Asynchronous Reconfiguration with Byzantine
Failures

Petr Kuznetsov
LTCI, Télécom Paris, Institut Polytechnique Paris, France
petr.kuznetsov@telecom-paris.fr

Andrei Tonkikh

National Research University Higher School of Economics, Saint-Petersburg, Russia
andrei.tonkikh@gmail.com

—— Abstract

Replicated services are inherently vulnerable to failures and security breaches. In a long-running
system, it is, therefore, indispensable to maintain a reconfiguration mechanism that would replace
faulty replicas with correct ones. An important challenge is to enable reconfiguration without
affecting the availability and consistency of the replicated data: the clients should be able to get
correct service even when the set of service replicas is being updated.

In this paper, we address the problem of reconfiguration in the presence of Byzantine failures:
faulty replicas or clients may arbitrarily deviate from their expected behavior. We describe a generic
technique for building asynchronous and Byzantine fault-tolerant reconfigurable objects: clients
can manipulate the object data and issue reconfiguration calls without reaching consensus on the
current configuration. With the help of forward-secure digital signatures, our solution makes sure
that superseded and possibly compromised configurations are harmless, that slow clients cannot
be fooled into reading stale data, and that Byzantine clients cannot cause a denial of service by
flooding the system with reconfiguration requests. Our approach is modular and based on dynamic
lattice agreement abstraction, and we discuss how to extend it to enable Byzantine fault-tolerant
implementations of a large class of reconfigurable replicated services.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Reconfiguration, Asynchronous Models, Byzantine Faults
Digital Object Identifier 10.4230/LIPIcs.DISC.2020.27

Related Version A full version of the paper is available at [27], https://arxiv.org/abs/2005.13499.

1 Introduction

Replication and quorums. Replication is a natural way to ensure availability of shared
data in the presence of failures. A collection of replicas, each holding a version of the data,
ensure that the clients get a desired service, even when some replicas become unavailable or
hacked by a malicious adversary. Consistency of the provided service requires the replicas
to synchronize: intuitively, every client should be able to operate on the most “up-to-date”
data, regardless of the set of replicas it can reach.

It always makes sense to assume as little as possible about the environment in which
a system we design is expected to run. For example, asynchronous distributed systems
do not rely on timing assumptions, which makes them extremely robust with respect to
communication disruptions and computational delays. It is, however, notoriously difficult
and sometimes even impossible to make such systems fault-tolerant. The folklore CAP
theorem [12, 21] states that no replicated service can combine consistency, availability, and
partition-tolerance. In particular, no consistent and available read-write storage can be
implemented in the presence of partitions: clients in one partition are unable to keep track
of the updates taking place in another one.

© Petr Kuznetsov and Andrei Tonkikh;

licensed under Creative Commons License CC-BY
34th International Symposium on Distributed Computing (DISC 2020).
Editor: Hagit Attiya; Article No. 27; pp.27:1-27:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:petr.kuznetsov@telecom-paris.fr
mailto:andrei.tonkikh@gmail.com
https://doi.org/10.4230/LIPIcs.DISC.2020.27
https://arxiv.org/abs/2005.13499
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2

Asynchronous Reconfiguration with Byzantine Failures

Therefore, fault-tolerant storage systems tend to assume that partitions are excluded,
e.g., by requiring a majority of replicas to be correct [6]. More generally, one can assume a
quorum system, e.g., a set of subsets of replicas satisfying the intersection and availability
properties [20]. Every (read or write) request from a client should be accepted by a quorum
of replicas. As every two quorums have at least one replica in common, intuitively, no client
can miss previously written data.

Of course, failures of replicas may jeopardize the underlying quorum system. In particular,
we may find ourselves in a system in which no quorum is available and, thus, no operation
may be able to terminate. Even worse, if the replicas are subject to Byzantine failures, we
may not be able to guarantee the very correctness of read values.

Asynchronous reconfiguration. To anticipate such scenarios in a long run, we must maintain
a reconfiguration mechanism that enables replacing compromised replicas with correct
ones and update the corresponding quorum assumptions. A challenge here is to find an
asynchronous implementation of reconfiguration in a system where both clients and replicas
are subject to Byzantine failures that can be manifested by arbitrary and even malicious
behavior. In the world of selfishly driven blockchain users, a reconfiguration mechanism must
be prepared to this.

Recently, a number of reconfigurable systems were proposed for asynchronous crash-
fault environments [2, 19, 23, 3, 34, 26] that were originally applied to (read-write) storage
systems [2, 19, 3], and then extended to max-registers [23, 34] and more general lattice data
type [26].

These proposals tend to ensure that the clients reach a form of “loose” agreement on the
currently active configurations, which can be naturally expressed via the lattice agreement
abstraction [8, 16]. We allow clients to (temporarily) live in different worlds, as long as
these worlds are properly ordered. For example, we may represent a configuration as a set
of updates (additions and removals of replicas) and require that all installed configurations
should be related by containment. A configuration becomes stale as soon as it is subsumed
by a new one representing a proper superset of updates.

Challenges of Byzantine fault-tolerant reconfiguration. In this paper, we focus on Byzan-
tine fault-tolerant reconfiguration mechanism. We had to address here several challenges,
specific to dynamic systems with Byzantine faults, which make it hard to benefit from
existing crash fault-tolerant reconfigurable solutions.

First, when we build a system out of lower-level components, we need to make sure
that the outputs provided by these components are “authentic”. Whenever a (potentially
Byzantine) process claims to have obtained a value v (e.g., a new configuration estimate)
from an underlying object (e.g., Lattice Agreement), it should also provide a proof o that
can be independently verified by every correct process. The proof typically consists of
digital signatures provided by a quorum of replicas of some configuration. We abstract this
requirement out by equipping the object with a function VerifyOutputValue that returns a
boolean value, provided v and ¢. When invoked by a correct process, the function returns
true if and only if v has indeed been produced by the object. When “chaining” the objects,
i.e., adopting the output v provided by an object A as an input for another object B, which
is the typical scenario in our system, a correct process invokes A.VerifyOutputValue(v, o),
where o is the proof associated with v by the implementation of A. This way, only values
actually produced by A can be used as inputs to B.

P. Kuznetsov and A. Tonkikh

Second, we face the “I still work here” attack [1]. It is possible that a client that did
not log into the system for a long time tries to access a stale, outdated configuration in which
some quorum is entirely compromised by the Byzantine adversary. The client can therefore
be provided with an inconsistent view on the shared data. Thus, before accepting a new
configuration, we need to make sure that the stale ones are no longer capable of processing
data requests from the clients. We address this issue via the use of a forward-secure signature
scheme [10]. Intuitively, every replica is provided with a distinct private key associated to
each configuration. Before a configuration is replaced with a newer one, at least a quorum
of its replicas are asked to destroy their private keys. Therefore, even if the replicas are to
become Byzantine in the future, they will not be able to provide slow clients with inconsistent
values. The stale configuration simply becomes non-responsive, as in crash-fault-tolerant
reconfigurable systems.

