
Time-Dependent Alternative Route Planning
Spyros Kontogiannis
Department of Computer Science & Engineering, University of Ioannina, Greece
Computer Technology Institute & Press “Diophantus”, Patras, Greece
kontog@uoi.gr

Andreas Paraskevopoulos
Department of Computer Engineering & Informatics, University of Patras, Greece
paraskevop@ceid.upatras.gr

Christos D. Zaroliagis
Department of Computer Engineering & Informatics, University of Patras, Greece
Computer Technology Institute & Press “Diophantus”, Patras, Greece
zaro@ceid.upatras.gr

Abstract
We present a new method for computing a set of alternative origin-to-destination routes in road
networks with an underlying time-dependent metric. The resulting set is aggregated in the form of
a time-dependent alternative graph and is characterized by minimum route overlap, small stretch
factor, small size and low complexity. To our knowledge, this is the first work that deals with the
time-dependent setting in the framework of alternative routes. Based on preprocessed minimum
travel-time information between a small set of nodes and all other nodes in the graph, our algorithm
carries out a collection phase for candidate alternative routes, followed by a pruning phase that
cautiously discards uninteresting or low-quality routes from the candidate set. Our experimental
evaluation on real time-dependent road networks demonstrates that the new algorithm performs
much better (by one or two orders of magnitude) than existing baseline approaches. In particular,
the entire alternative graph can be computed in less than 0.384sec for the road network of Germany,
and in less than 1.24sec for that of Europe. Our approach provides also “quick-and-dirty” results of
decent quality, in about 1/300 of the above mentioned query times for continental-size instances.

2012 ACM Subject Classification Computing methodologies → Combinatorial algorithms

Keywords and phrases time-dependent shortest path, alternative routes, travel-time oracle, plateau
and penalty methods

Digital Object Identifier 10.4230/OASIcs.ATMOS.2020.8

Funding This research was supported by the Operational Program Competitiveness, Entrepreneur-
ship and Innovation (call Research–Create–Innovate, co-financed by EU and Greek national funds),
under contract no. T1EDK-03616 (project SocialPARK).

1 Introduction

Querying a route planning service is nowadays a common daily-routine activity. The majority
of such services, as well as of the underlying route planning algorithms, answer queries
by offering a best route from an origin o to a destination d, under a certain optimization
criterion (e.g., distance, arrival-time, etc.). Nevertheless, such an answer may not always
be desirable or satisfactory, since: (i) humans typically prefer to have choices; (ii) every
human has his/her own personal preferences that vary and depend on specialized knowledge
or subjective criteria (e.g., like/dislike certain parts of a route), which are not always easy
to quantify or estimate; (iii) a traveler may have to occasionally follow a different route
than the originally planned due to an emergent traffic condition (accident, road works, etc.).
Consequently, a route planning service offering a set of good/reasonable alternative routes is
more likely to satisfy the traveler’s needs; and vice versa, the traveler can use alternative
routes as back-up choices, in case of emergent traffic conditions or other unforeseen incidents.

© Spyros Kontogiannis, Andreas Paraskevopoulos, and Christos D. Zaroliagis;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 8; pp. 8:1–8:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kontog@uoi.gr
mailto:paraskevop@ceid.upatras.gr
mailto:zaro@ceid.upatras.gr
https://doi.org/10.4230/OASIcs.ATMOS.2020.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


8:2 Time-Dependent Alternative Route Planning

In all these cases, the essential task is to compute, efficiently, reasonable alternatives to
an optimal od-route. Towards this direction, recent works in the literature investigate the
efficient computation of alternative routes in time-independent road networks (i.e., networks
with scalar edge-costs). There are two prevailing algorithmic approaches for alternative
routes in these networks: The first approach, initiated in [1] and further extended in [13, 18],
computes a few (e.g., 2 or 3) alternative od-routes that pass through specific vertices in the
network, called via-nodes. The second approach, introduced in [2] and further extended
in [21], creates a set of reasonable alternative routes in the form of a subgraph, called
the alternative graph. Moreover, there are some proprietary algorithms which are used by
commercial systems (e.g., Google and TomTom) to suggest alternative routes.

The notion of an Alternative Graph (AG) turned out to be more suitable for high-
demanding navigation systems [9, 14], since the approach with via-nodes is restricted on
fixed optimization criteria and it may create (higher than required) overlapping among the
alternative routes, or may not even be successful in finding a sufficient number of alternatives
for certain scenarios. Generic quality characteristics of AG were described in [2], using three
optimization criteria: the totalDistance criterion, quantifying the total-overlappingness of
the best subset of routes within AG, the averageDistance criterion, quantifying the stretch
of these routes, and the complexity of the entire AG subgraph, counted as the number of
decision edges (sum of alternatives per intermediate node visited, other than the out-edge
belonging to the optimal remaining path to the destination). As it is shown in [2], all of
them together are important in order to produce a high-quality AG.

However, optimizing a simple objective function combining just any two of them is an
NP-hard problem [2]. Hence, one has to concentrate on heuristics. Four heuristic approaches
were investigated in [2], based on the Plateau [4] and the Penalty [5] methods. Experimental
evaluations in [2, 4] demonstrated that a combination of them seems to be the best choice.
A new set of heuristics, including improved extensions of both the Plateau and Penalty
methods, were proposed in [21]. As a result, computing an AG subgraph of much better
quality than the ones in [2] became possible, and this was verified on several static, (i.e.,
time-independent) road networks of Western Europe.

In this work, we investigate the AG concept on the more realistic setting of time-dependent
road networks, represented as directed graphs whose edge costs are determined by travel-time
functions. In such a setting there exist approaches that compute only the best od-route, using
either heuristic methods (see e.g., [3]), or earliest-arrival-time oracles (see e.g., [15, 16, 17]).
The latter case, of an oracle, consists of a (subquadratic in size) carefully designed data
structure, created during a preprocessing phase, along with a query algorithm that exploits
this data structure in order to respond to arbitrary earliest-arrival-time queries in sublinear
time, with a provably small approximation guarantee for the quality of the solution.

