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Abstract
We study the problem of approximating the diameter D of an unweighted and undirected n-node
graph in the congest model. Through a connection to extremal combinatorics, we show that
a (6/11 + ε)-approximation requires Ω(n1/6/ logn) rounds, a (4/7 + ε)-approximation requires
Ω(n1/4/ logn) rounds, and a (3/5 + ε)-approximation requires Ω(n1/3/ logn) rounds. These lower
bounds are robust in the sense that they hold even against algorithms that are allowed to return an
additional small additive error. Prior to our work, only lower bounds for (2/3 + ε)-approximation
were known [Frischknecht et al. SODA 2012, Abboud et al. DISC 2016].

Furthermore, we prove that distinguishing graphs of diameter 3 from graphs of diameter 5
requires Ω(n/ logn) rounds. This stands in sharp contrast to previous work: while there is an
algorithm that returns an estimate b2/3Dc ≤ D̃ ≤ D in Õ(

√
n + D) rounds [Holzer et al. DISC

2014], our lower bound implies that any algorithm for returning an estimate 2/3D ≤ D̃ ≤ D requires
Ω̃(n) rounds.
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1 Introduction and Related Work

The diameter D of a graph is one of the most fundamental parameters in graph theory. In
distributed computing, the diameter is of utmost importance, as it captures the minimal
number of rounds needed for a message to traverse all the nodes in the network. The
complexity of computing the exact or approximate value of the diameter has been extensively
studied in the distributed setting [1, 6, 7, 14,16–19,21,23].

In the standard congest model, the complexity of computing the exact diameter is
Θ(n/ logn + D) rounds [14, 19]. On the other hand, there is a folklore algorithm yielding
a 1/2-approximation for the diameter in O(D) rounds: running a BFS (from an arbitrary
node) and returning its depth.
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Table 1 A summary of the state of the art results for diameter approximation.

Approx. Bound Ref. and Comments

Exact Θ̃(n) [14, 19]
2 vs. 3 Ω̃(n) [18]
b2/3Dc < D̃ ≤ D O(n1/2 +D) [16]
2/3 + ε Ω̃(n) [1]
3 vs. 5 Ω̃(n) This paper (Theorem 4)
3/5 + ε Ω̃(n1/3) This paper (Theorem 3)
4/7 O(n1/3 +D) [3]
4/7 + ε Ω̃(n1/4) This paper (Theorem 2)
6/11 + ε Ω̃(n1/6) This paper (Theorem 1)
1/2 O(D) Folklore

This raises the following natural question: for values of 1/2 < α < 1, how hard is it to
α-approximate the diameter? Conversely, one may wonder how good of an approximation α
is achievable in sub-linear time, and even in sub-polynomial time, as stated next.

For which values of α does there exist a sub-polynomial time α-approximation algorithm
for the diameter?
For which values of α does there exist a truly sub-linear time α-approximation algorithm
for the diameter?

We make progress on both these questions. For the first, we show that α must be at most
6/11. For the second, we show that α must be at most 3/5. The previous best known upper
bound on α, for both cases, was 2/3 [1]. All the results that are presented in this work, as
well as the ones we compare with, are for unweighted and undirected graphs.

Our proofs use the well-established technique of reductions from communication com-
plexity to distributed computing. Our main technical novelty is an interesting connection
between extremal combinatorics, and specifically the existence of generalized polygons [15],
and diameter approximation in the distributed setting. This extends prior work connecting
extremal combinatorics and distributed computing [2, 8, 10,12].

1.1 Our Contribution
Polynomial lower bound for .546-approximation. Our main result is that no sub-polyno-
mial time algorithm can get better than a 6/11-approximation.

I Theorem 1. For any constant 0 < ε < 5/11, any algorithm for finding a (6/11 + ε)-
approximation for the diameter in the congest model requires Ω(n1/6/ logn) rounds.

We prove analogous theorems for (4/7 + ε)-approximation and (3/5 + ε)-approximation,
with lower bounds of Ω(n1/4/ logn) and Ω(n1/3/ logn), respectively.

I Theorem 2. For any constant 0 < ε < 3/7, any algorithm for finding a (4/7 + ε)-
approximation for the diameter in the congest model requires Ω(n1/4/ logn) rounds.

I Theorem 3. For any constant 0 < ε < 2/5, any algorithm for finding a (3/5 + ε)-
approximation for the diameter in the congest model requires Ω(n1/3/ logn) rounds.
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These resutls hold even against constant diameter graphs and even against randomized
algorithms that succeed with probability at least 2/3. Prior to our work, besides the near-
linear lower bound of [14] for exact diameter, only a lower bound for (2/3 + ε)-approximation
was known: Abboud et al. [1] showed an Ω(n/ log3 n) lower bound for this approximation
factor. We note that Theorems 1, 2, and 3, as well as the aforementioned lower bound, also
apply for algorithms that allow a constant additive error, in addition to the multiplicative
one, as we explain in Section 1.2.

Near-linear lower bound for distinguishing diameter 3 vs 5. Next, we prove that distin-
guishing graphs of diameter 3 from graphs of diameter 5 requires a near-linear number of
rounds.

I Theorem 4. Any algorithm for distinguishing graphs of diameter 3 from graphs of diameter
5 in the congest model requires Ω(n/ logn) rounds.

We find this result rather surprising. There exist an algorithm [16] running in O(
√
n logn+

D) rounds and returning an estimate b 2D
3 c ≤ D̃ ≤ D. While the rounding in this equation

might seem like an artifact of the proof, Theorem 4 shows that it is actually necessary.
That is, an algorithm for finding an estimate 2

3D ≤ D̃ ≤ D can be used to distinguish
diameter 3 from diameter 5, and we show that such a distinction must require Ω(n/ logn)
rounds – much more than the O(

√
n logn+D) running time of the algorithm.