Unfortunately, in an asynchronous system it is impossible to make sure that replicas of
all stale configurations remove their private keys as it would require solving consensus [17].
However, as we show in this paper, it is possible to make sure that the configurations in which
replicas do not remove their keys are never accessed by correct clients and are incapable of
creating “proofs” for output values.

Finally, there is a subtle, and quite interesting “slow reader” attack. Suppose that a
client accesses almost all replicas in a quorum of the current configuration each holding a
stale state, as the only correct replica in the quorum that has the up-to-date state has not
yet responded. The client then falls asleep, meanwhile, the configuration is superseded by
a new one. As we do not make any assumptions about the correctness of replicas in stale
configurations, the replica that has not yet responded can be compromised. Moreover, due to
asynchrony, this replica can still retain its original private key. The replica can then pretend
to be unaware of the current state. Therefore, the slow client might still be able to complete
its request in the superseded configuration and return a stale state, which would violate the
safety properties of the system. We show that this issue can be addressed by an additional
“confirming” round-trip executed by the client.

Our contribution: Byzantine fault-tolerant reconfigurable services. We provide a sys-
tematic solution to each of the challenges described above and present a set of techniques for
building reconfigurable services in asynchronous model with Byzantine faults of both clients
and replicas. We consider a very strong model of the adversary: any number of clients can
be Byzantine and, as soon as some configuration is installed, no assumptions are made about
the correctness of replicas in any of the prior configurations.

Moreover, in our quest for a simple solution for the Byzantine model, we devised a new
approach to building asynchronous reconfigurable services by further exploring the connection
between reconfiguration and the lattice agreement abstraction [23, 26]. We believe that this
approach can be usefully applied to crash fault-tolerant systems as well.

Instead of trying to build a complex graph of configurations “on the fly” while transferring
the state between those configurations, we start by simply assuming that we are already given
a linear history (i.e., a sequence of configurations). We introduce the notion of a dynamic
object — an object that can transfer its own state between the configurations of a given finite
linear history and serve meaningful user requests. We then provide dynamic implementations
of several important object types such as Lattice Agreement and Max-Register and expect
that other asynchronous static algorithms can be translated to the dynamic model using a
similar set of techniques.

27:3

DISC 2020

27:4

Asynchronous Reconfiguration with Byzantine Failures

Finally, we present a general transformation that allows us to combine any dynamic
object with two Dynamic Byzantine Lattice Agreement objects in such a way that together
they constitute a single reconfigurable object, which exports a general-purpose reconfiguration
interface and supports all the operations of the original dynamic object.

Roadmap. The rest of the paper is organized as follows. We overview the model assumptions
in Section 2 and define our principal abstractions in Section 3. In Section 4, we describe our
implementation of Dynamic Byzantine Lattice Agreement and in Section 5, we show how
to use it to implement a reconfigurable object. We discuss related work in Section 6 and
conclude in Section 7. We refer to [27] for the full version of the paper.

2 System Model

Processes and channels. We consider a system of processes. A process can be a replica or
a client. Let @ and IT denote the (possibly infinite) sets of replicas and clients, resp., that
potentially can take part in the computation. At any point in a given execution, a process
can be in one of the four states: idle, correct, halted, or Byzantine. A process is idle if it has
not taken a single step in the execution yet. A process stops being idle by taking a step, e.g.,
sending or receiving a message. A process is considered correct as long as it respects the
algorithm it is assigned. A process is halted if it executed the special “halt” command and
not taking any further steps. Finally, a process is Byzantine if it prematurely stops taking
steps of the algorithm or takes steps that are not prescribed by it. A correct process can
later halt or become Byzantine. However, the reverse is impossible: a halted or Byzantine
process cannot become correct. We assume that a process that remains correct forever (we
call it forever-correct) does not prematurely stop taking steps of its algorithm.

We assume asynchronous reliable authenticated point-to-point links between each pair of
processes [13]. If a forever-correct process p sends a message m to a forever-correct process
q, then g eventually delivers m. Moreover, if a correct process g receives a message m from a
process p at time ¢, and p is correct at time ¢, then p has indeed sent m to ¢ before .

We assume that the adversary is computationally bounded so that it is unable to break
the cryptographic techniques, such as digital signatures, forward security schemes [10] and
one-way hash functions.

Configuration lattice. A join semi-lattice (or simply a lattice) is a tuple (£, C), where L is
a set partially ordered by the binary relation C such that for all elements x,y € L, there
exists the least upper bound for the set {x,y}, i.e., the element z € L such that z,y C 2
andVw € L :if x,y C w, then z C w. The least upper bound for the set {z,y} is denoted
by x Uy. U is called the join operator. It is an associative, commutative, and idempotent
binary operator on £. We write x C y whenever x C y and = # y. We say that x,y € L are
comparable iff either z C y or y C .

For any (potentially infinite) set A, (24,C) is a join semi-lattice, called the powerset
lattice Of A. For all Zl,ZQ € 2A7 Zl C Z2 £ Zl - ZQ and Zl U Z2 £ Zl @] ZQ.

A configuration is an element of a join semi-lattice (C,C). We assume that every
configuration is associated with a finite set of replicas via a map replicas : C — 2%, and a
quorum system via a map quorums : C — 220, such that VC € C : quorums(C) C greplicas(C)
Additionally we assume that there is a map height : C — Z, such that VC € C : height(C) > 0
and VC1,Cy € C : if C; T Oy, then height(Cy) < height(Cy). We say that a configuration C
is higher (resp., lower) than a configuration D iff D = C (resp, C C D).}

! Notice that “C is higher than D” implies “height(C) > height(D)”, but not vice versa.

P. Kuznetsov and A. Tonkikh

We say that quorums(C) is a dissemination quorum system at time ¢t iff every two sets
(also called quorums) in quorums(C) have at least one replica in common that is correct at
time ¢, and at least one quorum is available (all its replicas are correct) at time .

A natural (but not the only possible) way to define the lattice C is as follows: let
Updates be {+, —} x &, where tuple (+, p) means “add replica p” and tuple (—,p) means
“remove replica p”. Then C is the powerset lattice (2UP%%¢s C). The mappings replicas,
quorums, and height are defined as follows: replicas(C) = {s € & | (+,5) € C A (—,s) & C},
quorums(C) £ {Q C replicas(C) | |Q| > % |replicas(C)|}, and height(C) £ |C|. Tt is
straightforward to verify that quorums(C) is a dissemination quorum system when strictly
less than one third of replicas in replicas(C) are faulty. Notice that, when this lattice is used
for configurations, once a replica is removed from the system, it cannot be added again with
the same identifier. In order to add such a replica back to the system, a new identifier must
be used.

