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Abstract

Byzantine broadcast (BB) and Byzantine agreement (BA) are two most fundamental problems and
essential building blocks in distributed computing, and improving their efficiency is of interest to
both theoreticians and practitioners. In this paper, we study extension protocols of BB and BA, i.e.,
protocols that solve BB/BA with long inputs of l bits using lower costs than l single-bit instances. We
present new protocols with improved communication complexity in almost all settings: authenticated
BA/BB with t < n/2, authenticated BB with t < (1− ε)n, unauthenticated BA/BB with t < n/3,
and asynchronous reliable broadcast and BA with t < n/3. The new protocols are advantageous
and significant in several aspects. First, they achieve the best-possible communication complexity
of Θ(nl) for wider ranges of input sizes compared to prior results. Second, the authenticated
extension protocols achieve optimal communication complexity given the current best available
BB/BA protocols for short messages. Third, to the best of our knowledge, our asynchronous and
authenticated protocols in the setting are the first extension protocols in that setting.
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28:2 Improved Extension Protocols for Byzantine Broadcast and Agreement

Table 1 Cryptographically Secure Extension Protocols for Byzantine Agreement and Broadcast.

Threshold Model Problem Communication
Complexity

Input range l
to reach optimality Reference

t < n/2 sync. agreement/broadcast O(nl + nB(k) + kn3)
O(nl +A(k) + kn2) 2

Ω(n3 + kn2)
Ω(n2 + kn)

[15, 16]
This paper

t < n sync. broadcast O(nl + B(nk) + n2B(n logn)) Ω(n5 logn+ kn4 logn) [15, 16]
t < (1− ε)n sync. broadcast O(nl + B(k) + kn2 + n3) Ω(n2 + kn) This paper

t < n/3 async. agreement
reliable broadcast

O(nl +A(k) + kn2)
O(nl + B(k) + kn2)

Ω(kn)
Ω(kn)

This paper
This paper

1 Introduction

This paper investigates extension protocols [15] for Byzantine broadcast (BB) and Byzantine
agreement (BA). The goal of BB is for some designated party (sender) to send its message to
all parties and let them output the same message, despite some malicious parties that may
behave in a Byzantine fashion. The goal of BA is to let all parties each with an input message
output the same message. We are interested in designing efficient BB/BA protocols with
long messages since such protocols are widely used as building blocks for other distributed
systems such as multi-party computation [32] and permissioned blockchain [24]. For example,
practical blockchain systems typically achieve agreement on large blocks (e.g., 1MB).

A straightforward solution for BB/BA with l-bit long messages is to invoke the single-bit
BB/BA oracle l times. This approach will incur at least Ω(n2l) communication complexity
where n is the number of parties, because any deterministic single-bit BB/BA has cost Ω(n2)
due to a lower bound in [10]. Another tempting solution is to run BB/BA on the hash digest
and let parties disseminate the actual message to each other. However, if a linear fraction
of parties can be Byzantine (which is the typical assumption), they can each ask all honest
parties for the long message, again forcing the communication complexity to be Ω(n2l).

It turns out that non-trivial techniques are needed to get better than Ω(n2l) or to achieve
the optimal communication complexity of O(nl). These are known in the literature as
extension protocols, which construct BB/BA with long input messages using a small number
of BB/BA primitives for short messages. In this paper, we focus on the authenticated setting
where cryptographic techniques are used. Table 1 summarizes the most closely related works
and our new results on authenticated extension protocols. (In the full version, we also
present some improvements to unauthenticated extension protocols.) In Table 1, n is the
number of parties, t is the maximum number of Byzantine parties, l is the length of the
input, A(l) is the communication cost of l-bit BA oracle, and B(l) is the communication
cost of l-bit BB or reliable broadcast oracle. Here we describe the related works in the
table. Let kh denote output size of the collision-resistant hash function. For both Byzantine
broadcast and agreement in the synchronous setting under t < n/2, recent work proposes
cryptographically secure extension protocols with communication cost O(nl+nB(kh) +n3kh)
[15, 16]. For the case of t < n, the state-of-the-art cryptographically secure BB extension
protocols have communication complexity O(nl+B(nkh)+n2B(n logn)) [15, 16]. There exist
information-theoretic authenticated protocols [14, 8] but they have worse communication
complexity than cryptographic ones. To the best of our knowledge, there exist no extension
protocols in the authenticated and asynchronous setting when the paper is written 1.

1 A concurrent work [21] independently developed an extension protocol for validated Byzantine agreement
in the authenticated and asynchronous setting.

2 Our cryptographic BB extension protocol can achieve O(nl + B(k) +A(1) + kn2) in the full version.
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Contributions. Table 1 also presents our improved protocols in the respective settings.
Several cryptographic primitives have been employed in our work and prior works. To make
the communication costs comparable, we assume that the output length of the involved
cryptographic building blocks are on the same order, and are all represented by k. We will
justify this decision in Section 3.

All our protocols achieve the optimal communication complexity O(nl) for wider ranges
of input sizes (see Table 1 above for authenticated protocols and the full version for unauthen-
ticated protocols). In particular, our synchronous and authenticated protocols achieve O(nl)
communication complexity when the input size is at least l = Ω(n2 + kn). For comparison,
state-of-art protocol in the literature require a factor of n larger input size for the t < n/2
case, and a factor of n3 logn larger input size for n/2 ≤ t < (1− ε)n where ε is a constant.
But a limitation of our protocol is that it cannot achieve O(nl) communication if ε = o(1).
As for the round complexity, all our extension protocols only adds O(1) communication
rounds, except the one for t < n/2 which adds O(t) rounds. All our protocols only invoke
the BB/BA oracle O(1) times.

In addition to reaching optimality under smaller input size, our authenticated extension
protocols have the following advantages.