1.2 Robust Approximation
When dealing with diameter approximation, an important distinction to make is between
robust and non-robust lower bounds. For example, as discussed above, an algorithm that
finds an approximation D̃ of the diameter satisfying b 2D

3 c ≤ D̃ ≤ D does not in general
imply a 2

3 -approximation.
However, as the diameter gets larger, the approximation ratio does approach 2/3. One

way to view this is by saying that our 3 vs 5 lower bound is not a “robust” lower bound
for (3/5 + ε)-approximation. To show a “robust” lower bound for (3/5 + ε)-approximation,
we need a stronger result, i.e., that for any constant β, it is hard to distinguish between
graphs of diameter (3/5)D − β and graphs of diameter D. This would show that finding a
(3/5 + ε)-approximation of the diameter is hard not only in some low-diameter graphs, but
also more generally. We formally define the notions of α-approximation for diameter and
robust diameter lower bound.

I Definition 5 (α-approximation for diameter). We say that an estimate D̃ is an α-approxima-
tion for diameter if

αD ≤ D̃ ≤ D.

I Definition 6 (Robust diameter lower bound). We say that α-approximating the diameter
is robustly T (n)-hard if for any constant β, there is no algorithm which returns a value D̃
satisfying

αD − β ≤ D̃ ≤ D

in o(T (n)) rounds in the congest model.

In this paper, we prove both robust and non-robust lower bounds. The lower bounds
presented in Theorems 1, 2, and 3 are robust, while the lower bound that is presented in
Theorem 4 is not robust.

DISC 2020
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Notably, for a (3/5 + ε)-approximation, we give a robust lower bound of Ω(n1/3/ logn),
and a non-robust lower bound of Ω(n/ logn). The work of [16] rules out a robust lower
bound better than Ω(

√
n logn), even for 2/3-approximation. This shows that there is an

inherent, and large, gap between the robust and non-robust lower bounds.
This distinction between robust and non-robust approximation has been noted before,

though not using this terminology. Holzer and Wattenhofer [18] showed that distinguishing
diameter 2 from diameter 3 requires Ω(n/ logn) rounds, a result that can be viewed as a
non-robust (2/3 + ε)-approximation lower bound. A robust lower bound of Ω(n/ log3 n) for
the same approximation ratio was later proven by Abboud et al. [1].

1.3 Further Related Work
The lower bound of Abboud et al. [1] for (2/3 + ε)-approximation follows from a lower bound
for distinguishing between diameter 4`+ 2 and 6`+ 1, for some constant ` > 1. Bringmann
and Forster improved this result by showing the same hardness for distinguishing diameter
2`+ 1 and 3`+ 1 [5].

Very recently, in a concurrent and independent work [3], the authors show an upper
bound of O(n1/3 +D) for computing a 4/7-approximation for diameter.

All the results that are presented in this work are for unweighted graphs. For weighted
graphs, Holzer and Pinsker [17] showed that (1/2 + ε)-approximation requires Ω(n/ logn)
rounds. For (1/2)-approximation in the weighted case, one can compute single source shortest
paths. The state of the art algorithm for single source shortest paths in the congest model
is by Forster and Nanongkai [13], who showed two algorithms for the problem. The first
running in Õ(

√
nD) rounds and the second running in Õ(

√
nD1/4 + n3/5 +D) rounds.

Road-map. In Section 2 we start with some basic definitions. The technical heart of the
paper is in Sections 3 and 4. Theorem 4 is proved in Section 3, and Theorems 1, 2, and 3
are proved in Section 4.

2 Preliminaries

2.1 The Model
In the congest model [22], a synchronized communication network of n computationally
unbounded nodes is modeled by its communication graph G = (V,E). Each of the nodes has
a unique O(logn)-bit identifier. The computation is split into rounds, and in each round
each node can send a (possibly different) O(logn)-bit message to each of its neighbors. The
goal of the nodes is to compute some function of the network (e.g., its diameter, the value of
the minimum vertex cover, etc.) while minimizing the number of communication rounds.

For a graph H that is not the input graph, we denote its set of nodes and edges by VH
and EH , respectively. The distance between two nodes u, v in a graph G is denoted by
dG(u, v), and is the minimum number of hops in a path between them in G. The diameter
D of the graph is the maximum distance between two nodes in it. The girth of the graph g
is the minimum length of a cycle in it.

2.2 Communication Complexity
In the two-party communication setting [20, 26], two players, Alice and Bob, are given
two input strings, x, y ∈ {0, 1}K , respectively, and need to jointly compute a function
f : {0, 1}K × {0, 1}K → {TRUE, FALSE} of their inputs, using a predefined communication
protocol. The communication complexity of a function f is defined as follows. Definition 7 is
a special case of [11, Definition 1].
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I Definition 7 (Communication Complexity). Let K ≥ 1 be an integer, f be a Boolean function
f : {0, 1}K × {0, 1}K → {TRUE, FALSE}, and Q be the family of protocols that compute f
correctly with probability at least 2/3. Given 2 inputs x, y ∈ {0, 1}K , denote by ΠQ(x, y) the
transcript of a protocol Q on the inputs x, y, i.e., the sequence of bits that are exchanged
between Alice and Bob. The cost of a protocol Q is Cost(Q) = maxx,y∈{0,1}k |ΠQ(x, y)|.

The communication complexity of f , denoted by CCf (K), is defined to be the minimum
cost over all the possible protocols that compute f correctly with probability at least 2/3:
CCf (K) = minQ∈Q Cost(Q).

The set-disjointness function is defined as follows. For two strings x, y ∈ {0, 1}K , we say
that x and y are not disjoint if and only if there is some index i ∈ [K] such that xi = yi = 1.
Otherwise we say that the strings are disjoint. It is well known that the communication
complexity of set-disjointness is Ω(K) [24].

I Remark 8. Adding 0 bits to both input strings in matching locations does not change the
output. Thus, we can assume a constant fraction of both input strings is 0 without affecting
the asymptotic communication complexity. We use this fact in Section 4.

