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Preface

Running and optimizing transportation systems give rise to very complex and large-scale
optimization problems requiring innovative solution techniques and ideas from mathematical
optimization, theoretical computer science, and operations research. Since 2000, the series of
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS)
symposia brings together researchers and practitioners who are interested in all aspects of
algorithmic methods and models for transportation optimization and provides a forum for the
exchange and dissemination of new ideas and techniques. The scope of ATMOS comprises
all modes of transportation.

The 20th ATMOS symposium (ATMOS 2020) was held virtually in connection with
ALGO 2020 and hosted by University of Pisa, Italy, on September 7-9 2020. Topics of interest
were all optimization problems for passenger and freight transport, including, but not limited
to, Congestion Modelling and Reduction, Crew and Duty Scheduling, Demand Forecasting,
Delay Management, Design of Pricing Systems, Electro Mobility, Infrastructure Planning,
Intelligent Transportation Systems, Models for User Behaviour, Line Planning, Mobile
Applications for Transport, Mobility-as-a-Service, Multi-modal Transport Optimization,
Routing and Platform Assignment, Route Planning in Road and Public Transit Networks,
Rostering, Timetable Generation, Tourist Tour Planning, Traffic Guidance, and Vehicle
Scheduling. Of particular interest were papers applying and advancing a broad range
of techniques including, but not limited to, Algorithmic Game Theory, Approximation
Algorithms, Combinatorial Optimization, Graph and Network Algorithms, Heuristics and
Meta-heuristics, Mathematical Programming, Methods for the Integration of Planning Stages,
Online and Real-time Algorithms, Simulation Tools, Stochastic and Robust Optimization.

All submissions were reviewed by at least three members of the program committee,
and judged on originality, technical quality, and relevance to the topics of the symposium.
Based on the reviews, the program committee selected seventeen submissions to be presented
at the symposium, which are collected in this volume. Together, they quite impressively
demonstrate the range of applicability of algorithmic optimization to transportation problems
in a wide sense.

ATMOS 2020 had Martin Savelsbergh (Georgia Tech, USA) as a plenary ALGO 2020
speaker who gave a talk on Algorithms for Large-Scale Service Network Design and Operations.
In addition, Thomas Horstmannshoff (University of Magdeburg, Germany) kindly agreed
to complement the ATMOS 2020 program with an invited talk on Considering Multiple
Preferences in Searching Multimodal Travel Itineraries.

The ATMOS 2020 Best Paper Award was given to Niels Lindner and Christian Liebchen
for their paper Determining All Integer Vertices of the PESP Polytope by Flipping Arcs.

We would like to thank the members of the ATMOS Steering Committee for guidance,
all authors who submitted papers, Martin Savelsbergh for accepting our invitation to be a
plenary speaker, the members of the Program Committee and the additional reviewers for
their valuable work in selecting the papers appearing in this volume, as well as Roberto Grossi
(Chair of the ALGO 2020 Organizing Committee) and his team for hosting the symposium
as part of ALGO 2020. We also acknowledge the use of the EasyChair system for the great
help in managing the submission and review processes, and Schloss Dagstuhl for publishing
the proceedings of ATMOS 2020 in its OASIcs series.
August 2020

Dennis Huisman and Christos Zaroliagis
20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
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An Efficient Solution for One-To-Many
Multi-Modal Journey Planning
Jonas Sauer
Karlsruhe Institute of Technology (KIT), Germany
jonas.sauer2@kit.edu

Dorothea Wagner
Karlsruhe Institute of Technology (KIT), Germany
dorothea.wagner@kit.edu

Tobias Zündorf
Karlsruhe Institute of Technology (KIT), Germany
zuendorf@kit.edu

Abstract
We study the one-to-many journey planning problem in multi-modal transportation networks
consisting of a public transit network and an additional, non-schedule-based mode of transport.
Given a departure time and a single source vertex, we aim to compute optimal journeys to all
vertices in a set of targets, optimizing both travel time and the number of transfers used. Solving
this problem yields a crucial component in many other problems, such as efficient point-of-interest
queries, computation of isochrones, or multi-modal traffic assignments. While many algorithms for
multi-modal journey planning exist, none of them are applicable to one-to-many scenarios. Our
solution is based on the combination of two state-of-the-art approaches: ULTRA, which enables
efficient journey planning in multi-modal networks, but only for one-to-one queries, and (R)PHAST,
which enables efficient one-to-many queries, but only in time-independent networks. Similarly to
ULTRA, our new approach can be combined with any existing public transit algorithm that allows
a search to all stops, which we demonstrate for CSA and RAPTOR. For small to moderately sized
target sets, the resulting algorithms are nearly as fast as the pure public transit algorithms they are
based on. For large target sets, we achieve a speedup of up to 7 compared to a naive one-to-many
extension of a state-of-the-art multi-modal approach.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of com-
puting → Graph algorithms; Applied computing → Transportation

Keywords and phrases Algorithm Engineering, Route Planning, Public Transit, One-to-Many

Digital Object Identifier 10.4230/OASIcs.ATMOS.2020.1

Supplementary Material Source code is available at https://github.com/kit-algo/ULTRA-PHAST.

Funding This research was funded by the DFG under grant number WA 654123-2.

1 Introduction

Recent years have seen considerable advances in fast route planning algorithms for both road
and public transit networks [3]. The combination of both network types into a multi-modal
journey planning problem, however, remains challenging [9]. In this work, we consider multi-
modal networks that combine a public transit network with a transfer graph that represents
one additional mode of non-schedule-based transportation (e.g., walking or cycling). Most
existing research on multi-modal journey planning has focused on solving one-to-one queries,
which ask for journeys between a single source and target vertex. Related to this are the
one-to-many and one-to-all problems, where multiple or all vertices are considered as targets.
While studied extensively for road networks, these problems have received little attention
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licensed under Creative Commons License CC-BY
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1:2 An Efficient Solution for One-To-Many Multi-Modal Route Planning

on multi-modal networks so far. In this paper, we close this gap by adapting the recently
proposed ULTRA [8] algorithm family, which solves one-to-one queries in multi-modal
networks, to one-to-many and one-to-all scenarios.

There are many potential applications of one-to-many and many-to-many search in both
road networks and multi-modal networks. These include extended query scenarios such as
building distance tables for vehicle routing and traveling salesman problems [32, 17], point-of-
interest (POI) queries (e.g., finding the k nearest stores) [17], and isochrones, which are the
set of vertices and/or edges reachable from a given point within a given distance or time limit.
Isochrones have been subject to algorithmic research on both road networks [23, 6, 7, 5]
and multi-modal networks [24, 25, 33], but so far algorithms for multi-modal isochrones
are limited to Dijkstra search on a graph representation of the network. Another area
where one-to-many algorithms can be applied are preprocessing techniques for the one-to-one
problem. On road networks, a prominent example is Arc-Flags [29], whose preprocessing
phase can be significantly sped up by using the one-to-all algorithm PHAST [13]. Examples of
public transit algorithms whose preprocessing phase involves one-to-many search are Transfer
Patterns [2] and Access Node Routing [15]. So far, no comparable speedup technique for
multi-modal networks has been developed, partly due to prohibitively high preprocessing
costs. A more efficient one-to-many search algorithm for multi-modal networks could be
a first step towards developing such a technique. Finally, many-to-many routing is used
as a component in simulation-based traffic assignment algorithms, such as the CSA-based
approach presented in [10]. A multi-modal variant based on ULTRA was proposed in [38], but
it uses a naive adaptation of ULTRA to a many-to-one setting, which is only feasible if the set
of source vertices where passenger demand is located is fairly small. A scalable multi-modal
one-to-all algorithm could enable the computation of full door-to-door assignments.

Related Work. Public transit routing algorithms can be divided into graph-based approaches
(e.g., [35, 22, 28, 30, 31]) and algorithms that exploit the structure of public transit timetables
to achieve faster query times. Prominent examples of the latter include RAPTOR [16],
CSA [18, 19], and Trip-Based Routing [40]. A technique that utilizes heavy preprocessing to
achieve very fast query times is Transfer Patterns [2, 4]. Common to these algorithms is that
they only consider non-schedule-based transport in the form of a restricted transfer graph,
which is often required to be transitively closed. However, recent experiments have shown
that the availability of unrestricted walking significantly reduces travel times [39, 37, 34].

Multi-modal algorithms lift these restrictions on the transfer graph by interleaving existing
public transit algorithms with an exploration of the unrestricted transfer graph. UCCH [20]
and MCR [11] combine graph-based techniques and RAPTOR, respectively, with Dijkstra [21]
searches on a contracted transfer graph. HLRaptor and HLCSA [34] explore the transfer
graph with two-hop searches based on Hub Labeling [1]. The most recent approach is
ULTRA [8], which utilizes the observation that the number of unique intermediate transfers,
i.e., transfers between two public transit vehicles, that occur in optimal journeys is much
lower than the number of initial and final transfers, which connect the source and target
vertex to the public transit network. This is exploited by precomputing a small set of
shortcuts representing all necessary intermediate transfers. The initial and final transfers
are computed at query time using Bucket-CH [32, 26, 27], a technique for fast one-to-many
searches on road networks. Together, this enables existing public transit algorithms, such
as RAPTOR and CSA, to handle multi-modal networks without specific adjustments or a
significant performance loss. Unfortunately, none of these multi-modal algorithms support
one-to-many queries because they all involve bidirectional search from the source and target
vertex, which is inherently a one-to-one technique.
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By contrast, several algorithms have been proposed for one-to-many, one-to-all or many-
to-many search on road networks: A popular solution for adapting speedup techniques
that were originally developed for one-to-one queries is a bucket-based approach, which has
been applied to Highway Hierarchies [32], Contraction Hierarchies (CH) [26, 27] and Hub
Labeling [1, 14]. The Customizable Route Planning [12] technique has also been adapted
to one-to-many search, resulting in the GRASP algorithm [23], and to the closely related
setting of POI queries [17]. For one-to-all search, PHAST [13] employs vertex reordering and
GPU parallelization to create a fast, memory-efficient sweeping algorithm. RPHAST [14]
extends this approach to one-to-many search by adding a target selection phase.

Our Contribution. We combine ULTRA with ideas adapted from RPHAST to create an
algorithm scheme called ULTRA-PHAST, which is the first efficient approach for one-to-many
queries in multi-modal networks. Like ULTRA, ULTRA-PHAST uses precomputed shortcuts
for intermediate transfers. Our main contribution is adapting RPHAST to efficiently explore
the final transfers to the target vertices, which is more challenging than a normal one-to-many
shortest path problem as every stop reached via the public transit network may be a potential
source vertex. As with ULTRA, ULTRA-PHAST is an algorithmic framework that can be
combined with any public transit algorithm that supports one-to-all search. We combine
ULTRA-PHAST with two state-of-the-art public transit algorithms, CSA and RAPTOR.
We evaluate the performance of the resulting algorithms, UP-CSA and UP-RAPTOR, on
the networks of Switzerland and Germany.

2 Preliminaries

In this section we introduce the basic definitions used throughout the paper, the routing
problems we consider, and the algorithms upon which our work is based.

Public Transit Network. A public transit network is a 3-tuple (S, T,G) consisting of a set
of stops S, a timetable T , and a directed, weighted transfer graph G = (V, E). A stop is a
location where passengers can enter or exit a public transit vehicle (e.g., bus, train, ferry).
The timetable T defines how the vehicles move between the stops. Since different algorithms
model the timetable in different ways, and ULTRA can be combined with any public transit
algorithm, we treat the timetable as a black box. The only terminology we require is that of
the trip, which represents a vehicle traveling along a sequence of stops at a specific point in
time. The transfer graph G = (V, E) consists of a set of vertices V with S ⊆ V, and a set of
edges E ⊆ V × V . It may represent any non-schedule-based mode of transportation. For each
edge e = (u, v) ∈ E , the transfer time w(e) is the time required to transfer from u to v.

Problem Statement. Given source and target vertices s, t ∈ V , an s-t-journey J represents
the movement of a passenger from s to t through the public transit network. The modeling of
the journey’s components depends on the modeling used for the timetable, so again we view it
as a black box. The attributes we use for evaluating a journey are the departure time τdep(J)
at s, the arrival time τarr(J) at t, and the number of trips used by the passenger during
the journey. We say that a journey J dominates another journey J ′ if τdep(J) ≥ τdep(J ′),
τarr(J) ≤ τarr(J ′) and J does not use more trips than J ′. A journey is Pareto-optimal if it is
not dominated by another journey. A Pareto set is a minimal set of journeys such that every
possible journey from s to t is dominated by a journey in the Pareto set.

ATMOS 2020



1:4 An Efficient Solution for One-To-Many Multi-Modal Route Planning

We consider two variants of the one-to-many routing problem: the earliest arrival
problem and the Pareto optimization problem. In both cases, we are given a public transit
network (S, T,G = (V, E)), a source vertex s ∈ V, a set of target vertices T ⊆ V, and
a departure time τdep. The objective of the earliest arrival problem is to find, for each
target t ∈ T , an s-t-journey that departs no earlier than τdep and minimizes the arrival time
at t. The Pareto optimization problem instead asks for a Pareto set of s-t-journeys departing
no earlier than τdep, using arrival time and number of trips as the optimization criteria.

Algorithms. We now give an overview of the algorithms our work is based on, namely
(R)PHAST and ULTRA. PHAST is itself an extension of Contraction Hierarchies (CH).
The basic operation of the CH preprocessing phase is vertex contraction, which removes a
vertex from the graph and inserts shortcut edges between its neighbors to preserve distances.
This is done iteratively until all vertices are contracted. The order in which the vertices
are contracted is called the contraction order. The rank of a vertex is its position in the
contraction order. This iterative contraction yields two graphs: The upward graph G↑ consists
of all original edges and shortcuts whose head vertex has a higher rank than the tail vertex
(i.e., was contracted later). Conversely, the downward graph G↓ contains the edges whose
head vertex has a lower rank than the tail vertex.

A PHAST query begins with an upward search from s in G↑. This is followed by a
downward sweep that scans the vertices of G↓ in some topological order (i.e., the tail vertex
of each edge is scanned before its head vertex). An example of a topological order is the
contraction order, but any other topological order is valid as well. For each scanned vertex v
and each incoming downward edge e = (u, v), the distance dist(v) of v is set to the minimum
of dist(u) +w(e) and dist(v). To make the downward sweep cache-efficient, the vertices of G↓

are stored in memory in the same order in which they are scanned. In a many-to-all scenario,
where more than one source vertex is given, the memory locality of PHAST can be further
improved by combining k one-to-all searches into a single sweep (for a fixed k). Instead of a
single distance value per vertex, the algorithm then stores an array of k distance values, one
for each of the k sources, which are updated consecutively during each edge relaxation.

If we are only interested in distances to a subset T ⊆ V of vertices, and T does not
change between queries, RPHAST (restricted PHAST) improves on PHAST by performing a
target selection phase before queries are run. This involves running a backward breadth-first
search (BFS) on G↓, initializing the queue with all target vertices at once. The downward
sweep is then run on G↓[T ], the subgraph of G↓ induced by the vertices visited by the BFS.

Finally, we recapitulate the algorithmic framework of ULTRA: A preprocessing phase
computes shortcuts for all intermediate transfers (i.e, transfers between two trips) that occur
in an optimal journey. The initial and final transfers are handled via a Bucket-CH query.
Bucket-CH is an extension of CH for one-to-many queries that stores a bucket of distances
to the target vertices at each vertex. The buckets are computed via a backward search
in G↓ for each target t ∈ T . For each vertex v reached by this search, an entry storing
the distance to t is added to the bucket of v. A Bucket-CH query consists of an upward
search from s in G↑, followed by scanning the bucket of each reached vertex to compute the
distances to the targets. ULTRA runs a forward Bucket-CH query from s to all stops and
a backward Bucket-CH query from all stops to t. Afterwards, a public transit algorithm,
such as RAPTOR and CSA, is run from the stops reached by the forward Bucket-CH search,
using the precomputed shortcuts to explore intermediate transfers. Whenever it reaches a
vertex v that was reached by the backward Bucket-CH search, the resulting arrival time at t
is computed as the sum of the arrival time at v and the distance between v and t.
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3 Algorithm

Before we propose our one-to-many adaptation of ULTRA, we examine why the original
ULTRA algorithm cannot answer one-to-many queries. The ULTRA query algorithm uses
a bidirectional Bucket-CH search to explore the initial and final transfers. This requires a
single target vertex to run the backward search from. A naive solution [38] to this problem
is to perform multiple backward searches, one from each target vertex. However, this is only
viable for very small target sets, as the running time is proportional to the number of targets.
We therefore replace the backward search for the final transfers with a forward search inspired
by PHAST. We first outline our approach in detail for the arrival time problem. Afterwards,
we show how it can be generalized for the Pareto optimization problem.

3.1 Earliest Arrival Queries
The naive approach of performing one Bucket-CH search per target solves a many-to-many
problem, computing the distances between all stops and all targets. This is more information
than is required in our case: For each target t, we only require the distance from a single
stop, namely the stop where the last used trip is exited in the optimal journey to t. The
difficulty lies in the fact that we do not know this stop in advance. However, we can
reformulate the final transfer search as a one-to-many problem and solve it using PHAST
in the following manner: First, we compute the earliest arrival time at each stop v ∈ S
using a standard ULTRA query without the backward Bucket-CH search and without target
pruning. Afterwards, we insert a temporary edge (s, v) with weight τarr(v)− τdep into the
PHAST upward graph G↑. We can then find the earliest arrival time at every target with
a single PHAST search that uses our augmented graph G↑. If we are also interested in
the corresponding journey, we can simply substitute the temporary edge (s, v) with the
journey to v found by the ULTRA query. In practice, we do not actually insert temporary
edges into G↑. Instead, we initialize the priority queue used for the search in G↑ by directly
inserting each stop v with τarr(v) as its distance.

As presented thus far, our approach still has a performance issue: The efficiency of the
upward search in G↑, which comprises the first phase of PHAST, relies on the fact that the
upward search space of a single source vertex is small. However, we perform an upward
search from all reached stops simultaneously. Hence, the search space of our upward search
will be the union of the search spaces of all stops, which is a large portion of the graph.

Efficient Upward Search. In order to improve the efficiency of the upward search, we optim-
ize its memory and cache usage. First, we note that only vertices in the upward search space
of a stop are relevant for our algorithm. Since the set of stops does not change between
queries and is known beforehand, we can perform a stop selection analogous to the target
selection in RPHAST: We run a forward BFS on G↑ from all stops simultaneously, and
remove all vertices that are not visited. The resulting stop-selected upward graph is denoted
as G↑[S]. Furthermore, we observe that if the transfer graph is strongly connected, every
query will reach every stop, regardless of the source vertex. Thus, every vertex in the
stop-selected upward graph will be visited during the upward search. We can therefore
replace the Dijkstra search in G↑[S], which requires a priority queue, with a more efficient
upward sweep that is done analogously to the downward sweep of PHAST. If the transfer
graph is not strongly connected, such a sweep might scan many unreachable stops. Thus,
we modify the ULTRA query to keep track of the stop with the lowest rank that has been
reached and start the upward sweep at this stop.
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Algorithm 1 ULTRA-PHAST query algorithm.

1 Dijkstra search from s in G↑ // initialize the arrival time at s as τdep
2 Downward sweep in G↓[S]
3 Initialize stops for the public transit query // using the arrival times found in line 2
4 Run the public transit query //without target pruning
5 Upward sweep in G↑[S] // initialized with arrival times found in line 4
6 Downward sweep in G↓[T ]

Algorithm Overview. The algorithmic framework for our one-to-many approach, which we
call ULTRA-PHAST, is outlined in Algorithm 1. The original ULTRA query explored initial
transfers with a Bucket-CH search from s, using the results of a backward Bucket-CH search
from the target vertex to prune the search space. Since this pruning technique is no longer
applicable in a scenario with multiple target vertices, the initial transfer search will reach
all stops that are reachable from s. In this case, it is more efficient to explore the initial
transfers with an RPHAST search to S instead of Bucket-CH. The RPHAST search consists
of an upward search from s in the CH upward graph G↑ (line 1), and a downward sweep
on the stop-selected downward graph G↓[S] (line 2). The public transit part of the network
is then explored using a black-box public transit algorithm without target pruning. The
public transit query is initialized with the arrival times at the stops found by the RPHAST
search in line 3 and then run in line 4. It yields minimal arrival times for all stops in the
network, which we then propagate to the target set using a final upward and downward
sweep in lines 5 and 6. Since the upward sweep is equivalent to an RPHAST downward
sweep in reverse, its running time should be comparable. Thus, the total running time of an
ULTRA-PHAST query is roughly equal to the combined running time of a public transit
query without target pruning, two RPHAST queries to S, and one RPHAST query to T .

Optimized Contraction Order. The three sweeps can be further sped up by delaying the
contraction of stops and targets during the CH computation. Specifically, delaying the
contraction of stops will reduce the number of vertices in G↓[S] and G↑[S], while delaying
the contraction of targets will reduce the number of vertices in G↓[T ]. However, this is only
useful up to a certain point, since eventually the quality of the contraction order will degrade.
This will either lead to an unreasonable preprocessing time or cause too many shortcuts to be
inserted, which will in turn slow down the sweeps. We take this into account by introducing
tuning parameters fs and ft that determine how much the contraction of stops and targets
is delayed, respectively. Initially, only vertices that are neither a stop or a target may be
contracted. Once fewer than ft|S ∪ T | uncontracted vertices remain, we also allow targets to
be contracted. Stops remain uncontractable until fewer than fs|S| vertices remain.

Vertex Reordering. As demonstrated in [36] and [13], the order in which the vertices of a
graph are stored in memory can have a significant impact on the performance of a routing
algorithm. In particular, the order in which vertices are settled by a DFS has been shown
to lead to good memory locality for Dijkstra-like searches. For the sweeps on the upward
graph G↑[S] as well as the downward graphs G↓[S] and G↓[T ], the vertices must be scanned
in a topological order, to ensure that the tail vertex of each edge is scanned before its head
vertex. We obtain a topological order via DFS on G↑ and reorder the vertices according to
it. Preliminary experiments have shown that this order performs at least as well as the level
order used by PHAST, which was chosen primarily because it allows for easy parallelization.
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Algorithm 2 Downward sweep to targets.

1 timestamp++

2 for i← 0, . . . , |V↓[T ]| − 1 do
3 v ← ID of the vertex in V that corresponds to i
4 if timestamp[v] 6= timestamp then
5 timestamp[v]← timestamp
6 τarr[v]←∞
7 foreach e← (j, i) ∈ E↓[T ] do
8 u← ID of the vertex in V that corresponds to j
9 τnewarr ← τarr[u] + w[e]

10 update← τnewarr < τarr[v]
11 τarr[v]← τnewarr if update // conditional move
12 parent[v]← parent[u] if update // conditional move

Implementation Details. While the topological ordering of the vertices improves the per-
formance of the sweeps, it is inefficient for the public transit part of the query. Many public
transit algorithms, such as RAPTOR or CSA, achieve a large part of their efficiency by
keeping stop data consecutive in memory. One way to achieve this in multi-modal scenarios
is to assign vertex IDs between 0 and |S| − 1 to the stops, and IDs between |S| and |V| − 1
to the remaining vertices. However, this conflicts with the topological order used for the
RPHAST-like sweeps. Thus, we use different vertex orderings and IDs for the public transit
data structures and the RPHAST data structures, translating between them whenever we
switch between RPHAST and public transit searches. For the public transit data structures,
we assign IDs from 0 to |S| − 1 to the stops, such that the relative ordering of the stops in
the topological order is preserved. This ensures that the two orders are as similar as possible,
and that sweeping over one ID range still requires only a single sweep over the other.

Detailed pseudocode for one of the three sweeps (line 6 from Algorithm 1) is given in
Algorithm 2. The translation between vertex IDs used within the target-selected downward
graph G↓[T ] and general vertex IDs can be seen in lines 3 and 8. Another important
observation is that parent pointers (required for journey unpacking) and arrival times are
updated frequently in the inner loop, but only if an earlier arrival time has been found. It is
crucial for the performance of the sweep to avoid branching operations within this inner loop.
We therefore use conditional move operations to update the arrival time and parent pointer
branchlessly in lines 11 and 12. Finally, we use timestamping in order to avoid initializing
the arrival times for all vertices before each sweep. Since vertices are processed in topological
order during the sweep, the timestamps of tail vertices of incoming edges do not need to be
checked in the inner loop. Thus, timestamps are only checked in line 4.

3.2 Optimizing Number of Trips

We proceed with describing how our approach for computing one-to-many journeys can be
extended to find a Pareto set of journeys (optimizing arrival time and number of trips) for
every target. Since the maximum number of trips required by any Pareto-optimal journey
is usually quite low, it is feasible to simply perform the final upward and downward sweep
of our algorithm once for every possible number of trips. Furthermore, we can apply an
optimization that was originally proposed for speeding up multiple PHAST searches from
different source vertices [13]: Given a fixed parameter k, we no longer explore the final
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Table 1 Sizes of the used public transit networks and the number of ULTRA shortcuts.

Network Stops Routes Trips Stop events Vertices Edges Shortcuts

Switzerland 25 125 13 785 350 006 4 686 865 603 691 1 853 260 135 655
Germany 244 055 231 089 2 387 297 48 495 169 6 872 105 21 372 360 2 077 374

transfer for journeys using between 0 and k − 1 trips with k separate upward and downward
sweeps, but instead perform one upward and downward sweep which update all k arrival
time values at once. Note that k must be a fixed value, since the sweeps are only efficient if
the arrival times are stored consecutively in arrays of fixed size k. Journeys using k or more
trips are not handled by this grouped sweep. However, we observe that only a few stops are
reached by Pareto-optimal journeys that require a high number of trips. Propagating such
journeys via a PHAST sweep, which always explores the entire graph, will be wasteful, since
the arrival times of most vertices will not be improved by such vertices. Thus, for journeys
using k or more trips, we switch to Dijkstra searches on a contracted transfer graph which
contains all stops and targets, in a similar manner to MCR [11]. Similarly to the sweeps, the
Dijkstra searches use timestamps to initialize only the labels of visited vertices. However,
when the label of a vertex is initialized, we do not set its arrival time to ∞, but to the best
arrival time found during the grouped sweeps. This ensures that journeys that are dominated
by journeys with fewer trips get pruned early on.

4 Experiments

All algorithms were implemented in C++17 compiled with GCC version 8.2.1 and optimization
flag -O3. All experiments were conducted on a machine with two 8-core Intel Xeon Skylake
SP Gold 6144 CPUs clocked at 3.5 GHz, 192 GiB of DDR4-2666 RAM, and 24.75 MiB of L3
cache. Unless otherwise noted, all experiments were performed on a single core.

Networks. We evaluated our algorithms on the networks of Switzerland and Germany,
which were previously used to evaluate ULTRA [8]. An overview of the networks is given
in Table 1. The Switzerland network represents the timetable of two successive business
days (May 30–31, 2017) and was extracted from a publicly available GTFS feed1. The
Germany network is based on data from bahn.de and comprises two successive identical
days taken from the Winter 2011/2012 timetable. In both cases, parts of the network that
lie outside of the country borders were removed. The transfer graphs represent the road
networks of Switzerland and Germany, including pedestrian zones and stairs. The data was
obtained from OpenStreetMap2. Vertices with degree one and two were contracted unless
they coincided with stops. We chose walking as a transfer mode, assuming a constant speed
of 4.5 km/h. The ULTRA shortcuts were computed using the same settings as in the original
ULTRA publication. The transfer graph was contracted up to an average vertex degree of 14
for Switzerland and 20 for Germany. The shortcut computation was performed in parallel on
all 16 cores with a witness limit of 15 minutes. Together, the transfer graph contraction and
the shortcut computation took 9:52 minutes for Switzerland and 9:00:12 hours for Germany.
The number of shortcuts is reported in Table 1.

1 http://gtfs.geops.ch/
2 http://download.geofabrik.de/

http://gtfs.geops.ch/
http://download.geofabrik.de/
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Baseline Algorithms. Since no multi-modal algorithms which support one-to-many queries
have yet been proposed, we created baseline algorithms for comparison by adapting the
ideas of MCR to a scenario with multiple target vertices. MCR alternates between the
route scanning phases of RAPTOR and Dijkstra searches on a partially contracted core
graph, which is obtained via a CH computation on G that is not allowed to contract stops.
Once the average vertex degree of the remaining graph reaches a certain threshold, the
computation is stopped and the remaining graph is used as the core graph. Initial and final
transfers are handled by running forward and backward searches on the partially constructed
upward and downward graph, followed by Dijkstra searches in the core graph. An analogous
multi-modal variant of CSA called MCSA, which alternates between connection scans and
Dijkstra searches, was introduced in [8] to evaluate ULTRA.

When adapting MCR and MCSA to a one-to-many scenario, the forward search can
be run unchanged, but the backward search is no longer feasible. Instead, we modify the
computation of the core graph such that vertices in S ∪ T may not be contracted, rather
than just stops. The backward search then becomes unnecessary, since the Dijkstra searches
in the core graph already reach all targets. For our experiments, we contracted up to an
average vertex degree of 14, except for very large target sets with |T | ≥ 4|V|, where we used
a vertex degree of 10 instead.

Target Sets. For our experiments, we considered three types of target sets: all vertices,
all stops, and randomly generated target sets. For the randomly generated target sets, we
followed the approach from [14]: We randomly picked a center vertex c ∈ V and then ran
a Dijkstra search from c to find a ball B ⊆ V consisting of the |B| nearest neighbors of c.
From that ball, we then picked target vertices at random. We evaluated our algorithms for
different combinations of ball size |B| and target set size |T |, to study the impact of both
the number of targets and the distribution of the targets in the graph.

4.1 UP-CSA
For the earliest arrival problem, we implemented UP-CSA, a combination of ULTRA-PHAST
and CSA, and compared it to our one-to-many adaptation of MCSA.

Contraction Order. In Figure 1 (left), we evaluate the impact of the tuning parameters ft
and fs on the performance of the three sweeps performed by ULTRA-PHAST: the downward
sweeps in G↓[S] and G↓[T ], and the upward sweep in G↑[S]. The contraction of stops
and targets was prohibited until ft|S ∪ T | vertices were left, while stops were further left
uncontracted until fs|S| vertices remained. We observe that delaying the target contraction
can improve the target-related sweep by up to a factor of 2, without significantly impacting
the stop-related sweeps. The decrease in stop-related sweep times for fs = 10.0 and ft < 3.0
is explained by the fact that ft|S ∪ T | becomes smaller than fs|S|, and thus stops remain
uncontracted for longer than indicated by fs. Delaying the contraction of stops slightly
increases the running time of the sweep in G↓[T ], but this is offset by the significant
performance gains for the stop-related sweeps. While the sweeps performed best overall
for ft = 1.5 and fs = 1.5, we observed that very low values for ft negatively impacted the
performance of the connection scanning phase due to an unfavorable stop order. Hence, we
used ft = 2.0 and fs = 1.5 for all following experiments involving ball target sets. The CH
computation time for this configuration was 2:53 minutes, approximately twice as long as a
CH computation without delayed contraction.
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Figure 1 Impact of delayed contraction (left) and number of targets (right), measured on the
Switzerland network. All running times are averaged over 1 000 queries each on 10 randomly chosen
ball target sets. Left: Performance of the three ULTRA-PHAST sweeps depending on ft and fs,
for ball target sets with |T | = 216 and |B| = 218. Right: Performance of MCSA and UP-CSA for
different values of |T | and |B|. Configurations with |B| > |V| were omitted.

Target Set Size. The impact of target set size and distribution on the performance of
MCSA and UP-CSA is measured in Figure 1 (right). For both algorithms, the exploration
of transfers becomes more costly as the target set, and thus the size of the search graphs,
increases. However, the effect is much more pronounced for MCSA, where the Dijkstra
searches eventually take up a majority of the running time. By contrast, UP-CSA scales
much better, with only a 30% increase in running time between the fastest and slowest
configuration. This is because the portion of the overall running time spent on exploring
transfers is much smaller than in MCSA. Increasing the ball size causes the stop and target
selection to become less effective, as the targets are spread over a wider area of the graph.
However, this only has a small effect on the overall performance of UP-CSA.

Detailed Performance. Table 2 gives a detailed overview of the performance of MCSA and
UP-CSA for three types of target sets: all stops, all vertices, and a ball target set of moderate
size. For the ball target sets, we used contraction delay factors of ft = 2.0 and fs = 1.5.
For the other two sets, where delaying the contraction of targets is pointless, we achieved
the best performance with ft = 1.5. The preprocessing time for UP-CSA is naturally much
larger than for MCSA, which only requires a contracted transfer graph. The vast majority
(around 90%) of the preprocessing time for ULTRA-PHAST is due to the computation of
ULTRA shortcuts. Most of the remainder is taken up by the computation of the stop- and
target-delayed CH (between 30 and 50 minutes on Germany), while reordering the vertices
and performing the stop and target selection only takes about 30 seconds on Germany. In
terms of space consumption, both algorithms are lightweight: MCSA requires a core graph
and a CH, which are similar in size to the original graph. ULTRA-PHAST requires the set of
shortcuts and the three sweep graphs G↓[S], G↑[S] and G↓[T ]. The size of the latter is listed
in Table 2, while the size of the former two can be inferred from the T = S configuration, in
which case all three graphs are of nearly identical size. On the smaller target sets, UP-CSA
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Table 2 Detailed performance of MCSA and UP-CSA for three types of target sets: all vertices,
all stops, and vertices randomly chosen from a ball. For the ball configuration, 10 target sets were
randomly generated with |T | = 214 for Switzerland, |T | = 217 for Germany, and |B|/|T | = 2 for both
networks. Running times are averaged over 10 000 random queries, which were distributed evenly
among the 10 target sets for the ball configuration. Due to time constraints, only 1 000 queries were
performed on Germany for T = V. Query times are divided into phases: initialization (including
initial transfers), connection scan, final upward sweep, and final downward sweep.

Net-
work Targets Algorithm Preprocessing Query time [ms]

Time [h] |V↓[T ]| |E↓[T ]| Init Scan Up Down Total

Sw
itz

er
la
nd

Vertices MCSA 00:01:19 – – 74.7 133.5 – – 208.2
UP-CSA 00:11:27 603 691 2 360 885 0.9 18.3 0.9 9.1 29.2

Stops MCSA – – – 8.1 34.2 – – 42.3
UP-CSA 00:11:27 37 669 284 328 0.8 18.0 0.9 0.7 20.4

Ball MCSA 00:01:54 – – 11.0 36.5 – – 47.5
UP-CSA 00:12:24 20 031 153 867 1.0 20.6 1.0 0.5 23.2

G
er
m
an

y

Vertices MCSA – – – 1 500.7 2 831.1 – – 4 331.8
UP-CSA 09:30:31 6 872 105 27 716 664 10.8 407.5 13.4 174.0 605.8

Stops MCSA 00:22:54 – – 115.4 655.7 – – 771.1
UP-CSA 09:30:25 365 987 3 546 112 10.3 389.6 14.3 7.9 422.0

Ball MCSA 00:19:20 – – 139.3 667.7 – – 807.0
UP-CSA 09:50:12 148 398 1 228 965 11.8 380.0 14.5 4.8 411.1

is about twice as fast as MCSA. Roughly 90% of the overall running time is taken up by the
connection scanning phase, indicating that the performance is close to the optimum that can
be achieved with CSA. For the more challenging scenario where all vertices are targets, we
achieve a speedup of slightly more than 7. Here, the main optimization of MCSA, which is
to contract the transfer graph, is no longer applicable. By substituting the Dijkstra searches
with memory-efficient sweeps, UP-CSA reduces the time that is spent exploring transfers by
more than a factor of 20, bringing it down to about a third of the overall running time.

We also evaluated how the RPHAST downward sweep for the initial transfers compares
to a Bucket-CH search, which is used by the original ULTRA algorithm: On Switzerland, a
Bucket-CH search takes 1.6 ms compared to 0.8 ms for a sweep. On Germany, it takes 36.7
ms compared to 8.9 ms. This is more than both Bucket-CH searches performed by ULTRA
combined, which demonstrates that the efficiency of Bucket-CH for ULTRA is only due to
effective target pruning. In a one-to-many scenario, RPHAST is clearly preferable.

4.2 UP-RAPTOR
For the Pareto optimization problem, we implemented UP-RAPTOR, a combination of
ULTRA-PHAST and RAPTOR, and compared it to one-to-many MCR.

Sweep Grouping. To determine the best choice for the number of grouped sweeps k, we
evaluated random queries on Switzerland and Germany, using S as the target set. On
Switzerland, we achieved the best performance for k = 6, with 5.0 ms for the grouped
sweeps and 0.6 ms for the remaining Dijkstra searches, yielding 5.6 ms for the final transfers
altogether. For k = 8, the time for the Dijkstra searches became negligible, but at the cost
of increasing the sweep time to 6.4 ms. Conversely, choosing k = 4 increased the Dijkstra

ATMOS 2020



1:12 An Efficient Solution for One-To-Many Multi-Modal Route Planning

Table 3 Detailed performance of MCR and UP-RAPTOR, using the same configurations as
in Table 2. Query times are divided into phases: initialization (including initial transfers), route
collection, route scan, relaxing intermediate transfers, and final transfers (upward and downward
sweep for grouped rounds, Dijkstra search for the remainder).

Net-
work Targets Algorithm Time [ms]

Init Collect Scan Inter Final Total

Sw
itz

er
la
nd Vertices MCR 94.3 24.5 15.7 354.6 – 492.9

UP-RAPTOR 1.6 10.1 16.1 4.9 42.2 74.9

Stops MCR 37.0 18.6 20.9 31.6 – 109.7
UP-RAPTOR 1.5 7.5 13.0 4.3 5.5 31.7

G
er
m
an

y Vertices MCR 1 959.4 690.0 298.4 8 099.3 – 11 177.7
UP-RAPTOR 18.9 321.3 270.1 90.1 812.9 1 513.4

Stops MCR 480.4 350.8 529.7 552.7 – 1 919.4
UP-RAPTOR 18.9 300.5 267.7 96.1 101.2 784.5

search time to 6.0 ms. On the Germany network, k = 8 performed slightly better than k = 6,
with 102.8 ms and 109.5 ms for the final transfers, respectively. The different results for the
two networks can be explained by the fact that journeys are more likely to require a high
number of trips on larger networks.

Detailed Performance. A detailed overview of the performance of MCR and UP-RAPTOR
is given in Table 3. The experimental setup and the preprocessing phase are identical to
Table 2. For the number of grouped sweeps, we chose k = 6 for Switzerland and k = 8 for
Germany, as suggested by the experiments reported above. RAPTOR operates in rounds,
with round i computing all optimal journeys using i trips. Each round consists of three
phases: collecting routes reached in the previous round, scanning those routes, and relaxing
intermediate transfers. Additionally, there is an initialization phase before the first round
that includes the exploration of initial transfers. UP-RAPTOR adds a fourth phase to each
round which explores the final transfers. This phase is skipped until round k − 1, where
a grouped upward and downward sweep are performed for rounds 0 to k − 1. In all later
rounds, final transfers are explored with a Dijkstra search on the same core graph that is
also used by MCSA, MCR and the ULTRA shortcut computation.

We observe speedups between 2.4 and 3.5 for T = S and between 6.6 and 7.4 for T = V.
The share of the transfer exploration in the overall running time is larger than for UP-CSA,
as RAPTOR explores more transfers in general due to optimizing two criteria. Exploring the
final transfers takes 3-4 times as long as for UP-CSA, but is here done across the 8 or more
rounds of a typical RAPTOR query. On the set of stops, UP-RAPTOR achieves a better
speedup than UP-CSA. This is mainly for two reasons: At the start of each new round, MCR
copies the arrival times of all vertices from the previous round. By contrast, UP-RAPTOR
only copies arrival times from previous rounds during the Dijkstra searches, and only when a
vertex is actually visited. The other reason is that UP-RAPTOR explores fewer intermediate
transfers due to using ULTRA shortcuts. As a result, fewer stops are visited in the transfer
phases and therefore fewer routes are collected and scanned in the following phases. This
reduction in the search space has a stronger effect on RAPTOR than on CSA, which always
iterates across all connections, regardless of whether they are reachable.
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5 Conclusion

In this work, we adapted ULTRA for one-to-many and one-to-all query scenarios. Since
ULTRA explores initial and final transfer with a bidirectional search, which is not feasible for
a large number of target vertices, we developed a new final transfer search that adapts ideas
from RPHAST. We replaced the upward CH search of RPHAST with an efficient upward
sweep, since all stops that are reachable via a trip act as potential source vertices for the final
transfer search. We also extended our approach to solve the Pareto optimization problem,
where multiple final transfer searches are required. The resulting algorithmic framework,
ULTRA-PHAST, yields the first algorithms specifically designed for one-to-all and one-to-
many searches in multi-modal networks. We evaluated ULTRA-PHAST versions of CSA and
RAPTOR on the networks of Switzerland and Germany. For small and moderately sized
target sets, the share of the transfer exploration in the overall running time could be reduced
to 10-20%, with the rest being equivalent to an uni-modal public transit query. For large
target sets, we achieved a speedup of 7 compared to naive adaptations of MCR and MCSA.

For future work, we would like to adapt our approach to extended one-to-many scenarios,
such as point-of-interest queries, isochrones and traffic assignments. Some of these scenarios
require ULTRA-PHAST to be combined with profile search. For the Pareto optimization
problem, the combined sweeps could be sped up further by using vector instructions, such
as SSE or AVX. Finally, ULTRA-PHAST could serve as an ingredient in a preprocessing
technique that enables even faster multi-modal one-to-one queries than ULTRA.
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Abstract
The BahnCard problem is an important problem in the realm of online decision making. In its
original form, there is one kind of BahnCard associated with a certain price, which upon purchase
reduces the ticket price of train journeys for a certain factor over a certain period of time. The
problem consists of deciding on which dates BahnCards should be purchased such that the overall
cost, that is, BahnCard prices plus (reduced) ticket prices, is minimized without having knowledge
about the number and prices of future journeys. In this paper, we extend the problem such that
multiple kinds of BahnCards are available for purchase. We provide an optimal offline algorithm,
as well as online strategies with provable competitiveness factors. Furthermore, we describe and
implement several heuristic online strategies and compare their competitiveness in realistic scenarios.
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1 Introduction

The original BahnCard problem [4] was inspired by the the railway pass system of the German
railway company. Buying a so called BahnCard 50 railway pass at the cost of 255e entitles
the holder to a 50% price reduction on all train ticket purchases in Germany within the next
year. Similar railway pass systems exist in many other countries as well. The BahnCard
problem consists of deciding on which dates a BahnCard should be purchased in order to
minimize the overall cost for train journeys (including BahnCard prices and ticket prices). In
the offline version of the problem, the stream of future journeys is known in advance. In the
more interesting online version of the problem, one only has knowledge about past journeys
but cannot foresee the future. The main goal is to come up with strategies for the online
problem variant such that the so called competitiveness factor, the ratio of the resulting cost
when using said online strategy and the best achievable cost of the corresponding offline
problem, is as small as possible.

A BahnCard BC can be formally defined as a triple (C, T, β) where C denotes the
BahnCard purchase cost, T the validity period (in days) and β ∈ [0, 1) the price reduction
factor for train tickets (a ticket with an original price of p costs β · p if the BahnCard is valid
on the journey date). The BahnCard 50 (BC50) mentioned above can hence be described as
(255, 365, 0.5). A BahnCard 25 (BC25) would be expressed as the triple (62, 365, 0.75). The
BahnCard problem is an archetype of an online problem with a multitude of applications
(e.g. TCP acknowledgment batching). It is also a generalization of the so called ski-rental
problem, where one has to decide whether to rent skis for a certain price per day or to buy
(unbreakable) skis at some point. In [4, 6], it was shown that there exists a deterministic
online strategy for the BahnCard problem which achieves a competitiveness factor of (2− β),
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and an e/(e− 1 + β) competitive randomized online strategy (with matching lower bounds
for both). Hence for β = 0.5, the expected online cost is only 1.2255 times the optimal offline
cost although the online strategy can only utilize incomplete information.

Several extensions of the BahnCard and the ski-rental problem have been proposed in
the literaure to model complex real-world scenarios better. In this paper, we introduce the
multi-kind BahnCard problem where instead of a single BahnCard we have the choice between
k BahnCards (with different costs and price reduction factors). Note that in Germany, there
are currently three types of BahnCards available for purchase and hence strategies for the
original BahnCard problem are not suitable to obtain sensible solutions.

In the following, we study the multi-kind BahnCard problem from a theoretical and
practical perspective.

1.1 Related Work
In the original introduction and discussion of the BahnCard problem [4], the BahnCard was
assumed to have no expiration date. In that paper, the above mentioned competitiveness
factors of (2−β) and e/(e−1+β) for a deterministic and a randomized strategy were proven,
respectively. In [6], it was shown that the same competitiveness results (and matching lower
bounds) hold if the BahnCard has a finite expiration date. In [1], risk-reward competitive
strategies were discussed, where an agent makes a forecast about his upcoming journeys
and – depending on a chosen risk level – is rewarded if that forecast is correct. The model
was further extended in [2], where risk and also interest rates were considered. In [3], a
problem variant with two kinds of BahnCards was studied. There, not all BahnCards are
available at the same time, though, but the second BC (with a better price reduction factor)
is introduced later. For this very restricted scenario an optimal 2− β2

β1
deterministic strategy

was presented. Note that this model differs significantly from the model that we study, as in
our case the BahnCards are all available for purchase at the same time and our model also
allows for more than two BahnCards.

The ski-rental problem is a special case of the BahnCard problem. Here, the online
problem is to decide for each day whether renting skis for a certain fee is sensible or whether
skis should be bought at a given fixed price. As the skis are deemed unbreakable, there are
no more decisions to make once they are purchased. This is one of the main differences to the
BahnCard problem, where BahnCards expire over time and the decision when to buy a new
one has to be answered repeatedly. The other difference is that in the ski-rental problem the
price reduction factor can only be β = 0 as after the skis are purchased no rental fees occur
at all. The BahnCard problem offers more flexibility as any β-value in [0, 1) is possible there.
The original ski-rental problem was proposed in [8] in the context of caching in multiprocessor
systems. There, a simple optimal 2-competitive deterministic strategy was presented. In
[7], an optimal randomized strategy was designed with a competitiveness factor of e/(e− 1).
The multi-slope ski-rental problem is an extension where one has the choice between buying
skis as well as several lease options (e.g. after an initial fee of 100e, the skis can be leased
for 10e per day) which makes the problem more similar to the BahnCard problem. An
e-competitive online randomized strategy for this problem was presented in [9]. In [10], the
ski-rental problem with k discount options was discussed (the longer the rental duration
the larger the discount) and a 4-competitive deterministic online strategy was described.
Moreover, it was proven that no deterministic algorithm can have a smaller competitiveness
ratio for sufficiently large choices of k. An alternative analysis for the ski-rental problem
was conducted in [5], where not the worst case competitiveness ratio but the average-case
competitiveness ratio was considered.
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1.2 Contribution
We introduce the multi-kind BahnCard problem which is a generalization of the classical
BahnCard problem, and establish the following results:

We present an efficient graph-based algorithm for computing the optimal solution for the
offline problem variant, where the stream of future journeys is known in advance. This
enables us to experimentally evaluate the quality of online strategies.
In our theoretical analysis, we determine the competitiveness factors of three online
strategies. We show that there indeed exists a simple deterministic strategy that has
bounded competitiveness. (For example, for the BahnCards currently available in Ger-
many, the strategy is 4-competitive.)
We motivate and design several other deterministic and randomized online strategies,
and compare them in an experimental study. In our experiments, we consider real-world
BahnCards as well as artificial settings with up to k = 10 BahnCards. Furthermore, we
model different passenger profiles (e.g. commuter, business traveller) and empirically
determine the best online strategy for each of them.

2 Formal Problem Definition

In an instance of the multi-kind BahnCard problem, we are given k BahnCards BCi =
(Ci, T, βi) for i = 1, . . . , k where Ci ∈ R+ is the individual purchase price and βi ∈ [0, 1)
the ticket price reduction factor within the validity period T ∈ N. We assume Ci ≥ 1 for
i = 1, . . . , k, that is, BahnCards can not be arbitrarily cheap. Note that in compliance with
the current standard real-world BahnCards and for ease of exposition, we assume that all
BahnCards BC1, . . . BCk have the same validity period T (in days). W.l.o.g we assume that
Ci < Ci+1 and βi > βi+ 1. This can safely be assumed for uniform T as any BahnCard for
which another BahnCard with lower or equal cost and an equal or lower reduction factor
exists would never be a sensible purchase option.

The train journeys are given as a stream σ = σ1, . . . , σn, each represented by a tuple
σj = (tj , pj), j = 1, . . . , n where tj ∈ N denotes the departure date and pj ∈ R+ the price.
Again we assume pj ≥ 1 to exclude arbitrarily cheap journeys. We always assume that
tj < tj+1 holds, as multiple journeys on the same day can simply be accumulated into a
single one by summing up their prices.

The multi-kind BahnCard problem then consists of deciding which kinds of BahnCards
should be purchased on which dates. Hence the output is a set of tuples {(τ1, id1), . . . , (τl, idm)}
where τi ∈ N is the purchase date and idi ∈ {1, . . . , k} the index of the respective BahnCard.
The induced costs are the summed costs for purchasing the chosen BahnCards

∑m
i=1 Cidi

plus the summed (reduced) journey prices. We say a BahnCard BC is valid at time t if it was
purchased on date τ and t ∈ [τ, τ + T − 1] where T is the validity period of that BahnCard.
Accordingly, a journey σj with price pj induces a cost of pj if there is no valid BahnCard at
the departure date tj . Otherwise, let Bt ⊆ {1, . . . , k} be the set of BahnCards valid at time
t. Then journey σj has an induced cost of mini∈Bt βipj . That means, BahnCard reduction
factors do not stack but the reduced price is determined by the valid BahnCard with the
best reduction factor (as it is the case for real-world BahnCards as well).

In the offline multi-kind BahnCard problem, the journey stream is known in advance. In
the online multi-kind BahnCard problem, at any date t only the journeys j with tj ≤ t are
known and the decision about buying or not buying a BahnCard (and which kind) on this
date has to be made solely based on the known prefix of the journey stream and the past
BahnCard purchase decisions.

ATMOS 2020
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3 An Optimal Offline Algorithm

In the offline problem variant, the dates and prices of all upcoming journeys are available in
advance which allows to make fully informed decisions.

3.1 Graph-Based Algorithm for the One-Kind BahnCard Problem
For the classical BahnCard problem with only a single BahnCard (C, T, β), a graph-based
approach to deduce the best offline algorithm for any journey stream σ was described in [4].
The weighted journey-graph G(V,E) is constructed as follows. Each journey σj is represented
as a node vj ∈ V for j = 1, . . . , n. Furthermore, a dummy node vn+1 is introduced with
a corresponding dummy date tn+1 = ∞. Then consecutive journeys in the stream are
connected via directed edges in G; more precisely the edges (vj , vj+1) are contained in E for
j = 1, . . . , n with cost pj , respectively. To model the option to buy a BahnCard on every
date on which some journey happens additional edges are introduced. Observe that it does
never make sense to purchase a BahnCard on a date without a journey, as then shifting the
purchase to the next upcoming journey would allow to use the respective BahnCard further
into the future without increasing any costs. A BahnCard purchased on the departure date
tj of journey σj is valid up to date tj + T − 1. Let σq>j be the journey with the earliest
departure date that does exceed tj + T − 1, then the edge (vj , vq) with costs C +

∑q−1
l=j β · pl

is added to E. As for every journey node there are now two outgoing edges (one modelling
to not buy a BahnCard on the respective departure date and the other to buy it), the total
graph size is in O(n). The cost of a shortest path from v1 to vn+1 in this graph then equals
the optimal cost achievable for the offline BahnCard problem. As the graph is a directed
acyclic graph, this shortest path can be computed in linear time in the number of journeys.

3.2 Extension to Multi-Kind BahnCards
What changes if k different BahnCards are available for purchase? We make the following
crucial observation: In a solution for the multi-kind BahnCard problem, it can be optimal to
purchase a BahnCard while another BahnCard is still valid. An example is given in Table 1.

Note that this is a significant difference to the one-kind BahnCard problem, where it
never makes sense to purchase a new BahnCard before the old one expired. Accordingly,
it is not enough to simply extend the above described graph by one edge per journey and
BahnCard type. Instead, we also have to insert edges that model the decision to let a valid
BahnCard be replaced by a better one. For this purpose, we add for all BahnCards BCi for
i = 1, . . . , k and all journeys σj an edge (vj , vq>i) to all nodes where tq ∈ [tj + 1, tj + T − 1]
and to the first node where tq > tj + T − 1 with costs Ci +

∑q−1
l=i βi · pl, respectively. Note

that this introduces parallel edges of which of course only the cheapest one has to be kept in
the graph. Furthermore note, that for the BahnCard BCk with the best reduction factor,
it indeed never makes sense to buy another BahnCard before this one expires. Therefore,
for this BahnCard only the edges as described for the one-kind BahnCard model have to
be added. This makes our approach a valid generalization of the graph construction for the
one-kind BahnCard problem, i.e. for k = 1 we get the same graph as described in [4]. But
we can now deal with arbitrarily large values of k as well. In Figure 1, the graph for the
example discussed in Table 1 is shown before and after edge pruning.

In the worst case, graph construction takes O(kn ·min{T, n}) time and the number of
graph edges is in O(n ·min{T, n}) after pruning parallel edges. The latter is then also the
time to compute the shortest path.
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Table 1 Example with two BahnCards and three journeys. The optimal solution is to first buy
BC1 on date 1 and then BC2 on date 300, which induces a total cost of 10 + 0.75 · 60 + 100 + 0.25 ·
1000 + 0.25 · 1000 = 655. Note that at the moment BC2 is purchased, BC1 is still valid.

Ci Ti βi

BC1 10 365 0.75
BC2 100 365 0.25

σ1 σ2 σ3

(1,60) (300,1000) (400,1000)

60 1000 1000

55 760 760

805 1510

115

365

350 350

600

55 760

365

350

600

Figure 1 Graph visualization for the example instance described in Table 1. In the upper image,
the thick black edges represent the individual journeys with their original prices. The blue edges
encode the possibilities to buy BC1 including edges that model premature expiration. The green
edges encode the respective possibilities for BC2. In the lower image, the pruned graph is shown.
Firstly, all edges which encode premature expiration of BC2 were discarded, as for the BahnCard
with the best reduction factor those are not necessary. Secondly, among the remaining parallel edges,
all but the cheapest one were discarded. The shortest path from the leftmost to the rightmost node
(with a cost of 655) is depicted in red.

4 Online Strategies with Provable Competitiveness

In this section, we will analyze three online strategies and investigate their competitiveness
with respect to the optimal offline solution. As the competitiveness usually depends on the
characteristics of the available BahnCards (similarly to the one-kind BahnCard problem), we
will discuss the implications of our results considering the real BahnCards currently available
in Germany. Their characteristics are summarized in Table 2.

For the standard BahnCard problem, the deterministic strategies ALWAYS, NEVER and
SUM were analzed in [4, 6]. The ALWAYS strategy is to buy a BahnCard whenever there is
a journey on the current date but the last BahnCard already expired. The NEVER strategy
is to never buy a BahnCard. The SUM strategy is to sum up the ticket prices of the journeys
until they exceed a certain theshold and to then buy a BahnCard. We will now consider
generalizations of these strategies for the multi-kind BahnCard problem.

ATMOS 2020
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Table 2 Characteristics of German BahnCards.

C T β

BC25 62 365 0.75
BC50 255 365 0.50
BC100 4395 365 0.00

4.1 Always-Top-Algorithm
The Always-Top-Algorithm (AT) always buys the BahnCard BCk (which has the best
reduction factor βk) if there is a journey on the current date but there is no valid BahnCard
at this moment.

I Lemma 1. The AT-algorithm is Ck + 1 competitive.

Proof. Let σ be the stream of journeys and let an interval I = [tj , tq] denote a time
period such that the AT algorithm bought a BCk at time tj , and the journey q is the
departure date of the last journey which is still within the validity period of that purchased
BahnCard. The induced costs of the AT algorithm in interval I can hence be expressed as
cIAT = Ck + βk ·

∑
tj∈I pj .

If the optimal offline solution also purchases a BCk somewhere within I, then cIAT ≤ cIOPT
holds. For the worst case analysis, we hence assume that the optimal strategy does not
include the purchase of BCk in I, but either the purchase of other BahnCards with a smaller
reduction factor or no BahnCard purchase at all. The competitiveness can be expressed as
Ck
cI
OPT

+
βk·
∑

tj∈I
pj

cI
OPT

. We observe that the second term cannot be bigger than 1 as the optimal
solution does only achieve a reduction factor ≥ βk−1. The first term cannot become larger
thank Ck as the denominator CIOPT either contains the purchase cost of a BahnCard or an
unreduced ticket price, and hence cannot be smaller than 1. Combining both terms, we get
an upper bound on the competitiveness of Ck + 1. J

Considering the real-world BahnCards given in Table 2, the algorithm would always buy
the BahnCard BC100 which reduces the ticket prices to 0. According to our analysis, this
results in a competitiveness factor of 4396.

4.2 Never-Algorithm
The Never-Algorithm never buys any BahnCard regardless of the journey stream σ. The
costs can thus be expressed as cNEV ER =

∑n
j=1 pi. In the worst case, the optimal solution

would be to use the Always-Top-Algorithm described above, i.e. the accumulated ticket
price are always large enough such that it is worth to buy the most expensive BahnCard
with the best reduction factor, resulting in cOPT = Ck + βk ·

∑n
j=1 pj . Accordingly, the

competitiveness factor is unbounded. Especially for βk = 0 the ratio of cNEV ER and cOPT
grows proportional to the summed unreduced ticket prices, and therefore a constant upper
bound on this ratio cannot be determined. Looking at the real-world setting from Table 2,
we observe that the worst case value βk = 0 indeed is assumed here for the BC100.

4.3 B-SUM-Algorithm
The above considerations imply that to achieve some practically useful competitiveness, the
online strategy should make the decision when to purchase a BahnCard more carefully.
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We now investigate the so called B-SUM-algorithm which is an extension to the (2− β)-
competitive SUM-algorithm for the one-kind BahnCard problem. The idea behind this
algorithm is to always buy the most expensive BahnCard BCk once the accumulated costs
of the previous journeys (where we had no valid BahnCard) reach the critical value of said
BahnCard. The critical value is defined as critk = Ck

1−βk . The intuition is that if accumulated
ticket prices in an interval equal critk, the induced costs of not having a BahnCard and
having purchased BahnCard BCk at the beginning of the interval are the same.

I Theorem 2. The B-SUM algorithm is 2
βk−1

-competitive.

Proof. Let τ1, τ2, ..., τq bet the dates on which the optimal offline algorithm buys a BCk. This
induces consecutive intervals [0, τ1), [τ1, τ2), . . . [τq−1, τq), [τq,∞). If the optimal algorithm
never buys a BCk then there is only a single interval [0,∞).

We now want to compare the cost of the B-SUM algorithm in each interval I = [τi, τi+1)
with the optimal cost in that interval. In all but the first interval, the optimal solution buys a
BCk. Note that this can only be optimal if the accumulated ticket prices in interval I exceed
critk. Now we consider B-SUM. We subdivide interval I in four subintervals I1, I2, I3, I4
(some of them possibly empty). In I1, B-SUM still has a valid BCk purchased before τi.
In I2, B-SUM has no valid BahnCard. At the beginning of I3, B-SUM purchases a BCk.
Its expiration then initializes interval I4. Note that the optimal strategy does not have a
valid BCk in I4 as well as the optimal strategy purchased its BCk earlier than B-SUM and
another purchase of a BCk at time τi+1 marks the beginning of a completely new interval.

We first consider only the intervals I1, I2, I3. The cost of the optimal solution is lower
bounded by cOPT ≥ Ck + βk

∑
tj∈I1,I2,I3

pj . For B-SUM, we have cB−SUM = βk
∑
tj∈I1

pj +∑
tj∈I2

pj + Ck + βk
∑
tj∈I3

pj . Therefore, the ratio of cB−SUM and cOPT is maximized if∑
tj∈I2

pj is as large as possible. But as B-SUM buys a new BCk as soon as the accumulated
ticket price since the last expiration exceed critk, we conclude that

∑
tj∈I2

pj < critk = Ck
1−βk .

Plugging this in, we get a competitiveness of (2 − βk) in compliance with the one-kind
BahnCard problem. But we still have to consider I4. In I4, as observed above, the optimal
strategy does not have a valid BCk. Therefore, we can lower bound the optimal costs in I4
as cOPT ≥ βk−1

∑
tj∈I4

pj . In case the summed ticket prices in I4 are smaller than critk,
B-SUM will not purchase another BCk and hence its cost in I4 is

∑
tj∈I4

pj , leading to a
competitiveness ratio of 1

βk−1
. If the accumulated costs in I4 however exceed critk, then

B-SUM purchases BCk again. Let b ≥ 1 be the number of BahnCards B-SUM purchases in I4.
Then the critical value was exceeded b times, leading to a lower bound of cOPT ≥ βk−1 ·b· Ck1−βk .
The costs for B-SUM are upper bounded by cB−SUM ≤ bCk + b Ck

1−βk . The ratio of those two
is then upper bounded by 2−βk

βk−1
≤ 2

βk−1
. The same analysis applies to the very first interval

[0, τ1) in which the optimal strategy does not have a valid BahnCard BCk as well.
Therefore, the competitiveness of the B-SUM algorithm is max(2 − βk, 2

βk−1
) which is

dominated by the latter. J

As according to our model βk−1 > βk ≥ 0 holds, the competitiveness factor is finite for
all possible βk−1. Using values of the real-world BahnCards described in Table 2, we see that
βk−1 = 0.5 and hence the resulting competitiveness of B-SUM is 4.

5 Heuristic Online Strategies

In this section we will present further online strategies for the multi-kind BahnCard problem.
While those do not come with provable competitiveness guarantees, we will observe their
instance-based competitiveness in various scenarios in the experiments later on.
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5.1 Choosing a BahnCard u.a.r in T (RU-INT)
The RU-INT algorithm either buys one of the k BahnCards or no BahnCard uniformly
at random in each time period T . Although this approach might produce arbitrarily bad
solutions, we expect it to be better than the Always-Algorithm and Never-Algorithm making
on average. In addition, RU-INT also offers a baseline for the other heuristics since we
obviously aim to be superior to random purchases.

5.2 Summing up in T (SUM-INT)
The SUM-INT algorithm sums up the costs for a journey stream σ over one validity period
T of the BahnCards and then buys the BahnCard with the highest critical value reached for
the next period T . Then the algorithm repeats. This means the algorithm will alternate
between buying a BahnCard and not buying any BahnCard each interval.

This algorithm is sensible if the traveller has similar travelling habits in consecutive years
as then every second year the perfect BahnCard is chosen.

5.3 Critical single journeys (S-CRIT)
The S-CRIT algorithm always checks if any BahnCard would be profitable for a single journey
(the current journey) and then buys the most fitting one according to the critical value, i.e.,
the one with the highest index out of those that have reached the critical value. Note that
it is not necessarily the case that the critical values are monotonically increasing with the
index i. Although we have Ci < Ci+1 and βi > βi+1, it could happen that Ci

1−βi >
Ci+1

1−βi+1
.

Accordingly, there might be BahnCards that the S-CRIT algorthm never purchases, as a
BahnCard with better price reduction factor and lower critical value exists. For the real-world
BahnCards described in Table 2, though, the critical values are 248e, 510e, 4395e in that
order and hence S-CRIT could choose any of them depending on the ticket price. If no
critical value is reached the algorithm does not buy a BahnCard and proceeds to the next
journey. This approach makes sense for travellers with very few but very expensive journeys.

5.4 Continuing with the reduced costs of the previous interval
(RED-CRIT)

The RED-CRIT algorithm sums up the journey costs as long as no critical value of any
BahnCard is reached. Once a critical value is reached it buys the most fitting BahnCard
according to the critical value (i.e., the one with the highest critical value that was reached),
sets the current costs to the summed up reduced costs of the journeys in the validity period
of the chosen BahnCard, and starts again by checking if a critical value is reached. This
approach makes sense because we buy a BahnCard once it would have been profitable to do
so and then use the costs during that period to take the traveller’s habits into consideration
for the next interval.

6 Experimental Evaluation

To evaluate the competitiveness of the algorithms we conduct experiments with different
traveller profiles comparing the results to the optimal offline solution. We begin by using the
real-world BahnCards and extend the experiments to randomly generated BahnCards. All
experiments are executed on a desktop PC with an Intel(R) Core(TM) i7-6700K processor
(4 cores @ 4.00Ghz) and 64GB DDR4 RAM.
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6.1 Profiles

We will consider three main train traveller types: commuters, occasional travellers, and
businessmen. The traveller profiles are realized as vectors where an entry represents the
number of journeys on that day, i.e., a zero on days where no journeys occur, a one on a
day where only one journey occurs and a two for the commuters accounting for the way to
work and the way back home. Note that multiple journeys happening on the same day are
just regarded as a single journey with aggregated costs in all our algorithms, as we assume
that a BahnCard is either valid for the full day or not valid at all on that day. Therefore,
more fine-grained information – as the exact time of the ticket purchase – is not relevant
here. The following profiles were used to create different scenarios:

The commuter. We distinguish between a low price, a mid price and a high price
commuter. Journeys happen on workdays and always cost 5e, 15e or 35e(one-way),
respectively. Thereby, each journey has a 95% chance to happen.
The occasional traveller. Journeys can happen on every day with a 1% chance and
costs range between 50e and 1000e.
The businessman. Journeys can happen on every day with a 10% chance and costs
range between 50e and 1000e.

6.2 Results for Real-World BahnCards

For each profile we created five vectors with the length of y ∈ {2, 5, 10, 20, 40} years (multiplied
by 365 to have an entry for each day), computed the BahnCard schedule for every heuristic
and calculated the competiveness ratios by comparing them to the optimal solution. This
process has been done 20 times for each parameter pair (year, profile) and the means of
the ratios has been taken to gain insight on the general performance of the algorithms in
different scenarios. We will now look at each profile’s results starting with the commuters.

6.2.1 Low price commuter

For the the low price commuter profile RED-CRIT always performs the best with an average
competitiveness of 1.0653 while B-SUM always has the worst average competitiveness ratio
(on average 2.3196). For B-SUM this makes sense, because we always buy the most expensive
BahnCard and as mentioned before a journey for this profile always costs 5e meaning the
most expensive BahnCard will most likely be too expensive and a cheaper one would have
been more profitable.

6.2.2 Mid price commuter

Contrary to the low price commuter the B-SUM algorithm performs much better with higher
prices as explained before. Surprisingly the RU-INT algorithm does fairly well in this scenario.
Looking at the experiments more closely though, this can be explained by the fact that the
optimal solution actually buys the BahnCard 50 at the start of every year in the schedules of
the mid price commuter. Given the fact that there are only three BahnCards to choose from
with the BahnCard 50 being the best one in every year the chances of being significantly
worse than the optimal solution are not that high. Despite all that RED-CRIT prevails as
the best algorithm in this scenario as shown in Table 3.
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Table 3 Average competitiveness ratios for the mid price commuter scenario and real.world
BahnCards.

Years SUM-INT B-SUM S-CRIT RU-INT RED-CRIT
2 1.4969 1.4907 1.8737 1.3285 1.2961
5 1.5685 1.4150 1.8740 1.3080 1.1844
10 1.4943 1.4133 1.8738 1.3130 1.1468
20 1.4917 1.4418 1.8740 1.2800 1.1262
40 1.4921 1.3932 1.8742 1.3251 1.1159

6.2.3 High price commuter

In the case of the high price commuter we observe another increase in competitiveness for the
B-SUM algorithm (average 1.6831) which again makes sense because the overall costs have
increased as well. Likewise the competitiveness of the S-CRIT algorithm decreased heavily
from the low price to the high price commuter (average from 1.6642 to 3.9521). This is to be
expected though, since none of the journeys have a high enough price to reach the critical
value of any BahnCard, thus the algorithm never buys a BahnCard which will get worse as
the overall costs increase. Again the overall best choice is RED-CRIT (average 1.3602).

6.2.4 The occasional traveller

Due to the sparseness of journeys of the occasional traveller profile the S-CRIT algorithm
almost performs as well as the RED-CRIT algorithm (averages 1.0945 versus 1.0697) with
the latter again being the overall best choice. But as the journey streams are more diverse
for the occasional traveller than e.g. for the commuters, we also observe larger variations
in the performance of the different strategies. Figure 2 shows an example illustration for a
2-year period.

6.2.5 The businessman

For the businessman profile, RED-CRIT again was the best approach (average 1.3237).
Interestingly though, the second best strategy in this scenario appears to be B-SUM (average
1.7721). This is apparently the case because the high ticket prices make up for the lack
of journeys. The other heuristics performed worse compared to the previously considered
profiles. Figure 2 shows an example illustration for a 5-year period.

6.3 Results for Artificial BahnCards

After analyzing the competitiveness ratio of the algorithms in respect to the real-world
BahnCards we will now look at three different scenarios with randomly generated BahnCards:
1. BahnCards with evenly distributed β
2. BahnCards with similar β
3. BahnCards with heavily differing β

For each model we drew ten betas and computed the price by choosing a base price of
base = 40 and taking the result of base

β− β5
as the price of the respective BahnCard to gain

reasonably realistic costs.



M. Timm and S. Storandt 2:11

Figure 2 Compressed overview of the different strategies for the occasional traveller in a 2-year
and the business man in a 5-year period (for different journey streams). Each column indicates a
month. BahnCard purchases are marked by stars. A cell is coloured green if in the respective month
there was a valid BC25, yellow for BC50, and red for BC100.

Table 4 Average competitiveness ratios for the mid price commuter and evenly distributed
BahnCards.

Years SUM-INT B-SUM S-CRIT RU-INT RED-CRIT
2 2.9744 3.1245 4.3332 3.0584 1.8038
5 3.2434 2.5167 4.3330 3.1507 1.6830
10 2.9712 2.5191 4.3323 3.1763 1.6460
20 2.9732 2.3736 4.3300 3.0469 1.6284
40 2.9723 2.3686 4.3317 2.9640 1.6155

6.3.1 BahnCards with evenly distributed β

For this model we choose k = 10 intervals of same size, e.g., for i ∈ {0, . . . , k− 1} the interval
is
(
1− i+1

k , 1− i
k

]
and pick a β from each of the intervals uniformly at random. This results

in evenly distributed betas in (0, 1].
Overall this model produced results very similar to the real-world BahnCards with the

exception that the competitiveness ratios were generally worse. This is illustrated by the
mid price commuter example in Table 4. While the S-CRIT algorithm performed the worst
in the real-world counterpart it did not perform nearly as bad as in this model. Even with a
BahnCard having a β of 0.9149 the journeys of the mid price commuter did not reach the
critical value and thus the S-CRIT algorithm again performed like the Never-Algorithm not
buying any BahnCard at all.

This leads to the conclusion that the wider variety of BahnCards causes the ratios to be
worse overall as the optimal solution has even more profitable choices than in the real-world
example.

6.3.2 BahnCards with similar β

For this model we choose k intervals of same size, e.g., for i ∈ {0, . . . , k − 1} the interval is(
1− i+1

k , 1− i
k

]
and choose one interval uniformly at random to draw k betas from. This

results in very similar BahnCards. In this model the solutions provided by the algorithms
are very close to the optimal solution across all the traveller profiles, the worst ratio being
1.0740 meaning the choice of BahnCard has very little impact on the competitiveness ratio
(as to be expected for BahnCard with only minor differences).
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Table 5 Average competitiveness ratios for the businessman scenario and heavily differing
BahnCards.

Years SUM-INT B-SUM S-CRIT RU-INT RED-CRIT
2 9.7906 9.7523 2.0797 8.1918 4.7597
5 9.7403 9.6896 2.5465 8.5503 4.9725
10 9.8425 9.7971 2.7149 8.1206 5.8743
20 9.7691 9.7239 2.3683 8.3782 7.4911
40 9.8559 9.8106 2.6068 8.5319 8.8573

6.3.3 BahnCards with heavily differing β

For this model we choose k intervals of same size, e.g., for i ∈ {0, . . . , k − 1} the interval
is
(
1− i+1

k , 1− i
k

]
and draw

⌈
k
2
⌉
betas from the first interval and

⌊
k
2
⌋
betas from the last

interval. This results in a bimodal distribution of BahnCards with a heavy gap between the
two partitions.

Of all the models this one produced the worst competitiveness ratios almost reaching an
average of 10 in some cases as can be seen in Table 5 regarding the businessman scenario. In
this scenario S-CRIT seems to be the best algorithm with a competitiveness ratio of around
2.5 on average. Contrary to all the other algorithms S-CRIT buys cheap BahnCards just like
the optimal solution leading to a fairly good competitiveness while buying one of the more
expensive BahnCards (drawn from the first interval) has a very detrimental effect.

7 Conclusions and Future Work

In this paper, we have extended the classical BahnCard problem to the multi-kind BahnCard
problem. We presented a simple online strategy with provable competitiveness but showed
that in practical scenarios custom-tailored heuristic strategies are often superior. An obvious
open question is whether there are other strategies with provably better competitiveness. In
particular, a strategy that ensures a constant competitiveness independent of the purchase
costs and price reduction factors of the BahnCards would be worth investigating. Further,
the scenario where the validity periods of the BahnCards are allowed to differ would be of
theoretical and practical interest. Indeed, bus tickets valid for a week or a month could also
be seen as realizations of a Bahncard with a price reduction factor of β = 0. Incorporating
different validity periods in the optimal offline algorithm is straightforward. But the design
and analysis of the onine strategies would be affected. In addition, it would be interesting to
extend the model even further. For example, in Germany, certain special offer discounts can
only be combined with the BahnCard 25 but not with the BahnCard 50, which affects the
competitiveness of our proposed strategies. There are also non-standard types of BahnCards
where the validity period depends on certain events (e.g. the so called Sieger BahnCard
was only valid during the soccer championship and only as long as the German team was
not eliminated). Flexible validity periods would add yet another level of uncertainty to the
model and would demand the development of novel online strategies.
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Abstract
We propose an additional preprocessing step for the Trip-Based Public Transit Routing algorithm,
an exact state-of-the art algorithm for bi-criteria min cost path problems in public transit networks.
This additional step reduces significantly the preprocessing time, while preserving the correctness
and the computation times of the queries. We test our approach on three large scale networks and
show that the improved preprocessing is compatible with frequent real-time updates, even on the
larger data set. The experiments also indicate that it is possible, if preprocessing time is an issue, to
use the proposed preprocessing step on its own to obtain already a significant reduction of the query
times compared to the no pruning scenario.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Public transit, Route planning, Algorithms, Preprocessing

Digital Object Identifier 10.4230/OASIcs.ATMOS.2020.3

1 Introduction

In public transit networks, itineraries can combine public transit lifts with walking between
the stations. The schedules or timetables describe the arrival and departure times of the
vehicles at the public transit stations, also called stops. Information for transfers, on the
other hand, contains walking times between pairs of stops.

Given an origin, a destination and a start time, we consider the problem of finding optimal
compromise paths for two criteria to minimize: arrival time and number of transfers. Those
two criteria are of high practical relevance as they are important in the user’s choice of an
itinerary using public transportation.

In multicriteria optimization, the notion of Pareto dominance is often used to define the
optimality of the solutions. A solution s is dominated in the Pareto sense by a solution s′
for a set {c1, c2, . . . , cr} of criteria to minimize if ∀i ∈ {1, 2, . . . , r}, ci(s′) ≤ ci(s) and
∃i ∈ {1, 2, . . . , r} such that ci(s′) < ci(s). The optimal solutions are then the non-dominated
solutions. Those non-dominated solutions represent compromises between the different
criteria as the value of one cannot be improved without degrading the value of another. The
set of all the optimal criteria values of the non-dominated solutions is called Pareto front,
while the maximal set of non-dominated solutions is called Pareto set. For two or more
additive criteria to minimize, the Pareto set of the multi-objective shortest path problem
can be of exponential size [14], which makes the problem of generating it intractable. As
an alternative, many authors consider only complete optimal solution sets (we borrow the
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term from [21]), that is solution sets that contains only one optimal solution with this value
for each element of the Pareto front. Indeed, depending on the criteria, those sets can be
of polynomial size, or simply much smaller than the maximal set. Typically, if some of the
criteria can take only a bounded number of values, then it limits the number of elements in
the Pareto front. Several public transit routing algorithms such as RAPTOR [10], CSA [12]
or Public Transit Labeling [8], hence compute only a complete set for minimum number
of transfers and earliest arrival time at destination, while in more multi-criteria context,
authors go farther and prune the complete set to reduce its size [2, 7].