Forward-secure digital signatures. In a forward-secure digital signature scheme [10, 30, 11,
15] the public key of a process is fixed while the secret key can evolve. Each signature is
associated with a timestamp. To generate a signature with timestamp ¢, the signer uses
secret key sk;. The signer can update its secret key and get sky, from sk, if t; < to < T.2
However “downgrading” the key to a lower timestamp, from sk;, to sk¢,, is computationally
infeasible. This way, if the signer updates their secret key to some timestamp ¢ and then
removes the original secret key, it will not be able to sign new messages with a timestamp
lower than ¢, even if it later turns Byzantine.

For simplicity, we model a forward-secure signature scheme as an oracle which associates
every process p with a timestamp st,, (initially, st, = 0). The oracle provides p with three
operations: (1) UpdateFSKey(t) sets st, to t > stp; (2) FSSign(m,t) returns a signature for
message m and timestamp t if ¢ > st,,, otherwise it returns L; and (3) FSVerify(m, p, s, t)
returns true iff s was generated by invoking FSSign(m,t) by process p.?

In our protocols, we use the height of the configuration as the timestamp. When a replica
answers requests in configuration C, it signs messages with timestamp height(C). When
a higher configuration D is installed, the replica invokes UpdateFSKey(height(D)). This
prevents the “I still work here” attack described in Section 1.

3 Abstractions and Definitions

In this section, we introduce principal abstractions of this paper (access control-interface,
Byzantine Lattice Agreement, Reconfigurable and Dynamic objects), state our quorum
assumptions, and recall the definitions of broadcast primitives used in our algorithms.

3.1 Access control

In our implementations and definitions, we parametrize some abstractions by boolean
functions VerifyInputValue(v, o) and VerifyInputConfig(C, o), where o is called a certificate.
Moreover, some objects also export a boolean function VerifyOutputValue(v, o), which lets
anyone to verify that the value v was indeed produced by the object. This helps us to deal
with Byzantine clients. In particular, it achieves three important goals.

2 T is a parameter of the scheme and can be set arbitrarily large (with some modest overhead). We
believe that T = 232 or T' = 25% should be sufficient for most applications.

3 We assume that anyone who knows the id of a process also knows its public key. For example, the
public key can be directly embedded into the identifier.

27:5

DISC 2020

27:6

Asynchronous Reconfiguration with Byzantine Failures

First, the parameter VerifyInputConfig allows us to prevent Byzantine clients from
reconfiguring the system in an undesirable way or simply flooding the system with excessively
frequent reconfiguration requests. In the full version of this paper [27], we propose two simple
approaches: each reconfiguration request must be signed by a quorum of replicas of some
configuration* or by a quorum of preconfigured administrators.

Second, the parameter VerifylnputValue(v,o) allows us to formally capture the
application-specific notions of well-formed client requests and access control. For example, in
a key-value storage system, each client can be permitted to modify only the key-value pairs
that were created by this client. In this case, the certificate o is just a digital signature of
that client.

Finally, the exported function VerifyOutputValue allows us to chain several distributed
objects in such a way that the output of one object is passed as input for another one.

3.2 Byzantine Lattice Agreement abstraction

In this section we formally define Byzantine Lattice Agreement abstraction (BLA for short),
which serves as one of the main building blocks for constructing reconfigurable objects.
Byzantine Lattice Agreement is an adaptation of Lattice Agreement [16] that can tolerate
Byzantine failures of processes (both clients and replicas). It is parameterized by a join
semi-lattice £, called the object lattice, and a boolean function VerifyInputValue : £ x ¥ —
{true, false}, where ¥ is a set of possible certificates. We say that o is a valid certificate for
input value v iff VerifyInputValue(v, o) = true.

We say that v € L is a verifiable input value in a given run iff at some point in time in
that run, some process knows a certificate o that is valid for v, i.e., it maintains v and a
valid certificate o in its local memory. We require that the adversary is unable to invert
VerifyInputValue by computing a valid certificate for a given value. This is the case, for
example, when o must contain a set of unforgeable digital signatures.

The Byzantine Lattice Agreement abstraction exports one operation and one function.?

Operation Propose(v, o) returns a response of the form (w,7), where v,w € L, o is a

valid certificate for input value v, and 7 is a certificate for output value w;

Function VerifyOutputValue(v, o) returns a boolean value.

Similarly to input values, we say that 7 is a walid certificate for output value w iff
VerifyOutputValue(w, 7) = true. We say that w is a verifiable output value in a given
run iff at some point in that run, some process knows 7 that is valid for w.

Implementations of Byzantine Lattice Agreement must satisfy the following properties:

BLA-Validity: Every verifiable output value w is a join of some set of verifiable input

values;

BLA-Verifiability: ~ If Propose(...) returns (w,7) to a correct process, then

VerifyOutputValue(w, 7) = true;

BLA-Inclusion: If Propose(v, o) returns (w, T) to a correct process, then v C w;

BLA-Comparability: All verifiable output values are comparable;

BLA-Liveness: If the total number of verifiable input values is finite, every call to

Propose(v, o) by a forever-correct process eventually returns.

4 Additional care is needed to prevent the “slow reader” attack. See [27] for more details.
5 The main difference between an operation and a function is that a function can be computed without
communicating with other processes and it always returns the same result given the same input.

P. Kuznetsov and A. Tonkikh

For the sake of simplicity, we only guarantee liveness when there are finitely many verifiable
input values. This is sufficient for the purposes of reconfiguration. The abstraction that
provides unconditional liveness is called Generalized Lattice Agreement [16].

3.3 Reconfigurable objects

It is possible to define a reconfigurable version of every static distributed object by enriching
its interface and imposing some additional properties. In this section, we define the notion
of a reconfigurable object in a very abstract way. By combining this definition with the
definition of a Byzantine Lattice Agreement from Section 3.2, we obtain a formal definition
of a Reconfigurable Byzantine Lattice Agreement. Similar combination can be performed
with the definition of any static distributed object (e.g., with the definition of a Max-Register
from [27]).

A reconfigurable object exports an operation UpdateConfig(C, o), which can be used to
reconfigure the system, and must be parameterized by a boolean function VerifyInputConfig :
C x ¥ — {true, false}, where ¥ is a set of possible certificates. As for verifiable input values,
we say that C € C is a verifiable input configuration in a given run iff at some point in that
run, some process knows o such that VerifyInputConfig(C, o) = true.

