation is available at
https://github.com/amblafont/UniversalII. Agda’s pattern matching mechanism im-
plies uniqueness of identity proofs, we assumed function extensionality as an axiom and used
rewrite rules [14] to obtain limited equality reflection.

2 A Definition of Inductive-Inductive Types

In this section we specify what it means that a model of ETT supports IITs. We first define
the notion of IIT signature. Signatures for algebraic theories are usually given by inductive
definitions. On the one hand, we take this even further: our notion of signature is given
by a small type theory tailor-made to describe signatures, which we call the theory of IIT
signatures. On the other hand we would like to avoid using a complicated inductive definition
(a type theory is a quotient inductive-inductive type [4]) to describe a simpler class of
inductive types. Hence we use a Church encoding [8] of the theory of IIT signatures, thereby
avoiding the need for pre-existing inductive definitions. Another feature of our signatures is
that they can include types from the model of ETT (such as N in the isEven–isOdd). This is
why signatures are specified internally to the particular model of ETT.2

We define the theory of IIT signatures by saying what its algebras (models) are. We call
the theory of IIT signatures algebras simply signature algebras. The theory of signatures
is a small type theory consisting of a (1) a substitution calculus (category with families,
CwF [16]) equipped with (2) a universe, (3) a function space where the domain is in the
universe and (4) another function space with external domain. We explain the usage of these
type formers through examples after the definition.

2 There is another method inspired by Capriotti [11] which allows stating what it means that any CwF C
(not necessarily a model of ETT) supports IITs with definitional computation rules. In this method,
signatures are described in the internal language of Ĉ, the presheaf model over C. We do not use this
approach because it is more technical, and it would not strengthen our main result Corollary 58 as the
proof of Theorem 57 needs C to be a model of ETT.

https://github.com/amblafont/UniversalII
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I Definition 2 (Signature algebra, SignAlg). In a model of ETT, a signature algebra is an
iterated Σ type consisting of the following four (families of) sets, 17 operations and 18
equalities.

(1) Substitution calculus
Con : Set
Ty : Con→ Set
Sub : Con→ Con→ Set
Tm : (Γ : Con)→ Ty Γ → Set
id : Sub Γ Γ
– ◦ – : Sub Θ ∆→ Sub Γ Θ → Sub Γ ∆
ass : (σ ◦ δ) ◦ ν = σ ◦ (δ ◦ ν)
idl : id ◦ σ = σ

idr : σ ◦ id = σ

– [– ] : Ty ∆→ Sub Γ ∆→ Ty Γ
– [– ] : Tm ∆A→ (σ : Sub Γ ∆)→ Tm Γ (A[σ])
[id] : A[id] = A

[◦] : A[σ ◦ δ] = A[σ][δ]
[id] : t[id] = t

[◦] : t[σ ◦ δ] = t[σ][δ]
· : Con
ε : Sub Γ ·
·η : (σ : Sub Γ ·)→ σ = ε

– B – : (Γ : Con)→ Ty Γ → Con
– , – : (σ : Sub Γ ∆)→ Tm Γ (A[σ])→ Sub Γ (∆ BA)
π1 : Sub Γ (∆ BA)→ Sub Γ ∆
π2 : (σ : Sub Γ (∆ BA))→ Tm Γ (A[π1σ])
π1β : π1(σ, t) = σ

π2β : π2(σ, t) = t

πη : (π1 σ, π2 σ) = σ

, ◦ : (σ, t) ◦ δ = (σ ◦ δ, t[δ])
(2) Universe
U : Ty Γ
El : Tm Γ U→ Ty Γ
U[] : U[σ] = U
El[] : (El a)[σ] = El (a[σ])
(3) Inductive parameters
Π : (a : Tm Γ U)→ Ty (Γ B El a)→ Ty Γ
– @ – : Tm Γ (Π aB)→ (u : Tm Γ (El a))→ Tm Γ (El (B[id, u]))
Π[] : (Π aB)[σ] = Π (a[σ]) (B[σ ◦ p, q])
@[] : (t@α)[σ] = (t[σ]) @(α[σ])

TYPES 2019
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(4) External parameters

Π̂ : (T : Set)→ (T → Ty Γ)→ Ty Γ

– @̂ – : Tm Γ (Π̂T B)→ (α : T )→ Tm Γ (B α)

Π̂[] : (Π̂T B)[σ] = Π̂T (λα.(B α)[σ])
@̂[] : (t @̂α)[σ] = (t[σ]) @̂α

Given an M : SignAlg, we denote its components by ConM , TyM , SubM , TmM , idM , and so
on. We omit the indices if there is only one signature algebra in scope (e.g. in Definition 3
and Example 4).

I Definition 3 (Abbreviations). For a signature algebra, we use wk : Sub (Γ BA) Γ to mean
π1 id. We recover de Bruijn indices by setting 0 := π2 id and 1 + n := n[wk]. Π a (B[wk]) is
abbreviated by a⇒ B, Π̂T (λ_.B) by T ⇒̂B.

I Example 4 (Example contexts in a signature algebra). Given a signature algebra, we can
define a context which specifies natural numbers. For readability, an informal version of the
same context is displayed on the right using variable names.

· B U B z : El 0 B s : 1⇒ El 1 · BN : U B z : ElN B s : N ⇒ ElN

We start with the empty context ·, then we declare a sort U, then we declare an operator
producing an element of the sort denoted by El 0 where 0 is the de Bruijn index referring to
the sort. Finally, we declare an operator which takes as input an element of the sort (now it
became de Bruijn index 1) and produces an element of the same sort. Note the asymmetry
of the function type ⇒: the domain needs to be an element of U, while the codomain can be
any type (including another function type). This ensures strict positivity of the operators.

Lists with elements of a given T : Set type are given by the following context. Here we use
the function space with external domain ⇒̂ to include a T in the signature. For readability,
we omit the λ and the superscripts and we do not write the compatibility condition. On the
right we list the same signature with variable names.

· BU B El 0 B T ⇒̂ 1⇒ El 1 · BL : U B nil : ElL B cons : T ⇒̂ L⇒ ElL

The Con–Ty example from Section 1 is given by the following context.

· B · B

UB Con : UB

0⇒ UB Ty : Con⇒ UB

El 1B empty : ElConB
Π 2 (2 @ 0⇒ El 3)B ext : Π (Γ : Con) (Ty @ Γ ⇒ ElCon)B
Π 3 (El (3 @ 0))B U : Π (Γ : Con) (El (Ty @ Γ))B
Π 4 (El (4 @(2 @ 0 @(1 @ 0)))) El : Π (Γ : Con) (El (Ty @(ext@ Γ @(U @ Γ))))

The above examples are contexts in any signature algebra, and we could take this as a
definition of signature: (M : SignAlg) → ConM is the usual Church-encoding of contexts.
However (as we will see in Remark 24) the notion of constructor for such signatures would
be too strong. Another approach would be to assume that there is a syntax for signature
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algebras (an initial signature algebra), and then a signature would be a context in this
signature algebra. We will define syntactic signatures using this approach in the next section
(Definition 16), but for now we do not want to assume the existence of any inductive type.
Instead, we will use a restricted Church encoding. This requires the notion of morphism of
signatures.

The notion of morphism is determined by the notion of algebra [24], but we include it
here for completeness.

I Definition 5 (Signature morphism, SignMor). A morphism from signature algebras M to N
denoted SignMorM N consists of four functions and 17 equalities expressing that the functions
preserve the operations of the two algebras. We use the same naming as in Definition 2 and
use superscripts to denote which algebra is meant.

(1) Substitution calculus
Con : ConM → ConN

Ty : TyM Γ → TyN (Con Γ)
Sub : SubM Γ ∆ → SubN (Con Γ) (Con ∆)
Tm : TmM Γ A → TmN (Con Γ) (TyA)
id : Sub idM = idN

◦ : σ ◦M δ = Subσ ◦N Sub δ
[] : A[σ]M = TyA[Subσ]N

[] : t[σ]M = Tm t[Subσ]N

· : Con ·M = ·N

ε : Sub εM = εN

B : Con (Γ BM A) = Con Γ BN TyA
, : Sub (σ,M t) = Subσ,N Tm t

π1 : Sub (π1
M σ) = π1

N (Subσ)
π2 : Tm (π2

M σ) = π2
N (Subσ)

(2) Universe
U : Ty UM = UN

El : Ty (ElM a) = ElN (Tm a)
(3) Inductive parameters
Π : Ty (ΠM aB) = ΠN (Tm a) (TyB)
@ : Tm (t @M u) = Tm t @N Tmu

(4) External parameters

Π̂ : Ty (Π̂M T B) = Π̂N T (λα.Ty (B α))

@̂ : Tm (t @̂
M α) = Tm t @̂

N α

Given an f : SignMorM N , we denote its first four components just by fCon, fTy, fSub, fTm
or just write f if it is clear which one is meant.

We define IIT signatures using the Church encoding introduced by Awodey, Frey and
Speight [8]. A difference is that we avoid impredicativity. This restricts the possible
eliminations on signatures: we can only eliminate into a universe which is smaller than the
level of signatures. However, this still covers all eliminations in this paper, and it is also not
an issue for us that signatures do not live in the smallest universe.

TYPES 2019
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I Definition 6 (IIT signature). An IIT signature is a context in an arbitrary signature algebra,
which is also compatible with morphisms:

Sign :=
(
sig : (M : SignAlg)→ ConM

)
×(

(M N : SignAlg)(f : SignMorM N)→ fCon (sigM) = sig N
)
.

The compatibility condition says that if we obtain an M -context using sig at signature
algebra M and then we transport it to N using f , we get the same N -context as directly
applying sig to N .

The lack of impredicativity implies that our notion of signatures do not form a signature
algebra.

I Lemma 7. There is no M : SignAlg, in which ConM = Sign.

Proof. If the Con component in SignAlg is Seti, then SignAlg is in Seti+1, but as Sign is
defined as (SignAlg→ . . . )× . . . , it is at least in Seti+1, so we can’t choose ConM : Seti to
be Sign : Seti+1. J

Note that the notion of IIT signature is relative to a model of ETT: it is expressed as a
term (of a function type) in the model. This is necessary because of the function space Π̂,
which has as domain an arbitrary type in the model. We make use of Π̂ in signatures with
external parameters, like the type of the elements in lists.

I Example 8 (Example signature). Now we can formally describe the contexts given in
Example 4 as signatures. For natural numbers, we have the following pair of functions. The
second function returns an equality proof which we describe using equational reasoning.

(nat, natc) :=(
λM.(·M BM UM BM ElM 0M BM 1M ⇒M ElM 1M ),
λM N f . fCon (·M BM UM BM ElM 0M BM 1M ⇒M ElM 1M ) =

fCon (·M BM UM BM ElM 0M ) BN fTy (1N ⇒N ElN 1N ) =
fCon (·M BM UM ) BN fTy (ElM 0M ) BN fTm 1N ⇒M fTy (ElN 1N ) =
fCon ·M BN fTy UM BN ElN (fTm 0M ) BN 1M ⇒M ElM (fTm 1N ) =
·N BN UN BN ElN 0N BN 1N ⇒N ElN 1N

)
The first component builds the context describing natural numbers in M , the second one
uses the fact that f is a morphism, that is, it preserves all operations.

The signatures for lists and Con–Ty can be given analogously.

Given a model of ETT and an IIT signature in it, we would like to say what it means
that the model supports the given IIT. For this we define the signature algebra ADS which
will provide notions of algebras, displayed algebras and sections for each signature. This is
the same as the –A, –D and –S operations in [21]. Before defining ADS, we illustrate its
usage by an example.

I Example 9 (Algebras, displayed algebras and sections for natural numbers). For the signature
of natural numbers as given in Example 8, algebras are given by the Σ-type (N : Set)×N ×
(N → N). A displayed algebra over (N, z, s) is given by the Σ-type

(ND : N → Set)×ND z × ((n : N)→ ND n→ ND (s n)),

and a section of a displayed algebra (ND, zD, sD) over (N, z, s) is given by the Σ-type

(NS : (n : N)→ ND n)× (NS z = zD)× ((n : N)→ NS (s n) = sD n (NS n)).
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Displayed algebras over the initial algebra are called motives and methods of the eliminator,
while a section of a displayed algebra over the initial algebra is the eliminator together with
its computation rules.

I Definition 10 (The signature algebra ADS). We define an element of SignAlg by listing all
its components Con, Ty, Sub, and so on, one per row. Each such component has three parts
denoted by A, D and S, respectively. The equality components of SignAlg are omitted as they
are all reflexivity.

(ΓA : Set) ×(ΓD : ΓA → Set) ×(ΓS : (γ : ΓA)→ ΓD γ → Set)

(AA : ΓA → Set) ×(AD : ΓD γ → AA γ → Set) ×(AS : ΓS γ γD → (α : AA γ)→

AD γD α→ Set)

(σA : ΓA → ∆A) ×(σD : ΓD γ → ∆D (σA γ)) ×(σS : ΓS γ γD →

∆S (σA γ) (σD γD))

(tA : (γ : ΓA)→ AA γ) ×(tD : (γD : ΓD γ)→ ×(tS : (γS : ΓS γ γD)→

AD γD (tA γ)) AS (tA γ) (tD γD))

idA γ := γ idD γD := γD idS γS := γS

(σ ◦ δ)A γ := σA (δA γ) (σ ◦ δ)D γD := σD (δD γD) (σ ◦ δ)S γS := σS (δS γS)

(A[σ])A γ := AA (σA γ) (A[σ])D γD := AD (σD γD) (A[σ])S γS := AS (σS γS)

(t[σ])A γ := tA (σA γ) (t[σ])D γD := tD (σD γD) (t[σ])S γS := tS (σS γS)

·A := > ·D _ := > ·S __ := >

εA _ := tt εD _ := tt εS _ := tt

(Γ BA)A := (Γ BA)D (γ, α) := (Γ BA)S (γ, α) (γD, αD) :=

(γ : ΓA)×AA γ (γD : ΓD γ)×AD γD α (γS : ΓS γ γD)×AS γS ααD

(σ, t)A γ := (σA γ, tA γ) (σ, t)D γD := (σD γD, tD γD) (σ, t)S γS := (σS γS , tS γS)

(π1 σ)A γ := proj1 (σA γ) (π1 σ)D γD := proj1 (σD γD) (π1 σ)S γS := proj1 (σS γS)

(π2 σ)A γ := proj2 (σA γ) (π2 σ)D γD := proj2 (σD γD) (π2 σ)S γS := proj2 (σS γS)

UA γ := Set UD γD T := T → Set US γS T TD := (α : T )→ TD α

(El a)A γ := aA γ (El a)D γD α := aD γD α (El a)S γS ααD := (aS γS α = αD)

(Π aB)A γ := (Π aB)D γD f := (Π aB)S γS f fD := (α : aA γ)→

(α : aA γ)→ BA (γ, α) (αD : aD γD α)→ BS (γS , reflaS γS α) (f α)

BD (γD, αD) (f α) (fD (aS γS α))

(t@u)A γ := tA γ (uA γ) (t@u)D γD := tD γD (uD γD) (t@u)S γS :=uS γS# tS γS (uA γ)

(Π̂T B)A γ := (Π̂T B)D γD f := (Π̂T B)S γS f fD := (α : T )→

(α : T )→ (B α)A γ (α : T )→ (B α)D γD (f α) (B α)S γS (f α) (fD α)

(t @̂α)A γ := tA γ α (t @̂α)D γD := tD γD α (t @̂α)S γS := tS γS α

Definition 10 can be explained by columns (see [21, Sections 4 and 6] for more details) or by
rows (see [21, Section 7.4]).

We first explain it by columns: the first column (A components) corresponds to the
standard model (set model, metacircular interpretation [4]): contexts are sets, types are
families, terms are functions, the universe U is given by Set, function spaces are given by the
external function space. The D column is a logical predicate interpretation, A and D together
are a unary version of the parametric model for dependent types [7]. Contexts are predicates,
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types are families of predicates, terms say that the A interpretation respects the predicates
(this is ususally called fundamental lemma of the logical predicate). U is given by predicate
space, the predicate at a Π type holds for a function if it respects the predicates. For Π̂, the
predicate is defined pointwise. The last column S is a modified dependent logical relation
which refers to both A and D. Contexts are binary relations where the second parameter
depends on the first one, types are dependent variants of this, terms say that the relation
is respected by A and D, respectively. U is however not relation space, but a function and
(El a)S is the graph of the function aS. ΠS for a function again says that the function respects
the relation, however we do not simply say

(Π aB)S γS f fD := (α : aA γ)(αD : aD γD α)(αS : (El a)S γS ααD)→ BS . . . ,

as (El a)S γS ααD is just an equality aS γS α = αD which we can singleton contract. So we
omit αD and this equality as an input and replace αD by aS γS α in the definition.

When viewing ADS by rows, we can see that it is a part of the CwF model of type theory
[21, Section 7.4]. In the CwF model, a context is given by a CwF. Now, from the category
part of the CwF, we only have objects (ΓA), and from the families, we have the families for
types ΓD and terms ΓS. Types are the corresponding parts of displayed CwFs, substitutions
are parts of CwF morphisms, terms are parts of CwF sections. U is part of the CwF of sets,
El a is the part of the discrete displayed CwF coming from a (which is a CwF-morphism
from Γ to the CwF of sets). Π is given by a dependent product of displayed CwFs where it
is essential that the domain is discrete, Π̂ is the pointwise direct product.

I Definition 11 (The set signature algebra A). A : SignAlg is given by the first A components
of ADS (Definition 10), that is, ConA := Set, TyA Γ := Γ → Set, SubA Γ ∆ := Γ → ∆, and
so on. There is a morphism from ADS to A defined by –A at each component, which we also
denote by –A : SignMor ADS A.

I Definition 12 (A model of ETT supports IITs). A model of ETT supports IITs if for any
signature (sig, sigc) : Sign there is a

consig : (sig ADS)A

and an

elimsig : (γD : (sig ADS)D consig)→ (sig ADS)S consig γD.

In other words, for any signature, we have an algebra called con (constructors) and for any
displayed algebra over the constructors, we have a section (called the eliminator).

One can check that Definition 12 gives the right notion of constructors and elimination
principle for the signatures in Example 8.

I Example 13 (A model of ETT supports natural numbers). For the signature (nat, natc) of
natural numbers in Example 8, the type of connat is

(natADS)A =

(·ADS BADS UADS BADS ElADS 0ADS BADS 1ADS ⇒ADS ElADS 1ADS)A =((
(· B U) B El (π2 id)

)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))A
=(

γ′′ :
(
γ′ : ((γ : ·A)× UA γ)

)
× (El (π2 id))A γ′

)
×
(

Π
(
π2 (π1 id)

) (
π2 (π1 (π1 id))

))A
γ′′ =(

γ′′ :
(
γ′ : ((γ : >)× Set)

)
× (proj2 γ′)

)
×
(
proj2 (proj1 γ′′)→ proj2 (proj1 γ′′)

)
,
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which is a left-nested Σ type isomorphic to its right-nested counterpart

(N : Set)×
(
N × (N → N)

)
.

Writing (((tt,Nat), zero), suc) for connat, the type of elimnat computes as follows.

(γD : (natADS)D connat)→ (natADS)S connat γD =(
γD :

((
(· B U) B El (π2 id)

)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))D
connat

)
→((

(· B U) B El (π2 id)
)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))S
connat γD =(

γD :
((

(· B U) B El (π2 id)
)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))D

(
((tt,Nat), zero), suc

))
→((

(· B U) B El (π2 id)
)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))S (
((tt,Nat), zero), suc

)
γD =((

((tt, ND), zD), sD
)

:
(
γD

′′ :
(
γD

′ : ((γD : ·D tt)× UD γD Nat)
)
× (El (π2 id))D γD

′ zero
)
×(

Π
(
π2 (π1 id)

) (
π2 (π1 (π1 id))

))D
γD

′′ suc
)
→((

(· B U) B El (π2 id)
)
B
(
π2 (π1 id)

)
⇒ El

(
π2 (π1 id)

))S
(((tt,Nat), zero), suc)(

((tt, ND), zD), sD
)

=((
((tt, ND), zD), sD

)
:
(
γD

′′ :
(
γD

′ : ((γD : ·D tt)× UD γD Nat)
)
× (El (π2 id))D γD

′ zero
)
×(

Π
(
π2 (π1 id)

) (
π2 (π1 (π1 id))

))D
γD

′′ suc
)
→(

γS
′′ :
(
γS

′ : ((γS : ·S tt tt)× US γS NatND)
)
× (El (π2 id))S γS

′ zero zD
)
×(

Π
(
π2 (π1 id)

) (
π2 (π1 (π1 id))

))S
γS

′′ suc sD =((
((tt, ND), zD), sD

)
:
(
γD

′′ :
(
γD

′ : ((γD : >)× (Nat→ Set))
)
× proj2 γ

D ′ zero
)
×

(
proj2 (proj1 γ

D ′′)n→ proj2 (proj1 γ
D ′′) (sucn)

))
→(

γS
′′ :
(
γS

′ : ((γS : >)× ((n : Nat)→ ND n))
)
× proj2 γS

′ zero = zD
)
×((

n : Nat
)
→ proj2 (proj1 (proj1 γS

′′)) (sucn) = sD
(

proj2 (proj1 (proj1 γS
′′))n

))
This is again a left-nested version of the expected elimination principle

(ND : Nat→ Set)(zD : ND zero)
(
sD : (n : Nat)→ ND n→ ND (sucn)

)
→(

NS : (n : Nat)→ ND n
)
× (NS zero = zD)×

(
(n : Nat)→ NS (sucn) = sD (NS n)

)
I Remark 14. The computation rules of the elimination principle are only expected up to the
internal equality type, but as we work with a model of ETT, we also get them as definitional
equalities by equality reflection.
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3 Constructing all IITs from the Theory of IIT Signatures

In the previous section, using the notions of signature algebras and signature morphisms,
we defined IIT signatures and what it means for a model of ETT to support all IITs. In
this section we show that if a model of ETT supports the theory of IIT signatures, then
it supports all IITs. Using the Church encoding of Definition 6, every model of ETT can
describe ITT signatures. In contrast, in Definition 15, we will require existence of an initial
signature algebra.

The contents of this section are an adjustment of [21, Sections 4 and 6] to our setting.

I Definition 15. A model of ETT supports the theory of IIT signatures if there is a signature
algebra I : SignAlg equipped with a unique morphism J–KM : SignMor IM into any algebra M .
Sometimes we omit the subscript M . We call I the syntax or initial algebra, the morphism
J–K is called recursor.

I Definition 16 (Syntactic signatures). In a model of ETT supporting the theory of ITT
signatures, we call elements of ConI syntactic signatures.

One may wonder what is the relationship between the two notion of signatures.

I Lemma 17. In a model of ETT supporting the theory of ITT signatures, signatures and
syntactic signatures are isomorphic.

Proof. We can turn a (sig, sigc) : Sign into ConI by sig I and an Ω : ConI into a Sign by(
λM.JΩKM , λM N f.

(
f JΩKM = (f ◦ J–KM ) Ω = JΩKN

))
where the equality proof in the

second component comes from uniqueness of the recursor (we have to define composition
of morphisms ◦ for this). The compositions of these two maps are the identities: (sig, sigc)
is mapped to (λM.Jsig IKM , . . . ) = (λM.J–KM (sig I), . . . ) which is equal to (λM.sigM, . . . )
because of sigc; Ω is mapped to JΩKI = Ω by uniqueness of J–K. J

We will define the term signature algebra by which we obtain the constructors con for any
IIT signature. Then we will define another signature algebra which provides the eliminator.
Before doing these, we illustrate the idea of both constructions on natural numbers.

I Example 18. For natural numbers, we will define the constructors con as the following
natural number algebra (Nat, zero, suc). We write variable names instead of de Bruijn indices
for readability.

Nat := TmI (·BN : U B z : ElN B s : N ⇒ ElN) (ElN)
zero := z

suc := λt.(s@ t)

Natural numbers are simply I-terms of type ElN in the context which is the syntactic
signature for natural numbers. In this context, the only way to define a term of type ElN is
to use z and s, corresponding to the zero and suc constructors.

To define the action of the eliminator on a natural number n : Nat, let’s look at the type
of the displayed algebra interpretation of the number:

JnKADS
D : (γD : J·BN : U B z : ElN B s : N ⇒ ElNKD con)→ JElNKD (JnKA con)

This says that for a displayed algebra γD = (ND, zD, sD) over con (i.e. the motives and
methods of the eliminator), we get a witness of the predicate JElNKD = ND at the algebra
interpretation of n. This is not yet good, as we would like to getND n instead ofND (JnKA con)
as a result. However, interpretation into the term signature algebra will imply that n =
JnKA con.
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I Definition 19 (Term signature algebra IC– ). For an Ω : ConI , we define ICΩ : SignAlg which
we call the term signature algebra. It is equipped with a morphism – I : SignMor (ICΩ) I. We
define ICΩ by listing its components Con, Ty, Sub, and so on, one per row. Each component
has two parts denoted by I and C. The I part just reuses the corresponding components from
I, and thus the morphism – I is defined as the obvious projection. We omit the equality
components, as they come from UIP or are trivial. We also omit the components for terms
and substitutions as their C parts consist of uninformative equational reasoning.

Γ I : ConI ΓC : SubI Ω Γ I → JΓKA

AI : TyI Γ I AC : (ν : SubI Ω Γ I)→ TmI Ω (AI[ν])→ JAKA (ΓC ν)

σI : SubI Γ I ∆I σC : ∆C (σI ◦ ν) = JσKA (ΓC ν)

tI : TmI Γ I AI tC : AC ν (tI[ν]) = JtKA (ΓC ν)
(A[σ])I := AI[σI]I (A[σ])C ν t := AC (σI ◦ ν) t
·I := ·I ·C ν := tt
(Γ BA)I := Γ I BI AI (Γ BA)C ν := (ΓC (π1 ν), AC (π1 ν) (π2 ν))

UI := UI UCν a := TmI Ω (ElI a)

(El a)I := ElI aI (El a)C ν t :=aC ν# t

(Π aB)I := ΠI aI BI (Π aB)C ν t := λα.BC (ν,aC ν# α) (t@ aC ν#α)

(Π̂T B)I := Π̂I T BI (Π̂T B)C ν t := λα.(B α)C ν (t @̂α)

I Example 20. Now, given a syntactic signature Ω : ConI, we get the constructors as an
Ω-algebra by ω := (JΩKICΩ )C idI : JΩKA. If Ω is the syntactic signature for natural numbers,
we get the constructors as in Example 18.

An a : TmI Ω U is a sort term for the syntactic signature Ω. If Ω is the syntactic signature
for natural numbers, a can only be N (1 as a de Bruijn index). If Ω is the syntactic signature
for Con–Ty (Example 4), a can be Con, Ty @ empty, Ty @(ext@ empty @(U @ empty)), and
so on. In any case, for such an a, we obtain (JaKICΩ )C idI : TmI Ω (El a) = JaKA ω. That is, the
algebra interpretation of a sort term at the constructors is equal to terms of that sort.

A t : TmI Ω (El a) is a term of a sort type a constructed using the constructors in Ω. For
natural numbers, such a t can only be s applied iteratively to z. For such a t, we obtain
(JtKICΩ )C idI : (t = JtKA ω). That is, a constructor term is equal to its algebra interpretation at
the constructors. This is exactly the equation needed at the end of Example 18.

I Definition 21 (Eliminator signature algebra IE– ). Given an Ω : ConI, we use the abbreviation
ω := JΩKICΩ idI as in Example 20. Assuming an ωD : (JΩKADS)D ω, we define the signature
algebra IEωD . It is equipped with a morphism – I : SignMor IEωD I. We define IEωD by listing
its components Con, Ty, Sub, and so on, one per row. Each component has two parts denoted
by I and E. The I part just reuses the corresponding components of I, thus the morphism – I is
defined as the obvious projection. We omit the equality components, as they come from UIP
or are trivial. We also omit the components for terms and substitutions as their E parts are
uninformative equational reasonings.

Γ I : ConI ΓE : (ν : SubI Ω Γ I)→ JΓKS (JνKA ω) (JνKD ωD)

AI : TyI Γ I AE : (ν : SubI Ω Γ I)(t : TmI Ω (AI[ν]))→
JAKS (ΓE ν) (JtKA ω) (JtKD ωD)

σI : SubI Γ I ∆I σE : ∆E (σI ◦ ν) = JσKS (ΓE ν)
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tI : TmI Γ I AI tE : AE ν (tI[ν]) = JtKS (ΓE ν)
(A[σ])I := AI[σI]I (A[σ])E ν t := AE (σI ◦ ν) t
·I := ·I ·E ν := tt
(Γ BA)I := Γ I BI AI (Γ BA)E ν := (ΓE (π1 ν), AE (π1 ν) (π2 ν))
UI := UI UEν a := λα.JαKC id#

(
JJαKC id#αKD ωD

)
(El a)I := ElI aI (El a)E ν t :=

(
JaKS (ΓE ν) (JtKA ω) JtKC id= JaKS (ΓE ν) t a

E ν= JtKD ωD
)

(Π aB)I := ΠI aI BI (Π aB)E ν t :=
λα.JαKC id#

(
BE (ν,JaKC id,JνKC id# α) (t@ JaKC id,JνKC id#u)

)
(Π̂T B)I := Π̂I T BI (Π̂T B)E ν t := λα.(B α)E ν (t @̂α)

I Example 22. Given the assumptions Ω, ωD of IE, we obtain the eliminator by JΩKIE
ωD idI :

JΩKS ω ωD. The eliminator is a section of the displayed algebra ωD, that is, a dependent
function together with equalities witnessing that all the operations are preserved. If Ω is the
syntactic signature for natural numbers, we get the eliminator of Example 18.

For a sort term a : TmI Ω U, the interpretation (JaKIEωD )E id says that (λα.JαKD ωD) =
JaKS (JΩKE id), that is, the function for the sort a in the eliminator section is the displayed
algebra interpretation at ωD (motives and methods). For natural numbers, this is the same
as
(
λn.JnKD (ND, zD, sD)

)
=
(
λn.elimNat (ND, zD, sD)n)

)
.

The interpretation of a constructor term t : TmI Ω (El a) is uninteresting as it provides an
equality between two different equality proofs of the computation (β) rule for t.

I Theorem 23. If a model of ETT supports the theory of IIT signatures, then it supports
all IITs.

Proof. For a signature (sig, sigc), we define constructors as

consig := (Jsig IKICsig I)C idI : (sig ADS)A

This typechecks as Jsig IKA = J–KA (sig I) sigc= sig A = (sig ADS)A. We define the eliminator
by and an

elimsig γ
D := (Jsig IKIEγD )E idI : (sig ADS)S consig γD.

This typechecks firstly because the type of γD matches the type of the parameter of IE:

(sig ADS)D consig
sigc= (J–KADS (sig I))D consig = (Jsig IKADS)D consig,

and the result also has the correct type:

Jsig IKS consig γD = (J–KADS (sig I))S consig γD
sigc= (sig ADS)S consig γD. J

I Remark 24. In the above proof, we crucially relied on the sigc property to define the
constructors (and the eliminator). This is why the simple Church encoding of signatures is
not sufficient.

4 Constructing the Theory of IIT Signatures

In this section we show that any model of ETT which supports indexed W-types also
supports the theory of signatures, and as a consequence of Theorem 23, all IITs. For this, we
work in the internal language of a model of ETT supporting indexed W-types [3]. Indexed
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W-types correspond to the usual notion of (possibly mutual) indexed inductive types. We
use Agda-style notation to define such inductive families: we list the sorts and constructors
and use pattern matching when eliminating from them. For an encoding of mutual inductive
families as indexed W-types, see e.g. [23].

We construct the theory of IIT signatures in the following steps:
1. We view the theory of signatures as a type theory, and we define its untyped syntax as

mutual inductive types together with typing judgments given by inductive relations on
the untyped syntax. Then the syntax I : SignAlg is constructed using those untyped terms
for which the typing relation holds.

2. We construct J–K : SignMor IM for arbitrary M : SignAlg, by:
a. defining a relation – ∼ – between the well-typed syntax and a given signature algebra.

The idea is that given a syntactic context Γ and a semantic context ΓM of the signature
algebra M , we have Γ ∼ ΓM if and only if JΓK = ΓM , and similarly for types, terms,
and substitutions;

b. showing that this relation is functional and thus obtaining a morphism.
3. Proving the uniqueness of this morphism by showing that any morphism f : SignMor IM

satisfies the relation. For example, for any syntactic context Γ we have Γ ∼ f Γ .

The next sections detail each of these steps.

4.1 Syntax
The goal is to define the syntactic signature algebra where contexts are pairs of a precontext
together with a well-formedness proof, and similarly for types, terms and substitutions.

Crucially, we do not have conversion relations for typed syntax, nor do we need to use
quotients when constructing the syntax. This is possible because there are no β-rules in
the theory of signatures. Hence, we consider only normal terms in the untyped syntax, and
define weakening and substitution by recursion. Avoiding quotients is important for two
reasons. First, it greatly simplifies formalisation. Second, we aim to reduce the theory of
signatures only to inductive types, thus making Theorem 57 stronger.

Now we present the definition of the untyped syntax and the associated typing judgments.

4.1.1 Untyped Syntax and its Properties
I Definition 25 (Untyped syntax). The untyped syntax is defined as the following inductive
datatype.

(1) Substitution calculus
Conp : Set
Typ : Set
Subp : Set
Tmp : Set
·p : Conp

εp : Subp

– Bp – : Conp → Typ → Conp

– ,p – : Subp → Tmp → Subp

varp : N→ Tmp
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(2) Universe
Up : Typ

Elp : Tmp → Typ

(3) Inductive parameters
Πp : Tmp → Typ → Typ

– @p – : Tmp → Tmp → Tmp

(4) External parameters

Π̂p : (T : Set)→ (T → Typ)→ Typ

Π̃p : (T : Set)→ (T → Tmp)→ Tmp

– ˆ̃@ – : Tmp → (α : T )→ Tmp

(5) Default value
errp : Tmp

Variables are modeled as de Bruijn indices, i.e. as natural numbers pointing to a position in
the context. We use the additional default constructor errp : Tmp in case of error (ill-scoped
substitution). The typing judgments will not mention errp. The main interest of errp is that
it behaves like a closed term (which the theory of signatures lacks), in the sense that it is
invariant under substitution. This makes expected equalities about substitution true even in
the ill-typed case, thus reducing the number of hypotheses for the corresponding lemmas
(see Lemma 32).

We will define substitutions –[–] of types and terms recursively.
Note that (Πp AB)[σ] should be defined as Πp (A[σ]) (B[wk0 σ ,p varp 0]), and thus we

need to define wk0, the weakening of substitutions. The basic idea is to increment the de
Bruijn indices of all the variables. Actually, this is not so simple because of the Πp type: we
want to define wk0 (Πp AB) as the Π type of the weakening of A and B, but here, B must
be weakened with respect to the second last variable of the context, rather than the last one.
For this reason, we need to generalise the weakening as occuring anywhere in the context.

I Definition 26 (Untyped weakening). We define untyped weaking recursively on terms by
the following functions.

wkn : Typ → Typ

wkn : Tmp → Tmp

wk0 : Subp → Subp

The natural number n specifies at which position of the context the weakening occurs. Here,
wk0 weakens with respect to the last variable.

Later, in Lemma 36, we show that weakening preserves typing. Stating a typing rule for
this operation requires weakening at the middle of a context. This is why we define pairs of
untyped contexts, which should be thought of as a splitting of a context at some position.
We call the second context a telescope over the first one.

I Definition 27 (Untyped telescopes). An untyped telescope is given simply by a Conp.

I Definition 28 (Merging of a context and a telescope).