Our main contribution is a new heuristic algorithm, called TDAG, that computes a
time-dependent AG which succinctly represents alternative routes of guaranteed quality in
a time-dependent road network. Based on precomputed minimum-travel-time information
between a small set of nodes and all other nodes in the graph, TDAG selects carefully an
initial candidate set of od routes that subsequently improves in an iterative pruning phase
that discards uninteresting or low-quality routes, until the resulting AG meets the quality
criteria set. Our experimental evaluation of TDAG on real-world benchmark time-dependent
road networks shows that the entire AG can be computed pretty fast, even for continental-size
networks, outperforming typical baseline approaches by one to two orders of magnitude. In
particular, the entire AG can be computed in less than 0.384sec for the road network of
Germany, and in less than 1.24sec for that of Europe. TDAG also provides “quick-and-dirty”



S. Kontogiannis, A. Paraskevopoulos, and C. Zaroliagis 8:3

results of decent quality, in about 1/300 of the above mentioned query times. To our
knowledge, this is the first work achieving efficient computation of alternative routes in the
more realistic setting of time-dependent road networks.

2 Preliminaries

A time-dependent road network can be modeled as a directed graph G = (V,E), where each
node v ∈ V represents either intersection points along a road, or vehicle departure/arrival
events with zero waiting-time; each edge e ∈ E represents uninterrupted road segments
between nodes. Let |V | = n, |E| = m. Given a time period T , and any edge e = uv ∈ E, if
we consider anydeparture-time tu ∈ [0, T ) from the tail u, then D[uv](tu) is the corresponding
edge-traversal-time for uv, determined by the evaluation of a continuous, piecewise-linear
(pwl) function D[uv] : [0, T ) 7→ R≥0. Analogously, tv = Arr[uv](tu) = tu +D[uv](tu) is the
corresponding function providing the edge-arrival-time to the head v, for different departure-
times from u. We additionally make the (typical for road networks) strict FIFO property
assumption: each edge-traversal-time function D[uv] has minimum slope greater than −1.
Equivalently, we assert that the edge-arrival-time functions Arr[uv] are strictly increasing.
This property implies that there is no reason to wait at the tail u of uv before traversing it
towards the head v, provided that we are interested in earliest-arrival-times.

Given a departure-time t ∈ [0, T ), and a path π = 〈x0x1, x1x2, . . . , xk−1xk〉 (as a sequence
of edges), Arr[π](t) = Arr[xk−1xk](Arr[xk−2xk−1](· · · (Arr[x1x2](Arr[x0x1](t))) · · · )) is the
path-arrival-time function, defined by applying function composition on the edge-arrival-time
functions of π’s constituent edges. In addition, D[π](t) = Arr[π](t)− t is the corresponding
path-travel-time function. Let Pu,v be the set of all uv-paths in G, i.e., originating at u and
ending at v. Then, ∀t ∈ [0, T ), Arr[u, v](t) = minπ∈Pu,v

{Arr[π](t)} is the earliest-arrival-
time function, from u to v. Analogously, D[u, v](t) = Arr[u, v](t)− t is the corresponding
minimum-travel-time (or shortest-path-length) function, and P [u, v](t) is the corresponding
time-dependent-shortest-path function, providing the minimum-travel-time paths w.r.t. the
departure time t from u. For ε > 0 and ∀t ∈ [0, T ), a function D[u, v](t) such that
D[u, v](t) ≤ D[u, v](t) ≤ (1 + ε) ·D[u, v](t) is called a (1 + ε) upper-approximation for D[u, v].

Our main goal is to obtain fundamentally different (but not necessarily disjoint) alternative-
paths with optimal or near-optimal travel-times, from an origin-node o to a destination-node
d in G, and departure-time to from o. The aggregation of the computed alternative od-paths
is materialized by the concept of the Alternative Graph (AG), a notion first introduced in [2].
We shall now proceed with the adaptation of the AG concept to the time-dependent context.

Formally, an alternative graph H = (V ′, E′) is the induced subgraph by the edges of
several od-paths in G. Let DG[u, v](t) ≡ D[u, v](t) and DH [u, v](t) denote the minimum-
travel-time functions w.r.t. G and H, respectively. Similarly, ArrG[u, v](t) ≡ Arr[u, v](t)
and ArrH [u, v](t) denote the earliest-arrival-time functions w.r.t. G and H, respectively.
Succinctly representing the produced alternative paths with AG is reasonable, because the
alternative paths may share common nodes (including o and d) and edges. Furthermore,
their subpaths may be combined to form even more alternative paths, possibly better than
the ones that determined AG. In general, there can be too many alternative od-paths and
the problem is to find a way to select only a meaningful subset of them. Hence, there is a
need for filtering and ranking the alternative od-paths, based on certain quality criteria.

The main idea of the AG approach is to rank the paths w.r.t. some quality criteria and
discard the ones that have poor scores. We use the quality indicators proposed in [2] for static
instances. These indicators are defined on the single-edge level and then they are extended

ATMOS 2020



8:4 Time-Dependent Alternative Route Planning

to the edge-set level. We provide at this point the definition of these quality criteria, adapted
to time-dependent networks. Let H = (V ′, E′) be an AG of G, and let uv ∈ E′. Then:

W [uv](t) := D[uv](ArrH [o, u](t))

share[uv](t) := W [uv](t)
DH [o,u](t)+W [uv](t)+DH [v,d](ArrH [o,v](t))

totalDistance(t) :=
∑

uv∈E′
share[uv](t) (path non-overlappingness)

stretch[uv](t) := W [uv](t)
DG[o,d](t)·totalDistance(t)

averageDistance(t) :=
∑

uv∈E′
stretch[uv](t) (path stretch)

decisionEdges :=
∑

v∈V ′\{d}
(outdegree(v)− 1) (AG size)