The communication complexity of our BA extension protocols is very close to the lower
bound Ω(nl +A(k) + n2). In addition, under the current best BA primitives for short
messages, they achieve best-possible communication complexity. In order to improve
upon our extension protocols, one must invent BA primitives for short messages with
cost o(kn2), which seems challenging as we discuss in Section 4.3.
Our protocols can be easily adapted to the asynchronous setting. To the best of our
knowledge, these are the first asynchronous authenticated extension protocols. 3

Their simplicity makes our protocols less error-prone and more appealing for practical
adoption. On this note, in deriving our results, we discover a flaw in the prior best
protocol [15, 16] and we provide a simple fix in the full version of this paper.

2 Related Work

Timing and setup assumptions. With different security assumptions on the adversary
and timing assumptions, Byzantine broadcast and agreement can be solved for different
thresholds of the Byzantine parties. For the timing assumptions, protocols under both
synchrony and asynchrony have been studied. If a trusted setup like public-key infrastructure
(PKI) exists, it is called the authenticated setting; otherwise, it is the unauthenticated setting.
In the synchronous setting, BB/BA can be solved under t < n/3 without authentication [19];
with authentication, BA can be solved under t < n/2 and BB can be solved under t < n

[19, 11, 29]. In the asynchronous setting, BB is impossible; BA (randomized) and reliable
broadcast can be solved under t < n/3 with or without authentication [5, 6].

Previous extension protocols. Table 1 summarizes the two most closely related works
on authenticated extension protocols. Here, we mention several other ones. Cachin and
Tessaro [7] adapt Bracha’s broadcast [5] to handle l-bit long messages with communication
cost O(nl + khn

2 logn). Their method partially inspired our work; but their method does

3 Asynchronous unauthenticated protocol exist and they can be used in the authenticated setting, but
the cost would be much higher than our new protocols (refer to the full version of this paper.)

DISC 2020
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not seem to apply to general protocols and hence does not yield an extension protocol.
Related unauthenticated extension protocols are summarized in the full version. Liang and
Vaidya [20] propose the first optimal error-free BB and BA with communication complexity
O(nl + (n2

√
l + n4)B(1)) for the synchronous case. Patra [28] improves the communication

complexity to O(nl+n2B(1)) under synchrony and also extended the protocols to asynchrony
with increased communication complexity.

State-of-the-art oracle schemes. To better interpret the improvements we obtained for
extension protocols, we provide a summary of the state-of-the-art broadcast and agreement
protocols that can be used as the oracle in our extension protocol. Since our extension
protocols are all deterministic, we focus on deterministic solutions for the most part of the
paper, except for asynchronous BA where randomization is necessary. The best deterministic
solution to authenticated BB for t < n is the classic Dolev-Strong [11] protocol. After
applying multi-signatures, the communication complexity to broadcast k bits is B(k) =
Θ((k + ks)n2 + n3) where ks is the signature size. The Dolev-Strong protocol can also be
modified to solve authenticated BA for the t < n/2 case (BA is impossible if t ≥ n/2). Using
an initial all-to-all round with multi-signature to simulate the sender, the communication
complexity remains asA(k) = Θ((k+ks)n2+n3). In the unauthenticated setting, only t < n/3
Byzantine parties can be tolerated and Berman et al. [3] achieves B(1) = A(1) = Θ(n2)
(when t = Θ(n)), matching the lower bound on communication complexity.

In the asynchronous setting, Bracha’s reliable broadcast [5] is deterministic and has
communication complexity B(1) = O(n2). Randomization is necessary for asynchronous BA
given the FLP impossibility [13]. State-of-art protocols rely on “common coins” to provide
shared randomness but are deterministic otherwise. The most efficient unauthenticated
asynchronous BA [25] achieves expected communication complexity A(1) = O(n2) assuming
a common coin oracle. The most efficient authenticated asynchronous BA [1] achieves
expected communication complexity A(k) = O((k + ks)n2) and provides a construction for
the common coin oracle.

Coding schemes in consensus systems. Several works have taken advantage of coding
schemes in practical fault-tolerant consensus systems. HoneyBadgerBFT [24] and BEAT
[12] use the reliable broadcast proposed by Cachin and Tessaro [7] as a component for
broadcasting blocks efficiently. Recent works also apply erasure coding to crash-tolerant
systems like Paxos [26] and Raft [31].

3 Preliminaries

We consider n parties P1, ..., Pn connected by a reliable, authenticated all-to-all network,
where up to t parties may be corrupted by an adversary A and behave in a Byzantine fashion.
We consider both the synchronous model, where there exists a known upper bound on the
communication and computation delay, and the asynchronous model, where such an upper
bound does not exist. We consider a static adversary which decides the set of corrupted
parties at the beginning of the execution. We denote parties that are not corrupted by the
adversary as honest parties. Two types of the adversary are considered: a computationally
bounded adversary is considered in cryptographically secure protocols and a computationally
unbounded adversary is considered in the error-free protocols. Our cryptographically secure
protocols additionally assume a trusted setup for a public key infrastructure (PKI) and
cryptographic accumulators (see Section 3.1). The communication complexity [33] of the
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protocol is measured by the worst-case or expected number of bits transmitted by the honest
parties according to the protocol specification over all possible executions under any adversary
strategy. Here, we provide the formal definition of Byzantine broadcast (BB) and Byzantine
agreement (BA).

I Definition 1 (Byzantine Broadcast). A protocol for a set of parties P = {P1, ..., Pn}, where
a distinguished party called the sender Ps ∈ P holds an initial l-bit input m, is a Byzantine
broadcast protocol tolerating an adversary A, if the following properties hold

Termination. Every honest party outputs a message.
Agreement. All the honest parties output the same message.
Validity. If the sender is honest, all honest parties output the message m.

I Definition 2 (Byzantine Agreement). A protocol for a set of parties P = {P1, ..., Pn}, where
each party Pi ∈ P holds an initial l-bit input mi, is a Byzantine agreement protocol tolerating
an adversary A, if the following properties hold

Termination. Every honest party outputs a message.
Agreement. All the honest parties output the same message.
Validity. If every honest party Pi holds the same input message m, then all honest parties
output the message m.