We require the total number of verifiable input configurations to be finite in any given
infinite execution of the protocol. In practice, this boils down to assuming sufficiently long
periods of stability when no new verifiable input configurations appear. This requirement is
imposed by all asynchronous reconfigurable storage systems [1, 34, 26, 3] we are aware of,
and, in fact, can be shown to be necessary [33].

When a correct replica r is ready to serve user requests in configuration C, it triggers
upcall InstalledConfig(C'). We then say that r installs configuration C. A configuration is
called installed if some correct replica installed it. Finally, a configuration is called superseded
if some higher configuration is installed.

Each reconfigurable object must satisfy the following properties:

Reconfiguration Validity: Every installed configuration C' is a join of some set of verifiable

input configurations. Moreover, all installed configurations are comparable;

Reconfiguration Liveness: Every call to UpdateConfig(C, o) by a forever-correct client

eventually returns. Moreover, C' or a higher configuration will eventually be installed.

Installation Liveness: If some configuration C' is installed by some correct replica, then

C or a higher configuration will eventually be installed by all correct replicas.

3.4 Dynamic objects

Reconfigurable objects are hard to build because they need to solve two problems at once.
First, they need to order and combine concurrent reconfiguration requests. Second, the
state of the object needs to be transferred across installed configurations (we call this state
transfer). We decouple these two problems by introducing the notion of a dynamic object.
Dynamic objects solve the second problem while “outsourcing” the first one.

Before we formally define dynamic objects, let us first define the notion of a history. In
Section 2, we introduced the configuration lattice C. A finite set h C C is called a history iff all
elements of h are comparable (in other words, if they form a sequence). Let HighestConf(h)
be C' € h such that ¥V C' € h : C' C C. By definition of a history, HighestConf(h) is
unambiguously defined for any history h.

Dynamic objects must export an operation UpdateHistory(h,o) and must be param-
eterized by a boolean function VerifyHistory : H x X — {true, false}, where H is the set
of all histories and ¥ is the set of all possible certificates. We say that h is a wverifiable

27:7

DISC 2020

27:8

Asynchronous Reconfiguration with Byzantine Failures

history in a given run iff at some point in that run, some process knows o such that
VerifyHistory(h,o) = true. A configuration C is called candidate iff it belongs to some
verifiable history. Also, a candidate configuration C is called active iff it is not superseded
by a higher configuration.

As with verifiable input configurations, the total number of verifiable histories is re-
quired to be finite. Additionally, we require all verifiable histories to be related by con-
tainment (i.e., comparable w.r.t. C). More formally, if VerifyHistory(hy,01) = true and
VerifyHistory (he, o2) = true, then hy; C hs or he C hy. We discuss how to build such histories
in Section 5.

Similarly to reconfigurable objects, a dynamic object must have the InstalledConfig(C')
upcall. The object must satisfy the following properties:

Dynamic Validity: Only a candidate configuration can be installed by a correct replica;

Dynamic Liveness: Every call to UpdateHistory(h, o) by a forever-correct client eventually
returns. Moreover, HighestConf(h) or a higher configuration will eventually be installed;

Installation Liveness (the same as for reconfigurable objects): If some configuration C
is installed by some correct replica, then C or a higher configuration will eventually be
installed by all correct replicas.

Note that Dynamic Validity implies that all installed configurations are comparable, since all
verifiable histories are related by containment and all configurations within one history are
comparable.

While reconfigurable objects provide general-purpose reconfiguration interface, dynamic
objects are weaker, as they require an external service to build comparable verifiable histories.
As the main contribution of this paper, we show how to build dynamic objects in a Byzantine
environment and how to create reconfigurable objects using dynamic objects as building
blocks. We argue that this technique is applicable to a large class of objects.

3.5 Quorum system assumptions

Most fault-tolerant implementations of distributed objects impose some requirements on the
subsets of processes that can be faulty. We say that a configuration C'is available at time t iff
replicas(C) is a dissemination quorum system at time ¢ (as defined in Section 2). Correctness
of our implementations of dynamic objects relies on the assumption that active candidate
configurations are available. Once a configuration is superseded by a higher configuration,
we make no further assumptions about it.

For reconfigurable objects we impose a slightly more conservative requirement: every
combination of verifiable input configurations that is not yet superseded must be available.
More formally, let C1, ..., C}y be verifiable input configurations such that C' = Cy U ...UCy
is not superseded at time ¢. Then we require quorums(C) to be a dissemination quorum
system at time t.

Correctness of our reconfigurable objects relies solely on correctness of the dynamic
building blocks. Formally, when k configurations are concurrently proposed, we require all
possible combinations, i.e., 2¥ — 1 configurations, to be available. However, in practice, at
most k of them will be chosen to be put in verifiable histories, and only those configurations
actually need to be available. We impose a more conservative requirement because we do
not know these configurations a priori.

P. Kuznetsov and A. Tonkikh

3.6 Broadcast primitives

To make sure that no slow process is “left behind”, we assume that a variant of reliable
broadcast primitive [13] is available. The primitive must ensure two properties: (1) If a forever-
correct process p broadcasts a message m, then p eventually delivers m; (2) If some message m
is delivered by a forever-correct process, every forever-correct process eventually delivers
m. In practice such primitive can be implemented by some sort of a gossip protocol [24].
This primitive is “global” in a sense that it is not bound to any particular configuration. In
pseudocode we use “RB-Broadcast (...)” to denote a call to the “global” reliable broadcast.

Additionally, we assume a “local” uniform reliable broadcast primitive [13]. It has a
stronger totality property: if some correct process p delivered some message m, then every
forever-correct process will eventually deliver m, even if p later turns Byzantine. This
primitive can be implemented in a static system, provided a quorum system. As we deal
with dynamic systems, we associate every broadcast message with a fixed configuration and
only guarantee these properties if the configuration is never superseded. Notice that any
static implementation of uniform reliable broadcast trivially guarantees this property. In
pseudocode we use “URB-Broadcast (...) in C” to denote a call to the “local” uniform
reliable broadcast in configuration C.

4 Dynamic Byzantine Lattice Agreement

Dynamic Byzantine Lattice Agreement abstraction (DBLA for short) is the main building
block in our construction of reconfigurable objects. Its specification is a combination of the
specification of Byzantine Lattice Agreement (Section 3.2) and the specification of a dynamic
object (Section 3.4). The interface of a DBLA object is depicted in Figure 2a. To respect
space limits, the complete pseudocode, the proof of correctness, and further discussion are
presented in [27].