Over the years, many algorithms, dedicated to public transit networks have been designed.
In fact, even if multimodal or public transit networks can be modeled directly as a graph [13,
15, 20], where classical shortest path techniques for road networks can be applied, those
methods, if not adapted, are not as efficient on public transit networks, since the structure
of the public transit information is different [1]. As a consequence, dealing with large scale
graphs such as large metropolitan areas or small countries demands specific techniques in
order to obtain low computation times. It remains the case even for polynomial problems,
such as the problem of finding a complete solution set for earliest arrival time and minimum
number of transfers, where the number of values in the Pareto front is bounded by the number
of trips, as has been remarked in [16]. Many of those techniques rely on a preprocessing
step to compute information that will be used in the search phase in order to reduce the
query times compare to classical routing algorithms. There is often a trade-off between
preprocessing time, amount of auxiliary data and query times, different for each algorithm.
An overview of acceleration techniques can be found in [4].

When the preprocessing is based on the schedule information, the preprocessing time
is an important aspect for integrating easily real-time updates. If the chosen technique
has large preprocessing time, it will not be possible to rerun the preprocessing for each
network update. Several algorithms of the literature [10, 12, 23] have no or very short
preprocessing times and are well adapted to frequent network updates. It is not the case
of their accelerated versions [9, 22, 24] or of some faster algorithms based on computations
of optimal paths, such as Transfer Patterns [3, 5] where the preprocessing time takes 16.5
hours on a Germany network and can obviously not run fast enough. To be able to redo
frequently the preprocessing, its duration must be short, at most a few minutes. Note that
for some algorithms with large schedule dependent preprocessing, other solutions have been
proposed to deal with real-time updates. For instance, in [17], the authors make Transfer
Patterns robust to a chosen set of delays (while outside of the set, the optimality cannot be
granted), and in [11], the authors describe a dynamic version of the Public Transit Labeling
algorithm that can consider only positive delays.

In this article, we are more particularly focusing on the Trip-Based Public Transit Routing
algorithm [23] (TB). This algorithm is based on a graph representation of the network where
the nodes correspond to trips, i.e. a vehicle following a certain schedule, while the arcs
correspond to transfers between the trips, i.e to a user alighting at a stop of the origin trip
of the transfer, walking to a stop of the destination trip and boarding this destination trip.
In order to obtain a search graph, the information in the timetables is preprocessed and the
set of all the possible transfers is pruned to make the search more efficient. This algorithm
presents a good trade-off between preprocessing time, quantity of auxiliary data and query
times. The computation of the search graph is rather light, but can take several minutes
for large size networks. In order to make it compatible with more frequent updates of the
network, we propose here to accelerate significantly the preprocessing of [23] by adding a
new pruning step.
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This article is organized as follows. In Section 2, we introduce the necessary notations
and describe the preprocessing of the TB algorithm. Then Section 3 presents the new
preprocessing step that we propose to reduce the preprocessing time. Experimental results
are detailed in Section 4. Section 5 summarizes our contribution and suggests possible
extensions.

2 Preprocessing of the Trip-Based Public Transit Routing algorithm

The preprocessing step of the TB algorithm consists in the generation of the search graph
from the timetable and transfer time information. This section will state the necessary
notations and will explain the principles of this preprocessing.

2.1 Notations and search graph structure
In order to make it easier for the reader, we use notations similar to that of [23].

A trip t represents a vehicle, which, following a sequence −→p (t) = 〈p1
t , p

2
t , . . . 〉 of public

transit stops, arrives at stop pi
t at time τarr(t, i) and departs from it at time τdep(t, i). When

several trips share the same sequence and if they do not overtake each other, they can be
grouped into a line, which is a set of trips ordered according to the relations ≤ and < defined
by:{

t � u⇐⇒ ∀i ∈ [0, |−→p (t)|) , τarr(t, i) ≤ τarr(u, i)
t ≺ u⇐⇒ t � u and ∃i ∈ [0, |−→p (t)|) , τarr(t, i) < τarr(u, i)

when the trips u and t have the same sequence.
The sequence of stops of a line L is denoted −→p (L) = 〈p1

L, p
2
L, . . . 〉, similarly as that of its

trips. For two stops pi
t and pj

t with i < j of the stop sequence −→p (t) = 〈p1
t , p

2
t , . . . 〉 of trip t,

we denote by pi
t → pj

t the trip segment of t between stops pi
t and pj

t . This notation refers to
boarding the trip t at its ith stop and alighting it at its jth stop. A connection between two
stops is a trip segment pi

t → pj
t where j = i+ 1.

In the search graph, each trip is represented by a node while the arcs represent transfers
between trips. A transfer between the stop pi

t of trip t and the stop pj
u of trip u is

denoted pi
t → pj

u and has a transfer duration ∆τfp(pi
t, p

j
u), where ∆τfp(p, q) is the duration

of the walking itinerary between stop p and stop q. This transfer is feasible if it is possible to
alight trip t at stop pi

t at arrival time τarr(t, i) and reach stop pj
u of trip u before departure

time τdep(u, j), that is if τarr(t, i) + ∆τfp(pi
t, p

j
u) ≤ τdep(u, j). When transferring at a given

stop, it is possible to consider a positive change time ∆τfp(p, p), necessary to move within
the station p.

In the search graph, an arc between a trip t and a trip u represents a given feasible
transfer pi

t → pj
u. If several transfers are feasible between the two trips, it is possible to

have multiple arcs between the corresponding nodes, as on Figure 1. The left part of the
figure represents two trips, t and t′. The dashed lines represent some possible foot paths
between the stations of the two trips such that the corresponding transfers are feasible. In
the resulting search graph on the right, each transfer is represented by an arc.

2.2 Preprocessing
The main idea of the preprocessing proposed in [23] is to first generate feasible transfers
from the set of walking paths defined by ∆τfp. If there is a path between the stops of two
different lines, then transfers will be possible between those two lines at those stops. As
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trip t

pi
t pi+1

t

trip u

pj
u pj+1

u

trip t

trip u

pi
t → pj

u pi+1
t → pj+1

u

Figure 1 From the public transit data (represented on the left) to the trip-based graph (represented
on the right).

arrival time is optimized, when transferring from one stop of an origin trip to a given stop
of a destination line, it is possible to consider only the earliest trip such that the transfer
is feasible (when it exists). Indeed, the relation ≤ between the trips of the destination line
implies that such an earliest trip is well defined when there is at least one feasible transfer.

A large set of transfers is obtained when considering only the earliest feasible destination
trip for each origin trip and each walking path. Among those transfers, many are not necessary
when searching for a complete set of solutions for earliest arrival time and minimum number
of transfers. The initial transfer set is hence pruned to reduce its size, but in such a way
that it remains correct at the end of the pruning, i.e. in such a way that it is still possible to
compute a complete solution set for earliest arrival time and minimum number of transfers
using the search graph obtained based on the reduced transfer set.

This pruning is performed for each origin trip, removing transfers from its stations. It
can hence be easily parallelized, processing different trips on different threads. The proposed
pruning consists in two stages: first, removing so called U-turn transfers, i.e. transfers
pi

t → pj
u such that pj+1

u = pi−1
t if they cannot lead to improved arrival times; second,

removing transfers if they cannot improve arrival times at stops compared to arrival times
at the same stops considering previously checked feasible transfers. The idea is to start
from the last stop of the origin trip t and to move backward along it to check the transfers
from the current stop in decreasing stop sequence order. The minimum arrival time at this
current stop pi

t is updated with trip t’s arrival time. Then, arrival times and change times
are updated at all the stations that can be reached from pi

t. Then for each transfer pi
t → pu

j ,
the minimum arrival times and change times are updated at the stops of the destination trip
that are after pu

j in the stop sequence of trip u. Finally, foot transfers are also performed
from those stops to all reachable stops in order to try and improve their arrival times and
change times. If a transfer improves the arrival time or change time at any stop, it will be
kept. Otherwise, it is removed. The pseudo-code of the transfer set reduction step can be
found in Algorithm 3 of [23]. This pruning removes a large part of the transfers initially
present in the set (9 out of 10 on a Germany network and 8 out of 10 on a London network
in [23]), which speeds the search phase up by a factor 3.

While this preprocessing is fast enough for not so frequent real-time updates on many
networks, it can become too slow for larger graphs where the number of trips is important,
for very dense networks where a lot of stops are close to one another or for more frequent
updates.
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3 Speeding the preprocessing up

In order to speed-up the preprocessing, we propose to add a first reduction step, based this
time on the line structure of the public transit network.

For each line L, first compute all the lines L′ that can be reached by transfer, that is
such that

∃(i, j) ∈ [1 . . . |−→p (L)| − 1]× [0 . . . |−→p (L′)| − 2] , ∆τfp(pi
L, p

j
L′) is defined

Note that you do not transfer from the first stop of a trip or to the last stop of a trip.
When ∆τfp(pi

L, p
j
L′) is defined, (i, L′, j, ∆τfp(pi

L, p
j
L′)) is added to the set T (L) of possible

transfers for L.
First, u-turn transfers (i, L′, j, ∆τfp(pi

L, p
j
L′)) of line L where pj+1

L′ = pi−1
L , can be

removed if ∆τfp(pi−1
L , pj+1

L′ ) ≤ ∆τfp(pi
L, p

j
L′).

After that first step, the trips of L can be processed in such a way that we compare
transfers to trips of the same line L′ with later transfers (i.e. transfers leaving line L later or
at the same stop). Hence, the transfers of T (L) are sorted first by destination line. Then, as
for the arrival and change time based preprocessing, the transfers (i, L′, j, ∆) of the line L
are sorted first by decreasing origin index i, and then by increasing destination index j.

Instead of comparing arrival times and change times at stops for all the transfers of
one trip, we consider only one destination line at a time and we make a simpler and faster
comparison: we only compare the trips that can be boarded at the stops of the destination
line, using relation ≤. For this, it is sufficient to check the earliest trip so far passing at
the destination stop index and compare to the index of the current destination trip. The
transfers are pruned based on the absence of update at any stop. We denote by T (t, L′) the
resulting set of transfers between trip t and destination line L′. The union of all the sets
T (t, L′) is the set T of transfers which is returned at the end of the line-based pruning step.

Algorithm 1 describes the complete method. We call it line-based pruning and we denote
it LB for short. Note that this algorithm can be trivially parallelized as each origin trip is
processed separately.

After this transfer set building part, the arrival and change time based pruning might be
applied in order to reduced further the set. The resulting search graph keeps the optimality
of the search phase.

I Proposition 1. Algorithm 1 computes a correct set T of transfers for earliest arrival time
and minimum number of transfers.

Proof. Consider an optimal solution s with at least one transfer, that we define by the trip
segment sequence that composes it:
s =

〈
pj1

t1
→ pi1

t1
, pj2

t2
→ pi2

t2
. . . , p

jk+1
tk+1
→ p

ik+1
tk+1

〉
We denote by L1, L2, ..., Lk+1 the lines of the trips t1, t2, ..., tk+1 respectively. We need to
prove that it is possible to construct at least one solution with the same value those transfers
are all in T .

Consider the first transfer pi1
t1
→ pj2

t2
of s. If t2 is not the earliest trip of L2 such that

the transfer from t1 at pi1
t1

to L2 at pi2
L2

is feasible, we can replace it with a transfer to the
earliest trip such that the transfer is feasible. Now, we suppose that it is the case. There are
two possibility, either pi1

t1
→ pj2

t2
is in the transfer set T (t1, L2) or it has been pruned.

In the case where the transfer has been pruned, there exists a transfer pi
t1
→ pj

t of
T (t1, L2) such that i ≥ i1, j ≤ j2 and t ≤ t2.
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Algorithm 1 Transfer set building with line-based pruning.

Input: Timetable data, transfer duration data
Output: Reduced transfer set T
T ← ∅
for each line L do
T (L)← LINE_TRANSFERS(L, transfer duration data)
for each trip t of L do

T ← ∅ . Transfer set for each target line
Lprev ← null
for each transfer (i, L′, j,∆) of T (L) do

if Lprev 6= L′ then
T ← T ∪ T
T ← ∅, Lprev = L′

R(.)←∞ . Earliest destination trip at index j
end if
t′ ← earliest trip of L′ at j such that τdep(t′, j) ≥ τarr(t, i) + ∆
if T = ∅ then

T ← {pi
t → pj

t′}
for each index j′ ∈ [j . . . |−→p (L′)| − 1] do

R(j′)← t′

end for
else

if t′ < R(j) then
T ← T ∪ {pi

t → pj
t′}

for each index j′ ∈ [j . . . |−→p (L′)| − 1] do
R(j′)← min{t′, R(j′)}

end for
end if

end if
end for
T ← T ∪ T

end for
end for
return T
procedure LINE_TRANSFERS(line L, transfer duration data)

T ← ∅ . Builds the line neighborhood
for i← |−→p (L)| − 1, . . . , 1 do

for each stop q such that ∆τfp(pi
L, q) is defined do

for each (L′, j) such that q = pj
L′ do

T ← T ∪
{

(i, L′, j,∆τfp(pi
L, p

j
L′))

}
end for

end for
end for
Sort T first by target line, then by decreasing origin line index, then by increasing

target line index, then by chosen sorting
return T

end procedure
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Table 1 Data sets used for the experiments.

stops trips lines foot paths connections
NL 48 694 332 164 2 773 439 129 6 144 380
IDF 42 325 319 151 1 869 846 246 7 031 782
Korea 180 948 446 741 31 708 4 195 659 22 346 975

Table 2 Preprocessing for the NL network.

Preprocessing Nb kept Nb removed Graph size Mean proc. Mean save to
transfers (M) transfers (M) (MB) time (s) file time (s)

No pruning 246.17 0 4 620 32.9 51.5
LB 96.30 149.87 1 782 15.0 18.0
LB & Witt [23] 35.44 210.73 650 18.8 7.1
Witt [23] 35.20 210.97 645 25.8 6.8

In solution s, we replace pj1
t1
→ pi1

t1
by pj1

t1
→ pi

t1
, and pj2

t2
→ pi2

t2
by pj

t → pi2
t to obtain a

new solution s′. Note that transfer pi2
t → pj3

t3
is feasible, since transfer pi2

t2
→ pj3

t3
was feasible

and t ≤ t2.
The new solution has the same arrival time, and the same number of transfers as the

solution s, they are hence both optimal with the same value.
We can proceed iteratively with the next transfers to replace all the transfers that do not

belong to T by transfers belonging to T . We hence obtain an optimal solution equivalent
to s such that its transfers are all in T . J

4 Experiments

We perform our experiments on a 64 threads (4 sockets, 8 cores, 2 threads per core) 2.7 GHz
Intel(R) Xeon(R) CPU E5-4650 server with 20 MB of L3 cache and 504 GB of RAM. We
use 3 data sets of large size, two of which are public.

The first data set is open and provided by Ovapi [19]. It contains public transit information
for Netherlands and we denote it NL. The IDF data set is provided by Île-de-France
Mobilités [6] with permissive license, and covers the Île-de-France area in France. This data
set has been used in several previous publications, but note that the version used here might
be different from the one cited due to regular updates. The third data set is a proprietary
data set used in Naver Map [18] that covers the whole Korea. Table 1 summarizes the main
figures relative to the size of those data sets. Note that the footpaths are a mixture of the
provided transfer information (if any) and generated footpaths. The TB algorithm does not
require closure of the footpaths (as opposed to the initial version of RAPTOR [10] or to
CSA [12]) but we choose to generate additional footpaths as users are often willing to walk
between stations if the distance is limited. We set this bound to 600 m and set the walking
speed to 3.6 kph. Footpaths between any two stops such that their distance via the road
network is lower than 600 m are added to the public transit network. Note that the resulting
data sets are hence significantly larger than the ones in [23] in terms of number of footpaths
(the Germany network has only 100K footpaths), which impacts the computation times of
the preprocessing and search phases.

Tables 2, 3 and 4 give the preprocessing times for 4 versions of the search graph generation
step. We indicate for each version the number of transfers kept at the end of the preprocessing,
the number of transfers removed, the size in memory of the search graph obtained, the mean

ATMOS 2020



3:8 Faster Preprocessing for the Trip-Based Public Transit Routing Algorithm

Table 3 Preprocessing for the IDF network.

Preprocessing Nb kept Nb removed Graph size Mean proc. Mean save to
transfers (M) transfers (M) (MB) time (s) file time (s)

No pruning 876.27 0 16 782 115.1 197.3
LB 201.13 675.15 3 833 36.3 44.1
LB and Witt [23] 81.27 795.00 1 542 40.2 14.6
Witt [23] 86.78 789.49 1 650 99.6 18.7

Table 4 Preprocessing for the Korean network.

Preprocessing Nb kept Nb removed Graph size Mean proc. Mean save to
transfers (M) transfers (M) (MB) time (s) file time (s)

No pruning 2 795.59 0 53 339 307.6 686.1
LB 631.60 2 163.99 11 943 91.4 148.0
LB and Witt [23] 228.07 2 567.52 4 290 183.0 41.9
Witt [23] 234.76 2 560.83 4 410 448.1 47.7

processing time, and the time necessary to save the computed graph to file. Of course, the
saving step is not mandatory, as the search graph can be used directly once computed in
an end-to-end application. However, in a real-time update context, the preprocessing could
be performed by a preprocessing service while the query service is running, possibly on a
different server. We hence choose to indicate our mean save to file time as well, as it might
be relevant for practical applications.

The first preprocessing version that we test performs no pruning. It corresponds to the
transfer generation step of [23] and only computes the earliest possible trip for a transfer
from a trip at an origin index to a destination line at a destination index to be possible
and save the obtained graph structure for it to be loaded and used by the query server. As
so many transfers are generated and put into RAM, the computation time and the time
necessary to save them to file are significant. Indeed, the size of the graph is 4.6 GB for the
NL network, 16.8 GB for the IDF network and 53.3 GB for the larger Korean network. It is
hence time consuming to generate and save.

In the second version of the preprocessing, only the line-based pruning (LB) is applied.
We can see that the number of arcs in the search graph is already significantly reduced,
as it is divided by 2.55 for the NL data set, by 4.36 for the IDF data set and by 4.43 for
the Korean network. As a result, the total preprocessing time is also reduced significantly
compared to the no pruning version.

In the third version, the initial arrival and change time-based pruning is applied to the
reduced transfer set obtained after line-based pruning. This additional step increases the
preprocessing time for the larger Korean data set (it is nearly twice as long), but reduces
significantly the time necessary to save the search graph to file at the end of the process.

The last version is the initial preprocessing proposed by Witt [23], those figures are
provided in order to compare with the proposed method. Note that to make the comparison
more meaningful, we have slightly modified it in order to make it more efficient: instead
of generating all the transfers and then applying the reduction steps, we generate transfers
for each trip separately and prune them on the flight. This avoids saving all transfers into
memory at once, as in the no-pruning version, since the non-useful transfers will be removed
online. In the original article, it is proposed to first compute all the transfers and then
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Table 5 Bi-criteria queries for different levels of pruning for the NL network.

Preprocessing Graph size Mean nb of Mean duration Mean queue
(MB) solutions (ms) size (k)

No pruning 4 620 1.60 150 96.53
LB 1 782 1.60 103 49.97
LB and Witt [23] 650 1.60 63 35.55
Witt [23] 645 1.60 66 35.16

Table 6 Bi-criteria queries for different levels of pruning for the IDF network.

Preprocessing Graph size Mean nb of Mean duration Mean queue
(MB) solutions (ms) size (k)

No pruning 16 782 1.48 330 68.16
LB 3 833 1.48 113 37.77
LB and Witt [23] 1 542 1.48 79 29.65
Witt [23] 1 650 1.48 86 30.46

prune them, but as the no pruning version of the preprocessing indicates, this would make
the preprocessing step significantly and unnecessarily longer. It might be what the author
suggested in [23] by proposing to “merge the two steps” at Section 3.1.

The third and forth versions give similar results in terms of number of transfers in the
search graph. It is expected as the order of the transfers to check for each trip is similar in
both cases in our implementation. However, the complexity of the pruning step proposed
in [23] is linearly dependent of the initial number of transfers to which it is applied. Hence,
applying it on a reduced set leads to improved computation times. For the NL network,
the processing time part of the preprocessing is divided by 1.4, that of the IDF network by
2.48 and that of the Korean network by 2.45. With the proposed improvement, the total
preprocessing is below 4 minutes for the largest data set, which makes it suitable for frequent
real-time updates.

We then tested the different search graphs with an implementation of the standard TB
algorithm in order to observe the impact on query times. We performed bi-criteria earliest
arrival time queries between randomly chosen stops of the public transit networks. The
corresponding solutions are computed along with the Pareto front values. For each network,
we generated 100 such queries.

As is shown in Table 5, Table 6 and Table 7, the query times are very similar for the last
two versions of the preprocessing. It is of course linked to the fact that the obtained search
graphs are very similar.

Table 7 Bi-criteria queries for different levels of pruning for the Korean network.

Preprocessing Graph size Mean nb of Mean duration Mean queue
(MB) solutions (ms) size (k)

No pruning 53 339 1.73 2 211 173.87
LB 11 943 1.73 642 90.41
LB and Witt [23] 4 290 1.73 399 75.68
Witt [23] 4 410 1.73 332 76.93
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However, it is interesting to see that the line-based pruning on its own already provides
a significant reduction of the query times. Indeed, compared to the no pruning case,
computation times are divided by 1.5 for Netherlands, by 2.9 for Île-De-France and by 3.4
for Korea. It could hence be an alternative in the case where the search graph doesn’t need
to be saved to file at the end of the preprocessing. Indeed, in some cases, trading slower
queries for lesser preprocessing time might be useful in practice, for instance to allow more
frequent network updates.

5 Conclusion and perspective

In this article, we propose an additional preprocessing step for the Trip-Based Public Transit
Routing algorithm. This pruning step reduces significantly the total preprocessing time,
while keeping the optimality of the search phase. It has been tested on 3 data sets of different
sizes and reduces their preprocessing time by a factor 2.5 on the two largest and 1.4 on the
smallest one compared to an improved version of the initial pruning.

Reducing the preprocessing time of routing algorithms is particularly relevant in real-time
network update contexts, but also when adding additional features to the algorithm, such
as the mode customization described in [16], that increases the preprocessing time. This
reduction step could hence allow for integrating new constraints or customization of the
search phase in the algorithm while keeping the preprocessing times compatible with real-time
updates on some large networks.

As a perspective, in a context where constraints or search customization would make the
preprocessing time too long for real-time updates, adapting the preprocessing to make it
compatible with dynamic changes of the networks could be considered.
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Abstract
We study a bi-modal journey planning scenario consisting of a public transit network and a transfer
graph representing a secondary transportation mode (e.g., walking or cycling). Given a pair of source
and target locations, the objective is to find a Pareto set of journeys optimizing arrival time and
the number of required transfers. For public transit networks with a restricted, transitively closed
transfer graph, one of the fastest known algorithms solving this bi-criteria problem is Trip-Based
Routing [26]. However, this algorithm cannot be trivially extended to unrestricted transfer graphs.
In this work, we combine Trip-Based Routing with ULTRA [5], a preprocessing technique that allows
any public transit algorithm that requires transitive transfers to handle an unrestricted transfer
graph. Since both ULTRA and Trip-Based Routing precompute transfer shortcuts in a preprocessing
phase, a naive combination of the two leads to a three-phase algorithm that performs redundant
work and produces superfluous shortcuts. We therefore propose a new, integrated preprocessing
phase that combines the advantages of both and reduces the number of computed shortcuts by up to
a factor of 9 compared to a naive combination. The resulting query algorithm, ULTRA-Trip-Based
is the fastest known algorithm for the considered problem setting, achieving a speedup of up to 4
compared to the fastest previously known approach, ULTRA-RAPTOR.
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1 Introduction

Research on algorithms for journey planning in both road and public transit networks has seen
remarkable advances in recent years [3]. Many algorithms have been developed that enable
efficient journey planning in either type of network, but exceedingly few of them are capable
of efficient journey planning in a combined multi-modal network. Recently, the ULTRA [5]
approach was introduced, which promises to extend most public transit journey planning
algorithms to handle multi-modal networks. In this work we consider the combination of
ULTRA and Trip-Based Public Transit Routing [26], a very efficient algorithm for public
transit networks that on its own cannot handle multi-modal networks. We demonstrate that
the naive combination of these two algorithms, i.e., using the output of ULTRA as input
for the Trip-Based approach, indeed results in an efficient multi-modal journey planning
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4:2 Integrating ULTRA and Trip-Based Routing

algorithm. However, we observe that the two algorithms can be combined on a much deeper
level, as they are both based on the precomputation of shortcuts. Through careful algorithm
engineering, we develop a truly integrated version of the ULTRA-Trip-Based algorithm,
which significantly reduces the number of required shortcuts. Using this approach, we are
able to outperform the previously fastest multi-criteria multi-modal algorithm.

Related Work. Journey planning algorithms for public transit networks can generally be
divided into graph-based approaches and algorithms that operate directly on the timetable and
exploit its schedule-based structure [3]. Graph-based approaches can be further subdivided
into time-dependent [17, 14, 18, 19] and time-expanded [2, 4, 22] techniques. Notable
examples of timetable-based approaches are RAPTOR [10, 8], which partitions the timetable
into routes, Trip-Based Routing [26, 27], which operates directly on the trips in the timetable,
and CSA [11, 24], which divides the trips further into elementary connections and processes
them individually. Common to all these algorithms is that they only consider walking
and other forms of non-schedule-based transport in the form of a restricted transfer graph,
which is often required to be transitively closed. However, experiments have shown that the
availability of unrestricted walking significantly reduces travel times [25, 23, 21].

Multi-modal journey planning algorithms remove this limitation, allowing the combination
of public transit with arbitrary, unrestricted transfer graphs. These algorithms are usually
based on an existing public transit journey planning algorithm that is interleaved with an
exploration of the unrestricted transfer graph. UCCH [12] combines a time-dependent graph-
based approach with Dijkstra [13] searches on a contracted transfer graph. Similarly, MCR [7]
combines RAPTOR [10] with Dijkstra [13] searches on a contracted transfer graph. HLRaptor
and HLCSA [21], which are based on CSA [11] and RAPTOR [10], respectively, explore the
transfer graph with two-hop searches based on Hub Labeling [1]. The most recent approach
is ULTRA [5], which utilizes a preprocessing step that creates shortcuts for all intermediate
transfers, i.e., transfers between two public transit vehicles. Using these shortcuts, only initial
and final transfers have to be computed at query time, which can be done very efficiently by
using Bucket-CH [20, 15, 16], a technique for fast one-to-many searches on road networks.
This approach can be combined with many public transit algorithms. In combination with
RAPTOR, it yields the currently fastest multi-modal journey planning algorithm that can
optimize travel time and number of used trips.

2 Preliminaries

Following the notation in [5], we define a public transit network as a 4-tuple (S, T ,R, G)
consisting of a set of stops S, a set of trips T , a set of routes R and a directed, weighted transfer
graph G = (V, E). A stop v ∈ S is a location in the network where passengers can enter or exit
a vehicle. A trip T = 〈ε0, . . . , εk〉 ∈ T is a sequence of stop events performed by the same
vehicle. Each of these events εi represents the vehicle of the trip stopping at a stop v(εi) ∈ S.
The arrival time of the vehicle at this stop is denoted as τarr(εi) and the corresponding
departure time is τdep(εi). We use T [i] to refer to the i-th stop event in a trip T . The trips are
partitioned into a set of routes R such that all trips of a route share the same stop sequence
and no trip overtakes another along the stop event sequence. The transfer graph G = (V, E)
consists of a set of vertices V with S ⊆ V, and a set of edges E ⊆ V × V. Associated with
each edge e = (v, w) is a transfer time τt(e), which denotes the time required to travel from v

to w along e. The transfer graph is not required to be transitively closed, and may represent
any non-schedule-based mode of transportation, such as walking or cycling.
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Given a source vertex s ∈ V and a target vertex t ∈ V, an s-t-journey represents the
movement of a passenger from s to t through the public transit network. It consists of an
alternating sequence of trip legs (i.e., subsequences of trips) and transfers (i.e., paths in the
transfer graph). A departure buffer time has to be observed between consecutive transfers
and trip legs. For the sake of simplicity, we do not consider them explicitly in this work.
However, they are implemented as in [5]. The transfer connecting s to the first trip leg is
called the initial transfer, whereas the final transfer connects the final trip leg to t. The
remaining transfers, which occur between trip legs, are called intermediate transfers. Note
that transfers may consist of empty paths.

Problem Statement. To evaluate the usefulness of an s-t-journey J , we consider its arrival
time at t and the number of used trips (i.e., the number of trip legs). We say that a journey J
weakly dominates another journey J ′ if J arrives no later than J ′ and does not use more
trips than J ′. Moreover, J strongly dominates J ′ if J weakly dominates J ′ and J has an
earlier arrival time or uses fewer trips than J ′ (i.e., J is strictly better than J ′ according to at
least one criterion, and no worse according to the other). A Pareto set is a set containing a
minimal number of journeys such that every valid journey is weakly dominated by a journey
in the set. Given a source vertex s ∈ V, a target vertex t ∈ V and a departure time τdep, we
want to compute a Pareto set of s-t-journeys that depart no later than τdep.

Algorithms. The main algorithms discussed in this work are Trip-Based Routing and
ULTRA, which we briefly outline in the following. Trip-Based Routing [26] is a routing
algorithm for public transit networks with a transitively closed transfer graph. It optimizes
both arrival time and number of trips in a Pareto sense, as required by our problem statement.
The algorithm explores the reachable trips of the network in rounds, where each round extends
the journeys found in the previous round by another trip. Unlike RAPTOR [10], which
also works in rounds, Trip-Based Routing does not maintain arrival times at stops. Instead,
each round consists of scanning reachable trips in order to find transfers to the target or to
other trips, which are then processed in the next round. The transfers to other trips are
precomputed in a preprocessing phase by first generating all potentially relevant transfers
between stop events, and then pruning unnecessary transfers in a “transfer reduction” phase.

ULTRA [5] is a preprocessing technique which enables any public transit journey planning
algorithm designed for transitively closed transfer graphs to handle unlimited transfers
instead. This is achieved by precomputing a small number of transfer shortcuts representing
all intermediate transfers that are required to answer any query correctly. To this end, the
preprocessing phase enumerates journeys using at most two trips, distinguishing between
candidate journeys, which contain a potential shortcut, and witness journeys, which can prove
irrelevance of candidates. If a witness journey is found that weakly dominates a candidate
journey, the corresponding shortcut is not needed. An ULTRA query is performed by first
exploring initial and final transfers via Bucket-CH [20, 15, 16], a fast one-to-many technique
for road networks. Afterwards, a public transit algorithm of choice can be run on the public
transit network, using the precomputed shortcuts as the transfer graph.

3 Algorithms

The Trip-Based Routing algorithm can be integrated into the generic ULTRA query frame-
work, without any modification. However, as Trip-Based Routing on its own already requires
a preprocessing step, unlike RAPTOR and CSA, this yields a three-phase algorithm: The first
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phase is the ULTRA preprocessing, the second phase is the Trip-Based preprocessing, which
uses the ULTRA transfer shortcuts as input, and the third phase is the ULTRA-Trip-Based
query. Of these three phases, the two preprocessing steps have some parts in common.
Therefore, integrating them and removing redundant parts yields a single, more elegant
preprocessing step that produces fewer shortcuts.

Furthermore, the original Trip-Based query, as introduced in [26], is optimized for a use
case where only a small number of stops is reachable with transfers from the source or the
target. However, with unlimited transfers, we expect that almost every stop is reachable
from the source and the target. We therefore restructure the query to process the huge
number of possible initial and final transfers more efficiently.

3.1 Integrated Preprocessing
The preprocessing phases of ULTRA and Trip-Based Routing have many similarities, despite
the fact that Trip-Based Routing requires transitively closed transfers, which ULTRA does
not. Both of them compute shortcuts, which are later used to accelerate the query. However,
ULTRA computes time-independent shortcuts (connecting pairs of stops), while the Trip-
Based shortcuts are time-dependent (connecting pairs of stop events). This means that a short-
cut which is needed at one time during the day is available at all times when using ULTRA,
while Trip-Based Routing is aware that the shortcut is only needed at a certain time.

Both approaches identify unnecessary shortcuts by enumerating journeys with at most
two trips in order to find witness journeys which prove that a potential shortcut is not
necessary. The Trip-Based preprocessing does this in a “transfer reduction” step, after all po-
tential shortcuts have been generated. Since this is no longer feasible with unlimited transfers,
ULTRA interleaves the generation and pruning of shortcuts. Another difference is the type of
journeys that are considered as witnesses. In the Trip-Based preprocessing, witness journeys
must start with the same trip from which the shortcut originated, whereas the ULTRA
preprocessing also considers witness journeys that start with an initial transfer. Furthermore,
the Trip-Based preprocessing does not guarantee that a witness journey is found before the
shortcut it could prune has already been added to the output, since this depends on the
order in which the shortcuts are explored. Overall, ULTRA has more options for pruning
candidate journeys, and thus produces fewer shortcuts.

Since both preprocessing phases enumerate journeys for similar purposes, we propose
to integrate them and remove redundant parts. We implement this by keeping the gen-
eral approach of the ULTRA journey enumeration, which can handle unlimited transfer
graphs and prunes more shortcuts overall. In order to produce time-dependent shortcuts,
we switch from computing shortcuts between stops to computing shortcuts between stop
events. This makes the “transfer reduction” phase of the Trip-Based preprocessing obsolete.
Achieving this requires some alterations to the original ULTRA preprocessing phase, which
we describe in detail in the remainder of this section.

Candidate Journeys. The original ULTRA preprocessing includes an optimization that
dismisses candidate journeys if their intermediate transfer was already added as a shortcut
before. In the context of ULTRA, this has a significant impact because time-independent
shortcuts are likely to be used multiple times during the day. However, when switching to
time-dependent shortcuts, it becomes much less likely for a new candidate journey to use a
previously found shortcut. Thus, the expected benefit of potentially dismissing the candidate
no longer outweighs the work required to look up the shortcut. We therefore do not prune
candidate journeys with already found shortcuts.
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Figure 1 An example network that demonstrates how using weak domination in the ULTRA-
Trip-Based preprocessing leads to missing shortcuts. Transfer edges (gray) are labeled with their
travel time, while trips (colored) are labeled with τdep → τarr. With weak domination of candidates,
the preprocessing only finds two shortcuts: (0 → 1, 3 → 4) and (5 → 6, 8 → 9). These two shortcuts
are not sufficient for finding an s-t-journey. If candidate journeys are only dismissed if they
are strictly dominated by a witness, then an additional shortcut (3 → 4, 8 → 9) is found during
preprocessing. Using this shortcut, the s-t-journey

〈
〈s〉, 〈0 → 1〉, 〈v, w〉, 〈3 → 4〉, 〈x, y〉, 〈8 → 9〉, 〈t〉

〉
can be computed.

Parent Pointers. In order to determine the shortcut that corresponds to a candidate journey,
the ULTRA preprocessing algorithm maintains parent pointers for the stops of the candidate
journeys. These parent pointers point to earlier stops within the same journey and can thus
be used to find the intermediate transfer of a journey by tracing them back, starting from the
last stop of the journey. Since we want to compute shortcuts between stop events instead of
stops, we also change the parent pointers from stops to stop events. As in the original ULTRA
preprocessing, we propagate parent pointers by assigning parent[w]← parent[v] whenever
relaxing an edge (v, w) leads to an improved arrival time at w. Doing this enables an efficient
retrieval of the shortcut corresponding to the intermediate transfer of a candidate journey.
Assume that a candidate journey J ends at the stop t. In this case, the shortcut corresponding
to the intermediate transfer of J is (parent1[v(parent2[t])],parent2[t]), where parentk[v] is
the parent for reaching v using k trips (i.e., within the k-th RAPTOR round). As before,
witness journeys are distinguished from candidate journeys by assigning a special value to
the parent pointers of witness journeys.

Initial Transfer and Strict Dominance. The most important modification of the algorithm
is required due to the fact that the ULTRA preprocessing allows witness journeys with initial
transfers (unlike Trip-Based). In combination with weak domination of candidates, this can
lead to missed shortcuts between stop events, as demonstrated in Figure 1. In this example,
only two shortcuts will be found: (0→ 1, 3→ 4) and (5→ 6, 8→ 9). However, these two
shortcuts are not sufficient for finding a journey from s to t with the Trip-Based query
algorithm. The algorithm will only find journeys starting at s that reach the only trip of
the blue route (0→ 1) and the first trip of the yellow route (3→ 4). No further journeys
can be found, since there is no transfer shortcut from the blue route to the second trip of
the yellow route (0→ 1, 5→ 6) and no transfer from the first trip of the yellow route to
the red route (3→ 4, 8→ 9). Either one of these shortcuts would be sufficient for finding a
journey from s to t. We argue that adding (3→ 4, 8→ 9) as a shortcut is preferable, since
passengers using the blue route would have no reason to wait for the second trip of the yellow
route if they can also continue with the first trip of the yellow route.

Before explaining the modifications that are necessary in order to find the short-
cut (3→ 4, 8→ 9), we briefly examine why this shortcut is not found by a naive combination
of the ULTRA preprocessing and the Trip-Based preprocessing. For this, we consider
the candidate journey Jc =

〈
〈w〉, 〈3→ 4〉, 〈x, y〉, 〈8→ 9〉, 〈t〉

〉
, which contains the missing

shortcut. During the ULTRA preprocessing, this journey is dominated by the witness jour-
ney J =

〈
〈w〉, 〈5→ 6〉, 〈x, y〉, 〈8→ 9〉, 〈t〉

〉
, hence no shortcut is added. Note that this problem
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only arises when ULTRA and Trip-Based Routing are combined. When using ULTRA on
its own, shortcuts connect pairs of stops instead of stop events. This means that the two
shortcuts (3→ 4, 8→ 9) and (5→ 6, 8→ 9) between stop events are both represented with
the single shortcut (x, y) between stops. Therefore, finding only one of them is sufficient. On
the other hand, when using Trip-Based Routing on its own, the problem does not arise, as the
Trip-Based preprocessing does not consider journeys with initial transfers. This means that
the candidate journey Jc is not dominated by the witness journey J , since J requires waiting
at w, which is considered to be an initial transfer. Therefore the shortcut (5→ 6, 8→ 9) is
found by the standard Trip-Based preprocessing.

We observe that the problem of missing shortcuts only occurs if a candidate journey
and the corresponding witness journey are equivalent with respect to their arrival time and
their number of used trips. Thus the problem can be solved by only dismissing candidate
journeys that are strictly dominated by a witness (instead of being weakly dominated as in
standard ULTRA). We now continue with describing how this change can be implemented
within our preprocessing algorithm. Using strict dominance instead of weak dominance affects
all parts of the algorithm where a new arrival time at a vertex v is discovered (i.e., during
the relaxation of edges and during route scanning). Normally the label of v is only updated
if the newly discovered arrival time is strictly better (earlier) than the previously found
arrival time. Instead, we now also update the label of v if the following three conditions
hold: First, the new arrival time at v is equivalent to the previous arrival time. Secondly,
the current label of v does not correspond to a candidate journey. Thirdly, the journey that
corresponds to the new arrival time is a candidate journey. These new rules for updating a
label ensure that a newly found candidate journey is not implicitly dominated by a previously
found journey with the same arrival time. In the case of equal arrival times, we allow that
candidate journeys replace non-candidate journeys, but not vice versa. This is necessary to
prevent cyclic label updates, which would otherwise lead to infinite loops.

3.2 Improved Query

We use the shortcuts computed by the combined ULTRA-Trip-Based preprocessing within
a modified version of the Trip-Based query algorithm. As with the original ULTRA query,
initial and final transfers are handled by performing two Bucket-CH queries. However, in
contrast to the general ULTRA query, efficiently integrating the results of the Bucket-CH
queries into the Trip-Based query is more involved. We provide an overview that shows
how initial and final transfers are processed in our ULTRA-Trip-Based query algorithm in
Algorithm 1. In the following, we describe this query algorithm in detail.

Bucket-CH Query. The first step of the algorithm (lines 1–4) is the execution of the
Bucket-CH queries, which is done in the same manner as in the generic ULTRA query. In
order to improve efficiency, the Bucket-CH queries are split into three parts. First, a standard
CH query from s to t with departure time τdep is performed. This yields the minimal arrival
time τmin at the target via a direct transfer, the forward CH search space Vs of s, and the
backward CH search space Vt of t. The minimal arrival time τmin is ∞ if no path from s to t
exists in the transfer graph. If, on the other hand, τmin <∞ holds, then we have found an
s-t-journey with arrival time τmin that uses zero trips, which we add to the result set in line 2.
Afterwards, we evaluate the buckets containing vertex-to-stop transfer times for vertices
in Vs, which provides us with the arrival time τarr(s, v) for each stop v with τarr(s, v) ≤ τmin.
Similarly, we evaluate the buckets containing stop-to-vertex transfer times for vertices
in Vt, in order to obtain transfer times τt(v, t) for all stops v with τt(v, t) ≤ τmin − τdep.
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Algorithm 1 ULTRA-Trip-Based query.

Input: Public transit network (S, T , R), transfer shortcut graph Gt = (V t, E t),
Bucket-CH of the original transfer graph G,
source vertex s, departure time τdep, and target vertex t

Output: All Pareto-optimal journeys from s to t for departure time τdep
1 (τmin,Vs,Vt)← Run a CH query from s to t with departure time τdep
2 if τmin <∞ then J ← {(τarr(s, t), 0)}
3 τarr(s, ·)← Evaluate the vertex-to-stop buckets for vertices in Vs

4 τt(· , t)← Evaluate the stop-to-vertex buckets for vertices in Vt

5 for each v ∈ Vs do
6 R′ ← R′ ∪ {Routes from R that contain v}
7 for each R ∈ R′ do
8 Tmin ←∞
9 for i from 0 to |R| do

10 v ← i-th stop of R
11 if τarr(s, v) ≥ τmin then continue
12 if Tmin =∞ then
13 Tmin ← Binary search: First T ∈ R departing from v after τarr(s, v)
14 else
15 while the trip before Tmin in R departs from v after τarr(s, v) do
16 Tmin ← The trip before Tmin in R
17 if Tmin is the first trip in R then break
18 if Tmin 6=∞ and τdep(Tmin[i]) ≥ τarr(s, v) then Enqueue(Tmin, i, Q1)
19 if Tmin is the first trip in R then break
20 n← 1
21 while Qn is not empty do
22 for each (T, j, k) ∈ Qn do
23 for i from j to k do
24 if τarr(T [i]) ≥ τmin then break
25 if τarr(T [i]) + τt(v(T [i]), t) < τmin then
26 τmin ← τarr(T [i]) + τt(v(T [i]), t)
27 J ← Pareto set of J ∪ {(τmin, n)}
28 for each (T, j, k) ∈ Qn do
29 for i from j to k do
30 if τarr(T [i]) ≥ τmin then break
31 for each (T [i], T ′[i′]) ∈ E t do
32 Enqueue(T ′, i′, Qn+1)
33 n← n+ 1

Initial Transfer Evaluation. In the second step of the algorithm (lines 5–19), we evaluate
which trips of the public transit network are reachable by an initial transfer. In the original
Trip-Based query [26], this is done by iterating over all stops that are reachable via an initial
transfer. For each such stop v and each route R visiting v, the algorithm identifies the
earliest trip of R that can be entered at v after taking the initial transfer. This approach is
efficient as long as the number of stops reachable via an initial transfer is small. However, in
a scenario with unlimited transfers, where almost all stops are reachable by initial transfers,
consecutive stops of a route often share the same earliest reachable trip. This can cause

ATMOS 2020



4:8 Integrating ULTRA and Trip-Based Routing

cause the same trip to be found multiple times, leading to redundant work. To avoid this,
we propose a new approach for evaluating the initial transfers, which is based on two steps
of the RAPTOR algorithm: collecting updated routes and scanning routes.

We start by collecting all routes which contain a stop that is reachable by an initial
transfer from the source in lines 5 and 6. This is analogous to collecting routes that contain
updated stops at the beginning of a RAPTOR round. We proceed by scanning the routes
we have collected. The goal of this step is to find for each stop v within a route R the first
trip Tmin of the route R that can be boarded at v. We achieve this by processing the stops v
in the order they appear in R, while gradually updating Tmin at the same time.

Let v be the next stop to be processed while scanning the route R. If we have not found a
reachable trip for any of the previous stops in R (i.e., Tmin =∞), then we use a binary search
to find the first trip in R that can be boarded at v (line 13). Otherwise, we assume that the
earliest reachable trip at v is probably not much earlier than the previously found trip Tmin.
Thus, we perform a linear search, starting from Tmin, to find this trip (lines 15–17). Note
that in cases where the earliest reachable trip at v departs after Tmin, the linear search will
not find it. However, this is not a problem, since it is preferable to enter Tmin at a previous
stop, in this case. After we have found the earliest trip reachable at v, we add it to the queue
of trips that have to be scanned in line 18. Finally, we can stop searching for earlier trips
if Tmin is already the earliest trip in the route R.

The original Trip-Based query also collects final transfers to the target before continuing
with the trip scanning step. These are used in the trip scanning step to efficiently identify
the stops in the trip from which the target can be reached. In the presence of unlimited
transfers, this is no longer worth the effort, since the target can be reached from almost all
stops. We therefore skip this step and evaluate final transfers on the fly while scanning trips.
Unfortunately, skipping the evaluation of initial transfers is not an option, as we need to
evaluate them in order to know which trips have to be scanned.

Trip Scanning. The third and last step of the query algorithm (lines 20–33) is the trip
scanning phase, which is mostly identical to the original Trip-Based query algorithm. It is
organized in rounds, where the n-th round scans the trips that have previously been collected
in Qn, which correspond to journeys that start at s and contain n trips. For each of these
trips, the queue also contains indices i and j, which indicate the first and last stop event
of the trip that have to be scanned, respectively. While scanning the i-th stop event of
the trip T , the algorithm checks whether a final transfer from the i-th stop of the trip T
to the target exists in line 24. If such a transfer exists and if this transfer can be used to
improve the earliest known arrival time τmin at the target, then the algorithm has found a
new Pareto-optimal journey. In this case, τmin is updated and the newly found journey is
added to the result set J . If J already contains a journey with n trips (note that a Pareto
set can only contain one such journey), this journey is replaced.

After the final transfers have been evaluated, we continue with relaxing the precomputed
transfer edges in E t that start at the stop event T [i]. Each of these edges provides us with a
new trip T ′ that can be used to extend the current journey. Thus, the trip T ′ (together with
the index i′ of the first stop event in T ′ that can be reached) is added to the queue Qn+1 of
trips that have to be scanned in the next round.

Note that we scan the trips in Qn twice. We only evaluate final transfers during the
first scan and use a separate second scan to relax transfer shortcuts. We do this for two
reasons: First, separating the two scans improves memory locality. Secondly, we improve τmin
throughout the first scan, which enables better pruning in line 30 of the second scan.
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Table 1 Sizes of the public transit networks and the accompanying transfer graphs which we
consider in this work. Additionally, we report the number of edges in a transitively closed transfer
graph that we use to compare our multi-modal algorithm with pre-existing uni-modal algorithms.

Stuttgart London Switzerland Germany

Stops 13 583 20 595 25 125 244 055
Routes 12 350 2 107 13 785 231 084
Trips 91 298 125 436 350 006 2 387 292
Stop events 1 561 912 4 970 428 4 686 865 48 495 066

Transfer graph vertices 1 166 593 183 025 603 691 6 872 105
Transfer graph edges 3 680 930 579 888 1 853 260 21 372 360

Transitive graph edges 945 514 3 755 200 2 639 402 23 880 322

Enqueueing Trips. The enqueue operation, which is used to add trips to the queues in
lines 18 and 32, is identical to the enqueue operation of the original Trip-Based query [26].
Internally, it maintains an index k for every trip T in the network. This index marks the
first stop event of the trip that has already been scanned and is initialized as |T |. When
invoking Enqueue(T, i,Qn), this index is used to add the triple (T, i, k) to the queue Qn.
Afterwards, k is decreased to i− 1 for this trip and all later trips of the route.

Data Structures and Memory Layout. In order to achieve the optimal performance possible
for the query algorithm, it is quite important that a streamlined memory layout is used.
To this end, we implement the FIFO queues Qn using dynamic arrays. This enables an
efficient enqueue operation and efficient scanning of the entries in Qn. The edges E t are
also stored in an array, such that edges (T [i], Ta[j]) and (T [i], Tb[k]), which start at the same
stop event T [i], occupy consecutive memory locations. Moreover, the section of this array
that contains edges starting with the stop event T [i] is directly in front of the section that
contains edges starting with the stop event T [i+ 1]. Finally, we observe that we only need
access to the arrival time τarr(T [i]) and the stop v(T [i]) of the stop events T [i] during the
trip scanning step. Thus we store these values separately from the departure time τdep(T [i])
of the stop event, which improves memory locality.

4 Experiments

All algorithms were implemented in C++17 compiled with GCC version 8.2.1 and optimization
flag -O3. All experiments were conducted on a machine with two 8-core Intel Xeon Skylake
SP Gold 6144 CPUs clocked at 3.5GHz, with a turbo frequency of 4.2GHz, 192GiB
of DDR4-2666 RAM, and 24.75MiB of L3 cache.

Benchmark Data. We evaluated our algorithms on the transportation networks of Stuttgart,
London, Switzerland, and Germany. The Stuttgart network was previously used in [6]. The
public transit timetable of London has been sourced from Transport for London1 and was
previously used to evaluate the original Trip-Based query algorithm [26] as well as in [9, 7].

1 https://data.london.gov.uk
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Table 2 An overview of the ULTRA-Trip-Based preprocessing results. We compare a basic
sequential preprocessing approach with our improved integrated preprocessing. All computations
were performed in parallel using 16 threads. Times are formated as h:m:s.

Stuttgart London Switzerland Germany

Shortcuts (sequential) 25 865 892 58 301 120 58 807 528 1 072 750 574
Shortcuts (integrated) 3 900 258 19 856 062 11 646 572 121 676 520
Time (sequential) 4:40 19:15 9:16 7:54:13
Time (integrated) 5:11 22:24 10:04 9:16:15

The Switzerland network was extracted from a publicly available GTFS feed2. Besides other
works, it was previously used to evaluate ULTRA-RAPTOR, which is currently the fastest
multi-modal query algorithm [5]. Lastly, the Germany network, which is the largest of
our four networks, has previously been used to evaluate both Trip-Based Routing [26] and
ULTRA [5]. For all four instances, we combined the public transit networks with transfer
graphs representing walking and cycling that were extracted from OpenStreetMap3. In order
to obtain travel times, we assumed an average walking speed of 4.5 km/h and an average
cycling speed of 20 km/h. An overview of the resulting network sizes is given in Table 1.

4.1 Preprocessing
In this section we evaluate our novel integrated ULTRA-Trip-Based preprocessing. For
this, we compare it to the naive sequential combination of ULTRA and the Trip-Based
preprocessing. Furthermore, we analyze the structure of the computed shortcuts.

Comparing Sequential and Integrated Preprocessing. An overview of the results obtained
by both preprocessing variants is given in Table 2. Here, rows labeled with (integrated) refer
to our new integrated preprocessing approach, while rows labeled with (sequential) refer to
the naive sequential approach, i.e., using the output of the standard ULTRA preprocessing
as input for the Trip-Based preprocessing algorithm. The results show that using our novel
integrated preprocessing leads to a significant reduction in the amount of computed shortcuts.
This effect is weakest for the London network, where the number of shortcuts decreases only
by a factor of 3. For our largest network (i.e., the Germany network) the sequential approach
produces over 1 billion shortcuts while the integrated approach only leads to 121 million
shortcuts, which corresponds to a reduction factor of almost 9. The cost for this reduction
in the number of shortcuts is an increased running time of the preprocessing algorithm.
However, in comparison to the significantly decreased number of shortcuts, the running time
overhead is only minor. For our four test networks, the increase in preprocessing time ranges
from 8% for the Switzerland network to 17% for the Germany network.

Note that all time measurements reported in Table 2 were obtained by parallel execution
with 16 threads. It has been shown before that both the ULTRA preprocessing and the
Trip-Based preprocessing are well suited for parallel execution [5, 26]. This also applies to
our new preprocessing algorithm. As an example, we have performed the single-threaded
preprocessing on the Switzerland network, where we measured running times of 1:48:55 for

2 https://gtfs.geops.ch/
3 https://download.geofabrik.de/

https://gtfs.geops.ch/
https://download.geofabrik.de/
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the sequential approach and 2:11:16 for the integrated approach. This corresponds to a
speed-up factor of 11.8 and 13.0 respectively, which matches the speed-ups observed for the
ULTRA preprocessing and the Trip-Based preprocessing.

Shortcut Structure. For the original ULTRA preprocessing, it has been observed that most
of the shortcuts that were computed for the Switzerland network have a transfer time of
over one hour [5]. The main reason for this are candidate journeys between stops that are
not connected in the transfer graph. This led to the hypothesis that most of the ULTRA
shortcuts are only required by a few special journeys and that they are only relevant at a few
times during a day. Given our new ULTRA-Trip-Based shortcuts (which connect stop events
instead of stops) we can analyze the distribution of shortcut travel times more thoroughly. A
shortcut of the original ULTRA that is used multiple times throughout a day leads to several
ULTRA-Trip-Based shortcuts since they connect stop events, which occur at a fixed point in
time. Thus, the number of ULTRA-Trip-Based shortcuts with a certain travel time reflects
more accurately how frequently these shortcuts are required.

Figure 2 shows the number of shortcuts computed by our integrated preprocessing for the
Switzerland network broken down by their travel time. We observe that most shortcuts have
a travel time between 2 minutes (≈ 27 s) and 17 minutes (≈ 210 s). This is quite different
from the original ULTRA, where most shortcuts have a travel time of more than one hour.
We can therefore conclude that long shortcuts are indeed only rarely required. Furthermore,
we observe that the fraction of shortcuts that are added due to candidate journeys between
vertices that are not connected in the transfer graph (light blue) is much lower when using
the ULTRA-Trip-Based preprocessing instead of the ULTRA preprocessing.
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Table 3 Query performance for Trip-Based Routing, ULTRA-Trip-Based (ULTRA-TB, with
sequential and integrated preprocessing), and ULTRA-RAPTOR. Query times are divided into
phases: the Bucket-CH query (B-CH), the initial transfer evaluation (Initial), and the scanning of
trips (Scan). All results are averaged over 10 000 random queries. Note that Trip-Based (marked
with ∗) only supports stop-to-stop queries with transitive transfers. The other three algorithms
support vertex-to-vertex queries on the full graph, and have been evaluated for this query type.

Network Algorithm Full
graph

Scans [k] Time [ms]

Trips Shortcuts B-CH Initial Scan Total

Stuttgart

Trip-Based∗ ◦ 11.49 257.09 0.01 0.03 2.04 2.09
ULTRA-TB (seq.) • 25.05 1 528.56 1.41 0.92 5.99 8.33
ULTRA-TB (int.) • 17.02 218.41 1.35 0.81 2.38 4.55
ULTRA-RAPTOR • – – 1.38 – – 10.50

London

Trip-Based∗ ◦ 22.75 1 376.26 0.01 0.05 6.10 6.16
ULTRA-TB (seq.) • 34.09 1 545.15 0.91 0.80 7.47 9.19
ULTRA-TB (int.) • 24.69 450.50 0.90 0.70 4.05 5.66
ULTRA-RAPTOR • – – 0.93 – – 7.55

Switzerland

Trip-Based∗ ◦ 23.80 757.47 0.01 0.04 5.64 5.70
ULTRA-TB (seq.) • 36.46 1 551.14 1.09 1.15 7.18 9.44
ULTRA-TB (int.) • 23.48 238.12 1.07 1.03 3.19 5.32
ULTRA-RAPTOR • – – 1.25 – – 14.45

Germany

Trip-Based∗ ◦ 337.49 16 116.64 0.01 0.05 116.14 116.21
ULTRA-TB (seq.) • 439.35 38 092.34 25.34 18.96 151.35 195.67
ULTRA-TB (int.) • 204.23 3 149.87 26.12 19.13 46.38 91.65
ULTRA-RAPTOR • – – 25.68 – – 415.17

4.2 Queries
We continue by evaluating the query performance of our algorithm. To this end, we analyze
how query times depend on the query distance. Furthermore, we compare our approach to
the fastest multi-modal query algorithm that currently exists, namely ULTRA-RAPTOR.

Impact of the Query Distance. In order to assess the impact that the distance of a query
has on the running time of our algorithm, we use geo-rank queries, which are commonly
used for this purpose [26, 24]. For a geo-rank query, the source vertex is picked uniformly
at random among all vertices in the network. Afterwards, all vertices are sorted by their
beeline distance from the source vertex. The vertex with index i in this order is then the
target of the geo-rank query for rank i. The query times of 1 000 geo-rank queries performed
on the Germany network are aggregated in Figure 3. We observe that the query time of
our algorithm strongly correlates with the geo-rank of the query, with local queries being
more than two orders of magnitude faster than long-range queries. Furthermore, we see that
some queries require a running time that is significantly longer than the median running
time (independently of the geo-rank). However, in comparison to running times of the
original Trip-Based query as reported in [26], we observe that our algorithm has much
fewer outliers. The extreme outliers can be attributed to queries where the source vertex is



J. Sauer, D. Wagner, and T. Zündorf 4:13

located in particularly sparse parts of the network. The reason for this is a poor correlation
between geo-rank and actual distance in sparse parts of the network. Thus, a query can
be a long-range query despite having a low geo-rank. An example for this are the queries
with geo-rank 27, which corresponds to a distance of less than 1 km for most source-target
pairs. However, the source of the query that took about 500ms is located in Prague, while
its target is located in Germany, which is more than 80 km away.

Overall Query Performance. Table 3 presents average query performance (based on 10 000
random queries) for all four networks. For comparison, we also include the original Trip-
Based algorithm, which cannot solve multi-modal queries and was therefore evaluated using
a different set of random queries. Overall, we see that our improved Trip-Based query in
combination with the integrated preprocessing yields the lowest query times, independent
of the network. For the Germany network, our new algorithm is more than 4 times faster
than ULTRA-RAPTOR, which previously was the fastest algorithm for multi-modal journey
planning. For most networks, ULTRA-Trip-Based is even faster than the original Trip-Based
algorithm, despite the fact that ULTRA-Trip-Based handles a large, realistic transfer graph
while Trip-Based can only consider transitively closed transfer graphs. The reason for this is
the reduced size of the search space due to better pruning of the shortcuts and the existence
of faster journeys in a network with unlimited transfers. The only exception to this is the
Stuttgart network, which has the fewest trips, but the second-largest transfer graph out of
our four networks. Thus, the comparison with an algorithm that cannot handle unlimited
transfer graphs, such as Trip-Based, is particularly unfair for the Stuttgart network.

In addition to the total query time, we also report time measurements for the three phases
of the Trip-Based query algorithm in Table 3. Analyzing these measurements, we see that the
Bucket-CH query and the initial transfers evaluation take a non-negligible fraction of the total
query running time. Furthermore, we observe that using the integrated preprocessing mainly
affects the trip scanning phase of the algorithm. This was expected, as the preprocessing
does not affect initial transfers, but only intermediate transfers, which are handled in the trip
scanning phase. Moreover, we observe that the integrated preprocessing not only reduces the
number of shortcuts that are scanned during the query, but also the number of trips.

5 Conclusion

In this work, we proposed a multi-modal variant of Trip-Based Routing, one of the fastest
known journey planning algorithms for public transit networks. We achieved this by combining
it with ULTRA, a preprocessing technique that replaces the transfer graph with a small
number of transfer shortcuts. A naive combination of the two, which uses the output
of ULTRA as input for the preprocessing phase of Trip-Based Routing, leads to many
unnecessary shortcuts. Therefore, we proposed a new, integrated preprocessing phase which
produces up to 9 times fewer shortcuts than the naive sequential preprocessing, at only
a slight increase in preprocessing time. By analyzing the produced shortcuts, we were
able to confirm a hypothesis from the original ULTRA publication that long intermediate
transfers are only rarely required, even though they are responsible for a large share of
the time-independent shortcuts. The resulting query algorithm, ULTRA-Trip-Based, is up
to 4 times faster than the fastest previously known multi-modal algorithm for bi-criteria
optimization, ULTRA-RAPTOR.
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Abstract
We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathemat-
ical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we
obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and
change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in
pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is
that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of
the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo
parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special
cases. On the computational side, we devise several heuristic approaches concerning the separation
of cutting planes from flip inequalities. We finally present better dual bounds for the smallest and
largest instance of the benchmarking library PESPlib.
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1 Introduction

Whenever certain processes to be planned shall repeat after a fixed amount of time, periodic
plans (or cyclic plans) are sought. Such periodically repeating processes appear in particular in
timetables for many public transportation networks, including railway systems, in Europe [4],
where period times of 10 minutes or one hour can be observed regularly. One further example
is the planning of traffic light signals in street networks. These often follow a periodic pattern,
where the period time sometimes is 60 or 90 seconds [8, 27].

In a sense, a better understanding of mathematical models for periodic networks potentially
could reduce emissions of the traffic and transportation sector: First, better timetables for
public transport that require less transfer or waiting times make public transport more
attractive and could thus reduce car traffic. Second, the better systems of traffic lights in
networks are coordinated, the less red light stops – and thus less emissions from accelerating
and decelerating – are necessary.

Since the work by Serafini and Ukovich [26], planning for periodic networks is mainly
done with the periodic event scheduling problem (PESP) as graph-based mathematical model.
This has attracted much research, presumably also because it turns out to be somehow
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challenging: One relatively small, but also relatively difficult PESP-based instance has been
included into the MIPLIB 2003 [1]. In a more recent collection dedicated exclusively to PESP
instances, PESPlib, since 2012 for none of the 20 instances any solution could be proven to
be optimal [6].

In order to come up with provably optimal solutions, the well-known branch-and-bound
procedure (including its variants such as branch-and-cut) is the only technique that can be
applied practically to this purpose. This procedure is based on primal feasible solutions on
the one hand, and dual bounds – in the case of a minimization problem, lower bounds – on
the other hand. In Fig. 1, we provide an evolution of the values of primal feasible solutions
and lower bounds over time, which is typical when solving PESP instances: The dual bounds
stay much longer significantly far away from the actual optimal solution value than the
primal solutions. Similar observations can be found in [15]. This behavior is also mirrored
by the facts that the LP relaxation of a PESP instance always has a trivial solution, and
that PESP generalizes the notoriously hard graph vertex coloring problem [23], including
certain results concerning inapproximability [12], and parameterized complexity [19].
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Figure 1 Typical bound evolution when solving a PESP instance by MIP methods (here: CPLEX
12.10 [9] with default settings). The time axis is logarithmic. On this instance, the primal bound
stops moving after 10 seconds (x-axis value 1.0, i.e., 101.0 = 10 seconds), but proving optimality
takes 30 minutes.

Hence, in order to really solve PESP instances, much better dual bounds are necessary.
From the early years of the active work with PESP, some well-known classes of valid
inequalities have been identified: the so-called cycle inequalities due to Odijk [23] as well as
the so-called change-cycle inequalities by Nachtigall [21, 22]. Both are defined for oriented
cycles of the graph. In the absence of backward arcs in the oriented cycles, these two classes
of valid inequalities coincide [11].

In the sequel, there have been a few contributions regarding the generation of better lower
bounds during the branch-and-bound solution process for PESP instances. The node-disjoint
chain inequalities by Nachtigall [22] consider several internally vertex-disjoint paths between
a pair of vertices, and are facet-defining in some cases. T. Lindner [20] investigates chain
cutting planes, also based on multiple paths between a pair of vertices, and flow inequalities.
Liebchen and Swarat [17] inspect the second Chvátal closure and propose what they denote
multi-circuit cuts, which can be defined for structures different from simple oriented circuits.
Lindner and Liebchen [18] apply the concept of graph separators to PESP instances. Initially
motivated by generating better primal solutions, on some instances it turned out that also
better dual solutions could be obtained.
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In this paper, we revisit in particular the change-cycle inequalities. In the case of a
simple oriented circuit having k arcs, we do not just consider the two initial versions of them,
when traversing the circuit either in forward or backward direction. Rather, we consider
2k different configurations for its arcs, by simply flipping them independently from each
other in their initial or in their opposed orientation. All of them turn out to provide valid
inequalities. These flip inequalities are of course exponentially many, both because of the
number of circuits in a graph and because of the proposed arc flip operation.

Nevertheless, considering all these exemplars of the flip inequalities and adding them to
the LP relaxation PLP of the integer PESP polytope PIP yields a new polytope Pflip. We
prove that any vertex of PIP turns out to be a vertex of Pflip, too, hereby illustrating the
sharpness of these flipped change-cycle inequalities. Yet, it turns out that Pflip ends up
with further fractional vertices. For example, for an infeasible PESP instance that has been
considered in [17], we find that Pflip 6= ∅, whereas of course PIP = ∅. In contrast, for the
special case that any arc is contained in at most one cycle, it turns out that PIP = Pflip.

Given a point of the LP relaxation PLP, a violated flip inequality can be separated in
pseudo-polynomial time as a consequence of the results of [2]. However, this method is
computationally too challenging on large instances, and this is why we examine several
heuristic separation strategies for flip inequalities. These turn out to be fruitful, and we
compute better dual bounds for the smallest and largest PESPlib railway timetabling
instances.

The paper is organized as follows: After formally describing PESP and reviewing the
two common mixed integer programming formulations, we define the PESP polytope and
recall the cycle and change-cycle inequalities in Section 2. Section 3 is devoted to the
flip inequalities and their polyhedral investigation, including our main results and several
examples. Our approach to separate flip inequalities in practice is illustrated in Section 4,
before we conclude the paper in Section 5.

2 Polyhedral Basics of the Periodic Event Scheduling Problem

2.1 The Periodic Event Scheduling Problem
The Periodic Event Scheduling Problem (PESP) dates back to Serafini and Ukovich [26], and
shows certain similarities to models that were already considered by Rüger [24]. We will use
the following formalization: A PESP instance is given by a (G,T, `, u, w), where

G = (V,A) is a directed graph, called event-activity network, whose vertices are called
events and whose arcs are called activities,
T ∈ N is a period time,
` ∈ ZA≥0 is a vector of lower bounds such that 0 ≤ ` < T ,
u ∈ ZA≥0 is a vector of upper bounds, 0 ≤ u− ` < T , and
w ∈ RA≥0 is a vector of weights.

In this paper, we restrict ourselves to integer bounds ` and u. This is a common planning
assumption, in particular time input values are often scaled and/or rounded accordingly.
Furthermore, we assume that G is weakly connected. A vector π ∈ [0, T )V is a periodic
timetable if there exists a periodic tension x ∈ RA such that

` ≤ x ≤ u and ∀ a = (i, j) ∈ A : πj − πi ≡ xa mod T.

A periodic timetable π assigns times modulo T to each event in G, and fixes the duration of
each activity a = (i, j) ∈ A to πj − πi modulo T . The actual duration of a is then chosen
to lie in the interval [`a, ua]. Since 0 ≤ ua − `a < T for all a ∈ A, the periodic tension x is
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5:4 Determining All Integer Vertices of the PESP Polytope by Flipping Arcs

unique for a given timetable π, and can be computed by setting

xa := [πj − πi − `a]T + `a for all a = (i, j) ∈ A,

where [·]T denotes the modulo T operator with values in [0, T ). We further define the periodic
slack as y := x− ` ∈ [0, T )A.

In a public transport context, an event i is usually modeling either the arrival or the
departure of a directed traffic line at some station, e.g., the departure of the trains from
Berlin to Munich in the city of Erfurt. An arc a = (i, j) models the time duration from
event i to event j. If i and j are two subsequent departure and arrival events of the same
directed line, then a = (i, j) models the trip duration from the station of event i to the
station of event j. In turn, if i and j are the arrival and departure events of the same directed
line within the same station, then a = (i, j) models the dwell duration within this station.
To illustrate many other commercial and operational types of constraints, we refer to [13].
If in an hourly service (i.e., T = 60), for a dwell arc a = (i, j) we require that `a = 3 and
ua = 7, then of course πi = 29 and πj = 33 constitute a periodic timetable. The periodic
tension of a is xa = 4 ∈ [3, 7], and the periodic slack is ya = 1. However, notice that πi = 58
and πj = 3 constitute a periodic timetable, too, because xa = [3− 58− 3]60 + 3 = 2 + 3 = 5.

I Definition 1. Given (G,T, `, u, w) as above, the Periodic Event Scheduling Problem (PESP)
is to find a periodic timetable π with periodic slack y such that

∑
a∈A waya is minimum or

to decide that no periodic timetable exists.

2.2 Mixed Integer Programming Formulations
Let (G,T, `, u, w) be a PESP instance, G = (V,A). It follows immediately from the definitions
of periodic timetables, tensions and slacks that PESP can be written as:

Minimize
∑
a∈A

waya

s.t. πj − πi = ya + `a − Tpa, a = (i, j) ∈ A,
0 ≤ πi < T, v ∈ V,
0 ≤ ya ≤ ua − `a, a ∈ A,

pa ∈ Z, a ∈ A.

The variables pa resolve the modulo T constraints. If D ∈ {−1, 0, 1}V×A denotes the
incidence matrix of G, and Dt is its transpose, then the PESP constraints can be summarized
as Dtπ − y = ` − Tp. Since the matrix (Dt | −I) is totally unimodular, it follows that if
the problem is feasible, then there is an optimal integral periodic timetable with an optimal
integral periodic slack.

Another formulation is obtained by cycle bases of G: An oriented cycle in G is a vector
γ ∈ {−1, 0, 1}A with Dγ = 0. Such a γ corresponds to an undirected, possibly non-simple
cycle in G on the arcs a with γa 6= 0, where arcs with γa = 1 are traversed forward, i.e.,
following the direction given by a, and arcs with γa = −1 are traversed backward. We will
sometimes decompose γ = γ+ − γ− into its positive and negative part, and we denote by |γ|
the length of the cycle, i.e., the number of a ∈ A with γa 6= 0. If D is seen as a linear map
of Z-modules, the kernel of D is called the cycle space of G, and its rank is the cyclomatic
number µ. An integral cycle basis of G is a collection B = {γ1, . . . , γµ} of oriented cycles
generating the cycle space of G as a Z-module. The matrix Γ with γ1, . . . , γµ as rows is
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called a cycle matrix and the kernel of Γ equals the image of Dt over Z [14]. This results in
the following cycle-based mixed-integer programming formulation for PESP:

Minimize
∑
a∈A

waya

s.t. Γ(y + `) = Tz,

0 ≤ y ≤ u− `,
y ∈ ZA,
z ∈ ZB .

(?)

By the above discussion on total unimodularity, it is no restriction to assume that y is
integral. An important subclass of integral cycle bases is given by (strictly) fundamental cycle
bases: A spanning tree S on G is a spanning tree on the graph that results from undirecting
G. The µ fundamental cycles of S give rise to simple oriented cycles in G, and these form an
integral cycle basis [16].

2.3 Periodic Timetabling Polytopes
We will base our polytopal investigations on the cycle-based integer programming formulation
(?) for PESP. Let (G,T, `, u, w) be a PESP instance. Fix a cycle matrix Γ of an integral
cycle basis B. Let further n := |V |, m := |A|, and denote by µ = m− n+ 1 the cyclomatic
number of G.

I Definition 2. Define

PLP := {(y, z) ∈ RA × RB | Γ(y + `) = Tz, 0 ≤ y ≤ u− `},
PIP := conv(PLP ∩ (ZA × ZB)).

That is, PIP is the convex hull of the set of feasible solutions to the integer program (?), and
PLP is the set of feasible solutions to the linear programming relaxation of (?).

Since our further investigations will regularily touch on vertices, recall the following basic
theorem on the structure of polytopes.

I Theorem 3 ([25, Theorem 5.7]). Let P = {x | Ax ≤ b} be a polyhedron in Rr and let
x∗ ∈ P . Then x∗ is a vertex of P , if and only if the submatrix Ax∗ of the inequalities from
Ax ≤ b that are satisfied by x∗ with equality has rank r.

I Lemma 4. The vertices of PLP are given by{(
y,

Γ(y + `)
T

)
∈ RA × RB

∣∣∣∣∀a ∈ A : ya ∈ {0, ua − `a}
}
.

A proof of Lemma 4 is given in the appendix. In particular, PLP has 2m vertices. Since
the weights w are non-negative by definition, we also conclude that (y∗, z∗) = (0,Γ`/T ) is an
optimal solution to the the LP relaxation of (?).

I Definition 5. A point (y∗, z∗) ∈ PLP is called a spanning tree solution if there is a spanning
tree S of G such that y∗a = 0 or y∗a = ua − `a holds for all arcs a in S.

I Theorem 6 (see also [22, Theorem 6.1]). Let (y∗, z∗) be a vertex of PLP or PIP. Then
(y∗, z∗) is a spanning tree solution.

Proof. See appendix. J
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5:6 Determining All Integer Vertices of the PESP Polytope by Flipping Arcs

Note that Theorem 6 does not give a sufficient criterion for being a vertex of PIP: Not
every choice of ya ∈ {0, ua − `a} along arcs a of some spanning tree yields a vertex of PIP,
e.g., if there is no periodic timetable, then PIP = ∅, see also Example 19.

2.4 Known Inequalities
Both polyhedra PLP and PIP are polytopes, as the bounds on y imply bounds on z. For PIP,
this observation leads to the cycle inequalities:

I Lemma 7 (Cycle inequalities, [23]). Let γ be an oriented cycle and (y, z) ∈ PIP. Then⌈
γt+`− γt−u

T

⌉
≤ γt(y + `)

T
≤
⌊
γt+u− γt−`

T

⌋
.

Another type of inequalities is the following:

I Lemma 8 (Change-cycle inequalities, [21]). Let γ be an oriented cycle and (y, z) ∈ PIP.
Set α := [−γt`]T . Then

(T − α)γt+y + αγt−y ≥ α(T − α).

The change-cycle inequalities are facet-defining for α > 0 [22, Lemma 6.4].
Moreover, as mentioned in Section 1, more types of inequalities have been discovered. We

will return to the multi-circuit cuts of [17] in Example 19. In the next section, we present
a new and easy to describe class of inequalities that applies to each oriented cycle and
generalizes both cycle and change-cycle inequalities.

3 Flipping Arcs

3.1 Flip Inequalities
Consider an arc a = ij ∈ A. By flipping a, we mean the following: Replace a by an arc
a = ji in opposite direction, and set `a := [−ua]T , ua := [−ua]T + ua − `a.

I Lemma 9. A vector y ∈ RA is a feasible periodic slack for the original PESP instance if
and only if y′ defined by y′a := ua − `a − ya and agreeing with y for all other arcs in A \ {a}
is a feasible periodic slack for the PESP instance in which the arc a is just flipped.

Proof. It is clear that 0 ≤ y ≤ u − ` implies 0 ≤ y′ ≤ u − ` and vice versa. Let π be a
periodic timetable for the original PESP instance. Then, from πj − πi ≡ ya + `a mod T ,

πi − πj ≡ −(ya + `a) ≡ y′a − ua ≡ y′a + [−ua]T mod T,

so that π is also a feasible periodic timetable for the flipped instance, and conversely. J

Applying the change-cycle inequality (Lemma 8) on the PESP instance obtained by flipping
a subset of arcs, and re-interpreting it in the initial instance yields the flip inequalities:

I Corollary 10. Let F ⊆ A and let γ be an oriented cycle. Then the flip inequality

(T − αF )
∑

a∈A\F :
γa=1

ya + αF
∑

a∈A\F :
γa=−1

ya

+ αF
∑
a∈F :
γa=1

(ua − `a − ya) + (T − αF )
∑
a∈F :
γa=−1

(ua − `a − ya) ≥ αF (T − αF )
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is valid for all (y, z) ∈ PIP, where

αF :=

− ∑
a∈A\F

γa`a −
∑
a∈F

γaua


T

.

Flipping all arcs in F we obtain an oriented cycle γF , and the flip inequality for γ is the
change-cycle inequality for γF in the flipped instance. Figure 2 illustrates this flip operation
showing which bounds of which arcs are considered in the respective flip inequality.

	

T
− α

−`a1

α+
`

a
2

α

+`a3

T
−
α

−
` a

4

T −
α−

à5

change-cycle
original instance

	

T
− α

′

−`
′
a1

α
′

+
` ′a

3

T − α′

−`′
a3

T
−
α

′
−
`

′ a
4

α ′+` ′
a5

change-cycle
flipped instance

	

T
− α

F

−`a1

α
F

+
`

a
3

−(T − αF )
+ua3

T
−
α

F
−
` a

4

−α
F−u

a5

flip inequality
original instance

Figure 2 Left: Coefficient of yai (top) and contribution to α (bottom) in the original change-cycle
inequality for the depicted oriented cycle. Middle: Coefficient of y′

ai
and contribution to α′ in the

original change-cycle inequality in the instance obtained by flipping F = {a3, a5}, with adjusted
lower bounds `′ and upper bounds u′. Right: Coefficient of yai and contribution to αF in the flip
inequality for F = {a3, a5} on the original instance. In particular, you can see that lower bounds `
and upper bounds u can enter the computation of α with arbitrary signs.