For cryptographically secure protocols and randomized protocols, the above properties
hold except for a negligible probability in the security parameter. For brevity, our theorem
statements will not mention this explicitly.

3.1 Primitives
In this section, we define several primitives that will be used in our extension protocols. Our
extension protocols use standard coding and cryptographic schemes from the literature, such
as linear error correcting codes, muti-signature schemes and cryptographic accumulators.

Linear error correcting code [30]. We will use standard Reed-Solomon (RS) codes [30] in
our protocols, which is a (n, b) RS code in Galois Field F = GF (2a) with n ≤ 2a − 1. This
code encodes b data symbols from GF (2a) into codewords of n symbols from GF (2a), and
can decode the codewords to recover the original data.

ENC. Given inputsm1, ...,mb, an encoding function ENC computes (s1, ..., sn) = ENC(m1, ...,

mb), where (s1, ..., sn) are codewords of length n. By the property of the RS code,
knowledge of any b elements of the codeword uniquely determines the input message and
the remaining of the codeword.
DEC. The function DEC computes (m1, ...,mb) = DEC(s1, ..., sn), and is capable of tolerating
up to c errors and d erasures in codewords (s1, ..., sn), if and only if n− b ≥ 2c+ d. In
our protocol, We will invoke DEC with specific values of c, d satisfying the above relation,
and DEC will return correct output.

In our extension protocols, we will use the above RS codes with n equal the number of all
parties, and b equal the number of honest parties, i.e., b = n− t.

Multi-signatures [4]. Multi-signature scheme can aggregate n signatures into one signature,
therefore reduce the size of signatures. Given n signatures σi = Sign(ski,m) on the same
message m with corresponding public keys pki for 1 ≤ i ≤ n, a multi-signature scheme
can combine the n signatures above into one signature Σ where |Σ| = |σi|. The combined
signature can be verified by anyone using a verification function Ver(PK,Σ,m,L), where L
is the list of signers and PK is the union of n public keys pki.

DISC 2020
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Cryptographic accumulators [2, 9]. We present the definition of cryptographic accumulators
proposed by Barić and Pfitzmann [2]. Intuitively, the cryptographic accumulator constructs
an accumulation value for a set of values and can produce a witness for each value in the set.
Given the accumulation value and a witness, any party can verify if a value is indeed in the
set. Formally, given a parameter k, and a set D of n values d1, ..., dn, an accumulator has
the following components:

Gen(1k, n): This algorithm takes a parameter k represented in unary form 1k and
an accumulation threshold n (an upper bound on the number of values that can be
accumulated securely), returns an accumulator key ak. This step is run by a trusted
dealer, so the accumulator key ak is known to all parties.
Eval(ak,D): This algorithm takes an accumulator key ak and a set D of values to be
accumulated, returns an accumulation value z for the value set D.
CreateWit(ak, z, di): This algorithm takes an accumulator key ak, an accumulation value
z for D and a value di, returns ⊥ if di /∈ D, and a witness wi if di ∈ D.
Verify(ak, z, wi, di): This algorithm takes an accumulator key ak, an accumulation value
z for D, a witness wi and a value di, returns true if wi is the witness for di ∈ D, and false
otherwise.

For simplicity, our definition of the cryptographic accumulator above omits the auxiliary
information aux that appears in the standard definition [2] because the bilinear accumulator
we will use does not use aux. We also assume that the function Eval is deterministic, which
is the case with the bilinear accumulator. We give the detailed description of the bilinear
accumulator [27, 17] in the full version. The bilinear accumulator satisfies the following
property.

I Lemma 3 (Collision-free accumulator [27]). The bilinear accumulator is collision-free. That
is, for any set size n and any probabilistic polynomial-time adversary A, there exists a
negligible function negl(·), such that

Pr
[
ak ← Gen(1k, n), ({d1, ..., dn}, d′, w′)← A(1k, n, ak), z ← Eval(ak, {d1, ..., dn}) :
(d′ /∈ {d1, ..., dn}) ∧ (Verify(ak, z, w′, d′) = true)

]
≤ negl(k)

To better understand the definition of the cryptographic accumulator, it is helpful to
note that the Merkle tree [23] is a cryptographic accumulator, where the accumulator key
ak is the hash function, the accumulation value z is the Merkle tree root, and the witness
w is the Merkle tree proof. We will use the bilinear accumulator [27, 17] instead of Merkle
tree in our protocols, since the witness size of the Merkle tree is logarithmic in the number
of values whereas the witness size of the bilinear accumulator is a constant. On the other
hand, the bilinear accumulator requires a trusted dealer, which is a stronger trust assumption
than public key infrastructure (PKI). The trusted dealer needs to know an upper bound on
|D|, i.e., the number of items accumulated (see the construction in the full version). In our
protocols, |D| always equals the number of parties n. Hence, the trusted setup (both the
PKI and the accumulator) can be reused across invocations if the parties participating in the
extension protocol do not change. If a trusted dealer for accumulators cannot be assumed,
our protocol can use Merkle tree as the accumulator; in that case, the O(kn2) term in the
communication complexity becomes O(kn2 logn) and our protocol still has an advantage
(albeit smaller) over prior art.

Normalizing the length of cryptographic building blocks. Let λ denote the security pa-
rameter, kh = kh(λ) denote the hash size, ks = ks(λ) denote the (multi-)signature size,
ka = ka(λ) denote the size of the accumulation value and witness of the accumulator. Further
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let k = max(kh, ks, ka); we assume k = Θ(kh) = Θ(ks) = Θ(ka) = Θ(λ) This assumption
is reasonable since the signature scheme and accumulator scheme with the shortest output
length are both based on pairing-friendly curves, which are believed to require Θ(λ) bits
for λ-bit security given the state-of-the-art attack [18]. As for hash functions, it is common
to model them as random oracles, in which case λ-bit security requires Θ(λ)-bit hash size.
Therefore, throughout the paper, we can use the same variable k to denote the hash size,
signature size and accumulator size for convenience.