The criterion decisionEdges quantifies the size-complexity of AG, as the number of the
alternative paths in AG is directly dependent on the number of the “decision” edge branches
in AG. For this reason, the higher the value of decisionEdges, the more confusion is created
to a typical traveler, when having to choose a route among the alternatives. Therefore, it
should be limited. The criterion totalDistance captures the extent to which the paths in
AG are non-overlapping. Its maximum value is decisionEdges+1 and can be as large as the
number of all od-paths in AG, e.g. when all of them are edge-disjoint. Its minimum value is 1,
corresponding to the case where the AG has only one od-path. The criterion averageDistance
measures the average path-travel-time of the alternative paths w.r.t. the shortest one. Its
minimum value is 1, e.g., when every od-path in AG has the minimum-travel-time.

o b D[ct](12)=2a c d

e

f g

h

D[oa](2)=2 D[ab](4)=3 D[bc](7)=5

D[fg](6)=7

to = 2 ta = 4 tc = 12

tb = 7

te = 8

td = 14
tf = 6

th = 8

tg = 12

Figure 1 Evaluation of the quality criteria for an alternative graph. For each node x, tx =
Arr[o, x](2) is the earliest arrival-time at x, for departure time to = 2.

Figure 1 provides an example AG H whose quality indicators are computed as follows,
for a given departure-time t = 2 from o.

totalDistance(2) = (4 + 5)
2 + (4 + 5) + 2 + 2 + 3 + 5 + 2

2 + 3 + 5 + 2

+ 2 + 7
2 + (2 + 7) + 3) + 3

2 + 2 + 2 + 4 + 3 + 2 + 4
2 + 2 + (2 + 4) + 3

= 0.692 + 1 + 0.643 + 0.231 + 0.462 = 3.028

averageDistance(2) = 2 + 2 + 2 + 2 + 3 + 3 + 4 + 4 + 5 + 5 + 7
12 · 3.028 = 1.073

decisionEdges = |E′| − (|V ′| − 1) = 11− 8 = 3



S. Kontogiannis, A. Paraskevopoulos, and C. Zaroliagis 8:5

In order to construct a high-quality alternative graph, one should aim for high totalDistance
and low averageDistance. In practice, however, achieving low averageDistance may take
away the ability of collecting high-degree disjoint (non-overlapping) paths and gaining high
totalDistance, as these criteria can be contradicting with each other. In any case, the target
function can be any linear combination of totalDistance and averageDistance. Similar to
[2, 21], we adopt as our target function the quantity totalDistance+ 1− averageDistance.

2.1 Computing Time-dependent Shortest Paths
In this section we review some fundamental techniques for computing time-dependent shortest
paths, which are used throughout the paper.

Time-dependent Dijkstra. The time-dependent variant of Dijstra’s algorithm (TDD) [8] is
a straightforward extension of the classical algorithm that computes earliest-arrival-times “on
the fly” when scanning (relaxing) the outgoing edges from a node. TDD grows a shortest-path
tree rooted at an origin o, for a given departure-time to from it. Analogously to the static
case, TDD performs a breadth-first search (BFS) exploration of the graph, settling the nodes
in increasing order of their tentative labels (representing earliest-arrival-times from o, given
the departure-time to from it), until the priority queue becomes empty, or a given destination
d is settled. During the settling of a node, all the outgoing edges are relaxed, implying
new evaluations of the corresponding edge-traversal-time functions. Note that the resulting
shortest-path tree may vary for different departure-time choices to ∈ [0, T ).

Reversed Time-dependent Dijkstra. The reversed version of TDD (RTDD) grows a full
shortest path tree rooted at a node d for a given arrival time td. The differences from the
original (forward) TDD are the following: (a) the edge relaxations are performed for the
incoming edges of each explored node; and (b) the algorithm computes latest-departure-
times at edge tails “on the fly” during an edge relaxation, by evaluating the inverse of the
edge-arrival-time function (which is strictly increasing, due to the strict FIFO property).

CFLAT. The CFLAT time-dependent oracle [15] precomputes approximate minimum-travel-
time functions D (travel-time summaries) from each element of a small set of landmark nodes,
towards all reachable destinations from it. These travel-time summaries are succinctly repres-
ented as a collection of time-stamped minimum-travel-time trees. Their careful construction
ensures both (1+ε) approximation guarantees (for any ε > 0) for the landmark-to-destination
travel-time functions D, and efficient (subquadratic) space requirements.

2.2 Computing Alternative Graphs in Static Road Networks
In this section, we briefly review some approaches used for computing alternative graphs in
time-independent (static) graphs.

k-Shortest Paths. The k-shortest path routing algorithm [10, 23] finds k shortest paths in
order of increasing cost. The disadvantage of this approach is that the computed alternative
paths may share too many edges, making it difficult for a human to actually distinguish
them and eventually make his/her own selection of a route. In order for really meaningful
alternatives to be revealed, one should compute k-shortest paths for very large values of k,
at the expense of a rather prohibitive computational cost.

ATMOS 2020



8:6 Time-Dependent Alternative Route Planning

Pareto. The Pareto algorithm [6, 11, 20] computes an AG by iteratively finding Pareto-
optimal paths on a suitably defined objective cost vector. The idea is to use as first edge-cost
vector the one of the single-criterion problem, while the second edge-cost is defined as follows:
all edges belonging to AG (initially the AG is the shortest od-path) set their second cost
function to their initial edge cost. All edges not belonging to AG, set their second cost function
to zero. This approach also produces too many alternatives with small deviations. Relaxing
the domination criteria and fine-tuning the bounds is non-trivial and time consuming.