– ; – : Conp → Conp → Conp

Γ ; · := Γ
Γ ; (∆ Bp A) := (Γ ; ∆) Bp A
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I Definition 29 (Weakening for telescopes). Weakening for telescopes is defined pointwise.
‖Γ‖ denotes the length of the context Γ.

wk0 : Conp → Conp

wk0 ·p := ·p

wk0 (∆ Bp A) := wk0 ∆ Bp wk‖∆‖ A

This will be used to give typing rules for telescopes in Definition 35.

I Definition 30 (Untyped unary substitution). We define single substitution by recursion on
the presyntax:

– [– := – ] : Typ → N→ Tmp → Typ

– [– := – ] : Tmp → N→ Tmp → Tmp

This is enough to state the typing judgments: indeed, the typing rule for application involves
only a unary substitution.

However, to construct the syntax as a signature algebra, we need to define parallel
substitutions:

I Definition 31 (Untyped substitution calculus).

– [– ] : Typ → Subp → Typ

– [– ] : Tmp → Subp → Tmp

– ◦ – : Subp → Subp → Subp

These can be defined either by iterating unary substitutions, or by recursion on untyped
syntax: the two ways yield provably equal definitions. In the following, we assume that they
are defined by recursion. We also make use of the following definition:

keep : Subp → Subp

:= λσ.(wk0 σ ,p varp 0)

The idea is that if σ is a substitution from Γ to ∆, then keepσ is a substitution between
contexts Γ BA[σ] and ∆ BA for any type A where the last term is just a de Bruijn index 0.
This occurs when defining (Πp AB)[σ] as Πp (A[σ]) (B[keepσ]).

We define the identity substitution on a context Γ as follows, where keep‖Γ‖ is keep
iterated ‖Γ‖ times:

idp : Conp → Subp

:= λΓ .keep‖Γ‖εp

I Lemma 32 (Exchange laws for weakening and substitution). Below, Z denotes either a term
or a type and keepn denotes the n times iteration of keep.

wk-wk : wkn+p+1(wkn Z) = wkn(wkn+p Z)
wkn[n] : (wkn Z)[n := z] = Z

wk+[] : (wkn+p+1 Z)[n := wkp u] = wkn+p (Z[n := u])
wk[+] : (wkn Z)[n+ p+ 1 := u] = wkn (Z[n+ p := u])
[][+] : Z[n := u][n+ p := z] = Z[n+ p+ 1 := z][n := (u[p := z])]
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[keepn-wk0] : Z[keepn (wk0 σ)] = wkn(Z[keepn σ])
wkn[keepn-, ] : (wkn Z)[keepn (σ ,p u)] = Z[keepnσ]
[:=][keep] : Z[n := u][keepn σ] = Z[keepn+1 σ][n := u[σ]]

Proof. By induction on the untyped syntax. J

I Corollary 33. As particular cases for n = 0, we get

◦wk0 : σ ◦ (wk0τ) = wk0(σ ◦ τ)
wk0◦, : wk0 σ ◦ (τ ,p t) = σ ◦ τ
[wk0] : t[wk0 σ] = wk0(t[σ])
wk0[, ] : (wk0 Z)[σ ,p u] = Z[σ]
[0 :=][] : Z[0 := u][σ] = Z[keepσ][0 := u[σ]]

I Lemma 34 (Composition functor law and associativity).

[][] : Z[σ][τ ] = Z[σ ◦ τ ]
ass : (σ ◦ δ) ◦ τ = σ ◦ (δ ◦ τ)

We defer laws for identity substitutions after the definition of the typing judgments, as
the proofs require that some inputs are well-typed.

4.1.2 Typing Relations and Their Properties
I Definition 35 (Typing relations). The typing relations are defined as the following inductive
type indexed over the untyped syntax:

(1) Substitution calculus

– ` : Conp → Set
– ` – : Conp → Typ → Set
– ` – ∈N – : Conp → N→ Typ → Set
– ` – ∈ – : Conp → Tmp → Typ → Set
– ` – ⇒ – : Conp → Subp → Conp → Set
·w : ·p `
εw : Γ ` εp ⇒ ·p

– Bw – : (Γ `)→ (Γ ` A)→ Γ Bp A `
,w : (∆ `)→ (Γ ` σ ⇒ ∆)→ (∆ ` A)→ (Γ ` t ∈ A[σ])→ Γ ` σ ,p t⇒ ∆ Bp A

varw : (Γ ` n ∈N A)→ Γ ` varpn ∈ A
0w : (Γ `)→ (Γ ` A)→ Γ Bp A ` 0 ∈N wkp A

Sw : (Γ `)→ (Γ ` A)→ (Γ ` n ∈N A)→ (Γ ` B)→ Γ Bp B ` Sn ∈N wkp A

(2) Universe

Uw : (Γ `)→ Γ ` Up

Elw : (Γ `)→ (Γ ` a ∈ Up)→ Γ ` Elp a
(3) Inductive parameters

Πw : (Γ `)→ (Γ ` a ∈ Up)→ (Γ Bp Elp a ` B)→ Γ ` Πp aB

appw : (Γ `)→ (Γ ` a ∈ Up)→ (Γ Bp Elp a ` B)
→ (Γ ` t ∈ Πp aB)→ (Γ ` u ∈ Elp a)→ Γ ` t @

p u ∈ B[0 := u]
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(4) External parameters

Π̂w : (T : Set)→ (A : T → Typ)→ (Γ `)→ ((t : T )→ Γ ` At)→ Γ ` Π̂p T A

ˆappw : (T : Set)→ (A : T → Typ)→ (Γ `)→ ((t : T )→ Γ ` At)

→ (Γ ` t ∈ Π̂p T A)→ (u : T )→ Γ ` t ˆ̃@ u ∈ Au

There is possibility of redundancy in the arguments of the constructors. Here, we are
“paranoid” (nomenclature from [9]), so that we get more inductive hypotheses when performing
recursion.

I Lemma 36 (Weakening preserves typing).

wk0
w : (Γ ` A)→ (Γ ; ∆ `)→ Γ Bp A; wk0 ∆ `

wkw : (Γ ` A)→ (Γ ; ∆ ` B)→ Γ Bp A; wk0 ∆ ` wk‖∆‖ B

wkw : (Γ ` A)→ (Γ ; ∆ ` t ∈ B)→ Γ Bp A; wk0 ∆ ` wk‖∆‖ t ∈ wk‖∆‖ B

wk0
w : (Γ ` A)→ (Γ ` σ ⇒ ∆)→ Γ Bp A ` wk0 σ ⇒ ∆

Proof. By mutual induction on the typing relations. J

We show that judgments are stable under substitution.

I Lemma 37 (Substitution preserves typing).

[]w : (Γ `)→ (∆ ` A)→ (Γ ` σ ⇒ ∆)→ Γ ` A[σ]
[]w : (Γ `)→ (∆ ` t ∈ A)→ (Γ ` σ ⇒ ∆)→ Γ ` t[σ] ∈ A[σ]
[]w : (∆ ` x ∈N A)→ (Γ ` σ ⇒ ∆)→ Γ ` x[σ] ∈ A[σ]
◦w : (Γ `)→ (Γ ` σ ⇒ ∆)→ (∆ ` τ ⇒ E)→ Γ ` τ ◦ σ ⇒ E

Proof. By mutual induction on the typing relations. J

We show the category and functor laws involving identity substitution for well-formed
types, terms and substitutions.

I Lemma 38 (Identity laws).

[idp] : (Γ ` A)→ A[idp Γ ] = A

[idp] : (Γ ` x ∈N A)→ x[idp Γ ] = V x

[idp] : (Γ ` t ∈ A)→ t[idp Γ ] = t

idrp : (Γ ` σ ⇒ ∆)→ σ ◦ idp Γ = σ

idlp : (Γ ` σ ⇒ ∆)→ idp ∆ ◦ σ = σ

Finally, we show that the identity substitution itself is well-typed:

I Lemma 39 (Typing for the identity substitution).

idw : (Γ `)→ Γ ` idp Γ ⇒ Γ

I Definition 40 (Proposition). A type is a proposition, or proof-irrelevant, if it has at most
one inhabitant.

is-propT := (a : T )→ (a′ : T )→ a = a′
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I Lemma 41 (Proof irrelevance of typing relations).

Conwp : is-prop (Γ `)
Tywp : is-prop (Γ ` A)
Varwp : is-prop (Γ ` x ∈N A)
Tmwp : is-prop (Γ ` t ∈ A)
Subwp : is-prop (Γ ` σ ⇒ ∆)

I Lemma 42 (Unicity of typing).

Tmw=Ty : (Γ ` t ∈ A)→ (Γ ` t ∈ B)→ A = B

Varw=Ty : (Γ ` x ∈N A)→ (Γ ` x ∈N B)→ A = B

Let us consider for instance the application constructor appw: for a codomain type B it yields
an overall type C = B[0 := u] for an application. Even if C is known a priori, there may be
another B for which B[0 := u] = C, possibly leading to many proofs that t @p u has type C.
Unicity of typing solves this issue, as B is then uniquely determined by the type Πp AB of t.

4.1.3 The Syntax as a Signature Algebra
I Definition 43 (Syntax for the theory of signatures). We define the syntax as an element of
SignAlg by pairs of untyped syntax and typing relations:

ConI :=
∑

Γ
Γ `

TyI (Γ ,Γw) :=
∑
A

Γ ` A

TmI (Γ ,Γw)(A,Aw) :=
∑
t

Γ ` t ∈ A

SubI (Γ ,Γw)(∆,∆w) :=
∑
σ

Γ ` σ ⇒ ∆

The other fields are given straightforwardly. Regarding the equations, it is enough to prove
them only for the untyped syntactic part: as we argued in Lemma 41, the proofs of typing
judgments are automatically equal.

I Remark 44. Up until Definition 43, UIP is not used. Function extensionality on the other
hand is necessary because the untyped metatheoretic Π takes a metatheoretic function as
an argument. An example induction step that uses function extensionality is in Lemma 38,
in particular in the case (Π̂T A)[id] = Π̂T A. Indeed, the left hand side of this equation
is equal to Π̂T (λt.(A t)[id]) by definition, whereas the induction hypothesis states that
(t : T )→ (A t)[id] = A t.

4.2 Relating the Syntax to a Signature Algebra
It remains to show that the constructed syntax I is the initial signature algebra. To achieve
this, we first define a relation between the syntax and any signature algebra, then show that
the relation is functional, which lets us extract a signature morphism from the relation.

This approach is an alternative presentation of Streicher’s method for interpreting preterms
in an arbitrary model of type theory [30]. Streicher first defines a family of partial maps
from the presyntax to a model, then shows that the maps are total on well-formed input. We
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have found that our approach is significantly easier to formalise. To see why, note that the
right notion of partial map in type theory, which does not presume decidable definedness, is
fairly heavyweight:

PartialMapAB := A→
(
(P : Set)× is-propP × (P → B)

)
In the above definition, we notice an opportunity for converting a fibered definition of a type
family into an indexed one; if we drop the propositionality for P for the time being, we may
equivalently return a family indexed over B, which is exactly just a relation A→ B → Set.
Then, in our approach, we recover uniqueness of P through the functionality requirement on
the A→ B → Set relation, and totality by already assuming well-formedness of A. In type
theory, using indexed families instead of display maps is a common convenience, since the
former are natively supported, while the latter require carrying around auxiliary propositional
equalities.

4.2.1 The Functional Relation
Given an M : SignAlg, we define the functional relation satisfied by the J–K : SignMor IM
by recursion on the typing judgments. If Γ is a context in I and ΓM is a semantic context
(i.e. a context in the signature algebra M), we want to define a type Γ ∼ ΓM equivalent to
JΓK = ΓM . Of course, at this stage, J–K is not available yet since the point of defining this
relation is to construct J–K in the end.

For a type A in a context Γ , we want to define a relation A ∼ AM that is equivalent to
JAK = AM . For this equality to make sense, the semantic type AM must live in the semantic
context JΓK. But again, J–K is not yet available at this stage. Exploiting the expected
equivalence between Γ ∼ ΓM and JΓK = ΓM , we may consider defining A ∼ AM under the
hypotheses that AM lies in a semantics context ΓM which is related to Γ . Then, the type of
the relation for types is

(Γ : ConI)→ (A : TyI Γ)→ (ΓM : ConM )→ (Γ ∼ ΓM )→ (AM : TyM ΓM )→ Set

Note that the relation on contexts must be defined mutually with the relation on types (see
for example the case of context extension), but here, the relation on contexts appears as the
type of an argument of the relation on types. We want to avoid using such recursive-recursive
definitions as they are not allowed by the elimination principles of indexed inductive types,
so we instead just remove the hypothesis Γ ∼ ΓM from the list of arguments. We proceed
similarly for terms and substitutions. Actually, this removal is not without harm. For
example, consider relating the empty substitution Γ ` εp ⇒ ·p to a semantic substitution
σM : SubM ΓM ∆M . We would like to assert that σM equals the empty semantic substitution
εM , but this is not possible because typechecking requires that ∆M is the empty semantic
context. This is precisely what was ensured by the hypothesis ·I ∼ ∆M we removed. Our
way out here is to state that σM is related to the empty substitution if the target semantic
context ∆M is empty, and, acknowledging this equality, if σM is the empty substitution.

Let us mention another possible solution for avoiding recursion-recursion: defining
A ∼ AM so that it is equivalent to (e : JΓK = ΓM ) × (JAK =e# AM ). In comparison, our
approach yields a more concise definition of the relation. For example, in the case of the
universe, this would lead to the definition Uw Γw ∼ AM := (Γw ∼ ΓM ) × (AM = UM ),
instead of our definition Uw Γw ∼ AM := (AM = UM ).
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IDefinition 45 (Relation – ∼ –). We define the relation by recursion on the typing judgments.
In the following, we abbreviate Aw ∼ΓM AM by Aw ∼ AM when ΓM can be inferred, and
similarly for terms and substitutions.

(1) Substitution calculus
– ∼ – : Γ `→ ConM → Set
– ∼ΓM – : Γ ` A → TyM ΓM → Set
– ∼ΓM`AM – : Γ ` t ∈ A → TmM ΓM AM → Set
– ∼ΓM`AM – : Γ ` x ∈N A → TmM ΓM AM → Set
– ∼ΓM⇒∆M – : Γ ` σ ⇒ ∆ → SubM ΓM ∆M → Set

·w ∼ ΓM := ΓM = ·M

εw ∼ΓM⇒EM δM := (eE : EM = ·M )× (δM =eE# εM )

(Γw Bw Aw) ∼ ∆M :=
∑
ΓM

(Γw ∼ ΓM )×
∑
AM

(Aw ∼ AM )×

(∆M = ΓMBMAM )

(,w∆wσwAwtw) ∼ΓM⇒EM δM :=
∑
∆M

(∆w ∼ ∆M )×
∑
σM

(σw ∼ σM )×∑
AM

(Aw ∼ AM )×
∑
tM

(tw ∼ tM )×

(eE : EM = ∆MBMAM )×
(δ =eE# σM ,M tM )

varw xw ∼ tM := xw ∼ tM

0wΓwAw ∼∆M`BM tM :=
∑
ΓM

(Γw ∼ ΓM )×
∑
AM

(Aw ∼ AM )×

(e∆ : ∆M = ΓMBMAM )×
(eB : BM =e∆# wkM AM )× (tM =e∆,eB# vzM )

SwΓwAwnwBw ∼∆M`CM tM :=
∑
ΓM

(Γw ∼ ΓM )×
∑
AM

(Aw ∼ AM )×∑
BM

(Bw ∼ BM )×
∑
nM

(nw ∼ nM )×

(e∆ : ∆M = ΓMBMBM )×
(eC : CM =e∆# wkM AM )×
(tM =e∆,eC# vsM nM )

(2) Universe
Uw ΓwAw ∼ AM := AM = UM

Elw Γwaw ∼ AM :=
∑
aM

(aw ∼ aM )× (AM = ElM aM )

(3) Inductive parameters

Πw ΓwawBw ∼ CM :=
∑
aM

(aw ∼ aM )×
∑
BM

(Bw ∼ BM )

× (CM = ΠM aM BM )
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appw ΓwawBwtwuw ∼ΓM`CM xM :=
∑
aM

(aw ∼ aM )×
∑
BM

(Bw ∼ BM )×∑
tM

(tw ∼ tM )×
∑
uM

(uw ∼ uM )×

(eC : CM = BM [0 := uM ]M )×
(xM =eC# tM@MuM )

(4) Metatheoretic parameters

Π̂wT AΓwAw ∼ BM :=
∑
AM

((t : T )→ Aw ∼ AM t)× (BM = Π̂M T AM )

ˆappwT AΓwAwtwu ∼ΓM`BM xM :=
∑
AM

((t : T )→ Aw ∼ AM t)×
∑
tM

(tw ∼ tM )×

(eB : BM = Π̂M T AM )× (xM =eB# tM @̂
Mu)

4.2.2 Right Uniqueness

Next, we prove that this relation is right unique. Then, we show that the relation is stable
under weakening and substitution. The last step consists of showing left-totality, i.e. giving a
related semantic counterpart to any well-typed context, type or term. Everything is proved
by induction on the typing judgments.

I Lemma 46 (Right uniqueness). The relation is right unique in the following sense:

Σ∼p : (Γw : Γ `) → is-prop (
∑
ΓM

Γw ∼ ΓM )

Σ∼p : (Aw : Γ ` A) → is-prop (
∑
AM

Aw ∼ AM )

Σ∼p : (tw : Γ ` t ∈ A) → is-prop (
∑
tM

tw ∼ tM )

Σ∼p : (xw : Γ ` x ∈N A)→ is-prop (
∑
xM

xw ∼ xM )

Σ∼p : (σw : Γ ` σ ⇒ ∆) → is-prop (
∑
σM

σw ∼ σM )

I Remark 47. We mentioned that in order to avoid a recursive-recursive definition, we
removed some hypotheses in the list of arguments of the relation. Such hypotheses are
sometimes missed, for example in the case of the empty substitution or in the case of
variables, requiring us to state additional equalities. Because of this, we need UIP to show
that

∑
ΓM Γ ∼ ΓM and

∑
AM A ∼ AM are propositions. One may think that the use of

UIP could be avoided by using the alternative verbose definition that we suggested before,
expecting that

∑
ΓM
∑
AM A ∼ AM , rather than

∑
AM A ∼ AM , is a proposition. However,

this is not obvious. For example, we were not able to define Elw Γw aw ∼ AM in this fashion.
In related work, Hugunin investigated constructing IITs without UIP [19] in cubical type
theory, and demonstrated that well-formedness predicates used in syntactic algebras can
subtly break in that setting. Also, while Hugunin does not use UIP, he only shows the
simple version version of dependent elimination for the constructed IITs. Hence, the question
whether IITs are reducible to inductive types in a UIP-free setting remains open.
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4.2.3 Stability under Weakening and Substitution

Stability of the relation under weakening must be proved before stability under substitution.
Indeed, in the proof of stability under substitution, the Π case requires to show that
Π (A[σ]) (B[keepσ]) is related to ΠM (AM [σ]M ) (BM [keepM σ]M ). We would like to apply
the induction hypothesis, so we need to show that keepσ = wk0 σ ,

p varp 0 is related to
keepM σM , knowing that σ is related to σM . As keepσ = wk0 σ ,

p varp 0, we are left with
showing that wk0 σ = σ ◦ wk (where wk = wk0 id) relates to its semantic counterpart.

To achieve that, we show that wk0 preserves the relation, for types and terms. This
requires to generalise a bit and show that wkn preserves the relation, as wk0 (ΠAB) =
Π (wk0 A) (wk1 B). But remember that wkn performs a weakening in the middle of a context,
so we first define the semantic counterpart of this:

Σwk0⇒M : (Γw : Γ `)→ (Γw ∼ ΓM )→
(∆w : Γ ; ∆ `)→ (∆w ∼ ∆M )→

(AM : TyMΓM )→ (∆′M : ConM )× (SubM∆′M∆M )

Here, ∆′M should be thought of as the context ∆M where the weakening has happened in
the middle of the context, by inserting the type AM after the prefix ΓM . Indeed, we expect
that ΓM is a prefix of ∆M , as ΓM relates to Γ and ∆M to Γ ; ∆. The substitution from
the weakened context to the original one must be computed at the same time otherwise the
induction hypothesis is not strong enough. Then, we separate the two components under the
same (implicit) hypotheses:

wk0
M AM ∆M : ConM

wk⇒M AM ∆M : SubM (wk0
MAM ∆M )∆M

Note that if recursion-recursion is available in the metatheory, wk0
M and wk⇒M can be

defined directly without introducing this intermediate Σwk0 ⇒M .

I Lemma 48 (Weakening preserves typing). The following statements are all under the
hypotheses (Γw : Γ `), (Γw ∼ ΓM ), (∆w : Γ ; ∆ `), (∆w ∼ ∆M ), (Aw : Γ ` A), and
(Aw ∼ AM ).

wk0∼ : wk0
w Aw ∆w ∼ wk0

MAM∆M

wk∼ : (Tw : Γ ; ∆ ` T )→ (Tw ∼ TM )→ wkw Aw Tw ∼ TM [wk0⇒MAM∆M ]M

wk∼ : (tw : Γ ; ∆ ` t ∈ T )→ (tw ∼ tM )→ wkw Aw tw ∼ tM [wk0⇒MAM∆M ]M

wk∼ : (xw : Γ ; ∆ ` t ∈N T )→ (xw ∼ xM )→ wkw Aw xw ∼ xM [wk0⇒MAM∆M ]M

Proof. By mutual induction on the typing judgments. J

I Lemma 49 (Weakening of substitution preserves – ∼ –).

wk0∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (Aw : Γ ` A)→ (Aw ∼ AM )→
(σw : Γ ` σ ⇒ ∆)→ (σw ∼ σM )→ (wk0

wAwσw ∼ σM◦MwkM )

Proof. By induction on the typing judgments. J
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Next, we want to prove that given any well-typed substitution σ : Sub Γ ∆ and semantic
contexts ΓM and ∆M , related to Γ and ∆, respectively, there is a semantic substitution
related to σ. In the extension case Γ ` σ ,p t⇒ ∆ Bp A, the induction hypothesis provides
σM , ∆M , AM related to their syntactic counterpart. However, the premises of the induction
hypothesis for getting a relevant tM require showing that the type AM [σM ]M is related to
the syntactic type A[σ].

I Lemma 50 (Preservation of the relation by substitution for variables).

[]∼ : (σw : Γ ` σ ⇒ ∆)→ (σw ∼ σM )→ (xw : ∆ ` x ∈N A)→ (xw ∼ xM )→

[]wxwσw ∼ xM [σM ]M

Proof. Induction on typing. J

I Lemma 51 (Preservation of the relation by substitution for types and terms). We assume
(σw : Γ ` σ ⇒ ∆), (σw ∼ σM ), (Γw : Γ `), (Γw ∼ ΓM ), (∆w : ∆ `), and (∆w ∼ ∆M ):

[]∼ : (Aw : ∆ ` A)→ (Aw ∼ AM )→ []wΓwAwσw ∼ AM [σM ]M

[]∼ : (tw : ∆ ` t ∈ A)→ (tw ∼ tM )→ []wΓwtwσw ∼ tM [σM ]M

Proof. Mutual induction on typing. J

I Lemma 52 (The relation is preserved by composition and identity). We have the same
hypotheses as in the previous lemma.

◦∼ : (Ew : E `)→ (Ew ∼ EM )→ (δw : ∆ ` δ ⇒ E)→ (δw ∼ δM )→
◦w Γw δw σw ∼ δM ◦M σM

id∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ idw Γw ∼ idΓM

4.2.4 Left-Totality and the Recursor
Before defining the recursor J–K, we show left totality of the relation: that is, the image of a
syntactic context is a unique semantic context which is related to it, and similarly for types
and terms.

I Lemma 53 (Left totality of – ∼ –).

ΣCon∼ : (Γw : Γ `)→
∑
ΓM

Γw ∼ ΓM

ΣTy∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (Aw : Γ ` A)→ (AM : TyMΓM )× (Aw ∼ AM )
ΣTm∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (Aw : Γ ` A)→ (Aw ∼ AM )→

(tw : Γ ` t ∈ A)→ (tM : TmMΓMAM )× (tw ∼ tM )
ΣVar∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (Aw : Γ ` A)→ (Aw ∼ AM )→

(xw : Γ ` x ∈N A)→ (xM : TmMΓMAM )× (xw ∼ xM )
ΣSub∼ : (Γw : Γ `)→ (Γw ∼ ΓM )→ (∆w : ∆ `)→ (∆w ∼ ∆M )→

(σw : Γ ` σ ⇒ ∆)→ (σM : SubMΓM∆M )× (σw ∼ σM )

Proof. By induction on well-formedness judgments. The right uniqueness of the relation is
used in this induction. J
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I Lemma 54 (Existence of the recursor). For any M : SignAlg there is a J–K : SignMor IM
where I is given in Definition 43.

Proof. Using the first projections in the construction of the left-totality construction and
right uniqueness. J

4.3 Uniqueness
It remains to show that the morphism constructed in Lemma 54 is unique. We exploit right
uniqueness of the relation: it is enough to show that any such morphism maps a syntactic
context to a related semantic context, and similarly for types and terms.

I Lemma 55. We assume an arbitrary signature morphism f from I to M . This induces
the following maps:

Conf : (Γ `)→ ConM

Tyf : (Γw : Γ `)→ (Γ ` A)→ TyM (ConfΓw)

Tmf : (Γw : Γ `)→ (Aw : Γ ` A)→ (Γ ` t ∈ A)→ TmM (ConfΓw) (TyfΓw Aw)

Varf : (Γw : Γ `)→ (Aw : Γ ` A)→ (Γ ` x ∈N A)→ TmM (ConfΓw) (TyfΓw Aw)

Subf : (Γw : Γ `)→ (∆w : ∆ `)→ (Γ ` σ ⇒ ∆)→ SubM (ConfΓw) (Conf∆w)

The images of the above maps are related by – ∼ –:

∼Conf : (Γw : Γ `)→ Γw ∼ Conf Γw

∼Tyf : (Γw : Γ `)→ (Aw : Γ ` A)→ Γw ∼ Tyf Γw Aw

∼Tmf : (Γw : Γ `)→ (Aw : Γ ` A)→ (tw : Γ ` t ∈ A)→ Γw ∼ Tmf Γw Aw tw

∼Varf : (Γw : Γ `)→ (Aw : Γ ` A)→ (xw : Γ ` x ∈N A)→ Γw ∼ Varf Γw Aw xw

∼Subf : (Γw : Γ `)→ (∆w : ∆ `)→ (σw : Γ ` σ ⇒ ∆)→ Γw ∼ Subf Γw ∆w σw

Proof. By induction on typing relations. J

I Corollary 56 (Uniqueness of the recursor). By right uniqueness of – ∼ –, there is only one
morphism SignMor IM for any M .

I Theorem 57. If a model of ETT supports indexed W-types, it supports the theory of IIT
signatures.

Proof. We define the syntax I by Definition 43 which only used indexed W-types, the recursor
by Lemma 54 and we prove its uniqueness property by Corollary 56. J

I Corollary 58. If a model of ETT supports indexed W-types, it supports all IITs.

Proof. Combining Theorem 57 and Theorem 23. J

5 Further Work

The current work only concerns finitary IITs. An extension would be to also allow infinitely
branching inductive types such as W-types. This would first require giving semantics for
infinitary IITs and adapting the term model construction. These would be straightforward
following [24]. However, it seems to be more difficult to construct the syntax of infinitary
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IIT signatures without using quotients. The reason is that such syntax would not be
strictly restricted to neutral terms: the term model construction for infinitary IITs requires
λ-abstraction and βη-rules for infinitary Π types. A definition of normal preterms and typing
judgments on them may still be possible, but it appears to be much more complicated than
before (the current authors have attempted this without conclusive success).

As mentioned in Section 4.2.2, it also remains an open problem whether IITs are reducible
to inductive types in a UIP-free setting. To show this, we would need to construct the syntax
of signatures without UIP, and also reproduce the semantics and term model construction
for IITs without UIP.
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Abstract
We extend the core semantics for Dependent Haskell with rules for η-equivalence. This semantics
is defined by two related calculi, Systems D and DC. The first is a Curry-style dependently-typed
language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired
by the Glasgow Haskell Compiler’s core language FC, is the explicitly-typed analogue of System D,
suitable for implementation in GHC. Our work builds on and extends the existing metatheory for
these systems developed using the Coq proof assistant.
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1 Introduction

In typed programming languages, the definition of type equality determines the expressiveness
of the type system. If more types can (soundly) be shown to be equal, then more programs
will type check. In dependently-typed languages, the definition of type equality relies on a
definition of term equality, because terms may appear in types. Therefore, a dependently-
typed language that can equate more terms can also admit more programs.

Many dependently-typed programming languages, such as Coq (since version 8.4) and
Agda (from its initial design) include rules for η-equivalence when comparing functions for
equality. These rules benefit programmers. For example, if a function f has type

f : P x → Int

then it can be called with an argument of type

P (λy. x y)

because the term (λy. x x) is η-equivalent to x.
Dependent Haskell [20, 47] is a proposal to add dependent types to the Haskell program-

ming language, as implemented by the Glasgow Haskell Compiler. This design unifies the
term and type languages of Haskell so that terms may appear directly in types, removing
the need for awkward singleton encodings of richly-typed data structures [21, 27, 45].
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The specification of this language extension [47] is founded on two related dependently
typed core calculi, called Systems D and DC. These two systems differ in their annotations:
the latter language, which is inspired by and extends the FC intermediate language of
GHC [42, 46], includes enough information to support simple, syntax-directed type checking.
On the other hand, System D, is a Curry-style language meant to model the runtime behavior
of the language, and to inspire type inference for the source language. (At the source level,
type inference for Dependent Haskell will require more annotations than System D, which
includes no annotations, and many fewer than System DC, which annotates everything.)

However, the specification of Systems D and DC, as presented in prior work, did not
include rules for η-equivalence. The goal of this paper is to describe our experience with adding
η-equivalence rules to these two systems, demonstrating that η-equivalence is compatible
with Dependent Haskell.

While this extension is small—it involves three new rules for System D and two new rules
for DC—it was not at all clear that it would work out from the beginning. Both Systems D
and DC include support for irrelevant arguments, i.e the marking of some lambda-bound
variables as not relevant for run-time execution. For Dependent Haskell, this feature is
essential. Haskellers expect a type-erasure semantics and GHC erases type arguments during
compilation. Irrelevance generalizes this idea to include not just type arguments but all
terms that are used irrelevantly, enabling the generation of efficient code.

Unfortunately, η-equivalence, when combined with irrelevance in dependently-typed
languages, is a subtle topic. Much prior work has laid out the issues, though in contexts that
are not exactly the same as that found in Dependent Haskell. We describe this landscape in
Section 6.3, and show how our work compares to and does not match any existing treatment
of these features. In particular, our system features the type:type axiom, employs a typed
definition of equivalence that ignores type annotations, supports large eliminations, includes
a variant with decidable type checking, does not restrict how irrelevant arguments may be
used in types, and comes with a completely mechanized type soundness proof.

In particular, this work extends the type soundness proof that was developed in prior
work with support for η-equivalence. Prior work included a mechanized formalization of the
meta-properties of both Systems D and DC, developed using the Coq proof assistant [43]. In
this work, we have extended that development with these new rules and have updated the
proofs accordingly. This mechanized proof gives us complete confidence in our extension,
even in the face of a few curious findings.

As a result, this project also gives us a chance to report a success story for proof
engineering. As the extension described in this paper is small compared to the overall system,
we would expect the changes to the proof to be similarly minor, and they are. Furthermore,
the three different forms of η-equivalence that we add are themselves quite similar to each
other. Because of this relationship, a newcomer (the first author, an undergraduate at
the time) could join the project and was able to adapt the changes needed for the usual
η-equivalence rule to the novel ones for this setting. Although this process required careful
understanding of binding representations, especially in the representation of the new rules,
the mechanical proof served as an essential benefit to the overall research endeavor.

2 Overview of System D and System DC

This work presents and extends the languages Systems D and DC from prior work [47].
Therefore, we begin our discussion with an overview of these systems and their properties.
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D DC
Typing Γ � a : A Γ ` a : A
Definitional equality (terms) Γ; ∆ � a ≡ b : A Γ; ∆ ` γ : a ∼ b
Proposition well-formedness Γ � φ ok Γ ` φ ok
Definitional equality (props) Γ; ∆ � φ1 ≡ φ2 Γ; ∆ ` γ : φ1 ∼ φ2

Context well-formedness � Γ ` Γ
Signature well-formedness � Σ ` Σ

Primitive reduction � a > b
One-step reduction � a  b Γ ` a  b

Figure 1 Summary of judgement forms.

System D is an implicit language; its syntax only contains terms that are relevant
for computation. It is based on a Curry-style variant of a dependently-typed lambda
calculus, with the type:type axiom. Functions are not annotated with their domain types
and computations may not terminate. As a result, type checking in System D is undecidable.
Compared to other Curry-style languages [32, 33], this language annotates the locations of
irrelevant abstractions and irrelevant applications. Such generalizations and instantiations
may occur only at the marked locations. Full Curry-style languages allow generalization and
instantiation at any point in the derivation.

In contrast, System DC is an explicit language. It extends System D with enough
annotations so that type checking is not only decidable, it is straightforward through a simple
syntax-directed algorithm. While System D is intended to serve as a specification of what
Dependent Haskell should mean, System DC is intended to serve as a core implementation
language for the Glasgow Haskell Compiler (GHC) [20, 22], when it is extended with
dependent types. The annotations allow the compiler to check core language terms during
compilation, eliminating potential sources of bugs during compilation.

Because the annotated language DC is, in some sense, a reification of the derivations of
D; DC can thus be seen as a syntax-directed version of D. To emphasize this connection in
our formal system, we reuse the same metavariables for analogous syntactic forms in both
languages.1 The judgement forms are summarized in Figure 1. By convention, judgements
for D use a double turnstile (�) whereas judgements for DC use a single turnstile (`). As
we make precise below, judgements in these two languages are connected: we can apply an
erasure operation to DC derivations to produce analogous judgements in D, and given a
derivation in D, it is possible to add enough annotations to produce an analogous judgement
in DC.

The judgement forms in these languages include the usual typing judgement, a typed
equivalence relation (augmented in DC with an explicit proof witness in γ), a first-class
notion of equality propositions φ, and a judgement when two propositions are equivalent
(also augmented with a proof witness in DC), as well as well-formedness checks for typing
contexts Γ and top-level signatures of recursive definitions Σ.

Computation in both languages is specified operationally, using a small-step, call-by-name,
evaluation relation  . These one-step relations are decidable and produce a unique reduct in
each case. This computation is also type sound, which we demonstrate through preservation
and progress theorems [49].

1 In fact, our Coq development uses the same syntax for both languages and relies on the judgement
forms to identify the pertinent sets of constructs.
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System D

terms, types a, b, A,B ::= type | x | F | λρx.b | a bρ | � | Πρx :A.B
| Λc.a | a[γ] | ∀c :φ.A

coercions γ ::= •

values v ::= λ+x.a | λ−x.v | Λc.a
| type | Πρx :A.B | ∀c :φ.A

System DC

terms, types a, b, A,B ::= type | x | F | λρx : A .b | a bρ | Πρx :A.B
| Λc : φ .a | a[γ] | ∀c :φ.A
| a . γ

coercions (excerpt) γ ::= c | refl a | sym γ | γ1; γ2 | red a b | . . .
eta a

values v ::= λ+x : A .a | λ−x : A .v | Λc : φ .a
| type | Πρx :A.B | ∀c :φ.A

Shared syntax

propositions φ ::= a ∼A b
relevance ρ ::= + | −

contexts Γ ::= ∅ | Γ, x : A | Γ, c : φ
available set ∆ ::= ∅ | ∆, c
signature Σ ::= ∅ | Σ ∪ {F ∼ a : A}

Figure 2 Syntax of D and DC. The syntactic differences between the two systems are highlighted
in yellow. The sole addition for η-equivalence (the coercion form eta a) is highlighted in green.