4 Cryptographically Secure Extension Protocols under t < n/2
Faults

In this section, we design cryptographically secure extension protocols with improved commu-
nication complexity for the synchronous and authenticated setting with t < n/2 faults. We
start by presenting some building blocks that will be frequently used in all our authenticated
protocols. Then, we give an extension protocol for synchronous BA with communication
complexity O(nl+A(k)+kn2). Under synchrony, this also implies a BB protocol with t < n/2
and the same communication complexity, by first having the sender send the message to all
parties and then performing a Byzantine agreement [22]. In the full version, we show another
extension protocol for t < n/2 BB with communication complexity O(nl+B(k)+A(1)+kn2).
The protocols are adapted to the asynchronous case in Section 6. At the end of this section,
we discuss the small gap between our BA protocol and a simple lower bound on BA with
long messages.

4.1 Building Blocks: Encode, Distribute and Reconstruct

We first define three subprotocols Encode, Distribute and Reconstruct that will be used
as building blocks for our cryptographically secure extension protocols, listed in Figure 1.

Encode first divides a message m into b blocks, then compute n coded values (s1, ..., sn)
using RS codes (defined in Section 3), and attaches an index j for each value sj . The
purpose of Encode is to introduce resilience by encoding the message into fault-tolerant
coded values – after applying Encode to a message m, even if n − b coded values in
(s1, ..., sn) are erased, one can recover the message from the remaining coded values.
Distribute computes a witness wj for each indexed value 〈j, sj〉 in the input set, and
sends the j-th value with its witness to party j. The purpose of Distribute is to
distribute the values in a robust yet efficient manner – if at least one honest party that
has the correct message m (the accumulation value z of m is correct) invokes Distribute,
then it is guaranteed that any honest party j receives and accepts the j-th value sj of m,
thanks to the witness wj sent together with the value.
Reconstruct first removes any invalid value sj that cannot be verified by witness wj

and the accumulation value z, and then decode the message m using RS code (defined in
Section 3) from the remaining values with at most d0 values being removed. The purpose
of Reconstruct is to recover the message, despite the presence of at most d0 corruptions
in the value, which will be detected by the accumulator scheme and thus erased.

Our extension protocols in Sections 4 and 5 will use Encode at the beginning of the
protocol to encode the input message to coded values, use Distribute in the middle to
let every party distribute their coded values with the witnesses, and use Reconstruct to
reconstruct the original input message after receiving the coded values.

DISC 2020
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Encode(m, b)
Input: a message m, a number b
Output: n coded values s1, ..., sn

Divide m into b blocks evenly, m1, ...,mb, each has l/b bits where l is the length of
m. Compute (s1, ..., sn) = ENC(m1, ...,mb) using RS codes, where ENC is defined in
Section 3.1. Add an index to every value in (s1, ..., sn), i.e., D = (〈1, s1〉, ..., 〈n, sn〉),
and return D.
Distribute(D, ak, z)
Input: a set of indexed values D = (〈1, s1〉, ..., 〈n, sn〉), an accumulator key ak, an
accumulation value z
Compute wj = CreateWit(ak, z, 〈j, sj〉) for every 〈j, sj〉 ∈ D. Send (sj , wj) to
party Pj for every j ∈ [n].
Reconstruct(S, ak, z, d0)
Input: S = ((〈1, s1〉, w1), ..., (〈n, sn〉, wn)) where each (〈i, si〉, wi) is a pair of indexed
value and witness, an accumulator key ak, an accumulation value z, a number d0
Output: a message m
For every j ∈ [n], if Verify(ak, z′, wj , 〈j, sj〉) = false, let sj = ⊥. Apply DEC on the
codewords (s1, ..., sn) with c = 0 and d = d0, where DEC is defined in Section 3.1.
Return m = m1|...|mb where m1, ...,mb are the data returned by DEC.

Figure 1 Building Blocks.

I Lemma 4. For any message m, let z = Eval(ak, Encode(m, b)). The adversary cannot
find m′ 6= m such that z = Eval(ak, Encode(m′, b)) except for negligible probability in k.

Proof. Let D = Encode(m, b) and D′ = Encode(m′, b). By the RS code, the same codewords
correspond to the same message. Thus, if m 6= m′, we have D 6= D′, i.e., there exists
d′ = 〈i, si〉 such that d ∈ D and d′ 6∈ D′. However, under the accumulation value z =
Eval(ak,D′)), a witness for d = 〈i, si〉 6∈ D′ exists. Due to Lemma 3, this happens with
negligible in k probability. J

4.2 Byzantine Agreement under < n
2 faults

The protocol Synchronous Crypto. n
2 -BA is presented in Figure 2. In the protocol, let t

denote the maximum number of Byzantine parties, and let b = n− t. We briefly describe
each step of the protocol. First, each party encodes its message using RS codes and computes
the accumulation value for the set of coded values. With a deterministic Eval, any honest
party with the same accumulator key and set will produce the same accumulation value.
The RS codes can recover the message with up to t coded values being erased, and the
accumulation value uniquely corresponds to the set of coded values and equivalently the
original message (Lemma 4). Then every party runs an instance of k-bit Byzantine agreement
with the accumulation value as the input. After the above agreement terminates, each party
checks whether the agreement output matches its accumulation value, and inputs the result
to an 1-bit Byzantine agreement instance. If the above agreement outputs 0, all parties
output ⊥ and abort. If the above agreement outputs 1, then at least one honest party has
the accumulation value zi matching with the agreement output z, and every honest party
will agree on the message corresponding to z. Then in Distribute, all parties send the
j-th coded value to party Pj . After that, each honest party Pj will send a valid j-th coded
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Input of every party Pi: An l-bit message mi

Primitives: Byzantine agreement oracle, cryptographic accumulator with Eval,
CreateWit, Verify
Protocol for party Pi:
1. Compute Di = (〈1, s1〉, ..., 〈n, sn〉) = Encode(mi, b). Compute the accumulation

value zi = Eval(ak,Di). Input zi to an instance of k-bit BA oracle.
2. When the above BA outputs z, if z = zi, set happyi = 1, otherwise set happyi = 0.