Plateau. The Plateau algorithm [4] provides alternative od-paths by constructing “plateaus”
that connect shortest subpaths. For a shortest-path tree Tf from o and a reverse shortest-path
tree Tb from d, a uv-plateau is a uv-path that is a shortest subpath both in Tf and Tb. The
candidate paths via plateaus are constructed by running Dijkstra’s algorithm from o and its
reverse version from d, to produce respectively the trees Tf and Tb. Then, for each uv-plateau
in Tf and Tb, the shortest ou-path in Tf and the shortest vd-path in Tb are connected at the
endpoints of the uv-plateau, in order to form a complete od-path. The candidate od-paths
are of high quality, but they are too many, requiring a size decreasing filtration.

Penalty. The Penalty method [5] provides alternative paths by iteratively running shortest-
path queries and adjusting the weight of the edges on the resulting path. Initially, a
shortest-path query is performed. The resulting shortest path πo,d is penalized, by increasing
the weight of all its edges. Then, a new od-query is executed in the graph with the new
weights. The resulting shortest path π′o,d is again penalized and, if it is short and different
enough from the previously discovered od-paths, it is added to the solution set, otherwise
it is ignored. This process is repeated until a sufficient number of alternative paths (with
desired characteristics) is discovered, or the weight adjustments of od-paths bring no better
results. For a suitable penalty scheme, the resulting set of od-paths can be of high quality.

3 The TDAG Algorithm

In this section we present our new algorithm, TDAG, which, given a time-dependent road
network G = (V,E) with a small set L ⊂ V of landmark nodes, and an arbitrary query
(o, d, to) of an origin o ∈ V , a destination node d ∈ V and a departure-time to ∈ [0, T ) from
o, computes a collection of meaningful (short and essentially non-overlapping) alternative
od-routes. The solution is succinctly represented by an alternative graph H, i.e., the
subgraph of G induced by the chosen od-routes. Of course, within H there may exist
even better combinations of od-routes for the query (o, d, to), which are also considered as
part of the solution. The input arguments of TDAG are: (i) the number N ∈ O(1) of
nearby landmarks that will be settled by TDD in the origin’s neighborhood; (ii) the upper
bounds maxAverageDistance for the averageDistance criterion, maxDecisionEdges for
the decisionEdges criterion, and maxStretch for the maximum stretch of each accepted
od-path in H compared to the minimum-travel-time DH [od](to) in the alternative graph
H1. All these input parameters directly affect the size, the quality and the computation
time for constructing H. TDAG consists of two parts (preprocessing and query) that will be
presented in the rest of this section.

1 Since TDAG essentially mimics the preprocessing of the CFLAT oracle [15], one can easily deduce that
DH [od](to) is a very good approximation of DG[od](to), for all possible departure times from the origin.



S. Kontogiannis, A. Paraskevopoulos, and C. Zaroliagis 8:7

3.1 TDAG Preprocessing
Initially, TDAG chooses a small subset of nodes in G to constitute the landmark set L. There
are various ways for the selection of L, either randomly, or according to some properties of
the underlying graph (e.g., some balanced partition of the graph, or the ranking of the graph
nodes according to a centrality measure such as betweeness-centrality) [15]. In this work we
choose one of the most successful methods for landmark selection, called Sparse-Random
(SR), according to which the landmarks are selected sequentially. Each new landmark `
is chosen uniformly at random from the remaining nodes and, after its selection, a small
neighborhood of nodes around ` is also excluded from future landmark selections. TDAG
proceeds with the computation and succinct storage of timestamped shortest-path trees,
from each landmark ` ∈ L towards all reachable destinations v ∈ V . These trees comprise
the travel-time summaries stored by the preprocessing phase.

The algorithmic part (the computation of the shortest-path trees from landmarks) is
based on the preprocessing phase of CFLAT [15]. The preprocessing-time requirements are
subquadratic in the graph size. As for the required space (also of subquadratic size [15]), in
order to be able to efficiently handle continental-size time-dependent instances, we had to
significantly improve the succinct representation of CFLAT, especially how the preprocessed
travel-time summaries of the landmarks are stored.

The main intervention of this work is a lossless sparse matrix compression methodology
for the succinct and space-efficient representation of the timestamped shortest-path trees
from landmarks, avoiding a considerable increase in the access time for the preprocessed
information. In particular, the preprocessed data conceptually contain, for each ` ∈ L, a
collection T` = {T`(t1`), . . . , T`(t

λ`

` )} of timestamped shortest-path trees rooted at `, which are
optimal for the carefully selected departure times from `, {t1` , . . . t

λ`

` } ⊂ [0, T ) . The selection
of the sampled departure-times was such that, for all possible departure-times t ∈ [0, T ), T`
contains some trees providing, in worst case, an (1 + ε) approximation for D[`, v](t).

Data Structure For Timestamped Predecessors. The novelty of our representation is the
following: Rather than keeping a collection of trees per landmark, we maintain for each pair
(`, v) ∈ L× V two sequences of the same length: (i) ∆`,v for the sampled departure-times
from ` (in increasing order), and (ii) Π`,v for the predecessors of v in the corresponding
(`, v)-paths. The departure-times in ∆`,v are integers from {0, 1, . . . , 86399} (considering
an accuracy of seconds). Rather than using 3 bytes per cell, we exploit the fact that most
departure times are smaller than 216 = 65536sec. Therefore, we keep an index h`,v of the
latest departure-time in ∆`,v that is smaller than 216. The first h`,v cells in ∆`,v store exact
departure-times, but the remaining cells only store the difference of the actual departure
times from the offset 216. This way, all the cells in ∆`,v require exactly 2 bytes. As for Π`,v,
every cell is the relative position of the predecessor of v, in its in-neighborhood list. 1 byte
per cell is sufficient for real-world instances whose maximum in-degree is a small constant.

