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Abstract
We study the problem of exploring an oriented grid with autonomous agents governed by finite
automata. In the case of a 2-dimensional grid, the question how many agents are required to
explore the grid, or equivalently, find a hidden treasure in the grid, is fully understood in both the
synchronous and the semi-synchronous setting. For higher dimensions, Dobrev, Narayanan, Opatrny,
and Pankratov [ICALP’19] showed very recently that, surprisingly, a (small) constant number of
agents suffices to find the treasure, independent of the number of dimensions, thereby disproving a
conjecture by Cohen, Emek, Louidor, and Uitto [SODA’17]. Dobrev et al. left as an open question
whether their bounds on the number of agents can be improved. We answer this question in the
affirmative for deterministic finite automata: we show that 3 synchronous and 4 semi-synchronous
agents suffice to explore an n-dimensional grid for any constant n. The bounds are optimal and
notably, the matching lower bounds already hold in the 2-dimensional case.

Our techniques can also be used to make progress on other open questions asked by Dobrev et al.:
we prove that 4 synchronous and 5 semi-synchronous agents suffice for polynomial-time exploration,
and we show that, under a natural assumption, 3 synchronous and 4 semi-synchronous agents suffice
to explore unoriented grids of arbitrary dimension (which, again, is tight).
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1 Introduction

Grid search by mobile agents is one of the fundamental primitives in swarm robotics and a
natural abstraction of foraging behavior of animals. For example in the case of cost-efficient
robots or insects, a single agent has relatively limited computation and communication
capabilities and hence, many independent agents are required to efficiently solve tasks. To
understand such collective problem solving better, knowledge from distributed computing
has proven valuable. For instance, Feinerman et al. gave tight bounds on the time complexity
of a collective grid search problem inspired by desert ants [17]. In this paper, we focus
on the minimum number of agents required to solve the grid search problem. A series of
papers [7,9,15] nailed down the exact complexity of the 2-dimensional case, that is, discovered
the exact number of synchronous/semi-synchronous and deterministic/randomized finite
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13:2 Tight Bounds for Deterministic High-Dimensional Grid Exploration

automata needed to explore a 2-dimensional grid. However, the approaches in these works
do not generalize (well) to higher dimensions. The only known tight bound achieved by such
a generalization is obtained by the recent protocol for the deterministic semi-synchronous
3-dimensional setting by Dobrev, Narayanan, Opatrny, and Pankratov [13].

The authors of [13] also gave a more general result: they showed how to implement a
stack data structure using only a constant number of agents governed by finite automata. By
employing this stack in their search protocols, they show how to explore an n-dimensional
grid using only a (small) constant number of agents, for any positive integer n. In particular,
the number of agents is independent of the dimension n.

For the case of a 2-dimensional grid the required number of agents is fully understood.
However, for higher dimensions there are still gaps between the best upper and lower
bounds. Indeed, Dobrev et al. left as open questions the tight complexities of exploring
high-dimensional grids in the synchronous/semi-synchronous and deterministic/randomized
settings. In this work, we answer these questions for the deterministic setting. Moreover,
building on our techniques we make progress on other open questions by Dobrev et al.

1.1 Results and Techniques
Similarly to the approach by Dobrev et al. [13], our search protocols rely on an efficient
implementation of a stack data structure. One agent is dedicated to do the actual search while
the remaining agents implement a stack (together with the searching agent that indicates
the base of the stack) with their positions on the grid. On a high level, the size of the stack
encodes the cell the searching agent is supposed to explore next, relative to the current
position of the searching agent. Both our protocol and the protocol from [13] explore the
grid by repeatedly reading the stack, moving the searching agent to the cell indicated by the
stack, moving the searching agent back to its original cell, and incrementing the stack. The
difficult part is to be able to effectively read the stack (without destroying the stack in the
process) despite the fact that the size of the stack grows arbitrarily far beyond the number of
states in the finite automaton reading the stack. The authors of [13] managed to implement
this data structure using 4 agents in the synchronous and 5 agents in the semi-synchronous
setting and showed how to explore oriented grids with as many agents.

One of our main contributions is to implement this stack and the operations required for
reading it with only 3 (synchronous) agents (including the searching agent), which is optimal
given the grid exploration lower bound by Emek et al. [15]. We achieve this by an encoding
scheme that transforms the location of a cell to be explored into a single integer (that can
be represented by the stack size) by interpreting the coordinates of the cell (relative to the
current location of the searching agent) as exponents of distinct prime factors. This scheme
is also known as Gödel’s encoding. One crucial advantage of this specific encoding is that
there is a way to read the stack (using 3 synchronous agents), i.e., to repeatedly provide the
searching agent with different parts of the encoded information, that does not destroy the
encoded information, but instead changes the encoding slightly: replacing the base (prime)
for one of those exponents by a different prime (and then switching to the next base prime).
The technical details why such replacement operations can be performed by 3 synchronous
agents and why they allow the searching agent to obtain the desired information are covered
in Sections 3 and 4. Moreover, by adding one agent as a synchronizer, the protocol can be
made to work in the semi-synchronous setting.

I Theorem 1. For any positive integer n, the n-dimensional (oriented) grid can be explored
by 3 synchronous finite automata, resp. 4 semi-synchronous finite automata.
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Unoriented Grids. An underlying assumption of the setting considered so far is that the
agents are aware of the 2n cardinal directions, i.e., they know for each of the n dimensions
of the grid which two adjacent cells are neighbors in that dimension, and each dimension
is oriented. Or, to put it simply, the agents know which directions are north, south, etc.;
in particular the directions are globally consistent. In contrast, in the unoriented setting
considered in [13], each cell is endowed with a labeling that indicates for each cell which
neighbor is north, south, etc. (and for each of the 2n directions there is exactly one neighbor),
but there is no consistency guarantee between the directions indicated by the labels of
different cells, e.g. by going north twice, an agent could end up in the cell it started.