2.3 Lower Bound Graphs
Our lower bounds use the standard notion of family of lower bound graphs (see, e.g., [9]).

I Definition 9 (Family of Lower Bound Graphs). Let K > 1 be an integer, f : {0, 1}K ×
{0, 1}K → {TRUE, FALSE} be a boolean function, and P be a graph predicate. A family of
graphs

{
G(x,y) = (V(x,y), E(x,y)) | x, y ∈ {0, 1}K

}
where each G(x,y) has a partition of the set

of nodes V(x,y) = VA∪̇VB is said to be a family of lower bound graphs for the congest
model w.r.t. f and P if the following properties hold:
1. Only the existence of nodes in VA or edges in VA × VA may depend on x;
2. Only the existence of nodes in VB or edges in VB × VB may depend on y;
3. G(x,y) satisfies the predicate P iff f(x, y) = TRUE.
For such a family, we denote by C = E(VA, VB) the cut, i.e., the set of edges between VA
and VB .

We use the following theorem, which is standard in the context of reductions to commu-
nication complexity (see, for example [1, 9, 10,14, 17]). Its proof is by a standard simulation
argument and appears in [9].

I Theorem 10. Fix a function f : {0, 1}K × {0, 1}K → {TRUE, FALSE} and a predicate P .
If there is a family of lower bound graphs for the congest model w.r.t. f and P then any
algorithm for deciding P in the congest model requires Ω

(
CCf (K)
|C| logn

)
rounds.

2.4 Generalized Polygons
Our proofs in Section 4 use the existence of generalized polygons [15]. A generalized polygon
is an incidence relation whose incidence graph has several nice properties. In our context,
we use the following key property of a a generalized polygon’s incidence graph: its girth is
twice its diameter. For the sake of simplifying the presentation, we also use the fact that the
incidence graphs are balanced.

We use the notation H = (L,R,EH) to denote a bipartite graph H, where the bi-partition
of the vertex set of H is L and R, and the set of edges of H is EH . When |L| = |R| = p, we
say that H is a balanced bipartite graph of size 2p.

DISC 2020
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I Definition 11. For two integers p ≥ t ≥ 3, we denote by Ex(p, t) the maximum number of
edges in a balanced bipartite graph of size 2p, diameter t, and girth 2t.

For t ∈ {3, 4, 6}, there are generalized polygons whose incidence graph has 2p nodes,
diameter t, girth 2t, and Θ(p1+ 1

t−1 ) edges. The cases of t = 3 and t = 4 were shown by
Singelton [25], and Benson [4] gave a simplified proof and extended the result for t = 6.
This is summarized in the following theorem, which will be used later without explicitly
re-mentioning generalized polygons.

I Theorem 12 ( [4, 25]). For t ∈ {3, 4, 6}, it holds that Ex(p, t) = Ω(p1+ 1
t−1 ).

3 Diameter 3 vs 5

In this section we prove the following theorem.

I Theorem 4. Any algorithm for distinguishing graphs of diameter 3 from graphs of diameter
5 in the congest model requires Ω(n/ logn) rounds.

To prove Theorem 4, we show a family of lower bound graphs {G(x,y) | x, y ∈ {0, 1}K}
with respect to the set-disjointness function and the graph predicate that distinguishes
between graphs of diameter 3 and graphs of diameter 5. That is, the predicate is defined
only on a graph G with either 3 or 5, and is TRUE if and only if G has diameter 5. We start
with the fixed graph construction G and then we show how to get the graph G(x,y) given
two strings x, y ∈ {0, 1}K .

The Fixed Graph Construction G. The fixed graph construction is defined as follows.
There are 8 sets of nodes S,C1, A1, B1, C2, A2, B2, T , each of size p = n/8. Each of the sets
S,A1, B1, A2, B2, T is an independent set, and C1 and C2 are cliques. The nodes in the sets
are denoted S = {si | i ∈ [p]}, T = {ti | i ∈ [p]}, and for h ∈ {1, 2}, Ah = {ahi | i ∈ [p]},
Bh = {bhi | i ∈ [p]}, and Ch = {Chi | i ∈ [p]}.

The connections between the sets are defined as follows. Each pair of sets H1 6= H2 ∈
{S,C1, A1, B1} is connected by a perfect matching, where we connect the i’th node in H1 to
the i’th node in H2. For example, the sets S and C1 are connected by the perfect matching
{(si, c1

i ) | i ∈ [p]}. Similarly, each pair of sets in {T,C2, A2, B2} is connected by a perfect
matching. This concludes the fixed graph construction G. Let K = p2. We define the graph
G(x,y), given two strings x, y ∈ {0, 1}K , as follows.

Obtaining G(x,y) from G and x, y ∈ {0, 1}K . For each of the strings x and y, we index
the K = p2 positions by x(i,j) and y(i,j) for i, j ∈ [p]. The set of nodes of G(x,y) is exactly as
in G. The set of edges of G(x,y) contains all the edges in G, and the following edges between
pairs of nodes in A1 ×A2 and between pairs of nodes in B1 ×B2.

{(a1
i , a

2
j ) | x(i,j) = 0}; {(b1

i , b
2
j ) | y(i,j) = 0}.

That is, if x(i,j) = 0, we add an edge between a1
i and a2

j , and if y(i,j) = 0, we add an
edge between b1

i and b2
j . This concludes the definition of G(x,y) (See also Figure 1, for an

illustration). Next, we prove that G(x,y) has diameter 3 if the strings x and y are disjoint,
and otherwise it has diameter at least 5. We prove this in Lemmas 13 and 14.

I Lemma 13. If the strings x and y are disjoint, then the diameter of G(x,y) is 3.
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Proof. We show that for any two nodes u, v, dG(x,y)(u, v) ≤ 3. Let L = S ∪ C1 ∪ A1 ∪B1,
and let R = T ∪ C2 ∪A2 ∪B2 The proof is by the following case analysis.
1. u, v ∈ L or u, v ∈ R: We prove the claim for the case in which u, v ∈ L. The case for

which u, v ∈ R is similar. Observe that any node in L is connected by an edge to some
node in C1. Hence, since C1 is a clique, this implies that dG(x,y)(u, v) ≤ 3.