A first observation of an initial implementation of this data structure, was that a lot
of space was consumed for storing duplicates of exactly the same pairs of sequences, for
different landmark-destination pairs. For example, in the the continental-size EU instance
with 18, 010, 173 nodes, for 16, 000 landmarks one would need to store 576, 325, 536, 000
sequences. Nevertheless, we observed that there were only 1, 632, 168, 375 distinct sequences
(1, 623, 701, 331 departure-time sequences and 8, 467, 044 predecessor sequences). To avoid
this waste of space, we chose to store only pairs of (4-byte) pointers to sequences, among all
landmark-destination pairs. After implementing this variant as well, we also observed that,
in many cases, the same destination v∗ had many repetitions of the same pairs of (4-byte)

ATMOS 2020



8:8 Time-Dependent Alternative Route Planning

pointers to sequences, over all the landmarks. Indeed, this is quite reasonable for landmarks
located towards the same direction and roughly at the same distance from v∗. In order to
avoid these repetitions of pairs of long pointers (8 bytes in total), we proceeded as follows
(cf. Figure 2): We maintained a landmark-indexed dictionary Ldictv∗ , whose value for a key
`∗ is a pointer s∗ to the cell of an array Sv∗ containing a unique pair (p∗, d∗) of pointers to
the sequences ∆`∗,v∗ and Π`∗,v∗ .

Figure 2 Data structure for the succinct representation of preprocessed information of TDAG.

The size |Sv∗ | is exactly the number of distinct pairs of pointers (to sequences) involving
v∗, among all landmarks, and on average is significantly smaller than |L|. Each cell of Sv∗
requires 8 bytes. On the other hand, for Ldictv∗ we use bit-level representation of the stored
values, with each cell consuming only log2(|Sv∗ |+ indeg(v∗)) bits. Even for 16, 000 landmarks
this is at most 14 bits per cell.

Finally, we observed from real-world instances that, more often than not, a node v∗ might
have always the same predecessor, independently of landmarks and departure times. In those
cases, rather storing Ldictv∗ and Sv∗ , we simply stored this unique predecessor for v∗.

Lookup Procedure for Timestamped Predecessors. The lookup operation of preprocessed
information, in order to get a time-dependent predecessor per landmark-node pair, is a
procedure that is repeatedly used in the path-collection phase of the TDAG query algorithm
(cf. PHASE-2 in Subsection 3.2). Briefly, the lookup operation takes as input a triple (`, v, t`)
of a landmark ` ∈ L, a current node v ∈ V and a departure-time from ` t` ∈ [0, T ). The
lookup procedure starts by locating ∆(`, v), and then conducts a binary search in it, to
locate the closest sampled departure times depi ≤ t` < depi+1, in time O(log(|∆(`, v)|)).
Consequently, the corresponding predecessors of v are located at positions i and i + 1 of
Π(`, v), and thus are retrieved in O(1) time. Since the number of sampled departure times
only partitions the period [0, T ) in small time intervals, it is independent of the network size
(e.g., for the EU instance the maximum length of a sequence is 4407). Therefore, the entire
lookup procedure takes O(1) time (e.g., at most 13 comparisons even for EU).

Because of this novel methodology for the succinct representation of the preprocessed
data, preprocessing a large number of landmarks is now possible, even for continental-size
datasets. In performance terms, this novel storage scheme provides a cache-friendly gain
which beats the overhead of the bit-field and bit-mask extraction operations. This in turn
leads to higher quality results and significantly lowers the observed relative error.



S. Kontogiannis, A. Paraskevopoulos, and C. Zaroliagis 8:9

3.2 TDAG Query
The TDAG query algorithm executes three phases for serving a query (o, d, to) ∈ V ×V ×[0, T ):
PHASE 1: Landmark Settling. A forward TDD tree Tf (to) is grown from (o, to), until either

d or a set F ⊂ L of the N closest landmarks are settled. Subsequently, a reverse BFS from
d is executed, exploring the neighborhood around d in a backward fashion. The growth
of the reverse BFS tree Tr is stopped when its size becomes equal to |Tr| = c · |Tf (to)|,
for some constant c ≥ 1 (our experimental analysis showed that c = 1.2 is an appropriate
choice). It should be mentioned that we experimented also with growing a reverse TDD
tree towards d, but this approach was more time-consuming and the resulting AG, to be
constructed in the next phases, was eventually similar to the one constructed using the
reverse BFS tree towards d.

PHASE 2: Path Collection. Using the preprocessed data, our next task is to construct a
subgraph of shortest paths from the N landmarks of Tf (to), with their own departure-
times which have been already computed in PHASE 1, towards each leaf node of Tr.
This is done as follows: starting from each leaf node of the reverse BFS tree Tr, we
recursively move backwards towards each ` ∈ F , by looking-up predecessors in the
timestamped shortest paths originating at the landmarks of Tf (to). All the edges
that participate in these paths connecting the landmarks in F to the leaf nodes of
Tr, become marked. The initial alternative graph H consists of the union of the two
trees Tf (to) and Tr of PHASE 1, plus the marked edges of PHASE 2. We continue
expanding the forward TDD tree of PHASE 1 towards d, by working only on H, until
all nodes in H are settled. This allows us to obtain a tentative arrival-time t̃d at d:
t̃d = to +DH [o, d](to) ≤ to + min`∈Tf (to)∩L{D[o, `](to) +D[`, d](to +D[o, `](to))}. Clearly
t̃d is an upper-bound of the earliest-arrival-time td = to +D[o, d](to). The quality of this
upper bound depends on the choice of the precision ε of the preprocessed information
(cf. the analysis of CFLAT [15] for further details), the number N of settled landmarks
within Tf (to), and the size of the reverse BFS tree Tr.

PHASE 3: Path Pruning. The graph H produced by PHASE 2 is already smaller than G.
Nevertheless, it is further pruned so as to meet the three quality criteria for an alternative
graph: small path overlapping, stretch, and size. This is done in three steps.