Input happyi to an instance of 1-bit Byzantine agreement oracle.
3. If the above BA outputs 0, output oi = ⊥ and abort.

If the above BA outputs 1 and happyi = 1, invoke Distribute(Di, ak, z).
4. For the set of pairs {(si, wi)} received from the previous step, if there exists a pair

(si, wi) such that Verify(ak, z, wi, 〈i, si〉) = true, then send (si, wi) to all other
parties.

5. If happyi = 1, set oi = mi. Otherwise, let (sj , wj) be the message received from
party Pj from the previous step and Si = ((〈1, s1〉, w1), ..., (〈n, sn〉, wn)), and set
oi = Reconstruct(Si, ak, z, t).

6. Output oi.

Figure 2 Protocol Synchronous Crypto. n
2 -BA.

value to all other parties, from which the correct message can be obtained in Reconstruct.
One nice property of our protocol is that, if at least one honest party with message m
invokes Distribute, then all honest parties can obtain m from Reconstruct (see the proof
of Lemma 6). We prove the validity and agreement properties and analyze the communication
complexity below.

I Lemma 5. If every honest party has the same input message mi = m, all honest parties
output the same message m.

Proof. If all honest parties have the same input message mi = m, they compute and input
the same accumulation value z to the instance of Byzantine agreement in step 1. Then in
step 2, the BA outputs z by the validity condition, and any honest party sets happyi = 1.
Therefore, every honest party Pi inputs 1 to the 1-bit Byzantine agreement oracle in step 2.
By the validity of the Byzantine agreement oracle, the agreement will output 1. Then any
honest party Pi sets oi = m in step 5 since happyi = 1. Hence, all honest parties output m
when the protocol terminates. J

I Lemma 6. All honest parties output the same message.

Proof. If the Byzantine agreement in step 3 outputs 0, then all honest parties output the
same message ⊥. If the agreement agreement in step 3 outputs 1, then by the validity of the
Byzantine agreement, some honest party Pi must input 1 and thus has zi = z. By Lemma 4,
any honest party Pi with happyi = 1 has the identical message m corresponding to z, and
sets the output to be m at step 5. In step 3, any honest party Pi with happyi = 1 invokes
Distribute to compute witness wj for each index value 〈j, sj〉, and sends the valid (sj , wj)
pair computed from message m to party Pj for every Pj . By Lemma 3, the Byzantine parties
cannot generate a different pair (s′j , w′j) that can be verified. Therefore, in step 4, every
honest party Pj receives at least one valid (sj , wj) pair, and forwards it to all other parties.
Since there are at least b = n− t honest parties, in step 5, each honest party will receive at
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least b valid coded values. In Reconstruct, using the accumulation value associated with
the coded value, any party Pi can detect the corrupted values and remove them. By the
property of RS codes, any honest party Pi with happyi = 0 is able to recover the message m,
and any honest party Pi with happyi = 1 already has the message m. Therefore all honest
parties outputs m. J

I Theorem 7. Protocol Synchronous Crypto. n
2 -BA satisfies Termination, Agreement and

Validity, and has communication complexity O(nl +A(k) + kn2).

Proof. Termination is clearly satisfied. By Lemma 6, agreement is satisfied. By Lemma 5,
validity is satisfied.

Step 1 has cost A(k), where k is the size of the cryptographic accumulator. Step 2
has cost A(1) ≤ A(k). Step 3 has cost O(nl + kn2), since each honest party invokes an
instance of Distribute, which leads to an all-to-all communication with each message of
size O(l/b + k) = O(l/n + k). For step 4, it also has cost O(nl + kn2) similarly as step 3.
Hence the total cost is O(nl +A(k) + kn2). J

4.3 Lower Bound on BA for Long Messages
Let A(l) denote the communication complexity in bits of the best possible deterministic
protocol for Byzantine agreement with l-bit inputs, n parties, and up to t = Θ(n) faulty
parties. We show a straightforward lower bound that A(l) = Ω(nl +A(k) + n2) for l ≥ k by
combining several known lower bounds in the literature.

I Theorem 8. A(l) = Ω(nl +A(k) + n2) for l ≥ k.

Proof. The proof combines several simple lower bounds known in the literature.
First of all, A(l) = Ω(nl) according to [14]. We briefly mention the proof idea from [14]

for completeness. Let a set A of n− t parties have input m and a set B of the rest t parties
have input m′ 6= m. In scenario 1, let parties in B be Byzantine but behave as if they are
honest. Then by the validity condition, all parties in A will output m. In scenario 2, let
parties in B be honest. To parties in A, the scenario 2 is indistinguishable from scenario 1,
and thus they will output m. By the agreement condition, parties in B also need to output
m. Therefore each party in B needs to learn the message m, which leads to a lower bound
on the communication cost of Ω(tl) = Ω(nl).

Secondly, since A(l) denotes the communication complexity of a BA oracle with l-bit
inputs, it is clear that A(l) ≥ A(k) for l ≥ k.

Finally, according to [10], Ω(n2) is a lower bound on the communication complexity for
any deterministic Byzantine agreement protocol tolerating t = Θ(n) faults (even for single-bit
inputs). Thus, A(l) ≥ A(1) = Ω(n2).