Notice that given an oriented cycle γ, initially there had been defined one change-cycle
inequality making exclusively use of all the lower bounds of its arcs. Much similarly, consid-
ering the upper bounds of its arcs had been considered, too [10]. In contrast, Corollary 10
provides us with not less than up to 2|γ| valid inequalities.

It is easy to see that the (lower bound) cycle inequality and the change-cycle inequality
are equivalent for an oriented cycle with no backward arcs [11]. In general, we have:

I Lemma 11. Let γ be an oriented cycle. Then the cycle inequalities for γ are equivalent to
the flip inequalities when flipping all backward resp. forward arcs in γ.

Lemma 11 is proved in the appendix. The flip inequalities hence contain both cycle and
change-cycle inequalities as special cases. The inequalities with αF > 0 are facet-defining for
PIP by the same proof [22, Lemma 6.4] that works for change-cycle inequalities.

3.2 The Flip Polytope
I Definition 12. The flip polytope is defined as

Pflip := {(y, z) ∈ PLP | y satisfies the flip inequality for all F ⊆ A and oriented cycles γ}.

By Corollary 10, we clearly have PIP ⊆ Pflip ⊆ PLP.

I Theorem 13. Let (y, z) ∈ PLP \ PIP be a fractional spanning tree solution. Then (y, z) /∈
Pflip, and any such (y, z) is separated from Pflip by at least one of 2µ flip inequalities.
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5:8 Determining All Integer Vertices of the PESP Polytope by Flipping Arcs

Proof. Let (y, z) ∈ PLP, and let S ⊆ A be the set of arcs of a spanning tree such that for
all a ∈ S holds ya ∈ {0, ua − `a}. We will show that if y satisfies a particular set of 2µ flip
inequalities, then (y, z) already turns out to be integer.

Consider any co-tree arc, say a′ /∈ S, with fundamental cycle γ, assuming w.l.o.g.
that γa′ = 1. Suppose that (y, z) satisfies the flip inequalities for γ and the subsets
F1 := {a ∈ S | ya = ua − `a}, F2 := F1 ∪ {a′}. Then, because of zero slack of the resulting
y-variables (occasionally flipped), the contribution of the arcs in S is 0 in both flip inequalities,
so that only

(T − αF1)ya′ ≥ αF1(T − αF1) and αF2(ua′ − `a′ − ya′) ≥ αF2(T − αF2)

remain. Recall from Lemma 8 that in general 0 ≤ α < T , and now suppose that αF2 > 0.
Then, together with αF1 < T ,

0 ≤ αF1 ≤ ya′ ≤ ua′ − `a′ − T + αF2 < T.

By the definition of F1 and F2, ua′ − `a′ − T + αF2 ≡ αF1 mod T and ya′ ∈ [0, T ), and we
conclude that ya′ = αF1 . By definition of αF1 ,

γt(y + `) =
∑
a∈S
ya=0

γa`a +
∑
a∈S

ya=ua−`a

γaua + ya′ + `a′ ≡ 0 mod T.

In the case αF2 = 0, it holds that ya′ ≥ αF1 = ua′ − `a′ , so that again ya′ = αF1 and
γt(y + `) ≡ 0 mod T .

We conclude that for all µ fundamental cycles γ of S, γt(y + `) is an integer multiple
of T . As these cycles form an integral cycle basis, we find that z is integer, and hence
(y, z) ∈ PIP. J

Theorem 13 provides a linear-time separation procedure for spanning tree solutions. In
general, there is a pseudo-polynomial time separation algorithm:

I Theorem 14. There is an O(T 2n2m) algorithm that given (y, z) ∈ PLP finds a flip
inequality violated by (y, z) or decides that none exists.

Proof. Construct a network G′ as follows: Remove each arc a = ij ∈ A and insert instead
four arcs isa, sata, tasa, taj, where sa, ta are new vertices. The arc sata receives the bounds
of a, while tasa obtains the bounds of the flipped arc a as in the beginning of this section.
The other two arcs have lower and upper bound 0.

In this network G′, any oriented cycle γ′ either consists only of sata and tasa for some
a ∈ A, or it uses at most one of sata and tasa. In the latter case, γ′ corresponds to a pair
(γ, F ), where γ is an oriented cycle in G and F consists of the arcs in G where γ′ uses tasa.
Moreover, the change-cycle inequality for γ′ in G′ is equivalent to the flip inequality for γ in
G w.r.t. F . On the other hand, the change-cycle inequality for a cycle γ′ on the arcs sata
and tasa is satisfied for any y: Assuming that both arcs are forward, we have that

(T − α)ya + (T − α)(ua − `a − ya) = (T − α)(ua − `a) = α(T − α), as α = ua − `a.

The analogous result holds when both arcs in γ′ are backward. As a consequence, we can
find violated flip inequalities in G by separating change-cycle inequalities in G′, which can
be done in O(T 2n2m) time [2, Theorem 10]. J

The complexity of the separation problem remains open, a few partial NP-completeness
results are known for cycle and change-cycle inequalities [2].

We present now an astonishing result on the relation between Pflip and PIP:
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I Theorem 15. The vertices of PIP are precisely the integer vertices of Pflip.

Proof. It is clear that any integer vertex of Pflip is a vertex of PIP. Now, let (y∗, z∗) be a
vertex of PIP. In view of Theorem 3, we need to identify m+ µ linearly independent defining
inequalities of Pflip that are satisfied with equality for (y∗, z∗), and we are doing so in three
sets:

Tree arcs (n− 1 inequalities):
By Theorem 6, (y∗, z∗) is a spanning tree solution, denote the set of arcs of the spanning
tree by S. It follows that (y∗, z∗) satisfies n− 1 linearly independent inequalities of the
form ya ≥ 0 or ya ≤ ua − `a for a ∈ S with equality.
Co-tree arcs (m− (n− 1) inequalities):
By the proof of Theorem 13, for each co-tree arc a /∈ S, we have y∗a = αF1 , and this is a
flip inequality satisfied with equality. There are of course µ = m− (n− 1) co-tree arcs.
Observe that these are linearly independent with the ones identified for the tree arcs.
Cycle periodicity constraints (µ inequalities):
Finally, we obtain µ equality constraints from Γy∗ − Tz∗ = Γ`, one constraint for each
z-variable.

In total, we have found (n− 1) + µ+ µ = m+ µ linearly independent defining inequalities of
Pflip that are satisfied with equality. Hence (y∗, z∗) is a vertex of Pflip. J

The following theorem, whose proof can be found in the appendix, states that the flip
inequalities (together with the slack bounds) fully describe PIP on PESP instances with
µ ≤ 1, and also on networks with higher cyclomatic number provided that the arc set of any
two distinct cycles is disjoint.

I Theorem 16. Suppose that each arc a ∈ A is contained in at most one (undirected) cycle.
Then Pflip = PIP.

3.3 Examples of Flip Polytopes
I Example 17 (Integral flip polytope). The PESP instance depicted in Figure 3 has cyclomatic
number µ = 1. In particular, Theorem 16 implies Pflip = PIP. The polytope is drawn in
Figure 4.

I Example 18 (Non-integral flip polytope). It is possible that Pflip contains fractional ver-
tices when an arc belongs to more than one cycle. In the instance from Figure 5 with
cyclomatic number 2, a computation with polymake [5] revealed that Pflip has 24 ver-
tices from PIP, but also 39 fractional vertices. For example, (y12, y23, y31, y34, y42, z1, z2) =
(7.7, 2.1, 4.2, 6.5, 0.4, 1.7, 1.1) is such a vertex.

I Example 19 (An infeasible PESP instance). The PESP instance on the wheel graph in
Figure 6 is infeasible. Adding the cycle and change-cycle inequalities to PLP results in a
non-empty polytope. The second Chvátal closure P (2)

LP of PLP is empty, and the emptyness is
certified by two multi-circuit cuts [17].

Due to Theorem 15, the flip polytope can be used to detect that no integer points exist as
well: An instance is infeasible if and only if Pflip has no integer vertices. We use polymake to
compute the vertices of Pflip on the wheel instance. It turns out that Pflip is zero-dimensional
with a single fractional vertex with slack 1

2 on all spokes and 2 on all arcs of the outer cycle.
However, Pflip 6= ∅, so the flip inequalities differ from the multi-circuit cuts. Recall from [17]
that the change-cycle inequalities can have Chvátal rank ≥ T

2 , so does the superclass of flip
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1

2

3

�[3,
12

] [4, 13]
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Figure 3 PESP instance from Example 17, arcs a are labeled with [`a, ua], T = 10.

(0, 5, 0)

(5, 0, 0)

(4, 9, 0)

(0, 0, 5)

(9, 4, 0)
(0, 9, 4)

(0, 4, 9)

(6, 0, 9)

(9, 0, 6)

(9, 9, 5)

(5, 9, 9)

(9, 3, 9)

y12

y13

y230

Figure 4 The polytope PIP = Pflip for the instance in Figure 3 has 12 vertices, 24 edges, 14 facets,
and is combinatorially equivalent to a cuboctahedron. The vertices are labeled with (y12, y13, y23).
Variable bounds are drawn in light grey, the cycle inequalities y12−y13 +y23 ≥ −5 (z ≥ 0, containing
the vertices (0, 5, 0), (0, 9, 4) and (4, 9, 0)) and y12 − y13 + y23 ≤ 15 (z ≤ 2, containing the vertices
(6, 0, 9), (9, 0, 6), and (9, 3, 9)) are green, the unflipped change-cycle inequality 5y12 +5y13 +5y23 ≥ 25
is red, and the remaining five flip inequalities are drawn blue. The light green hexagon in the center
is the hyperplane for z = 1 (containing the vertices (0, 0, 5), (0, 4, 9), (5, 0, 0), (5, 9, 9), (9, 4, 0) and
(9, 9, 5)). We used polymake [5] for computations and visualization.
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Figure 5 PESP instance from Example 18,
arcs a are labeled with [`a, ua], T = 10.

[0
,1

]

[0, 1]

[0,
1] [0, 1]

[0, 1]

[1,
5]

[1, 5]

[1, 5]

[1
, 5

]

[1, 5]

Figure 6 Wheel instance from Example 19,
arcs a are labeled with [`a, ua], T = 6.
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inequalities. Hence flipping arcs, as proposed in this paper, in a sense can be considered to
be kind of complimentary to exploiting the concept of Chvátal closures for the first such
closures.

4 Separating Flips in Practice

The flip polytope reveals the vertices of PIP by Theorem 15. Moreover, the flip inequalities
are facet-defining, and can be separated in pseudo-polynomial time by Theorem 14. Hence
this type of inequalities is a reasonable target for cutting plane approaches. Since the general
separation algorithm from [2] is a Bellman-Ford-type dynamic program, which is practically
infeasible due to both time and space consumption, one has to come up with different
separation strategies.

A successful heuristic strategy for separating cycle and change-cycle inequalities in a
branch-and-cut context is to build a minimum spanning tree S w.r.t. the slack of the
current LP relaxation and to add violated inequalities for the fundamental cycles of S. This
approach [3] produced the current best known dual bounds for all 20 instances of the PESP
benchmarking library PESPlib [6]. We will call this the standard approach.

Building on top of the standard approach on a minimum slack spanning tree S, we
consider the following heuristic separation algorithms:

all-flip: For each fundamental cycle γ of S, add all violated cycle and change-cycle
inequalities, as well as all violated flip inequalities obtained by flipping a single arc of γ.
max-flip: For each fundamental cycle γ of S, add all violated cycle and change-cycle
inequalities, and the maximally violated flip inequality among all single-arc flips of γ.
all-flip-hybrid resp. max-flip-hybrid: As all-flip resp. max-flip, but consider flips only if
less than a fixed number of violated (change-)cycle inequalities have been found in the
standard approach.
all-flip-hybrid-small resp. max-flip-hybrid-small: We precompute all cycles of length ≤ k,
and also all up to 2k flip inequalities for each of these cycles. The strategy is then as
in all-flip-hybrid resp. max-flip-hybrid, but with another round that adds violated flip
inequalities from the precomputed pool whenever all-/max-flip-hybrid does not produce
sufficiently many cuts. In this round, the all-version adds all violated flip inequalities,
whereas the max-version adds only the maximally violated flip inequality for each small
cycle.

Conceptually, the standard approach adds the least cuts, and all-flip the most. Less cuts
mean smaller LPs, which is beneficial concerning running time and memory. On the other
hand, more cuts should offer better quality. Our goal is to analyze this trade-off. We always
include the separation of the cycle and change-cycle inequalities, as they belong to the class of
the flip inequalities, and it suffices to validate only one cycle inequality and one change-cycle
inequality per cycle.

Table 1 Overview of our set of instances. The -0.6 suffix indicates that free arcs whose weight
sums up to 60% of the total free weight have been deleted [7].

Instance Hardness n m µ

R1L1-0.6 easy 125 225 101
R4L4-0.6 medium 506 960 455
R1L1 hard 3 664 6 385 2 722
R4L4 extreme 8 384 17 754 9 371

ATMOS 2020



5:12 Determining All Integer Vertices of the PESP Polytope by Flipping Arcs

We compare these strategies on four instances derived from the PESPlib set, see Table 1.
The separation strategies have been implemented in the concurrent PESP solver from [3]
using CPLEX 12.10 [9] as underlying MIP solver. We choose the cycle-based MIP formulation
(?) and compute a minimum weight cycle basis in the sense of [14] in order to keep the branch-
and-bound tree small (except for R4L4, where our implementation runs out of memory).
With the current PESPlib incumbent (i.e., the solution with the smallest objective value
according to [6] as of June 2020) as initial solution, we let the PESP solver run for 12 hours
on up to 6 internal CPLEX threads with best bound MIP emphasis. The computations were
carried out on an Intel Xeon E3-1245 v5 CPU running at 3.5 GHz with 32 GB RAM.

Table 2 Summary of computational results.

Instance PESPlib dual bound new dual bound best strategy optimality gap
R1L1-0.6 – 5 681 843 standard 0.0 %
R4L4-0.6 – 5 245 781 max-flip-hybrid 34.4 %
R1L1 19 878 200 20 230 655 max-flip-hybrid 33.5 %
R4L4 15 840 600 17 961 400 standard 53.2 %

The results are presented in Figures 7 and 8 (in the appendix), and summarized in
Table 2. As the two -0.6 instances are not part of the PESPlib, there are no official dual
bounds available. On the easiest instance R1L1-0.6, all approaches prove optimality, the
standard approach being the fastest. The potentially higher quality of the flip inequality
methods is outweighed by the speed of the standard approach. The picture for R4L4-0.6 is
different: The standard approach performs best only within the first 5 minutes, and after
roughly one and a half hours, it is outperformed by all other methods. The winner here is
max-flip-hybrid, the difference to all-flip and all-flip-hybrid-small (here with cycles of length
≤ 8) being minor.

On the instances R1L1 and R4L4, all-flip requires too much memory and terminates rather
early. For the small cycles, we set a length bound of 4. The winner on R1L1 is again max-
flip-hybrid with all-flip-hybrid as runner-up. For the last two hours, the standard approach
eventually becomes dominated by all other approaches. On R4L4, standard produces the
best bounds within the time limit of 12 hours. However, all algorithms except max-flip ran
out of memory. Here, the solver finds plenty of cuts and does not leave the root node for the
whole running time, explaining the minor differences between the strategies. We want to
remark that, although we use the same method, our dual bound is better than the PESPlib
bound, which is due to the slightly longer computation time compared to [3] and to some
improvements to the code.

There seems to be a point in time when the speed-quality trade-off shifts from the
standard approach towards a flipping strategy such as max-flip-hybrid. We do not reach
this point on R1L1-0.6, as the instance is solved to optimality before, and also not on R4L4,
as the instance is too large to show a significant difference within 12 hours. However, the
positive role of the flip inequalities becomes clearly visible on R4L4-0.6 and R1L1, leading to
significantly better bounds. As it seems to us that the instances are similarly structured, we
expect that the flip inequality approach is able to compute better dual bounds at least for
the smaller PESPlib instances.
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5 Conclusion

We generalized the change-cycle inequalities [21] for a PESP instance by considering them
in a modified instance that emerges from the initial one simply by flipping some arcs to
the opposite direction. We call the resulting set of valid inequalities the flip inequalities.
These turn out to contain not only of course the change-cycle inequalities, but also the cycle
inequalities [23].

From a theoretical point of view, the set of flip inequalities provides a much better
understanding of the integer PESP polytope PIP. To assess their power, add only the flip
inequalities to the LP relaxation PLP of PIP to get another polytope Pflip. Then, the integer
vertices of this particular polytope Pflip turn out to be already precisely the (integer) vertices
of PIP. In some special cases, e.g., when the cyclomatic number is one, Pflip equals PIP.

From a practical point of view, some first positive effects on dual bounds during branch-
and-cut-processes show up in our first computational experiments. But we suppose that there
might exist better separation strategies that take even more benefit out of the flip inequalities.
Yet, this might not turn out to be trivial, due to the huge number of flip inequalities, both
because of the potentially exponential number of cycles in a graph, and the exponentially
many possibilities to perform all flips for each of these cycles.
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A Appendix

Proof of Lemma 4. Any feasible solution of PLP satisfies the µ linear independent equations
Γ(y + `) = Tz. Hence, by Theorem 3, a vertex must satisfy m linear independent out
of the 2m inequalities 0 ≤ y ≤ u − ` with equality. Conversely, let (y∗, z∗) ∈ PLP with
y∗a ∈ {0, ua − `a} for all a ∈ A. Define c ∈ RA by

ca :=
{

1 if y∗a = 0,
−1 if y∗a = ua − `a,

a ∈ A.

Then (y∗, z∗) is the unique point in PLP minimizing cty and hence a vertex of PLP. J

Proof of Theorem 6. The statement for PLP follows from Lemma 4. Let (y∗, z∗) be a vertex
of PIP. Then y∗ is a vertex of the polytope

Pz∗ := {y ∈ RA | Γ(y + `) = Tz∗, 0 ≤ y ≤ u− `},

because otherwise, if we find a proper convex combination y∗ = λy′ + (1 − λ)y′′ for some
y′, y′′ ∈ Pz∗ \ {y∗} and λ ∈ (0, 1), then also (y∗, z∗) = λ(y′, z∗) + (1− λ)(y′′, z∗) constitutes
a proper convex combination in PLP, thus preventing (y∗, z∗) from being a vertex. Being a
vertex of Pz∗ means that there are µ−m = n−1 arcs a ∈ A for which y∗a = 0 or y∗a = ua− `a
is true, and the subgraph on these arcs must not contain a cycle, as the rows of Γ span the
cycle space. So these n− 1 arcs belong to a spanning tree. J

Proof of Lemma 11. Suppose F = {a ∈ A | γa = −1}. Then the flip inequality reads as

(T − αF )γt+y + (T − αF )γt−(u− `− y) ≥ αF (T − αF ),

and hence, since αF ∈ [0, T ),

γt+y + γt−(u− `− y) ≥ αF = [−γt+`+ γt−u]T .

Adding γt+`− γt−u on both sides, we obtain

γt(y + `) ≥ γt+`− γt−u+ [−γt+`+ γt−u]T = T

⌈
γt+`− γt−u

T

⌉
,

because of r+ [−r]T = T
⌈
r
T

⌉
. The other part of the cycle inequality is analogously obtained

for F = {a ∈ A | γa = 1}. J

Proof of Theorem 16. Under the hypotheses of the theorem, we can partition the PESP
instance into subinstances consisting either of exactly one cycle each (i.e., µ = 1) or of arcs
not contained in any cycle (µ = 0). Observe that PLP, Pflip, PIP all decompose as the product
of the corresponding polytopes of these subinstances. Since we clearly have PLP = PIP if
µ = 0, we can hence assume w.l.o.g. that G is a single oriented cycle γ.

By Theorem 6, any vertex (y, z) of PIP is a spanning tree solution. In our case, this means
that ya ∈ {0, ua − `a} for at least m− 1 = n− 1 arcs a ∈ A, and z is already determined by
y via z = γt(y+`)

T . This means that y is a point on an edge of the projection QLP of PLP to
the slack space, as QLP is an m-dimensional cube scaled by u− ` (Lemma 4). Of course, if
ya is at its lower or upper bound for all m edges, then y is a vertex of QLP. Note that for
each cube edge, we find at most one y such that (y, z) is a vertex of PIP. The projection QIP
of PIP to the y-space is the convex hull of all y for (y, z) ∈ PIP, and is hence combinatorially
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equivalent to a (partially) rectified m-cube: We obtain QIP from the m-cube QLP by cutting
off each cube vertex q by the hyperplane Hq given by the convex hull of all points y on the
edges incident to q stemming from vertices of PIP. The resulting polytope has two types
of facets: The up to 2m hyperplanes Hq and the remainining parts of the 2m facets of the
original m-cube. The latter are clearly given by the bounds ya ≥ 0 and ya ≤ ua − `a.

We claim that all Hq are coming from the flip inequalities. Let q be a vertex of QLP
and define F := {a ∈ A | qa = ua − `a}. Note that qa = 0 for a ∈ A \ F . Now F gives
rise to a flip inequality. Let (y, z) ∈ PIP be a vertex such that y is on an edge of QLP
incident to q. Let a′ denote the co-tree arc of the spanning tree associated to (y, z), so
that ya = qa for all a ∈ A \ {a′}. If γa′ = 1 and a′ /∈ F , then the flip inequality for F is
(T − αF )ya′ ≥ αF (T − αF ). As γt(y + `) ≡ 0 mod T implies ya′ = αF (compare the proof
of Theorem 13), the flip inequality is hence satisfied with equality. In the case γa′ = 1 and
a′ ∈ F , the flip inequality reads as αF (ua′ − `a′ − ya′) ≥ αF (T − αF ) and is satisfied with
equality, as γt(y + `) ≡ 0 mod T implies ua′ − `a′ − ya′ = T − αF . The computations for
γa′ = −1 are similar. We conclude that y lies on the hyperplane where the flip inequality for
F is tight. In particular, Hq is induced by a flip inequality.

Mapping QIP back to PIP using the affine transformation y 7→ (y, γ
t(y+`)
T ), we obtain

Pflip = PIP. J
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Figure 7 Dual bound evolution on R1L1-0.6 and R4L4-0.6: Dual bound vs. logarithmic time (i.e.
2.0 stands for 102.0 = 100 seconds of computation time).
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Abstract
When evaluating the operational costs of a public transport system, the most important factor is
the number of vehicles needed for operation. In contrast to the canonical sequential approach of
first fixing a timetable and then adding a vehicle schedule, we consider a sequential approach where
a vehicle schedule is determined for a given line plan and only afterwards a timetable is fixed. We
compare this new sequential approach to a model that integrates both steps. To represent various
operational requirements, we consider multiple possibilities to restrict the vehicle circulations to be
short, as this can provide operational benefits. The sequential approach can efficiently determine
public transport plans with a low number of vehicles. This is evaluated theoretically and empirically
demonstrated for two close-to real-world instances.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Applied
computing → Transportation

Keywords and phrases Vehicle Scheduling, Timetabling, Integrated Planning

Digital Object Identifier 10.4230/OASIcs.ATMOS.2020.6

Funding This work was partially funded by DFG under SCHO 1140/8-2.

1 Introduction

In public transport planning, the problem of designing a public transport plan is traditionally
separated into multiple sequential problems, [7, 10]. Commonly, one of the first steps is
to obtain a line plan, for an overview see [25]. The lines in such a plan are a sequence of
stops at which a vehicle picks up and drops off passengers. The lines are operated at a
certain frequency. Designing a good line plan is a challenging problem where a trade-off
between service quality and operational costs has to be made. The service quality is mostly
determined by the number of transfers that passengers need to reach their destination, and
the time their journey takes. There are numerous works focusing either on optimizing service
quality or operational costs, e.g. [1, 4, 6, 27].

The travel times of the passengers and the vehicles are dependent on the timetable, which
dictates at which time each line is operated. Typically, this occurs in a periodic fashion where
for example the same line departs at the same time every hour. An overview on timetabling
can be found in [14], some models and solution approaches on periodic timetabling include
[8, 13, 18, 20].

The number of vehicles needed to operate a line plan under a certain timetable is an
important factor in the operational costs. Determining which vehicles operate which lines
in which order is called vehicle scheduling, for an overview, see [5]. Especially aperiodic

© Paul Bouman, Alexander Schiewe, and Philine Schiewe;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 6; pp. 6:1–6:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4893-4083
mailto:bouman@ese.eur.nl
https://orcid.org/0000-0002-1055-2066
mailto:a.schiewe@mathematik.uni-kl.de
https://orcid.org/0000-0002-4223-3246
mailto:p.schiewe@mathematik.uni-kl.de
https://doi.org/10.4230/OASIcs.ATMOS.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


6:2 A New Sequential Approach to Periodic Vehicle Scheduling and Timetabling

vehicle scheduling is well researched, see e.g. [15, 21]. Recently, periodic vehicle scheduling
received more attention. In the case considered in this paper, [3] showed that periodic vehicle
scheduling is a viable alternative.

When we have a periodic timetable, a periodic vehicle schedule consists of vehicle
circulations that are operated by a number of vehicles. While it is possible to work with
long vehicle circulations, this results in strong sequential dependencies of the activities that
must be performed on different lines. Constraints on the length of the circulations, on the
other hand, make the vehicle scheduling problem more challenging and restrict the solution
space. In this paper, we investigate the impact of such constraints on which circulations are
allowed when a vehicle schedule is determined.

While traditionally the steps of line planning, timetabling and vehicle scheduling are
performed sequentially in that canonical order, integrating multiple planning stages has
proven to be promising, see [2, 11, 24]. Due to the increased intricacy of the integrated
problems, there exist various heuristic approaches that incorporate some form of integration,
e.g. [12, 16, 19]. A general scheme for deriving heuristic solution approaches is the so-called
eigenmodel, see [26], where the single stages line planning, timetabling and vehicle scheduling
are re-ordered. First approaches on the reordering proposed in this paper were done in [19],
where a simple form of aperiodic vehicle scheduling is considered. In this paper, we assume a
line plan has been constructed and consider both an integrated method that jointly optimizes
a periodic timetable and vehicle schedule, as well as a sequential method that first computes
a vehicle schedule and determines a timetable based on that. The practical application we
focus on is long-term strategic planning which typically occurs when future demand is highly
uncertain. As such our main objective is vehicle scheduling and the minimization of the
number of vehicles needed rather than the optimization of passenger convenience which is a
common concern in the tactical and operational planning phases of public transport planning.
For an overview on the different planning phases, see [10].

In [31], the problem of finding a vehicle schedule based on a line plan is analyzed.
The concept of strict circulations is introduced, where a line is always covered by a single
circulation. In this paper, we mainly consider strict circulations and investigate additional
circulation restrictions as well as the effect of adding a timetable. An integrated model
for periodic vehicle scheduling and timetabling is presented by [30] but without additional
restrictions on the circulations. We use the model proposed in [30] as a basis for the integrated
formulation in Section 5 and show how the sequential process developed in Sections 3 and 4
can already find optimal solutions to the integrated problem while reducing the problem size.
All models are implemented and computationally evaluated using the open source framework
LinTim, see [22, 23], in Section 6.

2 Problem Definition

In this section we formally introduce the problems considered in this paper. All these
problems take a line plan as input.

I Definition 1. A line plan L contains a set of lines l ∈ L, which are paths in the infra-
structure network PTN=(V,E) with stations V and direct connections E between them. For
each line, there is a forward trip l+ and a backward trip l−. The trip time tl+ , tl− is the
minimal time needed to make a trip in one direction of the line. Frequency fl indicates how
often line l should be serviced per period, whose length is denoted by T .

With these lines, we define a trip graph where stations V form the nodes and lines L the
edges. We consider both the directed and the undirected case. In the undirected trip graph
L = (V,E(L)) each edge e(l) = {u, v}, l ∈ L, is the pair of terminal stations for line l. The
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directions of a line form a directed trip graph
↔
L = (V,A(L)), with arcs a(l+) = (u, v) and

a(l−) = (v, u), l ∈ L. We now use the trip graph to construct a periodic vehicle schedule
and a periodic timetable, to determine the number of vehicles needed to operate the lines.

In the vehicle scheduling problem, we consider circulations which are cycles in the directed
trip graph

↔
L = (V,A(L)). The time it takes to operate all lines in the circulation c is defined

as tc =
∑

a(l·)∈c tl. For shorter notation, we here without loss of generality assume that
tl+ = tl− = tl. The minimal number of vehicles needed to operate a circulation in every
period is given by kc =

⌈
tc

T

⌉
, which can alternatively be interpreted as the least number of

periods a single vehicle spends on a circulation.

I Definition 2. Let a line line L and a set of possible circulations C be given. A feasible
periodic vehicle schedule is a subset C ′ ⊆ C such that every line l ∈ L is covered fl times in
both directions or equivalently where every arc in the directed trip graph

↔
L is covered exactly

fl times.

In reality, interdependence of lines are imposed, e.g. by security constraints in the form of
headways. These cannot be respected without knowing the actual departure and arrival
times of the lines. Hence we need to add a periodic timetable to obtain the correct number
of vehicles needed to operate the vehicle schedule.

I Definition 3. For a given line plan L and a set of circulations C, an event-activity-network
(EAN) is a directed graph containing the departure and arrival of all lines l ∈ L at their
respective stops as vertices (events) and arcs (activities) stating the interdependencies between
these events. These can contain drive activities, wait activities, circulation activities and
headway activities. A feasible periodic timetable assigns a periodic time πi ∈ {0, . . . , T − 1}
for every event i, such that for all activities the duration is in given time bounds.

While drive and wait activities are directly related to the given line plan L, headway
activities represent restrictions of the infrastructure network such as safety restrictions on
tracks. Circulation activities model the turnaround time of the vehicles between trips and
are therefore given by the chosen circulations.

Note that opposed to most literature on periodic timetabling, the EAN described here does
not contain transfer activities. Due to the periodicity of the timetable, transferring between
lines can be assumed to always be feasible and we do not consider passenger convenience
here.

The problem we want to solve overall is the following.

I Definition 4. Let a line plan L with frequencies fl, l ∈ L, and a set of possible circulations
C be given. (LinToTimVeh) is the problem of finding a feasible periodic vehicle schedule and
a corresponding feasible periodic timetable such that the number of vehicles needed to operate
the line plan is minimal.

Different solution methods for (LinToTimVeh) are presented in Figure 1. While it is possible
to solve the problem integratedly, we also consider a sequential solution approach. In contrast
to the standard sequential planning process presented in [7, 10], we change the order of the
optimization problems as suggested in [26]. For a given line plan, we therefore first fix a
vehicle schedule by determining periodic circulations in (LinToVeh) that minimize the lower
bound of vehicles needed to operate the chosen circulations while covering every trip. For
these circulations, a periodic timetable is determined in (LinVehToTim). As we want to
minimize the number of vehicles needed to operate the circulations, we cannot use a standard
PESP model from literature, see [24].

ATMOS 2020
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Line Planning (LinToVeh) (LinVehToTim) . . .

Line Planning (LinToTimVeh) . . .

Figure 1 Overview of the presented problems. The naming scheme of the problems is given by
the following notation: Different sequential planning stages are divided in their in- and output by
“To”, “Lin” refers to line planning, “Tim” refers to timetabling, “Veh” refers to vehicle scheduling
and “TimVeh” refers to the integrated timetabling and vehicle scheduling problem.

For both the sequential and the integrated approach we consider different sets of possible
circulations as discussed in Section 2.1. We especially differentiate between general and
linked circulations where linked circulations contain both directions of each covered line.

2.1 Circulations

Since the set of possible circulations available for the vehicle scheduling problem described
in Definition 2 is crucial for the obtained number of vehicles needed, we first describe our
assumptions for those sets. We assume to have a symmetric directed trip graph

↔
L, so an

Eulerian cycle exists for each connected component. This provides a solution that minimizes
the number of vehicles, since the gap of the d·e-operator in kc is minimized.

However, there are practical reasons to look for solutions that involve circulations with
fewer trips. It is unlikely that a good timetable can be constructed, as the Eulerian
cycle imposes strong interdependence on the arrival and departure times of all the lines.
Furthermore, delays and disruptions can propagate through the vehicle schedule. The
Eulerian cycle based solution would make all trips dependent on all other trips, which is bad
from a robustness perspective. Thus, if the same number of vehicles can be achieved with a
solution that has multiple shorter circulations, this is preferable.

In order to find a set of shorter circulations, we can impose restrictions on the type
of circulations that are allowed in our solution. We refer to a circulation c as an (α, β)
circulation if the number of trips in c is α and the number of unique lines covered by c is β.
If additionally a circulation c contains both directions of each line, i.e., if ∀l ∈ L it holds that
l+ ∈ c iff l− ∈ c, we call c a linked circulation. We will refer to a linked circulation c as a β
circulation if exactly β lines are covered by it, and thus it must contain 2β trips. Therefore,
a β circulation is also a (2β, β) circulation.

In order to express a limit on the number of trips and lines in a circulation, we refer to
≤ β, (α,≤ β) and (≤ α, β) circulations as a circulation that have no more than β lines, or
α trips. If we only want to impose a limit on the number of trips or lines used, we use the
notation (≤ α, •) or (•,≤ β), respectively.

In Figure 2 we present an example where we get a better solution when (≤ 6,≤ 4)
circulations are allowed compared to the situation where ≤ 4 linked circulations are allowed.
The main insight is that in the non-linked case, we can sometimes avoid downtime by assigning
the forward direction of a line to one circulation, while the other direction is assigned to a
different circulation.
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Figure 2 Example for a disadvantage when using linked circulations. The period is 60 and at
most 6 trips and 4 lines can be used in a single circulation. The different circulations are marked by
color and line style. The trip length of the lines is such that we can do better when we use general
circulations (five vehicles, on the right hand side) than when we use linked circulations (six vehicles,
the middle).

3 Vehicle Scheduling Based on a Line Plan

We now introduce a model for (LinToVeh), as defined in Definition 2. Using the notation
from Section 2, we can model the problem using binary variables zc, indicating whether a
circulation c is chosen.

(LinToVeh) min
∑
c∈C

kczc∑
c∈C:l∈c

zc = fl l ∈ L

zc ∈ {0, 1} c ∈ C

As mentioned already in the introduction, allowing larger circulations can result in a lower
minimal number of vehicles needed. However, Example 8 in Section 4 shows that adding a
timetable for these larger circulations might lead to actually needing more vehicles.

I Lemma 5. For increasing k, the minimal number of vehicles computed by (LinToVeh)
decreases monotonically for linked ≤ k circulations as well as general (≤ k, •) and (•,≤ k)
circulations.

Proof. The statement follows directly from the fact that the solution space for k is contained
in the solution space for k + 1. J

3.1 Comparing Linked to General Circulations
When comparing the linked and the general case, we get that we may need more vehicles in
the linked case when both solutions may contain at most 2β trips.

I Theorem 6. Let β ∈ N, β ≥ 2 be given. Denote I = (L, t, f, T ) an instance of (LinToVeh)
with Cl an optimal solution in the linked case, i.e., the circulations c ∈ Cl are ≤ β circulations
and Cu an optimal solution in the general case, i.e., the circulations c ∈ Cu are (≤ 2β, •)
circulations. Then we get

max
I

∑
c∈Cl

kc∑
c∈Cu

kc
≥ 3

2 .
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v1

v2

v3

v4

v5

Figure 3 Directed trip graph for K = 5. The solid arcs represent the lines in forward direction
while the dashed arcs represent the lines in backward direction.

Proof. Consider the following instance I = (L, t, f, T ) of the (LinToVeh) problem where
K = β+ 1 if β is even and K = β+ 2 if β is odd. Let V = {v1, . . . , vK} and L = {l1, . . . , lK}
with directed trip graph

↔
L = (V,A(L)) and

a(l+i ) = (vi, vi+1), i ∈ {1, . . . ,K − 1}, a(l+K) = (vK , v1),
a(l−i ) = (vi+1, vi), i ∈ {1, . . . ,K − 1}, a(l−K) = (v1, vK).

The directed trip graph is depicted in Figure 3. Furthermore, set fl = 1 for all lines l ∈ L
and tl = T

K for all trips for lines l ∈ L.
For the general case, an optimal solution consists of two (K,K) circulations,

c1 = (l+1 , . . . , l
+
K) and c2 = (l−1 , . . . , l

−
K) with tc1 = tc2 = T and thus kc1 = kc2 = 1 such that

two vehicles are needed.
However, with K odd, we get for any (2k, •) circulation c with k ≤ β < K and thus

especially for linked k circulations,

tc =
∑
l∈c

tl = |c|
K
· T = 2k

K
· T 6= n · T, for any n ∈ N

and therefore kc = d tc

T e >
tc

T . For a set C of (2k, •) circulations with k ≤ β covering all lines
in L we therefore get∑

c∈C
kc =

∑
c∈C

⌈
tc
T

⌉
>
∑
c∈C

tc
T

= 2.

With kc ∈ N, we get
∑

c∈C kc ≥ 3 and thus

max
I

∑
c∈Cl

kc∑
c∈Cu

kc
≥ 3

2 . J

There are also special cases where solutions for linked and general circulations coincide.

I Lemma 7. Let I = (L, t, f, T ) be an instance of (LinToVeh). If there is no cycle in L

with length smaller or equal to β, then any general (≤ 2β, •) circulation is linked. This is
especially true when L is a tree.

Proof. As there is no cycle of length smaller or equal to β in L, each (≤ 2β, •) circulation
c in

↔
L containing a trip of line l+ also contains a trip of its backwards line l− and vice

versa. Therefore, only linked ≤ β circulations can be found in
↔
L such that the linked and

the general case coincide. J
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(a) Infrastructure network with line plan. Each
line is operated with frequency one. The minimal
duration of the edges is given on the edges.
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(b) Directed trip graph where forward trips are
depicted solid and backward trips dashed. The
minimal duration of the trips is given on the arcs.

Figure 4 Example for impairment of (LinVehToTim).

4 Adding a Periodic Timetable

Computing the number of vehicles needed to operate the line plan in Section 3 is only an
approximation for the actual number of vehicles needed in the complete public transport
system, since the timetable has an important effect on this property as well.

For modeling (LinVehToTim), we consider an event-activity network containing circulation
activities as described in Definition 3 resulting in periodic event scheduling constraints as
introduced in [28]. However, the number of vehicles needed to operate a given circulation
cannot be expressed using the standard objective of PESP, see, e.g. [24]. We therefore use the
integrated model presented in Section 5 with fixed circulation variables to find a timetable
respecting the given circulations and minimizing the number of vehicles needed.

The number of vehicles needed when adding a feasible timetable is always at least as high
as the one computed by (LinToVeh), as the line trip times tl are lower bounds on the actual
trip times respecting headways. Note that this number can even increase when the vehicle
number determined by (LinToVeh) decreases, as shown in the following example.

I Example 8. Consider the instance of (LinVehToTim) given in Figure 4 with three lines
l1, l2, l3 and period length T = 60.

As the minimal duration for each line is 20, the optimal solution C = {c1, c2, c3} for
(≤ 2, •) circulations consists of 3 circulations. Each circulation ci contains both directions of
line li such that three vehicles are needed.

For (≤ 3, •) circulations, an optimal solution C′ = c′1, c
′
2 is given by c′1 = (l+1 , l

+
2 , l
−
1 ),

c′2 = (l+3 , l
−
2 , l
−
3 ) such that only two vehicles are required.

For (LinVehToTim), we consider the case without wait times such that for each station in
each line it suffices to determine a departure time. We impose headway constraints at station
v2 such that departures at this station have to be scheduled at least ten time units apart.
As station v2 is part of all six trips, there is a departure at station v2 every ten time units.

For circulation set C there is a timetable resulting in 3 vehicles needed by extending the
duration of each drive activity to 15 time units and starting the circulations scheduled 10
time units apart. The corresponding departure times can be found in Table 1.

However, for circulation set C′, a feasible timetable results in needing at least four vehicles
as operating a circulation c′i by one vehicle leads to infeasibility: If circulations c′1 is to be
operated by one vehicle, each edge has to be operated with the minimum duration. This
leads to three departures of station v2 scheduled at (τ, τ + 15, τ + 30) mod 60. Due to the
headway constraints, this leaves a time window of ten time units in which for circulation c′2
three departures at station v2 have to be scheduled which is infeasible. For c′2, we can use an
analogue argument.
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The timetable constructed for circulation set C can also be operated for circulation set C′
but here four vehicles are needed.

Table 1 Periodic departure times for Example 8. Departure times at stations v2 are marked
bold. Note that the timetable for c′1 cannot be extended for c′2 such that the headway constraints
are satisfied.

line l+1 l+1 l−1 l−1 l+2 l+2 l−2 l−2 l+3 l+3 l−3 l−3
station v1 v2 v4 v2 v4 v2 v4 v2 v3 v2 v4 v2

c1 0 15 30 45
c2 10 25 40 55
c3 20 35 50 5

c′1 0 15 40 45 20 30

For a fixed set of circulation computed by (LinToVeh), we investigate a worst case bound
on the approximation error.

I Theorem 9. When considering infrastructure headways and strictly positive, integer
minimal activity durations, the optimal objective value of (LinVehToTim) is at most T

2
times the number of vehicles computed by (LinToVeh), if there are feasible solutions for both
problems.

Proof. Since the duration of the trips in (LinToVeh) are based on tl, i.e., the minimal amount
of time needed to operate a line, we need to consider the maximal increase in duration of a
line in an optimal periodic timetable. The maximal amount of headway possible between
two activities is T

2 − 1, since otherwise there is no possibility of both activities covering the
same infrastructure edge in the same period, i.e., there is no feasible periodic timetable.

Therefore, the worst case for any activity in a line is an increase in duration by factor T
2 ,

increasing the number of vehicles needed of every circulation by at most T
2 . J

Additionally, there exist instances where this worst case bound is obtained.

I Example 10. Consider a star shaped undirected trip graph L with 30 lines, a time period
of 60, a trip time of 1 per line and a headway between leaving and entering a infrastructure
edge of a vehicle of 29. Additionally, all circulations are allowed. Then (LinToVeh) will
choose a single (60, 30) circulation, covering all lines with a single vehicle. When respecting
the headway constraints in (LinVehToTim), this circulation now needs 30 periods, i.e., 30
vehicles in total.

5 Integrated Planning

As a comparison to the sequential planning process presented in Sections 3 and 4, we
additionally investigate the integrated problem (LinToTimVeh) of finding a periodic timetable
and a vehicle schedule for a given line plan and set of possible circulations C. For this, we use
the model described in [30] while adding the possibility to restrict feasible vehicle schedules
to a given set of circulations, i.e., we add the constraints∑

c∈C:
l∈c

zc = 1 l ∈ L (1)

ya ≥ zc c ∈ C, a ∈ Aturn : a ∈ c (2)
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Table 2 Sizes of the different datasets. Average trip time tl is given in minutes.

Stops in PTN Edges in PTN Lines Nodes in
↔
L Arcs in

↔
L Avg tl

Toy 8 8 13 8 26 8
Sprinter 416 448 32 38 64 39
Intercity 416 448 23 25 46 103

where constraints (1) are the cover constraints for the possible circulations c ∈ C and (2)
couple the circulation constraints to the rest of the problem, where ya determines whether a
circulation activity a ∈ Aturn is used. For the resulting complete model, see Appendix A.

We now investigate the connection between the integrated model and the sequential
models described in Section 3 and 4.

I Lemma 11. The optimal objective value of (LinToVeh) is a lower bound on (LinToTimVeh).

Proof. We show that (LinToVeh) is a relaxation of (LinToTimVeh). The constraints of
(LinToVeh), i.e., to cover each trip by exactly one vehicle circulation, are also constraints for
(LinToTimVeh), such that the feasible set of (LinToTimVeh) is contained in the feasible set of
(LinToVeh). For (LinToVeh), a circulation c contributes kc =

⌈
tc

T

⌉
to the objective function.

With tc =
∑

a(l·)∈c tl and tl being the minimal time needed to operated a trip on line l, kc is
a lower bound on the actual number of vehicles needed to operate circulation c. J

In addition to this lower bound on the integrated problem, we also get an upper bound from
(LinVehToTim).

I Lemma 12. For a feasible periodic vehicle schedule, a corresponding feasible solution to
(LinVehToTim) gives an upper bound on (LinToTimVeh).

Proof. As (LinVehToTim) corresponds to solving (LinToTimVeh) for fixed circulation vari-
ables, any optimal solution of (LinVehToTim) remains feasible for the integrated problem
thus giving an upper bound on the optimal objective value. J

We therefore have a validation criterion for the optimality of the sequential process:

I Corollary 13. If the optimal objective values of (LinToVeh) and the corresponding problem
(LinVehToTim) coincide, the corresponding solution is also optimal for (LinToTimVeh).

If this is the case for possible circulations C′ which consist of Eulerian tours for each
connected component of

↔
L, the number of vehicles is a lower bound on the objective of

(LinToTimVeh) for any set C of possible circulations.

This result is especially helpful, since the runtime of the sequential models is much faster
than of the integrated problem, as observed in Section 6.

6 Computational Results

For evaluating the developed models, we use the open source software library LinTim ([22, 23]).
LinTim offers a variety of algorithms for various stages of public transport planning, such
as line planning, timetabling, vehicle scheduling, delay management etc. As additionally
all linking stages (e.g. constructing an even-activity network for a given line plan) as well
as evaluation routines are implemented and test datasets are provided, new algorithms can
easily be evaluated.
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Figure 5 Number of possible circulations for Sprinter.

Table 3 Average runtime in seconds for the different models, average objective value and gap in
parentheses, using all circulation limitation values β discussed in this section. (LinToTimVeh)? is
provided a starting solution.

Dataset (LinToVeh) (LinVehToTim) (LinToTimVeh) (LinToTimVeh)?

Toy 1 (6.5, 0%) 222 (7.3, 0%) 3166 (9.7, 39%) 3366 (7.3, 22%)
Sprinter 1 (59.7, 0%) 31 (59.9, 0%) 3132 (64.1, 11%) 2687 (59.9, 3%)
Intercity 1 (102.5, 0%) 1626 (102.9, 0%) 3614 (110.9, 10%) 3283 (102.9, 2%)

We use three different datasets, a small test dataset Toy and two close-to real world
datasets Sprinter and Intercity, which are based on the railway network in the Netherlands.
For an overview of the dataset sizes, see Table 2, and for the corresponding infrastructure
networks as well as trip graphs Appendix B. To generate the possible circulations for different
limitations, we use the open source library jGraphT ([17]), and especially the algorithm of
Szwarcfiter and Lauer ([29]), to enumerate all possible cycles in the directed trip graphs while
filtering the admissable ones. All models are solved using Gurobi 8.1.1 ([9]) on a compute
server with a Intel Xeon E5-2670 and 96.6GB of RAM.

6.1 Investigating the Circulations
In Figure 5, we compare the number of circulations of a given form for dataset Sprinter.
Here, we are comparing linked ≤ k circulations, (•,≤ k) circulations and (≤ k, •) circulations.
Note that the first two circulation sets limit the number of lines, while the third one limits
the number of trips, i.e, there are always fewer (≤ k, •) circulations. All circulation set sizes
grow approximately exponential in size, resulting in problems with computing and storing the
full sets for large k. The sizes for the sets of linked ≤ k circulations and (•,≤ k) circulations
are nearly identical, with the set of linked ≤ k circulations being on average 7.6% smaller.

6.2 Comparing Sequential and Integrated Process
When comparing the integrated and the sequential planning process, there is a large disparity
in the runtime of the different algorithms, see Table 3. On the one hand, (LinToVeh) can be
solved to optimality within seconds for all datasets. (LinVehToTim) finds an optimal solution
for the smaller datasets Toy and Sprinter within minutes and even for the largest instance
Intercity, the average runtime is significantly lower than the time limit of one hour. On
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Figure 6 Dataset Toy, comparing with or without starting solution for (LinToTimVeh) for (•,≤ β)
circulations. The lower bound of the model is depicted as lb (LinToTimVeh).
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Figure 7 (LinToVeh) vs (LinVehToTim) for linked ≤ β circulations on Sprinter, including a
lower bound provided by Eulerian circulations.

the other hand, (LinToTimVeh) seldom finds an optimal solution within the time limit. We
therefore used the solution for the sequential process as a warm start for the integrated model.
Figure 6 shows the effect of using a warm start for data set Toy. While the solution quality
for the integrated model improves significantly, there is no instance where (LinToTimVeh)
finds a better solution than sequentially solving (LinToVeh) and (LinVehToTim) within the
time limit of one hour. Note especially that for β = 5, (LinToTimVeh) does not find the
solution found for β = 4 which is still feasible with lower objective value.

6.3 Comparing (LinToVeh) to (LinVehToTim)
As shown in Lemma 5, the minimal number of vehicles needed to operate a set of circulations
computed by (LinToVeh) decreases monotonically with increasing β. However, this does
not hold for the number of vehicles needed for the corresponding timetable as illustrated
in Figure 7 for dataset Sprinter and linked ≤ β circulations (this non-monotonic behavior
can also be observed in Figures 6 and 8). Futhermore, we see in Figure 7 that for small
limitation values β ≤ 5, (LinToVeh) and (LinVehToTim) yield the same objective value which
is therefore optimal for the integrated problem (LinToTimVeh), see Corollary 13. For larger
β > 5, the number of vehicles needed for (LinVehToTim) surpasses the number computed by
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Table 4 Number of different circulations sizes used in the optimal solutions of (LinToVeh) for
(•,≤ β) circulations on Intercity. For comparison, the optimal objective values for (LinToVeh)
and (LinVehToTim) are given as well.

limitation value β (•, 1) (•, 2) (•, 3) (•, 4) (•, 5) (•, 6) obj (LinToVeh) obj (LinVehToTim)

2 15 4 0 0 0 0 104 104
3 9 1 4 0 0 0 102 102
4 5 0 2 3 0 0 100 100
5 4 1 1 1 2 0 100 101
6 4 1 0 0 1 2 100 102
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Figure 8 Effect of restricting to linked circulations on Intercity, including a lower bound
provided by Eulerian circulations.

(LinToVeh). This is due to the fact that the solution for (LinToVeh) contains circulations with
more trips as shown in Table 4. However, the number of vehicles computed by (LinToVeh)
does not change such that the solution for β = 5 would still be optimal yielding a lower
number of actually needed vehicles. This emphasizes that in practice shorter circulations
are preferable but also shows that it might be beneficial to test a variety of circulation
limitations. Additionally, Figure 7 contains the lower bound of (LinToVeh) provided by
a Eulerian circulation, i.e., the minimal amount of vehicles possibly needed by any set of
circulations, which is 57 vehicles in this instance. This means that the solution found by our
sequential solution approach for β = 5 is an optimal solution when not considering circulation
limitations.

6.4 Comparing Linked to General Circulations

When comparing linked and general circulations, Figure 8 shows that the solutions quality
of (LinVehToTim) varies although the solution space of (LinToVeh) is smaller for linked
circulations. This emphasizes again that the objective value of (LinToVeh) alone does not
suffice to judge the solution quality of the sequential process and it is beneficial to test various
sets of possible circulations. Note again that, as for Sprinter in Figure 7, the sequential
approach for (•,≤ 4) circulations is able to find the minimal number of vehicles possible for
any circulation set, provided by the Eulerian circulations.



P. Bouman, A. Schiewe, and P. Schiewe 6:13

7 Conclusion

In this paper we investigate the minimal number of vehicles needed to operate a given line
plan. Instead of the traditional sequential approach of fixing a timetable first and a vehicle
schedule second, we start by computing a periodic vehicle schedule. In order to limit a
reduction of solution quality when a timetable is added, we restrict the set of circulations
from which the vehicle schedule can be chosen. The resulting sequential approach is able to
outperform an integrated formulation in terms of runtime and matches the solution quality
on close-to real world datasets. For several instances, we can prove the optimality of the
sequential approach for a given circulation limitation.

As the limitation of the circulation has a crucial influence on the solution quality, we
suggest to further investigating this limitation. While we propose three ideas for limiting
the circulations in this paper, further preprocessing of the admissable circulation set for
finding “good” circulations beforehand may improve runtime and quality of the algorithms.
Additionally, there may be possibilities to limit the maximal length of circulations needed
for an instance beforehand, without losing solution quality.

In addition to the operational costs of a public transport system, which is the focus of
this paper, passenger convenience is an important factor for gauging its quality. Thus adding
passenger convenience into the models, e.g. by computing lexicographically optimal solutions
concerning operational costs and passenger convenience, would extend the utility of the
proposed model further.
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A IP Model for (LinToTimVeh), based on [30]

Notation
A: Activities

λa, a ∈ A: Passenger weight of activity a
la, ua, a ∈ A: Bounds of activity a

B : Integral cycle basis of EAN
aC , bC , C ∈ B: Bounds on the cycles in B

M1 = T

Variables
xa, a ∈ A: Tension of activity a

n: Number of vehicles needed
qC , C ∈ B: Periodicity variable of C

ya, a ∈ Aturn: Cover-variable for circulation activity a
we, e ∈ Eend: Duration of activity after end event e

zc, c ∈ C: Cover-variable for circulation c

IP Model

min n

s.t. la ≤ xa ≤ ua a ∈ A∑
a∈C+

xa −
∑

a∈C−

xa = qC · T C ∈ B

AC ≤ qC ≤ bC C ∈ B

n ≥ 1
T

( ∑
a∈Aveh

xa +
∑

e∈Eend

we

)
we ≥ xa −M1(1− ya) e ∈ Eend

we ≤ xa +M1(1− ya) e ∈ Eend

we ≥ 0 e ∈ Eend∑
c∈C:
l∈c

zc = 1 l ∈ L

ya ≥ zc c ∈ C, a ∈ Aturn : a ∈ c
n ∈ N
xa, ya ∈ N a ∈ A
qC ∈ N C ∈ B
we ∈ N e ∈ Eend

zc ∈ {0, 1} c ∈ C
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B Datasets

(a) PTN of dataset Toy. (b) Trip graph L of dataset Toy.

Figure 9 PTN and trip graph of dataset Toy.

Figure 10 PTN of dataset Sprinter and Intercity.

(a) Trip graph L of dataset Sprinter. (b) Trip graph L of dataset Intercity.

Figure 11 Trip graphs of dataset Sprinter and Intercity.
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Abstract
In this paper, we analyze a family of formulations for the Cyclic Crew Rostering Problem (CCRP),
in which a cyclic roster has to be constructed for a group of employees. Each formulation in the
family is based on a partition of the roster. Intuitively, finer partitions give rise to a formulation
with fewer variables, but possibly more constraints. Coarser partitions lead to more variables, but
might allow to incorporate many of the constraints implicitly. We derive analytical results regarding
the relative strength of the different formulations, which can serve as a guideline for formulating
a given problem instance. Furthermore, we propose a column generation approach, and use it to
compare the strength of the formulations empirically. Both the theoretical and computational results
demonstrate the importance of choosing a suitable formulation. In particular, for practical instances
of Netherlands Railways, stronger lower bounds are obtained, and more than 90% of the roster
constraints can be modeled implicitly.
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1 Introduction

The construction of rosters (often referred to as crew rostering) is an important part of
the planning process at a public transport operator. As opposed to many other planning
problems at a railway operator (e.g., rolling stock scheduling), the main goal in crew rostering
is not to minimize costs. Instead the goal is to maximize the attractiveness of the rosters from
the point of view of the employees. This implies that, for example, the rest time between
consecutive working days and the variation of work over a week have to be taken into account
when constructing the rosters. Altogether, this leads to a complex optimization problem.

The inclusion of attractiveness in crew planning has shown to be important in practice.
In the Netherlands, for example, the incorporation of attractiveness in crew planning was
vital in resolving conflicts between the labor unions and Netherlands Railways (NS), the
largest railway operator in the Netherlands. An import development in this respect was the
introduction of the “Sharing-Sweet-and-Sour” rules, which aim to increase the quality of
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work (see [1] for a detailed discussion). These rules, for example, assure that “nice work” is
equally distributed among all depots. Similarly, [3] discusses the importance of attractive
work in Germany.

The focus on a fair distribution of work is apparent in the use of roster groups, which
are groups of employees with similar characteristics (e.g., age, preferences), that operate
in cyclic rosters. This implies that, after a certain time period, each employee in a group
has done the exact same work, assuring a fair distribution of work within each group. In
the Cyclic Crew Rostering Problem (CCRP) the goal is to maximize the attractiveness of a
roster constructed for such a group.

Various models for the CCRP have been developed in the scientific literature. These
models generally belong to one of three categories: generalized assignment, multi-commodity
flow, and set partitioning models. [6] and [2] consider both a multi-commodity flow model
and a set partitioning model for crew rostering. Furthermore, both argue which formulation
is more suitable, given the constraint set: [6] stresses that flow-based formulations are
well-suited for problems where the main focus is on the follow-up of duties, whereas a set
partitioning formulation is better suited for problems where the feasibility and cost depend
on the overall duty sequence. Similarly, [2] notes that the set partitioning formulation is
preferred when many difficult roster constraints have to be taken into account. [12] and
[9] propose an assignment model with side constraints. They solve the problem using a
two-phase decomposition, in which first the “skeleton” of the roster is optimized (e.g., days-
off are determined), and then the duties are assigned. [13] proposes a multi-commodity
flow formulation for both cyclic and acyclic crew rostering, and applies both models to
practical instances from a German bus company. Finally, [11] considers both assignment and
multi-commodity flow models for the bus driver rostering problem with day-off patterns, and
provides theoretical results regarding the relative strength of the models.

In this paper, we provide an in-depth analysis of modeling techniques for the CCRP. We
propose a family of formulations, and derive analytical results regarding the relative strength
of the proposed formulations. The family of formulations can be seen as a generalization
of the typical assignment and set partitioning formulations, and is motivated by the poor
performance of assignment formulations on difficult instances. Furthermore, we describe a
column generation approach to solve the LP-relaxation of all formulations, and show the
benefit of a suitably picked formulation using practical instances from NS.

The remainder of this paper is organized as follows. In Section 2, we discuss the general
modeling framework for the CCRP. The family of formulations is presented in Section 3. In
Section 4, we derive analytical results regarding the tightness of the different formulations.
Section 5 describes our computational results for practical instances of NS. The paper is
concluded in Section 6.

2 Modeling the Cyclic Crew Rostering Problem

In the CCRP, cyclic rosters have to be constructed for groups of employees. Each cyclic
roster consists of rows (i.e., generic work weeks), columns (i.e., weekdays), and cells (i.e., the
intersection of a row and a column). An example of a roster is depicted in Figure 1. The
roster in Figure 1 is operated by four employees. The first employee performs the first row
in Week 1, the second row in Week 2, and so forth. Similarly, the second employee starts in
row 2, continues in rows 3 and 4, and then performs row 1 in Week 4. Every four weeks, this
process is repeated. As a consequence, all employees in this roster have performed exactly
the same work after four weeks.
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In the roster, two components are specified: the type specification of each cell (e.g., an
early (E), late (L) or night (N) duty, or a day-off (R)), known as the basic schedule, and an
allocation of the duties to the cells. We assume the set of duties and the basic schedules to
be given (see, e.g., [9] for a discussion on the construction of basic schedules). The output of
the CCRP is then a set of rosters in which all duties are assigned.

Mon Tue Wed Thur Fri Sat Sun

4

3

2

1
L
126

L
124

R E
54

E
13

E
40

R

R R N
105

N
111

L
123

R R

L
118

N
107

N
115

R N
108

L
121

N
103

N
112

L
123

R E
44

R E
7

E
25

1

2

3

Figure 1 Example of a cyclic roster for a group of four employees. Three roster constraints are
indicated. The first roster constraint requires that a scheduled rest period is sufficiently long and
the second constraint specifies the minimum time between consecutive duties. The third constraint
enforces a maximum workload over a working week.

Two important aspects have to be taken into account when constructing the rosters.
Firstly, the roster should be feasible with respect to the labor regulations. For example,
there should be sufficient rest time between consecutive duties, and the total amount of
work in a row (i.e., in a week of work) cannot be too large. Secondly, the roster should be
perceived attractive by the employees. Short, although legal, rest times, for example, make
the roster unattractive, as employees prefer a proper rest period between two duties. The
feasibility and perceived attractiveness of a roster are expressed using roster constraints,
which are (linear) constraints depending on the assigned duties: Feasibility (e.g., minimum
rest times, maximum workload) is modeled using hard constraints, whereas attractiveness
(e.g., undesirable rest times, variation of work) is modeled using soft constraints, thereby
penalizing unattractive assignments of duties. In Figure 1, a few roster constraints are
highlighted. The first roster constraint, for example, requires that a scheduled rest period
(here scheduled on Wednesday), is sufficiently long. In other words, the difference between
the end of duty 124 on Tuesday and the start of duty 54 on Thursday should be sufficiently
large. The second constraint specifies the minimum time between consecutive duties, assuring
that the crew members can have a sufficient rest. Finally, the third constraint considers the
work scheduled in an entire row, and could, for example, enforce a maximum workload over
a working week.

To obtain a strong formulation for the CCRP, it is important to analyze the types of
roster constraints that are present. That is, many roster constraints have a similar structure
which should be taken into account when modeling the problem. In Figure 1, for example,
the first two roster constraints can be classified as linking constraints, i.e., those linking
exactly two cells in the basic schedule (note that the rest days are assumed fixed), whereas
the third constraint can be classified as a row-based constraint. Given such a classification,
an efficient modeling of the constraints can be determined, and a strong formulation can be
obtained.

In the remainder of this section we discuss the modeling of roster constraints in detail:
In Section 2.1, we explain how we model linking constraints. In Section 2.2, we propose a
general framework that allows to model many practical roster constraints.

ATMOS 2020
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2.1 Modeling Linking Constraints

Linking constraints often occur in crew rostering problems, hence a strong formulation for
such constraints can lead to major efficiency gains. We now describe a modeling approach
that applies both to hard and soft constraints. In both cases, we assume that the linking
constraints are binary, i.e., the constraint is either satisfied or not. For soft constraints,
constraint violations are allowed, but in that case a penalty is incurred that is independent
of the size of the violation.

Consider a linking constraint between two cells t1 and t2. Let D and F denote the
respective sets of feasible duties for these cells. Furthermore, let E ⊆ D × F denote the
violation set for the linking constraint, i.e., all pairs (d, f) ∈ D × F such that assigning d to
t1 and f to t2 violates the constraint. The linking constraint can be naturally modeled as a
bipartite graph. For example, seven duties are depicted as nodes in Figure 2a. For each duty
in D (F ), the end time (start time) is depicted in the figure as well. Suppose we require a 12
hour rest between two consecutive duties. The corresponding violation graph is a bipartite
graph, in which the vertex sets represent the sets of feasible duties D and F , respectively,
and an edge (d, f) ∈ D × F is present if duties d and f violate the rest time constraint.

To model soft linking constraints, we introduce a decision variable δ ∈ B that indicates
whether the linking constraint is violated or not. Furthermore, we define the decision variables
πt1d, for d ∈ D, and πt2f , for f ∈ F , indicating whether duty d, respectively f , is assigned
to cell t1, respectively t2. The linking constraint is readily expressed by the following system
of equations.

∑
d∈D

πt1d = 1 (1)∑
f∈F

πt2f = 1 (2)

πt1d +
∑

f∈F :(d,f)∈E

πt2f ≤ 1 + δ ∀d ∈ D (3)

δ, πt1d, πt2f ∈ B ∀d ∈ D, f ∈ F. (4)

Constraints (1) and (2) state that exactly one duty should be assigned to both cells and Con-
straints (3) assure that the constraint violation is modeled correctly. Finally, Constraints (4)
give the domains of the decision variables. Note that hard linking constraints can be modeled
similarly by forcing δ = 0, or by discarding the decision variable δ altogether.

We will refer to (3) as flow-based constraints, as each single constraint sums over the
out-going arcs of a single d ∈ D. (Figure 2b visualizes such a constraint.) This type of
aggregation has been previously used in [9]. The correctness of (3) is readily seen, as each
arc (i.e., violation) appears in exactly one constraint. That is, each combination d ∈ D and
f ∈ F such that (d, f) ∈ E appears in exactly one constraint.

Another way of incorporating (3), is based on bicliques in the graph-representation.
This type of modeling has been considered in [7] and [11]. To formulate the clique-based
constraints, we introduce the following additional notation. For a given d ∈ D, let Dd ⊆ D
denote all d′ ∈ D for which (d, f) ∈ E implies that (d′, f) ∈ E for all f ∈ F . By construction,
it always holds that d ∈ Dd. In the case of Figure 2, we have, for example, Dd3 = {d1, d2, d3},
since d1 and d2 are also connected with f1 and f2, and thus, with all neighbors of d3. In the
case of rest time constraints, Dd3 boils down to exactly those duties in D that end at the
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d122:10

d222:00

d321:00

d420:00

f1 07:00

f2 08:00

f3 09:15

(a) Violation graph.

d1

d2

d3

d4

f1

f2

f3

(b) Flow-based constraint.

d1

d2

d3

d4

f1

f2

f3

(c) Clique-based constraint.

Figure 2 Example strengthened linking constraints. The dashed edges indicate the variables
included in the constraint (either flow- or clique-based) for duty d3.

same time or later than d3. The clique-based constraints now read as follows.∑
d′∈Dd

πt1d′ +
∑

f∈F :(d,f)∈E

πt2f ≤ 1 + δ ∀d ∈ D. (5)

The clique-based constraints are illustrated in Figure 2c. Note that replacing (3) by (5) is
allowed since, by definition of Dd, it holds that (d′, f) ∈ E for all d′ ∈ Dd and f ∈ F such
that (d, f) ∈ E. Furthermore, every violation appears in at least one constraint, since d ∈ Dd.
For the rest time constraints that we consider, the number of clique-based constraints is
bounded by the number of duties that can be assigned to cell t1. [5] proves that clique-based
constraints lead to the strongest formulation possible for linking constraints.

2.2 General Modeling Framework
We now discuss a general modeling framework for roster constraints. Let D denote the set of
duties, T the set of cells, and let Dt denote the duties that can be assigned to cell t ∈ T .
Let Q denote the set of roster constraints. Each roster constraint q is modeled using a set
of linear constraints p ∈ Pq. Each linear constraint p ∈ Pq is specified by a coefficient for
each assignment of a duty to a cell in the basic schedule, and a scalar called the threshold
value. The coefficient for the assignment (t, d) for linear constraint p is denoted by fp

td and
the threshold value for p is denoted by bp.

Let δq denote the violation of roster constraint q, and let cq be the corresponding penalty
variable. The roster constraints enforce that if the sum of coefficients of assigned duties
exceeds the threshold value for one of the linear constraints, then the difference between
the sum and the threshold value is penalized and lies within the violation interval, given
by ∆q = [0, uq]. In other words, the roster constraint is modeled by enforcing each linear
constraint p ∈ Pq:∑

t∈T

∑
d∈Dt

fp
tdπtd ≤ bp + δq, (6)

and assuring δq ∈ ∆q. Note that (6) assures that δq is equal to the maximum violation,
calculated over all p ∈ Pq. It is readily seen that both the flow- and clique-based linking
constraints fit this framework, and that also many other constraints can be modeled in this
fashion.

ATMOS 2020
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3 Family of Mathematical Formulations

In this section we propose a family of mathematical formulations for the CCRP. In Section 3.1,
we define the concept of clusters and roster sequences, and we conclude with a family of
mathematical formulations for the CCRP in Section 3.2.

3.1 Clusters and Roster Sequences

The family of formulations is based on different partitions of the basic schedule. That is,
we develop a mathematical formulation under the assumption that each basic schedule is
partitioned into disjoint subsets, which we call clusters. This partition will be referred to as a
clustering for the respective basic schedule, and should be picked a priori solving the model.

The formulation will have a different structure for each possible clustering, giving rise to
the family of formulations. Figure 3 gives an example of two possible clusterings for a basic
schedule of four rows. In the cell-based clustering each cluster contains exactly one of the
cells in the basic schedule. The row-based clustering, on the other hand, assigns all cells in
the same row (i.e., Monday to Sunday) to the same cluster. Note that many more clusterings
are possible. One could, for example, also consider a “weekend” clustering, in which each
cluster relates to either Friday to Monday (the “weekend” days), or Tuesday to Thursday
(the “week” days). Such a clustering can be a good choice when, e.g., the rest time over the
weekend is of utmost importance. Generally, cells in a cluster do not need to be consecutive.

Mon Tue Wed Thur Fri Sat Sun

N N R N L L R

R N N N L R R

N N N R N R N

N R E L L R R

(a) Cell-based clustering.

Mon Tue Wed Thur Fri Sat Sun

N N R N L L R

R N N N L R R

N N N R N R N

N R E L L R R

(b) Row-based clustering.

Figure 3 Example of different clusterings. Each highlighted area represents a cluster.

Each cluster is assigned a number of duties simultaneously. Each possible assignment of
duties to a cluster is called a roster sequence. Formally, a roster sequence specifies a duty or
rest day for each cell in the cluster, such that the assignment is compatible with the basic
schedule, and such that no duty is assigned twice (within the same cluster).
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Tue Wed Thur Fri

L R R E

(a) Cluster.

Tue Wed Thur Fri

126 R R 54

(b) Roster Sequence 1.

Tue Wed Thur Fri

124 R R 58

(c) Roster Sequence 2.

Figure 4 Cluster from Tuesday to Friday, together with two possible roster sequences.

To illustrate the use of roster sequences, consider the cluster depicted in Figure 4, together
with two possible roster sequences. Note that the roster sequences contain different duties
(indicated by the numbers). In this case the second roster sequence has a shorter rest period
than the first roster sequence (as duty 124 ends later than duty 126, and duty 58 starts
earlier than duty 54), which might be considered undesirable.

The goal of a clustering is to model constraints implicitly using the roster sequences. That
is, ideally each constraint considers the cells in solely one of the clusters, and can therefore
be taken care of when generating the roster sequences. As an example, consider a constraint
in which an employee can have only a maximum amount of work per row. In this case, the
row-based clustering of Figure 3 allows to model these constraints implicitly using the roster
sequences (i.e., a roster sequence is feasible only if it does not exceed the maximum working
time). On the other hand, for the cell-based clustering these constraints have to be modeled
explicitly in the mathematical formulation.

3.2 Mathematical Formulation

We are now ready to formalize the family of formulations. The set K denotes the set of all
clusters (note that these are determined a priori formulating the mathematical model). We
define the set Sk as the set of all roster sequences for cluster k ∈ K. Each roster sequence
can be seen as a sequence of assignments (t, d). The parameter hk

ds indicates whether roster
sequence s ∈ Sk contains duty d (i.e., duty d appears in one of the assignments describing
the roster sequence s). Finally, we define ck

s as the penalty associated with roster sequence
s ∈ Sk for cluster k ∈ K.

Let Qk ⊆ Q denote the set of roster constraints fully contained in cluster k ∈ K, and
define QK =

⋃
k∈K Qk. The constraints in QK are exactly those that are modeled implicitly

using the roster sequences. The penalty ck
s associated with roster sequence s ∈ Sk is the sum

of all violations in the roster sequence s, restricted to the roster constraints Qk. Note that
the roster constraints in Q \QK need to be modeled explicitly.

To model the CCRP, given a clustering K, we introduce the following decision variables.
xk

s , for all k ∈ K and s ∈ Sk. The binary variable xk
s indicates whether roster sequence

s ∈ Sk is assigned to cluster k ∈ K.

ATMOS 2020
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δq, for each q ∈ Q \ QK . The variable δq ∈ ∆q expresses the violation of the roster
constraint q ∈ Q \QK .

The formulation now reads as follows.

min
∑
k∈K

∑
s∈Sk

ck
sx

k
s +

∑
q∈Q\QK

cqδq (7)

s.t.
∑

s∈Sk

xk
s = 1 ∀k ∈ K (8)

∑
k∈K

∑
s∈Sk

hk
dsx

k
s = 1 ∀d ∈ D (9)

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fp
tdx

k
s ≤ bp + δq ∀q ∈ Q \QK , p ∈ Pq (10)

xk
s ∈ B ∀k ∈ K, s ∈ Sk (11)
δq ∈ ∆q ∀q ∈ Q \QK . (12)

The Objective (7) minimizes the penalties for violating soft roster constraints. The first
term corresponds to the soft roster constraints that are modeled implicitly. In particular,
the roster sequence costs can be expressed as

ck
s =

∑
q∈Qk

cq δ̄q,

where the constraint violation δ̄q for q ∈ Qk can be computed directly from the roster
sequence s ∈ Sk, by definition of Qk. The second term equals the penalties for all soft roster
constraints that are modeled explicitly.

Constraints (8) and (9) assure that the duties are assigned correctly to the basic schedules.
That is, each cluster is assigned exactly one roster sequence, and each duty is assigned exactly
once to a cell in the basic schedule. Constraints (10) represent the roster constraints that
are modeled explicitly. Finally, Constraints (11) and (12) specify the domains of the decision
variables. The family of formulations for the CCRP is now obtained by taking (7)–(12)
for all possible clusterings K. The family includes the generalized assignment model and
set partitioning formulation from literature. First, the cell-based clustering, depicted in
Figure 3a, gives rise to the generalized assignment model that has been applied in [9]. In
contrast, by viewing the complete time horizon as one cluster, a set partitioning formulation
is obtained.

Our aim is to analyze the family of formulations by considering the relative strength of
its members. For coarser clusterings, the number of roster sequences can be huge. Therefore,
we now describe a column generation approach to solve the LP-relaxation of the CCRP
formulation (7)–(12). The master problem is obtained from (7)–(12) by relaxing the integrality
constraints on the xk

s variables. The reduced cost γk
s of a roster sequence s ∈ Sk, for a given

cluster k ∈ K can be expressed as follows. Let µk denote the dual variables corresponding to
(8), φd those corresponding to (9), and θqp those corresponding to (10). The reduced cost γk

s

can now be expressed as

γk
s = ck

s − µk −
∑
d∈D

hk
dsφd −

∑
q∈Q\QK

∑
p∈Pq

∑
(t,d)∈s

fp
tdθqp.

For each k ∈ K, the pricing problem can be modeled as a resource constrained shortest path
problem (RCSPP) with surplus variables on a directed layered graph Gk = (Vk, Ak) (see
[8, 10]). In this graph, each vertex corresponds to an assignment (t, d) of a duty to a cell in
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k and each arc corresponds to a feasible follow-up of two assignments. Note that the implicit
roster constraint penalty for q ∈ Q has to be taken into account by taking the maximum
over all p ∈ Pq.

4 Theoretical Comparison Clusterings

Intuitively, the implicit modeling of the roster constraint violations leads to a tighter linear
relaxation. In this section, we prove this rigorously. From hereon, we consider two clusterings
K and L. We show that the strength of the linear relaxation depends on QK and QL, and
not necessarily on K and L, i.e., shifting from K to L will not change the root bound if
QK = QL. This provides a systematic way to identify candidate clusterings, i.e., clusterings
that potentially improve the objective value of the LP-relaxation.

From hereon, we assume that QK ⊇ QL. An example of two clusterings for which this
holds is given in Figure 3, where K and L are the row-based and cell-based clustering,
respectively. Let Sk, for all k ∈ K, and G`, for all ` ∈ L, denote the respective sets of
roster sequences for both clusters. For notational convenience, define Ω as the set of all
feasible assignments (t, d), with t ∈ T and d ∈ Dt, of duties to the cells in the basic schedule.
Furthermore, we define the operator [·]+ as [a]+ = max{0, a}. Throughout this section, a
solution refers to a solution to the linear relaxation.

We first state the following lemma. Intuitively, this lemma states that, given a solution
for K, we can construct a solution for L such that each duty is assigned to the same cell in
both solutions. The proof of this lemma can be found in Appendix A.

I Lemma 1. Let x̄ be a solution for clustering K. If QK ⊇ QL, then there exists a feasible
solution z̄ for clustering L, such that∑

k∈K

∑
s∈Sk:

s3(t,d)

x̄k
s =

∑
`∈L

∑
g∈G`:
g3(t,d)

z̄`
g (13)

for each (t, d) ∈ Ω.

It is important to note that Lemma 1 does not hold in the opposite direction. That
is, given a solution z̄ it is not always possible to construct a solution x̄ satisfying (13).
Furthermore, note that we only require that QK ⊇ QL. The clustering K being coarser than
L is a sufficient, but not a necessary condition for this to hold.

We are now able to prove the following theorem. For the proof of this theorem, we again
refer to Appendix A.

I Theorem 2. Let K and L be two clusterings such that QK ⊇ QL. Furthermore, let vK

denote the optimal value of the LP-relaxation using clustering K, and define vL similarly.
Let x̄ be an optimal solution corresponding to vK . It holds that

vK ≥ vL +
∑

q∈QK \QL

cqφq(x̄),

where the non-negative coefficients φq(x̄) are given by

φq(x̄) =
∑
k∈K

∑
s∈Sk

x̄k
s ·max

p∈Pq

 ∑
(t,d)∈s

fp
td − bp

+

−max
p∈Pq

∑
k∈K

∑
s∈Sk

x̄k
s

 ∑
(t,d)∈s

fp
td

− bp

+

.
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The value φq(x̄) represents the error incurred from modeling roster constraint q explicitly
(note that φq(x̄) is zero if x̄ is integer), opposed to modeling it implicitly (i.e., correctly).
Theorem 2 can be used as a guideline to pick the “ideal” set of clusters. In particular, the
proof of Theorem 2 leads to two key insights. The first one is formalized in the following
corollary.