In their work, Dobrev et al. also ask “How many additional agents are necessary to solve
the problem in unoriented grids?”. We show, perhaps surprisingly, that the unoriented case
is no harder than the oriented case given the following (natural) assumption: If we follow
some fixed direction, we never end up back in the same cell where we started.

I Theorem 2 (Simplified). Under a natural assumption, for any positive integer n, 3
synchronous finite automata, resp. 4 semi-synchronous finite automata, suffice to explore any
n-dimensional unoriented grid.

The key idea to obtain Theorem 2 is that, even without a globally consistent orientation,
we can implement a (virtual) stack. Due to the missing consistency, the same cell may occur
repeatedly in the stack, but we can show that we can bound the number of occurrences for
each cell and that the agents can distinguish between the different occurrences of the same
cell. In essence, we will show that the stack corresponds to (a part of) a DFS exploration of
an infinite tree consisting of those edges (between cells) that point north.

Polynomial Time Protocol. The task of exploring the entire grid is equivalent to finding a
treasure located at some distance D from the starting point. This allows us to discuss the
efficiency of a protocol, i.e., its runtime with respect to D. We observe that our encoding
scheme for the oriented grid using only 3 synchronous, resp. 4 semi-synchronous, agents
might result in exponential time. However, with one additional agent, certain useful stack
operations can be extended to work for non-constant values. This allows us to use a different
exploration scheme, proposed by Dobrev et al. [13], resulting in a polynomial runtime.

I Theorem 3. For any positive integer n, the n-dimensional (oriented) grid can be explored
by: (1) 4 synchronous agents in time O(V (D)2), and (2) 5 semi-synchronous agents in time
O(V (D)3), where V (D) = Θ(Dn) is the volume of the `1-ball of radius D.

Due to space constraints, our discussion of polynomial-time exploration, as well as the
proofs of all lemmas and theorems are deferred to the full version.

1.2 Further Related Work
In a typical graph exploration setting, we are given a graph where initially, one or more
mobile agents are placed on some vertices of the graph. The agents are able to traverse
along the edges and their goal is to explore the graph, that is, visit every node or edge of
the graph. Equivalently, one can think of searching for a treasure hidden on an edge or a
node of the graph. Graph exploration has been widely studied in the literature (see, for
example, [1, 10,11,18,21,22]) and it comes in many variants.

A classic setting is the cow-path problem, where a single agent, the cow, is searching for
adversarially hidden food on a path [3,4]. The goal for the cow is to minimize the number of
edge-traversals until the food is found. It is known that a simple spiral search is optimal
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and this algorithm also generalizes to the case of grids. This problem was also studied in
the case of many cows [20]. Closely related to our work is the exploration of labyrinths, i.e.,
2-dimensional grids where some cells are blocked [8]. It is known that two finite automata or
one automaton with two pebbles (movable marker) suffice for co-finite labyrinths, where a
finite amount of cells are not blocked [6]. Finite labyrinths, where a finite amount cells are
blocked, can be explored with one automaton and four pebbles, whereas one automaton and
one pebble is not enough [5,19]. An agent with Θ(log logn) pebbles can explore all graphs
and this bound is tight [12].

In the case of many agents, the agents typically operate in look-compute-move cycles.
First, the agents simultaneously take a local snapshot, then decide on the next operation, and
finally, execute the operation. Graph exploration can be divided into synchronous (FSYNC),
semi-synchronous (SSYNC), and asynchronous (ASYNC) variants [23–25]. In the FSYNC
setting, the execution is divided into synchronous rounds, where in every round, every agent
executes one cycle. The execution in SSYNC consists of discrete time steps, where in each
step, a subset of the agents executes one atomic cycle. In the ASYNC setting, the cycles
are not (necessarily) atomic. In this paper, we study the FSYNC and the SSYNC settings.

For finite graphs, a random walk provides a simple algorithm that explores the graph in
polynomial time [2]. In the case of an infinite n-dimensional grid, a random walk finds the
treasure with probability 1 if n ≤ 2. However, the expected hitting time, i.e., the time to
find the treasure, is infinite. Cohen et al. showed that even for the case of two (collaborating)
randomized agents governed by finite automata, one cannot achieve any finite hitting time for
n ≥ 2 [9]. Very recently, Dobrev et al. showed that 3 randomized FSYNC and 4 randomized
SSYNC agents suffice to achieve a finite hitting time for any n [13]. In this work, we achieve
the same bounds with deterministic agents.

This work follows a series of papers inspired the work by Feinerman et al., where they
studied the time it takes to find a treasure in a 2-dimensional grid by k non-communicating
agents governed by Turing machines [17]. They showed that the time complexity of this task
is Θ(D2/k +D), where D is the distance from the origin to the treasure. This bound can be
matched by finite automata that are allowed to communicate within the same cell [16]. Emek
et al. asked what is the minimum number of finite automata agents required to find the
treasure [15]. They showed that at least 3 synchronous deterministic agents are required and
that 3 synchronous deterministic, 4 semi-synchronous deterministic, and 3 semi-synchronous
randomized agents are enough. Cohen et al. [9] and Brandt et al. [7] showed the matching
lower bounds for the randomized and deterministic semi-synchronous cases, respectively.

2 Preliminaries

Grids. We consider the problem of exploring the infinite n-dimensional grid, whose vertices
are the elements of Zn, which we refer to as cells. A cell c = (c1, . . . , ci, . . . , cn) is described
by its coordinates and two cells c and c′ are connected by an edge if there is a dimension i
such that |ci − c′i| = 1 and cj = c′j for j 6= i. When talking about distance, we will use the `1
or Manhattan distance, which is defined as d(c, c′) =

∑
i |ci − c′i|.