The above lower bounds together imply a lower bound A(l) = Ω(nl + A(k) + n2) for
deterministic protocol that solves l-bit BA. J

By Theorem 7, our Protocol Synchronous Crypto. n
2 -BA has cost O(nl +A(k) + kn2),

which is very close to the lower bound. Although it does not meet the lower bound, we
remark that further improvements seem challenging. Notice that if A(k) = Ω(kn2), then a
lower bound of Ω(nl +A(k) + kn2) follows, matching our upper bound. Thus, improving
upon our upper bound requires a k-bit BA oracle whose communication complexity is o(kn2).

However, if we were to design an o(kn2) BA protocol, we have to follow a very particular
paradigm. The Ω(n2) lower bound from [10] is a lower bound on the number of messages.
If every message is signed, then Ω(kn2) communication must be incurred. Yet, we know
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Input of the sender Ps: An l-bit message ms

Primitives: Byzantine broadcast oracle, cryptographic accumulator with Eval,
CreateWit, Verify
Protocol for party Pi:
1. The sender Ps initializes os = ms, happys = 1, and other parties Pi initialize oi =
⊥, happyi = 0. The sender computes Ds = Encode(ms, b), the accumulator value
zs = Eval(ak,Ds), and broadcasts zs by invoking an instance of k-bit Byzantine
broadcast oracle. Let zi denote the output of the Byzantine broadcast at party Pi.

2. For iterations r = 1, ..., t+ 1:
Distribution step:
If happyi = 1, then sign the HAPPY message using the multi-signature scheme,
send the multi-signature signed by r distinct parties to all other parties, invoke
Distribute(Di, ak, zi), and skip the Distribution step in all future iterations.
Sharing step:
If a valid (si, wi) pair is received from the Distribution step such that
Verify(ak, zi, wi, 〈i, si〉) = true, then send (si, wi) to all other parties and skip the
Sharing step in all future iterations.
Reconstruction step (no communication involved):
Let (sj , wj) be the first message received from party Pj from the Sharing step
(possibly from previous iterations). Let Si = ((〈1, s1〉, w1), ..., (〈n, sn〉, wn)). Com-
pute Mi = Reconstruct(Si, ak, zi, t) and Di = Encode(Mi, b). If Eval(ak,Di) = zi

and a HAPPY message signed by r distinct parties excluding Pi was received in the
Distribution step of this iteration, then set happyi = 1, set oi = Mi, and skip the
Reconstruction step in all future iterations.

3. Output oi.

Figure 3 Protocol Synchronous Crypto. (1− ε)-BB.

authentication is necessary for tolerating minority faults. Thus, such a protocol must use
Ω(n2) messages in total but only sign a small subset of them. We are not aware of any work
exploring this direction, and closing this gap is an interesting open problem.

5 Cryptographically Secure Extension Protocol under t < (1− ε)n

In this section, we propose an extension protocol for synchronous and authenticated BB
with communication complexity O(nl + B(k) + kn2 + n3) under t < (1− ε)n where ε > 0
is some constant. The protocol still solves Byzantine broadcast under any t < n faults by
setting b = n− t, but the communication complexity increases by a factor of 1/ε if ε is not a
constant (see Theorem 12). Thus, compared to state-of-art solutions [15, 16], our protocol is
more efficient when ε is a constant but less efficient otherwise.

Protocol Synchronous Crypto. (1− ε)n-BB. The protocol is presented in Figure 3, and
we briefly explain each step of the protocol. Again let t denote the maximum number of
Byzantine parties and let b = n− t. First the sender encodes its message and computes the
accumulation value using the coded values. Then the sender broadcasts the accumulation
value via an instance of k-bit Byzantine broadcast oracle. By the agreement condition, all
honest replicas output the same value for BB. The remaining of the protocol runs in iterations
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r = 1, 2, ..., t+ 1. Each iteration consists 3 steps. The Distribution step, Sharing step and
Reconstruction step are analogous to steps 3− 5 in Protocol Synchronous Crypto. n

2 -BA in
Figure 2, but here each step is examined in every iteration for execution, and is executed
only once. The Distribution step aims to distribute the indexed coded values to other parties.
The Sharing step forwards the correct coded value to other parties. The Reconstruction step
aims to reconstruct the original message from the coded values received from other parties
and set the output. Similar to Protocol Synchronous Crypto. n

2 -BA, the above steps provide
a nice guarantee that if at least one honest party with message m invokes Distribute in
the Distribution step, then all honest parties can obtain m in the Reconstruction step (see
the proof of Lemma 9).

Now we give a more detailed description. A party becomes happy (i.e., sets happyi = 1) if
it is ready to output a message that is not ⊥. In the first iteration, only the sender is happy;
it invokes Distribute and also signs and sends a message HAPPY of a constant size. The
role of the message HAPPY is to be signed by the rest of the parties using multi-signatures to
form a signature chain, similar to the Dolve-Strong Byzantine broadcast algorithm [11]. An
honest party becomes happy at the end of iteration r, if it reconstructs the correct message
(matching the agreed upon accumulation value) in the Reconstruction step of iteration r
and has received a HAPPY message signed by r parties in the Distribution step of iteration r.
When an honest party becomes happy, it will set its output to be the reconstructed message
Mi; then, in the Distribution step of the next iteration (if there is one), it will also send its
own signature of HAPPY to all other parties, and invoke Distribute. This way, if an honest
party becomes happy in the last iteration r = t + 1, it can be assured that some honest
party has invoked Distribute, so that all honest parties will be ready to output the correct
message. We reiterate that each step is executed at most once in the entire protocol. Finally,
after t+ 1 iterations, every party outputs the message.

I Lemma 9. If any honest party Pi invokes Distribute with message m, then every honest
party Pj outputs oj = m.

Proof. By the agreement condition of the Byzantine broadcast, the output zi of the BB at
every honest party Pi is identical. If an honest party Pi invokes Distribute with message
m, m satisfies zi = Eval(ak, Encode(m, b)). If any other honest party Pj sets oj = m′ after
initialization, it must satisfy Eval(ak, Encode(m′, b)) = zj = zi. By Lemma 4, m = m′.
Thus, we only need to show that every other honest party Pj sets oj .