The syntax of D, the implicit language, is shown at the top of Figure 2. This language,
inspired by pure type systems [12], uses a shared syntax for terms and types. The language
includes:

a single sort (type) for classifying types,
functions (λ+x.a) with dependent types (Π+x : A.B), and their associated application
form (a b+),
functions with irrelevant arguments (λ−x.a), their types (Π−x :A.B), and instantiation
form (a �−),
coercion abstractions (Λc.a), their types (∀c :φ.B), and instantiation form (a[•]),
and top-level recursive definitions (F).

In this syntax, term and type variables, x , are bound in the bodies of functions and their
types. Similarly, coercion variables, c, are bound in the bodies of coercion abstractions and
their types. (Technically, irrelevant variables and coercion variables are prevented by the
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typing rules from actually appearing in the bodies of their respective abstractions.) We use
the same syntax for relevant and irrelevant functions, marking which one we mean with
a relevance annotation ρ. We sometimes omit relevance annotations ρ from applications
a bρ when they are clear from context. We also write nondependent relevant function types
Π+x :A.B as A→ B, when x does not appear free in B, and write nondependent coercion
abstraction types ∀c :φ.A as φ⇒ A, when c does not appear free in A.

The metavariable ∆, called the available set, represents a set of coercion variables. This
set is used to restrict the usage of coercion variables in certain situations; only variables
appearing in the set are available.2 The operation Γ̃ returns the available set made of all the
coercion variables in the domain of context Γ. In other words, it is the available set that
permits the use of all coercion variables in Γ.

The syntax of DC, also shown in the figure, includes the same features as D but with
more typing annotations. In particular, this language removes the trivial argument for
irrelevant instantiation (instead specifying the actual argument it stands for) and adds
domain information to the bound variable in the abstraction forms. Finally, it replaces
implicit type conversions by an explicit coercion term a . γ as well as a language of coercion
proofs (not completely shown in the figure). The addition of η-equivalence requires a new
form of coercion proof, written eta a, that corresponds to all three new equivalence rules in D.

The erasure operation, written |a| translates terms from System DC to System D by
removing all type annotations and coercion proofs. For example, rules of this function include
|λρx :A.a| = λρx.|a| and |a . γ| = |a|.

2.1 Type checking in System D and System DC
Unlike System D, System DC enjoys unique typing, meaning that any given term has at most
one type. Thanks to this uniqueness property and to the presence of typing annotations,
type checking is decidable in System DC. In fact, the syntax of System DC can be seen
as encoding not just a D term, but a D typing derivation. That is, any DC term uniquely
identifies a typing derivation for the underlying (erased) D term.

In System D, type checking is undecidable due to two reasons. The first is that System
D includes Curry-style System F as a sublanguage, where type checking is known to be
undecidable [48, 36]. Since type arguments are implicit in Curry-style languages, irrelevant
quantification is a feature of System D. The second reason for undecidable type checking in
System D is the presence of an implicit conversion rule. In order to maintain decidable type
checking in an environment where implicit conversion is allowed, System DC uses explicit
coercion proofs whenever type conversion is performed. Below, we discuss these two features
which contribute to the undecidability of type checking in System D. However, even though
type checking is undecidable, we sketch what a partial type inference algorithm for System
D might look like in Section 2.3.

2.1.1 Irrelevant quantification
Because Haskell includes parametric polymorphism, which has a type erasure semantics,
Dependent Haskell includes a way to indicate which terms should be erased before execution.3
Thus, the rules that govern the treatment of irrelevant, or implicit, quantification appear in
Figure 3.

2 This is analogous to marking available coercion variables in the context.
3 Although it is possible to infer such information [14], we annotate it here to avoid a reliance on whole

program optimization.
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E-Pi
Γ, x : A � B : type

Γ � Πρx :A.B : type

An-Pi
Γ, x : A ` B : type

Γ ` Πρx :A.B : type

E-Abs
Γ, x : A � a : B
(ρ = +) ∨ (x 6∈ fv a)

Γ � λρx.a : Πρx :A.B

An-Abs
Γ, x : A ` a : B

(ρ = +) ∨ (x 6∈ fv |a|)
Γ ` λρx :A.a : Πρx :A.B

E-App
Γ � b : Π+x :A.B Γ � a : A

Γ � b a+ : B{a/x}

An-App
Γ ` b : Πρx :A.B Γ ` a : A

Γ ` b aρ : B{a/x}

E-IApp
Γ � b : Π−x :A.B Γ � a : A

Γ � b �− : B{a/x}

Figure 3 Rules for relevant and irrelevant arguments in System D (left) and System DC (right).

D and DC’s approach to implicit quantification follows ICC [32], ICC∗ [13], and EPTS [33].
When possible, the typing rules use the metavariable ρ to generalize over the relevance of
the abstraction. For example, irrelevance places no restrictions on the usage of the bound
variable in the body of the dependent function type, so the same rule suffices in each case
(see rules E-Pi and An-Pi).

However, for abstractions, if the argument is irrelevant, then the variable cannot appear
in the body of the System D term (rule E-Abs). On the other hand, System DC includes
annotations, which are not relevant, so the DC rule only restricts the variable from appearing
in the erasure of the body (rule An-Abs).

In DC, an application term is type-checked in the same way no matter whether it is
relevant or not, so we are able to use the same rule in both cases (rule An-App). However,
in D, if the application is to an irrelevant argument, then the argument does not appear in
the term. Instead, it must be replaced by the trivial term � (rule E-IApp). Type-checking
an irrelevant application in D thus requires guessing the actual argument used at this
occurrence. Due to this, we need two separate rules for relevant and irrelevant application in
D (rule E-App and rule E-IApp respectively).

2.1.2 Explicit coercions
As mentioned previously, System D includes an implicit conversion rule, shown on the left
below (rule E-Conv). This rule depends on the type equality judgement to allow the system
to work up-to the definition of this type equality. At any point in a System D derivation, the
type of a term can silently be replaced with an equivalent type.

E-Conv
Γ � a : A Γ; Γ̃ � A ≡ B : type

Γ � a : B

An-Conv
Γ ` a : A Γ; Γ̃ ` γ : A ∼ B Γ ` B : type

Γ ` a . γ : B

To enable decidable type checking, System DC includes an explicit justification γ in
rule An-Conv, called a coercion proof, whenever type conversion is used. These coercions
are reifications of the type equality derivations of System D; a coercion proof γ specifies
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a unique equality derivation. Equality is homogeneously typed in System D, if we have
Γ; ∆ � a ≡ b : A, then both terms a and b must have type A. In DC the relationship is
more nuanced. If we have a coercion proof Γ; ∆ ` γ : a ∼ b where Γ ` a : A and Γ ` b : B,
then there must exist an additional coercion proof witnessing the equality between types
A and B. In other words, the types of coercible terms must be equal according to System
D. For example, compare the reflexivity rule in System D below (rule E-Refl) with the
two different reflexivity rules in System DC (rule An-Refl and rule An-EraseEq). While
the first DC rule is the classic form of the reflexivity rule, we still need the second form to
account for the case when two terms a and b have different type annotations. To derive
reflexivity between a and b in this case, we must furthermore know that their types are
equal, witnessed by the coercion proof γ. Note also that we cannot get away with having
rule An-EraseEq alone, since rule An-Refl is the only rule which can derive reflexivity
for type. For example, in order to prove Int ∼type Int with rule An-EraseEq, we need the
base case rule An-Refl to prove type ∼type type.

E-Refl
Γ � a : A

Γ; ∆ � a ≡ a : A

An-Refl
Γ ` a : A

Γ; ∆ ` refl a : a ∼ a

An-EraseEq
Γ ` a : A Γ ` b : B

|a| = |b| Γ; Γ̃ ` γ : A ∼ B
Γ; ∆ ` (a |=|γ b) : a ∼ b

The type equality judgement in System D includes primitive (i.e. β) reductions, shown
in rule E-Beta below. The analogous rule in System DC uses an explicit coercion, red a1 a2
in the coercion checking rule An-Beta to indicate a reduction. Both rules use the primitive
reduction relation of System D, available in DC through erasure. Although this relation is
deterministic, there are multiple ways to annotate a System D term. Thus, the coercion
rule must annotate both terms, a1 and a2 involved in the redex. Furthermore, because these
annotations may differ, these terms may have different types in DC, as long as those types
are also related through erasure.

E-Beta
Γ � a1 : B � a1 > a2

Γ; ∆ � a1 ≡ a2 : B

An-Beta
Γ ` a1 : B0

Γ ` a2 : B1 |B0| = |B1| � |a1| > |a2|
Γ; ∆ ` red a1 a2 : a1 ∼ a2

The System D type equality judgement is undecidable because it includes the operational
semantics and the language is nonterminating. This nontermination is due to the type:type
axiom and general recursion, the latter already available in Haskell. Furthermore, because
System D is nonterminating, types themselves may diverge and thus don’t necessarily have
normal forms (this is already the case for GHC, in the presence of certain language extensions).

2.2 Coercion abstraction
D and DC inherit the coercion abstraction feature from System FC, the existing core language
of GHC [42, 46]. This feature is primarily used to implement GADTs in GHC but is also
available for explicit use by Haskell programmers.

Coercion abstraction means that equality is first class. Terms may abstract over equality
propositions (denoted by φ in rules E-CAbs and An-CAbs) and can discharge those
assumptions in contexts where the proposition is derivable (rules E-CApp and An-CApp).
Once an equality has been assumed in the context, it may contribute to an equivalence
derivation as long as the coercion variable is available (i.e. found in the available set ∆).
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E-CAbs
Γ, c : φ � a : B

Γ � Λc.a : ∀c :φ.B

An-CAbs
Γ, c : φ ` a : B

Γ ` Λc :φ.a : ∀c :φ.B

E-CApp
Γ � a1 : ∀c : (a ∼A b).B1

Γ; Γ̃ � a ≡ b : A
Γ � a1[•] : B1{•/c}

An-CApp
Γ ` a1 : ∀c :a ∼A1 b.B

Γ; Γ̃ ` γ : a ∼ b
Γ ` a1[γ] : B{γ/c}

E-Assn
� Γ

c : (a ∼A b) ∈ Γ c ∈ ∆
Γ; ∆ � a ≡ b : A

An-Assn
` Γ

c : a ∼A b ∈ Γ c ∈ ∆
Γ; ∆ ` c : a ∼ b

The role of the set ∆ is to prevent the usage of certain coercion variables, namely those
introduced in a congruence proof between two coercion abstraction types. More details about
this issue are available in prior work [47].

2.3 Type inference for System D
Even though complete type inference for System D is undecidable, we still intend it to
be a model for the source language of the Glasgow Haskell Compiler. Type inference
in GHC currently elaborates implicitly-typed Source Haskell to an explicitly-typed core
language, similar to System DC. This inference algorithm works by gathering constraints
and then solving those constraints using a variant of mixed-prefix unification combined
with type-family reduction [44]. This algorithm already supports numerous features related
to System D, including GADTs, type-level computation, higher-rank polymorphism and
the type:type axiom. There are also experimental extensions of this algorithm in support
of type-level lambdas [26], higher-kinds [50], and first-class polymorphism [39]. The most
straightforward extension of GHC’s algorithm with dependent types is based on parallel
reduction; to determine whether two types are equivalent one must find a term that they
both reduce to. In System D, this reduction may not terminate, so this process describes a
semi-decision procedure.

3 Adding η-equivalence to Systems D and DC

Extending Systems D and DC with η-equivalence requires the addition of the following three
rules to System D and two analogous rules in System DC. These three rules encode the usual
η-equivalence properties for normal functions, irrelevant functions, and coercion abstractions.
As our equivalence relation is typed, we must ensure that both left and right hand sides are
well typed with the same type. This precondition also ensures that the bound variable does
not appear free in b.

E-EtaRel
Γ � b : Π+x :A.B

Γ; ∆ � λ+x.b x+ ≡ b : Π+x :A.B

E-EtaIrrel
Γ � b : Π−x :A.B

Γ; ∆ � λ−x.b �− ≡ b : Π−x :A.B

E-EtaC
Γ � b : ∀c :φ.B

Γ; ∆ � Λc.b[•] ≡ b : ∀c :φ.B
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In the annotated language, we only need two rules for coercion proofs because we can
unify the two application forms in the annotated language (i.e. we can generalize over ρ).

An-Eta
Γ ` b : Πρx :A.B

Γ; ∆ ` eta b : λρx.b xρ ∼ b

An-EtaC
Γ ` b : ∀c :φ.B

Γ; ∆ ` eta b : Λc.b[c] ∼ b

We use the single marker eta b as the explicit proof witness for both rules. We can
overload this form because the annotated term b includes enough information to recover its
type, and the type of b is enough to determine which of the η-equivalence properties are
needed.

The five rules shown in this section are all that was needed to extend the definition of
both languages with η-equivalence. Note that we do not include any η rules (i.e. reduction
or expansion) in the operational semantics (i.e. the one step reduction relations � a  b
and Γ ` a  b). The computational behavior of the system is unchanged by this extension.
Instead, our goal is to extend the systems’ reasoning about this existing computational
behavior through the added equivalences. Although the rules for η-equivalence for relevant
and irrelevant function have appeared in various prior work (see Section 6), the η-equivalence
rule for coercion abstraction is new to this extension.

4 Extending proofs

The addition of the five rules above means that we must extend all existing proofs of Systems
D and DC and show that after the inclusion of the new rules these systems retain the desired
properties. The properties developed in prior work [47] include the following results.

Consistency of definitional equality for System D
Type soundness (progress and preservation) for both languages
Decidable type checking for System DC
Annotation and erasure lemmas relating the two languages

In this section, we provide an overview of these proofs and discuss their interaction with
this extension. In the formal statements of our results below, we include the source file and
definition in our Coq proofs4 that justifies that result.

The type soundness proof comes in two parts. We prove the progress lemma for System
D, and then use the annotation lemma to translate that result to System DC. We prove
the preservation lemmas for both systems directly, but it would also be possible to only
prove preservation for System DC and then use the erasure lemma to translate that proof to
System D.

By far, the largest modification was needed for the proof of the progress lemma for
System D, which in turn relies on the consistency of definitional equality.

4.1 Progress lemma overview
In order to show proof of progress, we must first show the consistency of definitional equality
in our setting (see Corollary 7 below). Consistency means that in certain contexts, types
that have different head forms cannot be proven definitionally equal.

I Definition 1 (Consistent5). Two types A and B are consistent, written consistent A B,
when it is not the case that they are types with conflicting head forms. We formalize this
property with the following two judgements.

4 Available from https://github.com/sweirich/corespec/tree/master/src/FcEtt.
5 ett.ott:consistent
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hft(A) (Types with head forms)

value-type-Star

hft(type)

value-type-Pi

hft(Πρx :A.B)

value-type-CPi

hft(∀c :φ.B)

consistent a b (Types that do not differ in their heads)
consistent-a-Star

consistent type type

consistent-a-Pi

consistent (Πρx1 :A1.B1) (Πρx2 :A2.B2)

consistent-a-CPi

consistent (∀c1 :φ1.A1) (∀c2 :φ2.A2)

consistent-a-Step-R
¬(hft(b))

consistent a b

consistent-a-Step-L
¬(hft(a))

consistent a b

We use two auxiliary relations, parallel reduction and joinability, when proving consistency.
Parallel reduction, written � a ⇒ b, is not part of the specification of System D6. This

relation is a strongly confluent, but not necessarily terminating, rewrite relation on terms.
In one step of parallel reduction, multiple redexes in one term may be reduced at the same
time. For example, we can reduce (z ((λx.x) 1) ((λy.y) 2)) to (z 1 2) in one step, even though
two different beta-reductions need to be performed at the same time.

Two types are joinable when they reduce to some common term using any number of
steps of parallel reduction.

I Definition 2 (Joinable7). Two types are joinable, written ` a1 ⇔ a2, when there exists
some b such that ` a1 ⇒∗ b and ` a2 ⇒∗ b.

We use these two relations to prove consistency in two steps. First, we show that
definitionally equal types are joinable. Second, we show that joinable types are consistent.

In proving the first step, it is important to note that only some definitionally equal types
are joinable. This is illustrated by the following example. If a has type type, and there
is a coercion assumption a ∼type Int available in the context, then under this assumption
a and Int are two definitionally equal types. However, these two types are not joinable.
Because our consistency proof is based on parallel reduction, and because parallel reduction
ignores assumed equality propositions, we state our result only for equality derivations with
no available coercion assumptions. Thus, we restrict the set of all available assumptions we
can use to derive equality to the empty set.

I Theorem 3 (Equality implies Joinability8). If Γ;∅ � a ≡ b : A then ` a ⇔ b

This restriction in the lemma is necessary because the type system does not rule out
clearly bogus assumptions, such as Int ∼type Bool. Because we cannot use such assumptions
to derive equality, they cannot be allowed to appear in the context. As a result, in order to
be able to prove that consistent types are definitionally equal, the context must not make
any such assumptions available.

To prove the second step, we use the fact that parallel reduction is a strongly confluent
relation, and thus head forms must be preserved by parallel reduction. The confluence
property is stated below.

6 ett.ott:Par
7 ett.ott:join
8 ext_consist.v:consistent_defeq

ett.ott:Par
ett.ott:join
ext_consist.v:consistent_defeq
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I Theorem 4 (Confluence9). If � a ⇒ a1 and � a ⇒ a2 then there exists b, such that
� a1 ⇒ b and � a2 ⇒ b.

Our proof of confluence for System D follows the the proof of Church-Rosser for the
untyped lambda calculus given in Barendregt [11], sections 3.2 and 3.2. The proof with
β-reduction is attributed to Tait and Martin-Löf, and its extension with η-reduction is
attributed to Hindley [25] and Rosen [38].

The confluence property essentially shows that even if a term can take several reduction
paths, those paths can never diverge to produce terms with conflicting head forms. Thus,
since joinability is defined in terms of parallel reduction, and parallel reduction is strongly
confluent, it is true that joinability implies consistency.

I Lemma 5 (Joinability is transitive10). If ` A1 ⇔ B and ` B ⇔ A2 then ` A1 ⇔ A2

I Theorem 6 (Joinability implies consistency11). If ` A⇔ B then consistent A B.

I Corollary 7 (Consistency). If Γ; ∆ � a ≡ b : A then consistent a b.

The consistency result allows us to prove the progress lemma for System D. This progress
lemma is stated with respect to the one-step reduction relation and the definition of value
given in Figure 2.

I Lemma 8 (Progress12). If Γ � a : A, Γ contains no coercion assumptions, and no term
variable x in the domain of Γ occurs free in a, then either a is a value or there exists some
a′ such that � a  a′.

4.2 Progress lemma update

The addition of η-equivalence required three new rules to be added to the parallel reduction
relation. These rules encode η-reduction, meaning that any outer abstractions of the correct
form can be removed. Because parallel reduction is an untyped relation, there is no analogous
typing precondition as in the equivalence rules. However, these rules also have the condition
that the bound variable not appear free in b or b′. (In our rules below, this condition is not
explicitly mentioned because it is guaranteed by the usual Barendregt variable convention.
We discuss how we maintain this property in our Coq development in Section 5.)

Par-Eta
� b ⇒ b′

� λ+x.b x+ ⇒ b′

Par-EtaIrrel
� b ⇒ b′

� λ−x.b �− ⇒ b′

Par-EtaC
� b ⇒ b′

� Λc.b[•]⇒ b′

We can view joinability as a semi-decision algorithm. Two terms are equal when they join
to the same common reduct, though this process may diverge. This algorithm is a technical
device only; we don’t suggest its direct use in any implementation. Indeed, in the presence of
η-reduction, joinability could equate more terms than definitional equality because it doesn’t
always preserve typing (see below).

9 ext_consist.v:confluence
10 ext_consist.v:join_transitive
11 ext_consist.v:join_consistent
12 ext_consist.v:progress
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4.3 Parallel reduction and type preservation
There are three types of reduction included in this development: primitive reduction � a > b,
one-step reduction � a  b, and parallel reduction � a ⇒ b. In the original formulation of
System D, all three of these reduction relations were type-preserving.

The first two relations are unchanged by this extension, so type preservation still holds
for those relations13.

However, parallel reduction is an untyped relation. It does not depend on type information,
even in the case of η-equivalence. As a result, after the addition of η-equivalence rules, the
parallel reduction relation is no longer type-preserving.

I Example 9 (Parallel reduction does not preserve types). There is some a such that Γ � a : A
and � a ⇒ a′ where there is no derivation of Γ � a′ : A.

This property fails in the case where λ+x.b x+ reduces to b, but x is required in the
context for b to type check, even though it does not appear free in b.

For example, let A be Π−x : type.Π+z : type.(x → x) and consider the following derivation
of the application of some function y with this type to two arguments: an implicit one
and then an explicit one. In both cases in the derivation, the argument is just x, which is
abstracted in the conclusion of the derivation.

∅, y : A, x : type � y : A ∅, y : A, x : type � x : type
∅, y : A, x : type � y �− : Π+z : type.(x → x) ∅, y : A, x : type � x : type

∅, y : A, x : type � y �− x+ : x → x
∅, y : A � λ+x.(y �−) x+ : Π+x : type.(x → x)

Now, the term λ+x.y �− x+ reduces to y �− using rule Par-Eta. However, there is no
implicit argument that we can fill in so that this term will have type Π+x : type.(x → x).

Subject reduction also does not hold for η-reduction in the case of irrelevant arguments.14
In particular, there is a case where λ−x.b �− reduces to b and the two terms do not have
the same type. This situation is not the same as above: the issue is that in a derivation of
λ−x.b �− there is no requirement that the argument � be the same type as x.

For example, suppose y has type Γ ` y : Π−x : A.B and we have f : A → A′ in the
context Γ where the type A does not equal A′. Then we can construct a derivation of
Γ ` λ−x.(y �−) : Π−x : A′.B{f x/x} by using the term f x as the implicit argument. A
similar counterexample also applies to η-reduction for coercion abstraction.

Thus, in the presence of η-reduction, preservation does not hold for parallel reduction.
However, this loss is not significant to the soundness of the type systems of System D and
System DC. None of our results require this property. The only place where this may come
up is in a parallel-reduction based type inference algorithm for GHC (see Section 2.3). In this
case, parallel reduction must preserve enough type information during reduction to ensure
that the result is still well-typed.

4.4 Additional updates
Other updates to the proof include new cases in the erasure and annotation lemmas and
in the uniqueness and decidability of type checking in DC. These lemmas are proven by
mutual induction on the typing derivations shown in Figure 1. As the new rules are for the
definitional/provable equality judgements, we only list that part of the lemma statement.

13 ext_red.v:Beta_preservation, ext_red.v:reduction_preservation
14This issue was previously observed in the implementation of the Agda compiler: see https://github.

com/agda/agda/issues/2464.

ext_red.v:Beta_preservation
ext_red.v:reduction_preservation
https://github.com/agda/agda/issues/2464
https://github.com/agda/agda/issues/2464
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I Lemma 10 (Erasure15). If Γ; ∆ ` γ : a ∼ b then for all A such that Γ ` a : A, we have
|Γ|; ∆ � |a| ≡ |b| : |A|.

I Lemma 11 (Annotation16). If Γ; ∆ � a ≡ b : A then for all Γ0, such that |Γ0| = Γ, there
exists some γ, a0, b0 and A0, such that Γ0; ∆ ` γ : a0 ∼ b0 and Γ0 ` a0 : A0 and Γ0 ` b0 : A0
where |a0| = a and |b0| = b and |A0| = A.

I Lemma 12 (Unique typing for DC17). If Γ; ∆ ` γ : A1 ∼ B1 and Γ; ∆ ` γ : A2 ∼ B2, then
A1 = A2 and B1 = B2.

I Lemma 13 (Decidable typing for DC18). Given Γ, ∆, and γ, it is decidable whether there
exists some A and B such that Γ; ∆ ` γ : A ∼ B.

5 Proof engineering

The development of our Coq formalization for Systems D and DC was assisted with the use
of two tools for mechanized reasoning about programming language metatheory. The first
tool, Ott [40], takes as input a specification of the syntax and type system and produces
both Coq definitions and LaTeX figures. The inference rules of this paper were typeset with
this shared specification, though some rules in the main body of the paper have been slightly
modified for clarity. We include the complete and unmodified specification of the system in
Appendix A.

In addition to producing inductive definitions for the syntax and judgements, the Ott
tool also produces substitution and free variable functions. To make working with these
definitions more convenient, we also use the LNgen tool [9], that automatically states and
proves many lemmas about these operations.

This extension increased the overall size of the original development by about ten percent,
just looking at the line counts of the two versions. In Figure 4 we order the proof files by
largest difference in line count19 to see that the most significant effort was the update to
the progress proofs for System D. The preservation proof file (ext_red.v) shrank due to the
removal of the preservation lemma for the parallel reduction relation. The table includes
some modifications (such as inserting a newline, or slight refactoring of proof scripts) that
have no effect on the development. Files with unchanged line counts are omitted from this
figure.

The ett_ind.v file contains tactics that are tailored to our language development. These
tactics automatically apply inference rules, pick fresh variables with respect to binders, etc.
As we have added new rules to the language definition, we needed to update these tactics. To
assist in the rest of this proof development, we developed a tactic for automatically rewriting
a term given a hypothesis of the form found in the η-rules (and similar).

The ext_invert.v file contains inversion lemmas for System D. New with this extension
is the addition of a lemma that asserts that • is the only coercion proof found in System D
terms.

15 erase.v:typing_erase
16 erase.v:annotation_mutual
17 fc_unique.v:unique_mutual
18 fc_dec.v:FC_typechecking_decidable
19These numbers were calculated using the cloc tool, version 1.76, available from http://github.com/

AlDanial/cloc.

TYPES 2019

ext_red.v
ett_ind.v
ext_invert.v
erase.v: typing_erase
erase.v:annotation_mutual
fc_unique.v:unique_mutual
fc_dec.v:FC_typechecking_decidable
http://github.com/AlDanial/cloc
http://github.com/AlDanial/cloc


7:14 Eta-Equivalence in Core Dependent Haskell

File name (1) (1η) (2) (3) (3η)
Specification (generated) ett_ott.v 1337 1386 49 29 78

Progress (D) ext_consist.v 1427 2054 627 205 832
Progress (D) ett_par.v 660 1044 384 35 419
Erasure/annotation (D and DC) erase.v 2002 2182 180 2 182
Decidability (DC) fc_dec_fun.v 1561 1695 134 45 179
Progress (DC) fc_consist.v 768 901 133 48 181
Inversion and regularity (D) ext_invert.v 1057 1174 117 0 117
Inversion lemmas (DC) fc_invert.v 650 665 15 82 97
Dec. of type checking (DC) fc_get.v 774 844 70 1 71
General tactics ett_ind.v 439 493 54 8 62
Preservation (D) ext_red.v 290 241 -49 91 42
Context includes all vars (DC) fc_context_fv.v 221 257 36 0 36
Context includes all vars (D) ext_context_fv.v 143 178 35 0 35
Dec. of type checking (DC) fc_dec_aux.v 395 399 4 18 22
Substitution (DC) fc_subst.v 1270 1292 22 0 22
Unique typing (DC) fc_unique.v 261 277 16 0 16
Reduction determinism (D) ext_red_one.v 111 123 12 0 12
Substitution (D) ext_subst.v 550 561 11 1 12
Primitive reduction beta.v 71 78 7 4 11
Subst. prop. for coercions (DC) congruence.v 349 354 5 0 5
Weakening (D) ext_weak.v 139 141 2 3 5
Preservation (DC) fc_preservation.v 247 245 -2 4 2
Well-formedness (D) ext_wf.v 93 93 0 3 3
Dec. of type checking (DC) fc_dec_fuel.v 223 223 0 2 2
Erasure properties erase_syntax.v 486 486 0 1 1
General tactics tactics.v 182 182 0 1 1

Total 17499 19404 554 2445

Figure 4 Comparison between line counts in the original [47] and extended proof developments.
The columns are (1) - number of lines in the original, (1η) - number of lines in the extended version,
(2) - change in line counts between the versions, (3) - size of diff for original, and (3η) - size of diff
for the extended version. Files that are identical between the versions are not included in the table,
but appear in the total line count. Note, all line counts include only non-blank, non-comment lines
of code.
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5.1 Stating rules for η-equivalence

One issue that we faced in our development is the precise characterization of the new η-
equivalence rules using Ott. In the end, our actual formalization specifies these rules in a
slightly different form than as presented in Section 3. For example, rule Par-Eta reads as
follows, where we have named the body of the abstraction a and constrain it to be equal to
the application as a premise of the rule.

Par-Eta
� b ⇒ b′ a = b x+

� λ+x.a ⇒ b′

Although informally, this is a minor change, the precise statement of the rule determines the
definitions that will be produced in Coq.

The generated Coq definition uses the locally nameless representation and co-finite
quantification [8] for the bound variable inside the abstraction. Given any choice for the
bound variable x (except for some variables that must be avoided in the set L), we can show
that opening the body of the abstraction20 produces an application of b to that variable.
Furthermore, because this equation must hold for almost any variable x, we know that x
could not have appeared in the term b to begin with.

Inductive Par : context -> available_set -> tm -> tm -> Prop :=
...
| Par_Eta : forall (L:vars) (G:context) (D:available_set) (a b' b:tm),

Par G D b b' ->
(forall x, x \notin L ->

open a (Var_f x) = App b Rel (Var_f x)) ->
Par G D (UAbs Rel a) b'

In the Ott version of the rule, we need not explicitly mention that x cannot appear free
in b due to this use of cofinite quantification. Thus, the usual side condition on η-reduction
is implied by our formulation of the rule in Ott and does not need to be stated again.

5.2 Confluence proof update

Updating the confluence proof with the new cases for these rules was fairly straightforward.
In particular, Coq was easily able to point out the new cases that needed to be added.

One wrinkle was that the new cases required a change from an induction on the syntax
of the term to an induction on the height of the term. The reason for this modification is
that the new η-rules reduce b, which is not an immediate subterm of λ+x.b x+. However, it
is clear that in comparison to λ+x.b x+ the term b has a smaller height. The induction on
height of term was also effective for the other cases where we were dealing with immediate
subterms. Furthermore, our tool support (LNgen) already defined an appropriate height
function for terms which we were able to use for this purpose. Consequently, although we
needed to adjust the use of induction in each case, the overall modifications were minor.

20The process of replacing the bound variable, represented by an index, with a free one.
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6 Related work

6.1 Mechanized metatheory for dependent types
Mechanical reasoning via proof assistants has long been applied to dependent type theories.
We will not attempt to describe all results. However, we will mention two recent developments:

Sozeau et al. [41] present the first implementation of a type checker for the kernel of Coq,
which is proven correct in Coq with respect to its formal specification. More specifically,
their work models an extension of the Predicative Calculus of (Co)-Inductive Constructions:
a Pure Type System with an infinite hierarchy of universes, universe polymorphism, an
impredicative sort, and inductive and co-inductive type families. However, although the
Coq system includes η from version 8.4, this formalization does not include η-conversion.
Like this work, their proofs of the metatheory of this system include a confluence proof of a
parallel reduction relation, following Tait and Martin-Löf.

In [3], Abel, Öhman and Vezzozi mechanically prove (in Agda) the correctness of an
algorithm for deciding conversion in a dependent type theory with one universe, an inductive
type, and η-equality for function types. The algorithm that they verify is similar to the one
used by Agda and is derived from Harper and Pfenning’s definition of LF [24], as refined and
extended by Scherer and Abel [4, 2]. The proof of correctness of this algorithm is based on a
Kripke logical relations argument, parameterized by suitable notion of equivalence of terms.

6.2 Dependent types, type:type and η-equivalence
Similarly, the literature is rich with work pertaining to η-equivalence in type theories. Below,
we will focus on the interaction with type:type systems. In the next subsection, we discuss
the interactions with irrelevant arguments.

Many versions of the type:type language do not include η-equivalence in the definition of
conversion. For example, Coquand presents a semi-decision procedure for type checking a
language with type:type [18]. This algorithm compares types for equality through weak-head
normalization only. Similarly, Abel and Altenkirch [1] provide a more modern implementation
of the type checking algorithm for a very similar language (still without η-conversion), and
prove completeness on terminating terms (with a terminating type).

One difficulty with η-reduction in this setting is the problem with confluence for Church-
style calculi. To avoid a dependency between type checking and reduction, many dependent
type systems rely on an untyped reduction relation. However, in Church-style systems,
parallel reduction is only confluent for well-typed terms; ill-typed terms may not have a
common reduct. For example, the term (λx : A.(λy : B.y) x) can η-convert to λy : B.y or
β-convert to λx :A.x. These terms are only equal when A = B, but that is only guaranteed
by well-typed terms. As System D is a Curry-style system however, it does not suffer from
this issue.

Two versions of type:type that include η-equivalence are Cardelli [15] and Coquand and
Takeyama [19]. Both of these works justify the soundness of the type systems and the
consistency of the conversion relation using a denotational semantics. Furthermore, in
both of these systems, the denotational semantics ignores the annotated domain types of
lambda-expressions.

Coquand and Takeyama additionally provide a semi-decidable type checking algorithm.
Their conversion algorithm is not based on parallel reduction; instead it follows Coquand’s
algorithm[17], reducing expressions to their weak-head-normal-forms before a structural
comparison. When one of the terms being compared is a lambda expression and the other is
not, the algorithm invents a fresh variable, applies both terms to this fresh variable and then
continues checking for conversion.
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Q DC TE η-F η-T Π MM
P01 [37] LF X X X X

AS12 [4] MLTT X X X X

AVW17 [5] MLTT X X X X 2.
NVD17 [35] MLTT X X 3.
ND18 [34] MLTT 4. X X X 3.
A18 [7] MLTT 4. X 5. 5. X

M01 [32] ECC X X

BB08 [13] ECC X X X

MLS08 [33] IPTS PTS X

MLS08 [33] EPTS PTS X X

System D [47] TT X 1. X X

System DC [47] TT X X 1. X X

Notes:
1. Contribution of the current paper.
2. Only arguments of type size can be used without restriction.
3. Includes several different quantifiers, some with restriction, some without.
4. Not explicitly discussed in the paper. (But there are enough annotations that type

checking is likely decidable.)
5. Definitional equality rules are not discussed in the paper, so the status is unclear.

Figure 5 Dependent type systems with irrelevance.

6.3 Irrelevant quantification and η-equivalence

In this section, we survey prior work on dependently-typed languages that include some form
of irrelevant quantification and discuss their interaction with η-equivalence. The contents of
this section are summarized in Figure 5, which compares these systems along the features
described below.

Note that the terms “irrelevance” and “irrelevant quantification” have multiple meanings
in the literature. Our primary focus is on erasability, the ability for terms to quantify over
arguments that need not be present at runtime. However, this terminology often includes
compile-time irrelevance, or the blindness of type equality to such erasable parts of terms. It
can also refer to erasability in the compile-time type equivalence algorithm. These terms are
also related to, but not the same as, “parametricity” or “parametric quantification”, which
characterizes functions that map equivalent arguments to equivalent results.

Below, we describe the various columns in this table that we use to lay out the design
space of dependent type systems with irrelevance. Our purpose in this taxonomy is merely
to define terms and summarize properties that we discuss below. We do not intend this table
to characterize the contributions of prior work.