In the oriented case, we assume that there is a consistent labeling of the edges by both
of its endpoints, which in the 2-dimensional case can be thought of as the directions of a
compass: north, south, east, and west. In general, an edge (c, c′) is labeled by (+1, i) from
the side of c (and thus (−1, i) from the side of c′) if we have that ci + 1 = c′i.

For unoriented grids, we assume that each endpoint of an edge has a label from {1, . . . , 2n}.
We will also refer to these labels as the ports of a cell. The only assumption we make is that
the labels around each cell are pairwise distinct, i.e., each cell has every port from 1 to 2n
exactly once. Thus, each edge can receive any pair of labels from {1, . . . , 2n}.
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Exploration. The exploration is performed by m agents, a1, . . . , am, which are initially all
placed in the same cell, called the origin. W.l.o.g. we assume the origin to have coordinates
(0, . . . , 0). The agents cannot distinguish different cells (including the origin); in particular,
they do not know the coordinates of the cell they are in. Their behavior and movement
is controlled by a deterministic finite automaton. While we require all agents to use the
same automaton, they may start in different initial states. (As we only consider protocols
with constantly many agents, one can equivalently assume each agent to be controlled by
an individual automaton, as we can combine m automata into one by using disjoint state
spaces.) Agents can only communicate if they are in the same cell: each agent senses the
states for which there is an agent that occupies the same cell, and performs its next move
and state transition based on this information. For oriented grids, such a move is described
by a direction and dimension to move in.

In the case of unoriented grids, we assume that agents can also see both labels of each
incident edge, and perform their decisions based on this information as well. A move is then
described by choosing a port of the current cell and moving along this edge. Previous work
by Dobrev et al. [13] used an essentially equivalent definition: Each agent could only see the
label on its side of each incident edge, but once it arrived in the new cell by traversing some
edge, it would obtain the information about the second label on the edge it traversed. We
choose to formalize the model in a slightly different way, as it will simplify the description of
our algorithms. However, we emphasize that for our purposes, the two models can be used
interchangeably since within 2n steps in the model of Dobrev et al., the agents can learn all
information that we assume the agents can immediately see.

Formally, we have a state space Q, a transition function δ, and an initial state q0
i for

every agent ai. For oriented grids, the transition function has the form: δ : Q × 2Q →
Q× ({−1,+1} × {0, 1, . . . , n}). The function maps an agent in state q ∈ Q, which observes
the set of states for which there is an agent occupying the same cell, to a new state q′ ∈ Q
and a movement, which is described by the direction (−1 or +1) and the dimension (from 1
to n) along which the agent moves to the respective neighboring cell, where an agent can
also choose to stay in the same cell which is described by dimension 0. We will say that an
agent moves north if its movement is (+1, 1), and south if it is (−1, 1).

For unoriented grids, we change the definition of the transition function slightly to
δ : Q× 2Q ×{1, . . . , 2n}2n → Q× ({−1,+1}× {0, 1, . . . , n}). The function maps an agent in
state q ∈ Q, which observes both the set of states for which there is an agent occupying the
same cell, and, for each port, the other label on the edge corresponding to that port, to a
new state q′ ∈ Q and a movement, which is specified by the port via which the agent leaves
the current cell, or 0, in which case the agent does not move.

The Schedule. Time is divided into discrete units, where in each time step, a set of active
agents performs a look-compute-move cycle. First, an agent senses the states of all agents in
the same cell (and in the case of unoriented grids both of the labels on all incident edges),
then it applies the transition function to its own state and all sensed information, and finally
it changes its state and moves as indicated by the result. We assume that one such cycle is
atomic, i.e., cycles that start at different times do not overlap.

For the synchronous or FSYNC model, we assume that all agents are active at every
time step. We call the system semi-synchronous, or the SSYNC variant, if at every time
step only a subset of agents, chosen by an adversary, is active. While the adversary knows
all information about the agents and their behavior, it must schedule each agent infinitely
often, to avoid trivial impossibilities.
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Exploration Cost. Finally, if we discuss the efficiency of a protocol, we consider the following
problem, which is equivalent to exploring the grid: the agents are tasked to find a treasure,
which is hidden at some distance D from the origin (without the agents knowing the value of
D). This enables us to measure the time or exploration cost it takes to find the treasure with
respect to D. In the synchronous setting, we measure the exploration cost as the number
of time steps needed for an agent to arrive at the cell containing the treasure. As, in the
semi-synchronous model, this number of steps depends on the schedule, we instead define
the exploration cost as the total distance traveled by all agents in this setting.

3 Building Blocks

Encoding Information as a Stack. Dobrev et al. [13] introduced the idea of using multiple
agents to implement a stack. In its simplest form, a stack is just a pair of agents, whose
distance encodes some information. However, to allow for manipulations of the stack, more
agents are needed. Our protocol for exploring n-dimensional grids with 3 synchronous, resp.
4 semi-synchronous, agents will consist of subroutines that involve manipulations of the stack.
The relevant parameter will be the stack size, denoted by X, which is defined as the distance
between the base of the stack and the end of the stack. The base of the stack is the location
of agent a1, and the end of the stack is the location of the other agents. We will only be
interested in the stack and its size at the very beginning and very end of each subroutine; at
these points in time all agents except a1 are guaranteed to be in the same cell, and this cell
is guaranteed to be reachable from the cell containing a1 by going repeatedly north, making
the notion of a stack well-defined. Whenever we refer to the base, end, or size of the stack
during some subroutine, we mean the respective notion at the beginning of the subroutine.