Step 3.1 We first aim at a loose pruning over H, in order to obtain a subgraph containing a
smaller number of candidate od-paths with reasonable travel-times. In particular, any
node u in H whose shortest travel-time from o to d via u is greater than the targeted
upper-bound, i.e., DH [o, u](to) +DH [u, d](to +DH [o, u](to)) > maxStretch ·DH [o, d](to),
is removed.

Step 3.2 For further reducing the number of the candidate od-paths, we use initially the
Plateau method [4, 21] by running, within H, TDD from (o, to), and RTDD from
(d, to+DH [o, d](to)). Any edge not belonging to the resulting Plateau candidate od-paths,
is removed from H. The Penalty pruning method [5, 21] is then applied, to prune
further the subgraph H. At each Penalty iteration, TDD runs on H, computing a new
time-dependent shortest path πo,d, which is marked and is added to the solution set Es.
Additionally, the edges in Es and the incoming edges incident to the nodes in πo,d are
penalized with an increasing penalty factor p(e) and r(e), respectively, initially set to 0. For
each edge e = uv ∈ Es, its travel-time is increased to D[e](t)(penalized) = (p(e)(current) +
1)D[e](t)(original); otherwise, if u or v ∈ πo,d and e /∈ πo,d∪Es, its travel-time is increased
to D[e](t)(penalized) = (r(e)(current) + 1)D[e](t)(original). The penalty factors of the
affected edges are increased at the end of each step to p(e)(new) = p(e)(old) + pc and
r(e)(new) = r(e)(old) + rc, where pc > 0 and rc > 0 are constants. The process is repeated

ATMOS 2020



8:10 Time-Dependent Alternative Route Planning

until a sufficient number of alternative paths is found, or the travel time adjustments of
πo,d paths bring no better results. At the end, the unmarked edges are removed. In order
to speedup the Penalty approach at path computation, the time-dependent variant of A∗
[7, 12] can be used in place of TDD. For each node of H, its distance towards d which is
already computed from RTDD during the Plateau phase, can be used as a lower bound
for the time-dependent A∗ heuristic.

Step 3.3 The final pruning of H is performed via a ranking procedure. Initially, if a path πx,y
inH has outdeg(x) ≥ 2 and indeg(y) ≥ 2, and ∀v ∈ πx,y−{x, y} outdeg(v) = indeg(v) = 1
(i.e., it increases by one the decisionEdges), then it is considered as a decision-path and
it is ranked by the function rank(πx,y, t) =

∑
e∈πx,y

(share[e](t) − stretch[e](t)) that
represents the contribution of πxy in terms of averageDistance and totalDistance in H.
The ranked decision-paths are sorted by increasing ranking order in a priority queue
Q. Then an iterative procedure starts, where in each iteration a path πxy is dequeued
from Q. If the condition outdeg(x) ≥ 2 and indeg(y) ≥ 2 remains in effect, then πx,y is
removed from H, leading to a decrease of the decisionEdges by one. After the removal
of πx,y, if for v ∈ {x, y} it holds that outdeg(v) = indeg(v) = 1, then a new decision path
π is revealed which has v as an internal node. π is ranked and inserted in Q, in order to
be considered along with the rest of decision paths. The iterative procedure stops when
decisionEdges ≤ maxDecsionEdges.

4 Experimental Evaluation

Experimental Setup and Goal. TDAG was implemented in C++ (GNU GCC version
9.3.0). All the experiments were conducted on a AMD Ryzen Threadripper 3960X 24-Core
3.8GHz Processor, with 256GB of RAM, running Ubuntu Linux (20.04 LTS). We used 24
threads for the preprocessing phase of CFLAT [15], using as preprocessing precision ε = 0.1.

Three typical benchmark instances for testing speedup techniques and oracles in time-
dependent road networks are used in our experiments, kindly provided to us by TomTom
and PTV for scientific purposes. The real-world instance of Berlin (BE) was provided by
TomTom, has 473, 253 nodes and 1, 126, 468 edges, and contains edge-travel-time functions
taken from historical data of a typical working day (Tuesday) in a typical urban environment.
The instances of Germany (GE) and Europe (EU) were provided by PTV, and contain
edge-travel-time functions of a typical working day, in nation-wide and continental road
networks, respectively. GE has 4, 692, 091 nodes and 10, 805, 429 edges, and is a real-world
instance. EU has 18, 010, 173 nodes and 42, 188, 664 edges, and is a synthetic time-dependent
benchmark instance that is typically considered in the related literature.

The TDAG query algorithm was executed on a single thread. For the sake of comparison,
in all the query algorithms that have been evaluated in this work, we used the same set of
10, 000 queries chosen independently and uniformly at random without repetitions (iuar)
from V × V × [0, T ) in each instance, for randomly selected departure-times from [0, T ). The
static (forward-star) variant of the PGL library [19] was used for the graph representation.
For Dijkstra-based algorithms, we used as priority queue Sander’s implementation2 of the
sequence heap [22].

In [15], various methods were considered for the selection of the landmark set. In this
work, we only consider the sparse-random (SR) method: the landmark nodes are chosen
sequentially, each new landmark is chosen iuar from the remaining nodes, and excludes a
free-flow neighborhood of nodes around it from future landmark selections.

2 http://algo2.iti.kit.edu/sanders/programs/spq/.

http://algo2.iti.kit.edu/sanders/programs/spq/


S. Kontogiannis, A. Paraskevopoulos, and C. Zaroliagis 8:11

The goal of our experimental evaluation was twofold:
(i) we investigated the scalability of TDAG, i.e., how smoothly it trades higher query times

with better quality of the alternative graph H, using the value of N as our tuning
parameter;

(ii) we compared TDAG’s performance with the performances of straightforward time-
dependent variants of existing techniques for constructing alternative graphs in static
graphs [2, 21], which serve as our baseline approaches.