As we mentioned earlier, we use forward-secure digital signatures to guarantee that
superseded configurations cannot affect correct clients or forge certificates for output values.
Ideally, before a new configuration C is installed (i.e., before a correct replica triggers
InstalledConfig(C') upcall), we would like to make sure that the replicas of all candidate
configurations lower than C invoke UpdateFSKey(height(C)). However, this would require
the replica to know the set of all candidate configurations lower than C. Unambiguously
agreeing on this set would require solving consensus, which is known to be impossible in an
asynchronous system [17].

Instead, we classify all candidate configurations in two categories: pivotal and tentative.
A candidate configuration is called pivotal if it is the last configuration in some verifiable
history. Otherwise it is called tentative. A nice property of pivotal configurations is that
it is impossible to “skip” one in a verifiable history. Indeed, if Ci = HighestConf(h)
and Cy = HighestConf(hs) and Cy T Cs, then, since all verifiable histories are related by
containment, hy C hy and Cy € hy. This allows us to make sure that, before a configuration
C is installed, the replicas in all pivotal (and, possibly, some tentative) configurations lower
than C' update their keys.

In order to reconfigure a DBLA object, a correct client must use reliable broadcast to
distribute the new verifiable history. Each correct process p maintains, locally, the largest
(with respect to C) verifiable history it delivered so far through reliable broadcast. It is
called the local history of process p and is denoted by history,. We use Chighest, to denote

the most recent configuration in p’s local history (i.e., Chighest, = HighestConf (history,,)).

Whenever a replica r updates history,., it invokes UpdateFSKey(height(Chighest,)). Recall

27:9

DISC 2020

27:10

Asynchronous Reconfiguration with Byzantine Failures

p {1} {1} {{} restart
P {1} {1} r {2} \ /—= “;&/’If
r ONA OF Wy {1 SR THA\V/ATT R BV
SRR VA ERY/ I s 8\ L VAR
' \/ ' ,\‘\ / ' ' ,’,"\\\ T4 {2} %)(' \ \\\
re \ \ o N
L0 O W oy A et Y - L2 :
q {2} YN\ {1.2H) WA{1.2} [N new replicas
(a) An example execution of two concurrent Propose (b) An example execution of a Propose operation
operations. concurrent with a reconfiguration.

Figure 1 Example executions of the DBLA protocol. Solid black arrows (resp., dashed blue
arrows) correspond to the messages exchanged during the first (resp., the second) stage of the
Propose protocol. Dotted red lines correspond to the messages exchanged during reconfiguration.
The numbers represent the sets of verifiable input values known to the processes. Replica 73 is
Byzantine and always responds to Propose messages with the same set of verifiable input values as
in the message itself. In (b), replicas r1, r2, and r4 also become Byzantine after the reconfiguration.

that if at least one forever-correct process delivers something via reliable broadcast, every
other correct process will eventually deliver it as well.

Similarly, each process p keeps track of all verifiable input values it has seen curVals, C
L x Y, where Y is the set of all possible certificates. Sometimes, during the execution of
the protocol, processes exchange these sets. Whenever a process p receives a message that
contains a set of values with certificates vs C £ x 3, it checks that the certificates are valid
(i.e., V (v,0) € vs : VerifyInputValue(v, o) = true) and adds these values with certificates to
curValsy,.

4.1 Client implementation

The client’s protocol is simple. As we mentioned earlier, the operation UpdateHistory(h, o)
is implemented as RB-Broadcast (NewHistory, h,o). The rest of the reconfiguration
process is handled by the replicas. The protocol for the operation Propose(v, o) consists of
two stages: proposing a value and confirming the result.

The first stage (proposing) mostly follows the implementation of lattice agreement by
Faleiro et al. [16]. Client p repeatedly sends message (Propose, curValsy,, seqNum,., C) to
all replicas in replicas(C'), where Propose is the message descriptor, C = Chighest,,, and
segNum,. is a sequence number used by the client to match sent messages with replies.

After sending these messages to replicas(C'), the client waits for responses of the form
(ProposeResp, vs, sig, sn), where ProposeResp is the message descriptor, vs is the set of
all verifiable input values known to the replica with valid certificates (including those sent by
the client), sig is a forward-secure signature with timestamp height(C), and sn is the same
sequence number as in the message from the client.

During the first stage, three things can happen: (1) the client learns about some new
verifiable input values from one of the ProposeResp messages; (2) the client updates its
local history (by delivering it through reliable broadcast); and (3) the client receives a
quorum of valid replies with the same set of verifiable input values. In the latter case, the
client combines the responses to form a certificate (called acks;) and proceeds to the second
stage. In the first two cases, the client simply restarts the operation. Because the number of
verifiable input values, as well as the number of verifiable histories, are assumed to be finite,
the number of restarts will also be finite.

The example in Figure la illustrates how the first stage of the algorithm ensures the
comparability of the results when no reconfiguration is involved. In this example, clients p
and g concurrently propose values {1} and {2}, respectively, from the lattice £ = 2. Client

P. Kuznetsov and A. Tonkikh

p successfully returns the proposed value {1} while client ¢ is forced to refine its proposal
and return the combined value {1,2}. The quorum intersection prevents the clients from
returning incomparable values (e.g., {1} and {2}).

In the second (confirming) stage of the protocol, the client simply sends the acknowledg-
ments it has collected in the first stage to the replicas of the same configuration. The client
than waits for a quorum of replicas to reply with a forward-secure signature with timestamp
height(C).

The example in Figure 1b illustrates how reconfiguration can interfere with an ongoing
Propose operation in what we call the “slow reader” attack, and how the second stage of the
protocol prevents safety violations. In this example, client p should not be able to return
the proposed value {1} because all correct replicas in quorum {ry,rs,r4} store value {2},
which means that previously some other client could have returned value {2}. The client
successfully reaches replicas ro and r3 before the reconfiguration. None of them tell the client
about the input value {2}, because 75 is outdated and 73 is Byzantine. The message from p
to ry is delayed. Meanwhile, a new configuration is installed, and all replicas of the original
configuration become Byzantine. If r; lies to p, the client may finish the first stage of the
protocol with value {1}. However, because replicas ro and r4 updated their private keys
during the reconfiguration, they are unable to send the signed confirmations with timestamp
height(C') to the client. The client then waits until it receives the new verifiable history via
reliable broadcast and restarts the operation in the new configuration.

The certificate for the output value v € L produced by the Propose protocol in a
configuration C consists of: (1) the set of verifiable input values (with certificates for them)
from the first stage of the algorithm (the join of all these values must be equal to v); (2) a
verifiable history (with a certificate for it) that confirms that C' is a pivotal configuration;
(3) the quorum of signatures from the first stage of the algorithm; and (4) the quorum of
signatures from the second stage of the algorithm. Intuitively, the only way for a Byzantine
client to obtain such a certificate is to benignly follow the Propose protocol.