In this section, we will describe the subroutines that form the building blocks of our
exploration algorithm. Moreover, we will show for both the synchronous and the semi-
synchronous setting how to implement the subroutines with the desired number of agents.

In [13], the authors show how to multiply the current stack size by 2, resp. divide it by 2,
using 3 synchronous agents. This also provides a way to check whether the current stack
size is divisible by 2. The idea behind the implementation is simple: while agent a1 stays at
the base of the stack, the other two agents, initially located at the end of the current stack,
move with different speeds1, a3 either away from or towards the base of the stack, and a2
first towards the base, and then reversing direction when the base is reached. The operation
is completed when a2 and a3 meet again (after a2 visited the base). By choosing a speed of
1 for a2, and a speed of 1/3 for a3, and letting move a3 towards the base, we achieve that
the stack size is halved; by choosing the same speeds and letting move a3 away from the
base, we achieve that the stack size is doubled.

We will need similar subroutines as building blocks for our synchronous and semi-
synchronous protocols. More precisely, given a positive integer k ≥ 2, we want the agents to
be able to perform the following operations.

MultiplyStackSize(k): Multiply the stack size by k.
IsDivisible(k): Check whether the current stack size is divisible by k.
DivideStackSize(k): If the stack size is divisible by k, divide the stack size by k.

We will only require the agents to be able to perform these operations for constantly many
k, where the constant depends (only) on the dimension n of the grid.

1 An agent moves with speed 1/j in some direction if it repeatedly performs the following behavior: first
it takes one step in the chosen direction, and then it waits for j − 1 steps. Note that our speed of 1/j is
the same as speed j in [13].
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To implement these operations, we simply adapt the protocols for the case k = 2 from [13]
by choosing the speeds of 1/(k− 1) (instead of 1) for a2 and 1/(k+ 1) (instead of 1/3) for a3.
More precisely, we implement the desired operations using 3 synchronous agents as follows.

MultiplyStackSize(k). While it is usually easier to understand the behavior of an agent if
it is described without specifying the exact states and the transition function, we will provide
the latter for subroutine MultiplyStackSize(k) to give an example how to translate the
agents’ behaviors described in this work into the formal specification of a finite automaton.
Let k ≥ 2 be a positive integer. As usual we assume that a2 and a3 are in the same cell c′,
and a1 is in a cell c 6= c′ such that c′ can be reached from c by going north repeatedly (i.e., c
and c′ differ only in the first coordinate, and c has a smaller first coordinate than c′).

In subroutine MultiplyStackSize(k), we denote the starting state of each agent ai by
Mult0

i,k. Apart from state Mult0
i,k, we will use 2k− 2 other states for agent a2, denoted by

Mult1
2,k, . . . ,Multk−2

2,k , Multback0
2,k, . . . ,Multbackk−2

2,k and Multfin
2,k, and k + 1 other

states for agent a3, denoted by Mult1
3,k, . . . ,Multk

3,k, and Multfin
3,k. Agent a1 always stays

in state Mult0
1,k and cell c. Agents a2 moves and changes its state according to the following

rules, where “stay” indicates that the agents does not move to another cell.

(Mult0
2,k, S)→ (Mult1

2,k, south) for any S ∈ 2Q satisfying Mult0
1,k /∈ S

(Mult0
2,k, S)→ (Multback1

2,k,north) for any S ∈ 2Q satisfying Mult0
1,k ∈ S

(Multj
2,k, S)→ (Multj+1

2,k , stay) for any 1 ≤ j ≤ k − 3 and any S ∈ 2Q

(Multk−2
2,k , S)→ (Mult0

2,k, stay) for any S ∈ 2Q

(Multback0
2,k, S)→ (Multback1

2,k,north) for any S ∈ 2Q satisfying Mult0
3,k /∈ S

(Multback0
2,k, S)→ (Multfin

2,k, stay) for any S ∈ 2Q satisfying Mult0
3,k ∈ S

(Multbackj
2,k, S)→ (Multbackj+1

2,k , stay) for any 1 ≤ j ≤ k − 3 and any S ∈ 2Q

(Multbackk−2
2,k , S)→ (Multback0

2,k, stay) for any S ∈ 2Q

For agent a3, the rules are as follows.

(Mult0
3,k, S)→ (Mult1

3,k,north) for any S ∈ 2Q satisfying Multback0
2,k /∈ S

(Mult0
3,k, S)→ (Multfin

3,k, stay) for any S ∈ 2Q satisfying Multback0
2,k ∈ S

(Multj
3,k, S)→ (Multj+1

3,k , stay) for any 1 ≤ j ≤ k − 1 and any S ∈ 2Q

(Multk
3,k, S)→ (Mult0

3,k, stay) for any S ∈ 2Q

The protocol terminates when both a2 and a3 are in states Multfin
2,k and Multfin

3,k, respectively.
The design of the protocol (in particular, of the two rules leading to the two terminal states)
ensures that a2 and a3 terminate at the same point in time. As the rules of the protocol
specify that a2 walks with speed exactly 1/(k − 1), and a3 with speed exactly 1/(k + 1), we
see that the first time a2 and a3 are in the same cell in states Multback0

2,k, resp. Mult0
3,k

(which is the configuration leading to termination in the next step), they are in a cell in
distance kX from the base of the stack. The meeting happens after a2 traversed (k + 1) ·X
cells (X towards the base, kX away from the base), whereas a3 traversed (k − 1) ·X cells.