2. u ∈ L and v ∈ R: Hence, u belongs to one of the sets in {S,C1, A1, B1} and v belongs to
one of the sets in {T,C2, A2, B2}. We assume that u ∈ S and v ∈ T ; the proof for the
other cases is similar. Let i be such that u = si, and j such that v = tj . Since the sets
are disjoint, it holds that either x(i,j) = 0, or y(i,j) = 0 (or both). Hence, either there is
an edge between a1

i and a2
j , or there is an edge between b1

i and b2
j (or both), and assume

the former without loss of generality. Since si is connected to a1
i and tj is connected to

a2
j , we have dG(x,y)(si, tj) ≤ 3. Furthermore, one can verify that the distance between si

and tj cannot be smaller than 3, which implies that the diameter of the graph is 3. J

I Lemma 14. If the strings x and y are not disjoint, then the diameter of G(x,y) is at least 5.

Proof. As the sets are not disjoint, there are i, j ∈ [p] for which it holds that x(i,j) = y(i,j) = 1.
We show that in this case, any path P from si to tj is of length at least 5, i.e., dG(si,tj )(u, v) ≥ 5.
Observe that any path P from si to tj must either pass from a node in A1 to a node in A2,
or from a node in B1 to a node in B2. We assume that former case; the latter is similar.
The proof is by the following case analysis.
1. The path P visits a node a2

j′ ∈ A2 for which j′ 6= j: Observe that dG(x,y)(si, a2
j′) ≥ 2,

and that dG(x,y)(a2
j′ , tj) = 3. Hence, dG(x,y)(si, tj) ≥ 5.

2. The path P visits a2
j . Since x(i,j) = 1, there is no edge between a1

i and a2
j . This implies

that dG(x,y)(si, a2
j ) ≥ 4, and hence dG(x,y)(si, tj) ≥ 5. J

Proof of Theorem 4. First, we define VA = S ∪ T ∪A1 ∪A2 ∪C1 ∪C2, and VB = B1 ∪B2.
Lemmas 13 and 14 imply that {G(x,y) | x, y ∈ {0, 1}K} is a family of lower bound graphs
with respect to the set-disjointness problem and the graph predicate that distinguishes
between graphs of diameter 3 and graphs of diameter 5. Observe that the cut size is
E(VA, VB) = Θ(p), and p = Θ(n). Hence, since the length of the input strings is K = p2,
and since the communication complexity of set-disjointness is Ω(K) = Ω(p2), Theorem 10,
implies that any algorithm for deciding whether a graph has diameter 3 or 5 in the congest
model requires Ω(p2/p log p) = Ω(p/ log p) = Ω(n/ logn) rounds. J

The connectivity of G(x,y). One may wonder about the connectivity of G(x,y). If the
graph G(x,y) is not connected, then the construction wouldn’t be meaningful as there is a
trivial lower bound of Ω(D), where D is the diameter of the graph, which is ∞ in graphs
that are not connected. Observe that the only case in which G(x,y) is not connected is when
x = y = 1K . To ensure connectivity (and in fact constant diameter, due to the cliques C1

and C2), we can assume that at least one of the strings x or y has a zero bit. Clearly, the
communication complexity of set-disjointness doesn’t change under this assumption. In fact,
Remark 8 allows to make an even stronger assumption, which we only need in the next
section.

4 Robust Lower Bounds

In this section we prove robust lower bounds for (6/11 + ε)-approximation, (4/7 + ε)-
approximation, and (3/5 + ε)-approximation of the diameter. Our lower bounds follow from
the following theorem.

DISC 2020
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Figure 1 Diameter 3 vs 5: An example for the graph construction G(x,y) for p = 3: There are 8
sets of nodes S,C1, A1, A2, C2, B1, B2, T , each of size p = 3. Each of the sets S,A1, A2, B1, B2, T

forms an independent set, and the sets C1 and C2 are cliques. In this diagram, an edge between
two sets represents a perfect matching connecting them. For example, the edge between S and C1

represents all the edges in {(si, c1
i ) | i ∈ [p]}. The dashed edges between A1 and A2 are the input

edges which depend on the input sting x. Recall that we index the p2 = 9 positions of x by pairs of
indices (i, j) ∈ [p]× [p]. In this example, we have that x(1,3) = x(2,2) = 0, and all the other bits of x
are 1’s. Hence, the only edges between A1 and A2 are (a1

1, a
2
3) and (a1

2, a
2
2). Similarly, the dashed

edges between B1 and B2 represent the input edges which depend on the string y. Since in this
example we have y(1,3) = y(3,1) = 0, and all the other bits of y are 1’s, the only edges between B1

and B2 are (b1
1, b

2
3) and (b1

3, b
2
1).

I Theorem 15. Let t ∈ {3, 4, 6}. For any constant 0 < ε < 1 − t
2t−1 , any algorithm

for computing a ( t
2t−1 + ε)-approximation to the diameter in the congest model requires

Ω
(
n1/t/ logn

)
rounds, where n is the number of nodes in the input graph.

The theorem has the following consequences, when plugging in t = 6, t = 4 and t = 3, in
this order.

I Theorem 1. For any constant 0 < ε < 5/11, any algorithm for finding a (6/11 + ε)-
approximation for the diameter in the congest model requires Ω(n1/6/ logn) rounds.

I Theorem 2. For any constant 0 < ε < 3/7, any algorithm for finding a (4/7 + ε)-
approximation for the diameter in the congest model requires Ω(n1/4/ logn) rounds.

I Theorem 3. For any constant 0 < ε < 2/5, any algorithm for finding a (3/5 + ε)-
approximation for the diameter in the congest model requires Ω(n1/3/ logn) rounds.