What form of type quantification is supported (Q)? First, we distinguish prior work by
whether, and how, they support type quantification—that is, the ability for the system to
quantify over types as well as terms. Type quantification is the foundation for parametric
polymorphism, a key feature of modern programming languages, enabling modularity and
code reuse. In dependent type systems, type quantification can take different forms, which
have varying degrees of expressiveness. Prior work is based on the following foundations
for type quantification:
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LF [23], variants of the Logical Framework. This system includes dependency on terms
only and does not allow quantification over types.

MLTT [30, 31], variants of Martin-Löf Type Theory. These systems feature predicative
polymorphism only, where types are stratified into an infinite hierarchy of universes.
A type from one universe can quantify only over types from lower universes.

ECC [16, 28], variants of the extended calculus of constructions. These systems feature
an impredicative sort (called Prop), in addition to an infinite hierarchy of predicative
universes. The types in the impredicative sort can quantify over themselves, all others
must be stratified.

TT [29, 15], variants of core systems that include the type:type axiom. In these systems
there is only a single sort of type, which includes types that quantify over all types.
Systems D and DC include this form of quantification to make the system simpler for
Haskell programmers, who are used to the impredicative polymorphism of System F.

PTS [10], pure type systems. These systems do not fix a single regime of type quantifica-
tion. Instead, they may be instantiated with many different treatments of quantification,
including all of the forms described above.

Is type checking decidable (DC)? Next, we distinguish systems based on whether they
support decidable type checking (X) or not ( ). Some calculi include enough annotations
so that a decidable type checking algorithm can be defined, others merely specify when
terms are well-typed. Sometimes the “same” system can be cast in two different variants.
For example, System D does not support decidable type checking, System DC augments
the syntax of terms with annotations for this purpose.21

Is the definition of equality typed (TE)? Does the conversion rule in the type system use
a typed (X) or untyped ( ) definition of equivalence? A typed equivalence requires a
typed judgemental equality ([6]) and each transitive step used in the derivation to be
between well-typed terms. In contrast, an untyped equivalence is usually defined in terms
of β- or βη- conversion of terms, only checking that the endpoints are well typed.
This distinction can affect expressiveness in both directions. On the one hand, an untyped
relation might equate terms with different types, or justify an equality using ill-typed
terms. There may be no analogous derivation in a typed relation. On the other hand,
some equivalence rules (like η for the unit type, see below) can only be included in the
system when type information is present, thus expanding the relation.
The inclusion of typed equivalence relation means that the algorithm used for type
checking may depend not just on the syntax of terms but also on their types during
execution. This type information may be used to prevent two terms from being equated
(for example, if one of the terms doesn’t type check), or it may be used to enable two
terms to be equated (such as in the case of the η-equivalence rule for the unit type).

Does the equality include η-equivalence rules for functions (η-F)? In this column, we in-
clude rules for functions regardless of whether they take relevant or irrelevant arguments.
Note that some systems ([32]) do not mark the introduction and elimination sites of
functions with irrelevant arguments. As a result, the corresponding equivalence rules
are unnecessary. Similarly to other features, η-F (as well as η-T below) is important for
programming as it may be used to derive equalities between types that mention functions,
and thus to type-check more programs.

21Note, one typical location of annotation is the type of bound variables. Systems are often called
“Church”-style when they include this annotation and “Curry”-style when they do not. However, this
annotation is independent of the decidability of the type system, and many type systems that do not
include this annotation support complete typing algorithms.
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Does the equality include η-equivalence rules for products and unit (η-T)? Does the
equality include type-directed η-equivalence rules for products or the unit type? For
example, the rule for the unit type equates all terms of this type. Because this rule is
type dependent, it can only be added to systems that use a typed definition of equiva-
lence. These rules are typically implemented in the type system through a type-directed
equivalence algorithm [24, 2].
At a high-level, the type-directed algorithm works in two stages. First, in the type-directed
phase, if the terms being compared have function types, the two terms are applied to a
fresh variable. This process takes care of η-equality. If the terms do not have function
types, then the algorithm continues by converting both terms to weak-head normal form.
If their heads match, then the algorithm recurses with the type-directed stage again on
each of the corresponding subterms.

Is the codomain of the irrelevant Π-type unrestricted (Π)? In some systems, the type of
an irrelevant abstraction is restricted so that the dependent argument must also be
used irrelevantly. In other systems, the variable can appear freely without restrictions.
Still others only allow unrestricted use for certain types of variables [5], or give users a
choice [35, 34]. We discuss systems that include such restrictions, and their reasons for it,
in Section 6.4. Systems D and DC do not restrict the codomain of irrelevant Π-types.

Mechanized metatheory (MM)? Have the metatheoretic results in the paper been devel-
oped and checked using a proof assistant? Our work is unique in this respect compared
to similar systems.

6.4 Irrelevant quantification and restrictions on Π types

In this paper, we use irrelevance to mean erasure—i.e. the property that some arguments
may be removed from the term without affecting the runtime behavior of the operational
semantics. However, there is also a question of what happens to these arguments during
type checking. Do these arguments affect the definition of type equality? If not, can they
similarly be erased as part of a type checking algorithm?

Abel and Scherer [4] noted that although some arguments are irrelevant at run-time, they
can still be relevant when determining type equality. If the definitional equality of the type
system is typed, and if the type system allows large eliminations, i.e. the definition of a type
via case analysis, then it can be difficult to incorporate type erasure into a type-directed
equivalence algorithm. Fundamentally, the algorithm is driven by type information (instead
of the structure of terms) and if irrelevant arguments can influence those types, they cannot
be erased.

The key difficulty is demonstrated by the following example, taken from Abel and
Scherer [4]. In the presence of large eliminations, and without any other restrictions, one
would be able to type check the following term t, reproduced below in the syntax of DC
extended with booleans.22

22Note that many systems support the large elimination needed for this example, even in the absence of
inductive types. For example, in Systems D and DC we can use a Church-style encoding of booleans.
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T : Bool→ type
T =λ+x :Bool.if x then (Bool→ Bool) else Bool

t =λ−F : Π−x :Bool.(T x → T x)→ type.
λ+f : (F False− (λ+x :Bool.x)+)→ Bool.
λ+n : F True− (λ+x : (Bool→ Bool).λ+y :Bool.x y+)+.

f (n . γ)+

The DC coercion proof γ marks the point where conversion must be used in this example.
This term is well-typed in a setting where the type system can derive an equality between the
type of the parameter to f and the type of the argument n. These two types differ in only
their irrelevant components, so they should be equated. In System DC, which, like ICC∗,
includes rules that erase types as part of type equivalence, we can define a coercion proof γ
that witnesses the equality between the two types. Such a proof is composed transitively
by first using the erasure-based reflexivity rule (rule An-EraseEq) to change the implicit
argument to F , and then using η-equivalence with the explicit argument.

|F False− (λ+x :Bool.x)+| = F �− (λ+x.x)+

=βη F �− (λ+x.λ+y.x y+)+

= |F True− (λ+x : (Bool→ Bool).λ+y :Bool.x y+)+|

This example causes no difficulty for type checking in DC because it does not use a type-
directed equivalence algorithm. Indeed, all of the information required by the algorithm is
already present in the term.

However, it is difficult to extend a type-directed equivalence algorithm, particularly
one that includes the η-equivalence rule for the unit type, so that it can equate these two
types. Therefore, Abel and Scherer proposed restrictions on the use of irrelevantly quantified
variables, not just in abstractions, but also in the codomain of irrelevant quantifiers. These
restrictions were lifted in [5] for sized types, on the observation that they were irrelevant to
the shape of types and therefore were not relevant to the operation of the type-equivalence
algorithm. Nuyts and Devriese [35] expand on this idea and develop a modal type theory
that includes, along with other modalities, irrelevance and shape-irrelevance in a unified
framework.

However, note that the issue with this example is the desire to use erasure as part of
a type-directed algorithm, not in the use of a typed equivalence in the language definition
itself, nor the fact that the definition of type-equivalence ignores irrelevant components.

Because System DC does not rely on this sort of algorithm, it demonstrates that decidable
type checking, irrelevance and large eliminations are compatible. Indeed, System DC requires
the use of erasure in one of its key coercion proofs. On the other hand, one could worry
that this example would cause trouble for System D. The fact that type checking is already
undecidable in that language is not an excuse: a compiler like GHC will need to implement
some type inference algorithm and should identify some subset of the language that it will
support. This example demonstrates that type-directed algorithms are not a good fit for this
setting, but does not rule out the algorithms sketched in Section 2.3.
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7 Conclusion

Overall, this work demonstrates the benefits of developing the metatheory of type systems
using a proof assistant. Although establishing the original development in prior work [47]
took significant effort, we are able to build on that foundation when considering extensions
of the system.

Furthermore, the availability of this sort of proof as a software engineering artifact makes it
easier to bring on new collaborators. Because all of the proofs are machine-checked, newcomers
can easily find what parts of the system need extension, even without understanding all
details of how everything fits together. As a result, this sort of effort can be shared among
many more collaborators, who can assist in maintaining the results.

Finally, the confidence gained from machine-checked proofs is also important. The failure
of preservation for parallel η-reduction is obvious only in hindsight, and could have been
easily overlooked in a pen-and-paper proof. At the same time, the automatic reassurance
that this failure does not interact with the main soundness and decidability results is also
welcome.

References
1 Andreas Abel and Thorsten Altenkirch. A partial type checking algorithm for Type:Type.

Electronic Notes in Theoretical Computer Science, 229(5):3–17, 2011. Proceedings of the
Second Workshop on Mathematically Structured Functional Programming (MSFP 2008).
doi:10.1016/j.entcs.2011.02.013.

2 Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization by evaluation for Martin-
Löf type theory with typed equality judgements. In 22nd Annual IEEE Symposium on Logic
in Computer Science (LICS 2007), pages 3–12. IEEE, 2007.

3 Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type theory
in type theory. Proceedings of the acm on programming languages, 2(POPL):23, 2017.

4 Andreas Abel and Gabriel Scherer. On irrelevance and algorithmic equality in predicative type
theory. Logical Methods in Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:29)2012.

5 Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. Normalization by evaluation for sized
dependent types. PACMPL, 1(ICFP):33:1–33:30, 2017. doi:10.1145/3110277.

6 ROBIN ADAMS. Pure type systems with judgemental equality. Journal of Functional
Programming, 16(2):219–246, 2006. doi:10.1017/S0956796805005770.

7 Robert Atkey. The syntax and semantics of quantitative type theory. In LICS ’18: 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, July 9–12, 2018, Oxford,
United Kingdom, 2018. doi:10.1145/3209108.3209189.

8 Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering formal metatheory. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), pages 3–15, January 2008.

9 Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless represen-
tations. Technical Report MS-CIS-10-24, Computer and Information Science, University of
Pennsylvania, June 2010.

10 H. P. Barendregt. Lambda Calculi with Types, page 117–309. Oxford University Press, Inc.,
USA, 1993.

11 Hendrik Pieter Barendregt. The Lambda Calculus - its Syntax and Semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1985.

12 Henk Barendregt. Introduction to generalized type systems. J. Funct. Program., 1(2):125–154,
1991.

TYPES 2019

https://doi.org/10.1016/j.entcs.2011.02.013
https://doi.org/10.2168/LMCS-8(1:29)2012
https://doi.org/10.1145/3110277
https://doi.org/10.1017/S0956796805005770
https://doi.org/10.1145/3209108.3209189


7:22 Eta-Equivalence in Core Dependent Haskell

13 Bruno Barras and Bruno Bernardo. The implicit calculus of constructions as a programming
language with dependent types. In Roberto Amadio, editor, Foundations of Software Science
and Computational Structures, pages 365–379, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

14 Edwin Brady. Practical Implementation of a Dependently Typed Functional Programming
Language. PhD thesis, Durham University, 2005.

15 Luca Cardelli. A polymorphic λ-calculus with Type:Type. Technical report, DEC SRC, 1986.
URL: http://lucacardelli.name/Papers/TypeType.A4.pdf.

16 Thierry Coquand. A calculus of constructions. manuscript, November 1986.
17 Thierry Coquand. An algorithm for testing conversion in type theory. In Gérard Huet and

Gordon Plotkin, editors, Logical Frameworks, pages 255–279. Cambridge University Press,
New York, NY, USA, 1991.

18 Thierry Coquand. An algorithm for type-checking dependent types. Science of computer
programming., 26(1-3):167,177, 1996-05.

19 Thierry Coquand and Makoto Takeyama. An implementation of type: type. In International
Workshop on Types for Proofs and Programs, pages 53–62. Springer, 2000.

20 Richard A. Eisenberg. Dependent Types in Haskell: Theory and Practice. PhD thesis, University
of Pennsylvania, 2016.

21 Richard A. Eisenberg and Stephanie Weirich. Dependently typed programming with singletons.
In ACM SIGPLAN Haskell Symposium, 2012.

22 Adam Gundry. Type Inference, Haskell and Dependent Types. PhD thesis, University of
Strathclyde, 2013.

23 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J. ACM,
40(1):143–184, January 1993. doi:10.1145/138027.138060.

24 Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF type theory.
ACM Trans. Comput. Logic, 6(1):61–101, January 2005. doi:10.1145/1042038.1042041.

25 J. Roger Hindley. The Church-Rosser property and a result in combinatory logic. PhD thesis,
University of Newcastle upon Tyne, 1964.

26 Csongor Kiss, Tony Field, Susan Eisenbach, and Simon Peyton Jones. Higher-order type-level
programming in haskell. Proc. ACM Program. Lang., 3(ICFP), July 2019. doi:10.1145/
3341706.

27 Sam Lindley and Conor McBride. Hasochism: the pleasure and pain of dependently typed
Haskell programming. In ACM SIGPLAN Haskell Symposium, 2013.

28 Z. Luo. ECC, an extended calculus of constructions. In [1989] Proceedings. Fourth Annual
Symposium on Logic in Computer Science, pages 386–395, 1989.

29 Per Martin-Löf. A theory of types. Unpublished manuscript, 1971.
30 Per Martin-Löf. An intuitionistic theory of types: predicative part. In H.E. Rose and J.C.

Shepherdson, editors, Logic Colloquium ’73, Proceedings of the Logic Colloquium, volume 80
of Studies in Logic and the Foundations of Mathematics, pages 73–118. North-Holland, 1975.

31 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis,
1984.

32 Alexandre Miquel. The implicit calculus of constructions: Extending pure type systems with
an intersection type binder and subtyping. In Proceedings of the 5th International Conference
on Typed Lambda Calculi and Applications, TLCA’01, pages 344–359, Berlin, Heidelberg, 2001.
Springer-Verlag.

33 Nathan Mishra-Linger and Tim Sheard. Erasure and polymorphism in pure type systems. In
Roberto M. Amadio, editor, Foundations of Software Science and Computational Structures,
11th International Conference, FOSSACS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6,
2008. Proceedings, volume 4962 of Lecture Notes in Computer Science, pages 350–364. Springer,
2008. doi:10.1007/978-3-540-78499-9_25.

http://lucacardelli.name/Papers/TypeType.A4.pdf
https://doi.org/10.1145/138027.138060
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1145/3341706
https://doi.org/10.1145/3341706
https://doi.org/10.1007/978-3-540-78499-9_25


A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:23

34 Andreas Nuyts and Dominique Devriese. Degrees of relatedness: A unified framework for
parametricity, irrelevance, ad hoc polymorphism, intersections, unions and algebra in dependent
type theory. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12,
2018, pages 779–788. ACM, 2018. doi:10.1145/3209108.3209119.

35 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for dependent
type theory. Proc. ACM Program. Lang., 1(ICFP):32:1–32:29, August 2017. doi:10.1145/
3110276.

36 Frank Pfenning. On the undecidability of partial polymorphic type reconstruction. Technical
report, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

37 Frank Pfenning. Intensionality, extensionality, and proof irrelevance in modal type theory. In
J. Halpern, editor, Proceedings of the 16th Annual Symposium on Logic in Computer Science
(LICS’01), pages 221–230, Boston, Massachusetts, June 2001. IEEE Computer Society Press.

38 Barry K. Rosen. Tree-manipulating systems and Church-Rosser theorems. J. ACM, 20(1):160–
187, January 1973. doi:10.1145/321738.321750.

39 Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. Guarded
impredicative polymorphism. In Jeffrey S. Foster and Dan Grossman, editors, Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 783–796. ACM, 2018. doi:
10.1145/3192366.3192389.

40 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strniša. Ott: Effective tool support for the working semanticist. Journal of
Functional Programming, 20(1), January 2010.

41 Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter.
Coq coq correct! verification of type checking and erasure for coq, in coq. Proc. ACM Program.
Lang., 4(POPL):8:1–8:28, 2020. doi:10.1145/3371076.

42 M. Sulzmann, M. Chakravarty, S. Peyton Jones, and K. Donnelly. System F with type equality
coercions. In François Pottier and George C. Necula, editors, Proceedings of TLDI’07: 2007
ACM SIGPLAN International Workshop on Types in Languages Design and Implementation,
Nice, France, January 16, 2007, pages 53–66. ACM, 2007.

43 The Coq Development Team. The Coq proof assistant, version 8.8.0, April 2018. doi:
10.5281/zenodo.1219885.

44 Dimitrios Vytiniotis, Simon L. Peyton Jones, Tom Schrijvers, and Martin Sulzmann. Out-
sidein(x) modular type inference with local assumptions. J. Funct. Program., 21(4-5):333–412,
2011. doi:10.1017/S0956796811000098.

45 Stephanie Weirich. Depending on types, 2014. Invited keynote given at ICFP 2014.
46 Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. System FC with explicit kind

equality. In Proceedings of The 18th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’13, pages 275–286, Boston, MA, September 2013.

47 Stephanie Weirich, Antoine Voizard, Pedro Henrique Avezedo de Amorim, and Richard A.
Eisenberg. A specification for dependent types in Haskell. Proc. ACM Program. Lang.,
1(ICFP):31:1–31:29, August 2017. doi:10.1145/3110275.

48 J.B. Wells. Typability and type checking in System F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1):111–156, 1999. doi:10.1016/S0168-0072(98)00047-5.

49 A.K. Wright and M. Felleisen. A syntactic approach to type soundness. Inf. Comput.,
115(1):38–94, November 1994. doi:10.1006/inco.1994.1093.

50 Ningning Xie, Richard A. Eisenberg, and Bruno C. d. S. Oliveira. Kind inference for datatypes.
Proc. ACM Program. Lang., 4(POPL):53:1–53:28, 2020. doi:10.1145/3371121.

TYPES 2019

https://doi.org/10.1145/3209108.3209119
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3110276
https://doi.org/10.1145/321738.321750
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3192366.3192389
https://doi.org/10.1145/3371076
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/3110275
https://doi.org/10.1016/S0168-0072(98)00047-5
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/3371121


7:24 Eta-Equivalence in Core Dependent Haskell

A Complete system specification

The complete type system appears in here including the actual rules that we used, auto-
matically generated by Ott. For presentation purposes, we have removed some redundant
hypotheses from these rules in the main body of the paper when they were implied via
regularity. We have proven (in Coq) that these additional premises are admissible, so their
removal does not change the type system.23 These redundant hypotheses are marked by
square brackets in the complete system below.

We need to include these redundant hypotheses in our rules for two reasons. First,
sometimes these hypotheses simplify the reasoning and allow us to prove properties more
independently of one another. For example, in the rule E-Beta rule, we require a2 to have
the same type as a1. However, this type system supports the preservation lemma so this
typing premise will always be derivable. But, it is convenient to prove the regularity property
early, so we include that hypothesis in the definition of the type system.

Another source of redundancy comes from our use of the Coq proof assistant. Some of
our proofs require the use of induction on judgements that are not direct premises, but are
derived from other premises via regularity. These derivations are always the same height or
shorter than the original, so this use of induction is justified. However, while Coq natively
supports proofs by induction on derivations, it does not natively support induction on the
heights of derivations. Therefore, to make these induction hypotheses available for reasoning,
we include them as additional premises.

Finally, instead of the usual syntactic distinction of values (as in Figure 2), our formal-
ization identifies values using the judgement [Value a], overloaded for both System D and
System DC terms.

B Top-level signatures

Our results are proven with respect to the following top-level signatures:

Σ1 = ∅ ∪ {Fix ∼ λ−x : type.λ+y :x.(y (Fix[x] y)) : Π−x : type.(x→ x)→ x}

Σ0 = |Σ1|

However, our Coq proofs use these signature definitions opaquely. As a result, any pair
of top-level signatures are compatible with the definition of the languages as long as they
satisfy the following properties.

1. � Σ0

2. ` Σ1

3. Σ0 = |Σ1|

23 ext_invert.v:E_Pi2,E_Abs2,E_CPi2,E_CAbs2,E_Fam2, ext_invert.v:E_Wff2,E_PiCong2,E_
AbsCong2,E_CPiCong2,E_CAbsCong2, ext_red.v:E_Beta2, fc_invert.v:An_Pi_exists2,An_Abs_
exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2, fc_invert.v:An_Sym2,An_Trans2,An_
AbsCong_exists2, fc_invert.v:An_AppCong2,An_CPiCong_exists2,An_CAppCong2

ext_invert.v:E_Pi2,E_Abs2,E_CPi2,E_CAbs2,E_Fam2
ext_invert.v:E_Wff2,E_PiCong2,E_AbsCong2,E_CPiCong2,E_CAbsCong2
ext_invert.v:E_Wff2,E_PiCong2,E_AbsCong2,E_CPiCong2,E_CAbsCong2
ext_red.v:E_Beta2
fc_invert.v:An_Pi_exists2,An_Abs_exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2
fc_invert.v:An_Pi_exists2,An_Abs_exists2,An_CPi_exists2,An_CAbs_exists2,An_Fam2
fc_invert.v:An_Sym2,An_Trans2,An_AbsCong_exists2
fc_invert.v:An_Sym2,An_Trans2,An_AbsCong_exists2
fc_invert.v:An_AppCong2,An_CPiCong_exists2,An_CAppCong2
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C Reduction relations

C.1 Primitive reduction
� a > b (primitive reductions on erased terms)

Beta-AppAbs

� (λ+x.v) b+ > v{b/x}

Beta-AppAbsIrrel
[Value (λ−x.v)]

� (λ−x.v) �− > v{�/x}

Beta-CAppCAbs

� (Λc.a′)[•] > a′{•/c}

Beta-Axiom
F ∼ a : A ∈ Σ0

� F > a

C.2 System D one-step reduction
� a  b (single-step head reduction for implicit language)

E-AbsTerm
� a  a′

� λ−x.a  λ−x.a′

E-AppLeft
� a  a′

� a b+  a′ b+

E-AppLeftIrrel
� a  a′

� a �−  a′ �−

E-CAppLeft
� a  a′

� a[•] a′[•]

E-AppAbs

� (λ+x.v) a+  v{a/x}

E-AppAbsIrrel
[Value (λ−x.v)]

� (λ−x.v) �−  v{�/x}

E-CAppCAbs

� (Λc.b)[•] b{•/c}

E-Axiom
F ∼ a : A ∈ Σ0

� F  a

C.3 System DC one-step reduction
Γ ` a  b (single-step, weak head reduction to values for annotated language)

An-AppLeft
Γ ` a  a′

Γ ` a bρ  a′ bρ

An-AppAbs
[Value (λρx :A.w)]

Γ ` (λρx :A.w) aρ  w{a/x}

An-CAppLeft
Γ ` a  a′

Γ ` a[γ] a′[γ]

An-CAppCAbs

Γ ` (Λc :φ.b)[γ] b{γ/c}

An-AbsTerm
Γ ` A : type

Γ, x : A ` b  b′

Γ ` (λ−x :A.b) (λ−x :A.b′)

An-Axiom
F ∼ a : A ∈ Σ1

Γ ` F  a

An-ConvTerm
Γ ` a  a′

Γ ` a . γ  a′ . γ

An-Combine
[Value v]

Γ ` (v . γ1) . γ2  v . (γ1; γ2)

An-Push
[Value v]

Γ; Γ̃ ` γ : Πρx1 :A1.B1 ∼ Πρx2 :A2.B2
b′ = b . sym (piFst γ)
γ′ = γ@(b′ |=|(piFst γ) b)

Γ ` (v . γ) bρ  (v b′ρ) . γ′

An-CPush
[Value v]

Γ; Γ̃ ` γ : ∀c1 :φ1.A1 ∼ ∀c2 :φ2.A2
γ′1 = γ1 . sym (cpiFst γ)

γ′ = γ@(γ′1 ∼ γ1)
Γ ` (v . γ)[γ1] (v[γ′1]) . γ′
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C.4 Parallel reduction
� a ⇒ b (parallel reduction (implicit language))

Par-Refl

� a ⇒ a

Par-Beta
� a ⇒ (λ+x.a′)
� b ⇒ b′

� a b+ ⇒ a′{b′/x}

Par-BetaIrrel
� a ⇒ (λ−x.a′)
� a �− ⇒ a′{�/x}

Par-App
� a ⇒ a′ � b ⇒ b′

� a b+ ⇒ a′ b′+

Par-AppIrrel
� a ⇒ a′

� a �− ⇒ a′ �−

Par-CBeta
� a ⇒ (Λc.a′)
� a[•]⇒ a′{•/c}

Par-CApp
� a ⇒ a′

� a[•]⇒ a′[•]

Par-Abs
� a ⇒ a′

� λρx.a ⇒ λρx.a′

Par-Pi
� A⇒ A′ � B ⇒ B′

� Πρx :A.B ⇒ Πρx :A′.B′

Par-CAbs
� a ⇒ a′

� Λc.a ⇒ Λc.a′

Par-CPi
� A⇒ A′ � B ⇒ B′
� a ⇒ a′ � A1 ⇒ A′1

� ∀c :A ∼A1 B.a ⇒ ∀c :A′ ∼A′
1

B′.a′

Par-Axiom
F ∼ a : A ∈ Σ0

� F ⇒ a

Par-Eta
� b ⇒ b′ a = b x+

� λ+x.a ⇒ b′

Par-EtaIrrel
� b ⇒ b′ a = b �−

� λ−x.a ⇒ b′

Par-EtaC
� b ⇒ b′ a = b[•]
� Λc.a ⇒ b′

D Full system specification: System D type system

Γ � a : A (typing)

E-Star
� Γ

Γ � type : type

E-Var
� Γ x : A ∈ Γ

Γ � x : A

E-Pi
Γ, x : A � B : type

[Γ � A : type]
Γ � Πρx :A.B : type

E-Abs
Γ, x : A � a : B
[Γ � A : type]

(ρ = +) ∨ (x 6∈ fv a)
Γ � λρx.a : Πρx :A.B

E-App
Γ � b : Π+x :A.B

Γ � a : A
Γ � b a+ : B{a/x}

E-IApp
Γ � b : Π−x :A.B

Γ � a : A
Γ � b �− : B{a/x}

E-Conv
Γ � a : A

Γ; Γ̃ � A ≡ B : type
[Γ � B : type]

Γ � a : B

E-CPi
Γ, c : φ � B : type

[Γ � φ ok]
Γ � ∀c :φ.B : type

E-CAbs
Γ, c : φ � a : B

[Γ � φ ok]
Γ � Λc.a : ∀c :φ.B

E-CApp
Γ � a1 : ∀c : (a ∼A b).B1

Γ; Γ̃ � a ≡ b : A
Γ � a1[•] : B1{•/c}

E-Fam
� Γ F ∼ a : A ∈ Σ0

[∅ � A : type]
Γ � F : A

Γ � φ ok (Prop wellformedness)

E-Wff
Γ � a : A Γ � b : A

[Γ � A : type]
Γ � a ∼A b ok



A. Kravchuk-Kirilyuk, A. Voizard, and S. Weirich 7:27

Γ; ∆ � φ1 ≡ φ2 (prop equality)

E-PropCong
Γ; ∆ � A1 ≡ A2 : A
Γ; ∆ � B1 ≡ B2 : A

Γ; ∆ � A1 ∼A B1 ≡ A2 ∼A B2

E-IsoConv
Γ; ∆ � A ≡ B : type
Γ � A1 ∼A A2 ok
Γ � A1 ∼B A2 ok

Γ; ∆ � A1 ∼A A2 ≡ A1 ∼B A2

E-CPiFst
Γ; ∆ � ∀c :φ1.B1 ≡ ∀c :φ2.B2 : type

Γ; ∆ � φ1 ≡ φ2

Γ; ∆ � a ≡ b : A (definitional equality)

E-Assn
� Γ c : (a ∼A b) ∈ Γ

c ∈ ∆
Γ; ∆ � a ≡ b : A

E-Refl
Γ � a : A

Γ; ∆ � a ≡ a : A

E-Sym
Γ; ∆ � b ≡ a : A
Γ; ∆ � a ≡ b : A

E-Trans
Γ; ∆ � a ≡ a1 : A
Γ; ∆ � a1 ≡ b : A
Γ; ∆ � a ≡ b : A

E-Beta
Γ � a1 : B

[Γ � a2 : B] � a1 > a2

Γ; ∆ � a1 ≡ a2 : B

E-PiCong
Γ; ∆ � A1 ≡ A2 : type

Γ, x : A1; ∆ � B1 ≡ B2 : type
[Γ � A1 : type]

[Γ � Πρx :A1.B1 : type]
[Γ � Πρx :A2.B2 : type]

Γ; ∆ � (Πρx :A1.B1) ≡ (Πρx :A2.B2) : type

E-AbsCong
Γ, x : A1; ∆ � b1 ≡ b2 : B

[Γ � A1 : type]
(ρ = +) ∨ (x 6∈ fv b1)
(ρ = +) ∨ (x 6∈ fv b2)

Γ; ∆ � (λρx.b1) ≡ (λρx.b2) : Πρx :A1.B

E-AppCong
Γ; ∆ � a1 ≡ b1 : Π+x :A.B

Γ; ∆ � a2 ≡ b2 : A
Γ; ∆ � a1 a2

+ ≡ b1 b2
+ : B{a2/x}

E-IAppCong
Γ; ∆ � a1 ≡ b1 : Π−x :A.B

Γ � a : A
Γ; ∆ � a1 �

− ≡ b1 �
− : B{a/x}

E-PiFst
Γ; ∆ � Πρx :A1.B1 ≡ Πρx :A2.B2 : type

Γ; ∆ � A1 ≡ A2 : type

E-PiSnd
Γ; ∆ � Πρx :A1.B1 ≡ Πρx :A2.B2 : type

Γ; ∆ � a1 ≡ a2 : A1

Γ; ∆ � B1{a1/x} ≡ B2{a2/x} : type

E-CPiCong
Γ; ∆ � φ1 ≡ φ2

Γ, c : φ1; ∆ � A ≡ B : type
[Γ � φ1 ok]

[Γ � ∀c :φ1.A : type]
[Γ � ∀c :φ2.B : type]

Γ; ∆ � ∀c :φ1.A ≡ ∀c :φ2.B : type

E-CAbsCong
Γ, c : φ1; ∆ � a ≡ b : B

[Γ � φ1 ok]
Γ; ∆ � (Λc.a) ≡ (Λc.b) : ∀c :φ1.B

E-CAppCong
Γ; ∆ � a1 ≡ b1 : ∀c : (a ∼A b).B

Γ; Γ̃ � a ≡ b : A
Γ; ∆ � a1[•] ≡ b1[•] : B{•/c}
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E-CPiSnd
Γ; ∆ � ∀c : (a1 ∼A a2).B1 ≡ ∀c : (a′1 ∼A′ a′2).B2 : type

Γ; Γ̃ � a1 ≡ a2 : A
Γ; Γ̃ � a′1 ≡ a′2 : A′

Γ; ∆ � B1{•/c} ≡ B2{•/c} : type

E-Cast
Γ; ∆ � a ≡ b : A

Γ; ∆ � a ∼A b ≡ a′ ∼A′ b′

Γ; ∆ � a′ ≡ b′ : A′

E-EqConv
Γ; ∆ � a ≡ b : A

Γ; Γ̃ � A ≡ B : type
Γ; ∆ � a ≡ b : B

E-IsoSnd
Γ; ∆ � a ∼A b ≡ a′ ∼A′ b′

Γ; ∆ � A ≡ A′ : type

E-EtaRel
Γ � b : Π+x :A.B

a = b x+

Γ; ∆ � λ+x.a ≡ b : Π+x :A.B

E-EtaIrrel
Γ � b : Π−x :A.B

a = b �−

Γ; ∆ � λ−x.a ≡ b : Π−x :A.B

E-EtaC
Γ � b : ∀c :φ.B

a = b[•]
Γ; ∆ � Λc.a ≡ b : ∀c :φ.B

� Γ (context wellformedness)

E-Empty

� ∅

E-ConsTm
� Γ Γ � A : type

x 6∈ dom Γ
� Γ, x : A

E-ConsCo
� Γ

Γ � φ ok c 6∈ dom Γ
� Γ, c : φ

� Σ (signature wellformedness)

Sig-Empty

� ∅

Sig-ConsAx
� Σ ∅ � A : type

∅ � a : A F 6∈ dom Σ
� Σ ∪ {F ∼ a : A}

E Full system specification: System DC type system

Γ ` a : A (typing)

An-Star
` Γ

Γ ` type : type

An-Var
` Γ x : A ∈ Γ

Γ ` x : A

An-Pi
Γ, x : A ` B : type

[Γ ` A : type]
Γ ` Πρx :A.B : type

An-Abs
[Γ ` A : type]

Γ, x : A ` a : B
(ρ = +) ∨ (x 6∈ fv |a|)

Γ ` λρx :A.a : Πρx :A.B

An-App
Γ ` b : Πρx :A.B

Γ ` a : A
Γ ` b aρ : B{a/x}

An-Conv
Γ ` a : A

Γ; Γ̃ ` γ : A ∼ B
Γ ` B : type
Γ ` a . γ : B

An-CPi
[Γ ` φ ok]

Γ, c : φ ` B : type
Γ ` ∀c :φ.B : type

An-CAbs
[Γ ` φ ok]

Γ, c : φ ` a : B
Γ ` Λc :φ.a : ∀c :φ.B

An-CApp
Γ ` a1 : ∀c :a ∼A1 b.B

Γ; Γ̃ ` γ : a ∼ b
Γ ` a1[γ] : B{γ/c}

An-Fam
` Γ F ∼ a : A ∈ Σ1

[∅ ` A : type]
Γ ` F : A
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Γ ` φ ok (prop wellformedness)

An-Wff
Γ ` a : A

Γ ` b : B |A| = |B|
Γ ` a ∼A b ok

Γ; ∆ ` γ : φ1 ∼ φ2 (coercion between props)

An-PropCong
Γ; ∆ ` γ1 : A1 ∼ A2
Γ; ∆ ` γ2 : B1 ∼ B2
Γ ` A1 ∼A B1 ok
Γ ` A2 ∼A B2 ok

Γ; ∆ ` (γ1 ∼A γ2) : (A1 ∼A B1) ∼ (A2 ∼A B2)

An-CPiFst
Γ; ∆ ` γ : ∀c :φ1.A2 ∼ ∀c :φ2.B2

Γ; ∆ ` cpiFst γ : φ1 ∼ φ2

An-IsoSym
Γ; ∆ ` γ : φ1 ∼ φ2

Γ; ∆ ` sym γ : φ2 ∼ φ1

An-IsoConv
Γ; ∆ ` γ : A ∼ B
Γ ` a1 ∼A a2 ok
Γ ` a′1 ∼B a′2 ok

|a1| = |a′1| |a2| = |a′2|
Γ; ∆ ` conv (a1 ∼A a2) ∼γ (a′1 ∼B a′2) : (a1 ∼A a2) ∼ (a′1 ∼B a′2)

Γ; ∆ ` γ : A ∼ B (coercion between types)