I Corollary 3. Let K and L be two clusterings such that QK = QL. Denoting vK for
the optimal value of the LP-relaxation using clustering K, and vL similarly, it holds that
vK = vL.

The corollary shows that switching from clustering L to K with K coarser than L, i.e,
every ` ∈ L is a subset of some k ∈ K, but QK = QL is never beneficial, i.e., will not increase
the LP-bound. This implies that the roster constraints should be explicitly considered when
enlarging the cluster size.

Secondly, the theorem shows that switching from L to K is likely to be beneficial whenever
QK \QL contains “weak” roster constraints, where the weakness is represented by the value
of cqφq(x̄). Note that, although this value is not known a priori, it is often possible to
estimate these values based on, e.g., experience or expert knowledge.

5 Computational Experiments

In this section we discuss the computational results. We first discuss the experimental set-up
in Section 5.1. That is, we discuss the roster constraints that are taken into account, and
the different instances considered. We then present the computational results in Section 5.2.

5.1 Experimental Set-Up
We apply our solution approach to different instances based on data from NS. For each
instance, the basic schedule specifies the days off. Furthermore, for each duty that is to be
scheduled a type is given. The considered types are Early, Late, and Night. The type of each
duty is based on the start time of the duty. The following roster constraints are taken into
account.

Rest Time. After completing a duty it is required that an employee has a certain minimum
time to rest. After a night duty this rest time should be at least 14 hours, otherwise it
should be at least 12 hours. Furthermore, we penalize rest times shorter than 16 hours
with a penalty of 30.
Rest Day. When rest days are scheduled in the roster, the length of the rest period has to
be sufficient. This implies that there is a minimal time enforced between duties scheduled
before and after the rest days. The enforced rest time is 6 hours plus 24 hours for each
rest day.
Red Weekend. At least once every three rows of the roster there should be a weekend
which has a consecutive period of 60 hours off. These so-called red weekends can be
determined given the basic schedule. The 60 hour rest period can then be enforced using
the roster constraints.
Workload. The total workload in a row is not allowed to exceed 45 hours. Here, the
workload of a duty is the difference between the start and end time (i.e., including the
meal break).
Variation. The variation constraints assure that the different attributes of work (e.g.,
duty length, percentage double decker work) are divided equally over the rows. These
constraints penalize a positive deviation from the average (measured over all duties) for
each row in the roster. In total we consider 10 different variation constraints.
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We consider a total of 10 different instances: four “small” instances of 12 employees and
roughly 50 duties, four “medium” instances of 24 employees and roughly 100 duties, and two
“large” instances of about 50 employees and 200 duties. Each of the instances is obtained
by combining multiple roster groups as operated at NS. The properties of the instances are
summarized in Table 1. At NS, the rostering problem for a medium-sized crew base has
similar characteristics as instance 9.

Table 1 Characteristics of the instances. For each instance the number of groups and number of
employees (i.e., the number of rows) is specified, along with the number of Early, Late, and Night
duties, and the total number of duties.

Groups Employees Early Late Night Total
1 1 12 23 11 15 49
2 1 12 21 12 16 49
3 1 12 49 0 1 50
4 1 12 49 0 1 50
5 2 24 21 36 35 92
6 2 24 23 35 37 95
7 2 26 101 0 2 103
8 2 24 97 0 2 99
9 4 54 118 47 52 217
10 4 50 198 0 4 202

The instances can be categorized into one of two categories. The instances 1, 2, 5, 6, and 9
represent instances in which all three duty types have to be scheduled. For the other instances
the duties consist almost exclusively of early duties. The former category of instances provide
more structure compared to the latter ones, since (i) less roster sequences are possible (as the
duties are divided over different types), and (ii) the rest time and rest day constraints are
expected to be more important for these instances (i.e., if all duties start early, the chance of
having a rest time violation is small). The second category is therefore expected to be more
difficult to solve if the formulation is not chosen carefully.

5.2 Computational Results
In this section the computational results are discussed in detail. In particular, we compare
the performance of different clusterings and evaluate the modeling of linking constraints. All
experiments are done on a computer with a 1.6 GHz Intel Core i5 processor. We use the
LP-solver embedded in CPLEX 12.7.1 to solve the restricted master problems.

To illustrate the effect of different clusterings (for the given constraints) and the modeling
of linking constraints, we solve the LP-relaxation for four clusterings and both the flow- and
clique-based linking constraints. We consider clusterings where each cluster contains a single
cell, three cells, six cells, and seven cells (i.e., a cluster per row). We denote these clusterings
by C1, C3, C6, and C7, respectively. Each clustering leads to a different formulation. In
particular, the clustering C1 results in the assignment formulation proposed in [9], and the
clustering C7 leads to the row-based formulation used in [4].

Table 2 shows for each clustering and each instance, the objective value of the LP-relaxation
for the flow- and clique-based constraints, together with the percentage of constraints that
can be modeled implicitly. (The non-zero percentage for C1 and instance 6 is due to one
row in which only one duty has to be assigned.) The results in Table 2 are in line with
Theorem 2. That is, there is a clear relation between the percentage of implicit constraints
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Table 2 Comparison of different clusterings and the modeling of linking constraints. For each
clustering and each instance, the root bound for the flow- and clique-based constraints are shown,
together with the percentage of constraints that can be modeled implicitly.

1 2 3 4 5 6 7 8 9 10

C1

Flow 558.0 654.4 192.4 274.0 671.3 618.3 181.0 250.4 916.9 221.4
Clique 570.1 681.8 192.8 286.5 833.1 843.1 302.8 345.9 1213.2 330.5
Impl. (%) 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0

C3

Flow 569.3 660.9 192.5 289.5 762.6 800.5 196.7 297.9 1103.7 251.9
Clique 571.4 687.4 192.8 299.6 850.0 889.8 309.6 370.6 1245.8 351.4
Impl. (%) 29.1 20.2 31.6 38.2 37.7 39.7 42.4 50.7 48.6 53.6

C6

Flow 581.3 705.5 206.4 313.5 834.1 825.8 256.9 340.4 1192.6 301.5
Clique 584.1 705.8 206.4 318.0 875.3 914.8 335.7 396.9 1278.6 390.6
Impl. (%) 49.3 59.0 49.3 59.4 61.3 56.0 64.5 68.0 67.6 73.4

C7

Flow 609.8 713.8 280.0 370.2 873.4 943.2 447.8 523.4 1312.7 598.0
Clique 609.8 713.8 280.0 370.2 942.7 1004.0 447.8 523.4 1435.0 598.0
Impl. (%) 98.0 94.7 94.5 98.6 92.3 93.2 91.4 94.6 93.8 92.0

and the bound obtained from the LP-relaxation. The benefit of a suitable clustering is
most apparent for the instances with mostly early duties (i.e., instances 3, 4, 7, 8, and 10).
For these instances the main challenge is to capture the cost incurred from the variation
constraints, which only clustering C7 is able to do. Furthermore, we see that the clique-based
linking constraints improve the LP-bound substantially for the mixed instances (i.e., those
with relatively many rest time violations). If we consider C7, for example, we see that these
constraints substantially improve the root bound for almost all instances with mixed duty
types, namely for instances 5, 6, and 9. Only for the smaller mixed instances 1 and 2 no
improvement is found. Note that this improvement is expected for the mixed instances, as
opposed to the non-mixed instances, where rest time violations hardly occur.

In order to find integer solutions to the CCRP, our column generation algorithm can
be embedded in a Branch-and-Price framework. Computational results in [5] show that
clustering C7 also leads to better integer solutions in a short amount of time, compared to
the other clusterings.

6 Conclusion

In this paper, we analyzed formulations for the Cyclic Crew Rostering problem (CCRP), in
which attractive cyclic rosters have to be constructed for groups of employees. We proposed a
family of formulations, motivated by the poor performance of traditional assignment models
for difficult instances. Each formulation has a different structure, which implies that a
suitable variant can be picked for a given problem instance. We derived analytical results
regarding the relative strength of the different formulations, which can be used as a guideline
to pick a suitable formulation for a given problem instance.

We also developed a column generation approach to solve the LP-relaxation of each
formulation in the family. The pricing of columns in this approach is done by solving a
resource constrained shortest path problem (RCSPP) with surplus variables. We applied
our method to practical instances from NS. Our experiments showed the importance of
picking a suitable formulation for a given problem instance. In particular, we show that a
suitable formulation is better able to capture the penalty incurred from the roster constraints.
Furthermore, we showed that the clique-based modeling of linking constraints improves the
LP-bound substantially.
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A Proofs

I Lemma 1. Let x̄ be a solution for clustering K. If QK ⊇ QL, then there exists a feasible
solution z̄ for clustering L, such that∑

k∈K

∑
s∈Sk:

s3(t,d)

x̄k
s =

∑
`∈L

∑
g∈G`:
g3(t,d)

z̄`
g (13)

for each (t, d) ∈ Ω.

Proof. We consider an auxiliary clustering O, defined as the coarsest clustering which is finer
than both K and L (see Figure 5). Formally, O is uniquely defined by taking all non-empty
subsets k ∩ `, with k ∈ K and ` ∈ L. Let R denote the set of feasible roster sequences for
this clustering, and let Ro denote the feasible roster sequences for o ∈ O.

Since each cluster o ∈ O is fully contained in some k ∈ K, we can readily obtain a solution
ȳ for O satisfying∑

k∈K

∑
s∈Sk:

s3(t,d)

x̄k
s =

∑
o∈O

∑
r∈Ro:
r3(t,d)

ȳo
r (14)
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K :

L :

O :

R N N R N N N

R N N R N N N

R N N R N N N

Figure 5 Example of the clustering O, which is the coarsest clustering finer than both K and L.

by splitting up each roster sequence for K into smaller roster sequences for O. Furthermore,
since each o ∈ O is also fully contained in some ` ∈ L, we can obtain a solution z̄ satisfying∑

`∈L

∑
g∈G`:
g3(t,d)

z̄`
g =

∑
o∈O

∑
r∈Ro:
r3(t,d)

ȳo
r (15)

by greedily constructing roster sequences for L given those for O. To be more precise, let
O` ⊆ O denote the clusters contained in ` ∈ L. For each ` ∈ L, we pick the roster sequence
r with smallest non-zero value ȳo

r , say v, over all clusters in O`. This roster sequence is
then combined with a roster sequence for each of the other clusters in O`, to obtain a roster
sequence g for cluster `. We set z̄`

g = v, reduce ȳo
r for all involved roster sequences by v, and

repeat the procedure until all roster sequences are assigned.
It follows that we can construct a solution z̄ that satisfies (13). It remains to show that a

solution constructed in this fashion is feasible with respect to the roster constraints.
We first show that z̄ is feasible for the roster constraints in Q \ QL. Consider some

q ∈ Q \QL and fixed p ∈ Pq. Recall that up is the upper bound of the violation interval ∆p.
Using (13) we have∑

`∈L

∑
g∈G`

∑
(t,d)∈g

fp
tdz̄

`
g =

∑
(t,d)∈Ω

∑
`∈L

∑
g∈G`:
g3(t,d)

fp
tdz̄

`
g (16a)

=
∑

(t,d)∈Ω

∑
k∈K

∑
s∈Sk:

s3(t,d)

fp
tdx̄

k
s (16b)

=
∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fp
tdx̄

k
s . (16c)

Hence, for q ∈ Q \QK and p ∈ Pq, the feasibility of x̄ implies that∑
`∈L

∑
g∈G`

∑
(t,d)∈g

fp
tdz̄

`
g − bp =

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fp
tdx̄

k
s − bp ≤ up. (17)

Next, consider some q ∈ QK \QL and p ∈ Pq. Since q ∈ QK , there is a cluster k′ ∈ K such
that the coefficients fp

td are non-zero only for this cluster. It follows that∑
`∈L

∑
g∈G`

∑
(t,d)∈g

fp
tdz̄

`
g − bp =

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fp
tdx̄

k
s − bp (18a)

=
∑

s∈Sk′

x̄k′

s

∑
(t,d)∈s

fp
td − bp (18b)

=
∑

s∈Sk′

x̄k′

s

 ∑
(t,d)∈s

fp
td − bp

 , (18c)
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where (18c) follows from (8). Using the feasibility of the roster sequence s, we have

∑
s∈Sk′

x̄k′

s

 ∑
(t,d)∈s

fp
td − bp

 ≤ ∑
s∈Sk′

x̄k′

s up (19a)

= up, (19b)

where (19b) follows from (8). It follows that z̄ is feasible for all q ∈ QK \QL, and thus for
all q ∈ Q \QL.

To show that z̄ is feasible with respect to the roster constraints in QL we make the
following crucial observation: Since QK ⊇ QL it must hold that QO ⊇ QL, and hence
QO = QL. Suppose that this would not be true, then there must be a roster constraint
q ∈ QL and linear constraint p ∈ Pq with non-zero coefficient fp

td for multiple clusters in
O. By definition of O, however, this would imply that QL \QK 6= ∅, as O is the coarsest
clustering finer than both K and L. This contradicts the assumption that QK ⊇ QL. Hence,
if the constructed solution ȳ is feasible with respect to QO, then a solution z̄ created by
combining these roster sequences must be feasible with respect to QL. The feasibility of ȳ
with respect to QO, however, follows directly from the feasibility of x̄, since QO ⊆ QK . This
concludes the proof. J

I Theorem 2. Let K and L be two clusterings such that QK ⊇ QL. Furthermore, let vK

denote the optimal value of the LP-relaxation using clustering K, and define vL similarly.
Let x̄ be an optimal solution corresponding to vK . It holds that

vK ≥ vL +
∑

q∈QK \QL

cqφq(x̄),

where the non-negative coefficients φq(x̄) are given by

φq(x̄) =
∑
k∈K

∑
s∈Sk

x̄k
s ·max

p∈Pq

 ∑
(t,d)∈s

fp
td − bp

+

−max
p∈Pq

∑
k∈K

∑
s∈Sk

x̄k
s

 ∑
(t,d)∈s

fp
td

− bp

+

.

Proof. Let z̄ be a feasible solution for clustering L satisfying (13), obtained using the
construction heuristic described in the proof of Lemma 1. Note that z̄ is feasible for L and
hence the objective value of z̄ is an upper bound for vL. Furthermore, note that, by the
construction of z̄, the cost incurred for the roster constraints QL is identical for x̄ and z̄.
As a consequence, the difference in objective value between x̄ and z̄ is exactly the penalty
incurred by the roster constraints in QK \QL. Hence, the difference in the penalty incurred
by these constraints is a lower bound on vK − vL.

First, consider the solution x̄. Recall that the constraint violations for each pattern
q ∈ QK \QL are modeled implicitly in the roster sequence cost for clustering K. The penalty
incurred from roster constraint q ∈ QK \QL is therefore given by

cq

∑
k∈K

∑
s∈Sk

x̄k
s ·max

p∈Pq

 ∑
(t,d)∈s

fp
td − bp

+

.

Next, consider the solution z̄. Note that for L the constraint violations for all q ∈ QK \QL are
modeled explicitly using (10). Hence, the penalty incurred from roster constraint q ∈ QK \QL
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is given by

cq max
p∈Pq

∑
`∈L

∑
g∈G`

z̄`
g

 ∑
(t,d)∈g

fp
td

− bp

+

.

Using that∑
`∈L

∑
g∈G`

∑
(t,d)∈g

fp
tdz̄

`
g =

∑
k∈K

∑
s∈Sk

∑
(t,d)∈s

fp
tdx̄

k
s ,

(see (16)), it follows that the difference in incurred penalty is given by

cq

∑
k∈K

∑
s∈Sk

x̄k
s ·max

p∈Pq

 ∑
(t,d)∈s

fp
td − bp

+

− cq max
p∈Pq

∑
k∈K

∑
s∈Sk

x̄k
s

 ∑
(t,d)∈s

fp
td

− bp

+

.

The result now follows from summing over all q ∈ QK \QL. J
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Abstract
We present a new method for computing a set of alternative origin-to-destination routes in road
networks with an underlying time-dependent metric. The resulting set is aggregated in the form of
a time-dependent alternative graph and is characterized by minimum route overlap, small stretch
factor, small size and low complexity. To our knowledge, this is the first work that deals with the
time-dependent setting in the framework of alternative routes. Based on preprocessed minimum
travel-time information between a small set of nodes and all other nodes in the graph, our algorithm
carries out a collection phase for candidate alternative routes, followed by a pruning phase that
cautiously discards uninteresting or low-quality routes from the candidate set. Our experimental
evaluation on real time-dependent road networks demonstrates that the new algorithm performs
much better (by one or two orders of magnitude) than existing baseline approaches. In particular,
the entire alternative graph can be computed in less than 0.384sec for the road network of Germany,
and in less than 1.24sec for that of Europe. Our approach provides also “quick-and-dirty” results of
decent quality, in about 1/300 of the above mentioned query times for continental-size instances.
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1 Introduction

Querying a route planning service is nowadays a common daily-routine activity. The majority
of such services, as well as of the underlying route planning algorithms, answer queries
by offering a best route from an origin o to a destination d, under a certain optimization
criterion (e.g., distance, arrival-time, etc.). Nevertheless, such an answer may not always
be desirable or satisfactory, since: (i) humans typically prefer to have choices; (ii) every
human has his/her own personal preferences that vary and depend on specialized knowledge
or subjective criteria (e.g., like/dislike certain parts of a route), which are not always easy
to quantify or estimate; (iii) a traveler may have to occasionally follow a different route
than the originally planned due to an emergent traffic condition (accident, road works, etc.).
Consequently, a route planning service offering a set of good/reasonable alternative routes is
more likely to satisfy the traveler’s needs; and vice versa, the traveler can use alternative
routes as back-up choices, in case of emergent traffic conditions or other unforeseen incidents.

© Spyros Kontogiannis, Andreas Paraskevopoulos, and Christos D. Zaroliagis;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 8; pp. 8:1–8:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kontog@uoi.gr
mailto:paraskevop@ceid.upatras.gr
mailto:zaro@ceid.upatras.gr
https://doi.org/10.4230/OASIcs.ATMOS.2020.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


8:2 Time-Dependent Alternative Route Planning

In all these cases, the essential task is to compute, efficiently, reasonable alternatives to
an optimal od-route. Towards this direction, recent works in the literature investigate the
efficient computation of alternative routes in time-independent road networks (i.e., networks
with scalar edge-costs). There are two prevailing algorithmic approaches for alternative
routes in these networks: The first approach, initiated in [1] and further extended in [13, 18],
computes a few (e.g., 2 or 3) alternative od-routes that pass through specific vertices in the
network, called via-nodes. The second approach, introduced in [2] and further extended
in [21], creates a set of reasonable alternative routes in the form of a subgraph, called
the alternative graph. Moreover, there are some proprietary algorithms which are used by
commercial systems (e.g., Google and TomTom) to suggest alternative routes.

The notion of an Alternative Graph (AG) turned out to be more suitable for high-
demanding navigation systems [9, 14], since the approach with via-nodes is restricted on
fixed optimization criteria and it may create (higher than required) overlapping among the
alternative routes, or may not even be successful in finding a sufficient number of alternatives
for certain scenarios. Generic quality characteristics of AG were described in [2], using three
optimization criteria: the totalDistance criterion, quantifying the total-overlappingness of
the best subset of routes within AG, the averageDistance criterion, quantifying the stretch
of these routes, and the complexity of the entire AG subgraph, counted as the number of
decision edges (sum of alternatives per intermediate node visited, other than the out-edge
belonging to the optimal remaining path to the destination). As it is shown in [2], all of
them together are important in order to produce a high-quality AG.

However, optimizing a simple objective function combining just any two of them is an
NP-hard problem [2]. Hence, one has to concentrate on heuristics. Four heuristic approaches
were investigated in [2], based on the Plateau [4] and the Penalty [5] methods. Experimental
evaluations in [2, 4] demonstrated that a combination of them seems to be the best choice.
A new set of heuristics, including improved extensions of both the Plateau and Penalty
methods, were proposed in [21]. As a result, computing an AG subgraph of much better
quality than the ones in [2] became possible, and this was verified on several static, (i.e.,
time-independent) road networks of Western Europe.

In this work, we investigate the AG concept on the more realistic setting of time-dependent
road networks, represented as directed graphs whose edge costs are determined by travel-time
functions. In such a setting there exist approaches that compute only the best od-route, using
either heuristic methods (see e.g., [3]), or earliest-arrival-time oracles (see e.g., [15, 16, 17]).
The latter case, of an oracle, consists of a (subquadratic in size) carefully designed data
structure, created during a preprocessing phase, along with a query algorithm that exploits
this data structure in order to respond to arbitrary earliest-arrival-time queries in sublinear
time, with a provably small approximation guarantee for the quality of the solution.

Our main contribution is a new heuristic algorithm, called TDAG, that computes a
time-dependent AG which succinctly represents alternative routes of guaranteed quality in
a time-dependent road network. Based on precomputed minimum-travel-time information
between a small set of nodes and all other nodes in the graph, TDAG selects carefully an
initial candidate set of od routes that subsequently improves in an iterative pruning phase
that discards uninteresting or low-quality routes, until the resulting AG meets the quality
criteria set. Our experimental evaluation of TDAG on real-world benchmark time-dependent
road networks shows that the entire AG can be computed pretty fast, even for continental-size
networks, outperforming typical baseline approaches by one to two orders of magnitude. In
particular, the entire AG can be computed in less than 0.384sec for the road network of
Germany, and in less than 1.24sec for that of Europe. TDAG also provides “quick-and-dirty”
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results of decent quality, in about 1/300 of the above mentioned query times. To our
knowledge, this is the first work achieving efficient computation of alternative routes in the
more realistic setting of time-dependent road networks.

2 Preliminaries

A time-dependent road network can be modeled as a directed graph G = (V,E), where each
node v ∈ V represents either intersection points along a road, or vehicle departure/arrival
events with zero waiting-time; each edge e ∈ E represents uninterrupted road segments
between nodes. Let |V | = n, |E| = m. Given a time period T , and any edge e = uv ∈ E, if
we consider anydeparture-time tu ∈ [0, T ) from the tail u, then D[uv](tu) is the corresponding
edge-traversal-time for uv, determined by the evaluation of a continuous, piecewise-linear
(pwl) function D[uv] : [0, T ) 7→ R≥0. Analogously, tv = Arr[uv](tu) = tu +D[uv](tu) is the
corresponding function providing the edge-arrival-time to the head v, for different departure-
times from u. We additionally make the (typical for road networks) strict FIFO property
assumption: each edge-traversal-time function D[uv] has minimum slope greater than −1.
Equivalently, we assert that the edge-arrival-time functions Arr[uv] are strictly increasing.
This property implies that there is no reason to wait at the tail u of uv before traversing it
towards the head v, provided that we are interested in earliest-arrival-times.

Given a departure-time t ∈ [0, T ), and a path π = 〈x0x1, x1x2, . . . , xk−1xk〉 (as a sequence
of edges), Arr[π](t) = Arr[xk−1xk](Arr[xk−2xk−1](· · · (Arr[x1x2](Arr[x0x1](t))) · · · )) is the
path-arrival-time function, defined by applying function composition on the edge-arrival-time
functions of π’s constituent edges. In addition, D[π](t) = Arr[π](t)− t is the corresponding
path-travel-time function. Let Pu,v be the set of all uv-paths in G, i.e., originating at u and
ending at v. Then, ∀t ∈ [0, T ), Arr[u, v](t) = minπ∈Pu,v

{Arr[π](t)} is the earliest-arrival-
time function, from u to v. Analogously, D[u, v](t) = Arr[u, v](t)− t is the corresponding
minimum-travel-time (or shortest-path-length) function, and P [u, v](t) is the corresponding
time-dependent-shortest-path function, providing the minimum-travel-time paths w.r.t. the
departure time t from u. For ε > 0 and ∀t ∈ [0, T ), a function D[u, v](t) such that
D[u, v](t) ≤ D[u, v](t) ≤ (1 + ε) ·D[u, v](t) is called a (1 + ε) upper-approximation for D[u, v].

Our main goal is to obtain fundamentally different (but not necessarily disjoint) alternative-
paths with optimal or near-optimal travel-times, from an origin-node o to a destination-node
d in G, and departure-time to from o. The aggregation of the computed alternative od-paths
is materialized by the concept of the Alternative Graph (AG), a notion first introduced in [2].
We shall now proceed with the adaptation of the AG concept to the time-dependent context.

Formally, an alternative graph H = (V ′, E′) is the induced subgraph by the edges of
several od-paths in G. Let DG[u, v](t) ≡ D[u, v](t) and DH [u, v](t) denote the minimum-
travel-time functions w.r.t. G and H, respectively. Similarly, ArrG[u, v](t) ≡ Arr[u, v](t)
and ArrH [u, v](t) denote the earliest-arrival-time functions w.r.t. G and H, respectively.
Succinctly representing the produced alternative paths with AG is reasonable, because the
alternative paths may share common nodes (including o and d) and edges. Furthermore,
their subpaths may be combined to form even more alternative paths, possibly better than
the ones that determined AG. In general, there can be too many alternative od-paths and
the problem is to find a way to select only a meaningful subset of them. Hence, there is a
need for filtering and ranking the alternative od-paths, based on certain quality criteria.

The main idea of the AG approach is to rank the paths w.r.t. some quality criteria and
discard the ones that have poor scores. We use the quality indicators proposed in [2] for static
instances. These indicators are defined on the single-edge level and then they are extended
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8:4 Time-Dependent Alternative Route Planning

to the edge-set level. We provide at this point the definition of these quality criteria, adapted
to time-dependent networks. Let H = (V ′, E′) be an AG of G, and let uv ∈ E′. Then:

W [uv](t) := D[uv](ArrH [o, u](t))

share[uv](t) := W [uv](t)
DH [o,u](t)+W [uv](t)+DH [v,d](ArrH [o,v](t))

totalDistance(t) :=
∑

uv∈E′
share[uv](t) (path non-overlappingness)

stretch[uv](t) := W [uv](t)
DG[o,d](t)·totalDistance(t)

averageDistance(t) :=
∑

uv∈E′
stretch[uv](t) (path stretch)

decisionEdges :=
∑

v∈V ′\{d}
(outdegree(v)− 1) (AG size)

The criterion decisionEdges quantifies the size-complexity of AG, as the number of the
alternative paths in AG is directly dependent on the number of the “decision” edge branches
in AG. For this reason, the higher the value of decisionEdges, the more confusion is created
to a typical traveler, when having to choose a route among the alternatives. Therefore, it
should be limited. The criterion totalDistance captures the extent to which the paths in
AG are non-overlapping. Its maximum value is decisionEdges+1 and can be as large as the
number of all od-paths in AG, e.g. when all of them are edge-disjoint. Its minimum value is 1,
corresponding to the case where the AG has only one od-path. The criterion averageDistance
measures the average path-travel-time of the alternative paths w.r.t. the shortest one. Its
minimum value is 1, e.g., when every od-path in AG has the minimum-travel-time.

o b D[ct](12)=2a c d

e

f g

h

D[oa](2)=2 D[ab](4)=3 D[bc](7)=5

D[fg](6)=7

to = 2 ta = 4 tc = 12

tb = 7

te = 8

td = 14
tf = 6

th = 8

tg = 12

Figure 1 Evaluation of the quality criteria for an alternative graph. For each node x, tx =
Arr[o, x](2) is the earliest arrival-time at x, for departure time to = 2.

Figure 1 provides an example AG H whose quality indicators are computed as follows,
for a given departure-time t = 2 from o.

totalDistance(2) = (4 + 5)
2 + (4 + 5) + 2 + 2 + 3 + 5 + 2

2 + 3 + 5 + 2

+ 2 + 7
2 + (2 + 7) + 3) + 3

2 + 2 + 2 + 4 + 3 + 2 + 4
2 + 2 + (2 + 4) + 3

= 0.692 + 1 + 0.643 + 0.231 + 0.462 = 3.028

averageDistance(2) = 2 + 2 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 7
12 · 3.028 = 1.073

decisionEdges = |E′| − (|V ′| − 1) = 11− 8 = 3



S. Kontogiannis, A. Paraskevopoulos, and C. Zaroliagis 8:5

In order to construct a high-quality alternative graph, one should aim for high totalDistance
and low averageDistance. In practice, however, achieving low averageDistance may take
away the ability of collecting high-degree disjoint (non-overlapping) paths and gaining high
totalDistance, as these criteria can be contradicting with each other. In any case, the target
function can be any linear combination of totalDistance and averageDistance. Similar to
[2, 21], we adopt as our target function the quantity totalDistance+ 1− averageDistance.

2.1 Computing Time-dependent Shortest Paths
In this section we review some fundamental techniques for computing time-dependent shortest
paths, which are used throughout the paper.

Time-dependent Dijkstra. The time-dependent variant of Dijstra’s algorithm (TDD) [8] is
a straightforward extension of the classical algorithm that computes earliest-arrival-times “on
the fly” when scanning (relaxing) the outgoing edges from a node. TDD grows a shortest-path
tree rooted at an origin o, for a given departure-time to from it. Analogously to the static
case, TDD performs a breadth-first search (BFS) exploration of the graph, settling the nodes
in increasing order of their tentative labels (representing earliest-arrival-times from o, given
the departure-time to from it), until the priority queue becomes empty, or a given destination
d is settled. During the settling of a node, all the outgoing edges are relaxed, implying
new evaluations of the corresponding edge-traversal-time functions. Note that the resulting
shortest-path tree may vary for different departure-time choices to ∈ [0, T ).

Reversed Time-dependent Dijkstra. The reversed version of TDD (RTDD) grows a full
shortest path tree rooted at a node d for a given arrival time td. The differences from the
original (forward) TDD are the following: (a) the edge relaxations are performed for the
incoming edges of each explored node; and (b) the algorithm computes latest-departure-
times at edge tails “on the fly” during an edge relaxation, by evaluating the inverse of the
edge-arrival-time function (which is strictly increasing, due to the strict FIFO property).

CFLAT. The CFLAT time-dependent oracle [15] precomputes approximate minimum-travel-
time functions D (travel-time summaries) from each element of a small set of landmark nodes,
towards all reachable destinations from it. These travel-time summaries are succinctly repres-
ented as a collection of time-stamped minimum-travel-time trees. Their careful construction
ensures both (1+ε) approximation guarantees (for any ε > 0) for the landmark-to-destination
travel-time functions D, and efficient (subquadratic) space requirements.

2.2 Computing Alternative Graphs in Static Road Networks
In this section, we briefly review some approaches used for computing alternative graphs in
time-independent (static) graphs.

k-Shortest Paths. The k-shortest path routing algorithm [10, 23] finds k shortest paths in
order of increasing cost. The disadvantage of this approach is that the computed alternative
paths may share too many edges, making it difficult for a human to actually distinguish
them and eventually make his/her own selection of a route. In order for really meaningful
alternatives to be revealed, one should compute k-shortest paths for very large values of k,
at the expense of a rather prohibitive computational cost.
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8:6 Time-Dependent Alternative Route Planning

Pareto. The Pareto algorithm [6, 11, 20] computes an AG by iteratively finding Pareto-
optimal paths on a suitably defined objective cost vector. The idea is to use as first edge-cost
vector the one of the single-criterion problem, while the second edge-cost is defined as follows:
all edges belonging to AG (initially the AG is the shortest od-path) set their second cost
function to their initial edge cost. All edges not belonging to AG, set their second cost function
to zero. This approach also produces too many alternatives with small deviations. Relaxing
the domination criteria and fine-tuning the bounds is non-trivial and time consuming.

Plateau. The Plateau algorithm [4] provides alternative od-paths by constructing “plateaus”
that connect shortest subpaths. For a shortest-path tree Tf from o and a reverse shortest-path
tree Tb from d, a uv-plateau is a uv-path that is a shortest subpath both in Tf and Tb. The
candidate paths via plateaus are constructed by running Dijkstra’s algorithm from o and its
reverse version from d, to produce respectively the trees Tf and Tb. Then, for each uv-plateau
in Tf and Tb, the shortest ou-path in Tf and the shortest vd-path in Tb are connected at the
endpoints of the uv-plateau, in order to form a complete od-path. The candidate od-paths
are of high quality, but they are too many, requiring a size decreasing filtration.

Penalty. The Penalty method [5] provides alternative paths by iteratively running shortest-
path queries and adjusting the weight of the edges on the resulting path. Initially, a
shortest-path query is performed. The resulting shortest path πo,d is penalized, by increasing
the weight of all its edges. Then, a new od-query is executed in the graph with the new
weights. The resulting shortest path π′o,d is again penalized and, if it is short and different
enough from the previously discovered od-paths, it is added to the solution set, otherwise
it is ignored. This process is repeated until a sufficient number of alternative paths (with
desired characteristics) is discovered, or the weight adjustments of od-paths bring no better
results. For a suitable penalty scheme, the resulting set of od-paths can be of high quality.

3 The TDAG Algorithm

In this section we present our new algorithm, TDAG, which, given a time-dependent road
network G = (V,E) with a small set L ⊂ V of landmark nodes, and an arbitrary query
(o, d, to) of an origin o ∈ V , a destination node d ∈ V and a departure-time to ∈ [0, T ) from
o, computes a collection of meaningful (short and essentially non-overlapping) alternative
od-routes. The solution is succinctly represented by an alternative graph H, i.e., the
subgraph of G induced by the chosen od-routes. Of course, within H there may exist
even better combinations of od-routes for the query (o, d, to), which are also considered as
part of the solution. The input arguments of TDAG are: (i) the number N ∈ O(1) of
nearby landmarks that will be settled by TDD in the origin’s neighborhood; (ii) the upper
bounds maxAverageDistance for the averageDistance criterion, maxDecisionEdges for
the decisionEdges criterion, and maxStretch for the maximum stretch of each accepted
od-path in H compared to the minimum-travel-time DH [od](to) in the alternative graph
H1. All these input parameters directly affect the size, the quality and the computation
time for constructing H. TDAG consists of two parts (preprocessing and query) that will be
presented in the rest of this section.

1 Since TDAG essentially mimics the preprocessing of the CFLAT oracle [15], one can easily deduce that
DH [od](to) is a very good approximation of DG[od](to), for all possible departure times from the origin.
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3.1 TDAG Preprocessing
Initially, TDAG chooses a small subset of nodes in G to constitute the landmark set L. There
are various ways for the selection of L, either randomly, or according to some properties of
the underlying graph (e.g., some balanced partition of the graph, or the ranking of the graph
nodes according to a centrality measure such as betweeness-centrality) [15]. In this work we
choose one of the most successful methods for landmark selection, called Sparse-Random
(SR), according to which the landmarks are selected sequentially. Each new landmark `
is chosen uniformly at random from the remaining nodes and, after its selection, a small
neighborhood of nodes around ` is also excluded from future landmark selections. TDAG
proceeds with the computation and succinct storage of timestamped shortest-path trees,
from each landmark ` ∈ L towards all reachable destinations v ∈ V . These trees comprise
the travel-time summaries stored by the preprocessing phase.

The algorithmic part (the computation of the shortest-path trees from landmarks) is
based on the preprocessing phase of CFLAT [15]. The preprocessing-time requirements are
subquadratic in the graph size. As for the required space (also of subquadratic size [15]), in
order to be able to efficiently handle continental-size time-dependent instances, we had to
significantly improve the succinct representation of CFLAT, especially how the preprocessed
travel-time summaries of the landmarks are stored.

The main intervention of this work is a lossless sparse matrix compression methodology
for the succinct and space-efficient representation of the timestamped shortest-path trees
from landmarks, avoiding a considerable increase in the access time for the preprocessed
information. In particular, the preprocessed data conceptually contain, for each ` ∈ L, a
collection T` = {T`(t1`), . . . , T`(t

λ`

` )} of timestamped shortest-path trees rooted at `, which are
optimal for the carefully selected departure times from `, {t1` , . . . t

λ`

` } ⊂ [0, T ) . The selection
of the sampled departure-times was such that, for all possible departure-times t ∈ [0, T ), T`
contains some trees providing, in worst case, an (1 + ε) approximation for D[`, v](t).

Data Structure For Timestamped Predecessors. The novelty of our representation is the
following: Rather than keeping a collection of trees per landmark, we maintain for each pair
(`, v) ∈ L× V two sequences of the same length: (i) ∆`,v for the sampled departure-times
from ` (in increasing order), and (ii) Π`,v for the predecessors of v in the corresponding
(`, v)-paths. The departure-times in ∆`,v are integers from {0, 1, . . . , 86399} (considering
an accuracy of seconds). Rather than using 3 bytes per cell, we exploit the fact that most
departure times are smaller than 216 = 65536sec. Therefore, we keep an index h`,v of the
latest departure-time in ∆`,v that is smaller than 216. The first h`,v cells in ∆`,v store exact
departure-times, but the remaining cells only store the difference of the actual departure
times from the offset 216. This way, all the cells in ∆`,v require exactly 2 bytes. As for Π`,v,
every cell is the relative position of the predecessor of v, in its in-neighborhood list. 1 byte
per cell is sufficient for real-world instances whose maximum in-degree is a small constant.

A first observation of an initial implementation of this data structure, was that a lot
of space was consumed for storing duplicates of exactly the same pairs of sequences, for
different landmark-destination pairs. For example, in the the continental-size EU instance
with 18, 010, 173 nodes, for 16, 000 landmarks one would need to store 576, 325, 536, 000
sequences. Nevertheless, we observed that there were only 1, 632, 168, 375 distinct sequences
(1, 623, 701, 331 departure-time sequences and 8, 467, 044 predecessor sequences). To avoid
this waste of space, we chose to store only pairs of (4-byte) pointers to sequences, among all
landmark-destination pairs. After implementing this variant as well, we also observed that,
in many cases, the same destination v∗ had many repetitions of the same pairs of (4-byte)
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8:8 Time-Dependent Alternative Route Planning

pointers to sequences, over all the landmarks. Indeed, this is quite reasonable for landmarks
located towards the same direction and roughly at the same distance from v∗. In order to
avoid these repetitions of pairs of long pointers (8 bytes in total), we proceeded as follows
(cf. Figure 2): We maintained a landmark-indexed dictionary Ldictv∗ , whose value for a key
`∗ is a pointer s∗ to the cell of an array Sv∗ containing a unique pair (p∗, d∗) of pointers to
the sequences ∆`∗,v∗ and Π`∗,v∗ .

Figure 2 Data structure for the succinct representation of preprocessed information of TDAG.

The size |Sv∗ | is exactly the number of distinct pairs of pointers (to sequences) involving
v∗, among all landmarks, and on average is significantly smaller than |L|. Each cell of Sv∗
requires 8 bytes. On the other hand, for Ldictv∗ we use bit-level representation of the stored
values, with each cell consuming only log2(|Sv∗ |+ indeg(v∗)) bits. Even for 16, 000 landmarks
this is at most 14 bits per cell.

Finally, we observed from real-world instances that, more often than not, a node v∗ might
have always the same predecessor, independently of landmarks and departure times. In those
cases, rather storing Ldictv∗ and Sv∗ , we simply stored this unique predecessor for v∗.

Lookup Procedure for Timestamped Predecessors. The lookup operation of preprocessed
information, in order to get a time-dependent predecessor per landmark-node pair, is a
procedure that is repeatedly used in the path-collection phase of the TDAG query algorithm
(cf. PHASE-2 in Subsection 3.2). Briefly, the lookup operation takes as input a triple (`, v, t`)
of a landmark ` ∈ L, a current node v ∈ V and a departure-time from ` t` ∈ [0, T ). The
lookup procedure starts by locating ∆(`, v), and then conducts a binary search in it, to
locate the closest sampled departure times depi ≤ t` < depi+1, in time O(log(|∆(`, v)|)).
Consequently, the corresponding predecessors of v are located at positions i and i + 1 of
Π(`, v), and thus are retrieved in O(1) time. Since the number of sampled departure times
only partitions the period [0, T ) in small time intervals, it is independent of the network size
(e.g., for the EU instance the maximum length of a sequence is 4407). Therefore, the entire
lookup procedure takes O(1) time (e.g., at most 13 comparisons even for EU).

Because of this novel methodology for the succinct representation of the preprocessed
data, preprocessing a large number of landmarks is now possible, even for continental-size
datasets. In performance terms, this novel storage scheme provides a cache-friendly gain
which beats the overhead of the bit-field and bit-mask extraction operations. This in turn
leads to higher quality results and significantly lowers the observed relative error.
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3.2 TDAG Query
The TDAG query algorithm executes three phases for serving a query (o, d, to) ∈ V ×V ×[0, T ):
PHASE 1: Landmark Settling. A forward TDD tree Tf (to) is grown from (o, to), until either

d or a set F ⊂ L of the N closest landmarks are settled. Subsequently, a reverse BFS from
d is executed, exploring the neighborhood around d in a backward fashion. The growth
of the reverse BFS tree Tr is stopped when its size becomes equal to |Tr| = c · |Tf (to)|,
for some constant c ≥ 1 (our experimental analysis showed that c = 1.2 is an appropriate
choice). It should be mentioned that we experimented also with growing a reverse TDD
tree towards d, but this approach was more time-consuming and the resulting AG, to be
constructed in the next phases, was eventually similar to the one constructed using the
reverse BFS tree towards d.

PHASE 2: Path Collection. Using the preprocessed data, our next task is to construct a
subgraph of shortest paths from the N landmarks of Tf (to), with their own departure-
times which have been already computed in PHASE 1, towards each leaf node of Tr.
This is done as follows: starting from each leaf node of the reverse BFS tree Tr, we
recursively move backwards towards each ` ∈ F , by looking-up predecessors in the
timestamped shortest paths originating at the landmarks of Tf (to). All the edges
that participate in these paths connecting the landmarks in F to the leaf nodes of
Tr, become marked. The initial alternative graph H consists of the union of the two
trees Tf (to) and Tr of PHASE 1, plus the marked edges of PHASE 2. We continue
expanding the forward TDD tree of PHASE 1 towards d, by working only on H, until
all nodes in H are settled. This allows us to obtain a tentative arrival-time t̃d at d:
t̃d = to +DH [o, d](to) ≤ to + min`∈Tf (to)∩L{D[o, `](to) +D[`, d](to +D[o, `](to))}. Clearly
t̃d is an upper-bound of the earliest-arrival-time td = to +D[o, d](to). The quality of this
upper bound depends on the choice of the precision ε of the preprocessed information
(cf. the analysis of CFLAT [15] for further details), the number N of settled landmarks
within Tf (to), and the size of the reverse BFS tree Tr.

PHASE 3: Path Pruning. The graph H produced by PHASE 2 is already smaller than G.
Nevertheless, it is further pruned so as to meet the three quality criteria for an alternative
graph: small path overlapping, stretch, and size. This is done in three steps.

Step 3.1 We first aim at a loose pruning over H, in order to obtain a subgraph containing a
smaller number of candidate od-paths with reasonable travel-times. In particular, any
node u in H whose shortest travel-time from o to d via u is greater than the targeted
upper-bound, i.e., DH [o, u](to) +DH [u, d](to +DH [o, u](to)) > maxStretch ·DH [o, d](to),
is removed.

Step 3.2 For further reducing the number of the candidate od-paths, we use initially the
Plateau method [4, 21] by running, within H, TDD from (o, to), and RTDD from
(d, to+DH [o, d](to)). Any edge not belonging to the resulting Plateau candidate od-paths,
is removed from H. The Penalty pruning method [5, 21] is then applied, to prune
further the subgraph H. At each Penalty iteration, TDD runs on H, computing a new
time-dependent shortest path πo,d, which is marked and is added to the solution set Es.
Additionally, the edges in Es and the incoming edges incident to the nodes in πo,d are
penalized with an increasing penalty factor p(e) and r(e), respectively, initially set to 0. For
each edge e = uv ∈ Es, its travel-time is increased to D[e](t)(penalized) = (p(e)(current) +
1)D[e](t)(original); otherwise, if u or v ∈ πo,d and e /∈ πo,d∪Es, its travel-time is increased
to D[e](t)(penalized) = (r(e)(current) + 1)D[e](t)(original). The penalty factors of the
affected edges are increased at the end of each step to p(e)(new) = p(e)(old) + pc and
r(e)(new) = r(e)(old) + rc, where pc > 0 and rc > 0 are constants. The process is repeated
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until a sufficient number of alternative paths is found, or the travel time adjustments of
πo,d paths bring no better results. At the end, the unmarked edges are removed. In order
to speedup the Penalty approach at path computation, the time-dependent variant of A∗
[7, 12] can be used in place of TDD. For each node of H, its distance towards d which is
already computed from RTDD during the Plateau phase, can be used as a lower bound
for the time-dependent A∗ heuristic.

Step 3.3 The final pruning of H is performed via a ranking procedure. Initially, if a path πx,y
inH has outdeg(x) ≥ 2 and indeg(y) ≥ 2, and ∀v ∈ πx,y−{x, y} outdeg(v) = indeg(v) = 1
(i.e., it increases by one the decisionEdges), then it is considered as a decision-path and
it is ranked by the function rank(πx,y, t) =

∑
e∈πx,y

(share[e](t) − stretch[e](t)) that
represents the contribution of πxy in terms of averageDistance and totalDistance in H.
The ranked decision-paths are sorted by increasing ranking order in a priority queue
Q. Then an iterative procedure starts, where in each iteration a path πxy is dequeued
from Q. If the condition outdeg(x) ≥ 2 and indeg(y) ≥ 2 remains in effect, then πx,y is
removed from H, leading to a decrease of the decisionEdges by one. After the removal
of πx,y, if for v ∈ {x, y} it holds that outdeg(v) = indeg(v) = 1, then a new decision path
π is revealed which has v as an internal node. π is ranked and inserted in Q, in order to
be considered along with the rest of decision paths. The iterative procedure stops when
decisionEdges ≤ maxDecsionEdges.

4 Experimental Evaluation

Experimental Setup and Goal. TDAG was implemented in C++ (GNU GCC version
9.3.0). All the experiments were conducted on a AMD Ryzen Threadripper 3960X 24-Core
3.8GHz Processor, with 256GB of RAM, running Ubuntu Linux (20.04 LTS). We used 24
threads for the preprocessing phase of CFLAT [15], using as preprocessing precision ε = 0.1.

Three typical benchmark instances for testing speedup techniques and oracles in time-
dependent road networks are used in our experiments, kindly provided to us by TomTom
and PTV for scientific purposes. The real-world instance of Berlin (BE) was provided by
TomTom, has 473, 253 nodes and 1, 126, 468 edges, and contains edge-travel-time functions
taken from historical data of a typical working day (Tuesday) in a typical urban environment.
The instances of Germany (GE) and Europe (EU) were provided by PTV, and contain
edge-travel-time functions of a typical working day, in nation-wide and continental road
networks, respectively. GE has 4, 692, 091 nodes and 10, 805, 429 edges, and is a real-world
instance. EU has 18, 010, 173 nodes and 42, 188, 664 edges, and is a synthetic time-dependent
benchmark instance that is typically considered in the related literature.

The TDAG query algorithm was executed on a single thread. For the sake of comparison,
in all the query algorithms that have been evaluated in this work, we used the same set of
10, 000 queries chosen independently and uniformly at random without repetitions (iuar)
from V × V × [0, T ) in each instance, for randomly selected departure-times from [0, T ). The
static (forward-star) variant of the PGL library [19] was used for the graph representation.
For Dijkstra-based algorithms, we used as priority queue Sander’s implementation2 of the
sequence heap [22].

In [15], various methods were considered for the selection of the landmark set. In this
work, we only consider the sparse-random (SR) method: the landmark nodes are chosen
sequentially, each new landmark is chosen iuar from the remaining nodes, and excludes a
free-flow neighborhood of nodes around it from future landmark selections.

2 http://algo2.iti.kit.edu/sanders/programs/spq/.

http://algo2.iti.kit.edu/sanders/programs/spq/
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The goal of our experimental evaluation was twofold:
(i) we investigated the scalability of TDAG, i.e., how smoothly it trades higher query times

with better quality of the alternative graph H, using the value of N as our tuning
parameter;

(ii) we compared TDAG’s performance with the performances of straightforward time-
dependent variants of existing techniques for constructing alternative graphs in static
graphs [2, 21], which serve as our baseline approaches.

Moreover, the relative error ApxErr, defined as

ApxErr = DH [o, d](t)−DG[o, d](t)
DG[o, d](t) ,

provides the approximation accuracy of H, that is, how close DH [o, d](t) is to DG[o, d](t),
given that DH [o, d](t) ≥ DG[o, d](t).

Experimental Results. Our bit-level data compression technique (cf. Section 3.1) turned
out to be beneficial. The byte-based approach of CFLAT [15] for the succinct representation
of the travel-time summaries of 2000 landmarks chosen with SR (SR2K) consumed space of
5.2GB in Berlin, 53.6GB in Germany, and 107.2GB in Europe. Using the new profiling, bit-
level based approach of TDAG, the preprocessed data for SR2K landmarks consumes space
of 0.28GB in Berlin, 3.2GB in Germany, and 31.05GB in Europe. That is, the exploitation
of the bit-level representation of a sparse matrix, without sacrificing the landmark and node
indexing, leads to a significant reduction of about 70% in space requirements, which in turn
allows for the selection of larger landmark sets, especially for continental-size instances.

Table 1 Quality measures and execution times of TDAG.

Network Landmark
N

Target Total Avg Decision Apx Time
Set Function Dist Dist Edges Err (%) (ms)

BE SR4000

1 1.53 1.54 1.01 4.63 0.48 0.52
2 1.98 2.00 1.02 7.69 0.06 0.89
4 2.40 2.43 1.03 9.07 0.02 1.50
10 2.97 3.02 1.04 9.68 0.01 3.11
32 3.65 3.71 1.06 9.72 0.00 8.45
76 3.99 4.06 1.07 9.62 0.00 18.86
100 4.06 4.14 1.08 9.58 0.00 25.80
250 4.22 4.30 1.08 9.46 0.00 64.44

GE SR8000

1 1.50 1.51 1.01 8.60 0.51 1.31
2 1.93 1.94 1.02 9.96 0.06 2.80
8 2.77 2.81 1.04 9.93 0.00 11.38
18 3.26 3.32 1.06 9.86 0.00 28.89
25 3.45 3.51 1.07 9.80 0.00 43.33
64 3.88 3.96 1.09 9.63 0.00 135.04
100 4.02 4.11 1.09 9.54 0.00 213.05
200 4.15 4.25 1.10 9.40 0.00 384.15

EU SR16000

1 1.43 1.43 1.01 8.63 0.85 4.30
6 2.07 2.09 1.02 9.95 0.55 21.95
18 2.51 2.54 1.03 9.92 0.55 80.61
64 3.09 3.15 1.05 9.74 0.55 330.72
100 3.30 3.36 1.06 9.63 0.55 514.45
150 3.47 3.54 1.07 9.51 0.55 770.48
200 3.57 3.64 1.07 9.42 0.55 965.07
250 3.62 3.69 1.07 9.32 0.55 1237.80
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In Table 1 and 2, we report the results of our experimental evaluations of TDAG on
the approximation accuracy ApxErr (relative error in %) and the various quality indic-
ators3 (cf. Section 2): targetFunction (TargFun), totalDistance (TotDist), averageDis-
tance (AvgDist) and decisionEdges (DecEdges). Similar to [21], in order to evaluate
the quality of AG, the aggregate quality indicator TargFun is used, defined as follows:
TargFun = totalDistance+ 1− averageDistance . In all cases the alternative graphs are
evaluated using the following constraints: maxStretch ≤ 1.2, averageDistance ≤ 1.1, and
decisionEdges ≤ 10. In the path pruning step, the penalty constants were set to pc = 0.3
and rc = 0.1.

Table 1 demonstrates the effect of the parameter N on the execution time of TDAG, as
well as on the quality of the constructed AG. As N grows, PHASE 1 becomes computationally
more expensive, but the relative error rapidly drops towards 0 for BE and GE. This is due to
the fact that as N increases, the expanded (forward) TDD tree gets bigger and the resulting
od-paths increase in number, but we also get more candidate od-paths providing an AG of
better quality. As for EU, the relative error seems to stop at 0.55, because of the steepest
slopes of the earliest-arrival-time functions (which necessitate an increased number of sampled
departure times during the preprocessing phase), the propagation of floating point rounding
errors along the edges of long paths, and the smaller density |L|/|V | of the preprocessed
landmarks, compared to the instances of BE and GE. All these issues can be tackled by
affording more memory for the computations.

In Table 2 we present the results of the baseline approaches and their comparison to
TDAG. DPP is a combination of the Plateau and the Penalty methods [2], which collects and
evaluates the candidate od-paths using a greedy selection approach. In our time-dependent
context, Dijkstra’s algorithm was replaced by its time-dependent variant, TDD. APP is again
the combination of the Plateau and Penalty methods of [2, 21], which uses the ALT pruner
and filtering approach [21]. Dijkstra’s algorithm was again replaced by TDD, and for the
lower bounds required by ALT the constant free-flow minimum-travel-time distances were
used (i.e., each edge has as scalar cost corresponding to its minimum travel time). DPP
does not require prepossessing, while APP requires a linear in space and super-linear in
time prepossessing phase for computing the lower bounds required by ALT. Regarding the
computation of AG (column q-time in Table 2), both baseline approaches have a slow path
collection phase. DPP constructs a subgraph H that is huge in size, using an expensive
phase of pure TDD, as there are no heuristics. APP improves the time of the path collection
phase, but the lower bounds are not tight for a time-dependent metric. In both cases the
achieved quality is high, at the cost of large processing times.

From Tables 1 and 2, it is clear that for all instances the configurations of TDAG,
achieving analogous aggregate quality, require execution times about two orders of magnitude
smaller than that of DPP. In particular, the achieved speedups are more than 102.7 for BE,
90.8 for GE and 37.9 for EU. Similarly, the configurations of TDAG achieving similar values
of the target function, are faster than APP about one order of magnitude, as the instance
size increases. In particular, the speedups are 2.1 for BE, 4.8 for GE and 8.3 for EU.

5 Conclusions

In this work we present TDAG, a novel algorithm for computing alternative routes in
FIFO-abiding time-dependent road networks, based on succinctly stored preprocessed travel
information. One of TDAG’s strong features is that it can smoothly trade-off the quality

3 To simplify notation, we omit in the rest of the paper the departure-time t notation.
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Table 2 Speedups of TDAG over DPP (with TDD) and APP (with A∗ and free-flow lower-bounds).

network method Target q-time speedup
DPP 3.01 319.38

TDAG vs DPP 2.97 3.11
APP 4.21 134.73

TDAG vs APP 4.22 64.44
DPP 3.27 2623.36

TDAG vs DPP 3.26 28.89
APP 4.17 1860.80

TDAG vs APP 4.15 384.15
DPP 3.36 19511.93

TDAG vs DPP 3.30 514.45
APP 3.89 10266.29

TDAG vs APP 3.62 1237.80

BE

GE

EU

102.7

2.1

90.8

4.8

37.9

8.3

of the resulting AG with the required execution time, via proper choices of its parameter
N . This feature provides a significant advantage over all existing approaches, which have
only one solution set of od-paths. Our experimental evaluation on three real-world instances
demonstrated that TDAG clearly outperforms both baseline approaches (DPP and APP),
since it provides time-dependent alternative routes of the same quality as DPP and APP
within smaller execution times. TDAG can also provide “quick-and-dirty” alternative routes
with a speedup of more than 100 over both DPP and APP, but it can continue its execution
until it finds alternative routes of the same quality as DPP and APP, still much faster (less
than half time for BE, or one fifth of time for GE) than these two baseline approaches.
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Abstract
We incorporate turn restrictions and turn costs into the route planning algorithm customizable
contraction hierarchies (CCH). There are two common ways to represent turn costs and restrictions.
The edge-based model expands the network so that road segments become vertices and allowed
turns become edges. The compact model keeps intersections as vertices, but associates a turn table
with each vertex. Although CCH can be used as is on the edge-based model, the performance of
preprocessing and customization is severely affected. While the expanded network is only three
times larger, both preprocessing and customization time increase by up to an order of magnitude.
In this work, we carefully engineer CCH to exploit different properties of the expanded graph. We
reduce the increase in customization time from up to an order of magnitude to a factor of about 3.
The increase in preprocessing time is reduced even further. Moreover, we present a CCH variant that
works on the compact model, and show that it performs worse than the variant on the edge-based
model. Surprisingly, the variant on the edge-based model even uses less space than the one on the
compact model, although the compact model was developed to keep the space requirement low.
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al. [11] show that most algorithms have a significant performance penalty. For long-range
queries, one may argue that turn costs are negligible. When analyzing intracity traffic [8, 27]
or dispatching autonomous vehicles operating within a particular city [6, 7], however, taking
turn costs into account is of utmost importance.

A fairly recent development in the area of route planning are customizable speedup
techniques, which split preprocessing into a slow metric-independent part, taking only the
network structure into account, and a fast metric-dependent part (the customization), incor-
porating edge costs (the metric). Customizable route planning (CRP) [11] and customizable
contraction hierarchies (CCH) [14] are the most prominent among them, and are both used
in commercial and research software. While CRP was developed with turn costs in mind,
CCH was not. In this work, we incorporate turn restrictions and turn costs into CCH.

Related Work. Turns can be encoded into the network structure by expanding the network
so that road segments become vertices and allowed turns become edges [9, 28]. This is known
as the edge-based model [3]. While any speedup technique can work on an expanded network,
some are more robust than others [11]. We are aware of two algorithms that have been
tailored to handle turns. First, Geisberger and Vetter [18] present a turn-aware version of
(non-customizable) contraction hierarchies (CH) [17]. Second, Delling et al. [10] develop
CRP with turns in mind. Both independently proposed a different turn representation. The
compact model keeps intersection as vertices, but associates a turn table with each vertex.

Our Contribution. The contribution of this work is twofold. First, we propose several
optimizations that accelerate CCH on the edge-based model by exploiting properties of the
expanded network (Section 3). We reduce the increase in customization time from up to
an order of magnitude to a factor of about three (which is reasonable since the expanded
network is three times larger than the original network, which ignores turn costs). The
increase in preprocessing time is reduced even further.

Second, we introduce a CCH variant that works on the compact model, and discuss
various issues we found (Section 4). An extensive experimental evaluation shows that the
edge-based variant significantly outperforms the compact variant (Section 5). Surprisingly,
the variant on the edge-based model even uses less space than the one on the compact model.

Outline. Section 2 formally defines the problem we solve and has background information.
Section 3 presents optimizations that accelerate CCH on the edge-based model. Section 4
introduces a CCH variant that works on the compact model. Section 5 presents an extensive
experimental evaluation of both variants. Section 6 concludes with final remarks.

2 Preliminaries

We are given a directed graph G = (V, E) where vertices represent intersections and edges
represent roads. A cost function ` : E → R≥0 assigns an arbitrary cost to each edge. We are
also given two functions r : E × E → {0, 1} and c : E × E → R≥0 ∪ {∞}. If r(e, f) = 0, the
head of e is the tail of f and the turn from e to f is allowed. The cost of the turn is given by
c(e, f). Note that r and c have to be consistent, i.e., r(e, f) = 1 implies c(e, f) =∞. Since r

depends on the network topology, it is part of the input to the preprocessing phase. The
turn cost function c is part of the input to the customization phase since it depends on the
current traffic situation and personal preferences.

A path P from a point along an edge e0 to a point along an edge ek is a triple that consists
of a sequence of edges 〈e0, . . . , ek〉 with r(ei, ei+1) = 0, a real-valued offset o0 ∈ [0, 1] on e0,
and a real-valued offset ok ∈ [0, 1] on ek. The cost of a path is the sum of the costs of its
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Figure 1 Turn representations (from left): simplified model, edge-based model, compact model.

constituent edges and turns, i.e., `(P ) = (1−o0)·`(e0)+
∑k

i=1(c(ei−1, ei)+`(ei))−(1−ok)·`(ek).
Given a source edge es with offset os and a target edge et with offset ot, the problem we
consider is computing a shortest path from the start point along es to the end point along et.
For simplicity, we assume that os = 1 and ot = 1 in the rest of this paper.

In the following, we discuss both common ways to represent turn costs and restrictions.
After that, we describe Dijkstra’s algorithm and CH, both on standard graphs (simplified or
edge-based graphs) and on compact graphs. We also discuss CCH on the simplified model.

2.1 Turn Representation
The simplified model ignores turn costs and restrictions; see Figure 1 (left). To actually
incorporate them, there are two common ways. We explain each in turn.

Edge-based Model. The edge-based model [9, 28] expands the network so that road segments
become vertices and allowed turns become edges; see Figure 1 (middle) for an example.
More precisely, the edge-based graph Ge = (Ve, Ee) is obtained from G as follows. The
vertices of Ge are the edges of G, i.e, Ve = E. The edges of Ge are the allowed turns of
G, i.e., Ee = {(e, f) : e, f ∈ E, r(e, f) = 0}. The cost of an edge (e, f) ∈ Ee is defined as
`e(e, f) = c(e, f) + `(f). The main advantage of the edge-based model is that most route
planning algorithms can be used as is on it, without further modifications.

Compact Model. The compact model [18, 11] keeps intersections as vertices, but associates
a p× q turn table Tv with each vertex v, where p and q are the numbers of incoming and
outgoing edges, respectively. The entry Tv(i, j) represents the cost of the turn from the i-th
incoming edge e to the j-th outgoing edge f , i.e., Tv(i, j) = c(e, f). For each edge (v, w),
its tail corresponds to an exit point at v and its head corresponds to an entry point at w.
Note that the entry points in the compact model translate directly to the vertices in the
edge-based model; see Figure 1 (right) for an example. We denote by v|i the i-th exit (or
entry) point at v and by (v|i, w|j) the edge whose tail corresponds to the i-th exit point at
v and whose head corresponds to the j-th entry point at w. The main advantage of the
compact model is its low space overhead since turn tables can be shared among vertices (the
number of distinct turn tables for continental instances such as the road network of Western
Europe used in our experiments is in the thousands rather than millions [11]).

2.2 Dijkstra’s Algorithm
Dijkstra’s algorithm [15] computes the shortest-path distances from a source vertex s to all
other vertices. For each vertex v, it maintains a distance label d(v), which represents the
cost of the shortest path from s to v seen so far. Moreover, it maintains an addressable
priority queue Q [25] of vertices, using their distance labels as keys. Initially, d(s) = 0 for
the source s, d(v) =∞ for each vertex v 6= s, and Q = {s}.
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The algorithm repeatedly extracts a vertex v with minimum distance label from the
queue and settles it by relaxing its outgoing edges (v, w). To relax an edge e = (v, w), the
path from s to w via v is compared with the shortest path from s to w found so far. More
precisely, if d(v) + `(e) < d(w), the algorithm sets d(w) = d(v) + `(e) and inserts w into
the queue. It stops when the queue becomes empty. Note that Dijkstra’s algorithm has the
label-setting property, i.e., each vertex is settled at most once. Therefore, when computing a
point-to-point shortest path from a source s to a target t, we can stop when t is settled.

On the Compact Model. For correctness, we must work on entry points instead of vertices.
That is, we maintain a distance label d(v|i) for each entry point v|i and a queue Q of
unsettled entry points. Initially, d(s|i) = 0 for the entry point s|i corresponding to the
head of the source edge, d(v|j) =∞ for all other entry points v|j, and Q = {s|i}. To settle
an entry point v|i, we set d(w|k) = min{d(w|k), d(v|i) + Tv(i, j) + `(e)} for each outgoing
edge e = (v|j, w|k). Each entry point is settled at most once, however, each vertex can be
visited multiple times. Note that Dijkstra’s algorithm on the compact model essentially
simulates the execution on the edge-based model.

2.3 Contraction Hierarchies
Contraction hierarchies (CH) [17] is a two-phase speedup technique to accelerate point-to-
point shortest-path computations, which exploits the inherent hierarchy of road networks.
To differentiate it from customizable CH, we sometimes call it weighted or standard CH. The
preprocessing phase heuristically orders the vertices by importance, and contracts them from
least to most important. Intuitively, vertices that hit many shortest paths are considered
more important, such as vertices on highways. To contract a vertex v, it is temporarily
removed from the graph, and shortcut edges are added between its neighbors to preserve
distances in the remaining graph (without v). Note that a shortcut is only needed if it
represents the only shortest path between its endpoints, which can be checked by running a
witness search (local Dijkstra) between its endpoints.

The query phase performs a bidirectional Dijkstra on the augmented graph that only
relaxes edges leading to vertices of higher ranks (importance). The stall-on-demand [17]
optimization prunes the search at any vertex v with a suboptimal distance label, which can
be checked by looking at upward edges coming into v.

On the Compact Model. Recall that we must maintain and compute distance labels for
entry points (rather than vertices) in the compact model. Therefore, when contracting a
vertex v, we need to preserve the distances between all entry points in the remaining graph
(without v). In general, we cannot avoid self-loops and parallel edges. See Figure 2 for an
example. Contracting vertex v′ creates a self-loop at vertex v, because the through movement
from v’s left entry point to its right exit point is costlier than the path via v′. Analogously,
contracting v results in two parallel edges between vertices u and w. When entering u from
the west and leaving w to the east, the shortest path is via v. In contrast, when entering u

from the north and leaving w to the north, it is better to traverse the edge between u and w.
Self-loops make the computation of shortcuts more complicated. Each shortcut is no

longer a concatenation of exactly two edges, but can also include one or more self-loops at
the middle vertex. For example, in Figure 2, the shortcut between u and w includes the
self-loop at v. Therefore, Geisberger and Vetter [18] use the witness search not only to decide
whether a shortcut is necessary but also to compute the cost of the shortcut.

More precisely, to contract a vertex v, they run a witness search for each exit point u|i
such that there is at least one incoming edge (u|i, v). Initially, they set d(v′|j) = `(e) for
each edge e = (u|i, v′|j). Moreover, each entry point v′|j is inserted into the queue. The
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Figure 2 Vertex contraction on the compact model. Original edges are shown in black, turn
edges are shown in green, and shortcut edges are shown in blue. Each original edge and each right-,
left- and U-turn movement has cost 1. Each through movement has cost 10. Left: A subgraph before
contraction. Middle: Contracting vertex v′ creates a self-loop at v (cost 3). Right: Contracting v
creates a shortcut edge between u and w (cost 7), resulting in two parallel edges between them.

witness search stops when each entry point w|l such that there is at least one edge (v, w|l)
has been settled. A shortcut s = (u|i, w|l) is only added if it is built from an edge (u|i, v),
zero or more self-loops at v, and an edge (v, w|l). The shortcut has cost `(s) = d(w|l).

The query phase runs a bidirectional version of the turn-aware Dijkstra described above,
but does not relax edges leading to lower-ranked vertices. Note that the stall-on-demand
optimization can also be applied in the compact model [18].

2.4 Customizable Contraction Hierarchies

Customizable contraction hierarchies (CCH) [14] are a three-phase technique, splitting CH
preprocessing into a relatively slow metric-independent phase and a much faster customiza-
tion phase. The metric-independent phase computes a separator decomposition [5] of the
unweighted graph, determines an associated nested dissection order [19] on the vertices,
and contracts them in this order without running witness searches (which depend on the
metric). Therefore, it adds every potential shortcut. The customization phase computes the
costs of the edges in the hierarchy by processing them in bottom-up fashion. To process an
edge (u, w), it enumerates all triangles {v, u, w} where v has lower rank than u and w, and
checks if the path 〈u, v, w〉 improves the cost of (u, w). Alternatively, Buchhold et al. [8]
enumerate all triangles {u, w, v′} where v′ has higher rank than u and w, and check if the
path 〈v′, u, w〉 improves the cost of (v′, w), accelerating customization by a factor of 2.

There are two known query algorithms. First, one can run a standard CH search without
modification. In addition, Dibbelt et al. [14] describe a query algorithm based on the
elimination tree of the augmented graph. The parent of a vertex in the elimination tree
is its lowest-ranked higher neighbor in the augmented graph. Bauer et al. [5] prove that
the ancestors of a vertex v in the elimination tree are exactly the set of vertices in the CH
search space of v. Hence, the elimination tree query algorithm explores the search space
by traversing a path in the elimination tree, thereby avoiding a priority queue completely.
Buchhold et al. [8] propose further optimizations for the elimination tree search, which
achieve significant speedups for short- and mid-range queries.
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Figure 3 Original graph and final preprocessing result. The dashed shortcut has always weight
∞ in both directions and can be removed.

3 CCH on the Edge-based Model

CCH can be applied to the edge-based model without modifications. However, running times
suffer significantly. We therefore propose optimizations to reduce the slowdown.

Contraction Order. Obtaining the nested dissection order is the most expensive part of
preprocessing. We can apply the same ordering algorithms as for a nonturn CCH without
modification to the edge-based graph. We refer to this order as the edge-based order. Since
this approach is quite slow, we consider two additional ordering approaches.

Recall that the vertices of the expanded graph Ge are the edges of G. The derived order
uses an order obtained on the nonturn graph and expands each vertex to all outgoing edges.
Formally, the derived order is obtained by ordering the vertices of Ve by the rank of the tail
of their corresponding edge in E.

We can also exploit the fact that vertices in Ge are edges in G and compute an edge
order on G. Algorithms for obtaining separator decompositions in road networks like
InertialFlow [26] and InertialFlowCutter [21] compute separators by finding a small balanced
cut and deriving a separator from that cut. However, a cut in G corresponds directly to
separator in Ge. Thus, we compute cut-based orders by computing a small balanced cut in
G, using the nodes corresponding to the cut edges as the highest ranked vertices in the order
for Ge and recursing on the sides of the cut. We extend InertialFlowCutter with this schema.

Infinite Shortcuts. CCH algorithms do not work on the original directed graph G = (V, E),
but on the corresponding bidirected graph G′ = (V, E′) that is obtained from G by adding
all edges {(w, v) : (v, w) ∈ E ∧ (w, v) /∈ E}. This can lead to the insertion of unnecessary
shortcuts; see Figure 3 for an example. We denote these unnecessary shortcuts as infinite
shortcuts as the edges in both directions always have weight ∞. Infinite shortcuts can
be identified by customizing the graph with the weight of every original edge set to zero.
Afterwards, every bidirected edge that still has weight ∞ in both directions is an infinite
shortcut and can be removed. We identify and remove infinite shortcuts in an additional
preprocessing step, after obtaining the elimination tree.

Directed Hierarchies. In the simplified model, many edges have a corresponding reversed
edge. This changes in the edge-based model and the amount of edges without a corresponding
reversed edge increases. Then, the customized graph contains many edges with weight ∞ but
a finite weight for the reversed edge. Like infinite shortcuts, these edges can be identified by
customization with the zero metric. We remove these edges after obtaining the elimination
tree. The result is a directed hierarchy. By enumerating lower triangles in both directions
separately, the customization can be accelerated. As the elimination tree was computed on
the bidirected graph before the edge removal, no adjustments are necessary for the query.
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Figure 4 On the left is a visualization of a cut in G. In the middle is an arbitrary contraction
order which results in no infinite edges after the first four contractions. On the right, the edges in
the order are grouped which results in three infinite edges after the first four contractions (shown by
the dotted edges).

Reordering Separator Vertices. In a nested dissection order, the vertices inside a separator
can be ordered arbitrarily. We exploit this to generate more infinite shortcuts. Separator
vertices in Ge correspond to cut edges in G. We order them by the side of their corresponding
cut edges tail vertex. For example consider a cut in G with a left and a right side (Figure 4).
Cut edges going from the left to the ride side (i.e. their respective vertices in Ge) will get
the lower ranks, and cut edges from the right to the left will get the higher ranks. This way,
shortcuts between the lower ranked vertices (left to right in the example) can never have a
finite weight. Any directed path between them must use one of the higher ranked vertices
(to go back from right to left). As shortcuts get the weight of the shortest path through
lower ranked vertices, this will always be ∞ and these shortcuts can be removed later.

4 CCH on the Compact Model

Recall that all CCH phases do not work on the original directed graph G = (V, E), but
on the corresponding bidirected graph G′ = (V, E′) that is obtained from G by adding all
edges {(w, v) : (v, w) ∈ E, (w, v) /∈ E}. The cost of each edge in E′ \ E is ∞, and thus the
distance between any two vertices is the same in G and G′. Since most graph-theoretical
results for undirected graphs carry over to bidirected graphs, CCH can use algorithmic tools
for undirected graphs. In particular, CCH preprocessing exploits quotient graphs and CCH
queries exploit elimination trees, which are both concepts for undirected graphs.

The compact model, however, is inherently directed. We cannot make a compact graph
bidirected, since this would add edges that exit vertices at entry points and enter them at
exit points. Therefore, in the compact model, all CCH phases have to work on the original
(not necessarily bidirected) graph. This has undesirable consequences. First, we cannot use
the efficient CCH preprocessing algorithm based on quotient graphs. Second, we have to use
Dijkstra-based queries, since the faster elimination tree queries are also not applicable.

There is one additional issue. Recall that in the compact model, we generally cannot
avoid self-loops and parallel edges and that each shortcut is no longer built from exactly two
edges, but can also include one or more self-loops at the middle vertex. Standard CH (on the
compact model) deals with this by using the witness searches to determine shortcut costs.

ATMOS 2020
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2 3

415

Figure 5 Creation of phantom shortcuts. We are about to contract the vertex in the center. Its
lower-ranked neighbors (light-colored) are already contracted. Original edges are shown in black,
turn edges are shown in green, and shortcut edges are shown in blue. Left: The vertex to be
contracted and its neighbors before the contraction. The order on the turns is given by the numbers.
Right: The shortcuts added while contracting the turns. Phantom shortcuts are drawn dotted.

During CCH customization, however, there is no notion of graph searches at all. We
enumerate triangles and perform one basic operation for each triangle: adding up the costs of
two edges to update the cost of the third edge. Hence, to determine the cost of a shortcut s

containing self-loops, we must insert phantom shortcuts. These are used during customization
to incrementally compute the cost of s by repeatedly combining two of its constituent edges.

Preprocessing. Given a nested dissection order on the vertices, we contract them in this
order. When contracting a vertex v, we have to add a shortcut between each exit point u|i
with u 6= v and (u|i, v) ∈ E and each entry point w|l with w 6= v and (v, w|l) ∈ E. In
addition, as already mentioned, we must add phantom shortcuts, so that the customization
phase is able to compute the costs of shortcuts built from more than two edges incrementally.

Our approach is as follows. To contract a vertex v, we pick an order on the turns at v and
contract them in this order. Consider a turn (j, k) at v. For each edge (u|i, v|j) entering v at
entry point j and each edge (v|k, w|l) leaving v at exit point k, we add a shortcut (u|i, w|l).
Note that these shortcuts are concatenations of two edges, and thus their costs can be
customized. If u = v or w = v, then the shortcut is a phantom shortcut.

Note that this approach adds shortcuts that are not necessary. A shortcut (u|i, w|l) is
superfluous if u = v and all turns entering exit point i are already contracted, or w = v

and all turns leaving entry point l are already contracted. To decide whether a shortcut is
necessary, we maintain the number t(·) of uncontracted turns that enter or leave each exit or
entry point of v, respectively. Whenever we contract a turn (j, k), we decrement both t(j)
and t(k). A shortcut (u|i, w|l) is only inserted if u 6= v or t(i) 6= 0, and w 6= v or t(l) 6= 0.
Figure 5 illustrates the creation of phantom shortcuts.

Different turn orders can lead to slightly different numbers of phantom shortcuts. We
thus tested some turn orders on various benchmark instances, however, the impact on the
performance of all phases was limited. Therefore, any turn order that is easy to implement
can be picked, in particular, the order in which the turns are stored in memory.

Customization. We recontract each turn, this time determining shortcut costs. Since we
have the CCH topology in place, all we need to do to recontract a turn is to enumerate
all triangles spanned by this turn and perform one minimum operation for each triangle.
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Figure 6 A triangle spanned by the turn (j, k) at v. Note that (u|i, w|l) is the shortcut edge, and
(u|i, v|j) and (v|k,w|l) are the supporting edges of the triangle.

Consider a turn (j, k) at a vertex v and a triangle consisting of three edges (u|i, v|j), (v|k, w|l)
and (u|i, w|l); see Figure 6. We call (u|i, w|l) the shortcut edge and the other the supporting
edges of the triangle. Also, we say that the turn spans the triangle.

We recontract the vertices in the given nested dissection order, and within each vertex,
we recontract the turns in the same order as during preprocessing. If we pick the order in
which the turns are stored in memory, we do not have to store the turn order for each vertex
explicitly. For each turn at a vertex v, we enumerate the triangles spanned by the turn where
v is the lowest-ranked vertex, and for each triangle, we add the costs of the two supporting
edges and the turn between them, and update the cost of the shortcut edge if needed.