4.2 Replica implementation

Each replica r maintains, locally, its current configuration (denoted by Ccurr,) and the last
configuration installed by this replica (denoted by Cinst,.). Cinst, T Ccurr, T Chighest,.
Intuitively, Ccurr, = C means that replica r knows that there is no need to transfer state
from configurations lower than C, either because r already performed the state transfer
from those configurations, or because it knows that sufficiently many other replicas did.
Cinst, = C means that the replica knows that sufficiently many replicas in C' have up-to-date
states, and that configuration C' is ready to serve user requests.

As we saw earlier, each client message is associated with some configuration C. The
replica only answers the message when C' = Cinst, = Ccurr, = Chighest,. If C' T Chighest,,
the replica simply ignores the message. Due to the properties of reliable broadcast, the client
will eventually learn about Chighest, and will repeat its request there (or in an even higher
configuration). If Cinst, C C and Chighest, C C, the replica waits until C is installed before
processing the message. Finally, if C' is incomparable with Cinst, or Chighest,, then the
message is sent by a Byzantine process and the replica should ignore it.

When a correct replica r receives a Propose message, it adds the newly learned verifiable
input values to curVals, and sends curVals, to the client with a forward-secure signature
with timestamp height(C). When a correct replica receives a Confirm message, it simply
signs the set of acknowledgments in it with a forward-secure signature with timestamp
height(C) and sends the signature to the client.

27:11

DISC 2020

27:12

Asynchronous Reconfiguration with Byzantine Failures

Algorithm 1 DBLA state transfer, code for replica r.

1: upon Ccurr # HighestConf({C € history | r € replicas(C)})
2: let Cnext = HighestConf({C € history | r € replicas(C)})
3 let S = {C € history | Ccurr C C T Chneuxt}

4 seqNum < seqNum + 1

5: for each C € S do

6: send (UpdateRead, segNum, C) to replicas(C')

7 wait for (C' C Ceurr) V (responses from any @ € quorums(C) with s.n. segNum)
8 if Ccurr C Cnest then

9 Ccurr < Cneaxt
10: URB-Broadcast (UpdateComplete) in Cnezt
11: upon receive (UpdateRead, sn, C) from replica r’

12: wait for C C HighestConf(history)

13: send (UpdateReadResp, curVals, sn) to r’

14: upon receive (UpdateReadResp, vs, sn) from replica r’
15: if VerifyInputValues(vs \ curVals) then curVals < curVals U vs

16: upon URB-deliver (UpdateComplete) in C from quorum @ € guorums(C)
17: wait for C € history
18: if Cinst C C then

19: if Ccurr C C then Ccurr < C
20: Cinst < C

21: trigger upcall InstalledConfig(C')
22: if r ¢ replicas(C) then halt

A very important part of the replica’s implementation is the state transfer protocol. The
pseudocode for it is presented in Algorithm 1. Note that we omit the subscript r in the
pseudocode because each process can only access its own variables directly. Let Cnext, be the
highest configuration in history, such that r € replicas(Cnext,). Whenever Ccurr, # Cnext,,
the replica tries to “move” to Cnext, by reading the current state from all configurations
between Ccurr, and Cnext, one by one in ascending order (line 5). In order to read
the current state from configuration C' = Chext,, replica r sends message (UpdateRead,
seqNum,., C) to all replicas in replicas(C). In response, each replica r1 € replicas(C) sends
curVals,, to r in an UpdateReadResp message (line 13). However, ry replies only after
its private key is updated to a timestamp larger than height(C) (line 12). We maintain the
invariant that for any correct replica r': st,» = height(HighestConf(history,.)), where st,. is
the timestamp of the private key of 7.

If r receives a quorum of replies from the replicas of C, there are two distinct cases:

C is still active. In this case, the quorum intersection property still holds for C, and replica

r can be sure that (1) if some Propose operation has either completed in configuration C

or reached the second stage, v C JoinAll(curVals,), where v is the value returned by the

Propose operation and JoinAll(curVals,) is the join of all verifiable input values in the

set curVals,; and (2) if some Propose operation has not yet reached the second stage, it

will not be able to complete in configuration C' (see the example in Figure 1b).

(' is already superseded. In this case, by definition, a higher configuration is installed,

and, intuitively, replica r will get the necessary state from that higher configuration.

It may happen that configuration C' is already superseded and r will not receive sufficiently
many replies from the replicas of C. However, in this case r will eventually discover that
some higher configuration is installed, and it will update Ccurr, (line 19).

When a correct replica completes transferring the state to some configuration C, it
notifies other replicas about it by broadcasting message UpdateComplete in configuration
C (line 10). A correct replica installs a configuration C' if it receives such messages from a

P. Kuznetsov and A. Tonkikh

A

+ : InstalledConfig
: InstalledConfig VH
VerifyHist UpdateHist VerifyIC VIV UpdateConf
—————— > —————> ———=—=> —————
DBLA Propose
VerifyIV VerifyOV VerifyIV VIV Data Ops
, > »
(a) The interface of DBLA. (b) The dependencies in a reconfigurable object.

Figure 2 (a): The interface of a DBLA object. Parameters are depicted on the left side,
operations and functions are on the right side, and upcalls are at the top. The parts of the interface
that are inherited from BLA are depicted as black arrows, while the parts of the interface that
are inherited from the specification of a dynamic object are depicted as dashed blue arrows. “IV”,
“OV”, and “Hist” are abbreviations for “InputValue”, “OutputValue”, and “History”, respectively.
(b): The structure of dependencies in our implementation of a reconfigurable object. An arrow from
an object A to another object B marked with VIV (resp., VH) indicates that A.VerifyInputValue
(resp., A.VerifyHistory) is implemented using B.VerifyOutputValue.

quorum of replicas in C' (line 16). Because we want our protocol to satisfy the Installation
Liveness property (if one correct replica installs a configuration, every forever-correct replica
must eventually install this or a higher configuration), the UpdateComplete messages
are distributed through the uniform reliable broadcast primitive that we introduced in
Section 3.6.

4.3 Implementing other dynamic objects

While we do not provide any general approach for building dynamic objects, we expect
that most asynchronous Byzantine fault-tolerant static algorithms can be adopted to the
dynamic case by applying the same set of techniques. These techniques include our state
transfer protocol (relying on forward-secure signatures), the use of an additional round-trip
to prevent the “slow reader” attack, and the structure of our cryptographic proofs ensuring
that tentative configurations cannot create valid certificates for output values. To illustrate
this, in the full version of this paper [27], we present the dynamic version of Max-Register [5]
and discuss the dynamic version of the Access Control abstraction.