An-Assn
` Γ

c : a ∼A b ∈ Γ c ∈ ∆
Γ; ∆ ` c : a ∼ b

An-Refl
Γ ` a : A

Γ; ∆ ` refl a : a ∼ a

An-EraseEq
Γ ` a : A

Γ ` b : B |a| = |b|
Γ; Γ̃ ` γ : A ∼ B

Γ; ∆ ` (a |=|γ b) : a ∼ b

An-Sym
Γ ` b : B Γ ` a : A

[Γ; Γ̃ ` γ1 : B ∼ A]
Γ; ∆ ` γ : b ∼ a

Γ; ∆ ` sym γ : a ∼ b

An-Trans
Γ; ∆ ` γ1 : a ∼ a1
Γ; ∆ ` γ2 : a1 ∼ b

[Γ ` a : A]
[Γ ` a1 : A1]

[Γ; Γ̃ ` γ3 : A ∼ A1]
Γ; ∆ ` (γ1; γ2) : a ∼ b

An-Beta
Γ ` a1 : B0
Γ ` a2 : B1
|B0| = |B1|
� |a1| > |a2|

Γ; ∆ ` red a1 a2 : a1 ∼ a2

An-PiCong
Γ; ∆ ` γ1 : A1 ∼ A2

Γ, x : A1; ∆ ` γ2 : B1 ∼ B2
B3 = B2{x . sym γ1/x}
Γ ` Πρx :A1.B1 : type
Γ ` Πρx :A2.B3 : type

Γ ` (Πρx :A1.B2) : type
Γ; ∆ ` Πρx :γ1.γ2 : (Πρx :A1.B1) ∼ (Πρx :A2.B3)
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An-AbsCong
Γ; ∆ ` γ1 : A1 ∼ A2

Γ, x : A1; ∆ ` γ2 : b1 ∼ b2
b3 = b2{x . sym γ1/x}

[Γ ` A1 : type]
Γ ` A2 : type

(ρ = +) ∨ (x 6∈ fv |b1|)
(ρ = +) ∨ (x 6∈ fv |b3|)
[Γ ` (λρx :A1.b2) : B]

Γ; ∆ ` (λρx :γ1.γ2) : (λρx :A1.b1) ∼ (λρx :A2.b3)

An-AppCong
Γ; ∆ ` γ1 : a1 ∼ b1
Γ; ∆ ` γ2 : a2 ∼ b2

Γ ` a1 a2
ρ : A

Γ ` b1 b2
ρ : B

[Γ; Γ̃ ` γ3 : A ∼ B]
Γ; ∆ ` γ1 γ

ρ
2 : a1 a2

ρ ∼ b1 b2
ρ

An-PiFst
Γ; ∆ ` γ : Πρx :A1.B1 ∼ Πρx :A2.B2

Γ; ∆ ` piFst γ : A1 ∼ A2

An-PiSnd
Γ; ∆ ` γ1 : Πρx :A1.B1 ∼ Πρx :A2.B2

Γ; ∆ ` γ2 : a1 ∼ a2
Γ ` a1 : A1
Γ ` a2 : A2

Γ; ∆ ` γ1@γ2 : B1{a1/x} ∼ B2{a2/x}

An-CPiCong
Γ; ∆ ` γ1 : φ1 ∼ φ2

Γ, c : φ1; ∆ ` γ3 : B1 ∼ B2
B3 = B2{c . sym γ1/c}

Γ ` ∀c :φ1.B1 : type
[Γ ` ∀c :φ2.B3 : type]
Γ ` ∀c :φ1.B2 : type

Γ; ∆ ` (∀c :γ1.γ3) : (∀c :φ1.B1) ∼ (∀c :φ2.B3)

An-CAbsCong
Γ; ∆ ` γ1 : φ1 ∼ φ2

Γ, c : φ1; ∆ ` γ3 : a1 ∼ a2
a3 = a2{c . sym γ1/c}

Γ ` (Λc :φ1.a1) : ∀c :φ1.B1
Γ ` (Λc :φ2.a3) : ∀c :φ2.B2

Γ ` (Λc :φ1.a2) : B
Γ; Γ̃ ` γ4 : ∀c :φ1.B1 ∼ ∀c :φ2.B2

Γ; ∆ ` (λc :γ1.γ3@γ4) : (Λc :φ1.a1) ∼ (Λc :φ2.a3)

An-CAppCong
Γ; ∆ ` γ1 : a1 ∼ b1

Γ; Γ̃ ` γ2 : a2 ∼ b2

Γ; Γ̃ ` γ3 : a3 ∼ b3
Γ ` a1[γ2] : A
Γ ` b1[γ3] : B

[Γ; Γ̃ ` γ4 : A ∼ B]
Γ; ∆ ` γ1(γ2, γ3) : a1[γ2] ∼ b1[γ3]

An-CPiSnd
Γ; ∆ ` γ1 : (∀c1 :a ∼A a′.B1) ∼ (∀c2 :b ∼B b′.B2)

Γ; Γ̃ ` γ2 : a ∼ a′

Γ; Γ̃ ` γ3 : b ∼ b′

Γ; ∆ ` γ1@(γ2 ∼ γ3) : B1{γ2/c1} ∼ B2{γ3/c2}

An-Cast
Γ; ∆ ` γ1 : a ∼ a′

Γ; ∆ ` γ2 : a ∼A a′ ∼ b ∼B b′

Γ; ∆ ` γ1 . γ2 : b ∼ b′

An-IsoSnd
Γ; ∆ ` γ : (a ∼A a′) ∼ (b ∼B b′)

Γ; ∆ ` isoSnd γ : A ∼ B

An-Eta
Γ ` b : Πρx :A.B

a = b xρ

Γ; ∆ ` eta b : (λρx :A.a) ∼ b
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An-EtaC
Γ ` b : ∀c :φ.B

a = b[c]
Γ; ∆ ` eta b : (Λc :φ.a) ∼ b

` Γ (context wellformedness)

An-Empty

` ∅

An-ConsTm
` Γ Γ ` A : type

x 6∈ dom Γ
` Γ, x : A

An-ConsCo
` Γ

Γ ` φ ok c 6∈ dom Γ
` Γ, c : φ

` Σ (signature wellformedness)

An-Sig-Empty

` ∅

An-Sig-ConsAx
` Σ ∅ ` A : type

∅ ` a : A F 6∈ dom Σ
` Σ ∪ {F ∼ a : A}
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Abstract
We present a proof of coherence for monoidal groupoids in homotopy type theory. An important
role in the formulation and in the proof of coherence is played by groupoids with a free monoidal
structure; these can be represented by 1-truncated higher inductive types, with constructors freely
generating their defining objects, natural isomorphisms and commutative diagrams. All results
included in this paper have been formalised in the proof assistant Coq.
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1 Introduction

Homotopy type theory (HoTT) [21] is a version of Martin-Löf type theory, enhanced with a
definition of identity types that allows the interpretation of terms in a type as points in spaces,
and terms in identity types as paths; iterating the construction of identity types promotes
the interpretation of types as ∞-groupoids [17, 21, 3]. One of the key features of HoTT is
the use of higher inductive types (HITs) [18, 21, 8], which integrate inductive constructions
with the higher groupoid structure of types. This has lead to the formalisation of numerous
results and computations in homotopy theory (see e.g. [21, Chapter 8] for a nonexhaustive
list), which have largely been checked using proof assistants such as Coq [12, 11], Agda [7]
and Lean [9]. In this paper we employ the functionalities of HITs to formalise in HoTT the
result in category theory known as coherence for monoidal categories.

A (weak) monoidal category consists of a category C together with a monoidal structure,
i.e. a bifunctor • : C × C → C that serves as product, an object e ∈ ob(C) that serves as
unit for the product, and natural isomorphisms describing associativity and unitality of the
product (w.r.t. the unit object) and making two classes of diagrams – namely, the coherence
diagrams in Figures 1a and 1b – commute. A monoidal category is said to be strict if the
associativity and unitality natural isomorphisms are identities. Monoidal categories satisfy a
theorem of coherence, which states that every monoidal category is monoidally equivalent to
a strict one; an equivalent formulation [14, 19] is the following:

I Statement 1. Every diagram in a free monoidal category commutes.
© Stefano Piceghello;
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8:2 Coherence for Monoidal Groupoids in HoTT

This means that all (nontrivial) diagrams in a free monoidal category can be expressed
as combinations of instances of the coherence diagrams and of the naturality diagrams of
associativity and unitality.

Different proofs of Statement 1 have been formalised in intensional MLTT in [4, 5] using
the proof assistant ALF [20] (with Axiom K) and later in [1] using HOL [10]; there, a
category is given by a set of objects and a family of Hom-setoids. After noticing that a free
monoidal category is a groupoid (since all its arrows are built upon instances of the natural
isomorphisms defining the monoidal structure, and hence they are invertible), a version of
the same statement can be proved in HoTT by exploiting the mentioned groupoid structure
of types (Theorem 7). Indeed, monoidal groupoids can be represented by 1-types, using the
correspondence between objects in a groupoid and terms in the type, arrows and paths,1 and
commutative diagrams and 2-paths, where monoidality refers to the presence in the type of
the necessary terms, paths and 2-paths to define a monoidal structure. Moreover, HITs offer
a way to describe objects satisfying certain universal properties, allowing us to define types
that can be interpreted as free monoidal groupoids.

Since every path in a type has an inverse, this framework only allows us to express
groupoids and not categories; however, a formulation of Statement 1 for groupoids is, from a
mathematical standpoint, equivalent to the original one, as the free objects in the categories
of monoidal groupoids and of monoidal categories coincide. The choice of proving coherence
as formulated in Statement 1, without referring to strict monoidal structures, is also due to
the design of the theory, as discussed in Section 5.

The results included in this paper have been formalised using the Coq proof assistant
(see Section 6 for further details); the code is available as supplementary material.

Background and Notation
We assume familiarity with the basics of HoTT; our main reference is [21], from which we
largely borrow our notation. In particular:

we will use the symbol ≡ for judgmental equality and :≡ for definitions;
we will not distinguish, in the notation, between different members of an assumed hierarchy
of universes, and will instead denote them uniformly by U ;
for a family of types B : A→ U , dependent functions are denoted by f :≡ (x 7→ f(x)) :
Π(x : A).B(x); the identity function is indicated by idA :≡ id : A→ A; dependent pairs
are denoted by 〈a, b〉 : Σ(x : A).B(x); terms in nested Σ-types are denoted by tuples
〈a, b, c, . . .〉;
identity types are denoted by x =A y or simply x = y for x, y : A; their terms are called
paths in A and their elimination principle is called path induction; identity (reflexivity)
paths, which inductively generate identity types, are denoted by reflx :≡ refl : x = x;
terms r : p = q, where p and q are paths in a type, are called 2-paths, and so on;
the inverse of a path p is denoted by p−1; the concatenation of paths p : x = y and q : y = z

is denoted by p · q : x = z; this operation is provably associative and unital with respect
to the identity path and it satisfies inverse laws, giving rise to the umbrella-expression
“path algebra” to encompass all proofs of existence of 2-paths of the sort;
the action of f : A → B on a path p : x =A y is denoted by apf (p) : f(x) =B f(y);
functoriality of ap will also be referred to as path algebra;

1 Observe that, by their very nature, the categories we are describing are univalent.
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given a family of types P : A→ U and a path p : x =A y, the transport of terms in P (x)
along p is denoted by pP∗ :≡ p∗ : P (x) → P (y); the action of f : Π(a : A).P (a) on p is
indicated by apdf (p) : p∗(f(x)) =P (y) f(y); a term in the identity type p∗(u) = v is called
a pathover [15];
several results are assumed about transporting in families of paths; in particular, we
will implicitly use that, given functions f , g : A → B and paths p : x =A y and
q : f(x) =B g(x), there is a (2-)pathover of type p(a 7→f(a)=g(a))

∗ (q) = apf (p)−1 · q · apg(p);
pointwise equalities of functions f and g : A→ B are called homotopies and denoted by
f ∼ g :≡ Π(x : A).f(x) = g(x); if h : B → A and f ◦ h ∼ idB , f is said to be a retraction
of h and B a retract of A;
we denote by A ' B :≡ Σ(f : A→ B, g : B → A).(g ◦f ∼ idA)× (f ◦g ∼ idB) the type of
equivalences between A and B; f and g are said to be half adjoint in such an equivalence;
the prefix “0-” or “1-” for types refers to their truncation level; a 0-type is a type A such
that there is a term in Π(x, y : A).Π(p, q : x = y).p = q, embodying the notion of a set
of terms, while A is a 1-type (i.e. a groupoid) if all its identity types are 0-types; every
0-type is a 1-type; the property of A being a 1-type is denoted by IsTrunc1(A);
as mentioned, the theory assumes HITs; in the presentation we will informally call
“computation rules” also the assumed identities involving the (dependent) application of
the elimination principle of a HIT on higher constructors, although no computation takes
place [21, Chapter 6].

We will, moreover, refer to a (2-)path as “trivial” if it is either the identity path or it can be
obtained by path algebra.

In figures presenting 2-paths, we choose to display paths p : x = y as arrows x→ y, both
to preserve the analogy with categories and to keep track of the endpoints; in such diagrams,
all arrows are invertible, as all paths are. A dotted line denotes instead judgmental equality.
Figures relevant to proofs are included in Appendix A.

2 Monoidal Groupoids

In this section we will provide the definitions of the objects of our study, building a categorical
framework within which to formulate the theorem of coherence for monoidal groupoids.

I Definition 2. A groupoid is the data given by a type G and a proof that G is a 1-type; we
call Gpd :≡ Σ(G : U).IsTrunc1(G) the subuniverse of 1-types in the universe U . A (groupoid)
functor F between groupoids is simply a function between the underlying (1-)types; a natural
isomorphism between two functors is a homotopy between the functions.

In Definition 2 we bestow the title of “functor” on simple functions, as the functorial action
on paths is provided by ap. We will use the same notation for a groupoid G : Gpd and its
underlying type G : U . This framework allows us to represent categories with all arrows
invertible (i.e. groupoids) as 1-types, with paths taking the role of arrows and 2-paths that of
commutative diagrams.2

I Definition 3. For a type M , the type MonStr(M) of monoidal structures on M is the
Σ-type encoding the following data:

2 This translation implies a “relaxation” of certain strict categorical properties: for example, associativity
of the composition of the arrows in a category is strict, while associativity of concatenation of paths
only holds up to a coherent choice of higher paths. Moreover, we remark that, given a groupoid G : Gpd,
we do not have access to the discrete subcategory of its objects.
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((a • b) • c) • d

(a • b) •(c • d)

a •(b •(c • d))

(a •(b • c)) • d a •((b • c) • d)

αM αM

αM • refl

αM

refl •αM

(a)

(a • eM ) • b a •(eM • b)

a • b

αM

ρM • refl refl •λM

(b)

(eM • a) • b

eM •(a • b)

a • bαM

λM

λM • refl

(c)

(a • b) • eM

a •(b • eM )

a • bαM

refl • ρM

ρM

(d)

eM • eM eM

λM

ρM

(e)

Figure 1 (a) and (b): coherence diagrams M and OM , respectively, where αM , λM and ρM are
associativity and left and right unitality morphisms; (c), (d) and (e): coherence diagrams derivable
from M , OM and naturality of αM , λM and ρM ; the derivation is shown in Figures 5 and 6. Here
•M is denoted by • for clarity.

eM : M (unit);
•M : M →M →M (monoidal product, infix notation);
αM : Π(a, b, c : M).(a •M b) •M c = a •M (b •M c) (associativity);
λM : Π(b : M).eM •M b = b (left unitality);
ρM : Π(a : M).a •M eM = a (right unitality);
families M and OM of 2-paths filling the coherence diagrams in Figures 1a and 1b.

The type of monoidal groupoids is defined as MonGpd :≡ Σ(M : Gpd).MonStr(M).

We will use the same notation for a monoidal groupoid M and its carrier. The functorial
action of •M on paths and 2-paths, denoted in this paper by the same symbol, is given by
the following functions, each defined by path induction (on both arguments):

•M : (a1 =M b1)→ (a2 =M b2)→ (a1 •M a2 =M b1 •M b2),
•M : (p =(a1=b1) p

′)→ (q =(a2=b2) q
′)→ (p •M q =(a1 •M a2=Mb1 •M b2) p

′ •M q′).

We emphasise that the given definition of a monoidal structure only pertains the levels of
coherence for associativity and unitality that might be present in a (non-higher) groupoid
(“1-coherent” monoidal structure, [6]), i.e., no higher diagrams need to be described, as they
are present already.

By path induction, αM , λM and ρM are natural in all their arguments. Moreover, the
2-paths in Figures 1c to 1e can be derived by instances of the coherence diagrams M and
OM , together with naturality of associativity and unitality [13], as shown in Figures 5 and 6.

I Definition 4. The type MonGpd(M,N) of (strong) monoidal functors between two
monoidal groupoids 〈M, eM , •M , . . .〉 and 〈N, eN , •N , . . .〉 is defined as the Σ-type encoding
the following data:

a functor F : M → N ;
a path F0 : eN = F (eM ) and a family of paths F2 : Π(a, b : M).F (a) •N F (b) = F (a •M b);
families of 2-paths Fα, Fλ and Fρ, as depicted in Figure 2.
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(F (a) •N F (b)) •N F (c) F (a) •N (F (b) •N F (c))

F (a •M b) •N F (c) F (a) •N F (b •M c)

F ((a •M b) •M c) F (a •M (b •M c))

αN

refl •N F2

F2

F2 •N refl

F2

apF (αM )

eN •N F (b) F (b)

F (eM ) •N F (b) F (eM •M b)

λN

F0 •N refl

F2

apF (λM )
F (a) •N eN F (a)

F (a) •N F (eM ) F (a •M eM )

ρN

refl •N F0

F2

apF (ρM )

Figure 2 Coherence conditions Fα(a, b, c), Fλ(b) and Fρ(a) (respectively: top, bottom left and
bottom right) for monoidal functors, for a, b, c : M .

eN

F (eM ) G(eM )

F0

θ(eM )

G0
F (a) •N F (b) F (a •M b)

G(a) •N G(b) G(a •M b)

F2

θ(a •M b)θ(a) •N θ(b)

G2

Figure 3 Coherence conditions θ0 and θ2(a, b) for monoidal natural isomorphisms, for a, b : M .

We will use the same notation for a monoidal functor F : MonGpd(M,N) and its
underlying function. This implementation allows us to provide sound definitions of identity
and composition of monoidal functors:

(idM )0 :≡ refl : eM = eM

(idM )2(a, b) :≡ refl : a •M b = a •M b, and

(G ◦ F )0 :≡ G0 · apG(F0) : eP = G(F (eM ))
(G ◦ F )2(a, b) :≡ G2(F (a), F (b)) · apG(F2(a, b)) : G(F (a)) •P G(F (b)) = G(F (a •M b)),

for F : MonGpd(M,N), G : MonGpd(N,P ) and a, b : M ; we omit here the 2-paths (G ◦ F )α,
(G ◦ F )λ and (G ◦ F )ρ (appearing in the formalisation), while the corresponding ones for
identity monoidal functors are trivial.

I Definition 5. The type MonFunM,N (F,G) of monoidal natural isomorphisms between
monoidal functors F , G : MonGpd(M,N) is the Σ-type encoding a natural isomorphism
θ : F ∼ G between the underlying functors, together with a 2-path θ0 and a family of 2-paths
θ2, as shown in Figure 3.

We will use the same notation for a monoidal natural isomorphism θ : MonFunM,N (F,G)
and its underlying homotopy. If F : MonGpd(M,N) and G : MonGpd(N,M), the underlying
homotopies in η : MonFunM,M (idM , G ◦ F ) and ε : MonFunN,N (F ◦ G, idN ) prove that the
functions underlying F and G are half adjoint in an equivalence between (the carriers of) M
and N ; this will be called a monoidal equivalence and denoted by M ' N .
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8:6 Coherence for Monoidal Groupoids in HoTT

MonGpd(F (X),M) (X →M)

MonGpd(F (X), N) (X → N)

φX,M

H ◦ −H ◦ −

φX,N

(a) Naturality of φ in M : the diagram commutes
for every H : MonGpd(M,N), i.e. there is a ho-
motopy H ◦ φX,M (G) ∼ φX,N (H ◦ G) for every
G : MonGpd(F (X),M).

(X →M) MonGpd(F (X),M)

(Y →M) MonGpd(F (Y ),M)

ψX,M

− ◦ F (h)− ◦ h

ψY,M

(b) Naturality of ψ in X: the diagram commutes
for every h : Y → X, i.e. there is a term in
MonFunF (Y ),M (ψX,M (g) ◦ F (h), ψY,M (g ◦ h)) for
every g : X →M .

Figure 4 Naturality conditions for φ and ψ in Definition 6.

I Definition 6. A functor from the universe U of types to monoidal groupoids consists of a
function term F : U → MonGpd, together with a function between function types
−→
F : Π(X,Y : U).(X → Y )→ MonGpd(F (X), F (Y ))

respecting identity and composition, i.e. terms

Fid : Π(X : U).MonFunF (X),F (X)

(−→
F (idX), idF (X)

)
and

F◦ : Π(X,Y, Z : U , f : X → Y, g : Y → Z).MonFunF (X),F (Z)

(−→
F (g) ◦ −→F (f),−→F (g ◦ f)

)
.

We will refer to a function F : U → MonGpd as a “functor” if the remaining data is implied.
Such a functor is free if there are:

a function φ : Π(X : U).Π(M : MonGpd).MonGpd(F (X),M)→ X →M , natural in M ,
i.e. the diagram in Figure 4a commutes for every H : MonGpd(M,N);
a function ψ : Π(X : U).Π(M : MonGpd).(X →M)→ MonGpd(F (X),M), natural in X,
i.e. the diagram in Figure 4b commutes for every h : Y → X;
a family of homotopies θ : Π(X : U).Π(M : MonGpd).φX,M ◦ ψX,M ∼ idX→M ;
a family of monoidal natural isomorphisms

χ : Π(X : U).Π(M : MonGpd).Π(G : MonGpd(F (X),M)).
MonFunF (X),M (ψX,M (φX,M (G)), G).

If X : U , the monoidal groupoid F (X) is said to be freely generated by X.

One can recognise, in the data listed above for the definition of a free functor, the requirements
needed to verify that F is left adjoint to the forgetful functor to types, which in this case is
the composition of the projections MonGpd→ Gpd and Gpd→ U .

Focussing in Definition 6 on free monoidal groupoids generated by 0-types, Statement 1
can be then formulated as follows:

I Theorem 7 (Coherence for monoidal groupoids). A free functor FMG : U → MonGpd exists
and, for every 0-type X, the carrier of FMG(X) is a 0-type.

Indeed, Theorem 7 both ensures that the construction of a free monoidal groupoid (over a
set) is possible, and shows that every diagram in such a groupoid commutes, i.e. that there
is a 2-path between every two paths sharing endpoints.

Coherence will be achieved by means of two functors: one will be easily proved to be free
(Section 3); the other one (list) to produce monoidal groupoids that are also 0-types. We will
show that these two functors produce equivalent types (Section 4).
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3 Free Monoidal Groupoids

Higher inductive types allow us to define a functor FMG : U → MonGpd that contains the
proof of its freeness in the elimination principle of the types it produces.

I Definition 8 (FMG). Given a type X : U , the HIT FMG(X) is defined with the following
constructors:

FMG(X) :≡ e : FMG(X) | ι : X → FMG(X) | • : FMG(X)→ FMG(X)→ FMG(X)
| α : Π(a, b, c : FMG(X)).(a • b) • c = a •(b • c)
| λ : Π(b : FMG(X)).e • b = b | ρ : Π(a : FMG(X)).a • e = a

| : . . . | O : . . . | T : IsTrunc1(FMG(X)),

where and O are families of 2-path constructors corresponding to the coherence diagrams
in Figures 1a and 1b.

For any type X, FMG(X) is a monoidal groupoid, with the monoidal structure provided by
the constructors of the HIT.

I Remark 9. The elimination rule of FMG(X) states that, given a family P : FMG(X)→ U
together with terms:

e′ : P (e); ι′ : Π(x : X).P (ι(x)); •′ : Π(a, b : FMG(X)).P (a)→ P (b)→ P (a • b) (infix;
we will keep the arguments a and b implicit in the notation);
a family α′ witnessing, for every a, b, c : FMG(X) and a′ : P (a), b′ : P (b), c′ : P (c), a
pathover (αa,b,c)P∗ ((a′ •′ b′) •′ c′) = a′ •′(b′ •′ c′); similarly defined families of pathovers λ′
and ρ′;
appropriate families of 2-pathovers ′ and O′;
T ′ : Π(w : FMG(X)).IsTrunc1(P (w)),

there is a function ind :≡ indFMG(e′, ι′, •′, . . .) : Π(w : FMG(X)).P (w), such that

ind(e) ≡ e′, apdind(αa,b,c) = α′ind(a),ind(b),ind(c),

ind(ι(x)) ≡ ι′(x), apdind(λb) = λ′ind(b),

ind(a • b) ≡ ind(a) •′ ind(b), apdind(ρa) = ρ′ind(a),

for all x : X and a, b, c : FMG(X). When instantiated to constant families, it provides the
following recursor: given a monoidal groupoid 〈M, e′, •′, α′, . . .〉 and a function ι′ : X →M ,
there is a function rec :≡ recFMG(e′, ι′, •′, . . .) : FMG(X)→M such that

rec(e) ≡ e′, aprec(αa,b,c) = α′rec(a),rec(b),rec(c),

rec(ι(x)) ≡ ι′(x), aprec(λb) = λ′rec(b),

rec(a • b) ≡ rec(a) •′ rec(b), aprec(ρa) = ρ′rec(a),

(3.1)

for all x : X and a, b, c : FMG(X); this is also the underlying function of a monoidal functor,
with rec0 and rec2(a, b) being identity paths for every a, b : FMG(X) and recα, recλ, recρ
given by the computation rules in (3.1).

The construction FMG is functorial, as shown in the following lemma.

I Lemma 10. The function FMG : U → MonGpd, X 7→ 〈〈FMG(X), T 〉, e, •, α, λ, ρ, ,O〉 is
a functor.
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Proof. Let f : X → Y be a function of types. By Remark 9, a function ι′ : X → FMG(Y ) is
sufficient to define a monoidal functor FMG(f) : MonGpd(FMG(X),FMG(Y )); this can be
given by ι′ :≡ ι ◦ f . The proof that FMG respects identity and composition is given in detail
in the Coq formalisation included as supplementary material for this paper, and it is also
provided by the elimination rule of FMG(X). By way of example, given a type X : U , a
monoidal natural isomorphism

FMGid : MonFunFMG(X),FMG(X)(FMG(idX), idFMG(X))

has as underlying homotopy

FMGid : Π(w : FMG(X)).recFMG(FMG(X), e, ι, •, . . .)(w) = w

the function FMGid :≡ indFMG(e′, ι′, •′, . . .), with:
e′ :≡ refl : e = e;
ι′(x) :≡ refl : ι(x) = ι(x) for every x : X;
a′ •′ b′ : recFMG(a) • recFMG(b) = a • b, for a, b : FMG(X), a′ : recFMG(a) = a and
b′ : recFMG(b) = b, is given recursively by a′ • b′ (so that FMGid(a • b) will compute
to FMGid(a) •FMGid(b));
the other required terms are obtained by naturality of associativity and unitality, together
with the computation rules of recFMG.

With this definition, the diagrams in Figure 3 for FMGid commute trivially. J

As hinted by the universal property of FMG(X), given by its elimination rule, the functor
FMG is free.

I Proposition 11. FMG is a free functor, and hence the monoidal groupoid FMG(X) is freely
generated by X, for every X : U .

Proof. We will proceed to fulfil the requirements listed in Definition 6 for a free functor.
For X : U and M : MonGpd, a function φX,M : MonGpd(FMG(X),M) → X → M is
given by φX,M (G) :≡ G ◦ ι. Then, given a monoidal functor H : MonGpd(M,N), we have
H ◦ φX,M (G) ≡ φX,N (H ◦G), so the diagram in Figure 4a commutes judgmentally (and
hence pointwise) and φ is natural in M .
Referring to Remark 9, for X : U and M : MonGpd, a function ψX,M : (X → M) →
MonGpd(FMG(X),M) is immediately obtained, defining

ψX,M (g) :≡ recFMG(eM , g, •M , αM , . . .) : FMG(X)→M,

where eM , •M , αM , . . . are the components of the monoidal structure of M , since the
recursor of FMG is a monoidal functor. If h : Y → X is a function of types, a monoidal
natural isomorphism

θψ : MonFunFMG(Y ),M (ψX,M (g) ◦ FMG(h), ψY,M (g ◦ h))

witnessing naturality of ψ in X can be given as follows. The natural transformation
between the underlying monoidal functors

θψ : Π(w : FMG(Y )).ψX,M (g)(FMG(h)(w)) = ψY,M (g ◦ h)(w)

is defined as θψ :≡ indFMG(e′, ι′, •′, . . .), where:
e′ :≡ refl : ψX,M (g)(FMG(h)(e)) = ψY,M (g◦h)(e), as both sides of the equality compute
to eM ;
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ι′(y) :≡ refl : ψX,M (g)(FMG(h)(ι(y))) = ψY,M (g ◦ h)(ι(y)), for every y : Y , as both
sides of the equality compute to g(h(y));
a′ •′ b′ :≡ a′ •M b′ : ψX,M (g)(FMG(h)(a • b)) = ψY,M (g ◦ h)(a • b) for every a, b :
FMG(Y ), a′ : ψX,M (g)(FMG(h)(a)) = ψY,M (g ◦ h)(a) and b′ : ψX,M (g)(FMG(h)(b)) =
ψY,M (g ◦ h)(b), as the equation computes to

ψX,M (g)(FMG(h)(a)) •M ψX,M (g)(FMG(h)(b)) = ψY,M (g ◦h)(a) •M ψY,M (g ◦h)(b);

this way, θψ(a • b) will compute to θψ(a) •M θψ(b);
the families α′, λ′ and ρ′ of pathovers are given by naturality of αM , λM and ρM ,
together with the computation rules of recFMG in (3.1); for example, α′ corresponds to
a 2-path filling the diagram in Figure 7;
the families ′ and O′ of 2-pathovers are trivially given, since they correspond to
3-paths in a 1-type.

The 2-paths (θψ)0 and (θψ)2(a, b) corresponding to the diagrams in Figure 3 for a,
b : FMG(Y ) are then trivial; hence, a monoidal natural isomorphism making the diagram
in Figure 4b commute is provided and ψX,M is natural in X.

A homotopy θ : φX,M ◦ ψX,M ∼ idX→M , for every X : U and M : MonGpd is trivially
given, since, for every g : X →M , we have φX,M (ψX,M (g)) ≡ ψX,M (g) ◦ ι ≡ g.

A monoidal natural isomorphism χ : MonFunFMG(X),M (ψX,M (φX,M (G)), G) for every
X : U , M : MonGpd and G : MonGpd(FMG(X),M) is given as follows. The natural
transformation between the underlying monoidal functors

χ : Π(w : FMG(X)).ψX,M (φX,M (G))(w) = G(w)

can be defined as χ :≡ indFMG(e′, ι′, •′, . . .), where:
e′ :≡ G0 : ψX,M (φX,M (G))(e) = G(e), since the left-hand side of the equality computes
to eM ;
ι′(x) :≡ refl : ψX,M (φX,M (G))(ι(x)) = G(ι(x)) for x : X, as both sides of the equality
are judgmentally equal to to φX,M (G)(x);
a′ •′ b′ : ψX,M (φX,M (G))(a • b) = G(a • b) is given recursively, for a, b : FMG(X), a′ :
ψX,M (φX,M (G))(a) = G(a) and b′ : ψX,M (φX,M (G))(b) = G(b), by the concatenation:

ψX,M (φX,M (G))(a • b)
≡ ψX,M (φX,M (G))(a) •M ψX,M (φX,M (G))(b)
= G(a) •M G(b) by a′ •M b′

= G(a • b) by G2(a, b);

this way, χ(a • b) will compute to (χ(a) •M χ(b)) ·G2(a, b);
the families α′, λ′ and ρ′ of pathovers are given by the computation rules of ψX,M ,
naturality of αM , λM and ρM , and by Gα, Gλ and Gρ; Figure 8 shows α′, while the
other families are obtained similarly;
again, the families ′ and O′ of 2-pathovers are trivially given.

With this definition of the underlying homotopy χ, there are trivial paths χ0 and
χ2(a, b) corresponding to the diagrams in Figure 3, making χ into a monoidal natural
isomorphism. J
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4 Coherence

This section is devoted to the proof of Theorem 7; from here on, X is assumed to be
a 0-type. Coherence will be proved by exhibiting functions K : FMG(X) → list(X) and
J : list(X)→ FMG(X), where the latter is a retraction of the former.

The type list(X) has a monoidal structure that sees the operation of list concatenation
as the monoidal product, which by list-elimination can be proved associative and unital w.r.t.
the unit given by the empty list. Families of coherence 2-paths list and Olist are provided by
the truncation level of list(X), which is a 0-type (because X is); the ensuing construction
list : U → MonGpd, when restricted to 0-types, satisfies the conditions to be a functor in the
sense of Definition 6. As a matter of fact, FMG(X) and list(X) as monoidal groupoids can
be shown to be in a monoidal equivalence, where the half adjoint monoidal functors are built
upon the mentioned functions K and J . We will only make use of the monoidal components
of J to prove the retraction; a complete proof of the monoidal equivalence is present in the
Coq formalisation included to this paper as supplementary material.
I Remark 12. We will use the following notation and conventions. The constructors of list(X)
are the empty list nil : list(X) and : : : X → list(X) → list(X) (infix). Concatenation of
lists ++ (infix) is defined by list-elimination on the first argument, i.e. nil ++ l2 :≡ l2 and
(x : : l1) ++ l2 :≡ x : : (l1 ++ l2) for every x : X and l1, l2 : list(X). The components of the mon-
oidal structure of list(X), besides nil and list concatenation, are λlist : Π(l : list(X)).nil ++ l = l,
defined pointwise to be the identity path, and αlist and ρlist, defined by list-elimination as
follows for every l, l1, l2, l3 : list(X) and x : X:

αlist
l1,l2,l3 : (l1 ++ l2) ++ l3 = l1 ++(l2 ++ l3) ρlist

l : l++ nil = l

αlist
nil,l2,l3 :≡ refl ρlist

nil :≡ refl
αlist
x : : l1,l2,l3 :≡ ap(x : : −)(αlist

l1,l2,l3) ρlist
x : : l :≡ ap(x : : −)(ρlist

l ).

I Definition 13. We define a function K : FMG(X)→ list(X) as

K :≡ recFMG(nil, (x 7→ x : : nil),++, αlist, λlist, ρlist, list,Olist);

that is, K is defined to map the monoidal structure of FMG(X) into that of list(X).

I Definition 14. We define a monoidal functor J : MonGpd(list(X),FMG(X)) as follows. The
underlying function J : list(X)→ FMG(X) is defined by list-elimination, declaring J(nil) :≡ e
and, recursively, J(x : : l) :≡ ι(x) • J(l), for every x : X and l : list(X). A path J0 : e = J(nil)
is then given by refl, while, given l1, l2 : list(X), a path J2(l1, l2) : J(l1) • J(l2) = J(l1 ++ l2)
can be produced by induction on l1:

J2(nil, l2) : J(nil) • J(l2) ≡ e • J(l2) = J(l2) ≡ J(nil ++ l2) by λJ(l2),

J2(x : : l1, l2) : J(x : : l) • J(l2) ≡ (ι(x) • J(l1)) • J(l2)
= ι(x) •(J(l1) • J(l2)) by αι(x),J(l1),J(l2)

= ι(x) • J(l1 ++ l2) by refl • J2(l1, l2)
≡ J(x : : (l1 ++ l2)) ≡ J((x : : l1) ++ l2).