Moreover, the relative error ApxErr, defined as

ApxErr = DH [o, d](t)−DG[o, d](t)
DG[o, d](t) ,

provides the approximation accuracy of H, that is, how close DH [o, d](t) is to DG[o, d](t),
given that DH [o, d](t) ≥ DG[o, d](t).

Experimental Results. Our bit-level data compression technique (cf. Section 3.1) turned
out to be beneficial. The byte-based approach of CFLAT [15] for the succinct representation
of the travel-time summaries of 2000 landmarks chosen with SR (SR2K) consumed space of
5.2GB in Berlin, 53.6GB in Germany, and 107.2GB in Europe. Using the new profiling, bit-
level based approach of TDAG, the preprocessed data for SR2K landmarks consumes space
of 0.28GB in Berlin, 3.2GB in Germany, and 31.05GB in Europe. That is, the exploitation
of the bit-level representation of a sparse matrix, without sacrificing the landmark and node
indexing, leads to a significant reduction of about 70% in space requirements, which in turn
allows for the selection of larger landmark sets, especially for continental-size instances.

Table 1 Quality measures and execution times of TDAG.

Network Landmark
N

Target Total Avg Decision Apx Time
Set Function Dist Dist Edges Err (%) (ms)

BE SR4000

1 1.53 1.54 1.01 4.63 0.48 0.52
2 1.98 2.00 1.02 7.69 0.06 0.89
4 2.40 2.43 1.03 9.07 0.02 1.50
10 2.97 3.02 1.04 9.68 0.01 3.11
32 3.65 3.71 1.06 9.72 0.00 8.45
76 3.99 4.06 1.07 9.62 0.00 18.86
100 4.06 4.14 1.08 9.58 0.00 25.80
250 4.22 4.30 1.08 9.46 0.00 64.44

GE SR8000

1 1.50 1.51 1.01 8.60 0.51 1.31
2 1.93 1.94 1.02 9.96 0.06 2.80
8 2.77 2.81 1.04 9.93 0.00 11.38
18 3.26 3.32 1.06 9.86 0.00 28.89
25 3.45 3.51 1.07 9.80 0.00 43.33
64 3.88 3.96 1.09 9.63 0.00 135.04
100 4.02 4.11 1.09 9.54 0.00 213.05
200 4.15 4.25 1.10 9.40 0.00 384.15

EU SR16000

1 1.43 1.43 1.01 8.63 0.85 4.30
6 2.07 2.09 1.02 9.95 0.55 21.95
18 2.51 2.54 1.03 9.92 0.55 80.61
64 3.09 3.15 1.05 9.74 0.55 330.72
100 3.30 3.36 1.06 9.63 0.55 514.45
150 3.47 3.54 1.07 9.51 0.55 770.48
200 3.57 3.64 1.07 9.42 0.55 965.07
250 3.62 3.69 1.07 9.32 0.55 1237.80

ATMOS 2020



8:12 Time-Dependent Alternative Route Planning

In Table 1 and 2, we report the results of our experimental evaluations of TDAG on
the approximation accuracy ApxErr (relative error in %) and the various quality indic-
ators3 (cf. Section 2): targetFunction (TargFun), totalDistance (TotDist), averageDis-
tance (AvgDist) and decisionEdges (DecEdges). Similar to [21], in order to evaluate
the quality of AG, the aggregate quality indicator TargFun is used, defined as follows:
TargFun = totalDistance+ 1− averageDistance . In all cases the alternative graphs are
evaluated using the following constraints: maxStretch ≤ 1.2, averageDistance ≤ 1.1, and
decisionEdges ≤ 10. In the path pruning step, the penalty constants were set to pc = 0.3
and rc = 0.1.

Table 1 demonstrates the effect of the parameter N on the execution time of TDAG, as
well as on the quality of the constructed AG. As N grows, PHASE 1 becomes computationally
more expensive, but the relative error rapidly drops towards 0 for BE and GE. This is due to
the fact that as N increases, the expanded (forward) TDD tree gets bigger and the resulting
od-paths increase in number, but we also get more candidate od-paths providing an AG of
better quality. As for EU, the relative error seems to stop at 0.55, because of the steepest
slopes of the earliest-arrival-time functions (which necessitate an increased number of sampled
departure times during the preprocessing phase), the propagation of floating point rounding
errors along the edges of long paths, and the smaller density |L|/|V | of the preprocessed
landmarks, compared to the instances of BE and GE. All these issues can be tackled by
affording more memory for the computations.

In Table 2 we present the results of the baseline approaches and their comparison to
TDAG. DPP is a combination of the Plateau and the Penalty methods [2], which collects and
evaluates the candidate od-paths using a greedy selection approach. In our time-dependent
context, Dijkstra’s algorithm was replaced by its time-dependent variant, TDD. APP is again
the combination of the Plateau and Penalty methods of [2, 21], which uses the ALT pruner
and filtering approach [21]. Dijkstra’s algorithm was again replaced by TDD, and for the
lower bounds required by ALT the constant free-flow minimum-travel-time distances were
used (i.e., each edge has as scalar cost corresponding to its minimum travel time). DPP
does not require prepossessing, while APP requires a linear in space and super-linear in
time prepossessing phase for computing the lower bounds required by ALT. Regarding the
computation of AG (column q-time in Table 2), both baseline approaches have a slow path
collection phase. DPP constructs a subgraph H that is huge in size, using an expensive
phase of pure TDD, as there are no heuristics. APP improves the time of the path collection
phase, but the lower bounds are not tight for a time-dependent metric. In both cases the
achieved quality is high, at the cost of large processing times.

From Tables 1 and 2, it is clear that for all instances the configurations of TDAG,
achieving analogous aggregate quality, require execution times about two orders of magnitude
smaller than that of DPP. In particular, the achieved speedups are more than 102.7 for BE,
90.8 for GE and 37.9 for EU. Similarly, the configurations of TDAG achieving similar values
of the target function, are faster than APP about one order of magnitude, as the instance
size increases. In particular, the speedups are 2.1 for BE, 4.8 for GE and 8.3 for EU.