Recall that Ex(p, t) is the maximum number of edges of a balanced bipartite graph of size
2p, diameter t, and girth 2t (see Definition 11). Let t ∈ {3, 4, 6}, p ≥ t and let K = Ex(p, t).
To prove Theorem 15, we show a family of lower bound graphs

{
G(x,y) | x, y ∈ {0, 1}K

}
with

respect to the set-disjointness function and the graph predicate that distinguishes between
graphs of diameter t(b+ 1) + 1 and graphs of diameter (2t− 1)b, for some integer b = Θ(1/ε)
that will be chosen later.
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Figure 2 An example for H and Hz. In this example t = p = 3 and therefore H is a bipartite
graph of diameter t = 3 and girth 2t = 6. For these parameters, we have K = Ex(3, 3) = 6. Recall
that π : EH → [K] is an arbitrary 1 : 1 mapping from the set of pairs (`i, rj) ∈ EH to [K]. In
this example, we choose π(`1, r1) = 1, π(`1, r2) = 2, π(`2, r1) = 3, π(`2, r3) = 4, π(`3, r2) = 5 and
π(`3, r3) = 6. Furthermore, in this example we have z = 010010. Hence, since Hz is obtained from
H by keeping only the edges that correspond to the 0 bits in z, we have that the only edges in Hz

are (`z1, rz1), (`z2, rz1), (`z2, rz3) and (`z3, rz3).

The rest of this section is organized as follows. In section 4.1, we start with the
description of G(x,y) given two strings x, y ∈ {0, 1}K . In section 4.2, we show that{
G(x,y) | x, y ∈ {0, 1}K

}
is a family of lower bound graphs with the required properties.

In Section 4.3, we deduce Theorem 15. While the graphs G(x,y) need to be connected, we
ignore this fact in Section 4.1; in Section 4.4 we show how to slightly modify the construction
so that the graphs become connected (and even of constant diameter) for any x and y.

4.1 Description of G(x,y)

Given two strings x, y ∈ {0, 1}K , we describe the graph G(x,y) in three steps. In the first
step, given a string z ∈ {0, 1}K , we define a bipartite graph Hz. Roughly speaking, Hz is
obtained from a densest possible balanced bipartite graph H of size 2p, diameter t and girth
2t, where we keep only some of the edges of H in Hz according to the string z. In the second
step, we define a graph H̃z, which is obtained form Hz by stretching each edge to a path of
length b. In the third step, we describe how to get G(x,y) from H̃x and H̃y.

Description of Hz. Let H = (L,R,EH) be a balanced bipartite graph of size 2p, diameter
t, girth 2t, and a maximum number of edges. That is, the number of edges of H is
|EH | = Ex(p, t) = K. We denote the nodes of H by L = {`1, · · · , `p} and R = {r1, · · · , rp}.
Furthermore, let π : EH → [K] be an enumeration of EH , that is, π is an arbitrary ordering
over the set of pairs EH ⊆ L × R. By this mapping, each bit of a string z ∈ {0, 1}K
corresponds to a unique edge in EH .

Given a string z ∈ {0, 1}K , the graph Hz is defined as follows. Hz is a version of H where
we keep only the edges for which the corresponding bits in z are 0. More formally, Hz =
(Lz, Rz, EHz ) is a balanced bipartite graph with |Lz| = |Rz| = p, where Lz = {`z1, · · · , `zp}
and Rz = {rz1 , · · · , rzp}. A pair of nodes (`zi , rzj ) ∈ Lz ×Rz is connected by an edge in Hz if
(`i, ri) is an edge of H and zπ(`i,ri) = 0, that is, EHz = {(`zi , rzj ) | (`i, rj) ∈ EH∧zπ(`i,rj) = 0}.
See Figure 2 for an illustration of obtaining Hz from H and an input string z ∈ {0, 1}K .

Description of H̃z. H̃z is obtained from Hz by replacing each edge (`zi , rzj ) ∈ EHz with a
path of b+ 1 nodes and b edges, starting at `zi and ending at rzj , where b is some positive
integer to be chosen later. We denote this path by P z(`z

i
,rz

j
). We slightly abuse notation and

DISC 2020



19:10 Improved Hardness of Approximation of Diameter in the CONGEST Model

denote the set of nodes on this path also by P z(`z
i
,rz

j
). We sometimes treat P z(`z

i
,rz

j
) as a set of

nodes, and sometimes as a path, but this will be clear from the context. Hence, the set of
nodes of H̃z is

V
H̃z = Lz ∪Rz ∪

⋃
(`z

i
,rz

j
)∈EHz

P z(`z
i
,rz

j
)

and the edges of H̃z are only the ones on the paths in {P z(`z
i
,rz

j
) | (`zi , rzj ) ∈ EHz}. Observe

that H̃z is not necessarily bipartite.

Obtaining G(x,y) from H̃x and H̃y. Given two input strings x, y ∈ {0, 1}K , G(x,y) is
composed of H̃x and H̃y where we add a perfect matching between Lx and Ly, {(`xi , `

y
i ) |

i ∈ [p]}, and a perfect matching between Rx and Ry, {(rxi , r
y
i ) | i ∈ [p]}. This concludes our

construction. See also figures 3 and 4 for illustrations of G(x,y). In these figures, we also
illustrate H̃z for z = x ∧ y, where the string x ∧ y ∈ {0, 1}K is defined by (x ∧ y)h = xh · yh
for any h ∈ [K]. That is, (x ∧ y)h = 1 if and only if xh = yh = 1. The reason that we
illustrate H̃z in the same figures is that our proof heavily relies on comparing distances in
G(x,y) to distances in H̃z for z = x∧ y. Figure 3 is an illustration of the two graphs when the
strings are not disjoint, while Figure 4 is an illustration of the two graphs when the strings
are disjoint. Before we prove that

{
G(x,y) | x, y ∈ {0, 1}K

}
is a family of lower bound graphs,

we show the following two useful properties of the balanced bipartite graph H = (L,R,EH)
that was described above.

I Property 1. If t is odd, then the distance between any two nodes u, v ∈ L in H is at most
t− 1. Similarly, the distance between any two nodes u, v ∈ R in H is at most t− 1.