The construction of the families of 2-paths Jα, Jλ and Jρ are shown in Figures 9 to 11. Since
++ satisfies left unitality judgmentally (Remark 12), we can easily find a 2-path Jλ(l) for
l : list(X), as the sought diagram (Figure 10) is trivial. Moreover, we have for every path
p : l1 = l2 in list(X) and x : X, a 2-path

apJ(ap(x : : −)(p)) = reflι(x) • apJ(p) (4.1)
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by induction on p. This, together with the coherence diagrams in Figure 1 and naturality
of associativity and unitality, allows us to define the families of 2-paths Jα(l1, l2, l3) and
Jρ(l) by list-elimination (on the first argument for Jα), as shown in Figure 9 and Figure 11,
respectively.

I Lemma 15. There is a homotopy η : idFMG(X) ∼ J ◦K, for K and J given in Definitions 13
and 14.

Proof. A term η : Π(w : FMG(X)).w = J(K(w)) is given by η :≡ indFMG(e′, ι′, •′, . . .), where:
e′ :≡ refl : e = J(K(e)), since the right-hand side of the equality computes to e;
ι′(x) :≡ ρ−1

ι(x) : ι(x) = J(K(ι(x))) for every x : X, the right-hand side of the equality
computing to ι(x) • e;
a′ •′ b′ : a • b = J(K(a • b)) for a, b : FMG(X), a′ : a = J(K(a)) and b′ : b = J(K(b)), is
defined as the concatenation:

a • b = J(K(a)) • J(K(b)) by a′ • b′

= J(K(a) ++K(b)) ≡ J(K(a • b)) by J2(K(a),K(b)),

so that η(a • b) ≡ (η(a) • η(b)) · J2(K(a),K(b));
α′, λ′ and ρ′ correspond to the diagrams illustrated in Figures 12 to 14 and are proved
using the monoidal components Jα, Jλ and Jρ of J ;
the families ′ and O′ correspond to 3-paths in a 1-type, so they are obtained trivially. J

The proof of coherence is then immediately achieved.

Proof of Theorem 7. By Proposition 11, FMG is a free functor. By Lemma 15, FMG(X)
is a retract of list(X); since X is a 0-type, so is list(X) and hence FMG(X), as shown in
Figure 15. J

5 Discussion

The choice of employing the higher groupoid structure of types to represent categories, where
paths take the role of arrows, leads to an important observation concerning the expressivity
of the theory: the concept of strictness of a monoidal category cannot be formulated in the
framework. Indeed, strictness is not homotopy invariant, and hence it cannot be detected
by the theory. For this reason, we use instead a formulation of coherence (Statement 1)
concerning a property that is preserved under equivalence of types. Its proof is, then, the
presentation of a technique of normalisation of monoidal expressions over a set: a term
a : FMG(X) has, as normal form, the term J(K(a)), for J and K given in Definitions 13
and 14.

The use of identity types and HITs in HoTT to describe monoidal structures largely
simplifies the definition of the free monoidal groupoid, compared to [4, 5]; there, the free
monoidal category over a set X is defined via:

an inductive set of objects, whose terms correspond to the ones produced by the 0-
constructors e, ι and • in FMG(X);
inductive families of arrows, with identity arrows, (− ◦ −), (−•−), α, α−1, λ, λ−1, ρ
and ρ−1 as constructors, on which induction is performed when proving coherence; in
our implementation, the groupoid structure of identity types takes care of most of the
inductive cases, whereas the cases for α, λ and ρ remain present in the application of the
elimination principle of FMG(X);
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inductive families of equalities between arrows, with a sizeable number of constructors,
including: reflexivity, symmetry and transitivity of equality; associativity and unitality
of composition; substitution for composition and for the monoidal product; naturality
of associativity and unitality of the monoidal product; the interchange law between
composition and the monoidal product; composition of associativity and unitality arrows
with their inverse; and the coherence diagrams. All but the latter is made redundant in
our implementation, as path induction proves everything but the defining diagrams
and O of the monoidal structure.

As a result, the proof of coherence presented in this paper is considerably shorter than the
one provided in [4, 5]; this is reflected in the rather compact computer verification (Section 6),
which is included in this paper as supplementary material.

Another feature of our approach is the easiness in formulating and proving freeness of
FMG (Proposition 11), as the proof is entirely contained in the elimination principle of the
HIT itself. Although this proof was not present in [4, 5], our presentation shares the same
strategy in defining ad hoc a free structure with inductively generated “objects” and “arrows”
and normalising the ensuing monoidal expressions to a type of lists (via the functor K in
Definition 13), where coherence is immediate, rather than directly show freeness for lists.
This turns out to be the easiest option: indeed, for X : U and M : MonGpd, the reasonable
way of producing functions φX,M and ψX,M as in Definition 6 for F :≡ list would be by
defining:

φX,M (G) :≡ G ◦ (− : : nil) : X →M for every G : MonGpd(list(X),M);
the underlying function of ψX,M (g) : MonGpd(list(X),M), for g : X → M , by list-
elimination, in a way analogous to J in Definition 14, i.e., declaring ψX,M (g)(nil) :≡ eM
and ψX,M (g)(x : : l) :≡ g(x) •M ψX,M (g)(l) for every x : X and l : list(X).

The term (ψX,M (g))2, necessary to define a monoidal functor, and similarly (ψX,M (g))α,
(ψX,M (g))λ and (ψX,M (g))ρ, are not trivial and require to be also proved by list-elimination.
Carrying convoluted proof terms in a proof of freeness of list is cumbersome and in stark
contrast to the benefits given by the computation rules of indFMG, described in Remark 9 and
used in Proposition 11. Moreover, in exhibiting a homotopy θX,M : φX,M ◦ ψX,M ∼ idX→M ,
we would be forced to use function extensionality: indeed, for g : X →M , we would have to
provide a term

θX,M (g) : φX,M (ψX,M (g)) ≡ (x 7→ g(x) •M eM ) = g,

whereas ρM ◦ g : Π(x : X).g(x) •M eM = g(x) only ensures pointwise equality between the
two functions. We believe it is worth observing that, contrary to what above, our proof of
freeness of FMG does never employ function extensionality.

Alternative definitions for a monoidal functor K : MonGpd(FMG(X), list(X)) are possible.
Notably, the normalising functor described in [4, 5] could be replicated in our set-up as a
monoidal functor having, as underlying function, the composition of

evnil : (list(X)→ list(X))→ list(X), evnil(f) :≡ f(nil)

after a function N : FMG(X) → (list(X) → list(X)), defined by the elimination principle
of FMG, declaring N(e) :≡ idlist(X), N(ι(x)) :≡ (x : : −) for every x : X, and N(a • b) :≡
N(b) ◦N(a) for every a, b : FMG(X). The requirements relative to the higher constructors
in the inductive definition of N are trivially fulfilled (since e.g. the composition of functions
is judgmentally associative) and the composition evnil ◦N can be shown to be a monoidal
functor. While this definition is useful to normalise associativity and unitality, it does not



S. Piceghello 8:13

extend to more complex monoidal structures, for example when symmetry is present (see
Section 7), as composition of functions is not symmetric; in that case, a functor such as the
one presented in Definition 13 is more suitable to the task of normalisation.

6 Formalisation in Coq

The formalisation, included to this paper as supplementary material, has been written using
the HoTT library [11, 2] for the Coq proof assistant3 and is structured as follows:

the categorical framework on monoidal groupoids is included in monoidalgroupoid.v; for
the definitions of monoidal groupoids, monoidal functors, monoidal natural isomorphisms
and free functors, we use classes instead of Σ-types for easy access to their components
and for type coercions;
in FMG.v we provide the definition, for a typeX, of the HIT FMG(X) as a private inductive
type, specifying the 0-constructors (on which Coq can perform pattern matching) and,
separately, the higher constructors as axioms. The elimination principle indFMG and its
computation rules also need to be given as axioms, while the corresponding recursor
recFMG can be derived from indFMG; a specific (derived) version of the elimination principle
for families of paths in a groupoid is also formalised;
the proof of Proposition 11 appears in FMG_free.v;
the proof that list(X) is a 0-type whenever X is a 0-type is included in lists.v; this is
achieved by means of an “encode-decode” proof [16, 21] and is roughly based on the fact
that, for every x1, x2 : X and l1, l2 : list(X), there is an equivalence of identity types
(x1 : : l1 = x2 : : l2) ' (x1 = x2)× (l1 = l2). The same file contains the definition of the
monoidal structure of list(X);
Theorem 7 is formalised in FMG_coherence.v;
a library of lemmata about path algebra is included in a separate file (hott_lemmas.v).

7 Conclusions

The work presented in this paper serves as an example to highlight some of the features
of HoTT that can be employed in the context of formalisation of mathematics. Identity
types and higher inductive types can be used to give a concrete description of objects
satisfying certain universal properties. This result opens the way to the formalisation of
similar coherence theorems; for example, definitions analogue to those given in Sections 2
and 3 can be used to describe (free) symmetric monoidal groupoids, and symmetric monoidal
expressions can be normalised to a HIT of lists with added paths and 2-paths encoding the
action of symmetric groups, corresponding to transpositions of adjacent elements in a list
and the relations they satisfy. The relevant formalisation in Coq is also present as part of
the supplementary material included.
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A Figures in Proofs

Derived Coherence Diagrams in Figure 1

e •((e • a) • b)

(e •(e • a)) • b

((e • e) • a) • b

e •(e •(a • b)) (e • e) •(a • b)

(e • a) • b

e •(a • b)

a • bα

λ • refl

λ

e •(a • b)

λ

λ

λ

refl •(λ • refl)

refl •λ

ρ •(refl • refl)

(e • a) • b

α

(refl •λ) • refl

(ρ • refl) • refl

α

α

α • reflα

refl •α

1

2

3

4 5

6

7
8

Figure 5 Derivation of the coherence diagram in Figure 1c, here appearing as the unmarked
2-path; the attribute −M has been omitted for clarity from e, •, α, λ and ρ. The 2-paths (1), (2)
and (3) are instances of naturality of λM ; (4) and (6) are instances of naturality of αM ; (5) and (7)
are instances of OM •M refl and OM respectively; the outer pentagon (8) is an instance of M . The
diagram in Figure 1d is obtained similarly.

e

e • e

e • e

ee • e(e • e) • ee •(e • e)

λ

λ

ρ

ρ

λ

ρ

ρ

λ • refl

ρ • refl

α

λ

refl •λ

1
2

3

4

5

6 7

Figure 6 Derivation of the coherence diagram in Figure 1e, here appearing as the unmarked
2-path; again, −M has been omitted for clarity. The outer square (1) is an instance of naturality of
λM ; the 2-path (2) is the derived coherence diagram in Figure 1c; (3) is an instance of OM ; (4) and
(5) are instances of naturality of ρM ; (6) and (7) are trivial.
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Figures in the Proof of Proposition 11 (Freeness of FMG)

(ψX,M (g)(FMG(h)(a)) •M ψX,M (g)(FMG(h)(b))) •M ψX,M (g)(FMG(h)(c))

ψX,M (g)(FMG(h)((a • b) • c))

ψY,M (g ◦ h)((a • b) • c)

ψX,M (g)(FMG(h)(a •(b • c)))

ψY,M (g ◦ h)(a •(b • c))

ψY,M (g ◦ h)(a) •M (ψY,M (g ◦ h)(b) •M ψY,M (g ◦ h)(c))

θψ((a • b) • c) ≡ (θψ(a) •M θψ(b)) •M θψ(c)

apψY,M (g◦h)(α)αM

apψX,M (g)◦FMG(h)(α) αM

θψ(a) •M (θψ(b) •M θψ(c)) ≡ θψ(a •(b • c))

1

3

2

Figure 7 The underlying homotopy θψ in the proof of naturality of ψX,M in X is achieved via the
elimination rules of ψX,M and FMG; these require certain 2-paths inM to be provided, corresponding
to the 1-path constructors of FMG(Y ). This figure shows the 2-path α′ for associativity. The 2-paths
(1) and (3) are given by the computation rules of ψX,M and FMG(h); (2) is filled by naturality of
αM . The 2-paths λ′ and ρ′ in M corresponding to the constructors for unitality are proved similarly.

(ψX,M (φX,M (G))(a) •M ψX,M (φX,M (G))(b)) •M ψX,M (φX,M (G))(c)

ψX,M (φX,M (G))((a • b) • c)

ψX,M (φX,M (G))(a •(b • c))

(G(a) •M G(b)) •M G(c) G(a) •M (G(b) •M G(c))

G(a • b) •M G(c) G(a) •M G(b • c)

G((a • b) • c) G(a •(b • c))

αM

refl •M G2(b, c)

G2(a, b • c)

G2(a, b) •M refl

G2(a • b, c)

apG(α)

apψX,M (φX,M (G))(α)

αM

χ(a) •M (χ(b) •M χ(c))
(χ(a) •M χ(b)) •M χ(c)

1

2

3

Figure 8 The 2-path in M providing α′ in the definition of χ using the elimination principle of
FMG(X). The 2-path (1) is given by a computation rule of ψX,M ; (2) is an instance of naturality of
αM ; (3) is an instance of Gα. The vertical paths correspond to the ones given by •′, after application
of the interchange law between path concatenation and the action of •M on paths. The 2-paths for
λ′ and ρ′ are obtained similarly.



S. Piceghello 8:17

Figures relevant to the Proof of Theorem 7 (Coherence for Monoidal Groupoids)

(J(nil) • J(l2)) • J(l3) J(nil) •(J(l2) • J(l3))

(e • J(l2)) • J(l3) e •(J(l2) • J(l3))

J(l2) • J(l3) e • J(l2 ++ l3)

J(l2 ++ l3) J(l2 ++ l3)

J((nil ++ l2) ++ l3) J(nil ++(l2 ++ l3))

α

refl • J2(l2, l3)

λ

λ • refl

J2(l2, l3)

apJ(αlist) ≡ refl

λ

λ

1

2

3

(a) The 2-path Jα(nil, l2, l3) in the inductive definition of Jα. The 2-path (1) is an instance of the
additional coherence diagram in Figure 1c; (2) is an instance of naturality of λ; (3) is trivial.

(J(x : : l) • J(l2)) • J(l3) J(x : : l) •(J(l2) • J(l3))

((ι(x) • J(l)) • J(l2)) • J(l3) (ι(x) • J(l)) •(J(l2) • J(l3))

(ι(x) •(J(l) • J(l2))) • J(l3)

(ι(x) • J(l++ l2)) • J(l3) (ι(x) • J(l)) • J(l2 ++ l3)

ι(x) •(J(l++ l2) • J(l3)) ι(x) •(J(l) • J(l2 ++ l3))

ι(x) • J((l++ l2) ++ l3) ι(x) • J(l++(l2 ++ l3))

J(x : : ((l++ l2) ++ l3))

J(((x : : l) ++ l2) ++ l3)

J(x : : (l++(l2 ++ l3)))

J((x : : l) ++(l2 ++ l3))

. . .. . .

α

(refl • refl) • J2(l2, l3)

α

refl • J2(l, l2 ++ l3)

α • refl

(refl • J2(l, l2)) • refl

α

refl • J2(l++ l2, l3)

apJ(αlist) ≡
apJ(ap(x : : −)(αlist))

refl • apJ(αlist)

α

. . .

α

. . .

refl •α

1

2

3

4

5

(b) Jα(x : : l, l2, l3) in the inductive definition of Jα. The 2-path (1) is an instance of ; (2) and (3) are
instances of naturality of α, where the omitted paths are refl •(J2(l, l2) • refl) and refl •(refl • J2(l2, l3))
respectively; (4) is given by reflι(x) • Jα(l, l2, l3); (5) is an instance of (4.1).

Figure 9 Construction of the 2-path Jα(l1, l2, l3) by induction on l1, after unfolding the definition
of J2 (appearing on the vertical sides) and some path algebra.
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e • J(l) J(l)

e • J(l) J(l)

J(nil) • J(l) J(nil ++ l)

λ

refl • refl

λ

apJ(λlist) ≡ refl

Figure 10 The 2-path Jλ(l), after unfolding the definitions of J0 (left side) and J2 (bottom side),
is trivial.

e • e e

e • e e

J(nil) • e J(nil)

J(nil) • J(nil) J(nil ++ nil)

ρe

refl

λe

apJ(ρlist) ≡ refl

(a) The 2-path Jρ(nil) in the inductive definition of Jρ can be obtained by the additional coherence
diagram in Figure 1e.

(ι(x) • J(l)) • e ι(x) • J(l)

ι(x) •(J(l) • e)

(ι(x) • J(l)) • e ι(x) •(J(l) • e) ι(x) • J(l++ nil)

J(x : : l) • e J(x : : l)

J(x : : l) • J(nil)

J(x : : (l++ nil))

J((x : : l) ++ nil)

ρ

refl

α refl • J2(l, nil)

apJ(ρlist) ≡
apJ(ap(x : : −)(ρlist))

refl • apJ(ρlist)

refl

refl • ρ

J2(x : : l, nil)

1

2

3

(b) The 2-path Jρ(x : : l) in the inductive definition of Jρ. The 2-path (1) is an instance of the additional
coherence diagram in Figure 1d; (2) is given recursively by reflι(x) • Jρ(l); (3) is an instance of (4.1).

Figure 11 The construction of the 2-path Jρ(l) by induction on l, after unfolding the definitions
of J0 (left side) and J2 (bottom side) and some path algebra.
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(a • b) • c a •(b • c)

(J(K(a)) • J(K(b))) • J(K(c)) J(K(a)) •(J(K(b)) • J(K(c)))

J(K(a) ++K(b)) • J(K(c)) J(K(a)) • J(K(b) ++K(c))

J((K(a) ++K(b)) ++K(c)) J(K(a) ++(K(b) ++K(c)))

J(K((a • b) • c)) J(K(a •(b • c)))

apid(α)

α
η(a) •(η(b) • η(c))

refl • J2(K(b),K(c))

J2(K(a),K(b) ++K(c))

(η(a) • η(b)) • η(c)

α

J2(K(a),K(b)) • refl

J2(K(a) ++K(b),K(c))
apJ(αlist)

apJ(apK(α))

apJ◦K(α)

1

2

3

4

5

Figure 12 The 2-path α′ in the definition of η. The vertical path on the left is equal to η((a • b) • c)
using the interchange law between path concatenation and the action of • on paths; similarly, the
vertical path on the right is equal to η(a •(b • c)). The 2-paths (1) and (5) are given by path algebra;
(2) is an instance of naturality of α; (3) is an instance of Jα; (4) is given by a computation rule of K.

e • b b

e • J(K(b)) J(K(b))

J(nil ++K(b)) J(K(b)) J(K(b))

J(K(e • b)) J(K(b))

apid(λ)

λ η(b)η(e) • η(b)
≡ refl • η(b)

λ

J2(nil,K(b))
≡ λ

apJ(λlist)

apJ(apK(λ))

apJ◦K(λ)

1

2

3

4

5

Figure 13 The 2-path λ′ in the definition of η; the vertical path on the left is by definition
η(e • b). The 2-paths (1) and (5) are given by path algebra; (2) is an instance of naturality of λ; (3)
is trivial, as λlist

K(b) ≡ refl; (4) is given by a computation rule of K.
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a • e a

J(K(a)) • e J(K(a))

J(K(a)) • J(K(e)) J(K(a)) • J(nil)

J(K(a) ++ nil) J(K(a))

J(K(a • e)) J(K(a))

apid(ρ)

ρ
η(a)η(a) • η(e)

≡ η(a) • refl

ρ

J2(K(a),K(e))

refl • J0 ≡ refl

J2(K(a), nil)
apJ(ρlist)

apJ(apK(ρ))

apJ◦K(ρ)

1

2

3

4

5

6

7

Figure 14 The 2-path ρ′ in the definition of η; the vertical path on the left is by definition
η(a • e). The 2-paths (1) and (7) are given by path algebra; (2) is an instance of naturality of ρ; (3)
and (4) are trivial; (5) is an instance of Jρ; (6) is given by a computation rule of K.

a bJ(K(a)) J(K(b))

p

q

η(a) η(b)

apJ(apK(p))

apJ(apK(q))

2
3

4

FMG(X)

K(a) K(b)

apK(p)

apK(q)

1

list(X)

Figure 15 Proof of coherence. For any two paths p, q : a = b in FMG(X), there is a 2-path (1) in
list(X), since this is a 0-type. By functoriality, we obtain a 2-path in FMG(X) corresponding to the
outer diagram (2). The 2-paths (3) and (4) are obtained by path induction (on p and q respectively),
yielding a term in p = q corresponding to the unmarked 2-path.
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interaction with the notion of implicit arguments, also known as erasable arguments.

More specifically, we revisit several famous type systems believed to be consistent and which
do include some form of impredicativity, and show that they can be refined to equivalent systems
where impredicative quantification can be marked as erasable, in a stricter sense than the kind of
proof irrelevance notion used for example for Prop terms in systems like Coq.

We hope these observations will lead to a better understanding of why and when impredicativity
can be sound. As a first step in this direction, we discuss how these results suggest some extensions
of existing systems where constraining impredicativity to erasable quantifications might help preserve
consistency.
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1 Introduction

Russell introduced the notion of type and predicativity as a way to stratify our definitions
so as to prevent the diagonalization and self-references that lead to logical inconsistencies.
This stratification seems sufficient to protect us from such paradoxes, but it does not seem
to be absolutely necessary either: systems such as System-F are not predicative yet they
are generally believed to be consistent. Some people reject impredicativity outright, and
indeed systems like Agda [8] demonstrate that you can go a long way without impredicativity,
yet, many popular systems, like Coq [18], do include some limited form of impredicativity.
But those limits tend to feel somewhat ad-hoc, making the overall system more complex,
with unsatisfying corner cases. For this reason we feel there is still a need to try and better
understand what those limits to impredicativity should look like.

Let’s disappoint the optimistic reader right away: we won’t solve this problem. But
during the design of our experimental language Typer [24], we noticed a property shared by
several existing impredicative systems, that seemed to link impredicativity and erasability.
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Some mathematicians, such as Carnap [13], have argued that impredicative quantification
might be acceptable as long as those arguments are not used in a, we shall say, “significant”
way. So in a sense this article investigates whether erasability might be such a notion of
“insignificance”.

The two main instances of impredicativity in modern type theory are probably Coq’s
Prop universe, which is designed to be erasable, and the propositional resizing axiom [27]
which allows the use of impredicativity for all mere propositions, i.e. types whose inhabitants
are all provably equal and hence erasable. For this reason, it is no ground breaking revelation
to claim that there is an affinity between impredicativity and erasability, yet it is still unclear
to what extent the two belong together nor which particular form of erasability would be the
true soulmate of impredicativity.

While Coq and the propositional resizing axiom basically link impredicativity to the
concept of erasure usually called proof irrelevance, where an argument is deemed erasable if
its type has at most one inhabitant, in this article we investigate its connection to a different
form of erasability, where an argument is deemed erasable if the function only uses it in type
annotations. This is the notion of erasability found in systems like ICC* and EPTS [5, 22].

More specifically, in Section 3, we take various well-known impredicative systems, refine
them with annotations of erasability, and then show that all impredicatively quantified
arguments can be annotated as erasable. In other words, we show that those existing systems
already implicitly restrict the arguments to their impredicative quantifications to be erasable.
This suggests that maybe a good rule of thumb to keep impredicative quantification sound is
to make sure its argument is always erasable.

Armed with this proverbial hammer, we then look at the two main limitations of
impredicative quantification in existing systems: the restriction we call no-SELIT (which
disallows strong elimination of large inductive types) in systems like Coq, and the fact that
only the bottom universe can be impredicative. We then propose systems that replace those
somewhat ad-hoc restrictions with the arguably less ad-hoc restriction that impredicative
quantification is restricted to erasable quantification. The contributions of this work are:

A proof that in CCω all arguments to impredicative functions are erasable.

A proof that in the CIC resulting from extending CCω with inductive types in the
impredicative universe, all arguments to impredicative functions and all large fields of
inductive types are also erasable.

A new calculus ECIC which lifts the no-SELIT restriction, i.e. it extends CIC with strong
elimination of large inductive types.

A proof that restricting impredicativity to erasable quantifiers does not directly make
impredicativity in more than one universe consistent.

A new calculus EpCCω with an impredicative universe polymorphism which allows more
powerful forms of impredicativity, such as a Church encoding with strong elimination.

As needed for some of the above contributions, we sketch an extension of ICC* with both
inductive types. While this is straightforward, we do not know of such a system published
so far, the closest we found being the one by Bernardo in [6] and Tejiscak’s thesis [26].
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(var) x, y, t, l ∈ V
(sort) s ∈ S
(argkind) k, c ::= n | e
(term) e, τ ::= s | x | (x :τ1) k→ τ2 | λx :τ k→ e | e1@ke2
(context) Γ ::= • | Γ, x :τ

primitive reductions: (λx :τ k→ e1)@ke2  e1[e2/x]

Figure 1 Syntax and reduction rules of EPTS.

2 Background

Here we present the notion of erasability we use in the rest of the paper.

2.1 Erasable Pure Type Systems
The calculi we use in this paper are erasable pure type systems (EPTS) [22], which are pure
type systems (PTS) [4] extended with a notion of erasability. We use a notation that makes
it more clear that the erasability is just an annotation like that of colored pure type systems
(CPTS) [7] where the color indicates which arguments are ‘n’ormal and which are ‘e’rasable.
The syntax of the terms and computation rules are shown in Figure 1.

A specific EPTS is then defined by providing the triplet (S,A,R) which defines respectively
the sorts, axioms, and rules of this system. The difference with a plain pure type system,
is that the annotation on a function or function call has to match the annotation of the
function’s type and that the elements of R have an additional k indicating to which color
this rule applies: rules in R have the form (k, s1, s2, s3) which means that a function of color
k taking arguments in universe s1 to values in universe s2 itself lives in universe s3. For
example, we can define an EPTS which defines a version of System-F with erasability as
follows:

S = { ∗, � }
A = { (∗, �) }
R = { (k, ∗, ∗, ∗), (k,�, ∗, ∗) | k ∈ {n, e} }

This version has 4 different abstractions, allowing both System-F’s value abstractions λ and
type abstractions Λ to be annotated as either erasable or normal. It is well known that
System-F enjoys the phase distinction [9], which means that all types can be erased before
evaluating the terms, so we could also define an EPTS equivalent to System-F with only 2
abstractions, using the following rules instead:

R = { (n, ∗, ∗, ∗), (e,�, ∗, ∗) }

This is an example of an impredicative calculus where we can make all impredicative
abstractions (in this case, those introduced by the rule (�, ∗, ∗) in the PTS) erasable.

Figure 2 shows the typing rules of our EPTS. Compared to a normal CPTS, the only
difference is that the typing rule for functions is split into n-Lam and e-Lam where e-Lam
includes the additional constraint x 6∈ fv(e∗) that enforces the erasability of the argument.
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Γ(x) = τ

Γ ` x : τ
(Var)

(s1, s2) ∈ A
Γ ` s1 : s2

(Sort)

Γ ` e : τ1 Γ ` τ2 : s τ1 ' τ2
Γ ` e : τ2

(Conv)

Γ ` τ1 : s1 Γ, x :τ1 ` τ2 : s2 (k, s1, s2, s3) ∈ R

Γ ` (x :τ1) k→ τ2 : s3
(Pi)

Γ ` e1 : (x :τ1) k→ τ2 Γ ` e2 : τ1

Γ ` e1@ke2 : τ2[e2/x]
(App)

Γ ` τ1 : s Γ, x :τ1 ` e : τ2

Γ ` λx :τ1
n→ e : (x :τ1) n→ τ2

(n-Lam)

Γ ` τ1 : s Γ, x :τ1 ` e : τ2 x 6∈ fv(e∗)
Γ ` λx :τ1

e→ e : (x :τ1) e→ τ2
(e-Lam)

Figure 2 Typing rules of our EPTS.
In the Conv rule, ' stands for the ordinary β-convertibility.

The expression “e∗” is the erasure of e, where the erasure function (·)∗ erases type annotations
as well as all erasable arguments:

s∗ = s

x∗ = x

((x :τ1) k→ τ2)∗ = (x :τ1∗)→ τ2∗
(λx :τ n→ e)∗ = λx→ e∗
(λx :τ e→ e)∗ = e∗
(e1@ne2)∗ = e1∗@e2∗
(e1@ee2)∗ = e1∗

This expresses the fact that erasable arguments do not influence evaluation. The codomain
of the erasure function is technically another language with a slightly different syntax, i.e.
without erasability nor type annotations, but we will gloss over those details here since for
the purpose of this article we only really ever need to know if “x ∈ fv(e∗)” rather than the
specific shape of “e∗” itself.

Since the new e-Lam rule is strictly more restrictive than the normal one, it is trivial
to show that every EPTS S, just like every CPTS, has a corresponding PTS we note bSc
where erasability annotations have simply be removed, and that any well-typed term e in
the EPTS S has a corresponding well-typed term bec in bSc. More specifically: Γ ` e : τ in
the EPTS S implies bΓc ` bec : bτc in the PTS bSc. As a corollary, if the corresponding
PTS is consistent, the EPTS is also consistent.

2.2 Kinds of erasability
The claim that arguments to impredicative functions can be erased could be considered as
trivial if we consider that Coq’s only impredicative universe is Prop and that it is also the
universe that gets erased during program extraction.
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S = { Prop;Type` | ` ∈ N }
A = { (Prop : Type0); (Type` : Type`+1) | ` ∈ N }
R = { (k,Prop, s, s) | k ∈ {n, e}, s ∈ S }

∪ { (k,Type`1 ,Type`2 ,Typemax(`1,`2)) | k ∈ {n, e}, `1, `2 ∈ N }
∪ { (e,Type`,Prop,Prop) | ` ∈ N }
∪ { (n,Type`,Prop,Prop) | ` ∈ N } ⇐ Rule absent from eCCω and eCIC

Figure 3 Definition of CCω (and its little sibling eCCω) as EPTS.

But the kind of erasability we use in this article is different from that offered by Coq’s
irrelevance of Prop: on the one hand it’s more restrictive since the only thing you can do
with an erasable argument in an EPTS is to pass it around until you finally put it inside a
type annotation, but on the other it’s more flexible because any argument can be erasable,
regardless of its type. For example, let us take the following polymorphic identity function
in Coq:

Definition identity (t : Prop) (x : t) := x.

We can see that this function is impredicative since “t” can be instantiated with the type of
identity. Coq’s erasure would erase all uses of this function in terms that do not live in
Prop, whereas we will concentrate here on the fact that the “t” argument is erasable because
it is only used in type annotations.

In [2], Abel and Scherer discuss various other subtly different notions of erasure. One of
the differences they mention is the difference between internal and external erasure. The
rules of our EPTS are different in this respect from those of ICC [21] and ICC*[5]: our Conv
rule requires convertibility of the fully explicit types (which corresponds to external erasure),
whereas ICC and ICC* use a rule where convertibility is checked after erasure (so-called
internal erasure):

Γ ` e : τ1 Γ ` τ2 : s τ1∗ ' τ2∗
Γ ` e : τ2

We use the weaker rule because it is sufficient for our needs and makes it immediately obvious
that every well-typed term e in an EPTS S has a corresponding well-typed term bec in bSc.
Our results would carry over to systems with the stronger rule, of course.

3 Erasable impredicativity in Prop

In this section we show that the impredicative quantification in the bottom universe Prop
is almost always erasable and armed with this observation along with some circumstantial
evidence, we propose to rely on this property in order to lift the no-SELIT restriction.

3.1 eCCω: Erasing impredicative arguments of CCω
We will start by showing that impredicative arguments in the calculus of constructions
extended with a tower of universes (CCω) are always erasable. We use CCω, shown in
Figure 3, because it is arguably the pure type system that is most closely related to existing
systems like Coq. It follows the tradition of having a special impredicative Prop universe with
a tower of predicative universes named Type`. max(`1, `2) denotes simply the least upper
bound of l1 and l2.
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The calculus bCCωc we get by removing the erasability annotations is sometimes also
called CCω in the literature. And indeed the two are equivalent: we can see that any well-
typed term e in bCCωc has a corresponding well-typed term dee in CCω such that bdeec = e

by simply making d·e add n annotations everywhere. Our calculus CCω is incidentally almost
identical to the ICC* calculus of Barras and Bernardo [5] (except for the Conv rule, as
discussed above).

With respect to impredicativity, the relevant rules in CCω are (e,Type`,Prop,Prop) and
(n,Type`,Prop,Prop) which allow functions in Prop to take arguments in any Type`. We will
now show that the second rule is redundant:

I Lemma 1 (Confinement of impredicativity in CCω).
In CCω, if Γ ` x : τx and Γ ` e : τe and Γ ` τx : Type` and Γ ` τe : Prop then x can
only appear in e∗ within arguments to impredicative functions, i.e. functions whose return
values live in Prop and whose arguments don’t.

Proof. By induction on the type derivation of e:
Given τe : Prop, clearly e is too small to be a type like a sort s or an arrow (y :τ1) k→ τ2,
and it is also too small to be x itself.
If the derivation uses the Conv rule to convert e : τe to e : τ ′e, we know that τ ′e also
has type Prop, by virtue of the type preservation property, so we can use the induction
hypothesis on e : τ ′e.
If e is a function λy :τy

k→ ey, then τy does not matter since it is erased from e∗ and only
occurrences of x in ey is a concern, and since τe : Prop, we also know that the type of ey

is itself in Prop, hence we can use the induction hypothesis on it.
If e is an application e1@ke2, as above we can apply the induction hypothesis to e1. As
for e2, there are two cases: either e1 takes an argument of type τ1 :Prop in which case we
can again apply the induction hypothesis, or it takes an argument of type τ1 :Type`′ in
which case we’re done. J

We call eCCω the restriction of CCω where all arguments to impredicative functions are
erasable, i.e. (n,Type`,Prop,Prop) is removed, as shown in Figure 3.

I Theorem 2 (Erasability of impredicative arguments in CCω).
CCω’s rule (n,Type`,Prop,Prop) is redundant, that is, for any derivation Γ ` e : τ in CCω
there is a corresponding derivation Γ′ ` e′ : τ ′ in eCCω such that bΓ ` e : τc = bΓ′ `
e′ : τ ′c.

Proof. By induction on the type derivation of e where we systematically replace n with e on
all functions, arrows, and applications that previously relied on the rule (n,Type`,Prop,Prop).
Since the erasability annotation is only used in the typing rule of λ-abstractions, the proof
follows trivially for all cases except this one. For λ-abstractions that had an n annotation
that we need to convert to e, we need to satisfy the additional condition that x 6∈ fv(e∗),
which follows from Lemma 1: In the absence of the rule (n,Type`,Prop,Prop), all functions
of type (y : τ1) k→ τ2 where τ2 : Prop and τ1 : Type`′ are necessarily erasable, so Lemma 1
implies that x can never occur in e′∗. J

This shows that the erasability of System-F’s impredicative type abstractions can be
extended to all of CCω’s impredicative abstractions as well.
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(index) i ∈ N
(term) e, τ, a, b, p ::= ... | Ind(x :τ)〈~a〉

| Con(i, τ)
| 〈τr〉Case e of 〈~b〉
| Fixi x : τ = e

primitive reductions: 〈τr〉Case (Con(i, τ)
−−→
@ke) of 〈~b〉  bi

−−→
@ke

Fixi x : τ = e  e[(Fixi x : τ = e)/x]

Figure 4 Extension of Figure 1’s EPTS with inductive types.