DivideStackSize(k). Analogously, we can implement division by k by letting a3 walk
towards the base, instead of away from the base, i.e., by replacing the first rule for a3 by

(Mult0
3,k, S)→ (Mult1

3,k, south) for any S ∈ 2Q satisfying Multback0
2,k /∈ S

DISC 2020



13:8 Tight Bounds for Deterministic High-Dimensional Grid Exploration

while leaving all other rules (for all agents) unchanged. However, the two rules leading to the
terminal states require a2 and a3 to be in states Multback0

2,k and Mult0
3,k, respectively,

to ensure termination. If the initial stack size X is divisible by k, then the states of the
two agents will align perfectly in the cell c′′ in distance X/k from the base of the stack:
after (k − 1)(k + 1) time steps, a2 has traversed k + 1 cells with speed 1/(k − 1), and a3 has
traversed k − 1 cells with speed 1/(k + 1), hence both are in cell c′′ in the states leading to
the terminal states. If, however, X is not divisible by k, then the states of the two agents do
not align when they meet again after a2 visited the base.

IsDivisible(k). Hence, before dividing by k, we will always check whether the current stack
size is divisible by k. This can be achieved by having a2 walk towards the base with speed 1
while increasing a counter modulo k each time it takes a step. If the counter is at 0 when a2
reaches a1, the stack size is divisible by k; if not, then the stack size is not divisible by k.
The subroutine of checking for divisibility by k terminates after a2 has walked back to a3
and informed it whether the current stack size is divisible by k or not.

Further Building Blocks. In order to be able to write our synchronous exploration protocol
concisely, it will be useful to define a few other subroutines. As before, we will assume
that, in the beginning of the subroutines, agents a2 and a3 will be in the same cell c′,
representing the end of the stack, and a1 is in a cell c representing the base of the stack
that differs from c′ only in that its coordinate in dimension 1 is strictly smaller. The only
exception will be the subroutine InitializeStackSize(k) that initializes the stack to some
positive integer k by having a2 and a3 walk k steps away from a1 – here, all three agents are
initially in the same cell. Apart from InitializeStackSize(k), we define the subroutines
IncreaseStackSize(k) for positive integers k, and MoveStack(g, i), where g ∈ {−1, 1}
and i ∈ {1, . . . , n}. Subroutine IncreaseStackSize(k) simply increases the stack size by k
(additively) by having a2 and a3 walk k steps away from a1.

A subroutine similar to our MoveStack(g, i) was already introduced in [13]. The purpose
of this subroutine is to move the whole stack in some direction specified by dimension i

and sign g. In our definition, MoveStack(g, i) moves every agent to a new cell that differs
from the old cell only by having its ith coordinate increased by g, i.e., effectively each agent
takes one step in dimension i. However, one has to be a bit careful when implementing this
subroutine as we want to be able to concatenate it with other subroutines. In particular, in
all other subroutines, agent a1 does not know when the subroutine is started or terminates,
while the other agents do know. In order to also obtain this property for MoveStack(g, i),
we implement the desired movement by having a2 walk towards a1, notifying it about the
desired step and the chosen direction (upon which a1 performs the step) and then returning
to a3, where both a2 and a3 perform the desired step as well.

Semi-Synchronous Agents. All of the above subroutines can also be performed by (at
most) 4 semi-synchronous agents, as we show in the following. Similar to the approach
in [13], we will use one agent (a4) to effectively synchronize the behavior of the other agents,
which allows us to essentially execute the 3-agent synchronous subroutines described above
with the remaining 3 agents. In more detail, agent a4 will visit the other agents in a suitable
order, and each of the other agents will only move when they are in the same cell as a4 (while
a4 will not leave the cell of the agent it wants to move next until the agent actually left the
cell). We start by showing how this can be achieved for subroutine MultiplyStackSize(k).
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As in the synchronous version of the subroutine, we would like the two agents a2 and a3
to move with (relative) speeds 1/(k − 1) (first towards a1 and, after meeting a1, away from
a1) and 1/(k+ 1) (away from a1), respectively, while a1 simply stays at the base of the stack.
The purpose of this design – that when a2 and a3 meet next, they are in a cell that has the
k-fold distance to a1 as they have currently – can also be achieved by having a3 move k − 1
steps, then having a2 move k+ 1 steps, and so on, always alternating between the two agents,
until they are both in the same cell again (which, by their relative “speeds” must have the
desired distance to the base of the stack). This behavior can be ensured by using a4:

Agents a2 and a3 follow their designated route, but they only take one step of those routes
if they are in the same cell as a4 and a4 is in a state indicating that a2, resp. a3 should move
(the latter condition is not strictly necessary, but simplifies things by ensuring that a2 and a3
never move at the same time). Agent a4 alternates between visiting a2 and a3, during each
“visit” making sure that the respective agent takes the desired number of steps (i.e., k − 1 or
k+ 1). It does so by going to the cell of the respective agent ai (i ∈ {2, 3}), indicating that ai

should take a step of its route, waiting until ai takes a step and leaves the cell, incrementing
an internal counter, following agent ai to the next cell, and repeating this behavior until
the counter indicates that the desired number of steps has been taken by ai, upon which a4
visits the other agent a5−i. Note that a4 always knows in which direction it has to move
to find the desired agent as the coordinates of a2 and a3 only differ in dimension 1, and a2
always has a smaller (or equally large) first coordinate. Moreover, a4 also knows in which
direction it has to go to follow the agents to the next cell as the only change in direction is
performed by a2 and the reason for the change, namely meeting a1, is an information known
to a4 since when a2 meets a1, it stays in the cell containing a1 until a4 also arrives there.