5 Implementing reconfigurable objects

While dynamic objects are important building blocks, they are not particularly useful by
themselves because they require an external source of comparable verifiable histories. In this
section, we show how to combine several dynamic objects to obtain a single reconfigurable
object. Similar to dynamic objects, the specification of a reconfigurable object can be
obtained as a combination of the specification of a static object with the specification of an
abstract reconfigurable object from Section 3.3. In particular, compared to static objects,
reconfigurable objects have one more operation — UpdateConfig(C, o), must be parameterized
by a boolean function VerifyInputConfig(C, o), and must satisfy Reconfiguration Validity,
Reconfiguration Liveness, and Installation Liveness.

We build a reconfigurable object by combining three dynamic ones. The first one is the
dynamic object that we want to make reconfigurable (let us call it DObj). For example, it
can be an instance of DBLA if we wanted to make a reconfigurable version of Byzantine

27:13

DISC 2020

27:14

Asynchronous Reconfiguration with Byzantine Failures

Lattice Agreement. The two remaining objects are used to build verifiable histories: ConfLA
is a DBLA operating on the configuration lattice C, and HistLA is a DBLA operating on the
powerset lattice 2. The relationships between the three dynamic objects are depicted in
Figure 2b.

Algorithm 2 Reconfigurable object (short version).

> Code for client p
23: Data operations are performed directly on DObj.

24: operation UpdateConfig(C, o)

25: let (C',0¢/) = ConfLA.Propose(C, o)
26: let (h,op) = HistLA.Propose({C'},0¢/)
27: DObj.UpdateHistory(h, op)

28: ConfLA.UpdateHistory(h, op,)

29: HistLA.UpdateHistory(h, o)

> Code for replica r
30: upon receive upcall InstalledConfig(C) from all ConfLA, HistLA, and DObj
31: trigger upcall InstalledConfig(C)

The short version of the pseudocode is presented in Algorithm 2. All data operations are
performed directly on DObj. To update a configuration, the client first submits its proposal
to ConfLA and then submits the result as a singleton set to HistLA. Due to the BLA-
Comparability property, all verifiable output values produced by ConfLA are comparable,
and any combination of them would create a well-formed history as defined in Section 3.4.
Moreover, the verifiable output values of HistLA are related by containment, and, therefore,
can be used as verifiable histories in dynamic objects. We use them to reconfigure all three
dynamic objects (lines 27-29).

The full pseudocode of the transformation with formal specification of all parameters, as
well as the proof of correctness and the discussion of possible optimizations, are presented in
the full version of this paper [27]. Additionally, in [27] we discuss several ways to prevent the
Byzantine clients from reconfiguring the system in an undesirable way.

6 Related work

Dynamic replicated systems with passive reconfiguration [9, 7, 25] do not explicitly regulate
arrivals and departures of replicas. Their consistency properties are ensured under strong
assumptions on the churn rate. Except for the recent work [25], churn-tolerant storage
systems do not tolerate Byzantine failures. In contrast, active reconfiguration allows the
clients to explicitly propose configuration updates, e.g., sets of new replica arrivals and
departures.

Early proposals of (actively) reconfigurable storage systems tolerating process crashes,
such as RAMBO [22] and reconfigurable Paxos [28], used consensus (and, thus, assumed
certain level of synchrony) to ensure that the clients agree on the evolution of configurations.
DynaStore [2] was the first asynchronous reconfigurable storage: clients propose incremental
additions or removals to the system configuration. As the proposals commute, the processes
can resolve their disagreements without involving consensus.

The parsimonious speculative snapshot task [19] allows to resolve conflicts between
concurrent configuration updates in a storage system using instances of commit-adopt [18].
The worst-case time complexity, in the number of message delays, of reconfiguration was
later reduced from O(n?) to O(n) [34], where n is the number of concurrently proposed
configuration updates.

P. Kuznetsov and A. Tonkikh

SmartMerge [23] made an important step forward by treating reconfiguration as an
instance of abstract lattice agreement [16]. However, the algorithm assumes an external
(reliable) lattice agreement service which makes the system not fully reconfigurable. The
recently proposed reconfigurable lattice-agreement abstraction [26] enables truly reconfigurable
versions of a large class of objects and constructions, including state-based CRDTs [32],
atomic-snapshot, max-register, conflict detector and commit-adopt. We believe that the
reconfiguration service we introduced in this paper can be used to derive Byzantine fault-
tolerant reconfigurable implementations of objects in the class.

Byzantine quorum systems [29] introduce abstractions for ensuring availability and
consistency of shared data in asynchronous systems with Byzantine faults. In particular,
a dissemination quorum system ensures that every two quorums have a correct process in
common and that at least one quorum only contains correct processes.

Dynamic Byzantine quorum systems [4] appear to be the first attempt to implement
a form of active reconfiguration in a Byzantine fault-tolerant data service running on a
static set of replicas, where clients can raise or lower the resilience threshold. Dynamic
Byzantine storage [31] allows a trusted administrator to issue ordered reconfiguration calls
that might also change the set of replicas. The administrator is also responsible for generating
new private keys for the replicas in each new configuration to anticipate the “I still work
here” attack [1]. In this paper, we propose an implementation of a Byzantine fault-tolerant
reconfiguration service that does not rely on this assumption.

Forward-secure signature schemes [10, 11, 14, 15, 30] enable a decentralized way to
construct a sequence of distinct private keys for each process. We use the scheme to provide
each process with a unique private key for each configuration. To counter the “I still work
here” attack, we ensure that sufficiently many correct processes destroy their configuration
keys before a new configuration is installed, without relying on a global agreement of the
configuration sequence [31].

7 Discussion

Communication cost. In this paper, we do not intend to provide the optimal implemen-
tations of each object or to implement the most general abstractions (such as generalized
lattice agreement [16, 26]). Instead, we focused on providing the minimal implementation
for the minimal set of abstractions to demonstrate the ideas and the general techniques for
defining and building reconfigurable services in the harsh world of asynchrony and Byzantine
failures. Therefore, our implementations leave plenty of space for optimizations. We discuss
a few possible directions in the full version of this paper [27].

Open questions. We would like to mention two relevant directions for further research.

First, with regard to active reconfiguration, it would be interesting to devise algorithms
that efficiently adapt to “small” configuration changes, while still supporting the option of
completely changing the set of replicas in a single reconfiguration request. In this paper, we
allow the sets of replicas of proposed configurations to be completely disjoint, which incurred
an expensive quorum-to-quorum communication pattern. This might seem unnecessary for
reconfigurations requests involving only slight changes of the set of replicas.