Proof. The distance between every two nodes in H is at most its diameter t, but the distance
between every two nodes in the same side of the bi-partition is even, so it is at most t−1. J

I Property 2. If t is even, then the distance between any pair of nodes u ∈ L and v ∈ R in
H is at most t− 1.

Proof. The distance between every two nodes in H is at most its diameter t, and the distance
between two nodes in different sides of the bi-partition is odd, so it is at most t− 1. J

4.2 G(x,y) is a family of lower bound graphs
Our goal in this section is to prove that {G(x,y) | x, y ∈ {0, 1}K} is a family of lower bound
graphs with respect to the set-disjointness function and the graph predicate that distinguishes
graphs of diameter t(b+ 1) + 1 from graphs of diameter (2t− 1)b. For the rest of the paper,
z = x ∧ y. Our proof relies on comparing distances between nodes in G(x,y) to distances
between nodes in H̃z. While the proof contains many technical details that require some
care, it follows from the following simple intuition.

Intuition and overview of the proof. First, it is not very hard to see that the diameter of
G(x,y) is roughly equal to the diameter of H̃z (up to an additive t+ 1). Hence, it suffices
to argue that if the strings x and y are disjoint, then the diameter of H̃z is at most tb, and
otherwise the diameter of H̃z is at least (2t − 1)b. The main idea is to note that Hz is
isomorphic to H if and only if the strings x and y are disjoint. Hence, if the strings are
disjoint, the diameter of Hz is equal to the diameter of H which is t, and since H̃z is obtained
from Hz by stretching each edge to a path of length b, the diameter of H̃z is tb.
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Figure 3 An Illustration of G(x,y) (on the left) and H̃z for z = x ∧ y (on the right). G(x,y) is
composed of H̃x and H̃y, where we add a perfect matching between Lx and Ly, {(`xi , `yi ) | i ∈ [p]},
and a perfect matching between Rx and Ry, {(rxi , ryi ) | i ∈ [p]}. The edge between Lx and Ly

in this figure represents the matching between them. Similarly, the edge between Rx and Ry in
this figure represents the matching between them. The parameters in this example are exactly as
the ones chosen for Figure 2. That is, t = p = 3, b = 3, π(`1, r1) = 1, π(`1, r2) = 2, π(`2, r1) =
3, π(`2, r3) = 4, π(`3, r2) = 5 and π(`3, r3) = 6. Furthermore, we have x = 010010, y = 001010 and
z = x∧y = 000010. Hence, the only paths of length b that we have in H̃x are P x(`x

1 ,r
x
1 ), P

x
(`x

2 ,r
x
1 ), P

x
(`x

2 ,r
x
3 )

and P x(`x
3 ,r

x
3 ). And the only paths of length b that we have in H̃y are P y(`y

1 ,r
y
1 ), P

y

(`y
1 ,r

y
2 ), P

y

(`y
2 ,r

y
3 ) and

P y(`y
3 ,r

y
3 ). Observe that the path P x(`x

3 ,r
x
2 ) doesn’t exist in H̃x, and that the path P y(`y

3 ,r
y
2 ) doesn’t exist

in H̃y. This is because xπ(`3,r2) = x5 = 1 and yπ(`3,r2) = y5 = 1. This implies that zπ(`3,r2) = z5 = 1
as well, and therefore the path P z(`z

3 ,r
z
2 ) doesn’t exist in H̃z. It is easy to see that the distance

between `z3 and rz2 in H̃z is 5b = (2t− 1)b. One can verify that the distance between `x3 and rx2 in
G(x,y) is at least 5b = (2t− 1)b as well. This illustrates that when the strings x and y are disjoint,
the diameter of G(x,y) is at least (2t− 1)b.

On the other hand, if Hz is not isomorphic to H, then there is an edge in H for which the
corresponding edge in Hz doesn’t exist. Since the girth of H is 2t, it implies that there are
two nodes in Hz at distance at least (2t− 1) from each other. Hence, the distance between
the corresponding two nodes in H̃z is at least (2t− 1)b. Next, we formalize these ideas and
give a more detailed proof. The non-disjointness case is proved in Lemma 19, which uses
claims 16, 17 and 18. The disjointness case is proved in Lemma 23, which uses claims 20, 21,
and 22. Recall that given a graph G and two nodes u, v in it, we denote by dG(u, v) the
distance between u and v in G.

Non-disjointness case
B Claim 16. If x and y are not disjoint, then the diameter of Hz is at least 2t− 1 and the
diameter of H̃z is at least (2t− 1)b. In particular, there are `zi ∈ Lz and rzj ∈ Rz such that
d
H̃z (`zi , rzj ) ≥ (2t− 1)b.
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Figure 4 An illustration of G(x,y) and H̃z for z = x ∧ y. The parameters in this example are
exactly as the ones chosen for Figures 2 and 3. The only difference in this example compared to
the one in Figure 3 is that the strings x and y are disjoint. Hence, z = x ∧ y is an all zeros string.
It is easy to see that in this case the diameter of H̃z is tb. The key point of the proof is that the
diameter of G(x,y) is not very much larger than the diameter of H̃z (in fact, it is larger by at most
t+ 1, which is negligible compared to tb for values of b� t). To illustrate this in this example, we
show a path of length tb+ t = 3b+ 3 from `x1 and ry3 . We start by moving from `x1 to `y1 using the
edge (`x1 , `y1) that is part of the matching between Lx and Ly. Then, we use the path of length b
from `y1 to ry2 , and the path of length b from ry2 to `y3 . After that, we use the edge (`y3 , `x3) to move
to `x3 , and the path of length b from `x3 to rx3 . Finally, we use the edge (rx3 , ry3 ) to reach ry3 . This
example illustrates that the diameter of G(x,y) is relatively small if the strings are disjoint.