5 Conclusions

In this work we present TDAG, a novel algorithm for computing alternative routes in
FIFO-abiding time-dependent road networks, based on succinctly stored preprocessed travel
information. One of TDAG’s strong features is that it can smoothly trade-off the quality

3 To simplify notation, we omit in the rest of the paper the departure-time t notation.



S. Kontogiannis, A. Paraskevopoulos, and C. Zaroliagis 8:13

Table 2 Speedups of TDAG over DPP (with TDD) and APP (with A∗ and free-flow lower-bounds).

network method Target q-time speedup
DPP 3.01 319.38

TDAG vs DPP 2.97 3.11
APP 4.21 134.73

TDAG vs APP 4.22 64.44
DPP 3.27 2623.36

TDAG vs DPP 3.26 28.89
APP 4.17 1860.80

TDAG vs APP 4.15 384.15
DPP 3.36 19511.93

TDAG vs DPP 3.30 514.45
APP 3.89 10266.29

TDAG vs APP 3.62 1237.80

BE

GE

EU

102.7

2.1

90.8

4.8

37.9

8.3

of the resulting AG with the required execution time, via proper choices of its parameter
N . This feature provides a significant advantage over all existing approaches, which have
only one solution set of od-paths. Our experimental evaluation on three real-world instances
demonstrated that TDAG clearly outperforms both baseline approaches (DPP and APP),
since it provides time-dependent alternative routes of the same quality as DPP and APP
within smaller execution times. TDAG can also provide “quick-and-dirty” alternative routes
with a speedup of more than 100 over both DPP and APP, but it can continue its execution
until it finds alternative routes of the same quality as DPP and APP, still much faster (less
than half time for BE, or one fifth of time for GE) than these two baseline approaches.

References
1 Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck. Alternative

routes in road networks. In Experimental Algorithms, volume 6049 of LNCS, pages 23–34.
Springer, 2010.

2 Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders. Alternative route graphs
in road networks. In Theory and Practice of Algorithms in (Computer) Systems, volume 6595
of LNCS, pages 21–32. Springer, 2011.

3 G Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum time-dependent
travel times with contraction hierarchies. ACM Journal of Experimental Algorithmics, 18(1.4):1–
43, 2013.

4 Camvit: Choice routing, 2009. URL: http://www.camvit.com.
5 Yanyan Chen, Michael GH Bell, and Klaus Bogenberger. Reliable pretrip multipath planning

and dynamic adaptation for a centralized road navigation system. IEEE Transactions on
Intelligent Transportation Systems, 8(1):14–20, 2007.

6 Daniel Delling and Dorothea Wagner. Pareto paths with sharc. In Experimental Algorithms,
volume 5526 of LNCS, pages 125–136. Springer, 2009.

7 James Doran. An approach to automatic problem-solving. Machine Intelligence, 1:105–127,
1967.

8 Stuart E Dreyfus. An appraisal of some shortest-path algorithms. Operations Research,
17(3):395–412, 1969.

9 eCOMPASS project, 2011-2014. URL: http://www.ecompass-project.eu.

ATMOS 2020

http://www.camvit.com
http://www.ecompass-project.eu


8:14 Time-Dependent Alternative Route Planning

10 David Eppstein. Finding the k-shortest paths. SIAM Journal on Computing, 28(2):652–673,
1998.

11 Pierre Hansen. Bicriterion path problems. In Multiple criteria decision making theory and
application, pages 109–127. Springer, 1980.

12 Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determ-
ination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics,
4(2):100–107, 1968.

13 Moritz Kobitzsch. An alternative approach to alternative routes: Hidar. In Algorithms, volume
8125 of LNCS, pages 613–624. Springer, 2013.

14 Felix Koenig. Future challenges in real-life routing. In Workshop on New Prospects in Car
Navigation, February 2012.

15 Spyros Kontogiannis, Georgia Papastavrou, Andreas Paraskevopoulos, Dorothea Wagner, and
Christos Zaroliagis. Improved oracles for time-dependent road networks. In Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems, volume 59 of OASIcs,
pages 4:1–4:17. Dagstuhl Publishing, 2017.

16 Spyros Kontogiannis, Dorothea Wagner, and Christos Zaroliagis. Hierarchical time-dependent
oracles. In Algorithms and Computation, volume 64 of LIPIcs, pages 47:1–47:13. Dagstuhl
Publishing, 2016.

17 Spyros Kontogiannis and Christos Zaroliagis. Distance oracles for time-dependent networks.
Algorithmica, 74(4):1404–1434, 2016.

18 Dennis Luxen and Dennis Schieferdecker. Candidate sets for alternative routes in road networks.
In Experimental Algorithms, volume 7276 of LNCS, pages 260–270. Springer, 2012.

19 Georgia Mali, Panagiotis Michail, Andreas Paraskevopoulos, and Christos Zaroliagis. A new
dynamic graph structure for large-scale transportation networks. In Algorithms and Complexity,
volume 7878 of LNCS, pages 312–323. Springer, 2013.

20 Ernesto Queiros Vieira Martins. On a multicriteria shortest path problem. European Journal
of Operational Research, 16(2):236–245, 1984.

21 Andreas Paraskevopoulos and Christos Zaroliagis. Improved Alternative Route Planning. In
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, volume 33
of OASIcs, pages 108–122. Dagstuhl Publishing, 2013.

22 Peter Sanders. Fast priority queues for cached memory. ACM Journal of Experimental
Algorithmics, 5:1–25, 2000.

23 Jin Y Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11):712–716, 1971.


	Introduction
	Preliminaries
	Computing Time-dependent Shortest Paths
	Computing Alternative Graphs in Static Road Networks

	The TDAG Algorithm
	TDAG Preprocessing
	TDAG Query

	Experimental Evaluation
	Conclusions