In an analogous fashion, we can implement DivideStackSize(k) with 4 semi-synchronous
agents. For the other four subroutines, the picture is even simpler: it is straightforward to
check that these subroutines can already be implemented by 3 semi-synchronous agents by
having the agents perform the same steps as in the respective synchronous subroutines. The
reason that these subroutines also work in the semi-synchronous setting is that either the
synchronous version already contain one agent that effectively acts as a synchronizer (in
the sense that every action is performed by that agent or directly instigated by a visit of
that agent), as in IsDivisible(k) and MoveStack(g, i), or the actions of the agents are
independent of each other, as in InitializeStackSize(k) and IncreaseStackSize(k). For
these four subroutines, we will simply assume that a4 is treated the same as a3; in particular,
at the beginning and end of each subroutine, we will always have a2, a3, and a4 in the same
cell, indicating the end of the stack.

We have to be careful with the termination of each subroutine as we want to be able to
concatenate the subroutines. To this end, we will again use a4 as a synchronizer: before
terminating itself, a4 will wait that a2 and a3 (which are in the same cell at the end of
each subroutine) have terminated. Similarly, we can assume that a4 will initialize the next
subroutine by changing its state suitably, thereby making sure that the start and end of the
subroutines align across all agents. A last detail is that in the semi-synchronous version of
MoveStack(g, i) (which is the only subroutine where a1 moves), after meeting a1, agent a2
has to wait until a1 takes its step before moving back to a3 and a4, in order to make sure
that a4 does not terminate and initialize the next subroutine before a1 takes its step.

4 The Exploration Protocol

In this section, we will combine the building blocks of Section 3 to a protocol that allows 3
synchronous, resp. 4 semi-synchronous, agents to explore the n-dimensional (oriented) grid,
and prove the protocol’s viability. Our protocol is given by algorithm Explore.
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Algorithm 1 Explore.

1: InitializeStackSize(3)
2: repeat
3: for each function g : {1, . . . , n} → {−1, 1} do
4: FollowRoute(g)
5: FollowRoute(−g)
6: end for
7: IncreaseStackSize(2)
8: procedure FollowRoute(g)
9: for i = 1 to n do

10: while IsDivisible(pi) do
11: DivideStackSize(pi)
12: MultiplyStackSize(2)
13: MoveStack(g(i), i)
14: end while
15: while IsDivisible(2) do
16: DivideStackSize(2)
17: MultiplyStackSize(pi)
18: end while
19: end for
20: end procedure

The underlying idea of algorithm Explore is the same as in the algorithms from [13]:
We generate each (non-zero) n-dimensional vector (v1, . . . , vn) with non-negative integer
coordinates, and for each such vector, we let one agent walk from the origin to each
cell (c1, . . . , cn) such that ci ∈ {vi,−vi} for all 1 ≤ i ≤ n, and then back to the origin.
More precisely, in each execution of FollowRoute(g), agent a1 walks to the respectively
specified cell (c1, . . . , cn), and in each execution of FollowRoute(−g), a1 walks back to
the origin. To generate (v1, . . . , vn), a counter, represented by the stack size, is used that
is incremented gradually, thereby iterating through the positive integers. Each time the
counter is incremented, the new value X will be transformed into some n-dimensional vector,
(v1, . . . , vn), where the design of the transformation has to make sure that every (non-zero)
vector with non-negative integer coordinates is generated by some value X. We require the
stack size to be odd, as we will be using powers of 2 to store some intermediate values. Thus,
we will always increase the counter by 2, while still ensuring that all vectors are generated.

However, as we have one fewer agent available than in the protocols in [13], our protocol
requires a new way to implement this idea. In particular, we avoid using a separate agent
to remember the stack size when the stack is read, instead making sure that even after the
stack is read, no information about the previous stack size(s) is lost2. To this end, we define
the vector (v1, . . . , vn) we want to transform X into as follows. Let p1, . . . , pn denote the
first n odd primes, where p1 < · · · < pn. For all 1 ≤ i ≤ n, we define vi to be the largest
non-negative integer such that pvi

i divides X. In other words, vi represents how often pi

occurs as a prime factor of X.

2 Note that such information is still required after reading the stack: we will need it both to guide a1
back to the origin and to retrieve the counter value X that we want to increase repeatedly.



S. Brandt, J. Portmann, and J. Uitto 13:11

Consider procedure FollowRoute(g). The for loop of this procedure iterates through
the n dimensions. For each dimension i, the first while loop repeatedly replaces one prime
factor pi by prime factor 2, by dividing by pi and multiplying by 2. Each time such a
replacement is performed, the whole stack is moved one cell w.r.t. dimension i (either
increasing or decreasing the respective coordinate by 1, depending on the value of g(i)).
After all (i.e., vi) occurrences of pi as prime factors have been replaced by factors 2, the stack
manipulations are reversed in the second while loop, resulting in the original stack size X.
Note that in the very beginning of algorithm Explore, the stack size is initialized to 3, and
each time the counter represented by the stack size is increased, it is increased by 2; hence,
before starting the first while loop, the stack size is odd, ensuring that the second while loop
goes through exactly the same number of iterations as the first one. Note further that we
do not revert the steps that a1 took (yet) when reversing the stack manipulations. After
iterating through all dimensions, agent a1 is now in cell (c1, . . . , cn), and we can consider
this cell as explored, concluding the execution of FollowRoute(g).

The execution of FollowRoute(−g) is identical to the execution of FollowRoute(g),
except that each step of a1 is performed in the opposite direction. Hence, at the end of
the execution of FollowRoute(−g), agent a1 is back at the origin, while the stack size is
(again) X. The (outer) for loop in algorithm Explore simply iterates through all possible
assignments of signs ∈ {−1,+1} to the dimensions, making sure that for each generated
vector (v1, . . . vn), each corresponding cell (v′1, . . . , v′n) is explored.

In the following, we state our main result for oriented grids. The proof is given in the full
version of this work.

I Theorem 1. For any positive integer n, the n-dimensional (oriented) grid can be explored
by 3 synchronous finite automata, resp. 4 semi-synchronous finite automata.