Proof. Observe that if the strings x and y are not disjoint, then there is an h ∈ [K] for which
it holds that xh = yh = 1. Hence, zh = 1. Since Hz is obtained from H by keeping only the
edges that correspond to the 0 bits in z, it follows that there is an edge (`i, rj) ∈ H such that
there is no edge between the corresponding pair (`zi , rzj ) in Hz. Hence, since H has girth 2t,
if follows that the distance between `zi and rzj in Hz is at least 2t− 1. Since H̃z is obtained
from Hz by replacing each edge with a path of length b, it follows that the diameter of H̃z is
at least (2t− 1)b. C

B Claim 17. For any (`i, rj) ∈ EH , if one of the paths P x(`x
i
,rx

j
) and P y(`y

i
,ry

j
) exists in G(x,y),

then the path P z(`z
i
,rz

j
) exists in H̃z. Similarly, if P z(`z

i
,rz

j
) exists in H̃z, then either P x(`x

i
,rx

j
)

exists in G(x,y) or P y(`y
i
,ry

j
) exists in G(x,y).

Proof. Let h = π(`i, rj). Observe that if one of the paths P x(`x
i
,rx

j
) and P

y
(`y

i
,ry

j
) exists in G(x,y),

then it must be the case that either xh = 0 or yh = 0. Hence, zh = 0. Therefore there is
an edge between `zi and rzj in Hz, which is stretched to a path P z(`z

i
,rz

j
) in H̃z. The other

direction of the claim is proved similarly. C

B Claim 18. For any `xi ∈ Lx and rxj ∈ Rx, it holds that dG(x,y)(`xi , rxj ) ≥ d
H̃z (`zi , rzj ).
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Proof. Consider a shortest path between `xi and rxj in G(x,y). Observe that this path is
composed of edges crossing from H̃x to H̃y or vice versa (i.e., edges in (Lx×Ly)∪ (Rx×Ry)),
and of paths of length b crossing from Lx ∪Ly to Rx ∪Ry or vice versa. Let q be the number
of paths of length b crossing from Lx ∪ Ly to Rx ∪ Ry (or vice versa) that are used by
the shortest path. And denote these paths by P 1, P 2, · · · , P q. Clearly, dG(x,y)(`xi , rxj ) ≥ qb.
Hence, it suffices to show that qb ≥ d

H̃z (`zi , rzj ).
For this, observe that for any h ∈ [q], there are ih, jh ∈ [p] and w ∈ {x, y}, for which

Ph = Pw(`w
ih
,rw

jh
) (That is, Ph is connecting either a pair (`xih, rxjh) ∈ Lx × Rx or a pair

(`wih, rwjh) ∈ Ly×Ry). Hence, by Claim 17, this implies that for any h ∈ [q], the path P z(`z
ih
,rz

jh
)

exists in H̃z. Therefore, by starting at `zi and following these q paths of length b in H̃z we
reach rzj . Hence, qb ≥ d

H̃z (`zi , rzj ). C

I Lemma 19. If x and y are not disjoint, then the diameter of G(x,y) is at least (2t− 1)b.

Proof. By Claim 16, if the strings are not disjoint, then there are `zi ∈ Lz and rzj ∈ Rz
such that d

H̃z (`zi , rzj ) ≥ (2t− 1)b. Furthermore, by Claim 18, it holds that dG(x,y)(`xi , rxj ) ≥
d
H̃z (`zi , rzj ). Hence, there are two nodes in G(x,y) at distance at least (2t − 1)b from each

other. J

Disjointness case
B Claim 20. If x and y are disjoint, then Hz is isomorphic to H. In particular, this implies:
1. Hz has diameter t.
2. for odd values of t, and for any two nodes u, v ∈ V

H̃z , if u, v ∈ Lz or u, v ∈ Rz, then
d
H̃z (u, v) = (t− 1)b.

3. for even values of t, and for any two nodes u, v ∈ V
H̃z such that u ∈ Lz and v ∈ Rz, it

holds that d
H̃z (u, v) = (t− 1)b.

Proof. Observe that if the strings x and y are disjoint, then for any h ∈ [K], either xh = 0
or yh = 0, so z = x ∧ y is the all-zero string. Therefore, since Hz is obtained from H by
keeping the edges that correspond to the 0 bits in z, Hz is isomorphic to H. Since H has
diameter t, Hz also has diameter t.

Moreover, since Hz is isomorphic to H, by Property 1, it holds that for odd values
of t, and for u, v that are on the same side (i.e., u, v ∈ Lz or u, v ∈ Rz), it holds that
dHz (u, v) = t− 1, and therefore d

H̃z (u, v) = (t− 1)b.
Similarly, by Property 2, it holds that for even values of t, and for u, v that are not

on the same side (i.e., u ∈ Lz and v ∈ Rz), it holds that dHz (u, v) = t − 1, and therefore
d
H̃z (u, v) = (t− 1)b. C

For two nodes u, v ∈ Lx ∪ Ly ∪Rx ∪Ry in G(x,y), we say that u and v are on the same
side if u, v ∈ Lx ∪ Ly or u, v ∈ Rx ∪Ry. Similarly, we say that u and v are on different sides
if u ∈ Lx ∪ Ly and v ∈ Rx ∪Ry.

B Claim 21. For odd values of t, if x and y are disjoint then for any two nodes u, v ∈
Lx ∪Ly ∪Rx ∪Ry that are on the same side (i.e., either u, v ∈ Lx ∪Ly or u, v ∈ Rx ∪Ry) it
holds that dG(x,y)(u, v) ≤ (t− 1)b+ t.

Due to space limitations, the proof of Claim 21 is deferred to the full version.

B Claim 22. For even values of t, if x and y are disjoint then for any two nodes u, v ∈
Lx ∪ Ly ∪ Rx ∪ Ry that are on different sides (i.e., u ∈ Lx ∪ Ly and v ∈ Rx ∪ Ry) it holds
that dG(x,y)(u, v) = (t− 1)b+ t.

Due to space limitations, the proof of Claim 22 is deferred to the full version.
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I Lemma 23. If x and y are disjoint, then the diameter of G(x,y) is at most tb+ t+ 1.