We now show how to efficiently enumerate all triangles spanned by a turn (j, k) where
the shortcut edge does not point downwards. The other case is symmetric. We maintain
a |V | ×∆ array W , where ∆ is the maximum indegree of the original graph. All values in
the array are initialized to ∞. First, we loop over all non-downward edges e2 = (v|k, w|l)
leaving v at k and set W [w, l] = Tv(j, k) + `(e2). Then, we loop through all non-downward
edges e1 = (u|i, v|j) entering v at j. For each such e1, we loop through all non-downward edges
e = (u|i, w′|l′) leaving u at i. If `(e1) + W [w′, l′] < `(e), then we set `(e) = `(e1) + W [w′, l′].
Finally, we loop over all edges e2 again and reset W [w, l] to ∞.

Interestingly, a nonturn version of this customization algorithm outperforms the original
customization by Dibbelt et al. [14] by a factor of four, and is twice as fast as the engineered
customization by Buchhold et al. [8]. The drawback is the increase in space consumption.

Queries. Dijkstra-based queries work as in standard CH on the compact model, however,
they do not need to follow phantom shortcuts. Elimination tree queries are not applica-
ble, since elimination trees are defined only for undirected graphs (and their bidirected
counterparts).

5 Experiments

In this section, we present our experimental evaluation. Our benchmark machine runs
openSUSE Leap 15.1 (kernel 4.12.14), and has 192GiB of DDR4-2666 RAM and two Intel
Xeon Gold 6144 CPUs, each of which has eight cores clocked at 3.5Ghz and 8 × 64KiB
of L1, 8 × 1MiB of L2, and 24.75MiB of shared L3 cache. Hyperthreading was disabled
and parallel experiments use 16 threads. Our code is written in C++ and compiled with
GCC 8.2.1 using optimization level 3.

We implement our algorithms on top of the existing open-source libraries. For CCH, we
use the implementation from RoutingKit1. We extend it by implementing customization for
directed hierarchies and the removal of infinite edges. For the computation of contraction

1 https://github.com/RoutingKit/RoutingKit
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Table 1 Road networks used for the evaluation our algorithms. The turns column contains the
number of allowed turns. It corresponds to the number of edges in the edge-based model. The
number of vertices in the edge-based model is equal to the number of edges in the original graph.

Source Vertices Edges Turns Turn
[·103] [·103] [·103] data

Chicago TransportationNetworks 13.0 39.0 135.3 100 s U-Turns
London PTV 37.0 85.5 137.2 Costs, Restrictions
Stuttgart PTV 109.5 252.1 394.2 Costs, Restrictions
Europe DIMACS 17 350.0 39 936.5 106 371.3 100 s U-Turns

orders, we use InertialFlowCutter2 [21] and implement the computation of cut-based orders
and the reordering of separator vertices. We publish our extensions to these projects as pull
requests on Github34. RoutingKit includes an implementation of InertialFlow [26] for the
computation of contraction orders. We perform experiments with both InertialFlow and
InertialFlowCutter. As InertialFlow is outperformed by InertialFlowCutter, our evaluation
focuses on contraction orders obtained by InertialFlowCutter.

Inputs and Methodology. We perform experiments on several graphs with synthetic and
real turn cost data. See Table 1 for an overview. We use three city-sized instances of the road
networks of Chicago [16], London and Stuttgart. The London and Stuttgart instances were
provided by PTV5 with real turn restrictions and cost data. Our biggest benchmark instance
is a graph of the road network of Western Europe made publicly available for the Ninth
DIMACS implementation Challenge [13] with synthetic turn costs. To generate synthetic
turn costs, we assign a travel time of 100 s to all U-turns. This number does not model a
realistic time but a heavy penalty. All other turns are free. This model has been suggested
in [11] and found to approximate real-world turn cost effects on the routing sufficiently well.

We perform experiments on the biggest strongly connected component of edge-based model
representation of each graph and the induced subgraph on the original graph. Preprocessing
running times are averages over 10 runs, customization running times averages over 100 runs.
We utilize parallelization only for the preprocessing. All other phases are run sequentially.
For the queries, we perform 1 000 000 point-to-point queries where both source and target
are edges drawn uniformly at random. In the edge-based model, these edges correspond to
vertices, which we select as source and target. For the original and compact graph, we use
the head vertices of these edges.

Edge-based model. We evaluate the impact of different contraction orders on the perfor-
mance of the different phases and the size of the augmented graph. Preprocessing includes
both computing the order and the contraction but is dominated by the ordering. Table 2
depicts the results. Incorporating turns has a significant impact on the running time of all
phases of CCH. The number of edges in the hierarchy grows at least by a factor of four to up
to more than an order of magnitude. The derived order performs the worst on all instances.

2 https://github.com/kit-algo/InertialFlowCutter
3 https://github.com/RoutingKit/RoutingKit/pull/77
4 https://github.com/kit-algo/InertialFlowCutter/pull/6
5 https://ptvgroup.com

https://github.com/kit-algo/InertialFlowCutter
https://github.com/RoutingKit/RoutingKit/pull/77
https://github.com/kit-algo/InertialFlowCutter/pull/6
https://ptvgroup.com
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Table 2 Performance results for different con-
traction orders on each graph. We report the
number of edges in the augmented graph and run-
ning times for preprocessing, customization, and
queries. Orig. denotes the baseline on the non-
turn/compact graph. The other three orders are
for the edge-based model. Deri. indicates the
derived order, Edge the order computed on the ex-
panded graph, Cut the order obtained by ordering
edges in the original graph.

CCH Edges Prepro. Custom. Query
[·103] [s] [ms] [µs]

C
hi
ca
go

Orig. 118 0.2 6 18
Deri. 1 439 0.2 155 150
Edge 819 1.1 50 60
Cut 852 0.2 51 57

Lo
nd

on

Orig. 182 0.3 7 20
Deri. 1 199 0.3 85 111
Edge 767 1.1 37 52
Cut 840 0.3 40 51

St
ut
tg
ar
t Orig. 362 0.5 11 16

Deri. 2 145 0.6 94 79
Edge 1 607 2.4 58 41
Cut 1 680 0.9 60 37

E
ur
op

e

Orig. 53 521 182.3 2 349 187
Deri. 414 615 202.1 29 787 1 561
Edge 311 213 2 321.1 14 787 524
Cut 331 794 256.3 14 751 577

Table 3 Performance impact of different
optimizations on each graph. We report the
number of triangles enumerated during the
customization as well as customization and
query running times. All configurations use a
cut-based contraction order. Directed hierar-
chies imply the removal of infinite shortcuts
and reordering separator vertices builds on
both directed hierarchies and the removal of
infinite shortcuts.

Triangles Custom. Query
[·106] [ms] [µs]

C
hi
ca
go

None 21.6 51 57
Infinity 19.6 48 56
Directed 13.3 28 41
Reorder 8.2 20 31

Lo
nd

on
None 12.9 40 51
Infinity 11.0 36 51
Directed 7.7 23 40
Reorder 4.8 18 30

St
ut
tg
ar
t None 11.4 60 37

Infinity 8.5 53 37
Directed 6.2 36 30
Reorder 4.4 32 22

E
ur
op

e

None 3 955.7 14 751 577
Infinity 3 413.6 13 942 582
Directed 2 319.7 9 590 407
Reorder 1 514.2 8 180 306

On Chicago, the customization slows down by a factor of 25. On the other instances, the
slowdown is about an order of magnitude. The slowdown for queries is not as strong but
still significant (by a factor of 5 to 8). Only the preprocessing stays comparatively fast as it
is dominated by the order computation, which can run on the unmodified original graph.
We conclude that this approach is not feasible.

With the edge-based order, we achieve a better order at the cost of additional prepro-
cessing time. The slowdown compared to a nonturn CCH is reduced to a factor of five
for the customization phase, for queries to 2.5 to 3. However, preprocessing takes up to
an order of magnitude longer. Orders computed by InertialFlow are generally worse than
InertialFlowCutter orders (the customization is a factor 1.3 to 1.5 slower) and on graphs
of the edge-based model this difference becomes even more pronounced (factor 1.3 to 2.8).
Consequentially, we focus on InertialFlowCutter orders.

Cut orders achieve the best trade-off between the running times of the different phases.
Customization and query performance is roughly the same as with an edge-based order. The
preprocessing slowdown is well below a factor of two for all graphs. InertialFlowCutter has
certain optimizations which find optimal vertex orders for certain subclasses of graphs. We
did not implement these optimizations for cut-based orders. We expect that implementing
them would close the gap in quality between edge-based and cut-based orders.

ATMOS 2020
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In Table 3, we report performance results depending on the additional optimizations
applied. All configurations use cut-based orders. We also report the number of triangles
enumerated during the customization as the triangle enumeration dominates the customization
running time. The impact of the optimizations is similar across all instances. All optimizations
combined roughly achieve a speedup of two on both customization and queries. Removing
undirected infinite shortcuts alone yields only small improvements. Combining this with
directed hierarchies and removing all directed infinite shortcuts has a much bigger impact.
This impact can be further amplified by reordering separator vertices, which produces even
more infinite shortcuts. Note that the work per triangle is different for directed hierarchies.
For undirected hierarchies, each triangle will be enumerated once and both directed triangles
will be relaxed at once. For directed hierarchies, however, both directions will be enumerated
separately. Thus, for undirected hierarchies, the number of relaxation operations is twice
the number of enumerated triangles and the reduction achieved by directed hierarchies
even greater. It is noteworthy that even though our optimizations primarily aim for the
customization running time, we also achieve a significant speedup for query running times.
The removal of infinite edges also reduces the number of edges in the query search space.

Compact Model. We also evaluate the performance of CCH with the compact model. The
implementation is considerable more complex than our optimizations for the edge-based model
and sadly does not deliver competitive performance. As we cannot use the efficient quotient
graph based contraction routine, preprocessing slows down by an order of magnitude as
previously observed in [14]. For the Europe instance, the augmented graphs in the compact
model and in the edge-based model contain a similar number of edges. The number of
triangles, however, increases by a factor of 43. This leads to a slowdown of the customization
by a factor of 34. Queries are even worse. The running time increases by a factor of 53. The
reason for this slowdown are vertices with high degrees (several thousand edges) in high-level
separators. This happens because we get shortcuts between almost all pairs of entry and
exit nodes of separator vertices. When an entry node is popped from the queue, all outgoing
edges of that vertex are relaxed. This leads to a tremendous amount of edge relaxations and
the observed slowdown. On Stuttgart and London, the slowdowns are around factor 20.

Comparison with related work. Table 4 summarizes our results and depicts them in
comparison to running times achieved by competing approaches as reported in [11]. The
experiments were performed on the publicly available Europe instance which is the only
instance also considered in related work. Our experiments were conducted on a newer
machine. Thus, the absolute numbers are not perfectly comparable. Using the comparison
methodology from [3], the numbers from [11] should scaled down by a factor of 0.79. We
observe that incorporating turns has a strong impact on all algorithms except CRP. Dijkstra
becomes at least 2.5 times slower. CH queries remain comparatively fast (at least on the
edge-based model), but preprocessing slows down by more than an order of magnitude.
The CRP nonturn variant is realized as free turns in the compact model which explains
why incorporating turns leaves the performance unaffected. While CCH achieves faster
running times than CRP in all phases on nonturn graphs, without our modifications, it is
outperformed by CRP on graphs with turns. However, when using cut-based orders and all
optimizations, CCH again outperforms CRP. CCH with the compact model is outperformed
by the optimized edge-based variant in all phases. Note that both the CRP and CCH
customization times can be further decreased through parallelization and by two related
techniques known as microcode [12] (for CRP) and triangle preprocessing [14] (for CCH).
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Table 4 Performance of Dijkstra, CH, CRP and CCH in the compact model, in the edge-
based model as is and with our optimizations (Edge-based*) on Europe with and without turns.
Preprocessing was executed in parallel, customization and query sequentially. For CH and CRP we
list unscaled results as reported in [11].

No turns Turns

Prepro. Custom. Queries Repr. Prepro. Custom. Queries
[s] [s] [ms] [s] [s] [ms]

Dijkstra - - 1 061.52 Edge-based - - 2 674.72
Compact - - 12 699.32

CH [11] 109 - 0.11 Edge-based 1 392 - 0.19
Compact 1 753 - 2.27

CRP [11] 654 10.55 1.65 Compact 654 11.12 1.67

CCH 182 2.35 0.19
Edge-based 2 321 14.79 0.52
Edge-based* 256 8.18 0.31
Compact 2 542 281.56 16.51

However, both techniques require significantly more space, and we choose not to use them to
keep the space requirement low.

6 Conclusion

We incorporated turn costs and restrictions into CCH. We presented several straightforward
yet effective optimizations that bring preprocessing and customization times on the expanded
graph close to those achieved on the simplified graph. Preprocessing now takes similar time
on the simplified and expanded graph, and customization on the expanded graph is only
roughly three times slower (down from up to an order of magnitude, e.g., on Chicago).

Adapting CCH to the compact model was much harder. We observed that CCH and the
compact model do not match well. CCH relies heavily on concepts for undirected graphs,
whereas the compact model is inherently directed. Moreover, shortcuts built from more than
two edges are an issue for CCH customization, where there is no notion of graph searches.
Consequently, our experiments showed that the CCH implementation tailored to expanded
graphs significantly outperforms the one for compact graphs.
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Abstract
Traditional navigation services find the fastest route for a single driver. Though always using
the fastest route seems desirable for every individual, selfish behavior can have undesirable effects
such as higher energy consumption and avoidable congestion, even leading to higher overall and
individual travel times. In contrast, strategic routing aims at optimizing the traffic for all agents
regarding a global optimization goal. We introduce a framework to formalize real-world strategic
routing scenarios as algorithmic problems and study one of them, which we call Single Alternative
Path (SAP), in detail. There, we are given an original route between a single origin–destination
pair. The goal is to suggest an alternative route to all agents that optimizes the overall travel time
under the assumption that the agents distribute among both routes according to a psychological
model, for which we introduce the concept of Pareto-conformity. We show that the SAP problem
is NP-complete, even for such models. Nonetheless, assuming Pareto-conformity, we give multiple
algorithms for different variants of SAP, using multi-criteria shortest path algorithms as subroutines.
Moreover, we prove that several natural models are in fact Pareto-conform. The implementation
and evaluation of our algorithms serve as a proof of concept, showing that SAP can be solved in
reasonable time even though the algorithms have exponential running time in the worst case.
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1 Introduction

Commuting is part of our daily lives. Street congestion, traffic jams and pollution became an
increasingly large issue in the last few decades. In German cities, these effects caused costs
of about 3 billion euros in 2019 [11]. Many traffic jams in cities could have been avoided by
better route choice. Partly this is because of non-optimal route choices by individuals due
to bounded rationality and route preferences other than “fastest” [30]. However, even with
individually optimal route choice, average travel time can be substantially worse compared to
a system optimum where all routes are centrally assigned [22]. Thus, there is an opportunity
for improving traffic via strategic routing where (re)routing recommendations are created by
traffic authorities and taken into account by the driver’s routing system. More precisely, we
speak of strategic routing when two conditions are met:
(i) One or more routes are calculated to be proposed to more than one agent, and
(ii) the quality of a set of proposed routes is being defined by a shared scoring rather than

scoring each agent individually.
Recent research indicates that many drivers would accept individually slower routes if this
contributes to an overall reduction in traffic [27, 14]; additionally, incentives such as free
parking could be granted to those accepting these routes, and future autonomous vehicles
may be more amenable to centralized control. Thus, (re)routing recommendations can have
a strong impact since they might be followed by a significant fraction of all drivers.

In the ongoing pilot research project Socrates 2.0, strategic routing is employed in the
area of Amsterdam [25]. For this, experts predefine alternative routes and traffic conditions
that trigger their recommendation. This requires extensive work and monitoring, and does
not capture well unusual traffic situations where there might be several incidents at once
causing delays. Thus, it is desirable to automate this by formalizing strategic routing and
finding algorithms that calculate strategic routes.

Our Contribution. Strategic routing as defined above is not a single algorithmic problem but
rather a concept capturing numerous scenarios leading to different problems. In Section 2, we
provide a framework to guide the process of formalizing real-world strategic routing scenarios.
We apply it to one specific scenario, namely Single Alternative Path (SAP). This scenario is
inspired by the Amsterdam use case mentioned above where congestion can be prevented by
suggesting one alternative route to all agents, e.g., via a variable-message sign. We consider
different psychological models to determine how many agents follow the suggestion. Moreover,
we consider variants of the SAP problem that require the alternative to be more or less
disjoint from the original route. See Section 2.2 for a formal definition.

To tackle SAP algorithmically, we introduce the concept of Pareto-conformity of psy-
chological models and, based on this, give various algorithms in Section 3. As they use
multi-criteria shortest path algorithms as subroutine, they have an exponential worst-case
running time but turn out to be sufficiently efficient in practice; see our evaluation in Section 5.
Moreover, in this generality, we cannot hope for better worst-case bounds as SAP is NP-hard,
even for Pareto-conform psychological models; see the full version [4] for a proof. In Section 4,
we prove the Pareto-conformity of three natural psychological models. Our proofs actually
hold for the more general and abstract Quotient Model that captures various additional

https://github.com/MaxiBoether/strategic-routing
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models. We evaluate our algorithms in Section 5. It serves as a proof of concept that our
algorithms have reasonable practical run times and yield promising travel time improvements
for instances in the traffic network of Berlin. Missing proofs and some additional evaluation
can be found in the full version of this paper [4].

Related Work. There has been no unique understanding of strategic routing in research
until this point. Van Essen [27] uses a choice-theoretical approach and concludes that
individual route choice and travel information that stimulates non-selfish user behavior have
a large impact on the network efficiency. Kröller et al. [14] investigate due to what kind
of incentives agents would deviate from the shortest-path route. Their results show that
certain incentives can increase the drivers’ willingness of taking detours. Moreover, they show
that there is a high interest in services providing alternative routes, and strategic routing is
considered to have the potential of solving traffic issues such as congestion and pollution.

For standard algorithmic techniques in efficient route planning, we refer to the survey
of Bast et al. [2]. Köhler et al. [15] deal with finding static and also time-dependent traffic
flows minimizing the overall travel time. Also, as stated by Strasser [26], routing with
predicted congestion is well-studied, e.g., by Delling and Wagner [8], Demiryurek et al. [9],
Delling [6] and Nannicini et al. [19]. Route planning with alternative routes was investigated
by Abraham et al. [1] and Paraskevopoulos and Zaroliagis [21]. They propose algorithms
that find alternative routes by evaluating properties with regard to an original route.

Lastly, we emphasize that strategic routing is very different from selfish routing as
proposed by Roughgarden and Tardos [23]. In contrast to our global optimization approach,
in selfish routing individual strategic agents select their routes to optimize their own travel
times, given the route choices of other agents. While often static flows are considered in selfish
routing, Sering and Skutella [24] analyzed selfish driver behavior for a dynamic flow-over-time
model. Another related selfish routing variant is Stackelberg routing [13, 5, 12, 3], where an
altruistic central authority controls a fraction of the traffic and first routes it in a way to
improve the travel times for all other selfish agents which choose their route afterwards.

2 A Framework for Strategic Routing

In the following, we provide a framework that supports the formalization of a given strategic
routing scenario. We employ a two-step process. The first step categorizes the scenario by
distilling its crucial aspects. The second step transforms it into an algorithmic problem.

2.1 Categorization
Categorizing a scenario at hand boils down to answering the following questions.

What is the goal we aim to achieve? There are different objectives one can pursue when
routing strategically. A city might be interested in reducing particulate matter emission in a
certain region. As a routing service provider, the goal could be to minimize the travel time
for as many customers as possible. A system of centrally controlled autonomous vehicles
might want to achieve a minimum overall travel time.

How can we influence the agents? How we recommend routes determines which agents
we can influence and whether we can make different suggestions to different agents. A city
administration can put up signs to influence all vehicles in a certain area, making the same
suggestion to each agent. Navigation providers, on the other hand, can influence only a
limited number of vehicles but could make different suggestions to different agents.
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How much control do we have over the agents? The willingness of users to follow an
alternative route depends on the use case. While a navigation provider cannot force its users
to use a specific route, and the acceptance of detouring depends heavily on the additional
length, there are scenarios where the suggested route will always be accepted or agents end
up in an equilibrium or in a system-optimal distribution on the suggested routes.

What is the starting situation? We either assume that there is already existing traffic, or
that we design traffic from scratch. Although the former is certainly more common, the
latter applies to, e.g., the scenario of centrally controlled autonomous vehicles.

How do the uninfluenced agents react? If only a fraction of the traffic is routed stra-
tegically, the remaining traffic might react with respect to the change. For instance, it is a
valid assumption that after some time, all traffic settles in an equilibrium. Another simple
assumption is that the other traffic does not change at all.

2.2 Problem Formalization

In this section, we first propose a generic formalization whose degrees of freedom can then be
filled to reflect a specific scenario. We focus on the Single Alternative Path (SAP) scenario,
which we study algorithmically in Section 3. We use it as an example how fixing answers to
the questions raised in Section 2.1 naturally fills the degrees of freedom.

Generic Strategic Routing Considerations. Let G = (V,E) be a directed graph. For every
pair of nodes (s, t) ∈ V 2, the demand d : V 2 → Q denotes the amount of traffic flow that
has to be routed from s to t. For every edge e ∈ E, let τe : Q≥0 → Q>0 be a monotonically
increasing cost function. For x ∈ Q≥0, τe(x) describes the costs for a single agent traversing
an edge e ∈ E while there is a traffic flow of x vehicles per unit of time on e.

The solution to a strategic routing problem is a traffic distribution to paths in the network
that routes agents according to d. Let P be the set of all simple paths in G. By f : P → Q≥0
we denote the flow, where f(P ) states the amount of traffic flow using path P . Extending
the notion, let f(e) =

∑
e∈P f(P ) be the total traffic flow on an edge e. For all x ∈ Q≥0, let

τP (x) =
∑
e∈P τe(x) be the costs per agent on P assuming that the total traffic on P is x.

Paths are denoted as tuples of vertices, i.e., (v1, . . . , vk) with vi ∈ V is a path if for
1 < i ≤ k, (vi−1, vi) ∈ E . In addition, we consider paths as edge sets and use set
operators, which also translates to the notion of cost functions, e.g., for paths P and Q let
τP∩Q(x) =

∑
e∈P∩Q τe(x).

Means of Influence. In the SAP problem, we assume that we can influence all agents on a
given original st-path Q and suggest a single alternative st-path P .

Starting Situation and Uninfluenced Traffic. We assume that there is existing traffic that
satisfies all demands and that uninfluenced agents stick with their previous routes. Note
that this allows us to integrate the uninfluenced traffic into the cost functions. Thus, we can
formalize it as if there was no initial traffic and that all demands are equal to 0 except for
the traffic on the original route Q which satisfies the demand d(s, t) > 0. For brevity, we
denote d = d(s, t).
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Level of Control. We assume that agents make their own decisions. Given an original
route Q and alternative P a psychological model determines the amount of flow xP on P .
The flow on Q is then d − xP . We consider the following three psychological models; see
Section 4 for formal definitions. The System Optimum assumes agents distribute optimally
with respect to the optimization criterion defined below. In the User Equilibrium [28] agents
act selfishly leading to an equilibrium where no agent can improve by unilaterally changing
their route [23]. In the Linear Model we assume that the willingness to choose P is linearly
dependent on the ratio of the costs on Q and P .

Optimization Criterion. The optimization criterion formalizes the goal to be achieved,
which is the overall travel time for SAP. Hence, we interpret the cost functions τe as latency
functions, i.e., the time a single agent needs to traverse the edge e. In the SAP problem,
we only consider one alternative P to an original route Q. Assume that we have a flow of
x ∈ [0, d] on P . Then, the edges in P \Q have flow x, the edges of Q \ P have flow d− x
and the edges of P ∩Q have flow d. Thus, the overall cost is

CP (x) = x · τP\Q(x) + (d− x) · τQ\P (d− x) + d · τP∩Q(d). (1)

For the value xP determined by the psychological model, the actual cost of an alternative
route P is CP (xP ), which we abbreviate with CP . Let P be a set of alternative paths.
Computing the path P in P with optimal CP is called scoring P.

Summary and Problem Variants. To sum up the SAP problem, given a route Q from s

to t, a demand d of agents per unit of time and a psychological model, the SAP problem
asks for the optimal alternative route P such that the overall travel time CP is minimized.

In general P can have arbitrarily many overlaps with Q. Additionally, we consider two
variants of SAP, where we require the routes to be more or less disjoint. Disjoint Single
Alternative Path (D-SAP) requires P and Q to be completely disjoint. Moreover, 1-Disjoint
Single Alternative Path (1D-SAP) requires P \Q to be a single connected path, i.e., P diverts
from Q at most once but can share the edges at the start and the end with Q.

3 Algorithms for Single Alternative Path

Consider two alternative paths P1 and P2 with cost functions τP1 and τP2 , respectively.
Assume that for any amount of traffic x ∈ [0, d], the cost of P1 is not larger than of P2, i.e.,
τP1(x) ≤ τP2(x). It seems intuitive that it is never worse to choose P1 over P2. However, this
is not quite right for two reasons. First, it does not hold for arbitrary psychological models,
which determine the amount of agents (potentially in a somewhat degenerate fashion) who
choose P1 and P2, respectively, instead of the original route Q. Secondly, if the alternative
route P1 shares many edges with the original route Q it has only little potential to distribute
traffic, whereas the seemingly worse alternative P2 could do better in this regard.

We resolve the first issue by defining a property that we call (weak) Pareto-conformity.
Moreover, in Section 4, we show for various psychological models that they are in fact
Pareto-conform. To resolve the second issue with shared edges, we introduce a notion of
dominance between paths that takes the overlap with Q into account.
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Let τ1 and τ2 be two cost functions defined on the interval [0, d] and let τ ′i denote the
derivative of τi.1 For two alternative paths P1 and P2, we say that P1 dominates P2, denoted
by P1 � P2, if τP1 ≤ τP2 and τ ′P1∩Q ≤ τ ′P2∩Q. Note that, if P1 ∩ Q = P2 ∩ Q, then this
simplifies to τP1 ≤ τP2 . With this, we can define the above-mentioned Pareto-conformity.

I Definition 1. A psychological model is Pareto-conform if P1 � P2 implies CP1 ≤ CP2 . It
is weakly Pareto-conform if this holds for paths that have equal intersection with Q.

To simplify notation, we assume without loss of generality that there are no two different
paths P1 and P2 with P1 � P2 and P2 � P1. This can, e.g., be achieved by slight perturbation
of the cost functions, or by resolving every tie arbitrarily.

In the following we give different algorithms for the SAP, 1D-SAP and D-SAP problems.
The algorithms involve solving one or more multi-criteria shortest path problems as subroutine.
Algorithms for this problem range from the fundamental examination of the bicriteria case [10]
to the usage of speed-up techniques [7, 16] in the multi-criteria case. One such algorithm
is the multi-criteria Dijkstra, which has exponential run time in the worst case [17] but is
known to be efficient in many practical applications [18].

The algorithms we present first (Sections 3.1–3.3) require solving only a single multi-
criteria shortest path problem, with the D-SAP setting requiring fewer criteria than SAP
and 1D-SAP. In Sections 3.4 and 3.5, we propose approaches that require multiple such
searches. Though the former seems preferable, the latter has some advantages. It requires
fewer criteria in the multi-criteria sub-problems, it requires only weak Pareto-conformity for
the 1-disjoint setting, and it allows for easy parallelization. Our experiments in Section 5
indicate that the variants requiring fewer criteria are often faster for long routes.

3.1 Reduction to Multi-Criteria Shortest Path
We are now ready to solve SAP. Definition 1 directly yields the following lemma.

I Lemma 2. For any instance of SAP with a Pareto-conform psychological model, there
exists an optimal solution that is not dominated by any other alternative.

Thus, to solve SAP, it suffices to find all alternative paths that are not dominated by other
paths, and then choose the best among these potential solutions. We reduce the problem of
computing the set of potential solutions to a multi-criteria shortest path problem. In such a
problem, each path corresponds to a point p ∈ Qk, where the entry at the i-th position of p
is the cost of the path with respect to the i-th criterion. One then searches for all solutions
that are not Pareto dominated by other solutions. For two points p1, p2 ∈ Qk, p1 Pareto
dominates p2 if p1 ≤ p2 component-wise. Finding all solutions that are not Pareto dominated
is the previously mentioned multi-criteria shortest path problem. How the transformation to
a multi-criteria problem exactly works depends on the cost functions.

Assume for now that τ(x) = ax2 + b for positive a and b. We call the family of cost
functions of this form canonical cost functions. It is closed under addition. Thus, the cost
function of each path is also a canonical cost function. Note that two different canonical
cost functions intersect in at most one point on [0, d]. Thus, we have τ1 ≤ τ2 if and only
if τ1(0) ≤ τ2(0) and τ1(d) ≤ τ2(d). It follows that requiring τ1 ≤ τ2 is equivalent to saying
that (τ1(0), τ1(d)) Pareto dominates (τ2(0), τ2(d)). Additionally, the function τ1 + τ2 can be
represented by (τ1(0) + τ2(0), τ1(d) + τ2(d)). Similarly, with τ ′1(x) = 2a1x and τ ′2(x) = 2a2x

we have τ ′1 ≤ τ ′2 if and only if a1 ≤ a2. Addition works again as expected.

1 In the remainder, we implicitly assume all cost functions to be only defined on [0, d], e.g., τ1 ≤ τ2 means
τ1(x) ≤ τ2(x) for all x ∈ [0, d]. Also, we implicitly assume functions to be differentiable.
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Figure 1 Graph transformation for the 1D-SAP algorithm. Blue edges represent an arbitrary
number of incoming edges, red edges an arbitrary number of outgoing edges.

To generalize this concept, consider a class of functions T that is closed under addition.
We say that T has Pareto dimension k if the following holds. There exists a function
p : T → Qk such that τ1 dominates τ2 if and only if p(τ1) Pareto dominates p(τ2), and such
that p(τ1 +τ2) = p(τ1)+p(τ2). We call p the Pareto representation of T . The above canonical
cost functions have Pareto dimension 2 and their derivatives have Pareto dimension 1.

With this, P1 � P2 reduces to having p(τP1) ≤ p(τP2) and p′(τ ′P1∩Q) ≤ p′(τ ′P2∩Q), where p′
is a Pareto representation of the class of all derivatives of functions in T . This is equivalent
to the concatenation of p(τP1) and p′(τ ′P1∩Q) Pareto dominating the concatenation of p(τP2)
and p′(τ ′P2∩Q). Thus, dominance of paths reduces to Pareto dominance.

I Theorem 3. SAP with Pareto-conform psychological model and cost functions with Pareto
dimension k whose derivatives have Pareto dimension ` reduces to solving a multi-criteria
shortest path problem with k + ` criteria and scoring the result.

3.2 Enforcing 1-Disjoint Routes

1D-SAP can be solved by modifying the graph and then applying the same approach as above.
Let Q = (v1, . . . , vq) with s = v1, t = vq. We consider the graph G′, which is a copy of G
where for each vi ∈ {v2, . . . , vq−1} a node v′i is added. Moreover, vi in G′ has all outgoing
edges of vi in G, but only the incoming edge from vi−1. Similarly, v′i in G′ has all incoming
edges of vi in G, but only the outgoing edge to v′i+1; see Figure 1. With this, computing all
non-dominated 1-disjoint paths in G reduces to computing all non-dominated paths in G′.

I Theorem 4. Theorem 3 also holds for 1D-SAP.

3.3 Fewer Criteria for Disjoint SAP

We now consider the D-SAP variant whose major advantage is that we can solve it with fewer
criteria in the multi-criteria shortest path part of the algorithm. Analogously to Lemma 2,
the following lemma follows from Definition 1.

I Lemma 5. For any instance of D-SAP with a weakly Pareto-conform psychological model,
there exists an optimal solution that is not dominated by any other alternative disjoint from Q.

To guarantee that we only find paths disjoint from Q, we remove Q from the graph. For
two paths P1 and P2 in the resulting graph, the dominance P1 � P2 simplifies to τP1 ≤ τP2 .
This observation together with Lemma 5 gives us the following theorem. Note that we only
need weak Pareto-conformity here, as all paths have no intersection with Q.
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I Theorem 6. D-SAP with a weakly Pareto-conform psychological model and cost functions
with Pareto dimension k reduces to solving a multi-criteria shortest path problem with k

criteria and scoring the result.

3.4 Fewer Criteria for 1-Disjoint SAP
We start by deleting the edges of Q = (v1, . . . , vq) from the graph. In the resulting graph,
for every pair 1 ≤ i < j ≤ q, we calculate the set Pi,j of all routes between vi and vj that
are minimal with respect to dominance. We define the corresponding augmented path for a
path P ∈ Pi,j as P̃ = (v1, . . . , vi−1) ∪ P ∪ (vj+1 . . . , vq), which is a 1-disjoint path from s to
t. We denote the set of paths from s to t obtained by augmenting all paths in Pi,j by P̃i,j .

I Lemma 7. For an instance of 1D-SAP with weakly Pareto-conform psychological model,
there exists an optimal solution among the paths in the sets P̃i,j.

From Section 3.3, we know that we can compute all non-dominated paths from vi to vj by
using a multi-criteria shortest path algorithm. Thus, 1D-SAP reduces to solving

(
q
2
)
∈ Θ(q2)

multi-criteria shortest path problems, one for each pair of vertices vi, vj ∈ Q. We note that
many shortest path algorithms actually solve a more general problem by computing paths
from a single start to all other vertices. Thus, instead of Θ(q2) shortest path problems, we
can solve q multi-target shortest path problems, using each vertex in Q as start once.

I Theorem 8. 1D-SAP with weakly Pareto-conform psychological model and cost functions
with Pareto dimension k reduces to solving q multi-criteria multi-target shortest path problems
with k criteria and scoring the resulting augmented paths.

3.5 Fewer Criteria for SAP
We now provide an algorithm for the SAP problem that requires fewer criteria. We use a
dynamic program that combines non-dominated subpaths to obtain the optimal solution.
To formalize this, we need the following additional notation. For vi, vj ∈ Q with i < j, a
path from vi to vj is called Q-path or more specifically Qi,j-path. A set A of Qi,j-paths is
reduced if no path in A is dominated by another path in A. Let A and B be two reduced
sets of Qi,j-paths. Their reduced union is obtained by eliminating from A ∪B all paths that
are dominated by another path in A∪B. Moreover, let A and B be two reduced sets of Qi,j
and Qj,k-paths, respectively. Then their reduced join is obtained by concatenating every
path in A with every path in B and eliminating all dominated paths.

We start by applying the algorithm from Section 3.4, computing the sets Pi,j for all
1 ≤ i ≤ j ≤ q, which are the reduced sets of all Qi,j-paths that are disjoint from Q. Then,
we compute sets Pj of Q1,j-paths and one can show that Pj is in fact the reduced set of all
Q1,j-paths. We initialize P1 = {(v1)}. Now, assume we have computed Pi for all i < j. We
obtain Pj as the reduced union of the following sets of Q1,j-paths: the reduced join of Pi
and Pi,j for every i < j, and the reduced join of Pj−1 and {(vj−1, vj)}.

I Lemma 9. For an instance of SAP with a Pareto-conform psychological model, there exists
an optimal solution among the paths in Pq.

After computing the sets Pi,j as in Section 3.4, it remains to compute Θ(q2) reduced
joins and Θ(q2) reduced unions between reduced sets of Q-paths. Then, it only remains to
score the result Pq. The shortest path computations from Section 3.4 use k criteria where k
is the Pareto-dimension of the cost functions. The reduced joins and unions are with respect
to k + ` criteria, where ` is the Pareto dimension of the derivatives of the cost functions.
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I Theorem 10. SAP with Pareto-conform psychological model and cost functions with Pareto
dimension k whose derivatives have Pareto dimension ` reduces to solving q multi-target
shortest path problems with k parameters, executing Θ(q2) reduced join and union operations
with respect to k + ` criteria between reduced sets of Q-paths, and scoring the result Pq.

4 Psychological Models and Pareto-Conformity

In this section, we formally define the models mentioned in Section 2.2 and show their
Pareto-conformity. After considering the System Optimum Model, we define the Quotient
Model, which is a generalization of the User Equilibrium Model and the Linear Model. We
give conditions under which a Quotient Model is Pareto-conform and thereby prove that the
User Equilibrium Model and the Linear Model are both Pareto-conform.

The System Optimum Model assumes that agents distribute optimally, i.e., xP ∈ [0, d]
minimizes CP (xP ). We get that P1 � P2 implies CP1(x) ≤ CP2(x) for each x ∈ [0, d].

I Theorem 11. The System Optimum Model is Pareto-conform.

For the Quotient Model, let c(x) be non-decreasing, non-negative on [0, d] with c(d) > 0.
If

τQ\P (d− x) + τP∩Q(d)
τP\Q(x) + τP∩Q(d) = c(x) (2)

has a solution in [0, d], it is unique for the following reason. The numerator and denominator
are the cost of Q and P , which are decreasing and increasing in x, respectively. Thus, the
quotient is decreasing, while c(x) is non-decreasing, which makes the solution unique. The
Quotient Model sets xP to this unique solution if it exists. If no solution exists, then the
left-hand side is either smaller or larger than c(x) for every x ∈ [0, d], in which case we set
xP = 0 or xP = d, respectively. This is the natural choice, as xP = 0 and xP = d maximizes
and minimizes the left-hand side, respectively. We note that c specifies how conservative
the agents are. If c(x) = 1, the agents distribute on Q and P such that both paths have the
same cost. If c is smaller, then agents take the alternative route, if it is not too much longer.

Recall from Equation (1) that the cost function CP (x) is a combination of the three
functions τP\Q, τQ\P , and τP∩Q. If Equation (2) has a solution xP , we know how τP\Q(x)
and τQ\P (x) relate to each other at x = xP . In other words, solving Equation (2) for
τP\Q(xP ) or τQ\P (xP ) and replacing their occurrence in CP = CP (xP ) with the result lets
us eliminate τQ\P or τP\Q, respectively, from CP . We do this in the following two lemmas,
which additionally take the special cases xP = 0 and xP = d into account.

I Lemma 12. Let gP (x) = (d− x) · c(x) + x. Then CP ≤ gP (xP ) ·
(
τP\Q(xP ) + τP∩Q(d)

)
.

If xP > 0, then equality holds.

We note that c(xP ) > 0 holds for the following reason. For xP = d this is true by
definition. For xP < d, the left-hand side of Equation (2) is equal to its right-hand side or
less (in which case xP = 0). As the right-hand side is c(xP ) and the left-hand side is positive,
we get c(xP ) > 0. Thus it is fine to divide by c(xP ) in the following lemma.

I Lemma 13. Let gQ(x) = d+ x/c(x)− x. Then CP ≤ gQ(xP ) ·
(
τQ\P (d− xP ) + τP∩Q(d)

)
.

If xP < d, then equality holds.

The following lemma provides the core inequalities we need when comparing the cost of
two alternative paths. Note how the inequalities in parts 1 and 2 of the lemma resemble the
representation of the cost CP in Lemma 12 and Lemma 13, respectively.
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I Lemma 14. Let P1 and P2 be alternative paths with P1 � P2 and let x1, x2 ∈ [0, d]. Then
1. τP1\Q(x1) + τP1∩Q(d) ≤ τP2\Q(x2) + τP2∩Q(d) if x1 ≤ x2, and
2. τQ\P1(d− x1) + τP1∩Q(d) ≤ τQ\P2(d− x2) + τP2∩Q(d) if x1 ≥ x2.

Proof sketch. Recall that P1 � P2 means that for all x ∈ [0, d], τP1(x) ≤ τP2(x) and
τ ′P1∩Q(x) ≤ τ ′P2∩Q(x), where τ ′ denotes the derivative of τ . For the first case x1 ≤ x2, we get

τP1\Q(x1) + τP1∩Q(d) = τP1\Q(x1) + τP1∩Q(x1)− τP1∩Q(x1) + τP1∩Q(d)
= τP1(x1) + τP1∩Q(d)− τP1∩Q(x1),

using that τP1(x) ≤ τP2(x) and τ ′P1∩Q(x) ≤ τ ′P2∩Q(x)

≤ τP2(x1) + τP2∩Q(d)− τP2∩Q(x1)
= τP2\Q(x1) + τP2∩Q(x1) + τP2∩Q(d)− τP2∩Q(x1)
= τP2\Q(x1) + τP2∩Q(d).

As τP2\Q is an increasing function and x2 ≥ x1, we obtain τP2\Q(x1) ≤ τP2\Q(x2), which
concludes this case. The case x1 ≥ x2 works very similar. J
Applying the previous three lemmas and dealing with the additional functions gP (x) and
gQ(x) in Lemma 12 and Lemma 13, respectively, yields the following.

I Theorem 15. The Quotient Model is Pareto-conform if c(d) ≤ 1 and, for all x ∈ [0, d],
c(x) · (1− c(x))− x · c′(x) ≤ 0.

The User Equilibrium Model is obtained by setting c(x) = 1 in Equation (2). The Linear
Model is defined by setting c(x) to an increasing linear function, i.e., c(x) = c · x/d for c > 0.

I Corollary 16. The User Equilibrium and Linear Model with c ≤ 1 are Pareto-conform.

The Linear Model with c ≤ 1 is less conservative than the User Equilibrium Model, i.e.,
more agents use the alternative path, in particular if only few agents use it based on its cost.

5 Empirical Evaluation

In this section we fix implementation details and evaluate the proposed algorithms. Our
evaluation focuses on the following aspects.
Performance. Are the algorithms sufficiently efficient for practical problem instances? How

do the different algorithms compare in terms of run time?
Strategic Improvement. How much does strategic routing improve the overall travel time?

How does the requirement of disjoint or 1-disjoint alternatives impact this improvement?

Figure 2 Visualization of example routes: original route (blue), optimal alternative routes with
respect to the User Equilibrium for SAP (green), for 1D-SAP (black), and D-SAP (orange).



T. Bläsius et al. 10:11

0 100 200 300

100

101

102

103

104

vertices in original route

ru
n

tim
e

in
se

co
nd

s SAP
SAP-FC
1D-SAP

1D-SAP-FC
D-SAP

0 100 200 300

10−2

10−1

100

101

vertices in original route

sp
ee
du

p
of

SA
P
-F
C

Figure 3 Left: Absolute run times. Each point represents one OD-pair for demand d = 2000. For
D-SAP, we excluded the OD-pairs that did not have a solution that was disjoint from the original
route. Right: Speedup of SAP-FC over SAP, with one point for each OD-pair and each value of d.

Additional evaluation regarding the psychological models can be found in the full version [4].
For now, we fix the psychological model to be the User Equilibrium.

We model cost functions τe as proposed by the U.S. Bureau of Public Roads [20], i.e., for
parameters α, β ≥ 0, we have τe(x) = `e/se · (1 + α(x/ce)β) where se, ce, and `e denote free
flow speed, capacity and length of e. We set α = 0.15 and β = 2. Thus, for appropriate a
and b, we get canonical cost functions of the form τe(x) = ax2 + b as defined in Section 3.

For solving the multi-criteria shortest path problem, we implement a multi-criteria A*
variant [16]. As lower bound, we use the distances in the parameters a and b to t. These
distances are calculated using two runs of Dijkstra’s algorithm. We note that A* solves a
multi-target shortest path problem, which we need for two algorithms; see Section 3.4. For
calculating the Pareto-frontiers we use the simple cull algorithm [29].

We use the following naming scheme. We abbreviate the algorithms from Sections 3.1
and 3.2 with SAP and 1D-SAP, respectively. We denote the fewer criteria (FC) approaches
with D-SAP (Section 3.3) 1D-SAP-FC (Section 3.4) and SAP-FC (Section 3.5). To evaluate
the strategic improvement, we compare them to the solution of proposing only the shortest
path to all agents, assuming either one single agent (1-SP) or d agents (d-SP) on every edge.

We test our implementations on the street network of Berlin, Germany with 75 origin–
destination pairs (OD-pairs), randomly chosen from real-world OD-pairs. The OD-pairs as
well as the network were provided by TomTom. For every OD-pair, we set Q to the shortest
route for a single agent and run all algorithms for our psychological models and demands
d ∈ {100, 500, 1000, 1500, 2000, 2500, 3000}. One unit of demand represents 7–20 vehicles per
hour. The imprecision is due to the fact that the exact penetration rate of TomTom devices
is unknown and that the map data is given with respect to only TomTom users.

All experiments have been conducted on a machine with two Intel Xeon Gold 5118
(12-core) CPUs with 64GiB of memory. The multi-criteria shortest-path calculations of
SAP-FC and 1D-SAP-FC have been parallelized to 20 threads.

Run Time. Figure 3 shows the run times of our algorithms, depending on the length of
the original route. The main takeaways from Figure 3 (left) are that requiring disjoint
routes makes the problem easier and that the algorithms requiring fewer criteria but more
multi-criteria shortest path queries are faster for instances with long original routes. Figure 3
(right) shows the speedup of SAP-FC over SAP. One can see that SAP is actually faster than
SAP-FC for most instances, sometimes up to two orders of magnitude. However, these are
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Figure 4 The plots show the travel time per agent depending on the demand d, where each data
point is averaged over all OD-pairs. Absolute values are shown on the left, relative values with
respect to the d-SP solution are shown on the right.

the instances with short original route, which have low run times anyways. On the other
hand, SAP-FC is up to one order of magnitude faster than SAP on some instances with
long original path. We note that the multi-criteria shortest path queries in SAP-FC can
be parallelized, and we used 20 threads in our experiments. However, this parallelization
cannot explain such high speedups. In Figure 3 (left), one can see that SAP-FC actually has
rather consistent run times compared to SAP and never exceeded 30 minutes. Thus, our
observations show that we can feasibly solve the problems SAP and even more so 1D-SAP in
the context of small distance queries, e.g., in city networks, despite the worst-case exponential
running time.

Strategic Improvement. We assess how much strategic routing gains in terms of travel
time with respect to different disjointedness. Figure 2 shows solutions for SAP, 1D-SAP and
D-SAP routes. The resulting travel times are shown in Figure 4. We see that the larger the
number of agents, the more we benefit from strategic routing. The plots show that, in direct
comparison to the shortest path assuming d agents per edge (d-SP), the SAP algorithms
yield results of about 50 % reduced travel time for growing values of d. Constraining the
alternative route to be 1-disjoint from the original only has a slight disadvantage (on average
1D-SAP is worse by 2.2 %). Thus, taking into account that 1D-SAP can be solved faster,
solving 1D-SAP might give a good trade-off between run time and quality of the solution.
Demanding full disjointedness leads to much worse travel times, as in 62.3% of our test cases,
no fully disjoint alternative exists, due to the graph structure. In this case, we assume that
all agents use the original route. Restricted to the instances that allow for a fully disjoint
solution, the solution to D-SAP on average leads to a 11.4 % higher travel time per agent
compared to 1D-SAP.

6 Conclusion

Besides providing a framework for formalizing strategic routing scenarios, we gave different
algorithms solving SAP. Both of these contributions open the door to future research.
Concerning SAP, we have seen that different psychological models can lead to different
alternative routes, and it would be interesting to study how people actually behave depending
on the exact formulation of the suggestion and on potential additional incentives to take a
longer route. It is promising to study models that lie in-between the User Equilibrium and the
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Linear Model. By setting, e.g., c(x) = tanh(a · x/d) in the Quotient Model (Equation (2)),
we obtain a model that behaves like the Linear Model for small x and approaches the User
Equilibrium Model for larger x, where the constant a controls how quickly that happens.
We note that this choice of c(x) satisfies the conditions of Theorem 15, implying that the
resulting model is Pareto-conform, which makes the algorithms from Section 3 applicable.
Concerning algorithmic performance, we have seen that our proof-of-concept implementation
yields reasonable run times. Our implementation uses techniques such as A* to speed
up computation. Beyond that, there is still potential for engineering, e.g., by employing
preprocessing techniques. Beyond the SAP problem, our framework gives rise to various
problems in the context of strategic routing that are worth studying algorithmically.
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Abstract
This paper deals with the computation of d-dimensional multicriteria shortest paths. In a weighted
graph with arc weights represented by vectors, the cost of a path is the vector sum of the weights of
its arcs. For a given pair consisting of a source s and a destination t, a path P dominates a path Q

if and only if P ’s cost is component-wise smaller than or equal to Q’s cost. The set of Pareto paths,
or Pareto set, from s to t is the set of paths that are not dominated. The computation time of the
Pareto paths can be prohibitive whenever the set of Pareto paths is large.

We propose in this article new algorithms to compute approximated Pareto paths in any dimension.
For d = 2, we exhibit the first approximation algorithm, called Frame, whose output is guaranteed
to be always a subset of the Pareto set. Finally, we provide a small experimental study in order to
confirm the relevance of our Frame algorithm.
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1 Introduction

1.1 Context and Motivation
Computing a shortest path is a classical problem and it has been widely studied for one
criterion. However, in a transportation network for example, one is often interested in
finding a path minimizing several criteria like the duration, the financial cost, or the physical
effort. The list of potentially interesting criteria gets even larger with the development of
multimodal and public transportation systems, when a traveler can walk, take a taxi, a plane,
a train within a journey. For instance, the number of connections [6] matters especially
when time tables are uncertain. Even time might have different facets: in temporal graphs,
it is different to minimize arrival time and traveling time [8, 25]. More generally, people
want to get personalized answers taking simultaneously into account several criteria, that
is handling several cost functions. For a given path of cost (c1, c2, . . . , cd), the first natural
approach consists in computing a linear combination of the costs, that is

∑
1≤i≤d αici, for

some coefficients αi. Then any algorithm dedicated to shortest path computation for one
criterion can be used. This approach has several drawbacks: how to set up the αi’s? Does
such a formula have a semantic meaning?

A first immediate property drops whenever a multiple cost function is considered: the
“smallest” cost is no more unique. Taking a helicopter to reach a destination is much quicker
than walking but it is also much more expensive! We can also think of other paths with
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11:2 Approximate Multicriteria Shortest Paths

other transportation vehicles that are all incomparable for the two criteria time and price.
A set of paths representing all incomparable “best” costs is called a set of Pareto paths1
and reflects the variety of smallest costs. A Pareto set can be exponentially large even for
bounded degree graphs and two criteria [10]. As a consequence, the computation may take a
lot of time and require an significant amount of space. Besides, in practical settings, users
do not want to get thousands of propositions. To reduce the size of a Pareto set, the notion
of (1 + ε)-Pareto set1 has been proposed and proved to always exist even with the constraint
of having a polynomial size in n [18].

Dijkstra-based algorithms for multiple criteria, called in this paper MC Dijkstra, also
called Multicriteria Label Setting (MLS)2, have been proposed in order to compute exact
Pareto sets for two [10] or more dimensions [15]. Whenever the criteria are correlated and
the distance between the source and the destination is small, Pareto sets tend to be small.
For instance, for 10K vertices, using as criteria time and distance, the existing solutions are
practical.

However, these algorithms are not scalable in practice: without any preprocessing, it
takes a few seconds to solve a query in a network of 18 millions vertices modeling western
Europe [2] for queries with only one criterion. Informally, even for a city like Prague with
65K nodes, for a given pair of source and destination, an exact Pareto set often contains
thousands of paths for three criteria [11] and its computation may take around 10 minutes.
Since a query can require to store all the incomparable paths for one source, the amount of
memory can be a thousand times larger than the storage of the graph itself.

In order to compute queries on large graphs and to limit the number of optimal paths
proposed to users, the approximation of Pareto sets is promising. The main difficulty is that,
even if the output may be quite small, the existing algorithms require a large working memory,
and very little is known about the time and the memory of computing (1 + ε)-approximations
of Pareto sets. To speed up the queries for one criterion, preprocessing algorithms are
presented in the survey [2] but it is not obvious that all of these techniques can be efficient
for multicriteria queries.

1.2 Problem Description and State of the Art

1.2.1 Exact and Approximated Pareto Sets
The input of our problem is a weighted directed graph G = (V,A) of n vertices and m arcs
defined on d criteria, and a source vertex s. The graph may contain multiple arcs and loops.
The weight w(a) of an arc a is a d-dimensional vector whose values belong to the range
{0} ∪ [1, C], the components of the arc weights being normalized and bounded by some
common value C. The cost c(P ) = (P1, . . . , Pd) of a k-hop path P = a1, . . . , ak is the vector
sum

∑
1≤i≤k w(ai).

A path P dominates a path P ′ if Pi ≤ P ′i for every i ∈ {1, . . . , d}. A Pareto set of a set T
of paths is a set of incomparable3 paths from T , that are not dominated by any other path
from T with a different cost, and which is maximal by inclusion. In particular, if several
paths of T have the same cost, then at most one is kept in a Pareto set of T . Notice that
if S is a Pareto set of some set T , then the Pareto set of S is S itself. The Multicriteria

1 A formal definition will be given in Section 1.2.1.
2 The letters M and S may also stand for “Multiobjective” and “Scheme” respectively.
3 w.r.t. dominance
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(a) {B, D} is a 2-Pareto set. (b) Regions containing the incomparable paths
2-covering B.

Figure 1 Pareto sets and Covering.

Shortest Path problem consists in finding, for each vertex v ∈ V , a Pareto set Sv of the set of
all paths from s to v. We use the notations Sv = |Sv| and S =

∑
v∈V Sv. The values Sv and

S do not depend on the actual choices of the sets Sv, since these values derive from the size
of the unique Pareto set of the path costs.

A path P (1 + ε)-covers a path P ′ if Pi ≤ (1 + ε)P ′i for every i ∈ {1, . . . , d}. A (1 + ε)-
Pareto set of a set T is a set Sε of incomparable paths from T , such that any path of T is
(1 + ε)-covered by a path in Sε. In particular, a 1-Pareto set is a Pareto set and vice versa.
Then, the (1 + ε)-approximated Multicriteria Shortest Path problem consists in finding, for
each vertex v ∈ V , a (1 + ε)-Pareto set Sv,ε of the set of all paths from s to v.

A solution (Sv,ε)v∈V to the (1 + ε)-approximated Multicriteria Shortest Path problem
is said to be Pareto compatible if and only if Sv,ε is a subset of a Pareto set Sv, for every
vertex v. This property is useful since it guarantees that the size Sε of the output of an
approximation algorithm is always at most S. In Fig. 1a, S = {A,B,C,D,E, F} is a Pareto
set of all the paths, whereas {B,D} is a 2-Pareto set. The two quadrants bounded by the
dashed lines represent the areas 2-covered by B and D. Note that there may be various
(1 + ε)-Pareto sets when ε > 0. For example the set {G,D} is also a 2-Pareto set even though
G /∈ S.

To solve the Multicriteria Shortest Paths problem, Hansen [10] proposes a generalization
of Dijkstra’s algorithm with two criteria. This algorithm has then been generalized to
any number of criteria in [15]. The bicriteria algorithm proposed by Hansen operates in
O(mnC log(nC)) time. In [3], it is proved that the standard MC Dijkstra for the one-to-all
query in dimension d has time complexity O(nS2) and uses O(nS) space when there are no
multiple arcs. Although S can reach Θ(n(nC)d−1), it is very unlikely in practice to get such
a size.

It is also interesting to observe that exact Pareto sets are not always large in practice,
especially if the criteria are correlated. In [17], Pareto sets sizes are often smaller than 100
for real graphs and synthetic graphs with a random weight assignment. However, when
the number of criteria grows and some are negatively correlated, Pareto set sizes can be
unpractical. Some examples can be found in [1]. An experimental comparison of methods
are presented in [19] on grids and road networks up to 300K nodes. It does not exhibit which
algorithm is the best in practice for exact Pareto sets.

ATMOS 2020
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Papadimitriou and Yannakakis show that for any multiobjective optimization problem,
there exists a (1+ε)-Pareto set (Sv,ε)v∈V of polynomial size in n even if C is exponential in n.

In our context, they show that Sv,ε can be in O
((

log(nC)
ε

)d−1
)
. It means that the output

can be quite small but the difficulty is still to limit the time and the memory space during the
computation. For d = 2, Hansen [10] proposes a solution applying m times MC Dijkstra
on the initial graph. In a similar fashion, Warburton [24] gives an algorithm for any d, calling
an exact algorithm several times. This algorithm could require less MC Dijkstra iterations
than Hansen’s, but this number is still claimed in [4] to be too huge in order to be competitive
in practice. Wang et al. develop in [23] a new algorithm called α-Dijkstra, pruning path
with a variable severity, depending on the number of best paths kept at a certain stage of
the algorithm. This algorithm is limited to d = 2. Tsaggouris and Zariolagis [21] propose

a Bellman-Ford-based algorithm TZ operating in O

(
nm

(
n log(nC)

ε

)d−1
)

time. Inspired

from TZ, Breugem et al.[3] proposed a Dijkstra-based algorithm, called Hydrid, running

in O
(
n3
(

n log(nC)
ε

)2d−2
)

time. They made an experimental comparison between the two

approximated Pareto sets computations and the standard MC Dijkstra. The new hybrid
algorithm is efficient and sometimes outperforms MC Dijkstra whenever Pareto sets are
very large. It is also interesting to notice that TZ does not prune a lot of explored paths. It
means that it can be much worse than MC Dijkstra for small Pareto sets. An attempt
to unify Djikstra and Bellman-Ford-based algorithms is addressed by Bökler et al. in [4],
containing TZ, Hydrid and new variants.

If we allow a light preprocessing, NAMOA* [13, 14] is a generalization of the well-known
A* search algorithm to the multicriteria setting, meaning that it is dedicated to one-to-one
requests. The difficulty here is the estimation of a guaranteed lower bound h(v) for the
d dimensions. For large and real graphs, the computation time of the algorithms with
guarantee can be too long. Some heuristics have been proposed and speed up drastically the
computation time [11] but without any guarantee.

Other attempts have been done to summarize Pareto sets [1, 20]. A linear path skyline,
defined as a subset of conventional Pareto sets, is a set of paths optimal under a linear
combination of their cost values. Multicriteria being especially relevant in a multimodal
setting, a different approximation definition has been proposed in [5]. This paper proposes
to summarize a Pareto set by the paths such that their projection on two specific criteria
(arrival time and number of trips) are additively not far from an optimal one.

1.3 Contributions

In this article, we propose two algorithms, called Sector and Frame, computing guaranteed
(1 + ε)-Pareto sets Sε =

⋃
v∈V Sv,ε. Frame is a variant of Sector optimized in dimension 2.

It guarantees the Pareto compatibility property and thus outputs a set which cannot be
larger than the exact Pareto set size, while having a worst case time complexity lower than
or equal to MC Dijkstra’s one.

In Table 1, we focus on the one-to-all query in simple graphs, and the computation time
is expressed in the output sensitive complexity, ∆ being the maximal degree.

In approximation algorithms, Sε denotes the size of the output, which is a (1 + ε)-Pareto
set. It can be much larger than S∗ε , the minimum cardinality of a (1 +ε)-Pareto set. However,
starting from Sε, a linear time algorithm can output S ′ε ⊆ Sε such that S′ε = O(S∗ε ).
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Table 1 Our results.

Output sensitive complexity O(·) Pareto compatible Ref.
MC Dijkstra ∆S2 X [10, 3]
Sector ∆Sε logd−1(∆Sε) Theorem 8
TZ n∆Sε [21]
Hydrid ? [3]
MC Dijkstra (d = 2, 3) ∆S log(∆S) X Proposition 1
Frame (d = 2) ∆Sε log(∆Sε) X Theorem 18
Hydrid (d = 2) nS2

ε ≤ n2S3 [3]

Since Frame is Pareto compatible, we have Sε ≤ S for that algorithm. Thus we can hope
that its computation time is in practice significantly smaller than the one of the best MC
Dijkstra algorithm in 2D. Hybrid [3] and TZ [21] are not Pareto compatible. However, for
d = 2, Sε(Hydrid) ≤ nS. More generally, for d ≥ 3, it is a priori impossible to claim what
is the smallest output among Sε(Sector), Sε(Hydrid), Sε(TZ) and S(MC Dijkstra).

For integer arc weights, the output size Sε of Sector is in O
(
d(nC)d−1 log1+ε(nC)

)
.

We can observe that whenever C is moderate, Sector provides smaller upper bounds on the
time complexity than TZ. To make a simple comparison with ∆ = Θ(1), if C ≤

(
n

d2εd−2

) 1
d

then Sector has a smaller known upper bound on its time complexity than TZ. For instance,
if d = 2, it is the case if C = O(

√
n). Furthermore, if C = Θ(1), then TZ upper bound is

Ω(n2) times Sector’s one.

2 Preliminaries

Notations and Remarks

A path is a sequence of arcs a1, . . . , ak such that, for all 1 ≤ i < k, the destination of ai is the
source of ai+1. The source of a path P = a1, . . . , ak is the source of a1 and its destination is
that of ak. In this paper, all paths have the same source s. Notice that if P = a1, . . . , ak is a
path and ak+1 is an arc whose source is the destination of ak, notation P · ak+1 stands for
the path a1, . . . , ak, ak+1, defined by the extension of P by ak+1.

For a path P of cost c(P ) = (P1, P2, . . . , Pd), its rank is defined as rank(P ) =
∑

1≤i≤d Pi.
For legibility reasons, each arc rank is strictly positive in our algorithms descriptions.

Let P = a1, . . . , ak and P ′ = a′1, . . . a
′
k′ be two paths sharing the same source and

destination. If rank(P ) > rank(P ′) then P cannot dominate P ′. Depending on ε > 0,
P could however (1 + ε)-cover P ′. In Fig. 1a, rank(G) = 21 and rank(B) = 18 but G
2-covers B.

Pareto Set Computation

Depending on the context, maximal or minimal vectors, Pareto sets (mathematics) or Skylines
(data-mining) are different names of the same notion. In the offline setting, the whole set
of n points on which we want to compute a Pareto set is given at the beginning. If S is
the Pareto set size, the computation can be done in O(nS) time and can drop to O(n logn)
for d = 2 and O(n logd−2 n) for d > 2 [12]. However, these methods cannot be used in an
online setting, i.e., if the points are processed one by one. As explained later in Section 3.1,
it means that these methods are not relevant for MC Dijkstra.

ATMOS 2020
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Domination and Covering Checking

Checking if a given point P is (1 + ε)-covered by a point in a set S, not necessarily being a
Pareto set, can be done using range queries in dimension d.

Given a cartesian product of intervals I = [x1, x
′
1]× [x2, x

′
2]× . . .× [xd, x

′
d] and a point

set S, RangeQuery(I,S) reports every point Q in S ∩ I. We use such queries to test (1 + ε)-
coverings or finer properties. Note that in our case, we do not require to report every point in
the subspace specified by the intervals but just to learn if there is at least one point. A point
set S of n points can be preprocessed in O(n logd−1 n) time so that any range query and

thus any (1 + ε)-covering (or similar) checking can be done in O
((

log n
log log n

)d−1
)

time [16].

3 General Algorithms

3.1 Reminder on MC Dijkstra
MC Dijkstra overview

The MC Dijkstra algorithm follows Dijkstra’s one, adapted to the case of multiple criteria.
In that case, the goal is to obtain a Pareto set from s to v for each vertex v. For this reason,
the algorithm maintains a set T of paths rather than vertices. This set is initialized with the
empty path from s to s. Also, for each vertex v, the algorithm maintains a candidate Pareto
set Sv, initialized to the empty set.

Similarly as in the single-criterion case, MC Dijkstra selects at each step the minimum
of T . More precisely, MC Dijkstra selects the path P in T which has the lexicographically
minimum cost. If v is the destination of P , then P is added to the set Sv. Again similarly,
all paths P ′ which consist of P plus one arc from the destination of P are considered. Let
w be the destination of P ′. If P ′ is dominated by a path in Sw or by a path in T with the
same destination, P ′ is discarded. Otherwise, P ′ is added to T , and any path P ′′ ∈ T with
the same destination as P ′ which is dominated by it is removed from T .

The algorithm terminates when T is empty at the end of a step. At that time, the sets
Sv contain Pareto sets from s to every vertex v. The following proposition is more or less
an agglomeration of existing results, with small adjustments in order to obtain a consistent
statement.

MC Dijkstra pseudo code

A more formal description of MC Dijkstra is given in Algorithm 1. In this algorithm, we
use the following two functions:

IsNotDominated(P,S) takes a path P and a Pareto set S as input. It returns True if
the path P is not dominated by any path in S, and False otherwise.
InsertAndClean(P,S) takes a path P and a Pareto set S as input and returns a Pareto
set of S ∪ {P}.

Correctness and complexity

MC Dijkstra algorithm solves the Multicriteria Shortest Paths problem (see [15] and [9]).
Its complexity depends in particular heavily on the parts removing dominated paths, i.e. on
the functions IsNotDominated and InsertAndClean. Nevertheless, existing papers simply
use a naive algorithm for these functions, except for dimension 2, for which [10] claims a
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Algorithm 1 MC Dijkstra overview.

Input: Graph G = (V,A) with V the vertices, A the arcs, s ∈ V the source vertex
Output: Sets Su for every vertex u

1 begin Initialization
2 foreach u ∈ V do
3 Su ← ∅ ; Tu ← ∅ ;
4 Ts ← {empty path from s to s} ;
5 while

⋃
u∈V Tu 6= ∅ do

6 let P of destination v be the lexmin of
⋃

u∈V Tu ;
7 Tv ← Tv \ {P} ;
8 Sv ← Sv ∪ {P} ;
9 foreach (v, w) ∈ A do

10 if IsNotDominated(P · (v, w),Sw) then
11 Tw ← InsertAndClean(P · (v, w), Tw) ;

logarithmic complexity. In order to lower the complexity of MC Dijkstra, we may use the
algorithms described in Section 2 to remove paths that are dominated. For d = 2 and d = 3,
we can use online algorithms since MC Dijkstra processes elements in lexicographic order.

I Proposition 1. [partially from [10] and [3]] Let µ be the maximal number of parallel arcs
between a pair of vertices, and S be the Pareto set size. The output-sensitive time complexity
of MC Dijkstra is O(∆S log(∆S)) for d ≤ 3, and O(µ∆S2) for d > 3.

Proof. In all cases, the size of a set Tu (the subset of paths from T having the same
destination u) is upper-bounded by µS, since any path is an extension of an optimal one (a
path in some Sv), and there exists at most µ extensions of a path having the same destination.
The same reasoning leads to the fact that the union of all the sets Tu has cardinality at most
∆S.

Besides, the repeated application of Line 6 requires to efficiently store the sets Tu. The
used data structure keeps the elements in

⋃
u∈V Tu sorted. This hidden sorting in Lines 7

and 11 leads to a complexity in O(log(∆S)) when inserting or removing a vertex.
Therefore, in each of the at most ∆S iterations of the while loop, the time complexity

is upper-bounded by O(log(∆S)) (the sorting time) plus the time needed to execute the
functions IsNotDominated and InsertAndClean.

For d = 2, the proof is essentially the same as in [10]. Since in MC Dijkstra the path P
is lexicographically larger than any element in S, the function IsNotDominated(P,S) can be
computed in constant time with the algorithm in [12], instead of time O(log(µS)) by using
a tree as proposed in [10]. However, the function InsertAndClean(P, T ) has an amortized
complexity of O(log |T |) to keep the structure sorted, amortized since it may remove a lot of
paths during one call but a path can be removed only once. Anyway, the complexity in this
case is dominated by the sorting time, leading to the overall complexity O(∆S log(∆S)).

For d = 3, using the algorithm proposed in [12] and the same reasoning as in the d = 2
case, the functions IsNotDominated and InsertAndClean can be computed in logarithmic
time, leading to the same overall complexity as in the case d = 2.

For d > 3, we extend the proof for µ = 1 (simple graph) given in [3]: the dominance
relation of the current path is iteratively tested with each element of the sets Su and Tu for
some u. The latter being upper-bounded by µS, we obtain the overall time complexity in
O(µ∆S2). J

ATMOS 2020
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3.2 Meta Rank Algorithm
Unfortunately, the efficient methods from Section 2 are not suitable in dimensions larger
than 3, since those are offline. Yet, if the paths are processed in subsets, we could apply an
offline method to each subset. For this purpose, we may group paths by rank, allowing to
have several paths with the same destination in the same group. We will then process groups
in increasing rank order, so that we keep the nice property that the “smallest” elements of
T incorporated in S cannot be dominated by paths that are discovered later. This idea to
process paths in increasing rank order is already used in [22] to compute Pareto sets.

Using this method, it is much easier to test dominance when paths are leaving the set T
rather than when they enter it, because the paths are leaving the set T in increasing rank
order, while this is not the case for their entering. Furthermore, we may take advantage of
this dominance pruning step by group to also remove some optimal paths in order to output
a smaller approximated Pareto Set. In order to implement this versatility, we propose a
meta-algorithm Meta Rank (see Algorithm 2) which uses a blackbox function called Sample.
If this function simply removes paths dominated by permanent solutions, Meta Rank solves
the exact Multicriteria Shortest Paths problem. In the following, additional properties on
Sample are defined in order to ensure that Meta Rank solves the (1 + ε)-approximated
Multicriteria Shortest Paths problem. Later on, instanciations of Sample are provided.

Algorithm 2 Meta Rank overview.

Input: Graph G = (V,A) with V the vertices, A the arcs, s ∈ V the source vertex
Output: Sets Sv for every vertex v

1 Initialization: (∀u ∈ V Su ← ∅ ; Tu ← ∅ ) ; Ts ← {empty path from s to s} ;
2 while

⋃
u∈V Tu 6= ∅ do

3 let r be the minimum rank in
⋃

u∈V Tu ;
4 foreach v ∈ V do
5 let R be the paths of destination v and of rank r in

⋃
u∈V Tu ;

6 R′ ← Sample(R,Sv, ε) ;
7 Tv ← Tv \ R ; Sv ← Sv ∪R′ ;
8 foreach P ∈ R′ do
9 foreach (v, w) ∈ A do

10 Tw ← Tw ∪ {P · (v, w)} ;

The following theorem gives the complexity of Meta Rank, depending on Sample’s one.

I Theorem 2. Let Sε be the size of Meta Rank’s output and CSample(n, Sε,∆) be the
complexity of the repeated usage of Sample during Meta Rank. Then Meta Rank time
complexity is CSample(n, Sε,∆)+O(∆Sε log(∆Sε)). If the weights are in J1, CK, the complexity
is CSample(n, Sε,∆) +O(∆dn(nC)d−1 log(∆nC)).

Proof. In order to justify precisely the claimed complexity, we provide details about the
chosen data structures. For a better legibility, we introduce the notations T (r) (resp. T (r)

u )
as the subset of T (resp. Tu) of paths having a rank r.

The set T is a priority queue and its elements are the sets T (r). The priority is given
by r (the smaller r, the higher priority). We use a strict Fibonacci heap, guaranteeing
a constant time complexity for insertion and a O(log(∆Sε)) complexity to remove the
highest priority element.
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For a given rank r, T (r) is an array. In order to do that, a unique identifier J0, n− 1K
is given to each vertex. If the identifier of u is iu, T (r)[iu] = T (r)

u , guaranteeing a
constant worst case time complexity for accessing or removing a T (r)

u set. Whereas this
implementation is interesting in a theoretical point of view, a hash table would be more
relevant in practice for memory purpose, since T may contains only a fragment of V at
the same time. This choice would only guarantee a constant mean time complexity. A
key would be a vertex and the associated value to a key u would be T (r)

u .
The sets T (r)

u are represented as chained lists in order to obtain a constant time insertion.
S is also an array and the sets Sv are chained lists.

Given these data structures, the lines 10 and 11 (Alg. 2) are in O(log(∆Sε)), thus their
repetition are in O(∆Sε log(∆Sε)). Line 13 has an overall O(Sε) complexity. The repetition
of the loop at line 14 has an overall complexity of O(∆Sε) since the number of added path
in some Tw is upper-bounded by ∆Sε. J

3.3 Algorithms Based on Sectors

3.3.1 Elimination Criterion
It turns out that the framework provided by Algorithm Meta Rank (Alg. 2) can compute
(1 + ε)-Pareto paths, by defining an appropriate Sample function. To guarantee Algorithm
Meta Rank to output a (1 + ε)-approximated Pareto set, we require the following ε-weak
framing property.

I Definition 3 (ε-Weak framing property). A function Sample outputting R′ ⊆ R on input
(R,S, ε) satisfies the ε-weak framing property if, for every path P ∈ R \ R′, there exists
d representative paths Q(1), . . . , Q(d) in S ∪ R′ such that, for every i, Q(i)

i ≤ (1 + ε)Pi and
∀j 6= i, Q

(i)
j ≤ Pj. Furthermore, S ∪R′ is a set of incomparable paths.

Notice that if P ∈ R is dominated by Q ∈ S, it is sufficient to set Q(i) = Q for all i.
Overall, this ε-weak property guarantees that the output of Meta Rank is a (1 + ε)-Pareto
set.

I Theorem 4. With a function Sample satisfying the ε-weak framing property, Meta Rank
algorithm (Alg. 2) solves the (1 + ε)-approximate Multicriteria Shortest Paths problem.

Proof. Let S be a Pareto set and Sa be the output of the algorithm. It is sufficient to show
that for any path P ∈ S, there exists a path Q ∈ Sa such that P is (1 + ε)-covered by Q and
rank(Q) ≤ rank(P ). By contradiction, let P ′ ∈ S be a minimal rank path not (1+ε)-covered
by any Q ∈ Sa such that rank(Q) ≤ rank(P ′). P ′ cannot be an empty path since the only
one the algorithm can process is the one from the source to itself, and being the first one to
leave T , it is inserted in S. Thus, we can write P ′ = P · e, with P a path and e the last arc
of P ′. P having an inferior rank than P · e, there exists a path Q ∈ Sa (1 + ε)-covering P .
If P is kept in Sa, then P · e is inserted in T and is either kept in Sa or removed because
of some representatives. In either cases, it is (1 + ε)-covered, which is absurd. Otherwise,
P is not kept in Sa and in particular, P 6= Q. Since rank(Q) ≤ rank(P ), there exists a
dimension i such that Pi ≤ Qi. Furthermore, Q ∈ Sa implies that it is extended and that
Q · e is inserted in T . However, Q (1 + ε)-covers P , thus Q · e (1 + ε)-covers P · e and:{

Qi + ei ≤ Pi + ei

∀j 6= i, Qj + ej ≤ (1 + ε)(Pj + ej)
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That is why Q · e cannot be in Sa. This means that Q · e is removed because of some
representative paths, among which a path R ∈ Sa, with rank(R) ≤ rank(Q · e), that satisfies:{

Ri ≤ (1 + ε)(Qi + ei)
∀j 6= i, Rj ≤ Qj + ej

Then:{
Ri ≤ (1 + ε)(Qi + ei) ≤ (1 + ε)(Pi + ei)
∀j, Rj ≤ Qj + ej ≤ (1 + ε)(Pj + ej)

Which means that P ·e is (1+ε)-covered by R. Since R is in Sa, we obtain a contradiction.
J

Two caracteristics of Sample are of particular interest: the time complexity and the
number of paths the function removes. Naive greedy algorithms are not efficient for either
of these metrics. Thus, we propose a sample algorithm guaranteeing the ε-weak framing
property, achieving a good tradeoff for the two caracteristics. Given a d-dimensional space,
we define d sectors for every path P .

I Definition 5. The i-th sector of P contains every point Q with Qj ≤ Pj for j 6= i.
Given ε, the boolean function coverSector(P,Q, i, ε) is True if Q belongs to the i-th sector
and (1 + ε)-covers P .

In Figure 1b, the two rectangles represent the incomparable part of the two sectors 2-covering
B, i.e., the points Q not dominating B satisfying coverSector(B,Q, 1, 1) = True (for instance
C, D and E), and coverSector(B,Q, 2, 1) = True respectively (such as A). For three criteria,
the Figure 2 depicts the three sectors covering a point P .

3.3.2 Sample Sector
We propose Sample Sector, an algorithm implementing the Sample function. It considers
each dimension i independently to compute a set of paths R′i ⊆ R and the output of the
algorithm is R′ =

⋃d
i=1R′i.

Let r be the rank of all paths in R, and let i be a dimension. We partition R into strips
R(l)

i , for l ∈ J0, dlog1+ε re+ 1K. R(0)
i (resp. R(1)

i ) contains the paths such that Pi = 0 (resp.
Pi = 1). For l ≥ 2, P ∈ R belongs toR(l)

i if its i-th coordinate Pi is in
(
(1 + ε)l−2, (1 + ε)l−1].

Our algorithm Sample Sector proceeds as follows: R∪ S is first preprocessed to answer
quickly range queries. Then, for every path P ∈ R(l)

i , we add P to R′i if P is not (1 + ε)-
covered in its i-th sector by a path of R∪ S in the same strip R(l)

i . This can be done using
RangeQuery([0, P1]× [0, P2]×· · ·× [0, Pi−1]× [Pi, (1 + ε)l−1]× [0, Pi+1]×· · ·× [0, Pd],R∪S).

In Figure 2, the grey z-strip contains only 6 points, the other one in the sector cannot be
used to represent P since it is outside the grey zone.

I Definition 6. Algorithm Sector is the Meta Rank algorithm (Alg. 2) using Sample
Sector.

As mentioned in the introduction, Sector solves the (1 + ε)-Multicriteria shortest path
problem. Combined with Theorem 4, the following theorem confirms that.