5 Unoriented Grids

In [13], the authors showed that any protocol for the oriented grid can be transformed into
a protocol for unoriented grids by adding sufficiently many agents such that, at all times,
each original agent moving across a non-constant distance is accompanied by one of the
additional agents. In particular, for both their protocol and our improved protocol, this
implies that 2 additional agents are required in the synchronous case and 1 additional agent
in the semi-synchronous case (since in the protocols for the oriented grid, 2 synchronous
agents are traversing non-constant distances at the same time, while in the semi-synchronous
case only 1 agent does so). Hence, our protocol for the oriented grid improves also the state
of the art for the minimum number of required agents on unoriented grids from 6 to 5 (in
both the synchronous and the semi-synchronous setting).

On an informal level, it seems unlikely that our upper bound of 5 can be improved since
intuitively, as Dobrev et al. [14, Section 7, arXiv] write, “a lone agent cannot cross any
non-constant distance, as the irregular nature of the port labels would lead it astray, never
to meet any other agent”. The tightness of our bound on the oriented grid combined with
the perceived necessity of having moving agents accompanied by a partner seems to indicate
that we cannot do better. However, there is no formal proof of any lower bound beyond the
synchronous 3-agent and semi-synchronous 4-agent lower bounds [7, 15] that carry over from
the case of the oriented grid. Admittedly, as such a formal lower bound might require us to
find a “bad” input instance (i.e., a bad input edge labelings of the infinite n-dimensional grid)
for every potential protocol with more than 3 synchronous, resp. 4 semi-synchronous, agents,
it is not particularly surprising that we do not have better lower bounds – yet, making at
least some progress would be desirable.
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In this section, we will show that under a natural assumption the current lower bounds
are actually optimal by providing tight upper bounds. Our assumption states that you
cannot walk in a cycle if you always follow the same direction, or, more formally:

I Assumption 4. Let ` ∈ {1, . . . , 2n} be any port, z any positive integer, and c0, . . . , cz any
sequence of cells such that, for each 0 ≤ j ≤ z − 1, we reach cell cj+1 by leaving cell cj via
port `. Then c0 6= cz.

Surprisingly, this assumption does not contradict the intuition about agents traveling alone
discussed above, yet it still allows us to prove upper bounds for unoriented grids matching the
lower bounds obtained on oriented grids. While our upper bounds answer the question for the
minimally required number of agents in a natural3 setting very close to truly unoriented grids,
we think that they also constitute a useful step on the way to a lower bound construction for
the general unoriented setting (assuming that the current lower bounds are not optimal):
any such construction necessarily has to contain cycles that violate Assumption 4.

Our Approach. The general idea behind our approach is to find a way to construct a stack
also for unoriented grids. The natural idea of simply selecting one port ` and interpreting the
sequence of cells obtained by successively leaving cells via port ` as the stack does not work:
while it is easy for an agent to traverse the stack in the direction away from the base (it just
has to leave each cell via port `), traversing the stack in the opposite direction runs into the
problem that there might be different neighboring cells from which the current cell can be
reached via port ` and the traversing agent cannot know which is the one that belongs to the
intended stack. Instead, we will build the desired virtual stack by constructing an auxiliary
(infinite) directed labeled forest and then traversing (a part of) the forest from some starting
cell in a DFS-like fashion, which will ensure that agents can traverse the stack in both
directions. In particular, the same cell can occur in the stack several times; to distinguish
the occurrences (and make it possible for an agent to traverse the virtual stack), our stack
will formally consist of pairs (cell, integer), where the integers come from the set {1, . . . , 2n}.
For an illustration of the auxiliary graph and the virtual stack, we refer to Figures 1 and 2.

The Auxiliary Graph. We start by defining our auxiliary graph G = (V,E). The vertices of
G are the cells of our grid, and we have a directed edge (c, c′) between two cells c, c′ if c and
c′ are neighbors in the grid and cell c′ is reached by leaving cell c via port 1.4 In particular,
this implies that each cell c has exactly one outgoing edge in G; we call the cell c′ reached
by traversing this edge the parent of c, and c a child of c′. Note that Assumption 4 ensures
that G does not contain cycles, and hence, is an infinite forest. In particular, for any two
neighboring cells c, c′, at most one of the two possible edges (c, c′) and (c′, c) is present in E.

Let indegree(c) denote the indegree of a cell c, i.e., the number of edges from E incoming
to c. We assign to each edge e = (c, c′) a level L(e) as follows. For each cell c′, we order the
incoming edges (c, c′) increasingly by the corresponding port of c′, and then assign (distinct)
levels from 1 to indegree(c′) to the edges according to this order. For instance, if c′ has two
incoming edges (c, c′) and (c′′, c′), corresponding to ports 5 and 3 of c′, respectively, then
the order of the edges will be (c′′, c′), (c, c′), and we will assign level 1 to (c′′, c′), and level
2 = indegree(c′) to (c, c′).

3 After all, it seems like a reasonable minimal requirement for a sense of direction that if you go north (or
in any other direction) repeatedly, then you do not return to the starting point.

4 The choice of port 1 here is arbitrary; choosing any other label from {1, . . . , 2n} works equally well.
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Figure 1 Figure 1 depicts a part of a possible auxiliary graph G for a 2-dimensional unoriented
grid and the respective virtual stack. Vertices, i.e., cells, are represented by circles, and directed
edges by arrows. The parts grayed out belong to different trees than the one containing the cell
where a1 is located (colored black). The edges are labeled with their respective levels. The physical
cells of the virtual stack rooted in the black cell (i.e., the first component of the pairs the virtual
stack consist of) are indicated by the route that starts in the black cell and follows the blue arrows.
Each further step on this route leads to the physical cell corresponding to the next higher position
in the stack, where the black cell indicates position 0. For each occurrence of a cell on this route,
the corresponding level (i.e., the second component of the pairs the virtual stack consists of) is 1
if the current cell is a child of the previous cell, and equal to the level of the arrow traversed last
plus 1 if the current cell is the parent of the previous cell. When the blue route goes from a cell to
its parent, then the edge traversed next will have a level that is higher by 1 than the previously
traversed edge; when the route goes from a cell to one of its children, then the edge traversed next
has level 1. This leads to a virtual stack that corresponds to a part of a DFS exploration on the
(infinite) tree containing the black cell, as can be seen in Figure 2, where the same route on the
same auxiliary graph is depicted as a rooted tree.