Suppose that Pi invokes Distribute in some iteration r. According to the subprotocol
Distribute, Pi computes a witness wj for each indexed value 〈j, sj〉 and sends the pair
(sj , wj) to each party Pj . According to Lemma 3, the adversary cannot generate d′ /∈ Di and
a witness w′ such that Verify(ak, zi, w

′, d′) = true. Then, in Sharing step of iteration r,
every honest party Pj can identify and forward the valid pair (sj , wj) to all other parties,
unless it has already done that in previous iterations. Since there are at least n − t = b

honest parties, in the Reconstruction step of iteration r, every honest party Pj receives at
least n− t = b correct coded values. In Reconstruct, using the witness associated with the
indexed coded value, every party Pj can identify the corrupted values and remove them. The
number of erased values is at most t. By the property of RS codes, Pj with happyj = 0 is
able to recover the message m.

Furthermore, we will show that each party receives a HAPPY message signed by r distinct
parties in the Reconstruction step of iteration r. If r = 1, then Pi = Ps and every Pj will
receive a signature for HAPPY. If r > 1, then Pi has received a multi-signature of HAPPY signed
by r − 1 distinct parties excluding Pi in the Reconstruction step of iteration r − 1; Pi adds
its own signature of HAPPY in iteration r, so each honest Pj will receive a multi-signature of
HAPPY signed by r distinct parties in the Reconstruction step of iteration r.
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Therefore, if happyj = 0 up till now, then an honest Pj will set happyj = 1 and oj = m in
the Reconstruction step of iteration r. If happyj = 1, then Pj has already set oj = m. Note
that an honest sender does not set its output again in the Reconstruction step, since the
HAPPY message always contains its signature. Once Pj sets oj , it will skip the Reconstruction
step in all future iterations, and oj will not be changed. Therefore, all honest parties output
m when they terminate. J

I Lemma 10. If the sender is honest and has input ms, every honest party outputs ms.

Proof. In iteration r = 1, the sender sends a signed HAPPY to all other parties and invokes
Distribute. By Lemma 9, every honest parties output ms. J

I Lemma 11. Every honest party outputs the same message.

Proof. If all honest parties output ⊥, then the lemma is true. Otherwise, suppose some
honest party Pi outputs oi = m where m 6= ⊥. If Pi is the sender, then by Lemma 10, all
honest parties output m. Now consider the case where Pi is not the sender. According to the
protocol, if Pi 6= Ps sets oi = m 6= ⊥ in the Reconstruction step of iteration 1 ≤ r ≤ t, Pi will
invoke Distribute with m in iteration r + 1. By Lemma 9, all honest parties output m. If
the honest party Pi sets oi = m in iteration r = t+ 1, according to the protocol, Pi receives
a HAPPY signed by t+ 1 distinct parties. Since there are at most t Byzantine parties, there
exists at least one honest party Pj 6= Pi that has signed HAPPY and invoked Distribute with
oj = m′ in a previous iteration 1 ≤ r′ ≤ t. Then, by Lemma 9, all honest parties including
Pi output m′. Therefore, m′ = m, and all honest parties output m. J

I Theorem 12. Protocol Synchronous Crypto. (1−ε)n-BB satisfies Termination, Agreement
and Validity. The protocol has communication complexity O(nl/ε+ B(k) + kn2 + n3).

Proof. Termination is clearly satisfied. By Lemma 11, agreement is satisfied. By Lemma 10,
validity is satisfied.

Step 1 has cost B(k) for the k-bit BB oracle. The Distribution step has total communica-
tion cost O(nl/ε+ kn2 + n3), since each honest party executes the Distribution step at most
once, where invoking Distribute has cost O(n ·(l/b+k)) = O( n

n−t l+kn) = O(l/ε+kn), and
sending the signed HAPPY message has cost O((k+ n)n) where the (k+ n) term is due to the
signature size and the list of signers in the multi-signature scheme. The Sharing step is also
performed at most once for every honest party, and has total cost O(nl/ε+ kn2) since each
honest party in the Sharing step sends a message of size O(l/(nε)+k) to all other parties. The
Reconstruction step has no communication cost. Hence, the total communication complexity
is O(nl/ε+ B(k) + kn2 + n3). J

Optimality with the current best BB oracle. From Section 2, the classic Dolev-Strong [11]
protocol remains the best deterministic solution for t > n/2 BB, with cost B(k) = Θ((k +
ks)n2 +n3) for k-bit inputs where ks is the signature size. Our protocol invokes Dolev-Strong
with k = ka (the size of the accumulation value). Since Θ(ks) = Θ(ka), our protocol achieves
B(l) = O(nl + kn2 + n3).

As before, Ω(nl) is a trivial lower bound for l-bit BB [14] (intuitively, all parties need
to receive the sender’s message); in addition B(l) ≥ B(k) if l ≥ k. Thus, the B(l) =
O(nl+kn2 +n3) communication complexity cannot be further improved unless a deterministic
BB protocol better than Dolev-Strong is found.
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Input of every party Pi: An l-bit message mi

Primitives: asynchronous Byzantine agreement oracle, cryptographic accumulator with
Eval, CreateWit, Verify
Protocol for party Pi:
1. Compute Di = (〈1, s1〉, ..., 〈n, sn〉) = Encode(mi, b). Compute the accumulation

value zi = Eval(ak,Di). Input zi to an instance of k-bit asynchronous Byzantine
agreement oracle.

2. When the above ABA outputs z, if z = zi, set happyi = 1, otherwise set happyi = 0.
Input happyi to an instance of 1-bit asynchronous Byzantine agreement oracle.

3. If the above ABA outputs 0, output oi = ⊥ and abort.
If the above ABA outputs 1 and happyi = 1, invoke Distribute(Di, ak, z).