Second, with regard to Byzantine faults, it would be interesting to consider models with
a “weaker” adversary. In this paper, we assumed a very strong model of the adversary:
no assumptions are made about correctness of replicas in superseded configurations. This
“pessimistic” approach leads to more complicated and expensive protocols.

27:15

DISC 2020

27:16

Asynchronous Reconfiguration with Byzantine Failures

—— References

1

10

11

12

13

14

15

16

17

18

19

20
21

22

23

Marcos K Aguilera, Idit Keidar, Dahlia Malkhi, Jean-Philippe Martin, Alexander Shraer, et al.
Reconfiguring replicated atomic storage: A tutorial. Bulletin of the FATCS, 102:84-108, 2010.
Marcos Kawazoe Aguilera, Idit Keidar, Dahlia Malkhi, and Alexander Shraer. Dynamic atomic
storage without consensus. J. ACM, 58(2):7:1-7:32, 2011.

Eduardo Alchieri, Alysson Bessani, Fabiola Greve, and Joni da Silva Fraga. Efficient and
modular consensus-free reconfiguration for fault-tolerant storage. In OPODIS, pages 26:1-26:17,
2017.

Lorenzo Alvisi, Dahlia Malkhi, Evelyn Pierce, Michael K Reiter, and Rebecca N Wright.
Dynamic byzantine quorum systems. In Proceeding International Conference on Dependable
Systems and Networks. DSN 2000, pages 283-292. IEEE, 2000.

James Aspnes, Hagit Attiya, and Keren Censor. Max registers, counters, and monotone
circuits. In PODC, pages 36-45, 2009.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. Journal of the ACM (JACM), 42(1):124-142, 1995.

Hagit Attiya, Hyun Chul Chung, Faith Ellen, Saptaparni Kumar, and Jennifer L. Welch.
Emulating a shared register in a system that never stops changing. IEEE Trans. Parallel
Distrib. Syst., 30(3):544-559, 2019.

Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots using lattice agreement.
Distributed Comput., 8(3):121-132, 1995.

Roberto Baldoni, Silvia Bonomi, Anne-Marie Kermarrec, and Michel Raynal. Implementing a
register in a dynamic distributed system. In ICDCS, pages 639-647, 2009.

Mihir Bellare and Sara K Miner. A forward-secure digital signature scheme. In Annual
International Cryptology Conference, pages 431-448. Springer, 1999.

Xavier Boyen, Hovav Shacham, Emily Shen, and Brent Waters. Forward-secure signatures with
untrusted update. In Proceedings of the 13th ACM conference on Computer and communications
security, pages 191-200, 2006.

Eric A. Brewer. Towards robust distributed systems (abstract). In PODC, pages 7—, 2000.
Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to reliable and secure
distributed programming. Springer Science & Business Media, 2011.

Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme.
Journal of Cryptology, 20(3):265-294, 2007.

Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. Pixel: Multi-signatures for
consensus. In 29th USENIX Security Symposium (USENIX Security 20), Boston, MA, August
2020. USENIX Association. URL: https://wuw.usenix.org/conference/usenixsecurity20/
presentation/drijvers.

Jose Faleiro, Sriram Rajamani, Kaushik Rajan, Ganesan Ramalingam, and Kapil Vaswani.
Generalized lattice agreement. In PODC; pages 125-134, 2012.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM (JACM), 32(2):374-382, 1985.

Eli Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony. In PODC]
pages 143-152, 1998.

Eli Gafni and Dahlia Malkhi. Elastic configuration maintenance via a parsimonious speculating
snapshot solution. In DISC, pages 140-153, 2015.

David K. Gifford. Weighted voting for replicated data. In SOSP, pages 150-162, 1979.

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News, 33(2):51-59, June 2002.

Seth Gilbert, Nancy A Lynch, and Alexander A Shvartsman. Rambo: a robust, reconfigurable
atomic memory service for dynamic networks. Distributed Computing, 23(4):225-272, 2010.
Leander Jehl, Roman Vitenberg, and Hein Meling. Smartmerge: A new approach to reconfigu-
ration for atomic storage. In DISC, pages 154-169, 2015.

https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers
https://www.usenix.org/conference/usenixsecurity20/presentation/drijvers

P. Kuznetsov and A. Tonkikh

24

25

26

27

28

29

30

31

32

33

34

Anne-Marie Kermarrec and Maarten Van Steen. Gossiping in distributed systems. ACM
SIGOPS operating systems review, 41(5):2-7, 2007.

Saptaparni Kumar and Jennifer L. Welch. Byzantine-tolerant register in a system with
continuous churn. CoRR, abs/1910.06716, 2019. arXiv:1910.06716.

Petr Kuznetsov, Thibault Rieutord, and Sara Tucci-Piergiovanni. Reconfigurable lattice
agreement and applications. In OPODIS, 2019.

Petr Kuznetsov and Andrei Tonkikh. Asynchronous reconfiguration with byzantine failures.

CoRR, abs/2005.13499, 2020. URL: https://arxiv.org/abs/2005.13499.

Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state machine. SIGACT
News, 41(1):63-73, 2010.

Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed computing,
11(4):203-213, 1998.

Tal Malkin, Daniele Micciancio, and Sara Miner. Efficient generic forward-secure signatures
with an unbounded number of time periods. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 400-417. Springer, 2002.

J-P Martin and Lorenzo Alvisi. A framework for dynamic byzantine storage. In International
Conference on Dependable Systems and Networks, 2004, pages 325-334. IEEE, 2004.

Marc Shapiro, Nuno M. Preguica, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In SSS, pages 386-400, 2011.

Alexander Spiegelman and Idit Keidar. On liveness of dynamic storage. In Structural
Information and Communication Complexity - 24th International Colloquium, SIROCCO
2017, Porquerolles, France, June 19-22, 2017, Revised Selected Papers, pages 356-376, 2017.
Alexander Spiegelman, Idit Keidar, and Dahlia Malkhi. Dynamic reconfiguration: Abstraction
and optimal asynchronous solution. In DISC, pages 40:1-40:15, 2017.

27:17

DISC 2020

http://arxiv.org/abs/1910.06716
https://arxiv.org/abs/2005.13499

	Introduction
	System Model
	Abstractions and Definitions
	Access control
	Byzantine Lattice Agreement abstraction
	Reconfigurable objects
	Dynamic objects
	Quorum system assumptions
	Broadcast primitives

	Dynamic Byzantine Lattice Agreement
	Client implementation
	Replica implementation
	Implementing other dynamic objects

	Implementing reconfigurable objects
	Related work
	Discussion