I Theorem 7. Sample Sector satisfies the ε-weak property when R and S are both Pareto
sets such that any path of R has a larger rank than any path of S.
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Proof. In both Sample functions, we have to prove that if a path P of rank r has been
removed, S ∪R′ contains d paths guaranteeing the ε-weak framing property. Let us focus on
one dimension i.

If the range query returns a non empty set Q for the P ’s i-th sector of its strip, we have
two cases: (1) the corresponding subspace contains at least a permanent path in S or (2)
only contains paths of same rank. In the first case, we are sure that path P will have a
representative path in its i-th sector whereas in the second case, these paths might be not
kept in R′i. This case is not possible since the path in Q with the highest value for its i-th
coordinate is added in R′i. In both cases, if a path does not belong to R′i, then there is at
least one path in R′i ∪ S that (1 + ε)-covers P in its i-th sector.

By construction, any path P kept in Sample Sector has no representative path in at
least one of its sector in the same strip. J

The following theorem states the output-sensitive time complexity of Sector given
in Table 1, along with the space complexity and the time complexity in the special case
where weights are integers. In order to conclude, it is sufficient to compute the sum of the
complexities of the Sample Sector calls in Sector, and then to use Theorem 2.

I Theorem 8. If the arc weights are integers, the output Sε of Sector is of size Sε =
O
(
dnC(nC)d−2 log1+ε(nC)

)
. The time complexity of Sector is O(∆Sε logd−1(∆Sε)) and

the space complexity is Θ(∆Sε logd−1(∆Sε)).

Proof. Assume first that the weights are integers. Given a current rank r and a strip
R(l)

i , Sample Sector stores at most one path for every x ∈ Zd−2. Thus for every i,
|R′(l)

i | = O(rd−2). Since we have at most d2 + log1+ε re strips and d dimensions, |R′|
is smaller than or equal to d(r + 1)d−2(d2 + log1+ε re). Since we have dnC ranks, Sε =
O(d(dnC)d−1 log1+ε(dnC)).

To get bounds on CSample Sector, we have to build data structures dedicated to range
queries. The number of insertions to do before the queries is bounded by O(∆Sε). Each of

these insertions takes O(logd−1 ∆Sε) and a range query takes O
((

logSε

log logSε

)d−1
)

[16]. Then

the number of range queries is at most d∆Sε. Thus CSample Sector = O(∆Sε logd−1 ∆Sε).
From Theorem 2, we have to add O(∆Sε log(∆Sε)) time steps to get the complexity of

both algorithms assuming d is constant. Whenever the arc weights are integers we also have
∆Sε ≤ dnC. J

4 Frame (dimension 2)

4.1 Elimination Criterion
Sector could potentially return non optimal solutions. In order to guarantee the Pareto
compatibility property, we introduce a stronger property, based on the idea that the repre-
sentatives of a path have to cover themselves too. However, we will restrict the definition for
d = 2 because it is not giving satisfying results in higher dimensions.

We start by giving the formal definition of what we call being framed between two paths.
This definition is commented and illustrated afterwards.

I Definition 9 (Frame). For any paths A,P,B s.t. rank(A) ≤ rank(P ) and rank(B) ≤
rank(P ), we say that A and B frame P , or that P is framed between A and B if:

(i) A1 ≤ P1
(ii) B2 ≤ P2

(iii) A2 ≤ (rank(P )−B1)(1 + ε)
(iv) B1 ≤ (rank(P )−A2)(1 + ε)

We will note this property frame(A,P,B, ε).
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Figure 2 In 3D, the three sectors covering P

at distance at most (1 + ε) are depicted in green,
red and blue. Only 6 points are within the grey
z-strip of P .
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Figure 3 Sample Frame. The paths
P (3), P (4), P (5) and P (6) are framed by A and
B for ε = 1 (see colored regions) but not for
ε = 0.5. In this latter case, the algorithm
keeps the middle point P (5).

In the particular case where the two paths A and B have the same rank as the path P , if
frame(A,P,B, ε), then A and B match the Q(1) and Q(2) representatives of P in the ε-weak
framing property, with the additional constraint that A and B (1 + ε)-cover each other. This
definition is extended for A and B having lower ranks than rank(P ), projecting those into
the line of paths having the same rank as P . A is projected on the second dimension, B
on the first one. These projections of A and B are depicted in Figure 3 as A′ and B′. The
blue (resp. green) zone corresponds to the paths 2-covered by A′ (resp. B′). Notice that the
frame property requires the projections A′ and B′ to cover each other, but not necessarily A
and B. Thus, in this example, for 3 ≤ i ≤ 6, frame(A,P (i), B, ε) since frame(A′, P (i), B′, ε).

We define the ε-strong framing property as a particular case of the ε-weak framing
property for which the representatives of a path are framing it according to Def. 9.

I Definition 10 (ε-Strong framing property). A function Sample outputting R′ on input
(R,S, ε) satisfies the ε-strong framing property if:
∀P ∈ R \ R′, ∃A,B ∈ S ∪R′, frame(A,P,B, ε),
R′ is minimal by inclusion,
S ∪R′ is a Pareto set.

As the name suggests, the strong property is stronger than the weak one since it requires
some conditions between the representatives, as well as the minimality of the output.

I Proposition 11. The ε-strong framing property implies the ε-weak framing property.

Proof. Let Sample verifying the ε-strong framing property on inputs (R,S, ε). Let P ∈ R\R′.
There exists A,B ∈ S ∪R′ such that frame(A,P,B, ε). Since S ∪R′ is a Pareto set, we only
need to show that there exists two representatives Q(1), Q(2) ∈ S ∪R′, such that:{

Q
(1)
1 ≤ (1 + ε)P1

Q
(1)
2 ≤ P2

{
Q

(2)
2 ≤ (1 + ε)P2

Q
(2)
1 ≤ P1

Unfortunately, setting Q(1) = B and Q(2) = A is not always sufficient. We consider three
cases:

if A2 ≤ P2, then Q(1) = Q(2) = A is correct,
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if B1 ≤ P1, then Q(1) = Q(2) = B is correct,
otherwise, we take Q(1) = B and Q(2) = A. Indeed:
Q

(2)
1 = A1 ≤ P1 and Q(1)

2 = B2 ≤ P2 by (i) and (ii) (cf Def. 9),
Q

(1)
1 = B1 ≤ (1 + ε) · (rank(P )−A2) = (1 + ε) · (P1 + P2 −A2) ≤ (1 + ε)P1 by (iv)

Q
(2)
2 ≤ (1 + ε)P2 using symmetric arguments. J

The following theorem is a direct corollary of Theorem 4 and the previous proposition.

I Theorem 12. With a function Sample satisfying the ε-strong framing property, Meta
Rank algorithm (Alg. 2) solves the (1 + ε)-approximate Multicriteria Shortest Paths problem.

Proof. Corollary of Theorem 4 and Proposition 11. J

4.2 Pareto Compatible Property
During a Meta Rank execution, a path P could be framed, then removed. Furthermore,
the extensions of the representatives could be themselves framed and removed, and so on.
We show that the extensions of P are nevertheless still framed by kept paths in the ε-strong
setting.

I Lemma 13. Let Sε be the output of Meta Rank (Alg. 2) using a Sample function
satisfying the ε-strong property. Any path P is framed by some paths A,B ∈ Sε.

Proof. For paths A,B and P , if P is framed by A and B, we note: α(P ) = A, β(P ) = B

(beware that α and β are not functions, A and B not being necessarily unique). By
contradiction, let us assume that there exist paths in the Pareto Set that are not framed by
the output. Let P ′ be such a path of minimal rank. If P ′ is an empty path, then it is the
first path seen by the algorithm, and it is kept, giving directly a contradiction. Otherwise,
we can write P ′ = P · e, with e being the last arc of P ′. We have rank(P )<rank(P · e), thus
P is framed by two paths α(P ), β(P ) ∈ Sε framing P . Notice that if P is kept, we can say
that P is framed by (P, P ). We will note: A = α(P ) · e and B = β(P ) · e. Since α(P ) and
β(P ) are kept, A and B will be considered by the algorithm but not necessarily kept.

We consider three cases:
1. If the algorithm keeps both A and B, then they frame P · e, since they have inferior ranks

and:
(i) A1 = α(P )1 + e1 ≤ P1 + e1
(ii) B2 = β(P )2 + e2 ≤ P2 + e2
(iii) A2 = α(P )2 + e2

≤ (1 + ε)(rank(P )− β(P )1) + e2
≤ (1 + ε)(rank(P )− β(P )1) + (1 + ε)e2
≤ (1 + ε)(rank(P )− β(P )1) + (1 + ε)(rank(e)− e1)
≤ (1 + ε)(rank(P ) + rank(e)− β(P )1 − e1)
≤ (1 + ε)(rank(P · e)−B1)

(iv) B1 ≤ (rank(P · e)−A2)(1 + ε) by a reasoning similar to (iii)
2. The algorithm keeps only one. W.l.o.g., we can consider that A is kept. B being removed,

it is framed by α(B) and β(B).
Either α(B)1 ≤ P1 + e1, in which case, P ′ is framed by α(B) and β(B) too. Indeed,
we have β(B)2 ≤ B2 ≤ P2 + e2 = P ′2 giving (ii). And (iii), (iv) are given by the fact
that rank(B) ≤ rank(P ′).
Otherwise A and α(B) frame P ′. Indeed,

(i) A1 = α(P )1 + e1 ≤ P1 + e1 = P ′1
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(ii) α(B)2 = rank(α(B))− α(B)1 ≤ rank(P · e)− (P1 + e1) ≤ P2 + e2 = P ′2
(iii) A2 ≤ (1 + ε)(rank(P )− β(P )1) + e2 ≤ (1 + ε)(rank(P · e)−B1) ≤ (1 + ε)(rank(P ·

e)− α(B)1)
(iv) α(B)1 ≤ B1 ≤ (1 + ε)(rank(P )− α(P )2) + e1 ≤ (1 + ε)(rank(P · e)−A2)

3. The last case corresponds to removing both A and B. As in the previous case, if
α(B)1 ≤ P1 + e1, P is framed by α(B) and β(B). Otherwise, A and α(B) frame P ′ and
we can use the same reasoning than before, replacing B by α(B).

We have proved that P ′ is framed, leading to a contradiction. J

The idea is, by contradiction, to consider, among the paths not framed, one with minimum
rank. This path cannot be empty, thus it can be written P · e, with P a path and e an arc.
By definition of P · e, P is framed. Using paths A and B framing P , we can show that their
extentions A · e and B · e are framing P · e. These extentions are either kept in Sε or in turn
framed by some paths of Sε framing P · e too.

It can be deduced from this lemma that the ε-strong property implies the Pareto compat-
ibility.

I Theorem 14. Meta Rank (Alg. 2) using a Sample function satisfying the ε-strong
property is Pareto compatible property.

Proof. By contradiction, we assume that some P ∈ Sε is dominated by some path Q. If
Q ∈ Sε, then P cannot be kept since it is processed after Q and is dominated. Therefore,
Q /∈ Sε. According to Lemma 13, there exists A,B ∈ Sε framing Q. Thus, A,B frame P ,
which would mean that P is not kept since Sε is minimal. J

4.3 Frame Algorithm
We provide an efficient algorithm for Sample: Sample Frame. The algorithm is first
presented in a simplified version, which is generalized afterwards. Let R = {P (1), · · · , P (k)}
be a set of paths of rank r. We assume the paths P (i) to be sorted in lexicographic order.

The simplified algorithm consists in finding the maximal index j such that P (1) and
P (j) cover each other. Then, ∀ 1 < i < j, frame(P (1), P (i), P (j), ε) holds, and those paths
in-between are removed. Next, the algorithm is repeated recursively on R′ = {P (j), · · · , P (k)}
until R′ contains at most two paths. The output of the simplified algorithm consists of the
set of paths from R that were not removed. See Alg. 3 for a more formal description of the
simplified algorithm.

Algorithm 3 Sample Frame Same Rank.

Input: k paths (P (1), · · · , P (k)) sorted in lexicographic order, ε > 0
1 imin ← 1 ;
2 for i = 2 to k − 1 do
3 if frame(P (imin), P (i), P (i+1), ε) then
4 Remove P (i) ;
5 else
6 imin ← i ;

In order to improve the pruning capability, paths from lower ranks are actually used
to frame current rank paths. Assume that A and B are two paths of rank lower than r

such that ∀P ∈ R, A1 ≤ P1 ≤ B1 and B2 ≤ P2 ≤ A2. Then Sample Frame performs the
following three steps:
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1. Paths from R dominated by A are removed.
2. Let A′ = (r −A2, A2) and B′ = (B1, r −B1) be projections of A and B on the current

rank r. If P (i), · · · , P (j) are the paths from R non dominated by A or B, and sorted in
lexicographic order, then the simplified algorithm is applied on {A′, P (i), · · · , P (j), B′}.

3. Paths from R dominated by B are removed.

An example of this case is depicted in Figure 3 for ε = 0.5. The first step removes P (1)

and P (2) since they are dominated by A. Then the second step computes the fact that A′
and P (5) cover each other but not A′ and P (6). Thus, P (3) and P (4) are removed too. Since
P (5) and B′ cover each other, P (6) is removed. Finally, during the third step, P (7) is removed
because B dominates it. Sample Frame’s output is {P (5)}.

Sample Frame Algorithm

In a general setting, an unordered set R = {P (1), · · · , P (k)} of paths of rank r is given as
input to Sample Frame, along with a Pareto set S of paths of rank lower than r. Algorithm
Sample Frame proceeds as follows. First, R is sorted in lexicographic order. Then, let
A = arg max

Q∈S
{Q1|Q1 ≤ P

(1)
1 } and B = arg min

Q∈S
{Q1|Q1 > P

(1)
1 }. Note that B is the path

following A in S in lexicographic order. Let j be the maximal index such that P (j)
1 < B1.

Intuitively, the paths P (1), · · · , P (j) are the paths between A and B as in the previously
described situation. Sample Frame applies the corresponding three steps to these paths.
Then, this algorithm is recursively applied on {P (j+1), · · · , P (k)}.

If A is not defined, then A′ = P (1) and the algorithm is applied to R = {P (2), · · · , P (k)}.
Symmetrically, if B is not defined, then B′ = P (k) and the algorithm is applied to
R = {P (1), · · · , P (k−1)}.

To search A and B among S efficiently, S is a balanced search tree allowing a logarithmic
time search. Similarily to Sector using Sample Sector, we can now define our algorithm
Frame using Sample Frame.

I Definition 15. Algorithm Frame is the Meta Rank algorithm (Alg. 2) using Sample
Frame.

In order to confirm that Frame is Pareto compatible, it is sufficient to verify that Sample
Frame satisfies the ε-strong property thanks to Theorem 14. Intuitively, one can see on the
example depicted in Figure 3 that any removed path is either between two consecutive (in
lexicographic order) kept paths, or dominated, thus framed by the dominating path.

I Theorem 16. Sample Frame algorithm satisfies the ε-strong framing property.

Proof. Deleted paths are always framed by kept paths. Furthermore, the output is minimal
since the algorithm is framing the largest interval possible. Finally, for A and B fixed, steps
1 and 3 remove dominated paths, guaranteeing to have a Pareto Set as output. J

Sample Frame(S,R, ε) is efficient since it processes sequencially the paths from R, and
potentially for each one of those, performs a logarithmic search through S.

I Proposition 17. Let R (resp. S) be the number of paths of rank r (resp. inferior to r).
The complexity of the Sample Frame algorithm is O(R(logR+ logS)}).

Proof. Paths of rank r are sorted in O(R logR) time. Then these paths are considered only
once and each one may require to search for A and B in O(logS) time. J
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With the previous proposition and Theorem 2, the time complexity of Frame, claimed
in Table 1, is computable by summing the complexities of each call to Sample Frame.

I Theorem 18. Let Sε be the size of the output of Frame. The time complexity of Frame
is in O (∆Sε log(∆Sε)).

Proof. For each vertex u and rank r, let T r
u be the size of the first parameter of Sample, and

S<r
u be the size of the second parameter of Sample. Then the complexity of Sample using

Sample Frame is O(T r
u(logS<r

u +log T r
u)) which is in O(T r

u(log(∆Sε))) since T r
u ≤ ∆Sε. Re-

peating this operation over each vertex and rank gives CSample(n, Sε,∆) = O(∆Sε log(∆Sε).
Furthermore, recall that adding an optimal path to the set of permanent paths costs O(logSε),
therefore the overall complexity for the line 13 of Meta Rank (Alg. 2) is O(Sε logSε). Ap-
plying Theorem 2 allows us to conclude. J

5 Is the Pareto-compatible property practically relevant ?

Although Frame is Pareto compatible, it is interesting to check whenever Sε given by Frame
is really smaller than S in practice. We run shortest path queries for d = 2 for two types of
graphs: small synthetic graphs but with large exact Pareto sets and large real-life graphs, up
to 1 millions arcs with relatively small exact Pareto sets. For these experiments, we take
ε = 1. Then, we study the impact of the variation of ε on the size of Sε. S is computed
using an optimized version of MC Dijkstra dedicated to d = 2.

Algorithms have been implemented in C++, using data structures which guarantee the
desired complexities for dimension 2. Temporary and permanent solution sets (Tu and Su)
are implemented using std::set class template. For MC Dijkstra, a global temporary
solution is used to store the minimum path of each Tu. It is also a set, and the priority list of
Meta Rank is implemented using std::map class template. The program is compiled with
g++-8 and the option -o2, since the used space can be huge. It is executed on a computer
running Ubuntu 18.04.3, having 16GB RAM and an Intel Core i7-6700 processor.

Oriented complete graphs. We use the graphs construction proposed by Breugem et al.
(see [3] for the exact description) to get oriented complete graphs −→Kn with large exact Pareto
sets (2n−2 for n vertices), and, for given n (n = 19 for us), to generate intermediate graphs
between −→Kn and the standard Erdös-Renyi random graphs. Parameter p defines the closeness
to these two extreme graphs: every arc of −→Kn is changed (removed or redirected) with
probability p. Whenever p = 0, we get −→Kn, and for p = 1, we have a pure random graph.

For this extreme case, Sε is much smaller than S for small values of p. Figure 6 shows
that Frame is at least 105 times quicker than MC Dijkstra for −−→K19 (p = 0). For p < 0, 5,
Frame is still several orders of magnitude faster than MC Dijkstra. However, MC
Dijkstra performance improves whenever p increases and that of Frame remains stable.
This is explained by S being small for p close to 1.

Real-life graphs. The previous graphs are small and dense. We now study the impact of
the number of vertices for sparse graphs. We take the graphs given by the 9th challenge of
DIMACS [7]. It offers bicriteria (distance and edge traversal time) datasets on road networks
for different USA states. On these graphs, 100 shortest path queries are performed randomly
and we report the average Pareto set size S̄u for a random destination u. We remark that
for small S̄u, Frame and MC Dijkstra performs similarly (Tab. 2), whereas for larger S̄u,
Frame has a gain of 30%.
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Table 2 MC Dijkstra vs Frame on DIMACS (time in ms).

Graph Vertices Arcs MC Dijkstra Time Frame Time S̄u S̄u,1(Frame)
DC 9559 14909 79.34 76.02 4.84 4.22
RI 53658 69213 154.78 148.49 5.24 4.37
WY 253077 304014 309.18 253.28 7.73 5.31
NM 467529 567084 1333.5 1209.93 22.09 14.92
VA 630639 714809 10943.98 7475.28 62.87 48.84
NC 887630 1009846 25206.34 17637.98 66.78 49.93

Impact of ε. Up to now, we set up ε to 1. We now introduce the variation of ε = 10k

with k ∈ J−3, 1K on square grids of 10000 sommets. The arcs weights are randomly drawn
between 1 and 100. The sources and the destinations are also randomly chosen. We observe
in Figure 6 that whenever ε goes to 0, the output of Frame converges to S. For ε larger
than 1, Sε is almost constant (around 60) whereas two paths are enough to cover S. It shows
the limitation of the Pareto compatibility property of Frame.

6 Conclusion

In the current description of Meta Rank, we assume that the rank of each edge is non-null.
We can easily handle this limitation: in order to be able to consider at once all paths having
the same rank, we can add a step before applying Sample. It consists simply in extending
recursively every path with null rank arcs whenever it is possible.

In this article, we get the first approximated algorithm being Pareto compatible. It would
be interesting to provide other algorithms with this property but in dimension ≥ 3. Moreover,
Frame and Sector are promising from a practical point of view. Experiments comparing
them with the best exact and approximated algorithms would be an interesting future work.
In our experiments, we observed that Frame is always competitive with respect to MC
Dijkstra in various situations. The bigger the Pareto set, the better Frame. However,
even if Sε < S, it can be far from S∗ε . We let open the question of getting a constant
approximation of S∗ε with a polynomial time algorithm whenever C is bounded. Another
question is to get an efficient algorithm in 3 dimensions. Algorithm Sector is promising
but is not Pareto compatible, limiting the theoritical gain.
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Abstract
In this paper we consider the integration of the personnel scheduling into planning railway yards.
This involves an extension of the Train Unit Shunting Problem, in which a conflict-free schedule of
all activities at the yard has to be constructed. As the yards often consist of several kilometers of
railway track, the main challenge in finding efficient staff schedules arises from the potentially large
walking distances between activities.

We present two efficient heuristics for staff assignment. These methods are integrated into a
local search framework to find feasible solutions to the Train Unit Shunting Problem with staff
requirements. To the best of our knowledge, this is the first algorithm to solve the complete version
of this problem. Additionally, we propose a dynamic programming method to assign staff members
as passengers to train movements to reduce their walking time. Furthermore, we describe several
ILP-based approaches to find a feasible solution of the staff assignment problem with maximum
robustness, which solution we use to evaluate the quality of the solutions produced by the heuristics.

On a set of 300 instances of the train unit shunting problem with staff scheduling on a real-world
railway yard, the best-performing heuristic integrated into the local search approach solves 97% of
the instances within three minutes on average.
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→ Planning for deterministic actions

Keywords and phrases Staff Scheduling, Train Shunting, Partial Order Schedule
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1 Introduction

Passenger railway operators use only a subset of the available trains during off-peak hours.
Railway yards are used to store the surplus of rolling stock and often provide cleaning and
maintenance services for the parked trains.

To ensure that the yards are operating efficiently and that all trains leave the yard in
the correct composition and at their scheduled departure time, the Dutch passenger railway
operator NS requires that a shunting plan is created in advance. A shunting plan describes
the activities, such as coupling and decoupling train units, service tasks and train movements,
that need to be performed together with their time intervals and locations.

The activities in the shunting plan have to be performed by skilled staff members. Previous
work on algorithms for constructing feasible shunting plans assumes that sufficient staff is
available on the yard to complete all activities as planned. However, in practice personnel
is a scarce resource, and hence their availability has a large impact on the feasibility of a
shunting plan. Therefore, in this paper we consider the integration of the staff scheduling
into a yard planning approach.
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Due to the sheer size of a shunting yard, the number of tasks that an employee can
perform is severely limited by the walking distances between the locations of consecutive
tasks. For example, if a driver is assigned to two train movements, and the destination of
the first movement is far away from the start of the second movement, then the walking
time between these two locations can easily be more than the total driving time of the two
train movements combined. Even in the case that a train has two consecutive movements in
opposite directions, and the driver continues to operate the same train, then the driver still
has to walk from one end of the train to the other to ensure that he or she is looking in the
driving direction.

As service and movement tasks take place at many locations on the yard, walking is
often unavoidable. However, ordering the tasks properly and carefully dividing the tasks
over the available employees can significantly reduce the walking time, which is essential in
constructing shunting plans in which all service and movement tasks can be performed on
time (while keeping the personnel satisfied).

In this paper we first give an overview of recent literature related to shunting and
staff rostering problems in Section 2, and continue with a formal introduction to the staff
assignment problem in Section 3. We then propose two solution methods for the staff
assignment problem, a list scheduling procedure and a decomposition approach, in Section 4.
In this section we further present several approaches to solve the staff scheduling problem to
optimality. We compare the two heuristic methods in Section 5 in an experimental study
and formulate some concluding remarks in Section 6.

2 Literature Overview

The train unit shunting problem (TUSP) was first introduced by [3] and consists of parking
passenger trains that arrive at a station or a railway yard on the available tracks and assigning
these trains to the scheduled departures in the timetable. The problem formulation was later
extended by [6] to include the paths taken by the trains over the yard.

To construct feasible solution to the TUSP, [5] decompose the problem into two sub-
problems that are solved sequentially with mixed integer programming techniques. In the
first sub-problem they match the arriving trains to the departure compositions and assign
the trains to the parking tracks. The second sub-problem consists of assigning paths and
start times to the train movements resulting from the solution of the first sub-problem.

The extension of the train unit shunting problem with service tasks is studied in [9].
These service tasks, such as maintenance checks and cleaning, can be performed at facilities
located on the railway yard and have to be completed before the train departs from the yard.
We presented a local search method that solves the train unit shunting problem with service
tasks by iteratively modifying the current solution to resolve conflicts.

In this paper we address the integration of staff scheduling into the train unit shunting
problem. For a broad overview of staff scheduling problems and solution methods we refer to
[7]. A prominent feature of scheduling personnel at shunting yards is the (often large) walking
distance between consecutive tasks. [4] introduce the closely related service technician routing
and scheduling problem (STRSP), in which staff members have to be assigned to tasks that
have time windows, precedence constraints and geographic locations. The authors use an
adaptive large neighborhoods search to find solutions for the STRSP.

A survey on more general personnel scheduling and routing problems is given in [1]. They
provide an overview of common constraints, application domains and solution methods of
scheduling and routing problems. Furthermore, they performed numerical experiments to
measure the running times of several (mixed) integer programming formulations of these
problems.
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In contrast to the problems described by [1], the staff scheduling problem at railway yards
contains tasks, specifically train movements, that start and end at different geographical
locations. Furthermore, we do not consider the staff scheduling problem as an isolated
problem. Instead, the staff scheduling is only one component of the shunting process, and
the computational complexity arises mainly from the interactions of the strongly intertwined
sub-problems. Therefore, the primary contribution of this paper is that we develop solution
methods for the staff scheduling problem which can be embedded in a larger framework
to construct plans for the complete shunting problem. The integrated solution approach
that we propose in this paper is, to our knowledge, the first method capable of solving the
shunting problem with service activities and staff scheduling on real-world instances.

3 Problem Description

Shunting yards are a collection of tracks, connected by switches, where the rolling stock of
passenger railway operators are stored. Modern trains are typically electrical multiple unit
trains, which are self-propelled, permanently coupled carriages. We refer to a single electrical
multiple unit as a train unit. These train units can be coupled to transport more passengers.
A train is a group of one or more train units that are coupled. The train units are classified
by their train type.

Trains arrive at and depart from the railway yard according to the timetable, which
specifies for each arrival and departure the scheduled time and train types of which the train
is composed.

The shunting problem at railway yards consists of six components:
1. matching incoming train units to positions in outgoing trains;
2. (de-)coupling trains to form the correct train compositions for departure;
3. scheduling all required service activities such that they are completed before the trains

depart;
4. parking the trains on the yard;
5. finding conflict-free paths for all train movements;
6. assigning staff to all the train activities.

Earlier work focused primarily on the first five problem components. An in-depth
description of these components can be found in [8, 9].

Any solution to the problem – a shunting plan – can be represented by a set of activities
A, a partial order schedule POS imposing precedence constraints on A, and a scheduling
policy that assigns start times to the activities in A based on the POS. A solution is feasible
if

A contains a valid sequence of activities for each train unit with respect to their required
service activities and the infrastructure of the yard;
the split and combine activities in A induce a feasible matching;
the constraints in the POS ensure that no resource and routing conflicts occur;
the start times assigned to the activities by the scheduling policy satisfy both the
precedence constraints in the POS and the timetable constraints.

In this paper we focus on the sixth problem component, the staff scheduling sub-problem.
That is, we assume that the activities in A require one or more skilled staff members. Since
the staff assignment might impose additional precedence constraints on the activities, we now
consider the problem of assigning both staff members and start times to each of the activities,
given the partial order schedule obtained from solving the first five shunting sub-problems.

ATMOS 2020
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The staff members are grouped by their skill set, i.e., the activity types that they are
qualified to perform. Each activity a ∈ A has

a train ta,
a duration da,
a track τ inita on which the activity is initiated,
a track τfinala where the activity ends,
a staffing requirement of rTa staff members of type T .

Note that τ inita 6= τfinala if and only if the activity is a train movement. We have to assign
to each activity a sufficient staff members, as well as a feasible start time sta and completion
time cta = sta + da.

For every available staff member in the planning horizon, we are given their skill set type
T ∈ T . The skill sets are typically disjunct sets, i.e., train drivers may only move trains,
cleaners clean the trains and mechanics are limited to repairing and inspecting the trains.
Furthermore, for each pair (τi, τj) of tracks we have the walking duration ωτi,τj

, which is the
time required for a staff member to walk from track τi to track τj . Note that a more detailed
model of the walking durations can be used if the exact locations of the train activities on
the tracks (e.g. in meters) are known.

The staff assignment sub-problem is now to assign staff members and a start time to each
of the activities in the shunting plan such that

sufficient staff members with the correct skills are assigned to each activity;
all activities of a staff member are scheduled without overlap;
the start times of the activities satisfy the precedence constraints in the POS;
the time between activities in the schedule of a staff member is at least equal to the
necessary walking duration.

For train drivers there are additional constraints associated with the scheduling of train
movements. If a train driver is assigned to two consecutive movements of a train t in opposite
directions, then the driver has to walk to the driver’s compartment at the other end of
the train to reverse the movement direction of the train. This reversal occurs after the
completion of the first movement and before the start of the second movement. The duration
of the reversal, which we denote by dtreversal, depends linearly on the length of the train t.

Although a train movement only requires a single train driver, additional train drivers
are allowed to be in the train during the movement. This enables the drivers to move more
efficiently over the yard, but it creates additional dependencies between the schedules of the
drivers. Making a detour or stopping for (dis)-embarking is not allowed.

As an example, suppose that we have a sequence of five consecutive train movements,
a1, . . . , a5, in our shunting plan and two drivers x and y available at the yard. Movements a1,
a2, a4 and a5 are from track τ1 to τ2, and movement a3 is in the opposite direction, starting
at τ2 and ending at τ1. A possible assignment of the drivers to the movements is that x
performs a1, a3 and a5 and y operates movements a2 and a4. Then driver x moves between
tracks τ1 and τ2 by train, but driver y needs to get from τ2 to τ1 to perform a4. As train
movement a3 is going from τ2 to τ1 anyway, driver y can save some walking time by joining
x on a3.

The objective of the train unit shunting problem – and therefore the staff scheduling
sub-problem – is primarily to find a feasible shunting plan. However, in practice the solutions
have to be robust to small disturbances as well, such that a small delay earlier in the execution
will not make the plan infeasible. Therefore, we include the maximization of total free slack
in the objective as a measure of robustness of the solutions.
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4 Solution Methods

In [9] we present a local search framework that searches for feasible solutions to the first five
components of the shunting problem. To find shunting and service plans that satisfy the
additional staff scheduling constraints introduced in the previous section, we propose two
methods that can be integrated as sub-routines within the local search framework. These
methods use the information in the partial order schedules generated by the local search to
assign the train activities to their required resources, which includes the personnel.

The first method is a greedy list scheduling policy. Here we transform the POS in an
ordered list of activities and assign to each activity the earliest possible starting time given
the starting times of the earlier activities in the list and the availability of the staff.

In the first method we do not attempt to maximize the slack or minimize the walking
distances of the staff; we simply pick the first available person for each activity. In the
second method, we decompose the problem into the sub-problems of assigning activities to
the staff, with weights based on the walking distances and the slack between activities, and
then compute start times using the first method. If this does not result in a feasible solution,
then we re-assign the activities to the staff, etc.

To evaluate the quality of the solutions produced by these two heuristics, we compare
them to optimal staff assignments for the given partial order schedule with the objective of
maximizing total slack. To construct these exact solutions we present several mixed integer
linear programs.

In the remainder of this section we will describe the proposed methods in more detail.

4.1 List Scheduling Policy
In the list scheduling policy we use an ordered list L of the activities in the shunting plan. L
is a linearization of the partial order schedule, i.e., a total ordering of the activities. The list
L defines the order in which we will evaluate the activities to assign start times to them. See
Section 4.3 for a description of the construction and modification of the priority list.

When we evaluate activity ai in L = (a1, . . . , an), activities aj with j < i have already
been assigned a start time and staff member by the procedure. To compute the start time of
ai, we have to determine the availability of

the train tai ;
infrastructure: cleaning platforms or train movement tracks and switches;
staff: train drivers, mechanics or cleaners.

In the list scheduling approach we consider all the above as resources on which the activity
has to be scheduled.

For each resource R required by ai, we compute the set of feasible time windows TR in
which ai can start on R given the duration of ai and the activities aj with j < i that have
already been scheduled on R. For resources with a capacity larger than one, e.g. multiple
train drivers or cleaning crews, the set of feasible start time windows consists of all time
windows in which there is sufficient capacity available of the resource to process the activity.

Once we have the set of feasible start times of each resource, we compute the start time
of ai as the earliest time that is feasible for all resources. Note that list L only indicates the
priority of the activities, and not their actual order. Therefore, ai can start before activity aj
with j < i if the required resources allow this. We assign staff to activity ai by retracing the
staff members that contributed to the feasible time window at the computed start time of ai.

Recall that the walking time of a train driver can be decreased by riding along with
another train movement. To add this feature to the list scheduling policy, we take the
scheduled train movements into account when computing the minimum time lag between
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two train movements assigned to the same driver. Let ai be the movement activity that we
are currently scheduling in our list scheduling policy. To determine when a train driver can
perform ai after the scheduled train movement ai′ , with i′ < i, we compute the minimum time
lag between ai′ and ai using a dynamic programming approach. Let M i

i′ = {m1, . . . ,mk} be
the set of movement activities mj with j < i that start after ai′ , ordered by their start time.
Then M i

i′ is the set of train movements that the driver can board to get faster from ai′ to ai.
Define Dj

τ as the earliest time that the driver can reach track τ with the possibility of traveling
with trips from {m1, . . . ,mj}. Similarly, let D0

τ be the time that the driver reaches track τ
after completing ai′ and walking from the destination of ai′ to τ , i.e. D0

τ = ctai′ + ωτfinal
a

i′ ,τ .
Then we compute Dj

τ for all 1 ≤ j ≤ k and all tracks τ as

Dj
τ =

D
j−1
τ if Dj−1

τ init
mj

> stj

min
{
Dj−1
τ , ctj + ωτfinal

mj
,τ

}
otherwise .

(1)

That is, Dj
τ is the minimum of Dj−1

τ – the case in which the driver does not travel with
movement mj – and the completion time of mj plus the walking time from the destination
τfinalmj

of mj to τ . The latter is only possible if the driver can reach the initial location of mj

before mj departs.
The earliest time that the driver can start movement activity ai after ai′ is then Dk

τ init
ai

.
We take the minimum over all i′ < i to compute the earliest time that activity ai can start.

4.2 Decomposition Heuristic
With the decomposition heuristic, we first solve the problem of assigning activities to
personnel. The assignment gives us the schedules of the individual staff members, which we
will combine with the precedence constraints from the partial order schedule to compute the
start times of the activities in the second step.

We solve the staff assignment problem for each type of personnel T (train drivers,
mechanics and cleaners) separately. Let AT = {a1, . . . , an} be the set of activities that
require staff members of type T , and define kT as the number of staff members available.
We construct the following directed graph G = (V,A). We let each activity aj correspond to
a vertex vj in V , and we add the arc (vi, vj) if it is possible for a staff member to carry out
activities ai and aj consecutively in that order. Since the POS does not correspond to a full
order, G may contain cycles. To avoid this, we remove all arcs in A that do not comply with
the list L defined in the previous sub-section. Remark that this ordering only matters if the
tasks ai and aj are assigned to the same staff member.

A schedule for a staff member now corresponds to a path in the graph G. Given the
weights of the arcs (vi, vj), which we define later, we can then solve the assignment problem
as a min-cost max-flow problem with a minimum flow of 1 through each vertex and an upper
bound of kT on the size of the flow. We follow the approach of [2] to solve this problem as a
weighted matching problem in a bipartite graph.

To find a maximum matching that is likely to satisfy the departure time constraints, we
assign weights to the arcs in the bipartite graph. For each activity ai ∈ AT , we compute its
earliest completion time ecti and latest start time lsti in the original partial order schedule.
Then, for every arc (vi, vj) we set the weight of the arc to

wi,j = lstj − ecti −mtli,j , (2)

where mtli,j is the minimum time lag due to walking between ai and aj . With these weights,
matchings in which the staff has sufficient slack time between their scheduled activities
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are preferred. Note that we cannot guarantee that a maximum weighted matching causes
no departure delays, as the arc weights are only pair-wise indications of the feasibility of
performing two activities consecutively. From the solutions of the staff assignment problem
we obtain a set of minimum time lag constraints C between the activities that extend the
precedence relations in the partial order schedule POS. We can then find the starting times
of the activities using the dynamic programming approach from Section 4.1 in combination
with the priority list L.

If the resulting solution is not feasible with respect to the train departure times, then
we update the staff assignment problem by updating the weights of the arcs. We select
the matching variables that have their corresponding precedence relation on a critical path
causing the delays, and reduce their weight by the total amount of departure delay resulting
from the critical path. Then, we solve the two sub-problems again. This procedure is repeated
until we either find a feasible solution, fail to generate a new solution, or reach the predefined
maximum number of iterations.

4.3 Embedding in the Local Search
The two staff assignment heuristics are intended to extend a partial solution of the first five
problem components defined in Section 3 – generated by the local search – to a full shunting
plan including staff schedules. In addition to the POS, the input of the two methods consists
of a priority list L of the activities as well. Since the order of activities in the priority list
affects the solutions produced by the two staff assignment algorithms, we have to allow the
local search to modify the priority of the activities.

As described in [9], the local search method has several neighborhoods that change the
order of the activities in the partial order schedule. When the local search modifies the
ordering in the POS, we update the priority list such that it remains a linearization of the
partial ordering. Additionally, we introduce two new neighborhoods that change the ordering
of L without affecting the POS by shifting and swapping activities, respectively.

4.4 Exact Formulations
In addition to the two heuristic approaches, we propose three exact models based on
mathematical programming to construct the staff assignment of the train drivers based
on the POS and the priority list L. The first method is a mixed integer linear program
formulation and the other two methods are branch-and-price algorithms. Although the exact
methods will be computationally too intensive to be implemented within the local search
framework, it allows us to evaluate the quality of the solutions obtained with the heuristics
by comparing them to optimal staff assignments.

Our primary goal is to find a feasible solution. Since the shunting yard is a very dynamic
environment with many possible disturbances, we strive for robust solutions. We use the
free slack times – the maximum amount of time an activity can be delayed without affecting
other activities – as a measure for the robustness; we denote this by si and try to maximize
the sum in our objective function. Instead of just maximizing the sum, we can also maximize
a non-increasing piece-wise linear function of the slacks.

In the MIP model, we decide on the completion time ci ≥ 0 and the slack si ≥ 0 of
each activity ai ∈ L. Furthermore, we have to assign the activities to staff members. We
model the assignment as a flow problem in which the flow through the activities defines the
staff schedules. Let a0 and an+1 be dummy activities representing the start and end of the
shunting plan, respectively. For each pair of activities (ai, aj) with 0 ≤ i < j ≤ n + 1, we
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define the decision variables

xi,j =
{

1 if ai directly precedes aj in the schedule of a staff member,
0 otherwise.

(3)

By assigning to each ai ∈ L a single predecessor and successor we construct the sequences of
the activities in the staff schedules. Each schedule starts with a0 and ends with an+1.

To formulate the staff assignment problem as a mixed integer linear program, we denote
the data following from the POS and the staff schedules as

ecti = earliest completion time of activity ai in POS
lcti = latest completion time of activity ai in POS

dij =
{
minimum time between ci and cj if ai ≺ aj ∈ POS
duration daj

of activity aj otherwise

Dij =
{
minimum time between ci and cj if ai ≺ aj ∈ POS
ectj − lcti otherwise

ωij = minimum walking time between ci and cj
m = number of available train drivers

The problem of finding a staff assignment that maximizes the slack of the activities can then
be formulated as

max
∑
i

si s.t. (4)

cj − ci − si −Qijxi,j ≥ Dij ∀i, j : 1 ≤ i < j ≤ n (5)
ci + si ≤ lcti ∀i (6)∑
j<i

xj,i = 1 ∀i ∈ {1, . . . , n} (7)

∑
j>i

xi,j = 1 ∀i ∈ {1, . . . , n} (8)

∑
j>0

x0,j ≤ m (9)

xi,j ∈ {0, 1}, ci ≥ ecti, si ≥ 0 (10)

where Qij is the additional time lag due to driver constraints,

Qij = max {ωij −Dij , 0} .

In this model, the minimum time lag between activities is enforced by (5). The driver
walking time Qij is included if and only if ai is the direct predecessor of aj in some staff
schedule. Inequalities (6) provide the upper bounds on the completion times including slack
of the activities. Each activity ai ∈ L is included in a single staff schedule due to the in-
and outflow constraints (7) and (8). Constraint (9) models the maximum number of staff
members available.

Our branch-and-price approaches are based on a covering formulation: we select for each
staff member a schedule. The main difference between the two methods is whether the
completion times of the activities are included in the schedules. In the sequence model the
pricing problem determines only the sequence of activities in the individual staff schedules;
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Figure 1 The “Kleine Binckhorst” shunting yard is situated near The Hague Central Station
and is operated by NS.

the times at which these are done are decided by the master problem. In contrast, the
completion time of activities in a staff schedule in the timestamp model are given by the
pricing problem. Detailed descriptions of the master and pricing problems of the two methods
are given in Appendix A.

Preliminary experiments have shown that the sequence model performs significantly better
than the timestamp model. The former is able to solve our test instances in half an hour,
whereas the latter takes several hours to compute an optimal staff assignment. The main
bottleneck in the timestamp model appears to be the schedule generation, as the pricing
problem takes far more time to solve when completion times have to be assigned to the
activities in a schedule. However, the preliminary experiments also show that neither of
the branch-and-price algorithms are competitive with the direct MIP formulation of the
personnel rostering problem on our test instances. The MIP model is able to solve most
instances within a few minutes, and, hence, we only use the mixed integer linear program
in the remainder of our computational experiments. For the sake of completeness we have
included the branch-and-price methods in the appendix.

5 Experimental Setup and Results

To compare the two solution methods, we will evaluate their performance on a set of instances
generated for a real-world shunting yard. The “Kleine Binkchorst (KBH)”, shown in Figure 1,
is a shunting yard of the NS near the central station of The Hague. For this location, we
have generated 300 instances in which 13 to 15 train units arrive during the evening and have
to depart the next morning. The arrival and departure times are sampled from an empirical
distribution. All trains have to be cleaned internally.

All 300 instances are solvable by the local search algorithm described in [9] when we
exclude the driver assignment component of the shunting problem. On average these solutions
contain 72 train movements that have to be operated by a train driver.

To model the staff assignment problem, we included three train drivers that will be
available during the entire planning horizon. The walking distances are provided by NS
based on real-world data and range from 2 to 20 minutes, depending on the physical location
of the tracks.

With the exact MIP model of the staff assignment problem, we have first determined
whether feasible staff schedules exist for the solutions without drivers. In only 23 of the 300
cases the solver was able to construct feasible staff assignments, all other instances were
infeasible. On average three activities remained unassigned in the infeasible instances, and
the average computation time over all instances was 62 seconds. These experiments show
that the staff assignment problem is not easily solvable as a post-processing step once a
feasible solution to the other shunting sub-problems has been found, which suggests that an
integrated solution method might perform better.
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Table 1 The results for 300 instances of the Kleine Binckhorst yard in the Netherlands. The
average computation time of feasible solutions produced by the heuristics is listed in seconds. The
slack is denoted in minutes and is averaged over the feasible solutions as well.

Method Solved Instances Computation Time Heuristic Slack Optimal Slack
Complete LSP 276 54 403 557
Complete DH 196 414 476 579
Partial LSP 286 116 395 543
Partial DH 195 245 469 565

We tested four configurations of the local search on the 300 instances extended with the
staff requirements. In the first two configurations we call the staff assignment sub-routine
(either the list scheduling policy LSP or the decomposition heuristic DH) for every solution
that the local search explores. We will refer to these two configurations as the complete LSP
and the complete DH approaches.

In the two other configurations, we first search for a feasible solution without any staff
assignment, similar to the baseline case where we did not include the train drivers in the
instances. Once a feasible solution without personnel has been found, we run either one of
the staff assignment heuristics. If the resulting solution contains delays, we continue the
local search algorithm with the staff assignment sub-routine. These two configurations are
listed in Table 1 as the partial LSP and partial DH methods. On each instance we ran the
four local search variants until a feasible solution was found, or the maximum computation
time of 1800 seconds was reached. In each iteration of these runs we used the basic walking
durations and not the more sophisticated dynamic programming approach in Equation (1).

In Table 1 we list the average slack of the feasible solutions produced by the heuristics.
To evaluate the quality of these solutions, we have computed the optimal staff assignments
of the feasible partial ordering schedules using our MIP formulation. The optimal slack can
be found in the last column of the table.

Table 1 shows the computational results of our experiments. All instances with train
drivers have been solved successfully by at least one of the local search configurations. The
average time required by the MIP to construct the optimal staff assignments is close to one
minute regardless of the methods used to find the initial solutions.

The list scheduling policy outperforms the decomposition heuristic for both the complete
and partial local search variants. The decomposition heuristic fails to find feasible solutions
for one-third of the instances, whereas the list scheduling algorithm solves most of the
instances relatively fast. This might indicate that the decomposition approach is not able to
update the edge weights properly to converge to a good schedule for the train drivers.

Although fewer instances are solved by the decomposition heuristic, the solutions it
produces have almost 20% more slack than the schedules constructed by the list scheduling
policy. However, the exact solutions obtained with the MIP model are significantly more
robust, and the computation times of the decomposition heuristic variants are higher than
the average computation time of LSP plus the MIP. The longer computation time of the
decomposition approach is most likely due to constructing and solving the matching problem
in every iteration.

The differences between starting directly with the staff assignment or first searching for a
feasible solution without staff are much smaller. In the case of the LSP approach, starting
from a feasible solution without staff increases the number of instances that can be solved at
the cost of doubling the computation time. This suggests that adapting the solution without
staff to the staffing constraints might require either many small modifications, or several
high-cost intermediate solutions that are unattractive for the local search to explore.
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Of the four local search configurations, scheduling the staff with the list scheduling policy
for every candidate solution shows the best performance. The computation time of this
configuration is close to the local search without staff assignment, and 95% of the instances
are solved. When we allow in each iteration the drivers to travel as passengers with planned
train movements using the dynamic program in Equation (1), then the best configuration is
capable of solving 292 instances. Although with the dynamic program we are able to solve
97% of the instances, it comes at the cost of a moderate increase in computation time to,
on average, 162 seconds. The average slack in these solutions drops slightly to 382 minutes.
As our MIP model does not support drivers as passengers, we have not not computed the
optimal slack of these instances.

6 Conclusion

In this paper, we have studied the extension of the train unit shunting problem with staffing
constraints. We proposed two methods that construct staff schedules for a given partial
ordering of the activities on the shunting yard. The first method implements a list scheduling
policy to distribute the activities of the available personnel, whereas the second approach
decomposes the problem into a staff assignment and a time assignment sub-problem that are
solved iteratively. These methods can be used in conjunction with the local search presented
in [9] to find feasible shunting plans that fully integrate all components of the planning
problem at the railway yards. Additionally, we presented a MIP model to compute the
staff assignment that maximizes the total free slack in the complete shunting plan given the
partial order schedule.

We studied the performance of the solution methods on a set of 300 realistic instances of the
“Kleine Binckhorst” shunting yard. The experiments show that the list scheduling approach
outperforms the decomposition heuristic, and that the former solves 97% of the instances
in reasonable time when combined with a dynamic programming approach to minimize the
walking time. Furthermore, once a shunting plan with a feasible staff assignment has been
constructed, the MIP model can be used as a post-processing step to significantly improve
the robustness of a shunting plan in one minute of computation time.
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A Branch-and-Price Formulations

A.1 Sequence Model
In the master problem of the sequence model we decide on the completion time ci ≥ 0 and
the slack si ≥ 0 of each activity ai ∈ A. Furthermore, we have to assign the activities to staff
members. We model the schedules of individual staff members as sequences of the activities
in A. Let Πseq be the set of all possible individual staff schedules, then we can construct a
feasible staff assignment by selecting for each staff member a schedule πk ∈ Πseq such that
all activities are covered and completed before their deadline. We represent the decision of
selecting staff schedule πk ∈ Πseq by the binary decision variable yk, where

yk =
{

1 if staff schedule πk is chosen,
0 otherwise.

(11)

We denote the following properties of the staff schedule πk ∈ Πseq as

aik =
{

1 if ai is in staff schedule πk
0 otherwise

rijk =
{

1 if ai directly precedes aj in schedule πk
0 otherwise

The problem of finding a staff assignment that maximizes the slack of the activities can then
be formulated as

max
∑
i

si s.t. (12)∑
k

aikyk = 1 ∀i (αi) (13)

cj − ci − si −Qij
∑
k

rijkyk ≥ Dij ∀i, j (βij) (14)

ci + si ≤ lcti ∀i (15)∑
k

yk ≤ m (γ) (16)

yk ∈ {0, 1}, ci ≥ ecti, si ≥ 0. (17)

In this model, constraint (13) ensures that all activities are performed by a staff member.
The other constraints are similar to the constraints of the mixed integer linear program

https://dspace.library.uu.nl/handle/1874/338269


R. van den Broek, H. Hoogeveen, and M. van den Akker 12:13

discussed earlier in this section. The dual variables of the constraints are denoted between
the braces. The pricing problem is then to find a staff schedule that minimizes∑

i

αiai,k +
∑
i,j

βi,jQi,jri,j,k (18)

subject to the feasible completion time intervals [ecti, lcti], the minimum time lag constraints
between activities derived from the POS, and the walking time of the staff member.

To solve the pricing problem, we construct the staff schedules with dynamic programming
over subsequences of the priority list L = (a1, . . . , an). For any ai ∈ L, we can either
1. create a schedule πi consisting only of activity ai, or
2. extend a schedule π′ ending at activity ai′ with i′ < i to schedule ππ′→i by appending ai

to the sequence.
The costs of these staff schedules in the pricing problem are

cost(πi) = αi, (19)

cost(ππ
′→i) = αi + βi′,iQi′,i + cost(π′). (20)

The reduced cost of a schedule π can be determined solely from the cost and last activity of
the schedule π′ that it extends. However, not all schedules are feasible due to deadlines and
minimum time lag constraints of the activities. A schedule π is feasible if all activities can
be completed on their deadline without violating the time lag constraints in the POS and
the additional constraints resulting from π.

To verify whether schedules satisfy both the walking time and the deadline constraints, it
is sufficient to keep track of the (earliest) completion times of the schedules, which we denote
by ect(π). We compute this completion time of a schedule as

ct(πi) = ecti, (21)

ct(ππ
′→i) = max {ecti, ct(π′) + max{ωi′,i, di′,i}} . (22)

Staff schedule π ending with activity ai is feasible with respect to the walking time and
deadline constraints if activity ai and all its successors aj in the POS can be completed before
their deadlines. That is, the constraints ct(π) ≤ lcti and, for all j > i, ct(π) + di,j ≤ lctj are
satisfied.

While the walking constraints only affect consecutive activities in the schedule, the POS
can impose minimum time lag constraints on activities that are not direct successors in the
schedule. As a result, storing the earliest completion time of a schedule is no longer sufficient
if we want to determine whether the schedule satisfies the minimum time lag constraints as
well. Therefore, we extend our characterization of a schedule π with a vector ~ect(π) of the
earliest completion times of all activities aj with j ≥ i. With this vector we can propagate
the minimum time lag constraints in the schedule and check if the schedule violates a deadline
constraint. For any j > i, its earliest completion time with respect to the schedule is

~ect(πi)j = ectj , (23)

~ect(ππ
′→i)j = max

{
~ect(π′)j , ct(ππ

′→i) + di,j

}
, (24)

with the completion time of an extended schedule equal to

ct(ππ
′→i) = ~ect(ππ

′→i)i = max
{
~ect(π′)i, ct(π′) + ωi′,i,

}
. (25)
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A schedule π with last activity ai satisfies all deadline, walking and minimum time lag
constraints if, for all j ≥ i, it holds that ~ect(π)j ≤ ectj .

The pricing problem can now be solved by selecting a feasible schedule π with minimal
cost. If the reduced cost of this schedule, which is −γ − cost(π), is greater than zero, then
the schedule is added to the restricted master problem.

We reduce the number of schedules that have to be evaluated in our dynamic programming
approach by applying a domination criterion. For two schedules π1 and π2 ending with
activity ai, if both cost(π1) ≤ cost(π2) and, for all j ≥ i, ~ect(π1)j ≤ ~ect(π2)j , then π1 is at
least as good as π2. This allows us to safely discard π2 in our dynamic program.

Although the domination criterion removes many redundant schedules, the number of
schedules evaluated in the dynamic programming approach can still become very large. To
efficiently find a schedule with positive reduced cost or determine that no such schedule
exists, we solve a relaxation of the pricing problem. In this relaxation, we only keep track of
the cost and the completion time of a schedule in our dynamic program, ignoring the earliest
completion time vector ~ect, and thus the minimum time lag constraints. By simplifying the
characterization of the schedules the number of potential non-dominated solutions is reduced
drastically. If the reduced cost of the optimal solution to the relaxed pricing problem is
non-positive, then the optimal schedule in the original pricing problem is non-positive as well.
Furthermore, if the optimal solution, or any other solution constructed in the relaxation, has
a positive reduced cost and is feasible with respect to the minimum time lag constraints,
then we can add it to the restricted master problem. In the case that the relaxed pricing
problem has solutions with positive reduced cost, but all are infeasible, then we have to solve
the original pricing problem to determine if there are any schedules that can be added to the
master problem.

When we cannot find any new staff schedule with positive reduced cost, then we solve
the restricted master problem to optimality. In the case that the optimal solution contains
fractional staff schedules, we search for an integral solution by branching on the fractional
properties of the solution. We identify a pair of activities (ai, aj) that appears as direct
successors in a fraction of the staff schedules in the optimal solution. Based on this pair we
create two branches: one in which we exclude all staff schedules in which ai directly precedes
aj , and another branch in which we exclude all staff schedules that contain ai or aj , but not
the direct precedence relation ai → aj . We then solve the pricing problem subject to this
constraint. In general we use a best-bound search to explore the nodes, and a depth-first
search if we have improved our best solution in a node.

A.2 Timestamp Model
In the timestamp model we do not model the completion times of the activities as decision
variables. Instead, we decide on the slack times si and the selection of staff schedules with
activity completion times zl, where

zl =
{

1 if staff schedule πl ∈ Πtime is chosen,
0 otherwise.

(26)

We denote for staff schedule πl ∈ Πtime

al =
{

1 if ai is in schedule πl
0 otherwise

cil = completion time of ai in schedule πl
sil = slack of ai in schedule πl.
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The master problem of the timestamp model can then be formulated as

max
∑
i

si s.t. (27)∑
k

ailzl = 1 ∀i (αi) (28)∑
k

cjlzl −
∑
k

cilzl − si ≥ Dij ∀i, j (βij) (29)∑
k

cilzl + si ≤ lcti ∀i (φi) (30)

si −
∑
k

silzl ≤ 0 ∀i (ψi) (31)∑
k

zl ≤ m (γ) (32)

zl ∈ {0, 1}, si ≥ 0. (33)

The model is similar to the formulation of the master problem of the sequence model presented
earlier. The exception is constraint (31), which ensures that the slack of activity ai does not
exceed the slack that ai has in the staff schedules. The objective of the pricing problem of
the timestamp model is to maximize

γ +
∑
i

αi +

φi +
∑

aj≺ai∈POS+

βji −
∑

ai≺aj∈POS+

βij

 ci − ψisi

 ai. (34)

Similar to the pricing problem of the sequence model, we can construct the staff schedules
by dynamic programming over subsequences of the priority list L = (a1, . . . , an). However,
the main difference of the two pricing problems is that we have to assign completion times
to the activities in the schedule as well in the timestamp model. Therefore, for each schedule
ending with activity ai, we have to label the completion time of ai in the state variables of
the dynamic programming algorithm to determine the optimal completion times. Due to the
large number of state variables, the pricing problem of the timestamp model requires more
computation time to construct solutions than the sequence model formulation. Therefore, we
expect that the sequence model will outperform the timestamp model.
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Abstract
When determining the paths of the passengers in public transport, the travel time is usually the
main criterion. However, also the ticket price a passenger has to pay is a relevant factor for choosing
the path. The ticket price is also relevant for simulating the minimum income a public transport
company can expect.

However, finding the correct price depends on the fare system used (e.g., distance tariff, zone
tariff with different particularities, application of a short-distance tariff, etc.) and may be rather
complicated even if the path is already fixed. An algorithm which finds a cheapest path in a very
general case has been provided in [6], but its running time is exponential. In this paper, we model and
analyze different fare systems, identify important properties they may have and provide polynomial
algorithms for computing a cheapest path.
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1 Introduction

Fare systems may be very diverse, containing a lot of different rules and regulations. Among
them is the unit tariff in which all journeys cost the same, no matter how long they are,
or kilometer-based distance tariffs which are used by most railway companies all over the
world. Very popular in metropolitan regions are zone tariffs (used in many German regional
transport networks and in many European cities, but also, e.g., in California). In most
regions, these fare systems come with special regulations: Journeys with less than a given
number of stops may get a special price, there might be network-wide tickets, or stations
belonging to more than one zone. The underlying fare system is usually independent of
the way tickets are bought: they can be provided as paper tickets from ticket machines or
from online sales, by usage of smart cards in check-in-check-out systems, or by other mobile
devices. Recently, some public transport companies offer the simple usage of a mobile device
for charging the beeline tariff between the start coordinates and the end coordinates of the
journey. Sometimes all these different fare systems are combined.

The question which we pursue in our paper is how to find the cheapest possibility to travel
between two stations. This question is relevant for several reasons. First, the passengers
would like to minimize their ticket prices as one among other criteria when planning their
journeys. Second, a public transport company can only estimate its income if ticket prices
are known for the demand. Simulating the journeys of the passengers together with their
ticket prices for some given demand is common for dividing the income of traffic associations

© Anita Schöbel and Reena Urban;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 13; pp. 13:1–13:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:schoebel@mathematik.uni-kl.de
mailto:urban@mathematik.uni-kl.de
https://doi.org/10.4230/OASIcs.ATMOS.2020.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


13:2 Cheapest Paths in Public Transport: Properties and Algorithms

between the single public transport providers. Third, for designing and improving fare
systems, it is necessary to be able to compute (cheapest) ticket prices.

A model together with an algorithm for computing cheapest paths which are able to cover
most of the possible regulations are developed in [6]. The idea is to define transition functions
between tickets over partially ordered monoids. However, since so many particularities are
covered, the algorithm needs exponential time. In this paper, we analyze properties of special
fare systems, for example, a plain distance tariff and two variations of zone tariffs. This does
not cover all particularities simultaneously, but allows to derive analytical properties and to
design algorithms which are based on shortest path techniques and hence run in polynomial
time for many common fare systems.

The properties we are going to investigate are the following:

No-stopover property: Can we be sure that passengers cannot save money by splitting a
journey into two (or more) parts and buying separate tickets for each of these sub-journeys?

No-elongation property: Can we be sure that passengers cannot save money by buying a
ticket for a longer journey although they only use a part of it?

In (real-world) fare systems, these two properties need not be satisfied. As will be shown,
there is also no relation between them. The third property we investigate is the well-known
subpath-optimality property from dynamic programming.

Subpath-optimality property: Is any subpath of a cheapest path again a cheapest path?

The first two properties are relevant from a real-world point of view, since they ensure
that a fare system is consistent and does not trigger strange actions (e.g., buying a ticket
for a longer path than needed) as a legal way of saving money. In Section 3 of [12] the
authors say that a fare system without the no-stopover property would be “impractical and
potentially confusing for the customer”. Still, as we will see, this property is not always
satisfied in real-world fare systems. The subpath-optimality property is relevant for the
design of algorithms.

1.1 Related Literature
Literature on fare systems is scarce compared to papers on timetabling or scheduling in public
transport. Early papers deal with the design of (fair) zone tariffs [9, 10, 3], a topic which
is still ongoing using different types of objectives, e.g., the income of the public transport
company [2, 7, 13]. Also the (backward) design of distance tariffs from zone tariffs has been
studied [11]. The computation of cheapest paths has been considered for distance tariffs
in a railway context in [12], while [4, 5] compute paths that visit the smallest number of
tariff zones. Recently, [6] present the so-called ticket graph which models transitions between
tickets via transition functions over partially ordered monoids and allows the design of an
algorithm for finding cheapest paths in fare systems which do not have the subpath-optimality
property. However, the running time of this approach need not be polynomial.

1.2 Our contribution
We present models for the following fare systems: unit tariff, distance tariff, beeline tariff,
zone tariff, and zone tariff with metropolitan zone. For these fare systems we analyze
the no-stopover property, the no-elongation property, and the subpath-optimality property.
Furthermore, we develop polynomial algorithms for computing cheapest paths for all of
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these cases. This shows that for many practically used fare systems, cheapest paths can be
computed in polynomial time although this is not the case for general fare systems [6].

2 Modeling Different Fare Systems

We consider different types of fare systems which we define in this section. We first specify
what a fare system is. We are not aware of such a formal definition in the literature.

Let a Public Transport Network (PTN) be given. PTN = (V, E) is a graph given by a set
of stops or stations V and a set E of direct connections between them. For simplicity we
assume the PTN to be an undirected graph which is simple and connected. The PTN can be
used to model railway, tram, or bus networks. The price of a journey through a PTN depends
not only on the start station and the end station of the journey, but also on the specific
path that has been chosen. Note that this is sometimes included implicitly, e.g., in railway
tickets which include origin and destination, but specify a geographical travel corridor which
is allowed for the journey (given by intermediate stops between which the corridor can be
looked up). Hence, we need the set of all paths of the PTN, which we denote by W.

I Definition 1. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system is a function p :W → R≥0 that assigns a price to every path in a PTN.

Note that a fare system always involves a PTN.
For a path W = (x1, . . . , xn), we denote a subpath (xi, . . . , xj) with 1 ≤ i < j ≤ n by

[xi, xj ]. The price of a subpath is hence given as p([xi, xj ]). The brackets [·] emphasize that
[xi, xj ] describes a path and not only a pair of stations. To look at paths in the PTN and not
at timetabled trips is a simplification because a ticket usually has a maximal duration how
long it is valid. Stopovers may be allowed as long as this maximal duration is not exceeded.
If a passenger combines two journeys, e.g., she first travels to the house of her uncle for a
visit and then travels to university to get some important documents, she might be able to
do this within the same ticket or she buys two separate tickets. In the latter case, we call
her path a compound path and its price is the sum of the prices of the two tickets that she
bought.

We now define the fare systems which we study in this paper. The simplest fare system
is a unit tariff in which all trips cost the same.

I Definition 2. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a unit tariff w.r.t. p̄ ≥ 0 if p(W ) = p̄ for all W ∈ W.

Unit tariff fare systems are often considered as unfair. They are used within (even big)
cities. The contrary is that the price of a journey depends on the kilometers traveled. In a
distance tariff the length of the journey is used, while in a beeline tariff the airline distance
is the basis for the ticket price. To define these two fare systems, we use l(W ) to denote
the length of a path W = (x1, . . . , xn) (in kilometers), and l2(W ) = ‖xn − x1‖ as its beeline
distance. In order to compute l(W ), we assume that each edge in the PTN has assigned its
physical length, and to compute the beeline distance, we assume that the stations V of the
PTN are embedded in the plane such that the Euclidean distance l2 between every pair of
stations can be computed.

I Definition 3. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a distance tariff w.r.t. p̄, f ≥ 0 if p(W ) = f + p̄ · l(W ) for all W ∈ W.
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(c)

Figure 1 PTNs with zone partitions for Example 5.

I Definition 4. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a beeline tariff w.r.t. p̄, f ≥ 0 if p(W ) = f + p̄ · l2(W ) for all W ∈ W.

Note that in case of p̄ = 0, both the distance tariff and the beeline tariff become unit
tariffs. An important property of the beeline tariff is that it does not depend on the whole
journey, but only on its start and end point. Most railway systems rely on distance tariffs
(or modifications). Beeline tariffs are rather new and often used for mobile tickets on
mobile phones or internet devices which track the journey of a passenger by using her GPS
coordinates and determining the price based on the beeline distance after the journey is over.

Zone tariffs are somehow intermediate between unit tariffs and distance tariffs. The whole
region is divided into tariff zones and the length of a journey is approximated by the number
of zones it visits. The ticket price then depends only on the number of visited zones. This is
considered as more fair than the unit tariff, but it is also more complicated. For modeling a
zone tariff, we use the PTN. The geographical zones imply a partition Z = {Z1, . . . , ZK}
of the set of stations V , i.e., V =

⋃
i=1,...,K Zi and the Zi are pairwise disjoint. For every

edge (x, y) ∈ E of the PTN, the value b(x, y) of the border function denotes the number
of zone borders crossed when traveling between x and y. If b(x, y) = 0, both stations x

and y belong to the same zone, while the reverse direction need not hold, see Figure 1c in
Example 5. We consider the border function as an additional edge weight which is given
together with the PTN. From that, we can derive for a path W = (x1, . . . , xn) the zone
function z(W ) = z(x1, . . . , xn) := 1 +

∑n−1
i=1 b(xi, xi+1), which determines the number of

zones which are visited by the path W . We illustrate the way to count zones in the following
example.

I Example 5. For the situations shown in Figure 1, we determine the value of the zone
function for the x1-x3-path.
(a) We have b(x1, x2) = 1, b(x2, x3) = 1. For W = (x1, x2, x3) we get z(W ) = 1 + 1 + 1 = 3.
(b) Here, b(x1, x3) = 2, hence for W = (x1, x3) we have z(W ) = 1 + 2 = 3.
(c) Although x1 and x3 belong to the same zone, the edge between them crosses another

zone. Hence, b(x1, x3) = 2 and for W = (x1, x3) we get z(W ) = 1 + 2 = 3.

We now have the preliminaries to define a zone tariff.

I Definition 6. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a zone tariff w.r.t. the price function P : N≥1 → R≥0 if p(W ) = P (z(W )) for all
W ∈ W.

The price function P assigns a ticket price to each number of visited zones. If it is
constant, the zone tariff simplifies to a unit tariff.

Many zone tariffs include particularities. A common one is the definition of metropolitan
zones in which a subset of zones ZM ⊆ Z is combined to a common zone ZM =

⋃
Z∈ZM

Z,
the metropolitan zone. For journeys which cross the metropolitan zone or start or end there,
the zones are counted as in the basic zone tariff. For journeys within the metropolitan zone,
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Figure 2 PTN with zones for Example 8.

a special price is fixed. A higher price might be charged if the metropolitan zone has a
well-developed public transport network or is much larger than a usual zone. A lower price
might be chosen in order to make public transport more attractive, e.g., in city regions to
reduce the car traffic.

In order to describe the metropolitan zone, we could save which stations and which
edges of the PTN belong to ZM . Algorithmically, we define weights zM (e) ∈ {0, 1} for every
edge e ∈ E in the PTN by

zM (e) :=
{

0 if e is completely contained in ZM ,
1 otherwise.

Together with the border function b, we save the values of zM (e) as information with the PTN.
For a path W , we have zM (W ) :=

∑
e∈E(W ) zM (e). We say that a path W is included in the

metropolitan zone ZM if all of its stations and all of its edges are completely contained in ZM ,
i.e., if the path never leaves the metropolitan zone. Formally, this means that zM (W ) = 0.

The formal definition of this fare system is:

I Definition 7. Let a PTN be given and let W be the set of all paths in the PTN. A fare
system p is a zone tariff with metropolitan zone ZM , a price function P : N≥1 → R≥0 and a
price PM ∈ R≥0 if we have for every path W ∈ W that

p(W ) =
{

PM if W is included in the metropolitan zone ZM , i.e., if zM (W ) = 0,
P (z(W )) otherwise.

I Example 8. As an example for metropolitan zones consider Figure 2. We have four zones
and the zones highlighted in gray form a metropolitan zone. For the path W1 = (x1, x2, x3)
which is included in the metropolitan zone, the metropolitan price p(W1) = PM is applied.
On the other hand, the price for the path W2 = (x1, x2, x3, x4) is computed as in the basic
zone tariff and is given by p(W2) = P (4).

Note that also zone tariffs with several metropolitan zones are possible (and can be
defined as above). Paths traveling through a metropolitan zone may be also treated in other
ways, e.g., the metropolitan zone always counts as two zones.

Each of the considered types of fare systems is uniquely defined by a PTN and some price
information, e.g., the fix price f and the price per kilometer p̄ for a distance tariff or the
price function P for a zone tariff.

3 Properties of Fare Systems

Before analyzing the no-stopover property, the no-elongation property, and the subpath
optimality property, we define them formally. For that, let a PTN = (V, E) with a fare
system p be given.
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I Definition 9. A path (x1, . . . , xn) ∈ W satisfies the no-stopover property if

p([x1, xn]) ≤ p([x1, xi]) + p([xi, xn])

for all intermediate stops xi with i = 2, . . . , n− 1. A fare system satisfies the no-stopover
property if it is satisfied for all paths in the PTN.

The no-stopover property says that a compound path [x1, xi]◦[xi, xn] is never preferable to
buying a ticket for the complete path [x1, xn], i.e., making a stopover does never decrease the
ticket price. If a single path satisfies the no-stopover property, it might nevertheless be bene-
ficial to have multiple stopovers as the following path W = (x1, x2, x3, x4) with four stations
and the following ticket prices show: p([x1, x4]) = 10, p(x1, x2) = p(x2, x3) = p(x3, x4) = 3
and p([x1, x3]) = p([x2, x4]) = 7. However, in case that the no-stopover property holds for
the whole fare system p, also multiple stopovers of a single path are not helpful, since for
several stopovers at xi1 , . . . , xik

we have that

p([x1, xi1 ]) + p([xi1 , xi2 ])︸ ︷︷ ︸
≥p([x1,xi2 ])

+p([xi2 , xi3 ])

︸ ︷︷ ︸
≥([x1,xi3 ])

+ · · ·+ p([xik
, xn]) ≥ p([x1, xn]).

I Definition 10. A path (x1, . . . , xn) ∈ W fulfills the no-elongation property if it holds that
p([x1, xn−1]) ≤ p([x1, xn]). A fare system satisfies the no-elongation property if it is satisfied
for all paths in the PTN.

The no-elongation property says that buying a ticket for a longer path which includes
the journey a passenger really wants to travel is never preferable to buying the ticket for the
subpath, i.e., that p([xi, xj ]) ≤ p(W ) for W = (x1, . . . , xi, . . . , xj , . . . , xn). This holds, since
p([xi, xj ]) ≤ p([xi, xj+1]) ≤ . . . ≤ p([xi, xn]) and p([xi, xn]) ≤ p([xi−1, xn]) ≤ . . . ≤ p([x1, xn])
by considering the reverse path (xn, . . . , x1).

In Section 4.3 we will see that the no-stopover property does not imply the no-elongation
property, and Section 4.5 will show that the inverse implication does also not hold.

If the no-stopover and the no-elongation property both hold, then we do not need to
consider compound paths when searching for the cheapest possibility to travel between
two stations x and y and we do not need to look for paths between other pairs of stations
that contain an x-y-path as subpath. In other words, if both, the no-elongation and the
no-stopover property hold, there always exists a cheapest possibility to travel from x to y

which can be realized by a (non-compound) path, i.e., by a path [x, y] for which the passenger
buys one single ticket with price p([x, y]). This will be used later on and simplifies the
situation.

I Definition 11. A cheapest path (x1, . . . , xn) ∈ W satisfies the subpath-optimality property
if every subpath [xi, xj ], 2 ≤ i ≤ j ≤ n− 1 is again a cheapest path for its corresponding start
and end station. A fare system satisfies the subpath-optimality property if it is satisfied for
every cheapest path in the PTN.

4 Results and Algorithms for Computing Cheapest Paths

4.1 Unit tariff
As a simple warm-up, let us start with the unit tariff. It has the property that every path in
the PTN costs the same, so every path is a cheapest path.
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I Theorem 12. Let p be a unit tariff w.r.t. p̄. Then p satisfies the no-stopover property, the
no-elongation property and the subpath-optimality property.

Proof. Consider a path W = (x1, . . . , xn). For any i ∈ {2, . . . , n− 1}, the two corresponding
subpaths [x1, xi] and [xi, xn] satisfy p([x1, xi])+p([xi, xn]) = p̄+ p̄ ≥ p̄ = p(W ), so a stopover
at xi does not decrease the ticket price. Also, no subpath [xi, xj ] can be more expensive
than the original path W , hence the no-elongation property is satisfied. Since every path is
a cheapest path, also the subpath-optimality property is satisfied. J

Finding a cheapest path hence reduces to finding an arbitrary path between two stations
which can be done, e.g., by breadth-first search (in which case we would end up with a path
with a minimum number of edges). We receive:

I Corollary 13. For the unit tariff, a cheapest path can be found in polynomial time.

4.2 Distance tariff
For the distance tariff, we have for any pair of paths W1, W2 ∈ W that l(W1) ≤ l(W2) is
equivalent to p(W1) ≤ p(W2) by definition. Hence, a shortest path is always a cheapest path
and vice versa. Consequently, we can use any shortest path algorithm (with corresponding
speed-up techniques) for finding a cheapest path.

I Lemma 14. For a distance tariff, a cheapest path can be found in polynomial time.

Also, all three properties are satisfied for distance tariff fare systems.

I Theorem 15. Let p be a distance tariff w.r.t. f, p̄. Then p satisfies the no-stopover property,
the no-elongation property and the subpath-optimality property.

Proof. For the no-stopover property consider a path W = (x1, . . . , xn) with a possible
stopover at xi, i ∈ {2, . . . , n− 1}. Since l(W ) = l([x1, xi]) + l([xi, xn]), we know that

p([x1, xi]) + p([xi, xn)] = f + p̄ · l([x1, xi]) + f + p̄ · l([xi, xn])
= f + f + p̄ · l([x1, xn])︸ ︷︷ ︸

=p([x1,xn])

≥ p([x1, xn]),

hence the no-stopover property holds. For the no-elongation property note that l([x1, xn−1]) ≤
l([x1, xn]) and hence p([x1, xn−1]) ≤ p([x1, xn]) is satisfied. The subpath-optimality property
is satisfied, since it holds for classical shortest paths. J

4.3 Beeline tariff
For the beeline tariff, we use the Euclidean (airline) distance to determine the price of a
ticket. This means that the ticket price is only dependent on the location of the start and
end station, but not on the specific path chosen to travel between them. Consequently, all
paths between two stations x and y are cheapest paths and hence can be found in polynomial
time, e.g., by breadth-first search.

I Lemma 16. For a beeline tariff, a cheapest path can be found in polynomial time.

One might assume that a beeline tariff satisfies all three of our properties, but this is
only the case for the no-stopover and the subpath-optimality property.

I Theorem 17. Let p be a beeline tariff w.r.t. f, p̄. Then p satisfies the no-stopover property
and the subpath-optimality property.
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Figure 3 PTN in which the no-elongation property is not satisfied for the beeline tariff.

Proof. The no-stopover property holds, since the Euclidean distance satisfies the triangle
inequality, and hence p([x1, xn]) ≤ p([x1, xi]) + p([xi, xn]) for all x1, xi, xn ∈ R2 independent
of the specific path W = (x1, . . . , xn). Since all paths are cheapest paths, the subpath-
optimality property trivially holds. J

However, the no-elongation property is not satisfied for the beeline tariff in general as
the following small example demonstrates. This example shows that for every f ≥ 0 and
p̄ > 0, there is a PTN such that the induced beeline tariff does not satisfy the no-elongation
property, even if going back to the start station is not allowed.

I Example 18. Consider any beeline tariff regarding the PTN depicted in Figure 3. The
path W1 = (x1, x2) costs f + 5 · p̄, which is more than the costs f + 4 · p̄ of the elongated
path W2 = (x1, x2, x3).

In our example, passengers would save money by buying a ticket for the path W2, but
leaving the bus already at station x2. This is avoided in practice, since passengers are tracked
by their mobile devices and hence need to checkout at a station which is really visited.

We remark that instead of the Euclidean distance also other metrics can be used, see [15].

4.4 Zone tariff
For zone tariffs, the analysis is a bit more involved as for the fare systems discussed so far.
The first observation is that for zone tariffs, the zone prices P (k) determine if the no-stopover
property holds.