The Virtual Stack. Using the auxiliary graph G, we now define, for each cell c, the virtual
stack Virtc rooted in c as follows. Recall that Virtc consists of pairs (cell, integer). We will
use the functions Cell(·) and Level(·) to retrieve the first, resp. second, component of such
a pair. The base of the stack is defined as Virtc[0] := (c, indegree(c) + 1). For each integer
j ≥ 1, we inductively define Virtc[j] according to the following case distinction.

If Level(Virtc[j − 1]) = indegree(Cell(Virtc[j − 1])) + 1, then
Cell(Virtc[j]) is defined as the parent of Cell(Virtc[j − 1]), and
Level(Virtc[j]) := L((Cell(Virtc[j − 1]),Cell(Virtc[j]))) + 1.
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Figure 2 The same virtual stack as in Figure 1, depicted as a rooted tree.

If Level(Virtc[j − 1]) ≤ indegree(Cell(Virtc[j − 1])), then
Cell(Virtc[j]) is defined as the child of Cell(Virtc[j − 1]) connected to Cell(Virtc[j − 1])
via an (outgoing) edge of level Level(Virtc[j − 1]), and
Level(Virtc[j]) := 1.

In other words, we inductively build the virtual stack rooted in c as follows. We start in c and
leave c via the unique outgoing edge. Each time we enter a cell c′ via an incoming edge, i.e.,
coming from a child c′′, the next cell we visit is the next higher child of c′, i.e., the child that
is connected to c′ via an edge of level L(c′′, c′) + 1. If no higher child remains, i.e., if (c′′, c′)
has level indegree(c′), then the next cell we visit is the parent of c′. Each time we enter a cell
c′ from its parent, the next cell we visit is the first child of c′, i.e., the child that is connected
to c′ via an edge of level 1. Hence, our stack corresponds to a DFS exploration of the tree in
forest G containing c, where we assume that the part of the DFS that is executed before
traversing the edge from c to its parent has already happened. As the tree is infinite, we may
not reach every cell contained in the tree in finite time, but to use such a DFS exploration as
a stack, this is not relevant. What is relevant, however, is that once we traverse an edge from
a child to its parent, the DFS will never return to the child in finite time as Assumption 4
ensures that the parent chain starting from c (and therefore also any parent chain starting
from any other cell visited by the partial DFS) is infinite. Combining this fact with the cyclic
fashion in which each visited cell iterates through its children and parent to determine the
neighbor visited next, we obtain the following observation.

I Observation 5. Fix an arbitrary cell c. For any two non-negative integers i 6= j, we have
Virtc[i] 6= Virtc[j].

In order to make use of the defined virtual stack, we need the agents to be able to
represent their position in the stack in some way. However, given the specific design of the
virtual stack, this is not difficult: each agent allocates a part of its state to keep track of the
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level Level(Virtc[j]) of the current position Virtc[j] in the stack, while the first component
Cell(Virtc[j]) of the current position in the stack is simply represented by the cell the agent
currently occupies. An advantage of this design is that each agent ai can determine which
other agents are in the same stack position as ai, and which are not (despite possibly being
in the same physical cell). In other words, each agent has all the necessary information to
evaluate its transition function, even for moving on the virtual stack.

However, there is one piece still missing for using the virtual stack similar to a physical
stack: we have to show that even a lone agent can traverse the virtual stack in either direction,
i.e., that a finite automaton is sufficient to determine the physical cell that corresponds to
the previous, resp. subsequent, position in the virtual stack, and similarly, to determine the
level of that stack position. The following lemma takes care of this.

I Lemma 6. There is a finite automaton that, when located in cell Cell(Virtc[j]) in state
(i,Level(Virtc[j])), where c is an arbitrary cell, i ∈ {−1, 1}, and j ≥ 1 an arbitrary integer,
moves to cell Cell(Virtc[j + i]) and changes its state to (i,Level(Virtc[j + i])) in 2 time steps.

Note that when applying Lemma 6, the finite automaton from Lemma 6 will only
constitute a part of the finite automaton governing our agents in the final protocol for
the unoriented case. Using Observation 5, Lemma 6, and the so-called handrail technique
discussed in the full version, we are finally set to prove Theorem 2.

I Theorem 2. Suppose that Assumption 4 holds. Then, for any positive integer n, 3
synchronous finite automata, resp. 4 semi-synchronous finite automata, suffice to explore any
n-dimensional unoriented grid.

6 Open Problems

While we provided tight bounds for a number of settings, still a number of open questions
remain: Can we prove a higher lower bound on the number of agents required to explore
an unoriented grid, than we can for oriented grids? Is there a protocol that achieves both
an optimal number of agents and polynomial time exploration? For n ≥ 3, can we improve
the semi-synchronous protocol using randomness (the best known lower bound states that
at least 3 agents are required)? How much can we reduce the computational power of the
agents without compromising the optimal bounds? In our protocols, we can, e.g., replace
agent a1 with a movable marker, and in the semi-synchronous protocols, we can replace all
agents except one with a movable marker; can we allow further/other restrictions?
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