3.2 eCIC: Erasing impredicative arguments of CIC
We now extend this result to a calculus of inductive constructions (CIC). We reuse CCω
as the base language and add inductive types to it. The term CIC has been used to refer
to many different systems. Here we use it to refer to a variant of the “original” CIC from
1994, which only had 3 universes, in which we collapsed Set and Prop into a single universe,
which we call Prop even though it is not restricted to be proof irrelevant like Coq’s Prop; for
readers more familiar with Coq, our CIC’s Prop is more like Coq’s impredicative Set. Note
also that our CIC does have a tower of universes, like Coq, but its inductive types only exist
in the bottom universe, as was the case in the original CIC, which is why we prefer to call it
CIC than CICω.

We mostly follow the presentation of Giménez [16] for the syntax of inductive types
but we extend its rules according to the presentation of Werner [29] which adds a strong
elimination, i.e. the ability to compute a type by case analysis on an inductive type, which is
needed for many proofs, even simple ones. The syntax of terms and the computational rules
of inductive types are shown in Figure 4. Together with the rules of Figure 3 they define
CIC (and its little sibling eCIC).

Ind(x :τ)〈~a〉 is a (potentially indexed) inductive type which itself has type τ and whose ith
constructor has type ai, where we use the vector notation ~a to represent a sequence of terms
a0 . . . an. Con(i, τ) denotes the ith constructor of the inductive type e. 〈τr〉Case e of 〈~b〉 is
a case analysis of the term e which should be an object of inductive type; it will dispatch
to the corresponding branch bi if e was built with the ith constructor of the inductive type;
τr describes the return type of the case expression. Finally Fixi x : τ = e is a recursive
function x of type τ , defined by structural induction on its ith argument (the reduction rule
shown above is naive, but the details do not affect us here).

We must of course also extend the definition of our erasure function to handle those
additional terms:

Ind(x :τ)〈~a〉∗ = Ind(x)〈−→a∗〉
Con(i, τ)∗ = Con(i)
〈τr〉Case e of 〈~b〉∗ = Case e∗ of 〈

−→
b∗〉

(Fixi x : τ = e)∗ = Fix x = e∗

While these new terms may appear not to take erasability into account, this is only because
the erasability of the fields of those inductive types is introduced by the erasability annotations
on the formal arguments of ~a which need to match those of ~b: they really do let you specify
the erasability of each field; and every field, whether erasable or not, is available within the
corresponding Case branch but those marked as erasable in the Ind definition will accordingly
only be available as erasable within Case.
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Γ ` τ : s ∀i. Γ, x :τ ` ai : Prop x ` ai con
Γ ` Ind(x :τ)〈~a〉 : τ

τ = Ind(x :τ ′)〈~a〉 Γ ` τ : τ ′

Γ ` Con(i, τ) : ai[τ/x]
∀i. Γ ` τi : Prop

Γ ` ~τ small

Γ ` e : τI

−−→
@kp τI = Ind(x :

−−−−−−→
(z :τz) k→Prop)〈~a〉 Γ ` τr :

−−−−−−→
(z :τz) k→ (_:τI

−−→
@kz) n→ s

∀i. ai =
−−−−−−→
(y :τy) c→x

−−→
@kp′ s = Prop ∨ Γ ` ~τy small

∀i. Γ ` bi :
−−−−−−−−−−→
(y :τy[τI/x]) c→ (τr

−−→
@kp′@n(Con(i, τI)

−−→
@cy))

Γ ` 〈τr〉Case e of 〈~b〉 : τr

−−→
@kp@ne

Γ ` τ : s

Γ, xf :τ ` e : τ e = λ
−−−−→
y :_ k→λxi :_ k→ eb i = |y| xf ; i;xi; ∅ ` eb term

Γ ` Fixi xf : τ = e : τ

Figure 5 Typing rules of inductive types.

Auxiliary judgments: Γ ` ~τ small checks that the fields ~τ are all in Prop.
x ` ai con checks that a is strictily positive in x.
xf ; i;xi; ∅ ` eb term makes sure all recursive calls use structurally decreasing arguments.

Figure 5 shows the typing rules corresponding to each of those four new constructs. Those
typing rules are pretty intricate, if not downright scary, and most of the details do not
directly affect our argument, so the casual reader may prefer to skip them. We use _ at a
few places where the actual element does not matter enough to give it a name. The notation
f
−−→
@ke denotes a curried application with multiple arguments f@k1e1 . . .@knen, and similarly

λ
−−−−→
x :τ k→ e denotes a curried function of multiple arguments λx1 : τ1

k1→ . . . λxn :τn
kn→ e and−−−−−→

(x :τ) k→ e denotes the type of such a function (x1 :τ1) k1→ . . . (xn :τn) kn→ e.
The rules are very similar to those used by Giménez in [16] because they are largely

unaffected by the erasability annotations. The only exception is for Case where we have
to make sure that the various erasability annotations match each other, e.g. the vector
~c of erasability annotations placed on a given constructor ai must match the erasability
annotations of the arguments expected by the corresponding branch bi. Two important
details are worth pointing out:

In the rule for Ind the type of constructors is restricted to be in Prop: just like in the
original CIC we only allow inductive types in our bottom universe, contrary to what
systems like Coq [18] and UTT [20] allow.
In the Case rule, the hypotheses s = Prop ∨ Γ ` ~τy small ensure that when the result
of the case analysis is not in Prop, i.e. when this is a form of strong elimination, the
inductive type must be small, meaning that all its fields must be in Prop. This “no-SELIT”
restriction is taken fromWerner [29], with a slightly different presentation because he chose
to split the Case rule into two: one for weak elimination and one for strong elimination.
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We do not show the definition of the x ` e con judgment which ensures that e has the
appropriate shape for an inductive constructor, including the strict positivity, nor that of
the xf ; i;xi; ν ` e term judgment which ensures that recursive calls are made on structurally
smaller terms. Their definition is not affected by the presence of erasability annotations and
does not impact our work here.

To show that the (n,Type`,Prop,Prop) rule of non-erasable impredicativity is still
redundant in this new system, we proceed in the same way:

I Lemma 3 (Confinement of impredicativity in CIC).
In CIC, if Γ ` x : τx and Γ ` e : τe and Γ ` τx : Type` and Γ ` τe : Prop then x can
only appear in e∗ within arguments to impredicative functions, i.e. functions whose return
values live in Prop and whose arguments don’t.

Proof. The proof stays the same as for CCω, with the following additional cases:
Given τe : Prop, clearly e is too small to be a type like Ind(x :τ)〈~a〉.
If e is of the form Con(i, τ), since τ is erased, the erasure is always closed.
If e is of the form Fixi x : τ = e′, then τ does not matter because it’s erased, and we
can invoke the inductive hypothesis on e′.
If e is of the form 〈τr〉Case e′ of 〈~b〉, then τr does not matter because it is erased.
Furthermore, we can invoke the inductive hypothesis on e′ since we know that e′ lives
in Prop, like all our inductive types. Finally since the hypothesis tells us that e lives in
Prop, all branches bi must as well, hence we can also invoke the induction hypothesis on
every bi. J

We call eCIC the restriction of CIC where all arguments to impredicative functions and
all large fields of inductive definitions are erasable, i.e. (n,Type`,Prop,Prop) is removed.

I Theorem 4 (Erasability of impredicative arguments in CIC).
CIC’s rule (n,Type`,Prop,Prop) is redundant, that is, for any derivation Γ ` e : τ in CIC
there is a corresponding derivation Γ′ ` e′ : τ ′ in eCIC such that bΓ ` e : τc = bΓ′ ` e′ : τ ′c

Proof. As before, by induction on the type derivation of e where we systematically replace
n with e on all functions, arrows, and applications that previously relied on the rule
(n,Type`,Prop,Prop). The interesting new case is when e is of the form 〈τr〉Case e′ of 〈~b〉:
as mentioned, the vector ~c of erasability annotations placed on a given constructor ai must
match the erasability annotations of the arguments expected by the corresponding branch bi.
Since our inductive types all live in Prop, it means all fields that live in higher universes have
been annotated as erasable. But that in turns means that all corresponding arguments to the
branches bi should also be annotated as erasable. When s is Prop (i.e. a weak elimination),
this is the case because all arguments of higher universe for functions in Prop can only be
annotated as erasable. And when s is a higher universe the property is also verified because
the Γ ` ~τy small constraint imposes that none of the arguments are in higher universes so
they don’t use the (n,Type`,Prop,Prop) rule. J

This shows that the erasability of System-F’s impredicative type abstractions can be
extended not only to all of CCω’s impredicative abstractions but also to CIC’s impredicative
abstractions and impredicative inductive types.

3.3 ECIC: Strong elimination of large inductive types
The reason behind the Γ ` e small special constraint on strong eliminations of CIC in
Figure 5 is pretty straightforward: without this restriction, we could use an inductive type
such as the following to “smuggle” a value of universe Type` in a box of universe Prop:
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R = { (k,Prop, s, s) | k ∈ {n, e}, s ∈ S }
∪ { (k,Type`1 ,Type`2 ,Typemax(`1,`2)) | k ∈ {n, e}, `1, `2 ∈ N }
∪ { (e,Type`,Prop,Prop) | ` ∈ N }

Γ ` e : τI

−−→
@kp τI = Ind(x :

−−−−−−→
(z :τz) k→Prop)〈~a〉 Γ ` τr :

−−−−−−→
(z :τz) k→ (_:τI

−−→
@kz) n→ s

∀i. ai =
−−−−−−→
(y :τy) c→x

−−→
@kp′ Γ ` bi :

−−−−−−−−−−→
(y :τy[τI/x]) c→ (τr

−−→
@kp′@n(Con(i, τI)

−−→
@cy))

Γ ` 〈τr〉Case e of 〈~b〉 : τr

−−→
@kp@ne

Figure 6 Rules of the ECIC system. The rest is unchanged from eCIC, Figures 1, 2, 4, and 5.

Inductive Box (t : Type): Prop := box : t -> Box.
Definition unbox (t : Type) (x : Box t) := match x with

| box x’ => x’
end.

Note that such a box (a large inductive type) is perfectly valid in CIC, but the Γ ` e small
constraint rejects the unbox definition (which uses a strong elimination). If we remove the
Γ ` e small constraint, the effect of such a box/unbox pair would be to lower any value of a
higher universe to the Prop universe and would hence defeat the purpose of the stratification
introduced by the tower of universes. This was first shown to be inconsistent in [11].

This restriction makes the system more complex since elimination is allowed from any
inductive type to any universe except for the one special case of strong elimination of large
inductive types (SELIT). It also significantly weakens the system. For example, in Coq with
the --impredicative-set option, we can define a large inductive type like:

Inductive Ω : Set :=
| int : Ω
| arrow : Ω -> Ω -> Ω
| all : forall k:Set, (k -> Ω) -> Ω.

which could be used for example to represent the types of some object language. But we
cannot prove properties such as the following variant of Leibniz equality (which we needed
in the proof of soundness of our Swiss coercion [23]):

forall k1 k2 f1 f2 p,
all k1 f1 = all k2 f2 -> p k1 f1 -> p k2 f2.

In practice, this important restriction significantly reduces the applicability of large inductive
types (which partly explains why Coq does not allow them in Set any more by default).

While the Γ ` e small constraint was added to avoid an inconsistency, this same
Γ ` e small is also the key to making our proof of erasability of impredicative arguments work
for CIC: it is the detail which makes it possible to mark all the large fields of impredicative
inductive definitions as erasable, as we saw in the previous section. This might be a
coincidence, of course, yet it suggests a close alignment between the needs of consistency and
the need to keep impredicative elements erasable.

Figure 6 shows a refinement of eCIC we call ECIC whose Case rule does not have the
Γ ` e small constraint. ECIC is more elegant and regular than CIC thanks to the absence
of this special corner case, and it allows typing more terms than eCIC and hence CIC. For
instance in ECIC we can define the above Ω inductive type with an erasable k and then
prove the mentioned property (with k1 and k2 marked as erasable).
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Note also that the lack of an (n,Type`,Prop,Prop) rule, means we cannot define a box as
above in this system; instead we are limited to making its content erasable. This in turn
prevents us from defining unbox since the x’ would now be erasable so it cannot be returned
as-is from the elimination form. In other words, forcing impredicative fields to be erasable
also avoids this source of inconsistency usually avoided with the Γ ` e small constraint.
Based on this circumstantial evidence, we venture to state the following:

I Conjecture 5. The ECIC system is consistent.

3.4 SELIT for Coq’s proof-irrelevant Prop
The Prop universe used in the previous section corresponds to Coq’s impredicative Set
universe, which is disabled by default. Coq’s impredicative Prop universe is similar except it
is designed to be proof-irrelevant. This property is used in two ways: to reflect this property
in the system via an axiom and to erase all Prop terms when extracting a program from
a proof. This proof-irrelevance property is enforced by two constraints imposed on the
strong elimination of those inductive types that live in Prop: first, they have to have a single
constructor and second, all fields must live in the Prop universe. The first constraint makes
sure there is no run-time dispatch based on an erased value, while the second guarantees
that the only data we can extract from an erased value is itself erased.

The second constraint is the no-SELIT constraint. So the Conjecture 5 suggests we could
relax this restriction and allow strong elimination on any Prop type with a single constructor
if the fields that do not live in Prop are erasable. From the point of view of extraction, we
could even relax this further to allow strong elimination on any Prop type with a single
constructor, and simply treat all the values so extracted as erased.

3.5 eCoq: Erasing impredicativity in Coq and UTT
As noted in Section 3.2, we were careful to restrict our inductive types to live in Prop.
This was no accident: we rely on this property in the confinement lemma used to show the
erasability of all impredicative arguments in CIC. Indeed, confinement does not hold if we
can do a case analysis on an inductive type that lives in Type` and return a value in Prop.

Systems such as Coq and UTT [20] allow impredicative definitions in Prop, inductive
types in higher universes, and elimination from those inductive types to Prop. These systems
are hence examples of impredicativity which is not straightforwardly erasable like it is in the
systems seen so far. Here is an example of code which relies on this possibility:

Inductive List (α : Type0) : Type0 := nil | cons (v : α) (vs : List t).

Definition ifnil (ts : List Prop) (t : Prop) (x y : t) :=
match ts with
| nil => x
| cons _ _ => y.

In Coq, ifnil lives in Prop because its return value is in Prop. If we extend Coq
with erasability annotations, the argument “t” could be marked as erasable since it only
appears in type annotations, but not the other three arguments. To determine in which
universe it rests, we would use the rules (n,Prop,Prop,Prop) for the last two arguments
and (e,Type`,Prop,Prop) for the second argument. Those rules obey the principle that
impredicativity is restricted to erasable arguments. But for the first argument, we need the
rule (n,Type`,Prop,Prop) which does not obey this principle.
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R = { (k,Prop, s, s) | k ∈ {n, e}, s ∈ S }
∪ { (e,Type`,Prop,Prop) | ` ∈ N }
∪ { (n,Type`,Prop,Type`) | ` ∈ N }
∪ { (k,Type`1 ,Type`2 ,Typemax(`1,`2)) | k ∈ {n, e}, `1, `2 ∈ N }

Γ ` τ : s ∀i. Γ, x :τ ` ai : s′ x ` ai con
Γ ` Ind(x :τ)〈~a〉 : τ

Γ ` e : τI

−−→
@kp τI = Ind(x :

−−−−−−→
(z :τz) k→ s′)〈~a〉 Γ ` τr :

−−−−−−→
(z :τz) k→ (_:τI

−−→
@kz) n→ s

∀i. ai =
−−−−−−→
(y :τy) c→x

−−→
@kp′ Γ ` bi :

−−−−−−−−−−→
(y :τy[τI/x]) c→ (τr

−−→
@kp′@n(Con(i, τI)

−−→
@cy))

Γ ` 〈τr〉Case e of 〈~b〉 : τr

−−→
@kp@ne

Figure 7 Rules of the eCoq system.

If we want to obey the principle, we could replace this last rule with the predicative rule
(n,Type`,Prop,Type`) instead. Figure 7 shows the important rules of such a system we call
eCoq. With such a system, we would have to adjust the above example in one of two ways:

Live with the fact that ifnil will now live in Type0 rather than in Prop.
Experience with Agda and other systems suggests that most code does not rely on
impredicativity, so in practice this first approach should be applicable in most cases.
Mark the non-Prop parts of “ts” as erasable so that it can live in Prop. Concretely, it
means using a new type we could call eList, which is like List except that the “v” field
of the “cons” constructor is marked as erasable, to allow those “thinner” lists to live in
Prop.

We call the second approach thinning. It replaces inductive objects from a higher universe
with similar objects that fit in Prop by marking the non-Prop parts of it as erasable or by
replacing them with similarly “thinned” elements.

It is still unclear whether any valid typing derivation in a system like Coq can have
a corresponding typing derivation in eCoq, that is, whether we can do away with the
(n,Type`,Prop,Prop) rule because we can always change the source code as described above.

4 Universe-agnostic impredicativity

CCω accepts impredicative definitions only in the bottom universe, Prop, just like in most
known consistent type systems that support impredicative definitions (one counter example
being arguably the λPREDω+ presented in [14]). This is a direct consequence of various
paradoxes formalized in systems which allow impredicative definitions in more than one
universe [17, 12, 19]. In this section we investigate the use of erasability constraints in order
to lift this restriction and thus allow impredicative definitions in higher universes as well.

4.1 λeU−: Erasing impredicative arguments in λU−

The last two papers referenced above showed a paradox in the system λU− which is Fω

extended with one extra rule. It can be defined as an EPTS as follows:

S = { ∗, �, ∆ }
A = { (∗, �), (�, ∆) }
R = { (k, ∗, ∗, ∗), (k,�, ∗, ∗), (k,�,�,�), (k,∆,�,�) | k ∈ {n, e} }
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U = ΠX : �.((℘℘X → X )→ ℘℘X )
τt = ΛX : �.λf : (℘℘X → X ).λp : ℘X .(t λx : U .(p (f ({x X} f))))
σs = ({s U} λt : ℘℘U .τ t)
∆ = λy : U .¬∀p : ℘U .[(σy p)⇒ (p τσy)]
Ω = τ λp : ℘U .∀x : U .[(σx p)⇒ (p x)]

[ suppose 0 : ∀p : ℘U .[∀x : U .[(σx p)⇒ (p x)]⇒ (p Ω)].
[ [〈0∆〉 let x : U .

suppose 2 : (σx ∆).
suppose 3 : (∀p : ℘U .[(σx p)⇒ (p τσx)]).
[[〈3 ∆〉 2] let p : ℘U .〈3 λy : U .(p τσy)〉]]

let p : ℘U .〈0 λy : U .(p τσy)〉]
let p : ℘U .
suppose 1 : ∀x : U .[(σx p)⇒ (p x)].
[〈1 Ω〉 let x : U .〈1 τσx〉]]

Figure 8 Hurken’s paradox.

Two of the four pairs of rules are impredicative: (k,�, ∗, ∗) and (k,∆,�,�). The first is
generally considered harmless since ∗ is the bottom universe and hence corresponds to Prop
in CCω. The new one is (k,∆,�,�) which introduces impredicativity in the second universe,
�. Following the same idea as in the previous section where we defined ECIC to rely on
erasability to avoid inconsistency, we could thus define a new λeU− calculus that only allows
the use of impredicativity with erasable abstractions:

R = { (k, ∗, ∗, ∗), (e,�, ∗, ∗), (k,�,�,�), (e,∆,�,�) | k ∈ {n, e} }

Alas, this does not help:

I Theorem 6. λeU− is not consistent.

Proof. The proof is the same as the proof of inconsistency of λU− shown by Hurkens in [19].
Figure 8 shows Hurken’s original proof, using the same notation he used in his paper. To
show that the proof also applies to λeU−, we need to make sure that all impredicative
abstractions can be annotated as erasable. For that, it suffices to know that the integers are
variable names, the impredicative abstraction in ∗ is introduced by let, the corresponding
application is denoted with 〈e1 e2〉, the impredicative abstraction in � is introduced by Λ,
and the corresponding application is denoted with {e1 e2}: by inspection we can see that all
the arguments introduced by impredicative abstractions are exclusively used either in type
annotations or in arguments to other impredicative functions. J

This demonstrates that, even though the notion of erasability we use here has shown
strong affinities with consistent uses of impredicativity, it is not in general sufficient to tame
the excesses of impredicativity.

4.2 Inductive types: Impredicative and universe polymorphic?
While paradoxes like Hurkens’s suggest that it is impossible to have impredicative definitions
in more than one universe without losing consistency, inductive definitions suggest otherwise.
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(level) ` ::= 0 | s ` | l | `1 t `2

S = { UL; Type`; Typeω }
A = { (Level : UL); (Type` : Type(s `)) }
R = { (k,UL,Type`,Typeω) | k ∈ {n, e} }

∪ { (k,UL,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k,Type`,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k,Type`1 ,Type`2 ,Type`1 t `2) | k ∈ {n, e} }

Figure 9 Informal rules of an Agda-like system.

The traditional encoding of inductive types using Church’s impredicative encoding looks
like the following:

NatC = (a : Prop)→ a→ (a→ a)→ a

But this is much more restrictive than the usual definition of Nat as a real inductive type.
More specifically, when defined as an inductive type we get two extra features compared
to the above Church encoding: the ability to do dependent elimination, and the ability to
perform elimination to any universe rather than only to Prop. Let us focus on the second
one. The following Church-like encoding would lift this restriction, allowing elimination to
any universe:

NatL = (l : Level)→ (a : Typel)→ a→ (a→ a)→ a

Such a definition is possible in systems like Agda which provide the necessary universe
polymorphism (the l above is a universe-level variable), but this type NatL is traditionally
placed in a universe too high to be useful as an encoding of natural numbers.

We have not been able to find a concise description of the rules used in Agda, but a first
approximation of its type system is described informally in Figure 9 where ω stands for the
smallest infinite ordinal. According to those rules, Agda would place the above universe-
polymorphic definition of NatL squarely in the far away Typeω universe. Yet everything that
can be done with it can also be done with the real Nat inductive type, which lives in the
much more palatable Type0 universe, so it would arguably be safe to let NatL live in Type0
(and thus make this definition impredicative). The same reasoning applies to the following
type:

ListType = (l : Level)→ (a : Typel)→ a→ (Type0 → a→ a)→ a

So ListType should arguably live in Type1 rather than in Typeω since that is what happens
when defined as a real inductive type. This would also make ListType impredicative but
should not threaten consistency. This illustrates that every inductive type corresponds
to an impredicative definition that could live in the same universe, making it clear that
having impredicative definitions in multiple universe levels is not inherently incompatible
with consistency.

Of course, this begs the question: what is it that makes it safe to let those definitions be
treated as impredicative? What is special about them?
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R = { (n, l :UL,Type`,Typeω) }
∪ { (e, l :UL,Type`,Type`[0/l]) }
∪ { (k, l :UL,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k, t :Type`,Typeω,Typeω) | k ∈ {n, e} }
∪ { (k, t :Type`1 ,Type`2 ,Type`1 t `2) | k ∈ {n, e} }

Figure 10 Informal rules of EpCCω.

In the rest of this section we will consider one hypothesis, which is that the universe level
parameter ` needs to be erasable. In practice the vast majority of universe polymorphism
can be marked as erasable. Some simple counter examples are:

Set = λl :Level n→ Typel

ListType = λl1 :Level n→ (l2 :Level) e→ (a :Typel2) e→ a
n→ (Typel1

n→ a
n→ a) n→ a

4.3 EpCCω: Impredicative erasable universe polymorphism
With universe polymorphism, sorts are not closed any more, so we cannot really represent
the rules that govern them using a simple set like R. So, the (k,UL,Type`,Typeω) rule was
really meant to say something like:

Γ ` τ1 : UL Γ, l :τ1 ` τ2 : Type`

Γ ` (l :τ1) k→ τ2 : Typeω

Now if we want to make this impredicative when k = e, since ` can refer to l we need to
substitute l with something before we can use it in the sort of the product. For the NatL
case, for example, ` will be “s l” and we argued that this product type should live in Type0,
so we would need to substitute l with −1! Rather than argue why a negative value could
make sense, we will use 0 in our rule:

Γ ` τ1 : UL Γ, l :τ1 ` τ2 : Type`

Γ ` (l :τ1) e→ τ2 : Type`[0/l]

While this places NatL in Type1 rather than Type0, it still makes it impredicative, and if all
our base types live in Type1 we will not notice much difference.

Figure 10 describes the resulting calculus we call EpCCω, where the second fields of
elements of R now have the shape “x : s” so we can refer to the variable x that can appear
freely in the third field.

4.4 Encoding System-F in EpCCω
EpCCω is basically a predicative version of CCω (hence the “p”) to which we added universe
polymorphism and impredicative erasable universe polymorphism (which motivated the “E”).
Contrary to the previous calculus it does not have a base impredicative universe Prop: its
only source of impredicativity is the (e, l : UL,Type`,Type`[0/l]) rule which introduces the
impredicative erasable universe polymorphism. Compared to Agda, it lacks inductive types
but it adds a form of impredicativity. While we do not know if it is consistent, we can try and
compare it to existing systems, and for that we start by showing how to encode System-F.
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In order for our encoding function J·K to be based purely on the syntax of terms rather than
the typing derivation, we take as input a stratified version of System-F:

(types) τ ::= t | τ1 → τ2 | (t :∗)→ τ

(terms) e ::= x | λx :τ → e | e1 e2 | λt :∗ → e | e τ

To encode System-F, the only interesting part is the need to simulate System-F’s impredicative
quantification over types. We can do that in the same way NatC was generalized to NatL,
i.e. by replacing “(t : ∗)→ τ” with “(l :Level) e→ (t :Typel)

n→ τ”. The only tricky aspect of
this is that while in System-F all the type variables (and more generally all the types) have
the same kind ∗, this encoding makes every type variable come with its own universe level,
so the encoding function needs to keep track of the level of each type in order to know how
to instantiate the (l :Level) e→ ... quantifiers.

The encoding function on types takes the form JτK∆ where ∆ maps each type variable to
its associated level variable, and it returns a pair τ ′; ` where ` is the universe level of τ ′:

JtK∆ = t ; ∆(t)
Jτ1 → τ2K∆ = τ ′1

n→ τ ′2 ; `1 t `2 where τ ′1; `1 = Jτ1K∆ and τ ′2; `2 = Jτ2K∆
J(t :∗)→ τK∆ = (l :Level) e→ (t :Typel)

n→ τ ′ ; `′ where τ ′; ` = JτK∆,t:l and `′ = 1 t `[0/l]

Similarly the encoding function for terms takes the form JeK∆:

JxK∆ = x

Jλx :τ → eK∆ = λt :τ ′ n→ JeK∆ where τ ′; ` = JτK∆
Je1 e2K∆ = Je1K∆ @nJe2K∆

Jλt :∗ → eK∆ = λl :Level e→ λt :Typel
n→ JeK∆,t:l

Je τK∆ = (JeK∆ @e`)@nτ ′ where τ ′; ` = JτK∆

Finally we need to encode contexts as well, for which the encoding function takes the form
JΓK and it returns a pair Γ′; ∆:

J•K = • ; •
JΓ, x :τK = Γ′, x :JτK∆ ; ∆ where Γ′; ∆ = JΓK
JΓ, t :∗K = Γ′, l :Level, t :Typel ; ∆, t : l where Γ′; ∆ = JΓK

I Theorem 7 (EpCCω can encode System-F).
For any Γ ` e : τ in System-F, we have Γ′ ` e′ : τ ′ and Γ′ ` τ ′ : Type` in EpCCω where
Γ′; ∆ = JΓK, e′ = JeK∆, and τ ′; ` = JτK∆.

Proof. By structural induction on the type derivation. J

4.5 The power of EpCCω
EpCCω seems to be flexible enough to cover most uses of impredicativity found in the context
of programming, such as Church’s encoding, Chlipala’s parametric higher-order abstract
syntax [10], typed closure representations, or iCAP [25]. It does so without restricting
impredicativity to a single universe, and even makes those uses more flexible in EpCCω such
as adding the equivalent of strong elimination in Church’s encoding. So in this sense EpCCω
is more powerful than systems like CCω.

Yet we have not even been able to generalize the above System-F encoding in order to
encode arbitrary Fω terms into EpCCω. For example, consider the following Fω term:

λt1 :∗ → λ(t2 :∗ → ∗)→ λ(x : t2 t1)→ x
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A simple encoding into EpCCω could be:

λl :Level e→ λt1 :Typel
n→ λ(t2 :Typel

n→ Typel)
n→ λx : t2@nt1

n→ x

But it’s not faithful to the original Fω term because it only preserves the impredicativity of
the first λ. In order to get an encoding that can work for any Fω term, we hence need an
encoding which looks like:

λl1 :Level e→ λt1 :Typel1

n→ λl2 :Level e→ λt2 :T2
n→ λx :Tx

n→ x

where T2 refers to l2. We can then choose T2 and Tx as follows:

T2 = (l3 :Level) e→ Typel3

n→ Typel2

Tx = t2@el1@nt1

This makes the term valid, but its semantics doesn’t match that of the original Fω term since
we cannot pass the identity function λt :∗ → t as f any more: its encoding would now have
type (l3 :Level) e→ Typel3

n→ Typel3 instead of the expected (l3 :Level) e→ Typel3

n→ Typel2 .
Similarly, we have not been able to adapt Hurkens’s paradox to the EpCCω system either.

Of course, all this says is that we do not know if EpCCω is consistent, but at least it indicates
that this kind of impredicativity might be incomparable to the traditional form seen in CCω
or λU−.

5 Related work

In [3], Augustsson presents a language where inductive types only live in the bottom universe,
and shows that everything from the higher universes can be erased. This is similar to our
argument in Section 3.2, but with some important differences in the universe stratification
and in the definition of erasure. His universe stratification is unusual in that it is designed to
keep track of erasability and does not enforce predicativity, which makes it fundamentally
very different. It turns out that for eCCω and eCIC, his stratification rules match our
traditional rules when it comes to deciding if something is in the bottom universe, so his
erasure should apply equally to a stratification like the one used here, although this is not
the case when we consider systems like eCoq. More importantly, his notion of erasure is
different from ours since his erasure of (x :τ1) k→ τ2 is • meaning that it is significantly more
permissive. For example, his erasure has to be external (i.e., performed after checking type
convertibility), whereas the erasure we use here could be internal, as is the case in ICC [21]
and ICC*[5].

In [30], Werner discusses internal erasure of Coq’s impredicative Prop universe. This is
done in the context of the proof-irrelevance kind of erasure, where Prop is restricted to be
proof-irrelevant so that it can be erased from the non-Prop universes. So this approach is
contrary to ours: we erase non-Prop arguments from Prop terms, whereas he erases Prop
arguments from non-Prop terms. More importantly, this kind of erasure is already present in
Coq, so what Werner proposes is to make it internal, that is to take advantage of this erasure
to strengthen the convertibility rule during type checking, in the same way ICC [21] and
ICC*[5] systems use a stronger convertibility rule to take advantage of the kind of erasure we
use here, as discussed in Section 2.2. This strengthening comes at the cost of normalization,
as shown by Abel and Coquand [1].

In [15], Gilbert et.al. present a Coq and Agda library which provides a similar internal
erasure of proof-irrelevant propositions. In comparison to Werner’s work, they use a slightly
different definition of proof-irrelevance based on mere propositions [27] and they get internal
erasure by construction rather than by adding it to they underlying system.
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In [28], Uemura shows a model of a cubical λ-calculus with a bottom universe that is
impredicative and admits univalence and shows it not to satisfy the propositional resizing
axiom, which applies to proof-irrelevant propositions. This puts into question the consistency
of this axiom in such a calculus.

6 Conclusion

We have taken a tour of the interactions between impredicativity and erasability of arguments
in EPTS. We have shown that three of the five most well known systems that admit
impredicativity do it in a way that implicitly constrains all impredicative abstractions and
fields to be erasable (and that the remaining two almost do it as well). We have also shown
that while impredicativity and erasability seem to be correlated, erasability is neither a
necessary nor a sufficient condition for impredicativity to be consistent: the inconsistency of
λeU− shows it’s not sufficient, and our inability to show that UTT’s impredicative definitions
are all erasable suggests it’s not necessary either.

It remains to be seen whether erasability as used in ECIC allows us to lift the restriction
that strong elimination cannot be used on large inductive types without breaking consistency,
and whether erasability as used in EpCCω allows us to introduce a form of impredicativity
applicable to all universe levels without breaking consistency.

Another avenue of research might be to try and better understand the relationship
between the kind of erasure of impredicatively quantified arguments discussed here and the
impredicativity of proof-irrelevant terms, as used in Coq and in the propositional resizing
axiom.
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Higher Inductive Type Eliminators Without Paths
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Abstract
Cubical Agda has support for higher inductive types. Paths are integral to the working of this
feature. However, there are other notions of equality. For instance, Cubical Agda comes with an
identity type family for which the J rule computes in the usual way when applied to the canonical
proof of reflexivity, whereas typical implementations of the J rule for paths do not.

This text shows how one can use some of the higher inductive types definable in Cubical Agda
with arbitrary notions of equality satisfying certain axioms. The method works for several examples
taken from the HoTT book, including the interval, the circle, suspensions, pushouts, the propositional
truncation, a general truncation operator, and set quotients.
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1 Introduction

Higher inductive types provide a way to define things like propositional truncation, (set)
quotients and other things in type theory [7]. Recently support for higher inductive types
has been added to Agda [1, 8]. As an example propositional truncation can be defined in the
following way (where Type a is the universe at level a):

data ‖_‖ (A : Type a) : Type a where
|_| : A → ‖ A ‖
trivial : (x y : ‖ A ‖) → x ≡ y

This type family has a regular constructor |_| which states that ‖ A ‖ is inhabited if A is.
It also has a higher constructor trivial which states that every element of ‖ A ‖ is equal to
every other, i.e. that ‖ A ‖ is a (mere) proposition. In the type of trivial the equality x ≡ y

stands for the type of paths from x to y. Paths in A are a kind of functions from the interval
I to A. When trivial x y is applied to an element i of the interval we get a value in ‖ A ‖:
this value is definitionally equal to x if i is 0, and y if i is 1, where 0 and 1 are the endpoints
of the interval. Thus all constructors of ‖ A ‖ target the same type.

One can define functions from ‖ A ‖ using pattern matching. For instance, here is a map
function:

map : (A → B) → ‖ A ‖ → ‖ B ‖
map f | x | = | f x |
map f (trivial x y i) = trivial (map f x) (map f y) i
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Let us consider the second case. Note that trivial is applied to three arguments. The
right-hand side of the function must be an expression of type ‖ B ‖ that satisfies two side-
conditions: if 0 is substituted for i, then the value must be definitionally equal to map f x
(because trivial x y 0 is definitionally equal to x), and if 1 is substituted for i, then the value
must be definitionally equal to map f y. The given right-hand side satisfies these conditions.