Proof. Let u, v ∈ VG(x,y) be two nodes in G(x,y). Let a`u be the distance from u to the closest
node in Lx ∪Ly, and let aru be the distance from u to the closest node in Rx ∪Ry. a`v and arv
are defined similarly for v. For example, if u ∈ Lx ∪ Ly then a`u = 0. The key point to note
is that either a`u + a`v ≤ b+ 1, or aru + arv ≤ b+ 1. That is, either taking the two nodes to the
left side of G(x,y) (i.e., to Lx ∪ Ly) costs at most b+ 1, or taking the two nodes to the right
side costs at most b+ 1. Similarly, it holds that either a`u + arv ≤ b+ 1, or aru + a`v ≤ b+ 1.
The rest of the proof is by the following case analysis.
1. t is odd: By Claim 21, the distance between any two nodes in Lx ∪ Ly and the distance

between any two nodes in Rx ∪Ry is at most (t− 1)b+ t. Furthermore, we can either
move u and v to Lx ∪ Ly by using at most b+ 1 steps (in total, for moving both u and
v), or we can move u and v to Rx ∪Ry by using at most b+ 1 steps (in total, for moving
both u and v). After moving u and v to one of the sides, we can use Claim 21 and deduce
that dG(x,y)(u, v) ≤ (t− 1)b+ t+ b+ 1 = tb+ t+ 1.

2. t is even: By Claim 22, the distance between any u′ ∈ Lx ∪ Ly and v′ ∈ Rx ∪ Ry is at
most (t− 1)b+ t. Furthermore, we can either move u to Lx ∪ Ly and v to Rx ∪Ry by
using at most b+1 steps (in total, for moving both u and v), or we can move u to Rx∪Ry
and v to Lx ∪Ly by using at most b+ 1 steps (in total, for moving both u and v). Hence,
we can use Claim 22 and deduce that dG(x,y)(u, v) ≤ (t− 1)b+ t+ b+ 1 = tb+ t+ 1. J

4.3 Proof of Theorem 15
First, we define the following partition V = VA∪̇VB of the set of nodes of G(x,y). VA = V

H̃x ,
and VB = V

H̃y . Hence, the size of the cut C = E(VA, VB) is Θ(p). This is because the only
edges connecting between nodes in H̃x and nodes in H̃y in G(x,y) are the 2p edges of the
matching between Lx and Ly, and the matching between Rx and Ry.

Since our goal is to show a lower bound as a function of the number of nodes n in the
input graph G(x,y), we need to analyze the size of the cut and the size of the input strings
with respect to n. By Theorem 12, we have that for t ∈ {3, 4, 6}, K = Ex(p, t) = Ω(p1+ 1

t−1 ).
Furthermore, by Remark 8 we can assume that a constant fraction of the bits in the strings
x and y are 0. Hence, these 0 bits are translated to paths of length b in G(x,y). This implies
that the number of nodes in G(x,y) is n = Θ(Kb) = Ω(p1+ 1

t−1 b) = Ω(p1+ 1
t−1 ) for constant

values of b. Therefore, the size of the cut C is Θ(p) = O(n t−1
t ).

Lemmas 19 and 23 imply that {G(x,y) | x, y ∈ {0, 1}K} is a family of lower bound graphs
with respect to the set-disjointness function and the graph predicate that distinguishes
between graphs of diameter tb+ t+1 and graphs of diameter (2t−1)b. Hence, by Theorem 10
and the fact that the communication complexity of set-disjointness is Ω(K), we have that
any algorithm for distinguishing between these two cases in the congest model requires
Ω
(

K
|C| logn

)
= Ω

(
n

n(t−1)/t logn

)
= Ω

(
n1/t

logn

)
rounds. To get this lower bound for ( t

2t−1 + ε)-

approximation for diameter, we need that
(

t
2t−1 + ε

)
(2t− 1)b > tb+ t+ 1. Hence, we can

pick b = Θ
(

t+1
ε(2t−1)

)
= Θ

( 1
ε

)
.

4.4 Handling the connectivity issue
One may wonder about the connectivity of the graph G(x,y). As the construction was
described so far, there could be some values of x and y such that G(x,y) is not connected. In
this section, we show how to slightly modify the construction of G(x,y) so that it is always
connected, and in fact of constant diameter, without changing the analysis. Observe that
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it suffices to make H̃x always connected. This is because any node in H̃y has some path
connecting it to a node in H̃x. Since H̃x is obtained from Hx by stretching each edge in
Hx to a path of length b, it suffices to make Hx always connected, regardless of the input
string x.

Recall that given a string x ∈ {0, 1}K , we defined Hx to be the graph obtained from H

where we keep only the edges that correspond to the 0 bits in x. Recall that H is a balanced
bipartite graph of size 2p, diameter t and girth 2t. Of course, H is always connected. But
since some of the edges of H may not exist in Hx, Hx may not be connected. To ensure
that Hx is connected, let S be a shortest paths tree starting from an arbitrary node in H.
Of course, the number of edges in S is O(p), which is small with respect to the size of the
input string x which is K = Ex(p, t).

We modify the definition of Hx such that the edges that correspond to the spanning tree
S always exist in Hx. In particular, their existence in Hx doesn’t depend on x. For this, we
need to modify the size of the string x to K − |S| = Θ(K), so that only the edges that are
not in S depend on x. The proof that {G(x,y) | (x, y) ∈ {0, 1}K−|S| × {0, 1}K} is a family of
lower bound graphs remains exactly the same as in Section 4.2. Furthermore, since the size
of x didn’t change asymptotically, the deduced lower bound from Section 4.3 doesn’t change
asymptotically. Observe that under the new definition of Hx, the diameter of Hx is at most
2t. Hence, the diameter of H̃x is at most 2tb. It is not very hard to verify that the diameter
of G(x,y) in this case is at most 2tb+ 2b+ 2, which is constant for constant values of t and b.
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