4. Wait for a valid (si, wi) pair such that Verify(ak, z, wi, 〈i, si〉) = true, then send
(si, wi) to all other parties.

5. If happyi = 1, set oi = mi. Otherwise, perform the following. Wait for at least n− t
valid pairs {(sj , wj)} from the previous step that satisfies Verify(ak, z, wj , 〈j, sj〉) =
true. Let Si = ((〈1, s1〉, w1), ..., (〈n, sn〉, wn)), where (sj , wj) is the pair received
from party Pj . Compute oi = Reconstruct(Si, ak, z, t).

6. Output oi.

Figure 4 Protocol Asynchronous Crypto. n
3 -BA.

6 Cryptographically Secure Extension Protocols Under Asynchrony

As mentioned, our cryptographically secure extension protocols can be extended to the
asynchronous setting to solve BA and reliable broadcast (RB) under < n/3 faults. No
extension protocol has been proposed for this case to the best of our knowledge. As before,
let t denote the maximum number of Byzantine parties, and let b = n− t.

6.1 Asynchronous Byzantine Agreement
The protocol is presented in Figure 4, which consists steps analogous to the synchronous
protocol. The main difference is that in the asynchronous extension protocol, Steps 4 and 5
are executed once enough messages are received. As a result, the proofs are also similar to
the synchronous version and we omit them.

I Theorem 13. Protocol Asynchronous Crypto. n
3 -BA satisfies Termination, Agreement

and Validity, and has communication complexity O(nl +A(k) + kn2).

6.2 Asynchronous Reliable Broadcast
Reliable broadcast relaxes the termination property of the broadcast definition (Definition 1):
only when the sender is honest, all honest parties are required to output; otherwise, it is
allowed that either all honest parties output or no honest party outputs. The agreement
property is slightly modified accordingly.

I Definition 14 (Reliable Broadcast). A protocol for a set of parties P = {P1, ..., Pn}, where
a distinguished party called the sender Ps ∈ P holds an initial l-bit input m, is a reliable
broadcast protocol tolerating an adversary A, if the following properties hold

Termination. If the sender is honest, then every honest party eventually outputs a
message. Otherwise, if some honest party outputs a message, then every honest party
eventually outputs a message.
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Input of the sender Ps: An l-bit message ms

Primitive: asynchronous Byzantine agreement oracle, asynchronous reliable broadcast
oracle, cryptographic accumulator with Eval, CreateWit, Verify
Protocol for party Pi:
1. If i = s, perform the following. Compute Ds = (〈1, s1〉, ..., 〈n, sn〉) = Encode(ms, b).

Compute the accumulation value zs = Eval(ak,Ds). Send ms to every party, and
broadcast zs by invoking a k-bit asynchronous reliable broadcast oracle.

2. When receiving the message m from the sender, and the reliable broadcast above
outputs z, perform the following. ComputeDi = (〈1, s1〉, ..., 〈n, sn〉) = Encode(m, b).
Compute the accumulation value zi = Eval(ak,Di). If zi = z, set happyi = 1,
otherwise set happyi = 0.

3. If happyi = 1, invoke Distribute(Di, ak, z).
4. Step 4 to 6 are identical to that of Protocol Asynchronous Crypto. n

3 -BA in
the Figure 4, except that the replica computes D′i = Encode(oi, b), and invokes
Distribute(D′i, ak, z) at the end of Step 5.

Figure 5 Protocol Asynchronous Crypto. n
3 -RB.

Agreement. If some honest party outputs a message m′, then every honest party eventually
outputs m′.
Validity. If the sender is honest, all honest parties eventually output the message m.

The extension protocol for asynchronous reliable broadcast is presented in Figure 5.

I Lemma 15. If an honest party Pi invokes Distribute with Di = Encode(m, b), then any
honest party Pj eventually output oj = m.

Proof. By the agreement condition of asynchronous reliable broadcast oracle used in step
1, if any honest party obtains z, then any honest party also eventually obtains z. Then at
step 2, by Lemma 4, any honest party Pj with happyj = 1 has the identical message m
corresponding to z, and sets oj = m at step 5. For other honest parties, the honest party Pi

with happyi = 1 invokes Distribute to compute witness wj for each indexed value 〈j, sj〉,
and sends the valid (sj , wj) pair computed from message m to party Pj for every Pj . By
Lemma 3, the Byzantine parties cannot generate a different pair (s′j , w′j) that can be verified.
Therefore, in step 4, every honest party Pj eventually receives at least one valid (sj , wj) pair,
and forwards it to all other parties. Since there are at least n− t honest parties, in step 5,
each honest party will eventually receive at least n− t valid coded values. In Reconstruct,
using the accumulation value associated with the coded value, any party Pj can detect the
corrupted values and remove them. By the property of RS codes, any honest party Pj with
happyj = 0 is able to recover the message m, and any honest party Pj with happyj = 1
already has the message m. Therefore all honest parties output m. J

I Lemma 16. If the sender is honest and has input ms, all honest parties eventually output
the same message ms.

I Lemma 17. If some honest party outputs a message m, then every honest party eventually
outputs m.

I Theorem 18. Protocol Asynchronous Crypto. n
3 -RB satisfies Termination, Agreement

and Validity. The protocol has communication complexity O(nl + B(k) + kn2).

The proofs of Lemma 16, 17 and Theorem 18 are in the full version of this paper.
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7 Conclusion

We investigate and propose several extension protocols with improved communication com-
plexity for solving Byzantine broadcast and agreement under various settings. We propose
simple yet efficient authenticated extension protocols with improved communication complex-
ity, for Byzantine agreement under t < n/2, and for Byzantine broadcast under t < (1− ε)n
where ε > 0 is a constant. The above results can be extended to the asynchronous case to
obtain authenticated extension protocols for Byzantine agreement and reliable broadcast.
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