I Theorem 19. Let a price function P : N≥1 → R≥0 be given. All zone tariffs w.r.t. P

satisfy the no-stopover property if and only if P (k) ≤ P (i) + P (k − i + 1) for all k ≥ 3,
i ∈ {2, . . . , bk+1

2 c}, i, k ∈ N.
In particular, if all zone tariffs w.r.t. P satisfy the no-stopover property, then the increase

of the price function is bounded by P (k) ≤ (k − 1)P (2) for k ≥ 2.

The proof of the theorem is given in the appendix.

I Example 20. We provide some examples:
If the price function P is decreasing for k ≥ 2, i.e., if P (k + 1) ≤ P (k) for all k ≥ 2,
then every zone tariff w.r.t. P satisfies the no-stopover property. This is true since
P (i) + P (k − i + 1) ≥ 2P (k) ≥ P (k) for 2 ≤ i ≤ k.
However, this is an unrealistic price function, since longer trips are cheaper than shorter
trips, which is considered as unfair.
If the price function P is affine and increasing, i.e., if P (k) = f + k · p̄ with p̄ ≥ 0, then
every zone tariff w.r.t. P satisfies the no-stopover property. This can be verified by
computing
P (i) + P (k − i + 1) = f + p̄ · i + f + p̄ · (k − i + 1) = 2f + p̄ · (k + 1) ≥ f + p̄ · k = P (k),
and is a realistic choice of prices for a zone tariff.
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For general increasing price functions, the no-stopover property need not be satisfied. An
example is a zone tariff in which a path passes through three consecutive zones and in
which the zone prices are P (1) = 1, P (2) = 2 and P (3) = 5.

For the no-elongation property, there is the following criterion.

I Theorem 21. Let a price function P be given. All zone tariffs w.r.t. P satisfy the
no-elongation property if and only if P is increasing.

Proof. Let p be a zone tariff w.r.t. an increasing price function P . Note that for a path
W = (x1, . . . , xn) ∈ W, we have that z([x1, . . . , xn−1]) ≤ z(W ). Since P is increasing, we
obtain that p([x1, xn−1]) = P (z([x1, xn−1])) ≤ P (z(W )) = p(W ).

If P is not increasing, there is some k ∈ N≥2 such that P (k) < P (k − 1). We construct a
zone tariff in which the no-elongation property is not satisfied: Consider a zone tariff w.r.t. P

in which there is a path (x1, . . . , xk) with z([x1, xk]) = k and z([x1, xk−1]) = k− 1. Then we
have p([x1, xk]) = P (k) < P (k − 1) = p([x1, xk−1]). J

We now turn our attention to cheapest paths. The first observation interestingly shows
that for price functions which are non-increasing there need not even exist a cheapest path.

I Lemma 22. Let P be a price function for which there is some n ∈ N≥1 such that for
all k ≥ n there is some k′ > k with P (k′) < P (k), and let p be a zone tariff w.r.t P . Then a
cheapest path need not exist for p.

The proof constructs an instance, i.e., a PTN = (V, E) and two stations x, y ∈ V such
that no cheapest x-y-path exists in the induced zone tariff, and it can be found in the
appendix. This happens, for example, when the prices are strictly decreasing. Cheapest
paths always exist if the prices become constant for more than n zones. Still, there might
be cheapest paths with large detours compared to a shortest path. All these situations are
avoided if the price function is increasing.

I Lemma 23. If p is a zone tariff with an increasing price function P , there exist cheapest
paths.

Proof. Since P is increasing, longer paths can never be better, hence we only have to consider
simple paths. Since there is a finite number of simple paths between a given pair of stations,
a cheapest path must exist. J

Note that even in the case of an increasing price function, a cheapest path need not be
unique and there might even be two cheapest paths visiting different numbers of zones (if
the price function becomes constant).

I Theorem 24. Let the zone tariff p satisfy the no-stopover property, and let x, y ∈ V .
1. If the price function P is increasing, then any x-y-path W which visits a minimum number

of zones z(W ) is a cheapest path.
2. If the price function P is strictly increasing, then an x-y path W is a cheapest path

between x and y if and only if it visits a minimum number of zones.

Proof. First note that compound and elongated paths need not be considered, since the
no-stopover and the no-elongation property (due to Theorem 21) are satisfied. The first part
is clear due to the monotonicity of P . For the second part, we have P (k) < P (k + 1) for all
k ≥ 1. Hence, an x-y-path is cheapest if and only if it visits a minimum number of zones. J
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(a) Illustration of Example 25.
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(b) Illustration of Example 27.

Figure 4 PTNs with zones for Examples 25 and 27.

Note that the assumption of the no-stopover property is necessary in Theorem 24. This is
illustrated in the following example. Here we consider a price function P which is increasing
and a zone tariff p w.r.t P which does not satisfy the no-stopover property. We construct a
path which visits a minimum number of zones, but which is not a cheapest path.

I Example 25. Consider the PTN depicted in Figure 4a and an increasing price function P

with P (1) = 1, P (2) = 2, P (3) = 10. The path W1 = (x1, x5) which visits three zones costs
p(W1) = 10, whereas the compound path W2 = (x1, x2) ◦ (x2, x3) ◦ (x3, x4) ◦ (x4, x5) which
visits more zones costs only p(W2) = 4 · 2 = 8.

We finally turn our attention to the subpath-optimality property.

I Theorem 26. Let p be a zone tariff with a strictly increasing price function P . If p satisfies
the no-stopover property, then the subpath-optimality property is satisfied.

The proof is in the appendix. Note that the subpath-optimality property is not satisfied
in general without the assumption of strict monotonicity as the following example shows.

I Example 27. Consider the zone tariff induced by the price function P given by P (1) = 1,
P (2) = 2 and P (k) = 3 for k ≥ 3 together with the PTN shown in Figure 4b. The path
W = (x1, x2, x3, x4, x5) is a cheapest x1-x5-path. However, the subpath (x1, x2, x3, x4) of W

with costs 3 is not a cheapest x1-x4-path because the path (x1, x4) with costs 2 is cheaper.

In order to construct an algorithm for computing cheapest paths in a zone tariff, we
assume that the price function is increasing and that the no-stopover property holds. We
can then use Theorem 24 and look for a path which visits the minimum number of zones.
This can be done by applying a shortest path algorithm to the PTN with edge weights given
by the border function b(e).

Algorithm 1 Zone tariff: finding a cheapest path.

Input :PTN (V, E), two stations x, y ∈ V

Output : x-y-path W

1 Compute a shortest x-y-path W in the PTN by applying a shortest path algorithm
using the border function b(e) as edge weight for e ∈ E.

2 return W

I Corollary 28. For a zone tariff with an increasing price function and which satisfies the
no-stopover property, a cheapest path can be found in polynomial time by Algorithm 1.
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x1 x2 x3 x4 x5 x6

Figure 5 PTN with zones for Example 29.

4.5 Zone tariff with metropolitan zone
We now add a metropolitan zone to a basic zone tariff. In order to simplify our analysis, we
make the following assumptions:

the price function P : N≥1 → R≥0 is increasing,
the underlying basic zone tariff satisfies the no-stopover property.

We first provide an example that the no-stopover property need not be satisfied for zone
tariffs with metropolitan zones.

I Example 29. Consider the PTN depicted in Figure 5. The zones highlighted in gray form a
metropolitan zone. Let P : N≥1 → R≥0, k 7→ k be a linear price function and PM := P (2) = 2.
We want to travel from x1 to x6. The path (x1, x2, x3, x4, x5, x6) costs p([x1, x6]) = P (6) = 6.
For this zone tariff with metropolitan zone, it is advantageous to exit and reenter at x2, i.e.,
to use the compound path (x1, x2) ◦ (x2, x3, x4, x5, x6) and benefit from the metropolitan
zone, since the price is given by p([x1, x2]) + p([x2, x6]) = P (2) + PM = 2 + 2 = 4.

Note that the situation described above occurs in real-world, e.g., in the Verkehrsverbund
Rhein-Neckar, see [15]. In order to analyze in which cases the no-stopover property neverthe-
less holds, we need to define the maximum metropolitan zone distance Dmax which finds for
any pair of stations x, y, both in the metropolitan zone ZM , an x-y-path included in ZM

visiting a minimum number of zones, and then takes the maximum over all these values:

Dmax := max
x,y∈ZM

min
x-y-paths W included in ZM

z(W ).

Dmax depends on the PTN (including the metropolitan zone) and is always finite. We
remark that Dmax can be larger than the number of zones belonging to the metropolitan
zone, see Figure 6a, where three zones belong to a metropolitan zone, but Dmax = 4. Further,
we assume that every passenger who travels within the metropolitan zone ZM uses a path
with a minimum number of zones. This yields that for every path W included in ZM we
have that z(W ) ≤ Dmax. With this notation we state the following result.

I Theorem 30. Let a price function P , a metropolitan price PM , and an integer d ∈ N≥1
be given. All zone tariffs with metropolitan zone w.r.t. P and PM on a PTN with Dmax = d

satisfy the no-stopover property if and only if P (d + k) ≤ PM + P (k + 1) for all k ∈ N≥1.

The proof of this theorem is provided in the appendix.

(a) Dmax is larger than the number
of zones in ZM .

x1 x2

x3

x4

x5

(b) PTN with zones for Example 33.

Figure 6 Two PTNs with zones, both including a metropolitan zone.
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I Example 31. For the linear price function P (k) = k and PM := P (2) = 2, we know from
Theorem 30 that the no-stopover property is satisfied for all zone tariffs with metropolitan
zone on a PTN with Dmax = d if and only if P (d+k) ≤ PM +P (k +1) for all k ≥ 1. Plugging
in our price function P , we receive that d + k ≤ 2 + (k + 1). This is equivalent to d ≤ 3.

The no-elongation property is satisfied even with metropolitan zone if PM ≤ P (2).

I Theorem 32. Let a price function P and price PM be given. Then all zone tariffs
with metropolitan zone w.r.t. P and PM satisfy the no-elongation property if and only if
PM ≤ P (2).

Proof. Let p be a zone tariff with metropolitan zone ZM w.r.t. P and PM , and let
W = (x1, . . . , xn) ∈ W. We distinguish three cases.

If W is included in ZM , then p([x1, xn−1]) = PM = p(W ).
If [x1, xn−1] is included in ZM , but W is not, then W visits at least two zones and it holds
that p([x1, xn−1]) = PM ≤ P (2) ≤ p(W ) by assumption. On the other hand, if PM > P (2)
and W visits exactly two zones, we obtain that p([x1, xn−1]) = PM > P (2) = p(W ) and
the no-elongation property does not hold.
If [x1, xn−1] is not included in ZM , then the prices of W and its subpath [x1, xn−1]
are computed as in the basic zone tariff. Hence, we have p([x1, xn−1]) ≤ p(W ) by
monotonicity of P and Theorem 21. J

Finally, also the subpath-optimality property need not be satisfied.

I Example 33. Consider the PTN shown in Figure 6b. The zones highlighted in gray
form a metropolitan zone. Let P : N≥1 → R≥0, k 7→ k be a linear price function and
PM := P (2) = 2. In the induced zone tariff with metropolitan zone, the no-stopover
property is satisfied because Dmax = 3, see Example 31. A cheapest x1-x5-path is given
by W1 = (x1, x2, x4, x5), since this paths costs p(W1) = P (4) = 4 and the alternative path
W2 = (x1, x2, x3, x5) costs p(W2) = P (4) = 4 as well. The subpath (x2, x4, x5) of W1 with
costs P (3) = 3 is not a cheapest x2-x5-path, though. A cheaper path is given by (x2, x3, x5)
with costs PM = 2.

Note that the example above also shows that a path which visits a minimum number of
zones is not necessarily a cheapest path if a path within a metropolitan zone exists. Although
the subpath-optimality property does not hold, we can make use of the following lemma to
find a cheapest path.

I Lemma 34. Let p be a zone tariff with metropolitan zone ZM , price function P and price
PM ≤ P (2). Assume that p satisfies the no-stopover property and let x, y ∈ V . If there exists
an x-y-path which is included in ZM , then this is a cheapest path. Otherwise, an x-y path
which visits a minimum number of zones is a cheapest path.

Proof. Consider the first case in which there is an x-y-path W which is included in ZM . This
path costs PM . Any path that leaves the metropolitan zone costs at least P (2) ≥ PM , hence
W is a cheapest path. If there is no path included in ZM , the price of a path is computed by
the basic zone tariff and Theorem 24 can be applied. J

We conclude that we can compute a cheapest path in polynomial time in this case by
Algorithm 2. It is correct due to Lemma 34, hence we get the following result.

I Corollary 35. Let p be a zone tariff with metropolitan zone ZM , price function P and
price PM ≤ P (2) which satisfies the no-stopover property. Then a cheapest path can be found
in polynomial time.
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Algorithm 2 ZM2: finding a cheapest path.

Input :PTN (V, E), two stations x, y ∈ V

Output : x-y-path W

1 Compute a shortest x-y-path in the PTN by applying a shortest path algorithm using
zM (e) as edge weight for all e ∈ E.

2 if zM (W ) = 0 then
3 return W

4 else
5 Apply Algorithm 1 for finding a cheapest path regarding the basic zone tariff.
6 end

5 Conclusion

In this paper, we have provided models for many common fare systems, studied their
properties and provided polynomial algorithms, all of them based on shortest paths. As a
further step, we plan to investigate speed-up techniques for shortest paths (e.g., in [16, 1])
in order to make the computation of cheapest paths more efficient and to evaluate these
experimentally. Here it is particularly interesting to use the embedding of the PTN in the
plane, bidirectional search and the structure of the zones (for zone tariffs). The next step
is to include the ticket price as one criterion besides the travel time when determining the
routes for the passengers. This can be done efficiently if ticket prices can be computed by
common shortest path algorithms in the same network as the travel time, but with adapted
edge weights, as in [8]. Also, planning fare systems under different criteria (such as fairness,
income, low transition costs) is an interesting topic for further research.

Currently, we work on results for combining fare systems and for adding further particu-
larities such as a short-distance tariff, see [15]. We finally plan to include the ticket prices in
route choice models and integrate them into planning lines and timetables along the lines of
[14], but with an underlying realistic passengers’ behavior.
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Appendix

Proof of Theorem 19

Proof. If the inequality does not hold for some k and i, then consider the zone tariff w.r.t. P

for the PTN depicted in Figure 7a. The path (x1, . . . , xk) costs P (k), whereas the compound
path [x1, xi] ◦ [xi, xk] costs P (i) + P (k − i + 1), which is cheaper by assumption. Hence, the
no-stopover property is not satisfied for this zone tariff.

Now, we suppose that the inequality holds. Let p be any zone system w.r.t. P . For a
path W ∈ W, we define k := z(W ) and let W1 ◦W2 be a corresponding compound path.

x1 . . . xi . . . xk

(a) Illustration of Theorem 19.

x1 x2 x3 . . . xn

v

(b) Illustration of Lemma 22.

Figure 7 PTNs with zones for Theorem 19 and Lemma 22.
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Without loss of generality, we suppose that z(W1) ≤ z(W2), the other case is analogous.
It holds z(W1) + z(W2) = k + 1. Note that for k = 1 the only possible decomposition
is given by z(W1) = z(W2) = 1, and for k = 2 it is z(W1) = 1 and z(W2) = 2. The
corresponding inequalities are P (1) ≤ 2P (1) and P (2) ≤ P (1) + P (2), which are clearly
satisfied. Furthermore, for z(W1) = 1 the inequality P (k) ≤ P (1) + P (k) is fulfilled for all
k ∈ N≥1. Hence, let k ∈ N≥3 and i := z(W1) ∈ {2, . . . , bk+1

2 c}. Then z(W1) + z(W2) = k + 1
is equivalent to z(W2) = k − z(W1) + 1 = k − i + 1. By assumption we have

p(W ) = P (k) ≤ P (i) + P (k − i + 1) = p(W1) + p(W2).

Thus, the no-stopover property is satisfied for all zone tariffs w.r.t. P if the inequalities hold.

For the second part of the theorem, let the no-stopover property be satisfied for all zone
tariffs w.r.t. P , i.e., due to the first part of this proof we know that P (k) ≤ P (k +1− i)+P (i)
for all k ≥ 3, i ∈ {2, . . . , bk+1

2 c, i, k ∈ N. We prove the claim by induction over k and consider
the condition for i = 2. For k = 2, the inequality is clearly fulfilled. For k ≥ 3, we have

P (k) ≤ P (2) + P (k − 1) ≤ P (2) + (k − 2)P (2) = (k − 1)P (2).

This proves the claim. J

Proof of Lemma 22

Proof. Consider the situation shown in Figure 7b in which we want to travel from x = x1
to y = xn. The path with a minimum number of zones visits n zones. Note that for all
k > n, we can construct an x1-xn-path with length k as follows: If k − n is even, we choose
the path (x1, . . . , xn) and additionally commute sufficiently often, i.e., k−n

2 times between
two neighboring nodes. If k − n is odd, we choose the upper path (x1, v, x2, . . . , xn) and
additionally commute k−n−1

2 times between two neighboring nodes. Hence, the set of all
possible costs for x1-xn-paths is given by {P (k) : k ≥ n}. This set does not have a minimum:
Assume that P (k) is the minimum for some k ≥ n. By assumption there is some k′ > k such
that P (k′) < P (k), a contradiction to P (k) being the minimum. Thus, in this zone tariff,
there is no cheapest x1-xn-path. J

Proof of Theorem 26

Proof. Since the no-stopover property and the no-elongation property are satisfied, we do
not need to consider compound paths when searching for the cheapest possibility to travel
between two stations. Now assume that a cheapest path W has a subpath W1 which is not a
cheapest path. Then there exists a cheaper path W2 between the same stations as W1. Due
to the strict monotonicity, W2 visits fewer zones than W1. Replacing W1 by W2 in W yields
a new path W ′ which visits fewer zones than W and is hence cheaper, a contradiction. J

Proof of Theorem 30

Proof. First, assume there is some k such that P (d + k) > PM + P (k + 1). Consider the
PTN depicted in Figure 8, where Dmax = d. In the induced zone tariff with metropolitan
zone, the path (x1, . . . , xd+k), which costs P (d + k), is more expensive than the compound
path [x1, xd] ◦ [xd, xd+k], which costs PM + P (k + 1).

Conversely, we suppose that the inequalities are satisfied. Let a PTN with Dmax = d be
given. We show that the induced zone tariff with metropolitan zone satisfies the no-stopover
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x1 . . . xd xd+1 . . . xd+k

Figure 8 PTN with zones for Theorem 30.

property. By our assumptions, the no-stopover property is fulfilled for the basic zone tariff.
Furthermore, it is satisfied for paths included in ZM , since PM < 2PM . Hence, we will now
consider paths W ∈ W which are not included in ZM , but allow to apply the metropolitan
price for a subpath by making a stopover. Such a path must start or end in ZM . Let W

consist of the subpaths W1 and W2 where W1 is included in ZM without loss of generality.
We have z(W1) ≤ Dmax = d. Hence, it holds

p(W ) = P (z(W )) = P (z(W1) + z(W2)− 1)
P incr.
≤ P (d + z(W2)− 1)

≤ PM + P (z(W2)) = p(W1) + p(W2)

and the no-stopover property is satisfied. J
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Abstract
Planning a tourist trip in a foreign city can be a complex undertaking: when selecting the attractions
and choosing visit order and visit durations, opening hours as well as the public transit timetable
need to be considered. Additionally, when planning trips for multiple days, it is desirable to avoid
redundancy. Since the attractiveness of activities such as shopping or sightseeing depends on
personal preferences, there is no one-size-fits-all solution to this problem. We propose several realistic
extensions to the Time-Dependent Team Orienteering Problem with Time Windows (TDTOPTW)
which are relevant in practice and present the first MILP representation of it. Furthermore, we
propose a problem-specific preprocessing step which enables fast heuristic (iterated local search)
and exact (mixed-integer linear programming) personalized trip-planning for tourists. Experimental
results for the city of Berlin show that the approach is feasible in practice.
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1 Introduction

When planning a tourist trip to a foreign city, there are often many activities to choose
from. Selecting a subset of these, while keeping in mind their opening hours as well as
the alternatives to get from one point of interest (PoI) to the next, can be a daunting and
time-consuming task. Planning activities for multiple days (each day within a fixed time
horizon) is even more challenging because one probably wants to avoid redundancy.

Opening hours may have potentially zero (closed) to multiple different time windows
each day. While public statues and monuments can be visited anytime of the day, a special
place to enjoy the sunset should be visited when the sun goes down. Public transport
(containing regular as well as irregular services) is a popular option to move between PoIs.
Thus, the problem definition has to be time-dependent. In addition to time-dependent means
of transportation (public transit), many attractions are reachable by non-time-dependent
means of transportation such as walking.

While some PoIs, like a statue, can be experienced within minutes, others (like a zoo or
museum) can be entertaining for hours. Events like a theater or opera have a fixed start and
end time. Modeling these properties requires a duration dependent profit function for each
PoI. This profit function needs to be capable of enforcing a minimum required visit time
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and be able to model a “saturation effect”. It should not only take into account the type of
PoI but also the personal preferences of the tourist: a family with children probably will not
want to spent the same amount of time at an art museum as an elderly person.

To realistically model PoIs, it is important to consider multiple locations for entries and
exits. The problem definition has to respect the time required to get from one entry/exit to
another. For example, a large zoo, park, or shopping street can have various entries where
each one can be reached with different public transport lines. Additionally, such areal PoIs
may contain further PoIs (like statues or famous shops, bars, cafes).

In this paper, we propose a mathematical formulation of the aforementioned problem in
the form of a mixed integer linear program (MILP). Furthermore, we present an iterated
local search (ILS) approach to solve the problem fast enough for practical planning purposes
(i.e. in a web-based or mobile planning service for tourists).

The remainder of this paper is organized as follows: Section 2 gives an overview over
related work. Section 3 outlines our contribution to the topic of realistic tourist trip planning.
In Section 4 we describe how we model the Time-Dependent Team Orienteering Problem with
Time Windows (TDTOPTW) with our problem specific extensions as a Mixed Integer Linear
Program (MILP). Section 5 contains a description of our approach to solve the problem. In
Section 6, we present the results of our experimental study with data from the city of Berlin.
Finally, Section 7 contains a conclusion and outlines ideas for future work.

2 Related Work

The (informal) problem description from Section 1 is close to the functionalities of the Next
Generation Mobile Tourist Guide (MTG) envisioned in [34], and can be formally defined
as a variation of the Orienteering Problem (OP) (also known as the selective traveling
salesman problem [24]) which is proven to be NP-hard [19]. There has been extensive
research regarding the OP and extensions thereof. In this section, we will discuss the general
algorithmic research regarding the OP as well as the literature that specifically deals with
tourist trip planning.

For a much more detailed overview of the state of the art, we refer to the mentioned survey
papers [17, 21, 33] as well as the recent textbook [31]. The first computationally feasible
mathematical formalization of the sport of orienteering [6] is given in [30]: participants have
limited time to visit predefined checkpoints starting and finishing at a specific control point.
Each checkpoint is associated with a score. The goal is to maximize the total score of all
visited checkpoints. From this basic problem definition, several variations evolved. In the
following, we will discuss those variants that are relevant for the problem introduced in
Section 1.

Optimizing multiple tours (each limited in time) with the requirement that every check-
point should still be visited only once is called the Team Orienteering Problem (TOP) which
was introduced in [7]. The restriction that checkpoints may only be visited within specified
time windows was first introduced in [5]. The multi-period OP with multiple (arbitrary) time
windows is presented in [29]; [27] shows an extension with extra knapsack constraints. The
combined problem is named (Team) Orienteering Problem with Time Windows (T)OPTW
which is closely related to the Selective Vehicle Routing Problem with Time Windows
(SVRPTW) [20]. The SVRPTW limits the vehicle capacity as well as the maximum distance
traveled. The Time-Dependent Orienteering Problem (TDOP) is presented in [12]. The
combination of the aforementioned problems is the Time Dependent Team Orienteering
Problem with Time Windows (TDTOPTW) which was first presented in [14]. As some PoIs
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require a specific continuous amount of time spent for the visit, this induces the OP with
Variable Profits (OPVP) which is studied in [11] and applied in [35] for the city of Istanbul
with 20 PoIs to maximize time at PoIs and minimize time spent to travel between PoIs.
However, the other extensions (time dependency, “team” version, time windows) are missing
here.

One of the practical applications of the OP besides vehicle routing is the Tourist Trip
Design Problem (TTDP). The basic OP can be regarded as the most simplistic TTDP
[33]. However, to model realistic tours, the variations described before are useful: the team
version to compute multiple tours with non-overlapping sets of activities, time-dependency to
support using public transport between points of interest, as well as time windows to consider
opening times of attractions. An overview of the latest research regarding the TTDP can
be found in [16, 21]. Most approaches used to solve realistic instances of the TTDP employ
heuristic algorithms such as evolutionary genetic algorithms [1, 3] ([1] was evaluated with
data of the city of Tehran; [3] was evaluated on 15 major cities in Iran – both employ a
shortest path routing routine as subroutine of the tour optimization), iterated local search
(ILS) [2, 13, 15, 32], or simulated annealing [25]. There are formulations in the form of a
Mixed Integer Linear Program (MILP) of some variations of the OP (e.g. the TDOP in [21]
and the OPVP [35]). The system proposed in [28] takes real-time information such as traffic
and queue length at the attractions (manually provided by administrators of the system)
into account.

3 Contribution

In this paper, we propose several realistic extensions to state-of-the-art variations of the
orienteering problem. These extensions are specifically relevant to compute practical solutions
when optimizing tourist trips. To the best of our knowledge, we present the first combination
of the TDTOPTW and the OPVP with arbitrary time windows. The profit functions
are personalized depending on the properties of each PoI as well as the preferences of the
respective tourist. Additionally, our formulation of the problem supports multiple entries and
exits for PoIs covering a widespread area. This is relevant in practice because especially for
large PoIs like a zoo or a park, each entry/exit may be served by different public transport
lines. Solutions computed by our approach respect the time required to walk from the
entry to the exit of the PoI. Existing models associate each PoI with exactly one geographic
coordinate which can lead to suboptimal routes in such cases.

We present the first Mixed Integer Linear Program (MILP) representation of the TD-
TOPTW with the aforementioned extensions. Furthermore, we present a iterated local search
(ILS) algorithm that solves the problem fast enough for practical purposes (e.g. as a backend
for a web-based or mobile app service for tourists). Approaches based on ILS have been
proven to be well suited to efficiently compute feasible solutions for the TDTOPTW and to
produce high quality results [2, 18, 32]. In our evaluation on data for the city of Berlin with
41 diverse PoIs we compare the results of the ILS-based approach with the results of a MILP
solver.

Visiting a park is worthwhile on its own. Therefore parks can be a PoI. However, parks
may as well contain more PoIs (e.g statues). Thus, our model also supports PoIs in parks or
other areal PoIs.

ATMOS 2020
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4 Modeling the Problem

4.1 Profit Function for Points of Interest
In this section, we define a generalized profit function which takes the visit time as input
and returns the profit gained when visiting the PoI for this amount of time. As mentioned
in Section 1, there are many different profit functions. Most PoIs require a certain amount
of time to achieve any profit. Then, the accumulation of profit will flatten out and finally
staying longer at a PoI will not yield any further profit. To model this behavior, we introduce
a piecewise linear function

p(t) =


0 t < tminvisit

pmin + (t− tminvisit) · ppt tminvisit ≤ t ≤ tmaxvisit

pmax tmaxvisit < t

where:
tminvisit is the minimum time a tourist needs to visit a PoI before profit can be gained
tmaxvisit is the maximum amount of time. Staying longer should not accumulate any
further profit.
pmin is the minimum profit a tourist gains when staying at least tminvisit at the PoI
pmax is the maximum profit a tourist can gain by visiting the PoI
ppt is the profit per time unit gained at the PoI after the minimum visit time is exceeded.
It can be calculated with the two points (tminvisit, pmin) and (tmaxvisit, pmax).

A movie theater would have pmin set equal to pmax to ensure the visit does not last
shorter but at the same time also not longer as the movie duration (plus some time buffer).
As the attractiveness of a PoI depends on the preferences of the user, we multiply the profit
values pmin, pmax with the preference value of the user for this PoI. For each category (e.g.
“shopping”, “museum” or “public monument”), the user rates their interest on a scale from
0 (not interested) to 10 (highly interested). Each PoI is tagged by at least one category.
The preference value of the user for each PoI is then calculated by dividing the sum of the
preference values given by the user for each category of the PoI by the total number of
categories of the PoI (as a normalization to not give weight to PoIs with multiple categories).

4.2 Mixed Integer Linear Program
In our definition of the MILP, we make use of the following notation. Inputs are noted
as capital letters, output variables are lower case. A “location” is used synonymously to
entry/exit of a PoI and is therefore associated with exactly one PoI. ` is used as an arbitrary
large number. As input variables we use:

P set of all PoIs
M set of all tours

Nm set of all locations for tour m

Zip 1 if location i belongs to PoI p, otherwise 0
Tm set of all discrete timeslots for tour m

Twalk
ij walking duration from location i to j

T travel
ijt travel time from location i to j departing in timeslot t

T slot
t starting time of timeslot t
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T start
m starting time for tour m

Tmax
m time limit for tour m

Fi(x) profit function for location i

Pmax
i maximum profit at location i

Pmint
i minimum visit time at location i

Wim set of time windows for location i and tour m

O/Ciwm opening/closing time for location i, tour m, time window w

As output variables we use:

pim profit accumulated at location i in tour m

yijmt location i is left to location j in timeslot t for tour m

xpm number of visits to PoI p in tour m

tpoi
im time spent visiting location i in tour m

sim arrival time at location i in tour m

jim helper variable for our piecewise linear profit function
giwm helper variable for modeling multiple time windows

We define the objective function as: max
∑

m∈M

∑
i∈Nm

pim which sums up the profit
gained over all PoIs in all tours. The profit is 0 if the PoI is not visited on the tour. Otherwise,
the gained profit is the value of the profit function defined in Section 4.1. Locations 1 and N

are the starting and ending point provided by the user. These may differ for each tour. All
other locations are fixed. Constraint 1 ensures that the first location is left exactly once and
the last location is reached exactly once:∑

j∈Nm

∑
t∈Tm

y1jmt =
∑

i∈Nm

∑
t∈Tm

yiNmt = 1 : ∀m (1)

To ensure that every PoI is entered at most once and left the same number of times (i.e.
once or not at all), we introduce the following constraints (yijmt ·Zjp connects locations used
in y with their PoIs in p):∑

i∈Nm

∑
j∈Nm

∑
t∈Tm

yijmt · Zjp =
∑

i∈Nm

∑
j∈Nm

∑
t∈Tm

yijmt · Zip = xpm : ∀m, ∀p (2)

M∑
m=1

xpm ≤ 1 : ∀p, (3)

As we allow for entering and leaving PoIs at different locations, we introduce the following
constraint to ensure that the minimum walking time between the two locations of the PoI is
taken into account. The product of Zkp · Zip · Twalk

ik yields 1 only for locations of the same
PoI.

(1−
∑

l∈Nm

∑
t∈Tm

yklmt −
∑

x∈Nm

∑
t∈Tm

yximt) · Zkp · Zip · T walk
ik ≤ tpoi

i,m∀i, k, p, m (4)

The following constraint ensures that each tour duration is limited to Tmax
m given by the

user. The duration of each tour is the sum of the time spent at PoIs and the time required
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to travel between PoIs. The time at the last location of the tour (e.g. the hotel) should be
smaller than the sum of the start time and the maximum travel time.

sNm ≤ T start
m + Tmax

m (5)

The following constraints are needed to ensure that the correct departure time is used at
each PoI - i.e. the PoI is left after the visit is finished (and not before). Both constraints are
automatically fulfilled by the right hand side (given any big number M), if the corresponding
y variable is 0 or in case of Constraint 6 if locations k and i do not belong to the same PoI.

sim + tpoiim ≤ T slot
t + `(1− ykjmt · Zip · Zkp) : ∀i, j, k, p, m, t (6)

T slot
t + T travel

ijt ≤ sjm + `(1− yijmt) : ∀i, j, m, t (7)

To ensure that the time-dependent travel times between PoIs are respected, the following
constraint is required. This constraint is automatically fulfilled by the right hand side (given
any big number `), if either k is never left towards j or if k and i are not locations of the
same PoI.

sim + tpoiim + T travel
kjt − sjm ≤ `(1− ykjmt · Zip · Zkp) : ∀i, j, k, p, m, t (8)

To model the profit function for each location, we use the following constraints. We
introduce j as helper variable which (due to Constraint 11) is 1 iff the visiting time is less
than the minimum visit duration. Therefore, Constraint 13 forces the gained profit to be 0 if
this is the case.

pim ≤ Fi(tpoiim ) + `jim ∀i, m (9)
pim ≤ Pmax

i xim ∀i, m (10)

tpoi
im + `jim ≥ Pmint

i ∀i, m (11)
pim ≥ 0 ∀i, m (12)
pim ≤ `− `jim ∀i, m (13)

To model multiple time windows per PoI/location and ensure that every visit of a PoI
takes place within a time window of this respective PoI, we introduce the following constraints.
Constraint 14 ensures, that a visit sim at location i in tour m starts after an opening time
Oiwm (w is the index of the specific time window) whereas Constraint 15 does this analogously
for closing times. Constraint 16 ensures only opening and closing times of the same time
window are matched by introducing variable giwm. Thus, either index i in Oiwm and Ciwm

matches or Constraints 14 and 15 are always true

Oiwm · giwm ≤ sim ∀i, w, m (14)
sim ≤ Ciwm + `(1− giwm) ∀i, w, m (15)∑

w∈Wim

giwm ≤ 1 ∀i, m (16)

Finally, we set the starting location and ensure positive visit times through the following
constraints:

s1m = T start
m (17)

tpoi
im ≥ 0 ∀i, j, m, t (18)

This form is suitable for MILP solvers and was programmed in Gurobi [23] for the experimental
study of this paper presented in Section 6.
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5 Approach

In this section, we will describe the preprocessing required to deliver real-time response
times for user queries as well as different heuristic approaches to solve the problem defined
mathematically in Section 4.2.

5.1 Preprocessing
Like in [14], we use an offline preprocessing step which does not have real-time requirements.
We precompute intermodal time-dependent shortest paths for public transport and walking
connections from every location to every other location for every timeslot. Our routing is
based on [22]1 and respects realistic transfer times, allows for walking between stations, and
does not assume periodicity of the timetable. We use a realistic pedestrian routing based on
OpenStreetMap data for the path between the PoI location and the next public transport
stop. Therefore, we precompute shortest paths from every PoI location to every public
transport stop and vice versa.

The fact that most shortest path algorithms for public transit routing (like RAPTOR
[8], Connection Scanning [9], and all graph-based Dijkstra variations like [10]) are inherently
computing shortest paths to all targets at the same time, can be exploited here. Here, each
shortest path problem is independent from every other shortest path problem. Thus, this
task is perfectly suited to be carried out in parallel.

The result is a time-expanded directed acyclic event-activity graph where every node
is either an arrival or a departure at a PoI location (in a discrete timeslot). Arrivals and
departures at the same location are connected by visit edges. To model entering and leaving
a PoI at different entries/exits, arrivals and departures at different locations of the same PoI
are connected by intra edges. Intra edges and inter edges need to conform to the computed
walking durations and travel times respectively. Visit edges and intra edges are only created
for visit times greater or equal the minimum visit time specified for the respective PoI profit
function. Finally, inter edges connect departure and arrival nodes of different PoIs.

Start and end location are both provided by the user. Thus, these can either be limited
to a set of known hotels and public transport stations where tourists typically start their
trip, which allows us to include them in the preprocessing. If this is not an option, four
additional queries need to be carried out online at query time: from the start location to
every location, using the start time as earliest departure time (forward search one to all)
and to the last location from every location, taking the start time plus the maximum trip
time as latest arrival time (backward search all to one). These two queries need to be done
for the pedestrian routing (to all locations and public transport stops) as well as the public
transport routing (initiating the labels with the results from the pedestrian routing). Both,
forward and backward direction can be computed in parallel. These nodes and edges are
added to the event-activity graph.

5.2 Heuristic Algorithm
To supplement computing solutions to problem using a MILP solver (which is time-consuming
as discussed in the Section 6), we develop heuristic algorithms: as a baseline, we present a
Basic Greedy Algorithm (BGA) and an Advanced Greedy Algorithm (AGA). As outlined in
Section 2, Iterated Local Search (ILS) based approaches were able to compute high-quality

1 The latest version is available as Open Source Software at https://motis-project.de/
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results in real-time. Therefore, we decided to implement an ILS approach to solve the
problem at hand on the graph described in Section 5.1. We present our Basic Iterated Local
Search (BILS) as well as our Specialized Iterated Local Search (SILS).

5.3 Basic Greedy Algorithm
This algorithm solves the problem sequentially, building a tour from start to end by adding
one greedily chosen activity at a time. For each expansion, the BGA has to choose the next
PoI, a visit time, and a location to exit the PoI at. This can be done efficiently on the
event-activity graph described in Section 5.1. To compute valid tours where no PoI is visited
twice, the algorithm has to keep a set of already visited PoIs and prevent expansions which
would result in revisiting PoIs which were already visited. This set is kept for all tours that
will be planned. Additionally, the algorithm requires a “dead-end protection”: there are PoIs
from where it is not possible to reach the end location within the maximum tour duration.
To prevent this, the graph can be pruned by removing nodes that have no transitive path to
the end location. A backward BFS starting from the end location nodes can mark all feasible
nodes. Nodes not marked within this run are omitted in the expansion step of the BGA.
Another solution would have been to introduce a backtracking step if the algorithm visited a
dead-end. The BGA chooses the next PoI based on a weight function p/(w·Ttravel+Tvisit) where
w controls the influence of the travel time. Note that this algorithm greedily selects only
steps that look locally promising. However, a globally optimal solution may contain steps
which will not be chosen with any w value.

5.4 Advanced Greedy Algorithm
To improve upon the BGA, the AGA also makes (locally) suboptimal steps and keeps a list
of multiple active solutions. The basic properties of the BGA (duplicate PoI prevention and
dead-end protection) stay the same. However, it makes multiple expansions in each step -
each one with a different value for w. After each complete step, it cuts off all solutions with
a lower profit per time duration than the best solution times the cutoff threshold. A high
cutoff threshold implies many cut off paths and therefore a better computing time but also
a decreased chance to find better solutions (i.e. paths from the start location to the end
location in the event-activity DAG). A cutoff threshold of zero combined with a unlimited
list of active solutions would result in listing all feasible solutions. This would yield the
optimal solution but is not feasible in practice for realistic problem instances.

5.5 Basic Iterated Local Search
A ILS basically uses a Local Search to find a local optimum. After that, the local optimum
is perturbed sufficiently enough to be able to escape the previous local optimum and find
a local optimum. The algorithm terminates if the Local Search cannot find a new local
optimum after a certain number of perturbations.

In our case, the search can be either seeded with an empty route (respectively multiple
empty routes if we are planning more than one tour) from start to finish (without visiting
PoIs) or the result of one of the previously described greedy algorithms. We define our
neighborhood for the local search step as all solutions which can be produced by integrating
a visit to a new PoI while still keeping the solution feasible. All existing visits keep their
arrival and departure time. We decide to insert always the (locally) best PoI visit (i.e. the
PoI which has the best profit per time including travel time) using the maximum visit time.
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This will be done until it is not possible to add yet another PoI. The perturb step removes a
varying number of PoI visits from the current solution. The remaining PoIs are then shifted
forward in time (i.e. towards the start of the route) as much as possible. The number of
removed PoI visits is incremented (to improve the chance to find a new local optimum) if
the new solution is equal or worse (regarding the profit value) than the previous solution.

5.6 Advanced Iterated Local Search

Since the previously presented heuristic algorithms always select the maximum visit time (by
locally optimizing the profit value), it would be interesting to introduce options to lengthen
(in the local search) or shorten (in the perturb step) a visit at a PoI. We add options to
extend the visit of a PoI to the Local Search neighborhood. This is done by moving the
arrival time to an earlier point in time or by moving the departure time to a later point in
time. The visit time is extended by 5 minutes in each step. Since the extension step is called
repeatedly, the algorithm should eventually be able to find new optima. The perturbation
step is now capable of shortening all PoIs from the front or back. As previously noted, only
feasible solutions are allowed as Local Search and perturbation step result. Still, the best
neighbor is chosen and the Local Search step continues until the neighborhood does not
contain any improvement.

6 Experimental Results

In this section, we will present the results of our experiments. As MILP solver, Gurobi [23]
was used and executed on a computer with an Intel® Xeon® CPU E3-1245 V2 processor
(3.4GHz) and 32 GB of RAM. Everything else was run on a computer with an Intel® Core®

M i3-5005U processor and 8 GB of RAM. The greedy and ILS algorithms are implemented
in C++.

The test instance are 41 hand-picked PoIs in Berlin from various categories with manually
researched opening and closing times 2. The main categories were defined as “Museum”,
“Monument”, “Panorama”, and “Experience”. More details can be derived from the theme
category “Art”, “Nature”, “History”, “Famous”, and “Shopping”. Each PoI can have multiple
categories. It is also possible for a tourist to set a high preference value for only a single
category - e.g. if they are interested in a tour of famous landmarks of the city of Berlin (e.g.
the Brandenburger Tor, pieces of the Berlin Wall, etc.). This could also be used to generate
interesting ideas for theme tours for so called “Hop-On Hop-Off” buses (albeit with a street
routing algorithm to generate the event activity DAG).

We manually picked 25 different queries covering a diverse set of combinations of maximum
duration (between 2-10 hours), number of tours (one or two) with four possible start and
end locations. We chose to evaluate the algorithms with a balanced profile as a single high
preference value for one category eliminates all but a few PoIs which produces unvaried tours
and makes the problem much easier to solve. This would not make for a good benchmark.

The timetable for the city of Berlin was kindly provided by Deutsche Bahn for research
purposes.
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Table 1 Preprocessing Computation Times.

Preprocessing Step Computing Time
Data Initialization 46 ms
Calculating Walk Times between PoIs 11.5 min
Calculating Travel Times between PoIs 2.5 min
Building Event-Activity DAG 6,6 s
Precomputing Paths for Query Positions 3.5 min
Integrate Query Data 12 ms
Total 15 min 23 s

Table 2 Graph Information for Different Granularity Settings.

Granularity 1 min Granularity 5 min Granularity 10 min
Arrival Nodes 81,452 67,963 58,815

Departure Nodes 88,470 17,694 8847
Inter Edges 9,382,766 1,877,691 939,597
Visit Edges 5,130,816 929,892 438,198
Intra Edges 4,044,902 727,959 329,015

Preprocessing

In Table 1, we report the time it takes to finish the preprocessing step described in Section 5.1.
The total duration (approximately 15min) is in a range where the preprocessing can even be
repeated with minimal effort when the timetable or pedestrian routes change.

Table 2 shows the size of the event-activity DAG for different granularities of the timeslots.

MILP Solver

We ran every query with the MILP solver for 10 hours each. The solver was seeded with
the best greedy solution. For the simplest query (a two hour tour), the solver did find an
optimal solution. For all other queries, the solver provided the best solution known so far as
well as an upper bound for the profit of the best solution possible. The difference between
the upper bound and the currently known best solution ranges between 6% and 20%.

Greedy Algorithm

The BGA from Section 5.3 was evaluated using 13 different travel time weights (0-10, 15,
and 20). In general, extreme travel time weights such as 0, 15, and 20 performed badly as
it is not reasonable to chose only very close PoIs or only high profit PoIs (ignoring travel
time completely). For long tours, lower travel time values seem to outperform higher values
whereas for short tours, the opposite is the case. This makes sense because for short tours,
long travel times leave not much time for the actual visits. Therefore, it could be useful to
select the travel time weight depending on the tour length. The BGA from Section 5.3 takes
about 2-4ms to complete. Comparing the result with those from the MILP solver, we see
that the MILP solver consistently outperforms the BGA by 5-10 pp. For one query, the gap
is even 16 pp. The gap is especially high for queries with long maximum travel times or even
multiple tours because the solution space increases drastically.

2 The data is freely available at https://github.com/motis-project/berlin-pois.

https://github.com/motis-project/berlin-pois
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Figure 1 Improvement over Gurobi Results for the Combined Algorithms: the highest profit
solution in blue and the highest solution which can be computed in real-time in red.

The AGA from Section 5.4 was tested with different numbers of active solutions (100,
1.000, 10.000), different cutoff thresholds (0.25 and 0.5) as well as different numbers of chosen
candidates (1, 3, 5). This yields 18 variations which we supplemented with one further
combination: 100.000 active solutions, cut-off threshold 0.5 and 3 chosen candidates. The
best solutions were found with the latter parameterization (15 times), closely followed by
10.000/0.25/5 (active solutions / threshold / chosen candidates). The best configuration
with 1.000 active solutions was 1.000/0.25/5 which produced the best known solution in 12
cases. The main driving factor for the processing time is the number of active solutions: the
AGA takes around 1 second for 100 solutions, 10 seconds for 1.000 solutions, 50 seconds
for 10.000 solutions, and 500 seconds for 100.000 solutions. The other parameters do not
influence the processing time significantly. Comparing the AGA with the MILP solver, the
solver still outperforms the result quality of the greedy algorithm by a huge margin of up to
15 pp. Interestingly, for five queries, the AGA was able to compute slightly better solutions
(2-3 pp) than the MILP solver (which was halted after 10 hours).

Iterated Local Search

The BILS presented in Section 5.5 was not able to improve upon the seeds from the best
greedy algorithm except in one case, where the profit was marginally improved (from 1231
to 1235 profit). As the best greedy algorithms are also very slow, we differentiate more
between the different greedy algorithm parameterizations and observe that the BILS is quite
capable of improving upon bad seeds from extreme travel time weights (0, 15, and 20) for
the BGA. Although the improvement upon the highest quality seeds is marginal, the BILS is
nonetheless interesting due to its fast computation times averaging around 1.5 seconds.

The AILS described in Section 5.6 was not able to improve upon the previously known
best solutions of our heuristic algorithms except for a slight improvement for one query (1402
to 1403). Compared with the basic ILS, the query runtime of 5 seconds on average does not
yield a worthwhile benefit.

ATMOS 2020
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Overall Comparison

Figure 1 shows an overall comparison of the heuristic algorithms with the best solution found
by the MILP solver after 10 hours. For simple queries (1-5), the solutions do not differ much.
However, there are queries where the best solution found by a heuristic algorithm is not even
close (more than 10 pp difference) to the solution found by the solver. Interestingly, in some
cases, the heuristic algorithms were able to find slightly better solutions (2-3 pp) in some
cases.

Granularity Analysis

Previous instances were reported with a 5 minute granularity for timeslots. Now, we also
vary the granularity and test the values 1 minute, 5 minutes, and 10 minutes. The results
show a strong correlation between query runtime and granularity: computing results with a
one minute granularity takes about 5 times as long as for the 5 minute granularity while at
the same time, the 10 minute granularity made the processing about twice as fast as the 5
minute granularity. The profits for the 1 minute granularity only improve between 0.5 pp to
1 pp (depending on the query) compared to the 5 minute granularity. However, the increase
of profit value from the 10 minute granularity compared to the 5 minute granularity ranges
from 0.5 pp to 5 pp. All in all, the 5 minute granularity seems to be a good trade-off between
result quality and processing time.

7 Conclusion and Future Work

In this paper, we presented several realistic extensions to the previously known definition of
the TDTOPTW (a variation of the TTDP) to make tourist trip planning more feasible in
practice and combine the TDTOPTW with the OPVP to account for variable personalized
PoI profit functions. For instance, the problem definition presented in this paper supports
multiple entries and exits for each PoI. We presented the first MILP modeling of the
TDTOPTW including the described realistic extensions. The approach is split into two
phases: the preprocessing phase has no real-time requirements and computes a time-expanded
event-activity DAG by routing optimal public transport and walking connections from every
PoI entry/exit to every other PoI entry/exit at every time with different granularity (here,
we used 1, 5, and 10 minutes). This allows for efficient trip planning at query time and
eliminates the need for repair steps as required by most previous approaches.

As the MILP solver takes quite long with the current definition, an interesting research
direction would be to search for ways to improve the representation in order to solve the
problem online in real-time.

In the future, the system could be extended to support adaptions of the profit functions
of PoIs depending on the weather forecast (i.e. prefer indoor activities for rainy days).
Additionally, the tour can be split further into smaller parts to allow for lunch and/or dinner.
Note that both of these extensions neither require any adjustment of the MILP nor any
changes to the ILS algorithm but can be encoded into the input. Furthermore, the algorithm
described and implemented in this paper could be used as a backend service for interfaces
presented in [4]. Combining our approach with [26] to guess preferences based on previous
ratings and activities can make for an even more satisfying tourist experience.
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Abstract
We consider a basic vehicle scheduling problem that arises in the context of travel demand models:
Given demanded vehicle trips, what is the minimal number of vehicles needed to fulfill the demand?
In this paper, we model the vehicle scheduling problem as a network flow problem. Since instances
arising in the context of travel demand models are often so big that the network flow model becomes
intractable, we propose using a rolling horizon heuristic to split huge problem instances into smaller
subproblems and solve them independently to optimality. By letting the horizons of the subproblems
overlap, it is possible to look ahead to the demand of the next subproblem. We prove that composing
the solutions of the subproblems yields an optimal solution to the whole problem if the overlap of
the horizons is sufficiently large. Our experiments show that this approach is not only suitable for
solving extremely large instances that are intractable as a whole, but it is also possible to decrease
the solution time for large instances compared to a comprehensive approach.
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1 Introduction

On-demand transport services are becoming more and more popular among travelers and
they have the potential to replace a significant part of the traditional public transport services
in the near future. To be able to react on and regulate such services in a meaningful way,
it is important for infrastructure managers and local authorities to model and estimate
the impact of on-demand services on the utilization of streets. Recently, many microscopic
approaches ([11], [2], [6]) have been proposed to model on-demand services. These rely on
simulation of individual agents to obtain a virtual traffic volume and estimate the impact of
on-demand vehicles on the infrastructure. In contrast to that, macroscopic approaches such
as [13] model vehicle and traveler movements as flows to estimate the utilization of streets.

In this paper, we focus on macroscopic approaches and discuss a simple vehicle scheduling
model for on-demand vehicles: Given demanded vehicle trips, what is the minimal number
of vehicles needed to fulfill the demand? The resulting vehicle schedule describes vehicle
itineraries and yields both the required size of the vehicle fleet and the positions of the
vehicles over time. With this information, the utilization of streets can be estimated.

Most existing vehicle scheduling approaches are developed for operational purposes to find
an assignment of vehicles to planned trips ([7], [5], [3]). Recent vehicle scheduling approaches
focus on the integration of further operational aspects, for example, the integration of
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15:2 Rolling Horizon Heuristic for Vehicle Scheduling

related planning steps ([14], [4]) or the integration of recharging strategies of battery electric
vehicles ([16], [12]). Compared to these approaches, the application of vehicle scheduling to
estimate the impact of on-demand services in macroscopic models brings two differences:
(1) The demanded vehicle trips are not planned trips but correspond to expected passenger
demand in a macroscopic model. Hence, they might be of fractional value. (2) Compared to
scheduled public transport, the amount of on-demand vehicle trips can be extremely large.
Especially the second difference makes many existing optimization approaches unsuitable
as corresponding problems easily exceed the size of tractable instances. In [10], the vehicle
scheduling problem is modeled as a network flow problem that computes the size of the
necessary vehicle fleet and their itineraries. Due to the large instances in realistic applications,
[10] solve the vehicle scheduling model with a simple heuristic approach that constructs
the vehicle schedule chronologically. While this approach scales well also with very large
instances, no guarantee on the solution quality is given. It remains unknown whether the
found vehicle schedule is optimal or how far it is from an optimal solution.

The contribution of this paper is a rolling horizon approach to solve the vehicle scheduling
model introduced in [10] to optimality. The rolling horizon approach is a heuristic that splits
instances into tractable subproblems and solves them independently. By enforcing overlap of
the horizons of these subproblems, it is possible to look ahead to the demand of the next
horizon and include that information while solving the current subproblem. As a consequence,
the decisions taken in the current subproblem are well suited for the next subproblem and
the overall solution quality can be improved. For a sufficient length of the overlap, we prove
that a globally optimal solution can be found by composing the locally optimal solutions
for the horizons. In numerical experiments we could solve intractable instances from [10] to
optimality. Furthermore, we could show that using the rolling horizon approach can bring a
speed-up in solution time for certain instance size compared to a comprehensive approach.

The remainder of this paper is structured as follows. In Section 2, the vehicle scheduling
problem from [10] is introduced and in Section 3 we describe the rolling horizon heuristic in
detail as our proposed solution approach. For a sufficiently long overlap of the horizons, we
provide an optimality guarantee for the rolling horizon heuristic in Section 4. By modifying
the formulation, we can strengthen the conditions for optimality. In Section 5, we show
in numerical experiments that using the rolling horizon heuristic can help to speed up the
solution process for large instances and Section 6 concludes the paper.

2 Problem setting

The problem discussed in [10] is to find a minimal vehicle schedule, a feasible routing of a
minimal number of vehicles meeting all given demand. A macroscopic model is considered in
which neither the demand nor the resulting size of the vehicle fleet need to be integer.

In this setting, the considered time frame and observation area are discretized into a set of
time intervals T and a set of traffic zones Z. The distance δzozd

between two zones is given as
multiples of time intervals, i.e., δzozd

= n means that driving from zone zo to zd can be done
in n time intervals. It is assumed that vehicle trips within a zone can be performed in one
time interval, i.e., δzz = 1 ∀z ∈ Z. The passenger demand is given aggregated to demanded
vehicle trips dzozdt between origin zo and destination zone zd, starting at the beginning of
time interval t. The trips end at the beginning of time interval t + δzozd

, determined by
the distance between origin and destination zone and the start time. Vehicle trips either
correspond to demanded person trips or, in applications with trip pooling, comprise multiple
person trips. For carsharing or ridesharing applications, we assume that the pooling of person
trips was done in a preceding step, for example, by the approach of [8].
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z = 1

z = 2

z = 3

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8

t1 t1t2 t2

Horizon 1

Horizon 2

Overlap

Figure 1 Instance with 3 zones and 8 time intervals. A possible assignment of time intervals to
two overlapping horizons {t1, . . . , t1} = {1, . . . , 5} and {t2, . . . , t2} = {4, . . . , 8} is indicated.

We denote an instance consisting of a set of zones Z, a set of time intervals T , a distance
function δzozd

and aggregated demand dzozdt by I = (Z, T, δ, d). For an instance I, the aim
is to compute a vehicle schedule with a minimal number of vehicles that meet the demand.
The fleet size and the vehicle routes in the schedule can be used to estimate the infrastructure
utilization. Deadheading trips are allowed to relocate vehicles, and vehicles waiting in a
traffic zone can be modeled as empty trips within a zone.

2.1 Network representation

This problem can be visualized in a time-space network, see Figure 1 for an instance with
3 zones and 8 time intervals. For each combination of z and t in the planning horizon, we
introduce a node (z, t). These nodes are displayed in a grid structure with time intervals
t on the horizontal and traffic zones z on the vertical. Each node (z, t) represents a traffic
zone z at the beginning of a time interval t. The distance δzozd

between two zones zo and
zd is represented by the horizontal length of the arcs between the corresponding nodes. An
arc (zo, zd, t) between two nodes represents a possible vehicle trip between two zones zo and
zd, starting at time interval t. The arrival time t+ δzo,zd

results from the start time t and
the distance δzo,zd

. For readability, we omit the arrival time in the notation of an arc. The
demanded vehicle trips dzozdt are modeled as lower bounds on the arc (zo, zd, t). A minimal
flow in this network corresponds to a vehicle schedule with a minimal number of vehicles.

2.2 Model

In [10] it is proposed to model the vehicle scheduling problem as a network flow problem
([1], [15], [3]) on the time-space network as introduced in Section 2.1. They formulate the
following linear program V S to find vehicle tours with a minimal number of vehicles.

min
∑
zo∈Z

∑
zd∈Z

fzozd1 (1a)

s.t. fzozdt ≥ dzozdt ∀zo, zd ∈ Z, ∀t ∈ T (1b)∑
zo∈Z :
t−δzoz≥1

fzoz(t−δzoz) =
∑
zd∈Z

fzzdt ∀z ∈ Z, ∀t ∈ T \ {1} (1c)

fzozdt ∈ R+ ∀zo, zd ∈ Z, ∀t ∈ T (1d)

ATMOS 2020
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The flow variables fzozdt ∈ R+ denote the number of vehicle trips from zone zo to zone zd,
starting at the beginning of time interval t. The objective (1a) is to minimize the total
number of vehicles, expressed by the number of vehicle trips starting in the first time interval.
The resulting number of vehicles for a flow f is also referred to as flow value |f |. The first set
of constraints (1b) ensures that the demand is satisfied. If fzozdt > dzozdt, that is, if there
are more vehicle trips than demanded, this can be interpreted as empty trips for vehicle
relocation or waiting in a traffic zone if zo = zd. To obtain a feasible vehicle flow, the second
set of constraints (1c) requires that the number of vehicles is preserved in each zone z at the
beginning of each time interval t. The domains of the flow variables f in (1d) show that the
vehicle trips do not need to be integer valued.

2.3 Difficulty of problem

The problem V S is a continuous linear program and can therefore be solved efficiently with
available solvers for moderately sized instances. The coefficient matrix is totally unimodular,
hence, the problem of finding integer flows is polynomially solvable for integer demand
dzozdt ∈ Z (see [9], problem [ND37], second comment). However, to determine the impact of
on-demand vehicles on traffic and infrastructure in realistic cases of application, the number
of time intervals and traffic zones may be enormous and yield intractable instances.

[10] discuss an application instance for the city area of Stuttgart. In this instance, the
observation area is separated into |Z| = 1175 traffic zones and the time frame of one full day
is segmented in |T | = 96 time intervals of 15min. The numbers of variables and constraints
of this instance is in the order of 108 and the corresponding optimization model could not be
build with the general purpose solver Fico Xpress 8.8 on a laptop with 32GB RAM1.

To handle extremely large instance sizes, [10] propose a simple heuristic that chronolo-
gically processes the nodes in the network and gradually constructs a vehicle schedule. By
backtracking and repairing the vehicle schedule during construction, they can achieve good
solutions for huge instances. However, the algorithm does not provide an approximation
guarantee for the constructed vehicle schedules (see [17] for more information on approx-
imation algorithms). That means, it cannot be guaranteed how close the solution is to an
optimal one. Furthermore, no optimality gap is provided by design of the algorithm.

3 Rolling horizon heuristic

In this paper, we propose using a rolling horizon heuristic to solve the model V S. The idea
is to divide the considered time frame into shorter time horizons and solve one subproblem
for each time horizon. The solutions to the subproblems can then be composed to a solution
for the full time frame.

3.1 Generalization of linear program

To be able to compose the solutions of the subproblems to a feasible global solution, the
optimization model V S from [10] is generalized. We consider an additional input of vehicles azt
that become available in zone z at the beginning of time interval t. Available vehicles to be
considered in one subproblem are a result of the flow fixed in previous subproblems. We

1 Hardware: Intel® Core™ i7-6700HQ CPU with 32GB of RAM; OS: Windows 10 Enterprise 2015 64-bit
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denote the generalized input by I = (Z, T, δ, d, a) and generalize the optimization program
to V S:

min
∑
zo∈Z

∑
zd∈Z

fzozd1 − azo1 (2a)

s.t. fzozdt ≥ dzozdt ∀zo, zd ∈ Z, ∀t ∈ T (2b)∑
zo∈Z :
t−δzoz≥1

fzoz(t−δzoz) + azt =
∑
zd∈Z

fzzdt ∀z ∈ Z, ∀t ∈ T \ {1} (2c)

∑
zd∈Z

fzzd1 ≥ az1 ∀z ∈ Z (2d)

fzozdt ∈ R+ ∀zo, zd ∈ Z, ∀t ∈ T (2e)

As in the program V S, the objective (2a) is to minimize the total number of vehicles
needed to serve the demand. Since the flow variables f comprise all moving vehicles (including
those that are given as available vehicles), available vehicles a in the first time interval are
subtracted in the objective. This corresponds to minimizing the number of additional vehicles
needed for serving the demand. The constraint (2b) ensuring that all demand is satisfied
remains unchanged and is the same as constraint (1b). It is necessary to generalize the flow
conservation constraints (2c) by treating available vehicles azt as incoming flow in nodes
(z, t). Furthermore, an additional set of constraints (2d) ensures that the outgoing flow in
the first interval considers all available vehicles a since this time interval is not covered in
the flow conservation constraints (2c). Note, that for a = 0 the program V S coincides with
the program V S.

3.2 Overlapping horizons

The idea of the rolling horizon heuristic is to divide the time frame into horizons and solve
one subproblem for each horizon. By letting the horizons overlap it is further possible to look
ahead to the demand of the next horizon. That means, the demand in the overlap with the
next horizon is considered in the subproblem of the current horizon. However, the vehicle
trips to satisfy this demand is not yet fixed in the solution to the current subproblem, but in
the solution to the next subproblem.

The longer the overlap, the more demand can be considered, which allows to move vehicles
to positions that are well-suited for meeting demand in the next horizon. These positions of
vehicles are considered as available vehicles azt in the subproblem for the next horizon.

A possible division of a time frame into two overlapping horizons is indicated in the
example network in Figure 1. In this example, the first horizon {1, . . . , 5} spans over the
first five time intervals. In the first subproblem, all demand starting in these five intervals is
considered. However, only the flow starting before the overlap, that is, starting in the first
three time intervals is fixed in the solution of the first subproblem. The flow in the overlap is
fixed by solving the subproblem of the second horizon {4, . . . , 8}.

3.3 Algorithm

With the generalized optimization model V S we can define the rolling horizon heuristic.
Its general idea is to solve the problem for smaller horizons that may be overlapping and
compose the partial solutions to a solution for the full problem. Let h denote the number of
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time intervals in each horizon and let o denote the number of overlapping time intervals in
the rolling horizon heuristic. Naturally, we require 0 ≤ o < h.

Algorithm 1 Rolling horizon heuristic.

1 Input: Instance I = (Z, T, δ, d), length of horizon h, horizon overlap o
2 Output: Vehicle flow f

# Initialize first horizon from time interval 1 to h, initialize variables for
available vehicles a and flow f with 0;

3 Initialize: i← 1, ti ← 1, ti ← h, azt ← 0 ∀z ∈ Z, t ∈ T ,
fzozdt ← 0 ∀zo, zd ∈ Z, t ∈ T ;

# Iterate through horizons until end of time frame is reached;

4 while ti < |T | do
# Solve the subproblem corresponding to the current horizon i and get flow f;

5 f ← Solve subproblem(I, {ti, . . . , ti}, a, f);
# Update number of available vehicles from fixed flow for next horizons;

6 azt ←
∑

zo∈Z :
1≤t−δzoz<ti−o

fzoz(t−δzoz) ∀z ∈ Z, t ∈ {ti − o, . . . , ti − o+ max δzozd
− 1};

# Update bounds of next horizon and goto next horizon by increasing counter i;

7 ti+1 ← ti + h− o;
8 ti+1 ← ti + h;
9 i← i+ 1;

# When reached end of time frame, truncate last horizon at |T |;
10 t← |T |;

# Solve the subproblem corresponding to the last horizon i and get flow f;

11 f ← Solve subproblem(I, {ti, . . . , ti}, a, f);
12 Return f ;

The pseudocode for the heuristic is presented in Algorithm 1. This algorithm processes
one horizon {ti, . . . , ti} after another (Line 4), with the first horizon starting in the first
time interval (Line 3). The horizons span h time intervals (Line 8) and each two consecutive
horizons have an overlap of o time intervals (Line 7). For each iteration, the subproblem
corresponding to the current horizon is called (Line 5 & 11), which is explained in detail in
Algorithm 2. Afterwards, the available vehicles are updated to communicate information
from the solution of one subproblem to the next (Line 6). Available vehicles are a mean to
model fixed vehicle trips that started before the overlap. By definition, these trips end at
latest max δzozd

− 1 time intervals after the beginning of the overlap.

Algorithm 2 Solve subproblem.

1 Input: Instance I, horizon {t, . . . , t}, available vehicles a, (partial) vehicle flow f

2 Output: Updated vehicle flow f

# Initialize sub-instance I constrained to the horizon;

3 Initialize: T ′ ← {t, . . . , t}, I ← (Z, T ′, δ|T ′ , d|T ′ , a|T ′);
4 do

# Solve generalized optimization problem and get optimal flow f ′ for horizon T ′;

5 f ′ ← V S(I);
# Update total vehicle flow with solution from subproblem;

6 fzozdt ← f ′zozdt
∀zo, zd ∈ Z, t ∈ T ′;

# Add additional vehicles to time intervals before the horizon to conserve flow;

7 fzzt ← fzzt + min{
∑
zd∈Z f

′
zzdt
− azt, 0} ∀z ∈ Z, t < t;

8 Return f ;
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In Algorithm 2, the optimization model V S is called (Line 5) to find an optimal vehicle
schedule for the subinstance I that is constrained to the current horizon (Line 3). After each
optimization call, the the total flow f is updated with the partial solution found (Line 6).
Note, that this overwrites the vehicle flow in the overlap with the previous horizon. This
procedure is equivalent to considering all demand in the current horizon, but just fixing the
flow before the overlap, as described in Section 3.2. The flow in the overlap is discarded
and then fixed with the solution of the next subproblem. If more vehicles were necessary to
serve the demand in the current horizon than in the previous horizons, additional vehicles
are added to the flow f (Line 7). This can be interpreted as introducing waiting vehicles in
a traffic zone during all previous horizons.

Algorithm 1 keeps the structure of the rolling horizon heuristic, and for each horizon the
total flow is extended by the vehicle flow found in Algorithm 2. At the end, Algorithm 1
returns a vehicle flow for the whole time frame that is composed by the optimal partial flows
for the horizons.

4 Quality of the solution

In this section, we prove that the vehicle schedules found by the rolling horizon heuristic in
Algorithm 1 are optimal for certain choices of the overlap o. We start with the argument
that the rolling horizon heuristic finds a feasible solution.

I Definition 1. A flow f is called feasible for an instance I if it satisfies all demand and
fulfills the flow conservation in each vertex, i.e., if constraints (1b) and (1c) hold.

Since the partial solutions are optimal and hence feasible solutions to the flow problems
per horizon, the demand is satisfied by the composed vehicle flow. By carrying over vehicles
to next horizon with the help of available vehicles a, and by introducing additional waiting
vehicles in previous horizons, the flow conservation holds.

I Observation 2. Hence, the composed vehicle schedule found by the rolling horizon algorithm
is a feasible vehicle schedule for the whole time frame of an instance I.

I Theorem 3. The rolling horizon heuristic finds an optimal solution for an instance I if

o ≥ 2 · max
zo,zd∈Z

δzozd
− 1.

Sketch of proof. The main idea of the proof for Theorem 3 is simple: Since the overlap is
long enough, any vehicle trip that was fixed in the solution of a previous horizon can be
corrected by another vehicle trip in any desired direction, if necessary. We prove Theorem 3
by induction and start with the observation that the flow f1 for the first horizon is optimal.

Next, we consider a flow for the first i horizons, denoted by f i, and assume that it is
optimal for the first i horizons. That means, it is optimal for the instance I = (Z, T i, δ, d)
with restricted time frame T i := {1, . . . , ti}. Hence, the vehicle schedule f i is a feasible
flow that meets all demand starting at latest at time interval ti, the end of the ith horizon.
Remember that the flow in the overlap {ti−o, . . . , ti} is not fixed yet but will be overwritten in
the next iteration of the rolling horizon heuristic. The key is to show that fixing vehicle trips
that start up to t < ti − o, the beginning of the overlap, does not prevent the rolling horizon
heuristic to find an optimal solution f i+1 for the first i+ 1 horizons if o ≥ 2 ·max δzozd

− 1.
To do the induction step, we first consider the demand in the overlap, and, afterwards,

vehicles that are not necessary to meet demand in the overlap. Since f i is a feasible flow
for the first i horizons, all demand in the overlap is satisfied. Of course, this demand is

ATMOS 2020
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also met in any feasible solution for i + 1 horizons. With some adaptions on the flow in
the overlap, it can be shown that any optimal solution f i for i horizons can be extended by
any optimal solution after the overlap. Since these adaptions require extensive notation, We
give a detailed proof for this in Appendix A. The underlying idea of the proof is, that it is
not important which vehicles meet the demand, but it is ensured that sufficient vehicles are
available to meet the demand in the overlap.

For the remaining vehicles, we focus on vehicle trips in f i that start before, and end at or
after the beginning of the overlap ti − o. Vehicle trips that end earlier do not interfere with
the next horizon, and vehicle trips that start later are overwritten by the solution for the
next horizon. Hence, these trips in f i do not restrict the solution for the (i+ 1)st horizon.

The trips under consideration start before the overlap, hence at t ≤ ti − o− 1 and end at
latest at t ≤ ti − o− 1 + max δzozd

. Relocating the vehicles that have executed these trips to
an arbitrary traffic zone from their current location takes at most another max δzozd

time
intervals. Hence, these vehicles are able to meet demand starting from any zone at time
interval t ≤ ti − o− 1 + 2 ·max δzozd

. For o ≥ 2 ·max δzozd
− 1, the vehicles are able to meet

demand just after the overlap at t ≤ ti.
Together, this shows that fixing vehicle trips starting before the overlap in the solution

of one subproblem and carrying this decision over to the next subproblem by the means of
available vehicles, does not prevent finding a globally optimal solution. There are sufficient
vehicles to meet demand starting in the overlap and the remaining vehicles can be relocated
to any zone to meet demand after the overlap. J

Theorem 3 gives a lower bound on the overlap to ensure finding optimal solutions. It is
further possible to show that this lower bound is minimal.

I Lemma 4. For o < 2 ·max δzozd
− 1, optimality of the rolling horizon heuristic cannot be

guaranteed.

Proof. We consider an example instance containing two zones and five intervals. The
maximum distance between two zones is δ12 = δ21 = 2. There is only demand of 1.0 vehicle
trips within the first zone starting in time intervals 1 and 5, i.e., d111 = d115 = 1.0 and
dzozdt = 0.0 otherwise. An outline of the underlying network can be found in Figure 2a.

One optimal solution is to use one vehicle that stays within the first zone all the time
and satisfies the demand during the first and the fifth time interval. This solution is

f11t = 1.0 ∀t ∈ {1, . . . , 5} and fzozdt = 0.0 otherwise,

with an objective value of |f | = 1.0. Applying the rolling horizon heuristic to this instance
with a horizon length of h = 4 and an overlap of o = 2 = 2 max δzozd

− 2, optimality cannot
be guaranteed.

When considering the first horizon {1, . . . , 4}, demand d115 = 1.0 lies outside the horizon
and is not considered yet. Therefore, routing 1.0 vehicles to the second zone after meeting
demand d111 is an optimal solution to the first subproblem. This partial solution

f111 = f122 = f224 = 1.0 and fzozdt = 0.0 otherwise

with an objective value of |f | = 1.0 is depicted in Figure 2b. Given this partial solution, it is
impossible to satisfy the demand in the fifth time interval with the same vehicles. When
considering the second horizon {3, . . . , 5}, the vehicle trip f122 to the second zone cannot
be reverted since it started before the overlap, and it is impossible to send the 1.0 vehicles
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(a) Instance: Net-
work with 2 zones
and 5 time inter-
vals, indicated de-
mand and visualized
distances.
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t = 1 t = 2 t = 3 t = 4 t = 5
1.0(1.0)

1.0(0.0)

1.0(0.0)
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(b) An optimal solu-
tion to first horizon
{1, 2, 3, 4}. This pre-
vents finding a glob-
ally optimal solu-
tion.
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(c) An optimal solu-
tion to second hori-
zon {3, 4, 5}. Previ-
ously fixed flow en-
forces use of addi-
tional vehicles.

Figure 2 Example network with 2 zones and 5 time intervals and suboptimal solution found by
the rolling horizon heuristic for an overlap of o = 2 time intervals. Dashed lines indicate potential
vehicle trips, thick edges positive flow, and grey lines and vertices are outside of the considered
horizon. Numbers in brackets on edges show demand, numbers without brackets show vehicle flow.

back to the first zone in time. In this case, another 1.0 vehicles have to be added to satisfy
demand d115 in the fifth interval, yielding a suboptimal global solution. This solution

f111 = 2.0, f11t = 1.0 ∀2 ≤ t ≤ 5, f122 = f224 = f225 = 1.0 and fzozdt = 0.0 otherwise

has an objective value of |f | = 2.0 and can be seen in Figure 2c.
Note, that this example can be generalized to provide a counterexample for any maximal

distance between two zones. Consider a network with the same pattern: two zones and a dis-
tance of δ12 = δ21 between these two zones. Define the demand by d111 = d11(2 max δzozd

+1) =
1.0 and dzozdt = 0.0 otherwise. Then, the rolling horizon with a setting of h = 2 max δzozd

and o = 2 max δzozd
− 2 might fail to find the optimal solution with the same argumentation.

This generalization shows that a choice of o = 2 max δzozd
− 1 is indeed the smallest value

for the horizon overlap that ensures an optimal solution for Algorithm 1. J

The counter example in the proof of Lemma 4 abuses the fact that an unreasonable
decision to route an empty vehicle to another zone can appear in an optimal solution. By
preventing this kind of unreasonable vehicle trip, the condition for the optimality guarantee
of the rolling horizon heuristic can be strengthened. In this context, a vehicle trip to a
different zone is considered unreasonable if it does not satisfy any demand dzozdt or if it is
not performed to satisfy any demand in the zone of its destination. Staying within zones is
never considered to be unreasonable as it is also used to model waiting vehicles during a
time interval. This is formalized in the following definition.

I Definition 5. A flow f is called unreasonable if for an arc (zo, zd, t) with zo 6= zd none
of the two conditions holds
1. Flow fzozdt satisfies demand dzozdt, i.e., fzozdt = dzozdt.
2. Flow fzozdt is performed to have enough vehicles available to meet demand dzdzt′ starting
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in zone zd at t′ := t+ δzozd
, and otherwise there were too few vehicles, i.e.,

fzozdt +
∑

zo 6=z∈Z :
t′−δzzd

≥1

fzzd(t′−δzzd
) =

∑
z∈Z

dzdzt′ .

As a consequence, if it is ensured that no flow is unreasonable, all vehicles stay in the
destination zone zd of their last satisfied demand dzozdt unless they are needed to satisfy
demand. In particular, sending 1.0 vehicles from the first to the second zone in the counter
example is unreasonable. Preventing unreasonable flow helps to improve the condition for an
optimality guarantee.

I Theorem 6. If it is ensured in each iteration that no vehicle flow is unreasonable, the
rolling horizon heuristic finds an optimal solution for the whole time frame if

o ≥ max
zo,zd∈Z

δzozd
.

Sketch of proof. The idea for the proof of Theorem 6 follows the structure of the one for
Theorem 3. In this case, the vehicle trips that start before the overlap end at the beginning
of the overlap t = ti − o, unless they meet demand. Then, after relocating them, the vehicles
are able to meet demand at t ≤ ti − o+ max δzozd

, i.e., at t ≤ ti for o ≥ max δzozd
.

Since the flow is not unreasonable, the fixed vehicle trips that end after ti − o either meet
demand or relocate vehicles to meet demand in the zone of destination. Hence, they are not
a restriction to finding a globally optimal solution as these trips have to be performed in any
feasible solution. With the same argumentation as in proof of Theorem 6, it follows that the
rolling horizon heuristic finds an optimal solution under the given conditions. J

Again, it is possible to show that this value is minimal.

I Lemma 7. For o < max δzozd
optimality of the rolling horizon heuristic cannot be guaran-

teed, even if it is ensured in each iteration that no vehicle flow is unreasonable.

Proof. To show that the rolling horizon heuristic might not be optimal if o = max δzozd
− 1

we again provide a counterexample. This instance has two zones and max δzozd
+ 2 intervals,

where the case of max δzozd
= δ12 = 2 is depicted in Figure 3a. The only demand in this

instance is d111 = d22(max δzozd
+2) = 1.0. An optimal solution is

f111 = f122 = f22(max δzozd
+2) = 1.0 and fzozdt = 0.0 otherwise

with an optimal objective value of 1.0.
With the assumption of no unreasonable flow, the rolling horizon heuristic with parameter

setting h = max δzozd
+ 1 = 3 and o = max δzozd

− 1 = 1 cannot find an optimal solution
for this instance. In the first horizon {1, . . . ,max δzozd

+ 1}, demand d22(max δzozd
+2) is not

considered and flow f111 = f112 = · · · = f11(max δzozd
+1) = 1.0 is fixed, see Figure 3b for the

case max δzozd
= δ12 = 2. In the second horizon {3, . . . ,max δzozd

+ 2} it is not possible
any more to route the available vehicle from the first zone to the second zone to satisfy
demand d22(max δzozd

+2) = 1.0. This situation can be seen in Figure 3c. It is necessary to
introduce 1.0 additional vehicles in the second zone, which yields the suboptimal solution

f11t = f22t = 1.0 ∀t ∈ T and fzozdt = 0.0 otherwise

with the objective value 2.0. This shows that in case of no unreasonable flow the rolling
horizon heuristic only is guaranteed to find an optimal solution for o ≥ max δzozd

. J
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(b) An optimal solu-
tion to first horizon
{1, 2, 3}. This pre-
vents finding a glob-
ally optimal solu-
tion.
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(c) An optimal solu-
tion to second ho-
rizon {3, 4}. Previ-
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forces use of addi-
tional vehicles.