This text is concerned with the following question: What if you want to use higher
inductive types, but you do not want to use paths? Cubical Agda, the variant of Agda with
support for higher inductive types, comes with two notions of equality: paths and an identity
type family [2, 6]. One can prove the J rule for paths, but so far no one has managed to do
this in such a way that the J rule computes in the usual way when applied to reflexivity. The
identity type family comes with a J rule that does compute in the usual way when applied
to reflexivity. People with code that relies on this computational behaviour of J might not
want to switch to using paths. This text shows one way in which one can avoid doing this,
and still make use of (at least some) higher inductive types:

The approach works for any notion of equality that satisfies certain axioms (see Section 2).
There is work in progress on adding proper support for inductive families to Cubical
Agda. Such support would mean that the approach would work also for equality defined
in the following way:

data_≡_ {A : Type a} (x : A) : A → Type a where
refl : x ≡ x

The basic idea of the approach is to define variants of the higher constructors that use
the other notion of equality instead of paths, and to define eliminators that refer to these
variants of the constructors. It might seem obvious that this can be done, because any
notion of equality that satisfies the axioms is equivalent to path equality. However, in
Cubical Agda it is natural to express eliminators for many higher inductive types using a
heterogeneous notion of path equality (see Section 4). Fortunately heterogeneous paths
can be expressed using homogeneous paths (see Section 4; this result was proved together
with Anders Mörtberg and Andrea Vezzosi).
The eliminators are defined in such a way that they compute in the “right” way for con-
structors that do not involve paths. For higher constructors propositional “computation”
rules are proved.
The approach works for at least the following higher inductive types: the circle (see
Section 5), set quotients (Section 6), the propositional truncation operator given above
(Section 7), suspensions (Section 7), and some types that are not discussed in detail in the
paper, but are treated in accompanying Agda code: the interval, pushouts, and a general
truncation operator. The obtained eliminators are close to the induction principles given
in the HoTT book [7]. No attempt is made to characterise exactly when the method
works, but there is some discussion of when the method might be usable in Section 9.
It might not come as a surprise that something like this can be done. A key contribution
of the paper is, in my opinion, some functions that make it easy—at least for the higher
inductive types mentioned above—to define the eliminators and to prove the computation
rules (see Sections 4 and 5).
Dependent eliminators are defined by using the eliminators for paths, plus one of two
lemmas for each higher constructor (one lemma for truncation constructors, and one for
the rest). All corresponding “computation” rules (one for each higher constructor, except
for the truncation constructors) are proved using the same lemma, applied to a proof
of reflexivity. These three lemmas suffice for all the examples mentioned above. There
are also similar lemmas for non-dependent eliminators. Section 7 demonstrates that the
lemmas developed in previous sections work also for other higher inductive types.
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The text is accompanied by machine-checked Agda proofs [3] (but there is no guarantee
that Agda is free of bugs). Note that there are small differences between the accompanying
code and the code presented below.

2 An Axiomatisation of Equality With J

Let us assume that _≡_ has the following type:

_≡_ : {A : Type a} → A → A → Type a

(Arguments in braces are implicit arguments, that do not need to be given explicitly if Agda
can infer them. To avoid clutter some implicit argument declarations, like the one for the
universe level a, are omitted from type signatures.) This type family is assumed to satisfy
the following axioms:

refl : (x : A) → x ≡ x

J : (P : {x y : A} → x ≡ y → Type p) → (∀ x → P (refl x)) → (eq : x ≡ y) → P eq
J-refl : (P : {x y : A} → x ≡ y → Type p) (r : ∀ x → P (refl x)) → J P r (refl x) ≡ r x

There should be a canonical proof of reflexivity, refl, there should be a J rule, and the usual
computation rule for J should hold up to the given notion of equality.

Any two notions of equality satisfying these axioms are pointwise equivalent, in the sense
of the HoTT book [7], using one of the notions to define what it means to be equivalent:

≡'≡ : (x ≡1 y) ' (x ≡2 y)

(Hofmann and Streicher have proved a very similar result [4, Section 5.2].) Furthermore
this proof maps refl to refl, in both directions. The proofs of these properties are easy and
omitted.

Cubical Agda’s path and identity type families are instances of these axioms, as is the
equality type family defined as an inductive family with a single constructor refl as in
Section 1. For paths this is shown in Section 3.

From now on_≡_ will be used to refer to an arbitrary notion of equality satisfying the
axioms above, whereas the path type family will be called Path. (It might be the case that
_≡_ also refers to the path type family.)

3 Homogeneous Paths

This section contains an introduction to paths, or more specifically homogeneous paths.
Section 4 discusses heterogeneous paths.

The path type constructor has the following type:

Path : {A : Type a} → A → A → Type a

The type Path {A = A} x y (where the notation {A = A} is used to explicitly give A as the
implicit argument A) is a kind of function space from the interval I to A. It is subject to
the restriction that when values in this type are applied to the endpoints of the interval, 0
and 1, we get x and y, respectively.

We can prove that the path type family is reflexive in the following way:

reflP : (x : A) → Path x x

reflP x = λ_ → x

Note that reflP x i is equal to x for all values of i.
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10:4 Higher Inductive Type Eliminators Without Paths

Cubical Agda comes with some interval operations. There is a maximum operation,
max, with 0 as a definitional unit and 1 as a definitional zero. Similarly min is a minimum
operation, with 1 as a definitional unit and 0 as a definitional zero. Furthermore there is a
negation operation, −_, that maps 0 to 1 and 1 to 0.

Cubical Agda also comes with a primitive transport operation:

transport : {p : I → Level} (P : (i : I ) → Type (p i)) → I → P 0 → P 1

(Level is the type of universe levels.) If the interval argument is 0, then the computational
behaviour of transport depends on the type family P . However, if the interval argument is
1, then transport returns its final argument. In this case there is a side-condition on the
use of transport that is not captured in its type: the type family P must be definitionally
constant. (The interval argument might be an expression that does not reduce to 0 or 1, and
the type family might mention interval variables used in the interval argument. In this case
the application is accepted if Agda can verify that the type family is constant whenever the
constraint i = 1 holds, where i is the interval argument [8].)

The primitive transport operation can be used to prove the J rule for paths (the notation
{x = x} is used to bind the implicit argument x to the name x):

J P : (P : {x y : A} → Path x y → Type p) → (∀ x → P (reflP x)) →
(eq : Path x y) → P eq

J P {x = x} P p eq = transport (λ i → P (λ j → eq (min i j))) 0 (p x)

Note that when i is 0, then the expression P (λ j → eq (min i j)) is definitionally equal to
P (λ_ → x), which is the type of p x. When i is 1, then the expression is definitionally
equal to P eq.

The computation rule for J does not hold by definition for J P . However, it can be proved
using the following lemma (following Anders Mörtberg [1]):

transport-refl : Path (transport (λ i → reflP A i) 0) (λ x → x)
transport-refl {A = A} = λ i → transport (λ_ → A) i

Note that the first argument given to the final occurrence of transport is constant when i
is 1, as required.

Cubical Agda also has support for composition of paths [2, 8]. There are two variants,
homogeneous and heterogeneous. Here the homogeneous variant is used to prove that path
equality is transitive [2] (this can also be proved using the J rule):

transP : Path x y → Path y z → Path x z

The basic idea of the proof is to construct three sides of a square, and to use the composition
operation to compute the square’s fourth side. Instead of showing the Agda code I have
included a diagram:

x y

x z

x≡y i

x y≡z j

transP x≡y y≡z i
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Every arrow in the diagram is a path between the expressions at the arrow’s endpoints,
and the expressions between the endpoints stand for arbitrary “points” on the paths. The
left-hand side of the diagram corresponds to i being 0, and the right-hand side to i being 1.
Similarly, the bottom corresponds to j being 0, and the top to j being 1. The solid arrows are
constructed using the two arguments given to transP (x≡y and y≡z), as well as a constant
path (the left-hand side). The composition operation is then used to construct the dashed
arrow.

The homogeneous composition operation requires that (roughly speaking) every “point”
on the left and right sides of the square have the same type. The heterogeneous operation,
which is used in Section 4, is more general in that it (roughly speaking) allows the types of
the points on the left and right sides to vary with j.

4 Heterogeneous Paths

The path type family discussed above is a homogeneous special case of a heterogenous notion
of path:

PathH : (P : I → Type p) → P 0 → P 1 → Type p

Path is defined using PathH :

Path : {A : Type a} → A → A → Type a
Path {A = A} = PathH (λ_ → A)

A typical eliminator for a regular inductive type takes one argument per constructor
(plus some other arguments). What should the type of such an argument be for a higher
constructor? It turns out that one can, at least in some cases, use heterogeneous paths to
give suitable types to such arguments.

Consider the following incomplete definition of an eliminator for the propositional trunca-
tion operator:

elimP : (P : ‖ A ‖ → Type p) → ((x : A) → P | x |) → ? → (x : ‖ A ‖) → P x

elimP P f t | x | = f x

elimP P f t (trivial x y i) = ?

There are two side-conditions on the right-hand side of the last clause: when i is 0, then it
must be definitionally equal to elimP P f t x (because trivial x y 0 is definitionally equal to
x), and when i is 1, then it must be definitionally equal to elimP P f t y. These requirements
can be captured using PathH :

elimP P f t (trivial x y i) = rhs i
where
rhs : PathH (λ i → P (trivial x y i)) (elimP P f t x) (elimP P f t y)
rhs = ?

There are no side-conditions on the right-hand side of rhs. Here is a complete definition of
the eliminator:

elimP : (P : ‖ A ‖ → Type p) →
((x : A) → P | x |) →
({x y : ‖ A ‖} (p : P x) (q : P y) → PathH (λ i → P (trivial x y i)) p q) →
(x : ‖ A ‖) → P x
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elimP P f t | x | = f x

elimP P f t (trivial x y i) = t (elimP P f t x) (elimP P f t y) i

The goal here is to define eliminators that use an arbitrary notion of equality that satisfies
the axioms from Section 2, not necessarily paths, either heterogeneous or homogeneous. As
mentioned above homogeneous path equality is pointwise equivalent to any other notion of
equality satisfying the axioms. How do heterogeneous paths fit into this picture?

PathH can, up to equivalence, be expressed using Path:

PathH'Path :
(P : I → Type p) {p : P 0} {q : P 1} → PathH P p q ' Path (transport P 0 p) q

It turns out that it is very easy to prove this equivalence.1 One can use transport to construct
the corresponding path:

PathH≡Path :
(P : I → Type p) (p : P 0) (q : P 1) → Path (PathH P p q) (Path (transport P 0 p) q)

PathH≡Path P p q i =
PathH (λ j → P (max i j)) (transport (λ j → P (min i j)) (− i) p) q

When i is 0, then the type family argument given to transport is constant, as required, and
the right-hand side is definitionally equal to PathH P p q. Furthermore, when i is 1, then
the right-hand side is definitionally equal to Path (transport P 0 p) q. Once the equality has
been established in this way one can turn it into an equivalence by using substP :

substP : (P : A → Type p) → Path x y → P x → P y

substP P x≡y p = transport (λ i → P (x≡y i)) 0 p

A function like substP can also be defined for the arbitrary notion of equality by using
the J rule. In order to support different definitions, like substP for paths, let us assume that
our arbitrary notion of equality comes with a function subst, along with a propositional
computation rule for subst:

subst : (P : A → Type p) → x ≡ y → P x → P y

subst-refl : subst P (refl x) p ≡ p

As noted in Section 2 the arbitrary notion of equality is pointwise equivalent to path equality.
Let from-path : Path x y → x ≡ y denote one direction of the equivalence, and to-path the
other. We can now relate subst to substP :

subst≡substP : (x≡y : Path x y) → subst P (from-path x≡y) p ≡ substP P x≡y p

The proof uses the J rule for paths and the following calculation (recall that from-path maps
canonical reflexivity proofs to canonical reflexivity proofs):

subst P (from-path (reflP x)) p ≡
subst P (refl x) p ≡
p ≡
substP P (reflP x) p

The last step follows from transport-refl.

1 In retrospect. Anders Mörtberg had implemented a corresponding logical equivalence [5]. I asked Anders
and Andrea Vezzosi if and how the corresponding equivalence could be proved. Andrea gave me some
useful hints. I managed to finish the proof, only to find out that Andrea had proved it a couple of days
before me. However, both proofs were rather complicated. The simple proof presented here was found
by Anders quite some time later.
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4.1 Consequences of the Equivalence
Let us now discuss some consequences of the equivalence PathH'Path. By combining it with
subst≡substP we get the following equivalence:

subst≡'PathH : {x≡y : Path x y} →
(subst P (from-path x≡y) p ≡ q) ' PathH (λ i → P (x≡y i)) p q

We can calculate in the following way:

subst P (from-path x≡y) p ≡ q '
substP P x≡y p ≡ q '
Path (substP P x≡y p) q '
PathH (λ i → P (x≡y i)) p q

Thus heterogeneous paths are closely related to the dependent paths used in the types of
eliminators for several higher inductive types in the HoTT book [7]. Let us denote the forward
direction of the equivalence by subst≡�PathH and the other direction by PathH�subst≡. Let
us also give a name to the forward direction of the first two steps of the calculation above:

subst≡�substP≡ : {x≡y : Path x y} →
subst P (from-path x≡y) p ≡ q → Path (substP P x≡y p) q

The HoTT book also makes use of a function called apd, defined using J [7]. Let us assume
that the arbitrary notion of equality comes with such a function, along with a propositional
computation rule:

congD : (f : (x : A) → P x) (x≡y : x ≡ y) → subst P x≡y (f x) ≡ f y

congD-refl : (f : (x : A) → P x) → congD f (refl x) ≡ subst-refl

We can prove a similar property for paths [5]:

congH : (f : (x : A) → P x) (x≡y : Path x y) → PathH (λ i → P (x≡y i)) (f x) (f y)
congH f x≡y i = f (x≡y i)

The functions can be related in the following way:

congD≡congH :
{x≡y : Path x y} (f : (x : A) → P x) →
congD f (from-path x≡y) ≡ PathH�subst≡ (congH f x≡y)

We can prove congD≡congH by defining congDP (a variant of congD for paths) and relating
this variant to congD as well as congH .

Given the definition of substP above one can define congDP using transport in the following
way:

congDP : (f : (x : A) → P x) (x≡y : Path x y) → Path (substP P x≡y (f x)) (f y)
congDP {P = P} f x≡y = λ i → transport (λ j → P (x≡y (max i j))) i (f (x≡y i))

The proof of the following property relating congD and congDP is omitted (see the accompa-
nying code for details):

congD≡congDP :
{x≡y : Path x y} →
subst≡�substP≡ (congD f (from-path x≡y)) ≡ congDP f x≡y
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Let us instead focus on the proof of the following property that relates congDP to congH

(_'_.to gives the forward direction of an equivalence, and_'_.from the other one):

congDP≡congH :
{x≡y : Path x y} (f : (x : A) → P x) →
Path (congDP f x≡y) (_'_.to (PathH'Path (λ i → P (x≡y i))) (congH f x≡y))

We can start by using the J rule for the path x≡y, and then calculate in the following way:

congDP f (reflP x) ≡
(λ i → transport (λ_ → P x) i (f x)) ≡
transport (λ i → Path (transport (λ_ → P x) (− i) (f x)) (f x)) 0 (reflP (f x)) ≡
transport (λ i → Path (transport (λ_ → P x) (− i) (f x)) (f x)) 0

(transport (λ_ → Path (f x) (f x)) 0 (reflP (f x))) ≡
_'_.to (PathH'Path (λ i → P (reflP x i))) (congH f (reflP x))

The first and last steps hold by definition. The third step follows from transport-refl. Finally
the second step uses heterogeneous composition to construct the dashed arrow of the following
square:

reflP (f x) transport (λ_ → Path (f x) (f x)) 0 (reflP (f x))

λ i → transport (λ_ → P x) i (f x)

transport (λ i → Path (transport (λ_ → P x) (− i) (f x)) (f x)) 0 (reflP (f x))

b

l

r

The bottom line in the diagram (b) is defined in the following way:

transport (λ_ → Path (f x) (f x)) (− i) (reflP (f x))

The left-hand side of the diagram (l) corresponds to i being 0, and the right-hand side (r)
to i being 1. Similarly, the bottom (b) corresponds to j being 0, and the dashed arrow to j
being 1. The diagram’s left-hand side (l) is defined in the following way:

λ k → transport (λ_ → P x) (max k (− j)) (f x)

The right-hand side (r) is defined in the following way:

transport (λ k → Path (transport (λ_ → P x) (− min k j) (f x)) (f x)) 0 (reflP (f x))

As mentioned above the heterogeneous composition operation allows the types of l and r to
vary with j. In this case these expressions have the following type:

Path (transport (λ_ → P x) (− j) (f x)) (f x)

With congD≡congDP and congDP≡congH in place it is easy to prove congD≡congH . As
a corollary we get the following property that will be used below:

dependent-computation-rule-lemma :
{x≡y : Path x y} {fx≡fy : subst P (from-path x≡y) (f x) ≡ f y} →
congH f x≡y ≡ subst≡�PathH fx≡fy → congD f (from-path x≡y) ≡ fx≡fy
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5 The Circle Without Paths

Let us now see how we can make the definition of a higher inductive type—the circle [7]—usable
with the arbitrary notion of equality satisfying the axioms from Section 2 (and with subst,
subst-refl, congD and congD-refl instantiated in some way, as discussed in Section 4).

Here is the definition of the circle, using paths:

data S1 : Type where
base : S1

loopP : Path base base

It is easy to define a variant of loopP that uses the arbitrary notion of equality instead of a
path:

loop : base ≡ base
loop = from-path loopP

What about the eliminator? An eliminator that uses paths can be defined in the following
way:

elimP : (P : S1 → Type p) (b : P base) → PathH (λ i → P (loopP i)) b b → (x : S1) → P x

elimP P b ` base = b

elimP P b ` (loopP i) = ` i

Now it is easy to use subst≡�PathH to construct an eliminator that uses the arbitrary notion
of equality instead. The type signature matches the one given in the HoTT book [7]:

elim : (P : S1 → Type p) (b : P base) (` : subst P loop b ≡ b) (x : S1) → P x

elim P b ` = elimP P b (subst≡�PathH `)

The HoTT book gives two computation rules for the eliminator. The one for the point
constructor base is stated to be definitional, and that is the case here. The one for the higher
constructor is given as an equality, and we can do the same thing:

elim-loop : congD (elim P b `) loop ≡ `

elim-loop = dependent-computation-rule-lemma (refl _)

The proof simply applies dependent-computation-rule-lemma to reflexivity. Things have been
set up in such a way that congH (elim P b `) loopP is definitionally equal to subst≡�PathH `;
every step of the following calculation holds by definition:

congH (elim P b `) loopP ≡
(λ i → elim P b ` (loopP i)) ≡
(λ i → elimP P b (subst≡�PathH `) (loopP i)) ≡
(λ i → subst≡�PathH ` i) ≡
subst≡�PathH `

We can also define a non-dependent eliminator. This definition does not require most of
the machinery introduced above. Here is a non-dependent eliminator for paths:

recP : (b : A) → Path b b → S1 → A

recP = elimP _
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This variant can be used to define an eliminator for the arbitrary notion of equality:

rec : (b : A) → b ≡ b → S1 → A

rec b ` = recP b (to-path `)

We simply convert the equality to a path. The computation rule for the higher constructor is
stated using cong, a function that, along with a propositional computation rule, is assumed
to come with our arbitrary notion of equality (these functions could be defined using J):

cong : (f : A → B) → x ≡ y → f x ≡ f y

cong-refl : cong f (refl x) ≡ refl (f x)

The computation rule can be stated and proved in the following way:

rec-loop : cong (rec b `) loop ≡ `

rec-loop = non-dependent-computation-rule-lemma (refl _)

Here non-dependent-computation-rule-lemma is a lemma that is easy to prove:

non-dependent-computation-rule-lemma :
{x≡y : Path x y} {fx≡fy : f x ≡ f y} →
congH f x≡y ≡ to-path fx≡fy → cong f (from-path x≡y) ≡ fx≡fy

An alternative is to define the non-dependent eliminator in terms of the dependent one:

rec′ : (b : A) → b ≡ b → S1 → A

rec′ b ` = elim _ b (trans subst-const `)

Here trans and subst-const have the following types:

trans : x ≡ y → y ≡ z → x ≡ z

subst-const : subst (λ_ → A) x≡y z ≡ z

The third argument to elim thus captures the following calculation, where the first step uses
subst-const and the second uses `:

subst (λ_ → A) loop b ≡
b ≡
b

The computation rule can be proved using the computation rule for the dependent eliminator:

rec′-loop : cong (rec′ b `) loop ≡ `

rec′-loop = congD≡→cong≡ elim-loop

The proof uses the following lemma:

congD≡→cong≡ :
{x≡y : x ≡ y} {fx≡fy : f x ≡ f y} →
congD f x≡y ≡ trans subst-const fx≡fy → cong f x≡y ≡ fx≡fy
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6 Set Quotients Without Paths

The higher inductive type given for the circle does not include any truncation constructor, i.e.
a constructor that states directly that the type has a certain h-level. As an example of such
a higher inductive type this section treats set quotients [7], which come with a truncation
constructor that ensures that the resulting types are sets (in the sense of the HoTT book [7]).

A type of h-level n is an (n− 2)-type:

Contractible : Type a → Type a
Contractible A = Σ A λ x → (y : A) → x ≡ y

H-level : N → Type a → Type a
H-level zero A = Contractible A
H-level (suc zero) A = (x y : A) → x ≡ y

H-level (suc (suc n)) A = {x y : A} → H-level (suc n) (x ≡ y)

Propositions (or mere propositions) are types of h-level 1, and sets are types of h-level 2:

Is-proposition : Type a → Type a
Is-proposition = H-level 1

Is-set : Type a → Type a
Is-set = H-level 2

Let H-levelP , Is-propositionP and Is-setP refer to the corresponding concepts defined using
paths instead of the arbitrary notion of equality.

Now we can define set quotients (the definition is similar to the one in the HoTT book [7],
but the relations are not required to be propositional, following Mörtberg [5]):

data_/_ (A : Type a) (R : A → A → Type r) : Type (a t r) where
[_] : A → A / R

[]-respects-relationP : R x y → Path [ x ] [ y ]
/-is-setP : Is-setP (A / R)

(Here _t_ is a maximum operator for universe levels.) The constructor [_]—box—takes
values from the underlying type to the quotient, and the type of []-respects-relationP implies
that box maps related values to equal values. If we expand Is-setP , then we see that the
/-is-setP constructor takes two paths between quotient values, and returns a path between
paths:

{x y : A / R} (eq1 eq2 : Path x y) → Path eq1 eq2

A direct definition of an eliminator could take the following form:

elimP ′ : (P : A / R → Type p)
(f : ∀ x → P [ x ])
(g : ∀ {x y} (r : R x y) → PathH (λ i → P ([]-respects-relationP r i)) (f x) (f y)) →
(∀ {x y} {eq1 eq2 : Path x y} {p : P x} {q : P y}

(eq3 : PathH (λ i → P (eq1 i)) p q) (eq4 : PathH (λ i → P (eq2 i)) p q) →
PathH (λ i → PathH (λ j → P (/-is-setP eq1 eq2 i j)) p q) eq3 eq4) →

(x : A / R) → P x
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elimP ′ P f g h [ x ] = f x

elimP ′ P f g h ([]-respects-relationP r i) = g r i
elimP ′ P f g h (/-is-setP p q i j) =

h (λ i → elimP ′ P f g h (p i)) (λ i → elimP ′ P f g h (q i)) i j

However, the type of the penultimate argument might look somewhat daunting. It can be
replaced by the requirement that the motive P is a family of sets. (For performance reasons
the accompanying code defines the eliminator in a slightly different way: the second, third
and fourth arguments are bundled up using a record type with η-equality turned off. Other
eliminators from this section are also defined in this way in the accompanying code.)

Before defining an alternative eliminator, let us prove some lemmas. Consider the following
variant of the final clause of H-levelP :

H-levelP-suc'H-levelP-PathH :
{P : I → Type p} →
H-levelP (suc n) (P i) ' ((x : P 0) (y : P 1) → H-levelP n (PathH P x y))

This variant can be proved by calculating in the following way:

H-levelP (suc n) (P i) '
H-levelP (suc n) (P 1) '
((x y : P 1) → H-levelP n (x ≡ y)) '
((x : P 0) (y : P 1) → H-levelP n (Path (transport P 0 x) y)) '
((x : P 0) (y : P 1) → H-levelP n (PathH P x y))

The first step follows from the following equality:

index-irrelevant : (P : I → Type p) → ∀ i j → Path (P i) (P j)
index-irrelevant P i j k = P (max (min i (− k)) (min j k))

The second step is related to Lemma 3.11.10 from the HoTT book [7], and the fourth step uses
PathH'Path. The third step uses index-irrelevant again, as well as the following preservation
lemma:

Π-cong : (A'B : A ' B) → (∀ x → P x ' Q (_'_.to A'B x)) →
((x : A) → P x) ' ((x : B) → Q x)

This step also uses transport-refl and the following equality:

transport-transport : (P : I → Type p) {p : P 0} →
Path (transport (λ i → P (− i)) 0 (transport P 0 p)) p

We can use H-levelP-suc'H-levelP-PathH to prove that a heterogeneous notion of proof
irrelevance holds for families of propositions:

heterogeneous-irrelevance :
(∀ x → Is-propositionP (P x)) →
{x≡y : Path x y} {p : P x} {q : P y} → PathH (λ i → P (x≡y i)) p q

We can reason in the following way:

(∀ x → Is-propositionP (P x)) →
Is-propositionP (P x) →
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Is-propositionP (P (x≡y 0)) →
ContractibleP (PathH (λ i → P (x≡y i)) p q) →
PathH (λ i → P (x≡y i)) p q

The third step follows from H-levelP-suc'H-levelP-PathH , and the last step uses the fact that
contractible types are inhabited. We can also prove a similar result for families of sets:2

heterogeneous-UIP :
(∀ x → Is-setP (P x)) →
{eq1 eq2 : Path x y} {eq3 : Path eq1 eq2} {p1 : P x} {p2 : P y}
(eq4 : PathH (λ j → P (eq1 j)) p1 p2)
(eq5 : PathH (λ j → P (eq2 j)) p1 p2) →
PathH (λ i → PathH (λ j → P (eq3 i j)) p1 p2) eq4 eq5

The proof is very similar to the previous one:

(∀ x → Is-setP (P x)) →
Is-setP (P x) →
Is-setP (P (eq3 0 0)) →
Is-propositionP (PathH (λ j → P (eq3 0 j)) p1 p2) →
ContractibleP (PathH (λ i → PathH (λ j → P (eq3 i j)) p1 p2) eq4 eq5) →
PathH (λ i → PathH (λ j → P (eq3 i j)) p1 p2) eq4 eq5

Here H-levelP-suc'H-levelP-PathH is used twice, once in the third step and once in the fourth.
Now let us go back to the set quotients. Using heterogeneous-UIP it is easy to implement

the following dependent eliminator and a corresponding non-dependent eliminator:

elimP : (P : A / R → Type p)
(f : ∀ x → P [ x ]) →
(∀ {x y} (r : R x y) → PathH (λ i → P ([]-respects-relationP r i)) (f x) (f y)) →
(∀ x → Is-setP (P x)) →
(x : A / R) → P x

elimP P f g s = elimP ′ P f g (heterogeneous-UIP s)

recP : (f : A → B) → (∀ {x y} → R x y → Path (f x) (f y)) → Is-setP B → A / R → B

recP f g s = elimP _ f g (λ_ → s)

With the non-dependent eliminator one can define a function from A / R to a set B by
giving a function from A to B that respects the relation.

Let us now define variants without paths of the higher constructors and the last two
eliminators. The first higher constructor can be treated in the same way as before:

[]-respects-relation : R x y →_≡_ {A = A / R} [ x ] [ y ]
[]-respects-relation = from-path ◦ []-respects-relationP

For the other one we can start by noting that the two definitions of h-levels given above are
pointwise equivalent:

H-level'H-levelP : ∀ n → H-level n A ' H-levelP n A

2 Zesen Qian has proved more or less the same result, but in a different way [5, Git commit
9a4f3cf3c733db82344bfc98b82f405101df816a].
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It is then easy to define the variant of the second constructor:

/-is-set : Is-set (A / R)
/-is-set =_'_.from (H-level'H-levelP 2) /-is-setP

The dependent eliminator can be defined in the following way, using subst≡�PathH and
H-level'H-levelP :

elim : (P : A / R → Type p)
(f : ∀ x → P [ x ]) →
(∀ {x y} (r : R x y) → subst P ([]-respects-relation r) (f x) ≡ f y) →
(∀ x → Is-set (P x)) →
(x : A / R) → P x

elim P f g s = elimP P f (subst≡�PathH ◦ g) (_'_.to (H-level'H-levelP 2) ◦ s)

Finally it is easy to define a variant of recP :

rec : (f : A → B) → (∀ {x y} → R x y → f x ≡ f y) → Is-set B → A / R → B

rec f g s = recP f (to-path ◦ g) (_'_.to (H-level'H-levelP 2) s)

I have not included computation rules for the higher constructors, because sets have proposi-
tional equality types (i.e. any two equality proofs of the same type are equal).

7 More Examples

Let us now consider more examples. No new functionality is introduced in this section: the
functions introduced above suffice to handle a large number of examples.

The suspension type constructor and corresponding eliminators can be defined in the
following way [7]:

data Susp (A : Type a) : Type a where
north : Susp A
south : Susp A
meridianP : A → Path north south

elimP : (P : Susp A → Type p) (n : P north) (s : P south) →
(∀ x → PathH (λ i → P (meridianP x i)) n s) →
(x : Susp A) → P x

elimP _ n s n≡s north = n

elimP _ n s n≡s south = s

elimP _ n s n≡s (meridianP x i) = n≡s x i

recP : (n s : B) → (A → Path n s) → Susp A → B

recP = elimP _

Variants of the higher constructor and the eliminators, and two propositional computation
rules, can then be defined in the following way:

meridian : A →_≡_ {A = Susp A} north south
meridian = from-path ◦ meridianP



N.A. Danielsson 10:15

elim : (P : Susp A → Type p) (n : P north) (s : P south) →
(∀ x → subst P (meridian x) n ≡ s) →
(x : Susp A) → P x

elim P n s n≡s = elimP P n s (subst≡�PathH ◦ n≡s)

elim-meridian : (P : Susp A → Type p) (n : P north) (s : P south)
(n≡s : ∀ x → subst P (meridian x) n ≡ s) →
congD (elim P n s n≡s) (meridian x) ≡ n≡s x

elim-meridian ____ = dependent-computation-rule-lemma (refl _)

rec : (n s : B) → (A → n ≡ s) → Susp A → B

rec n s n≡s = recP n s (to-path ◦ n≡s)

rec-meridian : (n s : B) (n≡s : A → n ≡ s) →
cong (rec n s n≡s) (meridian x) ≡ n≡s x

rec-meridian ___ = non-dependent-computation-rule-lemma (refl _)

Note that most of the text consists of type signatures, and that the lemmas introduced above
can be used unchanged.

As a second example of a higher inductive type with a truncation constructor, let us
now return to the propositional truncation operator from Section 1 (with trivial renamed to
trivialP):

data ‖_‖ (A : Type a) : Type a where
|_| : A → ‖ A ‖
trivialP : (x y : ‖ A ‖) → Path x y

The following eliminator was given in Section 4 (but it was called elimP):

elimP ′ : (P : ‖ A ‖ → Type p) →
((x : A) → P | x |) →
({x y : ‖ A ‖} (p : P x) (q : P y) → PathH (λ i → P (trivialP x y i)) p q) →
(x : ‖ A ‖) → P x

elimP ′ P f t | x | = f x

elimP ′ P f t (trivialP x y i) = t (elimP ′ P f t x) (elimP ′ P f t y) i

Just like for the set quotients in Section 6 we can define an alternative eliminator and a
corresponding non-dependent eliminator:

elimP : (P : ‖ A ‖ → Type p) →
((x : A) → P | x |) →
(∀ x → Is-propositionP (P x)) →
(x : ‖ A ‖) → P x

elimP P f p = elimP ′ P f (λ__ → heterogeneous-irrelevance p)

recP : (A → B) → Is-propositionP B → ‖ A ‖ → B

recP f p = elimP _ f (λ_ → p)

Variants of the higher constructor and the eliminators can then be defined in the following
way:

trivial : Is-proposition ‖ A ‖
trivial =_'_.from (H-level'H-levelP 1) trivialP
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elim : (P : ‖ A ‖ → Type p) →
((x : A) → P | x |) →
(∀ x → Is-proposition (P x)) →
(x : ‖ A ‖) → P x

elim P f p = elimP P f (_'_.to (H-level'H-levelP 1) ◦ p)

rec : (A → B) → Is-proposition B → ‖ A ‖ → B

rec f p = recP f (_'_.to (H-level'H-levelP 1) p)

Note again that the lemmas introduced above can be used unchanged. (Computation rules
for the higher constructors are omitted, because propositions have propositional equality
types.)

8 An Alternative Approach

This section discusses an alternative approach, suggested by an anonymous reviewer. The
circle is used as an example.

We can write down the formation, introduction, elimination and computation rules of
the circle using Σ-types in the following way:

Circle : (p : Level) → Type (lsuc p)
Circle p =

Σ Type λ S1 →
Σ S1 λ base →
Σ (base ≡ base) λ loop →

(P : S1 → Type p) (b : P base) (` : subst P loop b ≡ b) →
Σ ((x : S1) → P x) λ elim →
Σ (elim base ≡ b) λ elim-base →

subst (λ b → subst P loop b ≡ b) elim-base (congD elim loop) ≡ `

Note that the definition is parametrised by the level of the universe into which the eliminator
should eliminate (lsuc is a successor operation for levels). Note also that the computation
rule for loop is more complicated than in Section 5; the reason is that the computation rule
for base does not hold by definition.

We can also write down a corresponding definition that uses paths instead of the arbitrary
notion of equality and prove that the two definitions are pointwise equivalent:

CircleP : (p : Level) → Type (lsuc p)
CircleP'Circle : CircleP p ' Circle p

Finally we can prove that CircleP p is inhabited and use the equivalence to derive an
implementation of Circle p:

circleP : CircleP p

circle : Circle p

It is even possible to do this in such a way that the derived eliminator gets the “right”
computational behaviour for the point constructor (see the accompanying code for details).
This implies that the less complicated computation rule given for the higher constructor in
Section 5 can be proved.
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However, when I followed this method I ended up with quite a bit more code (excluding
library code) than when I used the approach demonstrated above. Here is an implementation
of circleP , with the proof of the second computation rule omitted:

S1 , base , loopP , λ P b ` → elimP P b (subst≡�PathH {P = P} `) , reflP b , . . .

The code uses a variant of subst≡�PathH for paths, and the omitted proof of the second
computation rule uses a variant of dependent-computation-rule-lemma for paths, plus an
extra lemma (due to the more complicated formulation of the computation rule). If we do
not count the size of library code then this code (CircleP and circleP) is already about as
large as the definition of the eliminator and computation rule given in Section 5. In addition
we have to prove CircleP'Circle, and if we are not careful we can end up with an eliminator
that does not have the right computational behaviour for the point constructor. Finally we
can write a little more code to establish the less complicated formulation of the computation
rule for the higher constructor.

9 Discussion

The approach used for suspensions in Section 7 works for several other higher inductive
types from the HoTT book [7], including the interval, pushouts, and a general truncation
operator (see the accompanying code for details). Furthermore I have shown how one can
handle propositional truncation and set truncation constructors. The higher constructors of
these types—with the exception of the truncation constructors—satisfy the following two
properties:

All constructors return paths between points.
No constructor takes a path involving the type family that is being defined as input
(ignoring the possibility of later instantiating parameters to such paths).

This might seem to be a serious limitation. However, the HoTT book mentions a method
for avoiding paths as inputs [7, Section 6.9], involving the use of auxiliary higher inductive
types. It also discusses a method for avoiding higher constructors that return paths between
paths, using a “hub” and “spokes” [7, Section 6.7]. The hub-and-spokes construction is
used to define the general truncation operator. A potential drawback of the hub-and-spokes
construction is that the resulting eliminators may have different computational behaviour [7,
Remark 6.7.2], but that is already the case for the methods discussed here.

If the computational behaviour for higher constructors is important, then I do not
advocate using the techniques discussed above. Working directly with paths can lead to
better computational behaviour: the J rule might not compute in the usual way, but instead
there are new definitional equalities. To illustrate this point: The HoTT book mentions
another higher inductive type, the torus, given using the hub-and-spokes construction. The
definition refers to the circle. I could use a variation of the method described in this text to
give an interface to the torus. However, when doing this I found it easier to work with the
path-based interface to the circle than the one using an arbitrary notion of equality. (For
details of my definition, see the accompanying code.)
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