Figure 3 Example network with 2 zones and 4 time intervals and suboptimal solution found by
the rolling horizon heuristic for an overlap of o = 1 time interval. Dashed lines indicate potential
vehicle trips, thick edges positive flow, and grey lines and vertices are outside of the considered
horizon. Numbers in brackets on edges show demand, numbers without brackets show vehicle flow.

Unreasonable flow can, for example, be prevented by using the objective function (3):∑
zo∈Z

∑
zd∈Z

fzozd1 − azo1 +
∑
zo∈Z

∑
zd∈Z

czozd

∑
t∈T

fzozdt. (3)

with artificial routing costs c. By setting czz = 0 and 0 < czozd
< 1
|T | ∀zo 6= zd ∈ Z, waiting

in a zone is always preferred to an unreasonable flow. The upper bound on czozd
ensures

that never additional vehicles are acquired to save artificial routing costs. This means, using
objective (3) with that cost setting minimizes the number of vehicles and at the same time
prevents unreasonable flow.

5 Numerical experiments

In their paper, [10] discuss instances with up to 108 vehicles trips which leads to a similar
amount of variables. While it was not possible to build an optimization model V S for such
huge instances with the solver FICO Xpress on a laptop with 32GB RAM, optimal solutions
for these instances could be found with the rolling horizon heuristic on the same machine.

Besides the fact that huge instances become tractable, splitting the problem into subprob-
lems can speed up the solution process for tractable instance sizes. We conduct experiments
on randomly generated instances with |T | = 96 time intervals, a maximal distance of
max δzozd

= 10 time intervals between zones, and a varying number of zones |Z|. The rolling
horizon heuristic is used with the adjusted objective function (3) and a minimal overlap
of o = 10 that ensures finding an optimal solution. For each instance size, that means, for
each number of zones |Z|, five randomly generated instances are solved with various settings
for the horizon length h. The horizon length h and the overlap o determine the number of
subproblems p that need to be solved during the rolling horizon heuristic. Applying the
rolling horizon heuristic with a horizon length of 96 time intervals means solving the whole
problem at once and is considered as the base case.
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Table 1 Solution times for varying instance sizes (number of zones |Z|) and length of horizon h.
The top two rows indicate the length per horizon h and the corresponding number of subproblems
p. The first two columns state the number of zones |Z| and the resulting number of vehicle trips.
The last column gives the best absolute solution time in seconds per instance size. The remaining
columns show the solution times relative to the best solution time per instance size.

p 1 2 3 4 5 6 7 8 9 10 11
h 96 53 39 32 28 25 23 21 20 19 18

|Z| trips rel CPU abs CPU [s]
20 3.8 104 1.0 1.17 1.27 1.43 1.40 1.53 1.69 1.84 1.90 2.05 2.15 1.0
40 1.5 105 1.02 1.01 1.0 1.10 1.16 1.23 1.25 1.36 1.37 1.42 1.65 4.3
60 3.5 105 1.31 1.06 1.0 1.06 1.09 1.15 1.15 1.22 1.26 1.44 1.41 10.7
80 6.1 105 1.42 1.11 1.0 1.03 1.04 1.14 1.12 1.19 1.20 1.21 1.27 22.1
100 9.6 105 1.49 1.08 1.01 1.0 1.02 1.03 1.06 1.09 1.16 1.19 1.27 38.4
120 1.4 106 1.78 1.18 1.0 1.00 1.10 1.04 1.12 1.16 1.15 1.21 1.20 62.2
140 1.9 106 1.72 1.17 1.04 1.0 1.05 1.06 1.07 1.08 1.12 1.13 1.15 95.8
160 2.5 106 1.76 1.18 1.03 1.03 1.0 1.05 1.04 1.06 1.10 1.14 1.12 142.2
180 3.1 106 1.82 1.18 1.04 1.0 1.03 1.02 1.04 1.02 1.04 1.05 1.10 194.0
200 3.8 106 1.95 1.42 1.17 1.12 1.07 1.0 1.04 1.09 1.05 1.07 1.11 241.7
220 4.6 106 1.93 1.25 1.08 1.10 1.07 1.03 1.0 1.05 1.08 1.10 1.08 316.1
240 5.5 106 1.81 1.19 1.02 1.0 1.03 1.04 1.07 1.06 1.09 1.05 1.07 437.2

Table 1 shows relative and best absolute solution times for finding a globally optimal
solution, averaged over five random instances for each instance size. Both the number of
trips and the average absolute solving time increase exponentially with the number of zones,
indicating that large instances are hard to solve.

A value of 1.0 in the top left corner indicates that it is fastest to solve the instances with
20 zones at once, i.e., with a horizon length of h = 96. With decreasing length of the horizon,
and thus increasing number of subproblems, the solution times increase. For example, solving
the same instances by splitting them up into 11 horizons spanning 18 time intervals each,
thus solving 11 (smaller) subproblems, takes more than twice as long as the fastest option.

The larger the instances, the more it pays off to solve a larger number of small subproblems
instead of only few but large subproblems. With the tendency to increase further, solving
instances with number of trips in the order of magnitude of 106 at once took almost twice as
long as solving them with the rolling horizon approach in the best setting. Comparably low
computation times could be achieved with various settings for the horizon length.

6 Conclusion and Outlook

6.1 Conclusion
This paper presents an alternative way to solve a simple vehicle scheduling problem as it
occurs, for example, in the context of traffic estimation. The aim is to meet given demand
with the least amount of vehicles possible. For certain applications such as on-demand
services, the number of demanded trips can be extremely large, making real-world instances
intractable.

We propose a rolling horizon heuristic to solve large instances of this problem. The
principle is to split the considered time frame into small horizons and solve a vehicle scheduling
problem for each horizon. For a sufficient overlap of the horizons, we prove that a solution
composed by the partial solutions of the horizons is globally optimal. By introducing artificial
routing costs, we could further relax the condition on the optimality criterion which makes
finding optimal solutions less expensive.
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In experiments we find that the rolling horizon approach has a runtime advantage over
solving a full model already for moderately sized instances, which illustrates the benefit of
our approach also for instances of medium size.

6.2 Outlook
The presented rolling horizon approach was motivated with and developed for the application
of vehicle scheduling in macroscopic demand models. However, the underlying theory of the
solution approach is more general. The vehicle scheduling problem V S is modeled as a general
network flow problem on a directed cycle-free graph. Hence, the presented rolling horizon
approach is also applicable to a wider set of applications that can be modeled similarly.

Furthermore, it would be interesting to investigate whether the basic idea of the proof
can be adjusted to be used in an even broader range of applications. The key ingredient of
the proof is that decisions do not influence the remote future, which is the case in many
applications with time-space networks, for example. Therefore, it might be possible to
prove that a rolling horizon solution approach is capable of finding optimal solutions in
other applications as well. This could be especially interesting for applications of online
optimization where information is revealed successively.
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A Proof of optimality

To proof Theorem 3, some additional definitions and observations are helpful. From Obser-
vation 2 we know that a composed solution for an instance I found by the rolling horizon
heuristic is feasible. It remains to prove that the solution does not require more vehicles
than an optimal solution to the program V S. To this end, we introduce necessary notation
to examine the vehicle flow per vehicle tour.

I Definition 8. A v-vehicle tour is a sequence

τ = ((zo1zd1t1), . . . , (zonzdntn))

of n consecutive vehicle trips with a positive flow of value v ∈ R+. Consecutive trips are
characterized by

zdi = zoi+1 and ti + δzoizdi
= ti+1 ∀1 ≤ i < n.

A v-vehicle tour can be imagined as a tour that is driven by exactly v vehicles. Obviously,
a vehicle schedule consists of many vehicle tours:

I Observation 9 ([15]). A feasible flow f can be decomposed into a finite set of vehicle tours
{τk}k such that the sum of all vehicle tour values

∑
k vk equals the total flow |f |. Each of

the vehicle tours spans the whole time frame, i.e.,

t1 = 1 and tn + δzonzdn
> |T |.

Such a decomposition is not unique.

Next, we introduce vehicle duties to keep track of which vehicle tour serves which demand.

I Definition 10. Let I = (Z, T, δ, d) be an instance and let f be a feasible vehicle schedule,
decomposed to a set of vehicle tours. A mapping γ from a vehicle tour τ and a vehicle
trip (zo, zd, t) to a positive value,

γ : (τ, (zo, zd, t)) 7→ R+

is called vehicle duty if the following three conditions hold:
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1. The value is only positive if the vehicle trip is in the tour,

γ (τ, (zo, zd, t)) > 0⇒ (zo, zd, t) ∈ τ.

2. The value is at most the value v of the vehicle tour,

γ (τ, (zo, zd, t)) ≤ v.

3. The sum of values for one vehicle trip (zo, zd, t) sum up to the demand dzozdt on that
trip, ∑

τ : (zo,zd,t)∈τ

γ (τ, (zo, zd, t)) = dzozdt ∀(zo, zd, t).

A vehicle duty can be interpreted as assigning all demand to vehicle trips that meet the
demand.

I Observation 11. For each feasible flow f decomposed to a set of vehicle tours, there exists
a vehicle duty such that the tour value v of each vehicle tour equals the value of the last
positive demand assigned to the tour. Demand dzozdt is called the last demand assigned to
the tour if there is no other demand dzo

′zd
′t′ assigned to that tour with t′ > t.

For any vehicle duty, this can easily be constructed by iteratively splitting each v-vehicle
tour not fulfilling this criterion into two v1 and v2 vehicle tours with the same sequence of
vehicle trips where at least one tour fulfills the criterion.

I Definition 12. Such a vehicle duty is called maximal vehicle duty.

Proof of Theorem 3. We show that a composed vehicle schedule of the rolling horizon
heuristic is optimal for the whole time frame by induction over the number of horizons.
Induction basis It is easy to see that the optimization program V S finds an optimal solution

f1 for the first horizon {t1, . . . , t1} = {1, . . . , h}.
Induction hypothesis We consider a solution f i of the rolling horizon algorithm for the first i

horizons and as induction hypothesis we assume that the solution is optimal. That means,
it is not possible to satisfy all demand dzozdt for t ≤ ti with less than xi := |f i| vehicles.
This flow f i is fixed up to the beginning of the overlap and may not be changed by the
solution of a future horizon. The flow in the overlap, f izozdt

for t ≥ ti − o is overwritten
by the solution of the next horizon and may change.

Induction step Let f∗ be an optimal solution for i+1 horizons, for example found by solving
the optimization model V S. Our aim is to show that a solution from the next iteration
of the rolling horizon heuristic with an overlap of o ≥ 2 ·max δzozd

− 1 is optimal for i+ 1
horizons. This is done by constructing a feasible flow f i+1 for the first i+ 1 horizons that
is identical to the flow f i before the overlap and uses x∗ := |f∗| vehicles. Since we can
construct such a solution, Algorithm 2 in the rolling horizon heuristic will find a solution
that is at least as good.

First, we consider a decomposition of the flow f i into finitely many vehicle tours τ i, and
a maximal vehicle duty γi assigning all demand to the vehicle tours. We ’cut off’ each vehicle
tour τ i

I after meeting the last demand that starts in the overlap and that is assigned to that
tour, or else,

II if no demand starting in the overlap is assigned to that tour in the vehicle duty, after
the first vehicle trip that ends in the overlap.
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To formalize, let

τ i = ((zo1, zd1, t1), . . . , (zok, zdk, tk), (zok+1, zdk+1, tk+1), . . . , (zon, zdn, tn))

be a vehicle tour in flow f i. Let (zok, zdk, tk) be the last vehicle trip starting in the overlap
with demand assigned to the tour τ i, or else, be the first vehicle trip that ends in the overlap.
Then, the rear part after this vehicle trip, starting with (zok+1, zdk+1, tk+1), is cut off, which
yields the incomplete tour

τ ′ = ((zo1, zd1, t1), . . . , (zok, zdk, tk)).

This can be interpreted as letting all vehicles from vehicle tour τ i wait in zone zdk at time
interval tk + δzokzdk

.
I We denote the number of all vehicles waiting in vertex (z, t) after meeting demand that
starts in the overlap by wI

zt and initialize the set of vertices where these vehicles are
waiting as

W I = {(z, t) : wI
zt > 0, z ∈ Z, ti − o < t ≤ ti + max δzozd

}.

II Equivalently, we denote the number of all vehicles waiting in vertex (z, t) after the first
vehicle trip ending in the overlap by wII

zt.
This leaves us with incomplete vehicle tours that start in the first time interval and end
sometime after the beginning of the overlap with waiting vehicles.

Next, we use these incomplete vehicle tours as a basis for the flow f i+1 that we want to
construct as a solution for the first i+ 1 horizons. We set

f i+1
zozdt

:=
∑

τ ′ : (zo,zd,t)∈τ ′

v(τ ′) ∀zo, zd ∈ Z, t ∈ {1, . . . , ti}

where v(τ ′) is the flow value of vehicle tour τ ′. We want to highlight three characteristics of
f i+1:
1. Since the tours τ ′ are not cut off before the start of the overlap, f i+1 is identical to flow f i

up to the beginning of the overlap. This is required for the construction of f i+1 since all
vehicle trips before the overlap are fixed by design of the rolling horizon heuristic.

2. Since it is defined by incomplete tours, f i+1 is not a feasible flow (yet). The flow
conservation does not hold at some nodes. In this proof, we show that it is possible to
extend it to a feasible flow at these nodes.

3. Since the tours τ ′ are cut off after meeting the last demand, f i+1 does meet all demand
starting up to the end of the overlap.

Our goal is to show that we can complete f i+1 to a feasible flow for i+ 1 horizons while
using x∗ vehicles. The sum of all flow values of the incomplete tours is xi, equal to the flow
value of f i. It holds that xi ≤ x∗, otherwise f i is not optimal for the first i horizons as f∗|i
would be a better solution, which contradicts the induction hypothesis. In case that xi < x∗

we add (x∗ − xi) more vehicles to f i+1 at an arbitrary zone, for example by letting them
stay in the first zone until the beginning of the overlap:

f i+1
11t := f i11t + (x∗ − xi) ∀t < ti

This increases the number of waiting vehicles wII
1ti

in node (1, ti) by (x∗ − xi). Then, the
sum of all flow values in f i+1 is x∗, as in any optimal flow f∗.
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Next, we consider an arbitrary but fixed optimal solution f∗ for i+1 horizons, decomposed
into finitely many vehicle tours τ∗, and a vehicle duty γ∗ assigning all demand to the vehicle
tours τ∗. Let T be the set of all tours τ∗ in f∗. Our aim is to extend the incomplete tours
in f i+1 with the rear parts of the tours in f∗.

I First, we consider waiting vehicles wI
zt that met demand starting in the overlap. We

extend f i+1 according to the following procedure:
While W I is not empty, we choose an arbitrary node (z, t) ∈W I. By definition of W I,
at least wI

zt demanded vehicle trips end in node (z, t). Hence, there exist vehicle
tours τ∗ ∈ T that this demand was assigned to, otherwise f∗ was infeasible. We
extend f i+1 at node (z, t) with these tours τ∗ from f∗ until there are no more waiting
vehicles wI

zt in node (z, t):
While wI

zt > 0, we take such a tour τ∗ with tour value v(τ∗) and remove it from the
set T . If v(τ∗) > wI

zt, we split the tour τ∗ into two tours with the same sequence
of vehicle trips as τ∗, one tour τ∗w with flow value wI

zt, and one tour τ∗v−w with flow
value v(τ∗)−wI

zt. Else, for v(τ∗) ≤ wI
zt, we take the tour with the full value v(τ∗)

and define τ∗w := τ∗.
We extend f i+1 at node (z, t) with tour τ∗w and put τ∗v−w back into the set T .
Extending f i+1 with tour τ∗w means, we increase the flow value f i+1

zo
′zd

′t′ for each
vehicle trip (zo′, zd′, t′) in tour τ∗w after node (z, t) by the value v(τ∗w),

f i+1
zo

′zd
′t′ = f i+1

zo
′zd

′t′ + v(τ∗w) ∀(zo′, zd′, t′) ∈ τ∗w : t′ ≥ t.

Based on this extension of f i+1, we update the number of waiting vehicles:
At the current node (z, t), there are v(τ∗w) waiting vehicles less, hence, we
set wI

zt := wI
zt−v(τ∗w). Moreover, it might be that some further demand dzo

′zd
′t′

starting in the overlap after node (z, t) was assigned to vehicle tour τ∗w in the
optimal flow f∗, i.e. γ∗(τ∗w, (zo′, zd′, t′)) > 0 for t < t′ ≤ ti. Then, we assign
this demand to the newly extended tour in f i+1 as well. In particular, we undo
the assignment of this demand to another tour τ i+1 in f i+1.
If demand dzo

′zd
′t′ was the last demand assigned to tour τ i+1, this has two

consequences: First, it caused waiting vehicles wI
zd

′(t′+δzo′zd
′ ) after the demanded

vehicle trip (zo′, zd′, t′). We remove these waiting vehicles since the demand is
met by the newly extended vehicle tour in f i+1 as well:

wI
zd

′(t′+δzo′zd
′ ) := max{wI

zd
′(t′+δzo′zd

′ ) − γ
∗(τ∗w, (zo′, zd′, t′)), 0}.

Second, since the assignment of the last demand to tour τ i+1 is undone, either
another demand dzo

′′zd
′′t′′ with ti − o ≤ t′′ < t is the last demand, or no other

demand that starts in the overlap is assigned to tour τ i+1. In the first case,
we increase the number of waiting vehicles wI

zd
′′(t′′+δzo′′zd

′′ ) after that demand
by γ∗(τ∗w, (zo′, zd′, t′)) since it is now the last demand. In the second case,
we increase the number of waiting vehicles wII

ẑt̂
by γ∗(τ∗w, (zo′, zd′, t′)), where

node (ẑ, t̂) is the first node of tour τ i+1 in the overlap.
If wI

zt = 0 for any node (z, t) after updating of the number of waiting vehicles, we
remove it from W I and continue with the next node in W I.

This procedure extends f i+1 with vehicle trips from f∗ until there are no more waiting
vehicles wI

zt at node (z, t). During this construction, also the waiting vehicles at other
nodes might be changed. We want to emphasize that this procedure is well-defined
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and finite. There exist sufficient vehicle tours in the set T to be chosen from in
the procedure. For each node (z, t), at most vehicle tours with a total flow value
of incoming demand at (z, t) are requested from set T . Since all demand is met by
the solution f∗, these tours exist. Furthermore, we reduce the waiting vehicles in all
future nodes by the flow value of a tour, if a tour with assigned demand is removed
from T . Hence, taking a tour τ∗ with assigned demand ending in (z, t) from set T
is well-defined. In each update of the number of waiting vehicles, the total number
of waiting vehicles never increases. Furthermore, it is impossible to process waiting
vehicles caused by the same demand twice, which makes the procedure finite.

This procedure is applied to all nodes with waiting vehicles wI until the set of waiting
vehicles W I is empty. After this procedure, we obtain an incomplete flow f i+1 with some
complete tours that start in the first time interval and reach the end of the horizon, and
some waiting vehicles wII after the beginning of the overlap that were not treated yet.

II Second, we consider these waiting vehicles wII after the beginning of the overlap.
We start with determining the amount of waiting vehicles wII: Let x denote the sum of
the flow values of the complete tours constructed in case I. Since these tours are based on
flow f i and extended with tours from the optimal solution f∗, the sum of the flow values
of the vehicle tours left in the set of tours T is equal to the total number of waiting
vehicles wII, namely (x∗ − x). The waiting vehicles wII

zt are present at nodes (z, t) after
the first vehicle trip that starts before and ends in the overlap. Hence, the vehicles are
waiting in zone z at the beginning of time interval t with

t ≤ ti − o− 1 + max δzozd
.

It is important to note that all demand in the overlap is met by the complete tours
constructed in case I and we do not need to take care of this.
We disconnect the remaining vehicle tours in the set T at the first node (z′, t′) after the
overlap into two incomplete tours. Then, it is possible relocate the waiting vehicles to
zone z′ within at most max δzozd

time intervals, that means the vehicles can be available
in zone z′ at latest at

t ≤ ti − o− 1 + 2 ·max δzozd
≤ ti ≤ t′.

That means, it is possible to relocate the waiting vehicles wII within the overlap and
extend f i+1 with the rear parts of the disconnected vehicle tours from f∗.

As a result, we obtain a feasible flow f i+1 for the first i+ 1 horizons that uses x∗ vehicles.
This flow is identical to flow f i before the overlap, and identical to flow f∗ after the overlap.
For the time intervals in the overlap, we constructed f i+1 in such way that it connects f i
and f∗. By construction, it is ensured that all demand is satisfied and with the help of
waiting vehicles we could connect the flows ensuring flow conservation at each node.

Since it is possible to construct a flow f i+1 with these characteristics, the rolling horizon
algorithm will find a vehicle schedule for i+ 1 horizons that is at least as good. The theorem
follows by induction. J
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Abstract
Railway systems are often highly utilized, which makes them vulnerable to delay propagation. In
order to minimize delays timetables are desired to be robust, a property that is often estimated by
simulating the respective timetable for different deterministic delay values. To achieve an accurate
estimation under consideration of uncertain delays many simulation runs need to be executed. Most
established simulation systems additionally use microscopic models of the railway systems, which
further increases the simulations running times and makes them applicable rather for small areas of
interest for complexity reasons.

In this paper, we present a probabilistic, symbolic simulation algorithm for given timetables,
this means we do not simulate individual executions, but all possible executions at once. We use a
macroscopic model of the railway infrastructure as input. This way we consider the railway systems
in less detail but are able to examine certain performance indicators for larger areas. For a given
input model this simulation computes exact results. We implement the algorithm, examine its
results, and discuss possible improvements of this approach.
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1 Introduction

Railway traffic has increased over the past years and is expected to increase further [11].
However, changes in the railway infrastructure to accommodate the increase in traffic are
expensive and take a long time. Therefore, it is increasingly important to optimize the
exploitation of the infrastructure capacity. As many passenger and freight trains as possible
should be able to use the infrastructure, of course in compliance with the necessary safety
requirements. At the same time the quality of service should still be satisfying. Unfortunately,
with increasing traffic volume delay propagation is increasing, too. That is the case because
the intervals between consecutive trains are smaller for a higher traffic volume, which makes
it more likely that one train’s delay impacts other trains’ punctuality as well.

There are different approaches to still ensure an acceptable quality of service [12]. On the
one hand, they aim at minimizing the primary delays, caused for example by malfunctions
like signal or brake faults or by large numbers of passengers. On the other hand, there
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are measures to reduce the secondary delays, resulting from conflicts with other trains and
therefore indirectly from primary delays. These measures can be roughly divided into two
categories, improving the robustness of the timetable (planning) [7, 14] and improving train
dispatching (execution) [8, 9, 18]. In this paper we propose an approach to examine the
robustness of a given timetable under consideration of probabilistic primary delays. By
robustness we mean here that the trains in the timetable should be able to recover from
small delays and that delay propagation in the timetable execution should be restricted, as
defined in [5].

Simulation is a technique often used to assess railway timetable robustness. There is a
variety of different simulation systems, varying for example in the level of details considered
and the simulation type used. Some use microscopic models which describe railway systems
in great detail, others are based on macroscopic models which are less detailed. For further
information on railway models see [16]. Microscopic models are well suited to achieve precise
simulation results for small areas of interest. However, for larger areas microscopic simulations
are not feasible since the computations are too complex. For that use case macroscopic
models are preferable.

The systems RailSys [4, 17] and OpenTrack [3, 15] use microscopic models and simulate
all trains synchronously in discrete time steps, such that all train operations are simulated in
a single run. In contrast, asynchronous simulation simulates train operations in a series of
runs starting with the highest priority trains. The system LUKS [1, 13] also uses microscopic
models but proceeds in an asynchronous/synchronous combination. Macroscopic models are
used e.g. in MOSES/WiZug [19], which proceeds asynchronously and is used specifically for
rail freight transportation.

The above mentioned systems have in common, that they implement Monte Carlo
simulation. They consider primary delays as deterministic variables and conduct a large
number of deterministic simulation runs with different random primary delay values. That is
quite time consuming, because many different simulation runs have to be executed in order
to achieve an accurate result. Another approach, presented in [6] and implemented in the
software OnTime [2, 10], uses analytical procedures to compute delay propagation instead
of Monte Carlo simulation. In that work the input timetables are modeled mesoscopic as
activity graphs while the delays are represented as distribution functions. In contrast to this
work, we focus more on the infrastructure utilization and therefore use a macroscopic model
of the infrastructure network instead of an activity graph. Also, we discretise the random
variables representing the delay. Another difference is that in [6] primary delay can occur at
any time on a train’s path, while we only consider primary delays at the beginning of each
train ride for now. Also changes in the train sequence are considered more explicitly in [6].
In both approaches rerouting is neglected as an option to dispatch delayed trains.

The novel contribution of this paper is a probabilistic simulation algorithm for given
timetables using a macroscopic model of railway infrastructure and synchronous simulation.
Our method allows to examine the timetables robustness by evaluating performance indicators
such as the expected time of arrival for each train. Additionally, we can identify infrastructure
elements that increase the expected delay and evaluate for each infrastructure element in
the macroscopic network the expected utilization over time. A strong advantage of our
approach is that, in contrast to Monte Carlo simulation, it provides exact results. We want
to make clear that our approach differs fundamentally from Monte Carlo simulation in
that no individual possible execution sequences are calculated, but rather a symbolic one,
representing all possible execution sequences. Limitations of our approach are that we (1)
discretise the random variables representing the delay, (2) only consider primary delays that
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occur at the start of each train ride and (3) neglect rerouting as a possibility to reduce delays.
A short-term future work will aim at relaxing (2), as our approach is easily extensible to
handle also general primary delays. Relaxing (1) would be possible using integration, but
we would probably lose exactness. Relaxing (3) is currently not planned, as our focus lies
on analysis. We implemented and evaluated the presented approach using existing German
railway infrastructure networks and timetables.

We describe the model of railway systems that we use in Section 2 and present our
probabilistic simulation approach in Section 3. We proceed in Section 4 with a detailed
experimental evaluation and conclude the paper in Section 5.

2 Railway Systems

A railway system consists of an infrastructure network and a corresponding timetable. There
are different ways for modeling railway systems. One decision to be made is the level of
detail. Microscopic models describe railway systems in great detail, they contain for example
all signals and switches. This has the advantage that calculations on such models are quite
accurate. However, those models are very complex and get large even for small parts of
a railway network. Macroscopic models are less detailed, they disregard signals and exact
routes inside stations. In this paper we model railway systems on a macroscopic level.

Infrastructure Network

An infrastructure network is a directed graph G = (V,E), with a set of vertices V that
represent the operation control points (OCPs) and a set of directed edges E ⊆ {(v, u) ∈
V × V | v 6= u} representing the tracks between different OCPs that can be used in the
corresponding direction. Each infrastructure element x ∈ V ∪E is annotated with a capacity
value cap : V ∪ E → N. For vertices v ∈ V , cap(v) is defined as the number of stopping
points at the corresponding OCP or one if stopping is not possible there. cap(v) the maximal
number of trains not just dwelling at v but also passing through v. For edges e ∈ E, cap(e)
is the number of parallel tracks available in the given direction between the respective source
and target OCPs. Currently we model bi-directional tracks (which can be used in both
directions) with capacity c by two separate tracks, one in each direction and both having
capacity c, thereby over-approximating the available resources1. We assume that all cap(v)
resp. cap(e) tracks of a vertex v resp. edge e are equivalent in the sense that they could
replace each other. In the following we also neglect whether stopping is not intended at some
infrastructure elements. Despite the simplifying assumptions we made, we expect this model
to reflect the real conditions to a sufficient extent.

Timetable

Time is modeled discretely in minutes within a predefined finite time horizon, yielding a time
domain T = [tmin, tmax] ⊂ N. A (finite non-timed) path in an infrastructure network G =
(V,E) is a sequence (v1, v2, . . . , vk) of nodes vi ∈ V , i ∈ {1, . . . , k} connected through edges
(vi, vi+1) ∈ E for all i ∈ {1, . . . , k − 1}. A (finite) timed path π = (v1(a1 7→ d1), . . . , vk(ak 7→
dk)) in G is a path in G annotated with arrival and departure times ai, di ∈ T for all i ∈
{1, . . . , k} and a1 ≤ d1 ≤ a2 ≤ ... ≤ dk. A timetable forG is a set of trains {train1, . . . , trainn},

1 We are currently working on an extension of our method to handle bi-directional tracks without such
an over-approximation.
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where each train trainid = (typeid, πid) is specified by its type typeid (in Germany e.g. ICE,
RE) and a timed path πid = (vid,1(aid,1 7→ did,1), . . . , vid,kid(aid,kid 7→ did,kid)) in G for
id ∈ {1, . . . , n}. Note that we do not explicitly specify the length of tracks and the speed
of trains, but model them implicitly by specifying the time aid,j+1 − did,j needed for train
trainid to pass the track (vid,j , vid,j+1). Let in the following T = {train1, . . . , trainn} be an
executable timetable, meaning that in the absence of uncertainties and delays, for each time
point t ∈ T and each node v ∈ V , the number of trains that are in v at time t is at most cap(v),
i.e. |{id ∈ {1, . . . , n} | ∃j ∈ {1, . . . , kid}.vid,j = v ∧ aid,j ≤ t ≤ did,j}| ≤ cap(v), and similarly
|{id ∈ {1, . . . , n} | ∃j ∈ {1, . . . , kid}.vid,j = v ∧ vid,j+1 = v′ ∧ did,j ≤ t ≤ aid,j+1}| ≤ cap(e) for
each edge e = (v, v′) ∈ E.

3 Simulation

Simulation can be used to analyse complex real-world systems. It requires an executable
model of the real-world system, typically described in terms of states and events, such that
the execution of the model approximately imitates the real system’s behaviour. In this
paper, we simulate a railway timetable execution over time on a corresponding infrastructure
network by virtually letting trains run through the network, where states encode trains being
at certain stations and events encode trains moving through the infrastructure network.

There are different types of simulations that could be applied in our context. Without
considering uncertainties, deterministic simulation is suitable to check whether a timetable is
executable as planned (correctness). However, if we want to analyse timetable execution real-
istically, we need to consider uncertainties causing delays which might be further propagated
due to capacity restrictions.

Suitable approaches for this are stochastic and probabilistic simulations, the best known
is the Monte Carlo method. In these approaches, states and events may be uncertain, e.g.
the input is not precisely known or some random behaviour occurs. Such uncertainties are
modeled by stochastic (continuous) or probabilistic (discrete) distributions over the value
domains. The Monte Carlo method executes a model several times with randomly generated
values for uncertain model parameters and computes probability distributions to describe the
observable system behaviour. Stochastic/probabilistic simulation can be used in our context
to examine the robustness of timetables for different delay scenarios. A disadvantage of the
Monte Carlo method is that for reliable results it needs a high number of runs.

3.1 Probabilistic Simulation
Due to the aforementioned restrictions of deterministic simulation approaches and the Monte
Carlo method, in this paper we implement a probabilistic simulation. In contrast to Monte
Carlo simulation, our approach executes a single run and computes all random outputs
symbolically in an exact manner. Currently we only consider initial delays (i.e., delays for
the departure times did,1) and propagated delays caused by them, but do not consider any
further random events that affect the system. Especially, we assume that trains have no
additional random delay while already on their way, but consider only the intermediate
delays that are caused by initial delays. We explicitly represent these initial uncertainties by
specifying inputs as discrete probability distributions over a certain domain of possible delay
times, defined manually based on observations.

Since the inputs are uncertain, the outputs are uncertain as well. That means, the results
of the analysis, based on inputs represented by probability distributions, are themselves
probability distributions. To compute these probabilistic outputs, we use discrete-time
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simulation. That means we simulate discrete time steps iteratively, updating the state
variable values at a finite number of points in time. In the following we describe this approach
in detail. For technical reasons, we first need a slight extension of the input model introduced
in Section 2. We first describe this extension and define the states and events that are used
to describe the system, before we present the simulation algorithm in Section 3.2.

Input

In Section 2 we modeled railway systems as directed graphs G = (V,E) with a corresponding
timetable T = {train1, . . . , trainn}, trainid = (typeid, πid) for id ∈ {1, . . . , n}. For the simula-
tion we need a slight extension of this model: we add two auxiliary vertices source and target
to the set of vertices V ′ = V ∪ {source, target} and auxiliary edges from source to all vertices
in V and from all vertices in V to target, resulting in E′ = E∪{(source, v), (v, target) | v ∈ V }
and G′ = (V ′, E′). The capacities of the auxiliary infrastructure elements are arbitrarily large,
so we extend cap to cap′ : V ′∪E′ → N with cap′(x) = cap(x) for all x ∈ V ∪E and cap′(x) = n

for all other x. The idea is that virtually, all trains trainid start in source, move to their initial
node vid,1, complete their original route in vid,kid and move to target afterwards. The reason for
this extension is that a node’s capacities might be exceeded when a train would start in it, so
in order to be able to cleanly insert starting trains we let them start in source at their planned
starting time and move on to their initial node as soon as capacities allow. In addition, we
avoid that trains block capacities once they have completed their routes; in practice they move
on to another route at a time point specified by did,kid , which we model by moving to target.
Each timed path πid = (vid,1(aid,1 7→ did,1), . . . , vid,kid(aid,kid 7→ did,kid)) in the timetable is
extended accordingly to πid

′ = (vid,0(aid,0 7→ did,0), vid,1(aid,1 7→ did,1), . . . , vid,kid(aid,kid 7→
did,kid), vid,kid+1(aid,kid+1 7→ did,kid+1)) with vid,0 = source, aid,0 = did,0 = aid,1, vid,k+1 =
target and aid,k+1 = did,k+1 = did,k. Let T ′ = {train′1, . . . , train′n} with train′id = (typeid, πid

′)
for id ∈ {1, . . . , n}.

States

Each train trainid has the state set Sid = SV
id ∪ SE

id with SV
id = {(vid,j , epdt) | 0 ≤ j ≤

kid + 1 ∧ epdt ∈ T ∧ epdt ≥ did,j} and SE
id = {((vid,j , vid,j+1), epdt) | 0 ≤ j ≤ kid ∧ epdt ∈

T ∧ epdt ≥ aid,j+1}. A state (x, epdt) ∈ Sid encodes that train i is currently using the
infrastructure element x ∈ V ′∪E′ and will not release it before the earliest possible departure
time epdt. A train’s movement is modeled by a sequence of random variables (Xt

id)t∈T over
its state set, where P (Xt

id = s) for t ∈ T is the probability with which Xt
id has the value

s = (x, epdt) at time t. Initially at time tmin, each train trainid is in node source, where the
probability values P (Xtmin

id = (source, epdt)) are defined by an input distribution such that
P (Xtmin

id = (x, epdt)) > 0 only for x = source and epdt ≥ did,0. Our aim is to compute the
probabilities P (Xt

id = s), s ∈ Sid for all trains id ∈ {1, . . . , n} and time points t ∈ T \ {tmin}.
In order to compute these probabilities we simulate the infrastructure behaviour and

maintain for each infrastructure element x ∈ V ′∪E′ a set at[x] of occupiers of type Occupier
and a set blocked[x] of blockers of type Blocker that currently use that infrastructure’s
capacities. The data type Occupier= {id, j, epdt, p} is used to encode that with probability p
the train trainid resides at the given infrastructure element, which is the j-th vertex resp. edge2
in its path, with earliest possible departure time epdt. The data type Blocker= {id, u, p}

2 This information does not only reduce frequent searches of next steps in timetables but it is essential if
timed paths in the timetable may visit an infrastructure element more than once.
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encodes blocking times: with probability p, the train with id id has already left the respective
infrastructure element but due to safety zones, it is still blocking the element until time u.
Initially we set at[source] = {(id, 0, epdt, p) |P (Xtmin

id = (source, epdt)) = p > 0}, at[x] = ∅ for
all x ∈ V \ {source}, and blocked[x] = ∅ for all x ∈ V ′ ∪ E′.

An occupier with earliest possible departure time in the past represents a train waiting
for free resources. Therefore, at a fixed time point t ∈ T, for all train ids id ∈ {1, . . . , n} and
infrastructure elements x ∈ V ′ ∪ E′, all occupier entries (id, j, epdt, p) ∈ at[x] with epdt ≤ t
are equivalent in the sense that the train id is in x and is ready to depart if resources are
available. Therefore, for each given train we merge all such entries and consolidate their
probabilities. Technically, let I be the set of all entries (id, j, epdt, p) in an occupier set at[x]
at time point t with the same id and epdt ≤ t. Then we replace all these entries by a single
entry (id, j, t,

∑
pi). This merging strongly reduces the number of considered train states

with non-zero probabilities and will have a major impact on efficiency.

Events

Next we define the updates of occupier and blocker sets from time point t−1 to t. Let
x ∈ V ′ ∪ E′ be an infrastructure element and (id, j, epdt, p) ∈ at[x] at time point t − 1.
Let y be the infrastructure element that directly follows x in the path of trainid i.e. y =
(vid,j , vid,j+1) ∈ E′ if x is the node vid,j ∈ V ′ and y = vid,j+1 ∈ V ′ otherwise (if x is the edge
(vid,j , vid,j+1) ∈ E′). Then the train transitions to y with a certain probability py ∈ [0, 1] ⊂ R
and it remains in x one more time unit with the remaining probability px = 1− py.

If epdt > t then the earliest possible departure time lies in the future and the train id
stays at x with probability px = 1.0 (and thus py = 0). Otherwise, the train transits to y iff
there is free capacity not needed by higher-priority trains, i.e. py is the probability of free
capacity and px = 1− py. In this latter case, we compute py in the following two steps.

First, for i = 1, . . . , cap(y) we compute the probabilities pi that at least i tracks are
available in y at t− 1. Let m be the number of different trains that use or block resources
in y with positive probabilities at time point t − 1. If m < cap(y) then p1 to pcap(y)−m

are 1.0. For all remaining cases cap(y) −m < i ≤ cap(y) the probability pi is the sum of
the probabilities for exactly k ∈ {0, . . . , cap(y) − i} trains to use or block tracks at y. To
compute these probabilities, we add for all k-combinations of the m trains the product of the
probabilities with which they are at y or blocking y and the other m− k trains are neither.
The probability for a train id to be at y or block y is

∑
(id,.,.,p)∈at[y] p+

∑
(id,.,p)∈blocked[y] p.

Note that this technically assumes that the random variables are statistically independent.
However, due to the large number of interdependent variables the dependencies between the
variables are disregarded here.

Second, we collect all trains that compete for resources in y in the current step and
prioritize them. Here we use the data type Request= {x, id, j, epdt, p}, whose values encode
the competitors (id, j, epdt, p) ∈ at[x] which are willing to transit to y. Requests are then
sorted by type, where requests with a smaller type (corresponding for example to long-
distance passenger trains) have a higher priority. For requests with the same type those with
an earlier planned arrival time have higher priority. Should that not be sufficient to define
a clear order, the ids are used as conclusive criterion. Assuming we have an ordered set of
requests {req1, . . . , reqm′} to arrive in y at time t, where req1 has the highest priority. Then
req1 arrives at y with probability p1, reqr with probability pr for 1 < r ≤ min{cap(y),m′}
and all other requests, if there are any, with probability 0.0.
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Listing 1 Probabilistic simulation
1 void simulate ( Infrastructure G=(V,E), Timetable T) {
2 Occupier at [][];
3 Blocker blocked [][];
4 initialize ();
5
6 for(Time t = t_min , t <= t_max , t++) {
7 for each v in V { simulate_vertex (v, t); }
8 for each e in E { simulate_edge (e, t); }
9 }
10 }

To model the train remaining in x, if px > 0 then we include (id, j,max{epdt, t}, p · px) in
at[x] at time t. To model transit to y, if py > 0 then we include (id, j′, epdt′, p · py) in at[y]
at t, where the infrastructure element index j′ of y in π′id is j if x ∈ V ′ and j + 1 otherwise
(as the j-th node is followed by the j-th edge and the j-th edge is followed by the (j+1)-st
node).

As to the value epdt′ of the earliest possible departure time, let ay, dy be the planned
arrival and departure times at y. If we enforce that trains spend at least the time planned
in the timetable at each infrastructure element then we would have epdt′ = t + (dy − ay).
However, in reality additional buffer times are included in the timetable to be able to make
up for past delays if necessary. In this paper we assume that the driving times can be reduced
by up to 5%. For the waiting times we make the assumption that for passenger trains they
can be reduced to three minutes, while for freight trains they can be reduced to ten minutes.
However, trains are not allowed to be earlier than planned. This means that for y ∈ E′ we
have epdt′ = max{dy, t+ 0.95 · (dy − ay)}, and for y ∈ V ′ we have epdt′ = max{dy, t+ stop}
with stop = min{(dy − ay), 3} for passenger trains and stop = min{(dy − ay), 10} for freight
trains (according to typeid).

To model blocking, for each infrastructure element x we start from the set blocked[x] at
time t − 1, remove all entries (id, u, p) with u < t, and for each entry (id, j, epdt, p) added
to at[y] for a request from x we also add an entry (id, t + u, p) to blocked[x], where u is a
pre-defined blocking duration (in our experiments 2 minutes).

3.2 Algorithm
The main algorithm is shown in Listing 1. First, the required variables need to be

initialized, then the actual simulation can be executed in lines 6-9. For each time step all
vertices and edges are simulated, shown for the vertices in Listing 2. After unblocking the
vertex, see line 2, the requests from all incoming edges are collected after combining the
respective occupiers in lines 4-16. Next the probabilities with which the requests arrive are
computed, see line 18. Afterwards the requests can actually be scheduled, as described in
Section 3.1 and shown in Listing 3. To schedule a request with a certain probability p the
corresponding occupiers probability is multiplied with 1 − p, see lines 16, 17, unless the
probability would get below a certain threshold, in which case the occupier is deleted in line
7. This is done in the implementation to avoid time-consuming arithmetic computations.
For exact results exact arithmetic would be necessary, however, the results are still accurate
for a sufficiently small threshold. Next a new occupier is added for the current infrastructure
element with the probability of the old occupier multiplied with p, see lines 18-20, respectively
8-10, while the previous infrastructure element is blocked with that probability. Under the
assumption that the random variables are statistically independent this algorithm is correct
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Listing 2 Vertex simulation
1 void simulate_vertex ( Vertex v, Time t) {
2 unblock ( blocked [v], t); // delete all Blocker with u < t
3
4 ordered_set <Request > req;
5 for each e = (v’,v) in E {
6 // merge Occupiers (id ,j,t1 ,p1), (id ,j,t2 ,p2)..
7 // ..to (id ,j,t,p1+p2) when t1 ,t2 <= t
8 merge(at[e], t);
9 for each (id ,j,epdt ,p) in at[e] {
10 if(epdt <= t) {
11 Time arr = T[o.id][o.j+1].a; // planned arrival time at v..
12 // .. needed for sorting
13 req. insert ( Request (v’, arr , id , j, epdt , p));
14 }
15 }
16 }
17
18 double cap [] = capacities ( blocked [v], at[v], v.capacity , req.size ());
19
20 int i = 0;
21 for each r in req {
22 ++i;
23 if(i > v. capacity || cap[i] == 0.0) { break ; }
24 // train is no longer at incoming edge e with probability r.p*cap[i]
25 Edge e = (r.prev , v);
26 schedule_request (r, r.p*cap[i], t, at[e], blocked [e], at[v], v);
27 }
28 }

Listing 3 Request processing
1 void schedule_request ( Request r, double p, int t, Occupier atCurrent [],

Blocker blocked [], Occupier atNext [], Vertex v) {
2 Occupier o = Occupier (r.id , r.j, r.epdt , r.p);
3
4 // r is scheduled with probability 1.0..
5 // ..( or probability with which it stays gets too small)
6 if(p == 1.0 || (r.p*(1-p) < 0.00001) ) {
7 atCurrent .erase(o);
8 blocked . insert ( Blocker (r.id , t + tb , r.p));
9 Time epdt = std :: max(T[r.id][r.j+1].d, t + stop);
10 atNext . insert ( Occupier (r.id , r.j+1, epdt , r.p));
11 } else if(r.p*p < 0.00001) {
12 return ; // the probability that r arrives is too small
13 } else {
14 // r arrives with probability r.p*p..
15 // .. and stays with probability r.p*(1-p)
16 atCurrent .erase(o);
17 atCurrent . insert ( Occupier (r.id ,r.j,r.epdt ,r.p*(1-p)));
18 blocked . insert ( Blocker (r.trainID , t + tb , r.p*p));
19 Time epdt = std :: max(T[r.id][r.j+1].d, t + stop);
20 atNext . insert ( Occupier (r.id , r.j+1, epdt , r.p*p));
21 }
22 }
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Table 1 Railway systems - infrastructure network and timetable properties.

Network |V | |E| |T ′
1| |T ′

2| |T ′
3|

N 2646 5622 436 566 1254
N_SO 5146 11028 858 1221 2521
W_M_SW 6635 14510 1509 1924 4474

(up to rounding).

4 Experimental Results

The algorithm defined in Subsection 3.2 was implemented in C++. Therefore, probabilities
need to be represented. Theoretically probabilities are in the interval [0, 1] ∈ R. Since
computers can not easily represent reals and very small probabilities have no practical
relevance we use high-precision floating point values. We restrict the precision of probabilities
to 10−5. That means we round probabilities smaller than that to be zero. Due to imprecision
in the multiplication especially of small values, some intermediate results might be smaller
than 0.0 or larger than 1.0 (by less than 10−5). Those values are set to the respective limit.

For the experiments we used a computer with a 1.80 GHz × 8 Intel Core i7 CPU and 16
GB of RAM. To evaluate the algorithm we used real-world railway infrastructure networks.
All of those have been generated from confidential infrastructure data in XML form, provided
by DB Netz AG (German Railways). These data include many details that are not required
for the infrastructure model used in this paper, therefore, we abstracted from the given data
to extract the required input networks. Table 1 shows some properties of the networks: the
second resp. third column lists the number of vertices resp. edges.

Time was modeled discretely in minutes, as mentioned in Section 2, with a time step size
of one minute. In order to convert the time values in the given timetables consistently, we
decided that a day is modeled as the time interval [0, 1440] with 0 representing midnight. We
considered different time intervals T = [tmin, tmax] ⊂ N that are defined accordingly instead
of starting with 0:
T1 = [480, 540], from 08:00 am to 09:00 am (1 hour)
T2 = [60, 360], from 01:00 am to 06:00 am (5 hours, during the night)
T3 = [720, 1020], from 12:00 am to 05:00 pm (5 hours, during the day)

For the infrastructure networks corresponding feasible timetables Ti extended with source
and target for the considered time intervals were given. The remaining three columns in
Table 1 show the number of trains contained in these timetables. This gives a rough idea
about the utilization, despite the train lines containing varying numbers of stations. Like the
infrastructure networks the timetables are based on the DB data. In order for the timetables
to match the networks’ level of detail we had to slightly modify the given timetable data as
well.

In the following we first take a look at the computational efficiency and the running times
of the algorithm, then we analyse and discuss the results.

4.1 Running Times of the Algorithm
In order to execute the implemented probabilistic simulation two more parameters need
to be decided. The blocking time tb between two consecutive trains is approximated with
two minutes. For the required initial delay distributions we use a geometric distribution
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Table 2 Running times (in sec) for different versions of the implementation.

Input basic on-demand min-prob
N with its T1 2,5 2,1 1,5
W_M_SW with its T1 9,4 6,6 5,0
N with its T2 11,1 8,6 4,9
W_M_SW with its T2 45,0 32,8 14,7

and let each train depart with probability 0.8 at every time step. With the discretisation
of time and the lower bound on the precision this results in the delays i with probability
pi for (i, pi) ∈ {(0, 0.8); (1, 0.16); (2, 0.032); (3, 0.0064); (4, 0.00128); (5, 0.00026); (6, 0.00005);
(7, 0.00001)}. Later we evaluate the impact of the initial delay distribution on the simulation
results in more detail, however, for the examination of the running times we do not change
them to get better comparability.

We examine the running times only for the networks N and W_M_SW with their
corresponding timetables T1 and T2, because we are mainly interested in the impact of
certain modifications on the running time. The running times for different versions of the
implementation are shown in Table 2. The first version, here referred to as basic, is just a
straight-forward implementation of the algorithm described in Subsection 3.2. The running
times for that version on the first three inputs are essentially acceptable, however, we should
keep in mind that these are relatively small inputs. And for even just slightly larger inputs,
as for example network W_M_SW with its timetable T2, the simulation already takes more
than four times as long. We realized that in every time step for each infrastructure element
is checked whether some state changes, but often (for vertices in over 61% of the time steps,
for edges even in 89%) nothing changed. Therefore, for the second version on-demand, we
took into consideration whether state changes for infrastructure elements might occur in any
given time step. This shows some improvements, the version on-demand was 19% to 42%
faster for all inputs.

Next we examined whether some parts of the algorithm could be parallelized. Unfor-
tunately, most sub-procedures work on common data. However, the computations of the
capacity probabilities for the vertices and for the edges respectively might be performed in
parallel. We will exploit this in future work.

Finally, we took a look at the number of Occupiers. Despite the possibility to combine
some Occupiers this number is increasing over time. That is due to the fact that when a train
can arrive at its next infrastructure element with a probability p < 1.0 often an additional
Occupier is added to the simulation. Another effect of this is, that some Occupiers’
probabilities become (maybe negligibly) small. In the last version min-prob we therefore
additionally restricted the probabilities to values larger or equal to 0.01. This reduced the
number of Occupiers, as shown in Figure 1 and further reduced the running times, however,
it should also be considered how this impacts the result. When that level of accuracy is
sufficient this is useful to reduce the running times.

4.2 Evaluation

As mentioned before not just the running times but mainly the actual results of the simulation
are of interest. In this section we examine the impact of the initial delay distribution on the
simulation. Therefore we consider geometric distributions with different success probabilities
p that a train departs. The following distributions are used as initial delay distributions:

p = 0.9: 0, 0.9; 1, 0.09; 2, 0.009; 3, 0.0009; 4, 0.00009; 5, 0.00001
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Figure 1 Number of Occupiers for input N and W_M_SW with T1 (left) and T2 (right), red
and orange represent the version on-demand, cyan and blue version min-prob.
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Figure 2 Number of trains that arrived at their target for infrastructure N , on the left with
timetable T1, on the right with timetable T3.

p = 0.8: 0, 0.8; 1, 0.16; 2, 0.032; 3, 0.0064; 4, 0.00128; 5, 0.00026; 6, 0.00005; 7, 0.00001
p = 0.7: 0, 0.7; 1, 0.21; 2, 0.063; 3, 0.0189; 4, 0.00567; 5, 0.0017; 6, 0.00051; 7, 0.00015; 8,
0.00005; 9, 0.00002
p = 0.6: 0, 0.6; 1, 0.24; 2, 0.096; 3, 0.0384; 4, 0.01536; 5, 0.00614; 6, 0.00246; 7, 0.00098;
8, 0.00039; 9, 0.00016; 10, 0.00006; 11, 0.00003; 12, 0.00002
p = 0.5: 0, 0.5; 1, 0.25; 2, 0.125; 3, 0.0625; 4, 0.03125; 5, 0.01563; 6, 0.00781; 7, 0.00391;
8, 0.00195; 9, 0.00098; 10, 0.00049; 11, 0.00024; 12, 0.00012; 13, 0.00006; 14, 0.00003; 15,
0.00002; 16, 0.00001

Since the timetables cover some time interval [tmin, tmax] and we examine delay, we extend
the time interval by 10% of its duration, e.g. instead of [480, 540] we examine [480, 546]. First
we take a look at the number of trains that arrive at their target with a probability of 1.0.
For the network N with the timetable T1 and the previously mentioned extended interval,
that number is between 235 and 285 (out of 436) for the different initial distributions and
increases for larger p as expected. The number of trains that arrived at their target as a
function of the time is depicted in Figure 2, for the simulation results we used the expected
arrival time instead of the planned arrival time. The overall difference between the initial
distributions is quite small, the curves are shaped very similarly. It is important to note that
despite extending the considered time interval not all trains arrive at their target. This is
important for our further examinations.

Additionally to the number of trains arriving at their targets until a certain time step,
the expected delays at the target are of interest. These are depicted in Figure 3 for the same

ATMOS 2020



16:12 Probabilistic Simulation of a Railway Timetable

10 20 30

50

100

150

200

0.5

0.6

0.7

0.8

0.9

expected delay in minutes

fr
eq
u
en
cy

40 80 120

35

70

105

140

0.5

0.6

0.7

0.8

0.9

expected delay in minutes

fr
eq
u
en

cy

Figure 3 Frequency of expected delays at the targets (in minutes) for infrastructure N , on the
left with timetable T1, on the right with timetable T3.

input scenarios as used above. The majority of trains is expected to be punctual, with either
no expected delay or just one to two minutes. For smaller p expected delays of up to ten,
respectively 20 minutes, are still quite common, and a few trains are even expected to be up
to 30 minutes delayed in the scenario for the extended interval T1. This is quite exceptional
considering this interval only has a duration of just over an hour. Such exceptionally long
expected delays correspond to longer train paths with respect to both duration and number
of vertices. These trains tend to be impacted by a larger amount of other trains and are
therefore more exposed to secondary delay. For the timetable T3 the maximal expected
delay is even worse with over two hours. In reality the affected trains would be rerouted or
cancelled, which our approach does not allow.

So far we mostly evaluated the given timetables, however, as mentioned before, we
explicitly chose to model the railway system based on an infrastructure network, as opposed
to an activity graph for example, in order to also evaluate the individual infrastructure
elements. One possible metric for this is the average change in delays while utilizing a certain
infrastructure element. The change in delays for a given infrastructure element is defined
as the difference of the trains’ delays when departing from and arriving at the element,
weighted by the corresponding probabilities. Due to different numbers of trains utilizing the
infrastructure elements these values are not comparable, yet, and should be scaled using the
total number of trains utilizing the respective element. The fact that not all trains reach
their target in the simulated time interval makes it problematic to compute this metric for
all infrastructure elements. On some there are still trains with certain probabilities that
simply did not depart yet and for which therefore the change of their delay is not known yet.
In order to avoid inconsistent results, we only computed this metric for the infrastructure
elements that were no longer occupied by any train.

We visualized this metric, for the infrastructure elements for which it could be computed,
in Figure 4 for the two input scenarios N_SO and W_M_SW with their respective
timetables T1, since this might be more interesting for larger networks. Since it is possible
for trains to reduce delays by driving 5% faster or by reducing their stopping times there
are actually some infrastructure elements where trains are expected to reduce their delay
on average. For most infrastructure elements the delays are not or just slightly expected to
change on average. However, there are also infrastructure elements that cause an expected
additional delay of 5 minutes and more on average. Such infrastructure elements could be
avoided, at least during their peak times, when scheduling additional trains or be penalized
when computing a more robust timetable. It should be noted that it is not always possible
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Figure 4 Frequency of delay changes at infrastructure elements (in minutes), on the left for
network N_SO, on the right for W_M_SW , in both cases for the respective timetable T1.

to decrease the utilization of certain infrastructure elements for example for stations with a
high demand on passenger transportation.

Additionally, the difference between given infrastructure elements planned utilization
and expected utilization could be computed as a function of time, for example to be used
as input for an algorithm computing additional train paths. So this approach offers several
possible ways to assess a networks’ utilization given a fixed timetable.

5 Conclusion

We presented a symbolic approach to simulate railway timetables probabilistically. Our
implementation of this simulation is sufficiently fast to simulate real-world sub-networks
of the German railway infrastructure. However, this approach still offers possibilities for
improvements and extensions. For example the accuracy of the model could be further refined,
e.g. by using train type specific blocking times or more realistic initial delay distributions
[20, 21]. The simulation itself could be extended to also handle general primary delays,
not only those that occur at the start of each train ride. Concerning the implementation
multi-threading could be exploited at least for the capacity computations, we would expect
this to decrease the running times especially for larger vertices (with a high capacity) and
an increasing number of trains that are occupying them. This is reasonable, because the
computation of the capacity probabilities for an infrastructure element with capacity cap
and m trains that are occupying it requires

∑min(cap,m−1)
i=0 m ·

(
m
i

)
multiplications.

Last but not least, we are interested in considering the probabilistic utilization when
computing additional train paths, in order to avoid disturbing the existing timetable, also
under consideration of uncertainties in the delays of other trains.
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Abstract
We consider a combined system of regular delivery trucks and crowdsourced drones to provide a
technology-assisted crowd-based last-mile delivery experience. We develop analytical models and
methods for a system in which package delivery is performed by a big truck carrying a large number
of packages to a neighborhood or a town in a metropolitan area and then assign the packages to
crowdsourced drone operators to deliver them to their final destinations. A combination of heuristic
algorithms is used to solve this NP-hard problem, computational results are presented, and an
exhaustive sensitivity analysis is done to check the influence of different parameters and assumptions.
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1 Introduction

The number of deliveries and the revenue obtained from delivery operations have been
growing continuously and rapidly during the last two decades, thanks to the exponential
growth of e-commerce. However, the efficiency of delivery operations still remains a big
challenge. The last mile of delivery process has consistently been one of the most expensive
(nearly or even more than 50% of the total cost), least efficient, and most polluting part of
the entire parcel delivery supply chain [7, 6]; the fact that Amazon Flex has been paying
$18-$25 for Uber-like package delivery services [1], while they have not increased their hourly
wages to $15 up until just recently [2], speaks to the expensiveness of the last-mile delivery
operations.

The expensiveness of last-mile delivery is due to a number of factors including the facts
that it is a labor-intense operation, it is a scattered operation serving different individual
customers at dispersed places, which often results in underutilized carrier capacity, and that
such deliveries are usually very time-consuming because of road congestion, accessibility
of the destinations, and most importantly unattended deliveries. The rapidly increasing
importance of same day and same hour delivery in our lives will make this operation even
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more inefficient. Such deliveries are mostly used for low-value high-frequency products such
as grocery items for which the shipping cost could quickly become disproportionate in the
eyes of consumers.

The advancement of technology can revolutionize the conventional delivery practices and
boost the efficiency. Among these advancements are the recent efforts to adopt autonomous
vehicles, unmanned aerial vehicles (UAVs), automated guided vehicles (AGVs), and other
droids in package delivery operations. The integration of autonomous and semi-autonomous
technologies into the last-mile delivery operations in a centralized or decentralized manner
have the potential to remove or mitigate the long-lasting factors such as pooling and routing
inefficiencies that have been contributing to the expensiveness of last-mile delivery.

In an earlier work, we have shown that for a centralized delivery system to be competitive
with the decentralized household shopping model, a very large portion of the population
have to adopt the centralized system and shows inefficient pooling as the primary cause
of inefficient last-mile delivery [3]. This paper analyzes the impact of decentralization, in
particular crowdsourcing of the last part of the last-mile delivery operations when integrated
with new technologies, on the efficiency of pooling and clustering customers.

In this paper, we combine the autonomous delivery vessels with regular delivery trucks,
vans, cars, and bikes to provide a technology-assisted crowd-based last-mile delivery experience
and a better and smoother transition to a fully autonomous parcel delivery ecosystem. We
develop analytical models and methods for one of these intermediary systems, in which
package delivery is performed by a big truck carrying a large number of packages to a
neighborhood or a town in a metropolitan area and then assign the packages to crowdsourced
delivery agents who operate drones to deliver them to their final destinations. To the best
of our knowledge this is the first work studying this problem. A combination of heuristic
algorithms is used to solve this NP-hard problem and an exhaustive sensitivity analysis is
done to check the influence of different parameters and assumptions such as speed ratio of
drones and trucks, the number of drones in the service region, and the distribution of the
customers. The simulation results show significant savings in the total delivery cost under
reasonable assumptions.

1.1 Related Work
Sharing economy indicates a system in which people share access to goods and services as
opposed to ownership [13] and it has been extensively studied. However, the application of
sharing economy system in delivery services has received less attention and only a few number
of research articles exist about this topic. The paper [12] proposed the idea of crowd-based
operations in city-level logistics which is also a kind of sharing economy logistics. They
indicated that there are four kinds of crowd-based logistics which are crowdsourced delivery,
cargo-hitching, receiving packages and returning packages. There have been a number of
experimental and theoretical research related to this topic.

On the experimental side, the paper [9] used a survey to analyze potential driver behavior
in choosing to work as a part-time crowdsourced shipper. Meanwhile, the paper [11] also
created a survey to study the determinants of crowd-shipping acceptance among drivers.
The paper [4] developed an agent-based simulation model for the crowdsourced last-mile
delivery service with the existence of central pickup location/warehouse and identified the
important factors influencing its performance. They ran the simulation in Washington DC
area and UPS stores as package stations.

Among the relevant theoretical research, the paper [5] discussed the idea of encouraging
individuals/shoppers in a store who are willing to deliver packages for online customers on
their way back home. They used vehicle routing problem with occasional drivers (VRPOD)
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as the main idea of their model. They presented a bi-level methodology for matching and
routing problem, where the first level is a deterministic IP model for VRPOD and the second
level is a stochastic model to minimize the expected delivery costs subject to uncertain
occasional drivers who could accept the delivery tasks. Many researchers explored the
crowdsourced delivery service with crowdsourced drivers to come to the package center
to pickup the packages and deliver them to the destination. The paper [8] introduced a
route-planning problem that involves the use of crowdsourced drivers and dedicated vehicles
in case that crowdsourced drivers are not available to perform some real-time delivery tasks.
They present a rolling horizon framework and an exact solution approach based on a matching
formulation to solve the problem. They also compared their results with the traditional
delivery system and concluded that the use of crowdsourced drivers can significantly reduce
the costs. The paper [10] used Ant Colony Optimization to solve the crowdsourced delivery
problem with multiple pickup and delivery with crowdsourced vehicles only. They used
Analytical Hierarchical Process to evaluate several scenarios in this problem and provide
the best scenario to consider. Their results show that by implementing multiple pickup and
delivery, there was 47% reduction on number of trips, 20% reduction on total distance and
14% on duration.

Very few papers in the literature consider the cooperative delivery system with a truck
and crowdsourced carriers. The paper [13] was the first to evaluate the use of shared mobility
for last mile delivery services in coordination with delivery trucks. They tried to minimize
the combined transportation and outsourcing cost of the trucks and shared mobility. They
also considered minimizing greenhouse gas emissions as one of their objectives. They used an
analytical model and found that crowdsourced shared mobility is not as economically scalable
as the conventional truck-only system with respect to the operating costs, that is because
of the payment to shared delivery drivers accounts for the shared rides market. However,
they state that a transition towards this model can create economic benefits by reducing the
truck fleet size and adding operational flexibilities.

There is a lack of a study on the design of a cooperative delivery system with a truck
and autonomous or semi-autonomous crowdsourced carriers. In this paper we fill this gap.

2 Problem Statement

Consider a residential area in which one truck has to go through all the neighborhoods in
this area to deliver some packages. There are also private drone operators in the area that
could deliver packages from the truck to their final destination (households). When the truck
stops at a neighborhood corner, the crowd-based drones, after receiving an order from the
courier, will fly from their base to that corner to pick up the packages, deliver them to the
customers and go back to their base, i.e. operator’s house, for recharging the battery. The
objective is to design a coordinated system between the truck and these drones in a way
that minimizes the total time spent on fulfilling the demand of all customers in that area.
Figure 1 shows an illustration of this cooperative delivery between a truck and crowd-sourced
drones. In this problem we assume that:
1. Each drone can only carry one item at a time.
2. The charging time for drones at home is 0 (can change to a new battery).
3. There is no weight limit for a drone to carry the package.
4. The speed of drones are three times the speed of of the truck.
5. If there is no drone nearby, the truck will serve all the customers.
6. Drone returns to its base for recharging after each delivery.
7. Each drone base launches only one drone.
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Figure 1 Crowd-sourced Drone Delivery.

3 Problem Formulation

3.1 Problem with One Center

In the problem with one center, there is no truck route and truck operates as a depot for
a fleet of drones to pick up the package and deliver them to the customers. The problem
with one center is important to study because it sets a a basis for the general problem and
also it helps to understand the dynamics inside a cluster in a better way. The insight behind
our algorithm is partly driven by this sub-problem. Before we present our model for this
problem we define the parameters and variables as follows.

Sets:

sets meaning
C Customer Nodes
D Drone Nodes
T Truck nodes, only one node, call it node 0

Parameters:

parameters meaning
nC Number of customer nodes
nD Number of drone nodes
dij Route length going from node i ∈ D to the center node and then to node

j ∈ C and back to node i
vD Speed of drones
cij = dij

vD
, time spent by a drone for traversing the route i− 0− j − i

L Longest distance a drone can travel without charging battery

Decision Variables:

variables meaning
xij Binary decision variable. It is 1 when a drone travels from node i ∈ D

to the center node 0 and then to node j ∈ C and back to node i. It is 0
otherwise.

qi Total travel time of the drone with base at node i
Q Maximum time spent by all drones
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The model can be written as following

minimize Q

Subject To:∑
i∈D

xij = 1 , ∀j ∈ C (1)

dijxij ≤ L , ∀i ∈ D, j ∈ C (2)∑
j∈C

cijxij ≤ qi , ∀i ∈ D (3)

qi ≤ Q , ∀i ∈ D (4)
qi ≥ 0
Q ≥ 0
xij ∈ {0, 1}

The objective is to minimize the maximum time of each drone route. Constraint (1) makes
sure all customers have been visited once. Constraint (2) ensures the distance traveled by
each drone does not exceed the maximum distance allowed by drones. Constraints (3) finds
the time spent by each drone and Constraint (4) calculates the maximum time among all
drones.

3.2 General Problem
In the general problem we assume that the truck only stops at a customer location and while
stopping there that location will serve as a center to drones as well to pickup the packages.
The mathematical formulation of the problem is as follows:

Sets:

sets meaning
C Customer Nodes
D Drone Nodes

Parameters:

parameters meaning
nD Number of drone nodes
nC Number of customer nodes
vD Speed of drones
vT Speed of trucks
dpp′ Distance between node p ∈ C and p′ ∈ C
cpp′ = dpp′

vT
, time spent by the truck travelling from node p ∈ C to node

p′ ∈ C
dp

ij Route length going from node i ∈ D to the center node p ∈ C and then
to customer node j ∈ C and back to node i

cp
ij =

d
p
ij

vD
, time spent by a drone for traversing the route i− p− j − i

L Longest distance a drone can travel without charging battery
M A big number
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Decision Variables:

variables meaning
yp Binary decision variable equal to 1 if node p ∈ C is served by the truck

and 0 otherwise
xp

ij It is 1 when a drone travels from node i ∈ D to the center node p ∈ C
and then to customer node j ∈ C and back to node i. It is 0 otherwise.

qip Total travel time of the drone with base at node i ∈ D that is assigned
to center p ∈ C

Qp Maximum time spent by all drones assigned to center p ∈ C
γpp′ Binary decision variable equal to 1 if the path from p to p′ has been used
up dummy variable
δpp′ Binary decision variable equal to 1 if yp′ = γpp′ = 1
εpp′ Binary decision variable equal to 1 if yp = γpp′ = 1

The model for the general problem can be written as following:

minimize
∑
p∈C

∑
p′∈C

cpp′γpp′ +
∑

p

Qp

Subject To: ∑
p∈C

yp ≥ 1 , (5)

∑
p∈C

∑
i∈D

xp
ij = 1− yj , ∀j ∈ C (6)

xp
ij ≤ yp , ∀i ∈ D, j, p ∈ C (7)

dp
ijx

p
ij ≤ L , ∀i ∈ D, j, p ∈ C (8)∑

j∈C

cp
ijx

p
ij ≤ qip +Myp , ∀i ∈ D, p ∈ C (9)

qip ≤ Qp , ∀i ∈ D, p ∈ C (10)∑
p∈C

ypγpp′ = yp′ , ∀p′ ∈ C (11)

∑
p′∈C

yp′γpp′ = yp , ∀p ∈ C (12)

up − up′ +
∑
p∈C

γpp′ ≤
∑
p∈C

yp − 1 , 2 ≤ p 6= p′ ≤
∑
p∈C

yp (13)

xp
ij , γpp′ , δpp′ , yp ∈ {0, 1}

qip, Qp ∈ R
up ∈ N

The objective function minimizes the sum of the time that truck takes to travel between
the stopping centers on its route and the total time that it takes to serve clusters of customers
with drones at these stopping points. Constraint (5) ensures that at least one customer node
is set to be truck node. Constraint (6) ensures all customers are visited once either by the
truck or by one of the drones. Constraint (7) ensures that drones can only fly to a center
node that is visited by the truck. Constraint (8) ensures that a drone cannot fly more than
its battery limit. Constraints (9) and (10) are used to find the time spent at each stop of the
truck to serve a cluster of customers. Finally, constraints (11)-(13) are TSP constraints for
the truck.
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To linearize the yp′γpp′ , ypγpp′ term, we add two dummy variables δpp′ , εpp′ and six more
constraints as

δpp′ ≥ yp′ + γpp′ − 1 , ∀p, p′ ∈ C (14)
δpp′ ≤ γpp′ , ∀p, p′ ∈ C (15)
δpp′ ≤ yp′ , ∀p, p′ ∈ C (16)
εpp′ ≥ yp + γpp′ − 1 , ∀p, p′ ∈ C (17)
εpp′ ≤ yp , ∀p, p′ ∈ C (18)
εpp′ ≤ γpp′ , ∀p, p′ ∈ C (19)

Meanwhile, constraints (11) and (12) need to be modified to (20) and (21) respectively as
following: ∑

p∈C

εpp′ = yp′ , ∀p′ ∈ C (20)

∑
p′∈C

δpp′ = yp , ∀p ∈ C (21)

We solved this model for small instances but for larger problems we rely on a heuristic
algorithm.

4 Solving Approach

As the problem is NP-hard we take a heuristic approach to solve the problem. Our algorithm
consists of several sub-routines as explained in the following. Let L be the the maximum
distance a drone can fly with a full battery. We first cluster all customers to k centers (truck
stops) using k-means clustering algorithm to ensure all customers are within radius L/4 of
the centers. The choice of radius L/4 is to make sure that with one full battery the drones in
each cluster can finish the delivery and return to their base. The number k is the minimum
number that makes this feasible and will be found using a binary search. The feasible k
means all customers are located in a circle that is centered at the cluster center with radius
L/4. The final geographic partitioning is done using a Voronoi partitioning scheme. Then
in each cluster, a Tabu Search algorithm will be used to solve the problem. In each cluster,
several drones will fly from their origin (base), go to the truck center, deliver the packages
to the customer and go back to their base. At the same time, Lin-Kernighan-Helsgaun
algorithm will be used to solve the travelling salesman problem (TSP) to find the truck tour
among the cluster centers and the customers that there is no drone available to serve them.
If there is one cluster that has no drones in it, then all the customers in that cluster will be
served by the truck.

The high-level steps of the algorithms are as follows:

Step 1: Running the binary search and the k-means clustering algorithm to find the minimum
feasible k to cluster all customers into k clusters within radius L/4.

Step 2: Partitioning the region with the Voronoi tessellation generated by the k center points
from Step 1 and assigning customers and drone bases to their nearest center.

Step 3: Running a Tabu Search algorithm to solve the sub-problem in each cluster where
parcels are assigned to drones to be delivered to customers in a way that minimizes total
delivery time.
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(a) L = 0.1. (b) L = 0.2.

(c) L = 0.3. (d) L = 0.4.

Figure 2 Examples of solutions obtained by the optimization model for different values of L (the
maximum distance a drone can travel).

Step 4: Solving the truck tour by the Lin-Kernighan-Helsgaun algorithm to go through all
cluster centers as well as all customer nodes that do not have any drone node in that
cluster.

5 Computational Results

We tested both the model and the algorithm on a synthetic example with 40 customer nodes
and 20 crowdsourced drone nodes distributed uniformly at random in a unit square, and the
drone speed is three times the speed of the truck. Figure 2 illustrates solutions of instances
of the problem solved by our optimization model for different values of L and Figure 3 shows
an illustration of solutions of instance of the problem with different distribution of points
solved by our algorithm. Figure 4 shows the TSP solutions, which represents the conventional
centralized truck-only delivery system, for the same instances shown in its decentralized
alternative in Figure 3. Table 1 compares the computational results of the our optimization
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Table 1 Comparison between the results of the optimization model and the algorithm on a
synthetic example with 40 customers nodes and 20 drone nodes distributed randomly in a unit box
and for different values of L. The column “Time” shows the computational time in seconds.

L Model Algorithm
Time Objective Value Time Objective Value Gap (%)

0.05 15.18 4.19 0.78 4.19 0.00
0.1 47.60 4.06 0.56 4.07 0.00
0.15 338.91 3.82 0.47 3.88 0.02
0.2 210.12 3.40 0.88 3.57 0.05
0.25 997.18 3.14 0.83 3.68 0.17
0.3 276.66 2.65 0.95 3.08 0.16
0.35 126.63 2.22 1.55 2.77 0.25
0.4 76.29 1.86 1.65 2.94 0.58
0.45 3.97 0.91 2.13 2.58 1.83
0.5 34.18 0.53 3.35 1.39 1.61
0.55 41.05 0.50 4.99 1.21 1.43
0.6 46.62 0.50 5.19 1.21 1.43
0.65 49.85 0.50 12.42 0.84 0.67
0.7 54.61 0.50 11.98 0.80 0.59
0.75 55.81 0.50 11.48 0.84 0.67
0.8 78.87 0.50 11.61 0.80 0.59
0.85 77.26 0.50 11.80 0.85 0.71
0.9 80.48 0.50 11.44 0.80 0.59
0.95 80.64 0.50 12.00 0.81 0.62
1 81.25 0.50 11.40 0.82 0.64

Average 138.66 - 5.87 - 0.63

model and our heuristic algorithm for a number of these instances. As it is evident from
the table, the algorithm is much faster than the optimization model (average time of 5.87
seconds versus 138.66 seconds) and the optimality of gap of the solutions provided by the
algorithm is less than 2% in all instances with an average gap of 0.63%.

We also compared our model with the traditional centralized delivery system in which
a single truck would deliver all packages. We found that, for our synthetic examples, the
average delivery time if we combine a truck with crowdsourced drones will be 4.5698, while
the average delivery time for the same problem if the truck serves all the customers will be
5.3866. This shows an almost 15% improvement in the efficiency of the last-mile delivery, in
our randomly generated examples, if we combine truck delivery and drone delivery in the
context of sharing economy platforms. This also helps us in finding the delivery schedule in
a faster way; solving the pure TSP problem of the same size takes much longer than our
optimization model since in our model many of the nodes are being served by the drones
and the more complex part of the problem, which is the truck routing, is being solved for
fewer stopping points. Furthermore, we have improved the original model by a) considering
the closest customer to the center and sending the truck there instead of the cluster center,
and b) considering battery utilization to allow multiple deliveries by one drone before the
drone goes back to its base for recharging.
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(a) Total Time = 4.6416. (b) Total Time = 5.0251.

(c) Total Time = 4.8615. (d) Total Time = 4.8763.

Figure 3 Solutions obtained by our algorithm for different random examples in a unit box with
their objective function value.

(a) Total Time = 5.7406. (b) Total Time = 5.2359.

(c) Total Time = 5.3380. (d) Total Time = 5.2466.

Figure 4 TSP solutions (centralized truck-only delivery system) for the same instances of Figure 3.
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Moreover, an extensive sensitivity analysis has been done with respect to several factors
to study their impact on the quality of the solution and savings of the shared delivery system
compared to the traditional truck-only delivery. These factors include speed of drones,
number of available drones, a measure combining speed and number of drones, and customer
distribution. Finally, a comparison is made between three models to measure the impact of
shared delivery model on carbon foot print. These three models are the traditional truck-only
delivery, delivery with a truck and a drone where the truck carries a drone and both deliver
packages in a coordinated way, and shared delivery model.

6 Conclusion

In this paper we have developed a shared last-mile delivery model in which a truck carries
packages to a neighborhood and then outsources the last piece of trip to private drone
operators that can be ordered on a sharing economy platform. We have developed efficient
algorithms to solve the problem under different assumptions. The results show that the shared
delivery model (decentralized model) is much more efficient than the traditional truck-only
delivery model (centralized model) in almost all possible scenarios. This is aligned with the
results from [3]. The comparison between the shared delivery model and the coordinated
delivery system, in which a truck carries and controls a drone during the delivery operation,
depends on other factors such as number of available drones in the platform, their capacity
and speed. For future work, one may look into considering different factors such as time
windows for delivery to customers, time windows for drone availability, ability of drones to
carry multiple packages at the same time, drones’ weight capacity, and combination of the
system with crowdsourced drivers.
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